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Titre : Corrélats cérébraux de l’anxiété catégorielle et dimensionnelle 

Mots-clés : Anxiété, Neuroimagerie, IRM, Apprentissage machine 

Résumé : Les troubles anxieux sont très répandus et 

représentent une lourde charge de morbidité. 

Cependant, malgré une abondante littérature sur la 

neuro-imagerie à l’échelle du groupe, des marqueurs 

cérébraux robustes de vulnérabilité ou de réponse 

thérapeutique peinent à émerger. Ces dernières 

années, les approches de prédiction à l’échelle 

individuelle utilisant l'apprentissage automatique 

sont devenues de plus en plus populaires dans la 

recherche en santé mentale, et certains résultats 

prometteurs ont été rapportés dans des études de 

neuro-imagerie à petite échelle (généralement avec 

Ntotal < 60 participants). Ces résultats n'ont pas 

encore été reproduits dans des échantillons plus 

importants et multisites. 

Le présent projet de doctorat impliquait l'utilisation 

de l'apprentissage automatique supervisé pour 

prédire prospectivement le développement de 

troubles anxieux chez les adolescents en utilisant un 

jeu de données longitudinales de la population 

générale, IMAGEN, ainsi que pour prédire la réponse 

au traitement psychothérapeutique chez les patients 

phobiques en utilisant le jeu de données SPIDER-VR. 

Avec les données IMAGEN, des analyses 

d'apprentissage automatique ont été réalisées à 

partir de questionnaires et de données 

neuroanatomiques d'adolescents non anxieux, afin 

de prédire le développement d'un futur trouble 

anxieux (N = 156) par rapport à un statut de contrôle 

sain (N = 424). L'étude a souligné le potentiel 

prédictif des données sociodémographiques et 

issues de questionnaires pour la prédiction de futurs 

troubles anxieux regroupés, et celui des volumes de 

matière grise pour la prédiction d'un trouble anxieux 

généralisé. Les mesures d'IRM fonctionnelle extraites 

d'une tâche de traitement émotionnel des visages 

n'ont pas produit de performance prédictive 

supérieure au niveau de chance. 

Avec les données SPIDER-VR, des analyses 

d'apprentissage automatique ont été menées pour 

prédire la réponse des patients phobiques des 

araignées (N = 190) à une session de thérapie 

d'exposition en réalité virtuelle, en utilisant des 

données de questionnaires, des données d'IRM 

structurelle et diverses mesures d'IRM 

fonctionnelle extraites d'une tâche de provocation 

des symptômes. Contrairement aux attentes, 

l'étude n'a pas confirmé le potentiel prédictif des 

données sociodémographiques et de 

questionnaires, ni des données de neuro-imagerie, 

à l'exception de la variance du signal BOLD qui a 

produit une performance prédictive modérée. 

Dans l'ensemble, ce travail de doctorat remet en 

question les résultats optimistes d'études 

antérieures à plus petite échelle sur la prédiction de 

l'anxiété par apprentissage automatique basé sur la 

neuro-imagerie. Néanmoins, les résultats 

corroborent le fait que des questionnaires faciles à 

administrer présentent une performance prédictive 

prometteuse pour la prédiction de l'apparition de 

l'anxiété et que l'IRM structurelle puisse apporter 

une valeur prédictive supplémentaire. Divers autres 

biomarqueurs de l'anxiété sont apparus dans la 

littérature avec le potentiel d'améliorer la précision 

des prédictions relatives à l'anxiété, et d'autres 

recherches multimodales utilisant des jeux de 

données à grande échelle ainsi qu'une 

méthodologie rigoureuse d'apprentissage 

automatique sont nécessaires pour atteindre 

l'utilité clinique. 

 

 



 

 

 

  

Title : Neural correlates of categorical and dimensional anxiety 

Keywords : Anxiety, Neuroimaging, MRI, Machine-learning 

Abstract : Anxiety disorders are highly prevalent and 

represent a heavy burden of disease. However, 

despite a large group-level neuroimaging literature, 

robust brain markers of vulnerability or therapeutic 

response struggle to emerge. In recent years, 

individual-level prediction approaches using 

machine-learning have become increasingly popular 

in mental health research, and some promising 

results have been reported in small-scale 

neuroimaging studies (usually with Ntotal < 60 

participants). These prediction results have yet to be 

replicated in larger, multisite samples. 

The present doctoral project involved the use of 

supervised machine-learning to prospectively predict 

the development of anxiety disorders in adolescents 

using a longitudinal dataset from the general 

population, IMAGEN, as well as to predict the 

response to psychotherapeutic treatment in phobic 

patients using the SPIDER-VR dataset. 

With IMAGEN data, machine-learning analyses were 

conducted using questionnaire and neuroanatomical 

data of non-anxious adolescents, to predict the 

development of a future anxiety disorder (N = 156) 

vs. healthy control status (N = 424). The study 

supported the predictive potential of 

sociodemographic and questionnaire data for the 

future onset of pooled anxiety disorders, and of gray 

matter volumes for future generalized anxiety 

disorder onset. Functional MRI metrics extracted 

from an emotional face processing task did not yield 

any above-chance level predictive performance. 

With SPIDER-VR data, machine learning analyses 

were conducted to predict the response of patients 

with spider phobia (N = 190) to a virtual reality 

exposure therapy session, using questionnaire 

data, structural MRI data, and various functional 

MRI metrics extracted from a symptom 

provocation task. Contrastingly to expectations, the 

study did not support the predictive potential of 

sociodemographic and questionnaire data nor 

neuroimaging data, with the exception of BOLD 

signal variance which yielded moderate predictive 

performance.  

Overall, this doctoral work challenges optimistic 

results from earlier smaller-scale neuroimaging-

based machine-learning prediction studies in 

anxiety. Nonetheless, findings substantiate that 

easy-to-administer questionnaires show promising 

predictive performance for anxiety onset prediction 

and that structural MRI might bring incremental 

predictive value. Various other anxiety biomarkers 

have emerged in the literature with potential to 

improve the accuracy of anxiety-relevant 

predictions, and further multimodal research using 

large-scale datasets alongside rigorous machine-

learning methodology are needed in an effort to 

reach clinical utility. 

 

 



 

Kurzfassung 

Angststörungen sind weit verbreitet und stellen eine große Krankheitslast dar. Trotz einer 

umfangreichen Literatur zur Neurobildgebung auf Gruppenebene ist es jedoch schwierig, 

robuste Hirnmarker für Anfälligkeit oder therapeutische Reaktion zu finden. In den letzten 

Jahren sind Vorhersageansätze auf individueller Ebene unter Verwendung von maschinellem 

Lernen in der Forschung zur psychischen Gesundheit immer beliebter geworden, und einige 

vielversprechende Ergebnisse wurden in kleinen Neurobildgebungsstudien (in der Regel mit 

einer Gesamtzahl von weniger als 60 Teilnehmern) berichtet. Diese Vorhersageergebnisse 

müssen noch in größeren, standortübergreifenden Stichproben repliziert werden. 

Das vorliegende Promotionsprojekt umfasste den Einsatz von überwachtem maschinellem 

Lernen zur prospektiven Vorhersage der Entwicklung von Angststörungen bei Jugendlichen 

unter Verwendung eines Längsschnittdatensatzes aus der Allgemeinbevölkerung, IMAGEN, 

sowie zur Vorhersage der Reaktion auf psychotherapeutische Behandlung bei Phobiepatienten 

unter Verwendung des SPIDER-VR-Datensatzes. 

Anhand von IMAGEN-Daten wurden maschinelle Lernanalysen unter Verwendung von 

Fragebogen- und neuroanatomischen Daten nicht ängstlicher Jugendlicher durchgeführt, um 

die Entwicklung einer zukünftigen Angststörung (N = 156) im Vergleich zu einem gesunden 

Kontrollstatus (N = 424) vorherzusagen. Die Studie untermauert das Vorhersagepotenzial von 

soziodemografischen und Fragebogendaten für das künftige Auftreten von Angststörungen und 

von Volumina der grauen Substanz für das künftige Auftreten einer generalisierten 

Angststörung. Funktionelle MRT-Metriken, die aus einer emotionalen 

Gesichtsverarbeitungsaufgabe extrahiert wurden, erbrachten keine über dem 

Wahrscheinlichkeitsniveau liegende Vorhersageleistung. 

Mit SPIDER-VR-Daten wurden maschinelle Lernanalysen durchgeführt, um die Reaktion von 

Patienten mit Spinnenphobie (N = 190) auf eine Virtual-Reality-Expositions-Therapie-Sitzung 

vorherzusagen, wobei Fragebogendaten, strukturelle MRT-Daten und verschiedene 

funktionelle MRT-Metriken, die aus einer Symptom-Provokationsaufgabe gewonnen wurden, 

verwendet wurden. Im Gegensatz zu den Erwartungen unterstützte die Studie weder das 

Vorhersagepotenzial der soziodemografischen und Fragebogendaten noch der Neuroimaging-

Daten, mit Ausnahme der BOLD-Signalvarianz, die eine moderate Vorhersageleistung 

erbrachte. 

Insgesamt stellt diese Doktorarbeit die optimistischen Ergebnisse früherer kleinerer Studien 

zur Vorhersage von Angstzuständen auf der Grundlage von Neuroimaging und maschinellem 

Lernen in Frage. Nichtsdestotrotz belegen die Ergebnisse, dass einfach zu handhabende 

Fragebögen eine vielversprechende Vorhersagekraft für die Vorhersage des Angstausbruchs 

haben und dass die strukturelle MRT einen zusätzlichen Vorhersagewert haben könnte. In der 

Literatur sind verschiedene andere Angst-Biomarker aufgetaucht, die das Potenzial haben, die 

Genauigkeit angstrelevanter Vorhersagen zu verbessern. Um einen klinischen Nutzen zu 

erreichen, sind weitere multimodale Forschungsarbeiten erforderlich, bei denen große 

Datensätze und strenge Methoden des maschinellen Lernens eingesetzt werden.  
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“Never, in his brief cave-life, had he encountered anything of which to 

be afraid. Yet fear was in him. […] Fear! – that legacy of the Wild 

which no animal may escape nor exchange for pottage.” 

Jack London (1906), “The Wall of the World”, White Fang. 



 

List of Abbreviations  

 

MRI: Magnetic resonance imaging 

CBT: Cognitive-behavioural therapy 

GAD: Generalized anxiety disorder  

SAD: Social anxiety disorder 

PD: Panic disorder 

AG: Agoraphobia 

PD/AG: Panic disorder with or without agoraphobia 

SpP: Specific phobia 

fMRI: Functional magnetic resonance imaging 

tb-fMRI: task-based functional magnetic resonance imaging 

rs-fMRI: resting-state functional magnetic resonance imaging 

FC: Functional connectivity 

BNST: Bed nucleus of the stria terminalis 

PAG: Peri-aqueductal gray 

PFC: Prefrontal cortex 

ROI: Region of interest 

SVM: Support Vector Machine 

AUC: Area under the curve 

MSE: Mean Squared Error 

FUA: Future anxiety participants 

BLA: Baseline anxiety participants 

mAD: Multiple anxiety disorders group 

 



 

Table of contents 
 

1. Introduction ................................................................................................... 1 

1.1. Anxiety disorders ............................................................................................................ 1 

1.1.1. Classification and epidemiology of anxiety disorders ......................................................................... 1 

1.1.2. Treatment of anxiety disorders ............................................................................................................ 5 

1.2. Adolescence and the brain ............................................................................................... 7 

1.2.1. Vulnerability to mental health disorders ............................................................................................. 7 

1.2.2. Brain maturation during adolescence .................................................................................................. 8 

1.3. MRI correlates of cross-sectional anxiety disorders ....................................................... 8 

1.3.1. Cross-sectional correlates in adults ..................................................................................................... 9 

1.3.2. Cross-sectional correlates in children and adolescents ...................................................................... 11 

1.4. Longitudinal correlates of anxiety................................................................................. 12 

1.4.1. Anxiety disorder onset and prevention .............................................................................................. 12 

1.4.2. Psychotherapy response .................................................................................................................... 14 

1.5. Machine-learning in mental health research ................................................................. 16 

1.5.1. General principles of supervised machine-learning approaches ....................................................... 17 

1.5.2. Interest of machine-learning use in mental health research............................................................... 21 

1.6. Machine-learning prediction of anxiety ........................................................................ 22 

1.6.1. Cross-sectional prediction of patients with an anxiety disorder ........................................................ 22 

1.6.2. Prospective prediction of anxiety symptoms or disorder onset ......................................................... 26 

1.6.3. Prospective prediction of clinical outcome for patients with an anxiety disorder ............................. 27 

1.7. Aims and hypotheses ..................................................................................................... 30 

2. Anxiety onset prediction in adolescents using structural MRI .............. 32 

2.1. Introduction ................................................................................................................... 33 

2.2. Methods ......................................................................................................................... 35 

2.2.1. Dataset and sample description ......................................................................................................... 35 

2.2.2. MRI acquisition and preprocessing ................................................................................................... 39 

2.2.3. Machine-learning prediction ............................................................................................................. 39 

2.3. Results ........................................................................................................................... 42 

2.3.1. Sample characteristics ....................................................................................................................... 42 

2.3.2. Machine-learning diagnostic predictions .......................................................................................... 43 

2.3.3. Contribution of neuroimaging features ............................................................................................. 47 

2.3.4. Neuroimaging group analyses ........................................................................................................... 47 

2.4. Discussion ..................................................................................................................... 49 



 

2.4.1. Predictive features for GAD, mAD and pooled diagnoses ................................................................ 50 

2.4.2. Strengths............................................................................................................................................ 52 

2.4.3. Limitations ........................................................................................................................................ 52 

2.4.4. Conclusion ........................................................................................................................................ 53 

3. Anxiety onset prediction in adolescents using task-based fMRI ............ 54 

3.1. Introduction ................................................................................................................... 54 

3.2. Methods ......................................................................................................................... 55 

3.2.1. Dataset and sample description ......................................................................................................... 55 

3.2.2. MRI data acquisition ......................................................................................................................... 59 

3.2.3. Face task ............................................................................................................................................ 59 

3.2.4. Task-based fMRI features extraction ................................................................................................ 60 

3.2.5. Ensemble machine-learning prediction ............................................................................................. 62 

3.3. Results ........................................................................................................................... 64 

3.3.1. 1st-level future anxiety onset prediction results ................................................................................. 64 

3.3.2. 2nd-level future anxiety onset prediction results ................................................................................ 66 

3.4. Discussion ..................................................................................................................... 66 

3.4.1. Perspective on prediction performance ............................................................................................. 67 

3.4.2. Strengths............................................................................................................................................ 68 

3.4.3. Limitations ........................................................................................................................................ 68 

3.4.4. Conclusion ........................................................................................................................................ 69 

4. Psychotherapy outcome prediction in spider phobia using structural MRI 

and task-based fMRI ...................................................................................... 70 

4.1. Introduction ................................................................................................................... 71 

4.2. Methods ......................................................................................................................... 72 

4.2.1. Dataset and sample description ......................................................................................................... 72 

4.2.2. MRI data acquisition ......................................................................................................................... 76 

4.2.3. Sustained and Phasic Fear (SPF) task ............................................................................................... 76 

4.2.4. Feature extraction .............................................................................................................................. 77 

4.2.5. Ensemble machine-learning prediction ............................................................................................. 80 

4.3. Results ........................................................................................................................... 82 

4.3.1. 1st-level post-treatment outcome prediction results ........................................................................... 82 

4.3.2. 2nd-level post-treatment outcome ensemble prediction results .......................................................... 86 

4.3.3. Follow-up outcome ensemble prediction results ............................................................................... 87 

4.3.4. Supplementary machine-learning predictions ................................................................................... 87 

4.4. Discussion ..................................................................................................................... 88 

4.4.1. Perspective on prediction performance ............................................................................................. 88 



 

4.4.2. Strengths............................................................................................................................................ 90 

4.4.3. Limitations ........................................................................................................................................ 90 

4.4.4. Conclusion ........................................................................................................................................ 91 

5. General discussion and perspectives ......................................................... 92 

5.1. Methodological considerations ..................................................................................... 93 

5.1.1. Sample size, multisite consortia and generalisability ........................................................................ 93 

5.1.2. Sample diversity ................................................................................................................................ 94 

5.1.3. Clinical heterogeneity and clinical constructs ................................................................................... 95 

5.1.4. Machine-learning considerations and alternatives to supervised learning for MRI data ................... 97 

5.2. Non-MRI brain markers of anxiety ............................................................................... 99 

5.3. Beyond the brain: other potentially predictive markers of anxiety ............................. 100 

5.3.1. Genetic and epigenetic data............................................................................................................. 100 

5.3.2. Physiological biomarkers and wearables ........................................................................................ 101 

5.3.3. Smartphone data and social media use ............................................................................................ 102 

5.4. Conclusion ................................................................................................................... 103 

Funding and support acknowledgements ................................................... 105 

References ...................................................................................................... 107 

Appendix: MRI and fMRI ........................................................................... 140 

Appendix: Synthèse de la thèse .................................................................... 144 

 

 

 

 

  

 



1. Introduction 

1 

 

1. Introduction 

Anxiety can be an adaptive behaviour, but excessive feelings of anxiety can also impair 

individuals in their everyday lives and require medical attention. Indeed, anxiety disorders 

are the most prevalent group of mental disorders in contemporary nosology (Penninx et al., 

2021). Biomarker identification has potential to inform prevention, early detection and 

treatment stratification strategies for anxiety disorders. The widespread use of both structural 

and functional magnetic resonance imaging (MRI) techniques in the past 25 years has 

produced an abundant neuroimaging literature identifying group-level regions of interest 

involved in anxiety, both in adults and in youth, but to date the literature has not led to any 

significant clinical breakthrough. However, machine-learning approaches allow to produce 

individual-level predictions and are becoming increasingly popular in the field of 

neuropsychiatry. The present doctoral work thus leveraged machine-learning approaches to 

investigate the potential of structural and functional metrics in previously identified brain 

regions in the prospection predict of risk of onset and therapeutic response in anxiety 

disorders. 

 

1.1. Anxiety disorders 

Due to their high prevalence, comorbidity and chronicity, anxiety disorders represent a 

considerable burden of disease and substantial healthcare costs (Gustavsson et al., 2011; 

Wittchen et al., 2011). First-line treatment options include pharmacotherapy and cognitive-

behavioural therapy (CBT), but treatment resistance and relapse are common. This section 

will describe each point in further detail. 

 

1.1.1. Classification and epidemiology of anxiety disorders 

1.1.1.1. Phenomenology and classification of anxiety disorders 

The word anxiety is derived from Latin roots (from anxietās, anxiety, itself derived from 

angō, to constrict, to hurt). Anxiety, defined as the aversive anticipation of a perceived but 

uncertain and unpredictable threat, can be an adaptive behaviour with a clear benefit for 

survival. It is prevailingly seen as distinct from fear, which is defined as the response to a 

perceived threat that is immediate and certain. Anxiety enhances vigilance and primes 
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defensive mechanisms, allowing individuals to detect and deal with threats more efficiently 

(Bateson, Brilot and Nettle, 2011). Anxiety can occur naturally in many situations, such as 

meeting a stranger, walking down a dark alley at night, or general life transitions. However, 

when feelings of anxiety are severe, disproportionate to the perceived threat, and negatively 

impact daily functioning, they can require clinical attention.  

Mentions of anxiety and its pathological states date back to the Greek and Latin medicine and 

philosophy, followed by centuries of the term being absent from the medical literature (Crocq, 

2015). However, cultural and religious representations of anguish (French: angoisse, also 

derived from Latin angō), which encompassed both acute emotional distress, bodily 

sensations of constriction, and existential worry, were still abundant (see paintings such as 

The Garden of Early Delights or Tondal’s Vision from Hieronymus Bosch). Then, in the late 

19th and early 20th century nosology, anxiety was listed as one of the core symptoms of 

neurasthenia. The Diagnostic and Statistical Manual of Mental Disorders (DSM) 

classification, in the mid-20th century, led to the emergence of the anxiety neurosis diagnosis 

(American Psychiatric Association, 1968), which was subsequently refined in later editions.  

The main disorder classifications, the fifth edition of the DSM (DSM-V) (American 

Psychiatric Association, 2013) and the 11th edition of International Classification of Diseases 

(ICD-11) (World Health Organization, 2022), currently define distinct anxiety disorder 

diagnoses (Penninx et al., 2021). Arranged by increasing typical age of onset, the list of 

anxiety disorders in these classifications is as follows: separation anxiety disorder, selective 

mutism, specific phobia, social anxiety disorder, panic disorder, agoraphobia, and generalized 

anxiety disorder (see Table 1 for core characteristics of each disorder). 

While formal classifications of categorical disorders have clinical use, they also have well-

known limitations. For instance, anxiety disorders as defined by the DSM or ICD are highly 

comorbid with each other, and with depression. In a large adult sample from the Netherlands, 

48-68% of participants with a current anxiety disorder fulfilled criteria for another anxiety 

disorder, and 63% of participants with a current anxiety disorder also reached clinical 

threshold for a depression disorder (Lamers et al., 2011). Large within-disorder heterogeneity 

also subsists (Galatzer-Levy and Bryant, 2013). Moreover, subclinical anxiety symptoms 

commonly occur and can still impair functioning. In adults, subthreshold anxiety disorder 

was reported to persist 3 years later for 29.0% of participants and transition to a full-blown 

anxiety disorder for 13.8% of participants (Bosman et al., 2019).  
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 Core emotions or 

cognitions 

Physical symptoms Behaviour Required 

symptom 

duration 

Median age 

of onset 

Selective 

mutism 

Consistent failure to 

speak in situations for 

which there is an 

expectation to speak, 

despite language 

competence 

No physical 

symptoms 

Disturbance 

interferes with 

(educational) 

achievement or 

social 

communication 

>1 month 

(beyond 

first school 

month) 

Childhood 

(<5 years) 

Separation 

anxiety 

Unrealistic, persistent 

fear or anxiety about 

separation from, or loss 

of, attachment figure, or 

adverse events 

occurring to them 

Nightmares and 

symptoms of 

distress 

Reluctance to leave 

attachment figure; 

Disturbance impairs 

social, school, or 

other functioning 

>1 month 

(childhood; 

4–18 years) 

>6 months 

(adulthood; 

18 years or 

older) 

Childhood 

(around 6 

years) 

Specific 

phobia 

Marked, excessive, and 

unreasonable fear or 

anxiety of 

circumscribed objects 

or situations (e.g., 

animals, natural forces, 

blood injection, or 

places) 

No physical 

symptoms 

Avoidance of 

circumscribed 

objects or 

situations; 

disturbance impairs 

social, school, work, 

or other functioning 

>6 months 

 

Childhood 

(around 8 

years) 

Social 

anxiety 

disorder 

Marked, excessive, and 

unreasonable fear or 

anxiety of scrutiny or 

negative judgement by 

other people 

Blushing, fear of 

vomiting, urgency 

or fear of 

micturition or 

defaecation 

Avoidance of social 

interactions and 

situations; 

disturbance impairs 

social, school, work, 

or other functioning  

>6 months 

 

Early 

adolescence 

(around 13 

years) 

Agoraphobia Marked, excessive, and 

concerning fear of 

leaving home, entering 

closed or open public 

places, crowds, or 

transportation 

No physical 

symptoms 

Avoidance of fear-

inducing situations; 

disturbance impairs 

social, school, work, 

or other functioning 

>6 months 

 

Late 

adolescence 

(around 20 

years) 

Panic 

disorder 

Recurrent, unexpected 

panic attacks with 

sustained mental (e.g., 

fear, fear of losing 

control, or feeling of 

alienation) 

manifestations 

Multiple symptoms 

(e.g., palpitations, 

dyspnoea, 

diaphoresis, chest 

pain, dizziness, 

paraesthesia, or 

nausea) 

Changed behaviour 

in maladaptive ways 

related to the 

attacks; disturbance 

impairs social, 

school, work or 

other functioning 

>1 month Adulthood 

(around 25 

years) 

Generalized 

anxiety 

disorder 

Marked, uncontrollable, 

and anxious worry and 

fears about everyday 

events and problems 

Restlessness, 

fatigue, irritability, 

difficulty 

concentrating, 

muscle tension, 

sleep disturbance, or 

autonomic arousal 

Disturbance impairs 

social, school, work, 

or other functioning 

>6 months Adulthood 

(around 30 

years) 

Table 1: Core diagnostic features and characteristics for anxiety disorders (Penninx et 

al., 2021). 

As such, dimensional frameworks such as the Research Domain Criteria (RDoC) (Insel et al., 

2010; Cuthbert and Insel, 2013), and quantitative nosology approaches such as the 

Hierarchical Taxonomy of Psychopathology (HiTOP) (Kotov et al., 2017), have emerged. 

While the former was designed to establish links between biological mechanisms and 
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psychopathology, the latter focuses on targeting clinical shortcomings of existing diagnoses, 

and both have potential to bring complementary perspectives. 

 

1.1.1.2. Prevalence and burden of anxiety disorders 

Epidemiological studies report lifetime prevalence rates for anxiety disorders in the general 

population ranging from 14.5% to 33.7% (Bandelow and Michaelis, 2015). The variability in 

prevalence rates in these studies may be attributed to various methodological differences, and 

putative biological or cultural differences across investigated populations may also be a 

factor. Despite the heterogeneity across studies, however, prevalence rates of anxiety 

disorders in women have consistently be shown to be approximately twice as high as in men. 

This has been extensively discussed in the literature, mostly focusing on biological factors 

using animal studies (Bangasser and Cuarenta, 2021), but recent work has also introduced the 

gender and socialization perspective (Farhane-Medina et al., 2022). During the recent 

COVID-19 pandemic, a 25% increase in prevalence for anxiety disorders was reported around 

the globe, including up to 50% in youth, highlighting the urgency in addressing the burden of 

disease they represent (Racine et al., 2021; Santomauro et al., 2021).  

Anxiety disorders were ranked as the 9th cause of years lived with disability worldwide in 

2016 (GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, 2016; Yang et 

al., 2021). Direct and indirect costs of anxiety disorders represent on average around 2% of 

healthcare costs, and 0.58% of total gross domestic product (GDP) (Konnopka and König, 

2020). In 2010, anxiety disorders in 30 European countries were reported to cost 

approximately €74.4 billion in total (Gustavsson et al., 2011). As an example, the average 

cost per person with an anxiety disorder, weighted for all diagnoses and age groups, was 

€1199 in France and €1357 in Germany on that year.  

 

1.1.1.3. Age of onset and naturalistic course of anxiety disorders 

The average age of onset for anxiety disorders predates 15 years old (y.o.) for social anxiety 

disorder (14.3 y.o.) and specific phobia (11.0 y.o.), whereas agoraphobia (21.1 y.o.), panic 

disorder (30.3 y.o.) and generalized anxiety disorder (34.9 y.o.) tend to emerge later in life, 

with no gender difference in the age of onset (Lijster et al., 2017). 
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Anxiety symptoms are generally persistent. In early adolescence, 56.4% and 32.3% 

persistence rate of total anxiety symptom score were reported at 1-year and 3-year follow-

ups respectively (Voltas et al., 2017). At a 10-year follow-up in a sample of 14-24 y.o. with 

social anxiety disorder, 56.7% of participants still had symptoms and 15.5% fully met clinical 

criteria (Beesdo-Baum et al., 2012). 

Indeed, a continuity from childhood to adulthood has been reported for anxiety disorders : 

they predict themselves over time, but they also predict depression (Costello, Copeland and 

Angold, 2011). In an adolescent sample (average age at baseline = 14.3 y.o.), 22.6 % of 

participants meeting diagnostic criteria for an anxiety disorder at first assessment still met 

criteria 15 months later, and 17.7% met criteria for depression (Essau, Conradt and 

Petermann, 2002). Thus, prevention, early detection, and effective therapeutic intervention 

for anxiety disorders are essential. 

 

1.1.2. Treatment of anxiety disorders 

1.1.2.1. Access to care and existing treatments 

Less than half (41.3%) of individuals with an anxiety disorder perceive a need for treatment, 

and only two thirds of those that do report a need for treatment will receive it (i.e. only 27.6% 

of all individuals with an anxiety disorder) (Alonso et al., 2018). It was reported that only a 

third of treated cases receive possibly appropriate level of care. However, effective treatments 

for anxiety disorders do exist, and both pharmacotherapy and CBT are the first-line treatment 

options.  

Selective serotonin reuptake inhibitors (SSRIs) and serotonin-noradrenaline reuptake 

inhibitors (SNRIs) are commonly prescribed to treat anxiety disorders, and they have shown 

efficacy in children and adolescents (Locher et al., 2017). Benzodiazepines are also an 

efficacious anxiolytic treatment (Gomez, Barthel and Hofmann, 2018). However, as 

benzodiazepines can be addictive and act acutely, prescribing guidelines currently 

recommend them only to mitigate the adverse effects during the first few weeks of first-line 

SSRI or SNRI treatment, with strict monitoring (Reinhold and Rickels, 2015).  

Pregabalin has also garnered interest and is licensed as a treatment for anxiety disorders in 

several countries (Generoso et al., 2017). A few other pharmacological options exist, 
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including buspirone, opipramol and quetiapine, but their use is limited by yet insufficient 

evidence or adverse effects (Maneeton et al., 2016). 

A large range of psychotherapies are also first-line treatment options for anxiety disorders. 

Among them, CBT has the largest body of literature, reporting moderate efficacy when 

controlled against care-as-usual and pill placebo (Cuijpers et al., 2016; Carpenter et al., 2018; 

van Dis et al., 2020). CBT for anxiety disorders is a short-term therapy aimed at disrupting 

the vicious circle of maladaptive emotional responses and avoidance behaviours, oftentimes 

involving a fear-inhibitory learning process through some form of exposure to the feared 

stimuli. Alternative psychotherapies, such as psychodynamic therapy, have weaker evidence 

of efficacy in comparison with CBT (Tolin, 2010). Current response rates to CBT as a first-

line treatment average at 50% or lower for most anxiety disorders (Hofmann et al., 2012; 

Loerinc et al., 2015). 

 

1.1.2.2. Relapse and treatment resistance 

A meta-analysis found no difference in efficacy between medication and psychotherapy for 

anxiety disorders and depression, and reported than the effects of both persisted up to a 2-

year follow-up, although there was substantial heterogeneity between studies and 

methodological differences make it difficult to compare pharmacotherapy and CBT 

(Bandelow et al., 2018). Another recent meta-analysis reported improved outcome of CBT 

compared to various control groups for patients with anxiety disorders up until 12 months 

after treatment completion, but found improved outcome after 12-month follow-up only for 

GAD and SAD (van Dis et al., 2020). It is important to note that, both for psychotherapy and 

pharmacotherapy, a substantial proportion of the treated population sees no symptom 

improvement. 

Furthermore, therapeutic gains for both treatment options on the long-term are less 

maintained. A naturalistic study of long-term (7-year) effects of CBT, pharmacotherapy and 

the combination of both in youth with anxiety disorders reported similarly modest persistence 

for all treatment arms, with an average of 22% of participants in stable remission, 48 % 

relapsing, and 30 % chronically ill (Ginsburg et al., 2018). Another study in adults reported 

that 54.8% of participants with anxiety disorder(s) diagnosed at baseline without depression 

had overall recurrence (re-occurrence of the same anxiety disorder(s), or newly diagnosed 

anxiety or depressive disorder(s)) within 4 years of reaching remission (Scholten et al., 2016). 



1. Introduction 

7 

 

The literature substantiates that early identification of patients with a high risk of treatment 

non-response, resistance and relapse is of ample interest.  

 

1.2. Adolescence and the brain 

In the context of a global search for mental health biomarkers that can help diagnose patients, 

give mechanistic insight to disorders, predict treatment response and risk of onset and relapse, 

adolescence is a key target for investigation. Indeed, adolescence is a critical time period for 

the emergence of psychopathology, including anxiety disorders, and it is also a time of 

profound morphological and physiological change, the brain being no exception (Arain et al., 

2013).  

In this search for biomarkers, the possibility of non-invasively measuring brain structure and 

function using Magnetic Resonance Imaging (MRI) has held a lot of promise (see Appendix 

for the general principles of MRI and functional MRI). Notably, investigating the developing 

brain during adolescence has potential to yield crucial biomarkers for mental health. 

The following section substantiates the vulnerability of adolescents to mental health disorders 

and briefly describes the cortical maturation occurring throughout adolescence that MRI and 

fMRI have brought to light. 

 

1.2.1. Vulnerability to mental health disorders 

The increased risk of psychopathology during adolescence is well-established in the 

literature. Cumulative incidence of psychiatric disorders before 18 years of age, including 

depression, anxiety disorders and psychosis, was reported to be around 15% (Dalsgaard et 

al., 2020). Other studies reported that anxiety disorders impacted nearly one in three 

individuals during adolescence (Beesdo, Knappe and Pine, 2009; Merikangas et al., 2010) 

and that approximately 11% of 13-18 y.o. had already experienced a depressive episode 

(Avenevoli et al., 2015). As such, adolescence is known as a window of vulnerability for 

mental health disorders, including anxiety disorders, and biomarkers would be of particular 

interest in this age range to inform prevention and early detection, as well as treatment 

stratification. Indeed, adolescents suffering from a mental health disorder are also more likely 
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to have not yet received any treatment, and thus are the ideal target population for treatment 

stratification strategies via early identification of putative non-responders. 

 

1.2.2. Brain maturation during adolescence 

The emergence of MRI as a noninvasive brain imaging technique with high spatial resolution 

enabled, among other research avenues, a detailed investigation of brain development in 

youth. After the second surge of synaptogenesis and neural growth occurring in late 

childhood, significant structural and functional development occur throughout adolescence 

(between 10 and 24 y.o.) (Arain et al., 2013). Both myelinisation and dendritic pruning 

processes take place during that time, and consolidate regional neurocircuitry. The resulting 

change in total gray matter volume over time has an inverted U-shaped pattern. In male 

adolescents, mean total cerebral volume is approximately 10% larger than in females, as is 

the case in adults, although this does not demonstrate any functional advantages or 

disadvantages (Goldstein et al., 2001; Giedd, 2008). Remarkably, total brain volume shows 

to be highly heterogeneous, with up to 50 % difference between children at the same age. 

The age of peak gray matter volume is generally earlier for females, and maturation does not 

occur homogeneously in all brain regions (Giedd, 2008). The limbic system structures 

(amygdala, hippocampus, nucleus accumbens), which are involved in emotional processing, 

develop earlier than prefrontal control regions (Casey, Jones and Hare, 2008). This 

imbalance, as well as the still-developing functional connectivity between the two systems, 

has traditionally been postulated as an explanation for the emotional reactivity and impulsive 

behaviour in adolescents (Hare et al., 2008). Brain maturation during adolescence is regulated 

by, and can by altered by, multiple factors such as physical and psychological stress, drug 

consumption, sex hormones, pubertal development, nutrition, sleep, heredity, and pre-and 

post-natal environments (Arain et al., 2013). 

 

1.3. MRI correlates of cross-sectional anxiety disorders  

The following section will describe the large body of work investigating structural and 

functional differences in the brains of adult and paediatric patients with anxiety disorders, 

compared with non-anxious controls. A well-established literature shows corticolimbic 

circuitry to be altered in anxiety disorders. 
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1.3.1. Cross-sectional correlates in adults 

1.3.1.1. Structural correlates  

Gray matter volume alterations in the bilateral putamen (Radua et al., 2010), left superior 

temporal, left orbitofrontal, left inferior frontal, left dorsolateral and bilateral cingulate gyri, 

as well as in the bilateral insula (Serra-Blasco et al., 2021; Liu et al., 2022) have been reported 

in anxiety disorders at the meta-analytical level (Figure 1). These regional alterations are 

common overlaps between distinct anxiety diagnoses, with the strongest evidence for anterior 

cingulate and insula alterations. Divergences between diagnoses, such as between GAD and 

SAD, PD and SpP, have also been reported in the left insula and left inferior frontal gyrus in 

one meta-analysis (Liu et al., 2022). The involvement of the temporal pole points to alteration 

of the ventral attention network, which plays a role in stimulus-driven attention (Sylvester et 

al., 2012). Of note, these meta-analytic results are based on group-level whole-brain studies, 

which generally have high smoothing and may thus have reduced sensitivity to volumetric 

variations in small limbic structures, in addition to heterogeneous methodology overall (e.g. 

high variability in the control groups and control strategies used in MRI processing). 

 

Figure 1: Results of structural MRI whole-brain meta-analysis between patients with 

anxiety disorders and healthy controls (Serra-Blasco et al., 2021).  

L: left; R: right; MCC: middle cingulate gyrus; SFG: superior frontal gyrus; BA: Brodmann 

area.  
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Structural alterations in anxiety disorders using other metrics, such as cortical thickness, have 

also been reported in similar regions (Syal et al., 2012; Kang, Lee and Lee, 2017). This 

literature, however, is much less abundant and no meta-analytic results have emerged to our 

knowledge, thus leaving less robust findings overall. 

 

1.3.1.2. Functional correlates  

Functional differences between patients with anxiety and control have been investigated in a 

very large body of work. Systematic reviews and meta-analyses of task-based functional 

activation in specific anxiety disorders (Ipser, Singh and Stein, 2013; Brühl et al., 2014; 

Sobanski and Wagner, 2017; Goossen, van der Starre and van der Heiden, 2019), reported 

that regions such as the anterior cingulate cortex, the medial prefrontal cortex, the bed nucleus 

of the stria terminalis (BNST), the peri-acqueductal grey (PAG), the amygdala, the striatum 

and the insula have been implicated. A recent meta-analysis of both functional activation 

during emotional tasks (i.e. exposure to phobic, traumatic, socioemotional or strongly 

aversive stimuli) further supports the implication of the middle and superior temporal gyri, 

insula, amygdala, frontal and medial frontal gyri, parahippocampal gyrus, hippocampus, 

thalamus, anterior and mid-cingulate gyri, and caudate in pooled anxiety disorders (Chavanne 

and Robinson, 2021) (Figure 2), although some heterogeneity was found between specific 

disorders.  

Figure 2: Functional activation differences between 2554 anxious patients and 2348 non-

anxious controls across pooled pathological anxiety studies (Chavanne and Robinson, 

2021).  

Seed-based d-Mapping (SDM) Z-value of activation in yellow-red.  
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Insula and cingulate functional activation has also been found significantly altered in a meta-

analysis of Pavlovian fear-conditioning neural activation studies (Fullana et al., 2016). These 

regions have been argued to form part of a fear-conditioning and/or salience network (Yeo et 

al., 2011) driving interoception (Paulus and Stein, 2006), and may thus play a role in 

promoting avoidant responses to negatively salient stimuli. Of note, the amygdala alterations 

were scarce in both meta-analyses (Fullana et al., 2016; Chavanne and Robinson, 2021), 

which might be a result of the exclusion of studies using region-of-interest approaches, but 

could also reflect insufficient power of amygdala findings in whole-brain studies. An 

extensive literature points to the central extended amygdala and BNST being key hubs for the 

response to sustained and uncertain threats (Fox and Shackman, 2019), but it is important to 

note that the very amygdalo-centric view of human fear and anxiety, mostly initiated by 

rodent research and likely to be at risk from confirmation bias, has been largely challenged 

(Fullana et al., 2019; Radua and Fullana, 2022). 

Overall, these meta-analytic results, alongside two decades of translational anxiety research 

(Shackman and Fox, 2021), show that anxiety disorders are associated with increased 

reactivity in an extended subcortico-cortical circuitry, including (but not limited to) the 

amygdala, anterior insula, middle cingulate, BNST and PAG during emotional tasks.  

A systematic review and meta-analysis of seed-based rs-fMRI findings in anxiety disorders 

reported a reduced functional connectivity between the amygdala and the medial frontal, 

cingulate and anterior cingulate gyri (Zugman et al., 2023), although findings were largely 

heterogenous did not hold against publication bias correction. Other metrics derived from 

functional connectivity, such as those obtained using graph theory and reflecting functional 

networks organisation, have also been used to differentiate between patients with anxiety 

disorders and non-anxious controls (Makovac et al., 2018). However, these metrics currently 

remain exploratory. 

 

1.3.2. Cross-sectional correlates in children and adolescents 

1.3.2.1. Structural correlates  

Studies investigating structural correlates of anxiety disorders in youth are less common than 

in adults. Nonetheless, in line with the literature in adults, cross-sectional differences in gray 

matter volume were reported in the amygdala, hippocampus, insula, cingulate cortex, 
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ventromedial prefrontal cortex (vmPFC), nucleus accumbens and temporal gyri in 

adolescents diagnosed with anxiety disorders (Gold et al., 2017; Merz et al., 2018; Auerbach 

et al., 2022). 

Additionally, the striatum was highlighted as a critical subcortical region of interest (ROI) 

for the onset of anxiety disorders in adolescence (Lago et al., 2017). A model of anxious 

temperament has also been shown to involve the central amygdala, orbitofrontal cortex, 

BNST and PAG in young primates (Kalin, 2017; Fox and Shackman, 2019).  

 

1.3.2.1. Functional correlates  

A recent meta-analysis of fMRI results in adolescents with anxiety disorders reported 

functional activation alterations in the bilateral amygdala, parahippocampal gyri, putamen 

and globus pallidus, suggesting that regional functional activation alterations in youth with 

anxiety disorder are similar to those that have been observed in adults (Ashworth, Brooks and 

Schiöth, 2021). This is in line with an older review, that also reported recurrent alterations of 

the PFC in youth with anxiety disorders (Blackford and Pine, 2012).  

 

1.4. Longitudinal correlates of anxiety 

Although the abundant MRI and fMRI literature has identified brain regions robustly 

involved in cross-sectional anxiety, these findings have not led to clinical breakthrough for 

the diagnosis or treatment of anxiety disorders. However, they have informed longitudinal 

studies which are, by nature, well-equipped to investigate potential markers of risk of onset, 

and of treatment response. The following section will describe findings for both. 

 

1.4.1. Anxiety disorder onset and prevention 

1.4.1.1. Sociodemographic and questionnaire correlates 

Many sociodemographic, psychosocial, as well as physical and mental health factors have 

been reported as risk factors of anxiety disorders (Moreno-Peral et al., 2014; Strawn et al., 

2021). Personality scores such as neuroticism and anxiety sensitivity have been established 

as pre-existing risk factors for future anxiety disorders (Schmidt, Zvolensky and Maner, 2006; 

Jeronimus et al., 2016). Early-life anxious temperament and behavioural inhibition are also 
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strong risk factors for anxiety disorders later in life (Clauss and Blackford, 2012; Hardee et 

al., 2013; Sandstrom, Uher and Pavlova, 2020; Goldsmith et al., 2022). 

An attempt was made to implement a statistical model using a limited number of variables 

(general sociodemographic information, family history of psychiatric illness, current physical 

and mental health scores) to predict onset of generalized anxiety and panic symptoms (King 

et al., 2011). The model was developed using data from four European countries (the UK, 

Spain, Slovenia and Portugal), and was validated with data from the Netherlands, Estonia and 

Chile. However, a more recent study used this algorithm in an external sample from the US 

with limited success, and do not encourage its use (Nigatu and Wang, 2019). Thus, the field 

has turned to other (bio)markers to improve the detection and prevention anxiety disorders. 

 

1.4.1.2. Structural MRI correlates 

Neuroimaging data, jointly with psychometric and clinical data, shows promise to identify at-

risk populations (Linden, 2012). Only a few longitudinal studies have investigated 

neurostructural correlates of anxiety from a developmental perspective, often using a ROI 

approach (Jones et al., 2017; Haller et al., 2018). It was reported that amygdala volume 

measured up to three times at 2-year intervals in non-clinical participants between age 4 and 

18 was longitudinally and positively associated with anxio-depressive symptoms (Albaugh et 

al., 2017). Another study found no association of amygdala or nucleus accumbens gray matter 

volume with prospective generalized and social anxiety symptoms after a 6-month follow-up 

in a mixed sample of healthy and depressed-anxious adolescents (Auerbach et al., 2022). One 

study reported that larger pituitary volume at age 12-13 preceded an increase in anxiety 

symptoms two to three years later (Zipursky et al., 2011). Another study reported that larger 

right middle temporal gyrus cortical thickness in non-clinical participants aged 13 to 20 was 

associated with prospective symptoms of generalized anxiety disorder two years later (Busso 

et al., 2017). It was also reported that gray matter volumes in the medial PFC and 

hippocampus were associated with prospective anxiety symptoms one year later in a sample 

of 18-22 y.o. participants (Gorka et al., 2014). 

 

1.4.1.3. fMRI correlates 

Several studies have also investigated functional activation and connectivity group-level 

correlates of prospective anxiety symptoms, most often using ROI approaches. In preschool 
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children, amygdala activation to emotional faces was associated with negative affect 12 

months later (Gaffrey, Barch and Luby, 2016). It was reported that a diminished difference 

between amygdala responses to trustworthy vs. untrustworthy faces in children was 

associated with separation anxiety symptoms up to 2 years later (Green et al., 2016). 

Functional activation to a fear-conditioning task in the ventromedial PFC was associated with 

anxiety symptoms up to 30-month later in participants aged 18-19 (Peng et al., 2022). Another 

study found no association of the nucleus accumbens functional activation during a reward 

incentive task with generalized and social anxiety symptoms after a 6-month follow-up in a 

mixed sample of healthy and depressed-anxious adolescents (Auerbach et al., 2022).  

In 20 y.o. men, amygdala-inferior frontal gyrus connectivity during emotional faces viewing 

was associated with internalizing symptom increase 2 years later (Gard et al., 2018). 

Functional connectivity between the amygdala and the posterior cingulate cortex, caudate, 

and postcentral gyrus was also associated with change in GAD symptomatology one year 

later in adults diagnosed with GAD (Makovac et al., 2016). 

Overall, MRI and fMRI longitudinal correlates of anxiety onset share similarities with cross-

sectional correlates of anxiety, involving structural and functional alterations in the amygdala 

and PFC, as well as in broader limbic circuitry. However, this literature is sparser and no 

meta-analytic investigation has been published to our knowledge, with most findings not 

having been replicated and thus being vulnerable to sample-specific biases. 

 

1.4.2. Psychotherapy response 

Although both pharmacotherapy and CBT were mentioned in section 1.1.2 to give a full 

overview of first-line treatment options for anxiety disorders, the present doctoral work was 

focused on CBT, for data availability reasons. Thus, CBT will be the focus of the treatment 

response correlates described hereafter.  

  

1.4.2.1. Sociodemographic and questionnaire correlates 

Prospectively distinguishing treatment-responding from nonresponding patients has potential 

to guide clinical decisions and improve prognosis (Bzdok, Varoquaux and Steyerberg, 2021). 

A number of psychosociodemographic factors associated with prospective psychotherapy 

response in anxiety disorders have been investigated. Despite small sample sizes and 
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replication difficulties, some factors associated with poor response to therapy in adults have 

been reported as consistent across studies, such as non-adherence to therapeutic homework, 

a hostile interpersonal environment, greater severity of the treated disorder and/or greater 

severity of comorbid mental disorders (Stein et al., 2009; Taylor, Abramowitz and McKay, 

2012; Skriner et al., 2019). Similar factors have been reported in youth (Pegg et al., 2022). 

However, these findings have not resulted in impactful clinical improvement for 

psychotherapy stratification in anxiety disorders, still leaving nearly half of patients receiving 

therapy with no significant symptom improvement (Loerinc et al., 2015). Neuroimaging 

techniques have thus been used to explore potential markers of prospective therapeutic 

outcome and help treatment stratification. Indeed, several studies have reported significant 

differences in neural correlates before and after CBT for anxiety disorders, which 

substantiates the promise of neuroimaging to provide biomarkers for personalized therapy 

(Goldin et al., 2014; Yang, Kircher and Straube, 2014). 

 

1.4.2.2. Structural MRI and fMRI correlates 

A recent whole-brain meta-analysis reported that, across a variety of tasks, functional 

activation in regions involved in salience and interoceptive networks such as the inferior 

frontal gyrus, anterior insula, dorsomedial PFC, anterior cingulate cortex, was associated with 

positive CBT outcome in anxiety disorders (Picó-Pérez et al., 2022). Although overlapping 

regions were associated with prospective CBT outcome in youth patients with anxiety 

disorders, the direction of association between functional activation and outcome may not be 

the same as in adults (Pegg et al., 2022).  

Other MRI modalities have also been explored for potential prospective markers of 

therapeutic response. Significant association with clinical outcome after therapy was reported 

for the amygdala sustained response to threatening stimuli (Woody et al., 2019), the 

hippocampal and nucleus accumbens gray matter volumes (Reinecke et al., 2014; Burkhouse 

et al., 2020; Suarez-Jimenez et al., 2020), and the amygdala-PFC FC (Young et al., 2019). 

To our knowledge, however, these findings remain exploratory due to the small number of 

published studies.  

Several studies have reported rs-fMRI markers associated with clinical outcome in anxiety 

disorders. One study reported that rs-FC of the insula with the superior parietal lobe, and rs-

FC of the anterior medial PFC with the precuneus and the occipital cortex were significantly 
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associated with post-treatment clinical outcome in patients with GAD (Fresco et al., 2017). 

Five studies investigated resting-state factors associated with therapy response in SAD. One 

reported a significant association of CBT response with rs-FC of the cerebellum with the 

angular gyrus and dorsolateral frontal cortex (MinlanYuan et al., 2017). In another study, 

bilateral amygdala - PFC rs-FC was positively associated with CBT response in patients with 

SAD (Klumpp et al., 2014). One study reported that rs-FC of the amygdala with a subgenual 

ACC/caudate/putamen cluster, as well as with the bilateral central sulcus and an inferior 

temporal/occipital cluster, was significantly associated with post-CBT symptom change for 

patients with SAD (Whitfield-Gabrieli et al., 2016). A replication attempt reported that the 

statistical model using rs-FC in the previous study did predict CBT outcome in a replication 

sample of patients with SAD, but did so with marginal statistical significance (Ashar et al., 

2021). Finally, a recent study reported that early changes of rs-FC between the dorsolateral 

PFC and regions of the default mode network, salience network and executive control 

network were associated with later symptom improvement during therapy in SAD patients 

(Zhu et al., 2023). 

Overall, the literature of MRI and fMRI longitudinal correlates of psychotherapy response in 

anxiety disorders points to alterations in frontolimbic circuitry, broadly similar to cross-

sectional correlates of anxiety disorders. However, an earlier review of biomarkers associated 

with psychotherapy and pharmacotherapy response in anxiety disorders reported the highly 

variable methodological quality across studies, and underlined the potential of machine-

learning individual-level prediction approaches with robust cross-validation schemes to help 

treatment stratification (Lueken et al., 2016).  

 

1.5. Machine-learning in mental health research 

A number of vulnerability or prognostic markers have been detected at group level in the 

anxiety literature. However, statistical association does not necessarily translate into cross-

sectional classification or prospective prediction, the second and third implying an ability to 

generalize findings to new, unseen data (Poldrack, Huckins and Varoquaux, 2020). Indeed, a 

large gap has remained between group-level findings and clinical relevance, and in the last 

decade, research on mental disorders and their treatment has progressively incorporated 

machine-learning approaches in an effort to bridge that gap. The following section will briefly 
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describe the general principles of some supervised machine-learning classification 

approaches from a practical perspective. 

 

1.5.1. General principles of supervised machine-learning approaches 

1.5.1.1. Main definitions 

Machine learning is a term that describes automated, flexible and computationally intense 

approaches to identifying patterns in complex data (Jiang, Gradus and Rosellini, 2020). In 

particular, supervised learning corresponds to machine-learning approaches used to classify 

a particular outcome of interest. 

Classification is defined herein as the partitioning of a set of observations into several 

categorical groups (i.e. classes) with distinct characteristics (Lemm et al., 2011). Based on a 

set of previous observations, the machine-learning algorithm has to find a rule to assign an 

unseen observation x to a class y. The observations consist in a set of predictor variables, 

usually termed features, measured for each example in the dataset (e.g. each participant). 

While classification predicts categorical classes, regression approaches can also be used in 

machine-learning to predict continuous outcomes. Of note, the present dissertation only 

includes binary classification analyses. 

The algorithm is always trained using one subset of the data (i.e. the training set) to find an 

optimal decision rule, then is used to predict classes in a separate set of the data (i.e. the 

testing set) to evaluate how well the decision rules generalizes to unseen data. Comparing the 

predicted classes with the true classes in the testing set thus measures the predictive 

performance of the algorithm. Notably, training and testing sets never overlap, and must 

always be kept separate, to ensure that the algorithm is tested in a truly unseen (sub-) sample. 

 

1.5.1.2. Common pitfalls of machine-learning prediction 

Machine-learning prediction analyses are based on complex pipelines, often involving several 

preprocessing steps embedded in cross-validation (further discussed in section 1.5.1.4 below), 

which make them vulnerable to several pitfalls that require vigilance.  

A common but insidious mistake in machine-learning is data leakage, which occurs when the 

testing data have been contaminated by the training data, thus resulting in overinflated 
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performance estimation of the algorithm (Kapoor and Narayanan, 2023). Many types of data 

leakage exist, some obvious and others subtle, including (but not limited to) any 

preprocessing step (data imputation, normalization, over/under sampling, data-driven feature 

selection) performed on the whole dataset before train-test split, the use of features ‘from the 

future’ to make predictions about a future outcome, non-independence between train and test 

samples or duplicate observations, etc. 

Another common pitfall of machine-learning prediction is overfitting, which occurs when the 

decision rule fits too closely to the training data and has started learning from the noise rather 

than from meaningful information, thus failing to generalize to new data. Underfitting, on the 

other hand, occurs when the decision rule is too simple to capture the complexity of the data, 

and does not effectively adapt to the training data (Lemm et al., 2011). As such, although 

complex models might better adapt to details of the data, and be able to produce a more 

accurate prediction, they are also more at risk of overfitting. Overfitting becomes more likely 

to occur when the number of features used (i.e. the dimensionality) is too large in comparison 

with the number of observations in the data. This is the bias-variance trade-off, where an 

equilibrium has to be found through a model that is sufficiently complex to identify 

underlying patterns in the data, but not so complex that it uses noise to predict outcomes. As 

such, machine-learning usually requires relatively large samples. Furthermore, the raw data 

are rarely used directly in the machine-learning pipeline, and specific features are often 

selected before training the classifier(s), either manually using prior knowledge, or using 

automated approaches (Heinze, Wallisch and Dunkler, 2018).  

 

1.5.1.3. Frequently used supervised machine-learning algorithms 

Logistic regression, which is standard in statistical analyses, is also used in machine-learning 

(Jiang, Gradus and Rosellini, 2020). Designed for linear binary classification problems, 

logistic regression calculates the probability P that the observation belongs to a given class 

using a sigmoid function (also called a logistic function) and determines the coefficients of 

each feature (also called weights). The decision boundary between classes can then be P = 

0.5.  

Other common variants of linear or logistic regression also come with a regularization 

strategy to limit model complexity and prevent overfitting. Those include Least Absolute 

Shrinkage and Selection Operator (LASSO), also known as L1 regularization, Ridge 
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regularization, also known as L2 regularization, and Elastic Net. Both LASSO and Ridge 

introduce a penalization factor to constrain the feature coefficients. In LASSO, the 

penalization factor takes the magnitude of the coefficient, while in Ridge it takes the square. 

The Elastic Net regularization combines both the L1 and L2 regularization and is usually 

preferred over each (Zou and Hastie, 2005). 

Support Vector Machines (SVMs) use a kernel function to transform the input features onto 

a multidimensional space where they are linearly separable. Then, SVMs identify an optimal 

separating hyperplane (i.e. decision boundary) between two classes by maximizing the 

margin between the points most similar in both classes (also called support vectors) and the 

decision boundary (Muller et al., 2001) (Figure 3A). Various kernels allow SVMs to capture 

linear and nonlinear associations between features.  

Random Forests are also popular classifiers in machine-learning, and are based on multiple 

decision tree classifiers (Breiman, 2001). A decision tree classifier is a flowchart-like 

structure built by splitting the input training set (the root node) into subsets recursively, using 

a split criterion dividing all possible values of a feature into non-overlapping regions. This 

process is called recursive partitioning and can also detect non-linear effects. Each internal 

node denotes a choice regarding a feature, each branch of the tree denotes a decision rule, and 

each terminal node (also called leaf node) denotes the result from the classifier (Figure 3B). 

Decision trees can use a large range of criteria to decide to split a node into two or more sub-

nodes. The recursion completes when the data subsets at all leaf nodes are sufficiently 

homogeneous, or when splitting no longer adds predictive value. Observations will then be 

predicted to belong to the most frequently occurring class in the node they have been placed 

in. 

Random Forests involve a combination of a large number of individual decision tree 

classifiers. This uses bagging (i.e. bootstrap aggregation), which consists in randomly 

sampling from the full dataset with replacement (i.e. bootstrapping, akin to drawing balls 

from a bag and then putting them back) numerous times, and training a classifier on each 

subset of data. The final output of a bagging strategy results from a majority vote or averaging 

between all classifiers. 
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Figure 3: Graphical representation of example supervised machine-learning 

classifications. 

A: Support Vector Machine classification; B: Random Forest classification. Decision nodes 

are represented in yellow and terminal nodes in green. 

 

Most supervised machine-learning algorithms can be applied to complex data that include 

both categorical and continuous features, but some methods might perform better than others, 

and each has inherent limitations. For instance, logistic regression results are usually easily 

interpretable but tends to overfit when dealing with collinear features. Both SVMs and 

Random Forest classification strategies also have variants for regression, and usually perform 

A. 

B. 
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well when dealing with a large number of predictors for a limited sample, but have somewhat 

poorer interpretability. Of note, composite approaches, also called stacking or ensemble 

approaches, that use more than one of the above-mentioned algorithms in parallel can also be 

implemented to optimize prediction performance at a higher computational cost 

 

1.5.1.4. Cross-validation 

The ideal case in machine-learning involves training a classifier using a sample and then 

testing its predictive performance using an external and completely independent sample (i.e. 

hold-out sample). In practice, however, an external sample is rarely available. Standard 

practice thus involves the embedding of the learning process (training and testing) into an 

internal validation scheme, also called cross-validation. Cross validation consists in an 

iterative resampling procedure, where each iteration involves one split of the dataset into 

training and testing and the subsequent training and testing of the classifier. The overall 

predictive performance is then averaged over all iterations of the cross-validation scheme. 

Additional cross-validation procedures can be implemented within the overall cross-

validation (i.e. nested cross-validation), to tune the hyperparameters of learning algorithms. 

K-fold cross-validation, one of the most popular cross-validation approaches, consists in 

randomly dividing the dataset into k subsets (i.e. folds) of the same size, then in the classifier 

being trained using k-1 folds and tested on the remaining fold, and this procedure is repeated 

k times such that each fold has been used a testing set once. Leave-one-out cross-validation, 

where only one observation serves as the testing set, is another common cross-validation 

scheme but its use is not usually recommended, as it presents a higher risk of bias in the 

estimation of predictive performance (Varoquaux, 2018).  

 

1.5.2. Interest of machine-learning use in mental health research 

As shown in section 1.5.1 above, machine-learning approaches are inherently well-equipped 

to tackle research questions in mental health research in meaningful ways. Machine-learning 

models can produce predictions at the individual level, i.e. for one given patient, which is 

particularly useful in a medical field where clinical profiles are highly heterogenous (Nielsen 

et al., 2020). Although they also come with their own methodological tradeoffs (Poldrack, 

Huckins and Varoquaux, 2020), machine-learning models can learn from multimodal data 



1. Introduction 

22 

 

and incorporate both categorical and continuous variables into prediction pipelines that use 

cross-validation to improve the generalisability of results. An increasing number of studies 

have used machine learning to investigate predictors of diagnosis, prognosis and treatment 

outcome in mental health (Chekroud et al., 2021; Iyortsuun et al., 2023).  

 

1.6. Machine-learning prediction of anxiety 

This section will give an overview of the existing literature using machine-learning in anxiety 

disorders using easy-to-collect sociodemographic and questionnaire data, as well as 

neuroimaging data, for the prediction of current symptoms or diagnosis, the prediction of 

prospective symptoms or disorder onset, and the prediction of prospective psychotherapeutic 

outcome.  

 

1.6.1. Cross-sectional prediction of patients with an anxiety disorder 

1.6.1.1. Prediction using sociodemographic and questionnaire data 

Cross-sectional prediction of anxiety disorders or anxiety symptoms levels using only 

sociodemographic information and/or questionnaire scores as features in large samples has 

potential to inform screening practices in vulnerable populations. One study reported 

prediction accuracies of 0.7275 to 0.784 for the classification of anxiety symptom level in N= 

3984 youth aged 10 to 15 y.o., (Qasrawi et al., 2022), another study reported AUC = 0.73 for 

classification of GAD using non-psychiatric routine general health assessment features in N 

= 4184 undergraduate students (Nemesure et al., 2021). Two studies investigated anxiety 

classification in the elderly, one reporting an accuracy of 0.874 for severe anxiety symptoms 

classification in Npatients N = 1558 people (Byeon, 2021), the other reporting an area under the 

curve (AUC) ranging between 0.79 and 0.85 for the classification of high symptom levels of 

anxiety, depression or dementia vs healthy controls in N= 15173 people (Liu et al., 2023). 

One study reported a machine-learning regression of anxiety symptom scores with r2 = 0.19 

in N = 4029 working nurses (Havaei et al., 2021). However, to our understanding, some 

methodological shortcomings in these studies can be noted, such as (Qasrawi et al., 2022) 

that did not use cross-validation over the whole dataset, (Liu et al., 2023) that refitted 

classifiers on features selected a posteriori based on their predictive contribution, and (Havaei 
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et al., 2021) that regressed out covariates of non-interest on the whole dataset before cross-

validation. 

A recent body of literature also examined cross-sectional machine-learning prediction of 

anxiety symptoms during COVID-19, with sample sizes ranging from N= 329 to N= 29841, 

predictive accuracies ranging from 0.6364 to 1.0, and one study reporting r2 = 0.387 

(Hueniken et al., 2021; Albagmi et al., 2022; Caldirola et al., 2022; Simjanoski et al., 2022; 

Mahalingam et al., 2023; Tian et al., 2023). 

In line with the overall performances reported in the literature, an AI-enriched cross-sectional 

diagnosis tool for mental health clinicians was recently proposed to aid in the screening and 

decision-making processes, based on supervised learning and using only a few 

sociodemographic variables and N= 6000 observations, with a predictive accuracy of 0.89 

(Tutun et al., 2023). However, this framework has yet to be applied to other, larger datasets 

to test its full generalisability, and diagnostic accuracy should still be improved. Thus, many 

studies have tried to explore other data modalities to improve the predictive performance of 

anxiety cross-sectional classification, neuroimaging data being the most common. 

 

1.6.1.2. Prediction using MRI and fMRI data 

Indeed, machine-learning techniques have shown promise in single-subject patient 

classification using neuroimaging data, and there has been a recent effort to use larger samples 

and multisite data to overcome inherent limitations of such analyses (Arbabshirani et al., 

2017; Rashid and Calhoun, 2020). A first step in the use of neuroimaging data with machine-

learning in anxiety consisted in investigating whether previously identified group-level cross-

sectional brain markers of anxiety disorders were indeed predictive of individual-level current 

anxiety symptoms.  

 

Prediction in adults 

Few studies in adults have attempted single-participant classification of clinical anxiety using 

neuroimaging data, with limited sample sizes, heterogenous performance metrics and non-

prospective designs. In adults, two studies investigated classification of social anxiety 

disorder with very small clinical sample sizes (Npatients = 14 and 20, with accuracies of 0.845 

and 0.825 respectively) (Frick et al., 2014; Liu et al., 2015), one other study did so with 
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moderately larger sample size (Npatients = 47, area under the curve = 0.72)(Xing, Fitzgerald 

and Klumpp, 2020), and another investigated spider phobia classification (Npatients = 59, 

accuracy ranging from 0.62 to 0.88) (Lueken, Hilbert, et al., 2015). In each study, 

classification performance tended not to rely on a few select structures of the fear circuitry or 

other networks, but rather relied on widespread predictors across the brain. Of note, one study 

that was not published at the start of the dissertation work reported an AUC of 0.84 for the 

classification of patients with anxiety disorders using deep learning and functional activation 

in 10 ROIs classically involved in anxiety during a fear learning task (Npatients = 92) (Wen et 

al., 2021). Other fMRI measures, including Regional Homogeneity (ReHo; local temporal 

correlation of the BOLD signal timeseries between a voxel and its nearest neighbours during 

resting state) and functional Amplitude of Low Frequency Fluctuations (ALFF; fluctuations 

of spontaneous BOLD signal intensity within the 0.01 and 0.1 Hz during resting-state) have 

also been investigated. Indeed, one study recently reported ReHo and fALFF to have 

predictive value (balanced accuracy ranging from 0.644 to 0.777) for a high vs. low social 

anxiety group classification, in a study using N = 116 median-split participants (Kim et al., 

2022). 

Machine-learning prediction of self-reported anxiety scores in non-clinical samples using 

neuroimaging data has also been recently attempted, with moderate success, with several 

studies reporting significant, albeit modest, predictive performances. One study predicted 

trait anxiety score using whole-brain tb-fMRI features in N= 154 young adults and reported 

a significant r(predicted, observed) = 0.28 (Portugal et al., 2019), another reported r2 = 0.27 using 

neurostructural features in a sample of N = 158 (Baggio et al., 2023). It was also reported that 

FC derived from an interoceptive attention task significantly predicted self-reported anxiety 

during the task with r(predicted, observed) = 0.247 in N= 122 participants (Wu et al., 2019). 

Amygdala-based ROI-to-ROI rs-FC was found to be predictive of negative emotionality 

dimension score, comprised of self-reported feelings of fear, anger and neuroticism, with up 

to r(predicted, observed) =0.224 in a N = 393 sample, with an out-of-sample performance of r(predicted, 

observed) = 0.219 and a N= 97 sample (Klein-Flügge et al., 2022). However, other studies of 

machine-learning prediction of anxiety scores using neuroimaging data reported non-

significant regressions. One study predicted a composite trait anxiety score in N = 531 

participants with r2 = 0.06, then in a fully held out sample of N= 348 with a nonsignificant r2 

= – 0.04 (Boeke, Holmes and Phelps, 2020). Another study investigated the prediction of self-

reported anxiety scores using rs-FC data from N= 10,343 healthy individuals from the 
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UKBIOBANK cohort, but found predictive performance at chance-level (Maglanoc et al., 

2020).  

Of note, some studies have also attempted to use machine-learning classification to 

disentangle comorbidity between anxiety disorders and depression, both using tb-fMRI 

(Lueken, Straube, et al., 2015), cognitive tasks without neuroimaging (Richter et al., 2020, 

2021), and symptom questionnaire scores (Liu, Droncheff and Warren, 2022). 

 

Prediction in youth 

To our knowledge, only three studies have investigated cross-sectional machine-learning 

prediction of anxiety using neuroimaging data in youth. The first study used fMRI features 

from an emotional faces task from the whole brain and conducted classification of anxiety 

disorder vs. control with an accuracy of 0.81 in a sample of 6-8 y.o. children with Npatients= 

22 (Sawalha et al., 2021). Another study found the basolateral amygdala volumes and the left 

amygdala rs-FC with various brain regions to be significantly predictive of anxiety scores in 

N = 60 children aged 7-9 y.o. (r(predicted, observed) =0.40 and r(predicted, observed) =0.22 for the left and 

right basolateral amygdala volume respectively, r up to 0.56 for amygdala rs-FC) (Qin et al., 

2014). Finally, a third study found a moderate predictive value (r(predicted, observed) = 0.09) of the 

cerebrum and cerebrocortical ROIs gray matter in a prediction of anxiety symptom dimension 

using a sample of N = 1401 youth aged 8-23 years (Moberget et al., 2019). 

Overall, studies investigating cross-sectional machine-learning prediction of categorical or 

dimensional anxiety using neuroimaging data were highly heterogeneous in sample sizes, 

cross-validation strategies and predictive performance, both in adults and in youth. 

Nonetheless, neuroimaging data appears to have some cross-sectional predictive value for 

anxiety, although studies have yet to fully investigate the potential of neuroimaging data to 

bring incremental predictive value compared to inexpensive and easy-to-collect 

questionnaires and sociodemographic information. The potential incremental predictive value 

of neuroimaging data could be particularly useful for longitudinal predictions, such as 

predictions of risk and therapeutic response, to address clinical needs.  

 



1. Introduction 

26 

 

1.6.2. Prospective prediction of anxiety symptoms or disorder onset 

1.6.2.1. Prediction using sociodemographic and questionnaire data 

Few studies have used questionnaire data to predict individual-level prospective onset of 

anxiety disorders in longitudinal samples. One study used psychosociodemographic data and 

physical health features to predict prospective GAD (Npatients = 1,123 ; Ntotal = 33,018), PD 

(Npatients = 647; Ntotal = 32,714) or SAD (Npatients = 560; Ntotal = 32,902) 3 to 4 years later in 

adults, and reported AUC = 0.7991 for GAD, 0.7813 for PD, 0.7990 for SAD (Rosellini et 

al., 2020). Another predicted anxiety disorders at age 15 in N = 374 youth from the 

community followed up between ages 3 and 15, both using questionnaire, physiological and 

environmental data from individual timepoints (ages 3, 6, 9, 12) and also combined from 

several timepoints (Hawes et al., 2022). A third study predicted 10-year risk of anxiety onset 

using sociodemographic, physiometric and questionnaire data collected digitally, in N = 

477,100 UKBIOBANK participants with a concordance index of 0.77 (Morelli et al., 2021). 

Several recent longitudinal studies investigated machine-learning prospective prediction of 

anxiety symptoms during COVID-19, a time of increased vulnerability to mental health 

problems. One study used pre-pandemic mental health and sleep questionnaire data from N 

= 3,193 adolescents aged 11-14 in the Adolescent Brain Cognitive Development Study 

(ABCD) to predict anxiety symptoms during the pandemic and reported an AUC ranging 

between 0.740-0.755 (Kiss et al., 2022). Another study used demographic and survey data to 

predict high psychological distress corresponding to mood and anxiety symptoms a year later, 

in a sample of N = 3,561 Japanese students, with an AUC ranging between 0.696-0.796 (Baba 

and Bunji, 2023). Finally, a third study used pre-pandemic clinical and demographic data to 

predict lockdown-induced anxiety and depression symptoms in a mixed sample of N = 29 

healthy controls, N = 46 obsessive-compulsive disorder and N = 19 adjustment disorder 

patients (Ntotal = 94), and reported predictive accuracies ranging between 0.67-0.75 (D’Urso 

et al., 2022). 

Predictive performances of prospective anxiety symptoms or disorder onset using only 

sociodemographic and mental and physical health questionnaire data are encouraging but 

heterogenous, and require improvement. 
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1.6.2.2. Prediction using MRI and fMRI data 

Although neuroimaging data has potential to bring incremental predictive value, longitudinal 

designs allowing the investigation of prospective individual-level anxiety symptoms in 

vulnerable populations are very rare in the literature.  

In adults, one study predicted anxiety symptom levels in N = 22 physically healthy survivors 

two years after they had lived through an earthquake using anxiety symptoms level and rs-

fMRI data at baseline, and reported r(predicted, observed) = 0.727 (MSE = 37.24) (Long et al., 

2014). Another study used prepandemic rs-FC to predict trait anxiety scores in undergraduate 

students during the acute phase of the pandemic in China (r(predicted, observed) = 0.215, N = 589), 

and although the identified FC pattern was not predictive of trait anxiety in an external 

validation sample (r(predicted, observed) = – 0.045, N = 149) it significantly predicted cross-

sectional GAD vs. HC in a clinical sample (accuracy = 0.6872, Npatients = 24) (He et al., 2021). 

In adolescents, to our knowledge, only one prospective machine-learning prediction of 

anxiety has been attempted, in which orbitofrontal cortex volume and orbitofrontal-amygdala 

functional connectivity in a dot-probe task at age 7-17 were found to be predictive of social 

anxiety score a year later in a healthy adolescent sample (support vector regression r(predicted, 

observed) = 0.301, N = 66) (Mao et al., 2020). Thus, to date, attempts to predict prospective 

anxiety scores at the individual-level using neuroimaging data have been exploratory, and no 

prediction of anxiety disorder onset has been found in literature. 

 

1.6.3. Prospective prediction of clinical outcome for patients with an anxiety 

disorder 

Machine-learning approaches can predict at the individual-level on unseen samples, and are 

well-suited for predicting individual therapeutic outcomes, particularly with the high-

dimensional data collected in clinical research and practice (Fusar-Poli et al., 2018, p. ). This 

is crucial in psychiatric prognosis, where many factors can influence the course of the disease 

and therapeutic outcome. 

 

1.6.3.1. Prediction of naturalistic course of anxiety disorders 

Predicting long-term course of anxiety disorders can be an important step towards 

personalised medicine. Three studies used the Netherlands Study of Depression and Anxiety 
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(NESDA), an adult cohort including both healthy controls and patients diagnosed with 

anxiety and/or depression, to predict the naturalistic course of patients with anxiety disorders 

using various sociodemographic and questionnaire data with a follow-up of up to 9 years. 

The first study used baseline demographic and clinical questionnaire data to investigate 

classification performance for health outcomes at each follow-up, and reported (2-year 

follow-up: N = 2,596, balanced accuracy for anxiety 0.592–0.612; 4-year follow-up: N = 

2,402, balanced accuracy for anxiety 0.536–0.596; 6-year follow-up: N = 2,256, balanced 

accuracy for anxiety 0.226–0.584; 9-year follow-up: N = 2,068, balanced accuracy for anxiety 

0.509–0.598) (van Eeden et al., 2021). The second NESDA study used questionnaires, blood 

markers and physiological health features to predict increased severity (Mean Squared Error, 

MSE = 0.057) or recovery (MSE = 0.095) from anxiety disorder symptoms over the 9-year 

course (N = 1,693) (N = (Wardenaar et al., 2021). The third NESDA study investigated 

prediction of recovery in N = 887 patients with anxiety disorders (GAD, SAD or PD/AG) 

after two years using sociodemographic, clinical, physiological health and lifestyle 

questionnaire data, and reported an AUC = 0.67 (Bokma et al., 2022). 

 

1.6.3.2. Prediction of psychotherapy outcome using sociodemographic and 

questionnaire data 

A promising literature of machine-learning treatment outcome prediction has also emerged 

across mental disorders (see (Chekroud et al., 2021) for a general review), including a rapidly 

increasing number of psychotherapy outcome prediction studies (Vieira et al., 2022).  

However, recent large-scale efforts to predict individual-level psychotherapy treatment 

response for patients with anxiety disorders based on sociodemographic and/or clinical data 

alone resulted only in moderate prediction accuracies, ranging from N = 2147, accuracy = 

0.59, N = 1236, accuracy = 0.71; N = 174 and AUC = 0.58-0.62 (Hilbert et al., 2020; 

Hornstein et al., 2021; Leehr et al., 2021). 

Other studies with large samples that were not published at the beginning of this doctoral 

work reported similarly moderate prediction performances on average. One study predicted 

relapse over the 12-months following completion of a low-intensity CBT-based intervention 

in N = 317 participants with anxiety and depression using demographic and clinical features, 

reporting AUC between 0.72-0.84 (Lorimer et al., 2021).Two studies of session-by-session 

prediction of anxiety symptom reduction during psychotherapy using routine clinical data in 
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adult patients diagnosed with anxiety and/or depression disorder yielded, respectively, AUCs 

ranging from 0.577 to 0.822 (training set N = 2317, validation in external test set N = 2036), 

and AUCs ranging from 0.500 to 0.859 (training set N =42,992, held-out test set N = 30,026) 

(Bone et al., 2021). One study used clinical and self-report questionnaires to predict CBT 

outcome in N = 1210 patients with anxiety and depression disorders (principal diagnosis 

remission AUC = 0.71, principal diagnosis improvement AUC = 0.61) (Rosellini et al., 2023). 

Another study predicted anxiety symptom change after a digital psychotherapy in N = 632 

participants using pre-treatment questionnaires and reported r(predicted, observed) between 0.548 

and 0.569 (Jacobson and Nemesure, 2021).  

Overall, this literature shows promising but still limited predictive accuracies of 

psychotherapy outcome using clinical data and questionnaires, despite increasing sample 

sizes. As such, other data modalities, such as neuroimaging, have been explored in an effort 

to find incremental predictive performance. 

 

1.6.3.3. Prediction of psychotherapy outcome using MRI and fMRI data 

Neuroimaging data has shown promise to predict treatment outcomes for patients with 

anxiety disorders in previous attempts, but those have been exploratory and reported small 

clinical sample sizes (Chekroud et al., 2021) (see (Vieira et al., 2022) for a recent review).  

Indeed, to our knowledge, two studies conducted individual CBT outcome prediction using 

tb-fMRI in patients with panic disorder, with N = 49 and accuracy = 0.82, and N = 59 and 

accuracy = 0.54 respectively (Hahn et al., 2015; Sundermann et al., 2017). One study 

predicted CBT outcome using tb-fMRI and clinical data in a mixed sample of N = 25 patients 

with panic disorder or generalized anxiety disorder, reporting an accuracy = 0.82 (Ball et al., 

2014). One study used rs-fMRI data to predict CBT outcome in N = 38 SAD patients and 

reported an accuracy of 0.81 (Whitfield-Gabrieli et al., 2016). Two studies predicted 

psychotherapy outcome using tb-fMRI in patients with social anxiety disorder (Månsson et 

al., 2015; Frick et al., 2020), reporting respectively accuracy = 0.92 (N = 23), accuracy = 0.83 

(N = 47). One recent study used clinical data, tb-fMRI and rs-fMRI to predict CBT outcome 

in N = 45 patients with social anxiety disorder, and reported r(predicted, observed) = 0.77, with 

neuroimaging features outperforming questionnaire data in the prediction (Månsson et al., 

2022).  
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Overall, predictive performances were encouraging but the incremental value of 

neuroimaging compared to questionnaire data only has only been investigated in two of the 

above-mentioned studies, with divergent results. Moreover, sample sizes remained small, 

which a review of machine-learning psychiatric prognosis prediction studies using 

neuroimaging data has warned could lead to an increased risk of overoptimistic predictive 

performance estimates (Janssen, Mourão-Miranda and Schnack, 2018). 

 

1.7. Aims and hypotheses 

Recent individual-level predictions using sociodemographic, clinical and questionnaire data 

have yielded moderate predictive accuracies in large samples, both for the prediction of 

prospective anxiety symptom levels and of prospective psychotherapy outcome for anxiety 

disorders. Only one study has explored symptom level prediction during adolescence, which 

is a window of vulnerability for anxiety disorders, and future anxiety disorder onset prediction 

using neuroimaging has not yet been attempted in adults nor adolescents. Furthermore, an 

exploratory, small-scale literature has already investigated future psychotherapy outcome 

prediction in anxiety disorders using neuroimaging data and reported promising prediction 

performances, but the robustness of these performances in larger samples has not yet been 

shown. Additionally, studies generally investigated a single neuroimaging modality both for 

prospective anxiety levels prediction and psychotherapy outcome prediction.  

Thus, this doctoral work aimed at explored multimodal neuroimaging data at various 

information levels for prospective individual-level predictions in anxiety disorders. 

Specifically, it focused on investigating the incremental contributions of structural MRI and 

tb-fMRI data compared to questionnaire data alone in machine-learning predictions of 

anxiety disorder onset, and of psychotherapy response in spider phobia. Detailed aims and 

hypotheses will be described in the relevant sections, but a brief overview is given here. 

Given the lack of previous literature in anxiety disorder onset prediction using neuroimaging 

data, we hypothesized that questionnaire data would be predictive of future anxiety onset, and 

that MRI and tb-fMRI features from brain regions classically impacted in anxiety might have 

incremental predictive value compared to questionnaire data alone (sections 2. and 3.). 

Regarding our prediction of psychotherapy response in spider phobia, given that a previous 

study using only sociodemographic and questionnaire data had already been published using 
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an overlapping patient sample (Leehr et al., 2021), our work focused on exploring the 

potential incremental predictive value of structural MRI and tb-fMRI features extracted from 

brain regions classically impacted in anxiety, compared with questionnaire data alone (section 

4). Our hypotheses were that neuroimaging data would have above-chance predictive value 

for psychotherapy outcome prediction, and that an ensemble prediction approach leveraging 

both neuroimaging and questionnaire data would outperform the prediction using 

questionnaire data alone. 
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2. Anxiety onset prediction in adolescents using 

structural MRI 

This section corresponds to the first publication of the thesis (Chavanne, Paillère Martinot, et 

al., 2023), in the Molecular Psychiatry journal. It has been cited in the 2023 National Health 

Strategy Report of the French Haut Conseil de la Santé Publique (HCSP, 2023). 

 

Abstract 

Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety 

symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. 

However, their predictive value has not been established. Individual prediction through 

machine-learning algorithms might help bridge the gap to clinical relevance. A voting 

classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms 

was used to evaluate the predictive pertinence of gray matter volumes of interest and 

psychometric scores in the detection of prospective clinical anxiety. Participants with clinical 

anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 

424). Shapley values were extracted for in-depth interpretation of feature importance. 

Prospective prediction of pooled anxiety disorders relied mostly on psychometric features 

and achieved moderate performance (area under the receiver operating curve = 0.68), while 

generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional 

volumes did not improve the prediction performance of prospective pooled anxiety disorders 

with respect to psychometric features alone, but they improved the prediction performance of 

GAD, with the caudate and pallidum volumes being among the most contributing features. 

To conclude, in non-anxious 14 y.o. adolescents, future clinical anxiety onset 4 to 8 years 

later could be individually predicted. Psychometric features such as neuroticism, 

hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders 

prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for 

GAD and should be included in prospective clinical anxiety prediction in adolescents. 
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2.1. Introduction  

Anxiety disorders have been reported to have a high impact on the global burden of disease 

(Yang et al., 2021). Anxiety disorders are the most prevalent psychiatric condition in 

adolescence, impacting nearly one in three individuals (Beesdo, Knappe and Pine, 2009; 

Merikangas et al., 2010). The average age of onset predates 15 y.o. for social anxiety disorder 

and specific phobia, whereas panic disorder and generalized anxiety disorder tend to emerge 

slightly later in life (Lijster et al., 2017). Moreover, anxiety disorders can remain unstable in 

adolescence, before consolidating further in young adulthood. Therefore, detecting 

individuals at elevated risk of developing clinical anxiety is crucial.  

Many sociodemographic, psychosocial, as well as physical and mental health factors have 

been reported as risk factors of generalized anxiety disorder and panic disorder (Moreno-

Peral et al., 2014). Personality scores such as neuroticism and anxiety sensitivity have also 

been established as pre-existing risk factors for future anxiety disorders (Schmidt, Zvolensky 

and Maner, 2006; Jeronimus et al., 2016). Early-life anxious temperament is also a strong 

risk factor for anxiety disorders later in life (Clauss and Blackford, 2012). Furthermore, 

neuroimaging data, jointly with psychometric and clinical data, show promise to identify at-

risk populations (Linden, 2012).  

In adolescent patients with anxiety disorders, cross-sectional differences in gray matter 

volume have been reported using magnetic resonance imaging (MRI) in the amygdala, 

hippocampus, insula, cingulate cortex, ventromedial prefrontal cortex (vmPFC), and 

temporal gyri (Merz et al., 2018). Additionally, the striatum was highlighted as a critical 

subcortical region of interest for the onset of anxiety disorders in adolescence (Lago et al., 

2017). A model of anxious temperament has also been shown to involve the central amygdala, 

orbitofrontal cortex, bed nucleus of the stria terminalis (BNST) and periaqueductal gray in 

young primates (Kalin, 2017; Fox and Shackman, 2019).  

However, only few longitudinal studies have investigated neurostructural correlates of 

anxiety in adolescents from a developmental perspective (14, see 15 for a review). It was 

reported that amygdala volume measured up to three times at 2-year intervals in non-clinical 

participants between age 4 and 18 was longitudinally and positively associated with anxio-

depressive symptoms (Albaugh et al., 2017). Two studies were based on regions of interest 

(ROIs) but did not include limbic structures. One reported that larger pituitary volume at age 

12-13 preceded an increase in anxiety symptoms two to three years later (Zipursky et al., 
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2011). The other found that larger right middle temporal gyrus cortical thickness in non-

clinical participants aged 13 to 20 predicted symptoms of generalized anxiety disorder two 

years later (Busso et al., 2017). 

Nonetheless, statistical association does not necessarily translate into cross-sectional 

classification or prospective prediction, the second and third implying an ability to generalize 

findings to new, unseen data (Poldrack, Huckins and Varoquaux, 2020). In the last decade, 

research in psychiatry has progressively incorporated machine-learning approaches in an 

effort to bridge the gap between diagnostic or prognostic markers detected at group level, and 

clinical relevance. Machine-learning techniques have shown promise in single-subject patient 

classification using neuroimaging data, and there has been a recent effort to use larger samples 

and multisite data to overcome inherent limitations of such analyses (Arbabshirani et al., 

2017). Few studies in adults have attempted single-participant classification of clinical 

anxiety using neuroimaging data, with limited sample sizes, heterogenous performance 

metrics and non-prospective designs. In adults, two studies investigated classification of 

social anxiety disorder with very small clinical sample sizes (Npatients = 14 and 20, with 

accuracies of 0.845 and 0.825 respectively) (Frick et al., 2014; Liu et al., 2015), one other 

study did so with moderately larger sample size (Npatients = 47, area under the curve = 

0.72)(Xing, Fitzgerald and Klumpp, 2020), and another investigated spider phobia 

classification (Npatients = 59, accuracy ranging from 0.62 to 0.88) (Lueken, Hilbert, et al., 

2015). In each study, classification performance tended not to rely on a few select structures 

of the fear circuitry or other networks, but rather relied on diffuse predictors across the brain. 

In adolescents, to our knowledge, only one prospective prediction of anxiety has been 

attempted, in which orbitofrontal cortex volume and orbitofrontal-amygdala functional 

connectivity in a dot-probe task at age 7-17 were found to be predictive of social anxiety 

score a year later in a healthy adolescent sample (support vector regression r(predicted, 

observed) = 0.301) (Mao et al., 2020). 

Therefore, the first aim of the current study was to predict prospective clinical anxiety at the 

individual level at ages 18 and/or 23, both pooled and disorder-specific, based on gray matter 

volumes as well as psychometric features such as neuroticism and anxiety sensitivity scores 

at age 14. The second aim was to assess the respective contributions of both gray matter 

volumes and psychometric feature categories to the prediction performance. These analyses 

were conducted under the a priori hypotheses that gray matter volumes in subcortical and 



2. Anxiety onset prediction in adolescents using structural MRI 

35 

 

frontomedial regions might have, and that psychometric features would have, a predictive 

value for the onset of anxiety in adolescence.  

 

2.2. Methods 

2.2.1. Dataset and sample description 

All data originated from the IMAGEN database (Schumann et al., 2010) that includes 

neuroimaging data collected in community adolescents at age 14, as well as several 

questionnaires evaluating mental disorders, emotional functioning and alcohol and substance 

consumption. Written informed consent was obtained from all participants and their legal 

guardians. 

Diagnostic data were collected at baseline, at age 18-19 (first follow-up, FU1), and age 22-

23 (FU2) using the DAWBA (Development And Well-Being Assessment), a computerized 

self-report assessment that generates DSM-IV and ICD-10 diagnoses (Goodman et al., 2000). 

These diagnoses were subsequently evaluated by trained clinicians, as previously described 

(Paillère Martinot et al., 2014). Alcohol and cannabis consumption were respectively 

evaluated using the AUDIT (Alcohol Use Disorders Identification Test) and the ESPAD 

(European School survey Project on Alcohol and other Drugs) (Saunders et al., 1993; 

Molinaro et al., 2012). Other clinical assessments included negative thinking, anxiety 

sensitivity subscales from the Substance Use Risk Profile Scale (SURPS) (Woicik et al., 

2009); emotional symptoms score in the Strength and Difficulties Questionnaire (SDQ) 

(Goodman, 1997); autonomy, accidents, distress, family, and relocation subscales from the 

Life Events Questionnaire (LEQ) (adapted from 33); neuroticism, and extraversion subscales 

from the revised NEO Personality Inventory (NEO-FFI) (Costa Jr. and McCrae, 2008); 

novelty-seeking as measured by the revised Temperament and Character Inventory (TCI-R) 

(Cloninger, 1994). A more detailed description of the questionnaires is presented in machine-

learning methods.  

Participants with T1 data at baseline were assessed for eligibility in our analyses. Visual 

quality control was conducted for each MRI T1 scan and participants with excessive noise, 

motion artefacts or abnormal brain anatomy were excluded. Participants with AUDIT scores 

equal to or greater than 7 at baseline were excluded, as alcohol disorder may interfere with 

brain structure development (Kühn et al., 2019) (inclusion flowchart in Figure 4). 
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Figure 4: Inclusion flowchart.  

AUDIT: Alcohol Use Disorders Identification Test. 

 

Participants with DAWBA anxiety diagnoses of generalized anxiety disorder (GAD), social 

anxiety disorder (SAD), specific phobia (SpP), panic disorder (PD), agoraphobia (AG) and 

other anxiety (OA) at baseline, FU1 or FU2 were included. They were subdivided between 

those who had at least one anxiety diagnosis at baseline (BLA) at age 14 (N=56, only used in 

neuroimaging group analyses in section 2.3.4.1), and future anxiety-onset participants, whose 

first anxiety diagnosis was reported at either FU1 or FU2 (future anxiety, FUA). FUA 

participants were then allocated to 5 mutually exclusive groups. Those who had only one 

anxiety disorder diagnosis at 18-23 (one stable diagnosis at both FU1 and FU2, or one 

diagnosis at either FU1 or FU2) were split into GAD, SAD, SpP and PD/AG diagnostic 
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groups, while participants with multiple anxiety disorders (mAD) at any timepoint at ages 18 

and/or 23 (i.e., two or more distinct anxiety diagnoses, simultaneous or not) were allocated 

to a mAD group (see Tables 2 and 3 for details about the FUA or BLA sample respectively).  

 

Table 2: Sample description at age 14 of participants with future anxiety.  

SpP: Specific phobia; SAD: social anxiety disorder; PD/Ag: panic disorder and/or 

agoraphobia; GAD: generalized anxiety disorder; HC: healthy controls; anxiety diagnosed at 

age 18-19 or age 22-23 follow-ups. 

* p <0.05; Kruskal-Wallis test for continuous variables, Chi2 test for categorical variables.  
a Group included participants meeting criteria for at least two diagnoses (SpP, SoPh, PD/Ag, 

GAD, or other clinical anxiety (OA)), simultaneously or not, at any of FU1 or FU2 

timepoints: 42 participants had a first anxiety onset at FU1/FU2 (9 SpP, 24 SoPh, 16 PD/Ag, 

25 GAD and 12 OA current or future diagnoses). 

 

PD and AG were combined because they are highly comorbid disorders (Kikuchi et al., 2005), 

and our sample size did not allow the investigation of standalone agoraphobia. Participants 

that had missing DAWBA data at FU1 or FU2 but did have one anxiety diagnosis at the other 

follow-up timepoint (FU2 or FU1 respectively) were included, as this latter criterion was 

sufficient for allocation to the FUA (32 participants) or BLA (24 participants) groups. A total 

of N = 156 FUA participants were available for prediction analyses.  

Group SpP SAD PD/Ag GAD Multiple 

anxiety 

diagnoses
 a

 

Total 

FUA 

HC FUA 

vs. HC 

N participants 25 25 22 42 42 156 424  

N major or other 

depression diagnoses at 

age 14 

2 2 2  0 1 7   

Gender (m/f) 3/22 10/15 5/17 12/30 10/32 40/116 131/293 n.s. 

Age (years) 

(SD) 

14.6 

(0.5) 

14.4 

(0.4) 

14.4 

(0.3) 

14.4 

(0.3) 

14.4 

(0.5) 

14.4 

(0.4) 

14.4 

(0.4) 

n.s. 

 

AUDIT score 

(SD) 

1.2 

(1.7) 

0.9 

(1.5) 

2.0 

(1.9) 

1.4 

(2.0) 

1.4 

(1.5) 

1.4 

(1.8) 

0.9 

(1.4) 

1.0e-3* 

ESPAD-year score 

(SD) 

0.3 

(1.1) 

0.1 

(0.4) 

0 0.1 

(0.4) 

0.1 

(0.5) 

0.1 

(0.6) 

0.1 

(0.4) 

2.9e-2* 

Neuroticism NEO score 

(SD) 

26.7 

(8.0) 

28.0 

(7.2) 

25.0 

(8.5) 

24.9 

(6.6) 

29.5 

(7.7) 

27.0 

(7.7) 

22.6 

(6.7) 

5.4e-

10* 

Anxiety sensitivity 

SURPS score 

(SD) 

11.5 

(2.9) 

12.6 

(2.0) 

11.2 

(2.5) 

12.1 

(2.5) 

12.6 

(2.5) 

12.1 

(2.5) 

11.2 

(2.1) 

2.5e-5* 

SDQ emotional score 

(SD) 

4.0 

(2.4) 

3.7 

(2.5) 

2.9 

(2.5) 

3.2 

(1.8) 

4.4 

(2.3) 

3.7 

(2.3)  

2.5 

(1.8) 

1.1e-8* 

Transversal TIV (mm3) 

(SD) 

1 461.1 

(132.5) 

1 460.2 

(144.6) 

1 428.9 

(118.9) 

1 498.9 

(133.5) 

1 441.8 

(140.4) 

1 461.5 

(135.7) 

1 453.0 

(133.5) 

n.s. 
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Table 3: Sample description at age 14 of participants with current anxiety.  

SpP: Specific phobia; SAD: social anxiety disorder; PD/Ag: panic disorder and/or 

agoraphobia; GAD: generalized anxiety disorder; HC: healthy controls; BLA: anxiety 

diagnosed at age 14. 

* p <0.05; Kruskal-Wallis test for continuous variables, Chi2 test for categorical variables.  
a Group included participants meeting criteria for at least two diagnoses (SpP, SoPh, PD/Ag, 

GAD, or other clinical anxiety (OA)), simultaneously or not: 23 participants had a first 

anxiety onset at baseline (10 SpP, 18 SoPh, 10 PD/Ag, 14 GAD and 4 OA current or future 

diagnoses). 

 

In the FUA group, data were collected in Berlin for N = 15 participants, in Dresden for N = 

16 participants, in Dublin for N = 17 participants, in Hamburg for N = 17 participants, in 

London for N = 33 participants, in Mannheim for N = 6 participants, in Nottingham for N = 

29 participants, and in Paris for N = 23 participants.  

Among the 89 FUA participants that had a first anxiety diagnosis at FU1, 9 had the same 

anxiety disorder(s) diagnosed at FU2, 2 had the same diagnosis and one additional anxiety 

disorder diagnosed at FU2, 7 had a different anxiety diagnosis at FU2, 51 had no anxiety 

diagnosis at FU2, and 20 did not have clinical data at FU2. 

Eligible controls were typical adolescents with no DAWBA diagnosis at baseline, FU1 and 

FU2. Participants with incomplete DAWBA data at any timepoint were excluded from 

Group SpP SAD PD/Ag GAD Multiple 

anxiety 

diagnoses
 

a
 

Total 

BLA 

HC p-value 

BLA vs. 

HC 

N participants 8 10 8 7 23 56 424  

N depression diagnoses 

at age 14 

1 4 4 4 3 16   

Gender (m/f) 2/6 3/7 2/6 1/6 4/19 12/44 131/293 n.s. 

Age (years) 

(SD) 

14.3 

(0.3) 

14.3 

(0.4) 

14.3 

(0.2) 

14.2 

(0.3) 

14.3 

(0.4) 

14.3 

(0.3) 

14.4 

(0.4) 

n.s. 

AUDIT score 

(SD) 

0.8 

(1.2) 

0.8 

(1.4) 

0.8 

(1.0) 

1.9 

(1.7) 

1.3 

(1.7) 

1.1 

(1.5) 

0.9 

(1.4) 

n.s. 

 

ESPAD-year score 

(SD) 

0 0 0 0 0.0 

(0.2) 

0.0 

(0.1) 

0.1 

(0.4) 

n.s. 

Neuroticism NEO score 

(SD) 

27.1 

(11.0) 

32.1 

(8.1) 

35.0 

(7.1) 

28.0 

(7.5) 

32.4 

(5.9) 

31.4 

(7.7) 

22.6 

(6.7) 

1.1e-13* 

Anxiety sensitivity 

SURPS score 

(SD) 

11.6 

(2.9) 

12.1 

(1.5) 

11.8 

(2.4) 

12.1 

(2.1) 

12.9 

(2.8) 

12.3 

(2.5) 

11.2 

(2.1) 

4.3e-3* 

SDQ emotional score 

(SD) 

4.1 

(2.2)  

5.6 

(2.5) 

5.8 

(1.9) 

5.0 

(1.9) 

5.6 

(1.6) 

 5.3 

(1.9) 

2.5 

(1.8) 

3.6e-18* 

Transversal TIV (mm3) 

(SD) 

1 463.1 

(128.9) 

1 542.2 

(156.3) 

1 442.1 

(95.1) 

1 374.5 

(148.5) 

1 435.3 

(123.5) 

1 451.7 

(134.8) 

1 453.0 

(133.5) 

n.s. 



2. Anxiety onset prediction in adolescents using structural MRI 

39 

 

eligible controls. Then, we randomly selected controls amongst eligible participants to 

balance scanning acquisition sites and gender with participants with anxiety disorders by a 

2:1 ratio. 

 

2.2.2. MRI acquisition and preprocessing 

All scans were obtained on 3T scanners (Siemens, Philips, General Electrics) across the 8 

IMAGEN European sites, based on an Alzheimer’s Disease Neuroimaging Initiative 

Magnetization-Prepared Rapid Acquisition Gradient Echo (ADNI-MPRAGE) standardized 

acquisition sequence (sagittal plane, repetition time = 2.3ms, echo time = 2.93 ms, flip angle 

= 8°, matrix: 256 × 256 × 160, voxel size: 1.1 × 1.1 × 1.1 mm) (Schumann et al., 2010). MRI 

data were preprocessed with the CAT12 toolbox version 12.6 (http://www.neuro.uni-

jena.de/cat/) in SPM12 (Statistical Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/) 

in Matlab (https://fr.mathworks.com). T1-weighted images were segmented, normalized, and 

modulated. They were smoothed with a statistical 8 mm Full-Width Half-Maximum Gaussian 

filter (final voxel size: 1.5 × 1.5 × 1.5 mm). 

CAT12 provides TIV (Total Intracranial Volume) measures and calculates image quality 

ratings (noise, inhomogeneity bias, image resolution, and a weighted average rating of these 

measures, obtained with a root mean square equation to accentuate the impact of a mediocre 

measurement). The weighted average rating was examined, and the worse scoring 

participants (D and C-) at baseline were excluded from all analyses. 

 

2.2.3. Machine-learning prediction 

2.2.3.1. Feature extraction 

Extraction was conducted with SPM12. ROIs classically involved in clinical anxiety were 

extracted from the AAL atlas (Tzourio-Mazoyer et al., 2002) and combined from the left and 

right hemispheres with the WFU_PickAtlas toolbox 

(https://www.nitrc.org/projects/wfu_pickatlas/). ROIs included the amygdala, hippocampus, 

parahippocampal gyrus, mid- and anterior cingulate cortex, gyrus rectus, medial orbitofrontal 

cortex, putamen, pallidum, caudate nucleus, thalamus, insula, as well as the periaqueductal 

gray (PAG) from a 6 mm sphere centered on x = 0, y = -29, z = -12 (Linnman et al., 2012), 

and the BNST (Neudorfer et al., 2020). Gray matter volumes for each ROI were extracted 

https://www.fil.ion.ucl.ac.uk/spm/
https://fr.mathworks.com/
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from preprocessed scans with the MarsBar toolbox (Brett et al., 2002) with no additional 

scaling, for a total of 14 neuroimaging features at age 14. 

IMAGEN questionnaire subscales relevant to anxiety phenomenology were selected a priori. 

In particular, the life-event questionnaire (LEQ) assesses a range of potentially stressful 

activities or experiences in adolescents, and the family, autonomy, distress, accident and 

relocation frequencies subscales (lifetime frequency score for distress, family and accident, 

past year score for autonomy and relocation) were included as predictive features. The revised 

temperament and character inventory (TCI-R) measures excitability, disorderliness, 

impulsivity and extravagance for a sum score of novelty seeking which was used as a feature. 

The strength and difficulties questionnaire (SDQ) measures conduct problems, peer 

problems, prosocial behaviour, hyperactivity, as well as emotional symptoms which was 

included in our analysis. The substance use risk profile scale (SURPS) assesses dimensions 

of sensation-seeking, impulsivity, hopelessness and anxiety sensitivity, and the last two were 

included as features. Finally, the revised NEO personality inventory (NEO-FFI is a well-

known personality assessment based on the five-factor model, and measures openness, 

agreeableness, conscientiousness, extraversion and neuroticism subscales, with the last two 

being included in our analysis. While age is not a specific predictor of anxiety, age at baseline 

(in days) was included in our analysis to account for its potential interactions with other 

features, which could also provide predictive value, resulting in a total of 13 psychometric 

features at age 14.  

 

2.2.3.2. Machine-learning pipeline 

Classifications were conducted with scikit-learn 0.24.2 (https://scikit-

learn.org/dev/versions.html) in Python. A majority voting algorithm between Logistic 

Regression (LR), Support Vector Machine (SVM) and Random Forest (RF) classifiers was 

used.  

Three separate binary class prediction analyses were conducted with baseline neuroimaging 

and psychometric data. The first analysis was the prediction of any FUA (N = 156) vs. healthy 

controls (N=424). The second analysis was the prediction of FUA GAD diagnosis (N=42) vs. 

healthy controls, and the third prediction of FUA mAD (N=42) vs. healthy controls. Only the 

GAD and mAD groups had more than 30 FUA participants. Thus, no other specific diagnosis 

group could be explored. As the data were moderately imbalanced between FUA participants 

https://scikit-learn.org/dev/versions.html
https://scikit-learn.org/dev/versions.html
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and healthy controls, additional functions from imbalanced-learn 0.8.0 (Lemaître, Nogueira 

and Aridas, 2017) were used. The FUA SpP, SAD and PD/Ag groups all included N < 30 

subjects and could not be explored separately (N = 25, N = 25, and N = 22 respectively). The 

three above-mentioned predictions were first conducted with the 27 features together, then 

only with the 13 psychometric features, and only with the 14 regional gray matter volume 

features, to evaluate their respective contributions. 

A leave-3-groups-out cross-validation strategy was used: in each cross-validation fold, 5 

acquisition sites were chosen as training data and the remaining 3 sites as testing data, such 

that no two participants from the same site could be in both the training and testing sets. All 

possible splits of the 8 sites resulted in 56 cross-validation folds in total, and in each fold a 

nested stratified 5-fold hyperparameter optimization to maximize area under the receiver 

operating curve (AUROC) was conducted. Inside each nested fold, missing psychometric 

data (0.02% of questionnaire scores in the whole sample, including FUA and healthy controls, 

N=580) were imputed with the feature median, then data were scaled and resampled with a 

combination of over- and under-sampling (synthetic minority oversampling technique and 

edited nearest neighbours cleaning with default parameters) so that both groups would have 

equal size (Batista, Prati and Monard, 2004). The analysis pipeline and reported metrics (i.e. 

10-fold cross-validation, nested preprocessing to avoid data leakage, AUROC reported as a 

performance metric insensitive to relative class frequencies) were chosen according to 

recommended practices (Poldrack, Huckins and Varoquaux, 2020). Mean performance 

metrics over the 56 folds are reported in the results section.  

The ‘liblinear’ library was set as the solver parameter of the LR classifier, and the class weight 

parameter was set to ‘balanced’ for all three classifiers. Optimized hyperparameters included 

the number of maximum iterations, penalty and C from the LR classifier, the gamma and C 

from the SVM classifier, and the maximum depth and maximum number of features from the 

RM classifier. Scikit-learn default values were used for all remaining classifier parameters. 

To examine each feature contribution to individual predictions more closely, we also used the 

recent Shapley additive explanation (SHAP) module, version 0.39.0 (Lundberg and Lee, 

2017). SHAP uses a game theoretic approach to assign an importance value to each feature 

for an individual prediction and allows visualization of the contribution of each feature value 

to its final classification for each participant.  
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A more traditional 10-fold stratified cross-validation repeated 10 times was also explored for 

completeness, with the nested optimization and all other classifier parameters kept identical. 

 

2.2.3.3. Neuroimaging group-level analysis 

All analyses were conducted with SPM12 and CAT12. Gray matter volume analyses were 

conducted within an anatomical mask encompassing bilateral regions classically involved in 

clinical anxiety, built from the AAL atlas with the WFU_PickAtlas toolbox 

(https://www.nitrc.org/projects/wfu_pickatlas/). The gray matter volume (GMV) mask 

included the amygdala, hippocampus, parahippocampal gyrus, mid- and anterior cingulate 

cortex, gyrus rectus, medial orbitofrontal cortex, putamen, pallidum, caudate nucleus, 

thalamus, insula, midbrain (the latter taken from the TD Lobes atlas) and BNST (Neudorfer 

et al., 2020) regions of interest (ROIs). 

Cross-sectional one-way ANOVA analyses were conducted with a group factor over the GM 

images at baseline with age, gender, IMAGEN acquisition sites, TIV, DAWBA depressive 

comorbidity, AUDIT score, and ESPAD cannabis consumption score as covariates of no 

interest. A six-level group factor was used for FUA participants (SpP, SAD, PD/AG, GAD, 

mAD or controls) and pairwise contrasts were examined. As only mAD had N>20 BLA 

participants, a two-level group factor was used (mAD or controls). 

Results were obtained using the TFCE toolbox (http://www.neuro.uni-jena.de/tfce/) for non-

parametric permutation-based statistics on each contrast, with a family-wise error-corrected 

pFWE ≤ 0.05 threshold and more than 10 voxels. TFCE parameters were set as 5000 

permutations with the Smith method, with default weights H (height) and E (extent) (H = 2, 

E = 0.5 for GMV). Anatomical location of significant clusters was determined with the AAL 

atlas and manually verified with MRIcron (https://www.nitrc.org/projects/mricron) for GMV. 

 

2.3. Results 

2.3.1. Sample characteristics 

FUA participants did not differ from healthy controls for age, gender and TIV at baseline, but 

they had significantly higher AUDIT, ESPAD, neuroticism, anxiety sensitivity and emotional 

symptoms scores (see Table 2). Additionally, significantly higher neuroticism and emotional 

http://www.neuro.uni-jena.de/tfce/
https://www.nitrc.org/projects/mricron
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symptoms scores were detected in FUA mAD participants compared to FUA participants 

with only one diagnosed disorder (p-value = 5.5e-3 and 2.3e-2 respectively). 

At baseline, no significant difference was observed between BLA participants and healthy 

controls for age, gender, TIV, AUDIT or ESPAD score. BLA participants had significantly 

higher neuroticism (NEO), anxiety sensitivity (SURPS) and emotional symptoms (SDQ) 

scores. 

 

2.3.2. Machine-learning diagnostic predictions 

2.3.2.1. Main analysis using leave-3-groups-out cross-validation 

Trained classifiers for all cross-validation iterations of all analyses are available online 

(https://osf.io/pdmrv/). Prediction of any future anxiety disorder vs. healthy control class 

resulted in an AUROC = 0.68 (standard deviation (SD) = 0.03) (Table 4).  

Features that most differentiated between classes included neuroticism, hopelessness, 

emotional symptoms and family events (Figure 5). Higher values were interpreted by the 

trained classifier as contributing to clinical anxiety outcome classification, rather than to the 

healthy control class. Greater bilateral BNST volume supported healthy control classification 

outcome. 

 

Table 4: Mean performance metrics of both pooled and disorder-specific future anxiety 

vs. healthy controls predictions. 

HC: healthy controls; GAD: generalized anxiety disorder; mAD: multiple anxiety disorder; 

AUROC: area under the receiver operating curve; N: analysis conducted using 

neurostructural (regional gray matter volumes) features; P: analysis conducted using 

psychometric features. 
a: Equal to or below chance level.  

Classification 

metric 

AUROC  

(SD) 

Balanced accuracy 

(SD) 

Sensitivity 

(SD) 

Specificity  

(SD) 

Feature set  N+P N P N+P N P N+P N P N+P N P 

Any future 

anxiety (N=156) 

vs. HC (N=424) 

0.68 

(0.03) 

0.52 

(0.04) 

0.69 

(0.03) 

0.60 

(0.04) 

≤0.5a 

(0.03) 

0.63 

(0.04) 

0.81 

(0.13) 

0.79 

(0.17) 

0.67 

(0.15) 

0.38 

(0.15) 

0.21 

(0.17) 

0.58 

(0.12) 

Future GAD 

(N=42) vs. HC 

(N=424) 

0.69 

(0.07) 

0.63 

(0.06) 

0.62 

(0.08) 

0.62 

(0.08) 

0.59 

(0.04) 

0.57 

(0.07) 

0.53 

(0.23) 

0.49 

(0.21) 

0.38 

(0.26) 

0.71 

(0.12) 

0.69 

(0.16) 

0.76 

(0.16) 

Future mAD 

(N=42) vs. HC 

(N=424) 

0.71 

(0.06) 

≤0.5a 

(0.06) 

 

0.74 

(0.05) 

0.65 

(0.06) 

≤0.5a 

(0.05) 

0.67 

(0.07) 

0.63 

(0.20) 

0.44 

(0.24) 

0.59 

(0.12) 

0.67 

(0.14) 

0.51 

(0.22) 

0.75 

(0.10) 
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Figure 5 : SHAP values and importance of features at age 14 in the prediction of any 

future anxiety (N=156) vs. healthy control (N=424).  

Each dot represents an individual in a given cross-validation iteration. Positive Shapley values 

indicate contribution of a feature value in favour of the positive class (future anxiety) 

prediction, negative Shapley values are in favour of the negative class (healthy control) 

prediction. Larger absolute Shapley values indicate larger impact on the model output. The 

20 most contributing features are shown. BNST: bed nucleus of the stria terminalis. 

 

Prediction of FUA GAD resulted in an AUROC = 0.69 (SD = 0.07). Most contributing 

features included bilateral caudate volume, autonomy, bilateral pallidum volume, 

extraversion, accident score, emotional symptoms and anxiety sensitivity, with higher values 

supporting FUA GAD outcome classification (Figure 6). Larger bilateral insula, BNST and 

mid-cingulate volumes, as well as higher novelty-seeking and relocation scores, contributed 

to healthy control classification outcome. 
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Figure 6: SHAP values and importance of features at age 14 in the prediction of future 

generalized anxiety disorder (N=42) vs. healthy control (N=424). 

Each dot represents an individual in a given cross-validation iteration. Positive Shapley values 

indicate contribution of a feature value in favour of the positive class (future generalized 

anxiety) prediction, negative Shapley values are in favour of the negative class (healthy 

control) prediction. Larger absolute Shapley values indicate larger impact on the model 

output. The 20 most contributing features are shown. BNST: bed nucleus of the stria 

terminalis. 

 

Prediction of FUA mAD resulted in an AUROC = 0.71 (SD = 0.06). Most impacting features 

included neuroticism, emotional symptoms and PAG volume, with higher values supporting 

FUA mAD outcome classification (Figure 7). Larger bilateral putamen, caudate, BNST, 

hippocampus and insula volumes, as well as age, generally supported healthy control 

classification outcome.  

 

A prediction of FUA GAD vs. FUA mAD is presented in Figure 8. 
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Figure 7: SHAP values and importance of features at age 14 in the prediction of future 

multiple anxiety diagnoses (N=42) vs. healthy control (N=424).  

Each dot represents an individual in a given cross-validation iteration. Positive Shapley values 

indicate contribution of a feature value in favour of the positive class (future multiple anxiety 

diagnoses) prediction, negative Shapley values are in favour of the negative class (healthy 

control) prediction. Larger absolute Shapley values indicate larger impact on the model 

output. BNST: bed nucleus of the stria terminalis; DmOFC: dorsomedial orbitofrontal cortex. 

The 20 most contributing features are shown.  

 

Figure 8 : SHAP values of features and importance at age 14 in the generalized anxiety 

(N=42) vs. multiple anxiety (N=42) prediction.  

Each dot represents an individual in a given cross-validation iteration. Positive Shapley values 

indicate contribution of a feature value in favour of the positive class (multiple anxiety) 

prediction, negative Shapley values are in favour of the negative class (generalized anxiety) 

prediction. Larger absolute Shapley values indicate larger impact on the model output.  

BNST: bed nucleus of the stria terminalis; DmOFC: dorsomedial prefrontal cortex. The 20 

most contributing features are shown.  
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2.3.2.2. Additional analysis using 10-fold stratified cross-validation 

When using a 10-fold stratified cross-validation, the prediction of any anxiety disorder vs. 

healthy control resulted in an AUROC = 0.69 (SD = 0.06), with sensitivity = 0.82 (SD = 0.11) 

and specificity = 0.42 (SD = 0.13) and balanced accuracy = 0.62 (SD = 0.06). Prediction of 

GAD vs. healthy control resulted in an AUROC = 0.71 (SD = 0.11), with sensitivity = 0.63 

(SD = 0.28), specificity = 0.66 (SD = 0.12) and balanced accuracy = 0.65 (SD = 0.12). 

Prediction of mAD vs. healthy control resulted in an AUROC = 0.77 (SD = 0.13) with 

sensitivity = 0.67 (SD = 0.28), specificity = 0.69 (SD = 0.12) and balanced accuracy = 0.68 

(SD = 0.12).  

 

2.3.3. Contribution of neuroimaging features 

Predicting any future anxiety vs. healthy control based on gray matter volumes alone resulted 

in an AUROC = 0.52 (SD = 0.04), and the same prediction based only on psychometric 

features resulted in an AUROC = 0.69 (SD = 0.03). 

Predicting FUA GAD vs. healthy control based on gray matter volumes alone resulted in an 

AUROC = 0.63 (SD = 0.06) and predicting based only on psychometric features resulted in 

an AUROC = 0.62 (SD = 0.08). 

Predicting FUA mAD vs. healthy control based on gray matter volumes alone resulted in an 

AUROC ≤ 0.50 (SD = 0.06) and predicting based only on psychometric features resulted in 

an AUROC = 0.74 (SD = 0.05). 

 

2.3.4. Neuroimaging group analyses 

2.3.4.1. Early adolescence anxiety onset 

At age 14, a larger volume in the periaqueductal gray (pFWE = 0.039) was detected in 

participants with early onset of mAD compared to healthy controls (see Figure 9A and Table 

5A for details). Contrasting all pooled participants with anxiety disorders (SpP, SoPh, PD/Ag, 

GAD and mAD together) with first onset at age 14 compared with healthy controls yielded 

no significant differences. 
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Figure 9: Gray matter volume differences at age 14 between participants with current 

or future anxiety and healthy controls. 

A: Brain regions larger at age 14 in participants with current first onset of multiple anxiety 

disorders (N = 23) than in healthy controls (N = 424); B: Brain regions larger at age 14 in 

participants with future onset of generalized anxiety disorder (N = 42) than in healthy controls 

(N = 424). 

pFWE ≤ 0.05, clusters > 10 voxels reported. 

 

A.  

 

B.  

X = 0 Y = -29 Z = -16 

X = 12 Y = 13 Z = 10 

- Log(p) 

1.3 1.4 1.5 1.6 1.7 1.8 

- Log(p) 

1.41 1.35 1.38 1.3

2 

1.3 



2. Anxiety onset prediction in adolescents using structural MRI 

49 

 

Table 5: Gray matter volume differences at age 14 between participants with current or 

future anxiety and healthy controls.  

A: Volume differences between participants with onset of mAD at age 14 (N=23) and healthy 

controls (N=424); B: Volume differences at age 14 between participants with future onset of 

GAD (N=42) and healthy controls (N=424).  

BLA: anxiety diagnosed at age 14; FUA: anxiety diagnosed at age 18-19 or age 22-23 follow-

ups; GAD: generalized anxiety disorder; mAD: multiple anxiety disorders, simultaneous or 

not. 

P<0.05 FWE-corr. Clusters >10 voxels reported. No significant volume difference was found 

between the FUA GAD and FUA mAD groups at age 14. 

 

2.3.4.2. Late adolescence/early adulthood anxiety onset 

At age 14, a larger volume in the caudate nucleus was detected bilaterally (pFWE = 0.017 for 

the left and 0.032 for the right hemisphere) in participants with future GAD compared to 

controls (see Figure 9B and Table 5B for details). Contrasting all FUA participants together 

(SpP, SoPh, PD/Ag, GAD and mAD) with healthy controls yielded no significant differences, 

and neither did separate SpP, SoPh, PD/Ag and mAD analyses. 

 

2.4. Discussion  

This is the first report of anxiety onset prediction in European adolescents at age 18-23, using 

regional gray matter volumes and clinical features obtained at age 14. The predictive value 

of gray matter volumes alone for future anxiety disorders was also investigated. Prediction 

performance was above chance level when all future anxiety diagnoses were pooled together, 

with the most contributing features being neuroticism and hopelessness scores. No 

Contrast Combined cluster-peak 

 k Region TFCE puncorr pFWE MNI coordinates 

      x y z 

A. BLA         

Mixed anxiety > controls 37 Periaqueductal gray 497.12 6.0e-4 0.039 0 -27 -15 

         

Controls > mixed anxiety  n.s.       

         

B. FUA         

GAD > controls 560 L. Putamen 608.17 2.0e-4 0.016 -18 12 8 

  L. Caudate 602.27 2.0e-4 0.017 -15 16 9 

 261 R. Caudate 521.66 4.0e-4 0.032 16 16 9 

         

Controls > GAD  n.s.       
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contribution of neuroimaging features in classical regions of interest for anxiety was found in 

the prediction of pooled anxiety disorders. However, bilateral caudate and pallidum volumes 

at age 14 were major contributors to the specific prediction of pure GAD at age 18-23, with 

larger volumes in both regions indicating future GAD diagnosis. Additionally, prediction of 

future multiple anxiety disorders (mAD) across late adolescence involved a larger 

periaqueductal gray volume.  

 

2.4.1. Predictive features for GAD, mAD and pooled diagnoses  

As there is no pre-existing prediction study of future anxiety in adolescents, our prediction 

performance can only be put in perspective with two recent predictions of prospective 

depression and bipolar disorder (AUROC = 0.72 and 0.76 respectively) (Hafeman et al., 

2017; Toenders et al., 2021). Indeed, using psychometric and neuroimaging features together, 

our prediction performance of pooled anxiety diagnoses was close (AUROC = 0.68), while 

our follow-up period was longer (8 years vs. 5 years follow-up in both studies). However, the 

performance should still be improved for prospective anxiety individual prediction to be 

clinically useful.  

Regional gray matter features showed no incremental contribution to the prediction of pooled 

anxiety in comparison with psychometric data alone in our analysis. Additionally, regional 

gray matter features alone were poorly predictive of pooled diagnoses or mAD (AUROC = 

0.52 and ≤ 0.50 respectively). One possible explanation for the lack of incremental accuracy 

could be the limited number of features used in our analysis (discussed in the limitations). 

Indeed, several predictive studies of anxiety using neuroimaging data report diffuse 

contributions to the prediction performance across the brain (Frick et al., 2014; Liu et al., 

2015; Lueken, Hilbert, et al., 2015; Xing, Fitzgerald and Klumpp, 2020). An alternative 

explanation could be that, although many neuroimaging similarities have been reported in 

clinical anxiety across diagnoses, heterogeneities remain between anxiety disorders 

(Shackman et al., 2013; Chavanne and Robinson, 2021). Herein, larger caudate and pallidum 

volumes were predictive of pure GAD, but reduced volumes of the same regions were 

predictive of mAD, and these volumes were among the most contributing features for a GAD 

vs. mAD prediction (Figure 8). This heterogeneity might explain why regional gray matter 

volumes alone were better predictors of a specific diagnosis like GAD (AUROC = 0.63). 
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The striatum is frequently overlooked in the anxiety literature in comparison to the amygdala, 

anterior insula, bed nucleus of the stria terminalis, hippocampus and vmPFC. However, its 

potential importance, particularly in the emergence of anxiety during adolescence, has been 

highlighted in the past (Lago et al., 2017), and striatal volumes have also been associated 

with the intolerance of uncertainty (Kim et al., 2017).  

Our findings are in line with that vision, and caudate and pallidum volumes were also 

significantly larger in future GAD participants compared with healthy controls in a voxel-

based morphometry group analysis (Figure 9B and Table 5B).  

Additionally, the periaqueductal gray was significantly larger in baseline mAD participants 

(see Figure 9B and Table 5B). We also found a significantly larger gray matter volume in the 

bilateral caudate of non-anxious participants at age 14 that were going to develop a 

generalized anxiety disorder (GAD) in the next 8 years (see Figure 9A and Table 5A). The 

periaqueductal gray is involved in defensive behaviour and pain processing but has also been 

implicated in fear, anxiety and anxious temperament for more than two decades despite being 

often eclipsed by other nodes such as the amygdala, vmPFC, and BNST (Graeff et al., 1993; 

Fox and Shackman, 2019). However, its predictive value to prospective mAD was only 

moderate in comparison to the psychometric questionnaires, when all 27 features were used.  

Neuroticism was the most predictive feature of future anxiety in the pooled anxiety sample. 

Still, although neuroticism was the psychometric subscale most relevant to anxiety in our 

dataset, it is not a plain measure of clinical severity and anxiety symptoms. Rather, 

neuroticism is a personality trait strongly associated with experiencing intense negative 

emotions and with internalizing disorders (Kotov et al., 2010; Hur et al., 2019). Herein, 

participants with mAD at age 18-23 had higher neuroticism and emotional symptoms mean 

scores at age 14 (before anxiety onset) than participants who were going to develop only one 

disorder. Our findings further confirm that neuroticism plays a role in anxiety onset during 

adolescence, perhaps denoting broad vulnerability to multiple anxiety disorders.  

Following decades of MRI and fMRI group analyses, machine-learning individual 

predictions with neurofunctional and neuroanatomical markers show promise as one of the 

next steps towards targeted monitoring and treatment of psychiatric disorders (Arbabshirani 

et al., 2017; Bzdok and Meyer-Lindenberg, 2018). The above-mentioned features most 

important to our prediction could contribute to the identification of a teenage population at 
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risk of developing anxiety disorders in the following years, and to an early detection of 

disease.  

 

2.4.2. Strengths 

Generalisability is a traditional issue in individual prediction, some concerns of which were 

addressed here. First, the IMAGEN cohort includes data from community adolescents 

collected from multiple acquisition sites across Europe and has an 8-years follow-up time that 

covers a window of vulnerability from teenage to young adulthood, leading to a good 

ecological validity. To our knowledge, IMAGEN is the largest neuroimaging cohort currently 

available spanning a period from puberty to early adulthood. Secondly, our machine-learning 

analysis included a state-of-the-art pipeline with appropriate nested cross-validation 

procedures to circumvent for the limited sample size and data imbalance. Our cross-validation 

strategy in particular was preferred over a more traditional K-fold one (see section 2.3.2.2) to 

capitalize on the multicentric nature of the IMAGEN dataset in an effort to improve the 

generalisability of prediction performance. Finally, SHAP was used to maximize 

interpretability. 

 

2.4.3. Limitations 

The sample sizes for anxiety disorder groups were the main limitation as a consequence of 

the long follow-up interval, and made separate prediction for social anxiety disorder, panic 

disorder with and without agoraphobia as well as specific phobia, impossible. In order to 

reduce the risk of overfitting with the limited sample sizes, we did not use nested feature 

selection (to avoid the risk of the algorithm selecting features based on very few GAD or 

mAD participants) and restricted our a priori selection to a small number of features (Hua et 

al., 2005). For the neuroimaging group-level analysis specifically, the limited patient sample 

size led to the use of covariates of no interest, such as depressive comorbidity, rather than 

exclusion. It must be noted that, as the database included no medication nor psychotherapy 

data at age 14, their potential confounding effects could not be considered. 

Regional gray matter features, which are of specific interest during adolescence, were chosen 

over neurofunctional data in our analysis and measures from both hemispheres were 

combined, but future studies are also encouraged to explore neurofunctional predictors of 
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anxiety onset whenever possible. One other possible limitation may be that IMAGEN 

participants were recruited in the general population and not through any clinical institution. 

It was, however, a necessary design to investigate prospective psychiatric disorders.  

The IMAGEN cohort was not designed for the investigation of clinical anxiety, particularly 

not at age 14, and, as such, does not include targeted and specific clinical constructs assessing 

overall and diagnosis-specific anxious severity, such as the LSAS for social anxiety 

(Heimberg et al., 1999). One could hypothesize that using questionnaires specific to clinical 

anxiety as features would improve the performance of both pooled and separate diagnosis 

prediction. Moreover, although the DAWBA, used to determine diagnostic status in the 

database, is a clinically valid diagnostic instrument (Goodman et al., 2000), it does not 

optimally assess the exact time of symptom onset. 

Finally, it must be noted that gender and site were not used as predictive features, despite the 

well-known gender difference in anxiety disorders (Donner and Lowry, 2013), as they were 

the initial balancing criteria between participants with anxiety and healthy groups. 

 

2.4.4. Conclusion 

The present study substantiates that clinical anxiety could be prospectively and individually 

predicted in teenagers using a multisite approach, albeit with moderate performance. 

Prediction performance showed that easily collected psychometric features, mainly 

neuroticism, hopelessness, and emotional symptoms at 14, greatly contributed to the 

prediction of pooled anxiety diagnoses. Thus, the present findings further support the idea 

that self-screening of these clinical features in teenagers could contribute to the early 

detection of anxiety disorders. Additionally, specific anxiety diagnosis prediction relied on 

some regional gray matter features such as striatal volumes, warranting further investigation 

of their involvement in developmental anxiety.  

The predictive value of structural neuroimaging in anxiety onset also encourages the 

investigation of additional MRI modalities in the prediction, such as task-based functional 

MRI data. 
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3. Anxiety onset prediction in adolescents using task-

based fMRI 

This section builds on the previous prediction analyses of anxiety onset in section 2 and 

investigates the putative predictive value of tb-fMRI in the IMAGEN dataset. 

 

3.1. Introduction  

Several task-based fMRI correlates of prospective anxiety symptoms have been reported in 

the literature, usually with a ROI-based approach. Ventromedial PFC response during a fear-

conditioning task was associated with anxiety symptoms up to 30-month later in participants 

aged 18-19, and amygdala-inferior frontal gyrus connectivity during emotional faces viewing 

was predictive of internalizing symptom increase 2 years later in 20 y.o. men (Gard et al., 

2018; Peng et al., 2022). In children, amygdala response to emotional faces was associated 

with negative affect 12 months later and separation anxiety symptoms up to 2 years later 

(Gaffrey, Barch and Luby, 2016; Green et al., 2016).  

One study conducted individual-level cross-sectional classification of patients with anxiety 

disorders vs. controls using tb-fMRI data from the whole brain during an emotional faces task 

in a sample of 6-8 y.o. children with Npatients= 22 (Sawalha et al., 2021). Although functional 

activation and connectivity are the most commonly investigated data modalities in the tb-

fMRI literature anxiety disorders, additional modalities could also provide predictive value, 

such as connectivity-derived graph metrics, which has been used to investigate functional 

network dysfunctions (Yang et al., 2019), and BOLD signal variability, which has recently 

garnered interest as an indicator of neural adaptability and efficacy (Månsson et al., 2022).  

To our knowledge, only one individual-level prediction of prospective anxiety using tb-fMRI 

has been attempted in adolescents, in which orbitofrontal-amygdala functional connectivity 

in a dot-probe task at age 7-17 were found to be predictive of social anxiety score a year later 

in a healthy adolescent N = 66 sample (Mao et al., 2020), and none was attempted in adults. 

To date, no individual-level prospective anxiety disorder onset prediction using tb-fMRI data 

in youth has been found in the literature.  

Therefore, the aim of this section was to predict prospective clinical anxiety at the individual 

level at ages 18 and/or 23, based on fMRI data during an emotional faces task at age 14 and. 
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This analysis was conducted under the a priori hypotheses that functional metrics such as 

activation, connectivity, connectivity-derived graph metrics and BOLD signal variance in 

subcortical and frontomedial regions might have predictive value for the onset of anxiety in 

adolescence.  

 

3.2. Methods 

3.2.1. Dataset and sample description 

As with the previous study (in section 2), all data originated from the IMAGEN database 

(Schumann et al., 2010). Written informed consent was obtained from all participants and 

their legal guardians. 

Diagnostic data were collected at baseline, at age 18-19 (first follow-up, FU1), and age 22-

23 (FU2) using the DAWBA (Goodman et al., 2000). These diagnoses were subsequently 

evaluated by trained clinicians, as previously described (Paillère Martinot et al., 2014). 

Alcohol and cannabis consumption were respectively evaluated using the AUDIT (and the 

ESPAD (Saunders et al., 1993; Molinaro et al., 2012). 

Participants with available functional MRI data of the face task (described below in section 

3.2.3) at baseline were assessed for eligibility in our analyses. Visual quality control was 

conducted for each fMRI scan and participants with excessive movement, signal dropout, or 

processing errors were excluded. Participants with AUDIT scores equal to or greater than 7 

at baseline were excluded (Kühn et al., 2019) (inclusion flowchart in Figure 10). 
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Figure 10: Inclusion flowchart.  

AUDIT: Alcohol Use Disorders Identification Test. 
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Participants with DAWBA anxiety diagnoses of GAD, SAD, SpP, PD, AG and other anxiety 

at baseline, FU1 or FU2 were included. They were subdivided between those who had at least 

one anxiety diagnosis at baseline (BLA) at age 14 (N=55, only used in a supplementary 

analysis), and future anxiety-onset participants, whose first anxiety diagnosis was reported at 

either FU1 or FU2 (future anxiety, FUA). FUA participants were then allocated to 5 mutually 

exclusive groups. Those who had only one anxiety disorder diagnosis at 18-23 (one stable 

diagnosis at both FU1 and FU2, or one diagnosis at either FU1 or FU2) were split into GAD, 

SAD, SpP and PD/AG diagnostic groups, while participants with multiple anxiety disorders 

(mAD) at any timepoint at ages 18 and/or 23 (i.e., two or more distinct anxiety diagnoses, 

simultaneous or not) were allocated to a mAD group (see Tables 6 and 7 for details about the 

FUA or BLA sample respectively).  

 

 

Table 6: Sample description at age 14 of participants with future anxiety.  

SpP: Specific phobia; SAD: social anxiety disorder; PD/Ag: panic disorder and/or 

agoraphobia; GAD: generalized anxiety disorder; HC: healthy controls; BLA: anxiety 

diagnosed at age 14. 

* p <0.05; Kruskal-Wallis test for continuous variables, Chi2 test for categorical variables.  
a Group included participants meeting criteria for at least two diagnoses (SpP, SoPh, PD/Ag, 

GAD, or other clinical anxiety (OA)), simultaneously or not: 47 participants had a first 

anxiety onset at FU1/FU2 (9 SpP, 27 SoPh, 20 PD/Ag, 28 GAD and 12 OA current or future 

diagnoses). 

 

Group SpP SAD PD/Ag GAD Multiple 

anxiety 

diagnoses
 a

 

Total 

FUA 

HC FUA 

vs. HC 

N participants 25 25 22 40 47 159 428  

N major or other 

depression diagnoses at 

age 14 

2 2 2  0 1 7   

Gender (m/f) 3/22 11/14 4/18 11/29 11/36 40/119 136/292 n.s. 

Age (years) 

(SD) 

14.6 

(0.5) 

14.4 

(0.4) 

14.4 

(0.3) 

14.4 

(0.3) 

14.4 

(0.5) 

14.4 

(0.4) 

14.4 

(0.4) 

n.s. 

 

AUDIT score 

(SD) 

1.3 

(1.7) 

0.9 

(1.5) 

2.0 

(1.9) 

1.2 

(1.8) 

1.3 

(1.4) 

1.3 

(1.6) 

0.9 

(1.5) 

1.1e-2* 

ESPAD-year score 

(SD) 

0.3 

(1.1) 

0.1 

(0.4) 

0 0.1 

(0.3) 

0.1 

(0.5) 

0.1 

(0.6) 

0.1 

(0.4) 

n.s. 

Neuroticism NEO score 

(SD) 

26.0 

(8.8) 

26.9 

(7.3) 

23.9 

(8.6) 

24.5 

(6.8) 

29.1 

(7.5) 

26.4 

(7.8) 

22.5 

(6.9) 

8.7e-8* 

Anxiety sensitivity 

SURPS score 

(SD) 

11.5 

(3.0) 

12.4 

(2.1) 

11.0 

(2.6) 

11.9 

(2.5) 

12.5 

(2.4) 

12.0 

(2.5) 

11.2 

(2.1) 

8.5e-3* 

SDQ emotional score 

(SD) 

3.8 

(2.6) 

3.4 

(2.3) 

2.6 

(2.5) 

3.2 

(1.7) 

4.3 

(2.2) 

3.6 

(2.3)  

2.5 

(1.9) 

1.4e-7* 
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PD and AG were combined because they are highly comorbid disorders (Kikuchi et al., 2005), 

and our sample size did not allow the investigation of standalone agoraphobia. Participants 

that had missing DAWBA data at FU1 or FU2 but did have one anxiety diagnosis at the other 

follow-up timepoint (FU2 or FU1 respectively) were included, as this latter criterion was 

sufficient for allocation to the FUA (32 participants) or BLA (24 participants) groups. A total 

of N = 156 FUA participants were available for prediction analyses. 

 

 

Table 7: Sample description at age 14 of participants with current anxiety.  

SpP: Specific phobia; SAD: social anxiety disorder; PD/Ag: panic disorder and/or 

agoraphobia; GAD: generalized anxiety disorder; HC: healthy controls; BLA: anxiety 

diagnosed at age 14. 

* p <0.05; Kruskal-Wallis test for continuous variables, Chi2 test for categorical variables.  
a Group included participants meeting criteria for at least two diagnoses (SpP, SoPh, PD/Ag, 

GAD, or other clinical anxiety (OA)), simultaneously or not: 24 participants had a first 

anxiety onset at baseline (10 SpP, 19 SoPh, 10 PD/Ag, 14 GAD and 3 OA current or future 

diagnoses). 

 

In the FUA group, data were collected in Berlin for N = 14 participants, in Dresden for N = 

16 participants, in Dublin for N = 16 participants, in Hamburg for N = 17 participants, in 

London for N = 32 participants, in Mannheim for N = 8 participants, in Nottingham for N = 

32 participants, and in Paris for N = 24 participants.  

Group SpP SAD PD/Ag GAD Multiple 

anxiety 

diagnoses
 a

 

Total 

BLA 

HC FUA vs. 

HC 

N participants 8 10 8 5 24 55 428  

N major or other 

depression diagnoses at 

age 14 

1 4 4  4 4 17   

Gender (m/f) 2/6 3/7 2/6 0/5 4/20 11/44 136/292 n.s. 

Age (years) 

(SD) 

14.3 

(0.3) 

14.4 

(0.4) 

14.3 

(0.2) 

14.2 

(0.3) 

14.3 

(0.4) 

14.3 

(0.4) 

14.4 

(0.4) 

n.s. 

 

AUDIT score 

(SD) 

0.8 

(1.2) 

0.7 

(1.3) 

0.8 

(1.0) 

2.4 

(1.7) 

1.2 

(1.7) 

1.1 

(1.5) 

0.9 

(1.5) 

n.s. 

ESPAD-year score 

(SD) 

0 

 

0 

 

0 0 0.0 

(0.2) 

0.0 

(0.1) 

0.1 

(0.4) 

n.s. 

Neuroticism NEO score 

(SD) 

27.1 

(11.0) 

31.8 

(5.8) 

35.0 

(7.1) 

27.4 

(8.3) 

32.5 

(6.0) 

31.5 

(7.4) 

22.5 

(6.9) 

2.9e-12* 

Anxiety sensitivity 

SURPS score 

(SD) 

11.6 

(2.9) 

12.6 

(2.0) 

11.8 

(2.4) 

12.8 

(2.2) 

13.0 

(2.8) 

12.5 

(2.5) 

11.2 

(2.1) 

5.6e-3* 

SDQ emotional score 

(SD) 

4.1 

(2.2) 

5.9 

(1.7) 

5.8 

(1.9) 

5.0 

(2.2) 

5.7 

(1.6) 

5.4 

(1.8)  

2.5 

(1.9) 

3.4e-17* 
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Among the 94 FUA participants that had a first anxiety diagnosis at FU1, 12 had the same 

anxiety disorder(s) diagnosed at FU2, 2 had the same diagnosis and one additional anxiety 

disorder diagnosed at FU2, 7 had a different anxiety diagnosis at FU2, 52 had no anxiety 

diagnosis at FU2, and 21 did not have clinical data at FU2. 

Eligible controls were typical adolescents with no DAWBA diagnosis at baseline, FU1 and 

FU2. Participants with incomplete DAWBA data at any timepoint were excluded from 

eligible controls. Then, we randomly selected controls amongst eligible participants to 

balance scanning acquisition sites and gender with participants with anxiety disorders by a 

2:1 ratio. Overall, 89.8 % of participants in the main analysis overlapped with the sample 

used previously (in section 2), including 91.1% of FUA participants and 89.3% of healthy 

control participants (in the supplementary analysis, 92.7% of BLA overlapped with the 

previous sample). 

 

3.2.2. MRI data acquisition  

IMAGEN MRI scans were obtained on 3T scanners (Siemens, Philips, General Electrics) 

across 8 European sites based on a Gradient‐Echo Echo‐Planar‐Imaging (GE‐EPI) sequences 

(matrix: 64 × 64 × 40; voxel size = 3.4 × 3.4 × 3.4 mm; slice thickness = 2.4 mm; TR = 2200 

ms; TE = 30 ms; flip angle = 75°). The full details of the acquisition protocol are described 

elsewhere (Schumann et al., 2010). Standardized hardware (goggles) for visual and auditory 

stimulus presentation (Nordic Neurolabs, Bergen Norway) was used. 

 

3.2.3. Face task 

The task involved passive viewing of short black‐and‐white videoclips (2-5 s) with actors 

displaying ambiguous facial expressions (emotionally neutral but including facial movement, 

e.g. nose twitching, opening mouth, blinking eyes) or angry facial expressions, and videoclips 

with nonbiological motion stimuli (i.e. control) (Grosbras and Paus, 2006). The control 

stimuli consisted of black- and white- concentric circles of various contrasts, expanding and 

contracting at various speeds, adapted from a previous study (Beauchamp et al., 2003). The 

videoclips were arranged into 19 blocks of 18s; each block included seven to eight videoclips 

(5 neutral blocks, 5 angry blocks, 9 control blocks). Neutral, angry and control conditions 

were intermixed, and the total task duration was 6 minutes. 
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3.2.4. Task-based fMRI features extraction 

Data preprocessing and processing steps described below were conducted for each participant 

individually. Initial visual quality control was conducted for overall image quality of raw 

functional scans, and participants with problematic (signal dropout, excessive motion) or 

missing scans were excluded (as mentioned in Figure 10). 

Task fMRI data were preprocessed with SPM12 and associated toolbox CONN (Whitfield-

Gabrieli and Nieto-Castanon, 2012). Functional volumes were realigned and unwarped, and 

potential outlier scans were detected in CONN with conservative parameters (i.e. flagging 

scans with within-subject global BOLD signal change ≥ 3 standard deviations or framewise 

displacement 0.5 mm). Volumes were then segmented and normalized onto MNI template 

space, then smoothed with 8 mm full width at half-maximum Gaussian kernel. Subjects with 

movement-correction realignment parameters ≥ 3.4 mm (initial voxel size) in any direction 

were excluded. Functional measures described below were extracted for a set of 30 bilateral 

anxiety-relevant ROIs derived from recent meta-analyses and reviews (Chavanne and 

Robinson, 2021), to restrict dimensionality of features for the main prediction analysis.  

ROIs for the fMRI data included the amygdala, hippocampus, anterior and posterior insula, 

periaqueductal gray, bed nucleus of the stria terminalis, the dorsal, pregenual and subgenual 

anterior cingulate cortex, as well as the dorsomedial, ventromedial, dorsolateral and 

orbitofrontal cortices (all were taken from the Brainnetome atlas (Fan et al., 2016) with the 

exception of periaqueductal gray, taken from Keuken et al. (Keuken et al., 2017), and bed 

nucleus of the stria terminalis, taken from Neudorfer et al. (Neudorfer et al., 2020)).  

Given that some of the previous literature reported widespread brain regions to have 

predictive value in anxiety disorder classification, an exploratory prediction analysis was also 

conducted in which functional measures were extracted for every ROI in the CONN default 

atlas, covering the whole brain (combining cortical and subcortical areas from the FSL 

Harvard-Oxford atlas and the AAL cerebellar areas for a total of 132 ROIs). 

 

3.2.4.1. Activation features 

Condition effects were modeled using the general linear model in SPM with separate 

conditions for angry faces, neutral faces, and control blocks. The six movement-correction 
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parameters from the realignment procedure were used as regressors of no interest. Default 

1st-level SPM analysis parameters were used. Three contrasts of interest were computed per 

subject (angry blocks vs. control blocks, neutral blocks vs. control blocks, angry blocks vs. 

neutral blocks). All SPM design matrixes and 1st-level activation maps for these contrasts 

were visually inspected to ensure that no errors in the functional preprocessing and 1st-level 

analysis, due to defective condition onset data or otherwise, had occurred. For each contrast 

per subject, the MarsBar toolbox (Brett et al., 2002) was then used to extract median effect 

sizes in every ROI, which were included as features.  

 

3.2.4.2. BOLD variance features 

All preprocessing described above was kept identical apart from smoothing, which was 

absent. According to (Garrett et al., 2010), realigned unwarped normalized unsmoothed 

volumes, as well as the 1st-level SPM model described above, were used as input in VarTbx 

(https://github.com/LNDG/vartbx) and a boxcar model was used to model the task design. To 

correct for block offsets from the concatenated blocks, all blocks were normalized to have a 

four-dimensional mean of 100. The block mean was then subtracted from each voxel, and 

detrended variance of each condition was extracted voxelwise, producing whole-brain BOLD 

variance maps. For the angry faces, neutral faces and control conditions, the MarsBar toolbox 

was then used to extract average variance in every ROI, which were included as features. 

 

3.2.4.3. Functional connectivity features 

Preprocessed functional volumes were denoised with the standard CONN pipeline (linear 

regression of potential confounding effects including noise components form cerebrospinal 

fluid and white matter, and temporal band-pass filtering [0.008 - 0.09 Hz]). ROI-to-ROI task-

modulated effective connectivity matrices were computed with generalized 

psychophysiological interaction (gPPI) for all ROIS both in the angry faces and neutral faces 

conditions and were included as features. 

 

3.2.4.3. Graph-theoretic connectivity features 

The above-mentioned gPPI matrices were used in the BCT toolbox (Rubinov and Sporns, 

2010). The gPPI matrices for angry and neutral faces (i.e. weighted directed graphs) were 

https://github.com/LNDG/vartbx


3. Anxiety onset prediction in adolescents using task-based fMRI 

62 

 

thresholded with r = 0.3 to avoid spurious edges. All global and ROI-specific metrics 

available in the toolbox for directed graphs were extracted (degree, strength, density, 

clustering coefficient, transitivity, global and local efficiency, assortativity, characteristic 

path length, betweenness centrality, K-coreness centrality, flow coefficient, as well as the 

fingerprint, intensity and coherence of structural and functional motifs), with the exception 

of communities-related metrics (due to the varying number of communities detected among 

subjects preventing their use as comparable predictive features), and included as features. 

 

3.2.5. Ensemble machine-learning prediction 

All prediction analyses were conducted with scikit-learn (version 0.24.2) in Python (version 

3.6.9). A binary classification prediction between FUA (N = 159) and healthy controls (N = 

428) was conducted using an ensemble learning approach, with six 1st-level classifiers each 

using different feature modalities (functional activation, gPPI connectivity for both angry and 

neutral faces, gPPI-derived graph-theoretic metrics, BOLD variance; see Figure 11) from 

which the output (i.e. predictions) was used as feature by a 2nd-level classifier, the latter 

producing the final prediction. A random shuffle cross-validation was repeated 100 times 

with an 80-20 train-test split used in every iteration, and included scaling, median imputation 

and feature selection using a logistic regression stochastic gradient descent learning classifier 

with mean feature importance as selection threshold (log-loss, Elastic Net penalisation, grid 

search tuning of l1 ratio between 0 and 1 with default 5-fold nested cross-validation, all other 

default classifier parameters were kept identical). All classifiers used were Random Forests 

(1000 estimators, out-of-bag score true, class weight balanced, all other default parameters 

kept identical). An alternative 2nd-level classifier (soft voting with sum of 1st-level 

predictions) was also examined for completeness. Additional control analyses were also 

conducted for male and female participants separately. 
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Figure 11: Ensemble machine-learning classification pipeline. 

RF: Random Forest; ROI: region of interest; gPPI: generalized psychophysiological 

interaction; MRI: magnetic resonance imaging; BOLD: blood-oxygen-level-dependent. 

Mean performance metrics across the 100 cross-validation folds are reported in the results 

section. A corrected resampled t-test (Nadeau and Bengio, 2003; Bouckaert and Frank, 2004) 

between the balanced accuracy of classifiers of interest and the one of a dummy classifier 

always predicting the majority class was used to investigate above-chance classification 

accuracies. 

 

To explore individual feature contribution to predictions, the Shapley additive explanation 

(SHAP) module was used (version 0.39.0) (Lundberg and Lee, 2017). SHAP uses a game 

theoretic approach to assign an importance value to each feature for an individual prediction.  
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3.3. Results 

3.3.1. 1st-level future anxiety onset prediction results  

The prediction analysis of future anxiety onset based on functional activation, gPPI 

connectivity, gPPI-derived graph metrics for both angry faces and neutral faces conditions 

and BOLD signal variance did not perform above chance level (balanced accuracy = 0.5 for 

all classifiers, AUROC ranging from 0.49 to 0.53) (Table 8, Figure 12A). No significant 

difference emerged between any 1st-level or 2nd-level classifier and the dummy classifier 

using the corrected resampled t-test.  

 

1st-level classifier Balanced accuracy (SD) AUROC (SD) 

Functional features extracted from a-priori selected 30 ROIs 

Functional activation 0.50 (0.01) 0.53 (0.05) 

Angry faces gPPI 0.50 (0) 0.50 (0.05) 

Neutral faces gPPI 0.50 (0) 0.51 (0.05) 

Angry faces graph measures 0.50 (0) 0.49 (0.05) 

Neutral faces graph measures 0.50 (0) 0.50 (0.05) 

BOLD variance 0.50 (0.01) 0.51 (0.05) 

Functional features extracted from ROIs across the whole brain (exploratory) 

Functional activation 0.50 (0) 0.48 (0.05) 

Angry faces gPPI 0.50 (0) 0.49 (0.05) 

Neutral faces gPPI 0.50 (0) 0.50 (0.05) 

Angry faces graph measures 0.50 (0) 0.48 (0.05) 

Neutral faces graph measures 0.50 (0) 0.47 (0.05) 

BOLD variance 0.51 (0.01) 0.53 (0.05) 

 

Table 8: Prediction results of the 1st-level classifiers of post-treatment response (N=159 

FUA vs N=428 healthy controls). 

ROI: region of interest; AUROC: Area under the receiving operator curve; gPPI: generalized 

psychophysiological interaction. 

*: p<0.05, corrected resampled t-test against the accuracy of a dummy classifier, two-tailed. 
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Figure 12: Area under the receiving operating curves for treatment outcome 

classification. 

A: 1st-level classification results; B: 2nd-level classification results. gPPI: generalized 

psychophysiological interaction.  

 

Female-specific prediction analyses yielded no 1st- or 2nd- level above-chance prediction 

performances, with all balanced accuracies = 0.50, AUC of 1st- level classifiers ranging from 

0.51 to 0.56, Male-specific prediction analyses yielded similar results for 1st-level, with all 

balanced accuracies = 0.50 and AUCs ranging from 0.48 to 0.55.  

The exploratory analysis in which functional features were derived from ROIs across the 

whole brain instead of an a-priori selected set resulted in nonsignificant prediction 
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performances, with all balanced accuracies = 0.50. The supplementary cross-sectional 

classification analysis of BLA participants vs. HC did not result in any above chance-level 

prediction, also with balanced accuracies = 0.50. 

 

3.3.2. 2nd-level future anxiety onset prediction results  

The 2nd-level classifiers using prediction probabilities of all 1st-level classifiers as input 

features failed to predict treatment outcome above chance level in the main prediction 

analysis (Figure 12B). The 2nd-level voting classifier prediction resulted in a balanced 

accuracy = 0.50 (SD = 0) and AUROC = 0.51 (SD = 0.05). The 2nd-level Random Forest 

classifier resulted in a balanced accuracy = 0.50 (SD = 0) and AUROC = 0.50 (SD = 0.01).  

Female-specific 2nd-level analyses yielded nonsignificant balanced accuracy = 0.50 (SD = 0) 

and AUCs = 0.57 (SD = 0.07) for the voting classifier, and balanced accuracy = 0.50 (SD = 

0) and AUC = 0.50 (SD = 0.03) for the Random Forest classifier. Male-specific 2nd-level 

analyses yielded balanced accuracy = 0.50 (SD) and AUC = 0.56 (SD = 0.09) for the voting 

classifier, and balanced accuracy = 0.50 (SD = 0) and AUC = 0.50 (SD = 0) for the Random 

Forest classifier. 

Comparable results were obtained with the exploratory analysis in which functional features 

were derived from ROIS across the whole brain instead of an a-priori selected set, with the 

voting classifier resulting in a balanced accuracy = 0.50 (SD = 0) and AUROC = 0.49 (SD = 

0.05), and the Random Forest classifier resulting in a balanced accuracy = 0.50 (SD = 0) and 

AUROC = 0.51 (SD = 0.01).  

 

3.4. Discussion 

The present section investigated the incremental predictive value of tb-fMRI data collected 

at age 14 for individual-level anxiety disorder onset prediction at age 18-23. Contrary to 

expectations, prediction performance did not go beyond chance-level for all distinct 

functional data modalities during an emotional faces task, including condition-specific 

activation, connectivity, connectivity-derived graph metrics and BOLD signal variance.  
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3.4.1. Perspective on prediction performance 

Despite previous studies reporting group-level and cross-sectional individual-level predictive 

value of tb-fMRI activation and connectivity for anxiety symptoms, the present findings did 

not support a predictive contribution of tb-fMRI in anxiety disorder onset prediction, using 

an emotional faces task.  

Several methodological aspects could have contributed to the chance-level predictive 

performances, including limitations intrinsic to the emotional faces task that was used, the 

feature selection strategy, or to possible heterogeneity of tb-fMRI correlates between 

participants with distinct future anxiety disorders (see limitations in 3.4.3.).  

To our knowledge, the only study investigating the cross-sectional predictive value of tb-

fMRI in youth anxiety disorders reported an accuracy of 0.81, but used a child sample of 

Npatients= 22 (Sawalha et al., 2021). The only study investigating prospective predictive value 

of tb-fMRI in youth anxiety symptoms reported r(predicted, observed) = 0.301 using a sample of 

Ntotal = 66 healthy adolescents (Mao et al., 2020). In both cases, sample sizes were small, and 

it was reported in the literature that prediction accuracies for classification based on medical 

imaging features appear to be decreasing as sample sizes increase, perhaps reflecting 

performance evaluation or cross-validation biases in the neuroimaging literature (Varoquaux, 

2018; Hosseini et al., 2020; Poldrack, Huckins and Varoquaux, 2020; Varoquaux and 

Cheplygina, 2022). Furthermore, our FUA sample size, although relatively large with respect 

to already-published studies, was still modest in terms of machine-learning methodology. 

Overall, given the exploratory nature of this work, and the lack of other tb-fMRI machine-

learning prediction of anxiety disorder onset in the literature, the predictive potential of fMRI 

data using an emotional face task cannot be ruled out. However, other fMRI tasks or 

neuroimaging modalities might be better able to bring incremental predictive value to the 

prediction of future anxiety disorder onset. For instance, as the gray matter volumes of striatal 

regions were found to be predictive of future GAD disorder in section 2 (see results in section 

2.3.2.1), fMRI metrics extracted from a task broadly targeted toward reward brain circuitry 

might provide some predictive value to for future GAD prediction in adolescence. 
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3.4.2. Strengths 

As in section 2.4.2, much of the strength of this analysis is intrinsic to the IMAGEN dataset, 

that includes data from community adolescents collected from multiple acquisition sites 

across Europe and has an 8-years follow-up time covering a window of vulnerability from 

teenage to young adulthood. Furthermore, our machine-learning analysis included a state-of-

the-art stacking pipeline with appropriate nested cross-validation procedures to circumvent 

for the limited sample size and data imbalance, designed to incorporate respective predictive 

contributions of distinct data modalities.  

 

3.4.3. Limitations 

Limitations inherent to the IMAGEN dataset, described in section 2.4.3, also apply in this 

analysis. Briefly, those include small diagnostic-specific sample sizes for anxiety disorder 

groups, the fact that IMAGEN participants were recruited in the general population and not 

through any clinical institution, and that the DAWBA, used to determine diagnostic status in 

the database, does not optimally assess the exact time of symptom onset. The long follow-up 

period (up to 8 years) Finally, as in section 2, it must be noted that gender and site were not 

used as predictive features, as they were the initial balancing criteria between participants 

with anxiety and healthy groups. 

Critically, our feature selection strategy precluded additional analyses specific to diagnostic 

subgroups, which would have small sample sizes (FUA PD/AG, SAD, and SpP all had N < 

30 participants, and GAD had N = 42), and induced loss of information in comparison to 

more fine-tuned, voxel-wise approaches, particularly for variance-based measures. However, 

this strategy was chosen to allow the exploration of various tb-fMRI data modalities in a 

number of selected ROIs while keeping a reasonable feature dimensionality. 

The emotional faces task was used in our analysis because emotional face processing tasks 

were the most commonly used tasks in previous literature investigating developmental 

anxiety tb-fMRI predictors (Gaffrey, Barch and Luby, 2016; Green et al., 2016; Sawalha et 

al., 2021; Peng et al., 2022). However, although it is a broadly ‘affective’ stimulus, emotional 

faces as presented during the task might not produce similar functional activation in 

participants with future SAD and in participants with future SpP for instance, thus possibly 

resulting in considerable heterogeneity between diagnostic subgroups.  
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3.4.4. Conclusion 

The present study found no evidence of the predictive potential of fMRI metrics during an 

emotional faces task, including activation, connectivity, connectivity-derived graph-

theoretical metrics or BOLD signal variance, for the prediction of anxiety disorder onset in 

adolescence. Further research could explore other tasks and other neuroimaging modalities 

in the search for incremental predictive value in anxiety disorder onset prediction. 

Additionally, tb-fMRI data might have predictive value for other clinically relevant 

predictions in anxiety disorders, such as psychotherapy response prediction. 
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4. Psychotherapy outcome prediction in spider 

phobia using structural MRI and task-based fMRI 

This section corresponds to the second publication of the thesis (Chavanne, Meinke, et al., 

2023), in the Depression and Anxiety journal. 

 

Abstract 

Machine-learning prediction studies have shown potential to inform treatment stratification, 

but recent efforts to predict psychotherapy outcomes with clinical routine data have only 

resulted in moderate prediction accuracies. Neuroimaging data showed promise to predict 

treatment outcome, but previous prediction attempts have been exploratory and reported 

small clinical sample sizes. Herein, we aimed to examine the incremental predictive value of 

neuroimaging data in contrast to clinical and demographic data alone (for which results were 

previously published), using a two-level multimodal ensemble machine-learning strategy. We 

used pre-treatment structural and task-based fMRI data to predict virtual reality exposure 

therapy outcome in a bicentric sample of N = 190 patients with spider phobia. First, eight 1st-

level Random Forest classifications were conducted using separate data modalities (clinical 

questionnaire scores and sociodemographic data, cortical thickness and gray matter volumes, 

functional activation, connectivity, connectivity-derived graph metrics and BOLD signal 

variance). Then, the resulting predictions were used to train a 2nd-level classifier that produced 

a final prediction No 1st-level or 2nd-level classifier performed above chance level except 

BOLD signal variance, which showed potential as a contributor to higher-level prediction 

from multiple regions across the brain (1st-level balanced accuracy = 0.63). Overall, 

neuroimaging data did not provide any incremental accuracy for treatment outcome 

prediction in patients with spider phobia with respect to clinical and sociodemographic data 

alone. Thus, we advise caution in the interpretation of prediction performances from small-

scale, single-site patient samples. Larger multimodal datasets are needed to further investigate 

individual-level neuroimaging predictors of therapy response in anxiety disorders. 
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4.1. Introduction 

Anxiety disorders are amongst the most prevalent mental disorders (Penninx et al., 2021) 

with a considerable burden of disease (GBD 2015 Disease and Injury Incidence and 

Prevalence Collaborators, 2016). Current response rates to cognitive-behavioural therapy 

(CBT) as a first-line treatment average at 50% or lower for most anxiety disorders (Hofmann 

et al., 2012; Loerinc et al., 2015). Prospectively distinguishing treatment-responding from 

nonresponding patients could help guide clinical decisions and improve prognosis (Bzdok, 

Varoquaux and Steyerberg, 2021). Machine-learning approaches can predict at the 

individual-level on unseen samples, and are well-suited for predicting individual therapeutic 

outcomes, particularly with the high-dimensional data collected in clinical research and 

practice (Fusar-Poli et al., 2018, p. ). A promising literature of machine-learning outcome 

prediction has emerged across mental disorders (see (Chekroud et al., 2021) for a general 

review), including a rapidly increasing number of psychotherapy outcome prediction studies 

(Vieira et al., 2022).  

However, recent large-scale efforts to predict individual-level psychotherapy treatment 

outcomes for patients with anxiety disorders based on routine clinical data alone resulted only 

in moderate prediction accuracies (Hilbert et al., 2020; Hornstein et al., 2021; Leehr et al., 

2021). Neuroimaging data has shown promise to predict treatment outcomes for patients with 

anxiety disorders in previous attempts, but those have been exploratory and reported small 

clinical sample sizes (Chekroud et al., 2021).  

To our knowledge, two studies conducted individual CBT outcome prediction using task-

based fMRI in patients with panic disorder (Hahn et al., 2015; Sundermann et al., 2017), three 

in patients with social anxiety disorder (Månsson et al., 2015, 2022; Frick et al., 2020), and 

one in a mixed sample of patients with panic disorder or generalized anxiety disorder (Ball et 

al., 2014) (see (Vieira et al., 2022) for a recent review). However, no study had a sample with 

N > 60. It has been reported that studies using small sample sizes present a considerable risk 

for overestimating prediction performance, in part because they are limited to much less 

robust cross-validation schemes (Varoquaux et al., 2017; Varoquaux, 2018, p. ; Flint et al., 

2021). A recent review encouraged the use of larger sample sizes to disentangle the 

contribution of neuroimaging data to psychotherapy response prediction from the effect of 

small sample sizes on reported prediction performance (Vieira et al., 2022). 
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In all but one of the above-mentioned CBT outcome prediction studies, predictive features 

were extracted from symptom-related fMRI tasks. Indeed, symptom-related task-based 

functional activation and connectivity are commonly used in anxiety disorders studies and 

they, along with structural MRI, have been associated with prospective treatment response of 

patients with anxiety disorders at the group level (see (Santos et al., 2019) for a review). 

Graph-theoretical measures derived from functional connectivity, reported to have overall 

good reproducibility (Welton et al., 2015), have also been used in recent years for fine-tuned 

investigation of functional network dysfunctions in anxiety disorders (Yang et al., 2019; Guo 

et al., 2021). Additionally, BOLD signal variability measures have recently been reported as 

promising individual-level predictors for therapeutic outcomes in anxiety disorders (Månsson 

et al., 2015, 2022).  

Therefore, the aim of the present study was to build upon previous literature using a fairly 

large, bicentric and clinically well-characterized sample of patients with spider phobia to 

investigate the incremental performance of structural MRI and symptom-related task-based 

fMRI measures over routine clinical data in predicting psychotherapy outcome with a state-

of-the-art ensemble machine-learning pipeline. We hypothesized that structural and task-

based (f)MRI measures would predict post-treatment and 6-month follow-up psychotherapy 

outcomes significantly beyond chance level, and that an ensemble approach using clinical, 

sociodemographic and neuroimaging modalities would produce higher predictive 

performance than clinical and sociodemographic data alone. 

 

4.2. Methods 

4.2.1. Dataset and sample description 

The bicentric clinical study SPIDER-VR was part of the Transregional Collaborative 

Research Centre 58 “Fear, Anxiety, Anxiety Disorders” (clinical trial registration at 

clinicaltrials.gov: NCT03208400). It includes a sample of untreated patients with spider 

phobia according to DSM-IV criteria (Diagnostic and statistical manual of mental disorders 

(4th ed.), 1994) aged 18-65 without major comorbidities (low to moderate depression was 

tolerated unless currently treated, as well as other animal phobias) and with a total Spider 

Phobia Questionnaire (SPQ) (Klorman et al., 1974) score > 19 (clinical cut-off). See 

(Schwarzmeier et al., 2019) for a complete study description, and (Böhnlein et al., 2021; 
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Leehr et al., 2021; Siminski et al., 2021; Roesmann, Elisabeth Johanna Leehr, Böhnlein, et 

al., 2022; Roesmann, Toelle, et al., 2022) for other studies using the SPIDER-VR data. 

Bicentric recruitment was conducted in Würzburg (WÜ) and Münster (MS), Germany. The 

SPIDER-VR study protocol has been reviewed by the Ethics Committees of the Medical 

Faculties of Münster University (proposal 216-212-b-S) and Würzburg University (proposal 

330/15), and written informed consent was obtained from all participants.  

Clinical and neuroimaging data were acquired before treatment. Patients were then invited 

for a one-session virtual reality exposure therapy (VRET) and primary outcome 

(responder/non-responder status at post-treatment and at 6-month follow-up [FU]) was based 

on a 30% SPQ score reduction between pre-treatment and post-treatment or FU respectively.  

Of note, clinical effects of VRET and prediction results based only on sociodemographic and 

clinical data using the original sample of SPIDER-VR patients (N = 171 for the prediction) 

have been previously published (Leehr et al., 2021). Herein, we investigate the incremental 

value of neuroimaging data using an extended sample of SPIDER-VR patients (due to the 

continuation of patient recruitment in MS). In this extended sample, N = 211 patients had 

complete post-treatment data, but twelve did not have available functional MRI data, three 

were excluded for structural MRI artefacts or abnormalities, five were excluded due to 

substantial movement during the task, and one was excluded due to absent visual activation 

(see section 4.2.4 below for quality control details). Thus, N = 190 patients in total (81.6 % 

overlap with the sample in (Leehr et al., 2021)) were included for analysis at post-treatment 

(see Table 1 for sample description). Primary treatment response (30% SPQ score reduction 

between pre-treatment and post-treatment) was observed in 54% of patients. A sample 

description of follow-up responders and non-responders is presented in Table 10 (see section 

4.3.3 for prediction analyses on primary outcome at follow-up). 
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Table 9: Pre-treatment sample description of post-treatment responders and non-

responders.  

Statistical tests were two-sided t-test for continuous variables and chi-squared tests for 

categorical variables. WÜ: Würzburg; MS: Münster; SPQ: Spider Fear Questionnaire; LSAS: 

Liebowitz Social Anxiety Scale; ASI-3; Anxiety Sensitivity Scale 3; STAI: State-Trait 

Anxiety Inventory; BDI-II: Beck Depression Inventory II; UI-18: Unsicherheitsintoleranz 

(intolerance of uncertainty) 18 scale; PROMIS = Patient-Reported Outcomes Measurement 

Information System (PROMISPHO: specific phobia); FEAS: Fragebogen zur Ekel und Angst 

vor Spinnen (questionnaire regarding disgust and fear of spiders); FAS: Fragebogen zur Angst 

von Spinnen (questionnaire regarding the fear of spiders); BAT: Behavioural avoidance test. 

 

 Post-treatment 

responders 

Post-treatment  

non-responders 

p-value 

Variables N =103 N=87  

Demographic characteristics at pre-treatment 

 

Gender (m/f) 13/90 12/75 n.s. 

Site distribution WÜ:54 

MS:49 

WÜ:29 

MS: 58 

1.3e-2* 

Age (SD) 26.6 (7.5) 30.4 (9.9) 3.6e-3* 

Years of education (SD) 14.6 (3.0) 14.5 (3.0) n.s. 

Clinical characteristics at pre-treatment 

 

Age of onset spider phobia (SD) 7.2 (4.6) 6.4 (4.6) n.s. 

Comorbid depression (%) 3 (2.9) 3 (3.4) n.s. 

SPQ (SD) 20.8 (3.5) 19.9 (4.2) n.s. 

LSAS (SD) 22.4 (16.0) 26.1 (18.6) n.s. 

ASI-3 (SD) 14.6 (7.0) 16.2 (8.1) n.s. 

STAI trait (SD) 34.7 (8.4) 35.8 (8.2) n.s. 

BDI-II total (SD) 3.0 (3.6) 3.3 (3.9) n.s. 

UI-18 (SD) 37.5 (12.4) 39.9 (13.3) n.s. 

Promis specific phobia (SD) 11.3 (8.4) 11.0 (8.9) n.s. 

FEAS anxiety (SD) 102.3 (13.5) 100.6 (10.8) n.s. 

FAS (SD) 83.6 (12.7) 83.3 (11.7) n.s. 

Final BAT distance (cm) (SD) 175.7 (61.4) 158.1 (69.2) n.s. 

Post-treatment 

 

SPQ (SD) 

 

 

13.2 (2.4) 

 

17.8 (2.0) 

 

< 2.2e-16* 

Follow-up 

 

SPQ (SD) 

 

 

12.2 (2.8) 

 

15.3 (3.2) 

 

1.5e-10* 
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Table 10: Pre-treatment patient sample description of follow-up responders and 

nonresponders 

Continuous variables with two-sided t-test. Categorical variables with chi-squared test. WÜ: 

Würzburg; MS: Münster; SPQ: Spider Fear Questionnaire; LSAS: Liebowitz Social Anxiety 

Scale; ASI-3; Anxiety Sensitivity Scale 3; STAI: State-Trait Anxiety Inventory; BDI-II: Beck 

Depression Inventory II; UI-18: Unsicherheitsintoleranz (intolerance of uncertainty) 18 scale; 

PROMIS = Patient-Reported Outcomes Measurement Information System (PROMISPHO: 

specific phobia); FEAS: Fragebogen zur Ekel und Angst vor Spinnen (questionnaire 

regarding disgust and fear of spiders); FAS: Fragebogen zur Angst von Spinnen 

(questionnaire regarding the fear of spiders); BAT: Behavioural avoidance test. 

 

 Follow-up responders Follow-up non-

responders 

p-value 

Variables 

 

N=143 N=40  

Demographic characteristics at pre-treatment 

 

Gender (m/f) 19/124 5/35 n.s. 

Site distribution WÜ: 67 

MS: 76 

WÜ: 16 

MS: 23 

n.s. 

Age (SD) 28.6 (9.2) 27.9 (8.1) n.s. 

Years of education (SD) 

 

14.7 (3.0) 14.7 (3.0) n.s. 

Clinical characteristics at pre-treatment 

 

Age of onset spider phobia (SD) 7.2 (4.7) 6.2 (4.4) n.s. 

Comorbid major depression n%   n.s. 

SPQ (SD) 20.3 (3.9) 20.9 (3.8) n.s. 

LSAS (SD) 23.8 (17.3) 26.3 (18.3) n.s. 

ASI-3 (SD) 15.0 (7.4) 16.3 (8.4) n.s. 

STAI trait (SD) 34.6 (8.3) 37.9 (7.9) n.s. 

BDI-II total (SD) 2.9 (3.4) 4.3 (4.5) n.s. 

UI-18 (SD) 37.5 (12.4) 42.5 (14.1) 4.6e-2* 

Promis specific phobia (SD) 11.1 (8.8) 10.7 (7.6) n.s. 

FEAS anxiety (SD) 101.9 (11.7) 100.7 (14.8) n.s. 

FAS (SD) 83.2 (12.6) 85.2 (10.7) n.s. 

Final BAT distance (cm) (SD) 

 

169.1 (67.2) 165.5 (60.6) n.s. 

Post-treatment 

 

SPQ (SD) 

 

 

14.5 (3.1) 

 

17.8 (1.9) 

 

1.8e-12* 

Follow-up 

 

SPQ (SD) 

 

 

12.4 (2.6) 

 

17.7 (1.6) 

 

< 2.2e-16* 
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4.2.2. MRI data acquisition  

The full acquisition procedure is described in (Schwarzmeier et al., 2019). Briefly, all scans 

were obtained with 3T MRI scanners (WÜ: Siemens Skyra, MS: Siemens Prisma). A 

structural T1 dataset was collected using an MPRAGE acquisition sequence (256 × 256 × 

176 matrix, FOV = 256, voxel size = 1 × 1 × 1 mm, TE = 2.26 ms [WÜ], TE = 2.28 ms [MS], 

TR = 1.9 s [WÜ], TR = 2.13 s [MS], flip angle = 9° [WÜ], flip angle = 8° [MS]). Functional 

images were collected with a T2* weighted EPI sequence in ascending order (64 × 64 × 33 

matrix, FOV = 210, voxel size = 3.3 × 3.3 × 3.8 mm, slice thickness = 3.8 mm, 10% slice 

gap, TE = 30 ms [WÜ], TE = 29 ms [MS], TR = 2.0 s, flip angle = 90°). Slices covered the 

whole brain and were positioned transaxially parallel to the anterior–posterior commissural 

line with a tilted angle of 20°. Stimuli were presented via MR‐compatible LCD goggles (WÜ) 

or via a back‐projection monitor (MS).  

 

4.2.3. Sustained and Phasic Fear (SPF) task 

The SPF task is a suitable paradigm to measure activation in relevant networks for fear 

processing, and has been used in previous literature to detect significant differences of 

functional activation in patients with spider phobia compared to non-anxious controls during 

both phasic fear and sustained fear conditions (Münsterkötter et al., 2015). Of note, analyses 

of the activation patterns during sustained and phasic fear in patients with spider phobia 

revealed increased anterior cingulate cortex activation during sustained rather than phasic 

fear, whereas amygdala and insula activation were of particular relevance for phasic fear 

processing (see Breede et al., in prep.). Though lacking a healthy control group, these results 

can be seen in line with the results in (32).  

The task employed a block design including 15 active and 14 inactive blocks. During inactive 

blocks, a fixed dot was displayed on the middle of the screen for 15s. Active blocks included 

10 successive trials in which a picture was shown for 1.7s and followed by 300ms of fixation 

dot. Each active block was followed by an inactive block. Active blocks were split between 

three fear conditions in pseudorandomized order: 1) a sustained fear condition, during which 

participants were informed that a spider could appear; pictures of empty rooms were shown 

and in three of the five sustained fear blocks, a spider was shown instead of an empty room in 

the last quarter of the block, 2) a phasic fear condition in which participants were told they 
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would see spiders and were shown spider pictures, and 3) a no fear (safety) condition during 

which participants were shown pictures of empty rooms. After each active block, participants 

had to rate their experience from very pleasant to very unpleasant. The total task duration was 

9:45 min.  

 

4.2.4. Feature extraction 

Sociodemographic, clinical, structural MRI and fMRI data were used as features, and each is 

described in detail below. The fMRI data provided phasic and sustained fear activation, 

BOLD variance and functional connectivity features, and graph-theoretical features were then 

derived from functional connectivity matrices.  

 

4.2.4.1. Sociodemographic data and clinical questionnaires 

The pre-treatment sociodemographic and clinical features included in the prediction analysis 

were previously described in (Leehr et al., 2021). Briefly, they included age, gender, years of 

education, age at phobia onset, family history of mental health conditions, comorbidities, 

lifetime suicidal intent, smoking, consumption of alcohol, cannabis and coffee, distance and 

salience of a standardized behavioural avoidance test (a live bird spider was placed in a closed 

box that patients had to drag as close as possible to themselves), as well as sum scores and 

subscales of a battery of anxiety-relevant questionnaires.  

The complete list of questionnaires used for the clinical and sociodemographic classifier 

included: Specific Phobia Questionnaire (Klorman et al., 1974), Anxiety Sensitivity Index 

(Kemper, Ziegler and Taylor, 2009), Liebowitz Social Anxiety Scale (Heimberg et al., 1999), 

Uncertainty Intolerance questionnaire (Gerlach, Andor and Patzelt, 2008), State-Trait 

Anxiety Inventory (Laux L, no date), Questionnaire regarding the fear of spiders (Fragebogen 

zur Angst vor Spinnen) (Rinck M, Bundschuh S, Engler S, Muller A, Wissmann J, Ellwart T, 

Becker ES, 2002), Questionnaire regarding the disgust and fear of spiders (Fragebogen zu 

Ekel und Angst vor Spinnen) (Schaller E., Gerdes A., Alpers G. W., no date), Positive And 

Negative Affect Schedule (Krohne HW, Egloff B, Kohlmann CW, Tausch A, 1996), Penn 

State Worry Questionnaire (Stöber, 1998), Social Phobia and Anxiety Inventory (Fydrich T, 

no date), Agoraphobic Cognitions Questionnaire (Ehlers A, Margraf J, Chambless, 2001), 

Beck Depression Inventory (Hautzinger M, Keller F, Kühner C, 2006), General scale of 
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depression (Allgemeine Depressionsskala) (Radloff, 1977), Short questionnaire about 

stresses and strains (Kurzer Fragebogen zur Belastungen) (Flor H., no date), Patient-Reported 

Outcome Information System (Cella et al., 2010), Beck Anxiety Inventory (Beck et al., 1988), 

Brief COPE (Carver, 1997), Childhood Trauma Questionnaire (Bernstein et al., 1994), 

General Self-Efficacy scale (Schwarzer R. & Jerusalem M., 1995). 

 

4.2.4.2. Structural MRI data 

Structural data processing and quality control were conducted with Freesurfer (Fischl et al., 

2002) in accordance with ENIGMA protocols (https://enigma.ini.usc.edu/protocols/imaging-

protocols/). Total intracranial volume was extracted, cortical surface area and cortical 

thickness were extracted for 68 cortical ROIs of the Desikan-Killiany atlas (Desikan et al., 

2006), and volume was extracted for 16 subcortical ROIs from the Freesurfer automatic 

segmentation (Fischl et al., 2002). A visual control was conducted for segmentation failure 

or substantial over- or underestimation and the data from the affected regions were excluded. 

 

4.2.4.3. Task-based fMRI data 

Data preprocessing and processing steps described below were conducted for each subject 

individually. Initial visual quality control was conducted for structural and functional data 

and subjects with excessive noise, motion artefacts or abnormal brain anatomy were excluded 

(as mentioned above, N = 3 were excluded for structural MRI artefacts or abnormalities, N= 

5 were excluded due to substantial movement during the task).  

Task fMRI data were preprocessed with SPM12 and associated toolbox CONN (Whitfield-

Gabrieli and Nieto-Castanon, 2012). Functional volumes were realigned and unwarped, and 

potential outlier scans were detected in CONN with conservative parameters (i.e. flagging 

scans with within-subject global BOLD signal change ≥ 3 standard deviations or framewise 

displacement 0.5 mm). Volumes were then segmented and normalized onto MNI template 

space, then smoothed with 8 mm full width at half-maximum Gaussian kernel. Subjects with 

movement-correction realignment parameters ≥ 3.3 mm (initial voxel size) in any direction 

were excluded. The absence of occipital visual activation in the active vs. inactive blocks 

contrast was also an exclusion criterion. As in section 3.2.3, Functional measures described 

below were extracted for a set of 30 bilateral anxiety-relevant ROIs derived from recent meta-

https://enigma.ini.usc.edu/protocols/imaging-protocols/
https://enigma.ini.usc.edu/protocols/imaging-protocols/
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analyses and reviews (Santos et al., 2019; Chavanne and Robinson, 2021), to restrict 

dimensionality of features for the main prediction analysis.  

ROIs for the fMRI data included the amygdala, hippocampus, anterior and posterior insula, 

periaqueductal gray, bed nucleus of the stria terminalis, the dorsal, pregenual and subgenual 

anterior cingulate cortex, as well as the dorsomedial, ventromedial, dorsolateral and 

orbitofrontal cortices (all were taken from the Brainnetome atlas (Fan et al., 2016) with the 

exception of periaqueductal gray, taken from Keuken et al. (Keuken et al., 2017), and bed 

nucleus of the stria terminalis, taken from Neudorfer et al. (Neudorfer et al., 2020)).  

Given that some of the previous literature reported widespread brain regions to have 

predictive value in psychotherapy outcome prediction (Hahn et al., 2015), an exploratory 

prediction analysis was also conducted in which functional measures were extracted for every 

ROI in the CONN default atlas, covering the whole brain (combining cortical and subcortical 

areas from the FSL Harvard-Oxford atlas and the AAL cerebellar areas for a total of 132 

ROIs). 

 

Activation features 

Condition effects were modeled using the general linear model in SPM with separate 

conditions for phasic fear, sustained fear, no fear, instructions, rating and inactive blocks 

separately to map the entire experimental space. The six movement-correction parameters 

from the realignment procedure were used as regressors of no interest. Default 1st-level SPM 

analysis parameters were used. Three contrasts of interest were computed per subject (phasic 

fear vs. no fear, sustained fear vs. no fear, and active blocks vs. inactive blocks). For each 

contrast per subject, the MarsBar toolbox (Brett et al., 2002) was then used to extract median 

effect sizes in every ROI, which were included as features.  

 

BOLD variance features 

BOLD variance features were extracted according to (Garrett et al., 2010) using the 1st-level 

SPM model described above and VarTbx (https://github.com/LNDG/vartbx), just as in the 

previous study (section 3.2.4.2). For the phasic fear, sustained fear and no fear conditions, the 

MarsBar toolbox was then used to extract average variance in every ROI, which were 

included as features. 

https://github.com/LNDG/vartbx
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Functional connectivity features 

As described in section 3.2.4.3, ROI-to-ROI task-modulated effective connectivity matrices 

were computed with generalized psychophysiological interaction (gPPI) using CONN for all 

ROIS both in the phasic fear and sustained fear conditions and were included as features. 

 

Graph-theoretic connectivity features 

As described in section 3.2.4.4, the above-mentioned gPPI matrices for phasic and sustained 

fear were used in the BCT toolbox (Rubinov and Sporns, 2010) to extract all global and ROI-

specific metrics available in the toolbox for directed graphs, with the exception of 

communities-related, and included as features. 

 

4.2.5. Ensemble machine-learning prediction 

4.2.5.1. Post-treatment outcome ensemble prediction 

All prediction analyses were conducted with scikit-learn (version 1.1.1) in Python. A binary 

classification prediction between responders (N = 103) and nonresponders (N = 87) at 

posttreatment was conducted using an ensemble learning approach, with eight 1st-level 

classifiers each using different feature modalities (demographic and clinical questionnaires, 

functional activation, gPPI connectivity for both phasic and sustained fear, gPPI-derived 

graph-theoretic metrics, BOLD variance; see Figure 13) from which the output (i.e. 

predictions) was used as feature by a 2nd-level classifier, the latter producing the final 

prediction. As with the previous study (see section 3.2.5 for details), a random shuffle cross-

validation was repeated 100 times with an 80-20 train-test split, included scaling, median 

imputation and feature selection using a logistic regression stochastic gradient descent 

learning classifier. All classifiers used were Random Forest, and an alternative 2nd-level 

classifier (soft voting) was also examined. The prediction analysis code, as well as the code 

for neuroimaging measures extraction, has been made freely available online 

(https://github.com/avchavanne/SpiderPhobia_Treatment_response_prediction_multimodal)

. 

https://github.com/avchavanne/SpiderPhobia_Treatment_response_prediction_multimodal
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Figure 13: Ensemble machine-learning classification pipeline. 

RF: Random Forest; ROI: region of interest; gPPI: generalized psychophysiological 

interaction; MRI: magnetic resonance imaging; BOLD: blood-oxygen-level-dependent. 

 

The corrected resampled t-test (Nadeau and Bengio, 2003; Bouckaert and Frank, 2004) was 

again used to investigate classification accuracies, and the SHAP module (Lundberg and Lee, 

2017) to explore individual feature contribution to predictions.  
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4.2.5.2. Follow-up outcome ensemble prediction 

Sustained treatment outcome (30% SPQ score reduction between pre-treatment and FU) after 

6 months was also analysed, including N = 183 patients with a response rate of 78%. 

Additional prediction analyses were conducted with an identical classification pipeline and 

features to the main analysis, to investigate the prospective prediction of responders (N = 

143) vs. non-responders (N = 40) at FU. 

 

4.2.5.3. Supplementary prediction strategies 

With all other parameters kept identical, prediction analyses were re-performed a posteriori 

using a decision tree classifier as feature selection (with scikit-learn default parameters) 

instead of the gradient descent learning classifier. 

The prediction analyses were also re-performed using alternative structural data, which was 

re-extracted from all subjects using the CAT12 toolbox (https://neuro-jena.github.io/cat//). 

Regional cortical thickness and gyrification were extracted from the Destrieux atlas, 

alongside regional volumes from the neuromorphometrics atlas.  

 

4.3. Results 

4.3.1. 1st-level post-treatment outcome prediction results  

The main prediction analysis of post-treatment outcome based on demographic and clinical 

questionnaires resulted in a balanced accuracy = 0.60 (SD = 0.07) and AUROC = 0.64 (SD = 

0.08) (Table 11, Fig. 14A). No significant difference emerged between the sociodemographic 

and clinical classifier and the dummy classifier using the corrected resampled t-test.  

The main prediction analysis based on structural MRI measures, functional activation, gPPI 

connectivity, gPPI-derived graph metrics for both phasic and sustained fear conditions and 

BOLD signal variance did not perform above chance level (balanced accuracy ranging from 

0.48 to 0.55, AUROC ranging from 0.48 to 0.59).  
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Table 11: Prediction results of the 1st-level classifiers of post-treatment response (N=103 

responders vs N=87 non-responders). 

ROI: region of interest; AUROC: Area under the receiving operator curve; gPPI: generalized 

psychophysiological interaction. 

*: p<0.05, corrected resampled t-test against the accuracy of a dummy classifier, two-tailed. 

1st-level classifier Balanced accuracy (SD) AUROC (SD) 

Functional features extracted from a-priori selected 30 ROIs 

Demographic and questionnaire data 0.60 (0.07) 0.64 (0.08) 

Structural MRI 0.51 (0.07) 0.51 (0.08) 

Functional activation 0.48 (0.08) 0.48 (0.09) 

Phasic fear gPPI 0.52 (0.06) 0.53 (0.08) 

Sustained fear gPPI 0.51 (0.06) 0.55 (0.08) 

Phasic fear graph measures 0.52 (0.07) 0.54 (0.08) 

Sustained fear graph measures 0.54 (0.07) 0.56 (0.09) 

BOLD variance 0.55 (0.07) 0.59 (0.08) 

Functional features extracted from ROIs across the whole brain (exploratory) 

Demographic and questionnaire data 0.60 (0.07) 0.64 (0.08) 

Structural MRI 0.51 (0.07) 0.51 (0.08) 

Functional activation 0.51 (0.06) 0.52 (0.08) 

Phasic fear gPPI 0.49 (0.05) 0.49 (0.10) 

Sustained fear gPPI 0.49 (0.05) 0.49 (0.09) 

Phasic fear graph measures 0.48 (0.06) 0.50 (0.07) 

Sustained fear graph measures 0.47 (0.06) 0.49 (0.08) 

BOLD variance 0.63* (0.07) 0.67 (0.08) 
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Figure 14: Area under the receiving operating curves for treatment outcome 

classification. 

A: 1st-level classification results; B: 2nd-level classification results. gPPI: generalized 

psychophysiological interaction.  

 

The exploratory prediction analysis, in which functional features were derived from ROIs 

across the whole brain instead of an a-priori selected set, produced similar results except for 

the 1st-level BOLD signal variance classifier, which resulted in a balanced accuracy = 0.63 

(SD = 0.07) and AUROC = 0.67 (SD = 0.08) (Table 11, Figure 15A). A significant 

performance difference was found between the BOLD variance classifier and the dummy 

classifier using the corrected resampled t-test (p = 0.041). 
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Figure 15: Area under the receiving operating curves for treatment outcome 

classification using functional features extracted for regions of interest across the whole 

brain. 

A: 1st-level classification results; B: 2nd-level classification results. gPPI: generalized 

psychophysiological interactions.  

 

Features that contributed most to this variance classifier prediction varied across conditions 

and brain regions, including for instance BOLD variance in the right supramarginal gyrus, 

left parahippocampal and angular gyri, and left intracalcarine cortex (Figure 16).  
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Figure 16: Shapley (SHAP) values and feature importance of the 1
st
-level variance 

classifier in the responder (N = 103) vs. nonresponder (N = 87) prediction using 

functional features across ROIs covering the whole brain. 

Positive SHAP values indicate a contribution of feature value in favour of the positive class 

prediction (future responder), negative Shapley values are in favour of the negative class 

prediction (future non-responder). Larger absolute Shapley values indicate larger impact on 

the model output. The 20 most contributing features are shown, ranked in decreasing order 

of mean absolute SHAP value. Horizontal violin plots on the left represent the distribution of 

all individuals in the test set across all cross-validation iterations. For each feature, relative 

values are represented on the left by a colour gradient. 

 

4.3.2. 2nd-level post-treatment outcome ensemble prediction results 

The 2nd-level classifiers using prediction probabilities of all 1st-level classifiers as input 

features failed to predict treatment outcome above chance level in the main prediction 

analysis (Figure 14B). The 2nd-level voting classifier prediction resulted in a balanced 

accuracy = 0.55 (SD = 0.06) and AUROC = 0.61 (SD = 0.07). The 2nd-level Random Forest 

classifier resulted in a balanced accuracy = 0.54 (SD = 0.07) and AUROC = 0.58 (SD = 0.08).  

Comparable results were obtained with the exploratory analysis in which functional features 

were derived from ROIS across the whole brain instead of an a-priori selected set, with the 
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voting classifier resulting in a balanced accuracy = 0.54 (SD = 0.06) and AUROC = 0.62 (SD 

= 0.08), and the Random Forest classifier resulting in a balanced accuracy = 0.52 (SD = 0.06) 

and AUROC = 0.58 (SD = 0.08) (Figure 14B).  

 

4.3.3. Follow-up outcome ensemble prediction results 

The main prediction analysis of follow-up treatment primary outcome based on any modality 

(functional activation, demographic and clinical data, functional connectivity gPPI and gPPI-

derived graph metrics, structural measures, BOLD variance) did not perform above chance 

level (balanced accuracy = 0.5 for all 1st-level classifiers, AUROC ranging between 0.47 and 

0.56). Similarly, both soft voting and Random Forest 2nd-level classifiers did not predict 

follow-up treatment outcome above chance level (balanced accuracy = 0.5 (SD = 0) for both, 

AUROC = 0.49 (SD = 0.11) and 0.5 (SD = 0.02) respectively). 

The exploratory prediction analysis resulted in similar results, with no performance above 

chance level from any 1st- or 2nd-level classifier. 

 

4.3.4. Supplementary machine-learning predictions 

Re-performing the analyses using a non-linear (decision tree) classifier to select features did 

not impact prediction performance (AUROC of 1st-level classifiers ranging between 0.48 and 

0.64; balanced accuracy between 0.49 and 0.60; 2nd-level voting classifier AUROC = 0.59 

(SD = 0.09), balanced accuracy = 0.55 (SD = 0.07); 2nd-level Random Forest classifier 

AUROC = 0.58 (SD = 0.08), balanced accuracy = 0.55 (SD= 0.07)). No significant 

differences were found between prediction performances of the 1st- or 2nd-level classifiers 

and the dummy classifier using the corrected resampled t-test. 

Re-performing the analyses using CAT12-extracted regional thickness and gyrification as 

structural data resulted in a 1st-level AUROC = 0.62 (SD = 0.08), balanced accuracy = 0.56 

(SD = 0.06) (corrected resampled t-test p = 0.56). The 2nd-level voting classifier using 

prediction probabilities of all 1st-level classifiers as input features resulted in an AUROC = 

0.64, (SD = 0.08), balanced accuracy = 0.56 (SD = 0.06) (p = 0.48). The 2nd-level Random 

Forest classifier resulting in an AUROC = 0.60 (SD = 0.08), balanced accuracy = 0.56 (SD = 

0.06) (p= 0.71). 
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4.4. Discussion 

The present study investigated the incremental predictive value of neuroimaging data in 

comparison with clinical data alone for individual-level psychotherapy outcome prediction in 

patients with spider phobia. Contrary to expectations, prediction performance did not go 

beyond chance-level for all distinct data modalities except BOLD variance, and the 

contribution of (f)MRI measures to the prediction did not outperform clinical and 

sociodemographic data alone. At post-treatment, clinical questionnaires and BOLD signal 

variance derived from ROIs across the whole brain showed potential to contribute to higher-

level ensemble prediction with a balanced accuracy of 0.60 and 0.63 respectively. No 

predictive contribution was found for any data modality at follow-up. 

 

4.4.1. Perspective on prediction performance 

Overall, our findings challenge the existing literature reporting above-chance predictive 

accuracies for machine-learning psychotherapy outcome prediction using neuroimaging data 

in patients with anxiety disorders (Ball et al., 2014; Hahn et al., 2015; Månsson et al., 2015, 

2022; Whitfield-Gabrieli et al., 2016; Sundermann et al., 2017; Frick et al., 2020). However, 

they echo a more recent body of methodological work underlining that, despite initial promise 

in the field, prediction accuracies for patient classification based on medical imaging features 

appear to be decreasing as sample sizes increase, perhaps reflecting unwitting biases in 

performance evaluation, overhyping and cross-validation error bars in the neuroimaging 

literature (Varoquaux, 2018; Hosseini et al., 2020; Poldrack, Huckins and Varoquaux, 2020; 

Varoquaux and Cheplygina, 2022). The importance of general sample size and the size of test 

sets in particular to guard against misestimation of prediction accuracy was underlined in a 

study using a very large sample of patients with depression to mimic small-scale sampling 

results in machine-learning classification using structural neuroimaging (Flint et al., 2021). 

In line, another recent prospective prediction of pharmacotherapy outcome in a relatively 

large sample of patients with depression using baseline cross-sectional functional MRI 

connectivity yielded no prediction above chance level, although using changes in connectivity 

from baseline to week two as predictive features instead yielded accuracies up to 0.696 

(Harris et al., 2022). This study pointed out that many previous studies reporting high 

classification or prediction accuracies were based on single-site, small samples of patients 

that do not generalize well, and that although more heterogeneous and larger multisite 
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datasets may yield lower prediction performances, they were more representative of the target 

population. While our sample was bicentric and fairly larger than previously published 

studies, it is not large per machine-learning standards. Efforts to collaboratively build 

multisite samples with very large sizes, such as the ENIGMA consortium initiative 

(Thompson et al., 2020), should be bolstered to address this recurring concern. Performance 

of machine-learning models can also vary depending on the initial choice of various 

prediction pipeline elements, and can also be affected by the incorporation of distinct data 

modalities in the prediction. 

The clinical demographic classifier showed close performance to a previous prediction study 

using the original SPIDER-VR sample (Leehr et al., 2021), however it was not significantly 

above chance level in our study (possible causes include distinct balancing and cross-

validation strategies between the two studies, and the use of an extended sample herein). The 

BOLD variance classifier did reach above-chance predictive performance on its own at post-

treatment in our exploratory analysis with features extracted from ROIs across the whole 

brain, but with moderate performance. It could be a promising contributor to 2nd-level 

prediction alongside other feature modalities. Indeed, in the field of neuroimaging, interest in 

BOLD signal variability has been increasing with mounting evidence that it could be a 

promising correlate of cognitive performance with good measurement reliability, of a more 

flexible brain state allowing more accurate processing, complementary to the traditional 

BOLD signal mean (Garrett et al., 2011; Garrett, Kovacevic, et al., 2013; Garrett, Samanez-

Larkin, et al., 2013). Regional BOLD signal variability has been related to regional functional 

integration in the whole-brain network (Garrett et al., 2018), and inter-regional BOLD signal 

variability was closely associated with inter-regional functional connectivity (Baracchini et 

al., 2023). BOLD signal variability has also been reported to differ significantly between 

patients with generalized anxiety disorder and healthy controls in widespread brain regions, 

with a non-linear relationship between anxiety level and variability, showing promise as a 

potential clinical biomarker (Li et al., 2019).  

Critically, given the recent and sparse literature in the predictive value of BOLD variability 

both in resting-state and task-based fMRI in anxiety disorders (Månsson et al., 2015, 2022), 

our study supports further investigation of BOLD variability as a predictive feature of clinical 

outcome.  
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Additionally, other psychological, neuroimaging and biological measures could also be 

explored for individual-level predictive purposes. For instance, early response to 

psychotherapy is a well-established group-level predictor of post-treatment response in 

patients with internalizing disorders (Bradford et al., 2011; Lutz et al., 2014; Schlagert and 

Hiller, 2017; Rech et al., 2020; Roesmann, Elisabeth J. Leehr, Böhnlein, et al., 2022), and 

early functional connectivity variation during psychotherapy was also reported to be 

predictive of individual-level clinical outcome (Harris et al., 2022). The promise of ecological 

momentary assessments to measure symptom dynamics and inform clinical decisions in 

patients with anxiety disorders has been recently underlined (Lutz et al., 2018; Robinaugh et 

al., 2020).  

Epigenetic markers have also been noticed as promising group-level prospective biomarkers 

for psychotherapy response in patients with stress-related and anxiety disorders in the recent 

literature (Schiele, Gottschalk and Domschke, 2020).  

Based on our results as well as the mentioned previous literature, we encourage caution in the 

interpretation of promising neuroimaging prediction results with small patient sample sizes. 

Further investigation with large and multisite samples is still needed to elucidate the potential 

contribution of (f)MRI measures to the prediction of anxiety disorders therapy response. 

 

4.4.2. Strengths 

The clinical outcome prediction was based on targeted, anxiety-specific standardized 

questionnaires and on multimodal MRI data, including both structural as well as several 

functional neuroimaging measures. Additionally, our investigation included a state-of-the-art 

machine-learning pipeline designed to incorporate respective predictive contributions of 

distinct data modalities, and to maximize feature interpretability. 

 

4.4.3. Limitations 

As in section 3, limitations to our study include the ROI-based approach, which induced loss 

of information in comparison to voxel-wise approaches, particularly for variability-based 

measures, but was necessary to keep a more reasonable feature dimensionality.  
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Our sample also included quite homogeneous spider phobic patients without major 

comorbidities, and might not be fully representative of a diverse clinical population of 

patients with anxiety disorders. It was, however, crucial for the internal validity to investigate 

clinical effects of VRET in previous SPIDER-VR publications.  

 

4.4.4. Conclusion 

The present study found no evidence of incremental contribution of structural MRI and 

symptom-relevant task-based fMRI measures to psychotherapy outcome prediction in a fairly 

large and bicentric sample of patients with spider phobia, with the exception of BOLD signal 

variance which performed moderately above chance. As such, our findings invite further 

investigation of BOLD signal variability as a contributor to higher level prediction. However, 

even the BOLD signal variability prediction performance was lower than in previous single-

site, small-sample literature. Thus, the present study also warrants caution in interpreting 

previous small-scale psychotherapy outcome prediction studies and underline the need for 

larger, multisite and multimodal datasets to further examine the predictive contribution of 

neuroimaging measures to psychotherapy response in anxiety disorders.  
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5. General discussion and perspectives 

The present doctoral work leveraged supervised machine-learning approaches to 

prospectively predict risk of onset and therapeutic outcome in anxiety disorders, using 

neuroimaging data. In particular, this work investigated the potential individual-level 

predictive value of structural MRI and tb-fMRI during adolescence in the prediction of 

anxiety disorder onset 4 to 8 years later (sections 2 and 3), and in the prediction of 

psychotherapeutic response for patients with spider phobia (section 4). Given the paucity of 

longitudinal investigations of anxiety onset as well as treatment non-response, and in light of 

the importance of such investigations for prevention, early identification, and treatment 

stratification, this doctoral work is of particular interest to both researchers and clinicians. 

The studies yielded the following main findings: Regarding the prediction of future pooled 

anxiety disorder, findings resulted in above-chance predictive performances for psychometric 

and questionnaire data, but MRI and tb-fMRI data did not show any predictive contribution 

on their own. However, for the subgroup-specific future GAD prediction, both questionnaires 

and structural MRI data showed modest predictive value separately, and predictive 

performance was increased when both data modalities were used in the same prediction. The 

prediction of psychotherapy outcome in spider phobia did not yield any above-chance 

prediction results using sociodemographic and questionnaire data, nor MRI and fMRI data 

except for BOLD signal variance, which yielded modest predictive performance.  

Overall, findings in sections 2, 3 and 4 point to a moderate to nonsignificant individual-level 

predictive value of structural MRI and tb-fMRI data extracted from ROIs classically involved 

in clinical anxiety, despite an abundant group-level literature. Section-specific results are 

discussed in detail in the corresponding sections, and an overarching discussion is presented 

below, including methodological considerations on mental health machine-learning 

prediction using neuroimaging data, and an overview of additional biomarkers of anxiety with 

potential to complement multimodal prediction approaches. 
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5.1. Methodological considerations 

5.1.1. Sample size, multisite consortia and generalisability 

Sufficient sample sizes are crucial to discover robust brain-behaviour associations. This has 

been a regular concern in neuroimaging group-level literature, recently underlined in a review 

recommending that thousands of participants and multivariate strategies should be used to 

obtain replicable results (Marek et al., 2022). However, this review largely focused on rs-

fMRI studies. A wave of responses has emerged, defending the potential utility of samples in 

the hundreds (Cecchetti and Handjaras, 2022; DeYoung et al., 2022), especially in the case 

of structural MRI and tb-MRI (Makowski et al., 2023), and emphasized the importance of 

maximizing the generalisability of findings, which is not always guaranteed by sample size 

alone (Rosenberg and Finn, 2022). Although datasets with thousands of subjects are 

obviously costly and may not always be required to produce reproducible research, data 

collected in multiple sites is essential to improve ecological validity of findings. 

Multisite samples from the general population with large to very large sizes, such as the 

UKBIOBANK (https://biobank.ndph.ox.ac.uk/), the Adolescent Brain Cognitive 

Development (ABCD) study (Casey et al., 2018), and IMAGEN (Schumann et al., 2010), 

have emerged in the past 15 years. The former is one of the largest biomedical databanks in 

the world, and the latter two are longitudinal datasets with children or adolescent data. The 

ENIGMA consortium initiative (Thompson et al., 2020) is also a very large collaborative 

effort of pooling neuroimaging and genetic data across projects and laboratories worldwide. 

Furthermore, neuroimaging datasets of patients with anxiety disorders have also emerged via 

multicentre randomized controlled clinical trials, such as PANIC-NET (Gloster et al., 2009), 

PROTECT-AD (Heinig et al., 2017) and SPIDER-VR (Schwarzmeier et al., 2019), to address 

specific clinical prediction questions. The increasing availability of larger-scale 

neuroimaging and clinical datasets will allow for sophisticated machine-learning approaches 

and collaborative efforts should continue to be bolstered in that direction.  

This doctoral work, through the use of the IMAGEN and SPIDER-VR datasets, was 

conducted within this multisite framework, thus improving the ecological validity and 

generalisability of our findings. However, it bears repeating that the available sample sizes of 

both datasets were still quite modest in terms of machine-learning methodology, and, in the 

case of IMAGEN, prevented diagnosis-specific predictions for all disorders but GAD. As 
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such, it remains essential to determine how replicable the present findings are, as well as those 

from earlier literature. 

 

5.1.2. Sample diversity 

Another complex obstacle to the generalisability of neuroscience findings is the gap between 

a heterogenous general population and the limited representativity and inclusivity of 

experimental samples, even larger ones (Kopal, Uddin and Bzdok, 2023). This potential 

mismatch between the distribution in the population used to identify a biomarker and the 

distribution in the target population that should benefit from it, is also a well-known problem 

in machine-learning prediction (Dockès, Varoquaux and Poline, 2021). Field-standards and 

availability of research funding have constrained the inclusion of marginalized communities 

in neuroscience studies, including individuals with low socio-economic status as well as racial 

and ethnic minorities (Edmiston and Juster, 2022; Garcini et al., 2022; Ricard et al., 2023). 

Frequent methodological problems have also been identified in the LGBT (lesbian, gay, 

bisexual and transgender) neuroimaging literature (Levin et al., 2023). It is difficult to even 

quantify the depth and scope of the inclusion problem, as race and ethnicity were reported 

10% of the time or less in MRI studies (Sterling et al., 2022). Building large and diverse 

multisite datasets through collaborations and consortia does tackle at least some of these 

issues. However, further effort still has to be undertaken in the field. Notably, several 

recommendations to improve scientific practices in fair and appropriate ways at multiple 

levels, from interpersonal to systemic, have emerged in the literature (Falk et al., 2013; 

Rowley and Camacho, 2015; Garcini et al., 2022). They include, but are not limited to, 

involving community partners in study planning, using culturally sensitive methods, and 

ensuring that some of the research staff is from a similar background as the target population.  

This doctoral work was based on already-collected large datasets in which race and ethnicity 

were not fully documented, although the IMAGEN project explicitly aimed to recruit 

Caucasian participants, to maximise ethnic homogeneity for genetic studies (Schumann et al., 

2010). The lack of documentation is at least partly attributable to European and national 

regulations (e.g. race and ethnicity data collection is prohibited by French law, and even the 

collection of proxy data is very heavily constrained). As such, the samples used herein are 

vulnerable to an overrepresentation of participants of European ancestry with higher socio-
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economic status, which is a general bias in the neuroimaging literature (Henrich, Heine and 

Norenzayan, 2010), and findings may generalize less well to underrepresented populations.  

 

5.1.3. Clinical heterogeneity and clinical constructs 

A recent review emphasized that, while moving to larger consortia datasets could help address 

concerns of small samples sizes and inadequate statistical power, it would still have limited 

impact unless the precision of psychopathology phenotyping is improved (Tiego et al., 2023). 

Indeed, although the traditional psychiatric nosology framework is based on practical 

interests to help clinical decision-making (Kraepelin, 1992; American Psychiatric 

Association, 2013), the overlapping symptoms between disorders, the manifestation of most 

disorders on a continuum (instead of a binary diagnosis), and the substantial heterogeneity 

within disorders make the investigation of biological mechanisms underlying mental health 

conditions challenging (Markon, Chmielewski and Miller, 2011; Feczko et al., 2019). As 

clinical phenotypes may often have multidimensional and hierarchical structures, different 

subsets of individuals might have different biological mechanisms driving one same 

diagnosis, and biological measures might differ between subsets. Psychometric assessments 

may also lack coverage (i.e. phenotypic resolution) on the lower end of symptom 

questionnaire scales where most individuals in non-clinical cohorts from the general 

population will score, which could be problematic to investigate individual differences even 

in large consortia (Tiego et al., 2023).  

These limitations have sparked the RDoC initiative (Insel et al., 2010) and, more recently, 

the HiTOP model (Kotov et al., 2017) (see Figure 15 for both), including specific 

considerations for youth psychopathology (Forbes et al., 2023). Leveraging both RDoC and 

HiTOP approaches has potential to bring the field closer to bio-behaviourally and 

psychometrically grounded nosology (Michelini et al., 2021). It is important to note, 

however, that a richer phenotyping with higher dimensionality also warrants careful feature 

reduction steps for data used in machine-learning prediction (Bzdok, Nichols and Smith, 

2019). 
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Figure 15: RDoc and HiTOP (Michelini et al., 2021).  

A: the RDoC matrix includes six domains (rows) and their respective constructs, which can 

be characterized on the basis of eight units of analysis (columns). B: HiTOP dimensions span 

from super-spectra (more general) to symptoms components and maladaptive traits (more 

specific). Dashed lines indicate provisional elements requiring more study. DSM diagnoses 

mapping onto more than one HiTOP spectrum or subfactor are listed in multiple places. (−) 

indicates negative association between histrionic personality and the Detachment spectrum. 

ADHD: attention-deficit/hyperactivity disorder; DSM: Diagnostic and Statistical Manual of 

Mental Disorders; GAD: generalized anxiety disorder; IED: intermittent explosive disorder; 

MDD: major depressive disorder; OCD: obsessive–compulsive disorder; ODD: oppositional 

defiant disorder; PD: personality disorder; PTSD: posttraumatic stress disorder. 

 

Alternatively, data-driven approaches have emerged to tackle heterogeneity in 

psychopathology by distinguishing putative subtypes, using both supervised models, 
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unsupervised clustering, and hybrid methods incorporating both (Feczko et al., 2019). 

Normative modelling is another data-driven conceptual framework that consists in the 

longitudinal modelling of biological variation across either a large healthy sample or the 

general population (including healthy and clinical samples), thus allowing to relate deviation 

from the biological norm to clinical symptoms (Marquand et al., 2016, 2019) (Figure 16). 

Normative deviation features have shown promise to be better than the corresponding raw 

neuroimaging measures at distinguishing patients with schizophrenia from controls in both 

group-level and individual-level benchmarks (Rutherford et al., 2022, 2023). They have also 

started to shed light on the considerable within-group heterogeneity in neuroimaging that is 

usually obscured by case-control frameworks in schizophrenia and bipolar disorder (Wolfers 

et al., 2021), attention deficit disorder (ADHD) (Wolfers et al., 2020) and autism (Zabihi et 

al., 2020).  

Although the IMAGEN sample used in this doctoral work was clinically heterogeneous, the 

SPIDER-VR sample, due to internal validity constraints to investigate clinical effects of 

VRET in previous publications, included quite homogeneous spider phobic patients that 

might not be fully representative of a diverse clinical population. Furthermore, predictions 

herein were articulated around traditional DSM-IV diagnoses for both samples, thus 

regrouping individuals with potentially different underlying symptoms and biological driving 

mechanisms. The limited contribution of neuroimaging features to anxiety-relevant 

predictions in our findings and to depression predictions in other recent large-scale work 

(Winter et al., 2022) further supports the implementation of initiatives such as RDoC, HiTOP 

and data-driven alternatives in mental health research. Overall, various efforts to move 

beyond case-control designs and to tackle the long-standing problem of clinical heterogeneity 

in meaningful ways are ongoing, and may contribute to prospective individual-level 

prediction of anxiety-relevant symptoms in the close future. 

 

5.1.4. Machine-learning considerations and alternatives to supervised 

learning for MRI data 

One of the core components of machine-learning is the systematic use of cross-validation, 

which is one of the suggested approaches to enhance generalisability of neuroimaging 

findings (Rosenberg and Finn, 2022). However, cross-validation does not completely protect 

against overinflated results and unrepresentative samples. It was noted that, contrarily to 
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expectations, prediction accuracy generally decreased in studies using larger sample sizes in 

the neuroimaging machine-learning literature (Varoquaux, 2018), and that small-sample 

studies (N < 50) tended to report highly variable prediction performance estimates, suggesting 

a risk of overoptimistic claims in the neuroimaging literature (Poldrack, Huckins and 

Varoquaux, 2020). The importance not only of sample size, but of test set size, to protect 

against overinflated estimation of predictive performance was recently underlined (Flint et 

al., 2021). Furthermore, pernicious overfitting was also shown to occur despite the use of 

cross-validation through a phenomenon termed overhyping, which is overfitting due to the 

(typically unintentional) manual adjustment of analysis hyperparameters, a problem akin to 

multiple testing (Hosseini et al., 2020; Radua and Koutsouleris, 2023). This is a possible 

explanation for the moderate to chance-level prediction performances obtained from 

neuroimaging data in our analyses, both for anxiety onset and therapeutic outcome 

predictions, contrastingly to earlier smaller-scale work. Based on the findings in this doctoral 

work, we further encourage caution in the interpretation of optimistic small-scale predictive 

performances using neuroimaging data. 

Deep learning is a fast-developing field that could provide alternative machine-learning 

classification approaches. The availability of very large neuroimaging consortia has made 

possible the use of deep learning to investigate brain-based phenotype predictions. However, 

evidence that deep learning yields improved performance compared to supervised learning 

for neuroimaging-based classification is yet unclear (He et al., 2020; Schulz et al., 2020). 

Deep learning models require much larger sample sizes (likely tens of thousands of 

observations) to be fully trained and with a much higher computational cost, in comparison 

with supervised learning (Radua and Koutsouleris, 2023). They are also considerably more 

complex, which makes their interpretability challenging (Scheinost et al., 2019), although 

post-hoc methods such as LIME (Ribeiro, Singh and Guestrin, 2016) or SHAPley (Lundberg 

and Lee, 2017) can provide some insight to feature contribution, similarly to nonlinear 

supervised machine-learning approaches.  

A recent meta-analysis reported that deep learning approaches showed generally improved 

predictive performance in comparison with supervised machine-learning when applied to 

psychiatry-relevant cross-sectional predictions, but noted several methodological concerns in 

the studies reviewed, including a risk of publication bias in favour of deep-learning findings 

(Quaak et al., 2021). Some other promising findings emerged recently, such as the (not yet 

peer-reviewed) prospective prediction of anxiety, depression and somatic symptom disorders 
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at ages 11-12 using MRI, fMRI and psychosocial data collected at ages 9-10 in N = 5355 

youth from the ABCD cohort, with an accuracy = 0.933 for anxiety onset prediction, and 

accuracy = 0.75 for the same prediction using only neuroimaging data (Lacy and Ramshaw, 

2023). Overall, deep learning methods have shown some promise in better predicting 

psychiatry-relevant outcomes compared with more simple learning approaches, but evidence 

is mixed and methodological challenges remain. Transfer learning, also termed pre-training, 

which consists in re-using the knowledge gained by a model in a task for another related task 

or problem, could be one way of reducing the sample size requirements of deep learning 

(Koppe, Meyer-Lindenberg and Durstewitz, 2021; Kalmady et al., 2022). 

Large multisite consortia are also facilitating prediction analyses based on multimodal data, 

which have been postulated to be a good candidate to bridging the gap to clinical utility 

(Koutsouleris et al., 2021; Dwyer and Koutsouleris, 2022). A recent review also underlined 

the necessity of multimodal data integration using machine-learning in the search for robust 

markers of treatment response in anxiety (Khosravi et al., 2022). Overall, the limited success 

of using single neuroimaging data modalities and brain markers previously identified at 

group-level to predict individual-level anxiety onset or therapeutic response, as was further 

demonstrated in this doctoral work, encourages the field to move towards multimodal data-

based predictions to improve predictive accuracy. 

 

5.2. Non-MRI brain markers of anxiety 

MRI is by far the most commonly explored neuroimaging data modality in anxiety disorders, 

but some promising findings have emerged from non-MRI neuroimaging approaches. For 

example, several studies have used electroencephalography (EEG) to cross-sectionally 

predict either anxiety symptoms in a non-clinical N = 97 sample (Kato et al., 2022), or classify 

patients with anxiety disorders vs. healthy controls (Park et al., 2021; Shen et al., 2022). One 

other study used error-related negativity, which is a robust group-level EEG marker of anxiety 

(Moser et al., 2013), to prospectively predict GAD onset over 1.5 years in N = 457 adolescent 

girls (Meyer et al., 2018). A recent review also underlined the potential of error-related 

negativity in youth as a developmental risk marker for anxiety (Meyer, 2022). 

Functional near-infrared spectroscopy (fNIRS) studies have also yielded some putative 

group-level markers of pathological anxiety (Rosenbaum et al., 2020; Kir et al., 2021; 
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Papasideris, Ayaz and Hall, 2021; Zhang et al., 2022), and one study used fNIRS data to 

cross-sectionally predict state anxiety levels using machine-learning (Duan et al., 2020). To 

our knowledge, no prospective prediction has been attempted in anxiety using fNIRS data, 

and fNIRS findings remain exploratory.  

Overall, both EEG and fNIRS hold some promise to produce anxiety-relevant biomarkers 

with predictive value. However, although they are less expensive approaches to extract brain 

measures in comparison with MRI, EEG and fNIRS currently lack the sample sizes available 

with existing large-scale MRI consortia, and efforts to build large-scale collaborations should 

be bolstered.  

 

5.3. Beyond the brain: other potentially predictive markers of 

anxiety 

Neuroimaging data, and MRI data in particular, can usually only be collected in experimental 

settings and is expensive. In the search for incremental predictive value, prediction analyses 

using multimodal data are progressively developing. To this end, various other non-invasive 

markers have recently shown potential to predict cross-sectional or prospective outcomes in 

anxiety, an overview of which is presented below. 

 

5.3.1. Genetic and epigenetic data 

An abundant literature has investigated group-level genetic markers of anxiety, which are 

believed to be polygenic, with small effect sizes from common genetic variants (Meier and 

Deckert, 2019). Twin studies have yielded heritability estimates ranging around 30-50% for 

anxiety disorders (Hettema, Neale and Kendler, 2001). However, although genome-wide 

association studies (GWAS) have identified several variants associated with susceptibility to 

both binary anxiety disorders and anxiety symptom dimensions, many were not significant at 

the meta-analytic level and/or lacked replication in larger studies (Shimada-Sugimoto, Otowa 

and Hettema, 2015; Meier and Deckert, 2019). Epigenetic and epigenome-wide studies have 

become increasingly popular in the past decade and have also yielded promising anxiety-

relevant markers, mostly DNA methylation patterns (Schiele and Domschke, 2018). Modest 

genetic and epigenetic group-level correlates of psychotherapeutic response have been 
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identified in small samples of patients with anxiety disorders (Coleman et al., 2016; Lueken 

et al., 2016; Schiele, Gottschalk and Domschke, 2020). 

A few attempts to predict anxiety at the individual level using genetic markers have emerged. 

One study used circadian genes expression profiles to cross-sectionally predict anxiety 

symptom score (Zafar et al., 2022). Another study used genetic markers, alongside 

neuroimaging data, to predict CBT response in patients with SAD, but sample size of genetic 

data was limited and no predictive contribution of genetic data was found (Frick et al., 2020). 

To our knowledge, no study has yet investigated the predictive value of epigenetic data in 

anxiety, which could be a promising complementary research avenue to predictions using 

genetic and other multimodal data.  

 

5.3.2. Physiological biomarkers and wearables 

Various physiological biomarkers have been associated with anxiety disorders or anxiety 

symptoms at group-level, including, but not limited to, gut microbiota composition (Simpson 

et al., 2020), cortisol levels, skin conductance, heartrate variability (HRV) (Chesnut et al., 

2021), gait (Feldman et al., 2019) and sleep patterns (Pastre and Lopez-Castroman, 2022), 

with some mixed evidence and heterogeneous directions of effects. Physiological measures 

collected at regular intervals via wearable assessments, such as HRV or sleep patterns, show 

potential as a means to help detect symptoms and allow for a window of possible preventive 

intervention before they escalate to full-fledged disorders (Gomes et al., 2023). 

Several studies have investigated the predictive value of physiological markers for anxiety 

using machine-learning. For example, two studies used gait data to cross-sectionally predict 

anxiety symptom scores (Zhao et al., 2019; Wen et al., 2023), one study used HRV to predict 

weekly anxiety and depression scores (Coutts et al., 2020), one study used dynamic emotional 

arousal, electrocardiogram data and electrodermal activity to predict state anxiety scores 

(Ding et al., 2022), and another used HRV and skin conductance to predict social anxiety 

symptoms in real-time (Shaukat-Jali, van Zalk and Boyle, 2021). Kinematical measures 

obtained with wearable equipment during a 90 s fear induction task in children aged 3-7 were 

found to be cross-sectionally predictive of anxiety disorders (McGinnis et al., 2019), and 

passive movement data was also found cross-sectionally predictive of GAD symptom 

severity (Jacobson and Feng, 2022). Finally, one study reported that actigraphy (movement 

and sleep) data was predictive of prospective degradation of GAD and PD symptoms more 
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than a decade later (Jacobson et al., 2021). Overall, physiological data that is less expensive 

and relatively easy-to-collect in comparison with neuroimaging has shown potential to yield 

incremental predictive performance for individual-level anxiety-relevant outcomes.  

 

5.3.3. Smartphone data and social media use 

Regular smartphone use has become ubiquitous in the past fifteen years, providing 

opportunities to collect sensor data in a less-intrusive and more realistic setting than 

specialized sensing devices and resulting in a growing interest from the field (Cornet and 

Holden, 2018; Gillan and Rutledge, 2021). Smartphones can also collect new behavioural 

data with potential predictive relevance to anxiety and other mental health disorders, such as 

app usage and online social contact, as well as environmental data, such as light and sound 

exposure, temperature and location. Of note, other environmental markers related to 

urbanicity, such as air pollution and green space proximity, have been also been reported as 

promising group-level risk markers for anxiety disorders (Ventimiglia and Seedat, 2019; Xu 

et al., 2023). 

Several studies attempted to use digital data to cross-sectionally predict anxiety symptoms. 

For instance, one predicted real-time anxiety and sadness levels in adolescents using physical 

activity, location and phone state data (Ren et al., 2023), another study used movement, text 

messages and phone calls data to predict social anxiety symptom severity in participants with 

SAD and subclinical SAD (Jacobson, Summers and Wilhelm, 2020), one study used GPS 

movement patterns to predict social anxiety levels in college students (Boukhechba et al., 

2018), and another predicted used nonidentifiable smartphone app usage data to predict 

generalized anxiety score in the general population (Choudhary et al., 2022). One last study 

found no value of phone keystroke behaviour for anxiety score prediction in adolescents, 

despite modest group-level correlations (Braund et al., 2023).  

A few longitudinal (short-term) prediction attempts using smartphone data have also 

emerged, including one study that used heartrate, light exposure, social contact and GPS data 

to longitudinally predict next-hour anxiety symptoms in participants with GAD or SAD 

(Jacobson and Bhattacharya, 2022), and another study that predicted next-day anxiety 

symptoms increase in healthy participants using app usage, light exposure and movement 

data (Fukazawa et al., 2019). 
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Increasing social media usage has yielded further opportunities to access digital behaviours 

that are potentially relevant to, and predictive of, mental health. Despite a growing interest, 

anxiety has, to date, received little attention in comparison with suicidality or depression 

predictions, as was shown in two recent reviews of mental health prediction studies based on 

social media data (Ahmed et al., 2022; Di Cara et al., 2023). Nonetheless, these reviews 

emphasized that machine-learning prediction of anxiety and depression using freely available 

social media data was a fast-growing field with potential to inform early detection of disorders 

and provide complementary screening strategies to the traditional clinical route.  

A majority of cross-sectional studies predicting anxiety symptoms or disorders used text 

features extracted from social media posts or messages (Gruda and Hasan, 2019; Kumar, 

Sharma and Arora, 2019; Mori and Haruno, 2021; Singh and Singh, 2022; Yu, Li and Liu, 

2023), although one used profile pictures and posted pictures (Guntuku et al., 2019). To our 

knowledge, two studies attempted longitudinal predictions, one using daily social media 

usage before and during lockdown due to COVID-19 to predict post-lockdown anxiety 

symptoms (Ryu et al., 2021), and the other using Google search prompts and YouTube history 

data pre-pandemic to predict the worsening of anxiety and depression symptoms during the 

pandemic (Zhang et al., 2020).  

Despite the developing literature, it is important to mention current methodological 

challenges, such as the questionable validity of symptoms classifications that were used 

(Chancellor and De Choudhury, 2020), and the non-specificity of social media language 

features, for which comparable predictive performances have been reported for distinct 

mental health problems (Kelley et al., 2022). Attempts to detect mental illness through 

smartphone data and social media also come with privacy concerns that the field will have to 

address while moving forward (Arora, Yttri and Nilsen, 2014; Brundage et al., 2018). In spite 

of these challenges, digital phenotyping has shown potential to complement current screening 

strategies and bring inexpensive incremental predictive accuracy to anxiety-relevant 

outcomes. 

 

5.4. Conclusion 

This doctoral work investigated machine-learning prediction of future anxiety onset and 

psychotherapy response in patients with spider phobia using sociodemographic and 
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questionnaire data, as well as structural and fMRI data. Although sociodemographic and 

questionnaire data showed moderate predictive value for any future anxiety onset at 4-8 years 

follow-up, no predictive value of either structural MRI or tb-fMRI was found for this 

prediction. Of note, structural MRI did show moderate predictive contribution in the 

diagnosis-specific prediction of future generalized anxiety onset. Contrastingly to the 

previous smaller-scale literature, neither structural MRI or tb-fMRI showed above-chance 

level predictive performance for psychotherapeutic response in patients with spider phobia, 

with the exception of BOLD signal variance which showed a modest predictive contribution. 

The field of mental health machine-learning prediction is evolving at a fast pace, with the 

increasing availability of multisite consortia datasets and a progressive shift in favour of 

multimodal data usage. Various other (epi)genetic, physiological, environmental and 

behavioural markers of anxiety, many of which can be passively and nonexpensively 

collected, also have potential to complement MRI data and bring incremental prediction 

accuracy to help inform anxiety disorder prevention, early detection, and treatment 

stratification.  

However, the present findings also emphasize the current challenges of machine-learning 

methodology in mental health research, which are closely tied with sample size, diversity, 

clinical heterogeneity and generalisability considerations. After almost a decade of smaller-

scale proof-of-concept prediction studies, the field is moving towards more robust and 

longitudinal predictions based on larger samples, with a noticeable decrease in predictive 

performance that is shedding light on the risk of bias in earlier literature. However, even 

moderate prediction accuracies could inform clinical decision-making, especially for 

predictions of prospective outcomes that chiefly depend on future life events. In comparison 

with other medical disciplines such as radiology, machine-learning approaches in mental 

health still struggle to produce results with clinical utility, which can be attributable to the 

twofold challenge of parsing out relevant individual-level biological markers for complex and 

heterogeneous clinical phenotypes. The field nonetheless holds promise and is maturing, now 

with clearly delineated guidelines for good scientific practice that should leave future studies 

less vulnerable to overoptimistic estimations of prediction performance (Radua and 

Koutsouleris, 2023).  
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Appendix: MRI and fMRI 

This appendix describes the principles of MRI and some of its most commonly used 

modalities in mental health research. 

 

General principles 

MRI is based on the magnetic properties of atomic nuclei, most often hydrogen nuclei, which 

consist of a single proton and are very abundant in water molecules (Rajan, 1998; van Geuns 

et al., 1999). In the absence of an external magnetic field, hydrogen nuclei spin around their 

own axis and are oriented randomly in space. As such, under normal circumstances, the 

nuclear magnetic moments arising from the nuclear spins usually cancel each other out, 

resulting in a net zero magnetization vector. 

When the nuclei are exposed to a constant and non-negligible external magnetic field B0 (e.g. 

from a strong magnet), some spins align themselves either in a parallel or antiparallel fashion 

with respect to B0 (Figure A1). The antiparallel state is the lower energy state and thus the 

preferred alignment, resulting in a net longitudinal magnetization vector Mz aligned to B0. 

Nuclear spins are not individually aligned to B0, but precess around its direction at the 

frequency of Larmor, each with their individual phase of precession, while still spinning 

around their own axis. In this equilibrium state, Mz is static and its signal is not measurable. 

Higher strength of the magnetic field (7 Tesla > 3 Tesla > 1.5 Tesla) will lead to a higher 

proportion of spins aligning themselves around B0.  
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The excitation phase consists in the alteration of the direction of the spin alignment by means 

of energy addition. Very short radiofrequency (RF) pulses of the Larmor frequency (also 

called resonance frequency) are applied using a second external magnetic field B1, orthogonal 

to B0 and 106 times weaker. Protons thus absorb the energy and jump to the antiparallel state, 

spins precess in phase, and their alignment will flip from a positive z-axis to a transverse xy 

plane, resulting in a net transverse magnetization vector, Mxy. 

Figure A1: principle of the excitation and relaxation phases in magnetic resonance 

imaging. Mz: longitudinal magnetization vector; Mxy: transverse magnetization vector; B0: 

external magnetic field; RF: radiofrequency. 

 

When the energy pulse from B1 is interrupted, protons release the absorbed energy, spins will 

seek to restore equilibrium and will progressively take back their initial alignment. This is the 

relaxation process, and can be measured both in Mz and in Mxy via the receiver coil in the 

MRI scanner. A directional magnetic gradient is added along the main magnetic field, to 

enable a slice-specific excitation of spins though the body (3-8 mm slices) and thus obtain 

the spatial localisation of the signal.  

The longitudinal relaxation (i.e. the process of realignment to B0) is measured on the z-axis. 

The time it takes for Mz to recover 63% of its initial equilibrium value is named T1, the 

relaxation time, Additionally, following the RF pulse interruption, the spins progressively 

dephase due to global and local magnetic inhomogeneities and spin-spin interactions. This is 

the transverse relaxation process, and T2 is the time it takes for Mxy to decay to 37% of its 

initial value. Both T1 and T2 are tissue-dependent. 
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As such, parameters of an MRI scanning sequence can be calibrated in order to better capture 

tissues of interest. Those parameters include echo time (TE, defined as the time between the 

application of the RF pulse and the peak of the signal induced in the RF coil), and repetition 

time (TR, defined as time the from the application of the RF pulse to the application of the 

next pulse).  

 

Brain structural MRI 

Structural MRI sequences use short TEs and TRs to produce mostly T1-weighted images of 

brain tissue with quasi-millimetric resolution (Iorio-Morin et al., 2022). Gray and white 

matter are distinguishable from one another, although the quality of the contrast depends from 

the MRI acquisition sequence parameters and from the MRI scanner. Specific structural 

parameters such as gray and white matter volumes, cortical thickness and cortical surface area 

can be extracted in post-processing. 

 

Functional MRI 

Functional MRI indirectly assesses cerebral activity through the proxy of the local 

haemodynamic response occurring while participants are completing a task (task-based 

fMRI, or tb-fMRI) or resting (resting-state fMRI, or rs-fMRI) (Iorio-Morin et al., 2022). The 

haemodynamic response, also called Blood-Oxygen-Level-Dependent (BOLD) response, 

corresponds to an increase in cerebral blood flow and oxygen consumption as a result of 

increased local neural activity. The increase in blood flow surpasses the increase in oxygen 

consumption, thus increasing the ratio of oxygenated haemoglobin relative to deoxygenated 

haemoglobin in the active brain region. These haemoglobin variants have different magnetic 

properties, with deoxyhaemoglobin being paramagnetic and the nuclear spins of its atoms 

aligning themselves around the main magnetic field. The BOLD signal shows local changes 

in deoxyhaemoglobin concentration and can be measured using specific MRI T2*-weighted 

scanning sequences. 

In a real MR setting, the transverse magnetization Mxy decays much faster than would be 

predicted by molecular mechanisms. This is mainly due to inhomogeneities in B0 that can be 

attributed to the magnet itself or to susceptibility-induced field distortions produced by the 

tissue in the field (such as the BOLD response). T2* is the effective T2, and is always inferior 
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or equal to T2. T2*-weighted fMRI sequences use relatively long TEs, to accentuate local 

magnetic distortions (Chavhan et al., 2009). 

Specific functional metrics can be extracted from the fMRI BOLD signal in post-processing, 

such as task-based functional activation (task-specific changes in BOLD signal), Functional 

Connectivity (FC; temporal correlation of the BOLD signal timeseries between spatially 

distributed areas of the brain), Regional Homogeneity (ReHo; local temporal correlation of 

the BOLD signal timeseries between a voxel and its nearest neighbours during resting state), 

or Amplitude of Low Frequency Fluctuations (ALFF; fluctuations of spontaneous BOLD 

signal intensity within the 0.01 and 0.1 Hz during resting-state) (Lv et al., 2018). 
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Appendix: Synthèse de la thèse 

Les troubles anxieux sont très répandus et représentent une lourde charge de morbidité, ainsi 

que des coûts sociétaux et économiques importants. La survenue de l’anxiété clinique est 

particulièrement fréquente à l’adolescence, laquelle pourrait être une fenêtre d’intervention 

pertinente pour des stratégies de prévention ou de stratification des traitements. De nombreux 

facteurs psychologiques et environnementaux ont été associés à l’anxiété pathologique, et 

l’émergence de l’IRM a permis l’exploration des corrélats cérébraux de l’anxiété. Cependant, 

malgré une abondante littérature sur la neuro-imagerie à l’échelle du groupe et des corrélats 

de l’anxiété pathologique bien identifiés, des marqueurs cérébraux robustes de vulnérabilité 

ou de réponse thérapeutique peinent à émerger. En outre, ces dernières années, les approches 

de prédiction à l’échelle individuelle utilisant l'apprentissage automatique sont devenues de 

plus en plus populaires dans la recherche en santé mentale, et certains résultats prometteurs 

de prédiction prospective ont été rapportés dans des études de neuro-imagerie sur l’anxiété à 

petite échelle (généralement avec Ntotal < 60 participants). Ces résultats n'ont pas encore été 

reproduits dans des échantillons plus importants et multisites. 

Le présent projet de doctorat impliquait l'utilisation de l'apprentissage automatique supervisé 

pour prédire prospectivement le développement de troubles anxieux chez les adolescents en 

utilisant un jeu de données longitudinales de la population générale, IMAGEN, ainsi que pour 

prédire la réponse au traitement psychothérapeutique chez les patients phobiques en utilisant 

le jeu de données SPIDER-VR. 

Avec les données IMAGEN, des analyses d'apprentissage automatique ont d’abord été 

réalisées à partir de questionnaires et de données neuroanatomiques d'adolescents non 

anxieux âgés de 14 ans, afin de prédire la survenue d'un futur trouble anxieux 4 à 8 ans plus 

tard (N = 156) par rapport à un statut de contrôle sain (N = 424). Les données 

neuroanatomiques utilisées étaient les volumes de matière grise, extraits pour un ensemble de 

régions cérébrales d’intérêt traditionnellement impliquées dans l’anxiété. Cette étude a 

souligné le potentiel prédictif des données sociodémographiques et issues de questionnaires 

pour la prédiction de futurs troubles anxieux regroupés, et celui des volumes de matière grise, 

en particulier des régions du striatum, pour la prédiction d'un futur trouble anxieux généralisé.  

La prédiction de futurs troubles anxieux chez les adolescents de 14 ans d’IMAGEN a aussi 

été explorée en extrayant des mesures d'IRM fonctionnelle (N = 159 futurs anxieux, N = 428 
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contrôles sains). Ces mesures fonctionnelles ont été extraites d'une tâche de traitement 

émotionnel des visages. Toutefois, aucune mesure fonctionnelle n'a produit de performance 

prédictive supérieure au niveau de chance.  

Avec les données SPIDER-VR, des analyses d'apprentissage automatique ont été menées 

pour prédire la réponse des patients phobiques des araignées (N = 190) à une session de 

thérapie d'exposition en réalité virtuelle, en utilisant des données issues de questionnaires, 

des données d'IRM structurelle et diverses mesures d'IRM fonctionnelle extraites d'une tâche 

de provocation des symptômes. Une méthode d’apprentissage automatique ensembliste a 

également été utilisée pour examiner séparément la contribution prédictive de chaque 

modalité de données. Contrairement aux attentes, l'étude n'a pas confirmé le potentiel 

prédictif des données sociodémographiques et de questionnaires, ni des données de neuro-

imagerie, à l'exception de la variance du signal BOLD qui a produit une performance 

prédictive modérée. 

Dans l'ensemble, ce travail de doctorat remet en question les résultats optimistes d'études 

antérieures menées avec de plus petits échantillons, sur la prédiction de l'anxiété par 

apprentissage automatique basé sur la neuro-imagerie. Nos résultats, ainsi que d’autres 

travaux récents, soulignent le risque de surestimation de la performance prédictive dans ces 

précédentes études. Néanmoins, nos résultats corroborent le fait que des questionnaires 

faciles à administrer présentent une performance prédictive prometteuse pour la prédiction de 

l'apparition de l'anxiété et que l'IRM structurelle puisse apporter une valeur prédictive 

supplémentaire.   

La littérature récente a souligné que l’utilisation de multiples modalités IRM pouvait 

améliorer la performance pour des prédictions relatives à la santé mentale. Plusieurs autres 

biomarqueurs avec le potentiel d'améliorer la précision des prédictions relatives à l'anxiété 

sont également apparus dans la littérature ces dernières années. Ils comprennent, par exemple, 

des modalités de neuroimagerie autres que l’IRM, la génétique et l’épigénétique, des 

variables physiologiques mesurant le mouvement ou le sommeil, ou encore celles mesurant 

l’usage des smartphones. De façon générale, d'autres recherches multimodales utilisant des 

jeux de données à grande échelle ainsi qu'une méthodologie rigoureuse d'apprentissage 

automatique sont nécessaires pour atteindre l'utilité clinique dans les prédictions relatives à 

l’anxiété.  

 


