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éternellement reconnaissant. Juju pour ta soif de connaissance et ton goût infatigable
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Un grand merci à mes meilleurs amis, Camille, je suis si heureux de t’avoir dans ma
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L’électricité est au cœur de notre société moderne. Elle est centrale pour le développe-

ment économique, fournissant l’énergie nécessaire pour alimenter les industries, les en-

treprises et les ménages. Malgré son rôle dans l’économie, et quel que soit le mode

de gouvernance envisagé, l’électricité est confrontée à une contrainte physique impor-

tante. À tout moment, la quantité consommée doit être égale à la quantité injectée

dans le système. Par conséquent, le défi d’avoir toujours une capacité de production

suffisante pour répondre à une demande donnée est crucial lorsque le stockage est insuff-

isant. Dans ce contexte, comment pouvons-nous garantir que l’équilibre entre

la production et la consommation est maintenu aussi efficacement que possi-

ble ? Cette question est d’autant plus importante que l’électricité est appelée à jouer

un rôle central dans la transition énergétique, que ce soit du côté de la production, en

raison du passage nécessaire d’une production carbonée à une production décarbonée,

ou du côté de la consommation, en raison de l’électrification de nos usages tels que les

transports, le chauffage, ou de la numérisation de l’économie. La figure 1 illustre, par

exemple, l’investissement nécessaire selon deux scénarios à l’horizon 2040 par rapport

aux investissements réalisés au cours de la dernière décennie. La figure 2 illustre une sit-

uation dans laquelle le Texas a subi des phénomènes météorologiques hivernaux extrêmes

qui ont entrâıné des coupures de courant importantes. En d’autres termes, la nécessité

de mettre en place des institutions efficaces pour garantir des investissements suffisants

découle non seulement de la nature même de l’électricité, mais aussi de son rôle central

dans la transition énergétique.

Figure 1: Investissement annuel moyen dans le secteur de l’électricité au niveau mondial,
2010-20, et besoins jusqu’en 2040. (IEA, 2020)

Les marchés de l’électricité présentent de nombreux problèmes analysés par l’économie

moderne. D’un point de vue microéconomique et d’économie publique, plusieurs décennies
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Figure 2: Production d’électricité de l’ERCOT par source, demande et pannes pendant
la crise énergétique de 2021 au Texas (FED, 2021)

d’études ont souligné ses nombreuses défaillances de marché : les externalités dues à sa

production, son transport et sa consommation ; la nature de bien public de ses infras-

tructures ; son incomplétude, notamment en ce qui concerne la gestion des risques ;

sa spécificité, qui en fait un terrain de jeu idéal pour l’exercice d’un pouvoir de marché.

L’existence d’un certain nombre de contraintes physiques pose également un certain nom-

bre de défis aux économistes, qui doivent adapter leur analyse aux lois physiques régissant

l’ensemble de la châıne de valeur de l’électricité. Par ailleurs, la récente crise COVID-19

et la guerre en Ukraine ont également mis en évidence le lien entre l’électricité et les ques-

tions macroéconomiques, notamment l’inflation. Dans le chapitre introductif, je décris

notamment plus en détail pourquoi nous avons besoin de suffisamment d’investissements.

Je discute également des principales idées théoriques qui ont conduit à la libéralisation

et à la mise en place des marchés de l’électricité. Je rappelle que si la théorie affirme

que le niveau d’investissement peut être atteint efficacement grâce aux marchés, il existe

un grand nombre de problèmes qui empêchent ces marchés d’être pleinement efficaces.

Ce constat motive d’autant plus l’étude de la forme de gouvernance et d’institution que

nous pouvons construire pour fournir les bonnes incitations.

C’est dans ce contexte que cette thèse cherche à répondre à un certain nombre de

questions sous l’angle de la théorie économique. En particulier, j’ai choisi d’étudier le

lien entre le fonctionnement des marchés de l’électricité et les décisions d’investissement.

En d’autres termes, comment s’assurer que les institutions mises en place pour

produire, échanger et consommer l’électricité fournissent des incitations suff-
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isantes pour investir efficacement ?1 Bien que les questions d’investissement ne

soient pas spécifiques à l’électricité, le manque actuel de capacité de stockage à une

échelle suffisante et à un coût relativement faible signifie que tout écart dans la disponi-

bilité des investissements par rapport aux niveaux de consommation comporte un risque

important. Dans le meilleur des cas, ces risques se traduisent par un rationnement in-

volontaire de la demande, également connu sous le nom de ”rolling blackout”, et, dans

le pire des cas, par un effondrement total du système. Cette question est d’autant plus

critique que l’un des principaux objectifs de la politique publique dans le secteur de

l’électricité est le développement massif des énergies renouvelables.

Comme je le soulignerai dans cette conclusion générale, j’ai abordé ce problème d’une

manière spécifique. L’idée centrale de cette thèse est d’essentialiser et de conceptu-

aliser les particularités du lien entre les décisions d’investissement et de production. Ce

lien est bien décrit dans le concept d’externalités d’allocation utilisé dans la littérature

économique : les décisions individuelles d’investissement dépendent des équilibres du

marché de l’électricité, et les équilibres dépendent des investissements. En fin de compte,

l’interdépendance entre les investissements et les équilibres déterminera le bien-être. Une

fois ce lien clarifié, j’ai entrepris de répondre à la question suivante concernant la con-

ception du marché : quelles sont les règles d’organisation des marchés qui max-

imiseront l’efficacité dans ce cadre particulier ? En d’autres termes, je tente de

répondre à la question pratique de savoir comment fournir les meilleures incitations à

l’investissement afin que le niveau atteint soit celui souhaité mais aussi que la manière

dont il est atteint ne génère pas trop de coûts indirects et négatifs pour la société.

Le point de départ de cette thèse repose sur le constat suivant. Le secteur de

l’électricité est constitué d’une succession d’essais et d’erreurs sur la manière d’organiser

efficacement ces marchés. Il offre alors un vaste terrain de jeu pour analyser les politiques

de mise en place de diverses règles de marché, tant d’un point de vue positif que nor-

matif. Je prends comme point de départ une approche spécifique : celle des marchés de

capacité. Ces marchés se caractérisent par le fait que les producteurs promettent d’être

disponibles dans le futur en échange d’une rémunération. Plutôt que de se demander si

1Les décisions d’investissement couvrent un large éventail de problématiques: (1) d’un point de vue
statique, l’efficacité d’une décision d’investissement peut être définie par un niveau et une composition
adéquats, et (2) d’un point de vue dynamique, il convient de s’assurer que les décisions sont prises en
temps opportun. En particulier, les décisions d’entrée et de sortie, y compris la décision de maintenir ou
de mettre sous cocon certaines capacités. Dans cette thèse, je me concentrerai sur l’efficacité du niveau
d’investissement, et son maintien, plutôt que sur la composition ou l’efficacité dynamique.
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les marchés de capacité sont plus efficaces que d’autres formes d’organisation, ma thèse

s’intéresse à la manière dont ils peuvent être mis en place de la manière la plus optimale.

Bien que les contributions empiriques aux marchés de capacité soient restées limitées,

les économistes ont utilisé une grande diversité d’outils de modélisation, allant de la

représentation de systèmes d’ingénierie complexes à des modèles théoriques classiques,

analytiques et stylisés, chacun ayant ses avantages et ses inconvénients. Mes premières

années de doctorat ont été consacrées à une analyse approfondie de la littérature quanti-

tative sur les marchés de capacité. Cependant, je me suis rendu compte que pour aborder

des questions spécifiques de conception de marché qui étaient très pratiques à première

vue, il était nécessaire de revenir aux fondements théoriques des marchés de l’électricité.

Par conséquent, mes choix de modélisation se sont concentrés sur une représentation

très simplifiée de l’environnement industriel afin d’étudier ce que signifie (i) prendre une

décision d’investissement et (ii) participer aux marchés, que ce soit d’un point de vue à

long terme avec les marchés de capacité ou sur les marchés de gros à court terme. Par

conséquent, chaque chapitre de cette thèse vise à réduire la description de la réalité à ses

éléments essentiels afin de mieux comprendre les mécanismes derrière lesquels les choix

de conception du marché ont des effets positifs ou négatifs en termes de bien-être.

Résultat Principal

Chaque chapitre de cette thèse met en lumière des questions bien connues en matière

de conception de marché et d’économie industrielle. Il y a toujours des compromis

fondamentaux qui doivent être compris, et les règles du marché entrâınent toujours

des conséquences non identifiées, bonnes ou mauvaises. La contribution centrale

de cette thèse est de se concentrer sur un sujet très spécifique : dans un environ-

nement aussi particulier que l’électricité, un niveau d’investissement suffisant est

crucial et souvent imposé par les décideurs politiques. Cependant, les décisions

d’investissement sont prises par des acteurs privés. Dès lors, comment s’assurer que

les marchés sont conçus pour garantir la rencontre la plus vertueuse entre les valeurs

privées et les besoins sociaux ? En représentant le comportement des acteurs par

le biais de la théorie économique et en mettant l’accent sur la modélisation des

décisions d’investissement et leur lien avec le reste du marché, la thèse propose de

formaliser des effets encore peu abordés ainsi que de donner de nouvelles recom-

mandations sur la façon de concevoir des marchés pour l’investissement.
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Au-delà de la contribution que je décris plus en détail pour chaque chapitre à la

fin de ce résumé. Ce manuscrit, je l’espère, ouvre la voie à de nouvelles recherches.

Pour commencer, il est nécessaire de rappeler l’importance cruciale de l’approche em-

pirique en économie. Les marchés de capacité existent depuis une vingtaine d’années

dans le monde, et même si les données ne sont pas aussi robustes que pour les autres

marchés de l’électricité, je pense qu’il est tout à fait possible de creuser dans cette di-

rection. Cette extension de ma recherche pourrait impliquer à la fois une approche

économétrique classique et l’utilisation de données pour construire des contrefactuels sur

la base de modèles plus techniques, donnant une image plus réaliste du fonctionnement

d’un système électrique. Cela permettrait également de mesurer la valeur réelle des

compromis mis en évidence dans cette thèse. Les investissements jouant un rôle crucial

sur les marchés de l’électricité, tant en raison de leur valeur que de leur coût, une telle

approche serait utile au débat politique sur l’acceptation des nouvelles technologies et

réglementations.

Les observations faites dans le chapitre d’introduction de cette thèse constituent

une autre limite importante de ce travail. En effet, j’ai décrit comment l’efficacité d’un

marché de capacité est mesurée non seulement en termes de niveau d’investissement, mais

aussi en termes d’autres décisions industrielles étroitement liées, telles que les décisions

d’entrée et de sortie du marché, ainsi que les décisions de maintenir un certain niveau

de capacité. De plus, dans le contexte de la transition énergétique, il est crucial de

se poser la question de la composition du mix énergétique. Il serait alors envisageable

d’étendre les travaux présentés dans chaque chapitre pour prendre en compte ces autres

dynamiques. L’objectif de ces extensions n’est pas simplement d’ajouter un degré de

réalisme aux modèles théoriques mais de comprendre comment les comportements et les

nouveaux arbitrages soulevés par ces questions s’ajoutent ou s’opposent aux résultats

trouvés dans cette thèse. À titre d’exemple, je prendrai les énergies renouvelables qui,

contrairement aux moyens de production plus conventionnels, ont un niveau de capacité

incertain mais un coût marginal certain.2 Dans les sections suivantes, je donne une vue

plus détaillée des principaux résultats et des extensions possibles à chaque chapitre.

Enfin, j’aimerais souligner que la contribution de cette thèse va au-delà des marchés

de l’électricité. L’approche théorique stylisée utilisée dans cette thèse permet d’aborder

des questions plus larges, notamment celle d’assurer des investissements suffisants pour

un ensemble de biens essentiels. Ces biens sont caractérisés par la nature de bien public

2Voir par exemple Fabra and Llobet (2023) qui montrent que les enchères dans ce contexte peuvent
avoir un résultat différent de celui des modèles canoniques.

xiii



de l’investissement disponible lorsque l’offre est rare. Dans ces secteurs, la demande et

l’offre fluctuent de manière imprévisible, et si une demande dépasse la capacité disponible

et ne peut être rationnée efficacement, elle génère des pertes de bien-être significatives.

L’électricité est le cas d’école, mais d’autres marchés présentent des caractéristiques sim-

ilaires : les transports avec congestion ou les biens médicaux pour lesquels la rareté

de l’offre peut conduire à la propagation d’une maladie et à la congestion des installa-

tions médicales. Plus précisément, je développe un programme de recherche qui examine

comment nous pouvons mettre en œuvre et concevoir des institutions, telles que les

marchés, qui répondent efficacement à la demande et à l’offre de ces investissements.

Cette recherche découle du fait que les décideurs politiques et les consommateurs accor-

dent une grande importance à l’investissement et à la capacité de production, il existe

une demande sociale significative pour mettre en lumière ces questions. Le reste de la

conclusion générale se compose d’un résumé des trois chapitres.
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Chapitre 1 - Comment offrir sur les marchés de capacité et quelle

est la relation avec les caractéristiques du produit de capacité ?

Résultat Principal

L’efficacité du marché de capacité dépendant du signal de prix qu’il envoie, les con-

cepteurs des marchés de capacité ne doivent pas négliger le choix des caractéristiques

du produit de capacité et, notamment, de la période de disponibilité. En partic-

ulier, nous montrons dans ce chapitre que lorsque le risque et la flexibilité sont pris

en compte, le résultat peut être différent de celui obtenu avec les hypothèses de

modélisation traditionnelles.

Cette recherche part d’une question simple mais fondamentale : ”Comment les prix

émergent-ils sur les marchés de capacité ? Les prix des capacités constituent un revenu

supplémentaire pour les producteurs afin de les encourager à augmenter leur capacité

disponible. Ils constituent également une charge supplémentaire pour les consomma-

teurs qui doivent payer pour cette augmentation de capacité. Il est donc essentiel de

connâıtre le bon prix de capacité pour mesurer l’efficacité d’un marché de capacité. La

théorie économique souligne depuis longtemps que les prix peuvent différer de leurs fon-

damentaux. En effet, tout prix est la conséquence d’une intersection entre l’offre et la

demande. Sur les marchés de capacité, cette courbe d’offre est l’agrégation des offres

de différents acteurs ayant des caractéristiques différentes. Il existe donc toujours une

marge de manœuvre importante pour s’écarter du prix efficient.

Cette observation appelle une deuxième question : ”Comment les producteurs offrent-

ils sur les marchés de capacité ? Je réponds à cette question en affirmant que la par-

ticipation à un marché de capacité implique un coût d’opportunité marginal spécifique

pour les producteurs, ce qui nécessite une méthode d’évaluation particulière. En effet,

la vente de capacité implique que le producteur reste disponible sur des périodes futures

déterminées dans le contrat vendu. Cette promesse d’offre génère des gains et des pertes

spécifiques pour le producteur. Dans ce cas, il doit échanger les revenus escomptés sur la

durée de l’approvisionnement, déduction faite du coût fixe associé à la décision de rester

disponible. La première contribution de ce chapitre consiste à étudier l’offre comme une

valeur d’option associée à la possibilité de fermer temporairement mais irréversiblement
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pour éviter les coûts fixes. Cette approche diffère sensiblement de l’approche standard

de la valeur actuelle nette, dans laquelle le producteur n’offre que le coût d’opportunité

attendu. Elle nous permet notamment de reconnâıtre la flexibilité de gestion d’un in-

vestissement qui peut réagir aux conditions futures du marché. Je propose donc une

nouvelle approche pour conceptualiser les offres de capacité en utilisant la théorie des

options réelles, où le coût d’opportunité est représenté comme une option sur le revenu

qui détermine la rentabilité de l’usine. Tout d’abord, je définis une offre sur un marché de

capacité à une période comme une option européenne. Ensuite, je passe à un cadre multi-

périodique dans lequel les offres de capacité peuvent être évaluées comme une option à

panier modifiée.

J’utilise cette nouvelle approche pour répondre à une question concrète sur la con-

ception du marché : ”La durée du contrat vendu sur le marché de capacité a-t-elle une

importance ?” Une analyse des différentes mises en œuvre des marchés de capacité dans

le monde a révélé une grande variété de durées, allant de quelques semaines à plusieurs

années. L’hypothèse essentielle de ce chapitre est la suivante : si la durée du contrat

modifie le bénéfice escompté associé à la promesse de rester disponible, elle devrait modi-

fier le coût marginal de la participation au marché de capacité. Par conséquent, la courbe

d’offre change également, ce qui, en fin de compte, a une incidence sur la formation des

prix. Par conséquent, la conception du produit vendu sur un marché de capacité peut

définir, en partie, son efficacité.

Les principaux résultats de ce chapitre sont les implications de la modification de

la durée des contrats sur le comportement des producteurs sur un marché de capacité,

en supposant que le coût marginal soit analysé sous l’angle de la théorie des options

réelles. Je constate que cela diffère considérablement du cadre de la valeur actuelle nette.

Premièrement, les offres sont toujours plus élevées dans le cadre des options réelles, ce

qui signifie que les producteurs accordent une valeur positive à la possibilité de fermer

pour éviter certains coûts. Deuxièmement, les facteurs à l’origine des offres ont des effets

différents sur leur valeur par rapport au cadre de la valeur actualisée nette. Je fournis

une statique comparative sur la valeur des offres et la différence entre les deux cadres.

Je constate que la durée du contrat augmente constamment l’offre lorsque l’on utilise la

théorie des options réelles, alors qu’elle a un effet ambigu sur l’offre de valeur actualisée

nette. La volatilité du marché de gros et le temps d’attente entre la vente du contrat et

le début de la disponibilité sont également analysés. Ils ont tous deux des effets ambigus

sur les offres de capacité en fonction d’un ensemble de conditions sur les facteurs d’offre.

Enfin, je constate l’effet inverse pour la dimension de la conception du produit, avec
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une offre plus élevée pour une durée de contrat plus longue que la somme des offres

attendues pour des produits plus courts. Je teste les résultats en calibrant le modèle sur

le système électrique français. J’utilise également des données réalisées pour une centrale

électrique CCGT (gaz) afin de simuler une offre sur le marché de capacité et de comparer

les résultats avec les prix réalisés observés sur le marché de capacité français. Sur la base

du cadre théorique et de l’illustration numérique, je propose enfin une discussion pour la

conception des marchés de capacité : (i) Sur le rôle de la pénalité sur le marché de capacité

imposée aux producteurs qui choisissent de ne pas être disponibles pendant la durée de

l’appel d’offres bien qu’ils aient vendu un produit de capacité. (ii) La différence entre les

capacités existantes et les nouvelles capacités participant aux marchés de capacité.

Le principe de ce chapitre est de jeter les bases d’une meilleure compréhension de

la manière dont les producteurs proposent leurs investissements sur les marchés de ca-

pacité. En particulier, en décrivant la relation entre leurs offres et les caractéristiques

des contrats échangés sur le marché, nous obtenons une meilleure vision de ce qui de-

vrait émerger sur les marchés de capacité et des compromis qui existent en termes de

conception du marché. Ce chapitre ouvre également un certain nombre de portes pour

des recherches futures. La première consiste à intégrer ces résultats dans un cadre plus

systémique. En particulier, il faudrait concilier l’approche d’évaluation du coût marginal

avec un processus de formation des prix. En d’autres termes, on pourrait modéliser

un ensemble de producteurs hétérogènes et construire des courbes d’offre en utilisant la

théorie des options réelles. L’ajout de décisions dynamiques séquentielles permettrait

également d’endogénéiser l’ensemble des valeurs et, en particulier, d’analyser plus fine-

ment les décisions d’investissement. Une calibration plus fine des paramètres du modèle

permettrait également une meilleure comparaison entre ce qui est attendu du point de

vue des fondamentaux du marché et le comportement réel des agents. Une deuxième

approche consiste à prendre en compte la demande sur les marchés de capacité. En effet,

l’ensemble du chapitre se concentre sur la valeur d’un investissement pour un produc-

teur et du point de vue de la théorie des options réelles. Mais une question se pose :

quelle est la valeur d’une capacité disponible pour les consommateurs ? On pourrait

alors réaliser une étude similaire, en analysant la contrepartie de cette valeur d’option

mais pour la demande. La valeur pour la société d’une capacité supplémentaire est donc

la conjonction entre la valeur de l’option de demande et la valeur de l’option d’offre.
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Chapitre 2 - Les conséquences indirectes de la conception de la

demande

Résultat Principal

Ce chapitre montre que la façon dont la conception de la demande sur les marchés de

capacité peut avoir un impact sur l’ensemble du système. Nous démontrons notam-

ment qu’elle peut modifier la façon dont les consommateurs achètent l’électricité,

ce qui peut avoir des conséquences sur le surplus du consommateur et, indirecte-

ment, sur les décisions d’investissement. Selon les caractéristiques du système, ces

effets indirects peuvent avoir des conséquences positives ou négatives en termes de

bien-être.

La motivation initiale de ce chapitre est de décrire l’arbitrage entre un marché de

capacité centralisé ou décentralisé. Dans cette thèse, un marché centralisé est caractérisé

par le fait qu’un seul acheteur, généralement une entreprise réglementée, telle qu’un

opérateur de système, achète la quantité totale de capacité. D’autre part, un marché

décentralisé est basé sur la participation obligatoire de différents acteurs du côté de la

demande, principalement des fournisseurs, qui achètent eux-mêmes de la capacité en

fonction de leur consommation prévue. Entre les deux, il existe des modèles de marché

hybrides dans lesquels les consommateurs et les fournisseurs participent indirectement

aux marchés de capacité. Le degré de participation des consommateurs est appelé la

conception de la demande des marchés de capacité. Cette recherche découle du fait que

la demande de capacité nécessite une intervention réglementaire. Alors que l’offre émerge

naturellement sur ces marchés, la nature de bien public de l’investissement pendant

les périodes de forte demande implique que les consommateurs ne sont pas disposés

à acheter des capacités sur les marchés de capacité. Le régulateur doit donc définir

administrativement la fonction de la demande pour que le marché s’équilibre et fournisse

les prix des capacités des producteurs.

Ce chapitre vise à jeter les bases permettant de comprendre les avantages et les

inconvénients des différentes options qui s’offrent au régulateur. En particulier, il mon-

tre les conséquences des différentes options sur un modèle représentant le marché des

capacités, les décisions d’investissement, la production et l’équilibre de la consomma-
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tion. Enfin, le chapitre décrit le bien-être d’un marché de l’électricité en fonction de

différentes hypothèses sur la conception du marché, le comportement des acteurs et

l’environnement. Je me concentre sur deux questions interdépendantes qui concernent

(i) le régime d’allocation des coûts, c’est-à-dire la manière dont un acheteur unique

répartit le prix de la capacité entre les acheteurs de capacité et les consommateurs fin-

aux, et (ii) la mesure dans laquelle la demande réalisée par les consommateurs finaux est

prise en compte dans la conception de l’allocation du marché.

La méthodologie utilisée pour répondre à cette question repose sur la théorie canon-

ique de la tarification de pointe pour un bien homogène caractérisé par une demande

variable dans le temps, qui décrit la relation entre la production à court terme et les

décisions d’investissement à long terme. Le modèle élargit la littérature en fournissant

un nouveau cadre analytique qui inclut un équilibre du marché de capacité en plus des

décisions d’investissement et de court terme. La proposition de modélisation est centrale

car tout effet indirect généré par le marché de capacité peut affecter le revenu attendu

par les producteurs et peut être indirectement pris en compte lors de la formation de la

fonction d’offre sur le marché de capacité.

Le premier régime de marché étudié est le marché de capacité canonique. Je m’appuie

sur la littérature précédente, qui repose sur l’hypothèse qu’un marché de capacité n’a

pas d’autre effet que d’augmenter le niveau d’investissement. Ce régime canonique est

similaire à un régime d’allocation des coûts basé sur une taxe forfaitaire. Dans ce cas,

même si l’on considère la fonction d’offre endogène sur le marché de capacité, l’équilibre

de la conception du marché rétablit toujours l’optimum compte tenu des inefficacités du

système. J’étudie ensuite le cas où le prix de la capacité a un impact à la marge sur

les consommateurs. Dans cette hypothèse, le régime alloue le prix de la capacité comme

une taxe unitaire. Je montre que l’existence du marché de capacité affecte indirectement

le marché de gros en redistribuant les différents états du monde lorsque la capacité n’est

pas contraignante ou au contraire lorsqu’elle contraint, et en diminuant le surplus du

consommateur. Par conséquent, je démontre que le bien-être à l’équilibre sous ce régime

est toujours inférieur à celui du régime canonique. Je compare ensuite les deux régimes

d’allocation des coûts de capacité en incluant un rationnement inefficace. Lorsqu’un

plafond de prix est atteint, la disponibilité des investissements devient un bien public car

la demande devient inélastique. En raison de l’impossibilité de rationner efficacement

les consommateurs, ceux-ci subissent une perte de bien-être significative. Sous cette

nouvelle hypothèse, je constate que l’effet indirect créé par l’attribution du prix de la

capacité sur une base unitaire est désormais ambigu pour le bien-être social.

xix



J’élargis l’analyse à la mise en œuvre d’un régime dans lequel le régulateur répartit

le coût sur la base des parts de marché réelles des fournisseurs. Je montre d’abord

comment ce modèle affecte marginalement les détaillants qui jouent ”à la Cournot” sur le

marché de détail. Ensuite, j’intègre le nouvel équilibre dans le modèle avec les décisions

d’investissement et le marché de capacité. Je constate que cette répartition crée un

résultat intermédiaire entre la taxe unitaire et la taxe forfaitaire. Enfin, j’analyse le cas

d’un marché de capacité entièrement basé sur le niveau de demande réalisé. Pour ce faire,

les détaillants sont contraints de couvrir la quantité vendue sur le marché de détail en

achetant directement sur le marché de capacité, compte tenu d’un système de pénalités.

Je me concentre sur la manière dont les stratégies des détaillants peuvent former une

fonction de demande agrégée sur le marché de capacité, et j’analyse la capacité optimale

achetée par les détaillants sur le marché de capacité. Je constate qu’une telle approche

de la fonction de demande peut fournir le niveau optimal d’investissement dans des

conditions spécifiques.

Ce chapitre développe une série d’extensions du modèle canonique représentant les

décisions d’investissement et de production sur les marchés de l’électricité. Il commence

par le cas le plus simple, avec un plafond de prix et un acheteur unique. Ensuite, j’ai for-

mulé davantage d’hypothèses concernant les inefficacités et le comportement des acteurs.

Plutôt que de fournir une comparaison claire entre un marché centralisé et un marché

décentralisé, le chapitre cherche à décrire comment nous pouvons interpréter ces modèles

en premier lieu. En effet, un marché centralisé est avant tout une question de répartition

des coûts, tandis qu’un marché décentralisé dépend de la valeur d’un investissement

pour la demande. En gardant ces résultats à l’esprit, je pense qu’il est désormais pos-

sible de procéder à une comparaison plus approfondie. Comme le soulignent certains

documents qualitatifs, les régimes peuvent différer principalement en raison des infor-

mations différentes que chaque agent peut posséder. Par exemple, les détaillants peu-

vent disposer de meilleures informations concernant leur portefeuille de consommateurs.

D’autre part, l’acheteur unique peut disposer de meilleurs outils pour prédire l’évolution

de la demande globale future. Par conséquent, l’acheteur unique est susceptible de

commettre des erreurs de prévision lors de l’agrégation des informations. Néanmoins, le

processus d’agrégation d’informations dispersées par le biais d’un mécanisme décentralisé

laisse également une grande marge de manœuvre aux détaillants pour se comporter de

manière inefficace. Un autre domaine de recherche futur consisterait à approfondir la

représentation de la conception du marché de capacité décentralisé, que les économistes

de l’électricité n’ont pas modélisé quantitativement. Les progrès récents de la théorie des
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jeux et de l’organisation industrielle pourraient apporter des éclaircissements significatifs

sur ce que signifie négocier et échanger des produits de capacité entre les producteurs et

les consommateurs.

Chapitre 3 - Information privée, consommateurs et décisions

d’investissement

Résultat Principal

Il existe un arbitrage fondamental lorsque l’on conçoit des marchés générant des

revenus pour assurer un niveau d’investissement et maximiser le surplus du consom-

mateur : les prix permettent de couvrir les coûts d’investissement tout en guidant

les décisions de consommation. Dans ce chapitre, nous étudions cette question en

supposant que l’utilité dérivée de la consommation est partiellement inconnue. Il

examine comment un concepteur de marché peut choisir les prix et prendre des

décisions d’investissement en fonction d’un ensemble de contraintes. En partic-

ulier, ce chapitre montre que, sous certaines hypothèses, atteindre un certain niveau

d’investissement peut entrâıner des problèmes de répartition.

La plupart des discussions sur la conception des marchés de capacité et, plus généralem-

ent, sur le niveau d’investissement dans les marchés de l’électricité ont été centrées sur

des questions relatives à l’offre. Il s’agit de savoir comment donner les bonnes incitations

aux producteurs pour qu’ils atteignent le niveau souhaité. Cependant, il semble tout

aussi essentiel de savoir sur quelle base ce niveau doit être déterminé. Cette question

de recherche est étroitement liée aux deux chapitres précédents, car elle reflète la ques-

tion de la valeur de la demande de capacité mentionnée au chapitre 1, et constitue une

première étape dans la construction de la fonction de demande du chapitre 2.

La principale contribution de ce chapitre est d’examiner les implications de la prise

en compte de la demande lorsqu’il s’agit de garantir un niveau d’investissement efficace.

Il étudie un environnement dans lequel il existe un certain nombre de consommateurs

ayant des caractéristiques différentes et dont l’utilité de la consommation d’électricité

est en partie une information privée. En d’autres termes, le chapitre cherche à savoir

comment concevoir les marchés de manière à ce que les consommateurs révèlent leur
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utilité pour leur consommation d’électricité et, par conséquent, indirectement pour le

niveau d’investissement. Dans cette recherche, les marchés ne sont pas seulement utilisés

pour fournir de la consommation et des revenus suffisants pour réaliser des investisse-

ments, mais aussi pour filtrer les caractéristiques non observables afin de garantir un

niveau d’investissement adéquat. Une deuxième approche que j’aborde dans ce chapitre

concerne les questions de redistribution associées à la conception d’un marché optimal

dans ce contexte. Plus précisément, je montre que la mise en œuvre du marché le plus

efficace pour atteindre le niveau d’investissement n’est pas toujours une amélioration de

Pareto pour chaque consommateur.

Pour ce faire, j’étudie les tensions inhérentes à la mise en œuvre d’un mécanisme

d’allocation qui (i) dicte la manière dont les agents consomment les biens et (ii) génère

des revenus pour financer de nouveaux investissements dans un cadre d’information in-

complète. Je développe un cadre théorique dans lequel un concepteur de marché choisit

séquentiellement un niveau d’investissement et propose un mécanisme d’allocation aux

consommateurs, suivi d’une phase de consommation. Le mécanisme d’allocation définit le

transfert monétaire par unité et la quantité pour un ensemble de consommateurs au cours

de la phase de consommation, sous réserve d’une contrainte de capacité. Le concepteur du

marché utilise l’allocation pour maximiser le surplus du consommateur et financer le coût

de l’investissement ; il est donc également soumis à une contrainte budgétaire. Je suppose

que lorsque le concepteur du marché prend des décisions d’investissement et d’allocation,

il est confronté à des consommateurs hétérogènes qui disposent d’informations privées

sur leur niveau de demande et qui appartiennent à une catégorie observée publiquement.

Le premier cas d’information incomplète représente les inefficacités associées à l’infor-

mation privée lorsque le concepteur du marché est contraint dans son choix d’allocation.

Dans ce cas, certains consommateurs surconsomment par rapport à leur type, tandis

que d’autres sousconsomment. J’étudie tout d’abord le cas du prix unique lorsque le

concepteur du marché ne peut pas faire de distinction entre les catégories de consom-

mateurs. Dans ce cas, le barème de prix augmente avec le niveau d’investissement. Je

mets ensuite en œuvre la possibilité de discriminer entre les catégories de consomma-

teurs. Je montre que pour la catégorie de consommateurs dont le niveau de demande

moyen est le plus faible, le prix optimal diminue d’abord et augmente ensuite avec le

niveau d’investissement. En revanche, le prix pour la catégorie des consommateurs plus

importants augmente toujours avec la capacité. Je constate également que le prix de

la première catégorie est supérieur à celui de la seconde pour des valeurs de capacité

relativement faibles, puis que le classement s’inverse pour des valeurs plus élevées. Ces
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non-monotonicités peuvent s’expliquer par l’effet opposé auquel le concepteur du marché

est confronté en termes de surplus du consommateur et d’effet de revenu lorsqu’il choisit

les prix.

Dans la dernière section, j’étudie une configuration de mechanism design où le concep-

teur de marché n’est plus contraint dans le calendrier des prix et des quantités qu’il peut

offrir aux consommateurs. Il doit maintenant faire face à des contraintes d’incitations

et de participation. Je décris d’abord pour quel niveau d’investissement le concepteur

de marché est contraint par le revenu utilisé pour couvrir les coûts fixes et la rente

d’information qu’il doit fournir aux consommateurs pour qu’ils se comportent de manière

sincère. Je constate que le concepteur de marché ne peut fournir une allocation de premier

choix sans contrainte que pour des valeurs faibles du niveau d’investissement, en raison

de la concavité de l’utilité virtuelle du consommateur par rapport à la capacité. Pour

des valeurs plus élevées, les gains d’utilité supplémentaires attendus de l’augmentation

de la capacité ne peuvent pas compenser les coûts d’investissement. Ensuite, je montre

que le comportement de l’allocation optimale dépend de l’état du monde considéré et du

type de consommateurs. Plus précisément, lorsque le niveau d’investissement augmente,

les consommateurs sont toujours confrontés à une diminution de la quantité optimale al-

louée pendant les heures creuses. Pour les périodes de pointe, le changement de quantité

dépend du type de consommateur. Enfin, je montre que seuls les gros consommateurs des

deux catégories peuvent bénéficier d’une augmentation du niveau d’investissement. Ce

résultat s’explique par le lien entre le niveau d’investissement et la rente d’information

accordée aux consommateurs pour qu’ils adoptent un comportement sincère.

Cette recherche a plusieurs extensions. Pour commencer, ce travail a principalement

dérivé une limite supérieure et inférieure sur les conséquences des différentes conceptions

du marché. La première série de résultats dans l’environnement d’information incomplète

décrit la limite inférieure actuelle dans laquelle le concepteur du marché est fortement

contraint et ne peut extraire aucune information. En revanche, le deuxième résultat

décrit la limite supérieure théorique. En effet, en présence d’informations privées et de

consommateurs stratégiques, il s’agit du meilleur modèle de marché que le concepteur

peut mettre en œuvre s’il cherche à ce que les consommateurs révèlent leurs types. Toute-

fois, une grande partie de la littérature sur la conception des marchés et des mécanismes

a montré que la solution théorique ne peut pas toujours être mise en œuvre, soit pour des

raisons techniques, en raison de la non-linéarité de l’allocation optimale par exemple, soit

pour des raisons d’acceptation sociale, étant donné que l’allocation optimale implique

une discrimination. Une autre recherche pratique consisterait à tester le comportement
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de certaines formes de marchés de capacité en termes de révélation d’informations. En

d’autres termes, il serait possible de construire un modèle en ajoutant au chapitre un

module décrivant les mécanismes à long terme. Dans ce cas, le concepteur du marché

serait confronté à un ensemble spécifique de contraintes, et la résolution d’un tel modèle

permettrait une comparaison avec les limites supérieures et inférieures décrites dans ce

chapitre. Enfin, le chapitre souligne l’existence de problèmes de redistribution lors de la

mise en œuvre du plan d’allocation pour atteindre un certain niveau d’investissement.

Il existe donc une piste intéressante qui consisterait à étudier l’arbitrage associé à la re-

striction sur cette allocation pour éviter les problèmes de redistribution. À première vue,

cet arbitrage consisterait à réduire les revenus disponibles pour de nouveaux investisse-

ments. Cependant, dans un contexte de difficultés croissantes à financer la transition

énergétique, je pense que cette recherche est d’un intérêt significatif.
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General Introduction
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Reading guide for the thesis. It is organized as follows. The general introduction

presents the economic fundamentals of the subject addressed in the dissertation. A

second introductory chapter in the Appendix proposes a frame of thought around a

literature review that presents a more detailed methodology and a general philosophy.

The main body of the thesis is composed of three chapters. Each chapter is built in

such a way as to be self-explanatory. Finally, the general conclusion summarizes the

cross-cutting takeaway and the three main chapters. The rest of the Appendix at the

end of the manuscript describes the technical details and the proof of each chapter.

This introduction aims to describe the general economic framework in which this the-

sis is situated and its motivation. First, I will recall why it is crucial to study investment

decisions in electricity markets. Due to its intrinsic nature and also because additional

capacities are needed for a successful energy transition, economists need to make sure

that we implement the right institutions to provide them at the right cost. I will notably

summarize what the benchmark model is to think about how private agents can provide

investment, but also why this canonical framework might fail. Then, in the face of those

limitations, I will describe diverse policy responses to the need to ensure enough available

investment. Due to the vast qualitative and applied literature that already exists on the

subject, I will focus on a theoretical and conceptual discussion.

1 The role of investments in electricity markets.

Electricity is at the heart of our modern society. It is the backbone of economic de-

velopment, providing the energy required to fuel industries, businesses, and households.
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Figure 3: Average annual global power sector investment, 2010-20, and needs to 2040.
(IEA, 2020)

Despite its central role in the economy, and whatever the mode of governance envisaged,

electricity faces a significant physical constraint. At any given point in time, the quan-

tity consumed must be equal to the quantity injected into the system. Consequently,

the challenge of always having sufficient production capacity to meet a given demand is

crucial whenever storage is insufficient.3 In this context, how can we ensure that the

balance between production and consumption is maintained as efficiently as

possible? This issue is all the more important as electricity is set to play a central role

in the energy transition, whether on the production side, due to the necessary transition

from carbon-based production to decarbonized production, or on the consumption side,

due to the electrification of our uses such as transport, heating, or the digitization of the

economy. Figure 3 illustrates, for instance, the investment needed under two scenarios

at the 2040 horizons compared to realized investments in the last decade.

In other words, the need to set up effective institutions to ensure sufficient investment

stems not only from the very nature of electricity but also from its central role in the

energy transition. I will discuss in more detail in the rest of the section the importance of

investment in electricity, how markets can theoretically address this question, and why

it is essential to keep thinking about the proper institutional framework to make sure

that those questions are dealt with efficiently.

3Imports also play an essential role in power markets. In this thesis, I do not make any distinction
in the stylized model between production capacity and imports.
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1.1 The adequacy problem

The constraint described above translates into the obligations of the power system to

deliver electricity to consumers reliably (”a good quality service” (Petitet, 2016)). This

obligation takes the form of a constraint characteristic of the electricity sector: relia-

bility. It is technically defined as :

”A general term encompassing all the measures of the ability of the system to

deliver electrical energy to all points of utilization within acceptable standards

and in the amounts desired” (CIGRE, 1987)

This term encompasses both a short-term horizon concerning the assurance that, at

any given moment, the quantities of electricity injected and withdrawn are equal. This

obligation, or security of supply, is defined as an operational constraint:

”the measure of how an electric power system can withstand sudden distur-

bances such as electric short circuits or unanticipated loss of system compo-

nents” (CIGRE, 1987);

And a long-term horizon adequacy , which is the system’s ability to support a certain

level of consumption:

”of a bulk power system to supply the aggregate electric power and energy

requirements of the customers within component ratings and voltage limits,

taking into account scheduled and unscheduled outages of system components

and the operating constraints imposed by operations ”(CIGRE, 1987).

Even if the time horizons differ, these constraints both raise the question of the

sizing and composition of the generation and consumption mix. Both need to be able

to adapt to medium/long-term changes in demand (Adequacy), but also to withstand

extreme events, mainly to avoid short-term imbalances (Security of Supply). Moreover,

there is also a wide variety of technologies for generating electricity. Frequent changes in

electricity consumption mean that at certain times, to meet a specific demand, certain

technologies are considered more economically and technically appropriate. The role

of each technology in the system is defined by its overall characteristics, in particular
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its cost structure and operational functioning. To be economically efficient and meet

all demands, a capacity must, therefore, have a specific technological composition. An

investment is capital-intensive and has a relatively long lifespan. This temporal and

financial dimension of investment requires a long-term approach. Therefore, having the

right institution with respect to investment in this context covers a wide range of issues:

(1) from a static perspective, efficiency can be defined by having the right level and

composition, and (2) from a dynamic perspective, one should make sure that decisions

are made in a timely manner.4 In this thesis, I will focus on the efficiency of the

mix level rather than the composition or the dynamic efficiency.

The lack of sufficient investment to address this adequacy issue results in three main

types of economic damage (IEA, 2020):

• Load shedding

• Cascading blackouts/black system events

• Long rationing periods of electricity

The first type of consequence arises when the relative level of investment is not signif-

icantly different from the level of consumption. In this case, the economic cost appears

as an involuntary rationing of demand. As I will discuss in greater detail throughout

Chapter 2, the main idea behind this involuntary rationing of demand is that, due to a

number of physical, economic, and political constraints, it is not possible to effectively

reduce demand, i.e., to individually target those who should in theory reduce or stop

consuming. This impossibility, in fact, generates a welfare cost. A recent example of this

is California in 2020 or Texas in 2021 (IEA, 2020). Figure 4 illustrates the Texas extreme

winter weather events that lead to severe outages. The second type is directly linked to

the physical characteristics of electricity when the gap between production and consump-

tion is significant, and load shedding is not sufficient. In this case, all the agents on a

network suffer damage, ranging from the shutdown of transport systems to the shutdown

of the cold chain. Finally, when the level of investment is inadequate from a long-term

point of view, the power system needs to limit electricity consumption over the long

term. The damage incurred is then directly linked to the central function of electricity

in economic development, and it causes damage right up to the macroeconomic level.

4In particular, entry and exit decisions, including the decision to maintain or mothball certain ca-
pacity.
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Figure 4: ERCOT electricity generation by source, demand, and outages during Texas
Deep Freeze (FED, 2021)

This thesis aims to understand how specific public policies address investment issues

in the context of managing constraints of electricity markets. More specifically, I will

study economic instruments that aim to provide private agents with sufficient incentives

to manage the supply-demand balance adequately over the medium/long term. Although

short-term security of supply issues are also crucial, they require a different approach to

that used in this thesis. Consequently, these issues will not be addressed in the thesis.

1.2 Spot Pricing: a theoretical solution

Historically, power systems were vertically integrated. The investments and the trans-

port of electricity to the end consumer were managed by a single company, very often

controlled by the state. This was referred to as the ”control-command” model: economic

production decisions to meet demand were made by the regulated company, as were the

technical adjustments made to deal with short-term equilibrium (Saguan, 2007). Invest-

ment in capacity, and therefore the choice and timing of the level and composition of

the electricity mix, is also decided by the public entity and the company. Consequently,

in this model, long-term equilibrium issues are handled by a single entity acting as a

benevolent planner.

The transition from a vertically integrated model to one based on competition be-

tween several agents has challenged the way the power system operates. In this new
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model, the production and investment decisions are no longer managed by a single en-

tity but by a set of agents whose objective is to maximize their profit. To simplify,

supply-side agents are investors who own generation assets and base their industrial de-

cisions on estimated future profits. Demand-side agents are retailers with a portfolio of

customers or relatively large customers who can buy directly in wholesale markets. Each

actor has its characteristics: demand-side agents can be differentiated according to var-

ious consumption patterns, which can be measured in particular by their demand/price

elasticity, i.e., their ability and willingness to modulate their consumption according to

electricity prices. Supply-side agents are characterized by a diverse structure, with com-

panies that are more or less vertically and horizontally integrated, of varying sizes, and

with a more or less diversified portfolio of customers/technologies.

The initial economic theory associated with this transition is based on the principle

that a single electricity market is identical to, or even more efficient than, a ”control-

command” model. This is the theory of spot pricing, developed in particular by Cara-

manis et al. (1982). One of the results of this theory is that the price of electricity solves

short-term equilibrium problems by itself (Littlechild, 1988) and leads to an optimal

generation mix (Caramanis et al., 1982).5 They show that agents perfectly replicate

optimization models in which a benevolent entity minimizes production costs. In fact,

agents in the energy market maximize the total surplus of the system, which is composed

of equal weighting of consumer surplus and producer surplus. In other words, the market

price of energy sends both the right short-term signals (on the operational dispatch of

energy, i.e., which technology should produce according to its marginal cost and which

actor should consume according to its marginal utility) and the right long-term signals

(on the composition and optimal level of the production mix, and the usage patterns for

the consumption mix).

It’s important to note that even if marginal units set the price, the model implies

perfect coverage of fixed costs. Indeed, from an individual point of view, it can be

understood as follows: When demand is lower than the total capacity, the marginal

production unit sets the price and generates a rent known as ”inframarginal rent” for

the most efficient producers. During periods of tension, which can be defined as the

conjunction between the existence of consumers whose willingness to pay is higher than

the marginal cost of the peak plant and the binding of production capacities that are

5From an implementation perspective, the corresponding mechanism of this theory is called the
energy-only market. In this context, an energy market is a mechanism in which electricity is traded
similarly to any other commodity with a price corresponding to a quantity of electricity.
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therefore unable to satisfy this demand, the price rises to a level at which consumers

prefer to stop consuming. During these periods, the entire production mix receives a

rent known as ”scarcicity rent,” which, combined with the inframarginal rent, covers

all fixed costs. In a dynamic vision of the model, if the sum of the two rents does not

cover fixed costs or, on the contrary, generates an over-profit, the model assumes free

exit as well as free entry. The assumptions behind the model are the classic ones for

a situation of pure and perfect competition: no transaction costs, perfect information,

and atomicity of agents enabling continuous convergence towards an optimal equilibrium

(Vassilopoulos, 2007).

Figure 5 is a simplified representation of each period during which all supply-side

agents receive either the inframarginal rent or the scarcity rent. The first graph illustrates

a situation outside a period of scarcity, where the price is set by the marginal cost of

one of the technologies present in the system. At this point, the entire production mix is

able to cover all demand. In the second graph, demand cannot be met by the available

capacity. Consequently, the price is set at a level at which demand voluntarily decides to

stop consuming. This adjustment equates consumption with the total installed capacity

of the production mix. According to spot price theory, the quantity of each technology

present in the system is established in anticipation of these two types of rent. More

precisely, at equilibrium, the sum of these two rents for each technology must cover all

fixed costs.

Figure 5: Rents in energy-only markets with off-peak and on-peak periods
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In the following Box 1.2, I also provide a simple toy model from Joskow and Tirole

(2007), illustrating how this peak load pricing theory works in a stylized framework.

Note that it will also be the reference model used in Chapter 2 and Chapter 3.6 To

summarize, studying the investment adequacy issue from a system point of view can be

understood as a tradeoff between :

• The costs associated with the electricity not served. Under the toy model, it is

simply the marginal gross consumer surplus net of production costs. With more

complex representation, notably with price inelastic consumer, the value of this

energy that should have been consumed under optimal technical conditions is mea-

sured by VoLL (Value of Loss Load) and the associated quantity by ENS, (Energy

Not Served). In other words, VoLL can be understood as the price at which demand

voluntarily stops consuming. and;

• The CONE (”Cost Of New Entry”), which corresponds to the cost of the most

efficient peak power plant that would meet demand. Its formal definition is the

income required to ensure that the annual profit from its participation in the energy

markets is zero over its lifetime. Under the toy model, it is simply the investment

cost net of expected profit.

In the first-best environment, market equilibrium then corresponds to equality be-

tween the marginal cost of additional capacity and the expected gain from avoided in-

voluntary rationing (measured as its cost), with the LOLE being the probability that

over a given period, demand will exceed installed capacity:

CONE = V oLL× LOLE

6For a more detailed discussion of the dynamic equilibrium between the short-term production deci-
sion and the long-term investment decisions, see Vassilopoulos (2007).
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Toy model for peak load pricing theory

Assume that there is a representative consumer of electricity. He is characterized

by a price-sensitive demand D(p, s), p being the electricity price, and s being the

different states of the world (one can think about weather or macroeconomic shocks)

such that Ds(s) > 0. It follows a distribution function f(s). Let’s also denote

CS(p, s) the consumer gross surplus.

To produce electricity, there exists a continuum of investment indexed by the

marginal cost of production c. Let I(c) denote the investment cost of a plant pro-

ducing one unit of electricity at marginal cost c. G(c) ≥ 0 will be the cumulative

distribution function of plants. Therefore, the total investment cost is
∫∞
0

I(c)dG(c),

and production cost
∫∞
0

u(c, s)cdG(c), where the utilization rate u(c, s) belongs to

[0, 1] such that
∫∞
0

u(c, s)dG(c) = q(s).

In that context, a benevolent social planner would maximize the welfare comprised

of the gross consumer surplus net of the production cost:

max
p(s)

∫
s

(
CS(p, s)−

∫ ∞

0

u(c, s)cdG(c)

)
dF (s)−

∫ ∞

0

I(c)dG(c)

Such that q(s) = D(p, s). The first-best solutions to this problem yield:

• The short-term solution: u(c, s) = 1 for c < p(s) and u(c, s) = 0 for c > p(s).

Namely, only plants whose marginal cost is smaller than the price p(s) are

dispatched in the state s.

• The long-term solution: I(c) =
∫
s
(p(s) − c)dF (s). Namely, the investment

decision is such that the investment cost equals the expected rent made when-

ever the price is above the marginal cost.

Therefore, overcapacity can then be interpreted by a level of CONE that is too high

or by a cost of avoiding rationing that is too high (if the peak power plant is too expensive

compared to the utility of preventing involuntary rationing). The opposite reasoning for

a situation of under-capacity is identical (the cost of adding a power plant generates a
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Figure 6: Fixed CONE and technology defining the reliability standard (ACER, 2021)

Figure 7: Single VoLL for the calculation of the reliability standard (ACER, 2021)

net gain compared with the initial cost of failure). In all cases, a deviation from the

optimal level of the mix leads to significant losses. The usefulness of this system view of

adequacy is that it is independent of the system’s mode of regulation (whether based on

a control-command mode or competition). Figures 6, 7 and 8 provide the recent values of

the CONE, VoLL, and LOLE used in the European national system from ACER (2021).

In this report, the reliability standard corresponds to the LOLE value. For an order of

magnitude, the average household price for electricity was 289 euros/MWh (Eurostat,

2024).
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Figure 8: Reliability standard as LOLE (ACER, 2021)

1.3 The limit to the Spot Pricing theory

However, a number of economic, political, and technical constraints prevent energy mar-

kets from delivering the optimal generation mix defined in the previous section. Nu-

merous authors have examined the reasons why the current design of electricity markets

does not encourage producers to invest sufficiently. The following list presents the main

reasons for this sub-optimality:

Explicit price regulation.

It is commonly referred to in the literature as a price cap. To lead to inefficient energy

markets, these price caps must be below the price level that would generate sufficient

scarcity rent (Joskow, 2008) (Figure 9). This lack of adequate scarcity rent means that

the initial production mix changes over the periods following the introduction of a price

cap. As a result, producers are unable to cover part of their fixed costs, leading the system

to acquire less production capacity. This situation, combined with the impossibility of

prices to reach the VoLL, also generates involuntary demand rationing.

In Chapter 2, I successively describe the consequences of having a price cap that

first generates a limitation of revenue to cover fixed costs and then a price cap that also

generates involuntary rationing of demand. Indeed, if the price cannot exceed the price

cap value, it prevents its rationing signal so that elastic demand becomes inelastic. I

show in the Box 1.3 the consequences of having a price cap in the toy model.
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Figure 9: Effects of price caps on rents. The price cap decreases the scarcity rents during
on-peak periods. Hence, the expected revenue used to cover fixed costs decreases.

Toy model with a price cap

Assume that there exists a price cap p̂ such that the electricity price cannot go

beyond p(s) ≤ p̂ for some s. Then the price cap long-term solution is second-best

and is defined by:

I(c) =

∫ ŝ

0

(p(s)− c)dF (s) +

∫ ∞

ŝ

(p̂− c)dF (s)

With ŝ, the first state of the world is such that the first-best price equals the price

cap. It is straightforward to see that
∫∞
ŝ
(p̂−c)dF (s) <

∫∞
ŝ
(p(s)−c)dF (s). That is,

the expected revenue to cover investment costs is lower under a price cap regulation.

The inability of markets to reveal true value for adequacy.

Current technical constraints mean that each consumer can only, with difficulty, reveal

the price for which he is prepared to disconnect, i.e., not to consume voluntarily. Indeed,
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Figure 10: Illustration of the market inability to find the optimum. Capacity constraint
implies that supply is inelastic. If demand is also inelastic, then for some periods, prices
cannot emerge even in an efficient market.

it is still impossible for the grid operator to disconnect individual consumers for short

periods, even if they wish not to consume. This problem lies not only in the market’s

inability to avoid involuntary rationing but in its failure to optimize the duration of such

rationing (Cramton et al., 2013). Spot-price theory assumes that the level of capacity to

be achieved is the result of a tradeoff between the CONE and the VoLL. However, the

fundamental and current problem of energy markets is their inability to generate value

for VoLL during periods of tension. To function correctly, the system must then turn to

an exogenous value, most often determined by a regulated entity (Cramton and Stoft,

2006). The inelasticity of the supply curve (due in particular to the current impossibility

of providing storage at an affordable price) and the demand curve (due to the lack

of demand response) over the short-term means that the system manager has to use

involuntary demand rationing. Figure 10 illustrates this problem.

I partly explore this question within Chapter 3. I describe an incomplete informa-

tion framework in which a regulated firm making investment decisions does not know

perfectly the utility derived from electricity consumption. I describe in the Box 1.3 the

consequence of having private information in the toy model. Namely, not knowing the

value of electricity implies that when prices cannot ration demand, consumers sustain
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higher losses. The central rationale is that consumers who highly value electricity are

disconnected instead of consumers who have a lower willingness to pay.

Toy model with random inefficient rationing

Assume that instead of a representative consumer, there is now a unit mass of

consumers demanding a single unit of electricity that varies in their willingness to

pay θ (i.e., their type). This willingness follows a distribution G(θ). Let D(p, s) be

the demand function aggregating their willingness to pay. In other terms, D(p, s) =

1−F (θ), the demand represents the measure of consumer for which their willingness

to pay is above the price p. Also, assume that θ is private information, i.e., only

the consumer knows its type.

A regulated entity is in charge of lowering consumption (i.e., disconnect) whenever

the level of available investment k is too low. The entity is also facing a price

cap pr. Following the previous notation, whenever s > ŝ, quantity is given by

q̂(s) = D(p̂, s). Now assume that for every s > ŝ, q̂(s) < k. That is, the quantity

asked by all consumers for which their willingness to pay is above the price cap is

always higher than the available investment.

Due to private information and in the absence of any complex mechanism to extract

information, the regulated entity is left with randomly disconnecting consumers. In

that case, the welfare the entity has to maximize is given by:

max
p(s)

∫
s

(
CSr(p, s)−

∫ ∞

0

u(c, s)cdG(c)

)
dF (s)−

∫ ∞

0

I(c)dG(c)

With
∫
s
CSr(p, s)dF (s) =

∫ ŝ

0
CS(p, s)dF (s) +

∫ ŝ

0
k

q̂(s)
CS(p, s)dF (s) which is clearly

lower that the firs-best consumer surplus. This additional cost stems from the

impossibility of distinguishing between low-type and high-type consumers.
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Uncertainty and risk aversion.

Risk is often cited as a factor that significantly modifies the level of investment (Scou-

flaire, 2019). Even if uncertainty is naturally present in power markets and, therefore,

cannot be excluded from the optimal theoretical model, some authors point out that

its level could be significantly reduced, notably through better management of public

energy policies (De Sisternes and Parsons, 2016). Moreover, it is also likely that the

current environment is leading producers to be overly risk-averse, generating additional

costs and thus increasing the sub-optimality of current systems (e.g. Ehrenmann and

Smeers (2011); Peluchon (2019, 2021).

Incomplete markets.

There are two problems with the current electricity system, both of which imply that

producers and consumers cannot correctly exchange a number of goods:

Externalities The first type of externality is linked to C02 and other forms of pollu-

tion. Electricity systems include fossil fuel investment, and the absence of a mechanism

that correctly takes into account the costs of C02 means that the level and composition

of the production mix deviate from its optimal situation (Cepeda and Saguan, 2016).

The second type of externality is linked to the ”public good” nature of the adequacy

of the electricity system. Indeed, the fact that it is technically impossible for the grid

operator to make peak-period electricity consumption ”excludable” makes it difficult to

set a value on adequacy. The externalities associated with public goods and applied to

investment issues in the electricity sector have been studied by Oren (2003) and then by

Kiessling and Giberson (2004). These authors point out that the public nature of ade-

quacy necessarily implies a risk of stowaway behavior, leading to market sub-optimality.

On the contrary, Keppler (2017) points out that even with virtuous behavior, external-

ities, due to the transaction costs of setting up individual contracts between actors not

to consume, prevent the market from reaching its optimum. In all cases, the market’s

sub-optimality is indeed due to the impossibility of actors to carry out their transactions

fully.

Risk coverage Actors do not necessarily find counterparties to cover part of their

risk, either because they do not exist (demand does not necessarily have the same risk-

hedging objective as supply (Finon, 2008, 2011)) or because regulations do not allow risk
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hedging for competitive reasons (Genoese et al., 2016). The sub-optimality of a market

with no possibility of hedging risk has been illustrated in Newbery and Stiglitz (1984).

Other reasons.

The specific nature of investments (in particular, their size and increment) can lead to

opportunistic behaviors that encourage producers to always under-invest and to generate

inefficient investment cycles and delays (Keppler, 2017; Stevens et al., 2023). The myopic

behavior of certain investors and those generally considered non-rational (gregarious

behavior, for example) lead to production mixes that are far from optimal (Finon et al.,

2004; White, 2006). This was the case in the early 2000s with excessive investment in

gas-fired power plants (Roques et al., 2006). Due to short-term technical constraints,

the grid operator may also be forced to intervene in a non-economically optimal way on

the markets, creating an implicit price cap on the energy markets (Joskow and Tirole,

2007; Roques, 2008).

How imperfections translate to inefficient investment levels.

To sum up, there are a number of constraints due to market failures, but also to the very

nature of power markets, which prevent producers and consumers from ensuring optimal

adequacy levels. From a practical point of view, these constraints can be grouped into

two categories:

• The impossibility for producers to cover all their fixed costs (a concept known as

”missing money” (Joskow, 2008)); in this case, producers cannot properly recover

their fixed costs via inframarginal rents and scarcity rents.

• The impossibility for producers to consider their income sufficient, even though

they theoretically could be (a relatively less developed concept in power system

literature, known as the ”missing market”) (Newbery, 2016).

A third category, supported in particular by Leautier (2016), is based on competition

issues. The risk of under-investment would not be due to the impossibility of produc-

ers to cover their costs but would be the result of strategic behavior due to the high

level of concentration in electricity markets. The fundamental difference between under-

investment created by missing money or missing market and underinvestment caused
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by strategic behavior lies in the characteristics of the policies employed to solve these

problems: in the first case, all investors are affected, and it is indeed the market that

is structurally inefficient due to technical, political and social constraints; in the second

case, a competition policy would make it possible to solve part of the adequacy problems

significantly.

To date, the main reason for adequacy risk in power markets remains debated. In the

case of the thesis, I will focus solely on public policies aimed directly at missing money

and missing market issues. As we shall see, the majority of mechanisms put in place to

resolve the situation of market sub-optimality aim to ensure additional remuneration for

producers, which cannot be directly assimilated to a competition policy, particularly in

terms of surplus redistribution Leautier (2016).7

2 Economic instruments for capacity adequacy

2.1 Theoretical foundation

Two types of public intervention are generally possible when seeking to reduce the in-

efficiency of a market: the adoption of regulatory measures or the implementation of

economic instruments leading economic agents to modify their behavior (RTE, 2014).

In the first case, the problem is managed directly by the authorities, who, in the case

of adequacy, directly decide to invest in additional capacity. In the current context of

power markets (at least in the European Union), the use of economic instruments re-

mains favored, both for practical reasons - the main agents producing and consuming

electricity remain private actors, and for theoretical reasons - the transition from a verti-

cally integrated model to a decentralized model based on competition relies on the same

arguments that favor the use of economic instruments.

To understand the various economic instruments available to solve adequacy, one can

use the effect of a price cap (Astier and Lambin, 2019). Based on classical microeconomic

theory, the impact of the policies materializes through two axes: a supply-based axis,

i.e., investment in capacity; a demand-based axis, and in particular, demand-response.

7The main idea is that if under-investment is due to imperfect competition, then producers already
receives a surplus which is higher than the optimal level. Therefore, implementing mechanisms that
transfer surplus towards producers to increase investment will only reinforce imperfect competition.
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Figure 11: Illustration of economic policy tools to solve adequacy problem. Implementing
them can lead to a shift downward of both the supply and the demand depending on
who receives incentives. The initial optimum is point (1). The price cap implements an
inefficient equilibrium of point (2). The incentives to consumers and producers allow for
reaching the initial optimal quantity at point (3).

To illustrate this approach, Figure 11 represents the effect of a price cap on energy

markets in the traditional way to what is achieved in theoretical economics. The two

dotted curves represent the initial levels of energy supply and demand before the intro-

duction of the price cap on the markets (for simplicity, I have not modeled the impact on

the production mix of the introduction of the price cap). The amount of energy supplied

to the system corresponds to the first intersection between the supply curve and the

price cap level.

The two economic instruments available consist of modifying either the supply curve

or the demand curve, or both: to increase the quantity of energy supplied to the economy,

the supply curve must be shifted to the right or the demand curve to the left. In economic

terms, this means providing the producers with additional remuneration. In classical

producer-consumer theory, the supply curve is made up of producers’ (marginal) costs

and the demand curve of consumers’ (marginal) utility. Additional remuneration to

producers is identical to a reduction in their costs. On the demand-side, the instrument

is more complex: we need to provide an incentive not to consume during peak periods.

However, any purchase of energy by the demand-side is associated with a non-zero gain
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in terms of utility (gain materialized by consumer surplus). Consequently, economic

theory assumes that for a demand-side actor to be indifferent between consuming and

not consuming, it is necessary to provide a remuneration equal to the surplus generated

by consumption.

The translation of these two curves is shown on the same graph as the solid curves. An

ideal calibration of the two economic instruments can then lead to a quantity supplied

identical to that without a price cap, which corresponds to the intersection between

the dotted supply and demand curves. The cost of implementing these instruments

via additional remuneration corresponds to the price difference observed in the energy

market.

This highly simplified model applies to both missing money and missing market

issues, even if their associated policies differ. Indeed, the existence of externalities or the

presence of too much risk implies that agents (on the supply or demand-side) do not take

into account the characteristics of their environment.8 Consequently, this boils down to

modeling two curves (for both supply and demand): one representing sub-optimality and

one taking into account externalities and risk management.

2.2 Long-term mechanisms

An analysis of the various system reforms around the world shows a diverse set of mech-

anisms capable of ensuring supply-demand adequacy. These can be grouped into two

categories: capacity remuneration mechanism modules, and long-term contract

modules. In simple terms, the former was set up to solve missing money problems

by providing direct remuneration to producers. The second modules provide more cer-

tain remuneration than in energy markets, which corresponds above all to a form of risk

hedging for producers. Such a solution reduces the problems of incomplete and imperfect

information, which is in line with the missing market issues. However, due to the specific

nature of capacity remuneration mechanisms, that is, over more extended time frames

than short-term energy markets, it is also possible that these mechanisms may have an

impact on risk issues (De Maere d’Aertrycke et al., 2017). In addition, under specific

conditions, some capacity remuneration mechanisms can be analyzed in a similar way to

long-term contracts (Leautier, 2016; Schneider et al., 2017).

8See for instance Meunier (2013) for the description of the impact of risk aversion on investment
decision. The author translates risk aversion into an additional cost for producers. He then implements
this approach in a model of Screening Curve.
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It is important to note that capacity payment mechanisms and long-term contracts

are not the only options that can be considered to solve underinvestment problems.

Cramton and Stoft (2006) describes a series of alternative mechanisms that could po-

tentially solve these problems. The authors group them under the term Energy-Only

Mechanism, as their implementation does not require the creation of secondary mecha-

nisms in addition to the energy market.

For this thesis, I will focus solely on the design of capacity remuneration mechanisms.9

An abundant literature on long-term contract modules already exists both on the analysis

of the effects of contracts on risk hedging (Joskow and Schmalensee, 1983; Finon, 2008;

Finon and Roques, 2013) and their impact on producers and their investment decisions

(Roques, 2008; Abada et al., 2019). Nor will I address ”Energy-Only” approaches to

adequacy. By not focusing onmissing money ormissing market issues, these mechanisms

run the risk of failing to achieve the optimal level of investment. Cramton and Stoft

(2006) point out that the main problem with energy markets lies in the impossibility of

private producers and consumers to reveal their preference for adequacy. Consequently,

the only answer to this constraint is to set an exogenous, non-market level for adequacy.

Even mechanisms based on energy markets and short-term reserves, such as Hogan’s

approach Hogan et al. (2005), require government intervention. In view of this and

of the need to limit this study to a relevant number of mechanisms, these alternative

approaches will not be studied in this thesis.

3 A case for capacity markets: principles and limits

From a system point of view, the constraints on current energy markets lead private

equilibrium to fall outside the social optimum, as represented in Figure 12. In this

case, providing adequate additional remuneration in line with the level of investment

would help insure against inefficient rationing-related costs (De Vries and Ospina, 2012).

More precisely, the additional remuneration associated with a capacity market can then

be understood as a valuation of capacity given the current adequacy level. Figure 12

highlights the link between the value of current capacity and the opportunity cost of its

9The denomination of capacity remuneration in this manuscript covers an extensive range of current
mechanisms: capacity markets (centralized or decentralized), strategic reserves, and reliability options.
The models developed in the subsequent chapters do not sufficiently go into detail to allow for com-
parisons between the different implementations, which is outside the scope of the thesis. Moreover,
there already exists a vast literature on this subject, for instance (Holmberg et al., 2021). For ease of
presentation, I will use the term capacity market instead of capacity remuneration mechanism.
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Figure 12: Social cost of electricity shortages and excess capacity

absence. An optimal mechanism should, therefore, be able to provide an incentive to

manage adequacy at a cost close to the value of additional capacity.

In their canonical model, Astier and Lambin (2019), establish the link between both

this system view (the VoLL / CONE tradeoff) and the actor view (the fixed-cost / rent

tradeoff), but also between the different supply and demand-based approaches. From

an actor’s point of view, and in the presence of a price cap, a capacity market must

be able to restore investment incentives by transferring missing money from demand to

supply. However, Astier and Lambin (2019) highlights the necessary conditions for such

a transfer:

”In order to restore allocative efficiency, a producer (resp. a consumer) should

only supply (resp. consume) power during a peak state if his marginal cost

is below (resp. her willingness-to-pay is above) the social marginal cost of

power. Consistently, models of capacity adequacy mechanisms conclude that

in order to be supplied in peak states, consumers, willing to serve at all times

when the cost of production is below their willingness to pay, should pay the

missing money transfer.”

From a system point of view, a capacity market reveals the value of additional ca-

pacity for the system, which was not possible with an Energy-Only market. From an

actor’s point of view, this same mechanism boils down to transferring rents between the
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various agents. This additional remuneration can then be understood as a signal sent to

agents to modify their incentives and lead to optimal behavior.

At this point, we need to re-establish the link between managing the overall reliability

issue and capacity markets. As we have seen, this issue can be distinguished between

a short-term and a long-term constraint. In particular, although it is explicit that such

mechanisms must restore incentives for investment and optimal consumption over the

long term, it must also be stressed that there is a significant link between these mecha-

nisms and the short-term horizon. This implicit link is illustrated in Figure 11. Indeed,

the introduction of a capacity market is necessarily accompanied by a change in the way

the energy market operates. Consequently, such a mechanism must, when accompanied

by the transfer of rents between agents, enable supply and demand to meet in the most

economically optimal way.

However, the main limitations of these markets stem precisely from why they were

set up in the first place. Indeed, these mechanisms rely on the participation of private

and public actors in a market process. This is based on the assumption that they reveal

more efficiently the true value of additional capacity as well as the willingness to pay for

adequacy. However, this principle is inherently fragile. Indeed, the implementation of a

capacity market only consists in creating conditions that guarantee sufficient capacity to

enable an optimal match between electricity supply and demand, both in the short and

long term. Höschle (2018) emphasizes this aspect of these mechanisms:

”A CM [capacity market] is often characterized as a mechanism that ”guar-

antees” generation adequacy. However, a guarantee cannot be provided by a

market design that depends on individual decision-making. A CM is rather a

mechanism that reduces the risk of having insufficient capacity by providing

an adequate market signal.”

Indeed, capacity markets are based on the formation of a price, which is the con-

frontation of supply and demand. The supply-side is decentralized and composed of

producers owning capacity.10 On the other hand, the demand-side can be either central-

ized, decentralized, or hybrid. In the centralized case, a single thesis, usually a regulated

firm, forms the demand on the capacity market. In a decentralized case, consumers (or

their retailers) purchase directly the capacity. The hybrid case encompasses a form of

10Administratively, some consumers can sometimes participate as supply-side actors. Under the
conceptual and stylized framework, I do not make such a distinction.
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mechanism where consumers indirectly participate in the mechanism.11 Therefore, the

core ideas of an efficient capacity market are that (i) the participation of producers leads

to the correct expression of their private value for capacity, (ii) the demand-side (either

the single buyer or consumers) is able to express the aggregate willingness to pay for ca-

pacity, (iii) the price signal send to both supply-side and demand-side leads to the right

decisions (both from an investment and consumption perspective). Therefore, capacity

markets create an additional risk that participants will not behave as expected. Such a

deviation between the public policy objective via the mechanism (in terms of adequacy

level) and the level actually achieved is at the core of this thesis’s main contribution.

Contribution 1

The economic efficiency of the capacity markets depends entirely on the quality

of the signals they send out. Understanding how these participants behave and

interact is therefore essential if we are to study the welfare derived from them. In

this thesis, I deepen the understanding of capacity markets by representing, using

a diverse set of stylized frameworks, the interaction between investment decisions

and participation in capacity and energy markets.

Using a literature review on the modeling of the capacity market, I propose in the

Appendix Chapter A a thought framework of how we can study the behavior in capacity

markets. With respect to this contribution, the three chapters of this thesis can be

understood respectively as focusing on (i) solely on the supply-side in Chapter 1, (ii)

solely on the demand-side in Chapter 2, and (iii) combining the two issues in Chapter 3.

More precisely:

• Chapter 1 describes how producers bid in a capacity market using Real Option

Theory.

• Chapter 2 studies the interaction between the supply-side and demand-side of

electricity markets when a capacity market is implemented.

11For instance, a regulated Figure can aggregate information by implementing a mechanism to make
consumer and retailers reveal their future consumption. There is still a unique single buyer in the
capacity market, but the behavior of the consumers constrains the regulated firm.
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• Chapter 3 proposes a framework for consumer participation in capacity markets

with incomplete information.12

I have described the efficiency of a capacity market lies in its ability to provide

adequate incentives for producers. In the context of investment decisions, those incentives

cover a wide variety of decisions: (i) choosing the level of investment and its technology

when making an entry decision, but also (ii) choosing the right entry time as well as

the right exit time, and at at least but not last, (iii) weighing the pros and cons of

mothballing or refurbishing a power plant. In this thesis, I will limit the analysis to a

static analysis of capacity market efficiency. Namely, Chapters 1, 2, and 3 deal only with

the level of investment in one-shot games with a single technology.

The simplification of the approach allows us to focus on the second main contribution

of the thesis. Indeed, the existence of capacity markets raises the question of their

appropriate design. In electricity markets, this exercise is essential since poor design can

lead to high costs for society and inefficient behavior on the part of players or even to

the creation of a system that is less efficient than if it were vertically integrated (Woo

et al., 2003).

Contribution 2

Given the importance of the behavior in a capacity market, the thesis derives new

theoretical and policy results with respect to how participants behave in certain

market designs and their welfare implications when investment decisions are con-

sidered.

In the Appendix Chapter A, I discuss some questions studied by the modeling liter-

ature related to the design of the capacity market. With respect to this contribution:

• Chapter 1 compares the different capacity product designs and how they impact

the bidding behavior. I mainly study the length of the product.

12In fact, capacity markets are not explicitly represented in Chapter 3. However, the chapter can be
understood as deriving the theoretical limits of what a central authority can do when facing consumers
with private information and considering investment decisions. In other words, if we assume a per-
fectly functioning capacity market that allows consumers to reveal their willingness to pay for adequacy
truthfully, it cannot perform better than what is found in the chapter.
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• Chapter 2 shows that depending on different assumptions, consumers’ and retail-

ers’ participation in a capacity market can have a significant effect. I analyze how

the cost allocation of the capacity market changes the equilibrium of electricity

markets and how retailers can be considered in the design.

• Chapter 3 provides the aggregate and individual welfare effects of different mar-

ket designs when a regulated firm needs to generate revenue to make investment

decisions. The core idea of the chapter is to study the different designs when a

regulated firm faces different constraints and, in particular, revenue, incentive, and

participation constraints.

In the rest of the introduction, I provide a short summary of each chapter’s primary

results. A more complete overview can be found in the General Conclusion 3 of this

thesis.

Designing efficient capacity markets: Bidding behavior and prod-

uct definition.

This research originates from two questions: ”How do producers bid in capacity mar-

kets?” and ”Does the length of the contract sold on the capacity market matter?”. I

answer those questions by stating that participation in a capacity market implies a spe-

cific marginal opportunity cost for the bidders, which requires a particular method of

valuation. Namely, selling capacity entails the producer staying available over future

periods determined in the sold contract. The first main contribution lies in studying

the bid as an option value associated with the possibility of closing temporarily but ir-

reversibly to avoid fixed costs. This significantly differs from the standard approach of

the net present value approach, where the producer only offers the expected opportu-

nity cost. Thus, I propose a novel way to conceptualize capacity bids using real options

theory, where the opportunity cost is represented as an option on the spread that drives

the profitability of the plant. First, I define a bid in a one-period capacity market as a

European Put Option. Then, I expand to a multi-period setting in which capacity bids

can be evaluated as a modified Basket Option.

The central results of this chapter are the implications of the change in contract

duration on the bidding behavior in a capacity market, assuming that the marginal cost

is analyzed through the lens of real-option theory. I find that it significantly differs from

the net present value framework. First, bids are always higher under the real options
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framework, meaning that producers place a positive value on the possibility of closing

to avoid some costs. Second, the drivers behind the bids have different effects on their

value compared to the net present value framework. I provide comparative statics on the

bid value and the difference between the two frameworks. I find that the length of the

contract constantly increases the bid when using the real options theory while having an

ambiguous effect on the net present value bid. The volatility in the wholesale market

and the waiting time between the sale of the contract and the start of the availability

are also analyzed. Finally, I find the reverse effect for the product design dimension with

a higher bid with a longer contract duration than the sum of expected bids with shorter

products. I test the results by calibrating the model to the French electricity system

using realized data for a CCGT (gas) power plant to simulate a bid in the capacity

market and compare the outcomes with realized prices observed on the French capacity

market. I finally provide a policy discussion for the design of capacity markets: (i) On

the role of penalty in the capacity market and (ii) On the difference between existing

and new capacity participating in capacity markets.

Securing investment for electricity markets. How do we design

the demand-side of capacity markets?

This chapter aims to understand the pros and cons of the different options available

to the regulator when designing the demand-side of a capacity market. In particular,

I show the consequences of different options on a model representing capacity market,

investment decisions, generation, and consumption equilibrium. Ultimately, the chapter

describes the welfare of a power market as a function of different assumptions about

market design, the behavior of players, and the environment. I focus on two interrelated

questions that relate to (i) the cost allocation regime, that is, how a single buyer allocates

the capacity price between capacity buyers and final consumers, and (ii) the degree to

which the final consumers’ realized demand is accounted in the market allocation design.

The first market design regime studied is the canonical capacity market. This regime

is similar to having a cost allocation regime based on a lump-sum tax. In this case,

even when considering the supply function in the capacity market, the equilibrium of the

market design always restores the first-best optimum given the system inefficiencies. I

then investigate the case in which the capacity price impacts consumers at the margin.

Under this assumption, the regime similarly allocates the capacity price as a unitary

tax. I demonstrate that the welfare outcome at the equilibrium under this regime is
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always lower than under the canonical regime. I then compare the two capacity cost

allocation regimes by including inefficient rationing. When a price cap is reached, the

investment availability becomes a public good as the demand becomes inelastic. Due

to the impossibility of efficiently rationing consumers, they incur a significant welfare

loss. Under this new assumption, I find that the indirect effect created by allocating the

capacity price on a unitary basis is now ambiguous for social welfare. In other words,

if correctly designed, a capacity market can indirectly and imperfectly recreate a price

signal that a price cap has suppressed. In the second part of the paper, I study two

extensions of the model that represent different attempts to base the capacity market

demand-side on the realized consumption. The first regime analyzes how the allocation

of the capacity cost to retailers based on their realized market share affects welfare. I

show that this market design leads to an intermediary outcome between the lump-sum

and the unitary market design and that the level of imperfect competition has ambiguous

impacts. The second regime describes a decentralized capacity market in which retailers

form the demand function. I notably address the central question of the penalty value

and the outcome of the market design.

Designing Markets for Reliability with Incomplete Information

This chapter’s main contribution is to discuss the implications of considering the demand-

side when it comes to ensuring an efficient level of investment. It studies an environment

in which there are a number of consumers with different characteristics whose utility

from electricity consumption is partly private information. In other words, it seeks to

know how to design markets so that consumers reveal their utility for their electricity

consumption and, therefore, indirectly for the investment level. In that research, markets

are not only used to provide consumption and sufficient revenue to make investments

but also to screen for unobservable characteristics to ensure the proper investment level.

A second approach that I tackle in this chapter is the distribution issues associated with

the design of an optimal market in this context. Namely, I show that implementing the

most efficient market to reach the most efficient investment level is not always Pareto

improving for every consumer.

The first case with incomplete information represents the inefficiencies associated

with private information when the market designer is constrained in the allocation choice.

Namely, some consumers over-consume with respect to their type, while others under-

consume. I first study the single-price case when the market designer cannot discriminate

between categories of consumers. In that case, the price schedule increases with the level
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of investment. I then implement the possibility of discriminating between consumer

categories. I show that for the category of consumers with the smaller average private

shock, the optimal price first decreases and then increases with the investment level. On

the other hand, the price for the category of higher consumers is always increasing with

the capacity. I also find that the price for the former category is above the latter for

relatively low capacity values, and then the ranking reverses for higher values. These

non-monotonicities can be explained by the opposite effect the market designer faces in

terms of consumer surplus and revenue effect when choosing prices.

In the last section, I study a mechanism design setup where the market designer is

no longer constrained in the prices and quantities schedule he can offer consumers. He

now faces incentive compatibility and individual rationality constraints. I first describe

for which level of investment the market designer is constrained by the revenue used to

cover the fixed costs and the information rent that he needs to provide to consumers so

they behave truthfully. I find that the market designer can provide an unconstrained

first-best allocation only for low values of the investment level due to the concavity of the

virtual consumer utility with respect to the capacity. For higher values, the additional

expected utility gains from increased capacity cannot compensate the investment costs.

Then, I show that the behavior of the optimal allocation depends on the state of the

world considered and the type of consumers. Namely, as the investment level increases,

consumers always face a decrease in the optimal quantity allocated during off-peak. For

on-peak periods, the quantity change depends on the consumer’s type. Finally, I show

that only the large consumers from both categories can gain from an increase in the

investment level. The rationale behind this result lies in the link between the investment

level and the information rent given to consumers in order for them to behave truthfully.
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Abstract

In many countries, capacity markets have been put in place to supplement wholesale

market revenues to ensure an adequate generation capacity to maintain the security of

supply. This chapter studies the bidding behavior in those markets and how it can be

affected by different capacity product designs. A capacity market allows producers to lock

in revenues in advance in exchange for their commitment to being available over a future

period on wholesale markets. Producers’ participation depends on the opportunity cost

of making the investment available. When the commitment is made, the profitability of

the plant is uncertain. The canonical framework is based on a net present value model,

where the capacity bid is equal to the expected loss on the energy market. However,

this does not recognize managerial flexibility and assumes that the plant cannot react to

future market conditions. Thus, we propose a novel approach to conceptualize capacity

bids using real options theory, where the opportunity cost is represented as an option

on the spread that drives the profitability of the plant. First, we define a bid in a one-

period capacity market as a European Put Option. Then, we expand to a multi-period

setting in which capacity bids can be evaluated as a modified Basket Option. This model

provides new insights into the interplay between the product duration and the capacity

bid. Using the real options approach, the model presents a first attempt to untangle the

different drivers of the opportunity cost for providing capacity availability. We analyze

the determinants of the option value concomitantly with the length of the procurement

and deduce some policy implications for the product’s design. Finally, we provide a

numerical illustration of this issue using data from the French power system.
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1 Introduction

In current power systems, producers do not always receive enough revenue to cover their

production costs even though they are deemed necessary to reach the first best invest-

ment mix. Electricity prices can be constrained due to political reasons with price caps

(Leautier, 2016) or can send distorted price signals due to technical and noneconomic in-

terventions on the market (Joskow, 2008). Other reasons can be found in that electricity

prices do not consider the correct value of an additional capacity, for instance, due to the

public good nature of capacities during high demand periods (Holmberg and Ritz, 2020)

or because some externalities are not correctly internalized (Keppler, 2017). At the same

time, the risk of not having enough investment poses a significant threat. Indeed, the

absence of adequacy between the capacity installed and the electricity demand, combined

with the difficulty of implementing efficient rationing, leads to high system costs. It has

been illustrated by the rolling blackouts in the Texas system or during hot summers in

California (IEA, 2020).

One solution to restore the right level of investment could be the implementation of

capacity remuneration mechanisms. They provide producers with an additional remu-

neration stream to increase and maintain the optimal level of investment. There are

currently various implementations ranging from capacity payments paid directly to the

producers to more complex designs with actual markets, where the price emerging from

the confrontation between a supply and a demand for capacity makes the additional

remuneration. They are usually denominated as capacity markets. Each participat-

ing producer makes a price-quantity offer for a capacity on the supply-side of those

competition-based mechanisms. If a producer sells a capacity, he receives an additional

price, and it legally forces the investment to be available over a specific period in the

future.

In this chapter, we mainly investigate two research questions: (i) how to model

capacity bids in the context of uncertainty and managerial flexibility to operate or close

the plant and (ii) how bids depend on multiple key design features. We tackle those

issues by stating that participation in a capacity market implies a specific opportunity

cost for the bidder, which is the fundamental driver for its bidding behavior. To do

so, we analyze the opportunity cost determinants associated with the decision to be

available, allowing a more detailed comparison with the marginal value of an available

capacity independent of the product design. Therefore, the subsequent analysis sheds
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light on effectively setting up a mechanism based on competition, where the price signal

improves economic efficiency. In this chapter, the capacity price encourages producers

to invest and stay open when wholesale markets cannot send the proper price signal.

Therefore, any deviation of the price from the actual value of an additional capacity for

the system can cause an adverse effect. We stress that both market design theory and

practitioners must consider the practical limits imposed by the actors’ behavior in the

face of specific rules.

To our knowledge, we are the first to use a methodology other than the net present

value framework to analyze the bidding behavior in a perfectly competitive capacity

market. Namely, we state that the opportunity cost of participating in a capacity market

is equal to the option value of the availability decision. Such conceptualization sheds new

light on how prices emerge in a capacity market. There also has been no formal analysis

of the link between the bids in a capacity market and the duration of a capacity product.

Therefore, the chapter deepens policy perspectives for the practical implementation of

capacity markets.

The opportunity cost of participating in the capacity market is well-known in the

literature (Wilson, 2010), and some papers have highlighted the need to grasp the role of

product design better when assessing the efficiency of those mechanisms (Bushnell et al.,

2017). They have underlined the necessity of understanding the opportunity cost drivers

when selling an availability to refine the study of capacity prices and help choose the

right product design. In this chapter, we underline the multidimensional aspect of this

issue with two rationales: (i) the interdependence between the wholesale market and the

capacity market and (ii) the managerial flexibility the investment encompasses.

We start the model by recalling the fundamentals behind a single power system in-

vestment decision from a private producer perspective. Then, we introduce a simplified

capacity market where the representative producer can bid a capacity product in an auc-

tion mechanism that forces the investment to be open during a specific period determined

before the auction is set.

First, we use a net present approach where the producer only offers the expected

opportunity cost associated with the capacity product. In this case, he bids the expected

revenues over the procurement duration net of the fixed cost associated with the decision

to stay available. We show that a longer product always implies a lower or equal bid

than the sum of expected bids for shorter products. In both cases, the bids are always

equal to the expected loss. Otherwise, the producer makes a null bid. This first approach

43



implies for the producer a comparison between only two alternatives: (i) being available

during the whole procurement period or (ii) closing during the same periods.

The main contribution lies in studying the bid as an option value associated with

the possibility of closing temporarily but irreversibly to avoid fixed costs. First, we use

the standard option pricing theory to value a simplified version of a capacity market

where the period during which the plant has to be available, called the transaction

phase, covers only a single wholesale market clearing. In this case, the capacity product

is equivalent to a European Put Option where the exercising date is the transaction

phase, the underlying being the wholesale profit, and the strike price is the fixed cost

associated with the decision to stay open. Under the real options framework, the bid on

the capacity market is strictly equal to the option value. Then, we expand this analysis

to a multi-period transaction phase, and we treat the capacity product as a form of

Basket Option where the asset price portfolio is the expected revenue generated over

the procurement period. It allows us to compare this option value with the sum of

the option value for shorter products. Using the real options framework to assess the

bidding behavior in a capacity market, we find that it significantly differs from the net

present value framework. First, bids are always higher under the real options framework,

meaning that producers place a positive value on the possibility of closing to avoid some

costs. Second, the drivers behind the bids have different effects on their value compared

to the net present value framework. We provide comparative statics on the bid value and

the difference between the two frameworks. We find that the length of the transaction

phase constantly increases the bid when using the real options theory while having an

ambiguous effect on the net present value bid. The volatility in the wholesale market,

the policy instrument, and the waiting time between the capacity product sales are also

analyzed. They both have ambiguous effects on the capacity bids depending on a set of

conditions on the bid drivers. Finally, we find the reverse effect for the product design

dimension with a higher bid with a longer transaction phase than the sum of expected

bids with shorter products.

We test the results by calibrating the model to the French electricity system.1 We

use realized data for a CCGT (gas) power plant to simulate a bid in the capacity market

and compare the outcomes with realized prices observed on the French capacity market.

While the results are highly sensitive to the assumptions regarding the drivers of the

bids, we find that the real options framework is relatively close to the auction outcomes.

The model also stresses that a change of volatility for the investment revenue, due, for

1We use data before 2022 to avoid taking into account the turmoil in electricity markets.
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instance, to the increasing share of renewable, can significantly affect the bidding behav-

ior in a capacity market. Similarly, choosing the duration between the auction date and

the transaction phase when designing the capacity market has important implications

when looking for the least cost design.

Using both the theoretical framework and the numerical illustration, we provide a

policy discussion for the design of capacity markets. Namely, using a real options frame-

work sheds light on the role of penalty in the capacity market imposed onto producers

who choose not to be available during the procurement duration despite having sold a

capacity product. Similarly, the cost associated with the decision to close can also be

included in the analysis. Another crucial point can be made regarding the difference

between existing and new capacity. While for the former, the opportunity cost of being

available is only made concerning a single-capacity product, for the latter, the decision

to enter is more complex. Indeed, it is based on the expected revenue made during the

investment lifetime, including future capacity prices. In this case, the effect of different

procurement durations can be significant.

Related Literature

A vast amount of literature has studied the effect of capacity markets on invest-

ment decisions. Such assessment has been realized in simplified models such as classical

Nash equilibrium models (Fabra, 2018), with sometimes a representation of strategic ac-

tors (McRae and Wolak, 2019), and stochastic optimization models where the market is

mimicked using a minimization cost function (de Maere d’Aertrycke et al., 2017). Other

models tried to replicate the complex environment in which those mechanisms have been

implemented by representing different fluxes between agents and their decisions’ impli-

cations. System Dynamics models study dynamically the effect of capacity markets on

investment decisions (Cepeda and Finon, 2011), while Agent base Models use a bottom-

up approach to analyze the interactions of specific agents in the power system (Bhagwat

et al., 2017). In most papers, regardless of the types of models, they find that capacity

markets significantly improve energy markets’ efficiency by increasing investment value

and reducing the capacity adequacy issue.

Taking a different angle, we base this work on single project valuation models, which

are less used in this context. The advantage of this type of model relies on the possibility

of finely representing the components of investment value for a producer, their evolution,

and technological constraints. More specifically, it allows for a hypothetical investment

to represent both its future revenues and the impact of the additional remuneration
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on its value dynamically. On the other hand, the model lacks a system view, with no

representation of market feedback, technology competition, and market power. Most of

the single project valuation model stream applied to power investment focused on real

options analysis to study the different values of potential managerial decisions, such as

investment in renewable energy under price uncertainty (Fleten et al. (2007), Fuss et al.

(2012)), conventional investments under policy and finance uncertainty (Kettunen et al.

(2011)) or the effect of different support mechanisms for renewable on investment decision

(Fuss et al. (2012)). To our knowledge, only one paper has taken the single project

valuation to capacity markets: Hach and Spinler (2016) found that exogenous capacity

payments significantly modify the value of new gas power plants, especially when the

quantity of renewable is high. Therefore, we expand this approach by endogenizing the

payments while using actual data to deduce the investment value and studying different

product designs.

The fundamental driver behind bid formation in capacity markets, developed, for in-

stance, by Wilson (2010), is that participation in such a market creates an obligation to

be available in a future period on the energy market. Therefore, selling a capacity gener-

ates an indirect cost, which could be described as an opportunity cost. The opportunity

cost of participating in a mechanism is the cost of being available during a predefined

future period, which would not have been incurred if the investment is not producing

during the same period. Failures and constraints can lead to insufficiently high prices to

cover their costs, even though they are necessary for the system. Consequently, forcing

an actor to produce when it is potentially at a loss entails a positive opportunity cost

but allows the energy to be efficiently dispatched.

Some papers seeking to reproduce the interdependence of the actors and the different

production decisions in power markets are based on this principle (Abani et al., 2016;

Bhagwat et al., 2017; Teirilä and Ritz, 2018). Creti and Fabra (2007) shows, for instance,

how a monopoly offers on a capacity market when the latter has to give up exporting

profit in a foreign market whose price is higher than the price on the national market

due to the obligation to be available. The offer on the capacity market is made at

a price equivalent to the loss of opportunity to make a profit on the foreign market.

Brown (2012) proposes the term of allocation externality to characterize the link between

capacity bids and energy profits. In his setup, incumbents are dumping capacity prices

to avoid new entry into energy markets. Because new entry is made possible with the

capacity market, the energy profit could be lower due to higher competition. Therefore,

it can be strategic to make losses on capacity markets to prevent more significant losses
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in the energy market. The few papers modeling the reliability option markets are also

enlightening about this approach.2 During periods of scarcity of demand, that is, when

the plant is needed, producers undertake to pay back on demand the difference between

the energy price received on the energy markets and the strike price of the obligation

(Cramton et al., 2013). In those models, the opportunity costs, and thus bids for these

options, are equal to the amount transferred on demand (Mastropietro et al., 2016; Meyer

and Gore, 2014).

In a similar approach to this chapter, Andreis et al. (2020) uses the real options

theory to analyze the bidding behavior in a Reliability Option mechanism. They describe

multiple complex frameworks to derive the opportunity cost of participating in those

mechanisms. However, the fundamentals for the bids on those mechanisms are different

from the setup3 and they do not address the product design dimension. Finally, this work

is close to the paper of Matthäus et al. (2021). They provide new insights on bidding

behavior for renewable auctions by also using real options. However, they again study a

different framework from this chapter.4

Current debates on the design of capacity markets have not yet determined the op-

timal capacity product if it exists. There is a coexistence of these products in most

current markets, which underlines the importance of modeling their potential effects on

investment values. Table 1.1 recapitulates the different variations and illustrates some

example of current capacity markets and their relative product design. Note that some

markets also include a distinction between new capacity and existing capacity. The for-

mer can either buy the long or the short product, while the latter is usually only allowed

to buy the shorter product.

The impact of the length of the contractual period is even less discussed formally in

the literature. Bushnell et al. (2017) emphasizes the importance of carrying out such

analysis to improve the understanding of a capacity market. To our knowledge, Bialek

and Unel (2019) and Bialek and Unel (2020) are the only ones to have addressed this issue

qualitatively and quantitatively. In Bialek and Unel (2019), they underline the unsettled

tradeoff between the financing costs and complexity costs of shorter products, and the

2These mechanisms, close to capacity markets, are based on the exchange of financial options between
the actors holding the investment and demand. Initially held by the players, these options are sold on
a market, which constitutes remuneration for their capacity.

3For instance, the strike price is explicit in reliability options mechanisms, and the comparison of
different transaction phases does not entail the same implications.

4Producers bid for the price they will receive once the investment is made without knowing their
production costs. Moreover, the option covers a single period.
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Transaction phase

Monthly Quarterly Yearly Multiyear

- - France France
CAISO - CAISO

- SPP - -
- - PJM -
- - UK UK
- - Poland Poland
- - Belgium -
- - ISO NE -

NYSO - NYSO -
- - - Ireland
- - - Italy
- - Greece -

Table 1.1: Product designs used in the model and actual implementations

costs of capacity over procurement and costs of excluding flexible generators of longer

products. In Bialek and Unel (2020), they investigate the implications of the length of

capacity products procured when there is seasonal variation in both the electricity load

and the electricity generation. Using a Nash-equilibrium approach with investments

and bidding behavior, they illustrate the efficiency tradeoffs associated with introducing

multiple shorter capacity products instead of procuring a single annual capacity product

and derive the optimal length of a capacity product. This model has the same spirit, but

leaving aside the market representation, we focus on the coexistence between engaging

in the capacity market and on managerial option (closing) and adapting the model with

more detailed technological characteristics.

Similarly, Abani et al. (2018) build a complex model using the System Dynamic

approach to understand how closing can modify the implementation effect of a capacity

market regarding an initial sub-optimal energy-only market. However, contrary to this

model, the author does not expand his analysis on multiple product designs. We also

allow a high degree of flexibility in the mothballing decision by representing different

closing periods.

We provide in section 2 the main model assumptions of this chapter. Section 3 recalls

the key ideas of the net present value framework. Section 4 provides the real options

framework. In section 5, we discuss some comparative statics on the capacity market
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bids for both environments and the case study using the French data in 6. Finally, we

study two extensions in section 7, and conclude in section 8

2 Model assumptions

2.1 Investment and wholesale market

We focus on a hypothetical setup with a single risk-neutral producer. He can invest in

a unique power plant of a specific technology used to sell electricity at a future price on

the wholesale market at date t and with a price pt. If the producer enters the market by

building his investment, he sustains an initial investment cost of cI . Every n̄om dates,

he can choose to stay open during a following period of length nom, called the closing

period. If the producer decides to remain open, he sustains a fixed cost of com called

the periodic fixed cost. Those costs typically include operation and maintenance costs,

leases, or wages. He can also produce whenever the wholesale price is above the marginal

production cost cv and sell its electricity on the wholesale market. The variable costs

usually include fuel costs and carbon costs. Otherwise, if the investor chooses to close

temporarily, he avoids the fixed cost but cannot produce. We normalize the capacity

level, so one unit of capacity produces one unit of electricity. It is similar to assuming an

absence of economies of scale, where producers with discrete capacity value would make

piece-wise bids.

We define the inframarginal rent collected at date t as the net wholesale revenue as

πt = (pt − cv)+. We assume it is uncertain for the investor at any date prior to t. We

model this uncertainty using a stochastic process (πt)t≥0. This stochastic process follows

a Geometric Brownian Motion such as it satisfies the stochastic differential equation

(Andreis et al., 2020) :

∆π = µπtdt+ σπt∆Zt (1.1)

With µ and σ, respectively, the drift and the volatility of the Brownian Motion and

∆Zt are the increments of a standard Brownian motion. This assumption regarding the

uncertainty of the profit drivers is commonplace in commodity markets, especially when

studying investment decisions in the electricity sector (see, for instance, Kettunen et al.
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(2011), and Matthäus et al. (2021)). It allows capturing the randomness of the future

variable cost, which follows the price of other commodities such as oil and gas, and

the intrinsic uncertainty of electricity prices, which depends, for instance, on weather

conditions, demand patterns, and carbon prices.

We consider a risk-neutral investor, so we define a constant risk-free interest rate r,

which is also used as a discount rate in this model. Therefore, the rent process is defined

by :

∆π∗ = rπ∗
t dt+ σπ∗

t∆Z∗
t (1.2)

We follow the canonical notation where ∆Z∗
t is the increments of the Brownian mo-

tion under the equivalent martingale measure Q. We also want to study the sum of

inframarginal rents’ distribution; we make the following assumption.

Assumption 1.1. The sum of inframarginal rent collected by a producer is log-normally

distributed.

More precisely, if
∫ n

i=0
πt represents the sum of the stochastic process values over a

period n with µ and σ respectively, the drift and the volatility, then the sum follows a

log-normal distribution. Alternatively, this is similar to say that if
∫ n

0
πt = eX then:

X ∼ N (m, v)

with m = 2 ln [M ]−0.5 ln [V 2] and v2 = ln [V 2]−2 ln [M ] such that M is the expected

value and V 2 the second-order moment of the sum. We use this assumption as there

is no explicit analytic expression of the distribution of the sum of Geometric Brownian

Motion. This analytic approximation is commonplace in finance theory and relies on

approximating the unknown distribution by another tractable one (see, for instance,

Levy (1992) and Ju (2002)). More specifically, we use a moment-matching method where

the moments of the sum distribution are matched with the moments of the log-normal

distribution. In the Appendix, we provide more details for these assumptions when

demonstrating the results of Proposition 1.3. Finally, we make the following assumption

regarding the relationship between the different closing periods.

Assumption 1.2. A closing decision for a specific period does not affect the profit or

the producers’ cost for other periods.
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For instance, closing the investment does not raise the production cost over the

following periods nor decrease the revenue perceived on the wholesale market.

2.2 Producer behavior

Following the canonical theory for investment decisions in the electricity sector, the sum

of inframarginal rents collected during the entire lifetime T of the power plant should

cover the initial investment cost incurred at t = 0. However, when we take into account

the periodic fixed cost, the producer enters the market only if the following equality

holds :

revenue︷ ︸︸ ︷∫ T

0

e−rtE∗
0 [πt] dt =

fixed cost︷ ︸︸ ︷
cI + com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)dt (1.3)

With E∗
0 the expectation operator at date t = 0 with respect to the equivalent mar-

tingale measure Q, T the power plant’s lifetime, n̄om the number of time the producer

has to choose to stay open and to pay the periodic fixed cost. The first left term rep-

resents the sum of net expected revenue made on the wholesale market, the first right

term is the investment cost, and the last right term represents the actualized sum of the

periodic fixed cost. For tractability, we made com periodic occurred at each period t, but

recall that it is always sustained whenever the investment stays opened during a period

of nom. The equality in Equation1.3 is similar to stating that the investment NPV is at

least null. The investment NPV at time t = 0 can be defined as follows:

Π0 =

∫ T

0

e−rtE∗
0 [πt] dt− cI − com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)dt

Following a similar approach, the power plant chooses to be available whenever it is

profitable. The condition for an opening for each period nom is given by the following

equality.

revenue︷ ︸︸ ︷∫ nom

0

e−rtE∗
0 [πt] dt =

fixed cost︷ ︸︸ ︷∫ nom

0

e−rtcomdt (1.4)
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For tractability, we assume that the decision is made at the beginning of a closing

period.

While the canonical theory states that a producer should be producing and, therefore,

be available each time the electricity price is above its marginal cost, the introduction

of the period fixed costs can induce a risk of inefficiency in the power system. Namely,

assuming that the power plant is indeed necessary for the system, as soon as the power

plant closes because the inframarginal period collected on a specific period is below

the corresponding fixed cost, it generates a net welfare loss for the system.5 Given the

previous assumptions on the investment, one can compute the optimal number of periods

t over the lifetime during which πt ≥ 0 and compare it to the number of periods over

the lifetime during which the investment is open and πt ≥ 0. A difference between those

results would show that the power plant behaves inefficiently. Such inefficiency could be

due to a price cap on the energy market, the effect of the non-economic intervention of

the system operator, or unpriced externalities.

2.3 The capacity market

If a regulator decides that this power plant is necessary for the system, he implements

a capacity market to encourage the producer to invest and be available. To do so, he

defines a capacity product with a specific duration called the transaction period and

notes nt. He organizes the transaction of this product via a market mechanism such

as an auction at a contractualization date noted t0. Once the producer has sold the

product, he is legally bound to be available during the transaction phase, that is, to be

on the market during a transaction phase of length nt. This period starts at a predefined

date noted T̄ , with nd the distance between the auction date and the starting date of the

transaction phase. The regulator can use multiple instruments to check for availability,

such as unannounced tests or verifying book orders on the energy market. One can

note that the transaction period is not necessarily equal to the closing period, which

is investment-specific. It can either be lower, equal, or superior. The following figure

5This approach to the market efficiency implies that while the wholesale price is below an optimal
value that covers the fixed cost, it optimally sends short term signals. To say it differently, if the wholesale
price would have been optimal, then occurrences of prices below the marginal cost are the same as the
occurrences with the inefficient price. This analysis could be extended to the case where prices are also
inefficient concerning the marginal cost. Still, it implies additional assumptions to differentiate between
periods when both optimal and inefficient prices are above the marginal cost and when they are not.
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illustrates the design of a capacity market where the transaction period implies three

closing decisions for the investment.

t0 (nd) T̄ T̄ + nt

Contractualization

Transaction phase (nt)

Closing period (nom)

com com com

For the producer, the capacity price received in the capacity market enters its profit

as a second stream of remuneration in addition to the revenue made on the wholesale

market. Similarly to the closing periods, we define n̄t the number of times a capacity

auction is set during the investment lifetime. Using the NPV of the investment over its

lifetime, the final NPV with the capacity market is equal to :

Πcm
0 = Π0 +

capacity market revenue︷ ︸︸ ︷
n̄t∑
i=0

e−r(i×nt)pci

With pc, the capacity price is received at every capacity auction. By construction,

auctions are set up at an interval of nt. As we do not model the competitive process

in the chapter, we simplify the analysis by assuming that the bids the investor makes

on the capacity market are equal to the price he receives. Such assumption holds under

the case the investment is always the marginal bidder in a uniform auction, or if he bids

truthfully in a pay-as-bid type auction or in a bilateral marketplace.6

3 The net present value framework

We start the analysis by describing the bidding behavior of a producer who offers only

its net present opportunity cost on the capacity market associated with an existing

investment. It allows precise definitions and the bid’s rationales in a capacity market.

6See for instance Matthäus et al. (2021) for a discussion on the truthful behavior in competition
based mechanisms for investments in electricity production.
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We discuss the relation between the product design and the expected inframarginal rent

net of the periodic fixed cost. This is a basis for the canonical approach to model bids in

the capacity market. Those results also serve as a reference value to compare the bidding

behavior when the option value is taken into account using a real options framework.

3.1 The inframarginal rent and the opportunity cost

The opportunity cost associated with participation in a capacity market is based on the

dichotomy between sunk and non-sunk fixed costs incurred when the producer decides to

produce. It is crucial as some fixed costs could be considered sunk before participating

in a capacity market. Indeed, recall that fixed costs are decomposed into two parts : (i)

Investment costs, which incur the power plant’s first activation, and (ii) periodic fixed

costs, which incur periodically and irrevocably. When considering entering the market,

investment and periodic fixed costs are still pending and avoidable. Consequently, the

time horizon used to compute the opportunity cost of entering the market should be

based on the entire project lifetime. Indeed, when the producer compares the decision to

enter the market at date t = 0, he faces a trade-off of closing (i) receiving the asset value

and (ii) never entering the market, which translates into a null value. On the other hand,

if the producer has already invested, periodic fixed costs are the only fixed costs that

are avoidable, and the time horizon is limited to the closing period. Therefore, when the

producer forecasts the decision to participate in the capacity market at date t0, he faces

a tradeoff between having to open the power plant and potentially incurring net losses

or leaving the market temporarily at no cost.7

The cost associated with such an opportunity over a transaction period is the differ-

ence between the sum of the periodic costs linked to the decision to stay open during

the obligation to produce and the profits made only during the period covered by the

capacity product. Formally, we note B0 the initial bid made before the investment is

made, and bt0 the bids made at every auction date t0 during the investment lifetime. For

instance, assume a product with a transaction period of nt sold at t0 with a periodic

fixed cost sustained over an identical period (nom = nt); if we assume that the producer

offers its net present opportunity cost on the capacity market, then the following equality

based on the condition 1.4 must hold :

7We assume in the model extensions a cost associated with the possibility of closing temporarily.
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∫ nt

0

e−rtE∗
0 [πt] dt+ pc =

∫ nt

0

e−rtcomdt

Having assumed that producers truthfully bid, then the bid value for an existing

plant on a capacity market is :

bt0 = e−rnd

[∫ nt

0

e−rtcomdt−
∫ nt

0

e−rtE∗
0 [πt] dt

]+

Under the net present value framework, the opportunity cost of participating in a

capacity market is equal to the expected short-term Missing Money, that is, the expected

loss of staying available due to the existence of fixed periodic costs. Given the bids for

an existing power plant, we can now define the bid for a new investment. It is based on

the wholesale revenue but also the expected bids on the capacity market. The following

equality based on the condition 1.3 must hold and implies that the investment NPV

given the capacity prices is null :

∫ T

0

e−rtE∗
0 [πt] dt+

n̄t−1∑
i=0

e−r(i×nt)bi×nt + pc = cI + com
n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)

Having assumed that producers truthfully bid, then the bid value for an existing

plant on a capacity market is :

B0 =

[
cI + com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom) −
∫ T

0

e−rtE∗
0 [πt] dt−

n̄t−1∑
i=0

e−r(i×nt)bi×nt

]+
(1.5)

With n̄t, the number of times a capacity market auction is implemented. Under the

net present value framework, the opportunity cost of participating in a capacity market

is equal to the expected long-term Missing Money, which is equal to the investment fixed

cost and the sum of the periodic fixed costs net of the revenue earned on the wholesale

and capacity market. This last point is particularly relevant as the chapter aims to

understand the link between product design and capacity bids. Therefore, if the costs

55



and profit are held equal, a different product design should bring different long-term

Missing Money, hence different first bids. We provide a more detailed discussion for a

new entrant in the extension section. In the rest of the analysis, we focus on bids for

existing investments.

3.2 A simple example

We start to illustrate the analysis with an example of bidding behavior with an existing

plant. We assume a first product design implementation (case (a)) with a single transac-

tion phase of nt
1. A second implementation (case (b)) is based on two shorter products

of the same length nt. For simplicity, we assume that nt
1 = 2nt. We denote T̄1 the start

of the transaction phase for the single product of case (a) and the first product of case

(b), and T̄2 = T̄1 + nt
1 the start of the second product of case (b). The periodic fixed

cost is incurred at T̄1 and T̄2, meaning that we have nt = nom. We denote the total

profit collected on the whole period as Π1, while we denote the profit collected on the

first sub-period Π
′
2, and on the second sub-period Π

′′
2 . Finally, we denote t0, the date

when the auction for the single product of case (a) and the first product of case (b),

and t
′
0 the auction date for the second product of case (b). For any case, the period

between an auction and the starting date is equal and noted nd. We illustrate the two

implementations in the following figure.

(a)

(b)

t0 T̄1 T̄1 + nt
1Π1

t0 T̄1

T̄2t
′
0 T̄2 + nt

2

Π
′
2

Π
′′
2

Following the framework the expected bid at t0 in the case (a) noted b1 is equal to:

b1 = e−rnd

[
E∗

0

[
com

∫ 2nt

0

e−rtdt−
∫ 2nt+nd

nd

πtdt

]]+

Which gives when rearranged :
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b1 = e−rnd

[
com

∫ nt

0

e−rtdt+ com
∫ nt

0

e−r(t+nt)dt− 2nterndπ0

]+

While the sum of the two bids in the case(b) noted b2 is :

b2 = e−rnd

[
E∗

0

[
com

∫ nt

0

e−rtdt−
∫ nt+nd

nd

e−rtπtdt

]]+

+ e−r(nt+nd)

[
E∗

0

[
com

∫ nt

0

e−rtdt−
∫ 2nt+nd

i=nd+nt

e−rtπtdt

]]+

Which gives when rearranged :

b2 = e−rnd

([
com − nterndπ0)

]+
+
[
come−rnt − nterndπ0)

]+)
Proposition 1.1 states that the following inequality always holds for any value of the

expected inframarginal rent and periodic fixed cost: b2 ≥ b1.

Proposition 1.1. Assuming the absence of risk aversion and for an existing investment,

a product with a longer transaction phase will always lead to a lower bid than the sum

of the bids for products with a shorter transaction phase.

Proof. The proof is straightforward and is given by the triangle-inequality like of the

maximum function: max(x, 0)+max(y, 0) ≥ max(x+y, 0). Using the previous example,

x takes the value of : com − nterndπ0; and y takes the value of : come−rnt − nterndπ0.

It should be noted that when the closing period differs from the transaction period,

the producers’ offer can be significantly affected without impacting the previous proposal.

When nom > nt, then the opportunity cost is estimated based on the nom period with the

implication that in subsequent auctions, a closing period that overlaps two transaction

periods is not taken into account in the offer for the second auction, the opportunity cost

being zero because the plant is already open. Similarly, when nom < nt, the opportunity

cost is calculated based on a period knom such that k determines the smallest period

greater than the transaction period (k ≡ min(knom−nt) s.t k ∈ Z+). When nt is a mul-

tiple of nom, this does not change the offer made by the producer (see, for instance, the
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previous example). Otherwise, it is similar to the case nom > nt. Using these observa-

tions, we will not study complex cases where the closing periods and transaction phases

are not equal in the rest of this chapter. While they can explain some actual bidding

behavior in volatility and magnitude, they do not change the fundamental intuitions.

4 The real options framework

4.1 A capacity bid as a European Put Option

The previous framework provides the marginalist intuition behind the bidding behavior

on a capacity market. However, it does not consider all the possible rationales, especially

when the transaction phase of a capacity product is associated with irreversible manage-

rial decisions. In this section, we conceptualize the capacity product as a real options

that allows the option value to not be available over a closing period to avoid potential

losses. We model the option value using the canonical option pricing theory. Following

the most simple case with a transaction over one period t with nt = nom = 1, then the

availability decision associated with the capacity product for an existing investment is a

European Put Option with a payout profile of max(com−πt, 0). In this case, the periodic

fixed cost can be compared to the strike price of a financial option, and the expected

inframarginal rent can be compared to the underlying asset. Following the standard

approach and the marginalist assumption, Proposition 1.2 states the bid on a capacity

market is equal to the option value of being available :

Proposition 1.2. Given the payout profile associated with the capacity product, a bid

noted bopt in an auction set at t0 = 0 for a unique transaction period at starting nd

periods after the auction and a periodic fixed cost of comis:

bopt(π0, c
om) = −π0ϕ(z) + e−rnd

(comϕ(z + σ
√
nd))

z := −
ln [π0]− ln [com] + (r + σ2

2
)nd

σ
√
nd

With ϕ, the cumulative distribution function of a standard normal distribution.

Proof. See Appendix 1.
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4.2 A capacity bid as a Basket Option

We now expand this approach to the more complex case where a transaction period

covers multiple uncertain inframarginal rents. We start with the first case by hanging

up the setup with the financial theory for exotic derivatives. We assume that when the

transaction period is expanded over multiple periods, the European Put Option becomes

a modified Basket Option. In finance, a Basket Option is defined by a payoff profile de-

pendent on the value of a portfolio of assets, each following a stochastic process such

as a Geometric Brownian Motion, which can be correlated or independent. Hence, the

availability decision associated with a capacity product is similar to exercising a Basket

Option, in the sense that the irrevocable decision to stay open at a date T̄ implies col-

lecting each inframarginal rent during the transaction period, which individually follows

a Geometric Brownian Motion. With a Basket Option, its exercise would have meant

the collection of the individual stock prices. The primary constraint associated with

pricing such an option is the absence of a closed-form representation of the price since

a sum of log-normally distribution random variable is not log-normal. However, we use

the approximation stated in Assumption 1.1 to define an analytic approximation of the

option price. It allows deriving the following proposition regarding the bid on a capacity

market when the transaction period covers multiple inframarginal rent periods.

Proposition 1.3. Given the payout profile associated with the capacity product, a bid

noted bopt in an auction set at t0 = 0 for a transaction period starting of length nt,

starting nd periods after the auction is set and with an equal closing period of nt is:

bopt(π0, c
om) = −π0n

tϕ(z) + Comϕ(z + v) (1.6)

z = −
m− ln

[
com

∫ nt

0
e−rtdt

]
+ v2

v

Com = e−rnd

com
∫ nt

0

e−rtdt

With ϕ the cumulative distribution function of a standard normal distribution , m

and v2 defined as follow :
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m = 2 ln

[
π0

∫ nt

0

er(i+nd)dt

]
− 0.5 ln

[
π2
0

∫ nt

0

∫ nt

0

er(t+s+nd)+(t+nd)σ2

dtds

]

v2 = ln

[
π2
0

∫ nt

0

∫ nt

0

er(t+s+nd)+(t+nd)σ2

dtds

]
− 2 ln

[
π0

∫ nt

0

er(i+nd)dt

]

Proof. See Appendix 2.

This definition of a bid on a capacity market can be understood as follows. First, note

that the inframarginal rent term π0n
t is linked to the Geometric Brownian Motion and

the risk-free version of the inframarginal rent process.8 The fixed cost term is the sum

of the actualized periodic fixed costs associated with the decision to stay open. Finally,

the value z and z+ v are linked with Assumption 1, with the first term in the logarithm

of m (second term in v2) representing the mean of the sum of the inframarginal rent and

the second term in the logarithm of m (first term in v2) is the second moment of the

sum of the inframarginal rent.

4.3 The sum of expected capacity bids

Once we derive the bid for a single product, we can now analyze the sum of the bids

for multiple capacity products. Assumption 2 states that even though some correlation

exists between inframarginal rents over the investment lifetime, the decision to close

during one period does not modify the rent value in a subsequent period. It allows

defining the sum of the bids for multiple capacity products as the sum of the value of

their options estimated at a single date; for simplicity, here, the auction at which the

longer product is sold, or the first shorter product is sold.

Proposition 1.4. Given the payout profile associated with a capacity product of length
nt

k
with the same closing period of nt

k
, the sum of expected bids noted bopt made during k

successive auctions is:

8Under the equivalent martingale measure Q, the drift of the inframarginal rent is equal to the
risk-free rate, meaning that any actualized expected value of the rent is equal to its initial value π0.
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bopt(π0, c
om) = −π0

nt

k

k∑
j=1

ϕ(zj)dt+ come−rnd

∫ nt

k

0

e−rtdt
k∑

j=1

e−r(j−1)n
t

k ϕ(zj + vj)

With :

zj = −
mj − ln

[
com

∫ nt

k

0
e−rt

]
+ v2j

vj

With mj and v2j defined as follow :

mj = 2 ln

[
π0

∫ ntj

nt(j−1)

er(t+nd)dt

]
− 0.5 ln

[
π2
0

∫ ntj

nt(j−1)

∫ ntj

nt(j−1)

er(s+t+nd)+(t+nd)σ2

dtds

]

v2j = ln

[
π2
0

∫ ntj

nt(j−1)

∫ ntj

nt(j−1)

er(s+t+nd)+(t+nd)σ2

dtds

]
− 2 ln

[
π0

∫ ntj

nt(j−1)

er(t+nd)dt

]

Proof. With no correlation between the decision to close and the profits made during

other periods, the different capacity products could be conceptualized as options on

different assets (See Trigeorgis (1993)).

5 Comparative statics

Using the results of the previous section, we compare the bidding behavior in a capacity

market depending on (i) the drivers behind the opportunity cost, (ii) if producers follow

the net present value framework or the real options framework, and (iii) the design of

the transaction phase for a given period.

We start by studying the evolution of the bids under the real options framework,

especially with respect to the length of the product. We also describe the effect of the

main variables on the bid. This step is particularly relevant due to the length of the
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transaction phase, which significantly complexifies the analysis. Then, we show how the

real options bidders value the possibility of closing to avoid the fixed costs. Namely, we

describe the flexibility associated with the option to close and how its value is impacted

by the length of the transaction phase and other variables. Finally, we discuss the impact

of segmenting a capacity product in multiple shorter transaction phases. Similarly to

the two previous analyses, we also provide the effect of the drivers on the delta for the

bids between different capacity product designs.

5.1 Bids value

This analysis sheds light on how a capacity bid varies with its fundamentals. One of the

critical variables in this research is the length of the product nt. We also look at the

two main variables of the opportunity cost as described in the net present value section,

namely the initial value of the inframarginal rent π0 and the fixed cost value com. Next,

we study the regulatory parameters chosen when the capacity market is implemented

nd, representing the waiting time before the transaction phase. However, we left for

future work a deeper analysis of this parameter on market efficiency9, this analysis still

provides some insight into its role in the bidding behavior on the capacity market. Finally,

we also study the impact of different volatility levels of the inframarginal rent σ on the

capacity bid. Indeed, one of the current policies in the power sector relies on significantly

increasing the share of renewables in the production mix. A key consequence would be

an immediate increase in the volatility of the wholesale price (Fontini et al., 2021). In

turn, it also has an indirect effect on the bidding behavior in the capacity market.10

For relevancy and simplicity, we assume that the periodic fixed cost occurs simul-

taneously as the inframarginal rent in this section, namely every t period. Therefore,

when the transaction phase increases by one period, the producer gains an uncertain

inframarginal rent and sustains an additional unitary periodic fixed cost. We provide

in Proposition 1.5 an overview of the effect of increasing the transaction period on the

bids for the net present value case and the real options case. Note that for the real

options framework, we could not find a closed-form solution in terms of the value of the

variables for which a clear-cut answer on the sign of the derivatives exists. However, we

9The waiting time has been numerously cited as a critical regulatory parameter when designing
capacity markets. However, to our knowledge, very few papers have looked into this issue from a
modeling perspective.

10A second indirect effect is the decrease of the average wholesale price due to a merit order effect,
which translates into a lower initial value π0.
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can provide sufficient general conditions so that such a solution exists. The conditions

presented in this section are usually given on the derivatives of the variable z, which

represents the threshold on the probability that the sum of the actualized fixed cost (the

strike price) is above the sum of uncertain inframarginal rent (the underlying asset), and

on specific ratios between the density functions ϕ(z) and ϕ(z + v), which express the

probability of a standard normal distribution at their respective value.

Proposition 1.5. NPV: The bid is a concave function with respect to the length of the

transaction phase nt. The threshold in terms of fixed cost between an increasing bid and

a decreasing bid is given by: com = π0e
r(nd+nt). RO: An increase in the transaction phase

increases the capacity bid if the following conditions hold:

• Fixed costs : ccom
∫ nt

0
e−rtdt ≥ √

π0V ev
2(2r ∂v2

∂nt −1)

• Cdf ratio : S1Com

π0
≥ R0

• Df ratio : Com

ntπ0
≥ R1

With R0 = ϕ(z)
ϕ(z+v)

, ≥ R1 = φ(z)
φ(z+v)

, Com the actualised sum of the fixed cost and

S1 = e−rnt
/
∫ nt

0
e−rtdt.

Proof. See Appendix 3.

The intuition behind this result is as follows. For the net present value bid, it is

straightforward because the bids are equal to π0n
t − Com. Therefore, the bid starts de-

creasing as soon as the marginal value of the expected profit at the end of the transaction

phase exceeds the additional fixed marginal cost.

For the option value, we provide the derivative of the bid value with respect to nt in

the following expression:

∂bopt

∂nt
= −π0

(
ϕ(z) + nt ∂z

∂nt
φ(z)

)
+ Com

(
S1ϕ(z + v) +

∂z + v

∂nt
)φ(z + v)

)

The option value is composed of two distinct parts : (i) a negative part which stands

for the expected sum of inframarginal rent adjusted by the cumulative distribution func-

tion of the standardized normal distribution: −π0n
tϕ(z) ; (ii) a positive part which stands
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for the strike price represented through the cost of staying available, also adjusted by

the cumulative distribution function: Comϕ(z + v); with Com the actualized sum of the

fixed cost. For both parts, an increase of nt has two effects: a direct effect linked to

the marginal increase in the profit and the fixed cost and an indirect effect via a change

in cumulative distribution function value. The sign of this indirect effect depends on

the sign of the derivatives of z and z + v with respect to nt. We now analyze how the

conditions can be widened or tightened to have a clear-cut effect on the sign of nt on the

bid.

The first effect is straightforward: an increase in nt also increases the profit and

fixed costs. For the indirect effect, we start with the fixed cost part. Recall that the

cumulative distribution function represents the probability that the periodic fixed cost

is above the inframarginal rent. The sign of the corresponding derivative with respect to

nt is positive only if the following condition on the fixed cost in the proposition holds.

In this case, an increase of nt always implies an increase in the probability that the sum

of the actualized fixed cost is above the sum of uncertain inframarginal rent. Hence,

both effects of part (ii) are always positive, implying that an increase of nt increases the

option value.

However, the effect can be ambiguous for some values of nt due to part (i). The

sign of the corresponding derivative with respect to nt is negative only if the following

condition in the proposition on the fixed cost holds. When the derivative is negative,

it decreases the probability that the inframarginal rent is above the fixed cost given by

ϕ(z). Hence, it lowers the bid value. This value is decreasing with nt. Therefore, the

possibility that the bid is positively impacted by nt increases with nt.11

We turn now to the other drivers for the capacity bid, and we provide the result in

Lemma 1.1. Again, as there are no closed-formed solutions, we provide conditions for

which the drivers have clear-cut signs on the bid value.

Lemma 1.1. The value of the bid under real options :

1. decreases with the inframarginal rent π0

11Note that the ratios R0 and R1 are similar to other ratios that can be found in the model. For
instance, the constrain that the option value is always positive implies that we have the following
condition :

Com

ntπ0
≥ ϕ(z)

ϕ(z + v)
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2. increases with the periodic fixed cost com

3. is ambiguous with the waiting time nd

4. is ambiguous with the inframarginal rent volatility σ

Results (1) and (2) hold if the condition Com

ntπ0
≥ R1 is satisfied.

For Result (3), nd always decreases the bid when com
∫ nt

0
e−rtdt ≥ V e−M r+σ

r−σ , Com

ntπ0
≥ R1

and r > σ are satisfied. If only the first condition holds and that −rϕ(z+v) ≥ ∂v
∂ndφ(z+v),

then nd always decreases the bid.

For Result (3), nd always increases the bid when com
∫ nt

0
e−rtdt ≥ V e−M r+σ

r−σ and
∂v
∂ndφ(z+v) ≥ −rϕ(z+v). Otherwise nd has an undetermined effect on the bid price and

depend on the relation between Com

ntπ0
and the ratio R3 =

∂z

∂nd ϕ(z)

−rϕ(z+v)+ ∂v

∂nd φ(z+v)

For Results (4), σ always increases the bid if com
∫ nt

0
e−rtft ≤ M2

V
and Com

ntπ0
≥ R1 are

satisfied. Otherwise if com
∫ nt

0
≤ V , then σ always increases the bid if Com

ntπ0
≥ φ(z) ∂z

∂σ

φ(z+v) ∂z+v
∂σ

.

If the conditions are not respected, then σ is always decreasing the bid.

Proof. See Appendix 4.

The first and second results are standard regarding real options theory (see, for

instance, Matthäus et al. (2021)). They have an opposite interpretation: an increase in

the initial inframarginal rent signals that future revenues will also increase. Consequently,

it decreases the value to close to avoid the fixed cost, as those costs are more likely to be

covered by the inframarginal rent. On the other hand, as the fixed cost increases, then

the value increases.

The analysis of nd is less intuitive and relies on stronger conditions on the fixed cost.

The effect of nd is unique on the inframarginal rent part of the bid and depends on the

sign of the corresponding derivative. If the derivative of this part is negative, it implies

that if nd increases, then the probability that the rent is above the fixed cost decreases.

Otherwise, the reverse effect happens. It is given by the first condition on the fixed costs

for nd to have a negative impact on the bid. To highlight the effect of nd on the fixed

cost part of the option value, we rearrange the conditions of the result (3).

∂bopt

∂nd
= Com(φ(v + v)

∂v

∂nd
− rϕ(z + v)) +

∂z

∂nd
∆φ
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with ∆φ = (Comφ(z + v) − ntπ0φ(z)). This value is central in the analysis, and it

is always positive as long as Com

ntπ0
≥ R1 holds and can be found in the four derivatives of

the bid value. It gives the second condition for nd to have a negative effect on the bid.

The derivative represents the net marginal change in terms of the bid value when the

variables marginally impact z.

We turn now to the first part of the rearranged derivative. When nd increases,

it always decreases the value of the fixed cost because of a discounting effect (second

negative term) while also changing the volatility of the revenue (first term). Following

the analysis of ∂z
∂nd , it is sufficient for its sign to be negative and also to have a negative

sign ∂σ
∂nd to have the decreasing effect of nd on the bid. It has straightforward intuitions: if

an increase of nd decreases the value of the fixed costs, the volatility, and the probability

that the inframarginal rent is below the fixed costs, then the option value also decreases,

hence the bid. The derivative in the first term is negative if and only if ∂v
∂nd is also

negative. That is, an increase of nd decreases the volatility of the total revenue. This is

the case only when the risk-free rate (r) is above the volatility of the inframarginal rent

(σ). It gives the third condition for nd to have a negative effect on the bid. Therefore,

the first group of conditions for nd states the conditions under which every part of the

derivative is negative.

Finally, when at least one derivative is not negative, then the sign is ambiguous and

depends on the magnitude of each part of the derivative. For instance, when ∂z
∂nd is still

negative, but an increase of nd decreases the volatility of the sum of inframarginal rent

(i.e., ∂v
∂nd is positive), it is sufficient that the negative effect of the inframarginal rent

is higher than the gains in terms of volatility to ensure that the sign of nd is negative.

Therefore, it gives the second set of conditions. The opposite case when ∂z
∂nd is positive

gives the third set of conditions.

To conclude, we state that the effect of σ is also counter-intuitive when the conditions

do not hold. We rearrange the derivative, which gives:

∂bopt

∂σ
= Comφ(v + v)

∂v

∂σ
+

∂z

∂σ
∆φ

First, note that the first derivative is positive as an increase in the volatility of

the periodic revenue always increases the volatility of the total revenue. Therefore, the

ambiguity of σ on the bid value only depends on the sign of the second derivative ∂z
∂σ

and

on the magnitude of the positive parts. When analyzing the sign of the derivative ( ∂z
∂σ
),
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we find that it requires one condition to be negative. This condition can be found in the

lemma. Recall that M2 and V 2 are the first and second moments of the distribution of

the inframarginal rent sum during the transaction phase.12 Such a condition highlights

the critical role of the difference between the fixed costs and the expected value and

distribution of the inframarginal rent. When the fixed costs are relatively high compared

to the mean value adjusted by the risk of the total revenue (i.e., the conditions are

satisfied), then a marginal increase of the volatility always implies a loss for the option

value: it increases the occurrence of having the sum of inframarginal being above.

5.2 Flexibility value

We turn to the analysis of the difference between a bid under a net present value frame-

work and a bid under a real options framework. As in the canonical real options theory,

the possibility of the managerial option always creates additional value for the producers.

Consequently, when comparing the difference between bidding the missing money and

bidding the option value associated with the possibility of closing, we have the following

proposition.

Proposition 1.6. Under the same market design, the bid in a capacity market when

producers consider the option value is always higher or equal to the bid using only a net

present value approach.

bopt ≥ bnpv

Proof. The proof for the proposition is straightforward and comes from the definition

of a net present value and a real options bid. Under the first framework, producers bid

the maximum of their expected Missing Money. On the other hand, under the second

framework, producers bid their option value, namely the expected maximum of their

missing money. Therefore we always have bopt ≥ bnpv.

Using this result, we can now analyze the value of flexibility, which is the difference

between the two bids. We define Γ as the value of the flexibility such as Γ = bopt − bnpv.

It is defined in the following equation :

Γ = −π0n
t(ϕ(z)− 1) + Com(ϕ(z + v)− 1)

12Note the resemblance with the Sharp Ratio used in finance, which defines the performance of an
investment compared to a risk-free asset after adjusting for its risk.
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The analysis of the evolution of Γ with respect to the main variables is similar to

the comparative statics made in the previous section. Indeed, for any variable x note

that ∂Γ
∂x

= ∂bopt

∂x
− ∂bnpv

∂
. Therefore, the net effect of the previous results can either be

increased or decreased depending on how the bid under the net present value framework

behaves. We summarise the main results in Proposition 1.7.

Proposition 1.7. The length of the transaction phase has an ambiguous effect on the

value of the flexibility :

• Γ is increasing in nt when com ≤ π0e
r(nd+nt)

When the condition does not hold, given the following ratio

R4 =
1
ntϕ(z) +

∂z
∂ntφ(z)− 1

nt

S1ϕ(z + v) + ∂z+v
∂nt

φ(z + v)− S1

• Γ is increasing in nt if S1(ϕ(z + v) − 1) + ∂z+v
∂nt

φ(z + v) > 0 and the following

condition holds : Com

ntπ0
≤ R4

• Otherwise, Γ is increasing in nt if S1(ϕ(z + v) − 1) + ∂z+v
∂nt

φ(z + v) < 0 and the

following condition holds : Com

ntπ0
≥ R4.

• When the conditions do not hold, Γ is decreasing in nt

Proof. The proof is similar to the Proposition 1.5. The results follow directly from the

derivative of the bid with respect to the variable.

The ambiguity of nt on the value of flexibility comes from the concavity of the net

present value bid as described by the Proposition 1.5 and the monotonicity of the real

options bid. When the former decreases with respect to nt, the flexibility is always

increasing as the latter increases. However, when the net present value bid increases,

the sign of the flexibility derivative depends on the magnitude between a marginal rise

in the net present value bids and the marginal increase of the real options bids. Those

opposing effects are materialized in the ratio R4 with the negative terms − 1
nt and −S1,

which represent the marginal increase of respectively the profit and the fixed cost part.

Given the results expressed in Proposition 1.5 and Proposition 1.7, we find that the
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condition under which the flexibility increases with respect to nt is weaker than the

condition under which the real options bid rises with respect to nt.

This ambiguity renders the analysis of the value of flexibility with respect to other

drivers significantly complex. While we had intuitive results and mild conditions for

the two fundamental drivers of the bids in Proposition 1.5, namely π0 and com. The

marginal increase of the net present value bids is always superior to the direct effect

observed in the real options bids when the two drivers increase. For instance, recall that

an increase of π0 both directly lowers the value of the option due to a marginal decrease

of −ntϕ(v) while indirectly modifying the option value with a change in the probability

of the maximum function: −π0n
t ∂z
∂π0

φ(v). When we introduce the change in the net

present value bids, the marginal decreases when π0 is equal to −nt. It implies that we

always have nt ≥ ntϕ(v), as ϕ(v) is a cumulative density function. Therefore, the net

effect on the value of the flexibility is always going to be dependent on the magnitude

between the net direct effect nt(1 − ϕ(v)) and −π0n
t ∂z
∂π0

φ(v), and not anymore on the

sign of the derivative.

However, for the volatility of the inframarginal rent, we find a strict identical effect

between the real options bid and the flexibility value. Indeed, the net present value bid

is independent of the volatility, hence ∂Γ
∂σ

= ∂π0

∂σ
. Therefore, the sign and the conditions

discussed in Lemma 1.1 can be applied to the analysis of the value of the flexibility with

respect to σ.

5.3 Product design

In this section, we analyze the effect of segmenting the capacity product into multiple

shorter products. More precisely, we assess the difference between the bid for a single

capacity auction considered as a ”long” product covering a transaction phase of nt periods

with the sum of expected bids for k successive capacity auctions where producers can sell

”short” product of length nt

k
. The difference in the cost of a capacity market noted ∆bopt,

given this configuration is defined in the following equation and uses the Proposition 1.3

and Proposition 1.4 :

∆bopt = −πt0n
t

(
ϕ(z)− 1

k

k∑
i=1

ϕ(zi)

)
+ Com

(
ϕ(z + v)− S2

k∑
i=1

e−r(i−1)n
t

k ϕ(zi + vi)

)
(1.7)
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With S2 =
∫ nt

k
0 e−rtft∫ nt

0 e−rtft
.

This equation is critical to understanding the impact of different product designs on

bidding behavior under the real options framework. Indeed, note that both for the profit

and the fixed cost part of the difference, the equation shows that the sign of ∆bopt depends

on the relation between the cumulative distribution function of the longest product (ϕ(z)

and ϕ(z+v)) with an average value of the cumulative distribution function of the shortest

product. This average is shown directly with 1
k
or indirectly with the value of S2, which

takes into account the discounting effect of the periodic fixed cost. Therefore, it is

sufficient for the average impact for the profit part to dominate (resp. to be dominated)

ϕ(z) and the second average effect to be dominated (res. dominate) ϕ(z + v) to have an

increase (resp. decrease) of the bid when segmenting the capacity product into a shorter

product. Again, we do not have a closed-form solution that guarantees a value for the

variables to give a clear-cut answer on the sign of this difference. However, we provide

in Lemma 1.2 sufficient conditions that allow such a clear-cut answer to existing.

Lemma 1.2. The sum of expected bids of shorter products is always lower or equal to the

individual bid for the longer product when each threshold zi is lower or equal to the unique

threshold z and when each threshold zi+vi is above or equal to the unique threshold z+v.

Proof. The proof is straightforward and stems from the definition of ϕ as the cumulative

density function of a standard normal distribution

Those conditions imply that the probabilities (and the average probability) that the

sum of inframarginal rent is below the fixed cost (i.e., ϕ(z + v) and ϕ(zi + vi)) are

consistently higher under the product design with short term products. Naturally, this

condition states that it should also decrease the curtailed expected value given in part

by the expressions ϕ(z) and ϕ(zi) for the shorter period product design.

From the definition of ∆bopt, it is easy to deduce its marginal change with respect

to a change of the main drivers. The comparative statics on the difference between the

two market designs encompass both the analysis provided in the first section on the

value of the bid and the average component present in Equation 1.7. When we derive

this value with respect to the set of variables (namely, π0 com nd and σ), we find that it

depends again on some conditions on the fixed costs and the sign of the derivatives. More

precisely, it relies on the difference between the marginal effect of the first section and

the average marginal effect of the sum of expected bids. Both elements can be analyzed
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separately using the results in Lemma 1.1.13 To see this, we provide in the following

equation the marginal change of ∆bopt with respect to the volatility of the inframarginal

rent σ

∂∆bopt

∂σ
=− π0n

t

(
∂z

∂σ
φ(z)− 1

k

k∑
1

∂zi
∂σ

φ(zi)

)

+Com

(
∂z + v

∂σ
φ(z + v)− S

k∑
i=1

∂zi + vi
∂σ

φ(zi)

)

Therefore, an increase in the volatility of the inframarginal rent positively increases

the difference between the bid for the longer product and the sum of the expected bid

for shorter products if and only if the average effect of the latter is above (resp. below)

the marginal change of the former for the profit part (resp. periodic fixed cost) of the

option value.

6 Case study

We illustrate the model by simulating a power plant participating in the French capacity

market. This mechanism has been recently implemented, with a first auction held in 2016

for a transaction phase starting in 2017. The main characteristics regarding the supply-

side rely on a 4-year quasi-continuous forward market. Each capacity product covers a

year, with an obligation of being available concentrated between January and March.14

They can be traded up to four years before the delivery year, either through multiple

auctions or bilateral tradings. Figure 1.1 shows the clearing price in the French capacity

market for the corresponding yearly period of the transaction phase and each auction

before the starting date. Excluding the specific 2017 and 2018 period, the capacity price

is on average equal to 23 191 e /MW, with a maximum value of 47 400 e /MW and a

minimum value of 13 000 e /MW. We use the average price for the transaction phase in

2022 as a comparative basis when simulating the output using the previous results. The

average price is equal to 25 314 e /MW.

13Each component of the sum for shorter products is independent, which allows adding the marginal
change of each element.

14In particular, this rule raises the question of the difference between what the contract is called
(annual) and the obligations effectively implemented in detail.
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Figure 1.1: Auction results for the French capacity market

We are considering an investment in a CCGT gas power plant, the lifetime of which

is 30 years, and we normalize the capacity to 1MW. The production costs have been

taken from the consultation report made by RTE, the transport and system operator,

which had to build the rules for the capacity market. For an existing power plant, the

fixed operating cost is equal to 32.5e /kMW.yr,15 which translates into a periodic fixed

cost value of 98.63 e /MW.day. The variable production cost includes the fuel cost and

the carbon costs and is equal to 25 e /MWh. We consider them fixed during the lifetime

of the investment.

For the French system, we assume the risk-free yearly rate is 2.32 %. It is the average

interest rate of the 30-year government bonds for France between the years 2009 - 2021.

It implies a daily value of 0.64%. Then, we estimate the stochastic process. First,

we analyze the forward Y1 traded on the French power exchange between the years

2010 - 2015. We find that the average daily electricity price over the period is equal to

47.15e /MWh, with a maximum value of 61.65 e /MWh and a minimum value of 33.50

e /MWh. A gas power plant can be considered peak technology or semi-peak technology

in the French system, and it does not receive an inframarginal rent every hour during its

15It is the mean value for a range between 30 and 35 e /kMW.yr.
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lifetime. Therefore, we first compute an average price duration curve, which gives the

proportion of time for which the price exceeds a specific value. Then, we use the data

on the marginality duration of a gas power plant given by the yearly report Functioning

of the wholesale electricity from the CRE, the French electricity regulator. We find that,

on average, such investment is either the marginal or an inframarginal bidder for 57%

of the time in a year, with a high deviation between years ranging from 5% to 85% over

the years 2010 - 2019. Given this significant range, and using the marginal production

cost and the price duration curve, we find an interval of daily inframarginal rents from

59 e /day and 949 e /day with a mean value of 641 e /day for an investment selling all

the time.16 We acknowledge this value is highly uncertain and dependent on the actual

plant. Therefore, we use those values as a comparative order of magnitude rather than

real input.17 For the volatility of the inframarginal rent, we use the forward Y1 traded

on the French power exchange between the years 2010 - 2015. We find a volatility value

of 0.00578, close to the range used in Fontini et al. (2021) for the Italian market.18

6.1 Bids in a capacity market

We first analyze how the bid in a capacity market can vary with respect to the length

of the transaction phase. We provide the results both under the net present value

framework and the real options framework. Using the French capacity market as the

reference design, we use an initial value for the transaction phase (nt) of one year with

a waiting phase (nd) of four years. The results of the simulation are presented in Figure

1.2.

As shown in Proposition 1.5, a capacity bid always increases with the length of the

transaction phase under the real options framework. On the other hand, the net present

value bid can decrease for relatively high values of the inframarginal rent. For the initial

values of nd and nt, beyond an initial value of 87.83 e /MWh, the bid is constantly

decreasing with respect to nt. The figure also shows that for a given initial value of the

inframarginal rent π0, the bid under the real options framework is always above the bid

under the net present value framework, as shown in Proposition 1.6. We also provide

16Therefore, we also consider the variable π0 as the average inframarginal rent being available all the
time on the wholesale market.

17A study made by RTE has found that between 2010 - 2018, the annual inframarginal rent for a
CCGT ranges daily from 28 e /MW to 188 e /MW. The numerical simulation gives the same order of
magnitude with respect to the initial value π0.

18Note that the value of the volatility is consistent with the threshold found in Levy (1992) regarding
the approximation condition of Assumption 1.1 .
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Figure 1.2: Single capacity bid for different transaction phases value. The bids under the
real options framework are always increasing in nt, while for some values of π0, they can
be decreasing under the net present value framework. Note that the bids are expressed
in e /MW and π0 in e /day.
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the annualized value of the capacity bid for more clarity. In the second figure, we show

the corresponding hypothesis for the two frameworks that leads to the same bid as the

average one observed in the French Capacity market for the transaction phase of the year

2022. Under the net present value framework, the initial value for the inframarginal rent

is equal to 12.5 e /MWh, which is significantly below the lower range of the value found

using the forward data. It corresponds to being marginal only 1% during a year on the

electricity market. Under the real options framework, the initial value is 130 e /MW,

almost ten times higher than the previous value. This high value is within the range

of the marginality and corresponds to being marginal at least 11% of the time. Note

that the capacity price under the real options framework converges towards the periodic

fixed cost, as expected when analyzing the derivative of the capacity bid. Therefore,

the real options framework always converges toward the canonical behavior of a capacity

market. That is, the bids should be equal to the fixed costs. Finally, the data used in

the numerical illustration shows that the real options bids tend to increase more rapidly

than the net present value bids, which implies that the flexibility rises with respect to

the length of the transaction phase.

6.2 The effect of the waiting time and the volatility

We analyze in this section how the bid on a capacity market can be modified by choosing

a policy instrument, namely the waiting time between the capacity auction and the start

of the transaction phase, and by the volatility of the inframarginal rent, a key variable

to understand industrial decisions in the power sector. Figure 1.3 provides the result of

the numerical simulation:

Regarding the waiting time, we underline the ambiguous effect of this variable on

the capacity bid. Beyond a specific value of nd represented by the black dots in the first

figure, an increase in the value of nd continuously decreases the capacity bids. Below this

value, the waiting time always increases the capacity bid. This threshold depends on the

assumption concerning the initial value of the inframarginal rent. A higher initial value

implies a higher threshold. To say it differently, when the producer forecasts a more

profitable investment, it decreases the capacity bid and reduces the potential negative

effect of nd on the bid. The reason for such results is as follows. First, given the initial

data, the bid part relative to the inframarginal rent is always positively impacted by nt.

It means that the sign of the derivative of z with respect to nd is always negative.
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Figure 1.3: Comparative statics on the capacity bid. The waiting phase has an ambiguous
effect on the capacity market bids, while an increase in volatility always increases the
bids. Note that the bids are expressed in e /MW and π0 in e /day.

On the other hand, the sign of the second part relative to the fixed costs is mostly

negative only when the initial value of the inframarginal rent is low. Recall that this

part is composed of a negative value due to the risk-free rate effect and an ambiguous

part due to the change in the cumulative distribution function. We find that the first

negative part is almost not affected by a change of nd, while on the contrary, the second

part is always positive. Still, it significantly decreases with nd with a lower value for a

higher π0. Indeed, the second part is linked to the probability of the fixed cost above the

inframarginal rent. Hence, a higher rent value always means a lower probability. All in

all, the lower the probability, the higher the negative effect of the risk-free rate and, hence,

the potentiality of nd for having a negative impact on the capacity bid. From a policy

perspective, it seems less costly to set up a short waiting phase for a profitable existing

power plant and potentially allow a longer waiting time for less profitable investment.

An increase in the volatility of the inframarginal rent always increases the capacity

bid in the numerical simulation. As illustrated in the second figure, higher volatility

makes the capacity bids converge toward the periodic fixed cost of the investment, even

though the initial value regarding the inframarginal rent is different. We also observe
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a diminishing marginal effect of the volatility on the capacity bid, meaning that it is

sufficient for a slight increase from the current volatility to affect the bid significantly.

Those results stem from the fact that the effect of the volatility on the inframarginal

part of the bid is relatively small compared to the impact on periodic fixed costs. Indeed,

the periodic fixed cost part directly includes the effect of σ on the total volatility of the

revenue made during the transaction phase v, which is always positive. However, this

effect is significant only for a low value of σ, which explains this diminishing margin effect.

It has important implications, as, given this result, we should expect a rapid increase

in the bids in capacity markets when the first effect of the introduction of renewable

in the system starts to be significant. When renewables have a sufficient share in the

production mix, the capacity price is assumed to be relatively stabilized.

6.3 Product design

We conclude the case study by studying the effect of segmenting a given capacity product

into successive products with shorter transaction phases. We use an initial long product

covering five years as the reference product, and we split this period into shorter periods.

We use the same initial value of nd of four years. We provide in Figure 1.4 the results

of the numerical simulation for the net present value and the real options. The point

on the two Figures 1.4 represents four different product designs and k the number of

successive products, with five yr. a single product covering the five years (k = 1), 1 yr.

A yearly product (k = 5), semester a transaction phase covering six months (k = 10),

and quarter a transaction phase covering three months (k = 20).

This simulation confirms the reverse effect of the choice of the product for the two

frameworks: under the real options framework, the bids are, in expectation, lower with

shorter products, while under the net present value framework, a more extended trans-

action phase always implies lower bids. For the latter case, this is explained by the

possibility of a more extended transaction phase having positive revenue for a specific

period, covering the potential loss incurred during another period in the transaction

phase because of the fixed cost.

This smoothing of the opportunity cost of participating in the capacity market is im-

possible for shorter products as they imply different opportunity costs and decisions. On

the other hand, we do not find the same effect with the real options framework. Indeed,

under this approach, the segmentation directly impacts the expectation of the option
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Figure 1.4: Evolution of the expected bids for a single long product and the sum of the
expected bids for shorter periods. Note that the bids are expressed in e /MW and π0 in
e /day.

value for shorter periods, which is not the case under the net present value framework.

To say it differently, the distribution characteristics of the total inframarginal rents over

a long period are different from the sum of the distributions of the total inframarginal

rents for successive shorter products.

Given the numerical data, we find that segmenting the bids into shorter periods nega-

tively impacts the inframarginal part and positively the fixed cost part of the bid. Given

that the former is always negative and the latter is always positive, this segmentation

continuously decreases the cost of a capacity market under the real options framework.

Finally, the results also show that the product design choice is different from a marginal

perspective by exhibiting a diminishing marginal effect for the two frameworks. We find

that segmenting from five years to a single-year period is sufficient to significantly de-

crease the bid under the real options framework or increase the bid under the net present

value framework. Therefore, we show that it is unnecessary to make the capacity market

over-complex under the real options framework by having many short products.
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7 Extensions

In this section, we provide a discussion on two relevant policy issues associated with the

research questions of this chapter. We first look at the implications of the analysis for

bids in the capacity market for new power plants. Then, we discuss the effect of the costs

associated with the closing decision, which can only be assessed using the real options

framework.

7.1 Bids for new entrants

The relation between product design in this chapter and bids for new entrants relies on

the definition of the opportunity cost of entering the market as a new entrant. Indeed,

as shown in Equation 1.5, the bids should be equal to the NVP of the investment over

the whole lifetime, including the two fixed costs (investment and operation) and the two

sources of revenues (wholesale and capacity market). Therefore, assuming that the costs

and the wholesale revenue are not impacted by the capacity market product design, any

changes in the value of the bids when the investment is already in the market will impact

the first bid, even though we do not model the competition in the capacity market. It

has clear policy implications. Indeed, if policymakers wish for more new entrants, they

should aim to increase the probability of those investments being retained when they

first bid into the capacity market. Therefore, lower entry bids make this more likely to

happen.

Following the previous analysis, we state in Lemma 1.3 this link between product

design and bids for the new entry :

Lemma 1.3. Under the net present value framework, shorter products imply that the

initial bid B0 for new investments is always lower or equal to the bid with a longer

product. Under the real options framework, shorter products imply that the initial bid B0

for new investments is always higher or equal to the bid with a longer product.

Proof. The proof is straightforward and is given by the results of Proposition 1.1 and

when the conditions of Lemma 1.2 hold.

To illustrate this discussion, we simulate the bid for a new entrant for a CCGT power

plant using the previous data. We provide in Figure 1.5 the relation between the initial
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Figure 1.5: Capacity bid for a new entrant with respect to the initial inframarginal rent.
Note that the bids are expressed in e /MW and π0 in e /day.

value of the inframarginal rent and the capacity bid for a new entry and different capacity

product designs. As expected, the figure shows that for shorter products, the bids in the

capacity market is higher.19 This figure also illustrates the sensitivity of a new power

plant to enter the market when competing with existing investments. Indeed, we find

that to provide a price even below the current price cap on the French capacity market.

The producer needs to assume an initial value for π0 of around 74 e /MWh for the three

capacity products. On the other hand, as soon as the assumed inframarginal rent is

above a value of 79 e /day, a new entrant always makes a null bid.

7.2 Penalty and mothballing costs

Finally, we discuss the effects of two drivers that increase the cost associated with the

availability to close to avoid the periodic fixed cost. They both recover two distinct

issues regarding the operation of an investment. However, they are identical in their

19As a higher inframarginal rent implies a lower bid, if for the same bid, the threshold value π0 is
higher, it means that the capacity bids are higher for the same threshold.
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conceptualization concerning the capacity bid analysis : (i) a policy instrument being

the penalty associated with the failure to respect the obligation of being available by

voluntary closing the investment, (ii) the closing costs associated with the temporary

shutdown of the power plant. They also have in common that a net present value

framework cannot be considered in the capacity bid analysis. We summarize in Lemma

1.4 their effects on the capacity bid under the real options framework.

Lemma 1.4. Setting a penalty for the failure of not being available when a capacity

product has been sold, or the existence of closing costs always leads to a lower bid in a

capacity market. An increase in their value decreases the capacity bid.

Proof. See Appendix 5.

The intuition behind those results is that the penalty or the closing cost decreases the

value associated with closing to avoid the fixed cost. Therefore, they decrease the option

value, hence the bid in the capacity market. Regarding the penalty value, it should be

stressed that we consider in this section only the case when the power plant deliberately

decides not to stay available after observing a too-low inframarginal rent, for instance.

On the other hand, we left for future work when the penalty was applied because the

power plant failed to stay available due to technical reasons. In this situation, a penalty

increases the opportunity cost associated with participating in a capacity market, which

increases the bid.20

We provide in Figure 1.6 a numerical illustration of different values of the penalty on

the bidding behavior in the capacity market. We assume that the closing costs are equal

to 25% of the periodic fixed cost (Abani, 2019).

As expected, an increase in the penalty value decreases the bid in a capacity market.

We show the current value in the French capacity market of 40000 e /MW in addition

to the closing in the figure. To achieve the same price observed for the 2022 delivery

year, we find that the initial value regarding the inframarginal rent needs to be equal to

40.5 e /day, which is almost half of the initial value to reach the same price without the

penalty or the closing cost. The numerical illustration shows the significant sensitivity

of the choice of the penalty value when implementing the capacity market.

20Such refinement of the model can be analyzed using the net present value framework and has already
been studied on a Reliability Option mechanism by Mastropietro et al. (2016).
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Figure 1.6: Evolution of the capacity price with respect to different penalty values. Note
that the bids are expressed in e /MW and π0 in e /day.

8 Conclusion

In this chapter, we provide a novel approach to analyzing the bidding behavior in capacity

markets. We distance ourselves from the model of the net present value, which evaluates

the bids on a capacity market as the net expected loss associated with the obligation to

have the investment available on the wholesale market. While this framework provides

the fundamental rationales to understand the bidding behavior in capacity markets, it

does not consider the value associated with the flexibility embedded in the investment.

Using a real options framework allows us to consider both the uncertainty regarding the

future revenue and costs of the investment and the intrinsic value associated with the

alternative of participating in a capacity market, that is, leaving the market to avoid

some fixed costs temporarily. We define the bid in a capacity market as the option value

associated with this closing option, and we apply a pricing methodology of a Basket

Option, an exotic derivative, to evaluate the real options value. Indeed, there is a

similarity between this financial derivative, which allows receiving a basket of different

asses prices against a strike price, compared to the managerial decision to stay open,
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receive revenues from the wholesale market periodically, and sustain an irrevocable fixed

cost.

We use this framework to assess two issues related to the implementation and the

design of capacity markets. First, we deepen our understanding of capacity markets

and how prices are emerging on those competition-based mechanisms. Indeed, the use

of a novel framework allows us to assess the determinant of the bids differently, as we

have shown, for instance, for some drivers, such as the waiting time between the auction

and the beginning of the transaction phase or the volatility of the wholesale revenue.

Therefore, any deviation from the actual value of the opportunity cost of participating

in a capacity market can be better understood. It is particularly relevant in the current

energy policy perspective as capacity markets are usually criticized for their additional

burden on consumers.

Then, we analyze the interplay between the product/commitment duration and the

opportunity cost for providing capacity availability. We show that the choice of a product

design can significantly affect the bids in a capacity market. Indeed, we find that a

longer transaction necessarily implies a higher bid than shorter products under a real

options framework. On the other hand, it is not always observed under a net present

value framework. We also compare opposite market design regimes between having a

long product sold in a unique auction or shorter products sold successively in the same

period. We find that the outcome depends on various factors, but ultimately, it is more

likely that the sum of bids for shorter transaction phases is lower than the individual bid

for the long product. The opposite effect is observed for the net present value framework,

making the real options all the more relevant.

This chapter provides foundations for future work regarding the analysis of capacity

markets. First, it would bring interesting empirical results to integrate this real options

approach in a competition model. For instance, Matthäus et al. (2021) has demonstrated

that auction theory combined with real options can shed light on market outcomes, es-

pecially in the power sector. Second, capacity markets are closely related to the increase

in new entries. A significant number of studies have tackled this issue, using real options

theory, for instance, to assess the option value to enter the wholesale market (Fontini

et al., 2021). However, to our knowledge, none have combined analysis of the entry de-

cision with the participation in a capacity market with an endogenous bidding behavior

under a real options framework. Finally, we have assumed a simplified representative

investment with a single source of uncertainty: the inframarginal rent. On the other
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hand, it exists in current electricity markets various investments with different opera-

tional characteristics. For instance, renewables have high uncertainties regarding their

output, while peak technologies face uncertainty in their merit order and production

cost. New technologies, such as demand responses and batteries that are pushed to be

integrated into capacity markets, also exhibit different uncertainty and operations. A

refinement of the model by considering all of these characteristics would make it possible

to underline future capacity market implementations better.

Bibliography

Abani, A., Hary, N., Rious, V., and Saguan, M. (2018). The impact of investors’ risk

aversion on the performances of capacity remuneration mechanisms. Energy Policy.

Abani, A. O. (2019). Electricity market design for long-term capacity adequacy in a

context of energy transition. PhD thesis, MINES ParisTech.

Abani, A. O., Hary, N., Saguan, M., and Rious, V. (2016). Risk aversion and gener-

ation adequacy in liberalized electricity markets: Benefits of capacity markets. In

International Conference on the European Energy Market, EEM.

Andreis, L., Flora, M., Fontini, F., and Vargiolu, T. (2020). Pricing reliability options

under different electricity price regimes. Energy Economics, 87:104705.

Bhagwat, P. C., Iychettira, K. K., Richstein, J. C., Chappin, E. J., and De Vries, L. J.

(2017). The effectiveness of capacity markets in the presence of a high portfolio share

of renewable energy sources. Utilities Policy, 48:76–91.

Bialek, S. and Unel, B. (2019). Will you be there for me the whole time? On the

importance of obligation periods in design of capacity markets. Electricity Journal,

32(2):21–26.

Bialek, S. and Unel, B. A. (2020). Committed But for How Long? On the Optimal

Obligation Periods in Capacity Markets - Working Paper. .

Brown, D. P. (2012). Non-Cooperative Entry Deterrence in a Uniform Price Multi-Unit

Capacity Auction. .

Bushnell, J., Flagg, M., and Mansur, E. (2017). Capacity Markets at a Crossroads.

Energy Institute at Haas. .

84



Cepeda, M. and Finon, D. (2011). Generation capacity adequacy in interdependent

electricity markets. Energy Policy, 39(6):3128–3143.

Cramton, P., Ockenfels, A., and Stoft, S. (2013). Capacity Market Fundamentals. Eco-

nomics of Energy & Environmental Policy.

Creti, A. and Fabra, N. (2007). Supply security and short-run capacity markets for

electricity. Energy Economics, 29(2):259–276.

de Maere d’Aertrycke, G., Ehrenmann, A., and Smeers, Y. (2017). Investment with

incomplete markets for risk: The need for long-term contracts. Energy Policy, 105(June

2016):571–583.

Fabra, N. (2018). A primer on capacity mechanisms. Energy Economics, 75:323–335.

Fleten, S. E., Maribu, K. M., and Wangensteen, I. (2007). Optimal investment strategies

in decentralized renewable power generation under uncertainty. Energy, 32(5):803–815.

Fontini, F., Vargiolu, T., and Zormpas, D. (2021). Investing in electricity produc-

tion under a reliability options scheme. Journal of Economic Dynamics and Control,

126:104004.
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Abstract

This chapter studies the provision of electricity as a homogeneous good with time-varying

uncertain stochastic demand and capacity-constrained producers. Due to market fail-

ures and public interventions, private agents typically under-procured investments. This

prompts some policymakers to implement long-term capacity markets where producers

can sell their investment availability to restore efficient investment levels. This chapter

studies the effect of different demand-side market designs on equilibrium and welfare.

To do so, we provide a novel sequential analytical framework of the capacity market fol-

lowed by short-term markets (wholesale and retail) where a regulator chooses the level

of investment to maximize expected welfare. Depending on a set of assumptions with

respect to the market, we show that the regulator is constrained in the welfare he can

reach due to the distinct indirect effect a specific capacity market design can generate.

In other words, we discuss under which conditions a market design can provide more

welfare than others. First, we develop the model regarding the implementation of a

single buyer on the capacity market, which needs to choose the cost allocation regime

for the demand-side. Then, we extend the model to study how the realized demand is

accounted for in the market design.
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1 Introduction

For some goods with demand varying over time, such as electricity, wholesale markets’

private incentives are not sufficient to ensure that producers make enough investments to

meet peak demand in advance of the time when the peak demand materializes.1 In such

industries, due to the critical importance of these goods, policymakers tend to intervene

and implement price caps or other types of regulation that distort the price signal and

undermine investment incentives. Moreover, the availability of the production capacity

for these goods can be characterized as public goods during scarcity periods, for instance,

during a cold wave with peak electricity demand or a pandemic with peak demand for

medicine or medical equipment. In such circumstances, the absence of adequacy between

the capacity and the peak demand, combined with the difficulty of implementing efficient

rationing, leads to high costs for society.2

One solution to restore the optimal level of investment lies in implementing a manda-

tory capacity market in which producers commit to having capacity available to meet

the expected peak demand collectively. Current implementations of such mechanisms

have been the prerogative of the electricity sector under the name capacity remuner-

ation mechanism.3 However, the COVID pandemic prompted interest in setting up

such mechanisms for vaccine supply. For instance, in Ahuja et al. (2021), they study

the implementation of a capacity price for the procurement of vaccines and state that

”to accelerate the vaccine delivery timetable, buyers should directly fund manufacturing

capacity”. Ockenfels (2021) proposes a hybrid mechanism that combines a capacity re-

muneration mechanism with guaranteed prices. On the supply-side of those mechanisms,

each participating producer makes a price-quantity offer for a capacity. If a producer

sells capacity in this capacity market, he receives a capacity price and commits to being

available to produce over future periods.

While the supply emerges naturally in those markets, the capacity demand requires

a regulatory intervention. Indeed, the public-good nature of investment during high-

1Our framework fits into the more general analysis of industries in which a form of competition
follows long-run investments, such as electricity markets (De Frutos and Fabra, 2011), communication
network (Acemoglu et al., 2009), or radio spectrum (Yan, 2020).

2The COVID-19 crisis offers a recent example of systemic cost induced by the lack of productive
capacity. The subject is well known in the electricity sector while remaining a current matter, as illus-
trated by blackouts experienced in China and Texas (IEA, 2020). Congestion in transport infrastructure
can also be directly linked to the discussion in this chapter(de Palma et al., 2017).

3See for instance Doorman et al. (2016) for a technical description of potential implementations.
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demand periods implies that consumers are unwilling to buy capacities in capacity mar-

kets.4 Hence, the regulator must define the demand function administratively so the

market clears and provides producers’ capacity prices. This chapter establishes a frame-

work describing the impacts of different demand-side designs for capacity markets and

their policy implications. We focus on two interrelated questions that relate to (i) the

cost allocation regime, that is, how a single buyer5 allocates the capacity price between

capacity buyers and final consumers, and (ii) the degree to which the final consumers’

realized demand is accounted for in the market allocation design. In this chapter, we

describe the channel through which each possible market design impacts the equilib-

rium. We show that specific market design can affect the demand-side of short-term

markets, which also has some feedback effects, positive or negative, on capacity market

equilibrium and constrains the regulator in choosing the efficient investment level. In

other words, the welfare-maximizing investment level depends on the expected market

equilibrium but also on the indirect effect a market design can have on the equilibrium.

The direct effect of an additional stream of remuneration on investment decisions

is well understood. The current literature covers a significant range of issues : (i) the

outcomes in investment decisions with and without capacity markets, (ii) the effect of

market power on the capacity price determination, (iii) the relation with risk and business

cycle, (iv) the discrimination between different investment technologies.6 In this chapter,

we take a step back from the supply-side-focused approach and develop a model that

sheds light on the complex interactions between the capacity market design and the

demand-side. To our knowledge, there has been no formal analysis of different capacity

markets’ demand-side designs, the incentive properties of these alternative approaches,

and their ability to restore the socially optimal level of investment beyond the direct effect

of the increase of the marginal investment value due to the additional capacity price. On

the other hand, the importance of the demand function design in the capacity market is

well known.7 However, those papers still only consider the effect of the capacity market

4Transaction cost and asymmetric information prevent adequate transactions up to the optimal level;
see, for instance, Keppler et al. (2021) for a discussion in electricity markets. The insurance of having
enough capacity has a private value (how much each consumer is willing to pay to avoid inadequacy)
and a social value, as an increase in investment reduces the probability of systemic costs (Fabra, 2018).
Furthermore, knowing the willingness to pay for this insurance is sometimes technologically, socially,
and economically impossible.

5In this chapter, we do not make any assumptions about the identity of the regulator as it is outside
its scope. We assume that its objective is to maximize the expected welfare, which comprises all agent
individual surplus. In practice, it is usually a regulated firm.

6See Bublitz et al. (2019) for a detailed literature review on the theory and implementation issues of
capacity markets in electricity markets.

7See, for instance, Hobbs et al. (2007) and Bushnell et al. (2017) Fabra (2018) Brown (2018).
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directly on the supply-side. In contrast, the chapter underlines the indirect effect of

this instrument on retailers and consumers, which in turn impacts producers. Scouflaire

(2019) is the first paper to represent retailers’ strategies in the capacity market. The

author develops a theoretical model to analyze the preferences regarding information

precision for uncertain future demand. The author models heterogeneous price taker

producers and homogeneous buyers competing for à la Cournot under uncertainty on

their level of capacity obligation. Finally, the chapter proposes a conceptualization close

to that developed in Boomhower and Davis (2020). The authors analyze on the basis of

simulations how the temporal allocation of the capacity price to consumers can increase

the economic value of investments in energy efficiency. The central idea is that allocating

the cost of capacity markets to peak hours would enable these investments to provide

more savings compared to a uniform allocation over every hour. This chapter does not

propose such a detailed analysis of the effects of allocating the costs of capacity markets.

However, it formalizes these effects on the aggregate welfare of a market with investment

decisions.

The central mechanism of this chapter is the relation between the outcome in terms

of investment level and expected welfare at the equilibrium and the choice of a particular

demand-side market design. To do so, we extend the canonical benchmark model for

a homogeneous good characterized by time-varying demand, which describes the rela-

tionship between short-term production and long-term investment decisions.8 Producers

make long-run investments in a single technology in the upstream market to produce a

homogeneous good subsequently, given an uncertain future demand. Then, the down-

stream retailers aggregate and resell the goods at no cost to the final consumers. Our

model extends the literature by providing a novel analytical framework that includes

a capacity market equilibrium in addition to investment and short-term decisions. In

terms of the sequence of decisions, the regulator chooses the demand for capacity in

the capacity market to maximize expected social welfare. Given the capacity price and

the expected revenue on short-term markets, producers choose the level of investment.

Finally, short-term markets are cleared. For an equilibrium to emerge, we derive an en-

dogenous supply function in the capacity market. Namely, following the main theoretical

view for capacity markets9, we assume that producers offer their marginal opportunity

cost of providing additional capacity. This opportunity cost equals the marginal loss of

8This model was first developed in a regulated context by Boiteux (1949) for the electricity sector; it
was then extrapolated to a market with private producers by Crew and Kleindorfer (1976). This model
is widely used to highlight the risk of underinvestment in production capacity.

9See for instance Creti and Fabra (2007).
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revenue incurred by the investment level beyond the profit-maximizing equilibrium. Our

modeling proposition is central as any indirect effects generated by the capacity market

can affect the expected revenue made by the producers and can indirectly be captured

during the formation of the supply function in the capacity market.

We start the analysis by introducing a price cap regulation, which can be interpreted

as representing the effect of different types of market distortions induced by a range of

market failures and regulatory interventions.10 Such a price cap reduces the expected

revenues of producers and undermines investment compared to the level needed to reach

the welfare-maximizing level of installed capacity. The first market design regime studied

is the canonical capacity market. We build on the previous literature and the design

found in Léautier (2016) and Holmberg and Ritz (2020), which relies on the assumption

that the capacity market does not have any effect beyond increasing the investment

level. In the rest of this chapter, we will refer to this market design as the exogenous

regime. This canonical regime is similar to having a cost allocation regime based on a

lump-sum tax. In this case, even when considering the endogenous supply function in

the capacity market and the demand function chosen by the regulator11, the equilibrium

of the market design always restores the first-best optimum given the inefficiencies. We

then investigate the case in which the capacity price impacts the consumers at the

margin. In this case, the regime similarly allocates the capacity price as a unitary tax.

However, the main difference is that the marginal effect is endogenously determined at

the equilibrium because the capacity equilibrium price causes it. In the rest of this

chapter, we will refer to this market design as the endogenous regime. We show

that the existence of the capacity market indirectly affects the wholesale market by

redistributing the different states of the world when the capacity does not bind and bind

and by lowering the consumer’s surplus. Therefore, we demonstrate that the welfare

outcome at the equilibrium under this regime is always lower than under the canonical

regime.

10In their seminal paper, Joskow and Tirole (2007) demonstrate that wholesale markets with a price
cap cannot lead to the first-best solution. Following this approach, which also serves as a reference model
in the chapter, Zöttl (2011) developed a theoretical result on investments under Cournot oligopoly with
discrete investment and a price cap. Using the same model, Léautier (2016) showed that market power
from producers could also be a significant cause of underinvestment. He also introduces a capacity
market in the benchmark model where producers can exercise market power. This paper serves as a
reference for the implementation of the capacity market.

11In this chapter and unlike Hobbs et al. (2007), we do not analyze the risk of having regulatory
errors.
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We then compare the two capacity cost allocation regimes by including inefficient

rationing. When the price cap is reached, the investment availability becomes a public

good as the demand becomes inelastic. Due to the impossibility of efficiently rationing

consumers, they incur a significant welfare loss.12 This additional assumption regarding

inefficient rationing has significant implications for comparing the two market designs at

their respective equilibria. Indeed, under this new assumption, we find that the indirect

effect created by allocating the capacity price on a unitary basis is now ambiguous for

social welfare. Under canonical model specification, we find that this market design

constantly brings more social welfare at equilibrium than the initial allocation regime.

This is due to the interaction between each market design’s effects and the equilibrium

investment level.

As a third step, we extend the analysis to implementing a regime where the regulator

allocates the cost based on actual retailers’ market shares, which will be referred to as

the retailer market share regime.13 It allows us to consider the realized demand

and analyzes the effect of retailers’ market power in the model. We first show how this

design affects at the margin the retailers who play ’à la Cournot ’ on the retail market,

and then we integrate the new equilibrium into the model with investment decisions

and the capacity market. We find that this allocation creates an intermediary outcome

between the exogenous and endogenous regimes. We also provide comparative statics on

the effect of the retail market structure on the equilibrium outcomes of the model.14 We

find that increasing the degree of competition is not always welfare-enhancing.

Finally, we analyze the case of a capacity market entirely based on the realized de-

mand level, which will be referred to as the decentralized regime. To do so, retailers

are forced to cover the quantity sold on the retail market by buying directly on the

capacity market, given a penalty system. We focus on how retailers can form an aggre-

gated demand function in the capacity market, and we analyze the equilibrium capacity

emerging in the capacity market. While the regulator cannot directly set the level of

investment, we discuss how the penalty impacts the equilibrium investment and the re-

12Using the same initial model Holmberg and Ritz (2020) showed that additional capacity payment is
necessary when the environment includes the public-good nature of the investments. Indeed, the inad-
equacy between capacity and consumption generates negative externalities. Hence, to fully internalize
the effect of capacity inadequacy, it is necessary to create an adder on the wholesale price. We also use
in this chapter the same representation of the public-good nature of the investment. This effect of a
price cap is also closely related to the concept of reliability externality described by Wolak (2021).

13This is, for instance, the regime implemented in the capacity market of the UK.
14We do not consider market power on the supply-side in the chapter, as it is well documented in the

literature, see, for instance Zöttl (2011) and Leautier (2018) for its effect on investment decision with a
price cap, see Léautier (2016) for its impact with a capacity market.
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sulting welfare of a decentralized regime. We find that for high penalty values, the regime

can provide more welfare than exogenous or endogenous regimes as it gives incentives to

retailers to lower their consumption and avoid inefficient rationing.

We provide in section 2 a reminder of the benchmark model that describes invest-

ment decisions in generation capacity. We implement the capacity market and build the

theoretical supply function in the same section. The different allocation methods are

studied in section 3 and in section 4. Section 5 provides the analysis of the retailers’

participation in the capacity market. To conclude, we discuss possible extensions of the

model in section 6.

2 Benchmark model with capacity market

2.1 Environment

We consider an initial economic environment with four types of agents: a regulator,

producers, retailers, and final consumers. Producers participate in the capacity market

and invest in capacities to produce a homogeneous good. They sell the goods to retailers

on a wholesale upstream market. Then, retailers resell it to consumers on a downstream

retail market. In section 5.2, they participate in the capacity market. Under the sections

3, 4 and 5.1, the regulator chooses the demand function in the capacity market, and in

section 5.2, he chooses the penalty level.

Model stages. We consider a four-stage non-cooperative game. First, the capacity

market clears. Second, producers choose the level of investment. Third, the wholesale

market clears. Fourth, the retail market clears.15 All decisions during the stages are

publicly known and are made simultaneously. We assume the final consumers’ demand

is uncertain for all agents when making investment decisions. On the other hand, the

demand is known when the producers and retailers sell the goods. Those two stages can

be interpreted as a repetition of multiple states of the world over a given period (for

example, one year), drawn from the distribution (Leautier, 2018). Every agent is to be

risk-neutral and maximize expected profit. The game is solved by backward induction.

15As discussed later, the stage order between capacity market and investment decisions does not
matter in this model.
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Unknown demand Known demand

1 2 3 4

Producers. We assume perfect competition on the supply-side. Producers use a single

technology to produce the good. It is characterized by a variable unitary cost of c and

a fixed unitary investment cost of r. We normalized the capacity level, so one unit of

capacity allows us to produce one unit of the good. The total level of capacity installed

after the first stage is k.

Retailers. We allow retailers to be either perfectly competitive or to compete à la

Cournot to resell the goods to final consumers. However, they do not behave as an

oligopsony in the wholesale market or the capacity market. The imperfect competition

is modeled using a finite number of retailers n. We model the retail market as perfectly

competitive in section 3 and 4 to keep the analysis tractable. In section 5, we intro-

duce the effect of imperfect competition. The use of a finite number is always explicitly

indicated. We assume that retailers incur no cost when reselling from the wholesale mar-

ket to the retail market apart from the wholesale price. Therefore, perfect competition

implies that prices are strictly equal in the wholesale and retail markets.

Demand. The following assumptions characterize final consumers in the retail market.

They have the same individual uncertain demand with an aggregate demand function

D(p, s), s being the state of the world. s can be understood as the demand level affect-

ing only the intercept of the demand function, not its slope. The demand uncertainty

is a random variable characterized by a distribution function f(s) and a cumulative dis-

tribution function F (s), which is common knowledge. For deriving clear-cut answers,

we assume that s follows a uniform distribution with the support [0, s̄].16 The inverse

demand function is linear and equal to p(q, s) = a0 + s− bq, with q the quantity sold on

the retail market, such that D(p(q, s), s) = q.17 For convenience, we assume that ps(q, s)

is the price on the wholesale market, and p(q, s) is the price on the retail market. Note

that the form of the inverse demand function has the following properties that ensure

16We obtain similar results with exponential distribution, which represents more realistic consumption
variability but prevents us from having a clear-cut answer. See, for instance, Leautier (2018).

17Similar to the uniform distribution, this assumption is used for both tractability and illustrative
purpose.
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the initial framework has nice behavior: (i) additive demand shock, which implies that

pqs = psq = 0. (ii) states of the world are ordered (ps > 0), (iii) decreasing inverse

demand with respect to q (pq < 0), and (iv) decreasing marginal return. To ensure

producers invest in capacities, we also need a0 > c+ r.18

Price Cap. there are two main reasons private investors may not provide sufficient

capacities: (1) the revenue collected on the market is insufficient to cover their produc-

tion and investment costs, (2) prices do not consider the positive externalities implied

by their availability during high demand periods. For the first rationale, we derived the

inefficiency that typically characterized essential goods such as electricity: the subop-

timality of the wholesale price modeled via a price cap.19 Further in this chapter, we

present two other rationales: the public-good nature of capacity during peak-demand

states of the world and a concentrated retail market represented via retailers’ market

power. We implement a price cap denoted pw. To create inefficiencies, the price cap

must be binding for some states of the world, so it needs to be below the highest price

during the highest demand period; pw < a0 + s̄. However, to allow for investment, we

also need the price cap above the total unitary cost: pw > r + c.

2.2 Market equilibrium with a capacity market

We now describe the equilibrium of the game that consists of a series of equilibria for

each stage : (i) the retail market, (ii) the wholesale market, (iii) investment decisions,

and (iv) the capacity market. For now, we assume only a direct supply-side effect of

the capacity market on the game equilibrium via an increase in the producers’ profit.

In the rest of the chapter, the analysis of the different market designs follows the same

backward induction process.

Fourth stage - Retail market. We assume that symmetric retailers can act strate-

gically ’à la Cournot ’ in the retail market, and they take the wholesale price as given.

18For most of the functions f(x, y), fx(x, y) =
∂f
∂x (x, y), fxx(x, y) =

∂2f
∂x2 (x, y),fxy(x, y) =

∂2f
∂x∂y (x, y)

19This modeling approach can represent both an explicit and implicit price cap. In the latter case,
political interventions due to the essential nature of the good can artificially alter the price. For instance,
when the power system operator needs to carry out technical interventions to avoid system failures.
Those policy interventions, such as price caps and non-economic distortions made by a public entity,
lead to aMissing Money issue that prevents sufficient revenue from being collected to cover costs (Joskow
and Tirole, 2007). The effect of price cap regulation was illustrated during the COVID-19 crisis in Italy
when the government introduced a 50-cent cap on sales price per mask, which eliminated the incentives
to reconvert plants or increase production (Fabra et al., 2022).
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The retailer’s profit made on the retail market is Πr
i (s) = qi(p(q, s)−ps). The first-order

condition gives the equality between the marginal revenue and the marginal cost. In

case of imperfect competition, the inverse demand function of retailers on the wholesale

market is a downward rotation at the intercept of the final consumer demand function

ps(q, s) = p(q, s)+ q
n
pq. When the retail market is perfectly competitive, we have straight-

forwardly: ps(q, s) = p(q, s). For notation clarity, we assume first perfect competition

and use p(q, s) as general notation for demand.

Third stage - Wholesale market. Producers know the demand at this stage, so

the retailers’ inverse demand function is certain. The price is determined by the total

investment level of k. We assume perfectly competitive producers, so when k is not

binding, the price is equal to the marginal cost c (off-peak periods). When k is binding,

the price rises above marginal to ensure supply equals demand (on-peak periods). We

denote s0 as the first state of the world when capacity is binding, that is, when the price

at the capacity level is equal to the marginal cost: p(k, s0) = c. We also define q0 as the

quantity bought by final consumers when the retail price is equal to the marginal cost,

such that p(q0, s) = c. During off-peak periods, when s0 ≥ s, the price on the wholesale

market is the marginal cost c, and the price on the retail market is equal to p(q0). During

peak periods, when s > s0, the demand function determines the price with p(k, s).

qs =

q0 if s ∈ [0, s0]

k if s ∈ [s0, s̄]
ps =

c if s ∈ [0, s0]

p(k, s) if s ∈ [s0, s̄]

Second stage - Investment decisions. At this stage, final consumer demand is un-

known, and so is the wholesale and retail price. The expected profit of producers is

defined as the sum of the expected profit made on the wholesale market and, if imple-

mented, the realized profit on the capacity market minus the investment cost :

Πs(k) = Πw(k) + Πc(k)− rk =

∫
s

qs(s)(ps(s)− c)dF (s) + pc(k)k − rk

The market equilibrium in terms of investment decisions with a perfect competitive

framework is given by following the first-order condition:
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∂Πw

∂k
(k) + pc(k)− r = 0

The crucial term to determine the market equilibrium is the net expected marginal

revenue made on the wholesale market. We define ϕ(k) for this value for general notation,

and it is found by taking the derivative of the wholesale profit: ϕ(k) = ∂Πw

∂k
(k). During

off-peak periods, producers are perfectly competitive, and prices equal marginal cost;

therefore, the marginal revenue is null. When the capacity is binding, it is the difference

between the wholesale price and the marginal production cost. The following equation

formally defines this rent under the full efficiency assumption (with no price cap):

ϕ0(k) =

∫ s̄

s0

(p(k, s)− c)︸ ︷︷ ︸
on-peak k rent

dF (s) (2.1)

We turn now to the framework with a price cap. We introduce a second threshold

sw0 . It is the first state of the world when the price cap is binding, that is when the price

at the capacity level is equal to the price cap: p(k, sw0 ) = pw. We also define qw0 as the

quantity bought by retailers (or consumers under perfect competition) when the price is

equal to the price cap, such that p(qw0 , s) = pw.

ϕw
0 (k) =

∫ sw0

s0

(p(k, s)− c)︸ ︷︷ ︸
on-peak k rent

dF (s) +

∫ s̄

sw0

(pw − c)︸ ︷︷ ︸
on-peak pw rent

dF (s) (2.2)

The conditions on pw relatively to the marginal cost c ensure that sw0 > s0.
20

First stage - Capacity Market. We turn to the definition of the equilibrium pc

of the capacity market. For such equilibrium to exist, we impose a market condition

following Léautier (2016): There are no short sells, meaning that producers cannot sell

more capacity than they own. The existence of the capacity market and the no short-

sell assumption leads to the following observations: (i) Decision timing does not matter

given the current setting: results still hold if the capacity market is set before or after

20Under the framework of a single producing technology and without market power on the supply-side,
the price cap is only binding during on-peak periods. See Zöttl (2011) and Leautier (2018) for a study
of price caps with market power and multiple technologies.
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the investment decision as long as it is before the final consumers’ demand is known. (ii)

It is optimal for producers to offer all their capacities if the first condition holds.21

The market equilibrium is found via the intersection between the demand and supply

functions offered by producers. For now, we remain agnostic on determining the demand

function. Except for section 5.2, the demand function is assumed entirely exogenous

in the sense that it is determined by the regulator that seeks to maximize welfare and

consists of a vertical line.

We build the supply function based on the assumption that producers offer their

marginal profit loss associated with the capacity market’s participation. The standard

approach in the literature represents the cost of investing beyond the optimal capacity

level. However, to our knowledge, this is the first time a supply function in a capacity

market is directly modeled using the benchmark framework. As we assume perfect com-

petition in the wholesale market compared to citeleautier2016visible and Zöttl (2011),

capacity choices have no marginal effect on the rent. Indeed, the rent appears only when

total capacity is constraining under perfect competition.22 The full profit with a capac-

ity market for a producer is Πs(k) = ϕ(k)k − rk + pc(k)k. Under perfect competition,

the first-order condition gives ϕ(k) − r + pc(k) = 0. Therefore, the capacity market’s

supply function equals the marginal cost associated with the deviation from the market

investment level k̄, which would have been made without the capacity market.

Definition 2.1. We denotes the supply function X(k) and the inverse supply function

X−1(pc) such that X−1(X(k)) = k. The supply function on the capacity market is defined

as follows:

X(k) =

0 if k ≤ k̄

r − ϕ(k) k > k̄
(2.3)

With k̄ the market equilibrium given by r = ϕ(k̄).

21The intuitions behind the extension of Léautier (2016)’s proposition in the chapter are as follows:
without a direct link between the quantity exchanged in the capacity market and the investment level
(i.e., short sell condition); the former does not alter the producer’s marginal profit with respect to the
latter. Hence, the capacity market does not have any effect on the investment decision. For observation
(i), the result is straightforward as we do not include any specification in terms of investment dynamics
(e.g., the time to build the investment) and information structure (e.g., the uncertainty of the demand
level can reduce when the investment decision is closer to the wholesale market). For observation (ii),
the proof relies on the result that the supply and demand function’s outcome in the capacity market
leads to a unique symmetric equilibrium as the profit function is also concave.

22Under imperfect competition on the supply-side, the rent also exists due to market power and can
appear before the total capacity is binding.
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Below k̄, the marginal cost is positive, and the supply is null. Indeed, as the wholesale

market’s profit function is concave, any marginal revenues on the left side of the equilib-

rium are above the marginal cost of r. The marginal revenue is below the marginal cost

on the right side of the optimal investment level. Therefore, any deviation to the right

creates a positive opportunity cost.23 This approach is particularly relevant as it fully

characterizes the effect of different market design regimes in the economic environment.

In other words, if a regime changes the expected revenue made in the wholesale and

retail market, we can consider its feedback effect on the supply function in the capacity

market. For a given demand function, the equilibrium of the capacity market is simply

found by equalizing the demand function to the supply function. Figure 2.1 gives an

example of how supply functions are built in the capacity market for different assump-

tions (without or with a price cap and for different values of the price cap). Note the

kinks at the bottom for curves; they represent the level of investment that maximizes

expected profits. Therefore, on the left, the profit is concave, which implies a null supply

function. For sufficiently high values of value k, the capacity level does not bind with

positive probability. Hence, no rent is generated on the wholesale market. This explains

the convergence towards the marginal investment costs.

Therefore, the equilibrium of the game comprises : (i) a wholesale demand function

adjusted for the retailers’ market power, if implemented, (ii) a wholesale schedule of

prices and quantity for each state of the world, (iii) an investment decision based on the

expected wholesale market revenue and from collected capacity market revenue (iv) a

capacity market equilibrium price originating from a supply function made by producers

and a demand function corresponding to a specific level of investment chosen by the

regulator.

In the rest of this section, we describe two benchmark equilibria: the first-best level

without any form of inefficiency and the second-best market equilibrium with a binding

price cap in the absence of a capacity market.

23Our approach to the supply function in the capacity market is similar to the theory of supply
function equilibria where bidders offer a function such that each point on this function maximizes their
profit/utility (Klemperer and Meyer, 1989). In the chapter, the supply function in the capacity market
is built such that each producer is indifferent between providing their investment market equilibrium or
any investment on the curve in return for the corresponding capacity price.
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Figure 2.1: Illustration of the capacity market equilibrium given a demand k with the
linear continuous model. The market equilibrium is given by the intersection of the
supply function and the vertical demand made by the regulator. An increase in the price
cap increases the supply function as it lowers expected revenue.

2.3 First-best without a capacity market

We find the optimal first-best investment level as the value of k that maximizes the

expected social welfare without any form of inefficiency. For general notation, we define

W (k) as the expected social welfare, comprising the consumer, producer, and retailer’s

surplus. Under the full efficiency assumption, we define k∗
0 as k∗

0 = max
k

W0(k), with

W0(k) formally define as follow.

W0(k) =

∫ s0

0

∫ q0

0

(p(q, s)− c)dq︸ ︷︷ ︸
off-peak weflare

dF (s) +

∫ s̄

s0

∫ k

0

(p(q, s)− c)dq︸ ︷︷ ︸
on-peak weflare

dF (s)− rk

The maximum k∗
0 is found by equalizing the marginal surplus gain from an increase

of capacity to the marginal cost :
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ϕ0(k) =

∫ s̄

s0

(p(k, s)− c)dF (s) = r (2.4)

Under the initial assumptions, the expected social welfare is concave with respect to

the level of investment k, which ensures the existence of a maximum (∂ϕ0

∂k
≤ 0). In the

absence of a price cap or any other inefficiency, it is straightforward that the market

equilibrium is the first-best solution to maximizing the expected social welfare as the

private marginal revenue equals the marginal social revenue.

2.4 Second-best without a capacity market

We now define the market equilibrium with a price cap but without a capacity market.

The price cap does not change the social welfare function at the marginal, equal toW0(k),

as it only redistributes surpluses between consumers, producers, and retailers. Without a

capacity market, the market equilibrium kw
0 is found by equalizing the expected marginal

private profit made on the wholesale market to the marginal investment cost:

ϕw
0 (k) =

∫ sw0

s0

(p(k, s)− c)dF (s) +

∫ s̄

sw0

(pw − c)dF (s) = r (2.5)

The Lemma 2.1 shows that a price cap in the wholesale market lowers the market

investment level and increases inefficiency. We also provide the optimal payment asso-

ciated with restoring the optimal investment level. It is equal to the expected difference

between what should have been the wholesale price and the price cap when it is binding

— this is commonly known as the ”Missing Money”.

Lemma 2.1. A binding price cap leads to a lower installed capacity than the optimal

investment level given by the social welfare maximization: kw
0 ≤ k∗

0 as well as lower

expected welfare: W (k∗
0) ≤ W (kw

0 ). The optimal capacity payment zw(k) is :

zw(k) =

∫ s̄

sw0

(p(k, s)− pw)dF (s) (2.6)

Proof. See Appendix 2.
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3 Allocation under a price cap

In this section, we study the effects of the allocation of the capacity price on the equi-

librium described previously. From an implementation perspective, we assume that the

regulator procures all the capacity on the capacity market. Then, it can choose two

general regimes to pass through the procurement cost to the consumers24: (i) lump sum

tax, which boils down to assuming an equilibrium kept unchanged by the allocation of

the capacity price (exogenous design) (i) a variable tax, which increases the price of

the good and generates a specific effect on the equilibrium (endogenous design). This

section proposes a way of solving the new equilibrium and compares the two outcomes

with solely missing money inefficiencies created by the price cap. Section 4 extends this

analysis by including inefficient rationing.

3.1 Exogenous allocation

We assume that the regulator forecasts the future expected demand of final consumers,

and then it builds the demand function in the capacity market to maximize the expected

social welfare. In the analysis, this demand function corresponds to a vertical line equal

to the investment level that maximizes the expected social welfare. Indeed, perfect

competition on the supply-side implies that producers always offer their marginal cost,

and the shape of the demand function does not matter. Finally, to balance its budget,

it transfers the full purchasing cost to the retailers using an exogenous ratio or directly

to consumers via a lump-sum tax. We formally describe this market design regime as

follows:

Assumption 2.1. The regulator chooses a level of investment to buy on the capacity

market that maximizes W (k) at a price pc(k) given by the supply function described in

Equation 2.3. Then, it allocates the full cost kpc(k) to the retailers or directly to the

consumers without any dependence on the expected and realized final demand level.

This assumption corresponds to the traditional approach used in the literature on

the capacity market. We call this market design the exogenous regime because (i) the

allocation of capacity costs does not depend, for instance, on retailers’ realized strategy

but instead on exogenous factors such as their past market share (ii) the design does not

24We do not differentiate retailers or consumers in this section as we assume perfect competition.
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depend on realized demand for the final good. In other words, this regime only describes

the capacity markets’ direct effect via the incentive to invest by the capacity price.

There is no effect on the final demand because this remuneration is simply a surplus

transfer from consumers to producers. This approach’s result is that the capacity price

equals the optimal payment, allowing the restoration of an optimal level of capacity

when the vertical demand function for capacity is calibrated to k∗
0. Whatever the type of

inefficiency is considered. This result is described in the following Proposition. It implies

that the cost of a capacity market is strictly equal to the transfer necessary to restore

the optimal capacity level.

Proposition 2.1. Under an exogenous allocation market design, the clearing price in the

capacity market at the first-best investment level k∗
0 given by the supply function Xw

0 (k)

is always equal to the optimal payment zw(k) needed to restore efficiency.

Proof. See Appendix 3.

This result highlights the discussion between implementing a price or a quantity

instrument to resolve the market inefficiencies or constraints (Weitzman, 1974; Holmberg

and Ritz, 2020). We show in this Proposition that the outcome of the capacity market is

strictly equivalent to a capacity price set by the regulator defined in equation 2.6. Under

this regime, the exogenous approach is optimal because it provides the right investment

level, given the inefficiencies.

We illustrate Proposition 2.1 with the model specification. In Figure 2.2, we show two

supply functions on a capacity market. When a price cap is introduced, the marginal cost

of providing an additional capacity increases, which shifts the supply curve to the left

(blue curves), and the market investment level kw
0 decreases compared to the first-best

investment level k∗
0. We also include the function associated with the optimal payment

as described in equation 2.6 (black curves). As demonstrated in Proposition 2.1, the

capacity price at the optimal investment level k∗
0 equals the optimal payment.

3.2 Endogenous allocation

We introduce a new allocation regime for the capacity market. In this case, capacity

prices marginally impact the final consumer demand via the allocation of the capacity

price. The setting is similar to the previous one, with the regulator forecasting the future
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Figure 2.2: Supply function and equilibrium capacity prices on a capacity market under
an exogenous regime with linear demand and exponential distribution. The optimal
payment corresponds to the market equilibrium.

expected demand and building the demand function in the capacity market. We formally

describe this market design regime as follows:

Assumption 2.2. The regulator chooses a level of investment to buy on the capacity

market that maximizes W (k) at a price pc(k) given by the supply function described in

Equation 2.3. Then it allocates the full cost kpc(k) either to the retailers or directly to

the consumers such that the new final demand for the good is equal to p(q, s)− pc(k).25

Compared with the previous setting without this indirect effect, the second case in

this subsection can be understood as the implementation of a unitary tax.26 However,

the main difference with a price instrument such as a tax is that the capacity price and

investment decisions emerge from profit maximization from the producers and the regu-

lator’s choice of the demand function. Therefore, we formally demonstrate the existence

25This allocation rule is compatible with the budget constraint of the regulator. Another way of
expressing this allocation rule would be using the value pc(k) qk . While this allocation changes the
numerical result, it does not impact the fundamental results of this section.

26Note that a possible third regime is an allocation that takes a hybrid form with both a fixed and a
variable part. In that case, its effect on the system would be between the two regimes presented in this
section.
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of the indirect effect by repeating the steps of the previous model and using backward

induction.

Fourth stage - Retail market. Let pc(k) (or pc for notation clarity) be the capacity

price adder for final consumers, identical to a unitary consumption tax as the value is

sunk at this period. The final consumer demand function shifts downward with its new

value equal to p(q, s)−pc(k). k is still the quantity bought on the capacity market by the

entity at a price pc(k). We denote s1(p
c) and q1(p

c) the new thresholds for respectively the

states of the world between on-peak/off-peak periods such that p(k, s1)− pc(k) = c, and

the corresponding quantity such that p(q1, s)− pc(k) = c. We also define the thresholds

for the price cap with sw1 (p
c) the first state of the world when the price cap is biding

under the endogenous design, that is p(k, sw1 )− pc(k) = pw. We also define qw1 (p
c) as the

quantity when the price is equal to the price cap, such that p(qw1 , s) − pc(k) = pw For

now, we assume that the capacity price exists. We formally demonstrate it in the proof

of Lemma 2.3.

Third stage - Wholesale market While the demand is always lower or equal to the

initial demand function, the impact on the expected social welfare is not trivial. The

Lemma 2.2 summarizes the main insight and states that the new welfare function is

always lower or equal to the exogenous case.

Lemma 2.2. Allocating the capacity price at the margin only affects the share be-

tween on-peak and off-peak periods and the expected surplus size during off-peak peri-

ods. Namely, only the occurrence of the two periods s0 and the intersection between the

demand function and the marginal cost q0 change, the welfare function becomes:

W1(k, p
c) =

∫ s1(pc)

0

∫ q1(pc)

0

(p(q, s)− c)dqdF (s) +

∫ s̄

s1(pc)

∫ k

0

(p(q, s)− c)dqdF (s)− rk

Proof. See Appendix 4.

We can rewrite the equation by showing the initial welfare function without endo-

geneity: ∆W1(k, p
c) = W0(k)−W1(k, p

c). With :
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∆W1(k, p
c) =

∫ s0

0

∫ q0

q1(pc)

(p(q, s)− c)dq︸ ︷︷ ︸
∆ in surplus

dF (s) +

∫ s1(pc)

s0

∫ k

q1(pc)

(p(q, s)− c)dq︸ ︷︷ ︸
∆ in occurrence

dF (s) > 0

The first part of ∆W1(k, p
c) represents the loss when it is off-peak periods for both

cases (indeed, we have s0 ≤ s1(p
c) as lower demand always means a higher chance of

being off-peak): the consumers fully support the loss as producers receive the marginal

cost. The second part represents the loss when the capacity level is such that it is an

off-peak period with the endogenous case and an on-peak for the other case. Therefore,

the loss is shared between consumers and producers, the former sustaining a higher price

and receiving a lower margin. There is no loss when both cases are in peak periods, as

the quantity on the market is strictly equal to the capacity installed. Hence, recovering

the capacity cost allocation only during peak periods does not generate a deadweight

loss.

We continue the endogenous regime analysis by defining the main equilibrium vari-

ables. While Proposition 2.2 and Lemma 2.2 underline the effects of this regime on

welfare, we show in the following analysis its effect on market equilibrium, namely the

outcome in terms of bidding behavior in the capacity market.

Second stage - Investment decisions Producers make their investment decisions

based on the expected net revenue, composed of the expected rent and the capacity

revenue. The net revenue is similar to the exogenous case, except for the new state of

the world thresholds and the wholesale price. It is defined in the following equation.

ϕw
1 (k, p

c) + pc =

∫ sw1 (pc)

s1(pc)

(p(k, s)− pc︸ ︷︷ ︸
net demand

−c)dF (s) +

∫ s̄

sw1 (pc)

(pw − c)dF (s) + pc (2.7)

A sufficient condition for market equilibrium in terms of investment decisions is ∂pc

∂k
≥

0. In that case, the expected profit is concave, and the second order is satisfied. The

derivative of the capacity price depends on underlying assumptions we discuss in the next

stage. The initial assumptions with respect to the model assumption ensure that ∂pc

∂k
≥ 0.

Note that at the second-best market equilibrium with a price cap k∗
0, the supply function
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is identical under the two market design regimes (ϕw
0 (k

w
0 , p

c) = ϕw
1 (k

w
0 , p

c)). Indeed, there

is no opportunity cost of being at kw
0 . The capacity price is null, which implies no indirect

effect.

First stage - capacity market When a producer participates in the capacity market,

it bids its marginal opportunity cost without the capacity revenue (but it takes into

account its indirect effect on the demand) equal to r − ϕw
1 (k, p

c). Therefore, following

the previous stage, the equilibrium is defined with the equality X(k) = r − ϕw
1 (k, p

c).

Lemma 2.3 states how the equilibria are found. It underlines the endogenous nature of

this regime, where the choice of capacity changes the bidding behavior in the capacity

market compared to the exogenous case.

Lemma 2.3. (i)For any values of k ∈ [kw
0 ,+∞), there exists a value pc such that we

have X1(k, p
c) = pc. X1(k, p

c) is the endogenous supply function in the capacity market

given by X1(k, p
c(k)) = r−ϕw

1 (k, p
c). (ii) Moreover, the supply function is always higher

under the endogenous regime than under the exogenous regime: X1(k) ≥ X0(k)

Proof. See Appendix 5.

Figure 2.3 describes the change in the supply function when considering the indirect effect

of the equilibrium capacity price on the consumers. The proof relies on the observation

that for a relatively high level of capacity price, the demand is decreased such that at

one point, the capacity and the price cap never bind in expectation. In that case, the

existence of a solution is always ensured. For other values of the price cap, a solution

might exist, but the shape of the supply function prevents the derivation of sufficient

conditions.

We have demonstrated the effect of the endogenous market design on the retail and

wholesale market and the condition for an investment market equilibrium and a supply

function to be well defined. To fully describe the equilibrium, we analyze the level

of investment bought on the capacity market by the regulator (and therefore installed

by producers). The Proposition 2.2 describes the new optimal investment level that

maximizes the expected social welfare given this endogenous regime. It has a strong

implication as we state that this regime also modifies the objective for the regulator in
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Figure 2.3: Supply functions in the capacity market for the exogenous and endogenous
market regime and different values of the price cap. The implementation of the endoge-
nous regime increases the supply function due to the endogenous depressing effect of the
capacity price on the demand.

terms of the final investment level.27 Moreover, we find that the endogenous regime is

always worse than the exogenous regime regarding social welfare.

Proposition 2.2. (i) The second-best solution in terms of investment level under the

endogenous regime always exists. (ii) It solves k∗
1 = {k : ϕ1(k) = r}, with ϕ1(k) define

as follow

ϕ1(k) =

∫ s1

0

∂q1
∂k

pc(k)︸ ︷︷ ︸
price effect -

dF (s) +

∫ s̄

s1

(p(k, s)− c)︸ ︷︷ ︸
quantity effect +

dF (s)

(iii) k∗
1 is always lower than the first-best solution under the exogenous level (k∗

1 ≤ k∗
0).

The social welfare at the optimal investment level is also always lower than the social

welfare at the optimal investment level under the exogenous regime (W1(k
∗
1) ≤ W0(k

∗
0)).

Proof. See Appendix 6

27Therefore, the regulator also needs to take into account the indirect effect while choosing the demand
function.
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The condition in part (i) of the proposition relates to the concavity of the expected

social welfare and the transmission channels of the capacity price in the expected welfare

function. The first derivative, represented in ϕ1(k), shows that when the capacity level

increases: (a) it decreases the unconstrained quantity q1, where at this value, the social

surplus is equal to the capacity price (p(q1, s) − c = pc(k)), this term is, therefore,

negative, (b) it generates an additional surplus during on-peak periods which is equal to

p(k, s)−c, which is positive, (c) to invest in an additional surplus, one need to sustain the

investment cost r. All other marginal effects at the state of the world thresholds cancel

each other. This marginal value needs to decrease in k to induce a concave expected

social welfare. The proof relies on studying the equilibrium quantity q1. We show that

it is relative to the shape of the demand function concerning the uncertainty and the

distribution function f(s). Namely, the marginal loss sustained during off-peak periods,

accounting for the indirect effect of the endogenous regime, is decreasing. A convex

capacity market supply function is a sufficient condition which is ensured by having an

expectation factor28 to be increasing with k. It has different implications depending on

the assumptions regarding f(s) and the effect of s on the inverse demand function. For

instance, if we assume an exponential distribution instead of the uniform distribution,

it implies that f(sw1 ) < f(s1), it is less likely for the price cap to bind compared to the

capacity k. On the other hand, if ptt < 0, that is, the inverse demand function increases

less for higher states of the world (at the margin), it implies that sw1 increases more

than s1, as it is more likely to binds (at the margin). If the second effect dominates

the first, then the condition holds. The policy result of (iii) stems from the analysis

of the derivative of ∆W1(k) with respect to the level of investment k, which is always

positive. The condition for the existence of a first-best investment level is sufficient and

implies that ϕ1(k) is decreasing with respect to k (i.e., the expected social welfare W1(k)

is concave).

28∆F1(k) =
∫ sw1
s1

dF (s)
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4 Allocation with inefficient rationing

4.1 Second-best investment and welfare

We now introduce the public-good nature of capacity during peak demand via inefficient

rationing. In this section, we use this rationale to revise the comparison between the

endogenous and exogenous designs for capacity markets. In section 5, we will also keep

the inefficiency to analyze other options in the design of capacity markets.

When binding at the price cap level, the price-elastic demand becomes inelastic.29 There-

fore, we face the same rationing problem as in the literature with limited production

capacities and inelastic consumers (see, for instance, Joskow and Tirole (2007)).30 The

absence of efficient discrimination between consumers with a heterogeneous willingness

to pay implies that investment availability is a public good when the price cap is binding.

Therefore, it is underprovided by producers when they make their investment decisions.

The literature describes the cost of involuntary rationing in various ways. Joskow and

Tirole (2007) shows that it depends on whether the rationing is anticipated or not. Leau-

tier (2018) finds that the effect of involuntary rationing can be different if it impacts the

expected demand level. From a modeling perspective, Holmberg and Ritz (2020) uses a

general function J(.) to represent this negative externality. The function depends on the

delta between the quantity bought at a price equal to the price cap and the investment

level. For general notation, we note this cost M(k), defines as follow :

M(k) =

∫ s̄

sw
J(s, k)dF (s) (2.8)

With ∆k a function of the difference between the installed capacity k and the quantity

bought by retailers at the price cap qw (qw0 or qw1 (s) depending on the chosen regime).

To illustrate the inefficient rationing cost, we use the following assumption.

29The introduction of retailers into the model in the rest of the chapter does not change the intuition.
At a price pw, the Cournot competition between the retailers incites them to ask for an equilibrium
quantity above the investment value. Then we assume that a regulator ration the retailers, such as their
final profit and realized sales, are physically constrained by the investment level.

30This inefficiency is associated with the existence of a Missing Market issue under which producers
consider their revenue insufficient to invest optimally (Newbery, 2016). This can be caused by hedging
markets being incomplete (De Maere d’Aertrycke et al., 2017), or because of externalities associated with
the public-good nature of investment and consumption choices (Holmberg and Ritz, 2020), innovation
spillovers, and climate change.
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Assumption 2.3. Suppose that consumers sustain an additional cost proportional to the

share of consumers selected indifferently who are forced to stop consuming based on their

expected surplus. The expected cost is equal to :

M(k) =

∫ s̄

sw

qw − k

qw

∫ qw

0

(p(q, s)− pw)dqdF (s) (2.9)

In this case, the function J(s, k) can be decomposed into two components: the rationing

ratio qw−k
qw

and the consumer welfare at the quantity asked at the price cap (and excluding

capacity payments)
∫ qw

0
(p(q, s) − pw)dq. This example resembles the rationing model

used in (Léautier, 2014). It can also be interpreted as follows. Assume that there

exists a continuum of consumers such that each point on the inverse demand function

p(q, s) represents its marginal willingness to pay for the good. In that case, inefficient

rationing implies that each consumer sustains the same cost proportionally to its marginal

willingness to pay. This illustration leads to J(k, sw) = 0. Without any difference

between the capacity and quantity values, inefficient rationing implies no cost. Regarding

the sign of the cost and its derivatives, it seems natural to have ∂M(.)
∂k

≤ 0, such that

the closer the capacity level is to qw, the lower is the cost. The second derivative of

the expression also matters. For instance, Holmberg and Ritz (2020) assumes a convex

function : ∂M(.)
∂k

≥ 0. However, as discussed below, the assumption is insufficient to

satisfy this condition.

We start with extending the benchmark model with inefficient rationing, which also

describes the exogenous regime as it does not generate indirect effects. Then, we compare

the outcomes under both regimes. First, we express the expected welfare under the

exogenous design with inefficient rationing:

W bo
0 (k) =

∫ s0

0

off-peak welfare︷ ︸︸ ︷∫ q0

0

(p(q, s)− c) dq dF (s) +

∫ sw0

s0

on-peak k welfare︷ ︸︸ ︷∫ k

0

(p(q, s)− c) dq dF (s)

+

∫ s̄

sw0

∫ k

0

(pw − c) dq︸ ︷︷ ︸
producer surplus

dF (s) +

∫ s̄

sw0

k

qw

∫ qw0

0

(p(q, s)− pw) dq︸ ︷︷ ︸
consumer surplus - M0(k)

dF (s)− rk

With M0(k) being the rationing cost under the exogenous design. The terms of the first

line represent the expected social welfare for any state of the world where the price cap

is not binding. The first term in the second line is the producers’ expected revenue, as
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we assume no rationing cost on the supply-side. Finally, the last term on the second line

is the expected welfare net of the rationing cost and the producer revenue. Compared

to the initial inefficiency of a price cap, the social cost of rationing directly affects the

social welfare function. On the other hand, producers’ expected marginal rent collected

on the wholesale market remains unchanged when we include inefficient rationing, which

only affects consumers’ welfare.31

The absence of direct supply-side effects of inefficient rationing allows us to study the

environment’s last stage directly. That is, how the regulator chooses the level of in-

vestment in the capacity market. We denote kbo
0 the optimal level of investment that

maximizes the expected social welfare, such that kbo
0 = {k : ϕbo

0 (k) = r}, with ϕbo
0 (k) as

usually defined as the marginal expected social welfare with respect to the investment

level k :

ϕbo
0 (k) = ϕ̃0 +

∫ s̄

sw0

1

qw0

∫ qw0

0

(p(q, s)− pw)dq︸ ︷︷ ︸
∆ in net consumer surplus

dF (s)

ϕ̃0 is a term common to ϕ0(k)
32. The terms in ϕ̃0 show that an increase of k (1) allows a

marginal gain when the capacity is binding for consumers and producers, and (2) allows

an additional rent for the producers when the price cap is binding. The second term

in ϕbo
0 (k) represents consumer gains when the price cap binds the net of the marginal

rationing cost.

The following lemma concludes on the difference between the initial inefficiency caused

by a price cap and the consequences of inefficient rationing. The optimal payment to

restore the first-best solution equals the marginal value of an additional capacity for the

market, which decreases the cost of involuntary rationing.

Lemma 2.4. When the price cap induces involuntary rationing, the inefficiency is greater

than with voluntary rationing. The optimal investment level is greater kbo
0 ≥ k∗

0, and the

expected social welfare at the optimum is lower W (k∗
0) ≥ W bo

0 (kbo
0 ). The optimal capacity

payment zbo(k) is : zbo(k) = −∂M(k)

∂k
31Some authors do include those costs in the producer profit, using a fixed reputational cost (Llobet

and Padilla, 2018) or a market shutdown during which producers also lose profit (Fabra, 2018)
32

ϕ̃0 =

∫ sw0

s0

(p(k, s)− c) dF (s) +

∫ s̄

sw0

(pw − c)dF (s)
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Proof. See Appendix 7.

We now turn to analyzing the model under the endogenous regime given the rationing

cost. We first discuss the differences with the exogenous case, and then we describe

the implications for the regulator. The expected welfare function under the endogenous

regime is equal to the following:

W bo
1 (k) = W̃1 +

∫ s̄

sw1

k

qw1

∫ qw1

0

(p(q, s)− pw) dq︸ ︷︷ ︸
consumer surplus - M1(k)

dF (s)− rk

With W̃1 being a term common toW1(k).
33 We denote kbo

1 the optimal level of investment

such that kbo
1 = {k : ϕbo

1 (k) = r}, with ϕbo
1 defined as the marginal expected social welfare

with respect to the investment level k :

ϕbo
1 (k) = ϕ̃1 +

∫ s̄

sw1

(
1

qw1

∫ qw1

0

(p(q, s)− pw) dq − k

(qw1 )
2

∂qw1
∂k

∫ qw1

0

p(q, s)− p(qw1 , s)dq

)
dF (s)

ϕ̃1 is common to ϕ1(k).
34 The terms in ϕ̃1 show that an increase of k (1) increases the

capacity price, which decreases the expected surplus during off-peak periods, (2) allows a

marginal gain for consumers and producers when the capacity is binding, and (3) allows

an additional rent for producers when the price cap is binding. The second and third

terms of ϕbo
1 (k) represent the interaction between the consumer surplus and the rationing

cost. To illustrate the effect of the inefficient rationing, we develop below the derivative

of M1(k) with respect to k. We illustrate it with the variation of the rationing costs due

to the variation of the investment level k with k′ > k in Figure 2.4

33

W̃1 =

∫ s1

0

∫ q1

0

(p(q, s)− c) dqdF (s) +

∫ sw1

s1

∫ k

0

(p(q, s)− c) dqdF (s) +

∫ s̄

sw1

∫ k

0

(pw − c) dqdF (s)

34

ϕ̃1 =

∫ s1

0

∂q1
∂k

pc(k)dF (s) +

∫ sw1

s1

(p(k, s)− c) dF (s) +

∫ s̄

sw1

(pw − c) dF (s)
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∂M1(k)

∂k
=

∫ s̄

sw1

( −qw1 − k
∂qw1
∂k

(qw1 )
2︸ ︷︷ ︸

∆ in rationing ratio

∫ qw1

0

(p(q, s)− pw) dq − qw1 − k

qw1︸ ︷︷ ︸
price effect

pc(k)

)
dF (s)

Figure 2.4: Change in surplus without (left panel) and with inefficient rationing (right
panel) under the endogenous regime with respect to a change of k with k′ > k. Under
the exogenous regime, an increase of k lowers the rationing ratio. Under the endogenous
regime, it also depresses quantity and the size of the consumer surplus.

The first panel shows the delta between the rationing costs for the exogenous case.

The initial rationing cost is the integral (up to qw0 ) below J0(k) while the new cost is the

integral below J0(k
′). Therefore, the delta is the hatched area. It stems from the fact that

increasing the level of investment reduces the rationing ratio. Note the proportionality of

the rationing cost via the downward rotation of the inverse demand function p(q, s). The

second panel represents the endogenous case. First, note that the quantity demanded

by consumers at the price cap (i) is based on the inverse demand adjusted by the price

cap p(q, s)−pc(k) and not on the inverse demand p(q, s), (ii) decreases with the increase

of the investment level, due to the increase the capacity price. The red zone represents

the first term in ∂M1(k)
∂k

and corresponds to the change in the proportional ratio
qw1 −k

qw1
.
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This is a similar effect represented in the hatched area of the first panel. The green zone

represents the change in the rationing cost due to the indirect effect of the capacity price

on the demand function. It is the second part of the derivative ∂M1(k)
∂k

. By increasing the

price, the capacity market decreases the demand and the rationing cost size. Finally, the

sum of the blue and green zones represents the decrease in consumer surplus (without

capacity cost) due to the decreases in the quantity demanded at the price cap. The

assumption concerning the form of the rationing costs leads to a net total effect that

is always positive (red zone - blue zone), as illustrated in the second term of ϕbo
1 (k).

The following lemma describes a sufficient condition for the existence of an endogenous

regime equilibrium. That is, the expected social welfare is concave.35 Define the per unit

consumer surplus at sw1 and for a quantity of k associated with its probability:

CS =
1

k

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq

Then,

Lemma 2.5. If the following condition holds

∂

∂k

∫ s̄

sw1

CSdF (s) >

∫ s̄

sw1

∂CS
∂k

dF (s)

Then a unique maximum of the expected social welfare W bo
1 (k) exists.

Proof. See Appendix 8.

The condition implies that if the variation of the per-unit consumer surplus gains at k

when k increases are higher than the expected variation of the per-unit consumer surplus,

then a unique maximum exists. In other words, when the level of capacity increases, it

decreases the occurrence of states of the world when the price cap binds. It states this

marginal decrease of occurrence at the capacity level should be higher than the marginal

expected gain of capacity during those states of the world by a factor of two. From an

economic perspective, it ensures that when expanding the capacity level, the gains from

reducing the inefficient rationing cost do not increase with the capacity level.

35Holmberg and Ritz (2020), while not providing a specific form of M(k), assume a convex rationing
cost, which is a sufficient condition for the concavity of expected welfare. In the specification, this is
not the case.
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Figure 2.5: Illustration of the expression CS with a linear demand.

4.2 Exogenous vs. Endogenous allocation

The main difference between the two regimes is that the capacity price indirectly affects

qw, which now depends on the level of investment. This has significant implications for

the comparative statics between the two regimes. We start by expressing the difference

in terms of welfare ∆W bo
1 (k) = W bo

1 (k)−W bo
0 (k) :

∆W bo
1 (k) = ∆ Welfare +

∫ sw1

sw0

J0(s, k)dF (s)︸ ︷︷ ︸
Avoided rationing cost

+

∫ s̄

sw1

J0(s, k)− J1(s, k)dF (s)︸ ︷︷ ︸
∆ in rationing cost

∆Welfare represents the endogenous regime’s negative effect presented in section 3.36

However, the rationing cost specification is based on the quantity consumed at the price

cap. Hence, with rationing, the endogenous regime also indirectly affects periods during

which the price cap binds and not only the off-peak periods. The first term stands for

36Formally

∆Welfare =−
∫ s0

0

∫ q1

q0

(p(q, s)− c)dqdF (s)−
∫ s1

s0

∫ k

q0

(p(q, s)− c)dqdF (s)

−
∫ sw1

sw0

∫ qw0

k

(p(q, s)− pw)dqdF (s)−
∫ s̄

sw1

∫ qw0

qw1

(p(q, s)− pw)dqdF (s)
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the lower occurrence of periods during which the price cap is binding due to the lower

demand. In that case, welfare trades a rationing cost against lower welfare (corresponding

to the first term in the second line of ∆Welfare). The second term represents the change

in rationing cost due to a change in the quantity consumed at the price cap. We express

this term ∆J(s, k) = J0(s, k)− J1(s, k) below after rearrangement :

∆J(s, k) = k

(
1

qw1
− 1

qw0

)∫ qw1

0

(p(q, s)− pw)dq +
k − qw0
qw0

∫ qw0

qw1

(p(q, s)− pw)dq

We have ∆J(s, k) > 0 from the observations that qw1 < qw0 due to the negative

price effect on the quantity of the endogenous regime. Therefore, for similar states, the

rationing cost is always lower under the endogenous regime than in the exogenous case.

However, it does not render the comparative statics of the equilibrium straightforward,

especially when describing (i) the ranking between the equilibrium investment level and

(ii) the ranking between the equilibrium welfare.

We start with the ranking between the different investment levels. Section 3 showed

that we always have a lower investment level under endogenous regime k∗
1 ≥ k∗

0 compared

to the exogenous regime under a sole price cap inefficiency. With inefficient rationing,

Lemma 2.4 showed that the investment level is higher than the first best: k∗
0 ≤ kbo

0 .

However, due to the opposite effects an endogenous regime exhibits between the negative

price effect and the decrease of rationing costs, the ranking between kbo
1 and the first-best

k∗
0 is a priori unclear. Proposition 2.3 provides a ranking between the investment level

under the linear assumptions.

Proposition 2.3. If the following condition holds:

− ∂

∂k

∫ s̄

tw1

(CS+ pc(k)) dF (s) > (CS+ pc(k))f(sw1 )
∂sw1
∂k

Then, there is a unique ranking between the investment equilibrium such that: k∗
1 ≤

k∗
0 ≤ kbo

1 ≤ kbo
0

Proof. See Appendix 9.
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Previous analysis shows that introducing rationing costs increases the investment

level, and having an endogenous regime (excluding rationing) decreases it. Hence, the

ranking between kbo
0 and kbo

1 is straightforward, as the indirect effect reduces the rationing

costs, hence the need for investment. The proof analyzes how the investment level under

the endogenous regime kbo
1 behaves compared to the first-best level k∗

0. The core of the

proof relies on the variation of kbo
1 with respect to pw which is given by the implicit

function theorem:
∂kbo1 (pw)

∂pw
= −∂2W bo

1

∂k∂pw
/
∂2W bo

1

∂k2
. On the other hand, the first-best k∗

0 does

not depend on pw, which allows focusing only on
∂k∗1(p

w)

∂pw
for the ranking. The condition

in the proposition has a similar interpretation to the condition for the existence of a

maximum. That is, for a cross derivative to be negative, one needs to have the change in

expected individual consumer surplus, to which is added the capacity price to be bound

from below by a strictly positive value equal to the same value weighted by the derivative

of the CDF at the threshold.

We conclude the comparison by studying the ranking between the welfare at the differ-

ent investment equilibria. Similarly, we have proven that the exogenous regime provides

the highest welfare with only a price cap inefficiency and that inefficient rationing de-

creases welfare: W0(k
∗
0) ≥ W bo

0 (kbo
0 ) and W1(k

∗
1) ≥ W bo

1 (kbo
1 ). We are left to study the

difference between the exogenous and endogenous regimes at the equilibrium level, that

is, W bo
0 (kbo

0 ) and W bo
1 (kbo

1 ). While not a priori straightforward, we find that there is also

a ranking between the expected welfare at the equilibrium, which is described in Claim

2.1.

Claim 2.1. Under the model specifications, there is a unique ranking between the welfare

equilibrium such that: W0(k
bo
0 ) ≤ W1(k

bo
1 ) ≤ W1(k

∗
1) ≤ W0(k

∗
0)

Proof. The intuition of the claim relies on the comparison betweenW bo
0 (kbo

0 ) andW bo
1 (kbo

1 )

and stems on three observations : (i), from Proposition 2.3, for a given pw, we have

kbo
1 ≤ kbo

0 ; (ii) the two functions are increasing in pw, and (iii) ∆W bo
1 is decreasing and

concave in pw.

Figure 2.6 illustrates the results. The solid black line gives the first-best welfare

function, corresponding to the exogenous equilibrium with only a price cap inefficiency.

The black diamond represents the first-best investment level k∗
0. Involuntary rationing

is added to represent the public-good nature of the investments. The blue curves rep-

resent the new expected social welfare with inefficient rationing under an exogenous

regime. The red dashed curve encompasses the effects of the endogenous regime with
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Figure 2.6: Expected social welfare given different capacity market designs. The black
curve corresponds to the full efficiency case but also to the exogenous case with only
a missing money inefficiency. The blue curve is the exogenous regime with inefficient
rationing. The red curve is the endogenous regime with inefficient rationing.
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inefficient rationing.37 We then vary the price cap level, with a higher value for solid

curves compared to the dashed curves. The equilibrium values, which are also the maxi-

mum expected welfare reachable within the two market designs, are represented by black

squares and circles for the endogenous and exogenous regimes. We also represented the

path for each equilibrium for continuous values of the price cap with the dotted line.

As expected, following the results in the different Propositions, for a given price cap,

the level of investment is always lower under an endogenous regime. The values of the

expected welfare at the black squares are always higher than those at the black circles.

Hence, within the framework, the endogenous regime always provides higher welfare than

the exogenous regime under inefficient rationing.

The rationale behind the results lies in two distinct causes : (1) the change of welfare

due to the indirect effect, for a given investment level, it reduces rationing costs and

leads to a negative price effect. (2) the change of investment equilibrium, with previous

Proposition 2.3 stating that kbo
1 ≤ kbo

0 . The change in investment level between the two

market designs can then be decomposed into two components : (i) the relative comparison

between the negative price effect and the reduced rationing costs, and (ii) the relative

investment costs between the two market design equilibria. For the second component,

the effect is always positive for the endogenous regime, as a lower investment level always

implies lower investment costs. The dominance ranking between the opposite effects is

ambiguous for the first component. The endogenous reduced rationing costs for a given

equilibrium investment level do not always overcome the negative price effect it generates.

We even find that having a lower investment level can penalize the endogenous regime

regarding the net effect. However, as shown in Claim 2.1, saving due to lower investment

costs always implies higher welfare under the endogenous regime at the equilibrium.

Figure 2.7 illustrates the interaction between those opposite effects. The dashed

curves represent them under a unique investment level (as described by ∆W bo
1 (k)), which

is arbitrarily taken equal to the equilibrium under the exogenous market design kbo
0 . As

expected, the difference in investment costs (black curves) is null. For low values of the

price cap, the reduced rationing costs dominate the negative price effect. As the price cap

increases, there is a switch, and the negative price effect dominates. We then show the

actual comparison between the two regimes at their respective equilibrium with the solid

curves. In that case, the gain in avoided rationing costs decreases, and the negative price

37Note the convergence for the different curves to the right. Above a specific value of k, the price cap
never binds in expectation, and inefficient rationing ceases to exist. It only remains the negative price
effect of the endogenous regime for the blue curves.
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Figure 2.7: Decomposition of the change in welfare at the equilibrium between endoge-
nous and exogenous market design with inefficient rationing

effect increases. However, the lower investment level saves investment costs, represented

by the solid black curves. In that case, the sum of the black and blue curves always

dominates the red curve, which implies higher welfare under the endogenous regime at

the equilibrium.

5 Extensions - Retailers allocation

In this section, we provide an initial analysis of a more complex market design for

the capacity market using the previous framework. Under those regimes, the capacity

market cost allocation becomes dependent on the consumption realization. The primary

motivation for those extensions is to formalize the idea that capacity markets are not only

supply-side instruments. In other words, by including the demand-side in the design,

capacity markets can provide better price signals to increase efficiency.38 Therefore, we

apply the initial model to two settings : (i) when the allocation depends on the realized

38This idea was described in the following report aimed at justifying the decentralization of the
capacity market (RTE, 2014).

126



market share of retailers playing ’à la Cournot ’ and (ii) when the capacity market is fully

decentralized where retailers by themselves the capacity. In the first regime, we study

the link between the model outcome and the degree of competition in the retail market.

In the second regime, we derive the equilibrium emerging in the capacity market without

a regulator. We show that the positive effect of a decentralized capacity market can be

monitored by the regulator using the penalty system.

5.1 Retailers Market Share allocation

Under this market design, the capacity allocation depends on the retailers’ realized quan-

tity sold to the final consumers. To represent retailers’ market share, we assume in this

section that there is imperfect competition in the retail market. We underline that hav-

ing different degrees of competition in the retail market has a direct effect on the capacity

cost allocation sustained by final consumers. It also indirectly impacts the efficiency of

the market in a somewhat different way than imperfect competition on the supply-side.39

We describe in Appendix 1 the main effect of having a Cournot competition in the re-

tail market on the investment level that maximizes expected welfare. We introduce the

capacity market by describing the new market design regime as follows.

Assumption 2.4. The regulator builds a demand function in the capacity market and

buys a level of capacity k for a price pc(k) given the supply function described in Equation

2.3. Then, it allocates the full cost kpc(k) directly to the retailers. The share of the

capacity cost is based on their realized market share in the retail market. For a retailer

i, this share is defined as qi
qi+q−i

with qi its quantity sold on the retail market and q−i the

quantity sold by its competitors.

The first implication of ex-post allocation concerns the last stage, which is when the

retail market clears. We rewrite the retailers’ profit function by including an endogenous

ratio in the retailer profit function, as shown in the following equation.

Πr
i (qi, k) = qi(p(q)− ps)− pc(k)k

qi
qi + q−i︸ ︷︷ ︸

capacity market cost

39See, for instance, (Léautier, 2016) or Zöttl (2011) for an analysis of market power on the supply-side.
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Contrary to the previous section, we do not need to assume any tariff hypothesis for

the capacity cost allocation as it directly affects retailers’ profit at the margin. We focus

the analysis on symmetric equilibrium. We drop the notation with s as the state of the

world is known at this stage. With q−i =
∑n

j ̸=i qj. We find the best-response function of

a retailer i with the first-order conditions :

BRi(qj) = max
qi

Πr
i (qi, k) ⇐⇒ p(q) + qipq − ps − pc(k)k

qj
(qi + qj)2

= 0

The main results for the existence of equilibrium are stated in the following lemma:

Lemma 2.6. At the symmetric equilibrium, retailers’ profit function is concave if the

capacity cost is not too important, that is, if the following condition holds :

−q2pq

(
n+ 1

n− 1

)
> pck

The quantities are strategic substitutes whenever the following condition holds :

kpc(k)

(
n− 2

n

)
1

q2
≥ −pq

Proof. See Appendix 9

Note that when n = 2, the equilibrium is always unique and stable. This observation

comes from the classical decreasing marginal returns of the Cournot literature Vives

(1999). When n > 2, the lemma states that the capacity market allocation design induces

a stricter condition on the marginal returns, which needs to consider the additional cost

in the retailer’s profit. Using the first-order conditions and the symmetry between the

retailers, the Cournot equilibrium in the retail markets allows us to define the endogenous

retailer demand function in the wholesale market:

p̃(q) = p(q)−mp(q)− pc(k)k
1

q

n− 1

n

With mp(q) the markup associated with the market power in the retail market such

that mp(q) = − q
n
pq > 040. The concavity condition stated in Lemma 2.6 is the same as

40We simplify ∂mp(q)
∂q = mpq and ∂mp(q)

∂n = mpn(q).
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assuming that the demand function in the wholesale market is decreasing. The equilib-

rium in this market design is similar to the endogenous regime in the previous section

due to the effect of the capacity price on the final demand. Therefore, we can define the

new thresholds between on-peak/off-peak/binding price cap periods. We denote them sn

and swn such that the expected value of p̃(q, s) is equal to, respectively the marginal cost

and the price cap, that is p̃(q, sn) = c and p̃(q, swn ) = pw. We denote the corresponding

quantity qn and qwn such that p̃(qn, s) = c and p̃(qwn , s) = pw.

The indirect effect of this market design can be shown in the following expression of

the supply function in the capacity market:41

Xn(k, p
c) = r −

(∫ swn

sn

(p(k)− c−

cournot︷ ︸︸ ︷
mp(k)− pc(k)

n− 1

n︸ ︷︷ ︸
capacity market

)dF (s) +

∫ s̄

swn

(pw − c)dF (s)

)

This expression can be understood similarly as Equation 2.7. The marginal revenue

made on the wholesale market depends on the markup and the depressing effect of the

capacity price on the demand. The endogeneity created by the market design stems

from the fact that the expression pc(k) appears in both terms via the demand function

in the wholesale market and the threshold value sn and swn . Note the difference with the

requirement in the first part of the integrals, where the capacity cost adder is dependent

on n. The following Proposition summarizes the main effect of an ex-post allocation

based on the realized market share. Allocating the capacity market cost based on retail-

ers’ realized market share provides an intermediate indirect effect between an exogenous

regime price and an endogenous regime. In the Appendix, we provide a formal defini-

tion of the level of investment (respectively k∗
0,n and k∗

1,n) under the two regimes with

imperfect competition.

Proposition 2.4. (i) If the condition in 2.6 holds, then there is a unique investment

level under the market share allocation regime that maximizes the expected social welfare.

(ii) If it exists it solves k∗
n = {k : ϕn(k) = r}, with ϕn(k) define as follow

41For clarity, we do not expose the full effects of this market design on the expected social welfare
nor the first-best solution. Indeed, it has consequences similar to the endogenous design; therefore, it
implies a depreciation of the demand for the final good. It changes the expected surplus during off-peak
states of the world and the occurrence between off-peak / on-peak periods, and the first-best investment
level is lower than an allocation without indirect effect.
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ϕn(k) =

∫ sn(k)

0

∂qn
∂k

pc(k)
n− 1

n
dF (s) +

∫ s̄

sn(k)

(p(k, s)− c)dF (s) (2.10)

(iii) The first-best investment level is lower than the first-best under exogenous design

and higher than the first-best under the endogenous regime (k∗
1,n ≤ k∗

n < k∗
0,n). More-

over, the ranking extends the expected social welfare at the first-best investment level:

W1,n(k
∗
1,n) ≤ Wn(k

∗
n) < W0,n(k

∗
0,n)

Proof. See Appendix 11.

The capacity cost adder when n = 2 is equal to half of the cost adder of equation

X1(k, p
c(k)) increases with n. When n → +∞, the capacity cost is entirely allocated

to the consumer, mimicking the exogenous equilibrium. This Proposition states that

increasing competition in the retail market increases the burden of consumers’ capacity

prices. Hence, the negative effect observed in the regime with endogenous capacity prices

is now shared between retailers and consumers. By extension, we have the same results

for the endogenous regime when we take into account inefficient rationing with the ex-

post market share allocation. Namely, the depressing effect shown in Proposition 2.4

will both lower the expected surplus and the expected rationing cost, hence having an

ambiguous impact on the optimal outcome.

In Figure 2.8, we show the expected social welfare under various assumptions. The

black curve represents welfare when there is no inefficiency. The blue solid curve stands

for the new welfare function when we assume the retailers are playing a la Cournot

under the exogenous regime, and the dashed curve represents the endogenous case with

imperfect competition. The red curve represents the expected social welfare given the

effect of the capacity market design based on realized market share. We conclude this

section by studying the impact of the degree of competition in the retail market. In this

extension and using the analytical framework, we show that a change in market structure

can have ambiguous effects. We summarize the main findings in the following corollary.

Corollary 2.1. (i) With imperfect competition and without inefficient rationing, an

increase in n increases the investment level that maximizes expected welfare under the

exogenous and endogenous regime. (ii) Introducing either inefficient rationing or the

retailer market share allocation leads to an ambiguous effect of an increase in n.
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Figure 2.8: Expected social welfare under the market share allocation compared to the
first-best welfare and the exogenous and endogenous regime with imperfect competition.
The retailer market share allocation provides an intermediate welfare compared to the
two previous regimes.

131



Proof. See Appendix 1 for a discussion on the regimes of the previous sections. See

Appendix 12 for the formal proof with respect to retailer market share allocation and

inefficient rationing.

Without inefficient rationing, increasing the number of retailers has two effects: (i) it

decreases the market power in the retail market, which raises demand and, by extension,

both the investment level and the expected welfare, and (ii) it indirectly affects the

equilibrium in the capacity market. Namely, by providing a higher demand, it also

increases the producers’ revenue. Hence, it lowers the supply function in the capacity

market, implying that for the same level of investment, the capacity price is lower. Under

the endogenous regime, it lowers the negative price effect described in section 3, which

creates a second positive channel for an increase in demand. Implementing the retailer’s

market share allocation has an ambiguous effect. Indeed, Equation 2.10 shows that

the indirect impact created by the market design is directly increasing with n as n−1
n

also increases with n. Therefore, a third effect is observed under this regime as more

competition increases the burden supported by consumers, which in turn decreases their

consumption. The negative impact can be illustrated in the following expression:

∂qn
∂n

= − 1

p̃q

( +︷ ︸︸ ︷
mpn − Cpc

∂pc

∂n

−︷ ︸︸ ︷
− Cn

)
With C = pc(k)k 1

q
n−1
n
, the cost associated with the capacity market in the demand

function p̃. The two first terms in the numerator show the positive effect of an increase

in n: (i) it decreases the markup mpn < 0, and the capacity price decreases with n:
∂pc

∂n
< 0, and the capacity market cost also decreases with the price Cpc > 0. On the

other hand, the cost pass-through associated with the capacity market increases, which

generates the negative effect: Cn < 0. Similarly, having inefficient rationing creates a

new tradeoff. As the degree of competition increases, quantity is also increasing. This,

in turn, implies that the price cap is binding more often and that the rationing cost

also increases. This negative effect is realized as soon as the demand increases with n,

whatever the regime considers. We can illustrate the effect of n on the expected welfare

with the following derivative of the expected welfare under the endogenous regime with

imperfect competition and with inefficient rationing:
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∂W1,n

∂n
=

+ competition effect︷ ︸︸ ︷∫ s1,n

0

∂q1,n
∂n

(q1,n − c)dF (s)−

- rationing effect︷ ︸︸ ︷∫ s̄

sw1,n

∂qw1,n
∂n

k

(qw1,n)
2

∫ qw1,n

0

(p(q, s)− p(q1,n, s))dqdF (s)

The first term represents the effect of increasing n on the expected social welfare. If

an increase in the competition in the retail market translates to a higher quantity (i.e.,
∂q1,n
∂n

> 0), this term is positive. This is the case under both exogenous and endogenous

regimes but not always under the retailer market share allocation. The second term

represents the negative effect of having more competition. If the quantity at the price

cap increases with n, that is
∂qw1,n
∂n

> 0, then this term is negative. The net effect depends

on the model parameters, especially the relative share of off-peak and on-peak periods.

5.2 Decentralized capacity market

This last section provides the first analysis of a fully decentralized capacity market. This

market design regime takes the furthest step towards accounting for the final electricity

demand in the capacity market allocation. Each retailer must purchase a certain amount

of capacity in the capacity market. The regulator only monitors ex-post the level of

capacities and compares it to each retailer’s sales. A penalty mechanism is implemented

if there is any difference between the two quantities. We formally describe this market

design regime as follows:

Assumption 2.5. The regulator mandates the retailers to buy the capacity on the ca-

pacity market given their realized sales in the retail market for a price pc(k) given the

supply function described in Equation 2.3. For each retailer, if their individual realized

sale quantity on the retail market qi is above their purchase quantity on the capacity

market ki, the regulator imposes a unitary penalty S, such that the penalty mechanism

total cost for a retailer is S(qi − ki).

One of the critical features of this regime concerns the case when a retailer is in

negative deviation, i.e., has sold more on the retail market than he has bought capacity

in the capacity market. In this case, he suffers a penalty, which results in a payment

133



from the retailer to the regulator by a unitary amount of S, with S ≥ 0 being an

administratively fixed value.42

We use the following process to describe the implications of this market design regime.

We develop the results on the idea that retailers act similarly to producers when given

the opportunity to participate in the decentralized capacity market. With imperfect

competition and a price cap, their expected profit in the retail market depends on the

level of capacity. It means that we can also define an expected unitary rent ϕd(k),

similarly to the producers’ rent ϕ(k). Namely, the existence of a capacity market implies

that they can also choose to invest, with the capacity price acting as an investment

cost. We introduce the effect of the penalty on retailers’ behavior, punishing retailers for

having too little capacity. While having little interest in the initial case with a price cap

(and imperfect competition) generating solely missing money for producers, the penalty

takes on its full meaning when we assume inefficient rationing. Indeed, in this case, the

additional cost sustained by consumers is due to the inadequacy between the quantity

consumed (and hence sold) to consumers and the level of investment. Therefore, the

penalty acts as a means to make partly responsible retailers for this loss.

In terms of market design, the previous observation translates into the fact that the

penalty is sustained only when the price cap is binding, that is, only when inefficient

rationing occurs. First, let’s denote an additional threshold value sd such that this is the

first state of the world when the price cap is binding after accounting for the depressing

effect of the penalty ps(k, sd)−S = pw.43 We also denote qd the corresponding quantity,

which can also be interpreted as the Cournot equilibrium in the retail given retailers’

profit function and penalty mechanism. With this new value, we can distinguish three

cases depending on the value of the installed capacity.

• (Case 1) When k > qw0,n, the price cap is never binding, and the effect of a capacity

market on the expected retailers’ profit is strictly identical to an exogenous regime

with imperfect competition.

• (Case 2) implicit rationing : For a value of k between qd and qw0,n, we observe a

paradoxical outcome. Rationing should have occurred as soon as k is below qw0,n

without a penalty. It implies that retailers sustain the penalty, which is then passed

42Some remuneration mechanisms can exist (in France, for instance) so as to reward retailers who
have provided additional capacity. Still, as we focus on symmetric equilibrium, they do not play a role
in the outcome.

43The penalty does impact retailers at the margin as the mechanism is based on the difference between
the realized quantity, retailers’ strategic variable, and the investment level.
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to consumers as a marginal cost, which lowers their demand. However, rationing

does not occur as qd < k, which contradicts the demand’s decrease due to the

penalty. Therefore, we assume that retailers follow the level of investment. To do

so, they increase the price of their consumers by a unitary amount of T (k, s) ≤ S

so that at any state of the world between sw0,n and sd, the demand is equal to the

capacity k,44 that is we have ps(k, s)− T (k, s) = pw.

• (Case 3) k is below qd, it is now optimal for the retailers to keep their strategy

at qd before rationing as it is the profit-maximizing quantity given the penalty

mechanism.

Therefore, the core idea of the three cases is that given the penalty value, retailers

have two options when the price cap is binding : (i) decreasing its consumption due

to T , (ii) letting the consumption level at the price cap, which leads to both inefficient

rationing for the market and sustaining the penalty for the retailers. In the simplified

framework, case (2) corresponds to the preference for retailers to follow (i) as T < S and

case (3) corresponds to (ii) as T > S.45 Given the three different cases, the expected

profit function of retailers becomes46:

Πs
d(k) =

expected revenue︷ ︸︸ ︷∫ s0,n

0

q0,n(s)mp(q0,n)dF (s) +

∫ s̄

s0,n

kmp(k)dF (s)

+

∫ sd

sw0,n

kT (k, s)dF (s)︸ ︷︷ ︸
implicit rationing

−
∫ s̄

sd

S(qd − k))dF (s)︸ ︷︷ ︸
penalty cost

− pc(k)k︸ ︷︷ ︸
capacity cost

The first term corresponds to the expected revenue for retailers. Under the frame-

work, it is equal to the markup times the quantity, which is either the quantity at the

marginal cost or the investment level. The second term corresponds to what is hap-

pening in case (2) when retailers deviate from the Cournot equilibrium to lower their

consumption.47 The third term corresponds to case (3) when retailers do not change

44We could also assume the reverse mechanism where retailers pay consumers T (k, s) to reduce the
demand in order to avoid the penalty.

45We leave for future work a more complex representation of equilibrium in this framework.
46We focus on symmetric equilibrium, so we drop the reference to individual profit.
47Note that if we assume that retailers pay the consumers to reduce their consumption, only the sign

changes.
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their consumption and, therefore, sustain the penalty. Finally, the last term is the ca-

pacity cost, as retailers have to pay for the level of investment via the capacity market.

We now express the marginal value of an investment for retailers without the capacity

price:

ϕd(k) =

marginal revenue︷ ︸︸ ︷∫ s̄

s0,n

(mp(k) + kmpq)dF (s)+

marginal implicit rationing︷ ︸︸ ︷∫ sd

sw0,n

(
T (k, s) + k

∂T

∂k

)
dF (s)+

+ kSf(sd)
∂sd
∂k︸ ︷︷ ︸

∆ in occurence

+

∫ s̄

sd

SdF (s)︸ ︷︷ ︸
avoided penalty

The first line corresponds to the effect of an additional investment on retailers’ profit.

When the capacity is constraining, an increase in k increases the quantity for retailers

and also changes their market power. In that case, we have mpq > 0. By definition of

T (k, s) = ps(k, s) − pw, we have ∂T
∂k

= pq − mpq. The first term in the second line is

due to the fact that as k increases, it increases at the higher bound sd the occurrence of

periods of implicit rationing, at sd, we have by definitionT (k, s) = S, which implies the

term. Finally, the last term stems from the fact that an increase of k lowers the difference

between the quantity at the price cap and the investment; that is, it lowers the burden

of the penalty and increases the level of investment. In the following lemma, we define

the condition for having an equilibrium kd in the capacity market, which defines the

level of investment. It boils down in the framework to the equality between the supply

function X0,n
48 with imperfect competition and the marginal value of an investment for

producers.

Lemma 2.7. If S ≥ 2s̄
n+1

, then there exists a unique solution kd to ϕd(k) = X0,n(k), with

X0,n(k) = r − ϕw
0,n(k) the supply function in the capacity market and ϕw

0,n(k) the private

marginal revenue of an investment for producers such that:

ϕw
0,n(k) =

∫ sw0,n

s0,n

(p(k, s)−mp(k)− c)dF (s) +

∫ s̄

sw0,n

(pw − c)dF (s) (2.11)

48With imperfect competition, when the capacity is binding but not the price cap, then producers
receive the retail price minus the retailer’s markup. This corresponds to the first term. The second
term is identical to the perfect competition case.
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Proof. See Appendix 13.

The proof relies on ensuring that the demand function on the capacity market formed

by the marginal value of investment for retailers is decreasing and at least positive for

some values of k. Note that the supply function is increasing and bound by 0 and r.

Therefore, there is one intersection between the two functions. ϕw
0,n is given similarly

and combines the imperfect competition and the price cap effects. In that case, r− ϕw
0,n

is simply the supply function as described in Definition 2.1. The lower condition on S is

to ensure the concavity of the retailer profit function with respect to k.

We turn now to the study of the implications of a decentralized capacity market from

a social welfare aspect. For clarity, we only analyze the case when we take into account

inefficient rationing, as the decentralized capacity market with a penalty mechanism

is usually explicitly implemented to account for this inefficiency. The efficiency of a

decentralized relies on two channels: (i) the market equilibrium it provides and (ii)

the indirect effect it has on the expected social welfare. The new expected welfare

function under a decentralized market design and with inefficient rationing is given by

the following equation:

Wd(k, S) = W̃n,0(k, S) + CSd(k, S)− rk (2.12)

With the consumer surplus under inefficient rationing:

CSd(k, S) =

∫ s̄

sd

k

qd

∫ qd

0

(p(q, s)− pw) dqdF (s)

With W̃n,0 being the social welfare without consumer surplus when there is inefficient

rationing. It is similar to the expected welfare with imperfect competition and an exoge-

nous regime Wn,0.
49 The core idea is found in the new threshold values: sd and qd. As

previously explained, the incentives created by the penalty mechanism induce retailers

to lower their sales in any state of the world between sw0,n and sd (case(2)), such that the

49

W̃n,0 =

∫ sn,0

0

∫ qn,0

0

(p(q, s)− c) dqdF (s) +

∫ sd

sn,0

∫ k

0

(p(q, s)− c) dqdF (s) +

∫ s̄

sd

∫ k

0

(pw − c) dqdF (s)
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quantity sold is strictly equal to installed capacity. Therefore, no inefficient rationing

is realized during those periods. As the investment level, and therefore the welfare at

the equilibrium, is endogenous to the model, we summarize the link between the penalty

and the market outcome in the following proposition.

Proposition 2.5. (i) Under the decentralized market design, the equilibrium level of

investment kd(S) is increasing in the penalty value. The welfare at the equilibrium

Wd(ks(S), S) is concave in the penalty S. (ii) The optimal penalty value that maximizes

expected welfare is such that there is no inefficient rationing.

Proof. See Appendix 14.

The absence of closed-form solutions prevents having a clear-cut comparison between

the different regimes. However, as shown in the Proposition, we do find that the penalty

can play a central role in the efficiency of the decentralized capacity market. From

Equation 2.12, we can express the derivative of the welfare at the market equilibrium kd

as follows with respect to the penalty value:

∂Wd(kd)

∂S
=

+︷ ︸︸ ︷
∂CSd(kd, S)

∂S
+

( + then −︷ ︸︸ ︷
∂Wd(kd, S)

∂k
+

∂CSd(kd, S)

∂k

)
∂kd
∂S

That is, a change in the penalty value that affects the expected welfare is measured by

the direct change in the welfare (first term) and by an indirect change in the equilibrium

quantity (second term). The proof in the Appendix shows that this direct effect is

composed only by a change in that rationing cost and is always positive. In other

words, increasing the penalty always increases welfare due to a reduction in the cost of

rationing. This stems from the fact that as the penalty increases, it is less profitable for

retailers to sustain the penalty, which incentivizes them to increase the implicit rationing

period. The expected welfare is concave, following the standard arguments of the chapter.

However, we find that the equilibrium is increasing in the penalty:

∂kd
∂S

= −
∂ϕd

∂s
∂ϕw

0,n

∂k
+ ∂ϕd

∂k

The penalty does not change the expected profit of producers, as they always have a

revenue composed of the price cap and the investment level whenever they are binding,
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which is also when the penalty never comes into effect. We show in the Appendix that

the penalty positively affects the marginal value of the retailers: ∂ϕd

∂s
> 0. Moreover,

the capacity market supply function is equal r − ϕw
0,n, hence it is positive:

∂ϕw
0,n

∂k
< 0.

Similarly, ϕd is the capacity market function; hence, it is decreasing. It implies that all

terms are positive; hence, the market equilibrium is increasing in S. Finally, the intuition

for the second part of the result originates from the observation that as the penalty values

increase, it decreases the occurrence of periods during which inefficient rationing occurs.

As it also increases capacity, this also lowers the occurrence. At one point, the value is

such that there are no inefficient rationing periods (sd = s̄). This implies that at this

point, the penalty does not play any role in the market: ∂ϕd

∂s
= 0, which coincides with

the maximum of kd. From a welfare perspective, it is also the case where there is no

inefficient rationing anymore, which is also the most efficient situation.50 We conclude

by providing in Figure 2.9 the illustration of the Proposition. It shows that the penalty

value clearly impacts the market equilibrium (in blue). The first-best (with imperfect

competition but without inefficient rationing) is represented in black. The two red lines

represent the exogenous and endogenous regimes with inefficient rationing based on the

previous sections. The second plot shows that for the relatively high value of the penalty,

the welfare gained under the decentralized market design is significantly higher than the

previous market design. In other terms, the indirect effect created by implicit rationing

and the burden of the penalty created more values than the endogenous regime. The

blue zone represents this additional welfare. However, note that while we show that

there is no inefficient rationing at the optimal penalty level because the investment level

is still different from the first-best one, there is still a gap between the first-best welfare

and the one gained in the decentralized market design.

6 Conclusion

This chapter built a tractable framework to analyze the design of long-term markets for

a good prone to underinvestment, such as electricity or medical supplies. We showed

how the investment decisions are affected by those markets, their structure (such as the

degree of competition), and, most importantly, their design. Our case study is the ca-

pacity markets that were implemented to encourage producers to invest by providing

additional remuneration. Most of the literature on capacity markets has focused on the

50If there is no inefficient rationing then:∂CSd(kd,S)
∂S = 0. Hence, the derivative of the expected welfare

is null, which implies that this is also the maximum.
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Figure 2.9: Evolution of the market equilibrium and the equilibrium welfare in decen-
tralized capacity market regime with respect to the penalty value S. We compare the
outcomes with other regimes (exogenous and endogenous)
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supply-side, where producers offer their availability on future transaction periods on the

wholesale market. Therefore, the demand-side has been overlooked, even though some

efficiency effects are well known. Current implementations show many options regarding

the demand-side’s design on capacity markets, as consumers do not have proper incen-

tives to buy capacities. Using the framework, we compare multiple market designs and

their implications. The first set of regimes is based on differentiating the capacity cost

allocation. The second set of regimes is represented by how the design can account for

current demand realization. We underline the different parameters that can significantly

affect the outcomes of a capacity market on investment decisions. The choice of the

design can significantly affect prices and quantities in the three markets. One of the

advantages of this framework relies on the possible extensions that we can implement

besides providing a simple but complete vision. The rest of the section discusses two

issues that could be addressed in future research using this framework.

First, we initially assumed that consumers were fully reactive to retail prices. Such

assumptions do not describe the reality yet, as illustrated in the electricity markets, as

most small final consumers, such as households, are still under fixed-price contracts. The

study of final consumers’ heterogeneity and its implications for investment decisions in

the power system is an emerging trend. Léautier (2014) and Léautier (2016) provide a

relevant model close to the one presented in this chapter. They show the effects of having

those two types of consumers with different investment decisions and a capacity market.

However, the author does not compare demand design options for capacity markets and

does not consider retailers. Therefore, implementing this new extension in the model

could shed light on the issue associated with power systems’ investment decisions. It

could also significantly impact retailers’ individual market design options. Indeed, let’s

consider that some consumers cannot react to price, but retailers are still forced to cover

their consumption. The demand function’s formation in the capacity market will be

significantly impacted.

Finally, we assume that future consumer demand is commonly shared between agents.

A single entity, potentially regulated, and retailers could access a different quantity

and quality of information. For instance, we can assume that the entity only has a

global vision of future demand, and hence, it is prone to make a more significant error

forecast than retailers. On the other hand, retailers have private access to more precise

information on their client portfolios while sharing common information on the world’s

future global states. Therefore, introducing these private/common elements in the model

could shed new light on the effect of capacity markets and their market design options.
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Finally, in some current implementations, the entity based its global forecast on retailers’

information. Consequently, the comparison between the various regimes’ cases could be

analyzed using game theory and signaling.
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Abstract

This chapter examines the challenges of allocating a good subject to capacity constraints

such as electricity when considering consumer preferences and investment decisions. A

theoretical framework is developed where a market designer sequentially chooses a level

of investment and proposes an allocation mechanism to consumers followed by a con-

sumption stage. The market designer uses the allocation to maximize consumer surplus

and finance the investment cost. He faces heterogeneous consumers who have private in-

formation about their demand level and belong to a publicly observed category, allowing

the market designer to distinguish groups of consumers such as households or industries.

We show that the optimal allocation implies discriminating against consumers based on

their types and categories and that the relative discrimination depends on the level of

investment considered. It has significant welfare and distributive implications: an opti-

mal pricing mechanism can minimize the investment cost and lead to a higher aggregate

consumer surplus. However, it is not always a Pareto improvement for every consumer,

especially for smaller ones. We describe two main environments: the current second-

best situation, in which the market designer cannot obtain information about consumers

and must choose fixed prices ex-ante, and the optimal theoretical second-best allocation

mechanism that considers the incentive and individual rationality constraints and the

investment decisions.

150



1 Introduction

Economists have long advocated that pricing mechanisms should be carefully designed

to allow the coverage of investment costs and promote efficient resource use. This is

particularly true when providing essential goods characterized by the public-good nature

of investment availability when supply is scarce, such as electricity, public transport, or

medical goods. In those sectors, demand and supply fluctuate unpredictably, and if any

demand exceeds the available capacity and cannot be efficiently rationed, it generates

significant welfare losses.1 For instance, without sufficient investment, the reliability

of the electricity supply can be compromised, leading to frequent outages and power

interruptions (IEA, 2020). It is particularly important in the energy transition context.

Indeed, it is crucial to lower the production from fossil fuels but reliable technology and

invest massively in carbon-free but intermittent renewables. Moreover, the electrification

of end-use consumption also implies that periods of scarcity may occur more often.

Therefore, we must carefully design electricity markets by choosing the most efficient

pricing mechanisms, allowing for sufficient investment and ensuring demand reacts to

scarcity (IEA, 2021).2 The COVID crisis has also shown that the lack of production

capacity for medical goods, especially vaccines, has severe consequences. The absence of

sufficient capacity to produce vaccines led to a worldwide lockdown and border closures,

increasing contagions and hospital congestion.3 Finally, congestion in transportation

systems continues to generate substantial costs (Schrank and Lomax, 2021) and poses

challenges for the much-needed modal shift to low-carbon means (ITDP, 2021).4

1This inefficient rationing usually stems from market designers using price regulations, for instance,
price caps, or because they are reluctant to implement complex pricing mechanisms due to technical,
political, or equity reasons.

2Transportation and distribution infrastructure are also central in current policymakers’ debates.
Network tariffs are usually designed to cover transmission lines’ investment and operation costs. Still,
the growing share of decentralized production and the intermittent nature of renewable production
create new challenges(Eurelectric, 2021). The increase of volatility from both the supply and demand-
side implies that the sizing of networks must be rethought. Adding a new line to satisfy a high-magnitude
but rare event is not necessarily optimal. In this case, the incentive to better size the network can also
come through incentives through tariffs.

3For instance, Kominers and Tabarrok (2022) and Athey et al. (2022) showed that the price incentives
for providing new vaccines and expanding production capacities were largely sub-efficient compared to
their social value. On the other hand, the crisis also highlights the issue of who should be allocated
the vaccines, given the scarcity of available production capacity. In this context, Akbarpour et al.
(2023a) underlined that the classic opposition between prices and free, but random, allocation is not
straightforward.

4Increasing prices for fossil fuel vehicles would reduce pollution and generate revenue to invest in
decarbonized means. On the other hand, if we want to encourage consumers to use carbon-free transport
solutions, their pricing should also be carefully designed, especially to avoid congestion costs.
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In this chapter, we provide a framework highlighting the inherent tensions that arise

when implementing an allocation mechanism that (i) dictates how agents consume the

goods and (ii) generates revenue to finance new investments in an incomplete information

framework with heterogeneous consumers. We notably assume that the utility buyers

derive from consuming the goods is uncertain and private information. The use of

consumer heterogeneity allows us to raise the issues of the redistribution generated by

an allocation mechanism that is considered more efficient. We find that reaching a

certain level of investment that maximizes aggregate consumer surplus and implementing

the corresponding allocation mechanism to finance the investment can lead to different

welfare levels depending on the consumer types. This issue has been recently studied

in several empirical papers in the context of essential goods. For instance, in electricity

markets, Cahana et al. (2022) explore the redistributive effects of switching from a flat

electricity price to real-time pricing. Depending on the design, low-income households

may lose due to specific consumption patterns in the face of available supply.5 Concerning

medical goods, the scarcity of vaccines creates a trade-off between protecting the most

vulnerable (e.g., elderly), the likely spreader (e.g., students), or the individual bringing

the highest economic benefits (e.g., front-line health workers).6 Finally, in the case of

congestion pricing, Hall (2021) studies the pricing of a lane portion. Using survey and

travel time data, the author finds that a fully efficient toll is unnecessary for sufficient

welfare and Pareto improvement.

However, most of the recent empirical works study the short-term effect of pricing is-

sues without considering the long-term interactions with the level of investment. On the

other hand, numerous theoretical contributions have been made to understand the im-

portance of having sufficient investment.7 Nonetheless, they are mainly centered around

5Levinson and Silva (2022) have studied the rates implemented by utilities in the U.S. and how they
take into account redistribution preferences in their design. Due to the rapid increase in residential
rooftop solar photovoltaic, electricity network tariffs have also been studied, notably in the Californian
markets. If the tariffs are mostly based on variable parts, then non-adopters tend to cross-subsidies
adopters of such technologies. One central issue is that the latter are mostly high-income households
(Burger et al., 2020).

6Sudarmawan et al. (2022) shows how countries choose who should receive the vaccine first. Rah-
mandad (2022) describes the tradeoff of allocating the vaccines between the most vulnerable and the
high-transmission individuals. Finally, Persad et al. (2020) discusses the ethical consideration of allo-
cating vaccines.

7Namely, how to implement mechanisms to procure sufficient investment at the least cost and consider
the private incentives producers face, which may differ from the optimum. Those mechanisms can range
from direct subsidies to the design of more complex competitive markets. An important stream of
literature in electricity markets is focused on studying long-term markets in which producers offer either
future production via long-term contracts (Ausubel and Cramton, 2010) or their future availability
through, for instance, capacity remuneration mechanisms (Léautier, 2016; Holmberg and Ritz, 2020).
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the supply-side of the problem and consider the demand as given. Therefore, the central

contribution of this chapter is to discuss the implications of considering the demand-side

when it comes to ensuring an efficient level of investment. We provide a model to ana-

lyze the interaction between a set of heterogeneous consumers, the choice of the pricing

mechanism, and the use of the revenue generated through this mechanism to increase

available capacity.

The central mechanism of the chapter is that the lack of complete information about

consumer utility and constraints on the implementable mechanism leads to specific re-

lations between the optimal allocation mechanism and the level of investment. We find

that the optimal allocation may lead to discrimination of some consumers based on their

types. Furthermore, both the existence and the magnitude of the discrimination be-

tween consumers depend on the level of investment considered. This means the most

efficient mechanism is not always Pareto-improving for every consumer, even considering

an increase in available capacity. It has, therefore, significant welfare and distributive

implications.

To do so, we study a market designer, which can be interpreted as a public authority

or a regulated monopoly, that (i) determines the allocation in prices and quantities of

a homogeneous good and (ii) chooses the level of investments that maximizes consumer

surplus. The allocation mechanism defines the per-unit monetary transfer and the quan-

tity for a set of consumers during the consumption stage subject to capacity constraint.

Therefore, when the market designer chooses the mechanism, he must consider that

demand may exceed the level of available capacity and that specific actions need to be

taken to reduce aggregate consumption. This creates an asymmetric effect of the optimal

allocation when the capacity is binding or not. Hence, the consideration of the capacity

constraint significantly impacts the design of the efficient mechanism and the revenue

generated by the mechanism.8 We also describe the (potential) incompleteness of the

mechanism proposed by the market designer due to implementation constraints.9 Fi-

nally, note that as the market designer uses the allocation to maximize consumer surplus

and finance the investment cost, he is also under a revenue constraint.

8In this chapter, the capacity constraint is hard in the sense that we do not represent the costs
associated with demand exceeding available supply. Therefore, the market designer can always reduce
demand but at the cost of misallocation due to imperfect information. Several papers have described
those costs in more detail, such as rolling blackouts in electricity (Fabra, 2018; Llobet and Padilla, 2018)
or congestion costs in transports (Yoshida, 2008; de Palma et al., 2017).

9We mean by implementation constraints an environment in which the market designer cannot set
the optimal allocation for every demand realization.
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The consumers are characterized by a linear utility function, which is uncertain when

the market designer makes investment decisions and proposes an allocation mechanism.

This uncertainty has two additive components: (i) a common shock that is identical

across all consumers, and (ii) a private shock only observed by consumers before the

consumption stage and the realization of the common shock. We also embedded each

consumer with a category for which the market designer is publicly informed.10 The ex-

istence of private information with respect to their consumption implies that consumers’

private incentives might also differ from the market designer’s objective. Therefore,

the allocation mechanism in the framework is used simultaneously to generate revenue

to cover investment costs and screen for unobservable characteristics to ensure efficient

consumption.

We analyze several market design environments to highlight the mechanism at play

in this framework. In section 3, we start with the first-best, in which the market de-

signer perfectly observes the consumer type when choosing the investment level and the

allocation. Then, we describe a short-termist market designer, which separates the in-

vestment decisions and the allocation mechanism proposal. Namely, the market designer

sequentially makes the investment decisions under a revenue constraint and chooses the

allocation maximizing consumer surplus given capacity constraints. Section 4 analyzes

the current second-best implemented across many markets. The market designer faces

private information about the level of consumption and is constrained in the monetary

transfer he can implement. Namely, the price is unique for every state of the world, and

it can vary based on the category of consumers. Finally, in section 5, we look at the

theoretical second-best case under incomplete information. We implement a mechanism

design approach in the framework to study the relation between the allocation mech-

anism and the incentive and participation constraints. The remainder of this section

discusses the related literature. Section 2 presents the environment.

10The support of the distribution of a consumer type depends on the category to which he belongs.

154



Related Literature

We build the framework on several strands of literature. The dynamic interaction be-

tween investment decisions and the consumption stages stems from the peak-load pricing

theory that originated from Boiteux (1949). It describes how capacity constraints inter-

act with the provisions of a homogeneous good with time-varying uncertain stochastic

demand. It has mainly been used in recent work to study the role of market power, as

in Léautier (2016), where producers can increase the price on the spot market beyond

marginal cost even though they are not capacity-constrained. The effect of price regula-

tion is also analyzed in Leautier (2018), where the author demonstrates that short-term

inefficiencies can sometimes have long-term and counterintuitive effects. In this paper,

the price cap changes the private incentives producers face, hence the final investment

decisions. Holmberg and Ritz (2020) study the effect of having inefficient rationing.

Consequently, electricity prices do not internalize this additional cost, and the market

designer needs to implement an additional stream of revenue for the producers. This

work introduces two features in the model: (i) heterogeneous consumers with private in-

formation and (ii) inefficiencies due to the schedule commitment by the market designer

before the uncertainty is resolved.11

This chapter is also based on a second stream of papers that is related to the electric-

ity markets and is based on the seminal paper by Chao and Wilson (1987) on priority

service. The central idea is to provide a mechanism design solution in the form of a

contractual arrangement where consumers choose the allocation during the wholesale

market at the same time. It is in the same vein as the allocation schedule of this chapter

and the probability of being disconnected when demand exceeds the level of capacity.

This framework has been refined by a series of papers by the same authors, including

the comparison with other market arrangements (Chao et al., 2022) and the role of risk

aversion (Chao, 2012). We also relate to a series of papers focusing on implementing

the second-best pricing method for consumers with incomplete information in Spulber

(1992a,b, 1993). The work in Spulber (1992b) focuses on an incomplete information

framework without endogenous investment decisions. The optimal allocation schedule

is non-linear because consumers’ type is private information. Therefore, the market de-

signer faces some challenges when implementing such schedules. In Spulber (1992a), a

regulated firm is introduced to consider its revenue constraint. However, the focus of

11This work mirrors the literature from congestion pricing theory from Vickrey (1963, 1969). For
a recent theoretical paper, see, for instance, de Palma et al. (2017), which also compares different
allocation mechanisms but without considering the demand-side.
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this paper remains circumscribed to the design of consumers’ second-best tariffs. Finally,

Spulber (1993) studies the case of a monopoly designing the rates under incomplete in-

formation. We depart from this literature by deepening the private incentives consumers

might have by behaving strategically from the truthful reporting and by tightening the

link with the investment decisions framework developed in the previous paragraph.

The issues related to distributive concerns are borrowed from a growing body of liter-

ature using mechanism design.12 In particular, Akbarpour et al. (2023a) and Akbarpour

et al. (2023b) provide a framework with consumers’ characteristics, such as the private

information and the publicly-observed categories, in line with the current chapter. They

study the trade-off between allocating certain vaccines on a free but random basis or us-

ing prices to discriminate and extract information from consumers. The authors assume

that the market designer has distributive and exogenous revenue preferences. Therefore,

the model exhibits a tension of allocating the good via prices, which generates some

revenue, or via a random free allocation that minimizes distributive issues. This chapter

endogenizes the revenue preference by implementing investment decisions with a revenue

constraint. We also provide results when the market designer can imperfectly implement

prices. Finally, a recent paper by Crampes et al. (2023) studies the implementation of

an optimal Pareto income tax schedule à la Mirrlees when considering the interaction

between consuming energy services (heating, air conditioning, light) and investing in en-

ergy efficiency with incomplete information about consumer utility. This chapter has a

similar spirit, but the link between consumption and production capacity fundamentally

differs.

2 Environment

In this section, we describe the idiosyncratic characteristics of an electricity system for

clarity of exposition. Note that while the terminology is specific, the results can be ap-

plied, with some modifications, to other essential goods as described in the introduction.

12This chapter fits within the new literature on industrial organization using an incomplete information
framework. Triple-IO (for Incomplete Information Industrial Organization) papers aim to underline
traditional industrial organization issues and how they can be renewed when imperfect information
exists. See, for instance, the literature review by Loertscher and Marx (2021). This paper deals with
the effect of capacity-constrained systems where (inefficient) rationing must be implemented. It fits
with some works by Loertscher and Muir (2020, 2021) and Gilbert and Klemperer (2000), which studies
pricing and rationing decisions within imperfect information. We add to the existing literature by
providing a similar framework but by including investment decisions and a different type of rationing
mechanism.
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(i) The demand-side, which can be interpreted as households, industrial consumers, or re-

tailers participating in the electricity market; (ii) The allocation mechanism that defines

how the market designer allocates (in terms of quantity and financial transfer) electricity

to the demand-side. (iii) The supply-side describes how investment and production de-

cisions are made. This current version of the chapter focuses solely on a market designer

configuration where investment decisions are made to maximize consumer surplus. From

an outcome perspective, this is similar to having either a monopolist subject to revenue

constraint or a set of perfect competitive producers without market failure or public

interventions. Finally (iv) The decisions’ timing.

2.1 Consumers Preferences

There exists a unit mass of consumers for electricity. Each consumer is characterized by

a type vector (i, θ, s). The first characteristic refers to the consumer category, such as, for

instance, a consumer being a household or an industry. There is a finite set of categories

such that i ∈ {1, 2}. It is publicly observed, and the size of each category, i.e., the

number of agents, is denoted by µi > 0 for each group. Each consumer is characterized

by a demand level θ, which, under an incomplete information framework, is assumed to

be privately observed by the consumer. Conditional on belonging to a category i, this

value is drawn from a common-knowledge cumulative distribution function distribution

Gi whose continuous density is gi > 0 has full support and is strictly positive on [
¯
θi; θ̄i].

We assume uniform distribution for the type.13 With households, θ could represent the

revenue shocks, the lowest type of consumer being the poor household and the highest

type of consumer being the more prosperous household. Industrial consumers could also

be modeled with this framework, where θ represents their buyers’ orders (see Chao (2012)

for a micro foundation). When we define a consumer category i as being of a higher type

concerning a category j as follows14:

Definition 3.1. If the consumer category i is of a higher type than consumer category

j, then µiθ
av
i > µjθ

av
j

13While this is a restrictive assumption, we believe that the main results in this chapter hold under
different types of distribution functions. For instance, using an exponential distribution will place more
weight on periods during which capacity does not bind. It changes the order of magnitude but not the
fundamental trade-offs.

14In this chapter, the terms a higher type consumer and a bigger consumer are interchangeable, as
well as a smaller type and smaller.
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With θavi s the average type for category i: θav = 1
2
(
¯
θi + θ̄i). On the other hand, we

suppose that consumers are also subject to an individual but identical shock represented

by s, which will be considered as the state of the world in this chapter. When the

shock is realized, every agent in the game knows this value. It can mean, for instance,

weather shock or specific economic conditions (recession) observable by everyone. This

shock follows a common-knowledge continuous distribution F > 0 whose density f > 0

has full support on s ∈ [0, s̄]. In this framework, the demand shock is the same for all

consumers, and the aggregate shock equals 2s. We assume uniform distribution for the

common shock.

We assume each consumer type is known before the demand shocks are realized in

this initial environment. Therefore, this framework encompasses two interpretations of

the demand shocks: (i) a static model, where a single shock is realized, and there is

uncertainty concerning its realization. (ii) a repetition of multiple shocks over a given

period (for example, one year), which are drawn from the distribution F (.) Léautier

(2016). In the last interpretation, we assume that the type of consumer does not change

between different shocks and is determined before this given period. All agents in the

game are assumed risk-neutral.

We define a consumer’s utility belonging to a category i of a type θi. The value

for electricity consumption for each consumer is denoted: U(q, θ, s) =
∫ q

0
u(q̃, θ, s)dq̃,

with q the quantity of electricity allocated to the consumer. u can be interpreted as the

marginal willingness to pay for a given quantity of electricity. If a consumer receives a

quantity q in exchange for a monetary transfer t, we define the indirect utility function,

also referred to as the consumer surplus, as CS(q, θ, s) = U(q, θ, s) − tq. If a consumer

does not receive electricity, we assume its value is null. Finally, we assume that u is

linear of the form: u(q, θ, s) = θ + s− q.

2.2 Allocation design

Given a total quantity Q(s) of electricity in state of the world s, a general allocation

mechanism M can be described via a collection of functions qi : [
¯
θi, θ̄i] → ∆(Q(s))

where qi is a function describing the quantity q of electricity allocation to a consumer

with type θ in category i at a state s. The aggregate quantity allocated to a group i

of consumers is Qi(s) = µi

∫
θi
qi(θ, s)dGi(θ). The total allocation is Q(s) =

∑
i Qi(s) =∑

i µi

∫
θi
qi(θ, s)dGi(θ).
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We also define the function ti(θ, s) as the monetary transfer assigned to a consumer

with type θ ∈ [
¯
θi, θ̄i] in category i at state s. To study the optimal second-best mechanism

with incomplete information in section 5, we rely on the Revelation Principle. Given a

direct mechanism (qi, ti)i={1,2}, for each category, consumers report their type θ, receive

an allocation qi(θ), and pays ti(θ) to the market designer. From a pricing mechanism

perspective, the mechanism design approach is similar to forward contracting, where the

market designer fixed ex-ante both the allowable quantities at a given price for a given

realization of s (Chao, 2011). In this chapter, we also provide another pricing mechanism

that we name market allocation, which is formally defined as follows:

Definition 3.2. A market allocation for a consumer is defined as follows: (1) The market

designer offers the consumer an inverse supply function O−1(q) associating a quantity

and a unit monetary transfer. (2) The consumer selects their quantity consumed given

the supply function based on their demand function d(t, θ, s) with d(t, θ, s) = u−1(t, θ, s).

When the market allocation is chosen and compared to the mechanism design ap-

proach, the market designer does not have to choose the quantity as the following relation

defines it: qi(θ, s) = d(ti(θ), θ, s). For a category i of consumers, the aggregate electric-

ity demand is Qi = d(ti, s) = µi

∫
θi
d(ti(θ), θ, s)dGi(θ)). Finally, the inverse demand

functions for each category as pi(Qi, s) = D−1
i (Qi, s), and the aggregate function for all

consumers is given by p(Q(s), s) =
∑

i D
−1
i (Qi, s). The comparison between the mecha-

nism design and the market allocation will be used for different reasons. In particular, we

will use the fact that the market allocation is an implementable mechanism mimicking

a mechanism design outcome, or on the contrary, as a constraint for the market de-

signer. To present the current pricing mechanisms, we use market allocation as a source

of inefficiencies.

2.3 Supply side

We assume the most straightforward form for the supply-side. A direct interpretation

is that the market designer collects total revenues and makes investment decisions. It

encompasses the literature on the management of a public firm or the direct regulation of

a private monopolist. The model also describes a market designer acting as an interme-

diary between consumers and producers, marking production and investment decisions.

In that case, the mechanism between consumers and the market designer could be un-

derstood as a theoretical retail market, and the mechanism between producers and the
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market designer would be a wholesale market. The main idea is that we remain agnostic

about the proper form of the allocation mechanism between producers and the market

designer. However, we assume it is fully efficient in that the production and investment

decisions are made in the same manner under optimal regulation (for instance, the mar-

ket designer acts as a single buyer in a market with perfectly competitive producers).

In the rest of the chapter, we abstract from those details. We assume a market designer

making both production and investment decisions.

We denote the level of investment k. The investment cost is linear with I(k) = rk.

The production cost is unitary and normalized to 0. The capacity level k implies a

capacity constraint such that for any total quantity allocation Q and any realization of

s, we must have at Q(s) ≤ k.

2.4 Timing

We assume a multi-period game where:

1. Information stage. The consumers (and the market designer under complete

information) learn about consumer types.

2. Investment Decision. The market designer chooses the level of investment k

3. Allocation Proposal.

(a) The market designer chooses an allocation schedule (which can be market or

mechanism-based) offered to the consumers. The allocation can be fully com-

plete if it depends on all the realization of s, or incomplete if some constraints

limit the allocation to some realization of s.

(b) Consumers accept or reject the offer (in this case, the consumer does not

participate in the third stage and receives no electricity).

4. Short-term allocation.

(a) The realization of the common shock is known to every agent or the given

period that occurs.

(b) The allocations are realized following what has been proposed in the third

stage.
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We summarize the timeline of the game below:

Information

stage θ

Investment

decisions k

Allocation

proposal M
Short-term

allocation s

Unknown demand Known demand s

1 2 3 4

3 Complete Information

3.1 Optimal allocation proposal

The first regime we study is the complete information case concerning consumer type.

It can be understood as a nonstrategic regime with complete information in the sense

that consumers reveal their type honestly. For each realization of the shock s, we define

the allocation under complete information with q∗i (θ, s) that maps the observed type of

each consumer for each category to the quantity allocated. The monetary transfer t∗i (θ, s)

maps the observed type of each consumer to the per-unit payment made by the consumer

to the market designer. This framework can be understood as the market designer

offering a price/quantity allocation schedule that varies depending on the demand shock

s. We derive the optimization problem as follows:

max
k

max
ti(θ,s),
qi(θ,s)

CS(k) =
∑
i

µi

∫
s

∫
θi

(U(qi(θ, s), θ, s)− ti(θ, s)qi(θ, s)) dGi(θ)dF (s)

s.t. I(k) ≤
∑
i

µi

∫
s

∫
θi

(ti(θ, s)qi(θ, s))dF (s), (R)

∑
i

µi

∫
θi

qi(θ, s)dGi(θ) ≤ k, (K)

The first constraint follows the principle that the market designer should avoid any

negative revenue at the optimum level of investment. It allows the rewrite of the objective

function by replacing the payment part directly with the investment cost. For consistency
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with the rest of the analysis, we keep separated this constraint. In other words, under

the supply-side assumption and given the absence of production cost, the entire income

is allocated to financing the investment costs. The second constraint is the capacity

constraint. We also include implicitly the conditions such that qi and ti are positive

and that every consumer derives a null or positive surplus when participating in the

mechanism. Finally, from a timing perspective, the constraints should be considered

simultaneously. In the next section, we develop the implications of having sequential

constraints.

We show in Proposition 3.1: (1) The optimal schedule in price (unit monetary trans-

fer) and quantity. (2) The condition for the first-best investment level. (3) The market

allocation implements the first-best schedule. Recall the market allocation is defined

by a price ti linked to the allocation schedule qi such that qi(θ, s) = d(ti(θ, s), s) with

d(t, θ, s) = u−1(t, θ, s). Moreover, let’s define the inverse demand function:

p(q, s) =
∑
i

µi

∫
s

∫
θi

u(q, θ, s)dGi(θ)dF (s)

With s1 as the first state of the world when the capacity is binding:

∑
i

µi

∫
θi

d(0, θ, s1)dGi(θ) = k

Then

Proposition 3.1. (1) The optimal unity monetary transfer and quantity schedule is

defined for each realization of s as follows:

t∗(k, s) =

0

p(k, s)
and q∗i (k, θ, s) =

d(0, θ, s) if s ∈ [0, s1)

d(p(k, s), θ, s) if s ∈ [s1, s̄]

(2) The optimal level of investment is given by the equality between the marginal

investment cost and the expected aggregate marginal utility when the capacity is binding:

k∗ =

{
k | r =

∑
i

µi

∫ s̄

s1

∫
θi

u(k, θ, s)dGi(θ)dF (s)

}
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(3) If the market designer implements a market mechanism with a supply function

given by the monetary transfer schedule t∗(k, s) and when consumers offer truthfully their

demand functions, the market outcome is the first-best allocation.

Proof. See Appendix 1

Solving for the Lagrangean shows that when the capacity is not biding, the optimal

allocation is characterized by an expected marginal utility null. On the other hand, when

the capacity is binding, the optimal allocation should be equal to the marginal investment

cost. It implies that the optimal allocation is such that the marginal utility should be

equal in every state of the world. The equivalence between the first-best and market

allocation can be understood by adding a new constraint to the maximization problem

called (M) and equal to qi(θ, s) = d(ti(θ, s), θ, s). In that case, the two maximization

problems lead to the same outcomes.

The results of this proposition are at the core of how markets in the electricity system

should work. Whenever the capacity is not constraining, prices equal the short-term

marginal cost, i.e. the marginal production cost, which is null in this framework. When

the capacity is binding, prices should be raised above the long-term marginal cost such

that the expected prices during those periods equal the marginal investment cost. Given

the maximization objective, the optimal transfer between consumers and the market

designer for each s is identical to implementing the single price given by the aggregate

inverse demand function at the capacity level.

With the linear model, we can express the expected consumer surplus in three inter-

mediate cases depending on the level of investment k and the realization of the demand

shock s: (i) the capacity always binds for any s, that is, for low values of k we have

s1 = 0, (ii) the capacity never binds for any s, that is high values of k we have s1 = s̄

(iii) the capacity binds for some s, that is for intermediate values of k we have s1 ∈ [0, s̄].

For the last case, we can express, for instance, the expected consumer utility under the

optimal single-price allocation as follows15:

15In the rest of the chapter, we do not always study all the possible cases depending on the value of
k, as they do not change the theoretical results. We keep the last one as the main reference.
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∑
i

µi


∫ s1

0

∫
θi

U(d(0, θ, s), θ, s)dGi(θ)︸ ︷︷ ︸
off-peak utility

dF (s) +

∫ s̄

s1

∫
θi

U(d(pk, θ, s), θ, s)dGi(θ)︸ ︷︷ ︸
on-peak utility

dF (s)



pk = p(k, s) is defined for notation clarity as the aggregate demand function at the

investment level p(k, s).

3.2 Long-term vs. Short-term consumer surplus

The previous section showed that the optimal mechanism allocation is identical to a

market under complete information when the market designer seeks to optimize the

expected consumer surplus. In practice, the market designer might pay attention to

consumer surplus on a short-term horizon. To represent this behavior, we analyze in this

section the consequences of choosing the investment level first and the consumer surplus

under a market allocation second.16 We formally present the assumptions below.

Assumption 3.1.

1. In a period 0, the market design chooses the level of investment and pays the fixed

costs

2. In a period 1, the market design chooses and offers the price schedule.

3. The market designer implements a market allocation.17

16Recent events in the European electricity markets showed that a market designer might adopt
this short-term-oriented policy. Some interventions focused on reducing short-term prices via diverse
interventions without considering long-term investment decisions. Therefore, this modeling approach
could mirror those interventions.

17We omit the proof that the market allocation also implements the corresponding quantity schedule
in the short-term allocation, as it is similar to the proof for the first-best.
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We define the new objective for the market designer as follows.

max
k

max
ti(θ,s),
qi(θ,s)

CS(k) =
∑
i

µi

∫
s

∫
θi

(U(qi(θ, s), θ, s)− ti(θ, s)qi(θ, s))dGi(θ)dF (s)

s.t.

period 0 : I(k) ≤
∑
i

µi

∫
s

∫
θi

(ti(θ, s)qi(θ, s))dF (s), (R)

period 1 :
∑
i

µi

∫
θi

qi(θ, s)dGi(θ) ≤ k, (K)

qi(θ, s) = d(ti(θ, s), θ, s), (M)

Compared to the long-term case, we dissociate the maximization problem into two

sub-problems, which are solved using backward induction. First, the market designer

maximizes the consumer surplus by choosing prices and quantity such that the quantity

cannot be above investment level (K), and the market designer implements a market

allocation (M).18 Then, it selects the investment level given the revenue made in the

second period. We describe the mechanism in the following proposition assuming w.l.o.g.

that consumers of category 1 are of a higher type than category 2. For clarity we assume

that θ̄1 ≥ θ̄2 ≥
¯
θ1 ≥

¯
θ2. We define sj(k) with j ∈ {1, 2, 3} such that the total quantity

of consumers at a null price equals the investment level.19

Proposition 3.2. Under short-term consumer surplus maximization, the best allocation

schedule is an individualized price system. Assuming w.l.o.g. that consumer category 1

is of a higher type than category 2, then the price and quantity schedule is defined for

each realization of s as follows.

• If s ∈ [0, s1) then tst1 (θ, s) = tst2 (θ, s) = 0

• If s ∈ [s1, s2) then tst1 (θ, s) = 0 for all consumers 1 and tst2 (θ, s) = 0 for consumers 2

with θ ∈ [
¯
θ1, θ̄2]. Define Q1

0(s) the total quantity for consumers having tsti (θ, s) = 0.

Then, for consumers 2 with θ ∈ [
¯
θ2,

¯
θ1], t

st
2 (θ, s) is defined such that

18Without the constraint, the market designer would choose a null price.
19Formally:

∑
i µi

∫
θi
d(0, θ, s1)dGi(θ) = k , µ1

∫ θ̄1

¯
θ1

d(0, θ, s2)dG1(θ) + µ2

∫ θ̄2

¯
θ1

d(0, θ, s2)dG2(θ) =

k , µ1

∫ θ̄1

¯
θ2

d(0, θ, s3)dG1(θ) = k
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µ2

∫
¯
θ1

¯
θ2

d(tst2 (θ, s), θ, s)dG2(θ) +Q1
0(s) = k

• If s ∈ [s2, s3), then tst1 (θ, s) = 0 for consumer 1 with θ ∈ [θ̄2, θ̄1]. Define Q2
0(s)

the total quantity for consumers having tst(θ, s) = 0. Then, for all consumer with

θ ∈ [
¯
θ1, θ̄2], a unique price for same types of both category tst(θ, s) is defined such

that ∑
i

µi

∫ θ̄2

¯
θ1

d(tst(θ, s), θ, s)dGi(θ) +Q2
0(s) = k

• For s ∈ [s3, s̄] then define tst1 (θ, s) for consumers 1 such that

∫ θ̄1

θ̄2

d(tst1 (θ, s), θ, s)dG1(θ) = k

The prices are set to θ+s for all other consumers, so their demand is null. Moreover,

the demand schedule is determined by the demand function d(t, θ, s) at the defined price

schedule.

Proof. See Appendix 2

Given the capacity constraint, the individualized price system can be understood as

a rationing mechanism. Hence, the price schedule is constructed to ration consumers

from the lowest type to the highest one. Given the ordering between the categories,

the second price (between s1 and s2) consists in reducing the consumers belonging to

category 2 whose type is comprised between
¯
θ2 and

¯
θ1.

20 For any states between s2 and

s3, the market designer is indifferent between rationing consumers from both categories

(as soon as it does in increasing order). Finally, the last prices are defined to exclude

category 2 from the market while continuing rationing the lowest consumers type from

category 1 whose type is between θ̄2 and θ̄1. For other consumers whose prices are not

defined, we assume that the market designer excludes them such that the price implies

a null consumption.

Illustrative Example The short-term mechanism can be understood in a setting with

a discrete set of consumers. Assuming that only two consumers with type θ1 and θ2

drown from the corresponding distribution, such as θ1 > θ2. In that case, the allocation

under a short-term mechanism can be described as follows:
20When

¯
θ2 =

¯
θ1 this schedule is not needed.
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tst1 (k, θ1, s) = {0, 0, u(k, θ1, s)} | tst2 (k, θ1, s) = {0, u(k − d(0, θ1, s), θ2, s), θ2 + s}

qst1 (k, θ1, s) = {θ1 + s, θ1 + s, k} | qst2 (k, θ1, s) = {θ2 + s, k − (θ1 + s), 0}

As consumer surplus always decreases with prices, the optimal situation when there

is no capacity constraint (s ∈ [0, s1]) is when tst1 = tst2 = 0. It implies a quantity equal to

d(0, θi, s) = θi + s and corresponds to the first terms in the set of prices and quantities.

When the capacity starts to bind, (s ∈ [s1, s3)), prices must rise to ration consumers.

Again, as consumer surplus always decreases with prices, this implies that the constraint

will always bind and that it is never optimal to set prices such that quantity is below

capacity. Note that the capacity constraint:
∑

i d(t
st
i , θi, s) = k can be rewritten to

express consumer surplus at the capacity constraint only with respect to tst1 . We find

that the consumer surplus exhibits a U shape. We formally prove this result in the

Appendix.

The key difference between the two allocation mechanisms can be understood as

follows. The market designer chooses prices and quantities given the investment level

in the short-term consumer mechanism allocation. So prices, when understood from

a market perspective, are set only to ration and reduce the quantity. In that case,

maximizing the consumer surplus always implies a form of discrimination against the

lowest consumers as soon as consumers have heterogeneity and a capacity constraint. The

revenue from prices acts only as (residual) transfers to cover fixed costs and choose the

investment level. Given the investment level, the best allocation follows this personalized

price system.

On the other hand, under the first-best consumer allocation, the market designer

cares about the long-term decisions of choosing the optimal level of investment. In

that perspective, prices are chosen to generate revenues and efficiently ration consumers.

When increasing the (marginal) level of investment, the market designer internalizes

the opposite effect of sustaining a marginal investment cost and increasing the available

quantity for consumers. This increase in quantity allows both an increase in consumer

surplus and prices to cover the fixed costs. We compare the quantity and price schedule

in Figure 3.1 for the discrete case.21 The red curves represent the higher consumer

1, and the blue curves represent the lower consumer 2. For the (expected) quantity

21The shape of the graphs would be the same when plotting the aggregate quantity for each category.
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Figure 3.1: Quantity and price schedules under first-best and short-term consumer sur-
plus mechanism. The price schedules on the plot represent only prices associated with a
positive quantity. Short-term allocation favors consumers with a higher type and leads
to individual price discrimination.

schedule, the black line represents the total quantity, which is by definition equal between

the two mechanisms (the plateau is equal to k). They only differ with respect to the

allocation between consumers. The first-best mechanism is shown in the first plot with

dashed curves. Whenever the capacity is constraining, the central idea of the short-term

mechanism is to exclude the lowest type of consumers gradually. The second plot shows

this via individualized (expected) prices. For clarity, we have excluded prices used to

exclude consumers. Each increasing price is assigned to a specific group of consumers.

The first blue line is assigned to consumers of category two between with θ ∈ [
¯
θ2,

¯
θ1]. The

second mixed-colored curve is applied to consumers of both categories with θ ∈ [
¯
θ1, θ̄2].

Finally, when the demand is too high, it is always optimal to exclude all consumers with

types lower than θ̄2 and set a price, given by the red curve, for consumers above such

that capacity is binding.

To compare this allocation schedule with the first-best solution, we provide in Corol-

lary 3.1 a description of the optimal quantity (i.e., rationing) that maximizes the first-best

surplus. Instead of setting prices and letting the quantities adjust, the market designer
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could select quantities and impose a transfer on each consumer. Such a policy can be

implemented when prices do not emerge due to price regulation, such as in a price cap

case (see, for example, Leautier (2018); Zöttl (2011)). When the capacity is sufficiently

binding such that the price cap constrains the price on the market, the market designer

needs to set a quantity rationing policy. The corollary describes this policy under the

linear and uniform model:

Corollary 3.1. Under linear marginal utility assumption and uniform distribution.

(i) When the capacity starts to bind, then the optimal rationing is independent of s:

α∗
i = µi +

µiµj(θ
av
i − θavj )

k
∀s ∈ (s1, s̄]

(ii) Assuming that consumer 1 is the higher type (θ1 > θ2) Under the individualized

price system, the rationing strategy consists of rationing first the lowest type and then

the highest type. If αst
i is the rationing policy under the individualized price system, then

we have:

αst
1 = µ1

s+ θav1
k

and αst
2 = 1− αst

1 ∀s ∈ (s1, s2]

αst
0 =

1

k

(
θ̄1 − θ̄2
θ̄1 −

¯
θ1

)(
2s+

θ̄1 + θ̄2
4

)
and αst

−0 = 1− αst
0 ∀s ∈ (s2, s3]

With αst
0 the ratio for consumers from category 1 with θ > θ̄2 receiving a null price,

and αst
−0 the ratio for consumer belonging to both category receiving positive price.

Proof. See Appendix 3

We turn now to the choice of k. Under this framework, we dissociate two notions: The

short-term consumer surplus without lump-sum transfers and the long-term consumer

surplus with lump-sum transfers. The first notion describes the consumer surplus at

the level of investment without taking into account the revenue constraint of period 0.

Recall that the backward induction implies that we find prices and quantities given a

value of k. Still, the sequence of decisions does not mean that the revenue generated in

the second period covers the corresponding investment cost of the first period. Hence, we

define this short-term consumer surplus as follows: CScs(k) = U(k)−R(k), with U the

expected aggregate utility, which depends solely on the quantity schedule, and R(k) the
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expected aggregate revenue, which depends on the quantity and price schedule. On the

other hand, we can also define a feasible long-term consumer surplus that considers only

the utility and the investment costs, which can be expressed as CSlt(k) = U(k)−I(k). In

that case, the market designer can always implement a non-distortive lump-sum transfer

T (in any period) such that investment costs are covered: T = max(0, I(k)− R(k)). In

the proof relative to the first-best allocation k∗, we show that at the first-best investment

level, we always have CSlt(k∗) = CSst(k∗). Lemma 3.1 describes the level of investment

that maximizes the long-term consumer surplus given the short-term allocation schedule.

Lemma 3.1. The long-term consumer surplus under a short-term maximizing regime

can exhibit non-concavity. There is at least one local maximum and at most five local

maxima.

Proof. See Appendix 4

The value of each investment derives from the first-order condition of the consumer

surplus under the price and quantity schedule described in Proposition 3.2. It signifi-

cantly differs from the first-order condition of Proposition 3.1. We express the condition

as follows:

r =

∫ s2

s1

marg. utility from category 2︷ ︸︸ ︷
µ2

∫
¯
θ1

¯
θ2

(
tst2 (θ, s)

∂tst2
∂k

)
dG2(θ) dF (s) +

∫ s3

s2

∑
i

marg. utility from cat. 1 and 2︷ ︸︸ ︷
µi

∫ θ̄2

¯
θ1

(
tsti (θ, s)

∂tsti
∂k

)
dGi(θ) dF (s)

+

∫ s̄

s3

µ1

∫ θ̄1

θ̄2

(
tst1 (θ, s)

∂tst1
∂k

)
dG1(θ)︸ ︷︷ ︸

marg. utility from category 1

dF (s)

When choosing the investment level, the market designer needs to weigh the effect

of a change of k on the positive prices that generate positive quantities for consumers

(i.e., It excludes consumers that are not rationed (null prices) or fully rationed (null

quantity). The first-order conditions capture those effects. The existence of multiple

possible maxima stems from the boundary conditions due to the capacity constraints.

We therefore study the (seven) possible maxima for the different values of the sj. We

find that there are only six possible values.
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Figure 3.2: Expected consumer utility and surplus under the short-term (ST) and first-
best (LT) allocation. The short-term maximizes consumer surplus without taking into
account investment costs and favors bigger consumers. On the other, the reverse happens
when considering investment costs under the first-best allocation.

Next, the result in Corollary 3.2 shows the short-term consumer surplus is higher

under the short-term allocation, and the long-term consumer surplus is always higher

under the first-best allocation.

Corollary 3.2. The individualized price system that maximizes the short-term consumer

surplus always leads to a lower long-term consumer surplus. Moreover, consumers with

lower types are always worse off with the individualized price system.

Proof. The proof is straightforward, as the quantity and price schedules differ from the

first best. In that case, the quantity is lower, and prices are higher for consumers with

lower types; their consumer surplus is also lower compared to the first-best.

We illustrate the results in Figure 3.2. The first panel shows the short-term consumer

surplus U(k)− R(k), and the second shows the long-term surplus, U(k)− I(k), for the
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respective short-term and first-best allocations. The solid curves represent the first-

best allocation, while the dashed curves represent the short-term allocation. As we

can see, the associated short-term consumer surplus is always higher under short-term

allocation. However, when considering the necessary lump-sum transfer to cover the

fixed costs fully, the long-term consumer surplus is consistently lower. Note that the

consumer surplus under the single-price system is concave, while under the multi-price

system, it exhibits some non-concavity. The dots represent the investment level that

maximizes the consumer surplus.

4 Incomplete Information - Fixed price

In this section, we study the second regime under which the market designer has to

choose the best allocation, given the following assumptions:

Assumption 3.2.

1. The consumer’s type is unknown to the market designer.

2. The market designer cannot extract any information from consumers.

3. The price schedule offered by the market designers is constrained to a unique price

for every state of the world.

4. Given a set of prices tri , the market designer implements a market allocation until

the capacity is not binding, and the market designer implements a rationing policy

when the capacity is binding.

The first assumption implies an incomplete information framework. The second as-

sumption means that when offering the best allocation, the market designer is not subject

to incentive compatibility constraints. The third assumption provides a more realistic

approach between the complete first-best allocation and the incomplete information case

with a mechanism design setup described in the next section. Indeed, it approximates

the actual management of essential goods such as retail electricity or public transport,

where a market designer is constrained in its short-term allocation while having imperfect

information on its consumers’ type. To capture the effect of incomplete information, the

market designer must be constrained when implementing the mechanism. It can come
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(i) from the quantity allocation - that is, consumers do not maximize their utility22 - (ii)

or from the proposed monetary transfer. In the last case, the price schedule is incom-

plete because it is not optimal for every value of s. It distorts the quantity consumers

demand, even though it maximizes their utility.23 In this chapter, we take the second

interpretation: We assume that the market designer can only choose a single price for

every state s. From a policy perspective, this is similar to a market designer offering a

fixed-price contract to consumers.24

In this section, we study two cases: (i) the market designer does not discriminate

between different categories, and the offered price is unique for every consumer; (ii) the

market designer can discriminate between different categories, and he offers a price for

each category.25 The first case allows us to focus the analysis on highlighting the trade-off

the market designer faces when collecting revenue for the investment cost. In contrast,

the second case highlights the distributive effect between consumers of different groups.

This modeling approach underlines a market designer’s trade-off concerning the un-

certainty of the consumers’ types, even without strategic inefficiencies. The core idea of

the model is that, without any information, a market designer has to choose a price tri

independent of the world’s states s. However, one issue remains unanswered, which is

how quantities are allocated within the framework. While the choice of a unique price

forever consumer does not need any information concerning consumer type, the market

designer still has to choose how to allocate the goods between consumers. In this section,

we make the following assumption.

Finally, the last assumption can be understood as follows. When the capacity is not

binding, quantity is adjusted given the price price tri . When the capacity is binding,

a random allocation is implemented because of incomplete information.26 Following

22See for instance Martimort and Stole (2020) which studies the optimal monopoly nonlinear pricing
in an incomplete information setting where consumers wrongly equal marginal benefit with average
price. For empirical evidence, see Ito (2014).

23In current practice, political and technological constraints imply that the market designer (or any
retailer) can only propose a finite number of schedules. See, for instance, Astier (2021) for theoretical
and empirical implications for consumer surplus of allocation incompleteness.

24An important caveat is that when considering the case with a discrete number of consumers, a
first-best allocation does not replicate the optimal allocation in incomplete information. That is, even
with a complete set of prices, private information leads to inefficiencies.

25Political or technical reasons can prevent the market designer from distinguishing between different
categories. It will be apparent in the section that even though the outcome of discrimination is welfare-
enhancing, it is not always Pareto-improving for every category.

26This is not the only mechanism the market designer can implement. Indeed, we could assume a
mechanism design approach where the market designer can also choose qi(θ, s) when the capacity is not
binding. In that case, the market designer produces the total quantity as in the first best and allocates
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the framework description, we modify the actions taken by the market designer. The

allocation proposal comprises (i) choosing tri and (ii) defining the rationing policy αr
i

described below (that is, the share of capacity each consumer is receiving when capacity

is binding). Below, we provide an updated figure considering the decisions the market

designer has to make within this framework.

Information stage

θ

Investment

decisions k

Choice of tri

Rationing policy αr
i

Short-term

allocation s

Unknown demand Known demand s

1 2 3 4

4.1 Single price policy

We start by assuming that the market designer is constrained by setting a unique price

for each category, so we drop the index and assume that tr is the price chosen by the

market designer. The incomplete information set-up in this section has an important

implication regarding quantity allocation. Indeed, combining a single-price policy and

imperfect knowledge implies that some inefficient rationing should be expected in the

market. To see this, recall that d(tr, θ, s) is the quantity a consumer asks given the price

tr. Let’s define sr0 the first states of the world when the capacity is binding when the

price is tr, that is:

∑
i

µi

∫
θi

d(tr, θ, sr0)dGi(θ) = k

For any ≤ sr0, the price is such that capacity is not binding. That is, the quantity

asked by each consumer is short-term. In that case, there is no need for rationing.

Note, however, that when tr > 0, the model does imply an inefficiency similar to the

effect of market power. Due to the price being higher to marginal, it prevents some

it randomly to the consumers. We find that there is no clear ranking between the two mechanisms
regarding consumer surplus, which depends on the model parameters. The market allocation minimizes
the cross-subsidies between consumers, but when prices determine the quantity when the capacity is
not binding, it induces a negative price effect. This section aims to illustrate current practice, and the
two mechanisms do not fundamentally differ. Therefore, we choose to represent the market allocation
approach.
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Pareto-improving trade from happening. For any s ≥ sr0, capacity is binding, and the

total quantity each consumer asked is above the available capacity. To avoid market

failure, the market designer needs to reallocate quantity between consumers. However, we

assumed that he does not observe consumer type. Without any possibility of extracting

information, the only option for the market designer is to allocate a quantity equal to

the investment level equally across consumers. Therefore, the individual quantity k and

the expected quantity for each category is µik. We illustrate the implications by defining

the expected utility under the single-price policy with incomplete information.

∑
i

µi

∫ sr0

0

off-peak utility︷ ︸︸ ︷∫
θi

U(d(tr, θ, s), θ, s)dGi(θ) dF (s) +
∑
i

µi

∫ s̄

sr0

on-peak utility︷ ︸︸ ︷∫
θi

U(k, θ, s)dGi(θ) dF (s)

We now determine the best single-price policy given the framework. Compared to

the previous analysis, the optimal price tr depends not only on the first-best condition

but on the revenue constraint. If it exists, the optimal value tr(k, tr) satisfies the net

revenue condition Rk(k, tr) = 0 with:

Rk(k, tr) := tr

(∑
i

µi

∫ sr0

0

∫
θi

d(tr, θ, s)dGi(θ)dF (s) +

∫ s̄

sr0

kdF (s)

)
︸ ︷︷ ︸

Expected revenue

−I(k)

This observation is close to what can be found in the literature on peak pricing with

price-inelastic consumers. In that case, the optimal price is simply the average cost.

Under the framework, the optimal single price is different due to the price response of

the consumers during off-peak periods and to the inefficient rationing occurring in the

on-peak periods. Next, we provide in Proposition 3.3 the relation between the investment

level and the optimal single-price

Proposition 3.3. If an optimal single-price tr(k) exists, it increases in k.

Proof. See Appendix 5
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Proposition 3.3 shows that expanding the capacity level always leads to the positive

(revenue) effect dominating the adverse (price) effects. That is, the effect of the increase

in the revenue collected during on-peak periods offsets the compound negative impact of

a price increase that (may) lower the revenue during off-peaks and reduces the occurrence

of on-peak periods.27

When choosing the price tr, the market designer must trade off opposite effects.

Indeed, increasing tr lowers quantity during off-peak. Hence, the revenue effect during

off-peak is ambiguous. For on-peak periods, the revenue effect is always positive as the

expected quantity is k and is not affected by a change of tr. Note that the revenue is

concave in tr, meaning that the second-order effects are negative, limiting the market

designer’s ability to extract revenue from consumers.28 Those effects can be shown by

expressing the first derivative of the expected net revenue:

∂Rr

∂tr
=

∫ sr0(k)

0

( price effect −︷︸︸︷
dtt

r +

quantity effect +︷ ︸︸ ︷∑
i

µi

∫
θ

d(tr, θ, s)dGi(θ)
)
dF (s)︸ ︷︷ ︸

off-peak marg. revenue

+

∫ s̄

sr0(k)

qtt. effect +︷︸︸︷
k dF (s)︸ ︷︷ ︸

on-peak marg. revenue

With dt = ∂d
∂t

the derivative of the demand function with respect to prices. Cal-

culation shows that
∂sr0
∂tr

> 0, as a higher price implies that consumers decrease their

consumption, and the capacity is binding less often. The proof relies on the observation

that the second derivative is always negative. Hence, the revenue is concave in tr. This

comes from the (expected) marginal revenue of the off-peak revenue, and the marginal

revenue effect cancels each other at s = sr0(k), leaving the (negative) price effect. Next,

we show how k modifies the expected revenue. An increase in the investment level leads

to more investment costs and an increase in the quantity during on-peak periods. In other

terms, the gain in on-peak periods cannot compensate for the loss due to the investment

costs. Then, we use the fact that Rr(k) is concave in tr, and we study its behavior at the

limit case such that the value k implies that the capacity always binds (i.e., sr0(k) = 0).

In that case, we have tr = r. Moreover, we also have at this limit: ∂R
∂tr

> 0, implying

that the revenue is increasing at the limit in tr. If the function is concave, there could be

27From a policy perspective, the market designer never wants to lower price so as the increase the
consumption during off-peak.

28Increasing tr lowers the occurrence of on-peak periods, and the revenue during off-peak is concave
due to the linearity assumption of the marginal utility.
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at most two potential values for the optimal value of tr. However, the consumer surplus

is always decreasing in prices; therefore, a lower price is always optimal compared to a

higher price. So, the optimal value corresponds to the first increasing part. As Rr(k) is

always decreasing in k, the solution of Rr(k) is also increasing with k.

4.2 Category-price policy

We extend the previous findings by assuming that the market designer imperfectly dis-

criminates between consumers and implements a category-based price to finance its in-

vestment cost. We start by defining the new rationing policy under this framework. This

stage boils down to allocating the capacity k in the first step between the two categories

and the second step, randomly for each consumer within each category. We find that the

market designer allocates the same expected quantity to each category under the first

best allocation (even though the within-category allocation remains inefficient). The

problem is solved as follows. Let the quantity for category i be qi; then, when the ca-

pacity is constraining, we must have for every state of the world:
∑

i µiqi = k, implying

that the relation between the quantity is equal to qi(qj) =
k−µjqj

µi
. Then, we maximize

the short-term expected utility given the previous relation. Solving using the first-order

condition leads to a capacity share for each consumer belonging to a group i equals to

the allocation of Corollary 3.1 under the first best allocation.

Given this optimal rationing policy, we now define the new problem the market

designer faces:

max
k

max
tri

CSr(k, tr1, t
r
2) =

∑
i

µi

∫
s

∫
θi

(U(qri (θ, s), θ, s)− tri q
r
i (θ, s))dGi(θ)) dF (s)

s.t. I(k) ≤
∑
i

µi

∫
s

∫
θi

tri q
r
i (θ, s)dF (s), (R)

We drop the capacity constraint as the rationing policy defines it implicitly. To see

this, we can redefine the state of the world sr1 when the capacity starts binding:

∑
i

µi

∫
θi

d(tri , θ, s
r
1)dGi(θ) = k
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Then, the quantity qri (θ, s) allocated in the market for each consumer of catagegory

i is equal to d(tri , θ, s) when s < sr1 and αr
ik = k + µj(θ

av
i − θavj ) when s ≥ sr1. Note

that while the total quantity for each category is identical under the first-best and this

framework, the total utility does differ. It implies a very similar delta in terms of utility

as the equation in the previous section with a single price policy.

First, let’s note Lr, the Lagrangian associated with the market designer program such

that

Lr(k, tr1, t
r
2, γ

r) = CSr(k, tr1, t
r
2) + γrRr(k, tr1, t

r
2)

With CSr the aggregate expected consumer surplus defined as the sum of consumers’

utility net of monetary transfers, γr the lagrangian multiplier associated with the revenue

constraint, and Rr(k) the revenue constraint (expected revenue net of investment costs).

Then, using the Envelop Theorem, we can express the derivative of an optimal price

with respect to k as follows:

∂tri
∂k

=
(
CSik + ρiCSjk + (Ri − ρiRj)γ

r
k + (Rik − ρiRjk)γ

r
)−Ljj

Hr
(3.1)

γr
k = − 1

bHr

(∑
i

Ri(LijLjk − LjjLik) +RkH
r

)

With ρi =
Lij

Ljj
. Hr = L11L22 − L12L21 being the determinant of the Hessian matrix

of the Lagrangian. bHr = LijRiRj −LjjR
2
i −LiiR

2
j +LjiRiRj being the determinant of

the bordered Hessian matrix of the lagrangian. Each variable’s index is associated with

the corresponding derivative. For instance, CSik reads as the cross derivative between

the price of category i with respect to the investment level. It measures the (marginal)

change of the marginal effect of price tri on the consumer surplus. We summarize the

findings in the following proposition.

Proposition 3.4. Suppose that category 1 consumers are of higher types than category

2 consumers and that the investment cost is not too high then:

• tr1(k) is increasing with k

• tr2(k) is first decreasing, then increasing with k.
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Figure 3.3: Optimal prices under the category-price policy with respect to the investment

Proof. In Appendix 6, we provide the formal proof and the condition under which the

results hold. It relies on two Lemmas that ensure that a minimum exists. We also

provide a more technical discussion on the rationales for this proposition.

Figure 3.3 illustrates the results. The red curve shows tr1(k), the blue curve shows

tr2(k), and the black dashed curve shows the optimal single price tr(k) found in the pre-

vious section. Following the proposition, we observe that the blue curves corresponding

to the group with a lower expected demand exhibit a non-monotonic relationship with

the level of investment such that it decreases for low values of k and then increases again

following a similar behavior to the optimal price for the higher category of consumers

represented in the red curve.

The proof of such behavior of the optimal prices can be understood by distinguishing

the first-order and the second-order effects of prices and level of investment on (a) the

aggregate consumer surplus and (b) the revenue constraint. The non-monotonicities of

prices are the result of a consumer surplus effect dominating first a revenue effect

for low values of k, then the revenue effect dominating the consumer effect for higher
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values of k. We summarize this tension between consumer and revenue effects in the

following equation, which is a more detailed expression of Equation 3.1.

∂tri
∂k

=

≤0︷ ︸︸ ︷
−Ljj

Hr

( effect of k on CS with holding R fixed︷ ︸︸ ︷
CSik + ρiCSjk + (Ri − ρiRj)

∑
i

(CSik − ρiCSjk)
Ri

LjjbHr

+ γr

(
Rik − ρiRjk + (Ri − ρiRj)

∑
i

(Rik − ρiRjk)
Ri

LjjbHr

)
−Rk

Hr

bHr︸ ︷︷ ︸
effect of k on R

)

The first step for understanding the results lies in how those opposite effects change

with the level of investment. As shown in the previous section, this framework implies

that a change of k does affect both revenue and the consumer surplus, which is captured

via the direct effect on prices needed for financing this investment and the change of

occurrences between off-peak and on-peak periods. First, the level of investment induces

a positive first derivative of the consumer surplus and a negative second derivative.

That is, increasing k always increases the surplus, but for a higher level of investment,

the positive impact is relatively smaller. On the other hand, an analysis of how the

revenue constraint behaves shows a convex effect with respect to k. It implies that an

increase of k leads to the revenue constraint shifting at an increasing rate.29 The switch

between the decreasing and increasing parts is associated with the consumer surplus

effect dominating the revenue effect first. As k increases, the respective concavity and

convexity of the functions lead to the revenue effect dominating the surplus effect.

The increasing prices on the right part of Figure 3.3 can be understood through

the results of Proposition 3.3. The ranking between the category prices stems from the

preference for discriminating bigger consumers. Increasing tr1 generates more revenue as

they consume, on average, more.

Let us turn towards the left part of Figure 3.3. From a consumer surplus perspective,

and as illustrated in Proposition 3.2, the market designer prefers (i) discrimination and

(ii) favoring the consumers from the category of the highest type. Preferring discrimi-

29The pure revenue effect of increasing prices is found in the previous section. The intuition is that
when k increases, the marginal gain from an increase of capacity during on-peak periods is offset by
the increase in investment costs and by the decrease of on-peak periods. In the Appendix, we formally
demonstrate that tr is convex with respect to k.
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nation implies that consumer surplus exhibits a U shape form. Due to the asymmetry

between the consumers, the function is skewed towards lower types. This is because

higher types bring relatively more surplus than the smaller types. Next, we show why

the asymmetry between the two consumers decreases for a higher value of k. Indeed, we

find that this is not fully due to the revenue effect. For the sake of clarity, let’s assume

the revenue does not depend on k. We study the impact of k on the indifference curve

of the market planner with respect to the prices tr1 and tr2. We define the marginal rate

of substitution between the two prices:

MRSi→j(k) =
CSr

i

CSr
j

It implies that the MRS changes with respect to k as follows:

∂MRSi→j

∂k
=

CSr
ikCSr

j − CSr
jkCSr

i

CSr
j
2

Therefore, the decreasing right part of prices can be explained by having
∂MRSi→j

∂k
< 0.

As the level of investment increases, and to keep the same level of consumer surplus, a

decrease in tri should lead to a relatively smaller increase of trj . We provide in the

Appendix 6 more technical details of this discussion. The economic interpretation of

the effect of k can be understood as follows. As k increases, it negatively impacts the

(negative) marginal effect of prices on consumer surplus. Because consumers from the

bigger category have a higher marginal consumer surplus with respect to price, the

negative marginal effect of prices of k is bigger than for the consumers from the smaller

category. In other words, as k increases, CSi decreases faster than CSj, which implies

a negative effect on the MRS. This can be explained by the fact that as k increases, it

lowers the occurrences of on-peak periods, which makes consumers more exposed to the

negative price effect on the quantity during off-peak periods. This, in turn, incites the

market design to have lower prices, which is attained by lowering discrimination.

We illustrate this intuition in Figure 3.4. We represent a fixed revenue constraint as

well as two indifference curves with respect to tr1 and tr2 for two values of k. As k increases,

we show that the indifference curves tend to decrease in the sense that their marginal
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Figure 3.4: Illustration of the decreasing part of tr2 with respect to k

rate of substitution decreases with k. It is this shift in the shape of the consumer surplus

that implies a decrease in the optimal price, meaning that the gain in lower prices is

higher than the gain from discrimination.

We conclude this section by analyzing the implication of the optimal policy when

choosing the level of investment to maximize the consumer surplus. We define the first-

order conditions using the Envelop Theorem for constrained optimization. That is, it is

sufficient to derive the derivative of the Lagrangian with respect to k: ∂Lr

∂k
= ∂CSr

∂k
+γr ∂Rr

∂k
.

We start with the individual consumer surplus30:

∆ in quantity btw. off-peak and on-peak︷ ︸︸ ︷∫ d(tri ,θ,s
r
1)

αr
i k

u(q, θ, sr1)dq +

+ in on-peak CS︷ ︸︸ ︷∫ s̄

sr1

(u(αr
ik, θ, s)− tri )dF (s)

The second term is similar to the complete information benchmark. It represents

the gain in consumer surplus during on-peak as capacity expands. Note that the gain

30We use the individual surplus for clarity. The aggregate surplus exhibits similar behavior.
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in surplus does not depend on the price as the quantity is randomly assigned to each

consumer in each category due to imperfect information. The first term stands for the

change at the margin of quantities for each consumer. Under complete information,

the quantities allocation is continuous in s. However, due to incomplete knowledge, the

market designer creates a discontinuity in the allocation when capacity starts binding,

which implies that the value at sr1 does not cancel out. For the revenue, the derivative

can be expressed as follows:

∆ in quantity btw. off-peak and on-peak︷ ︸︸ ︷∑
i

µi

∫
θi

tri

(
d(tri , θ, s

r
1)− αr

ik

)
dGi(θ)+

+ in on-peak rev.︷ ︸︸ ︷∫ s̄

sr1

∑
i

µit
r
idF (s)−r

The first term is similar and originates from discontinuity. The second term comes

from the increase in available quantity during on-peak. As expected, and similarly to

the first-best investment level, the sign of the first-order condition is ambiguous as it has

positive and negative effects of an increase in k. For instance, it raises investment costs,

but it also raises available revenue. Calculations show that a level of investment exists

that maximizes the expected aggregate consumer surplus, as the consumer surplus and

the revenue are concave in k.

4.3 Individual welfare effect

We now compare the outcomes in terms of welfare given the optimal policy for the

single-price and category-based prices. We focus the analysis on the individual change in

the consumer surplus from a switch from a single-price-based policy to a category-based

one.31 In this section and for clarity, we focus on the consumer surplus change for a

given k and rather on the change based on difference maximizing investment level that

might differ from the two policies.

We start by noting that the occurrence of on-peak situations can be higher for both

policies depending on the values of prices: under the framework, this boils down to

31Note that the individual welfare changes with respect to k for each consumer are not relevant in
this section as prices are based on category. Therefore, each consumer in its corresponding category
exhibits similar surplus behavior. This motivates the study of this section of the evolution of the change
of welfare from the two policies with respect to k.
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comparing the average category prices (weighted by the share of consumers) to the

single price sr1(t
r
1, t

r
2) − sr0(t

r) =
∑

i µit
r
i − tr. For instance, if tr −

∑
i µit

r
i < 0, then

the prices under the category-based policy are relatively higher than under the single-

price policy, implying that consumers reduce their consumption during off-peak under

the former policy, and capacity binds more often. In any case, the change of individual

surplus can be decomposed into three terms composed of two terms. We illustrate the

change in the following equation for a consumer of type θ and belonging to category i

(with tr >
∑

i µit
r
i ).

∆iCS(θ) =

∫ sr1(t
r
1,t

r
2)

0

(∆iU1 + ∆iR1)dF (s) +

∫ sr0(t
r)

sr1(t
r
1,t

r
2)

(∆iU2 + ∆iR2)dF (s)

+

∫ s̄

sr0(t
r)

(∆iU3 + ∆iR3)dF (s)

∆U captures the change in utility due to the price effect during off-peak periods on the

quantity and the rationing policy under on-peak periods. For instance for a consumer

belonging to category i: we have: ∆U1 = U(d(tri , θ, s), θ, s) − U(d(tr, θ, s), θ, s). ∆R

represents the change in the payment from each consumer. That is, for a consumer

belonging to category i we have ∆R1 = trd(tr, θ, s)− trid(t
r
i , θ, s). Hence, the individual

effect from discrimination is captured following the expected change in each term.

The framework prevents us from having any closed-form solution. Therefore, we

concentrate the analysis on the main drivers of the welfare effect. Indeed, simulation

shows that the second term in the previous equation is relatively small compared to

the first and third terms. In other words, while there is a difference in terms of the

occurrence of on-peak periods between the two policies, the delta between sr1(t
r
1, t

r
2) and

sr0(t
r) is relatively small compared to other orders of magnitude. Hence, we discard it

from the analysis.

We then distinguish two types of change: the ones that depend on the consumer

type θ and the ones that are independent. In this environment, ∆iU1 and ∆iR3 are

independent of θ for every consumer. This is due to the linear marginal utility for

∆iU1 and to the fact that the quantity during on-peak periods is allocated randomly in

both policies for ∆iR3. In the case of ∆iU1, the sign of its value is solely dependent

on ∆it
r = tr − tri , as we have ∆iU1 = 1

2
(tr2 − tri

2). In the case of ∆iR3, the sign

is given by k∆it
r − µ−it

r
i∆iθ

av, with ∆iθ
av the difference between the average values :

184



∆iθ
av = θavi − θav−i.

32 On the other hand, ∆iR1 and ∆iU3 are dependent on θ, but they

can also be decomposed between a dependent and an independent part. In the case

of ∆iR1, we rewrite the term such that ∆iR1 = ∆iR1θ + ∆iR1c with ∆iR1θ = θ∆it
r

and ∆iR1c = (s − ∆it
r)∆it

r, the first term depends on θ while the second does not.

In the case of ∆iU3, we rewrite the term such that ∆iU3 = ∆iU3θ + ∆iU3c with

∆iU3θ = µ−i∆iθ
avθ and ∆iU3c = µ−i∆iθ

av (s− k − 0.5µ−i∆iθ
av). We summarize the

analysis of the individual change in the following claim. Without loss of generality, we

assume that category 1 is of a higher type than category 2.

Claim 3.1. When the category-based policy is implemented, individual consumer surplus

for consumers of category 1 (resp. category 2) increases (resp. decreases) with low values

of k. It decreases (resp. increases) with high values of k. Moreover, individual consumer

surplus for smaller consumers from category 1 (resp. category 2) sustains smaller (resp.

greater) gains and greater (resp. smaller) losses from the change in policy.

The results in the Claim can be understood as a mirror effect from one category

to another both in terms of magnitude and of who gets more impacted by the change

of policy. The results are illustrated in Figure 3.5. The within-category comparison is

clearly stated in ∆iR1θ = θ∆it
r and ∆iU3θ = µ−i∆iθ

avθ. Whatever the sign of those

terms, the smaller the θ, the smaller the change. Then, we find that the main gains

for the larger category come from ∆iU3, while it is the main source of losses for the

smaller category. Switching from a single-price-based policy to a category-based policy

increases the utility of the consumers from category 1 as they are allocated a greater

share of quantity when the capacity is binding. However, as k increases, the capacity

binds less in terms of occurrences. It implies that the main utility gain for the higher

category (and the main loss for the smaller category) decreases as k increases. For ∆iU1

and ∆iR1, the sign (mostly) depends on ∆it
r. When k increases, we previously showed

that there is a switch in terms of ranking between tr1 and tr2, namely that for high values

of k we have: tr1 > tr > tr2. In that case we have ∆1U1 < 0 and ∆2U1 > 0. For

∆iR3 = k∆it
r − µ−it

r
i∆iθ

av, the sign is ambiguous. However, for higher values of k, the

change for the higher category is negative as we have ∆1t
r < 0 and ∆1θ

av > 0. In other

terms, the main losses for the higher type come from the difference in prices and are also

mostly localized during off-periods. As k increases, the price differential increases, and it

also increases the occurrences of off-peak periods. All in all, a higher level of investment

means more losses for the higher category and more gains for the lower category. Finally,

as the common net effect (∆iU1,∆iR3 ) is negative for the higher category and positive

32Note that if we assume that a category i has bigger consumers then θavi > θav−i.
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Figure 3.5: Change in consumer surplus with respect to investment level and consumer
type. Consumers from the higher category exhibit a high gain from the switch to a
category-based policy with a low level of investment. On the other hand, consumers
from the lower favor a higher level of investment. Moreover, smaller consumers from the
higher category sustain lower gains, which is the opposite for smaller consumers from
the lower category.

for the lower category, the smaller consumers are more negatively affected for the higher

category and positively affected for the smaller category.

5 Incomplete Information - Mechanism Design

5.1 Optimal allocation

We extend the framework by allowing the market designer to choose an allocation mech-

anism such that (i) consumers behave truthfully and (ii) the market designer is not

constrained in its choice of prices given the realization of s. The two assumptions com-

bined allow him to bypass the spot market allocation because truthful behavior implies

that he can also set quantities for each consumer. In other words, the market designer
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can now offer a complete set of prices and quantities such that the schedule depends on

each consumer, for every state of the world s, and every type θ. The following figure

summarizes the new action set for the market designer. As we will show, the incentive

compatibility constraint pins down the optimal monetary transfer tmi , leaving the market

designer only with the quantity choice.

Information stage

θ

Investment

decisions k

Direct Mechanism

(qmi )

Short-term

allocation s

Unknown demand Known demand s

1 2 3 4

To induce true reporting from consumers, the market designer needs to require the

following:

θ = argmax
θ̂

∫
s

(U(qi(θ̂, s), θ, s)− ti(θ̂, s)qi(θ̂, s))dF (s) (IR)

While the participation of every consumer implies that:

0 ≤
∫
s

(U(qi(θ, s), θ, s)− ti(θ, s)qi(θ, s))dF (s) (IC)

In that case, the mechanism design problem faced by the market designer is given

by:

187



max
k

max
ti(θ,s),
qi(θ,s)

CS(k) =
∑
i

µi

∫
s

∫
θi

(U(qi(θ, s), θ, s)− ti(θ, s)qi(θ, s))dGi(θ)dF (s)

s.t. I(k) ≤
∑
i

µi

∫
s

∫
θi

(ti(θ, s)qi(θ, s))dGi(θ)dF (s), (R)

∑
i

µi

∫
s

∫
θi

qi(θ, s)dGi(θ)dF (s) ≤ k, (K)

0 ≤
∫
s

(U(qi(θ, s), θ, s)− ti(θ, s))qi(θ, s)dF (s), (IR)

θ = argmax
θ̂

∫
s

(U(qi(θ̂, s), θ, s)− ti(θ̂, s)qi(θ̂, s))dF (s), (IC)

We start describing the optimal allocation schedule given the new constraints and

for a given level of investment k. Using the method developed in Guesnerie and Laffont

(1984) and Spulber (1992a), we characterize the monetary transfer ti(θ, s) in terms of

quantity qi(θ, s). As the problem is well-defined, the incentive compatibility constraint

is satisfied as soon as the optimal allocation qi(θ, s) increases with respect to the type

θ. The payoff equivalence implies the following relation between optimal transfer and

quantity allocated to a consumer of type θ, from category i and given a realization of s:

ti(θ, s)qi(θ, s) = U(qi(θ, s), θ, s)−
∫ θ

θ̄

qi(θ̂, s)dθ̂ + Cst

Where Cst is an arbitrary constant. The payoff equivalence uses the canonical ap-

proach of the Envelope Theorem (see Milgrom and Segal (2002)). Next, we use the

approach from Spulber (1992a) to characterize a feasibility constraint that associates

the revenue and individual rationality constraints. The core idea is that if one of the

constraints is satisfied but not the other, a feasible lump-sum transfer from the non-

binding constraint could exist that allows for relaxing the binding constraints. To say

it differently, when there is, for instance, some excess revenue but the individual ratio-

nality is constraining, it is possible to transfer a lump-sum positive amount of money to

the lowest types of consumers, which allows for less constraint optimal allocation. We

describe in the following equation the corresponding new constraint, noted R− IR:

188



∑
i

µi

∫
s

∫
θ

(U(qi(θ, s), θ, s)− Γi(θ)

∫
s

qi(θ, s)dF (s))dGi(θ)dF (s)− I(k) ≥ 0, (R-IR)

With Γi(θ) = 1−Gi(θ)
gi(θ)

the inverse hazard rate. Under the uniform distribution as-

sumption considering the distribution of θ, the inverse hazard rate is decreasing with θ.

We then solve for the Lagrangian. The following lemma shows the first-order condition

to find the optimal allocation qmi (θ, s).

Lemma 3.2. Given IC and IR constraints, the optimal allocation qmi,l(θ, s) for a consumer

of type θ from category i and for a given realization of s satisfies the following condition.

u(qmi,l, θ, s)(1 + ζ)− ζΓi(θ)− ε = 0

With ζ and ε, the Lagrangian multipliers for, respectively, the R − IR condition

and the capacity constraint. We denote l = {1, 2, 3, 4} the index variable such that when

l = {3, 4} implies that R−IR is binding while l = {1, 2} means it does not, and l = {2, 4}
implies that the capacity is binding while l = {1, 3} means it does not.

Proof. See Appendix 7

Given the lemma, we can prove that the optimal allocation increases with the type.

For instance, the following equation shows the derivative of the optimal allocation when

both capacity and the R− IR constraint are binding.

∂qmi,4
∂θ

=

(
1

2
− ∂u

∂θ

)[
1− ζ

1 + ζ
Γ′
i(θ)

]
/
∂u

∂q

Following the model specification, ∂u
∂θ

= 1 and ∂u
∂q

< 0, the assumption concerning

Γ′
i(θ) < 0 implies that

∂qmi,4
∂θ

> 0. Lemma 3.2 provides four solutions to the problem

faced by the market designer depending on which constraints are binding or not. We

can regroup them in pairs such that {qmi,1(θ, s), qmi,2(θ, s)} is the set of quantities when

the optimal allocation is not constraint by R − IR. That is, the revenue generated by

the mechanism is sufficient to cover the fixed costs and provide enough incentive for

every consumer to consume electricity. On the other hand, {qmi,3(θ, s), qmi,4(θ, s)} is the set
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of quantities such that the constraint is binding, implying that the optimal allocation

needs to be distorted to cover both fixed costs and participation. Finally, note that the

optimal allocation under the mechanism design approach when the R− IR constraint is

not binding is identical to the first-best allocation. Namely, when ζ = 0, the condition in

Lemma 3.2 is identical to the conditions described in the complete information section.

Moreover, it can also be shown that the spot market schedule in prices and quantities is

also incentive-compatible (Spulber, 1992a). Therefore, we focus the rest of the analysis

on the allocations {qmi,3(θ, s), qmi,4(θ, s)}.

5.2 Optimal allocation and investment level

We next analyze the threshold between the two sets of quantities. That is, we describe

under which value of k the market designer faces a binding R− IR. We summarize the

findings in the following proposition.

Proposition 3.5. A unique value of k exists such that the R − IR is null. Moreover,

for any value of k below this threshold, the constraint R − IR is not binding, while any

value above the constraint is binding.

Proof. See Appendix 8

Proposition 3.5 shows that it is possible to cover both fixed costs and participation

constraints without distorting the allocation only when the level of investment is low.

The intuition for this result can be understood as follows. First, we denote the marginal

virtual utility: Ji(q, θ, s) = u(qmi,k(θ, s), θ, s)−Γi(θ), which is the marginal utility derived

from the optimal allocation net of the information rent. Under the framework, it can be

interpreted as the feasible gain in utility from the allocation after having remunerated

the consumers to behave truthfully. Then, we can express the derivative of the R − IR

constraint for the first set of optimal quantities.

aggregate expected marginal virtual revenue︷ ︸︸ ︷∑
i

µi

∫ s̄

sr1

∫
θi

Ji(q
m
i,2, θ, s)

∂qmi,2
∂k

dGi(θ)dF (s) − r

In other terms, the constraint starts binding when the aggregated marginal virtual

revenue from the mechanism during the on-peak period equals the marginal investment.
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Figure 3.6: R− IR constraints and its component with respect to the investment level.

Note that both the marginal virtual utility and the derivative of the quantity are, in that

case, positive. Under the framework,
∂qm1,2
∂k

is equal to 1, so to ensure that
∑

i µi
∂qm1,2
∂k

= 1.

Therefore, an increase of k generates an ambiguous effect on the constraint: (i) it in-

creases the virtual surplus during on-peak periods, and (ii) it increases the investment

costs. However, the expected surplus from consumers is concave. Indeed, note that the

derivative of the marginal virtual utility with respect to k is equal to ∂Ji
∂k

= −∂qmi,k
∂k

, mean-

ing that if an increase of the investment increases the optimal quantity, then it decreases

the possible marginal utility net of information rent. This effect also accumulates with

the change in occurrence between off-peak and on-peak. As k increases, the capacity

binds less in expectation, implying a decrease in the positive first part of the expression

above. This second-order effect, combined with the increase in investment costs, implies

that the constraint crosses binds only once.

We illustrate the findings in Figure 3.6. We plot the R − IR constraint under the

optimal allocation set {qmi,1, qmi,2} for different values of k. The black curve shows the

constraint. We decompose it with the blue curve only representing the aggregate ex-

pected consumer virtual utility and the red curve representing the investment costs. As

previously described, the blue curve is concave in k with an increasing value and then a
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decreasing part. Note that for sufficiently high values of k, the utility function is even in-

dependent of k because, in expectation, the capacity is never binding. When adding the

increasing investment costs, the difference between the two has to exhibit, at one point,

a decreasing behavior. Finally, we have represented the threshold value with the vertical

dashed line. For lower values of k, the R− IR constraint is positive, meaning that fixed

costs and the information constraint are not binding. Above this value, the value is neg-

ative, so the market designer needs to distort the allocation so that R−IR = 0. We now

describe how the optimal allocation depends on the investment level when the R − IR

binds. We summarize the main findings in the following proposition. We define the term

A(k) in the Appendix 9 such that we have ∂ζ
∂k

= A(k)(1+ ζ(k)). It is independent of the

states of the world and the consumer types. It represents the direct marginal effects of

an additional level of investment (higher investment costs and more on-peak quantities)

weighted by the marginal aggregate indirect effects (due to the change in off-peak and

on-peak quantities at the optimum). Then:

Proposition 3.6. The investment level directly affects the optimal allocation:

• (Optimal off-peak) qmi,3(θ, s) is always decreasing with k for every values of k and

for every type.

• (Optimal on-peak) for a consumer belonging to category i and of type θ, if:

∗ Ji(q
m
i,4, θ, s) > EJ4 −

1

A
then qmi,4(θ, s) is always increasing with k.

∗ Ji(q
m
i,4, θ, s) < EJ4 −

1

A
then qmi,4(θ, s) is always decreasing with k.

Proof. See Appendix 9.

The proposition states that for a higher level of investment, every consumer should

receive less electricity during off-peak periods. During on-peak, the change of quantity

depends on the types. For lower types of both categories, consumers should also receive

less electricity. On the other hand, higher types always receive more electricity as capac-

ity expands. When the capacity is not binding, the effect on the quantity is captured in

the equation below:

∂qmi,3
∂k

= Ji(q
m
i,3, θ, s)A(k)
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Under the framework, we find that A(k) > 0. The derivative originates from the first-

order condition from Lemma 3.2: the marginal virtual utility at the optimal allocation

during off-peak is always negative. Under the framework, and similarly to the previous

sections, we know that the revenue constraint behaves convexly with respect to k: a

higher capacity level implies a higher need for revenue. Thus it implies that ∂ζ
∂k

> 0.

The two observations lead to a negative derivative. The economic intuitions can be

understood as follows: as k expands, this does not directly generate any additional

quantity for consumers during off-peak, as, by definition, the capacity is not binding.

On the other hand, the need for revenue is increasing. Combining the absent surplus

effect and the negative revenue effect implies that the optimal quantities for all consumers

are decreasing. For the on-peak allocation, the initial derivative is expressed as follows:

∂qmi,4
∂k

=

[
Ji(q

m
i,4, θ, s)

∂ζ

∂k
− ∂ε

∂k

]
1

1 + ζ

As quantity expands, the willingness to pay for less binding constraint decreases,

implying that ∂ε
∂k

< 0. Therefore, the sign of the derivative is ambiguous and notably

depends on the sign of Ji(q
m
i,4, θ, s). Contrary to the off-peak allocation, the initial first-

order condition when ε > 0 does not allow a clear-cut answer for the sign of the virtual

marginal utility. Using the constraint from the market design problem, we can express

the derivative of the Lagrange multiplier ε associated with the capacity constraint as a

function of the derivative of ζ with respect to k. Namely, after simplification, we find

that the derivative of the optimal quantity can be expressed as follows:

∂qmi,4
∂k

=
[
Ji(q

m
i,4, θ, s)− EJ4

]
A(k) + 1 (3.2)

With

EJ4 =
∑
i

µi

∫
θi

Ji(q
m
i,4, θ, s)dGi(θ)

Being the aggregate marginal virtual utility over every consumer and across all

groups. The equation states a sufficient condition for having a positive derivative for

a given consumer: If his virtual marginal utility is not too low than the aggregate

marginal virtual utility, then its allocation is increasing with k. This condition captures

the fundamental trade-off that the market designer faces when there is an information
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constraint. First, note the value 1 on the right part of the equation. It describes the

positive effect of increasing k for consumers when the capacity is binding, which always

implies higher utility. On the other hand, the left part can be negative if the marginal

virtual utility is not sufficiently close to the aggregate expression. We find that this is

due to the existence of the cost associated with incomplete information.

Illustrative ExampleWhen expressing the marginal utility with respect to the optimal

allocation, we find the following difference assuming two consumers of the same category,

with one having type θ1 and the other having θ2.

u(qmi,4(θ
1, s), θ1, s)− u(qmi,4(θ

2, s), θ2, s) = (θ2 − θ1)
ζ(k)

1 + ζ(k)

That is, smaller consumers imply smaller marginal utility at the optimal allocation.

We turn now to the difference in terms of information rent:

Γi(θ
1)− Γi(θ

2) = θ2 − θ1

The information rent is higher with smaller consumers. The two combines leads to :

Ji(q
m
i,4, θ, s)(q

m
i,4(θ

1, s), θ1, s)− Ji(q
m
i,4, θ, s)(q

m
i,4(θ

2, s), θ2, s) = (θ1 − θ2)
1

1 + ζ(k)

Consumers with higher types always lead to a higher marginal virtual surplus in

the on-peak allocation. In other terms, the negative effect of an increase in capacity is

directly due to the existence of the information rent. Similarly to the off-peak case and

the previous section, allocating a given quantity of electricity to the smaller consumer

is always negative (at the margin). Depending on the model parameters, the potential

adverse effect of having a negative marginal virtual utility has to be compared to the

positive effect of 1 associated with a less binding capacity. Finally, even when a consumer

has Ji(q
m
i,4, θ, s) > 0, the market designer, due to the capacity constraint and the need to

cover the fixed costs, has to favor the consumers for which it is less costly to induce an

optimal allocation, that is, for consumers of the highest type. This tension is highlighted

by the delta Ji(q
m
i,4, θ, s)− EJ4.
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Figure 3.7: Optimal on-peak allocation with respect to the consumers’ type θ, and
threshold θmi with respect to k

We illustrate the findings in Figure 3.7. It shows the optimal on-peak allocation

for each consumer depending on their type and for a given realization of s. The solid

lines represent a set of quantities given a value of k, and the dashed lines represent the

allocation for a higher value of k. As described in the proposition, we observe a rotation of

the allocation, with higher types receiving more goods while lower types endure a decrease

in their quantity allocated. Interestingly, we do not observe a strict ranking between

consumers of different categories. Namely, optimally reducing the quantities given to

each consumer concerns the lowest type in each category but not across categories.

The rationale behind those results lies in how incentive compatibility and individual

rationality constrain the market designer. As he can discriminate the consumers based

on their category, which is publicly observed, the cost associated with the information

rent (partly) depends on the category the consumer belongs to.33 Therefore, it is less

costly to discriminate the consumers of the lowest type negatively. We conclude the

analysis of the relation between the quantity and the level of investments by describing

33However, as we will discuss later, the category does not play a crucial role in the results of this section
compared to section 4. The same behavior of the optimal allocation with respect to the investment level
holds for both categories but with a different magnitude order.
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the behavior of the type threshold θmi (k) such that
∂qmi,4
∂k

= 0 which defines the type

for which the derivative of the quantity is null. To do so, we denote Θm
i , the fraction

threshold that gives the shares of consumers being negatively and positively impacted

by the level of investment: Θm
i (k) = µi

θmi (k)−
¯
θi

θ̄i−
¯
θi

Lemma 3.3. If θm1 (k) and θm2 (k) exist, then (i) they are unique (ii) Θm
1 (k) > Θm

2 (k) if

µ1 > µ2 and
µ1

θ̄1−
¯
θ1

< µ2

θ̄2−
¯
θ2

and (iii) The thresholds follows the same behavior with respect

to k for every category

Proof. See Appendix 10.

The first result ensures that there is a clear ranking between the different consumer

types. This stems from the fact that the cross derivative of the quantity is positive with

respect to the type. The second result in the Lemma implies that the bigger category

usually exhibits a higher share of consumers having an increase in quantity when the level

of investment increases compared to the smaller category. Under the symmetry of the

number of consumers (µ1 = µ2), it is a sufficient condition to have a higher average type.

The third result shows that the shape of the threshold is identical between categories.

Namely, the mechanism design does not exhibit different behavior depending on the

category compared to the results in section 4. Finally, numerical simulations show that

the threshold exhibits a convex shape. It stems from the following observations. First,

note that the marginal effect
∂qmi,4
∂k

can be either increasing or decreasing with respect

to k. That is, the individual quantity can either be convex or concave with respect to

k. Indeed, the difference between the virtual marginal utility and the aggregate virtual

utility can be expressed as follows:

Ji(q
m
i,4, θ, s)− EJ4 = (θ − θ̄i +

∑
i

µi(θ̄i −
¯
θi))

1

1 + ζ(k)

.

As the revenue/participation constraint is more binding as k increases, the multiplier

is also increasing ζ. Therefore, as k increases, the difference (in absolute terms) decreases.

The economic intuition is that the change in virtual utility is the opposite of the quantity

change. The marginal change with respect to k of the aggregate virtual utility is equal to

−1, as the aggregate quantity is equal to k. The marginal change of the individual virtual

utility is−∂qmi,4
∂k

. Hence, the positive effect of increasing k for consumers when the capacity

is binding (right term in Equation 3.2) is offset by the change in the aggregate virtual
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utility. This leaves the sign of the derivative of the difference defined as the opposite

sign of the same difference. On the other hand, the marginal effect of k materialized by

A is increasing in k.34 Therefore, the second-order effect of k on the quantity is given

by the change of the following ratio A(k)
1+ζ(k)

, namely, which part ratio is increasing at a

higher rate. For low values of k, in Ji(q
m
i,4, θ, s)− EJ4 is lower than the increase in A, to

compensate the threshold is lower. On the other hand, as k increases, the constraint is

binding more than its marginal effect. This explains the convex shape of the threshold.

5.3 Individual welfare effect

We turn now towards the welfare effects of the mechanism design approach in this frame-

work. We start defining the individual consumer surplus given the optimal pricing and

quantity functions of the mechanism design problem. Using the standard definition of

the consumer surplus and the results from Equation 5.1, we have:

CSm
i (k, θ) =

∫ sm1

0

∫ θ

¯
θi

qmi,3(θ̂, s)dθ̂dF (s) +

∫ s̄

sm1

∫ θ

¯
θi

qmi,4(θ̂, s)dθ̂dF (s) (3.3)

Therefore, the relation between the level of investment and the gain/loss in welfare

is given by the following derivative:

∂CSm
i

∂k
=

∫ sm1

0

∫ θ

¯
θi

∂qmi,3
∂k

dθ̂dF (s) +

∫ s̄

sm1

∫ θ

¯
θi

∂qmi,4
∂k

dθ̂dF (s)

We describe in the next Lemma the conditions under which only a certain group of

consumers profits from an increase in the level of investment. To do so, we define the

surplus threshold θ̃i(k) such that
∂CSm

i

∂k
= 0.

Lemma 3.4. (i) There exists for each category a unique threshold θ̃i(k). For consumers

of a category i, if his type is below θ̃i(k), an increase in the level of investment decreases

its consumer surplus. If his type is above θ̃i(k), its consumer surplus increases with k.

If θ̃i(k) exist, then (ii) θ̃i(k) > θmi (k).

34Which implies that ζ(k) is convex in k. This echoes the convex effects of the revenue constraint in
the previous section.
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Proof. The proof relies on the same arguments as for Lemma 3.3. Note that the cross-

derivative of the information rent in Equation 3.3 with respect to k and θ is composed of

the expected cross-derivative of the optimal quantity. The cross derivative of the optimal

allocation qmi,3 shows that it is equal to the derivative of qmi,4, which we proved is positive

in Lemma 3.3. Hence, the cross derivative is positive, so there is a unique threshold.

The second result is straightforward as, in the case of the information rent, the expected

derivative is based on the integral of the optimal allocations over lower types, which by

Lemma 3.3 are smaller.

In other words, an increase in the quantity during on-peak is not a sufficient condition

for an increase in the consumer surplus, and only higher types may benefit from an

increase in the level of investment. The result in Lemma 3.4 directly stems from the form

of the consumer surplus given by the mechanism design approach. Namely, the consumer

surplus is equal to the information rent given to the consumer by the market designer to

behave truthfully. Therefore, the central interpretation of the result is that the expected

information rent only increases with k for higher types. The main difference between

the quantity and the welfare effect with respect to k boils down to the consideration for

a given type θ to all the lower types.

We illustrate the findings in Figure 3.8. We represent the evolution of the (expected)

derivative of the off-peak quantities (dashed line) and the on-peak quantities (solid line)

with respect to the consumer type. The components of
∂CSm

i

∂k
are represented by the

integrals of the different functions. That is, the red zone corresponds to the off-peak first

term, and the blues zone corresponds to the on-peak term. As expected,
∂qmi,3
∂k

< 0 for

any values of θ and k. Note also that both
∂qmi,3(θ̂,s)

∂k
and

∂qmi,4
∂k

are increasing in θ. In the

first panel, we have represented the case of a consumer of a lower type, such that the

information rent is negatively affected by the level of investment. This is due to the fact

that the derivatives of the quantities for both off-peak and on-peak periods are always

negative. For the second panel, θ = θ̂ such that its consumer surplus derivative is null at

this level of investment. Some of the lower types generate sufficient positive derivatives

such that they perfectly compensate for the negative effect from the smallest consumers

and the off-peak periods. The last plot illustrates the case of a big consumer having a

positive derivative.

The second result implies that consumers who observe an increase in the consumer

surplus whenever the level of investment increases also have an increase in their level

of investment. This is directly related to the fact that quantities and their derivative
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Figure 3.8: Components of the marginal individual consumer surplus for a given level of
k with respect to consumers types θ

with respect to k are increasing in the type θ.35. The third result shows that the surplus

threshold θmi exhibits similar behavior that the quantity θ̃i with respect to k. Especially

one can infer from the condition in Lemma 3.4 that if ∂θ̃i
∂k

> 0, then we necessarily have
∂θmi
∂k

> 0, the main difference is that the surplus threshold becomes increasing in k before

the quantity threshold. In other terms, beyond a certain level of investment, an increase

in k implies a decrease in the share of consumers having a positive marginal surplus.

Those consumers excluded are always the smaller consumers before the increase. The

economic interpretation of the decrease in the share of consumers positively impacted by

k has two origins. (i) An occurrence effect, that is, an increase in the level of investment

reduces the occurrence of on-peak periods in favor of off-peak periods. This implies

that even if the on-peak quantity increases in k, as on-peak periods occur less often, its

positive effect on the consumer surplus decreases. This is materialized by the term left

term of the condition in Lemma 3.4. (ii) A second-order effect similar closely related to

the one leading to an increase in θmi (k): for sufficiently high values of k, the quantity

is concave in k, implying that the derivative is decreasing in k, therefore reducing the

35A negative derivative for a given type always implies that all derivatives of lower type are also
negative
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positive effect. This is materialized by the right term in Lemma 3.4. We illustrate

those findings in Figure 3.9. The first plot shows how the different components of the

information rent change with respect to k. As in Figure 3.8, the dashed lines correspond

to the off-peak periods. The red lines correspond to the components with higher levels

of investment. As k increases, the expected (negative) marginal derivative increases due

to the higher occurrence of off-peak periods. The downward shift of the dashed lines

translates this. The effect on the on-peak parts is a priori ambiguous, as illustrated

by the rotation of the solid lines: increasing k implies less negative marginal quantities

from smaller consumers, hence the positive blue part, but also less positive marginal

quantities from bigger consumers, hence the negative red part. In the end, we find that

the net effect leads to the results in Lemma 3.4. The second plot shows how the share of

consumers having an increase or a decrease in quantity and surplus evolve with k. The

solid line corresponds to the quantity threshold θmi (k) and the dashed line to the surplus

threshold θ̂i(k). As expected, consumers who receive a higher surplus when k increases

are located in the higher part of the distribution. The blue zone corresponds to those

consumers. The green zone describes the consumers having an increase in their quantity

but not in their surplus, and the red zone corresponds to the consumer for which both

quantity and surplus decrease with k.

We end the section with the aggregate effect of the investment level in this incomplete

information framework. The second-best investment level is described in the following

corollary.

Corollary 3.3. The market designer chooses the second-best investment level km that

maximizes the expected consumer surplus. If it exists, it solves the following first-order

condition:

∑
i

µi

off-peak marginal loss︷ ︸︸ ︷[∫ sm1

0

∫
θi

∫ θ

¯
θi

∂qmi,3
∂k

dθ̂dGi(θ)dF (s) +

on-peak marginal loss︷ ︸︸ ︷∫ s̄

sm1

∫ θ̂i

¯
θi

∫ θ

¯
θi

∂qmi,4
∂k

dθ̂dGi(θ)dF (s)

]

=
∑
i

µi

∫ s̄

sm1

∫ θ̄i

θ̂i

∫ θ

¯
θi

∂qmi,4
∂k

dθ̂dGi(θ)dF (s)︸ ︷︷ ︸
on-peak marginal gain

Proof. The proof is straightforward and is given by deriving the expected information

rent in Equation 3.3.
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Figure 3.9: Components of the marginal individual consumer surplus for a given level of
k with respect to consumers types θ

The mechanism design approach adds a new dimension to the choice of the opti-

mal investment level compared to the complete information framework and the second

section. In addition to covering the investment costs, the market designer faces a new

tension associated with the participation and incentive compatibility constraint. Due to

private information, the market designer has to reward consumers to behave truthfully.

In the end, individual consumer surplus is equal to the information rent. Therefore,

the objective function of the market design when choosing the level of investment is to

maximize the aggregate information rent. The first step in the analysis is to characterize

how individual quantities relate to the investment level. We find that all consumers re-

ceive less during off-peak periods, and the smaller consumers observe a decrease in their

allocated quantity during on-peak periods. Compared to the previous section, the same

effect is found across the two categories. Following the standard approach adapted to

the setting, the expected information rent of a given type is composed of the integral

of the quantity allowed to every smaller consumer below the type. Consequently, to be

positively affected by the increase in the level of investment, a consumer needs to have

a sufficiently high type to offset the negative effects of off-peak periods and from smaller

consumers of on-peak periods. In the end, the level of investment is found to be such
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that the marginal decrease in expected information rent from smaller consumers equals

the marginal increase in expected information rent from bigger consumers.

6 Conclusion

This chapter built a tractable framework to analyze the role of market designers in finding

the most efficient way of consuming an essential good when faced with investment de-

cisions. Most of the literature has focused either on providing additional remuneration

streams for producers to increase the level of investment or on designing the second-

best pricing schedule for consumers, given informational and technical constraints. This

chapter provides a unifying framework linking investment decisions and consumer par-

ticipation. We show an inherent tension when implementing an allocation mechanism

to maximize consumer surplus and generate revenue to cover fixed costs. The chap-

ter provides policy and technical results by adding additional constraints to the initial

framework. We assume that consumers possess private information with respect to their

utility level and that the market designer may be constrained in the allocation mecha-

nism he can propose to consumers. The central result of the chapter is that, depending

on a set of assumptions, some specific and non-intuitive relations exist between the level

of investment and the optimal allocation proposed to consumers, which has significant

welfare and distributive implications. In an initial complete information framework, we

find the market design already prefers discriminating against smaller consumers when

prices are only used to ration quantity. We then introduce incomplete information in a

contemporaneous setting. That is, we model a market designer who cannot set prices for

every state of the world. This framework shows that the market designer faces a tradeoff

between generating a higher surplus by discriminating against smaller consumers and

generating higher revenue to finance investment by discriminating against bigger con-

sumers. In the end, smaller consumers from the smaller category favor a high level of

investment, and bigger consumers from the bigger category favor a low investment level.

In the last section, we adopt a standard mechanism design approach to consider incentive

and participation constraints. The central highlight is the specific relation between the

level of investment and the individual and aggregate information rent. We find that only

bigger consumers can face an increase both in quantity and surplus when the level of

investment is high as they are the only consumers to face an increasing information rent

with respect to the capacity level.
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Finally, we plan to extend the result with two main extensions: (i) study market

design constraints with the mechanism design framework. While market designers may

wish to implement some information revelation mechanism, as theoretically studied in

the third result, practical contractual arrangements between the market designer and

consumers may constrain him in the implementable mechanism. It would lead to spe-

cific effects, as highlighted in the second set of results. (ii) Implement specific distribution

preferences associated with consumer types and categories. The current framework does

not consider welfare weights, which may distort the optimal allocation. Including such

parameters would highlight the tension between generating sufficient revenue and maxi-

mizing consumer surplus. From a more extreme view, as the chapter shows, the allocation

can exhibit some non-monotonicities of the optimal quantities and prices; a market de-

signer may want to avoid any decreasing quantities when the level of investment rises.

Including such constraints in the framework could highlight a new trade-off.
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Motivations

Electricity is a paragon within the realm of economic science. It is one of, if not the central

commodity, that has enabled the development of modern societies over the last century.

Many public institutions have stressed that access to electricity is a central concern for

the growth of developing countries. This is particularly illustrated by numerous theses

currently being investigated by my colleagues (Saliou Barry, 2022; Ly, 2023; Le Picard,

2023).

Electricity markets exhibit many of the problems analyzed by modern economics.

From a microeconomic and public economics point of view, several decades of stud-

ies have underlined its numerous market failures: externalities due to its production,

transport, and consumption; the public good nature of its related infrastructure; its in-

completeness, especially with respect to risk management; its specificity, that makes it

an ideal playground for exerting market power. The existence of a certain number of

physical constraints also poses a number of challenges for economists, who must adapt

their analysis to the physical laws governing the entire electricity value chain. Moreover,

the recent COVID-19 crisis and the war in Ukraine have also highlighted the link between

electricity and macroeconomic issues, especially inflation.

It is in this context that my thesis seeks to answer a number of policy questions under

the lens of economics theory. In particular, I have chosen to address the link between

the functioning of electricity markets and investment decisions. In other words, how

do we ensure that the institutions set up to produce, exchange, and consume electricity

provide sufficient incentive to invest efficiently? While investment issues are not specific

to electricity, the current lack of storage capacity on an adequate scale and at a rela-

tively low cost means that any shortfall in the availability of investments in relation to

consumption levels entails significant risk. In the best-case scenario, these risks trans-

late into involuntary rationing of demand, also known as a rolling blackout, and, in the

worst-case scenario, into total system collapse. This issue is all the more critical as one of

the main objectives of public policy in the electricity sector is the massive development

of renewable energy.

As will be emphasized in this general conclusion, I have addressed this problem in

a specific way. The central idea of this thesis is to essentialize and conceptualize the

particularities of the link between investment and production decisions. This link is well

described in the concept of allocation externalities used in economic literature: individual

investment decisions depend on electricity market equilibria, and equilibria depend on
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investments. Ultimately, the interdependence between investment and equilibria will

determine welfare. Once this link had been clarified, I set out to answer the following

market design question: what are the organizational rules that will maximize efficiency

given this particular framework? In other words, I attempt to answer the practical

question of how to provide the best incentives to invest so that the level reached is the

desired one but also so that the way it is reached does not generate too many indirect

costs.

The starting of this thesis is based on the following observation. The electricity

sector is made up of a succession of trials and errors on how to organize these markets

efficiently. It provides a vast playground for analyzing institution-building policies both

in a positive and normative way. I take as its starting point a specific approach: that of

capacity markets. They are characterized by producers offering a promise to be available

in the future in return for compensation. Rather than asking whether capacity markets

are more efficient than other forms of organization, my thesis looks at how they can be

set up most optimally.

While the empirical contributions to capacity markets have remained limited, electric-

ity economists used a wide diversity of modeling tools ranging from complex engineering

system representation to classic analytical and stylized theoretical models, each with its

pros and cons. My first years as a PhD student focused on an in-depth analysis of this

quantitative literature on capacity markets. However, I realized that in order to address

specific market design issues that were very practical at first sight, it was necessary to

return to the theoretical fundamentals of electricity markets. As a result, my modeling

choices focused on a very simplified representation of the industrial environment in or-

der to study what it means to (i) make an investment decision and (ii) participate in

markets, whether from a long-term point of view with capacity markets or in short-term

wholesale markets. Therefore, each chapter of this thesis aims to reduce the description

of reality to its essentials to better understand the mechanisms behind which market

design choices have positive or negative effects in terms of welfare.
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General Takeaway

Each chapter of this thesis highlights well-known issues in market design and in-

dustrial economics. There are always some fundamental trade-offs that need to be

understood, and market rules always have unidentified consequences, both good

and bad. The central contribution of this thesis is to focus on a very specific topic:

in an environment as particular as electricity, a sufficient level of investment is cru-

cial and often imposed by policymakers. However, investment decisions are made

by private actors. So, how can we ensure that markets are designed to ensure the

most virtuous encounter between private values and social needs in this context?

By representing the behavior of actors through economics theory with a focus on

modeling investment decisions and their link with the rest of the market, the thesis

proposes to formalize a variety of positive effects as well as give new policy warnings

with respect to how to design a market for investment.

Beyond the contribution that I will describe in more detail for each chapter at the

end of this summary. This manuscript, I hope, paves the way for further research. To

begin with, it is necessary to recall the crucial importance of the empirical approach

in economics. Capacity markets have been in place for some twenty years around the

world, and even if the data are not as robust as for other electricity markets, I think it’s

quite possible to dig in this direction. This extension of my research could involve both

a classic econometric approach and the use of data to build counterfactuals on the basis

of more engineering models, giving a more realistic picture of how a power system works.

It would also allow measuring the true value of the trade-off highlighted in this thesis.

As investments play a crucial role in the electricity markets, both due to their value and

their cost, such an approach would benefit the policy debate around the acceptance of

new technologies and regulations.

Another significant limitation of this work is the observations made in the intro-

ductory chapter. Indeed, I have described how the efficiency of a capacity market is

measured not only in terms of the level of investment but also in terms of other closely

related industrial decisions, such as market entry and exit decisions, as well as decisions

to maintain a certain level of capacity. Moreover, in the context of the energy transition,

it is crucial to ask the question of the composition of the energy mix. It would then be

conceivable to extend the work presented in each chapter to take these other dynamics
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into account. The aim of these extensions is not simply to add a degree of realism to

the theoretical models but to understand how the behaviors and new trade-offs raised by

these issues add to or conflict with the results found in this thesis. As an example, I’ll

take renewable energies, which, unlike more conventional means of production, have an

uncertain level of capacity but a certain marginal cost.36 I provide in the next sections

a more detailed view of the main results and the possible extensions to each chapter.

Finally, I would like to emphasize that this thesis has a contribution beyond electric-

ity markets. The stylized theoretical approach used in this thesis makes it possible to

address broader issues, notably that of ensuring sufficient investment for a set of essential

goods. Those goods are characterized by the public-good nature of investment availabil-

ity when supply is scarce. In those sectors, demand and supply fluctuate unpredictably,

and if any demand exceeds the available capacity and cannot be efficiently rationed, it

generates significant welfare losses. Electricity is the textbook case, but other markets

exhibit similar characteristics: transport with congestion or medical goods for which

scarce supply can lead to contagion and congestion of medical facilities. Specifically,

I am developing a research program that examines how we can implement and design

institutions, such as markets, that efficiently address the demand and supply of these

investments. This research stems from the fact that this is still an understudied topic

from the academic side. Moreover, as policymakers and consumers place a high value

on investment and production capacity, a significant social demand exists to highlight

those questions. The rest of the general conclusion is composed of a summary of the

three chapters.

36See for instance Fabra and Llobet (2023) which show that auctions in this context might have a
different outcome than the canonical models.
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What is the cost of participating in a capacity market and the

relation with contract characteristics?

Chapter Takeaway

As capacity market efficiency depends on the price signal it sends, policymakers

should not overlook the choice of the capacity product characteristics and, notably,

the availability period. In particular, we show in this chapter that when risk and

flexibility are considered, the outcome can be different than under traditional mod-

eling assumptions.

This research originates from a simple yet fundamental question: ”How do prices

emerge in capacity markets?”. Capacity prices act as supplementary revenue for produc-

ers to encourage them to increase their available capacity. It is also an additional burden

for consumers who have to pay for this increase in capacity. Therefore, knowing the right

capacity price is crucial to measuring the efficiency of any capacity market. Economic

theory has long stressed that prices may differ from their fundamentals. Indeed, every

price is the consequence of an intersection between supply and demand. In capacity mar-

kets, this supply curve is the aggregation of the bids of different actors having different

characteristics. Hence, there is always significant room for deviation from the efficient

price.

This observation calls for a second question: ”How do producers bid in capacity

markets?”. I answer it by stating that participation in a capacity market implies a spe-

cific marginal opportunity cost for the bidders, which requires a particular method of

valuation. Namely, selling capacity entails the producer staying available over future

periods determined in the sold contract. This offered promise generates specific gains

and losses for the producer. In this case, they have to trade expected revenues over the

procurement duration net of the fixed cost associated with the decision to stay available.

The first main contribution lies in studying the bid as an option value associated with

the possibility of closing temporarily but irreversibly to avoid fixed costs. This signifi-

cantly differs from the standard approach of the net present value approach, where the

producer only offers the expected opportunity cost. It notably allows us to recognize

the managerial flexibility of an investment that can react to future market conditions.

213



Thus, I propose a novel approach to conceptualize capacity bids using real options the-

ory, where the opportunity cost is represented as an option on the spread that drives

the profitability of the plant. First, I define a bid in a one-period capacity market as a

European Put Option. Then, I expand to a multi-period setting in which capacity bids

can be evaluated as a modified Basket Option.

I use this novel approach to answer a concrete market design question: ”Does the

length of the contract sold on the capacity market matter?”. An analysis of different im-

plementations of capacity markets around the world revealed a wide variety of durations,

ranging from a few weeks to several years. The critical assumption of this chapter is as

follows: if the duration of the contract changes the expected profit associated with the

promise to stay available, then it should change the marginal cost of participating in the

capacity market. Hence, the supply curve changes, too, which ultimately impacts price

formation. Therefore, the design of the product sold in a capacity market can define, in

part, its efficiency.

The central results of this chapter are the implications of the change in contract

duration on the bidding behavior in a capacity market, assuming that the marginal cost

is analyzed through the lens of real-option theory. I find that it significantly differs from

the net present value framework. First, bids are always higher under the real options

framework, meaning that producers place a positive value on the possibility of closing

to avoid some costs. Second, the drivers behind the bids have different effects on their

value compared to the net present value framework. I provide comparative statics on the

bid value and the difference between the two frameworks. I find that the length of the

contract constantly increases the bid when using the real options theory while having an

ambiguous effect on the net present value bid. The volatility in the wholesale market

and the waiting time between the sale of the contract and the start of the availability are

also analyzed. They both have ambiguous effects on the capacity bids depending on a set

of conditions on the bid drivers. Finally, I find the reverse effect for the product design

dimension with a higher bid with a longer contract duration than the sum of expected

bids with shorter products. I test the results by calibrating the model to the French

electricity system. I also use realized data for a CCGT (gas) power plant to simulate a

bid in the capacity market and compare the outcomes with realized prices observed on

the French capacity market. Based on both the theoretical framework and the numerical

illustration, I finally provide a policy discussion for the design of capacity markets: (i)

On the role of penalty in the capacity market imposed on producers who choose not to be
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available during the procurement duration despite having sold a capacity product. (ii)

On the difference between existing and new capacity participating in capacity markets.

The principle of this chapter is to lay the foundations for a better understanding of

how producers offer their investment in capacity markets. In particular, by describing the

relationship between their offers and the contract characteristics traded on the market,

we gain a better view of what should emerge on capacity markets and what trade-offs

exist in terms of market design. This chapter also opens a number of doors for future

research. The first venue is to incorporate these results into a more systemic framework.

In particular, one should reconcile the valuation approach of the marginal cost with a

price formation process. In other words, one could model a set of heterogeneous producers

and build supply curves using real options theory. Adding sequential dynamic decisions

would also enable us to endogenize the set of values and, in particular, allow a finer

analysis of investment decisions. A finer calibration of the model’s parameters would

also give a better comparison between what is expected from a market fundamentals

point of view and the actual behavior of agents. A second approach consists of taking

into account the demand in capacity markets. Indeed, the entire chapter focuses on the

value of an investment for a producer and from the point of view of real options theory.

But a question must be asked: what is the value of an available capacity for consumers?

One could then carry out a similar study, analyzing the counterpart of this option value

but for demand. The value to society of additional capacity is thus the conjunction

between the demand and supply option value.
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The indirect consequences of designing the demand-side

Chapter Takeaway

This chapter shows that the way the demand-side of capacity markets is designed

can have an impact on the overall system. We notably prove that it can change how

consumers buy electricity, which can have consequences on the consumer surplus

and indirectly on investment decisions. Depending on the characteristics of the

system, these indirect effects may have positive or negative consequences in terms

of welfare.

The initial motivation for this chapter is to describe the trade-off between having

a centralized or decentralized capacity market. In this thesis, a centralized market is

characterized by having a single buyer, usually a regulated firm, such as a System Oper-

ator, procuring the total amount of capacity. On the other hand, a decentralized market

design is based on the mandatory participation of different demand-side actors, mainly

retailers, which buy themselves capacity in the face of their expected consumption. In

between, hybrid market designs exist in which consumers and retailers indirectly par-

ticipate in capacity markets. The degree to which consumers participate is, after that,

called the demand-side design of capacity markets. This research stems from the fact

that the capacity demand requires a regulatory intervention. While the supply emerges

naturally in those markets, the public-good nature of investment during high-demand pe-

riods implies that consumers are unwilling to buy capacities in capacity markets. Hence,

the regulator must define the demand function administratively so the market clears and

provides producers’ capacity prices.

This chapter aims to lay the foundation for understanding the pros and cons of the

different options available to the regulator. In particular, I show the consequences of

different options on a model representing capacity market, investment decisions, gener-

ation, and consumption equilibrium. Ultimately, the chapter describes the welfare of a

power market as a function of different assumptions about market design, the behavior of

players, and the environment. I focus on two interrelated questions that relate to (i) the

cost allocation regime, that is, how a single buyer allocates the capacity price between

capacity buyers and final consumers, and (ii) the degree to which the final consumers’

realized demand is accounted in the market allocation design.
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The methodology used to answer this question relies on the canonical peak load

pricing theory for a homogeneous good characterized by time-varying demand, which

describes the relationship between short-term production and long-term investment de-

cisions. The model extends the literature by providing a novel analytical framework

that includes a capacity market equilibrium in addition to investment and short-term

decisions. The modeling proposition is central as any indirect effects generated by the ca-

pacity market can affect the expected revenue made by the producers and can indirectly

be captured during the formation of the supply function in the capacity market.

The first market design regime studied is the canonical capacity market. I build on

the previous literature, which relies on the assumption that a capacity market does not

have any effect beyond increasing the investment level. This canonical regime is similar

to having a cost allocation regime based on a lump-sum tax. In this case, even when

considering the endogenous supply function in the capacity market, the equilibrium of

the market design always restores the first-best optimum given the system inefficiencies.

I then investigate the case in which the capacity price impacts consumers at the margin.

Under this assumption, the regime similarly allocates the capacity price as a unitary

tax. I show that the existence of the capacity market indirectly affects the wholesale

market by redistributing the different states of the world when the capacity does not

bind and bind and by lowering the consumer’s surplus. Therefore, I demonstrate that

the welfare outcome at the equilibrium under this regime is always lower than under the

canonical regime. I then compare the two capacity cost allocation regimes by including

inefficient rationing. When a price cap is reached, the investment availability becomes

a public good as the demand becomes inelastic. Due to the impossibility of efficiently

rationing consumers, they incur a significant welfare loss. Under this new assumption, I

find that the indirect effect created by allocating the capacity price on a unitary basis is

now ambiguous for social welfare.

I extend the analysis to implementing a regime where the regulator allocates the cost

based on actual retailers’ market shares. I first show how this design marginally affects

the retailers who play ’à la Cournot’ in the retail market. Then, I integrate the new

equilibrium into the model with investment decisions and the capacity market. I find

that this allocation creates an intermediary outcome between the unitary tax and the

lump-sum tax. Finally, I analyze the case of a capacity market entirely based on the

realized demand level. To do so, retailers are forced to cover the quantity sold on the

retail market by buying directly on the capacity market, given a penalty system. I focus

on how retailers’ strategies can form an aggregated demand function in the capacity
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market, and I analyze the optimal capacity bought by retailers in the capacity market.

I find that such an approach for the demand function can provide the optimal level of

investment under specific conditions.

This chapter builds a series of extensions to the canonical model representing invest-

ment and production decisions in electricity markets. It starts with the most simple case

with a price cap and a single buyer. Then, I had more assumptions concerning ineffi-

ciencies and the actors’ behavior. Rather than providing a clear comparison between a

centralized and a decentralized market design, the chapter seeks to describe how we can

interpret those designs in the first place. Namely, a centralized market is, before all, a

question of cost allocation, and a decentralized market depends on the value an invest-

ment has for the demand-side. With those results in mind, I believe that there is now

more precise room to conduct a deeper comparison. As underlined by some qualitative

papers, the regimes might differ mainly because of the different information each agent

might possess. For instance, retailers can have better information with respect to their

consumer portfolio. On the other hand, the single buyer might possess better tools to

predict the evolution of future aggregate demand. Therefore, the single buyer is prone

to make forecast errors when aggregating information. Still, the process of aggregat-

ing dispersed information via a decentralized mechanism also leaves significant room for

retailers to behave inefficiently. Another future research area would be to deepen the

representation of the decentralized capacity market design, which electricity economists

have not quantitatively modeled. Namely, recent advances in games theory and indus-

trial organization could bring significant highlights to what it means to bargain and

exchange capacity products between producers and consumers.
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Private information, consumers and investment decisions

Chapter Takeaway

There is a trade-off when designing markets to provide revenue for ensuring invest-

ments and maximizing consumer surplus: prices allow for covering investment costs

while driving consumption. In this chapter, we study this issue under the assump-

tion the utility derived from consumption is partly unknown. It discusses how a

policymaker can choose prices and make investment decisions under a set of differ-

ent constraints. In particular, the chapter shows that under certain assumptions,

reaching a certain investment level can lead to distributive issues.

Most of the discussion on the design of capacity markets and, more generally, on

the level of investment in electricity markets have been centered around supply-side

questions. Namely, how to give the correct incentives to producers to reach a desired

level. However, it seems just as essential to know on what basis should be based on this

level. This research question is closely related to the two previous chapters, as it mirrors

the question of the demand value of capacity mentioned in Chapter 1, and it is a first

step to building the demand function of Chapter 2.

This chapter’s main contribution is to discuss the implications of considering the

demand-side when it comes to ensuring an efficient level of investment. It studies an en-

vironment in which there are a number of consumers with different characteristics whose

utility from electricity consumption is partly private information. In other words, it seeks

to know how to design markets so that consumers reveal their utility for their electricity

consumption and, therefore, indirectly for the investment level. In that research, markets

are not only used to provide consumption and sufficient revenue to make investments

but also to screen for unobservable characteristics to ensure the proper investment level.

A second approach that I tackle in this chapter is the distribution issues associated with

the design of an optimal market in this context. Namely, I show that implementing the

most efficient market to reach the most efficient investment level is not always Pareto

improving for every consumer.

To do so, I study the inherent tensions when implementing an allocation mechanism

that (i) dictates how agents consume the goods and (ii) generates revenue to finance new
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investments in an incomplete information framework. I develop a theoretical framework

where a market designer sequentially chooses a level of investment and proposes an

allocation mechanism to consumers followed by a consumption stage. The allocation

mechanism defines the per-unit monetary transfer and the quantity for a set of consumers

during the consumption stage subject to capacity constraint. The market designer uses

the allocation to maximize consumer surplus and finance the investment cost; hence,

he is also under a budget constraint. I assume that when the market designer makes

investment and allocation decisions, he faces heterogeneous consumers who have private

information about their demand level and belong to a publicly observed category.

The first case with incomplete information represents the inefficiencies associated

with private information when the market designer is constrained in the allocation choice.

Namely, some consumers over-consume with respect to their type, while others under-

consume. I first study the single-price case when the market designer cannot discriminate

between categories of consumers. In that case, the price schedule increases with the level

of investment. I then implement the possibility of discriminating between consumer

categories. I show that for the category of consumers with the smaller average private

shock, the optimal price first decreases and then increases with the investment level. On

the other hand, the price for the category of higher consumers is always increasing with

the capacity. I also find that the price for the former category is above the latter for

relatively low capacity values, and then the ranking reverses for higher values. These

non-monotonicities can be explained by the opposite effect the market designer faces in

terms of consumer surplus and revenue effect when choosing prices.

In the last section, I study a mechanism design setup where the market designer is

no longer constrained in the prices and quantities schedule he can offer consumers. He

now faces incentive compatibility and individual rationality constraints. I first describe

for which level of investment the market designer is constrained by the revenue used to

cover the fixed costs and the information rent that he needs to provide to consumers so

they behave truthfully. I find that the market designer can provide an unconstrained

first-best allocation only for low values of the investment level due to the concavity of the

virtual consumer utility with respect to the capacity. For higher values, the additional

expected utility gains from increased capacity cannot compensate the investment costs.

Then, I show that the behavior of the optimal allocation depends on the state of the

world considered and the type of consumers. Namely, as the investment level increases,

consumers always face a decrease in the optimal quantity allocated during off-peak. For

on-peak periods, the quantity change depends on the consumer’s type. Finally, I show
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that only the large consumers from both categories can gain from an increase in the

investment level. The rationale behind this result lies in the link between the investment

level and the information rent given to consumers in order for them to behave truthfully.

There are various extensions of this research. To begin, this work has mostly de-

rived an upper and lower bound on the consequences of different market designs given

this framework. The first main set of results in the incomplete information environment

describes the current lower bound in which the market designer is highly constrained

and cannot extract any information. On the other hand, the second result describes the

theoretical upper bound. Namely, with private information and strategic consumers, this

is the best market design that the market design can implement if it seeks consumers to

reveal their types. However, a significant share of the market and mechanism design lit-

erature has shown that the theoretical second best cannot always be implemented, either

due to technical reasons, due to the non-linearity of the optimal allocation schedule for

instance, or because of social acceptance, as the optimal allocation implies discrimina-

tion. Another practical research would be to test how certain forms of capacity markets

behave in terms of information disclosure. In other words, one could build a model by

adding a module describing long-term mechanisms to the chapter. In that case, the mar-

ket designer would face a specific set of constraints, and the resolution of such a model

would allow a comparison with the upper and lower bound described in this chapter.

Finally, the chapter underlines the existence of distribution issues when implementing

the second-best allocation schedule to reach a certain level of investment. Hence, there is

an exciting venue that would consist of studying the trade-off associated with restricting

the market design. At first glance, this trade-off would consist of reducing the avail-

able revenue for new investment. However, in the context of the increasing difficulty of

financing the energy transition, I believe that such research is of significant interest.
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We will define behavior as ”the set of possible actions for an actor when participat-

ing in a capacity market, including the decision to participate or not to participate.”

This definition deliberately encompasses a number of subjects. In the context of the

mechanisms studied, we can mention the most obvious ones:

• Whether or not to participate in the mechanism if it is not mandatory;

• The type of technologies offered in the mechanism;

• The pair of price and quantity of capacity offered/purchased;

Since it is the formation of a price that is being studied, and therefore the meeting of

supply and demand, actor behavior can be conceptually understood as the way in which

actors form supply curves and demand curves, whether the latter are explicit (in the case

of auction-type mechanisms, for example) or implicit (in the case of bilateral transactions,

for instance).Such a definition of actor behavior highlight the central question

that must be asked before any analysis of the choices made in setting up the

mechanisms studied in this thesis:

”What are the determinants that define actor behavior in capacity

markets and which by extension condition its effectiveness?”

To answer this question, we establish a thought framework on the issue of actor be-

havior in this chapter. This framework refines the economic definition of behavior by

studying the factors that can modify and influence the actions available to players in

capacity markets. A first approach will enable us to analyze how to represent actors’

behavior. Based on a literature review of models applied to capacity markets and termi-

nology specific to these mechanisms, we will define the term actor behavior and highlight

the different methodologies employed by the literature.

The following section briefly describes the literature used in this chapter. Section 2,

3, and 4 lay the foundation of the conceptual framework for how we can describe behavior

in capacity markets. Section 5 discusses the market design issues of the capacity market.
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1 Description of the literature review

This literature review follows on from the reviews carried out by Bublitz et al. (2019)

on the current state of our knowledge of capacity markets and by Scouflaire (2019), who

analyzes the results of models comparing energy-only markets and capacity markets.

Electricity economists use a wide variety of models to represent the capacity market

and its effect on power markets. They range from stylized equilibrium mode to engineer-

ing calibrated dynamic model. A complete description can be found in Petitet (2016);

Höschle (2018); Bublitz et al. (2019). To date, the literature review includes 52 models:

10 system dynamics models, 23 equilibrium models, 12 optimization models, and seven

agent-based models. Each model has its advantages and disadvantages. More precisely,

as they have different objectives in the analysis of an economic system, they represent

the behavior of actors in capacity markets in conceptually varied ways. When it comes

to the precise representation of these behaviors, this difference highlights both the limi-

tations of each model and the potential improvements to be made. The literature review

includes 57 economic models whose distribution between capacity markets is as follows:

36 capacity market models, nine capacity payment models, four strategic reserve models,

and eight reliability options models.

2 Conceptual definition of actor behavior

All the models studied focus on representing the behavior of supply-side players. There-

fore, we will study, within this framework, sellers as the owners of capacity and the

buyers as the consumers. This is due to the fact that all models use centralized demand

for capacity with a single buyer. Even though this type of market design is actually im-

plemented in some systems (e.g., PJM, U.K.), other markets have chosen to decentralize

demand (CAISO, France). In this case, demand-side actors (such as retailers or large

consumers) place bids on the mechanism, which, when aggregated, gives the demand

curve. Modeling these behaviors can, therefore, be crucial in assessing price formation

on capacity markets.
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2.1 True value and offered value

To understand the concept of behavior, one needs to go back to the very notion of a

market. That of a place in which an actor on the production side makes an offer, most

often a price/quantity pair, and an actor on the demand-side demands the same good,

also in the form of a price/quantity pair. When individual offers and demands meet, a

price (or several, in the case of bilateral markets) is established, enabling transactions

to take place. With this view, an actor’s behavior can be understood as the

formation of a market supply. Economic literature, and in particular auction theory,

distinguishes two components of an actor’s offer on the market:

• La true value: the utility that the actor can derive from participating in a market;

• La offered value: the strategy actually implemented by players during trading

periods.

These concepts are usually clearly explained in auction models1. They can also be

found in more traditional microeconomic models but in a more implicit way. For example,

a profit function can be seen as a true value since it determines the utility that the actor

derives from the market. The offered value in these models is more complex. In fact,

it depends on what is known as the conjectural variation, that is, the assumptions that

each company makes about the reaction of its competitors (Giocoli, 2005).

As we’ll see in the following sections, focusing on the distinction between these two

concepts highlights the specific nature of capacity markets. Indeed, the question of the

true value on these markets is crucial: as Wilson (2010) points out, the first capacity

market and their design were based on the idea that players’ bids were made on the

basis of an average of the total costs incurred by players over the entire lifetime of the

investment. However, the first auctions clearly showed that producers constructed their

bids in a significantly different way:

The expectation that new capacity would and should be offered into FCCMs

at prices based on Net CONE was and remains reflected in the FCCM designs

in numerous ways.” However, ”The FCCMs have not operated according to

the expectations described above [...]: Auction clearing prices have not been

1See, for example, Menezes and Monteiro (2004) for a comprehensive introduction to these models.
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stable around Net CONE (or any other price level). The FCCM auction

supply curves have not exhibited the anticipated ’flat’ segment or any cluster

of offers around Net CONE or any other price level, even where the evidence

suggests.

Therefore, this approach allows us to reformulate our previous problem. The search

for the main factors influencing player behavior in capacity markets would then come

down to asking: ”What are the factors that define the true value? And how

can we model the offered value?”. The literature review in the following sections

presents an overview of the different ways this literature uses to model actors’ behavior

in capacity markets. Based on the above approach, we will outline how the factors have

been represented and their associated modeling assumptions.

In the following section, we’ll explain how the mechanisms studied depart from tra-

ditional good. In section 3, we propose a reflection on the estimation of the true value in

the markets studied. Finally, in section 4, we present the different approaches adopted

by the authors to model offered value.

2.2 The opportunity cost of capacity markets

The idea developed by Wilson (2010), and used in the majority of subsequent works is

that participation in a capacity market is conditional on the obligation, in the case of

the sale of capacity, to be available in a future period on the energy markets; this period

is the transaction phase. The sale of capacity on the capacity markets, therefore, entails

an indirect cost that could be described as an opportunity cost.

In theory, the opportunity cost of participating in a mechanism is the cost of being

available during that future period. In an energy market with no market failures, all

players have an opportunity cost of zero since their production is sold without making

any losses. However, for players owning electricity capacity, failures and constraints

specific to energy markets can result in losses. Consequently, forcing a player to produce

during a period when he is potentially making a loss entails a positive cost.

The opportunity cost of the availability obligation is, therefore, the potential loss

incurred during the period of availability obligation. Many papers that seek to model the

interdependence of players and different economic decisions in power systems are based

on this principle of the opportunity cost of availability (Abani et al., 2018; Bhagwat et al.,
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2017a,b; Teirilä and Ritz, 2018). In a simplified model, Creti and Fabra (2007) showed

how a monopoly bids on a capacity market when it has to forego exporting electricity

to a foreign market whose price is higher than the price on the domestic market due to

the obligation to be available. The offer made on the capacity market is made at a price

equivalent to the loss of opportunity to make a profit on the external market.

The few papers modeling reliability option markets are also enlightening with regard

to this approach. These mechanisms, similar to classic capacity markets, are based on

the exchange of financial options between the players holding the investment and the

demand. These options, initially held by the players, are sold on a market, which then

constitutes remuneration for their capacity. In exchange, during periods of demand

scarcity, i.e., when the price exceeds the strike price, the players undertake to pay back

to demand the difference between the selling price received on the energy markets and

the strike price of the obligation defined in the product (Cramton et al., 2013). In the

models, the initial true value of these options is consequently equal to the amount paid

back to demand, which is indeed the opportunity cost associated with such products

(Mastropietro et al., 2016; Meyer and Gore, 2014).

Figure A.1 illustrates a hypothetical situation in which a player participates in a

capacity market every year for four years and is, therefore, forced to produce during

periods of scarcity. Graph (a) illustrates his annual estimate of net profits on the energy

market (the inframarginal rent). It is assumed that this energy market is constrained and

inefficient, so the actor also estimates that he will make losses by being forced to produce

during transaction phases (i.e., his missing money). As investment costs are stranded,

only operation and maintenance costs are taken into account. The opportunity cost

associated with participating in the capacity market each year is, therefore, the difference,

when positive, between fixed costs on the one hand and inframarginal rents realized on

the energy market on the other (i.e., the difference between the price of electricity and

the variable cost). Under these assumptions, the bids made on the capacity market are

equal to this difference. The sequence of these bids is illustrated in Figure A.1. Note

that the bids can vary and that they depend solely on the profit and cost estimates made

for the transaction phase of the year concerned by the product sold.
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(a) Profit and Losses estimation over 4 years (b) Corresponding bid made in the capacity
market

Figure A.1: Illustration of the opportunity cost for an incumbent

3 Litterature review of the true value

The fundamental hypothesis described so far is that capacity markets consist of selling an

obligation for players to be available. In other words, the product sold on the capacity

market is conceived not necessarily as physical capacity but as an assurance that the

seller of the product will be present during the periods defined in the transaction phase.

To illustrate this concept, it is possible to find rules in the implementation of specific

capacity markets according to which the product sold can be either physical or financial.

In the latter case, sellers are not necessarily investors owning generation or demand

response but maybe traders acting as intermediaries.

In all cases, participation in a capacity market entails an opportunity cost, which

can be understood as the difference in profit between producing and not producing (or

consuming and not consuming). In this case, the true value associated with the capacity

market is precisely this cost of participating.

Once this true value has been defined, the key question is how players can estimate

this value. Indeed, the latter can have a wide variety of characteristics. Moreover, as

we will see, market rules necessarily lead to significant differences in the assessment of

this value. In connection with the literature review, we will address three topics that
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are both fundamental to the understanding of true value in the capacity market but also

insufficiently addressed in the literature:

• Taking risk into account ;

• The industrial characteristics of the players;

• The characteristics of the product sold on the mechanisms.

As we will see in the following sections, the treatment of opportunity cost has been

better studied in quantitative models than in analytical models. Indeed, the opportu-

nity cost approach assumes a particular form of dynamism that static models of the

equilibrium or optimization type have difficulty taking into account. The usefulness of

these models explains this difference in treatment. Indeed, quantitative models seek to

introduce greater realism and take into account the dynamic nature of the models, while

analytical models tend to emphasize strategic actor behavior.

3.1 Risk and uncertainty

In the economic literature, there are two types of risk particularly relevant to capacity

markets (Scouflaire, 2019):

• Exogenous risk; and

• Imperfect information specific to public decisions.

In the latter case, although this topic is relevant to an overall analysis of mechanisms,

it does not seem necessary to address it in the context of this thesis. Indeed, a priori,

there is no reason why private players should include regulatory failures in their estimate

of their opportunity cost. To date, a few papers have studied these failures, either in

the form of quantitative models (Winzer, 2013) or analytical models (Feng and Xu,

2009). The primary source of regulatory error lies in the setting of target levels and the

choice of the measure to be adopted. The error would consist of incorrectly forecasting

consumption levels, resulting in either an over-capacity or an under-capacity situation.

Exogenous risk is generally well-represented in the literature on capacity markets.

The main level of uncertainty in the literature is electricity demand. Some authors
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also represent the risk associated with fuels (Bhagwat et al., 2017a,b), the technical

constraints of means of generation (Cepeda and Finon, 2011, 2013), or the decisions of

authorities (Joung et al., 2009; Mastropietro et al., 2016).

In the majority of cases, the authors analyze the impact of risk in order to compare

different types of mechanisms, especially the effect of the presence or absence of a capacity

market. Indeed, in perfect information and the lack of risk, theory shows that the impact

of a capacity market is identical to that of an energy-only market (De Sisternes and

Parsons, 2016). These mechanisms only transfer part of the rents between players, a

transfer that takes place directly in an energy-only market. However, when risk is taken

into account, that is, when we represent how rents are distributed according to possible

scenarios, then capacity markets have non-negligible effects on risk for the various players.

In a similar literature review, Scouflaire (2019) finds that, in the totality of papers

analyzed, capacity markets all imply a decrease in price volatility, a significant risk

factor for producers and consumers.

From a practical point of view, it’s essential to understand that risk generates implicit

costs for players, whether in production or consumption. However, in modeling terms,

this cost can only be taken into account if we assume risk-averse actors. The definition

of such aversion is simply a preference for a certain amount whose value is lower than the

expectation of the same but risky amount. In a model applied to electricity investment,

Meunier (2013) shows that risk can be represented as a cost in the same way as variable

and fixed costs. In this case, the level of adequacy achieved corresponds to that of an

optimal production mix with technologies whose cost of production is adjusted for risk.

This notion of risk aversion is found mainly in quantitative models due to their need

for realism in the interpretation of their results. When applied to capacity markets, the

tools used to represent risk are remarkably diverse. The literature uses utility functions

such as the Mean-Variance financial theory function (Meunier, 2013; Winzer, 2013) and

the more classical exponential function (Hobbs et al., 2007a; Fan et al., 2012; Petitet,

2016). Applications can also be found using tools specific to asset financing: the CAPM

(Peluchon, 2019) or the CVAR (Abani et al., 2018). Building on the seminal work of

Ehrenmann and Smeers (2011a,b) on modeling investment decisions in an uncertain

environment in the form of stochastic optimization models, a very interesting literature

attempts to model the effects of different mechanisms (including long-term contracts) on

the level of investment and adequacy (de Maere d’Aertrycke et al., 2017; Abada et al.,

2019; Peluchon, 2019).
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Finally, many system dynamics-type models are based on the notion of bounded

rationality (Olsina et al., 2006; Hobbs et al., 2007b; Assili et al., 2008; De Vries and

Heijnen, 2008; Hary et al., 2016) to represent the imperfection of actors’ information

in their estimation of electricity prices and capacity. This model, which is based on

relatively arbitrary characteristics, does, however, represent a well-known effect in power

sector investments, namely the cycles of undercapacity and overcapacity.

In Chapter 1, we provide a new contribution to the literature by considering the

risky environment in which producers evolve when analyzing the bidding behavior in the

capacity market. Using real options theory, we study how risk and risk aversion imply

different bids compared to canonical risk-neutral approaches to measure the opportunity

marginal cost of participating in the capacity market. Therefore, we depart from the

previous literature by focusing not on how risk interacts with the capacity market and

investment decisions but by describing the link between risk and behavior in a capacity

market.

3.2 Industrial decisions

Producers and consumers in current power systems are faced with a large number of

industrial decisions. These decisions, which could be described as options (and poten-

tially real options in the case of some that are characterized by a form of irreversibility),

describe a set of actions available to players that can significantly modify the value of

the opportunity cost in capacity markets.

The most obvious is whether or not to enter the energy market. Hence, a distinction

needs to be made between players already present in the markets (incumbents) and

those wishing to install a new investment or consumption (new entrants). At this stage,

the models have not, to our knowledge, studied portfolio effects that would imply a

difference in treatment between a new capacity for a player with existing capacity or a

new entrant to the sector. Nevertheless, studies are assuming a difference in efficiency

(in terms of costs in particular) between incumbents and new entrants (Brown, 2018a,b).

Cross-subsidies could also exist, but the subject has not been addressed either.

Figure A.2 thus illustrates a hypothetical situation in which a new entrant considers

the year-0 offer it must make if it participates in the capacity market. Assume its

lifetime is five years, and it incurs losses over this period. These losses are calculated

from the difference between his estimates of the marginal rent earned on the energy
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market, capacity prices in the case where the player is retained, and fixed costs made

up of investment costs and operation and maintenance costs. The illustrative values of

these components are shown in Figure (a). The fundamental difference in estimating the

opportunity cost between this new entrant and a player who has already built capacity

lies in the fact that investment costs and future capacity prices are taken into account.

This hypothesis assumes that the player is a price-taker in the capacity market. The new

entrant’s offer is then equal to the sum of fixed costs in the first year and the discounted

sum of potential losses in the future (here at an arbitrary rate of 5%). Its value is shown

in Figure (b).

Although the model shown in Figure A.2 is illustrative, it does help to show the

difference in opportunity cost between a new entrant and an incumbent. Indeed, the

true value in year 0 is evaluated by the need to cover potential losses in subsequent

years. However, the initial model in year 0 does not give us any direct insight into the

value for the player once year 0 is over. Revenues linked to capacity markets are only

estimated values and by no means represent a certain future. One of the assumptions

made by specific authors is that players will continue to reason both in terms of margin

and opportunity cost. The crucial difference lies in the time horizon considered when

deciding whether or not to participate in the mechanism.

• When an actor decides to enter the market, he takes, as we have seen, estimates of

his profit over a relatively long time horizon. His objective, when he participates in

the mechanism, is to cover all these fixed costs, taking into account the estimated

prices of energy and capacity.

• When the player has already entered the market, his time horizon is greatly re-

duced. Since it has succeeded, in theory, in covering at least its investment costs,

the player must now ensure that it covers only its short-term fixed costs, i.e., its

operating and maintenance costs.

This distinction between the two objectives when participating in a capacity market

is due to the fact that the player does not base his decision on an estimate of the capacity

price when he is already present in the market. His primary objective is to fill the short-

term missing money that arises when he is obliged to be available during the product

transaction period when he enters the contracting phase. This change of horizon is

illustrated in Figure A.1, where the exact estimates of energy revenues and operation

and maintenance costs are represented. As investment costs have been covered by the
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(a) Profit and Losses estimation over 5 years (b) Corresponding bids
made in the capacity
market

Figure A.2: Illustration of the opportunity cost for a new entrant

transaction in year 0, they no longer appear in the actor’s estimates. Moreover, since

the player is only looking at the transaction period associated with the product he sells,

estimating the future capacity prices is not necessary. Consequently, at each capacity

market clearing, the opportunity cost of being available during the transaction phase is

equal to the missing money corresponding to the difference between energy revenues and

maintenance costs.

Such assumptions about capacity markets are crucial to understanding the economic

fundamentals of these mechanisms. In particular, they establish that the price of capac-

ity must adapt at all times to reflect the conditions of adequacy of the power system.

According to the model outlined above, when capacity is to be added to the system, the

market price must necessarily adjust so that it equals the long-term missing money as

well as the sum of the short-term missing money estimates for the most efficient player

available as a new entrant. Wilson (2010) summarizes these conditions well:

”The FCCMs [Capacity Markets] were designed based on the concept that

clearing prices should reflect the cost of new entry when new entry is needed.

[...], with the cost of new entry understood to mean the price level at which

sufficient existing and new capacity has been offered to meet reliability re-
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quirements. [Natural” clearing of FCCM supply and demand leads to prices

that reflect the true state of supply and demand at any time.”

In other words, one cannot expect prices on capacity markets to be stable in the same

way as long-term contracts, for example. When looking at incumbents for investment and

consumption, the true value of each actor will also depend on a set of decisions concerning

the transaction phase of the product sold: (i) The decision to continue producing, i.e.,

to take part in the mechanism and make oneself available; (ii) mothballing during the

transaction period, i.e., the power plant does not produce but does not incur a certain

number of operating costs; (iii) exiting the market, which corresponds to a total halt in

production over all the years under consideration.

The possibility of mothballing a player means forgoing remuneration on capacity

markets but also means avoiding operating and maintenance costs. When there is a

risk that the player will not be sufficiently remunerated on the capacity market, his

offer may be modified by the option of not making himself available on the energy

or capacity markets. Quantitative models are the most numerous to have focused on

the representation of industrial decisions in capacity markets. Abani (2019) offer a

comprehensive analysis of the importance of actor decisions through opportunity cost

modeling. This study highlights the great diversity that can emerge when we look at the

offers that can appear on these mechanisms. In an agent-based model, Mastropietro et al.

(2016) differentiates new entrants from incumbents by including investment costs in offers

on a mechanism. Most system dynamics models incorporate this in their representation

of actor behavior (Petitet, 2016; Hary et al., 2016; Abani et al., 2016).

It is worth noting the work that has focused on the trade-off between decisions to

invest in plants already installed (refurbishment) and the installation of new capacity.

In particular, the effect of the possibility of extending lifetime has been addressed in an

optimization model by Lynchab and Devinea (2017) and in a system dynamics model

by Abani et al. (2016). In the first paper, the authors model the effect of refurbishment

in terms of the availability of players in energy markets, leading to a positive correlation

between producer profits and the refurbishment decision. Although there is no implicit

representation of the opportunity cost, such an industrial decision provides a better fit

for the system. In Abani et al. (2016) paper, players base their trade-off between new

capacity or keeping their old capacity, whose O&M cost increases according to their risk

aversion. Indeed, an O&M cost is considered relatively fixed and predictable, while the

cost of a new plant is risky even if, in the expectation, it remains less costly. In this
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case, the effect of refurbishment is analyzed in the context of risk and risk-averse actors.

Although the opportunity cost is made explicit in this model, the net impact of the

industrial decision is not analyzed.

Finally, when these decisions are irreversible (notably the decision to enter or close), it

is possible to apply an analysis specific to real options theory, which highlights the value

of this decision-induced flexibility. To date, the effect of industrial decisions analyzed

through the prism of real options has only been addressed by Hach and Spinler (2016),

in which they model the implementation of a capacity payment.

The analysis of the risk in Chapter 1 is made concomitantly with the managerial flex-

ibility an investment can have. Namely, we use real options theory to analyze the option

value of participating in a capacity market when a producer has the option to mothball

to avoid O&M costs. Therefore, this chapter also contributes to a better understanding

of how industrial decisions can affect behavior in a capacity market. Chapter 2 also relies

on the idea that producers make a specific commitment when participating in a capacity

market. In an analytical framework, we build a supply function in a capacity market,

which is based on the marginal investment cost net of the expected marginal profit made

on the energy market. One of the main technical contributions is the endogeneization of

the supply function. Namely, we show the different indirect effects of capacity market

design regimes that can be captured through this supply function.

3.3 Product definition

The notion of product design relates to the set of characteristics that define the trans-

action phase of capacity markets. Several key elements define these rules: (i) The type

of obligation associated with the commitment made when the product is sold, (ii) the

penalties associated with non-compliance with the commitment, and (iii) the duration

of the commitment.

These issues are directly linked to the practical implementation of capacity markets

around the world. Their definition, therefore, varies from system to system. To date,

few studies have focused on analyzing the effects of market rules on actor behavior.

Yet the general economic literature, and especially that on auction theory, stresses the

importance of market rules on player behavior.
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In the context of capacity markets, the importance of penalties for the availability

obligation is highlighted in the analytical work of Joung et al. (2009) and in the quantita-

tive work of Mastropietro et al. (2016). To be more precise, the penalty associated with

engaging in capacity payment mechanisms can be understood as a form of opportunity

cost. Indeed, going back to the hypotheses put forward in the previous sections, when a

player commits himself when he participates in a capacity market, he must necessarily

produce (or consume) during the transaction phase. However, we did not make any

assumptions about whether the actor decided not to produce or was technically unable

to do so.

When we introduce this notion of penalty, we then explicitly take into account the

cost of unavailability for the actor. Indeed, in a model with uncertainty, if the probability

of not being available over the obligation period is positive, then two scenarios can be

considered:

• On the one hand, the actor produces and suffers the missing money as modeled in

Figure A.2 and Figure A.1;

• On the other hand, the actor does not produce (voluntarily or involuntarily); in

this case, he suffers the penalty associated with non-compliance with the condi-

tions of the transaction phase. Without the penalty, the induced cost would be

identical to that of mothballing (assuming the actor does not incur O&M costs

during unavailability), i.e., relatively low.

As a result, and in expected value terms, the opportunity cost associated with im-

plementing a penalty would increase. Bublitz et al. (2019) highlights the conditions for

implementing such rules in capacity markets:

”If a financial penalty is chosen, it needs to be high enough to encourage

investors to comply, which, however, increases the risk of investors, and this

is reflected in their bids. For the exact amount of the penalty, it is possible

to rely on the VoLL, the capacity price, or the Net CONE.”

The rules associated with the obligation to produce determine the magnitude of the

rent transfer made during the transaction phase. The characteristics of this obligation

can also be varied: the form of the obligation (e.g., on which market players are controlled
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when supplying energy) and the level of uncertainty associated with the obligation.

To date, no studies have proposed quantitative or analytical analyses on this subject.

However, some authors have studied the effect of the obligation to produce on players’

strategy, i.e., on the offered value. This question is addressed in the following section.

At first glance, the various associated rules seem to have a quantitative effect on

capacity markets. In other words, their implementation does not alter the economic

fundamentals and functioning of these mechanisms. However, some studies tend to show

that they can have a non-negligible effect on the behavior of players through their strat-

egy. Several models attempt to represent this availability obligation in capacity markets

and energy markets (Schwenen, 2014). The work of Bialek and Unel (2019) provides

an enlightening view of the advantage of flexibilizing products on capacity markets in

order to match the obligations provided by players according to the different seasons.

Indeed, the cost of availability as well as demand are significantly different depending on

exogenous factors such as temperature or luminosity. Allowing the exchange of flexible

products could lower costs. However, the authors do not propose any modeling of actor

behavior.

Using the approach of combining risky environment and industrial decisions in Chap-

ter 1, we also contribute to the literature by studying the relation between capacity prod-

ucts and behavior in a capacity market. More precisely, we analyze how the length of

the transaction phase increases or decreases the bid and if it is better to have a secession

of short transition phases instead of having a single product. We are also able to capture

the effect of a penalty on the bidding behavior. In Chapter 2, we provide, in an exten-

sion, a representation of a decentralized capacity market. In this framework, retailers

are forced to cover their expected consumer portfolio consumption. If they do not buy

enough capacity, they face a penalty. Therefore, we are able to show that this penalty

is a fundamental driver of the aggregate demand function in the capacity market.

4 Litterature review of the offered value

The economic analysis of player behavior should not be limited solely to the representa-

tion of opportunity cost. Indeed, economic theory underlines that there is no guarantee

that a player will actually offer what it seeks to cover by participating in a market. This

dichotomy between true value and offered value is most often described as an actor’s

strategy.
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Economic theories use different terminology to characterize the notion of strategy. In

classical microeconomics and industrial organization, this notion refers to opportunistic

behavior. Strategy is then measured as the difference between marginal cost and price,

which, according to the terms used above, can be considered as true value and offered

value. In contract theory, asymmetric information leads actors to report false values. For

example, when an actor has a certain level of availability to satisfy the supply-demand

equation, there is no guarantee that this same level will be reported to the authorities

when they seek to assess the actual level of availability in the system. The advantage

of auction theory, which introduced this distinction, lies in its relative neutrality with

regard to the notion of opportunistic behavior.

In this section, we will attempt to analyze the approaches adopted in the economic

literature to represent the strategy of players in capacity markets. In this context,

strategy can be understood as the difference (positive or negative) between an actor’s

opportunity cost and the offer he actually makes on the mechanism.

4.1 Market power and asymmetric information

Classical microeconomic models distinguish between situations of pure and perfect com-

petition and those of oligopoly. In reality, the main difference between these two ap-

proaches is one of conjecture. Models of pure and perfect competition imply that players

offer their marginal costs on markets, which in conjectural terms rests on the principle

that their reactions and those of competitors do not affect price formation.

Several models of capacity markets are based on pure and perfect competition. In this

case, the offer made by a player is strictly identical to the opportunity cost, whether he

is a new entrant or incumbent. Such an approach is mostly used in quantitative models

(Bhagwat et al., 2017a,b; Cepeda and Finon, 2011, 2013; Franco et al., 2015; Hach and

Spinler, 2016; Mastropietro et al., 2016).

For oligopoly models, there are variants to the conjectures. The most widely devel-

oped in the literature is Cournot’s conjecture: players assume that their competitors will

not react to their strategy. This model has been commonly used in economic theory

applied to energy markets due to the similarities between this model and the charac-

teristics of electricity markets (Twomey et al., 2005). As part of the literature review,

we can also see its use in representing the conjectures of different players in capacity

markets (Joung et al., 2009; Elberg and Kranz, 2013; Brown, 2018a,b; Teirilä and Ritz,
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2019). The effects of such models on the representation of actor behavior are well-known

and concur with the results of the generalist literature. In a situation of imperfect com-

petition, actors tend to offer their availability at a price higher than their opportunity

cost while reducing the quantity provided on the mechanism. The direct consequence

of these strategies is to undermine the economic efficiency of capacity markets, both by

increasing the cost and by the risk of not satisfying the adequacy criteria.

In order to represent the asymmetry existing between players in electricity markets

while remaining within a framework of imperfect competition, some authors have also

used other conjectures. The main one is based on modeling a small number of firms

facing a multitude of firms behaving as in pure and perfect competition (Joung et al.,

2009; Elberg and Kranz, 2013; Brown, 2018a,b; Teirilä and Ritz, 2019). In this case,

dominant firms face residual demand and behave identically to a Cournot-style model,

while competitive firms offer at their opportunity cost. To our knowledge, there are

no Stackelberg-type models directly applied to the formulation of offers. Nevertheless,

some authors use this model to introduce a form of sequentiality into either mothballing

decisions (Brown, 2018a,b). or investment decisions (Le Cadre and Soubra, 2013),

Finally, in the context of information asymmetry between actors other than conjec-

tures, the models studied have mainly attempted to represent issues between authori-

ty/actors rather than between actors themselves (Creti and Fabra, 2007; Joung et al.,

2009; Le Cadre and Soubra, 2013). Le Cadre and Soubra (2013) model is particularly

interesting, as it focuses on market rules that respect incentive and participation con-

ditions. More specifically, the authors construct a capacity market in such a way that

payment induces players to declare their actual availability on the markets in order to

avoid strategic behavior.

Both Chapters 1 and 2 rely on perfect competition on the supply-side, as they are

well-developed in the literature on electricity markets, both with or without a capacity

market. However, in Chapter 2, we contribute to the literature by providing a stylized

model where retailers that participate (indirectly or directly) in a capacity market play

’à la Cournot.’ We notably describe the effect of allocating the capacity cost on retailers

based on their relative share and how this allocation changes their behavior. We also

show that imperfect competition plays a role in the decentralized design. In Chapter 3,

one of our contributions is allowing consumers to behave strategically when a market

designer implements prices to provide revenue to make investment decisions. In that

241



sense, we show that producers are not the only agents to deviate from optimal behavior

when thinking about how we can design markets to ensure an efficient level of investment.

4.2 Auction theory

Other promising work on capacity markets is based on a complex representation of

interactions between players. This work is based on the seminal article by Fabra et al.

(2006), who developed an auction model in which a pivotal player and the reactions of

inframarginal players are represented according to the strategies of this pivotal player

and the level of demand.

First applied to energy markets, then to investment decisions in Fabra et al. (2011),

this model was extended in the work of Schwenen (2014) as part of a theoretical model

studying the effects of a capacity market on the energy market and in Schwenen (2015),

in which the author empirically compares the model’s results with bids made on the

PJM capacity market. The effect of capacity markets on the system is reflected in the

obligation to produce on the energy market. By committing these capacities, players

participating in a capacity market create a lower limit to the quantity offered in the

energy market, which, in the context of the relative concentration of supply in energy

markets, can limit capacity withholding strategies.

Other previously cited authors also rely on this model, notably to represent the

link between investment subsidies and behavior on capacity markets (Brown, 2018b), as

well as between demand and behavior on capacity markets (Brown, 2018a). Finally, a

particularly interesting model also developed by Brown (2012) represents price dumping

strategies by incumbents on capacity markets in order to create a barrier to entry for

potential new entrants. In other words, the model assumes that players make offers on

the capacity market in such a way that they do not cover all their missing money. Such

a strategy can only be profitable if the new entrant does not build new capacity, as entry

has potentially led to lower prices in the energy markets and, therefore, a loss of profit

for the incumbents.

To our knowledge, there have been no other attempts to apply auction theory to

capacity markets. This absence in the academic literature is quite remarkable, both

because of the well-known contribution of this theory to the understanding of how mar-

kets work, notably in the representation of the effects of the characteristics of market
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designs on player behavior, but also from a practical point of view, as the vast majority

of capacity markets employ at least one auction in the allocation of capacity.

5 Litterature reviews of market design issues in ca-

pacity markets

From a general point of view, it is now recognized that current capacity market designs

have corrected specific inefficient rules, particularly on issues related to the definitions

of the traded product (Cramton, 2017). For example, the introduction of penalties in

U.S. mechanisms has confirmed the need to align the objectives of a capacity market

and availability during transaction phases (Bushnell et al., 2017).

An essential point for a better understanding of the issues associated with the market

design of competition-based mechanisms is the strong interdependence between specific

issues. To date, the literature has already established these connections between different

market designs. It seems to us, however, that certain links remain to be made.

5.1 Sequentiality of transactions

Auction sequentiality has not yet been modeled in capacity markets. However, Salant

and Stoddard (2008) highlights the importance of auctions in price formation in capacity

markets based on theoretical work that has not been applied. They describe several re-

sults from the literature on price formation in sequential auctions. In particular, Weber’s

Martingale Theorem states that under the assumption that the ”costs of the bidders par-

ticipating on both are the same, then the expected prices in both auctions should be the

same,” then ”the expected price does not depend much on the division of the quantity

over time, provided there are adequate lead times for all the auctions or requests for

offers.” However, the martingale does not hold if there is a link between the strategy

on a first auction and the quantity offered on the second or if the order of economic

efficiency between players is altered, due in particular to uncertainty over costs. If the

mechanism is also decentralized at the demand level, but competition is relatively weak

at the producer level, then multiplying auctions would also reduce market power.
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Auction dynamism in capacity markets is also the focus of discussion by Harbord

and Pagnozzi (2014) on the design in Colombia and the U.K. Indeed. The Colombian

mechanism is based on descending clock auctions in which bids are disclosed at each

increment. As a result, each player observes the bids of its competitors before the

market is fully cleared. According to economic theory and in the view of the Colombian

authorities, this type of sequentiality reduces players’ risk, particularly with regard to the

winner’s curse. It increases the economic efficiency of the auction. These results depend

on a number of assumptions about the market, notably that the product exchanged is of

the common value type, i.e., that an actor’s observation of one of his competitors’ bids

modifies the value he has of that good, which is his true value. However, the authors

point out that the private value environment does not necessarily characterize capacity

markets. Consequently, there is no benefit of learning competitors’ bids, leaving room

for opportunistic behavior such as tacit collusion. In this case, the results of auctions

are similar to those developed in models applied to energy markets. However, the recent

introduction of the Irish mechanism based on descending clock auctions underlines the

fact that the debate is not yet over. A series of reports from AESO (2018) concludes

that the type of auction to choose depends strongly on the characteristics and structure

of the market under consideration: In the case where players are relatively concentrated

and the uncertainties about fundamentals are low, then a uniform, non-dynamic auction

is preferred. In the opposite case, a dynamic descending clock auction may be more

appropriate.

Finally, the modeling of a descending clock auction was carried out by Teirilä and Ritz

(2019). Their approach is based on an analysis of market power in a reliability options

mechanism. It finely represents market concentration, entry-exit issues, and certain

industrial decisions. However, the role of information in the auction is not analyzed, and

a comparison with other transaction modes is not made.

By definition, the temporal sequentiality of transactions for the same product can

only arise when the capacity market clearing is relatively distant from the transaction

phase. In other words, such an analysis can only be made in the case of capacity markets

and not in the case of spot markets. A second connection can also be made between

the problems associated with multiple prices. Indeed, sequencing transactions means

producing several prices for the same good. To our knowledge, no study has attempted

to draw such a parallel in capacity markets.
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5.2 Decentralization of demand

Decentralization is a relatively unexplored topic in the literature, with a large proportion

of capacity markets having chosen a centralized mechanism. As the supply of capacity is

mainly made up of private players, this question primarily concerns the choice of having

a single buyer of capacity or, on the contrary, letting electricity retailers cover their

consumption with products traded on the mechanisms. The former is referred to as a

centralized mechanism, the latter as a decentralized mechanism.

The decentralization of a capacity market can lead to significant differences. Indeed,

the target level in a decentralized mechanism is not necessarily decided at the system

level: it may rest with each actor on one of the two sides (in practice, usually the

demand-side). The aggregation of individually defined target levels then constitutes

the system target level of the public policy. As in a classical market, remuneration

on decentralized mechanisms takes the form of transfers between demand and supply

actors. A centralized mechanism, on the other hand, involves a single transfer between

the authorities and only some of the players. In other words, the inframarginal rents and

scarcity rents missing from certain players are centralized at the level of the single buyer

before being redistributed to private players, which is not the case with decentralized

mechanisms. It is at this level, when the aggregation of individual demands and offers

takes place in conjunction with the transfer of rents, that there is potentially a deviation

between the two mechanisms.2

According to some papers, the advantages of decentralization are based on greater

responsibility on the demand-side to cover demand RTE (2014). Indeed, by definition,

demand-side actors have the best access to information on the need to cover their port-

folio. Any aggregation of information by a player then entails a risk of information

asymmetry and opportunistic behavior (PowerAuctions, 2016).3 De Maere d’Aertrycke

2The notion of centralization can also concern the formation of products on capacity markets. In
particular, the different elements of these products (such as the activation period and notably the level of
strike prices) could emerge from negotiation between the different parties participating in the mechanism
(Pöyry, 2015). To date, the majority of systems are based on product standardization decided at the
public authority level.

3Note the comment by Harvey et al. (2013): ”This has been particularly apparent in the PJM capacity
market, which contracted forward for capacity based on load growth forecasts that proved materially
inaccurate following the financial crisis, with the cost of keeping the excess capacity in service, or of
buying back the capacity obligation at a lower price in an incremental auction, borne by PJM power
consumers.”
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et al. (2017) point out that centralizing bids on capacity markets prevents players with

different risk aversions from adequately managing their risk: ”

”In contrast with preceding contracts, FCM does not offer risk-trading capa-

bilities: the risk-taking consumers do not reveal their risk aversion, but the

government contracts capacity on their behalf.”

The issue of risk has yet to be studied from this angle. The authors’ article sheds

some very interesting light on the subject. Moreover, the problem raised by the authors

refers to the more general limits for centralized models to reveal and aggregate the

information available within a system. Pöyry (2015) outlines the main advantages of

decentralization, notably in terms of economic efficiency, redistribution of rents between

players, and better integration of specific technologies.

Finally, the lack of concrete analysis on the formation of a decentralized demand curve

in the case of capacity markets prevents a rigorous analysis of their economic efficiency.

Indeed, the shape of the demand curve is crucial to understanding price formation in a

capacity market (Hobbs et al., 2007b). In particular, several authors emphasize the link

between this curve and the exercise of market power (Bublitz et al., 2019; Teirilä and

Ritz, 2019). In a very interesting approach, Brown (2018a) seeks the parameters of an

optimal administered demand curve that would minimize costs for society in the context

of imperfect demand. According to the analysis of specific authors, it would seem that the

effectiveness of decentralization of demand also depends on other criteria, in particular,

the degree of decentralization of transactions, which will be discussed in greater detail

in the following sections. Another practical criterion, absent from the academic debate,

is the temporal definition of the individual responsibility associated with the purchase

of capacity. Indeed, two design options may exist within a decentralized mode:

• The obligation to cover individual demand is defined before the transaction period,

then decentralized to the demand-side4 ;

• The obligation is associated with the individual demand realized by each demand

actor after the transaction period;

4For example, an aggregate adequacy level is defined initially, then shared between each player on
the basis of past demand achievements

246



According to initial feedback provided by Cigré (2016), it would appear that the

incentives for actors linked to the second option are much more significant than those

generated by the first option. Indeed, in the first case, individual demand is de facto

exogenous. Demand-side actors, therefore, have no incentive to modify their behavior in

such a way as to increase or decrease their level of contracting. This is not the case for

the second option, where players have an incentive to modify their consumption level if,

for example, the cost of demand response is lower than the price on capacity markets.

5.3 Price multiplicity

The question of price discrimination in capacity markers relates to two issues raised in

the literature:

• The form of the auction (uniform / discriminatory auction) ;

• Discrimination between existing and new capacity, issues specific to these mecha-

nisms.

In the first case, there has been no work comparing the two auctions for the capacity

markets. However, Harbord and Pagnozzi (2014) summarizes the results of the literature

and the lack of consensus in both theoretical and empirical work applied to the power

sector. The relatively less detrimental effect of the uniform auction for small players leads

to their choice for this type of design. Indeed, the authorities managing the mechanisms

most often advocate uniform auctions (DECC, 2012; AESO, 2018).

The multiplicity of prices in this form can be analyzed from multiple angles. Aside

from discriminating auctions, as mentioned above, sequentiality also introduces a form

of discrimination. Some authors, notably Bower and Bunn (2000), assume that a mar-

ket where transactions are decentralized is identical to a discriminating auction. This

hypothesis thus establishes a link between price multiplicity and transaction decentral-

ization.

In the second case, papers on capacity markets are more detailed. The question of

discriminating between the two types of capacity is still being debated, as evidenced

by the existence of both types of design. In a detailed qualitative report on the Cal-

ifornia mechanism, Pfeifenberger et al. (2012) argues that discriminating between new
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and existing capacity is likely to cause significant problems in allocating capacity in the

system:

”Price suppression benefits are temporary, achieved at the expense of existing

suppliers - Missed opportunities to procure lower-cost existing assets, D.R.,

and imports - leads to greater retirement, requiring even more new generation

to be built - increased regulatory risk - new generators will demand higher

prices to compensate for suppressed prices after contract expiration.”

Cramton et al. (2013) also highlights the limitations of capacity discrimination. The

main argument is that the service provided by a capacity, whether new or existing, is

strictly identical. This idea is conceptualized by asserting that in an energy-only market,

there is no discrimination between capacities, so the mechanisms do not have to either.

In a theoretical framework linked to the analysis of players’ strategic behavior, Salant

and Stoddard (2008) notes that :

By splitting the purchase of a single undifferentiated product, administra-

tive capacity credits, into two distinct procurements, a buyer in the first

procurement can underpay or overpay relative to the second. One problem

with differential pricing for existing and new capacity is the fact that this

can distort plant retirement and other maintenance decisions. The potential

mismatch in prices between the two procurements not only has cost rami-

fications for purchasers but also indicates an inefficient allocation of capital

and, consequently, inefficiency in the market.

Similar conclusions were discussed in an AESO (2018), the aim of which is to shed

light on the establishment of a capacity market in the region covered by the institution.

To our knowledge, there is no similar analysis of the benefits of price discrimination

between existing and new capacity. However, the type of product offered to them may

vary, which also leads to discrimination. This topic will be addressed in a subsequent

section, which deals explicitly with product differences in capacity markets.

5.4 Transaction decentralization

Recent U.S. federal authority rulings on the market design of capacity markets underline

the importance of the issues associated with centralized, bilateral markets. Whether
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transitions from a decentralized to a centralized market were rejected or approved by the

authorities, they nevertheless gave rise to a number of studies.

To date, the existence of a two-sided market requires the presence of some form of

demand decentralization. In their study for PJM, Pfeifenberger et al. (2009) clearly

demonstrate the wide variety of designs available, even for decentralized demand. The

authors offer an overview of possible designs for capacity markets:

• Bilateral markets (decentralized demand)

• Bilateral markets are cohabiting with centralized markets (with centralized de-

mand).

• Centralized markets (centralized demand)

In listing the advantages of each design, the authors emphasize the importance of

taking context into account for the effectiveness of each mechanism. Without going

into detail, they refer to issues linked to the structure of the market studied: intensity of

competition, size of players, asset financing methods, quantity and quality of information,

transaction costs, and so on. In particular, their work points out that a bilateral market

would generate too much risk for demand-side players, especially small ones. Transaction

costs linked to negotiations and the exercise of market power would result in a sub-

optimal mechanism.

In a more practical approach, applied to the Californian decentralized market, Pfeifen-

berger et al. (2009) proposes two options for the capacity market, without however show-

ing a clear preference. They have the advantage of eliminating discrimination between

new and existing capacity:

• Keep demand decentralization when contracting over long-term periods, and allow,

via centralized auctions with centralized demand, the exchange of capacity for

adjustment before the delivery period.

• Fully centralize the mechanism in the form of uniform auctions ahead of the delivery

period. The mechanism would be centralized in a similar way to PJM.

Given the relatively low concentration of demand players, decentralization of the

MISO market does not seem to raise any problems for Newell et al. (2010). The co-

existence of a decentralized market with the possibility of participating in a centralized
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demand auction would lead to the efficient operation of the mechanism. In another study

on NYSO, however, Newell et al. (2009) argues in favor of a fully centralized market up-

stream of the delivery period, due in particular to the existence of a number of small

players.

It should be noted, however, that the authors do not propose a rigorous, methodolog-

ical analysis of each mechanism that could be implemented in each system. It would,

therefore, be interesting to establish a robust link between the degree of decentralization

of transactions and the efficiency of a capacity market or a reliability options. In this

respect, it is interesting to note the analysis proposed by Morrison (2016) on the tran-

sitions of specific American markets. The author’s arguments, which are highly critical

of the centralization of capacity markets, are based on the causes of these transitions.

Indeed, the arguments put forward by a number of parties are that decentralized mar-

kets would encourage abusive behavior by demand-side actors. Indeed, the latter would

abuse their monopsony position and practice predatory pricing strategies. Such behavior

is particularly encouraged by the possibility of carrying out bilateral transactions. Cen-

tralizing transactions would, therefore, limit such risks. However, the author stresses the

specific nature of capacity markets, which would make such practices impossible. The

quantity of capacity demanded, linked to the exogenous setting of the target level by the

authority, cannot, in fact, be modified. Such strategies are only tenable by modifying

the quantities offered on the mechanism.

5.5 The time horizon covered by the traded product

The problem of determining the product traded on capacity markets was first addressed

in the previous section part of this study. We demonstrated that it is crucial to define a

product that enables optimal management of the balance between supply and demand

over the short term. This necessity is reflected in the introduction of penalties for non-

compliance with the obligation to produce during the transaction phase.

In the context of the market design study, the product traded on capacity markets

raises two significant issues that have been, and continue to be, discussed:

• The time horizon between the capacity market clearing and transaction phases. In

the case of a spot market, the two phases are very close (on the order of a week or
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a month). In the case of a forward market, the two phases may be several years

apart.

• The length of the trading phase. A short-term contract on capacity markets refers

to a transaction phase lasting one season or one year. A long-term contract, on

the other hand, refers to an obligation to produce over several years.

The first issue has been extensively addressed in the practitioner literature and has

been the subject of some modeling in academic articles. The central argument put

forward for the introduction of forward markets is that they make it easier for producers

to install additional capacity. Indeed, by enabling capacity to be sold several years in

advance, markets provide new entrants with a guaranteed income, even if they have not

yet built their capacity. Once the capacity revenue has been secured, the main risk for

a producer lies in the time it takes to build the capacity. In the event of non-delivery,

the only cost incurred by the producer is the penalty associated with the delivery phase.

This design would, in fact, lower some of the barriers to entry, which, as in the classic

literature, would enable greater competition in capacity markets and, hence, lower prices

for consumers.

However, one of the limitations of this design also lies in the time difference between

the capacity market clearing phase and the transaction phase. As electricity systems are

highly uncertain, the need for adequacy, and therefore its value, is based on variations

in factors over the long term, but also over the short term. As a result, an exogenous

adequacy requirement valued several years in advance generates a significant risk of error,

leading to under- or over-investment in the system (Harvey et al., 2013; Bhagwat et al.,

2017a). To compensate for this problem, current mechanisms use sequential auctions to

allow actors to adjust their positions up to a very short period before the delivery phase.

Therefore, this solution reconciles two transaction modes mentioned in this section: issues

linked to product formats (spot vs. forward) and matters linked to sequentiality.

In establishing this link between the two issues, some authors point to the risk of

seeing the cost to consumers increase as a result of sequentiality, itself made necessary

by the move to a forward market. Indeed, Harvey (2015) finds that in the PJM market

with centralized demand, prices on intermediate auctions are often lower than the price

of the main auction furthest from the transaction phase. This result could be linked

to opportunistic arbitrage on the part of players. Sequentiality would also increase

the cost of the mechanism for consumers. Indeed, the system operator buys at a high
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price initially and is forced to sell at a low price during the intermediate auctions if the

initial forecasts turn out to be wrong. The price difference is then passed on directly to

consumers. The authors’ work underlines the importance of understanding the potential

strategic effects of auction sequentiality, which is itself due to the forward nature of the

mechanism.

As Bushnell et al. (2017) points out, the question of the temporal framework is still

open:

”In both cases, more careful research of the effectiveness of ISO targets and

the activity in bilateral contracting would help inform the question of the

optimal forward time-frame and commitment time of R.A. markets.”

To date, the only academic modeling of the various options has been carried out by

Bhagwat et al. (2017a). In an agent-based model, the authors compare a spot capacity

market with a forward capacity market (multi-year contracts) and existing capacity

(annual contracts). The results of the model highlight the advantages and disadvantages

of each design: the forward market allows for better investments, notably by reducing

investment cycles, and has lower capacity price volatility. On the other hand, the spot

capacity market offers greater flexibility in the face of exogenous shocks to the power

system (such as the 2008 financial crisis). Given the mixed results, the authors do not

conclude on the best market design. Moreover, the large number of assumptions used in

the article makes it impossible to decide on the specific effects of each design.

The discussion of the importance of the design of capacity products also refers to

the traditional issues associated with forward in commodity markets, as presented in

the previous section. According to some authors, an energy market associated with a

capacity market can be understood as an energy-only market in which players would

have massively hedged themselves through energy-based forward contracts (Schneider

et al., 2017; Leautier, 2016; Harvey, 2015). Indeed, contractualization via contracts

would provide a strong incentive for players with production capacity to make themselves

available during periods of scarcity, effectively replicating the actions of the transaction

phases of capacity markets. Based on this observation, several studies have examined

the effects of capacity markets on the power system. Schneider et al. (2017) endogenizes

the demand for foward in the classic model of Allaz and Vila (1993) and shows that

demand-side players do not have sufficient incentives to contract themselves via the

capacity market. More classically, Leautier (2016) highlights the effects of contracting
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via a capacity market on the exercise of market power in energy markets. This approach

is often taken up in the literature associated with reliability options, with several authors

pointing out that such contracts would be very close to a form of mandatory risk hedging,

leading to the same effects as reliability options (Chao and Wilson, 2004; Cramton and

Stoft, 2008; Ausubel and Cramton, 2010). Finally, as we described in the second section,

the literature has systemically dealt with risk issues, modeling the effects of the capacity

market on the system. In this respect, we note the work of de Maere d’Aertrycke et al.

(2017), whose comparison of different mechanisms and designs sheds particular light on

this issue.

6 Conclusion

The academic literature assumes that when a player undertakes to be available in a

capacity market, it seeks to cover the cost incurred by this obligation to stay available.

This opportunity cost then forms the true value of capacity markets. Such an approach

is certainly not new to the analysis of markets as economic instruments. When we look

at actor behavior through the prism of economic theory, every economic actor seeks to

cover an opportunity cost. However, this approach, when applied to capacity markets,

seems to be all the more relevant as it was not necessarily employed when the mechanisms

were implemented and still does not appear in a number of works on that mechanism.

Of course, a systematic representation of opportunity cost is also unnecessary when

the modeling of actor behavior is not relevant to the analysis. Nevertheless, as these

behaviors are fundamental to the functioning and the objective of capacity markets, it

is pertinent to verify that their absence does not lead to contradictions in the results of

the studies.

In the introduction chapter, we reviewed the economic rationales for capacity mar-

kets. Through the exchange of an obligation to be available during a specific period,

these mechanisms make it possible to value investment. Consequently, their role is to

prevent the system from deviating from an optimum defined in terms of adequacy. The

main mechanisms designed around the world are based on the principle of competition:

the value of additional capacity or demand response for the system emerges through

the confrontation of a supply and a demand for capacity. The price is an additional

remuneration for a number of players, inciting them to modify their investment and

consumption behavior. In this chapter, we concluded that to understand how capacity
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markets function and to measure their economic efficiency, it is necessary to look at how

prices are formed on these mechanisms. The primary rationale behind price formation

in a market is linked to the way players behave in that market. Before any study can

be made of the economic relevance of a capacity market, we need to understand how

players trade on this mechanism. To address this introductory problem, we first defined

actor behavior conceptually and then presented the results of a literature review on how

economic models have represented these actor behaviors.

This chapter aims to present the central problem of this thesis: improving under-

standing of the effects of specific market designs on the economic efficiency of capacity

markets. More precisely, we seek to deepen the theoretical and practical link between

actor behavior and the design of the mechanisms in which these same actors evolve.

Initially, this observation motivated the need to establish a general analytical framework

on how actors behave in capacity markets.

Secondly, it was necessary to specify and present the various issues associated with

the designs of capacity markets. We, therefore, decided to limit the market design ques-

tions to those dealing with the transaction modes in the mechanisms. This framework

enabled us to establish five issues: the sequentiality of transactions, the decentralization

of players, the multiplicity of prices, the decentralization of transactions, and the tem-

poral definition of the product. Although closely interrelated, these different issues have

been the subject of specific studies by the academic and professional sectors. They have

been applied to the energy market from the outset, both qualitatively and normatively,

as well as quantitatively, using a wide variety of theoretical and empirical models. The

results of this work are clear: the power system has its environment, which requires a

specific representation of the sector, and the way in which transaction modes are set up

significantly affects the efficiency of markets and mechanisms through changes in player

behavior and price formation.

Based on this observation, we have reviewed the various analyses of these issues when

applied to the mechanisms studied in this thesis. Despite the absence of models estab-

lishing clear and, above all, specific results for capacity markets, we have concluded that

the issues relating to the modes of transaction on these mechanisms are significant and

can clearly impact their economic efficiency. In fact, this literature review confirms the

approach adopted in this thesis, which robustly establishes the link between transaction

modes, actor behavior, and the efficiency of capacity markets.
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Cigré (2016). Capacity Mechanisms : Needs , Solutions and state affairs. Technical

report, Iternational Council on Large Electric Systems (Cigré), Working Group C5.17.
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Hobbs, B. F., Hu, M.-C., Iñón, J. G., Stoft, S. E., and Bhavaraju, M. P. (2007b).

A dynamic analysis of a demand curve-based capacity market proposal: The pjm

reliability pricing model. IEEE Transactions on Power Systems, 22(1):3–14.
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1 Proof of Proposition 1.2

We follow the demonstration from Matthäus et al. (2021) and adapt it to the capacity

market framework. The demonstration relies on the existence of a self-financing strategy

Yt between a bond process Dβt = rβtdt and the inframarginal rent process πt and on the

assumption of an arbitrage-free market. Equating the coefficients of the self-financing

strategy results in the following equation

−rbopt(πt, t) + boptt (πt, t) + rπtb
opt
x (πt, t) +

1

2
σ2π2

t b
opt
xx (πt, t) = 0

It implies that we need to solve the following PDE.

−rbopt(w, t) + boptt (x, t) + rxboptx (x, t) +
1

2
σ2x2boptxx (x, t) = 0 (B.1)

on the region (x, t) ∈ (0, inf)× [0, T ) with boundary condition W (x, t) = max(com −
πt, 0).

To solve this PDE, we introduce an equivalent risk-neutral measure Q with dQ =

ZT̄dP. Here P denotes the natural measure and dZt = (µ−r)σ−1Ztdβ. Girsanov theorem

yields dβt = −(µ− r)σ−1dt+ dβQ
t and therefore dπt = rπtdt+ σπtdβ

Q
t . We can solve the

PDE by applying the Feynman-Kac formula. For tractability, we assume that t = 0 and

therefore T̄ = nd. A solution is given by

bopt(πt, 0) = E∗(−
∫ nd

0

ersdsmax(com − πt, 0))

= ern
d

(com
∫ com

−∞
dF (πt)−

∫ com

−∞
πtdF (πt))

The rest of the demonstration relies on computing the integrals. For that purpose,

we note that Y N (ω, ζ) and X = eY , then the distribution of X is

Fx(x) = ϕ(
ln(x)− ω

ζ
)
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Where ϕ(.) is the cumulative density function of the standard normal distribution.

Furthermore, the curtailed expected value of X is given by

E[X|X < x] = eω+
ζ2

2 ϕ(
ln(x)− ω − ζ2

σ
)

and

ln(πnd) ∼ N (ln(π0) + (r − σ2

2
)nd, σ2nd)

under the risk-neutral measure Q

Using the identity ϕ(−x) = 1− ϕ(x), we have for the first integral :

∫ com

−∞
dF (πnd) = Fπ

nd
(com) = ϕ(−

ln(π0)− ln(com) + (r − σ2

2
)nd

σ
√
nd

) = ϕ(z + σ
√
nd)

And we define z := − ln(π0)−ln(com)+(r+σ2

2
)nd

σ
√
nd

. Which gives :

∫ com

−∞
dF (πnd) = ϕ(z + σ

√
nd)

For the second integral :

∫ com

−∞
dF (πnd) = E(πnd |πnd < com) = π0e

rnd

ϕ(−
ln(π0)− ln(com) + (r + σ2

2
)nd

σ
√
nd

)

Which gives:

∫ com

−∞
dF (πnd) = π0e

rnd

ϕ(z)

With the expression of the integrals, we can express the option value associated with

the possibility of closing to avoid the fixed costs:

bopt(π0) = −π0ϕ(z) + e−rnd

(comϕ(z + σ
√
nd))
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2 Proof of Proposition 1.3

We use the initial paper by Levy (1992), which approximates the distribution of the

basket option by a log-normal distribution, and we apply it to the unique framework of

the capacity market.

Let π(t) be the inframarginal rent received at the time. We suppose that the sum

of the inframarginal rent is determined on the interval [T̄, T̄ + nt], which represents the

transaction phase. We define the continuous sum as follows, and we assume that T̄ = 0

:

Π0 =

∫ nt

0

π(t)dt

We look at characterizing the value of the modified basket put option. Using our

capacity market framework, with notably the strike price equal to the sum of actualized

periodic fixed cost Com, it can be defined as :

P [π(t),Π0] = e−rndE∗
0(max(Com − Π0))

With E∗
0 the expectation operator defined in the model section, which implies that

under the ris-adjusted density function, the inframarginal rent process can be described

by dπ(t) = rπ(t)dt+ σπtdZ
∗(t). For any value t > 0 we know that the value ln(π(t)) is

normally distributed, with mean ln(π0) + (r − σ2

2
)t and standard deviation σ

√
t.

The demonstration continues by assuming that the sum of log-normally distributed

values Π0 is indeed following a log-normal distribution, namely that ln(Π0) is normally

distributed with an unknown mean m and variance v2. Therefore, we use the moment-

generating function to determine those parameters. We define this function as Φx(k)

with

Φx(k) = E∗
0(Π

k
0) = ekm+ v2

2
k2

This expression allows us to consider a system of two equations with two unknowns,

with the equations being the first two moments and the unknowns being m and v2.

Solving the system allows the following expressions.
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m = 2ln(E∗
0[Π0])−

1

2
ln(E∗

0[Π
2
0])

v2 = ln(E∗
0[Π

2
0])− 2ln(E∗

0[Π0])

With E∗
0[Π0] and E∗

0[Π
2
0] being the first and second moment of Π0. Following our

assumption regarding the process of the inframarginal rent, we can find a closed-form

expression for the two moments. For the first moment, namely the mean of the sum, we

can initially define it as follows:

E∗
0[Π0] =

∫ nt

0

π(t)dt

Which gives :

E∗
0[Π0] = π0

∫ nt

0

ertdt

For the second moment, we use the initial expression for two variables following

a geometric Brownian motion process, say π(t1) and π(t2). In this case, we have

E∗
0[π(t1)π(t2)] = π2

0e
r(t1+t2)+σ2t1 . Then, we can expand the expression to a continuous

framework and to the sum of the inframarginal rent, which gives :

E∗
0[Π

2
0] = π2

0

∫ nt

0

∫ nt

0

er(t+s+nd)+(s+nd)σ2

dtds

When assuming that Π0 does follow a log-normal distribution, and with a closed-form

expression for m and v2, we can evaluate the put option P [πt,Π0] using the standard

finance theory as shown in the proof of Proposition 1.2:

bopt(π0,Π0) = P [π0,Π0] = −π0n
tϕ(z) + Comϕ(z + v)

Where :

z = −
m− ln(com

∫ nt

0
e−rt) + v2

v
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Note that we do not include any discounting factor for the inframarginal as it is

already done using ntπ0. Compared to the initial basket option, which compares asset

price at the same period in time, in our framework, the option is exercised only with

respect to the sum of the expected discounted inframarginal rent received during the

transaction phase.

3 Proof of Proposition 1.5

For the net present value, the derivative of the bid with respect to nt is

∂bnpv

∂nt
= −nt + come−r(nt+nd)

Therefore, the threshold for the sign of nt on the net present value bid is given by

the first order condition such that :

−nt + come−r(nt+nd) = 0

Which implies :

com = π0e
r(nd+nt)

For the real option bid, the derivative of the bid with respect to nt is :

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + come−rnd

(e−rnt

ϕ(z + v) +

∫ nt

0

e−rtdtφ(z + v))

When rearranged :

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + Com(S1ϕ(z + v) + φ(z + v)

∂z + v

∂nt
)

with Com = e−rnd
com

∫ nt

0
e−rtdt and S1 = e−rnt

/
∫ nt

0
e−rtdt.

269



The Cdf ratio and the Df ratio conditions are given by rearranging the equation and

by, respectively, the first and second term in brackets :

∂bopt

∂nt
= [ComS1ϕ(z + v)− π0(ϕ(z)]+

[
∂z

∂nt
(Comφ(z + v)− ntπ0φ(z))

]
+Comφ(z+v)

∂v

∂nt

Excluding the sign of ∂z
∂nt the first two terms are positive if and only if : Cdf ratio :

S1Com

π0
≥ R0 =

ϕ(z)
ϕ(z+v)

Df ratio : Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

The derivative ∂v
∂nt is always positive and is equal to

′ r e
nt (r+σ) + σ ent (r+σ) − r ent r − σ ent (2 r+σ)

2
√
v2 (ent (r+σ) + ent r − ent (2 r+σ) − 1)

′

Therefore, we need a third condition given by the sign of ∂z
∂nt . It can be expressed as

follows:

∂z

∂nt
= −

∂v2

∂nt + 2 r

2
√
v2

−

∂v2

∂nt

(
ln

(
− com (e−nt r−1)

r

)
− ln(V 2 p0)

2

)
2 v3

The sign of the derivative is given when equating the equation to 0, which gives the

following condition on the fixed cost for the derivative to be positive:

ccom
∫ nt

0

e−rtdt ≥
√
π0V ev

2(2r ∂v2

∂nt −1)

The limits of the derivative at its extreme are found by analyzing the behavior of

ϕ(z), ϕ(z+ v), φ(z) and φ(z+ v). Note first that z → 0 when nt → +∞, while v → +∞
when nt → +∞.

Then, the density function converges towards 0 when z → 0, z + v → +∞. For the

cumulative density function : ϕ(z + v) → 1 when z + v → +∞, while ϕ(z) → 0. This

implies the first result.

Concerning the case of nt → 0, depending on the initial value of π0 with respect to

com, the value of ϕ(z) can either converge to 0 or to 1 when nt → 0. Indeed, recall that
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the sign of the derivative of z can either be positive or negative. However, in both cases,

the value is either 0 or a positive value.

4 Proof of Lemma 1.1

The results of the proposition follow directly from the derivative of the bid with respect

to the variables.

For π0 :

∂bopt

∂π0

= −nt(ϕ(z) + π0
∂z

∂π0

φ(z)) + Comφ(z + v)
∂z + v

∂π0

Which gives when rearranged :

∂bopt

∂π0

= −ntϕ(z) +
∂z

∂π0

(Comφ(z + v)− ntπ0φ(z)) + Comφ(z + v)
∂v

∂π0

We found that : (i) ∂v
∂π0

is null and that (ii) ∂z
∂π0

is always negative as it is equal to :

∂z

∂π0

= − 1

p0
√
v2

Under the condition that Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

(which is the Df ratio) then the deriva-

tive is always negative.

For com :

∂bopt

∂com
= −ntπ0

∂z

∂com
φ(z) + e−rnd

∫ nt

0

e−rtdtϕ(z + v) +
∂z + v

∂com
Comφ(z + v)

Which gives when rearranged :

271



∂bopt

∂com
= e−rnd

∫ nt

0

e−rtdtϕ(z + v) +
∂z

∂com
(Comφ(z + v)− ntπ0φ(z)) +

∂v

∂com
Comφ(z + v)

We found that : (i) ∂v
∂com

is null and that (ii) ∂z
∂com

is always positive as it is equal to :

∂z

∂com
=

1

com
√
v2

Under the condition that Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

(which is the Df ratio) then the deriva-

tive is always positive.

For nd :

∂bopt

∂nd
= −π0n

t ∂z

∂nd
φ(z) + Com(−rϕ(z + v) +

∂z + v

∂nd
φ(z + v))

Which gives when rearranged :

∂bopt

∂nd
= Com(φ(v + v)

∂v

∂nd
− rϕ(z + v)) +

∂z

∂nd
(Comφ(z + v)− ntπ0φ(z))

The conditions on the derivative of the bid with respect to nd come straightforwardly.

Note that the condition on the risk-free rate and the fixed costs are given by the respective

derivative of v and z with respect to nd

∂v

∂nd
= − r − σ

2
√
v2

′

and

∂z

∂nd
=

(
ln

(
− com (e−nt r−1)

r

)
− ln(V )

2

) (
2 r − e−ndσ (r+σ) (V r+V σ)

M p0 (ent r+ntσ−1)

)
2 v3

−e−ndσ (r + σ) (V r + V σ)

2M p0 (ent r+ntσ − 1)
√
v2
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5 Proof of Proposition 1.7

Recall that :

∂bnpv

∂nt
= −nt + come−r(nt+nd)

And that :

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + Com(S1ϕ(z + v) + φ(z + v)

∂z + v

∂nt
)

Therefore, the derivative of the flexibility, which is equal to the derivative of the

difference between the two previous equations:

∂Γ

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) +Com(S1ϕ(z + v) + φ(z + v)

∂z + v

∂nt
) + nt − come−r(nt+nd)

When rearranged :

∂Γ

∂nt
= −π0((ϕ(z)− 1) + nt ∂z

∂nt
φ(z)) + Com(S1(ϕ(z + v)− 1) + φ(z + v)

∂z + v

∂nt
)

The conditions and the ratio in the proposition stem directly from equating :

∂Γ

∂nt
= 0

And differentiate from the cases where the denominator of the ratio is positive or

negative. Which is given by S1(ϕ(z + v) − 1) + ∂z+v
∂nt

φ(z + v) > 0 or by S1(ϕ(z + v) −
1) + ∂z+v

∂nt
φ(z + v) < 0.
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6 Proof of Lemma 1.4

We modify the results of the proof of Proposition 1.2 and apply it directly to the proof

of Proposition 1.3. First, note that the new payoff of the basket option is now equal to

max(Com − Π0,−P ), with P the costs associated with the closing decision, which are

the penalty and the closing costs. In this case, we need to solve the PDE of equation

B.1 on the same region but with boundary condition W (x, t) = max(Com − Πt, P ). We

can solve the PDE by applying the Feynman-Kac formula. A solution is given by

bopt(Πt, 0) = E∗(−
∫ nd

0

ersdsmax(Com − Π0))

= ern
d

(Com

∫ Com+P

−∞
dF (Πt)−

∫ Com+P

−∞
ΠtdF (Πt)− P

∫ +∞

Com+P

dF (Πt))

First, note that for the two integrals, their expression is close to the one in the proof

of Proposition 1.2 and 1.3. Namely, we add the closing cost to the periodic fixed cost in

the value z:

ern
d

(Com

∫ Com+P

−∞
dF (Πt)−

∫ Com+P

−∞
ΠtdF (Πt)) = −π0n

tϕ(z) + e−rnd

Comϕ(z + v)

with z := −m−ln(com
∫ nt

0 e−rtdt+P )+v2

v
.

For the third integral, recall that :

∫ +∞

Com+P

dF (Πt) = 1−
∫ Com+P

−∞
dF (Πt) = 1− ϕ(z + v)

Therefore :

bopt(Πt, 0) = −π0n
tϕ(z) + e−rnd

(Com)ϕ(z + v)− P (1− ϕ(z + v))

When rearranged :
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bopt(Πt, 0) = −π0n
tϕ(z) + e−rnd

((Com + P )ϕ(z + v)− P )
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Notation guide: For readability, we sometimes drop the references to variables in the

expression of functions and their derivatives.

1 Market equilibrium with Cournot

We extend the findings of the endogenous and exogenous regimes to take into account

imperfect competition in the retail market. Therefore, we do not directly implement

the retailer market share allocation. We denote mp(q) the markup associated with the

market power in the retail market such that mp(q) = − q
n
pq > 01. Similarly to the other

cases, we denote k∗
0,n the investment level that maximize the expected social welfare

W0,n(k) under imperfect competition such that k∗
0,n = {k : ϕ0,n(k) = r}, with :

ϕ0,n(k) =

∫ s̄

s0,n

(p(k, s)− c)dF (s)

With s0,n the threshold value such that this is the first state of the world for which the

wholesale price adjusted by retailers’ market power equals the marginal cost: p(k, s0,n)−
mp(k) = c. The initial general assumptions ensure that the expected social welfare is

concave under the Cournot competition. The market equilibrium, such as the expected

marginal revenue, equals the marginal cost of providing an additional investment: kn
0 =

{k : ϕn
0 (k) = r} with:2

ϕn
0 (k) =

∫ s̄

s0,n

(p(k, s)−mp(k)− c)dF (s)

The following lemma sums up the results: we find that market power in the retail

market lowers the investment level beyond the market power’s direct effect. The market

investment level is different from the optimal investment level even when maximizing the

welfare function given the market power in the retail market.

Lemma C.1. For every n ∈ [2,∞[, imperfect competition in the retail market leads (i)

to a lower first best capacity level compared with the optimal investment level k∗
0 ≥ k∗

0,n

(ii) to a lower market equilibrium in terms of investment level k∗
0,n ≥ kn

0 . The optimal

1We simplify ∂mp(q)
∂q = mpq and ∂mp(q)

∂n = mpn(q).
2Recall that under perfect competition, the relation between the wholesale price and retail price is

given by ps(q, s) = p(q, s) + q
npq
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capacity payment zn is equal to the expected markup of retailers in the retail market

during peak periods:

zn(k) =

∫ s̄

s0,n

mp(k)dF (s) (C.1)

Proof. The welfare function is given by

W (k) =

∫ s0

0

∫ q0

0

(p(q, s)− c)dq dF (s) +

∫ +∞

s0

∫ k

0

(p(q, s)− c)dq dF (s)− rk (C.2)

The first order condition gives the optimal investment level:

∫ +∞

s0

∫ k

0

(p(q, s)− c)dq dF (s) = r (C.3)

We define the inframarginal rent under Cournot competition as follows :

ϕ(k) =

∫ +∞

s0

(ps(k, s)− c)dF (s) (C.4)

The market investment level is equal to the optimal investment level only if the

solution following equality has the same solution as with the first-order condition of the

welfare function:

ϕ(k) + zn(k) = r (C.5)

Which is the case if and only if :

zn(k) = ϕ(k)−
∫ +∞

s0

∫ k

0

(p(q, s)− c)dq dF (s) (C.6)

Therefore, the optimal payment is equal to the expected markup of retailers.
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zn(k) =

∫ +∞

s0

mp(k)dF (s) (C.7)

With imperfect competition, the first best investment level is lower due to a shift in

the occurrence of on-peak periods. It can be showed by comparing the expression ϕ0(k)

and ϕ0,n(k) due to the presence of the threshold value s0,n. Similarly, the inefficient

market equilibrium is also lower due both to the threshold and to a lower expected price

p(q, s)−mp(q) as shown in the expression of ϕn
0 (k).

We illustrate this result in Figure C.2. We show the expected social welfare for

different values of capacity and the cumulative effect of imperfect competition in the

system. The black curve represents the case with perfectly competitive retailers. The

results in the of Lemma C.1 demonstrate that with imperfect competition in the retail

market : (i) the expected social welfare is lower, which is represented by the blue curves

and implies a lower first-best investment level, (ii) A decrease of imperfect competition

(via an increase of the number of retailers n′ > n with n = 2 and n′ = 3) increase both

the investment level that maximizes the welfare and the welfare at this level. This result

is in agreement with the literature on market power. To see this, the derivative of the

expected social welfare in this case can be written as follows:

∂W0,n(k)

∂n
=

∫ sn

0

∂q0,n
∂n

mp(q0,n)dF (s)

This captures the fact that as n varies, it changes the aggregate quantity offered by

retailers only during the off-peak periods. Indeed, the on-peak periods are such that

the total quantity is equal to k; hence, a change of n does not affect welfare. Using the

definition of q0,n, we have:

∂q0,n
∂n

=
mpn(q0,n)

pq −mpq

Note that mpq > 0 (for instance with linear demand function : mpq = b
n
), pq by

definition and mpn(q0,n) < 0 as an increase of n decreases retailers market power. Hence
∂q0,n
∂n

> 0, which implies that welfare is increasing with n. For the investment level that

maximizes consumer surplus, we have:
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Figure C.1: Expected social welfare, first-best and market investment level with and
without imperfect competition in the retail market

∂2W0,n(k)

∂k∂n
= −∂s0,n

∂n
mp(k)f(s0,n)

From the definition of s0,n, we have ∂s0,n
∂n

= −∂q0,n
∂n

/∂q0,n
∂s

. We have shown that the

first derivative is positive. The second is also positive, as an increase of s increases the

demand function. Hence, increasing n decreases the occurrence of off-peak periods. This

is intuitive as decreasing imperfect competition raises demand, so capacity binds more

often. The envelop theorem implies that the sign of the derivative of k∗
0,n with respect

to n is positive.3

We now turn to the endogenous case. We denote k∗
1,n as the first-best under an en-

dogenous design with imperfect competition but without the allocation based on market

share. That is, the capacity price is allocated on a variable basis directly to the final con-

sumers. In that case the marginal expected social welfare such as k∗
1,n = {k : ϕ1,n(k) = r}

with:

ϕ1,n(k) =

∫ s1,n

0

∂q1,n
∂k

(pc(k) +mp(q1,n))dF (s) +

∫ s̄

s1,n

(p(k, s)− c)dF (s)

3The concavity of the expected welfare with respect to k is straightforward. Imperfect competition
does not alter its behavior.
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Similarly to the previous case, we illustrate this result in Figure C.2. We show the

expected social welfare for different values of capacity and the cumulative effect of im-

perfect competition in the system. The black curve represents the case with perfectly

competitive retailers under an exogenous regime. The red curve represents the endoge-

nous case, still without imperfect competition. We then compare the exogenous (dashed)

and endogenous (solid) regimes with the blue curves. As expected, the imperfect com-

petition in this case amplifies the negative price effect. The derivative of the expected

social welfare with respect to n in this case can be written as follows:

∂W1,n(k)

∂n
=

∫ s1,n

0

∂q1,n
∂n

(pc(k) +mp(k))dF (s)

The expression captures the two effects of increasing n: (i) it changes the market-

up of retailers as under the exogenous welfare, but (ii) it also changes capacity market

equilibrium as the expected profit of producers changes. In this framework, this is

captured via the capacity price.

∂q1,n
∂n

=
mpn(qn,1) +

∂pc(k)
∂n

pq −mpq

The denominator is clearly negative. The derivative of the capacity price is given by:

∂pc(k)

∂n
=

mpn(k)∆1,nF

1−∆1,nF

Similarly to the expression in the proof of appendix 4, we have ∆1,nF =
∫ sw1,n
s0,n

dF (s) >

0. Hence, ∂pc(k)
∂n

> 0. An increase in n increases the demand in the wholesale market,

which, in turn, increases the profit of producers, which lowers their cost of providing

more capacity. This lowers the negative price effect on demand. Consequently, under

the endogenous regime, an increase of n has a compound positive effect on the demand:
∂q1,n
∂n

> 0. It proves that the expected welfare is positively affected by n in this regime.

Finally, the cross derivative gives:
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Figure C.2: Expected social welfare, first-best, and market investment level with and
without imperfect competition in the retail market under an exogenous and endogenous
regime

∂2W1,n(k)

∂k∂n
=

∂s1,n
∂n

(
∂q1,n(s1,n)

∂k
− 1

)
(pc(k) +mp(k))f(s1,n)

+

∫ s1,n

0

∂q1,n
∂k

(
∂pc

∂n
+mpn(q1,n) +

∂q1,n
∂n

mpq)

We have ∂s1,n
∂n

= mpn(k)+
∂pc

∂n
< 0 and ∂q1,n

∂k
= ∂pc(k)

∂k
1

pq−mpq
< 0 as the supply function

in the capacity market is increasing with k: ∂pc(k)
∂k

= −(pq−mpq)
∆1,nF

1−∆1,nF
> 0. Therefore,

the first line is positive. The sign of the second line is a priori ambiguous. However,

simplification shows that :

∂2W1,n(k)

∂k∂n
=

∂s1,n
∂n

(
∂q1,n(s1,n)

∂k
− 1

)
(pc(k) +mp(k))f(s1,n)

+

∫ s1,n

0

∂q1,n
∂k

(
∂pc

∂n
+mpn(q1,n))

pq
pq −mpq

All the terms are negative; hence, the second line is positive. Therefore, using the

envelop theorem, we find that the investment level that maximizes expected welfare is

also increasing with n
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2 Proof of Lemma 2.1

Proof. The market investment level is equal to the optimal investment level only if the

solution of the following equality has the same solution as with the first-order condition

of the welfare function: ϕw(k) + zw(k) = r. Which is the case if and only if :

zw(k) = ϕw(k)−
∫ s̄

s0

∫ k

0

(p(q, s)− c)dqdF (s)

Therefore, the optimal payment is equal to the expected lost revenue between the

optimal price and the price cap:

zw(k) =

∫ s̄

sw0

(p(k, s)− pw)dF (s)

3 Proof of Proposition 2.1

Proof. The supply function in the capacity market, with a price cap in the wholesale

market, is positive and is equal to the:

X(k) = r − ϕ(k) = r −
∫ sw0

s0

(p(k, s)− c)dF (s)−
∫ s̄

sw0

(pw − c)dF (s)

We then find the intersection between the supply function and the optimal payment

functions given by the following equations:

zw(k) =

∫ s̄

sw0

(p(k, s)− pw)dF (s)

For instance, when X(k) = zw(k), then it gives:

r −
∫ sw0

s0

(p(k, s)− c)dF (s)−
∫ s̄

sw
(pw − c)ftdt =

∫ s̄

sw0

(p(k, s)− pw)dF (s)
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When rearranged, we have:

r =

∫ s̄

sw1

(p(k, s)− c)dF (s)

Which is the condition for the first-best to be reached. Therefore, having a demand

function at the optimal investment level, given the supply function in the capacity mar-

ket, is strictly the same as providing producers with a payment whose value is given by

the payment function at the optimal investment level.

4 Proof of Lemma 2.2

Proof. For clarity, let’s denote pc(k), the capacity price imposed on the final consumers.

We assume, for now, that it exists. We formally demonstrate it in the proof of Lemma

2.3. For ease of notation, we sometimes use only pc.

First, we state in this proof that allocating the capacity price on the consumer as a

tax only affects the share between on-peak and off-peak periods and the surplus’s size

during off-peak periods. We start by defining the expected consumer surplus without a

capacity market:

W c(k) =

∫ s0

0

∫ q0(s)

0

(p(q, s)− c)dqdF (s) +

∫ sw0

s0

∫ k

0

(p(q, s)− p(k, s))dqdF (s)

+

∫ s̄

sw0

∫ k

0

(p(q, s)− pw)dqdF (s)

Then, we define both the expected welfare for consumers and producers with a ca-

pacity market for three different periods: (i) when the capacity is not binding, (ii) when

the capacity is binding but not the price cap, and (iii) when the price cap is binding. We

show that for each period, the surplus encompasses, at the same time, the direct welfare

loss and gain from the transfer due to the capacity market and the indirect effect due

to the capacity price allocation. The expected surplus for the consumer during off-peak

periods is:
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W c
of (k, p

c) =

∫ s1(pc)

0

[
−pc(k)(k − q1(p

c)) +

∫ q1(pc)

0

(p(q, s)− c− pc(k))dq

]
dF (s)

=

∫ s1(pc)

0

[
−pc(k)k +

∫ q1(pc)

0

(p(q, s)− c)dq

]
dF (s)

Note that the term −pc(k)(k−q1(p
c)) in the integral ensures that the capacity buyers

do not make any losses. For the on-peak periods when the price cap is not binding, the

consumer welfare is:

W c
on(k, p

c) =

∫ sw1 (pc)

s1(pc)

[
−pc(k)k +

∫ k

0

(p(q, s)− p(k, s)− pc(k))dq

]
dF (s)

=

∫ s̄

sw1 (pc)

∫ k

0

(p(q, s)− p(k, s))dqdF (s)

For the periods when the price cap is binding, the consumer welfare is:

W c
cap(k, p

c) =

∫ s̄

sw1

[
−pc(k)k +

∫ k

0

(p(q, s)− pw)dq

]
dF (s)

On the other hand, the producer welfare during offpeak periods is:

W p
of (k, p

c) =

∫ s1(pc)

0

pc(k)kdF (s)

For the on-peak periods when the price cap is not binding, the producer welfare is:

W p
on(k, p

c) =

∫ sw1

s1(pc)

[pc(k)k + k(p(k, s)− pc(k)− c)] dF (s)

=

∫ sw1

s1(pc)

k(p(k, s)− c)dF (s)

For the periods when the price cap is binding, the producer welfare is:
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W c
cap(k, p

c) =

∫ s̄

sw1

[pc(k)k + k(pw − c)] dF (s)

When we add the different expected welfare for consumers and producers, we have

the pc(k)k parts canceled and the price cap pw. It gives the following expected social

welfare:

W1(k, p
c) =

∫ s1(pc)

0

∫ q1(pc)

0

(p(q, s)− c)dqdF (s) +

∫ s̄

s1(pc)

∫ k

0

(p(q, s)− c)dqdF (s)− rk

5 Proof of Lemma 2.3

Proof. The endogenous capacity market price is given by solving X1(k, p
c) = pc. In the

endogenous case, its expression is

X1(k) =

0 if k ≤ kw
0

r − ϕw
1 (k, p

c) k > kw
0

(C.8)

With kw
0 , the market equilibrium investment level is such that we have r = ϕw

1 (k, p
c).

Hence, we focus on proving that a solution exists for any value of k ∈ [kw
0 + ∞). The

expression of ϕw
1 (k, p

c) depends on the value of pc, similarly to the case of k. That is,

there exist some values of pc such that capacity or price cap might be always or never

binding in expectation. The expressions of ϕw
1 (k, p

c) are therefore:

ϕw
1 (k, p

c) =



∫ s̄

0
[pw − c]dF (s) ∀pc ∈ [−∞, pc−−]∫ sw1 (pc)

0
[p(k, s)− pc − c] dF (s)−

∫ +∞
sw1 (pc)

[pw − c]dF (s) ∀pc ∈ [pc−−, p
c
−]∫ sw1 (pc)

s1(pc)
[p(k, s)− pc − c] dF (s)−

∫ +∞
sw1 (pc)

[pw − c]dF (s) ∀pc ∈ [pc−, p
c
+]∫∞

s1(pc)
[p(k, s)− pc − c] dF (s)) ∀pc ∈ [pc+, p

c
++]

0 ∀pc ∈ [pc++,+∞]
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With the threshold values defined as follows: pc−− = {pc : sw1 (p
c) = 0}, price cap

always binds in expectation, pc− = {pc : s1(pc) = 0}, capacity always binds, and some-

times the price cap bind. pc+ = {pc : sw1 (pc) = +∞}, the price cap never binds, and the

capacity sometimes binds. pc++ = {pc : s1(p
c) = +∞}, the price cap and the capacity

never bind.4 The middle case where both capacity and the price cap sometimes bind

in expectation is the third line. Note that because of the definition of s1 and sw1 , the

derivatives with respect to pc are always increasing. For instance, s1 solves:

Differentiating with pc gives ps(k, s)
∂s1
∂pr

−1 = 0, hence: ∂s1
∂pr

= 1
ps(k,s)

> 0. For instance,

under the uniform distribution of s: s1(p
c) = c−a0+pc+k and sw1 (p

c) = pw−a0+pc+k.

If a0 is sufficiently high, then there exists some low value of pc such that both terms are

negative.

We define the function g(pc, k) = X1(k)−pc = r−ϕw
1 (k)−pc. We take the derivative

with respect to pc of the third expression :

∂g(pc, k)

∂pc
= (p(k, s1)− pc − c)f(s1)

∂s1(p
c)

∂pc
+

∫ sw1 (pc)

s1(pc)

dF (s)

−f(sw1 )(p(k, s
w
1 (p

c))− pc − c)
∂sw1 (p

c)

∂pc
+ (pw − c)f(sw1 )

∂sw1 (p
c)

∂pc
− 1

At s1(p
c) we have p(k, s1(p

c))− pc(k)− c = 0. The third and fourth terms cancel out

as p(k, sw1 (p
c))− pc(k) = pw. Therefore, the first derivative extended to all cases are:

∂g(k, pc)

∂pc
=



−1 ∀pc ∈ [−∞, pc−−]∫ sw1 (pc)

0
dF (s)− 1 ∀pc ∈ [pc−−, p

c
−]∫ sw1 (pc)

s1(pc)
dF (s)− 1 ∀pc ∈ [pc−, p

c
+]∫ s̄

s1(pc)
dF (s)− 1 ∀pc ∈ [pc+, p

c
++]

−1 ∀pc ∈ [pc++,−∞]

Therefore g(pc, k) is a necessary decreasing function for any pc(k) and any expression

of ϕw
1 . Note also that g(pc, k) is increasing with the investment value k :

4In a similar way, one can also define capacity thresholds for which capacity always bind or never
binds in expectation for instance.
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∂g(pc, k)

∂k
= −

∫ sw1 (pc)

s1(pc)

pqdF (s)

Again, note that the derivative is also positive for other expressions of ϕw
1 .By definition

we know that at the minimum value of k, kw
0 , the fixed point is pc(k) = 0 because

r = ϕw
1 (k, p

c). As g(pc, k) is increasing with k, we have for any k > kw
0 : g(0, k) > 0.

The second derivative with respect to pc(k) is :

∂2ϕw
1 (k, p

c)

∂pc2
=



0 ∀pc ∈ [−∞, pc−−]

f(sw1 )
∂sw1 (pc)

∂pc
∀pc ∈ [pc−−, p

c
−]

f(sw1 )
∂sw1 (pc)

∂pc
− f(s1)

∂s1(pc)
∂pc

∀pc ∈ [pc−, p
c
+]

−f(s1)
∂s1(pc)
∂pc

∀pc ∈ [pc+, p
c
++]

0 ∀pc ∈ [pc++,−∞]

From the definition of s1(p
c) and sw1 (p

c) we have
∂sw1 (pc)

∂pc
= 1

ps(sw1 (pc))
> 0 and ∂s1(pc)

∂pc
=

1
ps(s1)

> 0.

Therefore, the function g depending on the value of k, exhibits a succession of linear,

convex, ambiguous, concave, and finally, linear parts. The last expression ensures at

least a fixed point for any k ∈ [kw
0 +∞), without giving a precise location on which part

the fixed point is.

The second part of the proposition comes for the difference between X0(k) and X1(k).

Note that we necessarily have sw1 (p
c) > sw0 and s1(p

c) > s0 for any positive capacity price.

We express the delta as follows:

X1(k)−X0(k) = −
∫ sw1 (pc)

s1(pc)

[p(k, s)− pc(k)− c]dF (s)−
∫ +∞

sw1 (pc)

[pw − c]dF (s)

+

∫ sw0

s0

[p(k, s)− c]dF (s) +

∫ s̄

sw0

[pw − c]dF (s)

Rearranged, and assuming (w.l.o.g.) s1(p
c) < sw0 , we have :
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X1(k)−X0(k) =

∫ sw1 (pc)

s1(pc)

pc(k)dF (s) +

∫ s1(pc)

s0

[p(k, s)− c]dF (s)

+

∫ sw1 (pc)

sw0

[pw − p(k, s) + pc(k)]dF (s)

By definition of sw1 (p
c) such that p(k, sw1 (p

c))−pc(k)−pw = 0, the last term is always

positive. Hence for any k ∈ [kw
0 +∞) we have X1(k) > X0(k).

6 Proof of Proposition 2.2

Proof. We define k̃−
1 , k̃

w−
1 , k̃w+

1 , k̃+
1 the threshold investment level such that : (1) capacity

always binds: s1(k̃
−
1 ) = 0, (2) price cap always binds: sw1 (k̃

w−
1 ) = 0, (3) price cap never

binds: sw1 (k̃
w−
1 ) = s̄, (4) capacity never binds: s1(k̃

−
1 ) = s̄ (recall that sw1 < s1)

We chose to study the welfare in the thresholds [k̃−w
1 , k̃−w

1 ] which corresponds to the

case where capacity and the price cap binds (but not always), as the results hold for the

other cases. The expected social welfare is equal to the following:

W1(k, p
c) =

∫ s1(pc)

0

∫ q1(pc)

0

(p(q, s)− c)dqdF (s) +

∫ s̄

s1(pc)

∫ k

0

(p(q, s)− c)dqdF (s)− rk

The first derivative with respect to the level of investment is :

∂W1(k, p
c)

∂k
=f(s1)

∂s1
∂k

∫ q1(s1,pc)

0

(p(q, s1)− c)dq +

∫ s1(pc)

0

∂q1
∂k

[p(q1, s)− c]dF (s)

−f(s1)
∂s1
∂k

∫ k

0

(p(q, s1)− c)dq +

∫ s̄

s1(pc)

[p(k, s)− c]dF (s)− r
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At s1(p
c), we have q1(s1, p

c) = k. Hence, the first and third terms cancel out. More-

over, by definition p(q1, s) − c = pc(k) .The first derivative with respect to the level of

investment becomes :

∂W1(k, p
c)

∂k
=

∫ s1(pc)

0

pc(k)
∂q1
∂k

dF (s) +

∫ s̄

s1(pc)

[p(k, s)− c]dqdF (s)− r

Using the definition of s1(p
c) such that p(k, s1(p

c))− c = pc(k), the second derivative

with respect to the level of investment is :

∂2W1(k, p
c)

∂k2
=pc(k)f(s1)

∂s1
∂k

[
∂q1(s1)

∂k
− 1

]
+

∫ s1(pc)

0

[
pc(k)

∂2q1
∂k2

+
∂q1
∂k

∂pc

∂k

]
dF (s) +

∫ s̄

s1(pc)

pqdF (s)

We simplify the previous expression using the initial assumption that states of the

world only change the demand intercept.

∂2W1(k, p
c)

∂k2
=pc(k)f(s1)

∂s1
∂k

[
∂

∂q1
(s1)k − 1

]
+

∫ s1(pc)

0

pc(k)
∂2q1
∂k2

dF (s)

+

∫ s1(pc)

0

∂q1
∂k

∂pc

∂k
dF (s) +

∫ s̄

s1(pc)

pqdF (s)

We now analyze the derivative of the capacity price with respect to k. The expression

of pc(k) is given by

pc(k) = r −
∫ sw1 (pc)

s1(pc)

[p(k, s)− pc(k)− c] dF (s)−
∫ s̄

sw1 (pc)

[pw − c] dF (s)

Therefore, we have
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∂pc

∂k
= −

∫ sw1 (pc)

s1(pc)

[
−∂pc

∂k

]
dF (s) + (pw − c)f(sw1 )

∂sw1
∂k

(p(k, s1)− pc(k)− c)f(s1)
∂s1
∂k

− (p(k, sw1 )− pc(k)− c)f(sw1 )
∂sw1
∂k

By definition p(k, s1(p
c)) − c = pc(k), and p(k, sw1 (p

c)) − pw = pc(k). Therefore, the

third term is null, and the second and fourth terms cancel out. The capacity price is

independent of the realized state of the world. Hence we have

∂pc

∂k
= −pq

∫ sw1 (pc)

s1(pc)

dF (s) +
∂pc

∂k

∫ sw1 (pc)

s1(pc)

dF (s)

Therefore,

∂pc

∂k
= −pq

∫ sw1 (pc)

s1(pc)
dF (s)

1−
∫ sw1 (pc)

s1(pc)
dF (s)

= −pq
∆1F

1−∆1F

With ∆1F =
∫ sw1 (pc)

s1(pc)
dF (s) = f(sw1 ) − f(s1). Whenever s1(p

c) and sw1 (p
c) exists and

are positive then ∆1F > 0 and ∆1F < 1. It implies that ∂pc

∂k
> 0. As expected, it

confirms that the supply function in the capacity market is increasing with the level of

investment k. An increase of k directly increases the occurrence of off-peak periods and

indirectly lowers the demand via a higher capacity price :

∂q1
∂k

=
∂pc

∂k

1

pq
= − ∆1F

1−∆1F
< 0

A higher investment level means less demand. The second-order derivative is ex-

pressed as follows :

∂2q1
∂k2

=
1

pq

∂2pc

∂k2

Therefore, ∂2q1
∂k2

< 0 if and only if the term inside the brackets is positive. Using
∂pc

∂k
= −pq

∆1F
1−∆1F

, the second derivative
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∂2pc(k)

∂k2
= −pq

∂∆1F

∂k

1

(1−∆1F )2

Now we express ∂∆1F
∂k

∂∆1F

∂k
=

∂sw1
∂k

f(sw1 )−
∂s1
∂k

f(s1)

Using the previous expression and noting that ∂2q1
∂k2

does not depend on s, we again

simplify the second derivative of the expected social welfare:

∂2W1(k, p
c)

∂k2
=pc(k)f(s1)

∂s1
∂k

[
∂q1(s1)

∂k
− 1

]
− pc(k)

∂∆1F

∂k

f(s1)

(1−∆1F )2

+

∫ s1(pc)

0

∂q1
∂k

∂pc

∂k
dF (s) +

∫ s̄

s1(pc)

pqdF (s)

=− pc(k)f(s1)
∂s1
∂k

1− f(sw1 )

(1−∆1F )2
− pc(k)f(sw1 )

∂sw1
∂k

f(s1)

(1−∆1F )2

+

∫ s1(pc)

0

∂q1
∂k

∂pc

∂k
dF (s) +

∫ s̄

s1(pc)

pqdF (s)

The first term is negative as 1−f(sw1 ) ≥ 0, and the second term is also negative from

the definition of the derivative of the threshold as :

∂s1
∂k

=
−pq +

∂pc

∂k

ps(s1)
= − pq

ps(s1)

1

1−∆1F
> 0

Finally, the third term is also negative as ∂q1
∂k

≤ 0 and ∂pc

∂k
≥ 0. Finally, the last term

is also negative.

The expression in (ii) of ϕ1(k) is given by ∂W1(k,pc)
∂k

. The proof of (iii) relies on the

analysis of the derivative of ∂∆W1(k,pc)
∂k

. The derivative is equal to
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∂∆W1(k, p
c)

∂k
=

∂s0
∂k

f(s0)

∫ q0(s0)

q1(s0,pc)

(p(q, s0)− c)dq +

∫ s0

0

−∂q1
∂k

dF (s)

−∂s0
∂k

f(s0)

∫ k

q1(s0,pc)

(p(q, s0)− c)dq +
∂s1
∂k

f(s1)

∫ k

q1(s1)

(p(q, s1)− c)dq

+

∫ s1(pc)

s0

[
−∂q1

∂k
+ (p(k, s)− c)

]
dF (s)

Note that the three terms with the derivatives of s0 and s1 are null as : p(q, s0)−c = 0

and q1(s1) = k. Therefore, the equation boils down to:

∂∆W1(k, p
c)

∂k
=

∫ s0

0

[
−∂q1

∂k
p(q1, s)− c

]
dF (s) +

∫ s1(pc)

s0

[
−∂q1

∂k
+ (p(k, s)− c)

]
dF (s)

From the previous analysis, we know that the sign of ∂q1
∂k

is negative. In turn, the

derivative ∂∆W1(k,pc)
∂k

is fully positive. Hence, the new first-best solution in terms of

investment level given under the endogenous regime is always lower or equal to the first-

best solution under the exogenous level. The same result applied to the expected social

welfare at the first-best investment level.

7 Proof of Lemma 2.4

Proof. In this case, the inframarginal rent is the same as the case with a price cap only.

On the other hand, the new welfare function is:

W bo(k) = W (k)−M(k)

The first-order condition is similar to those in the previous proof:

∫ +∞

s0

∫ k

0

(p(q, s)− c)dq f(s)dt−Mk(k) = r
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The market investment level is equal to the optimal investment level only if the

solution of the following equality has the same solution as with the first-order condition

of the welfare function. Because the inefficient rationing is due to the price cap, the

optimal payment includes de facto zw(k) to restore the optimal investment level. Here,

we derive only the additional part relative to the rationing.

ϕ(k) + zbo(k) = r

Which is the case if and only if :

zbo(k) = ϕ(k)− (

∫ +∞

s0

∫ k

0

(p(q, s)− c)dq f(s)dt−Mk(k))

Therefore the optimal payment is equal to the marginal surplus loss due to inefficient

rationing.

zbo(k) = Mk(k)

8 Proof of Lemma 2.5

Proof. We start with the definition of the expected welfare under the endogenous regime

with inefficient rationing. Using the definition of W0(k) and the rationing cost m(k),

and after rewriting, we have :

W bo
1 (k) = W1(k)− A

With

A =

∫ s̄

sw1

(∫ k

0

(p(q, s)− pw)dq − k

qw1

∫ qw1

0

(p(q, s)− pw)dq

)
dF (s)
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Hence, the second order derivative with respect to k is given both by ∂2W0(k)
∂k2

and by

deriving the second term. The first derivative is equal to:

∂A
∂k

=− f(sw1 )
∂sw1
∂k

[∫ k

0

(p(q, sw1 )− pw)dq − k

qw1 (s
w
1 )

∫ qw1 (sw1 )

0

(p(q, sw1 )− pw)dq

]

+

∫ s̄

sw1

(
(p(k, s)− pw)− 1

qw1

∫ qw1

0

(p(q, s)− pw)dq +
∂qw1
∂k

k

(qw1 )
2

∫ qw1

0

(p(q, s)− pw)dq

−∂qw1
∂k

k

qw1
(p(qw1 , s)− pw)dq

)
dF (s)

This equation can be significantly reduced. First, note that at sw1 by definition,

we have qw1 = k. Hence, the first line is null. Then, we use the observation that∫ qw1
0

(p(q, s) − pw)dq =
∫ qw1
0

(p(q, s) − p(qw1 , s))dq +
∫ qw1
0

(p(qw1 , s) − pw)dq. This allows the

third term of the second line and the term in the third line to cancel out partly. Hence,

the derivative is equal to:

∂A
∂k

=

∫ s̄

sw1

(
(p(k, s)− pw)− 1

qw1

∫ qw1

0

(p(q, s)− pw)dq

+
∂qw1
∂k

k

(qw1 )
2

∫ qw1

0

(p(q, s)− p(qw1 , s))dq

)
dF (s)

Next, we take the second derivative with respect to k. Following the same previous

arguments, we have:

∂2A
∂k2

= −f(sw1 )
∂sw1
∂k

(
1− ∂qw1

∂k

)
1

k

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq

+

∫ s̄

sw1

(
1

(qw1 )
2

∫ qw1

0

(p(q, s)− p(qw1 , s))dq

(
1− ∂qw1

∂k

))
dF (s)

Hence:
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∂2A
∂k2

=

(
1− ∂qw1

∂k

)[
−f(sw1 )

∂sw1
∂k

1

k

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq

+

∫ s̄

sw1

1

(qw1 )
2

∫ qw1

0

(p(q, s)− p(qw1 , s))dqdF (s)

]

Define the per unit consumer surplus at sw1 associated with its probability:

CS(k) =
1

k

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq

And the corresponding derivative with respect to k :

∂CS
∂k

= − 1

k2

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq − pq

Hence, the derivative of the expected per-unit consumer surplus when the price cap

is binding is such that

−CS(k)f(sw1 )
∂sw1
∂k

+

∫ s̄

sw1

(
− 1

k2

∫ k

0

(p(q, sw1 )− p(k, sw1 ))dq − pq

)
dF (s)

Then, the derivative can be rewritten as:

∂2A
∂k2

=

−︷ ︸︸ ︷(
∂

∂qw1
− 1k

)[
∂

∂k

∫ s̄

sw1

CS(k)dF (s) +

∫ s̄

sw1

∂CS
∂k

dF (s)

]

The second term has to be negative, hence the good for the concavity of the expected

welfare.
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9 Proof of Proposition 2.3

Proof. Before starting the proof, we define the limit value of the price cap pw+. It is

given by the solution of kw
0 (p

w) = k∗
0. Recall that kw

0 (p
w) is the equilibrium investment

level such that profit is maximized under a price cap and with any capacity market.

Hence, pw+ is the price cap level such that it does not generate any inefficiency.5. The

usefulness of this threshold lies in the fact at this value, we have pc(kw
0 ) = 0. Indeed,

if kw
0 = k∗

0, the supply function on the capacity market starts at the first-best solution.

Hence, the regulator always chooses k∗
0 as the demand level on the capacity market. This

result also extends to the endogenous regime. Hence, at pw+ we have k∗
0 = k∗

1. If the

price cap never binds, then we do not have any inefficient rationing. hence, we also have

k∗
0 = k∗

1 = kbo
0 = kbo

1 . In this chapter, we do not have closed-form solutions. Therefore,

clear-cut results are only given by studying behaviors at the vicinity of pw+. From the

previous analysis, we have proved that k∗
0 ≥ k∗

1 and kbo
0 ≥ kbo

1 due to the negative price

effect of the capacity market. We know that due to the inefficient rationing cost, we

have kbo
0 ≥ k∗

0 and kbo
1 ≥ k∗

1. Finally, by deduction, we also have k∗
0 ≥ k∗

1. We still need

to study the ranking between k∗
0 and kbo

1 .

To do so, note that by definition, k∗
0 is independent of pw as it is the first-best

investment level. Therefore, studying the derivative of kbo
1 − k∗

0 with respect to pw boils

down to studying the derivative of kbo
1 with respect to pw. By definition kbo

1 solves the

equation
∂W bo

1

∂k
= 0. Therefore:

∂kbo
1

∂pw
= −∂2W bo

1

∂k∂pw
/
∂2W bo

1

∂k2

Proposition 2.2 shows that the expected welfare is concave, hence:
∂2W bo

1

∂k2
≤ 0. We

now express the cross derivative, first without inefficient rationing. using the expression

of W1(k), this gives:

∂2W1

∂k∂pw
= pc(k)

(
∂q1
∂k

− 1

)
f(s1)

∂s1
∂pw

+

∫ t1

0

(
∂2q1
∂k∂pw

pc(k) +
∂q1
∂k

∂pc

∂pw

)
dF (s)

5Equivalently, it can be solved by having tw0 (k
w
0 (p

w), pw) = s̄, that is when the price cap never binds
in expectation.
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From the definition of s1 such that p(k, s)−pc(k) = c, the derivative with respect to pw

is given by: ∂pc

∂pw
1
pt
. From the definition of pc(k) the solves the equation pc(k) = X1(k, p

c),

we have :

∂pc

∂pw
= −

∫ s̄

tw1
1dF (s)

1−∆1F

Recall that ∆1F = F (sw1 ) − F (s1) > 0 Therefore, the derivative is negative. Hence
∂s1
∂pw

≤ 0. Using the expression of the derivatives, we can simplify the cross derivative as:

∂2W1

∂k∂pw
=

(
∂q1
∂k

− 1

)(
∂s1
∂pw

+
∂sw1
∂pw

)
pc(k)f(s1) +

∫ t1

0

(
∂q1
∂k

∂pc

∂pw

)
dF (s)

From the previous analysis, we know that W1(k) and W0(k) are both concave with

respect to k, and so is their difference. Moreover, calculations show that the difference

decreases with respect to pw:

∫ s1

0

− ∂q1
∂pw

pc(k)dF (s) < 0

Indeed, we have ∂q1
∂pw

= ∂pc

∂pw
1
pq

> 0. Moreover, we know that at the limit of pw+,

we have k∗
0 = k∗

1. Note also that the derivative is positive at pw+ as pc(k) = 0 at

the maximizing investment level. Therefore,
∂k∗1
∂k

> 0. Intuitively, as pw increases, the

negative price effect of the capacity decreases itself due to the decreases of the supply

function on the capacity market. Therefore, as the price cap increases, the gap between

the two welfare functions (exogenous and endogenous) reduces.

On the other hand, the following expression provides the cross derivative for the

exogenous case with inefficient rationing. As the initial welfare is independent of the

price cap, this measures only the effect of pw on the rationing costs. After simplifications,

we have:

∂2W bo
0

∂k∂pw
= −CS+

1

2
(1− F (sw0 ))
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Which is negative if CS ≥ 1
2
(1 − F (sw0 )). Under our closed-form framework, this

condition is met as soon as we have :

∂

∂k

∫ s̄

sw0

kdF (s) ≤ 0

That is, the expected on-peak quantity is decreasing in k. In other terms, the decrease

in the occurrence of on-peak periods should be higher than the increase in the expected

quantity. In that case, the cross derivative is negative, which implies that the quantity

that maximized expected welfare is decreasing in pw. This is an intuitive relationship,

as a higher pw decreases the occurrence for which the price cap is binding; it implies a

lower occurrence of inefficient rationing. Hence, as pw, the gap between the two welfare

functions (without and with inefficient rationing) decreases. Note also that the derivative

is negative at pw+ as F (sw0 ) = 1 at the maximizing investment level.

We turn now to the expression of the cross derivative for the endogenous case with

inefficient rationing.

∂2W bo
1

∂k∂pw
=

∂2W1

∂k∂pw
+

(
∂qw1
∂k

− 1

)(
∂s1
∂pw

+
∂sw1
∂pw

)
CSf(sw1 )−

∫ s̄

tw1

(
∂CS
∂k

∂qw1
∂pw

)
dF (s)

Note the second term is similar to ∂2W1

∂k∂pw
. After simplification, under the closed-form

framework we have
∂qw1
∂k

= ∂q1
∂k

and f(sw1 ) = f(s1), which implies:

∂2W bo
1

∂k∂pw
=

−︷ ︸︸ ︷(
∂qw1
∂k

− 1

)(
∂s1
∂pw

+
∂sw1
∂pw

) +︷ ︸︸ ︷
(CS+ pc(k))f(sw1 )

+

∫ t1

0

(
∂q1
∂k

∂pc

∂pw

)
dF (s)−

∫ s̄

tw1

(
∂CS
∂k

∂qw1
∂pw

)
dF (s)︸ ︷︷ ︸

+

The individual consumer surplus in k is defined as increasing with k. Due to the

negative price effect on the demand: ∂q1
∂k

< 0. An increase in the price cap leads to ∂pc

∂pw
<

0 as the marginal cost for the producer decreases. Finally, we have
∂qw1
∂pw

= (1 + ∂pc

∂pw
) 1
pq
,

which is a priori ambiguous: an increase of pw decrease the negative price effect, which
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put upward pressure on quantity, but as qw1 defines the quantity at the price cap if pw

increases then it should decrease. Observe the previous expression of ∂pc

∂pw
in Equation

9 and note that it is necessary below one due to the use of CDF. This implies that the

second line is positive. The first term in the first line is negative as
∂qw1
∂k

< 0. We rewrite

the second term such that:

∂s1
∂pw

+
∂sw1
∂pw

= 1 + 2
∂pc

∂pw
= −1− F (sw1 )− F (s1)

1−∆1F

Hence a necessary condition for having
∂2W bo

1

∂k∂pw
< 0, and therefore a decreasing kbo

1 , we

must have an effect of the price cap lower than 1
2
. It also translates in the condition:

1− F (sw1 )− F (s1) < 0. This is also the condition such that the price cap has a convex

effect on the capacity price. We rewrite the cross derivative such that:

∂2W bo
1

∂k∂pw
=

[
(CS+ pc(k))f(sw1 )

∂qw1
∂k

(
1− 1− F (sw1 )

F (s1)

)
−
∫ s̄

tw1

∂

∂k
(CS+ pc(k)) dF (s)

]
∂qw1
∂pw

∂qw1
∂pw

< 0 so the term in brackets need to be positive if
∂2W bo

1

∂k∂pw
< 0 . If the cross

derivative is negative, then recall that 1 − F (sw1 ) − F (s1) < 0. Therefore:
1−F (sw1 )

F (s1)
< 1.

Hence, if the following condition holds:

− ∂

∂k

∫ s̄

tw1

(CS+ pc(k)) dF (s) > (CS+ pc(k))f(sw1 )
∂sw1
∂k

The cross derivative is negative. Due to the concavity of the expected welfare, this

also implies that kbo
1 is decreasing with pw. As at the upper limit of pw+ kbo

1 = k∗
0, then

for any pw below the limit we have kbo
1 > k∗

0.

10 Proof of Lemma 2.6

Proof. The profit function of retailers is defined as follows:
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Figure C.3: welfare maximizing investment level with respect to k, different market
design regime and assumptions. Note that the first-best is independent of the price cap;
under the endogenous regime, the level of investment is increasing. When inefficient
rationing is introduced, the investment level under both regimes decreases in the price
cap.
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πr
i (qi, k) = qi(p(q)− ps)− pc(k)k

qi
qi + q−i

Given the retail market structure, the first-order condition of the profit function under

a competition à la Cournot implies that

p(q) + qipq − ps − pc(k)k
q−i

(qi + q−i)2
= 0

And the second order condition:

2pq − pc(k)k
q−i

(qi + q−i)3
= 0

The cross derivative of the profit function with respect to the competitor q−i is:

pq − pc(k)k
q−i − qi

(qi + q−i)3
= 0

With n symmetric retailers and q the total quantity, the last equation becomes:

pq + pc(k)k
(n− 2)

n

1

q2
= 0

The condition for existence requires that the cross derivative be positive, which es-

tablishes the condition of the lemma. The stability and the uniqueness of the equilibrium

are given by the second-order condition, which is always negative.

11 Proof of Proposition 2.4

Proof. The proof follows similar arguments to the proof of Proposition 2.2 in Appendix

6. The expected welfare function is given by:
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Figure C.4: Illustration of the thresholds in terms of quantity: for a given n, it gives the
minimal quantity such that below the demand is increasing in q. The vertical lines are
the lower limit such that any n above their value implies a demand function decreasing
everywhere for a positive quantity.
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Wn(k) =

∫ sn

0

∫ qn

0

(p(q, s)− c)dqdF (s) +

∫ s̄

sn

∫ k

0

(p(q, s)− c)dqdF (s)− I(k)

And the first derivative with respect to k is equal to:

∂Wn(k)

∂k
=

∫ sn

0

∂qn
∂k

(p(qn, s)− c)dF (s) +

∫ s̄

sn

(p(k, s)− c)dF (s)− r

And the second derivative with respect to k:

∂2Wn(k)

∂k2
=

∫ sn

0

(
∂2qn
∂k2

(p(qn, s)− c) + pq

(
∂qn
∂k

)2

)dF (s) +

∫ s̄

sn

pqdF (s)

+(p(k, sn)− c)f(sn)

(
∂qn
∂k

− 1

)
∂sn
∂k

We have:

∂sn
∂k

= − pq +mpq
1− Cpc(k)∆nF

> 0

In that case ∆nF = F (swn )−F (sn) ∈ [0, 1]. We note C(q) = pck n−1
nq

the cost associated

to the capacity market on the retailers and Cpc(k) =
∂C(k)
∂pc

the aggregate negative effect

of the capacity market on the demand function. Hence Cpc(k) =
n−1
n

∈ [0, 1]. Therefore,

the denominator is positive. The numerator is negative. Hence, the term is positive:

accounting for all the indirect effects of increasing k still reduces the occurrences of

off-peak periods. We have :

∂qn
∂k

= 1− pq +mpq
(pq +mpq + Ck(k)) (1− Cpc(k)∆nF )

< 0

With Ck(k) = ∂C(k)
∂k

. Note that pq + mpq + Ck(k) > 0 as this is the derivative of

the demand function with respect to q. Ck(k) = pc n−1
n

> 0. The denominator and the

numerator are negative, and we also have |(pq +mpq + Ck(k))(1−∆nF )| < |pq +mpq|.
As by definition (1−∆nF ) < 1. Hence, the second term is greater than 1, which implies
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that the derivative is negative. Therefore, the second line of ∂2Wn(k)
∂k2

is also negative.

From the definition of qn The second derivative with respect to k of the quantity is given

by the following condition:

p̃qq

(
∂qn
∂k

)2

+ 2p̃qk
∂qn
∂k

+ p̃kk + p̃q
∂2qn
∂k2

= 0

After simplification, we have:

∂2qn
∂k2

=
Cqq

(
∂qn
∂k

)2
+ 2

(
Ckq + Cpcq

∂pc

∂k

)
∂qn
∂k

+ 2Cpck
∂pc

∂k

p̃q

With Cqq =
2kpc(n−1)

nq3
> 0, Ckq = −pc(n−1)

nq2
< 0, Cpcq = −k(n−1)

nq2
< 0 and Cpck =

n−1
nq

>

0. We have shown above that ∂pc

∂k
> 0, p̃q < 0 and ∂qn

∂k
< 0. Hence, the numerator is

positive, which implies that ∂2qn
∂k2

< 0. This completes the proof that ∂2Wn(k)
∂k2

is negative.

The expected social welfare is concave, and a unique maximum exists.

Finally, the proof for the ranking is straightforward and relies on the depressing effect

generated at the margin on retailers’ profit function. In this case, this form of allocation

is similar to an increase in the marginal cost of production passed onto consumers.

Similar to the endogenous market design, this additional marginal cost is sustained

whatever the realization of the demand level for final consumers is. Therefore, it lowers

the quantity bought in the off-peak periods and lowers the prices in the peak periods.

However, the effect is not as significant as in the endogenous case, as, under our frame-

work, retailers do take into their welfare part of the capacity cost allocation, and they

do not fully transfer this new marginal cost onto the consumers.

12 Proof of Corollary 2.1

Proof. The proof for the exogenous and endogenous regime with Cournot competition

is discussed in the Technical Appendix 1. The derivative of the expected social welfare

with respect to n is equal to:

307



∂Wn(k)

∂n
=

∫ sn

0

∂qn
∂n

(p̃(qn, s)− c)dF (s)

Hence, it is sufficient to show that if the quantity at the marginal cost qn is increasing

in n, the expected welfare is also increasing in n. To do so, we derive in the following

equation the first derivative with respect to n of the capacity price :

∂pc(k)

∂n
= −(mpn(k)− Cn(k))

∆nF

1− Cpc(k)∆nF

This clearly shows the ambiguity of n on the equilibrium as under our framework

mpn = bk
n2 > 0 and Cn = pc

n2 > 0, the rest of the terms being positive. However, we do

find that bk > pc(k).6 Therefore, the derivative is always negative for any value of k

of interest. In other terms, increasing n always decreases the capacity price for a given

value of k. The effect of n on the quantity is given is the following expression:

∂qn(s)

∂n
= −

mpn(qn)− Cn(qn)− Cz(qn)
∂pc(k)
∂n

p̃q

We have shown that the derivative of the price is negative, and we have Cz(q) =
k
q
n−1
n

> 0. Therefore, the depressing effect of n on the capacity price is positively

impacting the quantity (recall that demand should be decreasing in q, hence p̃q < 0).

However, compared to the analysis of the capacity price, we do not have a clear-cut

answer for the term mpn(qn)− Cn(qn). This creates the ambiguity of n on the quantity

at the marginal cost, which in turn can lead to a negative effect on welfare.

6Closed-form model gives the level of investment that implies that for any value we have pc < bk is
equal to:

D
2pw − 2c− s̄

The level of investment such that the capacity price is null is given.

n

n+ 1

D
pw − c

With D = −(2a0c − 2a0p
w + 2cs̄ − 2pws̄ + 2rs̄ − c2 + pw2) 1

2b . Clearly, for any n ≥ 2, we have the
second value greater than the first one. As only the investment level that matters in our analysis is
above the second value (the supply function is increasing in k), it implies that we always have pc < bk
for the level of investment of interest.
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Finally, the extension to the inefficient rationing case is straightforward, as we have,

for instance.

∂W1,n

∂n
=

∫ s1,n

0

∂q1,n
∂n

(q1,n − c)dF (s)−
∫ s̄

sw1,n

∂qw1,n
∂n

k

(qw1,n)
2

∫ qw1,n

0

(p(q, s)− p(q1,n, s))dqdF (s)

13 Proof of Lemma 2.7

Proof. We start by noting that the supply function is increasing k. Under imperfect

competition and exogenous regime, the marginal value of an investment is given by :

ϕw
0,n(k) =

∫ sw0,n(k)

s0,n

(p(k, s)−mp(k)− c)dF (s) +

∫ s̄

sw0,n(k)

(pw − c)dF (s)

When the capacity is binding but not the price cap, then the producer receives the

retail price minus the retailer’s markup. the derivative with respect to k gives:

∂ϕw
0,n(k)

∂k
=

∫ sw0,n(k)

s0,n

(pq −mpq)dF (s)

As all the values at the integral thresholds cancel out. As pq and mpq are negative,

the additional investment level decreases the expected marginal revenue. Hence, the

supply function X0,n = r−ϕw
0,n in the capacity market is positive. The upper bound r of

the supply function comes from the fact that for a sufficiently high value of k: s0,n = s̄.

Hence at this limit X0,n = r. The lower limit of 0 from the fact that if there exists a

private (inefficient) equilibrium without a capacity market, then X0,n = 0 at this level

by definition of the supply functions. For any value below the equilibrium, the supply

function is null.

We now turn towards the demand function, which is equal to the expression:
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ϕd(k) =

∫ s̄

s0,n

(mp(k) + kmpq)dF (s) +

∫ sd(k)

sw0,n(k)

(
T (k, s) + k

∂T

∂k

)
dF (s)+

+ kSf(sd)
∂sd
∂k

+

∫ s̄

sd(k)

SdF (s)

Deriving by k gives

∂ϕd(k)

∂k
=− (kmpq +mp(k))f(s0,n)

∂s0,n
∂k

+ Sf(sd)
∂sd
∂k

+

∫ s̄

s0,n

2mpqdF (s) +

∫ sd

sw0,n

2(pq −mpq)dF (s)

Both lines have an ambiguous sign. Indeed, ∂s0,n
∂k

and ∂sd
∂k

are positive following the

same arguments as in the previous proofs, andmpq > 0 and pq < 0. Within this, to derive

sufficient conditions, we compute the derivative of the demand function at a relatively

low investment value such that the capacity always binds in expectation: s0,n = 0. In

that case, the derivative is equal to

V =Sf(sd)
∂sd
∂k

+

∫ s̄

0

2mpqdF (s) +

∫ sd

sw0,n

2(pq −mpq)dF (s)

Which is equal to b
ns̄
(s̄− S(n+ 1)). Therefore, the derivative is negative if and only

if S > s̄
n+1

. Then note that

We rewrite the first derivative when the capacity does not always bind:

∂ϕd(k)

∂k
=− (kmpq +mp(k))f(s0,n)

∂s0,n
∂k

−
∫ s̄

s0,n

2mpqdF (s) + V

Hence, if V < 0, the derivative is also always negative. Then note that at k = 0, we

have:
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ϕd(k) =

∫ sd(k)

sw0,n(k)

T (k, s)dF (s) +

∫ s̄

sd(k)

SdF (s)

Which is positive. Hence, if the demand function is decreasing, then a unique value

of k exists, which always intersects with the supply function. Note that this value can

be such that the capacity price is null.

14 Proof of Proposition 2.5

Proof. We start by studying the variation of the capacity market equilibrium equilibrium

with respect to the penalty. By definition, it is the solution of the following equality:

ϕd(k) = r − ϕw
0,n

From the previous proof, we derive each expression with respect to S:

∂ϕd(k)

∂S
=

∫ s̄

sd

1dF (s)

Which is clearly positive. Finally, note from Equation 2.11 in the previous lemma

that ϕw
0,n is independent of S. In the same Lemma, we have shown that the supply

function is increasing in k, and we provide sufficient conditions to ensure a decreasing

demand function. Using the condition that gives the equilibrium kd, we can deduce the

derivative of the equilibrium with respect to s as follows:

∂kd
∂S

= −
∂ϕd

∂s
∂ϕw

0,n

∂k
+ ∂ϕd

∂k

From the previous observations, this is clearly always positive. Note that by defini-

tion: ps(k, sd)− S = pw, therefore: ∂sd
∂S

= 1
ps

> 0 and ∂sd
∂k

= −pq
ps

> 0. Hence, an increase

of S always increases sd at the market equilibrium, which implies that ∂ϕd(k)
∂S

converges
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to 0. It also proves that when S is such that sd = s̄, then the derivative of the market

equilibrium is null. The second derivative of the market equilibrium with respect to the

penalty value is equal to:

∂2kd
∂S2

= −
∂ϕd

∂S∂k
∂kd
∂S

+ ∂2ϕd

∂S2 + ( ∂ϕd

∂S∂k
+ ∂2ϕd

∂k2
∂kd
∂S

)∂kd
∂S

∂ϕw
0,n

∂k
+ ∂ϕd

∂k

We have shown that ∂ϕd(k)
∂S

is decreasing both in k and in S. Hence, the numerator is

negative, and so is the denominator. Hence, the second derivative is concave. Therefore,

when the first derivative with respect to S is null, this is also a maximum. We turn now

to the expected welfare with inefficient rationing. We have:

Wd(k, S) =

∫ sn,0(k)

0

∫ qn,0

0

(p(q, s)− c) dqdF (s)

+

∫ sd(k)

sn,0(k)

∫ k

0

(p(q, s)− c) dqdF (s) +

∫ s̄

sd(k)

∫ k

0

(pw − c) dqdF (s)

+

∫ s̄

sd(k)

k

qwn,0

∫ qwn,0

0

(p(q, s)− pw) dqdF (s)− rk

The derivative with respect to S gives:

∂Wd(k, S)

∂S
= −

∫ s̄

sd

(
∂qd
∂S

k

q2d

∫ qd

0

(p(q, s)− p(qd, s))dq

)
dF (s)

Recall that the definition of qd is given by having ps(qd, s) − S = pw. Hence, ∂qd
∂S

=
1

pq−mpq
< 0: an increase in the penalty value decreases the quantity asked by consumers.

This implies that ∂Wd(k,S)
∂S

= ∂CSd(k,S)
∂S

< 0. Note also that when S reaches the level

such that sd = s̄, then the Depression is null. This implies that at this level and the

equilibrium, we have :

∂CSd(kd, S)

∂S
+

∂Wd(kd, S)

∂k

∂kd
∂S

= 0

This also shows that this is the maximum of the expected social welfare.

312



313





Appendix D

Appendix - Chapter 3
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Notation guide: For readability, we sometimes drop the references to variables in the

expression of functions and their derivatives.

1 Proof of Proposition 3.1

Proof. The maximization program of the market designer is equal to the following:

max
ti(θ,s)→R+,
qi(θ,s)→R+,

k≥0

CS(k) =
∑
i

µi

∫
s

∫
θi

(U(qi(θ, s), θ, s)− ti(θ, s)qi(θ, s)) dGi(θ)dF (s)

s.t. I(k) ≤
∑
i

µi

∫
s

∫
θi

ti(θ, s)qi(θ, s)dGi(θ)dF (s), (R)

∑
i

µi

∫
θi

qi(θ, s)dGi(θ) ≤ k, (K)

We simplify the problem by noting that the revenue constraint is always binding,

as increasing quantity benefits consumer surplus. Then, we can rewrite the problem as

follows:

max
ti(θ,s)→R+,
qi(θ,s)→R+,

k≥0

U∗(k) =
∑
i

µi

∫
s

∫
θi

U(qi(θ, s), θ, s)dGi(θ)dF (s)− I(k)

s.t.
∑
i

µi

∫
θi

qi(θ, s)dGi(θ) ≤ k, (K)

The corresponding Lagrangian is equal to

L =
∑
i

µi

∫
s

∫
θi

U(qi(θ, s), θ, s)dGi(θ)dF (s) + ε

(
k −

∑
i

µi

∫
θi

qi(θ, s)dGi(θ)

)

The associated first-order conditions are equal to
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∂L
∂k

= r − ε = 0

∂L
∂qi

=

∫
s

u(qi(θ, s), θ, s)dF (s)− ε = 0

∂L
∂ε

= k −
∑
i

µi

∫
θi

qi(θ, s)dGi(θ) = 0

Which follows that r = ε. Hence, when capacity is not binding ε = 0 it implies that

the expected
∫
s
u(qi(θ, s), θ, s)dF (s) = 0. The marginal utility is always positive or null.

Therefore, u(qi(θ, s), θ, s) = 0 for every allocation when the capacity is not binding.

When capacity is binding ε > 0, it implies that
∫
s
u(qi(θ, s), θ, s) = r. We show next

that the optimal quantity is increasing with s. The derivative of the marginal utility at

the optimal quantity for off-peak periods is equal to:

∂u(qi(θ, s), θ, s)

∂s
=

∂u(qi(θ, s), θ, s)

∂qi

∂qi(θ, s)

∂s
+

∂u(qi(θ, s), θ, s)

∂s

From the initial assumptions, we have ∂u(qi(θ,s),θ,s)
∂qi

< 0 and ∂u(qi(θ,s),θ,s)
∂s

> 0. Hence,

for the first-order condition to hold, we must have ∂qi(θ,s)
∂s

> 0. We then define s1 as

the world’s first state for which the capacity may be binding: when ε = 0 we have:∑
i qi(θ, s1) = k.

The optimal quantities are found as follows. Due to the linear form, when k is not

binding: u(qi(θ, s), θ, s) = 0, implying under the linear assumption that: qi(θ, s) = θ+ s.

The aggregate quantity for a category i is then equal to µi

∫
θi
qi(θ, s)dGi(θ) = µi(θ

av
i +s).

We can deduce the value of the threshold s1 such that when s = s1, capacity starts to

bind. Total quantity off-peak is equal to
∑

i µi

∫
θi
qi(θ, s)dGi(θ) =

∑
i µi(θ

av
i +2s). Then

at s1 we have
∑

i θ
av
i +2s1 = k, implying that s1 = k−

∑
i µiθ

av
i . When k is binding, we

use both the capacity constraint and the fact that the expected utility is equal for every

consumer as
∫
s
u(qi(θ, s), θ, s) = r. The capacity constraint gives:

∫
θj
qj(θ, s)dGj(θ) =

1
µj

(
k − µi

∫
θi
qi(θ, s)dGi(θ)

)
. Hence, the expected utility for a consumer from category

j can be expressed as :
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µj

∫
s

∫
θj

u(qj(θ, s), θ, s)dGj(θ)dF (s) = µj

∫
s

∫
θj

(θ + s− qj(θ, s))dGj(θ)dF (s)

= µj

[∫
s

∫
θj

(θ + s)dGj(θ)dF (s)−
∫
s

1

µj

(
k − µi

∫
θi

qi(θ, s)dGi(θ)

)
dF (s)

]
.

Moreover, we know that
∫
s
u(qi(θ, s), θ, s)dF (s) = r for every consumer and cate-

gory, hence we have
∫
s

∫
θi
u(qi(θ, s), θ, s)dGi(θ)dF (s) =

∫
s

∫
θj
u(qj(θ, s), θ, s)dGj(θ)dF (s).

This, with the previous result, implies that

µj

∫
s

∫
θi

u(qi(θ, s), θ, s)dGi(θ)dF (s) = µj

∫
s

∫
θj

u(qj(θ, s), θ, s)dGj(θ)dF (s)

After calculation:

µj

∫
s

∫
θi

u(qi(θ, s), θ, s)dGi(θ)dF (s) = µj

[∫
s

(θavj + s)dF (s)−

1

µj

∫
s

(
k − µi

∫
θi

qi(θ, s)dGi(θ)

)
dF (s)

]

Ultimately:

∫
s

∫
θi

qi(θ, s)dGi(θ))dF (s) = k + µj(θ
av
i − θavj )

It implies that the aggregate quantity is equal to µi

∫
s

∫
θi
qi(θ, s)dGi(θ))dF (s) = kµi+

µiµj(θ
av
i − θavj ). We denote q∗i,1(θ, s) and q∗i,2(θ, k, s) the optimal allocation when the

capacity is respectively not binding and binding for a consumer from category i. Also note

that we do not have a discontinuity between quantities at s1: q∗i,1(θ, s1) = q∗i,2(θ, k, s1).

We then rewrite the objective function:
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U∗(k) =
∑
i

µi

[∫ s1

0

∫
θi

U(q∗i,1(θ, s), θ, s)dGi(θ)dF (s)+∫ s̄

s1

∫
θi

U(q∗i,2(θ, k, s), θ, s)dGi(θ)dF (s)

]
− I(k)

The first-order condition gives the optimal investment level:

∂U∗(k)

∂k
=
∑
i

µi

∫ s̄

s1

∫
θi

u(q∗i,2(θ, k, s), θ, s)
∂q∗i,2(θ, k, s)

∂k
dGi(θ)dF (s)− r

=
∑
i

µi

∫ s̄

s1

∫
θi

u(q∗i,2(θ, k, s), θ, s)dGi(θ)dF (s)− r

This implies that the optimal investment level is found such that the expected aggre-

gate marginal utility should equal the marginal investment costs. We now describe the

optimal payment t∗i (θ, s), which should be such that

∑
i

µi

[∫ s1

0

∫
θi

t∗i (θ, s)q
∗
i,1(θ, s)dGi(θ)dF (s) +

∫ s̄

s1

∫
θi

t∗i (θ, s)q
∗
i,2(θ, k, s)dGi(θ)dF (s)

]
= I(k)

It turns that if t∗i (θ, s) = {t∗i,1(θ, s), t∗i,2(θ, s)} with t∗i,1(θ, s) = 0 when s ≤ s1 and

t∗i,2(θ, s) =
∑

i µi

∫
θi
u(q∗i,2(θ, k, s), θ, s)dGi(θ)dF (s) when s > s1, then by construction at

the optimal investment level, the expected revenue is null.

We end the proof by showing that if we assume a spot market where consumers adjust

their quantity given a price, the optimal allocation mechanism is equivalent to the spot

market allocation. To see it, note first that the demand function on the spot market is

equal to the inverse of the marginal utility function: d(t, θ, s) = u−1(q, θ, s). Therefore,

when the price is equal to the marginal cost when capacity is not binding, we find that

qi(θ, s) = d(0, θ, s) = θ + s, the same as the optimal allocation. When the capacity is

binding, the quantity supply curve is a vertical line equal to k. The aggregate inverse

demand on the market p(q, s) is given by the solution of
∑

i µi

∫
θi
d(t, θ, s)dGi(θ) = q .

At k the inverse demand is equal to
∑

i µi

∫
θi
u(k, θ, s)dGi(θ)dF (s) which is the optimal

unit transfer found in the optimal allocation at the optimal investment level.
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2 Proof of Proposition 3.2

Proof. The objective function of the market designer is equal to:

max
ti(θ,s)→R+

CS(k) =
∑
i

µi

∫
s

∫
θi

(U(di(ti, θ, s), θ, s)− ti(θ, s)di(ti, θ, s)) dGi(θ)dF (s)

∑
i

µi

∫
θi

di(ti, θ, s)dGi(θ) ≤ k, (K)

0 ≤ di(ti, θ, s)

We start with the discrete case by assuming only two consumers defined by θ1 and

θ2. Then, we expand the results to the continuous case. First, note that the consumer

surplus is maximized when the price equals the marginal cost. That is when it is null.

Hence, we define the first case when the capacity is not binding with an optimal price

tcsi (θ, s) = 0. Optimal quantity is then given by qcsi (θ, s) = θi + s. This corresponds also

to the first-best case. Therefore, the first state of the world when the capacity binds is

identical to s1. Then, when the capacity binds, we have k = d(tcs1 , θ1, s) + d(tcs2 , θ2, s) =

θ1 + s − tcs1 + θ2 + s − tcs2 , implying that tcs2 (t
cs
1 ) =

∑
i θi + 2s − tcs1 − k. We define the

realized consumer surplus given a value of s

C̃S(tcs1 ) = U(d(t1, θ1, s), θ1, s)−tcs1 d(t1, θ1, s)+U(d(tcs2 (t
cs
1 ), θ2, s), θ2, s)−tcs2 d(t

cs
2 (t

cs
1 ), θ2, s)

We then show that this consumer surplus exhibits a U shape with respect to k. The

first-order condition is equal to:
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∂C̃S(tcs1 )

∂tcs1
= dtu(d(t

cs
1 , θ1, s), θ1, s) +

∂tcs2
∂tcs1

dtu(d(t
cs
2 (t

cs
1 ), θ2, s), θ2, s)

− d(tcs1 , θ1, s)−
∂tcs2
∂tcs1

d(tcs2 (t
cs
1 ), θ2, s)− tcs1 dt − tcs2 (t

cs
1 )

∂tcs2
∂tcs1

dt

= d(tcs2 (t
cs
1 ), θ2, s)− d(tcs1 , θ1, s)

With the linear assumption: u(d(t)) = t, dt =
∂d(t,θ,s)

∂t
= −1 and

∂tcs2
∂tcs1

= −1 and the

second order condition :

∂2C̃S(tcs1 )

∂tcs1
2 = dt

∂tcs2
∂tcs1

uq(d(t
cs
2 (t

cs
1 ), θ2, s), θ2, s)− dtuq(d(t

cs
1 , θ1, s), θ1, s) = 2 > 0

With uq = ∂u(q,θ,s)
∂q

= −1. Therefore, the consumer surplus for a given value of s

at the capacity constraint is convex. Then, when tcs1 = 0, tcs2 (0) =
∑

i θi + 2s − k,

implying that
∂C̃S(tcs1 )

∂tcs1
|tcs1 =0 = d(tcs2 (0), θ2, s) − d(0, θ1, s) = d(tcs2 (0), θ2, s) − d(0, θ1, s) =

θ2 + s − tcs2 (0) − θ1 − s = k − 2s − 2θ1. At s1 = k − (θ1 + θ2)/2, which implies that
∂C̃S(tcs1 )

∂tcs1
|tcs1 =0,s=s1 = −k + θ2 − θ1. Hence, if θ1 > θ2, the derivative is negative at tcs1 =

0. Note finally that as s increases, the derivative decreases, so the value is always

negative. We then find the upper value of t̃cs1 such that tcs2 (t
cs
1 ) = 0. That is when

tcs1 =
∑

i θi+2s−k. In that case,
∂C̃S(tcs1 )

∂tcs1
|tcs1 =t̃cs1

= θ2+s−θ1−s+ t̃cs1 = 2θ2−θ1+2s−k.

At s1 :
∂C̃S(tcs1 )

∂tcs1
|tcs1 =t̃cs1 ,s=s1 = k + 3/2θ2 − 3/2θ1, which is positive only if the value of

the lowest type is sufficiently high compared to the highest type. This confirms the U

shape of the consumer surplus. We illustrate this observation in Figure D.1. Finally, we

compare the consumer surplus for both prices: C̃S(0)−C̃S(t̃cs1 ) = (θ1−θ2)(2s−k+
∑

i θi).

At s = s1 we have : k(θ1 − θ2) which is always positive when θ1 > θ2, and the derivative

is positive with respect to s. Hence, the value is always positive. This proves that it

is always more efficient to give a price equal to the marginal cost to the highest type

and set tcs2 (0) for the lowest type. To conclude, we study the case when, for a given set

of parameters, we have tcs2 (0) = θ2 + s. In that case, for relatively higher values of s,

prices cannot increase as the demand is null for the lowest type. To ensure the capacity

constraint, it is now optimal to raise the price of the highest consumer type. In that

case, the price for consumer 2 is θ2 + s. The price for consumer is found by having

k = d(tcs1 , θ, s),that is t
cs
1 = θ1 + s− k.
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Figure D.1: Illustration of the U shape of the consumer surplus

The extension to the continuous case needs some restrictions. Indeed, we assume a

continuous distribution from type θ and the state of the world s. Therefore, contrary to

the discrete case, we cannot pin down a unique consumer that needs to be rationed first,

followed by other consumers as s increases. To overcome this restriction, we proceed as

follows. First, we define the case when the capacity is not binding, which boils down to

the first-best allocation. It is defined by the inequality :
∑

i

∫
θi
d(0, θ, s)dGi(θ) ≤ k.

When the capacity starts to bind for s > s1, we use the definition of category 1 being

a higher type of category 2 and the fact that for an equal type, a consumer from both

categories brings the same utility. Assume that we have
¯
θ2 <

¯
θ1 < θ̄2 < θ̄1. We start

by studying the case for a relatively small increase of s such that s = s1 + ϵ. This small

increase boils down to having the possibility to provide sufficient goods to all consumers

from category 1 and from consumers of category 2 having the same type that some of

the consumers from category 2:

Q1
0(s1 + ϵ) < k <

∑
i

µi

∫
θi

d(0, θ, s1 + ϵ)dGi(θ)
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With Q1
0(s) = µ1

∫
θ1
d(0, θ, s1 + ϵ)dG1(θ) + µ2

∫ θ̄2

¯
θ1

d(0, θ, s1 + ϵ)dG2(θ). In that case,

and similar to the discrete case, we impose a price above marginal cost to the consumers

having lower types from category 2 such that µ2

∫
¯
θ1

¯
θ2

d(tst2 (θ, s), θ, s)dG2(θ) + Q1
0(s) =

k. As s increases, we have Qs
0 = k. It is not possible to ration smaller consumers

as their demand is null. Each consumer for every θ ∈ [
¯
θ2,

¯
θ1] receives the following

price t2cs(θ, s) = θ + s. Therefore, the market designer imposes a price equal to the

marginal cost to the consumers of the highest type from category 1: θ ∈ [θ̄2, θ̄1] and a

uniform price for the smaller consumers of both categories having θ ∈ [
¯
θ1θ̄2], as they

both bring the same utility even though they are from different category. The total

quantity asked by the highest consumer having a price equal to marginal costs is equal to

Q2
0s =

∫ θ̄1
θ̄2

d(0, θ, s)dG1(θ). Hence, the situation corresponds to the case where s = s1+ ϵ

such that:

Q2
0(s1 + ϵ) < k < Q1

0(s1 + ϵ)

In that case, we impose a price above marginal cost to the consumers having lower

types from category 1 and 2 such that
∑

µi

∫ θ̄2

¯
θ1

d(tsti (θ, s), θ, s)dGi(θ) + Q2
0(s) = k. We

conclude with the case when s is sufficiently high such that Q2
0(s1 + ϵ) = k. Now,

consumers from both categories with a type below θ̄2 receive the price θ + s, and their

quantity equals 0. The price is above the marginal cost for the highest type from con-

sumers of category 1 such that
∫ θ̄1
θ̄2

d(tcs1 , θ, s)dG1(θ) = k. The different values of si(k)

are given by the previous equalities delimiting each case.

3 Proof of Corollary 3.1

Proof. From the proof of Proposition 3.1, we know that the aggregate quantity is equal

to

µi

∫
s

∫
θi

qi(θ, s)dGi(θ)dF (s) = kµi + µiµj(θ
av
i − θavj )

Which is confirmed by the fact that kµi+µiµj(θ
av
i − θavj )+kµj +µiµj(θ

av
j − θavi ) = k.

This gives the ratio:
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α∗
i (k) = µi +

µiµj(θ
av
i − θavj )

k

From the proof of Proposition 3.2, we know that the individual price depends on

which consumers receive a null price. Namely, if s is sufficiently low, no consumers are

rationed; for the middle range of s, either smaller consumers from the smaller category

are rationing, followed by the smaller of both categories. If s is sufficiently high, all

smaller consumers are driven out of the market, and only the bigger consumers from

the bigger consumers à rationed. In the second case, the individual quantity for bigger

consumers is equal to s+θ1. With the continuous case, the aggregate consumer quantity

is equal to µ1(s + θav), which directly gives the ratio αst
1 (s, k) and the ratio for the rest

of the available quantity αst
2 (s, k). The following expression gives the second ratio:

µi

∫ θ̄1

θ̄2

d(0, θ, s)dG1(θ) =
θ̄1 − θ̄2
θ̄1 −

¯
θ1

(
2s+

θ̄1 + θ̄2
4

)

4 Proof of Lemma 3.1

Proof. Proposition 3.2 shows that in the short-term framework, there exist three thresh-

olds concerning the states of the world. It implies that depending on the value of

k, seven different expressions of the consumer surplus could exist. Note first that

s1 < s2(k) < s3(k). Then the seven expressions depends on the values of k such that

s1 = 0, s2(k) = 0, s3(k) = 0, and s1 = s̄, s2(k) = s̄, s3(k) = s̄. The case where s1 = s̄, for

instance, corresponds to the value of the parameter such that the capacity never begins

in expectation and prices are always null. On the other hand, the case where s3(k) = 0

implies that every smaller consumer from both categories is always excluded from the

market. The first extreme case leads to the consumer surplus being independent of k.

Therefore, only six possible maxima can exist. Note that by construction, there is no

discontinuity in terms of consumer welfare between the different cases. The average case,

that is, when the three thresholds are both positive and below s̄, is described below:

325



µ2

∫ s2(k)

s1

∫
¯
θ1

¯
θ2

(
tst2 (θ, s)

∂tst2 (θ, s)

∂k

)
dG2(θ)dF (s)

+
∑
i

µi

∫ s3(k)

s2(k)

∫ θ̄2

¯
θ1

(
tsti (θ, s)

∂tsti (θ, s)

∂k

)
dGi(θ)dF (s)

+ µ1

∫ s̄

s3(k)

∫ θ̄1

θ̄2

(
tst1 (θ, s)

∂tst1 (θ, s)

∂k

)
dG1(θ)dF (s)− r

All four other cases are derived from the above expression by sequentially canceling

the different terms. The convexity of consumer welfare in this framework is due to the

opposite effect of an increase in the level of investment. In the case when the capacity

always binds, for instance, we have:

µ1

∫ s̄

0

∫ θ̄1

θ̄2

(
tst1 (θ, s)

∂tst1 (θ, s)

∂k

)
dG1(θ)dF (s)− r

Under uniform distribution and the linear marginal utility, the revenue is concave in

k. Indeed, we have tst1 = s+ θ̄1+θ̄2
2

−2k
θ̄1−

¯
θ1

θ̄1−θ̄2
.1 In that case the derivative of the price with

respect to k is negative and equal to
∂tst1 (θ,s)

∂k
= −2

θ̄1−
¯
θ1

θ̄1−θ̄2
. Differentiating tst1 (θ, s)

∂tst1 (θ,s)

∂k

with respect to k leads to the expression −2(θ̄1−
¯
θ1)(2θ̄1−2

¯
θ1)

2(θ̄1−θ̄2)2
, which is also negative. Hence,

the above expression is concave. On the other hand, in the case when the capacity binds

less, we have

µ2

∫ s̄

s1

∫
¯
θ1

¯
θ2

(
tst2 (θ, s)

∂tst2 (θ, s)

∂k

)
dG2(θ)dF (s)− r

The second-order derivative is in:

1The value of the price is found by equalizing the quantity consumed at tst1 by consumers having a
type between θ̄2 and θ̄1 to the level of investment as described in Proposition 3.2.
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−µ2f(s1)
∂s1
∂k

∫
¯
θ1

¯
θ2

(
tst2 (θ, s1)

∂tst2 (θ, s1)

∂k

)
dG2(θ)

+µ2

∫ s̄

s1

∫
¯
θ1

¯
θ2

((
∂tst2 (θ, s)

∂k

)2

+ tst2 (θ, s)
∂2tst2 (θ, s)

∂k2

)
dG2(θ)dF (s)

Calculations show that the second term is negative.2. The first term is positive due

to the fact that ∂s1
∂k

> 0. Indeed, s1 satisfies:
∑

i µi

∫
θi
d(0, θ, s)dGi(θ)−k = 0. Therefore,

we have;

∑
i

µi

∫
θi

(
∂s1
∂k

∂d(0, θ, s)

∂s

)
dGi(θ) = 1 ⇒ ∂s1

∂k
= 1

As ∂d(0,θ,s)
∂s

= 1. This directly implies that more investment means less binding

capacity. We also have
∂tst2 (θ,s)

∂k
< 0. This creates the non-concavity effect in the consumer

surplus. Essentially, the convexity arises because as k increases, the concavity of the

revenue is reduced due to the decrease in the occurrence of a binding capacity, which is

precisely when the concavity of the revenue is observed.

The absence of a closed-form solution to this framework prevents having clear-cut

answers on the existence and the coexistence of the different maximma. Figure D.2

illustrates the different maxima that can exist for a given set of parameters and different

values of the investment costs. The black line represents the first-best investment level,

and the red lines are some maxima under the short-term framework.

5 Proof of Proposition 3.3

Proof. The expected revenue from consumers is built from the expected off-peak rev-

enue, during which the quantity bought by consumers depends on the unique price im-

plemented by the market designer, and from the expected on-peak revenue, during which

2We have tst2 (θ, s) = (s+ θ)
(2θ̄1−

¯
θ1−

¯
θ2)(4s−4s1)

(
¯
θ1−

¯
θ2)(4k+

¯
θ1+

¯
θ2−θ̄1−θ̄2)
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Figure D.2: Consumer surplus maximizing investment level for different values of invest-
ment cost

the aggregate quantity is by definition equal to the level of investment. The expected

off-peak revenue is equal to :

∑
i

µi

∫ sr0(k,t
r)

0

∫
θi

(trd(tr, θ, s))dGi(θ)dF (s)

The expected on-peak revenue is equal to :

∑
i

µi

∫ s̄

sr0(k,t
r)

∫
θi

(trk)dGi(θ)dF (s)

With sr0(k, t
r) defined as the first state of the world such that the capacity is binding:

∑
i

µi

∫
θi

d(tr, θ, sr0(k, t
r))dGi(θ) = k

Because there is only one decision variable to choose from, and the market designer

maximizes the consumer surplus under revenue constraint, the revenue constraint fully

pined down the optimal transfer such that it solves:
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Rr
0(k, t

r) =
∑
i

µi

[∫ sr0(k,t
r)

0

∫
θi

(trd(tr, θ, s))dGi(θ)dF (s)+

∫ s̄

sr0(k,t
r)

∫
θi

(trk)dGi(θ)dF (s)

]
− I(k) ⇒ Rr

0(k, t
r) = 0 (D.1)

There exists at most three solutions to the problem depending on the value of k:

(i) when the capacity never binds in expectation (sr0(k, t
r) = s̄), (ii) when the capacity

always binds that is (sr0(k, t
r) = 0), and (iii) the middle case as illustrated in Equation

D.1. In case (ii), the solution is straightforward such that:

∑
i

µi

∫ s̄

0

∫
θi

(trk)dGi(θ)dF (s) = I(k) ⇒ tr =
I(k)

k
(D.2)

The optimal transfer is the average investment cost. Under our framework, it is equal

to tr = r for a value of k−(r) such that sr0(k
−(r)) = 0, which is k−(r) =

∑
i µiθ

av
i − r.

The other extreme case is given under our framework by the expression:

∑
i

µi

∫ s̄

0

∫
θi

(trd(tr, θ, s))dGi(θ)dF (s) = I(k) ⇒ tr

(
s̄
1

2
− tr −

∑
i

µiθ
av
i

)
= I(k)

The first derivative with respect to tr is given by:

∂Rr
0(k, t

r)

∂tr
= s̄

1

2
− 2tr −

∑
i

µiθ
av
i (D.3)

And the maximum is given by tr = 1
2

(
s̄1
2
−
∑

i µiθ
av
i

)
. The second derivative is equal

to −2, which is negative, confirming the expected revenue is concave in tr. Note also

that the expected revenue is independent of k. This implies that the revenue net of

investment cost is always decreasing in k. Discarding the case of corner solutions and

lower limit of k such that sr0(k, t
r) = s̄, a solution to the problem exists if and only if

the net revenue at the maximum is positive, that is only when k <
(s̄ 1

2
+
∑

i µiθ
av
i )2

4r
. The

interpretation of this limit is that beyond it, the investment cost is such that the price
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to cover it leads to a negative consumer surplus. That is, the reaction to the price from

the consumer prevents the financing of such an investment level.

For the middle case, the closed-form solution does not exist. Still, the principles

remain the same: a value tr exists for only a relatively low value of k such that it leads

to positive or null demand during off-peak periods. We now study how the optimal value

tr(k) behaves with respect to k. To do so, we use the implicit function theorem, which

gives the following:

∂tr(k)

∂k
= −∂Rr

0(k)

∂k
/
∂Rr

0(k)

∂tr

We start with the derivative of the revenue with respect to k:

∂Rr
0(k)

∂k
=

∫ s̄

sr0(k,t
r)

trdF (s)− r

Which apparently has an ambiguous sign. We prove below that the derivative has to

be negative at the optimal value of tr. From Equation D.1, we rewrite:

Rr
0(k) =

∑
i

µi

∫ sr0(k,t
r)

0

∫
θi

(trd(tr, θ, s))dGi(θ)dF (s) +

(∑
i

µi

∫ s̄

sr0(k,t
r)

trdF (s)− r

)
k

Hence, the second term in parenthesis is precisely the derivative of the revenue with

respect to k:

Rr
0(k) =

∑
i

µi

∫ sr0(k,t
r)

0

∫
θi

(trd(tr, θ, s))dGi(θ)dF (s) +
∂Rr

0(k)

∂k
k

As trd(tr, θ, s) > 0, we must have
∂Rr

0(k)

∂k
< 0 to have Rr

0(k) = 0. We turn now to the

derivatives with respect to tr; the first derivative with respect to tr is equal to :
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∂Rr
0(k)

∂tr
=
∑
i

µi

[∫ sr0(k,t
r)

0

∫
θi

(
d(tr, θ, s) + tr

∂d(tr, θ)

∂tr

)
dGi(θ)dF (s) +

∫ s̄

sr0(k,t
r)

kdF (s)

]

Which has an ambiguous sign similar to Equation D.3 of the extreme case when the

capacity never binds. We show next that the derivative at k−(r), defined in the previous

extreme case when the capacity always binds and tr = r, is in we have sr0(k
−(r), tr) = 0,

hence:

∂Rr
0(k

−(r))

∂tr
=
∑
i

µi

∫ s̄

0

kdF (s) > 0

Note that for a given level of investment, it is always better to have the same revenue

with a lower price to maximize consumer surplus. Therefore, if Rr
0 is concave in tr and

as Rr
0(k) is decreasing in k, the optimal price is decreasing in k. The second derivative

with respect to tr is equal to:

∂2Rr
0(k)

∂tr2
= f(sr0(k, t

r))
∂sr0(k, t

r)

∂tr

(∑
i

µi

∫
θi

(
d(tr, θ, sr0(k, t

r)) + tr
∂d(tr, θ)

∂tr

)
dGi(θ)− k

)

+
∑
i

µi

[∫ sr0(k,t
r)

0

∫
θi

(
2
∂d(tr, θ)

∂tr
+ tr

∂2d(tr, θ)

∂tr2

)
dGi(θ)dF (s)

]

Under linear marginal utility, we have ∂2d(tr,θ)
∂tr2

= 0, which ensure that the revenue

during off-peak is concave in tr. Next, note that, by definition, we have the equality∑
i µi

∫
θi
d(tr, θ, sr0(k, t

r))dGi(θ) = k. This allows us to express the following derivative:

∑
i

µi

∫
θi

(
∂sr0(k, t

r)

∂tr
∂d(tr, θ)

∂s
+

∂d(tr, θ)

∂tr

)
dGi(θ) = 0

Hence:
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∂sr0(k, t
r)

∂k
= −∂d(tr, θ)

∂tr
/
∂d(tr, θ)

∂s
= 1

This allows us to rewrite the second derivative as:

∂2Rr
0(k)

∂tr2
= trf(sr0(k, t

r))
∂sr0(k, t

r)

∂tr
∂d(tr, θ)

∂tr
+ 2

∫ sr0(k,t
r)

0

∂d(tr, θ)

∂tr
dF (s)

Which is negative, so the expected revenue is concave in tr. Hence tr(k) is increasing

in k.

6 Proof of Proposition 3.4

Proof. We denote the consumer surplus under the policy as follows:

CSr(k, tri , t
r
j) =

∑
i

µi

[∫ sr1(k)

0

∫
θi

(U(d(tri , θ, s), θ, s)− trid(t
r
i , θ, s)) dGi(θ)dF (s) (D.4)

+
∑
i

µi

∫ s̄

sr1(k)

∫
θi

(U(αr
i (k)k, θ, s)− triα

r
i (k)k) dGi(θ)dF (s)

]

With αr
i (k) = 1 +

µj(θ
av
i −θavj )

k
corresponding to the share of capacity allocated to

category i. sr1(k) is given by solving:
∑

µi

∫
θi
d(tri , θ, s

r
1(k))dGi(θ) = k. Which gives :

sr1(k) = k +
∑
i

µi(t
r
i − θavi ) (D.5)

The expected revenue net of investment costs is defined as:
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Rr(k, tri , t
r
j) =

∑
i

µi

[∫ sr1(k)

0

∫
θi

(trid(t
r
i , θ, s)) dGi(θ)dF (s) (D.6)

+
∑
i

µi

∫ s̄

sr1(k)

∫
θi

(triα
r
i (k)k) dGi(θ)dF (s)

]
− I(k) (D.7)

Hence, the maximization problem is given in the following expression:

max
k,

tri→R+

CSr(k, tri , t
r
j)

s.t. 0 ≤ Rr(k, tri , t
r
j), (R)

The Lagrangian associated with the market designer program such that

Lr(k, tri , t
r
j) = CSr(k, tri , t

r
j) + γRr(k, tri , t

r
j)

With γr, the lagrangian multiplier is associated with the revenue constraint. The

first-order condition of the program at the optimal value of tri (k) and trj(k) are equal to:

CSr
i (k, t

r
i , t

r
j) + γ(k)Rr

i (k, t
r
i , t

r
j) = 0

CSr
j (k, t

r
i , t

r
j) + γ(k)Rr

j(k, t
r
i , t

r
j) = 0

With CSr
i (k, t

r
i , t

r
j) =

∂CSr(k,tri ,t
r
j )

∂tri
and Rr

i (k, t
r
i , t

r
j) =

∂Rr(k,tri ,t
r
j )

∂tri
. Differentiating with

respect to k the first equation and dropping the variables for clarity implies that:

CSr
ii

∂tri (k)

∂k
+ γ(k)Rr

ii

∂tri (k)

∂k
+ CSr

ij

∂trj(k)

∂k
+ γ(k)Rr

ij

∂trj(k)

∂k
+ CSr

ik + γ(k)Rr
ik +

∂γ(k)

∂k
Rr

i = 0
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With CSr
ii = ∂2CSr

∂tri
2 , Rr

ii = ∂2Rr

∂tri
2 , CSr

ij = ∂CS
∂tri ∂t

r
j
, Rr

ij = ∂R
∂tri ∂t

r
j
, CSr

ik = ∂CS
∂tri ∂k

,

Rr
ik =

∂R
∂tri ∂k

. The equation simplifies to:

Lr
ii(k, t

r
i , t

r
j)
∂tri (k)

∂k
+ Lr

ij(k, t
r
i , t

r
j)
∂trj(k)

∂k
+ Lr

ik(k, t
r
i , t

r
j) +

∂γ(k)

∂k
Rr

i (k, t
r
i , t

r
j) = 0

With Lr
ii,Lr

ij and Lr
ik the derivatives of the Lagrangian. Hence, the derivatives of the

first-order condition are given by:


Lr

ii(k, t
r
i , t

r
j)

∂tri (k)

∂k
+ Lr

ij(k, t
r
i , t

r
j)

∂trj (k)

∂k
+ Lr

ik(k, t
r
i , t

r
j) +

∂γ(k)
∂k

Rr
i (k, t

r
i , t

r
j) = 0

Lr
jj(k, t

r
i , t

r
j)

∂trj (k)

∂k
+ Lr

ji(k, t
r
i , t

r
j)

∂tri (k)

∂k
+ Lr

jk(k, t
r
i , t

r
j) +

∂γ(k)
∂k

Rr
j(k, t

r
i , t

r
j) = 0

Which implies :


∂tri (k)

∂k
= −

(
Lr

ij(k, t
r
i , t

r
j)

∂trj (k)

∂k
+ Lr

ik(k, t
r
i , t

r
j) +

∂γ(k)
∂k

Rr
i (k, t

r
i , t

r
j)
)

1
Lr
ii(k,t

r
i ,t

r
j )

∂trj (k)

∂k
= −

(
Lr

ji(k, t
r
i , t

r
j)

∂tri (k)

∂k
+ Lr

jk(k, t
r
i , t

r
j) +

∂γ(k)
∂k

Rr
j(k, t

r
i , t

r
j)
)

1
Lr
jj(k,t

r
i ,t

r
j )

Let’s note the determinant of the Hessian matrix of the Lagrangian Hr = Lr
iiLr

jj −
Lr

ijLr
ji. Then the derivative of the optimal value of tri (k) with respect to k is equal to:

∂tri (k)

∂k
=

(
Lr

ik(k, t
r
i , t

r
j) +Ri

∂γ(k)

∂k
− ρi

(
Lr

jk(k, t
r
i , t

r
j) +Rj

∂γ(k)

∂k

))
−Ljj

Hr
(D.8)

With ρi =
Lij

Ljj
. The revenue constraint gives the expression of the derivative of the

Lagrangian multiplier. As it is binding, we have the revenue at the optimal values:
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Rr(k, tri (k), t
r
j(k)) = 0

Hence:

Rr
i (k, t

r
i (k), t

r
j(k))

∂tri
∂k

+Rr
j(k, t

r
i (k), t

r
j(k))

∂trj
∂k

+Rr
k(k, t

r
i (k), t

r
j(k)) = 0

From the previous findings on the derivative of the optimal values tri (k) and trj(k),

we have:

Rr
i (k, t

r
i (k), t

r
j(k))

(
Lr

ik(k, t
r
i , t

r
j)− ρiLr

ij(k, t
r
i , t

r
j) + (Ri − ρiRj)

∂γ(k)

∂k

)
−Ljj

Hr

+Rr
j(k, t

r
i (k), t

r
j(k))

(
Lr

jk(k, t
r
i , t

r
j)− ρjLr

ji(k, t
r
i , t

r
j) + (Rj − ρiRi)

∂γ(k)

∂k

)
−Lii

Hr

+Rr
k(k, t

r
i (k), t

r
j(k)) = 0

It implies that:

∂γ(k)

∂k
= − 1

bHr

(∑
i

Ri(Lr
ijLr

jk − Lr
jjLr

ik) +RkH
r

)

In the next step, we formally prove that at least one minimum exists for the price of

the smaller category. The critical insight of the proof relies on the behavior of prices in

the special cases of the maximization program. That is when the capacity level is such

that it always binds or it never binds in expectation. The following results show that

the prices are always increasing with a relatively high level of k when the capacity never

binds, and the price of the smaller consumer at the level of investment such that it always

binds is always decreasing. For the price of the bigger consumer, the result is ambiguous

as it may happen that for some values of the parameters, the price might decrease. We

also provide a more detailed discussion of the rationale behind such behavior in the proof.
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Lemma D.1. Assume that for a given k, the optimal values tri (k) and trj(k) are such

that sr1(k) > s̄. Then tri (k) and trj(k) are increasing and convex in k. Moreover, if i is

the bigger category then we have trj(k) > tri (k).

Proof. Assuming that the capacity never binds in expected significantly implies the anal-

ysis. All the cross derivatives are null, and the second derivatives for both the consumer

surplus and the revenue with respect to k are also null. The derivative of the optimal

price tri (k) is equal to:

∂tri (k)

∂k
= −∂γ(k)

∂k

Ri

Lii

With Ri > 0. Indeed, the revenue is concave in tri : Rii = −2µi

∫
s
1dF (s) < 0. Hence,

there are at most two possible values that can satisfy the revenue constraint. As the

market designer always prefers smaller prices for consumers, then the chosen value is the

minimum of the two, which, under a concave function, is located in the increasing part

of the function. Next, we have Lii = µi(1 − 2γ(k)). We prove that γ(k) > 1, hence

Lii < 0. From the maximization problem, we have :

γ(k) = −CSr
i

Ri

With

CSr
i = −µi

∫
s

∫
θi

d(tri , θ, s)dGi(θ)dF (s)

And

Rr
i = µi

∫
s

(∫
θi

d(tri , θ, s)dGi(θ) + tri
∂d(tri , θ)

∂tri

)
dF (s) (D.9)

Which boils down:

Rr
i = −CSr

i + µi

∫
s

tri
∂d(tri , θ)

∂tri
dF (s)
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Hence :

γ(k) =
CSr

i

CSr
i − µi

∫
s
tri

∂d(tri ,θ)

∂tri
dF (s)

> 1

The derivative of γ(k) is such that:

∂γ(k)

∂k
= −Rr

kLiiLjj

bHr

With bHr, the determinant of the bordered Hessian matrix is positive at the maxi-

mum. Rk = −r < 0 as the capacity never binds in expectation. Hence, the revenue is

independent of k. Finally LiiLjj = µiµj(2γ(k)− 1)2 > 0. Therefore, we have: ∂γ(k)
∂k

> 0,

and the price is increasing with k. Calculations give the second derivative with respect

to k:

∂2tri (k)

∂k2
= (3Rjj(LiiR

r
j)

2 + (LjjR
r
i )

2Rjj − 2LjjRiiLii(R
r
i )

2)
Rr

iLjjR
r
k
2

bHr3

The term in parenthesis is equal to

2(2γ(k)− 1)2
∑
i

µ3
iµ

2
j(2s̄− 2tri + θavi )2

Which is positive. We also have: Ljj = µi(2γ(k) − 1) < 0, and Rr
i < 0. Hence, the

second derivative is positive, and tri (k) is convex is k. The ranking between prices is

given by the closed-form solution of the difference between the two prices that can be

expressed as follows:

tri − trj =
∆θab

2G
(G− (G2 − 16krG)0.5) > 0

With G = 4
∑

i µi(θ
av
i )2+ s̄(s̄+4

∑
i µiθ

ab
i ) which is positive implying that the differ-

ence is also positive.
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Note that as prices decrease as the level of investment decreases, then it implies that

a value of k exists such that the investment starts binding in expectation. It ensures the

existence of the middle case with 0 < sr1(k) < s̄. Next, we study the opposite extreme

case where k is sufficiently low such that sr1(k) = 0. We have sr1(k) = k+
∑

µi(t
r
i − θavi ).

Recall that no price can be negative, and neither can the demand. Hence, we have :

tri ∈ [0,
¯
θi]. Therefore, s

r
1(k) ≤ k. It implies that a k−(r) such that sr1(k

−(r)) = 0 exists.

We provide in the following lemma the results with respect to the sign of the prices at

k−(r)

Lemma D.2. When k = k−(r), the optimal value trj(k) for the smaller category is always

decreasing. The optimal price derivative for the bigger category tri (k) is either decreasing

or increasing depending on the parameters. The price of the smaller category is always

higher than the price of the bigger category.

Proof. We start by describing the solution of the optimization model at k−(r). Recall

that the first-order condition is CSr
i +λrRr

i = 0. When = k−(r), we express the consumer

surplus derivative from Equation D.4 with with s1 = 0 as follows:

CSr
i = µiB− µiα

r
i (k)k

With

B =
∑
i

µi

∫
θi

(CS(d(tri , θ, s
r
1(k)), θ, s

r
1(k))− CS(αr

i (k)k, θ, s
r
1(k))) dGi(θ)f(s)

It corresponds to the consumer surplus adjustment between off-peak and on-peak

periods as the price level changes. Due to the incomplete information framework, the

inefficient rationing during on-peak periods implies a discontinuity of the surplus between

the two periods. It is always positive, as U(d(tri , θ, s
r
1(k)), θ, s

r
1(k))−U(αr

i (k)k, θ, s
r
1(k)) =

(µi(t
r
i − trj)− θ+ θav1 )2 1

2
> 0. That is, increasing the level of investment always increases

the on-peak quantity (second term) but also substitutes a lower on-peak surplus with a

higher off-peak surplus. Similarly, from Equation D.6. The marginal revenue is given by

:
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Rr
i = µiC+ µiα

r
i (k)k

With

C =
∑
i

µi

∫
θi

(trid(t
r
i , θ, s

r
1(k))− triα

r
i (k)k) dGi(θ)f(s)

This expression is close to B in the sense that it represents the cost adjustment for

consumers due to the discontinuity of the individual consumer surplus. Note that we have

B = D−C, with D =
∑

i µi

∫
θi
(U(d(tri , θ, s

r
1(k)), θ, s

r
1(k))− U(αr

i (k)k, θ, s
r
1(k))) dGi(θ)f(s),

which is the utility adjustment. Therefore, we rewrite the Lagrange multiplier such that

λr = −CSr
i

Rr
i
. It implies that:

CSr
i

Rr
i
=

CSr
j

Rr
j
. After rewriting the different terms, the optimal

prices need to satisfy the following conditions:

(µiα
r
i (k)k − µjα

r
i (k)k)D = 0

As only D depends on the prices, it implies that at the maximum, we have D = 0.

Which allows us to rewrite CSr
i = −µiC − µiα

r
i (k)k. From the expression of λr, we

therefore have λr = 1. The first-order condition at k−(r) implies that CSr
i = −Rr

i .

Solving for two first-order conditions, plugging them in the function s1 and solving for

k gives:

k−(r) =
1

2

(
θav − r +

(
(θav − r)2 − 4(µiµjσ)

0.5∆θav
)0.5)

With θav =
∑

i µiθ
av
i the weighted sum of average type. ∆θav = θavi − θavj > 0 as we

assume i being the biggest category. And σ =
∑

i µiσ
2
i > 0, with σi =

(θ̄i−
¯
θi)

2

12
. Note that

the threshold k−(r) is decreasing with r, as we also have θav − r > 0. We now turn to

express the values tri and trj under a closed-form solution such that it respects the case

that s1(k) = 0. To find such values, we used the two observations that at k−(r) we both

have Rr = 0 and s1 = 0. Solving the system and deriving the solution with respect to k

gives:
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∂tri
∂k

=
1

µi∆θav
(2k + r − (θavj + 2µi∆θav))

and

∂trj
∂k

= − 1

µj∆θav
(2k + r − (θavi − 2µj∆θav))

This leads to the following observation: if 2k + r − (θavj + 2µi∆θav) > 0, it implies

that whenever the price of the bigger category is increasing, then the price of the smaller

category is always decreasing. Indeed, note that (θavj + 2µi∆θav) − (θavi − 2µj∆θav) =

∆θav > 0.

It is straightforward to see that the price of the bigger category is convex in k, and the

price of the smaller category is concave in k. The rest of the proof is as follows: we show

that the investment level that minimizes the price for the bigger category k−
i (r) is higher

than the level k−
j (r) that maximizes the price for the bigger category and that k−(r) can

be smaller than k−
i (r) but never smaller than k−

j (r). Hence, the smaller category always

exhibits a negative derivative (as we always have k−(r) > k−
j (r)), while the price for

the bigger category can be either increasing (when k−(r) > k−
i (r)) or decreasing (when

k−(r) < k−
i (r)). Using the price derivative we have k−

i (r) =
1
2
(θavj + 2µi∆θav − r) and

k−
j (r) =

1
2
(θavi − 2µj∆θav − r). Clearly, k−

i (r) > k−
j (r) as k−

i (r) − k−
j (r) =

1
2
∆θav > 0.

Moreover, both investment levels are decreasing in r.

Simulations shows that the ranking between k−
i (r) and k−(r) is ambiguous. However,

note that we have shown that k−(r) is decreasing in r and that the term inside the square

root is also decreasing in r. As it must be positive, the limit toward the highest value r−

that can imply a solution is such that limr→r− k−(r) = 1
2
(θav − r−). We now prove that

θav − r− > 0. To see this, recall that trj is concave in k and tri is convex in k. Therefore,

there are at most two intersections. In that case, those intersections are such that one

of them implies that both prices equal r (see Figure D.3 for an illustration).3 As prices

also satisfy the condition s1 = 0, from Equation D.5, we can deduce that it implies at

the corresponding k of the intersection θav − k − r = 0. Therefore, for any values of k

below the term, it is positive and, by extension, θav − r > 0. From the expression of

k−
j (r), it is clear that this limit is above it. Therefore, k−(r) is always above k−

j (r) and

3Calculations show that if both intersections exist, then one implies that both prices meet at k = 0.
The other intersection is at an investment level, which is always above k−i (r).
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Figure D.3: Optimal prices and investment threshold such that s1 = 0 and Rr(k, tri , t
r
j) =

0

there is not intersection. Hence, the level of investment such that s1 = 0 implies that

the price for the smaller is always decreasing in k. We illustrate the part of this proof

in the second panel of Figure D.3. We conclude the proof by expressing the difference

between the two prices:

k

µiµj∆θav
(θav − k − r)

From the discussion on the price intersection, we know that θav − k − r > 0. Hence,

the price difference is positive.

Now that we have formally shown that a minimum always exists for the smaller

consumers, we provide in the rest of the proof a technical discussion on the rationale

behind the behavior of the prices. To do so, we decompose the effect of k on the optimal

values between two opposite effects:

• A consumer surplus effect.

• A revenue effect.
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The non-monotonicities emerge from the tension between the two effects. Namely,

the consumer effect dominates the revenue effect for relatively low values of k. As k

increases, the revenue effect takes over the consumer effect. The central idea of the

consumer surplus effect comes from the observation that an additional investment is

always beneficial for consumers. To see this, we express the derivative of the consumer

surplus with respect to k as follows:

CSr
k(k, t

r
i , t

r
j) =B+

∑
i

µi

∫ s̄

sr1(k)

∫
θi

(u(αr
i (k)k, θ, s)− tri )dGi(θ)dF (s) (D.10)

The second derivative with respect to k is given by:

CSr
kk(k, t

r
i , t

r
j) = −

∫ s̄

sr1(k)

1dGi(θ)dF (s)

Which is negative. Hence, a higher level of investment supposes a lower marginal gain

for the consumer surplus. This explains why the consumer surplus effect is relatively less

significant for a higher level of investment. On the other hand, the revenue effect is

convex in k. Namely, the revenue constraint is increasingly tighter as k increases, which

necessitates higher prices. Two results can illustrate this effect: (i) Proposition 3.3,

which shows that for a single price, an increase in k always implies an increase in tr(k),

(ii) Lemma D.1 that shows for the extreme case such that when the capacity never binds

in expectation, prices are also increasing and convex in k.

We turn toward the analysis of the behavior and the ranking between prices. Lemma

D.1 proves that the prices are increasing in k for high values of k, which is reinforced

by the results from the single-price policy. The ranking between the two prices, that is,

having a higher price for the bigger category, can be illustrated by the following lemma:

Lemma D.3. The pair of prices that maximizes the expected revenue when the capacity

is always binding is always asymmetric with ti(k) > tj(k) whenever the category i is the

bigger category compared to category j.

Proof. Under the assumption that the capacity is always binding, the expected revenue

is equal to:
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Rr(k, tri , t
r
j) =

∑
i

µi

∫
s

∫
θi

(trid(t
r
i , θ, s)) dGi(θ)dF (s)− I(k)

Which gives the first-order condition in Equation 6. Under the linear and uniform

assumption, the derivatives imply that the price t̃ri that maximizes revenue is given by:

t̃ri =
s̄+ θavi

2

This clearly implies that if the category i is bigger than j, then its average type is

higher, and so is the price t̃ri .

We conclude this proof by showing that the consumer surplus effect can explain the

decrease in the price for the smaller category. Namely, we find that for a revenue con-

straint independent of the investment level, the change in the consumer surplus with

respect to k is sufficient for generating the decrease in price. This observation is sup-

ported by the fact that for a small value of k, the change in the revenue constraint is

relatively smaller due to its convexity with respect to k. The decrease in the price of the

smaller category is explained by the decrease in the marginal rate of substitution as k

increases. The rate of substitution between the price of the bigger category relative to

the smaller category for having the same consumer surplus is given by:

MRSi→j(k) =
CSr

i

CSr
j

It implies that the MRS changes with respect to k as follows:

∂MRSi→j(k)

∂k
=

CSr
ikCSr

j − CSr
jkCSr

i

CSr
j
2

In the absence of a clear closed-form solution. We provide in the following lemma for

the sign of
∂MRSi→j(k)

∂k
for the symmetric case, namely when tri (k) = trj(k)
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Lemma D.4. When tri (k) = trj(k), the marginal rate of substitution MRSi→j is decreas-

ing in k.

Proof. The expression of the derivatives in
∂MRSi→j(k)

∂k
are described below. For the first

derivative with respect to tri :

CSr
i = µiB− Eqi

With Eqi being the expected quantity for category i:

Eqi = µi

[∫ sr1(k)

0

∫
θi

d(tri , θ, s)dGi(θ)dF (s) +

∫ s̄

sr1(k)

αr
i (k)kdGi(θ)dF (s)

]

Then the cross derivative is equal to:

CSr
ik = −∂Eqi

∂k

= µi

[(∫
θi

d(tri , θ, s
r
1(k))dGi(θ)− αr

i (k)k

)
−
∫ s̄

sr1(k)

∂αr
i (k)k

∂k
dF (s)

]
=

∂B
∂tri

− E∂kqi

We have:

∂B
∂tri

= µiµj(t
r
i − trj)

1

s̄

Hence at tri = trj the derivative is null. We then rewrite the MRS :

∂MRSi→j(k)

∂k
=

E∂kqj [(µi − µj)B+ Eqj − Eqi]
CSr

j
2
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Note that µjE∂kqi = µiE∂kqj =
∫ s̄

s1
µiµjdF (s). this allows us to simplify the expres-

sion to:

∂MRSi→j(k)

∂k
=

E∂kqi(Eqj − Eqi)
CSr

j
2

If category i is the bigger category, then Eqi > Eqj at tri = trj . This implies that
∂MRSi→j(k)

∂k
< 0.

7 Proof of Lemma 3.2

Proof. The proof summarizes the approach of Spulber (1992). It starts by showing

that the participation and the revenue constraints can be merged to form the unique

constraint noted R−IR. Given a strategy θ̂, an individual surplus of a consumer of type

θ is given by:

CS(θ, θ̂) =

∫
s

(U(q(θ̂, s), θ, s)− t(θ̂, s)q(θ̂, s))dF (s) (D.11)

If incentive compatibility holds, then θ̂ = θ. It implies that the first-order condition

is such that ∂CS

∂θ̂
= 0 at θ̂ = θ. Using this condition and totally differentiating the first-

order condition implies at θ̂ = θ: ∂2CS

∂θ̂2
+ ∂2CS

∂θ̂∂θ
= 0. If θ̂ is a maximum then ∂2CS

∂θ̂2
≤ 0.

Hence, we must also have : ∂2CS

∂θ̂∂θ
≥ 0. From Equation D.11, we have

∂2CS

∂θ̂∂θ
=

∫
s

(
∂u(q(θ̂, s), θ, s)

∂θ

∂q(θ̂, s)

∂θ̂

)
dF (s) =

∫
s

∂q(θ̂, s)

∂θ̂
dF (s)

Hence, if the derivative of the individual quantity increases with the type, the solution

of the first-order condition is also a maximum. The envelope theorem implies that the

derivative of the consumer surplus at the maximum with respect to the type is given
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solely by the derivative of the expected utility. Therefore, writing CS(θ) as the surplus

when the consumer behaves honestly gives :

CS(θ) =

∫
s

CS(
¯
θi) +

∫ θ

¯
θi

∂U

∂θ
dθ̃ = CS(

¯
θi) +

∫
s

∫ θ

¯
θi

q(θ̃, s)dθ̃dF (s)

Isolating CS(
¯
θi) gives : CS(

¯
θi) = CS(θ) −

∫
s

∫ θ

¯
θi
q(θ̃, s)dθ̃dF (s). Note that it is

by definition independent of any consumer type, hence: CS(
¯
θi) =

∫
θi
CS(

¯
θi)dGi(θ) =∫

θi

(
CS(θ)−

∫
s

∫ θ

¯
θi
q(θ̃, s)dθ̃dF (s)

)
dGi(θ). The smallest type from both groups needs to

satisfy the participation constraint, hence
∑

i µi

∫
θi
CS(

¯
θi)dGi(θ) ≥ 0. Then, it remains

to note that the net revenue also needs to be at least positive. Note Rm the expected

revenue is given by :

Rm =
∑
i

µi

∫
s

∫
θi

(ti(θ, s)qi(θ, s))dGi(θ)dF (s)− I(k) ≥ 0 (D.12)

Combining both conditions leads to the following:

∑
i

µi

∫
θi

(
CS(θ)−

∫
s

∫ θ

¯
θi

q(θ̃, s)dθ̃dF (s)

)
dGi(θ) +Rm ≥ 0

As a consumer surplus is given by CS(θ) =
∫
s
(U(q(θ, s)θ, s) − ti(θ, s)qi(θ, s))dF (s),

the consumer cost from the consumer surplus and the payment from the revenue cancel

each other. This leaves:

∑
i

µi

∫
θi

∫
s

(
U(q(θ, s), θ, s)−

∫ θ

¯
θi

q(θ̃, s)dθ̃dF (s)

)
dF (s)dGi(θ)− I(k) ≥ 0

Finally, integration by parts leads to the final expression of the constraint R − IR.

Then, note the revenue equivalence stems from the observation that the following ex-

pression can give the payment schedule:
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t(θ̂, s)q(θ̂, s)) = U(q(θ̂, s), θ̂, s)−
∫ θ̂

¯
θi

q(θ̃, s)dθ̃ −R− IR

Plugged in the consumer surplus and simplified:

CS(θ, θ̂) =

∫
s

(U(q(θ̂, s), θ, s)− U(q(θ̂, s), θ̂, s) +

∫ θ̂

¯
θi

q(θ̃, s)dθ̃ +R− IR)dF (s) (D.13)

The derivative with respect to θ̂ leads to:

∂CS

∂θ̂
=

∫
s

(
∂U(q(θ̂, s), θ, s)

∂q

∂q

∂θ̂
− ∂U(q(θ̂, s), θ̂, s)

∂q

∂q

∂θ̂
− ∂U

∂θ
+ q(θ̂, s)

)
dF (s) (D.14)

Recall that ∂U
∂θ

= q(θ̂, s). Hence, ∂CS

∂θ̂
= 0 if and only if θ = θ̂, which ensures the

incentive compatibility constraint to be satisfied . The cross derivative with respect to θ

is also clearly positive if ∂q
∂θ

> 0. Finally, note that by construction, the expected revenue

is also non-negative. Moreover, from Equation D.13, we have CS(θ, θ) =
∫
s

∫ θ̂

¯
θi
q(θ̃, s)dθ̃+

R − IR)dF (s). Hence, when θ = θ̄i, CS(
¯
θi,

¯
θi) = R − IR = 0, which implies that both

revenue and participation constraints are satisfied.

The Lagrangian of the problem can be expressed as follows:

Lm =
∑
i

µi

∫
s

∫
θi

(U(qi(θ, s), θ, s)− qi(θ, s)ti(θ, s))dGi(θ)dF (s)

+ε

(
k −

∑
i

µi

∫
θi

qi(θ, s)dGi(θ)

)
+ ζ R− IR

With ε being the Lagrange multiplier associated with the capacity constraint and ζ

the multiplier associated with the new participation/revenue constraint. Now, note that

as the market designer seeks to maximize consumer surplus, having a positive net revenue

is not optimal. In other terms, at the maximum we have
∑

i µi

∫
s

∫
θi
qi(θ, s)ti(θ, s)dGi(θ) =
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I(k). From the expression of R− IR in Equation D.16, the derivative with respect to qi

gives:

∂Lm

∂qi
=

∫
s

u(qi(θ, s), θ, s)dF (s)− ε+ ζ

∫
s

(u(qi(θ, s), θ, s)− Γi(θ))dF (s)

Which gives the first-order condition:

u(qi(θ, s), θ, s)− ε+ ζ(u(qi(θ, s), θ, s)− Γi(θ)) = 0 (D.15)

Note that due to the consumer unit mass assumption, having different categories of

consumers does not change the solution to the problem. Namely, the maximization of

the expected aggregate consumer surplus can be understood as the individual sum of the

maximization of the consumer surplus at the category level.

Finally, we show that the incentive compatibility condition is satisfied with the first-

order condition. We derive the condition D.15 with respect to the type θ: ∂u
∂q

∂qi
∂θ

+ ∂u
∂θ

+

ε + ζ(∂u
∂q

∂qi
∂θ

+ ∂u
∂θ

− ∂Γi

∂θ
) = 0. With the linear framework and uniform distribution we

have: ∂u
∂q

= −1, ∂u
∂θ

= 1 and ∂Γi

∂θ
= −1. It implies that −∂qi

∂θ
+ 1 + ε + ζ(−∂qi

∂θ
+ 2) = 0.

That is:
∂qi
∂θ

=
1 + 2ζ

1 + ζ
> 0

8 Proof of Proposition 3.5

Proof. The merged participation and revenue constraint, when it is not binding, is given

in the following equation:

RIR(k) =
∑
i

µi

∫
θi

[∫ s1

0

(U(qmi,1(θ, s), θ, s)− Γi(θ)q
m
i,1(θ, s))dF (s)+ (D.16)∫ s̄

s1

(U(qmi,2(θ, s), θ, s)− Γi(θ)q
m
i,2(θ, s))dF (s)

]
dGi(θ)− I(k)
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With qmi,1 and qmi,2 being respectively the allocation when the capacity is not binding

and the capacity is binding. As it is the same allocation as the first-best, the first state

of the world such that the capacity binds is the same as under the first-best: s1. Similar

to other proves, we start by stating that depending on the value of k, the expression of

RIR can take three forms: (1) when the capacity never binds s1 ≥ s̄, (2) when it always

binds s1 ≤ 0, (3) when it both binds and not binds as given by equation D.16. We have:

s1 = k − θav

In this case, situation (1) is realized whenever the investment level k is above the

threshold k+ = θav + s̄. Situation (2) is realized whenever the investment level k is

below the threshold k− = θav. Finally, note that the equation D.16 is continuous at both

threshold.

We start with the lowercase: k ≥ k− such that s1 = 0. Equation D.16 becomes:

RIR(k) =
∑
i

µi

∫
θi

∫
s

(U(qmi,2(θ, s), θ, s)− Γi(θ)q
m
i,2(θ, s))dF (s)dGi(θ)− I(k)

With the linear and uniform assumption, we have qmi,2(θ, s) = k+s+θ−
∑

i µi(s+θavi )

and Γi(θ) = θ̄i − θ. In that case:

RIR(0) =
1

8
((
∑
i

µi(θ̄i −
¯
θi))

2 + 4µiµj(θ̄i − θ̄j)
2)

Which is always positive. Next, we compute the first derivative with respect to k,

which gives:

∂RIR

∂k
=
∑
i

µi

∫
θi

∫
s

(u(qmi,2(θ, s), θ, s)
∂qmi,2
∂k

− Γi(θ)
∂qmi,2
∂k

)dF (s)dGi(θ)− r

∑
i

µi

∫
θi

∫
s

(u(qmi,2(θ, s), θ, s)− Γi(θ)(θ, s))dF (s)dGi(θ)− r
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As
∂qmi,2
∂k

= 1. And the second order derivative with respect to k

∂2RIR

∂k2
=
∑
i

µi

∫
θi

∫
s

∂u

∂q

∂qmi,2
∂k

dF (s)dGi(θ) = −1

As ∂u
∂q

= −1. This shows that the expression RIR is concave in k. This, and the

fact that the RIR is positive in k = 0, implies that there can only be one solution to

RIR(k) = 0 from case (1).

We now study the middle case (3). From the first-order condition, we have qmi,1(θ, s) =

θ + s which does not depends on k. As the function in the interval is continuous is s,

the marginal effect at s1 cancels out. Hence, the first derivative with respect to k gives:

∂RIR

∂k
=
∑
i

µi

∫
θi

∫ s̄

s1

(u(qmi,2(θ, s), θ, s)− Γi(θ))dF (s)dGi(θ)− r

Deriving again by k:

∂2RIR

∂k2
=
∑
i

µi

∫
θi

[
−∂s1

∂k
(u(qmi,2(θ, s1), θ, s1)− Γi(θ))f(s)−

∫ s̄

s1

1dF (s)

]
dGi(θ)

Using the value of u(qmi,2(θ, s1), θ, s1) and Γi(θ), we have
∫
θi

∑
i µi(u(q

m
i,2(θ, s1), θ, s1)−

Γi(θ)) = −
∑

i µi
θ̄i−

¯
θi

2
< 0. As ∂s1

∂k
= 1, the first term is positive. Hence, the sign of the

second derivative is ambiguous. This is clear as at k+, we have s1(k
r) = s̄. Hence, the

second term in the second derivative is null, and the expression RIR(k+) is convex in k.

However, the first derivative with respect to k is also negative at k+, as it is equal to −r.

Finally, the third derivative is positive and equal to a constant, ensuring that there are

no multiple combinations of concave/convexity from RIR. In other words, in the case

(3), RIR is first concave and then convex. Continuity with case (1) and the negative

derivative at the threshold with case (2) ensures that there is at most one solution to

RIR(k) = 0.
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The existence of a solution comes from the observation that RIR(0) > 0 and that the

derivative of RIR(k) with respect to k whenever k ≥ kr is negative and equal to −r.

9 Proof of Proposition 3.6

Proof. We start with the first derivative with respect to k. The first-order condition of

the Lagrangian is equal to:

u(qmi,l, θ, s)(1 + ζ)− ζΓi(θ)− ε = 0

We rewrite the equation such that:

u(qmi,l, θ, s) + ζJi(q
m
i,l, θ, s)− ε = 0

With Ji(q
m
i,l, θ, s) = u(qmi,l, θ, s)− Γi(θ). It corresponds to the marginal virtual utility

of a consumer. We start with the optimal off-peak allocation: qi,3. In that case, given a

realization of s, the capacity does not bind, and ε = 0. Hence

u(qmi,3, θ, s) + ζJi(q
m
i,3, θ, s) = 0

This implies that at the optimum, we have: (i) u(qmi,3, θ, s) ≥ 0 and (ii) Ji(q
m
i,3, θ, s) ≤

0. The derivative with respect to k of the first-order condition gives:

∂u

∂q

∂qmi,3
∂k

+
∂ζ

∂k
Ji(q

m
i,l, θ, s) + ζ

∂J

∂q

∂qmi,3
∂k

= 0

With ∂u
∂q

= −1, which implies that ∂J
∂q

= −1. Hence, this gives:
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∂qmi,3
∂k

=
∂ζ

∂k

Ji(q
m
i,3, θ, s)

1 + ζ

If ∂ζ
∂k

> 0, and because we have Ji(q
m
i,3, θ, s) < 0, then

∂qmi,3
∂k

< 0. For the on-peak

quantity, the derivative of the first-order condition gives:

∂u

∂q

∂qmi,4
∂k

+
∂ζ

∂k
Ji(q

m
i,4, θ, s) + ζ

∂J

∂q

∂qmi,4
∂k

+
∂ε

∂k
= 0

Hence:

∂q∗i,4
∂k

=

[
∂ζ

∂k
Ji(q

m
i,4, θ, s)−

∂ε

∂k

]
1

1 + ζ

We turn now to the derivative of the multipliers. We start with the capacity con-

straint:

∑
i

µi

∫
θi

qmi,4(ζ, ε)dGi(θ) = k

The derivative with respect to k gives:

∑
i

µi

∫
θi

(
∂qmi,4
∂ζ

∂ζ

∂k
+

∂q∗i,4
∂ε

∂ε

∂k

)
dGi(θ) = 1 (D.17)

Using the first-order conditions gives:

∂q∗i,4
∂ζ

=
Ji(q

m
i,4, θ, s)

1 + ζ
∂q∗i,4
∂ε

= − 1

1 + ζ
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Plugged in Equation D.17 gives:

∑
i

µi

∫
θi

1

1 + ζ

(
Ji(q

m
i,4, θ, s)

∂ζ

∂k
− ∂ε

∂k

)
dGi(θ) = 1

Therefore :

∂ε

∂k
= EθJi(q

m
i,4, θ, s)

∂ζ

∂k
− (1 + ζ)

With EθJi(q
m
i,4, θ, s) =

∑
i µi

∫
θi
Ji(q

m
i,4, θ, s) the aggregate virtual marginal utility

across all consumers. We turn toward the RIR constraint:

∑
i

µi

∫
θi

[∫ sm1 (k)

0

(U(qmi,3(ζ), θ, s)− Γi(θ)q
m
i,3(ζ))dF (s)

+

∫ s̄

sm1 (k)

(U(qmi,4(ζ, ε), θ, s)− Γi(θ)q
m
i,4(ζ, ε))dF (s)

]
dGi(θ)− I(k) = 0

The derivative is equal to

∑
i

µi

∫
θi

[∫ sm1 (k)

0

(
J(qmi,3(ζ), θ, s)

∂qmi,3
∂ζ

∂ζ

∂k

)
dF (s) (D.18)

+

∫ s̄

sm1 (k)

(
J(qmi,4(ζ), θ, s)

(
∂qmi,4
∂ζ

∂ζ

∂k
+

∂qmi,4
∂ε

∂ε

∂k

))
dF (s)

]
dGi(θ)− r = 0

From previous calculations, this gives after rewriting :

∑
i

µi

∫
θi

[∫ sm1 (k)

0

(
(Ji(q

m
i,3, θ, s))

2

1 + ζ

∂ζ

∂k

)
dF (s) +

∫ s̄

sm1 (k)

(
(J(qmi,4(ζ), θ, s))

2

1 + ζ

∂ζ

∂k

)
dF (s)

−
∫ s̄

sm1 (k)

(
J(qmi,4(ζ), θ, s)EθJi(q

m
i,4, θ, s)

1 + ζ

∂ζ

∂k

)
dF (s) +

∫ s̄

sm1 (k)

J(qmi,4(ζ), θ, s)dF (s)

]
dGi(θ)− r = 0
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Define

K = r −
∑
i

µi

∫
θi

∫ s̄

sm1 (k)

J(qmi,4(ζ), θ, s)dF (s)dGi(θ)

and

M =
∑
i

µi

∫
θi

[∫
s

(Ji(q
m
i,l, θ, s)))

2dF (s)dGi(θ)−
∫ s̄

sm1 (k)

(J(qmi,4, θ, s)EθJi(q
m
i,4, θ, s))dF (s)

]

Then, define:

A =
K
M

Therefore, from D.18, we isolate the derivative of the multiplier which gives:

∂ζ

∂k
= (1 + ζ)A

We show now that A > 0.

First note that :
∑

i µi

∫
θi
J(qmi,4, θ, s)dGi(θ) = s − k +

∑
i µi

¯
θi, this can seen from

the fact that by definition
∑

i µiq
m
i,4 = k and Γi(θ) = θ̂i − θ under uniform distribution.

Then, we show that K > 0 for every k in the case that the capacity always binds

(i.e., sm1 (k) = 0). Using the expression of the aggregate virtual marginal utility, we

have K = k + r − s̄
2
−
∑

i µi
¯
θi. Next, we use Proposition 3.5 to show that it is always

positive. Indeed, the maximum of the non-binding constraint RIR described in equation

D.16 and noted kIR is equal to kIRr − s̄
2
−
∑

i µi
¯
θi. Hence we can rewrite the K =

k− kIR. As RIR(k) is concave in k and RIR(0) > 0, therefore the solution of RIR(k) = 0

is always grater than the maximum kIR. Because we study the case when R − IR

is binding, the level of investment of interest is such that k is above the solution of

RIR(k) = 0. Hence, the k of interest is also greater than kIR. Therefore, K ≥ 0.

First note that :
∑

i µi

∫
θi
J(qmi,4, θ, s)dGi(θ) = s − k +

∑
i µi

¯
θi, this can seen from the

fact that by definition
∑

i µiq
m
i,4 = k and Γi(θ) = θ̂i − θ under uniform distribution.
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Then, we show that K > 0 for every k in the case that the capacity always binds (i.e.,

sm1 (k) = 0). Using the expression of the aggregate virtual marginal utility, we have

K = k+ r− s̄
2
−
∑

i µi
¯
θi. Next, we use Proposition 3.5 to show that it is always positive.

Indeed, the maximum of the non-binding constraint RIR described in equation D.16 and

noted kIR is equal to kIRr − s̄
2
−
∑

i µi
¯
θi. Hence we can rewrite the K = k − kIR. As

RIR(k) is concave in k and RIR(0) > 0, therefore the solution of RIR(k) = 0 is always

grater than the maximum kIR. Because we study the case when R − IR is binding,

the level of investment of interest is such that k is above the solution of RIR(k) = 0.

Hence, the k of interest is also greater than kIR. Therefore, K ≥ 0. First note that :∑
i µi

∫
θi
J(qmi,4, θ, s)dGi(θ) = s−k+

∑
i µi

¯
θi, this can seen from the fact that by definition∑

i µiq
m
i,4 = k and Γi(θ) = θ̂i − θ under uniform distribution. Then, we show that K > 0

for every k in the case that the capacity always binds (i.e., sm1 (k) = 0). Using the

expression of the aggregate virtual marginal utility, we have K = k + r − s̄
2
−
∑

i µi
¯
θi.

Next, we use Proposition 3.5 to show that it is always positive. Indeed, the maximum

of the non-binding constraint RIR described in equation D.16 and noted kIR is equal to

kIRr− s̄
2
−
∑

i µi
¯
θi. Hence we can rewrite the K = k−kIR. As RIR(k) is concave in k and

RIR(0) > 0, therefore the solution of RIR(k) = 0 is always grater than the maximum kIR.

Because we study the case when R− IR is binding, the level of investment of interest is

such that k is above the solution of RIR(k) = 0. Hence, the k of interest is also greater

than kIR. Therefore, K ≥ 0.

It remains to show that the level of investment that solves RIR(k) = 0 for the middle

case (3) is always higher than the one of the case when the capacity always binds. If

this is the case, it would imply that K under the middle case is greater than the K of

the lower case. As we proved that the latter is always positive, then the former will

also be positive. We prove it by studying the difference between the two expressions of

RIR for a given k, that is, when the capacity always binds as in case (1) and sometimes

binds as in case (3). Note that the difference is null at the level of investment k− that

satisfies s1 = 0 due to the continuity between the two expressions. Therefore, we are

only interested in the sign of the difference at any level of investment greater than k−.

The difference is given by

∑
i

µi

∫
θi

∫ s1

0

(U(qmi,1, θ, s)− U(qmi,2, θ, s)− Γi(θ)(q
m
i,1 − qmi,2))dF (s)dGi(θ)
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As only the on-peak allocation qmi,2 depends on k, the first derivative with respect to

k gives:

∑
i

µi

∫
θi

∫ s1

0

(−u(qmi,2, θ, s) + Γi(θ))dF (s)dGi(θ)

Note that at k−, the derivative is null. Finally, the second derivative with respect to

k gives:

∑
i

µi

∫
θi

[
−∂s1

∂k
(u(qmi,2(θ, s1), θ, s1)− Γi(θ))f(s) +

∫ s1

0

1dF (s)

]
dGi(θ)

We previously showed that the first term is positive. The second term is clearly also

positive. Hence, the difference is convex in k. This and the previous observation implies

that the solution of RIR(k) = 0 is higher for the middle case, hence K is also positive

in that case. The last case when the capacity never binds is straightforward as K = r.

Finally, M is also positive. We rewrite the expression:

M =
∑
i

µi

∫
θi

∫
s

(Ji(q
m
i,2, θ, s))

2dF (s)dGi(θ)

+
∑
i

µi

∫
θi

∫ s̄

sm1 (k)

((Ji(q
m
i,4, θ, s))

2 − J(qmi,4, θ, s)EθJi(q
m
i,4, θ, s))dF (s)dGi(θ)

The first term is positive. Dropping the reference to the state of the world s, the second

term can be rewritten as :

∑
i

µi

∫
θi

(Ji(q
m
i,4, θ, s))

2dGi(θ)−

[∑
i

µi

∫
θi

J(qmi,4, θ, s)θidGi(θ)

]2

The closed-form solution gives : µi(4µj + µi)σ
2
i + µj(4µi + µj)σ

2
j − 6µiµjσiσj. Recall

that σi =
θ̄i−

¯
θi

12
. With µi ∈ [0, 1] and µj = 1−µi, the term is positive. Hence M is always

positive.
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10 Proof of Lemma 3.3

Proof. We recall the derivative of the optimal allocation with respect to k:

∂qmi,4
∂k

=
[
Ji(q

m
i,4, θ

m
i , s)− EJ4

]
A(k) + 1 (D.19)

Hence, if we derive with respect to the type, this boils down to the following:

∂2qmi,4
∂k∂θ

=
∂Ji
∂q

∂qmi,4
∂θ

+
∂Ji
∂θ

= −1
2ζ + 1

1 + ζ
+ 2 =

1

1 + ζ

Therefore, the cross derivative increases in the type. If, for the lowest type, the

derivative is negative, the threshold exists, and it is unique.

The condition for having a higher threshold is given by the expression of θmi :

θmi =
1

A
(1 + ζ)− θ̄1 +

∑
i

(θ̄i −
¯
θi)

Then from the definition of Θm
i (k) :

Θm
i (k) = µi

θmi (k)− ¯
θi

θ̄i −
¯
θi

The comparison with category j gives sufficient conditions. Then, we can observe

that the derivative of the threshold is independent of the type:

∂θmi
∂k

=
∂ζ
∂k
A− (1 + ζ)∂A

∂k

A2
=

(1 + ζ)(A2 − ∂A
∂k
)

A2

Therefore, the threshold for every category behaves the same, and only the level

changes. Note that both terms in the numerator are positive. Hence, the sign of the
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threshold is ambiguous. Numerical simulation shows that the threshold can be either

increasing or decreasing with respect to k.
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MOTS CLÉS

Design de Marchés, Economie Industrielle, Décisions d’Investissement, Marchés d’électricité, Régulation.

RÉSUMÉ

L’électricité est au cœur du fonctionnement de notre économie moderne, par conséquent un défi majeur pour les économistes est de
s’assurer d’avoir suffisamment d’investissement. Actuellement dans la plupart des pays développés, ce sont majoritairement des acteurs
privés qui prennent les décisions à la fois d’investir et de consommer. C’est dans ce contexte que cette thèse s’intéresse à comprendre
comment déterminer des architectures de marché permettant de donner des incitations vertueuses aux acteurs. L’objectif est alors
qu’ils prennent des décisions d’investissement et de consommation efficaces. La méthodologie employée dans cette thèse repose
sur une représentation théorique des comportements d’acteur dans l’ensemble des marchés électriques et s’attèle à étudier comment
ces comportements interagissent avec les règles édictées sur ces mêmes marchés. Le premier chapitre examine le comportement des
producteurs sur les marchés de capacité. Un marché de capacité permet aux producteurs de générer des revenus à l’avance en échange
de leur engagement à être disponible, ce qui doit les inciter à suffisamment investir. Le premier chapitre propose une nouvelle approche
pour conceptualiser les offres sur ces marchés en utilisant la théorie des options réelles. Ce modèle décrit notamment l’interaction entre
les caractéristiques du contrat vendu sur le marché de capacité, notamment sa durée, et les offres faites par les producteurs. Ainsi,
le chapitre apporte un nouvel éclairage sur la formation des prix sur ces marchés. Le second chapitre souligne l’importance de bien
choisir comment la demande sur les marchés de capacité est mise en place. En effet, il démontre qu’en fonction des caractéristiques
des marchés et des acteurs, certaines façons de prendre en compte la demande dans ces marchés peuvent avoir des effets inattendus
sur le surplus. Ces effets peuvent à la fois être positifs ou négatifs. Enfin, le dernier chapitre pose la question de savoir comment
s’assurer d’avoir suffisamment d’investissement lorsque l’on ne connait pas la demande des consommateurs. Il décrit ainsi l’arbitrage
entre financer des investissements et maximiser la consommation d’électricité. Le chapitre souligne notamment que la mise en place de
marchés permettant d’atteindre un niveau d’investissement peut poser des questions de redistribution, avec certains consommateurs se
retrouvant lésés même si le bien-être global est maximisé.

ABSTRACT

Because electricity is at the heart of our modern economy, a major challenge for economists is to ensure sufficient investment. Currently,
in most developed countries, it is predominantly private actors who make both investment and consumption decisions. It is in this context
that this thesis is concerned with understanding how to design markets that provide virtuous incentives to a diverse set of actors. The
aim is then to induce efficient investment and consumption decisions. The methodology employed in this thesis is based on a theoretical
representation of actor behavior in electricity markets and studies how this behavior interacts with the rules enacted in these same
markets. The first chapter examines the behavior of producers in capacity markets. A capacity market allows generators to generate
income in advance in exchange for their commitment to availability, which should provide incentives to invest sufficiently. The first chapter
proposes a new approach to conceptualizing offers on these markets, using real options theory. In particular, this model describes the
interaction between the characteristics of the contract sold on the capacity market, notably its duration, and the bids made by producers.
In this way, the chapter sheds new light on price formation in these markets. The second chapter highlights the importance of choosing
the right way to choose the demand on capacity markets. Indeed, it shows that, depending on the characteristics of the markets and the
players involved, certain ways of taking demand into account in these markets can have unexpected effects on surplus. These effects
can be both positive and negative. Finally, the last chapter raises the question of how to ensure sufficient investment when consumer
demand is unknown. It describes the trade-off between financing investment and maximizing welfare. In particular, the chapter points
out that setting up markets to achieve a certain level of investment can raise questions of redistribution, with some consumers being
harmed even if overall welfare is maximized.

KEYWORDS

Market Design, Industrial organization, Investment Decisions, Electricity markets, Regulation.
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