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Résumé
Bien que la collaboration humain-robot puisse être bénéfique, la plupart des robots
actuels travaillent dans des espaces physiquement séparés de l’humain ou alors leurs
capacités sont drastiquement limitées à proximité d’un humain. Ce travail vise à
combler le fossé entre les capacités robotiques et les attentes humaines, en favorisant
une nouvelle ère de collaboration transparente et intuitive entre les humains et les
robots dans des environnements partagés pour réaliser à la fois des tâches industrielles,
de services ou domestiques. Plus précisément, ce manuscrit présente une étude sur la
prise de décision dans le contexte de la collaboration humain-robot, en particulier dans
les domaines et de la planification des tâches et de la simulation d’agents intelligents.

D’abord, nous discutons de divers travaux en lien avec la Collaboration Humain-
Robot afin de mieux comprendre le contexte de mon travail. Après une familiarisation
avec le planificateur de tâches HATP/EHDA, je présente ma première contribution qui
incorpore certains concepts de la Théorie De l’Esprit dans la planification de tâches.
Certains modèles et algorithmes sont proposés et évalués pour mieux estimer et an-
ticiper les connaissances de l’humain et son comportement. Ainsi, nous pouvons iden-
tifier les potentiellement néfastes fausses croyances de l’humain and ainsi l’informer
proactivement pour corriger les fausses informations, ou volontairement retarder les
actions du robot pour qu’elles soient vu par l’humain. Les résultats montrent que ce
schéma permet de maintenir efficacement les connaissances de l’humain et permet de
résoudre une classe de problèmes plus large que HATP/EHDA tout en ne communi-
quant pas systématiquement.

Ma deuxième contribution est une nouvelle approche de planification des tâches
produisant une politique comportementale du robot assurant une collaboration fluide
où l’humain a toujours une latitude de décision totale et où le robot se conforme
toujours en parallèle à ces décisions. Cette approche est basée sur un modèle d’action
conjointe simultanée et accommodante que nous avons conçu. Ce modèle, sous la forme
d’un automate, tient compte de l’incontrôlabilité de l’humain et des signaux sociaux.
Nous proposons également une nouvelle méthode d’évaluation et de sélection des plans
basée sur l’estimation des préférences internes de l’humain concernant la tâche. Les
résultats empiriques montrent que cette approche permet un comportement concourant
du robot qui se conforme aux décisions et aux préférences en temps réel de l’humain.

Dans une autre contribution validant l’approche précédente, nous avons implémenté
notre modèle d’action conjointe en tant que schéma d’exécution dans un simulateur.
Nous avons ainsi mené une étude utilisateur où les participants ont collaboré dans
plusieurs scénarios avec un robot simulé suivant les politiques produites par notre
approche. En opposition avec notre approche, notre avons utilisé comme référence un
robot imposant continuellement ses décisions à l’humain. Nous avons montré par une
analyse statistique que notre approche permettait de nettement mieux satisfaire les
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préférences des humains. De plus, les differences les plus significatives sont que les
participants ont perçu une interaction plus positive, une collaboration plus adaptative
et efficace, et des décisions du robot plus adéquates et accommodantes.

Enfin, mes dernières contributions concernent la simulation d’agents humains in-
telligents. Ses agents simulés dotés de processus de prise de décision peuvent aider à
tester, évaluer et robustifier des systèmes robotiques intéractifs et collaboratifs. Nous
proposons une architecture générique visant à simuler d’un tel agent intelligent et nous
présentons une version implémentée pour le cas de la navigation. Nous présentons aussi
une contribution capable de simuler plusieurs agents sociaux mobiles.

Mot clés : Collaboration Humain-Robot, Interaction Humain-Robot, Décision,
False beliefs, Adaptation, Parallélisme



Abstract

Although human-robot collaboration can be beneficial, most of today’s robots work
in spaces physically separated from humans, or their capabilities are severely limited
in close proximity to humans. This work aims to bridge the gap between robotic
capabilities and human expectations, fostering a new era of seamless and intuitive
collaboration between humans and robots in shared environments to perform indus-
trial, service, or domestic tasks. More specifically, this manuscript presents a study of
decision-making in the context of human-robot collaboration, particularly in the areas
of task planning and simulating intelligent agents.

First, we discuss various fields and works related to human-robot collaboration to
better understand my work’s context. After an introduction to the HATP/EHDA task
planner, I present my first contribution, which incorporates some concepts from the
Theory Of Mind into task planning. Some models and algorithms are proposed and
evaluated to better estimate and anticipate human knowledge and behavior. Hence,
we can identify potential detrimental human false beliefs and proactively inform them
to correct the false information, or deliberately delay robot actions until observed by
the human. Our results show that this scheme effectively maintains human beliefs
and solves a broader class of problems than HATP/EHDA, without communicating
systematically.

My second contribution is a new approach to task planning producing a robot
behavioral policy ensuring smooth collaboration where the human always has full
decision latitude and the robot always conforms in parallel to these decisions. This
approach is based on a concurrent and compliant joint action model we have designed.
This model, in the form of an automaton, takes into account human uncontrollability
and social cues. We also propose a new method of plan evaluation and selection based
on the estimation of the human’s internal preferences regarding the task. Empirical
results show that this approach enables concurrent robot behavior that conforms to
human’s real-time decisions and preferences.

As another contribution validating the above approach, we implemented our pro-
posed joint action model as an execution scheme into a dedicated simulator. Then, we
conducted a user study where participants were invited to collaborate in several sce-
narios with a simulated robot following policies produced by our approach. In contrast
with our approach, we used a baseline where the robot always imposes its decisions on
the human. We showed through statistical analysis that our approach satisfies human
preferences significantly more successfully than the baseline. Similarly, we have shown
that our approach induces significantly more positive interaction, more adaptive and
effective collaboration, and significantly more appropriate and accommodating robot
decisions.
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Finally, my last contributions concern simulating intelligent human agents. Such
simulated agents endowed with decision-making capabilities can help to test, evalu-
ate, and robustify interactive and collaborative robot systems. We propose a generic
architecture to simulate an intelligent agent and present an implemented version for
navigation use cases. An additional contribution capable of simulating several navi-
gating agents is also presented.

Keywords: Human-Robot Collaboration, Human-Robot Interaction, Decision-
Making, False beliefs, Adaptation, Concurrency
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Human-Robot Collaboration (HRC) is a growing field in robotics and Artificial
Intelligence (AI) research that aims to enable safe and effective teamwork between
humans and robots. Exoskeletons, teleoperated robots such as surgery manipulators,
and remotely operated (aerial) vehicles all have in common a human controlling and
making decisions on behalf of the robot. In our context, autonomous robots must
share tasks, decisions, and space with humans. For that, they need decisional abilities
such as planning their actions appropriately and adapting online to the environment
and human behavior. Hence, the HRC field concerns fully autonomous robots endowed
with decision-making capabilities and collaborating with humans.

The work presented is assumed to be in the Joint Action context, which is described
in [Sebanz 2006b] as “any form of social interaction whereby two or more individuals
coordinate their actions in space and time to bring about a change in the environ-
ment”. Various relationships can exist between humans and robots, e.g., collaborators,
companions, guides, tutors, or social interaction partners. In all these cases, we think
the robot should help and facilitate the human in terms of physical effort, mental
workload, and even emotional state.

Industrial robots are already popular in factories because they are fast, accurate,
reliable, and never get tired, which makes them ideal for repetitive factory tasks.
However, such robots are usually in dedicated areas where humans cannot enter for
safety reasons. Hence, it is still an open challenge to endow robots with enough reliable
reasoning capabilities and compliant motion control to allow efficient and trusted direct
collaboration between humans and robots.

Moreover, HRC can also occur in various contexts that must be considered, ranging
from co-worker robots in factories to householder robots for our everyday lives and
including service robots in public places like restaurants and shops.

Focused on the decisional aspect of HRC, this work aims to design autonomous
robots able to make explainable, acceptable, and efficient decisions to collaborate with
humans.

Human-Robot Collaboration (HRC) is a multidisciplinary field that opens several
technical challenges to address. The ideal collaborative robot should be the aggregation
of solutions for each of the challenges listed below:
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• Navigation: The robot should be able to acceptably and efficiently move in
a human-populated environment. This implies being mechanically designed for
it, anticipating and planning correct trajectories, and being able to adapt and
follow these trajectories in real time. The robot should not move threateningly
and should account for humans.

• Manipulation: The robot should be able to manipulate objects to interact with
its environment. Hence, the robot should have an actuator like an arm and a
gripper and should be able to exhibit motions that are efficient and safe to nearby
humans.

• Communication: To achieve congruent interaction and collaboration, collabo-
rative agents must communicate. This implies that the robot should be able to
communicate information to the human and understand the one received from
the latter. These communications can be verbal or non-verbal.

• Perception: It is mandatory for the robot to have a reliable perception scheme
to know the position of near objects, obstacles, and humans. First, relevant
sensors must be used and placed on the robot or in the environment itself. After
reasoning on the sensory data, relevant facts about the robot’s environment,
such as objects’ positions, spatial relations, reachable objects, human knowledge,
intentions, or the state of the current goal, must be extracted.

• Decision-making: This aspect is the focus of my work and implies that the
robot should be able to make relevant decisions to be collaborative, including
planning its actions to solve a collaborative task. It also implies being able to
supervise the task execution and make online decisions to adapt to human ac-
tions, commands, and unexpected events. The listed skills are linked because the
robot must reason and rely on each to make pertinent decisions. Consequently,
I studied Perception, Communication, and Navigation from the decisional point
of view during my PhD.

Contributions
My work addressed the decision-making aspect of HRC and led to different contri-
butions. I began by participating in the development of a novel human-aware task
planner called Human-Aware Task Planner Emulating Human Decisions and Actions
(HATP/EHDA) [Buisan 2022]. This approach considers two distinct agent models:
an uncontrollable one to estimate the human’s behavior and a controllable one to plan
the robot’s actions accordingly. The agent models include distinct beliefs, agendas,
and action models. This approach aims to make a clear distinction between the two
agents and, most importantly, to model the distinct human decisional processes and to
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be able to reason on it. As a result, the planner can anticipate and even elicit human
decisions and actions, but it never compels them. For these reasons, we believe this
approach is promising to address HRC, and I built two of my main contributions upon
this approach.

My first contribution is to propose some models and algorithms of the Theory of
Mind and to integrate them into the deliberation process of HATP/EHDA. Despite
considering distinct beliefs, they were only updated according to the description of
action effects provided in the domain and problem models. This means, for instance,
that modeling the human observing and acquiring a new fact by entering a room had
to be manually scripted in the ‘move’ action description. With this contribution, we
propose that an agent can acquire information by observing their surroundings or
an action execution. Additionally, we propose a way to detect false human beliefs
during the planning process, which may be detrimental to the task. Eventually, these
relevant belief divergences are fixed by planning minimal verbal robot communication
or delaying robot action that humans will initially not observe.

My second contribution brings planning and execution closer by addressing the
turn-taking assumption of HATP/EHDA and exploring parallel executions. We for-
mulated a step-based model of compliant and concurrent joint action execution. This
model describes how the two agents should coordinate as well as four possible online
human decisions about the execution: (1) the human decides to be passive and let
the robot act alone, (2) the human acts alone and the robot is passive, (3) the human
starts acting then the robot adapts and acts in parallel, and finally (4) the human de-
liberately let the robot decide and start acting before complying with it. This model
guides the exploration of our proposed new human-aware task planning approach. Af-
ter exploring all relevant courses of action, the robot’s behavioral policy is extracted
using a plan evaluation based on estimations of human preferences. Eventually, by
following the produced policy, the robot can comply concurrently with any human
online decisions and aims to satisfy human preferences, which can be updated online.

As another contribution validating the above approach, we implemented our pro-
posed joint action model as an execution scheme into a dedicated simulator. Using
this whole system, we conducted a user study where participants were invited to col-
laborate in several scenarios with a simulated robot following policies produced by our
approach. In contrast with our approach, we used a baseline where the robot always
imposes its decisions on the human. We showed through statistical analysis that our
approach satisfies human preferences significantly more successfully than the baseline.
Similarly, we have shown that our approach induces significantly more positive inter-
action, more adaptive and effective collaboration, and significantly more appropriate
and accommodating robot decisions.

My last contributions concern simulating intelligent human agents. Endowing such
simulated agents with decision-making capabilities can help to test, evaluate, and ro-
bustify interactive and collaborative robot systems. We propose a generic architecture
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called Intelligent Human Simuator (InHuS) to simulate an intelligent autonomous
human agent. Then, we present an implemented version for navigation use cases, per-
mitting the generation of challenging intricate situations while recording and plotting
relevant interaction data. This contribution simulates a single human agent endowed
with complex reasoning processes navigating intricate environments.

Eventually, we present a last contribution simulating several navigating agents,
namely Intelligent Multi Human Simuator (IMHuS). These agents can exhibit social
group behaviors and be choreographed to challenge and benchmark robot systems.

Manuscript Organization
The above contributions are detailed in the rest of this manuscript, which is structured
as follows.

Chapter 1 provides more details about the context of my PhD. We describe the
challenges linked to HRC and how some of them can be tackled through task planning
and simulation of human agents.

The rest of the manuscript is divided into two parts. Part I gathers all my work
concerning task planning for HRC. As a major portion of my PhD work, this part
covers Chapters 2 to 6. Part II concerns decision-making in simulating intelligent
autonomous agents. This part includes the two last chapters: 7 and 8.

Part I begins with Chapter 2, which presents the HATP/EHDA task planner.
This planner has been the keystone of most of my work. Hence, the reader should
understand the motivation and methods of this task planner, which are described in
this chapter.

Chapter 3 describes my first main contribution, proposing models and algorithms to
incorporate Theory of Mind concepts in HRC task-planning. An empirical evaluation
is provided and discussed, demonstrating how this contribution solves a broader class
of problems than HATP/EHDA without systematic communication.

Chapter 4 presents my second main contribution, proposing a new human-aware
task planning approach based on a step-based compliant and concurrent joint action
model. The approach’s description is supported by empirical results proving its ef-
fectiveness in terms of the latitude of choice given to the human and the satisfaction
of their internal preferences. We further validated this by developing an interactive
simulator used for a user study, described in the following chapters.

Chapter 5 presents our joint action model implemented as an execution scheme into
a dedicated simulator. This simulator allows a human operator to perform actions
through intuitive mouse control and collaborate with a simulated robot executing
policies our planning approach produces. In addition to giving more details about our
model, this chapter also provides technical details about the developed simulator.

Chapter 6 presents a user study validating the approach proposed in Chapter 4
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using the simulator described in Chapter 5. For this purpose, several scenarios were
designed using a BlocksWorld task, and human participants were asked to collaborate
with the simulated robot to evaluate its behavior using questionnaires. We compared
our approach with a baseline behavior where the robot always imposes its decisions
on humans.

Part II begins with Chapter 7. This chapter describes the InHuS system, addressing
the challenge of simulating human agents endowed with decision-making capabilities.
Its implementation in a navigation use case is presented. This chapter also compares
two robot navigation systems using InHuS, proving that our approach effectively chal-
lenges robot schemes and allows measuring and comparing human-aware navigation
properties.

Chapter 8 presents IMHuS, which complements the previous system to simulate
and choreograph several agents with group movements and social behaviors. This
system has been qualitatively evaluated in an elevator scenario.

Eventually, general conclusions regarding my overall PhD work will be shared, and
additional materials will be provided in the appendix.
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This chapter provides more details about the context of my PhD. We
describe the challenges linked to HRC and how some of them can be
tackled through task planning and simulation of human agents.
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1.1 A Multidisciplinary Field: Human-Robot In-
teraction

In [Bartneck 2020], the Human-Robot Interaction (HRI) is considered unique because
of the interaction of humans with social robots, which is at the core of this mul-
tidisciplinary research field. These interactions usually include physically embodied
robots, and their embodiment makes them inherently different from other computing
technologies. Moreover, social robots are perceived as social actors bearing cultural
meaning, strongly impacting contemporary and future societies. Saying that a robot
is embodied does not mean it is simply a computer on legs or wheels. Instead, we must
understand how to design that embodiment, both in terms of software and hardware,
as it is commonplace in robotics, and in terms of its effects on people and the kinds
of interactions they can have with such a robot.

Overall, Human-Robot Interaction (HRI) focuses on developing robots that can
interact with people in various everyday environments. This opens up technical chal-
lenges resulting from the dynamics and complexities of humans and the social environ-
ment. This also opens up design challenges—related to robotic appearance, behavior,
and sensing capabilities—to inspire and guide interaction. From a psychological per-
spective, HRI offers the unique opportunity to study human affect, cognition, and
behavior when confronted with social agents other than humans. In this context,
social robots can be research tools to study psychological mechanisms and theories.

Human-Robot Interaction (HRI)

Human-Computer Interaction (HCI)

Human-Human Interaction (HHI)

Engineering

Computer
Science

PsychologySociology

Design

Robotics

Figure 1.1: Multidisciplinarity of the Human-Robot Interaction field.

As a result, by taking inspiration from Human-Human Interaction (HHI) and
Human-Computer Interaction (HCI), HRI is an endeavor that brings together ideas
from a wide range of disciplines such as Engineering, Computer Science, Robotics,
Psychology, Sociology, and Design. In the following, we discuss some related aspects
and works of the mentioned disciplines by categorizing them between HHI, HCI, and
HRI as depicted in figure 1.1.
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1.1.1 Human-Human Interaction (HHI)
Many works dealing with interacting with humans take inspiration from Human-
Human Interaction (HHI), including research in sociology and psychology. HHI refers
to the communication and collaboration between two or more individuals, where hu-
mans engage in various forms of social, cognitive, and emotional exchanges. Such
interaction can occur through verbal and non-verbal communication, such as speech,
gestures, facial expressions, and body language.

Since communication has a crucial role in collaboration, communication theories
have been widely studied for a long time [Cherry 1957, Smith 1998]. Professor Al-
bert Meharbian indicates in [Mehrabian 1967] that, when communicating feelings, the
words pronounced, the voice tone, and the body language correspond respectively to
7%, 38%, and 55% of the effective communication. These results suggest that com-
munication, especially about feelings, is more complex than “simply” finding the right
words. The way these words are pronounced and shared strongly affects the message
sent. The Grice’s four maxims of conversation [Grice 1975], or Gricean maxims, can
also be mentioned and describe the relevance of four distinct aspects of communica-
tion: quantity, quality, relation, and manner. These four maxims describe specific
rational principles observed by people who follow the cooperative principle in pursuit
of effective communication.

HHI also led to studies on collaboration, teamwork, and so-called Joint Action the-
ories [Cohen 1970, Levesque 1990, Cohen 1991]. As put in [Sebanz 2006a], these works
aim to describe and understand social interaction whereby two or more individuals co-
ordinate their actions in space and time to bring about a change in the environment,
usually trying to reach a common goal.

We must first understand how humans interact with each other before making
robots able to interact correctly with humans. However, perfectly mimicking humans
is questionable since robots fundamentally differ from humans. Humans have created
robots to help and assist them. Thus, HHI should inspire robot design, but addi-
tional research is mandatory to determine how to create appropriate interactive and
collaborative robots.

1.1.2 Human-Computer Interaction (HCI)
A first step of artificial interaction and collaboration is the field of Human-Computer
Interaction (HCI). This field of study focuses on optimizing how users and computers
interact by designing interactive computer interfaces that satisfy users’ needs. It is a
multidisciplinary subject covering computer science, behavioral sciences, cognitive sci-
ence, ergonomics, psychology, and design principles. Today, HCI focuses on designing,
implementing, and evaluating interactive interfaces that enhance user experience using
computing devices. This includes user interface design, user-centered design, and user
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experience design.
This field is made up of four key components: The User, along with their needs,

goals, interaction patterns, cognitive capabilities, emotions, and experiences; The
Goal-Oriented Task which is the objective or goal the user has in mind; The In-
terface is about the overall user interaction experience through senses such as touch,
click, gesture, voice, display size, and colors; The Context must be taken into account
because it influences the interaction.

To produce easy interaction with robots, the study of HCI is relevant and helps to
design intuitive, user-friendly interactive robots.

1.1.3 Human-Robot Interaction (HRI)
Human-Robot Interaction (HRI) is a field of study exploring the design, development,
and evaluation of robots interacting with humans in various settings. HRI aims to
create robots that can effectively and seamlessly interact and collaborate with humans
in domestic environments, workplaces, or other contexts. HRI can be categorized in
several domains, not necessarily exclusive. Here are some examples:

Social robotics focuses on social interactions with humans and, thus, explores how
robots can understand and respond to human emotions, social cues, and communica-
tion styles. A significant amount of work is dedicated to HRI in Healthcare to assist
patients, especially the elderly and children with conditions. Those works are also usu-
ally linked to emotion-aware robotics focused on recognizing and responding to human
emotions using affective computing techniques. A common application is storytelling
for children to convey ideas, feelings, or culture.

Human-Centered Robotics emphasizes the importance of considering human needs
and preferences. This subfield often involves user studies to ensure and identify if and
how robots are user-friendly and can seamlessly integrate into human environments.

Robot Ethics is another central subfield focused on considerations such as privacy,
safety, responsibility/accountability, and the impact of robots on society.

Explainable AI and transparency are a growing interest in making decision-making
processes more understandable to humans, and thus, help robots be legible, pre-
dictable, and acceptable.

Computational HRI, as described in [Thomaz 2016], is the subset of HRI concerned
explicitly with the algorithms, techniques, models, and frameworks necessary to build
robotic systems that engage in social interactions with humans. This thesis is part of
this category because it is focused on developing task planning algorithms and models
relevant to a collaborative robot.

Human-Robot Collaboration or Collaborative Robotics focuses on developing
robots that work alongside humans in shared workspaces, usually as a team. HRC
is the main topic of my thesis and is a vast subject worth delving into. Hence, the
following section is dedicated to providing more details about HRC.
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1.2 Human-Robot Collaboration (HRC)
Human-Robot Collaboration (HRC) refers to the synergy and cooperation between
humans and robots in shared environments to achieve common goals. In HRC, humans
and robots work together, often leveraging their complementary strengths to enhance
overall performance and efficiency. According to human desires, the robot can also
act in a way that eases and facilitates the human part of the task. This collaborative
approach involves close interaction, communication, and coordination between human
and robotic agents.

1.2.1 Inspirations & Theories Informing HRC
This interdisciplinary field takes inspiration from various theories and fields, as intro-
duced earlier. Nevertheless, three main inspirations can be highlighted:

Belief Desire Intention Model:

The belief-desire-intention (BDI) model was originally developed by Michael Brat-
man [Bratman 1987]. This model is used in intelligent agents research to describe
and model intelligent agents. Straightforwardly, the BDI model is characterized by
the implementation of the three notions appearing in its name, i.e., an agent’s beliefs
(knowledge of the world from the perspective of the agent), desires (objective or goal
to accomplish), and intentions (the planned course of actions to achieve the agent’s
desire).

Shared Cooperative Activity:

Shared cooperative Activity defines prerequisites for an activity to be considered shared
and cooperative. The main ones are mutual responsiveness, commitment to the joint
activity, and commitment to mutual support. A good example to clarify these pre-
requisites is a scenario where agents move a table together. Mutual responsiveness
ensures that the agents’ movements are synchronized. The commitment to the joint
activity reassures each agent that the others will not drop their side and quit the joint
activity. Finally, the commitment to mutual support deals with possible breakdowns
due to one agent’s inability to perform part of the plan.

Joint Intention & Action Theory:

Joint Intention Theory proposes that for joint action to emerge, team members must
communicate to maintain a set of shared beliefs and to coordinate their actions toward
the shared plan [Cohen 1991]. In collaborative work, agents should be able to count
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on the commitment of other members. Therefore, each agent should inform the others
when they conclude that a goal is achievable, impossible, or irrelevant [Hoffman 2004].

1.2.2 Key Aspects
In order to better picture the implications of the above theories, some key aspects of a
seamless collaboration are listed and commented on below. This list is not exhaustive,
but it highlights some skills that humans naturally exhibit and that a robot must be
endowed with to collaborate with them.

Specialization of Roles: There are several human-robot relationships, including
supervisor-subordinate, partner-partner, teacher-learner, and leader-follower. These
roles can be predefined and fixed during the whole collaboration. The role distribution
can also be flexible using weighting functions that allow a continuous change between
the roles to adapt to every context and situation.

Establishing shared goal(s): Through direct discussion or inference, agents
must determine and agree on the shared goals they are trying to achieve. However,
a shared goal is not always necessary and can be established in the middle of a task
execution either by the human or the robot.

Allocation of subtasks: After deciding how to achieve their goals, agents must
determine what actions and subtasks will be done by each agent and how to coordinate
each other. This can be done explicitly before starting the task or reactively done on
the fly.

Progression tracking: Agents must be able to track progress toward their goals.
That is, they must be able to determine what has been achieved, by whom, and what
remains to be done.

Communication: Any collaboration requires communication, verbal or not. Most
of the mentioned aspects can or must involve communication. However, it is essential to
identify what and how to communicate during the collaboration. Communicating too
much can be annoying, while not enough can induce confusion and harm collaboration.

Adaption and learning: On a short-term scale, agents must adapt to each other
and the environment. In the longer term, agents must also learn from other partners
and the acquired experience.

Ergonomics: It should be intuitive to collaborate and communicate with the
robot. This aspect must be considered when designing the robot’s hardware and
software. Ergonomics is a central aspect of Human-Computer Interaction. Thus,
many works from this field can be used in our context or serve as inspiration.

Explainability: This aspect is important for seamless collaboration as the human
should be able to understand what the robot is doing and why. This topic is getting
more and more attention and is often referred to as Explainable AI. This is especially
relevant to counter the black box tendency of machine learning where it’s impossible
to explain a specific decision. Being explainable often enhances predictability, which
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is also essential for a collaborative robot.

1.2.3 Architectures & Complete Systems

It is important to remember that since a collaborative robot is issued from an interdis-
ciplinary field, its different functionalities and capabilities are usually separated into
several dedicated components. These components interact and communicate with each
other, forming a complete architecture. Such architectures cover all aspects relevant to
exhibiting the robot’s behavior, from sensory perception to physical motions, including
reasoning processes. Despite developing distinct robotic components, the robot must
be considered a whole. Each component cannot be studied entirely independently of
other aspects of the complete system. As a result, optimizing how these components
interact by design has been the focus of several works proposing robotic architectures.

As Matthias Scheutz, Jack Harris, and Paul Schermerhorn put in [Scheutz 2013],
architectures for intelligent robots have improved steadily over the years. Early works
like [Chatila 1992, Alami 1993, Alami 1998] propose architectures to provide auton-
omy to mobile robots, focusing on three levels: decision, execution, and functional.
Diverse components that allow robots to negotiate increasingly more complex indoor
and outdoor environments have been considered, and they have improved those ar-
chitectures over the years. As a result, current robot architectures integrate multiple
sophisticated algorithms for real-time perceptual, planning, and action processing,
from 3D object recognition to simultaneous localization and mapping to navigation
and task planning to action sequencing. However, classical robotic architectures like
the ones mentioned above typically lack components for high-level cognition, such as
general-purpose reasoning and problem-solving. To address this issue, studies on cog-
nitive robot architecture began mainly with the SOAR (depicted in figure 1.2) and
ACT-R architectures [Laird 1987, Anderson 2004]. Often based on the structure of
the human mind, such cognitive architectures aim to endow robots with high-level
capabilities like learning, inferring, and reasoning about how to behave in response to
complex goals in complex worlds.

[Lemaignan 2017] identifies relevant collaborative cognitive skills and integrates
them into a proposed architecture. The skills include geometric reasoning and situa-
tion assessment based on perspective-taking and affordance analysis; acquisition and
representation of knowledge models for multiple agents (humans and robots, with their
specificities); situated, natural, and multi-modal dialogue; human-aware task planning;
human-robot joint task achievement.

[Thierauf 2024] proposes another integrated cognitive robotic architecture more fo-
cused on self-awareness. It allows the robot to assess its own performance, identify task
execution failures, communicate them to the humans, and resolve them, if possible.
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Figure 1.2: The SOAR cognitive architecture.

1.3 Models for Interaction
A robotic agent interacting with a human must coordinate its actions with them.
Moreover, joint action theory exhibits that humans interacting together represent the
task as a whole and plan not only for their actions but also for the actions of other
agents. Thus, we think that for a human to perform the most efficient and satisfactory
joint task with a robot, this robot must explicitly model human actions and plan not
only for its actions but also for the human ones. This is why we present in this section
some notations to clarify the different models used in this thesis, and then we present
in more detail how to model tasks.

1.3.1 Human and Robot Agents
Chakraborti et al. introduced notations to differentiate between the mod-
els [Chakraborti 2015]. These notations summarize and differentiate elegantly the
different models manipulated in the HRI/HRC field. These notations are depicted in
figure 1.3. At the bottom are depicted the human agent (on the left) and the robot
agent (on the right). When solving a task alone, the robot uses its own model referred
to asMR. This case can be considered as a Classical Planning problem. Then,MH

r

is an estimation by the robot of the model of the human. Finally, M̃R
h is an estima-
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Figure 1.3: Agent models from Chakraborti et al. notations.

tion of the robot model the human has. These models are likely to include knowledge
about the world from the agent’s perspective, an action model describing the agent’s
capabilities, and an agenda capturing the goal and motivation of the agent.

It is important to remember that when discussing a task planner, it is considered
part of the robot. Thus,MR is the robot’s ground truth. As a consequence, if there is
a belief divergence betweenMH

r andMR, we always consider thatMR is the truth.
Otherwise, it would make no sense to keep this information inMR while having access
to the one inMH

r .

1.3.2 Task Modeling
A common way of representing human activity (MH

r ) and interaction with computers
at a high abstraction level is by using task models. The hierarchical structure of human
activity was first exploited by Annett and Duncan [Annett 1967]. They state that tasks
can be described at several levels of abstraction until a certain criterion is met. Each
task can thus be refined into subtasks detailing the procedure the human follows to
achieve the higher level task. Task modeling has then evolved to introduce interaction
with systems, produced and needed information, potential errors, and a wide variety
of operator specifying how tasks interact with each other during their execution. Task
models are now commonly used in user-centered and user-interface design processes.
Most advanced notations include ConcurTaskTrees [Paternò 2004] and HAMSTERS
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[Martinie 2019]. These models are used to design or evaluate interactive systems. They
allow the designer to understand the user task better or to study the user workflow
using their system. However, these models contain too little information for a system
to be able to reason and make decisions on them (either in planning or acting).

1.3.3 Hierarchical Models
In classical planning, each action of an agent is atomic and needs some conditions to
hold in the environment to be executed, and then it changes the environment when
applied. The planning process then has to find the right sequence of actions, applicable
one after the other, to change the environment and reach a specific goal state.

However, humans tend to work more abstractly and decompose tasks hierarchically
into smaller tasks until the action level is reached. In practice, using Hierarchical Task
Network (HTN) allows the domain designer to help the plan search by inserting expert
knowledge via a hierarchy linking the actions [Erol 1996]. A task network consists of
tasks organized in a fully or partially ordered manner, and each task can be either
abstract or primitive. Primitive tasks are elementary tasks that can be achieved by
performing one associated action. On the other hand, abstract tasks first need to be
decomposed into other subtasks, “more primitive”. The planner’s goal is not to find the
sequence of actions to reach a goal but to select recursively for each task the suitable
decomposition ending (if possible) with a network of actions applicable from the initial
state. Ghallab, Nau, and Traverso name such a process as planning with refinement
methods [Ghallab 2016]. This planning hierarchy allows the domain designer to guide
the search by inserting some expertise into the model and enhancing explainability as
the decompositions often offer a semantic to their subtasks. The ’why’ of a subtask
can usually be answered by going up in the hierarchy, while the ’how’ is answered by
going down.

To better picture HTN models, a symbolic example is depicted in figure 1.4. Rect-
angles represent abstract tasks. Each method describes a possible way to decompose
an abstract task if its preconditions are met. Methods’ preconditions are not neces-
sarily mutually exclusive. Hence, as mentioned above, it is the planner’s job to select
the most suitable one when several ones are applicable. Methods decompose abstract
tasks into primitive tasks, represented with ellipses, and/or into other abstract tasks.
The obtained subtasks can be fully ordered, such as with method 1 (represented with
a one-way arrow) where Abstract Task 2 has to be completed before Primitive Task 1.
Methods can also be partially ordered as with method 2 (represented with a two-way
arrow) where Primitive Task 2 and Primitive Task 3 can be achieved in any order.
Note that methods can also decompose a task into nothing like method 3, for instance,
when the task is already done. Moreover, methods can be recursive like method 4.

Now, let us look at an example of a refinement process. We consider an initial task
network only composed of Abstract Task 1, and we refine it using the HTN described in
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Figure 1.4: An HTN example. Rectangles represent abstract tasks. Each method
describes a possible way to decompose an abstract task if its preconditions are met.
Methods can decompose abstract tasks into primitive tasks (ellipses) and/or into other
abstract tasks. The obtained subtasks can be fully ordered, such as with method 1
(represented with a one-way arrow), or partially ordered, like method 2 (represented
with a two-way arrow). Note that methods can also decompose a task into nothing
like method 3, for instance, when the task is already done, and they can be recursive
like method 4.
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Figure 1.5: Two possible decompositions of a task network using the HTN described in
fig 1.4. Both method 1 and method 2 can be applied, leading to two different solutions.
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fig 1.4 until the task network only contains primitive tasks (actions). Initially, method
1 and method 2 are both applicable and, thus, are candidates to decompose Abstract
Task 1. Applying method 2 leads directly to a fully refined solution task network,
including two partially ordered primitive tasks (Primitive Task 2 and Primitive Task
3 ). On the other hand, method 1 can be applied, leading to a different task network
that still includes abstract tasks. Then, Abstract Task 2 is recursively decomposed
using M4 twice. This could correspond to scenarios like filling a box with two balls.
Thus, M4 is only applicable until two more balls are in the box. Eventually, only M3
is applicable and refines Abstract Task 2 into nothing, leading to another solution task
network.

1.4 An Overview of Task Planning

1.4.1 Classical Task Planning
As Ghallab, Nau, and Traverso put it, “the purpose of planning is to synthesize an
organized set of actions to carry out some activity” [Ghallab 2016]. Classical planning
is a type of planning that assumes deterministic and fully observable environments.
It involves representing the world as a set of states and actions, with plans derived
through state space search algorithms. Actions have preconditions and effects, and
planning problems entail finding a sequence of actions to transform an initial state
into a goal state. Classical planning algorithms, including STRIPS, Graphplan, and
Fast Downward, utilize heuristics to guide the search efficiently. While well-suited for
domains with precise and deterministic dynamics, classical planning may face chal-
lenges in handling uncertainty or partial observability, leading to alternative planning
approaches for such scenarios.

1.4.2 Task Planning for HRC
Classical planning has been vastly studied and can now solve various problems effi-
ciently. However, the intricate nature of HRC scenarios demands sophisticated task
planning methodologies capable of adapting to dynamic environments, understanding
human intent, and promoting a fluent exchange of information. Hence, several sub-
fields of task planning have emerged and are used in HRC. Here are a few examples:

• Hierarchical Task Planning is a technique that organizes tasks in a hierar-
chical structure presented in the previous section, allowing for the representation
of complex tasks at various abstraction levels. This approach enhances modu-
larity, flexibility, and explainability in task planning, accommodating intricate
collaborative scenarios.
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• Mixed-Initiative Planning leverages the strengths of both humans and robots
by allowing for a dynamic allocation of decision-making authority. This tech-
nique promotes collaborative decision-making, enabling the system to adapt to
the expertise and preferences of each agent involved in the collaborative task.

• Human-Centric Task Planning focuses on incorporating human factors into
the planning process. This involves understanding human capabilities, prefer-
ences, and cognitive load to optimize task plans that align with human collabo-
rators’ natural workflows and expectations.

• Learning-Based Task Planning has emerged thanks to advancements in ma-
chine learning as a frontier in adapting to evolving environments. This technique
involves training models to understand patterns in human behavior, enabling the
robot to learn and adapt its task planning strategies over time. Such techniques
can also be used to predict human behavior and consequently adapt the robot’s
actions.

• Probabilistic Task Planning integrates uncertainty into the planning process,
acknowledging the inherent unpredictability of human behavior and environmen-
tal factors. By incorporating probabilistic models, this technique enhances the
robustness of task plans in dynamic and uncertain collaborative settings.

• Task and Motion Planning combines symbolic and geometric reasoning to
plan agents’ actions. In our context, it can be helpful to consider safety spatial
areas near humans and adapt both the robot’s motion and decisions.

Overall,Human-Aware Task Planning is the process of considering the presence
and behavior of humans in the planning and execution of robot tasks. It involves
taking into account cues from the shared environment and the dynamics of human-
robot interaction. The goal is to generate robot policies that are adaptable, robust, and
efficient in crowded and dynamic environments. A detailed presentation and discussion
about existing task planning works for HRC is provided in the related work section
(2.4) of Chapter 2.

1.4.3 Other Use Cases
Despite being designed for Human-Robot Collaboration, the task planning techniques
presented in this work can be used in other interactive contexts.

For instance, instead of planning robot actions, we could plan verbal answers in
a dialogue. This approach is used in [De Carolis 2000] and [De Carolis 2001]. Hence,
some algorithms and models proposed in this manuscript could be used to anticipate
the possible human sentences and plan the relevant robot communications.
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Additionally, one could think about a smart environment, e.g., a domotic house,
where various sensors and actuators are connected. When humans explore and operate
in such an environment, it could be relevant to plan domotic actions according to
human behavior, e.g., proactively making coffee, opening stores, activating the robot
vacuum cleaner, etc. This context is addressed in [Pecora 2012] to provide proactive
human support.

1.5 Simulating Intelligent Human Agents
In my work, I studied the decision-making challenge, mainly in the field of task plan-
ning. Nevertheless, I also worked on endowing simulated autonomous human agents
with decision-making capabilities in order to test and challenge robotic systems. I
propose a generic architecture to simulate such agents. Then, I describe two systems
based on this architecture and implemented for the navigation use case, simulating
respectively a single and several agents.

To better understand these contributions, I discuss simulation about HRI, including
simulating human agents, present state-of-the-art robot navigation techniques, and
finally, existing benchmarking tools, including simulated navigating human agents.

1.5.1 Simulation for HRI & Simulating Human Behavior
Studies in HRI quickly faced issues with testing and challenging the designed robotic
systems, primarily due to human interaction. Indeed, using a real robot and real
human operator is burdensome, but it is often necessary to test an HRI robot system
correctly. Consequently, research on how to simulate HRI scenarios is of growing
interest.

In [Schmitz 2010] and [Hirth 2011], they propose a robot development framework
that simulates all required modules of the robot, its sensor system, and its environment,
including persons. The simulation can represent all actuators of a humanoid robot,
like body, head, arm movements, and facial expressions. Besides the simulation of
actuators, all sensors are modeled. They integrate a human avatar with motions
and dynamics generated with H-Anim. However, it is unclear what decision-making
capabilities the avatar has, if not none.

In [Wang 2015], they designed an agent-based online testbed that supports vir-
tual simulation of domain-independent human-robot interaction. The simulation is
implemented as an online game where humans and virtual robots work together in
simulated scenarios. This testbed allows researchers to carry out human-robot inter-
action studies. In this contribution, the human agents are the result of combining two
agent technologies: decision-theoretic planning [Kaelbling 1998] and recursive model-
ing [Gmytrasiewicz 1995]. The agents’ beliefs and behaviors are generated by solving
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a Partially Observable Markov Decision Process (POMDP).
Eventually, as mentioned previously, cognitive architectures are often based on the

structure of the human mind and aim to reproduce high-level capabilities like learning,
inferring, and reasoning about how to behave in response to complex goals in complex
worlds. They can be used to simulate complex human behavior .

1.5.2 Robot Navigation
As stated in [Buisan 2021], robot navigation aims to make the robot base (the whole
robot) move from one place to another while avoiding static and moving obstacles.
However, other constraints must be added when the robot has to move in an envi-
ronment where humans are evolving. Humans should not just be avoided as other
moving obstacles, and their psychological and mental state must be taken into ac-
count. Hence, the robot should neither move threateningly, block the humans, nor
induce drastic changes in their motion. Taking all these aspects into account is what
is called human-aware robot navigation.

State-of-the-art techniques for robot navigation involve two kinds of motion plan-
ners: a global and a local planner. The global planner is in charge of finding the best
overall trajectory to lead the robot to its goal and producing a global plan. This plan-
ner usually only takes into account static obstacles described by a given map of the
environment. Then, the local planner is responsible for producing velocity commands
sent to the motor controllers to follow the produced global plan. To produce the ve-
locity commands, the local planner may produce a local plan with only a few seconds
of time horizon that follows the global plan while considering obstacles detected in
real-time by the robot sensors, including moving obstacles. This way, the robot should
reach its goal while reacting to moving obstacles.

However, as explained above, such approaches are insufficient in human-populated
environments. Humans must be detected and treated differently during the motion
planning process. Human-aware approaches detect and track nearby humans and try
to estimate their trajectory to plan the robot’s one accordingly. This is achieved in
works like [Singamaneni 2021], where the human trajectory is estimated using goal
recognition processes and elastic bands methods. Then, the robot’s motion is planned
using tuned elastic band methods to account for the robot’s goal, the estimated human
trajectory, and other social norms.

1.5.3 Navigation Benchmarking Tools and Metrics
Where it is easy to benchmark robot navigation on objective metrics like the time to
reach a goal, the distance traveled, and the number of collisions [Perille 2020], it is more
challenging to benchmark their human-aware properties. First, there is no consensus
on the metrics to evaluate a navigation system’s human-aware properties. State-of-
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Figure 1.6: Social force model approximating pedestrian motion by a sum of forces.

the-art metrics involve proxemics [Samarakoon 2022]. However, other relevant metrics,
such as the deviation imposed on human motion and the feeling of threat produced, can
be used. Also, finding a usable system that will effectively challenge a Human-Aware
Navigation (HAN) system is challenging.

Typical approaches to simulate navigating human agents involve reactive-only tech-
niques such as social force models [Helbing 1995, Chen 2018]. The social force model
assumes that a sum of different forces can approximate pedestrians’ acceleration, de-
celeration, and directional changes, each capturing a different desire or interaction
effect. For instance, as depicted in figure 1.6, one force corresponds to the accelera-
tion towards the desired velocity of motion; second, repulsive forces reflect the agent
keeping a certain distance from other agents and obstacles; third, attractive forces
represent the goal and motivations of the agent. Eventually, using standard physics
equations, the sum of these dynamic forces describes the agents’ motion. Such reactive
models are easy to use and efficient for crowd simulations. Interestingly, in crowded
or evacuation scenarios, social force models exhibit several so-called “self-organization
phenomena” such as lane formation, zipper effect, intermittent flow, or turbulence.
Unfortunately, as demonstrated in Chapter 7, such a model can perform very poorly
in intricate and non-crowded scenarios involving some decision-making. Thus, there
was a lack of intelligent simulated agents to challenge effectively HAN system. A few
recent works also propose simulating human agents endowed with some reasoning pro-
cesses. However, I did not find the time to compare my contribution with theirs, and
it remains an interesting possible future work. Nevertheless, this shows that this is a
subject of interest. More related work will be discussed in Chapter 7.
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This chapter presents the HATP/EHDA task planner. This approach
aims to clearly distinguish between the uncontrollable human and the con-
trollable robot agents. Most importantly, it models the distinct human
decisional processes and beliefs to be able to reason on it while planning
the robot’s action. This planner has been the keystone of most of my
work. Hence, the reader should understand the motivation and methods
of this task planner.
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2.1 Introduction
I was introduced to task planning with the work of a PhD student from my lab,
Guilhem Buisan. I slightly contributed to the original version and then proposed
two extensions of his work. However, Guilhem mainly designed and implemented this
novel Human-Aware Task Planning approach dedicated to Human-Robot Interaction
(HRI), which plans the robot’s actions while estimating and Emulating the Human
Decisions and Actions, namely HATP/EHDA.

We believe this planning approach suits the needs of HRI scenarios well. Thus,
it became a laboratory to address relevant challenges of task planning for HRC. Two
of my main contributions include addressing such challenges and implementing the
solutions as extensions of HATP/EHDA. Consequently, it is essential to understand
this work’s motivation and methods well before introducing my proper contributions.
This section introduces, motivates, and explains the HATP/EHDA approach as a
background to the other chapters. A detailed description of this prototypical planner
is already given in Buisan’s thesis [Buisan 2021]. Thus, large parts of this section are
directly retrieved from Buisan’s thesis, but they are essential to have in mind. Some
notations are adapted to match the descriptions of my contributions in the following
chapters.

2.2 A Hierarchical Agent-Based Task Planner
(HATP)

My work and HATP/EHDA are part of a line of work that started with the Hierarchical
Agent-based Task Planner (HATP) [Alili 2009, Lallement 2014].

Based on Hierarchical Task Network (HTN), this planner can elaborate a multi-
agent plan based on a single HTN tree. Moreover, it maintains one belief base per
agent, allowing the writer to write task decomposition rules and action preconditions
and effects in any agent belief base. This approach produces a joint plan that includes
actions from all involved agents.

To make HATP suitable to HRI scenarios, specific mechanisms to compute costs
and filter plans have been included. To this end, HATP allows balancing efficiency,
wasted time, agent effort, intricacy, and undesirable states or sequences. This way,
social rules can be defined to produce a collaborative plan that humans will likely
accept.

However, HATP assumes a shared goal has been established between humans and
robots before planning. It is also based on the fact that the generated plan will
be shared with and accepted by humans before execution. Indeed, HATP does not
represent humans as agents having separate decision-making processes that may lead
to diverging plans without robot communication. Hence, any human deviation from
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their generated stream of action needs supervision to perform repair action or request
a replanning. Such an approach can work well, but it assumes that communication
can easily be done at any point in the plan. However, this assumption is not always
verified for various reasons, e.g. noisy environments, making communication costly.
Additionally, any human deviation, e.g. due to inattention, will put the robot in a
failure state, which needs to be fixed before continuing (replanning).

2.3 Rationales of the HATP/EHDA Approach
The HATP approach produces what is estimated to be the best joint plan for solving
the task. Hence, this approach assumes that humans will likely accept and follow
the produced plan. This approach leaves no room for online human decisions and
assumes a fully committed human through a previously established shared goal. This
approach also considers one shared task representation and knowledge base. To cater
to the limitations of HATP, I participated in the development of a new approach,
HATP/EHDA, which tries to satisfy several objectives:

1. Plan without assuming a prior shared goal. In HRI scenarios, the robot
and the human do not always share a goal. The robot can, for example, plan
to perform a task around humans that are not involved at first, or it may be
requested by a human to do a task without wanting to take part in it. HAT-
P/EHDA can balance between integrating the sharing of a goal with a human
(assumed to be collaborative) in the plan and making the robot do the task alone
or integrating the eventuality to ask for punctual human help.

2. Model the human decision processes. When taking part in a task, a human
(assumed willing to collaborate with the robot) will also plan to reach their
(potentially shared) goal. HATP/EHDA must be able to account for this to
provide plans that are expected and explainable by the human partner.

3. Help the human decisions, but not compel them. Unlike HATP, HAT-
P/EHDA should account for human decision-making flexibility. While modeling
the human decision processes, it is possible to narrow down the possible human
actions, and the generated plans must help the supervision (execution of the
plan) avoid replanning or repairing during the execution by considering several
human actions.

4. Model the potential human reactions. It is possible to predict that the
human may react to some situations, interrupting or helping their current task.
Two causes have been identified for these reactions. First, they can result from
specific world states humans perceive and interpret. Then, they can also originate
from explicit communications issued by the robot. These communications can
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either be a belief alignment, updating the human knowledge and impacting their
decisions, a request to perform a specific action, or a request to help the robot
with a shared goal, needing the human to plan for it.

5. Act and decide on the different agents’ beliefs. It is crucial to be able
to represent actions as having different effects on the beliefs of the robot or the
human. Indeed, some robot actions are partially or not observable by humans;
humans cannot know the complete new world state when performing them. Be-
sides, these effects and their observability often depend on the current world
state, whose representation must be supported by the planner. Then, planning
decisions may require reasoning on both the robot’s and human’s beliefs. This
is especially true with communication actions aiming to align knowledge or ask
questions. Finally, some actions of pure decision have no direct effect on the
world but only on the internal beliefs of the agents. For example, observation
actions will only update the beliefs of the agent doing it.

6. Decide not only on the world state but also on the decision processes
of the agents. Some decisions made during the planning process require access
to the agents’ beliefs representing the world state and the estimation of their
planning processes. For example, the decomposition of a task by the robot may
be impossible if some other task is already performed in its partial plan. Other
decisions may also need the estimation of the current human planning process.
For example, if it were estimated earlier in the plan that the human would
perform a specific task decomposition, the planner would assign a complementary
task to the robot.

7. Adapt to the human experience, trust, and preferences. We also want the
planning process to be adjusted depending on the actual human it is planning
with. It must perform its planned search differently, whether the human has
the habit of performing this particular task with the robot or not. Moreover,
the human model can be adjusted to the human’s trust in the robot and their
preferences.

2.4 Related Work
An approach to solving a collaborative task is to produce a joint plan that includes
coordinated robot and human actions. This plan must be shared, accepted, and fol-
lowed to solve collaboratively the common goal. This approach is used in the HATP
planner presented above. By assuming the plan must be followed, the human cannot
deviate from the generated plan. Hence, this approach assumes that the human is
controllable. In [Johannsmeier 2016], the authors use the same assumption and pro-
pose a task allocation framework for human-robot collaborative assembly line tasks.
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They propose representing the task through an AND/OR graph and solving the opti-
mal sub-task allocation problem considering a given cost function. Action sequences
are extracted from this allocation and then shared with the respective agents to be
executed. Hierarchical and concurrent hybrid state machines handle the execution of
these sequences. This copes with unpredictable events likely to happen in dynamic
and partially known environments, especially in the presence of humans.

Additionally, some works are focused on HRC’s psychological aspect, like the plan’s
acceptability and explainability. This is beneficial to the approach described just
above. In [Chakraborti 2017], the authors propose to improve the explainability of a
robot plan by using both a robot modelMR and the estimation of the model the human
has of itMR

h . This approach, called model reconciliation, aims to make identical the
optimal plans generated using both models, i.e., MR andMR

h . They define a list of
operators to modify the different models until the plans match. Although this approach
interestingly improves the explainability of the robot’s plan, it does not consider the
two agents to collaborate directly. Indeed, the plan produced only contains robot
actions.

Producing a joint plan that considers the human controllable is efficient and accept-
able in industrial contexts. Indeed, the human is working and thus highly committed
and focused on the task. Even if humans appreciate flexibility, in this context, their
priority is instead task efficiency. However, this assumption can become burdensome
for humans in other contexts, such as household ones, where humans are likely to
be distracted, change their minds, and tend to prioritize minimizing their effort and
flexibility instead of task efficiency.

As a result, some approaches started to consider a distinct human model MR
h to

plan the robot action. A first approach, described in [Hoffman 2007], proposes an adap-
tive action selection mechanism for a robotic teammate, making anticipatory decisions
based on the confidence of their validity and their relative risk. They demonstrate im-
proved task efficiency and fluency compared to a purely reactive process. The human
behavior is modeled with a First-Order Markov Process and learned through Bayesian
estimate. The probabilities constituting the human model are used in the cost eval-
uation of different plans, eventually leading to a robot action selection, producing an
adaptive and proactive robot plan. In [Unhelkar 2020] is proposed an approach based
on Partially Observable Markov Decision Process (POMDP) called CommPlan. The
POMDP is built using a user-defined Markov Decision Process (MDP) representing
the collaborative task and an Agent Markov Model (AMM) representing the human
decision-making process. Solving this POMDP produces a robot policy that decides
when the robot has to communicate about its beliefs, when to question the human
about theirs, and when to ask the human to perform an action. Besides, the AMM
is not only specified by an expert modeler but also refined during the interaction via
learning. However, the approach considers the human model as an oracle on which
reasoning is hardly possible.
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Other works extend the use of a distinct human model to explicitly predict
and anticipate the actions the human is likely to perform. Then, for each possi-
ble human action, the best robot’s actions are determined to account for human
unpredictability. This approach is used in HATP/EHDA and in another similar
work [Buckingham 2020]. In the latter, they propose a unified scheme to cope with
collaborative, adversarial, and non-involved human agents. This scheme considers
given mental models for each human co-present with the robot, which might interact
with the latter. These mental models are queried to estimate a set of actions each
agent is likely to perform given a state. The robot’s actions are planned according to
these estimated actions to reach the robot’s goal and potentially achieve the human
agents’ goal. In doing so, the robot’s actions can influence the human ones without
explicit communication, helping the robot achieve its goal. HATP/EHDA similarly
queries a human mental model and uses an AND/OR graph where OR nodes repre-
sent possible robot actions in a state and AND nodes represent the possible human
actions estimated by the models. However, despite saying the model can be generic,
this work uses a basic breadth-first search planner to produce a set of minimal-cost
plans solving the estimated human goal. Then, they extract the first actions of each
plan to produce a set of actions the human is likely to perform. No details are given
on the cost evaluation. This approach does not seem to consider sub-optimal human
actions that are still probable or due to inattention. Moreover, the robot actions
are selected by using a Min-Max approach on the AND/OR graph, minimizing the
worst-case. This approach works well in adversarial setups and still allows cooperative
human interventions. However, it is unclear how these cooperative actions are taken
into account in the robot decision process. Assuming that the human will be adver-
sarial, the robot might make “wrong” decisions, possibly preventing an efficient and
optimal cooperative execution. HATP/EHDA minimizes the average cost of all pos-
sible human decisions, optimizing uniformly for any human decisions. This approach
considers humans congruent, rational, and cooperative but not necessarily involved in
the robot’s task. Hence, HATP/EHDA does not account for adversarial humans but
addresses the other cooperation types better. [Koppula 2016] also explicitly estimated
the most likely human actions to generate the robot policy, but they use a probabilis-
tic and learning approach. They propose a two agent collaborative MDP model and
learn robot policies by taking into account the actions that can be performed by the
human. They represent the environment in terms of the object affordances and learn
the activity model from RGB-D videos of a human performing the activities. Then,
they use this learned task model in a distributed Q-learning algorithm to learn the
robot policy for a given new environment. The human capabilities are captured in a
MDP. Thus, the possible human actions are estimated by balancing the human habits
and the best (ε-optimal) action given by the MDP.

Another line of work, sometimes also using human models, is focused on online and
reactive planning. The robot’s behavior is decided online using planning techniques
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but on limited horizons. This produces robot behaviors that are adaptive to human
decisions and potentially unexpected environmental changes and events. However,
due to the limited horizon to maintain a real-time reactive behavior, the robot behav-
ior’s optimality is not guaranteed and might lead to dead ends. Nevertheless, these
online approaches usually robustify the robot’s behavior and are reactive to failures.
Therefore, they could/should complement offline planning approaches like HATP/E-
HDA. The two-sided work [Sanelli 2017] is in this line of work. First, they propose
a conditional planning system that considers uncertainties, primarily due to human
agents. This planning approach is based on planner Contingent-FF [Hoffmann 2005].
Then, they propose a component to translate these plans into a Robust Petri-Net Plan
(PNP) to handle their execution. This translation is inspired by work [Iocchi 2016],
which improves plans with execution rules. Eventually, these plans are executed with
an existing module called PNPRos [Ziparo 2011]. Interestingly, the expected human
actions are transformed into sub-Petri Nets where the robot elicits the action (e.g.,
via verbal communication) if the human does not perform it by themselves. However,
this approach does not model either reason on a distinct human agent model. Hence,
the human reasoning process, goal, and belief are not modeled. This means that the
interaction is limited to requesting the human to perform single actions without set-
ting a proper high-level joint goal. This can be efficient in some situations, like a
service robot providing information and requesting answers to some questions, such as
the examples presented by the authors. However, repeated punctual interventions to
perform a more extended task collaboratively can become unpleasant for the human.
In [Darvish 2021], they propose a hierarchical human-robot cooperation architecture
called FlexHRC+ designed to provide collaborative robots with an extended degree
of autonomy when supporting human operators in high-variability shop-floor tasks.
This online architecture is organized into three levels: perception, representation, and
action, producing robust, adaptive, and sometimes proactive collaboration. They use
hierarchical AND/OR graphs where arcs are sub AND/OR graphs to reduce the com-
plexity of task descriptions, especially when including repetitive subsequences of action
(like mounting four table legs). This representation is close to the HTN one used in
HATP/EHDA. A reactive human-aware task planner is proposed in [Fusaro 2021], tak-
ing advantage of the Behavior Tree paradigm. The approach plans the robot’s actions
online by minimizing weighted costs based on duration, ergonomics, and distance,
which are updated online. Therefore, the robot can adapt to dynamic changes in the
environment and to human intentions, motions, decisions, and availability. This ap-
proach permits considering different levels of engagement between robots and humans:
coexistence, cooperation, and autonomous task execution.

Finally, in [Izquierdo-Badiola 2022], the authors combine the production of a joint
plan to solve a common goal with the reactive aspect of previous approaches. They
use a so-called “agent state” to model the human mental state and translate it into
action costs in a PDDL domain. This model comprises the Capacity evaluating if the
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human is capable of performing an action at the specified location without difficulty,
the Knowledge evaluating if the human has all necessary knowledge to perform their
assigned actions, and the Motivation indicating if the agent is committed towards
the common goal, active and not distracted. In their approach, the agent state is
sensed and updated during execution. Then, whenever changes in the agent state are
detected, a replan is triggered to consider those changes in the plan, often inducing
a reassignment of the actions and avoiding the probable failure of the initial plan.
However, the authors do not provide a method to effectively sense and estimate the
agent state but prove its usefulness by simulating its acquisition.

2.5 A BlocksWorld Running Example

Figure 2.1: Cube stacking scene: A different plan is selected for each scenario, involving
nearby humans in the least disturbing way possible

.

To highlight the potential of our approach, we present a cube-stacking scene as an
example. The scene is depicted in four different scenarios in 2.1. The goal consists of
stacking the colored cubes on the empty marks to match the colors on the figure’s left.
All cubes placed in the middle of the table are reachable from anywhere. However,
when close to one side, a cube is only reachable from this specific side. Notice that
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one of the required red cubes is located on the opposite side of the table and cannot
be grabbed by the robot in the initial state.

A first human, called H1, requests the robot to stack the colored cubes to match
the goal pattern given. In the first case (a), H1 set a shared collaboration goal by
requesting the robot to stack the cubes together with them. However, H1 can also
just give their request to the robot and leave. In such a case, the robot has three
possibilities. First, in (b), the robot can solve the task alone but must move to the
other side of the table, which is slow and costly. Secondly, in (c), the robot can ask
another nearby human, H2, for punctual help with the unreachable red cube. H2 ’s
reaction can be to put the red cube directly in the stack or only make it reachable to
the robot. Finally, the robot can set a shared goal by requesting H2 to help it build
the stack together.

The HATP/EHDA approach explores and evaluates all these kinds of scenarios to
produce the robot policy.

2.6 Formalization of the Approach
This section describes the formalization introduced by the HATP/EHDA planning
approach and used or adapted in my contributions. It includes descriptions of the
problem specifications and the solution produced by the planner.

Problem Specification
The notations from Buisan’s thesis have been adapted to match the notations in this
thesis and ease readers’ comprehension. We start from the classical planning formal-
ization described in [Ghallab 2016].

Definition 1 (Classical Planning Domain Σ.) A classical planning domain is a
state-transition system in the following form: Σ = (S,A, γ). S is a finite set of states
in which the system may be, A is a finite set of actions that the agents may perform,
γ : S ×A→ S is a state-transition function. Each state s ∈ S is a description of the
properties of various objects in the planner’s environment.

To represent the objects and their properties, we will use two sets B and X: B is
a set of names for all the objects, plus any mathematical constants representing the
properties of those objects. X is a set of syntactic terms called state variables, s.t. the
value of each x ∈ X depends solely on the state s.

Definition 2 (State-variable x.) A state-variable over B is a syntactic term x =
sv(b1, ..., bk), where sv is a symbol called the state variable’s name, and each bi is a
member of B and a parameter of x. Each state-variable x has a range, Range(x) ⊆ B,
which is the set of all possible values for x.
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Here is the description of the sets B and X for the stacking example given in the
introduction:

B = Entities ∪ Locations ∪Reachability ∪Booleans ∪ {nil}
Entities = Agents ∪ Cubes
Agents = {R,H} \\ R : robot, H : human
Cubes = {red1, red2, green1, blue1, yellow1}
Locations = {base1, base2, bridge, top1, top2}
Reachability = {middle, sideH, sideR}
Booleans = {true, false}

X = {at(e), holding(a), solution(l) | e ∈ Entities, ϕ ∈ Agents, l ∈ StackLocations}
Range(holding(ϕ) | ϕ ∈ Agents) = Cubes ∪ {nil}
Range(at(ϕ) | ϕ ∈ Agents) = {sideH, sideR}
Range(at(c) | c ∈ Cubes) = Reachability ∪ Locations
Range(solution(l) | l ∈ StackLocations) = Cubes

Definition 3 (Variable value assignment function val.) A variable value as-
signment function over X is a function val that maps each xk ∈ X into a value zj ∈
Range(xk). With X = {x1, ..., xn}, this function can be written as a set of assertions:
val = {x1 = z1, . . . , xn = zn}. For legibility purposes, we use the following notation to
access the value zj of a state-variable xk in the state si: vali(xk) = zj.

Definition 4 (Action a.) An action is a tuple a = (head(a), pre(a), eff(a)) where
head(a) is a syntactic expression of the form act(z1, ..., zk) where act is a symbol called
the action name and z1, ..., zk are variables called parameters. pre(a) = {p1, ..., pm} is
a set of preconditions, each of which is a literal. And eff(a) = {e1, ..., en} is a set of
effects, each of which is an expression of the form: sv(t1, ..., tj)← t0 with t0 being the
value to assign to the state variable sv(t1, ..., tj). We note agt(a) the agent performing
the action a.

The problem specification of HATP/EHDA is a pair of two distinct human and
robot models as follows: P = {MH ,MR}. Each modelMϕ, for an agent ϕ, comprises
the following:

• Name (nameϕ): being the name of the agent. Hence, either “robot” or “human”.

• Beliefs (valϕ): estimation of the world state from the agent’s perspective.
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• Agenda (dϕ): capturing the personal and/or shared goals of the agent, currently
implemented as a task list/sequence but could be generalized to partially ordered
task networks.

• Partial Plan (πϕ): storing the current partial plan on an agent. This is empty
at the beginning and filled during the planning process.

• Action Model (Λϕ): encoding the capabilities of the agent and used to estimate
the next actions of the agent according to their agenda and beliefs. Here, it is
described by a Hierarchical Task Network (HTN) and thus a set of operators and
methods.

• Triggers (Trϕ): describes the reactions the agent may have which might update
their agenda. The agent may react to a specific world state, event sequence, or
explicit communication. For instance, consider a scenario where another agent
is suddenly handing over an object to the agent. This event has nothing to do
with the agent’s goal, and thus, the next agent action extracted from the Action
Model might not consider the other agent. However, a natural reaction to this
situation is to grab the handed object. Thanks to the Triggers mechanic, we
can model and predict that whatever the agent is doing, the agent will grab the
object when given.

Note that most of the models’ elements are static during the planning process.
Only the Beliefs (valϕ), the Agenda (dϕ) and the Partial Plan (πϕ) of each agent
evolve during the planning process. That is why we define specifically an agent state
in Definition 5.

Definition 5 (Agent state σ.) An agent state σϕ comprises the dynamic infor-
mation evolving during the planning process about an agent ϕ. It consists of the
agent’s beliefs, agenda, and partial plan. Hence, the agent state is written as follows:
σϕ = {valϕ, dϕ, πϕ}.

Definition 6 (Agent model M.) An agent model Mϕ comprises all information
regarding an agent ϕ. It consists of the static information, such as the agent’s name,
action model, and triggers, and the dynamic information gathered in the agent state.
Hence, an agent model is formalized asMϕ = {nameϕ,Λϕ, T rϕ, σϕ, }.

The planner uses two agent models, one for the human and one for the robot.
Despite their identical structure, the two models have a fundamental difference: one
is a controllable agent and not the other. Indeed, the human model is only used to
speculate on human decisions and actions in given situations. Then, the robot model
is used to plan the robot’s actions according to the estimated human actions. Note
that human decisions can still be influenced by the robot’s actions, but they cannot be
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compelled. It is also important to remember that the two agents are not equivalent.
The robot’s role is to help, assist, and facilitate humans. Therefore, it should exhibit
pertinent, legible, and acceptable behavior.

Definition 7 (State s.) A state si ∈ S is a tuple composed of two agent states
capturing the state in which the planning problem is, s.t. si = (σH

i , σ
R
i ).

From the robot’s perspective, the state of the world is captured by the variable value
assignment function valRi ∈ σR

i . Since the planner is assumed to be part of the robot,
the robot’s beliefs are assumed to be the ground truth and are sometimes noted as vali.
Similarly, valHi ∈ σH

i represents the estimation of vali from the human’s perspective,
also called the estimated human beliefs. Therefore, we can define estimated human
false belief in Definition 8.

Definition 8 (False belief.) We say that a state si ∈ S contains false beliefs, or
belief divergences, if ∃xj ∈ X, valHi (xj) 6= valRi (xj).

Be careful not to confuse states and beliefs. A state is a state in which a given
planning problem is. It comprises the robot and human agent states. Each state is
connected to another through agent actions. On the other hand, the beliefs refer to
the state of the world from an agent’s perspective. Both human and robot beliefs are
part of a state.

As an example, considering the presented stacking example, the associated initial
state s0 would be as follows:

s0 = {σR
0 , σ

H
0 }

σR
0 = {valR0 , dR

0 , π
R
0 }, σH

0 = {valH0 , dH
0 , π

H
0 }

dR
0 = (Stack), dH

0 = ∅
πR

0 = πH
0 = ∅

valR0 = valH0 = {at(R) = at(red1) = sideR,
at(H) = at(red2) = sideH,
at(green1) = at(blue1) = at(yellow1) = middle,
holding(R) = holding(H) = nil,
solution(base1) = solution(base2) = red,
solution(bridge) = green,
solution(top1) = blue,
solution(top2) = yellow}
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Note that our model permits interaction with only one human at a time. Hence,
in scenario (a) on figure 2.1,MH corresponds to H1. In all other scenarios, H1 only
initializes the robot’s agenda. Thus, in such cases,MH corresponds to H2. Therefore,
dH

0 is empty except in scenario (a), where H1 establishes a shared goal. Also, the sets
B and X have been slightly modified for legibility reasons because the cubes are, in
fact, explicitly associated with colors used in the task decompositions. As a result, the
solution is expressed using colors and not the cube names. Finding the exact cube to
place is described in the action models.

Planning and Estimating Actions
As mentioned above, the two modelsMR andMH are fundamentally different. The
human one is used to estimate the actions that the human is likely to perform in a
given situation. The robot one is used to plan the best robot actions according to the
estimated human ones. Nevertheless, to simplify the description, we tend to refer to
both cases as “estimating an agent’s next actions”.

The exact process of estimating the next actions that an agent ϕ ∈ Agents is likely
to perform in a state si ∈ S will be detailed later. Here, we only consider an overview
to introduce some notations. The process roughly consists of using the agent’s static
action model (Λϕ) and the dynamic agent’s beliefs (valϕi ) to refine the agent’s agenda
(dϕ

i ). This refining process returns a so-class refinement defined in Definition 9.

Definition 9 (Refinement ref .) A refinement is a list of 2-tuples for each
estimated action, a, and the associated new agenda, d, after being refined, s.t.,
ref(dϕ

i , val
ϕ
i ) = {(a1, d1), ..., (ak, dk)}. It is computed using the agent’s action model

Λϕ.

In our cooking example, we obtain the following refinement if the starting agent is
the human:

ref(dH
0 , val

H
0 ) = {(add_salt(), d1), (move_to(kitchen), d2)}

The execution of an action a in HATP/EHDA is seen and known by both agents.
Thus, ∀ϕ ∈ Agents,∀x ∈ X:

valϕi+1(x) =
{
w, if x← w ∈ eff(a)
valϕi (x), otherwise (2.1)

Solution description
HATP/EHDA produces a robot policy extracted from an implicitly coordinated joint
solution tree. This solution tree is an AND/OR tree where AND nodes correspond to
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human decisions, all possible human choices are preserved, and each OR node corre-
sponds to a robot action selected among the possible robot actions. This representation
assumes a turn-taking fashion where agents act one after another alternatively. The
solution is formally defined in definition 10.

Definition 10 (Implicitly Coordinated Joint Solution.) The solution for P is
represented as a tree, i.e. G = (V,E). Each vertex (v ∈ V ) represents the robot’s
belief state, starting from the initial belief. Each edge (e ∈ E) represents a primitive
task that is either a robot’s action ar or a human’s estimated and emulated action ah.
G gets branched on the possible choices (ah

1 , ah
2 , ..., ah

m).

In practice, it produces a tree of sequential actions where every human action is
succeeded by one optimal robot action. Additionally, a new branch is created for
every estimated possible human action, ensuring it covers all possible human choices.
Each branch is a possible course of alternating robot and human actions leading to
the goal. Each branch in the solution tree is a sequence of primitive actions, say
π = (ah

1 , a
r
2, a

h
3 , ..., a

h
k−1, a

r
k), that must satisfy all the solution conditions of P . Here,

each ah
i represents a choice, often out of several, the human could make. And each

ar
i+1 is the optimal robot action according to ah

i .

2.7 Exploration and Search Process
To start planning, HATP/EHDA must be given the two action models (the robot
and the human HTNs), the initial beliefs of both agents (which can differ), and the
initial agenda of both agents. The initial agenda of the robot represents the task to
decompose, while the agenda of the human represents any task the human is estimated
to be committed to. If a shared goal has been established prior to planning between
the robot and the human (e.g., the human asking to perform a task with the robot),
the agenda of both agents will be filled with the same task.

The planning process is done in three parts: (1) both HTNs are explored in a turn-
taking fashion, resulting in a valid joint plans tree; (2) based on this tree, robot actions
are selected according to action, plan-wide and social costs, resulting in a conditional
plan, where at each step multiple human actions can be performed but only one robot
action is set; (3) causal and threat links are added between actions of the conditional
plan to ease its execution.

The robot HTN exploration is a pretty standard depth-first algorithm. The first
task λ from its agenda dR is popped, then if it is an abstract task λ ∈ Ab, all the
applicable methods are applied, and their results are prepended to the agenda, thus
giving new agents state (with the same beliefs as the previous ones but with the robot
agenda updated) and branching our search space. We recursively iterate with the
new task popped from the new robot agenda. Eventually, the popped task will be
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a primitive one λ ∈ Op, and its function will be applied to the currently explored
agent states. If it returns false (⊥), the action is not applicable, and the exploration
backtracks to another decomposition of an abstract task. However, if the action is
applicable, it is added to the robot plan, and the triggers are run for each agent,
updating their agenda if necessary. The human HTN is then queried to get their
possible next actions from this new state. The possible actions found are added to the
human plan, and, for each possible new state, we apply each agent’s triggers and then
continue the robot HTN exploration. This exploration continues until the robot agenda
is empty, or all the branches return false. The exploration process is summarized in
Fig. 2.2.

The human HTN exploration differs from classical HTN planning as the goal is not
to produce a complete plan but to list all the actions the human is likely to perform in
a given agent state. We recursively decompose the first task of the human agenda dH

with every applicable method until we reach an applicable operator. All the operators
from all the applicable decompositions are returned to the robot HTN exploration and
applied.

Two special cases are handled during the exploration. When an agent’s agenda is
empty, the exploration returns a default passive action IDLE, which has no effect. It
only indicates that the agent has nothing to do and will likely remain still. Besides, if no
applicable action is found for an agent, the exploration returns a default passive action
WAIT. Similarly to IDLE, it has no effect but represents the agent’s impossibility to
act in the current situation.

Once both agendas are empty, the state is set as a success, the plan is added to
the valid plans tree, and the search can continue until no decomposition is left for any
task.

2.8 Plan Evaluation and Selection
In human-aware task planning, plan evaluation is a trade-off between efficiency and
social criteria. The robot should be efficient but also behave in an acceptable, legible,
and accommodating manner.

Cost evaluation is tricky because objective metrics are easy to use for efficiency.
However, social criteria are more challenging to evaluate because they are hard to
generalize. These social rules can be very context-dependent, making them hard to
generalize and thus to take into account reliably.

Plan cost is a mix of all the following:

• Length of the plan (number of actions or temporal duration if available).

• Sum of individual action cost: the cost of each action can be estimated to
translate the effort required to perform it. It can reflect several aspects and
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Figure 2.2: The HTNs exploration consists in iterative loops of four steps : (1) Get
possible robot actions from the robot HTN, add them to the plan and apply their
specific effects on the H & R beliefs, (2) Check Triggers and add the reactions in
the corresponding agendas, (3) Get possible human actions based on their estimated
beliefs, add them in the plan and apply their effects on the H & R beliefs, (4) Check
Triggers again and add the reactions in the corresponding agendas. Here the robot is
starting, but the human could with the following ordering: (3)>(4)>(1)>(2).
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constraints, such as pure physical strength required, duration of the action, or
energy consumption.

• Undesired states: Common sense and social norms can be used to define several
rules defining undesired states. This can cover various aspects such as hygiene
or safety. For instance, despite being possible and maybe efficient, we would
not like a robot holding a dirty dripping mop in one hand and the sandwich we
asked for in the other hand. Another example is that we would not like a robot
dropping a knife just on the edge of a table or counter because it may fall and
be dangerous.

• Undesired sequences of actions: For the same reasons, we can also define unde-
sired sequences of actions. This can express preferences regarding the ordering
of different subtasks, e.g., since we do not want the robot to hold our sandwich
while cleaning the house, we would also not like the robot to clean first and
then make a sandwich because the robot is likely to be dirty while making the
sandwich.

I implemented in HATP/EHDA a way to specify and take into account undesired
state and action sequences. Detecting any of them in a possible plan would penalize
the plan cost of the specified amount. Here, the undesired elements must be specified
in the problem specification and are abstracted in the planner. However, as stated
above, it is hard to generalize undesired states and action sequences and integrate
them directly in the planner to avoid specifying them in the problem specification.

In HATP/EHDA, once the exhaustive exploration has been done, the result is
a valid plan tree of alternating feasible robot and human actions along with their
current beliefs leading to task completion. This second planning step aims to select
robot actions, such as each human action in the plan has only one robot action as
a child. To do so, we define a cost function cost : S × Op 7→ R+ representing the
cost of an action in a specific state. The data structure is now similar to a two-player
game tree. However, MinMax approaches are unsuitable here, as we are not in an
adversarial setup but more in a collaborative one. Indeed, trying to minimize the
maximum possible cost assumes that humans will always do the actions that lead to
the worst plan. This defensive behavior could lead to non-optimal plans. We thus
propose to explore this tree differently.

Moreover, like in HATP, we can define social costs functions. These functions
take a complete human and robot sequence of actions (πR and πH) and return a cost
(R+) which is added to the cost of the plan previously determined. By doing so, we
can penalize non-acceptable sequence of robot actions (e.g. serving a meal just after
taking out the trash) or non-satisfactory human required contribution (e.g. the robot
requesting the human to perform small tasks multiple times instead of giving the big
picture of the actual task to perform).
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The approach we propose for plan selection is to minimize the average cost. It
represents the human potentially selecting any course of action in their stream (while
still respecting the action model defined in their HTN). The algorithm is given the
root action of the plan tree previously generated. It returns the cost of the conditional
plan selected while selecting the robot actions in the plan tree to minimize the average
plan cost.

2.9 Qualitative Results
Each scenario is commented on below with their corresponding selected plan shown
in TABLE 2.1. The partial robot and human action models and their exploration are
presented in Fig. 2.3.

(a) R and H1 build the stack to-
gether as a shared goal requested by
H1.

(b) H1 requests to stack the cubes
and R acts alone.

R-PickAndPlace(red, base) R-PickAndPlace(red, base)
H1-PickAndPlace(red, base) R-moveTo(red)
R-PickAndPlace(green, bridge) R-PickAndPlace(red, base)
H1-PickAndPlace(blue, top) R-moveTo(init)
R-PickAndPlace(yellow, top) R-PickAndPlace(green, bridge)

R-PickAndPlace(blue, top)
R-PickAndPlace(yellow, top)

(c) H1 requests R to build the stack,
R decides to punctually involve H2.

(d) H1 requests R to build the stack,
R decides to invite H2 to a shared
goal.

R-PickAndPlace(red, base) R-PickAndPlace(red, base)
H2-IDLE H2-IDLE
R-AskPunctualHelp(red) R-AskSharedGoal()
H2-PickAndPlace(red, base) H2-PickAndPlace(red, base)
R-PickAndPlace(green, bridge) R-PickAndPlace(green, bridge)
H2-IDLE H2-PickAndPlace(blue, top)
R-PickAndPlace(blue, top) R-PickAndPlace(yellow, top)
H2-IDLE
R-PickAndPlace(yellow, top)

Table 2.1: Execution trace of a selected plan for each scenario.

(a) H1 and R act together First, the human sets a shared goal by asking the
robot to stack cubes with him. Since it is a shared goal, human and robot agendas are
initialized with the “Stack" task. Thus, the robot anticipates that the human will pick
the unreachable second red cube by querying the human action model. Table 2.1(a)
shows the selected plan to collaboratively stack the cubes.
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(b) R acts alone This time, the human asks the robot to stack the cubes but then
leaves the scene, and the robot must act alone. Hence, the only applicable method
to make the second red cube reachable is to move to the other side even though the
movement action is expensive (we can imagine a table way longer than shown in the
figure).

(c) R asks punctual help The first human (H1 ) requests the robot to complete
the task, and another uninvolved human (H2 ) is present. The robot starts exploring
its HTN and, thanks to the presence of the other human, a new method is applica-
ble, allowing the robot to ask for help. It can ask for punctual help or a complete
commitment of H2 to the task. Of course, asking for help for one cube is less costly
than building the whole stack together. However, asking for help from someone not
already involved in a common task is still expensive since they must put themselves
in the task’s context. Nevertheless, this punctual help is less costly for the robot than
moving to the other side, so this solution is selected. Note that we model that after
being asked to help punctually, the human can either stack the cube themself or make
it reachable to the robot by placing it in the middle. Only the first branch is shown in
table 2.1(c), but the selected plan is in fact conditional with two branches as depicted
in Fig. 2.3.

(d) R invites H2 to share a goal Same initial setup, but now two cubes are
out of reach. Asking for punctual help is still less costly than moving around the
table. However, each new request to H2 is assumed to be more and more costly,
making repeated queries expensive. Therefore, due to the two unreachable cubes in
this scenario, setting a shared goal becomes less costly for the robot than asking twice
for punctual help.

2.10 Conclusion
What is offered by HATP/EHDA is very interesting. We rely and reason on the human
model to plan the robot’s actions while never compelling the human actions. The plan
produced assumes turn-taking and no parallel execution of the actions. This is not
a strict constraint as a post-analysis can reason on the causal links of the actions in
the plan to extract a partially ordered plan to execute, making the execution more
flexible. However, It is still a limitation addressed in Chapter 4.
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This chapter presents my first main contribution, proposing models
and algorithms to incorporate Theory of Mind concepts in HRC task-
planning. An empirical evaluation is provided and discussed, demon-
strating how this contribution solves a broader class of problems than
HATP/EHDA, without systematically using communication.
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3.1 Introduction

Figure 3.1: Sally and Anne Task

False belief tasks are commonly used as tests to acknowledge the presence of Theory
of Mind reasoning. The most common test is the Sally and Anne one, depicted in
fig 3.1. It is used in developmental psychology to examine children’s “theory of mind”
understanding, which refers to their ability to understand how other people think, feel
and behave. The test consists of describing the execution of a simple task involving
non-observable facts and co-presence. Then, children are questioned about the beliefs
of one of the characters. The task consists of the following. Sally and Anne are two
co-present characters near a basket and a box. Sally puts her ball in the basket before
going away. Then, in hindsight, Anne moves the ball from the basket to the box.
Finally, Sally comes back to look for her ball. The following question is now asked:
“Where will Sally look for her ball?”. As an observer of this scene, using Theory of
Mind, we can naturally say that Sally will look for her ball in the basket because
this is where she left it, and she is unaware of Anne’s action. Young children cannot
understand that Sally has different beliefs from theirs and, thus, they are likely to
answer that Sally will look in the box.
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Theory of Mind (ToM) reasoning is critical for interaction and collaboration be-
tween agents. Thus, it is reasonable and desirable to endow robots with such skills
to enhance their interactions with humans. This is the motivation of the contribution
presented in this chapter. We propose an extension of HATP/EHDA to maintain hu-
man beliefs during the planning process in a principled way in order to anticipate and
tackle estimated false human beliefs that may be detrimental to task resolution.

Some works consider ToM during execution to handle unexpected situations and
contingencies like [Devin 2016]. However, such reactive approaches are not always
enough since deadends can require proactive decisions and actions to be avoided.

We would want the robot to be able to reason and correctly maintain distinct
human beliefs. Despite HATP/EHDA modeling distinct beliefs, this scheme does
not maintain them automatically. The beliefs can only be updated in a scripted way
through the description of action effects provided in the planning problem. We propose
models and algorithms to integrate concepts of the Theory of Mind in the planning
process of HATP/EHDA. This way, the robot can accurately estimate human beliefs
and better predict their behavior. Moreover, we propose solutions for the robot when
tackling estimated false human beliefs that may impact the task resolution.

3.2 Related work
This chapter’s contribution is related to several topics that have not been mentioned
yet. Hence, this section introduces the new topics and relevant related work to capture
our contribution better.

3.2.1 Theory of Mind in HRC
Theory of Mind (ToM) refers to the ability to attribute mental states to oneself and
others, such as beliefs, desires, and intentions. However, estimating the current knowl-
edge and beliefs of the different agents is challenging. To do so, we must consider
Theory of Mind concepts, especially perspective shift and the notion of co-presence.

Robots endowed with ToM abilities are more effective in proactive robotic assis-
tance and are perceived as more socially intelligent by humans [Shvo 2022]. ToM
enables robots to infer human desires, beliefs, and intentions, allowing for natural
interaction between robots and humans [Yu 2023]. Robots with ToM can anticipate
human strategies and incorporate them into their decision models, leading to better
team performance [Romeo 2022]. The presence of ToM in robots influences human
decision-making behavior and trust, making it more appropriate for human-robot col-
laboration [Erdogan 2022]. Computational theory of mind, based on abstractions of
beliefs into higher-level concepts, facilitates collaboration on decisions and improves
the quality of human decisions [Gurney 2022]. However, the lack of a unified con-
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struct and consistent benchmarking hinders progress in endowing robots with ToM
capabilities.

In [Devin 2016], Theory of Mind improves shared plan execution. Humans’ tem-
porary absence or inattention during collaboration can induce insufficient knowledge
about the current situation. The robot might need to detect such situations and be
able to provide the information about the missing or incorrect information to its hu-
man partner without being annoying or intrusive. To do so, they propose a framework
that allows the robot to estimate the other agents’ mental states about the environ-
ment and the state of goals, plans, and actions. In [Lemaignan 2018], the proposed
framework named UNDERWORLDS allows cascading situation assessment to estimate
other agents’ beliefs during execution. The two previous frameworks can estimate and
track the human partner’s belief in order to reactively adapt the robot’s actions during
execution. However, they are not designed to be used during task planning to make
proactive robot actions to avoid a potential false belief.

3.2.2 Epistemic Planning
Epistemic planning helps to plan the correct sequence of actions to reach a desired
knowledge, including a desired world state. Thomas Bolander is one of this field’s
main contributors and describes it as follows in [Bolander 2017]. Epistemic Planning
is the enrichment of planning with epistemic notions, that is, knowledge and beliefs.
The human or robot might have to reason about epistemic aspects such as: Do I know
at which post office the parcel is? If not, who would be relevant to ask? Maybe the
parcel is a birthday present for my daughter, and I want to ensure that she does not get
to know about it, and I have to plan my actions accordingly (make sure she does not
see me with the parcel). The epistemic notions are usually formalized using epistemic
logic. Epistemic planning can naturally be seen as combining automated planning
with epistemic logic, relying on ideas, concepts, and solutions from both areas.

It enables robots to make plans to achieve the required knowledge and to reason
about the knowledge and capabilities of other agents, ensuring effective collaboration
and coordination in human-robot interactions [Belle 2023].

Bolander et al. proposed the Dynamic Epistemic Logic (DEL) approach
[Bolander 2017] and even implemented some Theory of Mind concepts in it. However,
despite being more expressive than HATP/EHDA, this approach does not maintain
human beliefs in a principled way either. They tend to use domain-specific rules given
in the problem specification, usually with conditional action effects.

Muise et al. worked on multi-agent epistemic planning using a classical planning
approach [Muise 2015]. Since involving nested beliefs is computationally demanding,
their work proposes to convert and encode such problems into classical planning prob-
lems. Hence, state-of-the-art classical planning techniques can tackle nested beliefs of
multiple agent problems.
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3.2.3 Communication in HRC
Communication enables effective interaction between humans and robots, promoting
inclusivity and reducing obstacles in human-robot interaction. Communication allows
robots to share information about their actions and intentions, enhancing transparency
and explainability [McMillan 2023]. It helps establish trust and understanding between
humans and robots, leading to improved teamwork and performance [Verhagen 2022].
Adapting conversational strategies to optimize performances and engagement is also
important and addressed in [Galland 2022]. Non-verbal gestures and behavior of
robots during collaboration can impact the robot’s perception and influence the will-
ingness of humans to cooperate [Arntz 2022]. Communication also allows robots to
assess their own skills and limitations, propose alternatives, and adapt the execution of
tasks to the capabilities of the collaborators [Ferrari 2022]. Overall, effective commu-
nication facilitates mutual knowledge, enables the exchange of information, and allows
humans and robots to work together efficiently and successfully.

3.3 Maintaining the Human Beliefs while Planning

3.3.1 Enhanced Problem Specification
As an example and for illustration purposes, let us consider cooking pasta as a human-
robot collaborative shared task. This scenario is depicted in figure 3.2.

Figure 3.2: A cooking pasta collaborative shared task. It consists of turning on the
stove, adding salt in the pot, fetching the pasta, and pour the pasta in the pot.
Additionally, the robot has to clean the counter. However, there are two seperated
rooms and both the presence of salt in the pot and the clean aspect of the counter are
not observable facts, possibly causing false beliefs.

The robot has to turn on the stove (stoveOn) and clean the counter (counterClean),
but the latter is not a part of the shared task. The human takes care of fetching the
pasta while both agents can add salt into the water (saltIn). Before pouring the pasta
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into the pot, the human must know the facts, stoveOn and saltIn. Unlike stoveOn,
the facts saltIn and counterClean are not directly observable. Hence, by acting while
the human is away fetching the pasta, the robot may induce false beliefs, which may
be detrimental to the shared task (e.g., the human adding salt again).

To describe this problem we start from the HATP/EHDA problem specification,
which is the one described in Chapter 2. For our collaborative cooking example, the
sets B and X for the collaborative cooking example are the following:

B = Entities ∪ Places ∪Booleans ∪ {nil}
Entities = Agents ∪Objects
Agents = {R,H} \\ R : robot, H : human
Objects = {salt, pasta, counter}
Places = {kitchen, room}
Booleans = {true, false}

X = {at(e) | e ∈ Entities, saltIn, stoveOn, counterClean}
Range(saltIn | stoveOn | counterClean) = Booleans

Range(at(R | H | pasta)) = Places

Range(at(salt | counter)) = {kitchen}

Our first contribution starts from here, where we augmented the specification by
associating each state-variable xi ∈ X to a location and an observability type. Thus, we
define two other functions besides the variable value assignment function (Definition 3)
to assign observability types (Definition 11) and locations (Definition 12) to state-
variables.

Definition 11 (Variable observability assignment function obs.) A variable
observability assignment function over X is a function obs that maps each xk ∈ X

into an observability type tj ∈ {OBS,INF}, s.t., obs = {(x1, t1), . . . , (xn, tn)}. With
obs(xk) = OBS|INF, xk is said to be respectively observable | inferable. We use the
following notation to access the observability type tj of the state-variable xk in the state
si: obsi(xk) = tj.

Definition 12 (Variable location assignment function loc.) A variable loca-
tion assignment function over X is a function loc that maps each xk ∈ X into a
lj ∈ Places ∪ {nil}, s.t., loc = {(x1, l1), ..., (xn, ln)}. Places ⊆ B captures a group
of constant symbols such that each member is a predefined area in the environment.
Agents are always either “situated” in a place or moving between two places. We con-
sider xi to be located in every place ∈ Places if loc(xi) = nil. We use the following
notation to access the location lj of a state-variable xk in the state si: loci(xk) = lj.
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The observability and location of the state-variable are internal to the robot but
assumed to be common to both agents. Consequently, we update our state definition
(def. 7) to take them into account in the new definition 13.

Definition 13 (State s.) In this contribution, in addition to both agent states,
a state now comprises the two novel assignment functions obs and loc, s.t., si =
{σR

i , σ
H
i , obsi, loci}.

This new definition still consider the two agent states s.t. σϕ
i = {valϕi , d

ϕ
i , π

ϕ
i }.

Now, in each state, we keep track of each state-variable’s observability type and loca-
tion, and we can reason on them to update the human beliefs (valH) accordingly.

We remind definition 8 stating that a state si ∈ S contains false beliefs, or belief
divergences, if ∃xj ∈ X, valHi (xj) 6= valRi (xj). That is, if any state-variable has
a different value in the human beliefs w.r.t. the robot one, we assume the human
has a false belief about those particular state-variables. Since the planner is part of
the robot, we assume the robot beliefs are true and correspond to the ground truth.
Consequently, any divergence between the two beliefs is assumed to be a human false
belief, as it would make no sense to keep false information in the robot’s beliefs.

The initial state of our cooking example can be described as follows. There is no
initial belief divergence, the initial partial plans are empty, and both agents perform
the shared cooking task named CookPasta. In addition, the robot must clean the
kitchen counter once the cooking is done. Hence, the task CleanCounter is added
to the initial robot agenda after the shared task. The only non-obversable facts are
the presence of salt in the pot and if the counter is clean. All entities, including the
counter, the stove, and the salt, are in the kitchen. Only the pasta is in the adjacent
room. More precisely, the initial state s0 can be written like this:

s0 = {σR
0 , σ

H
0 , obs0, loc0}

πR
0 = πH

0 = ∅
dR

0 = (CookPasta, CleanCounter)
dH

0 = (CookPasta)
valR0 = valH0 = {at(R) = at(H) = kitchen, at(pasta) = room,

saltIn = stoveOn = counterClean = false}
obs0 = {(saltIn,INF), (counterClean,INF),

(stoveOn,OBS), (at(e),OBS) | e ∈ Entities}
loc0 = {(saltIn, kitchen), (counterClean, kitchen), (stoveOn, kitchen),

(at(e), val0(at(e))) | e ∈ Entities}

When refining the human agenda in s0 we obtain the following refinement com-
prising two possible actions. The human can either begin by adding salt to the pot,
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or they can move to the other room to fetch the pasta.

ref(dH
0 , val

H
0 ) = {a1, d1, a2, d2} = {(add_salt(), d1), (move_to(kitchen), d2)}

3.3.2 State Transitions and Beliefs Updates
We now describe how the agents’ beliefs are updated when executing a planned action
and, thus, how the transition occurs from one state to another. The fundamental prin-
ciple is that the human agent acquires information from observing an action execution
or their environment. First, we will give the three assumptions we made regarding
this approach.

Assumption 1: We do not consider uncertainties. Thus, agents are either wrong or
right about the state of the world but never uncertain. This would be an interesting
future work.

Assumption 2: We do not consider cases where the robot’s beliefs can diverge. The
actual ground truth is unknown since the planner is part of the robot. We can only
assume that the robot’s estimation of the state of the world is correct and then reason
using this estimation.

Assumption 3: Coming from the two previous assumptions, we assume that hu-
mans only make deterministic moves when not observed. Hence, regardless of being
co-present, the robot’s beliefs are always updated with the effects of the action.

Thus, Assumption 3 indicates that for an action a we always have ∀x ∈ X:

vali+1(x) =
{
w, if x← w ∈ eff(a)
vali(x), otherwise (3.1)

The place associated with a state-variable can be modified by the action’s effect,
e.g., when an agent moves to another room while holding an object. However, this
must be specified in the action’s effects. In this work, we assume that the observability
type of each fact is constant during the task. Adapting the approach to allow dynamic
observability types is feasible, which will be discussed later. So, ∀x ∈ X,

obsi+1(x) = obsi(x) (3.2)

loci+1(x) =
{
l, if x← l ∈ eff(a)
loci(x), otherwise (3.3)

The new agenda of each agent (dR
i+1, d

H
i+1) are created by the HTN refinement

algorithm, and thus, they are directly retrieved from the obtained refinement. This
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refinement decomposes abstract tasks in the agenda until the first task is a primitive
action. Every applicable method is applied, leading to a set of possible actions (and
refined task networks).

The new estimated human beliefs valHi+1 is the two-step result of our Situation
Assessment processes that models the human’s real-time sensing and reasoning capa-
bilities about their surroundings.

First, let us define the notions of co-presence and co-location, which will be key to
maintaining the evolution of agents’ beliefs as planning progresses.

Definition 14 (Co-presence & Co-location.) In a state si ∈ S, two agents, ϕ1
and ϕ2, are considered to be co-present if vali(at(ϕ1)) = vali(at(ϕ2)). This relation
is noted ϕ1 fi ϕ2 in the rest of the chapter. Similarly, we say that an agent ϕ1 is
co-located with a state-variable x ∈ X if vali(at(ϕ1)) = loci(x), noted ϕ1 fi x.

Now, we can define two Situation Assessment (SA) processes that will maintain
the estimated human beliefs.

Definition 15 (Inference Process.) An agent observes the execution of an action
by being either co-present with the acting agent or by being the acting agent. If so, the
agent infers the new values of every state-variable in the action’s effects.

Based on the above definition, the human beliefs are updated a first time as follows
when action a is executed in state si:

val′Hi+1(x) =


w, if x← w ∈ eff(a) and

(H = agt(a) or H fi agt(a)
or H fi+1 agt(a))

valHi (x), otherwise

(3.4)

To change its place in the environment, agents would use a dedicated “move”
action, such that its effect only updates the agent’s location.

Definition 16 (Observation Process.) An agent observes its surroundings and
assesses the exact value of each observable state-variable located in the same place
(i.e., each state-variable the agent is co-located with).

After applying the effects of an action with the equations 3.1 to obtain vali+1,
and running the inference process (def. 15) with equation 3.4 to obtain the partial
human beliefs val′Hi+1, the observation process (def. 16) is executed. It updates again
the estimated human beliefs with the facts currently observable by the human and
provides the human beliefs to store in the state si+1. We have, ∀x ∈ X:

valHi+1(x) =


vali+1(x), if H fi+1 x and

obsi+1(x) = OBS
val′Hi+1(x), otherwise

(3.5)
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Before starting the planning process, the observation process is executed once on
the initial state s0. This allows us to potentially correct the estimated human beliefs
with the facts the human should initially be able to observe.

The definition of the set Places, i.e., how the environment is divided into different
places, is guided by the shape of our state transition function. Hence, a place ∈ Places
is a (symbolic) area in the environment such that, when situated in it, agents are aware
of each other’s activity, and they can assess every observable fact located in it. Agents
cannot be aware of others’ activity if not co-present with them, and they cannot assess
observable facts if not co-located with the facts.

Note that unlike in DEL [Bolander 2021], our knowledge representation is simple
and prevents us from expressing agents being uncertain about a fact. In line with the
classical closed-world assumptions, agents either know the truth or have a false belief
w.r.t. the ground truth. We consider a straightforward scenario in which the human
is “unaware” of non-observed changes in the environment. This results in estimated
false human beliefs, helping to detect whether a non-observed robot action can disrupt
a seamless collaboration.

3.4 Relevant False Human Beliefs
In this section, we explain our procedure to detect when a false human belief should
be corrected and how.

3.4.1 Detection
The human and the robot carry individual distinct beliefs, while the two can be aligned
or diverging when the human has a false belief. To produce a legal solution plan
the robot is fine with such false human beliefs unless they are qualified as relevant
(Definition 17). In such cases, the relevant false belief needs to be tackled.

Definition 17 (Relevant False Belief.) A relevant false belief is a false belief that
influences the next action(s) the human is likely to perform in terms of number, name,
parameters, or effects. This can be written as follows: A state si contains a relevant
false belief if either (3.6) or (3.7) is true:

ref(tnH
i , val

H
i ) 6= ref(tnH

i , val
R
i ) (3.6)

{γ(si, a) | ∀a ∈ ref(tnH
i , val

H
i )} 6= {γ(si, a) | ∀a ∈ ref(tnH

i , val
R
i )} (3.7)

We consider that as soon as a false belief affects human actions, it should be tackled.
An interesting future work could be to check in a principled way the overall positive
and detrimental impacts of this false belief on collaboration. However, it is out of the
scope of this work.
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3.4.2 Resolution with Minimal Communication
A state containing a false human belief marked as relevant must be handled. The first
way to do it is by planning communication actions such that the robot communicates
only the required facts to the human. This allows to correct relevant human beliefs,
but false beliefs that are “non-relevant” will remain.

3.4.2.1 Modeling Communication Actions

In this context, we propose a generic communication action schema (ca). An agent ϕi

can communicate an assertion x = z (with x ∈ X and z ∈ Range(x)) via the action
caϕi,ϕj

(x, z) if valϕi(x) = z and valϕj (x) 6= z. The effect of caϕi,ϕj
(x, z) corresponds to

valϕj (x)← z. Such actions are considered equally costly and instantaneous.

3.4.2.2 Communicate Only the Required Facts

Definition 17 indicates if there is at least one diverging state-variable in the human
beliefs causing adverse effects, but without identifying which one(s). Hence, we explain
a subroutine below with the three steps, describing how we identify the pertinent state-
variables to align and how the corresponding communication actions are created and
inserted into the robot’s plan.

1. Store each state-variable whose value differs in the human beliefs from the robot
beliefs: Xdiff = {x | x ∈ X, valHi (x) 6= valRi (x)}.

2. Build, for each stored state-variable x ∈ Xdiff , a communication action
caR,H(x, valRi (x)), all stored in a set CAdiff .

3. (Breadth-First Search.) The source is si. Applying each ca ∈ CAdiff generates
a new state by aligning exactly one state-variable in the human beliefs s.t. s′i =
γ(si, ca). The search continues until the first state s′i selected to expand does not
contain a relevant false belief according to Definition 17. The communication
actions used from the root until this selected state are retrieved in a set CA.

Once the above subroutine finishes, the retrieved communication actions in the set
CA = {caR,H(x1, val

R
i (x1)), ..., caR,H(xj, val

R
i (xj))} must be inserted in the plan for

belief alignment. Thus, our definition of the conditional solution (def. 10) is redefined
to be sound w.r.t. our approach. An edge can now either be a human action ah or a
robot action ar with a set of communication action CA. At each step, humans perform
Observation, while the robot executes each communication action ca ∈ CA, making
the human’s belief to update instantaneously.

The set CA is inserted before the diverging human actions and after the closest
state where agents are co-present. However, it could be interesting to investigate using
a better plan evaluation system to find the best place to insert this set.
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3.4.3 Resolution by Delaying Non-Observed Robot Actions
So far, we relied on communication. However, communication can be cognitively
demanding depending on the environment (e.g., noisy). Thus, when the relevant false
belief is due to a non-observed robot action, we propose also considering implicit
communication by postponing the pertinent robot action until the human is estimated
to observe its execution. This prevents false beliefs from even occurring.

First, a branch using communication is explored, and the state-variables concerned
by the relevant false beliefs are retrieved (through all ca ∈ CA). Then, we check if
a non-observed action produces the divergence. For now, it is done by checking if
the relevant divergence concerns only one inferable state-variable and if it was not
present in the initial state. After, we identify which action creates the divergence
by regressing the current branch/trace sequentially. Hence, we can identify when the
relevant divergence appears and which action should be delayed. Once identified, we
create another branch in the plan just before the identified action. In this new branch,
delay actions are inserted in the robot’s plan until the human is co-present. When
the human is co-present again, the identified action is inserted and observed by the
human. Then, the nominal planning process is resumed. An example is described in
the next section with empirical results.

3.5 Results
Referring to the related work section, we are not aware of an implemented planning
system that can be used as a baseline. Hence, we use the HATP/EHDA solver to help
present our approach’s results on three novel planning domains.

3.5.0.1 Cooking Pasta Domain

The running example corresponds to a specific problem in this domain. In fact, agents
and pasta can initially either be in the kitchen or in the adjacent room, the stove
might be on or off, and there might be salt or not in the water. The results will focus
on the following three state-variables from X. Both stoveOn (OBS) and saltIn (INF)
are relevant to the human, unlike Clean (INF) which only concerns the robot.

3.5.0.2 Preparing Box Domain

A box with a sticker on it and filled with a fixed number of balls is considered prepared
and needs to be sent. Both agents can fill the box with balls from a bucket, while only
the robot can paste a sticker, and only the human can send the box. The bucket can
run out of balls, so when one ball is left, the human moves to another room to grab
more balls and refill it. The number of balls in the box is inferable, while all other
variables are observable. In the following, three boxes have been considered.
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3.5.0.3 Car Maintenance Domain

The washer fluid (OBS) and engine oil (INF) levels have to be full before storing the
oil gallon in the cabinet (INF). Only the robot can refill both the tanks and store the
gallon while situated at Front of the car. Front-left and Front-right headlights have to
be checked and a light-bulb has to be replaced at Rear. Only humans can check and
replace lights, and they can start with either of these two tasks. Both agents start at
Front. The car’s hood needs to be closed by the human at last.

3.5.1 Qualitative Analysis

Considering the cooking domain, we discuss in detail the plans obtained with our
approach to a problem corresponding to the description given in the introduction.
That is, there is no initial human false belief, agents both start in the kitchen, the
pasta is in the adjacent room, the stove is off, and there is no salt in the water. The
resulting plans are shown in Fig. 3.3, and their detailed presentation explains how
the approach works in practice. Since the human is uncontrollable and has different
possible actions, the plan branches and the robot’s actions differ in each case.

In (left), the human first adds salt, and then the robot turns on the stove. In both
cases, thanks to the inference process, we estimate that the human will be aware of
both facts about the salt (acting) and the stove (co-present). Then, while the human
is away to fetch the pasta, the robot cleans the counter. Since the human is not co-
present, their beliefs are not updated and now contain a false belief about the counter
state. Once back, since counterClean is not observable, the observation process does
nothing, and the false belief remains. However, this false belief does not affect human
actions (non-relevant). Hence, there is no need to align human beliefs.

In (middle and right), the human begins by leaving the kitchen to fetch the pasta.
First, let’s focus on the (middle) trace. The robot turns on the stove and adds salt
while the human is away, creating two false beliefs. When returning to the kitchen,
the observation process updates the human beliefs with the observable facts located
in the kitchen. This fixes the false belief about stoveOn. The robot then cleans the
counter, which the human observes. However, without communication, the human’s
next action will be either “add salt” or “ask the robot”, but considering the ground
truth, the human could directly pour the pasta. Hence, the false belief on saltIn is
relevant and has to be corrected. Therefore, a communication is inserted in the robot’s
plan, and a “delay” branch is created (right). In this delaying branch, the robot delays
the add salt action until the human is co-present in order to make it observed (inference
process) by the agent. In addition to this implicit communication, like in (middle),
the human assesses that the stove is on and can directly pour the pasta.
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Figure 3.3: Plan obtained for the cooking scenario. 3 branches. Left: The human
starts by adding salt. The only false belief is about “counterClean”, which is irrelevant
to the human agent. Hence, no communication is added. Middle: While the human is
away, the robot turns on the stove and adds salt, creating two false beliefs. Once back,
we estimate that the human agent will be able to assess the observable fact “stoveOn”
but not “saltIn”. Since the human agent might add salt again due to this false belief,
it is relevant and fixed with a communication action. Right: The relevant false belief
about “saltIn” is avoided by delaying the robot’s action until the human is co-present.

3.5.2 Experimental Results and Analysis

In each domain, the actions and tasks remain the same. So here, a problem is defined
by a starting agent (R or H) and a pair of initial beliefs (valR0 , valH0 ). Initial ground
truth (val0 ⇔ valR0 ) is defined by setting each state-variable to an initial value. Five
selected state-variables can have two possible values instead of one. Among these
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Table 3.1: Success and communication ratio of different approaches.

Domain HATP/EHDA Only Comm With Delay
S S I.Div.B. Comm Comm

Cooking 18.6% 6.9% 69.5% 65.2%
Box 25.0% 14.3% 79.7% 75.0%
Car 12.5% 0.0% 68.8% 64.1%

Average 18.7% 7.1% 72.6% 68.1%

selected ones, three can diverge in human beliefs. These combinations generate 256
pairs of initial beliefs, where 12.5% of them include initially aligned beliefs. Then,
considering the starting agent, we obtain 512 problems for each domain. Each of the
1536 generated problems has been solved by HATP/EHDA, by our approach using
first only communication and then using also delay. The obtained quantitative results
appear in Table 3.1.

The overall success rate (S) and the one for initially diverging beliefs (SI.Div.B.)
are shown for the HATP/EHDA solver. As expected, this solver always finds legal
plans when dealing with initially aligned beliefs, and the low value of SI.Div.B. reflects
how poorly it handles belief divergences without specifically designed action models.
Our approach always finds legal plans, so we omitted its success rates in the last two
columns, and we can say that it solves a broader class of problems.

Furthermore, considering the initially diverging beliefs and the divergences created
along the planning process, more than 87.5% of all problems involve belief divergences.
However, only 72.6% of the generated plans include communication actions when using
only verbal communication. This means that our approach communicates only when
necessary and not systematically. The amount of communication is even reduced to
68.1% when delaying actions. In the latter case, only delayed branches that do not
imply the human to wait are kept.

3.6 Discussion and Limitations
This contribution has a few limitations to discuss.

First, the observability types of the state-variables are assumed to be constant.
However, dynamic observability types permit modeling scenarios like an agent placing
an object in an opaque box. The object would no longer be observable despite being
in the same place as the agent. Since Places can be symbolic, with clever domain
modeling, one can model objects’ disappearance when placed in a drawer. Dynamic
observability types would simplify such modeling and make it even more expressive.
However, this extension requires further research to correctly redefine Equation 3.2.

The underlying scheme allows just a single agent to execute a “real” action
at a time. However, a post-process can allow the execution of actions concur-
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rently [Crosby 2014], however, note that the domain modeler has modeled Prh as
a sequential joint task. Parallelism is not considered in the current modeling and
planning process, which limits the potential for concurrent executions.

We believe our modeling-level SA proposals could fit in any other planning approach
framing multi-party systems having one controllable agent while can only hypothesize
remaining agents’ behaviors (e.g., human-centered AI).

Agents’ SA models cannot simply refute a false belief, they can only assess new true
facts to correct them. For instance, assume the human wrongly believes that the pasta
is in kitchen. The SA does not help refute this when the agent is in kitchen because
the state-variable NotAt(Pasta) in kitchen is not modeled in our domain. However,
such issues do not affect the completeness and, if necessary, our approach tackles such
cases as relevant false beliefs.

The relevance of estimated false human beliefs is challenging to determine. Cur-
rently, as soon as a divergence influences the next human actions, we assume that the
divergence is likely detrimental to the goal and, thus, is relevant to be fixed. However,
it would be interesting to find a method to evaluate the consequences of a divergence
on the goal and plans in a principled way.

We discussed earlier that DEL knowledge representation is more expressive, flexi-
ble, and can handle uncertainty. However, it requires an augmented action schema to
accurately maintain each agent’s beliefs. Think of a specification for “move” action
manually listing all the environmental facts to be observed by an agent for managing
their beliefs. In our case, it is implicitly maintained within a state.

We can consider running a set of rules (e.g., graph-based ontology) to bring new
interesting facts in the state based on a set of known facts. We believe that this aspect
opens up new possibilities in the future for integrating human-aware collaborative
planning and ontology.

3.7 Conclusion
This contribution is an extension of the HATP/EHDA human-aware task planner. The
planner plans and implicitly coordinates the robot’s actions with all estimated possible
human (uncontrollable) behaviors that are then emulated to generate a new state.
Our extension and contribution are, first, to integrate a Situation Assessment based
reasoning system in the planner. This allows for maintaining distinct agents’ beliefs
based on what they can/should observe. Compared to existing epistemic planners,
this simplifies the action descriptions by focusing on their effects on the world and
not how they influence each agent’s beliefs. In addition, we propose to detect false
human beliefs and tackle only the necessary ones in a principled way. First, we propose
minimal and proactive explicit communication. Second, when pertinent, we propose
an implicit communication by postponing the non-observed robot action until the
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human is co-present to observe it. The relevance of false belief, when to optimally
communicate, and parallelization are interesting future works.
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This chapter presents my second main contribution, proposing a new
human-aware task planning approach based on a step-based model of com-
pliant and concurrent joint action. The approach’s description is sup-
ported by empirical results proving its effectiveness in terms of the lati-
tude of choice given to the human and the satisfaction of their internal
preferences. We further validated this approach by implementing our
model as an execution scheme in a simulation to conduct a user study,
described in the following chapters.
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4.1 Introduction
In the context of HRC for a shared task [Selvaggio 2021], we believe, based on the
literature on joint action [Sebanz 2006a, Sebanz 2009, Clodic 2017, Gordon 2023], that
the key towards a seamless interaction is, to consider the human as an uncontrollable
agent and to be fully and concurrently compliant with them. The human should not
be dictated which action they must perform, as in [Roncone 2017, Buisan 2022], and
the robot must comply with possible human decisions and actions during execution.

To collaborate with such humans with their preferences, potentially hidden, one
can devise an online planning scheme coupled with a plan executor. However, in
order to maintain real-time performance, online planning generally keeps a restricted
horizon. Therefore, decisions taken online may lead to a dead end or may not lead to
an optimal solution. Offline planning overcomes these issues.

We propose a new offline task planner which extends the HATP/EHDA planner.
The new planner is designed to take into account aModel of Concurrent and Compliant
Joint Action Execution, which is in the form of an automaton and mainly inspired by
the joint action schemes. The model captures humans’ latitude in their decisions. The
planner’s output is the robot’s behavioral policy, which describes the robot’s action
in a state such that the action is congruent and compliant with the human’s decision
in this state and their estimated preferences and that it is also legal to be executed
in parallel. Our framework also allows humans to share their (new) preferences at
any time during execution while the robot’s policy is adapted online to that. In
addition, our approach considers social signals to enhance execution by minimizing
uncertainties. Both humans and robots issue signals to clarify situations, such as
performing an action, waiting for the other agent’s necessary actions, or indicating a
desire to remain passive.

In this chapter, we discuss relevant related work before describing the joint action
model of execution that is central to our approach. We then describe the task plan-
ning problem and then introduce our novel framework. Then, two sections explain
how the robot policy is generated by a three-step process: exploration, characteriza-
tion, and generation. We empirically evaluated our approach in simulation. With a
BlocksWorld scenario, we show how our approach can effectively produce a concurrent
robot behavior that is compliant with human online decisions and preferences.

4.2 Related work
There have been a few attempts to cater to concurrent execution, but they deal with ex-
plicit time to manage concurrency [Cirillo 2009b, Köckemann 2014]. In [Cirillo 2009a],
the robot does not plan actions for humans but forecasts their actions/plans from their
activities and bases its own decision on the distribution of possible human plans. Here,
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robots can perform actions concurrently, carefully estimating/managing the comple-
tion time of the agents’ actions. The robot needs such a plan/goal recognition tech-
nique to be compliant with the human’s decisions. But, unlike ours, they do not
consider an explicit shared goal among the agents. Hence, humans are not concerned
with stuff robots might be interested in during collaboration, e.g., giving signals to be
passive. We believe that a shared goal creates a different context in HRC than the robot
just being compliant with an estimated human’s goals/plans. Moreover, we claim that
dealing with concurrent actions is inevitable in planning, even if actions are instan-
taneous, to effectively deal with multiple agent systems [Crosby 2014, Shekhar 2020],
especially if a human operator is involved, like in our case. We extend HATP/E-
HDA [Buisan 2022] to demonstrate that.

In another work, both recognition and adaptation take place simultaneously and
comprehensively [Levine 2014]. It deals with the action scheduling of an already gen-
erated contingent plan comprising human and robot actions. It outputs schedules for
the robot actions that can execute concurrently, but to do that, explicit temporal
constraints are considered.

In [Ramachandruni 2023], they propose a communication-free human-robot collab-
orative approach for an adaptive execution of multi-step tasks. In their approach, the
robot observes and supports human decisions, actively selecting actions to optimize
collaborative task efficiency. Unlike our approach, they introduce an extended col-
laborative HTN representation with role assignment for planning and state tracking
during execution, which is more in line with [Roncone 2017]. In contrast, we employ
two distinct HTNs for robot and human capabilities and use an AND/OR tree for
exploration and execution tracking. While their online planning may enhance scala-
bility, optimality is not guaranteed. Also, our scheme accommodates both verbal and
non-verbal communication, allowing the human to express preferences that update the
robot policy online.

4.3 A Joint Action Model to Guide our Task Plan-
ning Process

4.3.1 Rationale and Example
Our task planning approach uses a model of joint action execution to improve the
fluency and amenability of HRC. This model is in the form of an execution con-
troller and is based on several key notions and mechanisms borrowed from studies
on joint actions [Kourtis 2014, Michael 2016], and adapted to Human-Robot Joint Ac-
tion [Clodic 2017, Curioni 2019]. The key idea is that co-acting agents co-represent the
shared task context and integrate task components of their co-actors into their own task
representation [Schmitz 2017, Yamaguchi 2019]. Also, coordination and role distribu-
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tion rely strongly on reciprocal information flow, e.g., social signals [Curioni 2019],
prediction of other’s next action [McEllin 2018].

Our proposed execution model is implemented on a robot that co-acts with a
human, integrating explicit representation and exploration of the task representations
for the robot and for the human. It also identifies precisely how reciprocal information
flow is used in task execution, such as detecting and interpreting human actions, the
robot’s signals produced while acting, and when the robot waits for human actions or
their signals.

Another essential question is the criteria for choosing the next action, or more
globally, how to share the load between the two co-actors. The choice depends on
the context and actors’ preferences [Gombolay 2015, Strachan 2020, Curioni 2022].
Concerning the case when one actor is a robot, we think it is important to provide a
standard default robot behavior where the robot does its best to reduce human load
but still leaves full latitude to act whenever humans want. Our scheme provides this
ability and also allows humans to inform about their preferences at any moment.

To better understand the problem we are trying to solve, let’s consider an example
where concurrent actions can be conflicting. This example consisting of a simple pick
and place task is depicted in fig 4.1.

c1

Shared cubes Target locations

c2 l1 l2

c3

Robot cube

Middle

side_R

Figure 4.1: Example of conflict for a concurrent joint action. Shared cubes, c1 and c2,
can be picked up by both agents, and only the robot can pick c3. Agents can simul-
taneously pick up both shared cubes but must coordinate their actions. Otherwise,
they might conflictingly try to pick the same cube. Similarly, another coordination
is required to avoid placement conflicts between locations l1 and l2. However, notice
that the robot can pick c3 without any risk of conflicts with the human action.

The human and the robot have to pick cubes, c1 and c2, that both can reach. The
cubes can be picked up simultaneously unless the agents try to pick the same cube,
which causes conflicts between their actions. As a result, despite being executable
in parallel, the actions are interdependent. Thus, the agents must coordinate their
actions for smooth execution. Preferably, the robot should adapt to the human and
coordinate its actions with them. A similar coordination must happen when placing
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the cubes to avoid conflicts between l1 and l2. However, a third cube c3 is present
and can only be picked up by the robot. The robot can pick c3 without any risk of
conflicts with the human action.

This example illustrates the need for coordination even for simple tasks. It also
shows that considering possible conflicts can also be a criterion for optimizing. Indeed,
the best robot action might be to pick up c3 instead of one of the shared cubes to avoid
potential conflicts, even if c3 is more distant and more costly to pick than the others.
This example also highlights the relevance of exploring several possible executions
of concurrent actions while planning to anticipate and evaluate such situations and
produce a robust, compliant, and efficient robot policy. This is why, based on joint
action literature, we formulated a model of concurrent and compliant joint action
execution, as described below, that will guide our planning search.

4.3.2 Abstracted Joint Action Model for Planning
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Figure 4.2: Abstracted Model of Execution in the form of an automaton run by the
robot. It captures the latitude of uncontrollable humans in their actions and guides our
task-planning approach. In this paradigm, the two agents can act concurrently, but
one always complies with the other’s decision. Here, humans are always free to decide
whether to start acting first, after the robot, or not to act at all. To be compliant, the
robot attempts to identify human decisions using perception and situation assessment
and collaborative human signaling (e.g., gestures or speech).
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The model of execution we formulated is inspired by joint action literature and
describes the agent’s coordination during execution. It comprises synchronization
and perception processes based on social signals exchanged between the agents, such
as starting an action (arm motion), hand gestures, or verbal communication. This
section presents a simplified and abstract version of this model that suffices to guide
our planning framework. This version is depicted in figure 4.2. A complete version
that explicitly models the human behavior and exchanged signals is provided in the
next chapter and used to supervise the execution of the produced robot policy.

The model describes the possible transitions from a given state to another, step
by step. The robot always informs the human about the beginning of a step and then
waits for their decision by looking at social cues. The top yellow rectangle in the figure
represents this waiting process. This human decision can either be to start acting or to
be passive. Hence, the robot always lets humans first decide which action they want to
perform, including the choice to be passive. This decision is detected with perception
by tracking social cues such as human motions and hand gestures.

The diamond shapes below the first synchronization process are conditions, driving
the automaton into different branches depending on specific conditions. First, we
differentiate between cases where the human is passive or active (“H is active”). When
the human is performing an action, the ‘yes’ branch, we first check if the human action
must be identified or not. So far, only the fact that the human is acting is known, but
not yet which particular action they are performing. To avoid potential conflicts, we
consider that there is no need to identify the human’s action if the best robot action
does not depend on the human decision. For instance, consider in the cube picking
example presented in figure 4.1 that the cube c3 is easier to pick and place for the
robot than the two other ones. Thus, regardless of which cube the human picks, the
robot should pick c3. Its best action does not depend on the human decision, and
there is no need to identify the human’s action. However, if c3 is effectively harder to
place than c1 and c2, the robot must first identify which cube the human is grabbing
to pick the other one. As a result, the model differentiates the cases where the human
action must be identified (“ID needed”) or not. If not, then the robot can directly
start acting (branch 3). Otherwise, the Identification (ID) process is executed and
may either be successful (“ID success”) or not. If not, to avoid any potential conflict,
we decided that the robot should remain passive (branch 2). If the human action
has been successfully identified, the robot can perform the best corresponding action
concurrently (branch 1).

When the human decides to be passive, the robot should start acting. However,
while the robot is acting, we consider that the human is free to either remain passive
until the next step (branch 5) or to “change their mind” and start acting (branch 4).
This is represented by the diamond shape “H compliant”. When the human decides
to start acting after the robot starts, the human can only perform actions that do not
conflict with the already started robot action. Note that this case can be seen as a
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way for the human to let the robot decide and then comply with the robot’s decision.
Still, the human decided to let the robot decide, thus, the human is given as much
latitude of choice as possible.

Overall, at every step of the execution, the human is free to decide: 1) to start
performing any feasible action, the robot will comply with this decision; 2) to let the
robot decide and act first to purposely be compliant with the robot; 3) to be passive
and let the robot act alone.

When both agents finish their actions, the step is considered as “over”. The bottom
yellow rectangle labeled “Wait for end of step” represents this synchronization. Then,
a Situation Assessment Process is executed to assess the new state (si+1), which is the
result of the concurrent actions being executed in the state si. Once the next state is
identified, the automaton repeats until the task is solved and a goal state is reached.

Note that if, for any reason, both agents are passive during a step, the state is
unchanged, so the step is repeated.

4.4 Problem and Solution Specifications
Compared with the original HATP/EHDA specifications, this contribution slightly
modifies the problem and solution specifications. This section describes the main
differences.

Problem Specification
A few assumptions are used in this contribution, simplifying the problem specification
described in Chapter 2. The main difference is that agent states (σϕ) are simplified
up to a single element. Consequently, agent states are omitted for legibility purposes.
All dynamic information are captured directly by the state definition (si).

Indeed, belief divergences are out of the scope of this particular work. Hence, for
simplicity reasons, we consider the two beliefs (robot and estimated human ones) to be
constantly aligned and represented as unique beliefs: vali = valRi = valHi . Therefore,
unlike Chapter 3, the two agents’ beliefs are always aligned and initialized with a
same initial world state using state variables. However, we are convinced that this
work could be adapted easily to consider the two distinct beliefs. As a reminder,
states and beliefs are fundamentally different. A state (si) corresponds to a specific
state in which the planning problem is while progressing toward a solution. However,
beliefs (valϕi ) corresponds to the state of the world in the agent ϕ’s perspective. Hence,
the beliefs, here aligned and represented as one, are part of the state.

Additionally, the agents’ partial plans have been removed for performance reasons.
This is due to our new solution format in this contribution, switching from an AND/OR
tree to a Directed Acyclic Graph (DAG). The domain modeler must now define relevant
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state-variables to track specific events instead of checking the previously accessible
planned action sequence. For instance, it would be relevant to define a state-variable
to track how many times the robot requested punctual human help, like in the example
of Chapter 2. This improved the performance a lot.

The problem specification of the conflict example shown previously in figure 4.1 is
given below for illustration purposes. First, the initial state s0 is described by:

s0 = {val0, dR
0 , d

H
0 }

dR
0 = dH

0 = (MoveCubes)
val0 = {at(c1) = at(c2) = middle, at(c3) = sideR

free(l1) = free(l2) = True,
holding(R) = holding(H) = nil}

The agents’ action models (Λϕ ∈ Mϕ) are still represented with HTN. For this
example, the corresponding models are depicted in figure 4.3.

MoveCubes

Pick&Place MoveCubes

Pick

PickMiddle PickSideR

Place

PlaceTarget PlaceTable

∅

[...]

Pick(c1) Pick(c2) Pick(c3) Place(l1) Place(l2) Place(middle)

Abstract Task

Primitive Task

Ordered AND 
decomposition

OR
decomposition

ΛR
with 

blue part
without 

blue part

ΛH

Figure 4.3: Robot and Human action models (ΛR and ΛH) for the conflict cube picking
example. Since the two HTNs are very similar, only one is represented. Unlike the
robot, the human HTN does not include the blue part.

Since the robot and human HTNs are very similar, they are represented as a single
one for legibility purposes. The only difference between these two distinct HTNs is
that the robot can pick the cube near itself c3. Hence, unlike the human, the robot
action model includes a possible decomposition (shown in blue in the figure) picking
up the c3 cube. Note that these action models use a recursive representation of the
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task. The abstract taskMoveCubes decomposes into several subtasks, including itself,
to continue moving cubes until a given condition is satisfied. The two MoveCubes

methods capture this condition. The tasks decompose into picks and places if cubes
are missing in the target locations. Otherwise, the task refines into nothing (∅). Notice
the PlaceTable abstract subtask, which takes care of cases where an agent cannot place
its cube in any target location and must place it back on the table.

Solution Description

Compared to Chapter 2, the solution format changed from an AND/OR tree to a
Directed Acyclic Graph (DAG). This modification significantly improved the planning
approach’s performance because many branches of the original solution tree are redun-
dant. The exploration now produces a Directed Acyclic Graph (DAG), referred to as
the search graph or DAG, from the initial state to several goal states through sequences
of concurrent human-robot action pairs. Such a graph is depicted in figure 4.4.
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Figure 4.4: Directed acyclic solution graph

In the DAG, any path from the root to a leaf is a possible plan corresponding to
a sequence of concurrent human and robot actions. Note that we consider passive
actions. Hence, only one active agent may exist in a concurrent pair of actions. More-
over, a leaf is a node without children and is considered a goal state if both agendas
(dR and dH) are empty and if valj satisfies given goal conditions. In our example, the
goal conditions are:
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goal conditions :free(l1) = free(l2) = False,
holding(R) = holding(H) = nil

Once the exploration is done, i.e., when the complete search graph is computed,
another process extracts the optimal robot policy from the graph. In the manner of
an AND-OR tree, this policy indicates for every possible human action (AND node)
the best concurrent robot action (OR node) to execute. However, this extraction is
based on an estimation of human preferences. These preferences specify what metrics
the human partner would prefer to maximize or minimize and in which priority. The
overall planning process is shown in figure 4.5. The depicted exploration and the policy
generation processes are detailed in the following sections.

 offline Exploration

Policy Generation / Update online 

Problem Specifications: 
- Initial agendas 

- Initial world state 
- Action models 

- Goal conditions

Robot Compliant
Policy

INPUTS OUTPUT

Directed Acyclic Graph
(DAG)

Estimated Human
Preferences

PROCESS

(offline)

(online)

Figure 4.5: Overall planning process

Before providing more details about the planning approach, we show in figure 4.7
a partial DAG obtained for our conflicting cube example. On this partial DAG are
shown several sequences of concurrent human-robot actions going from the initial state
to goal states where the task is achieved. The complete DAG is too big to be legible.
We can see in the figure that passive actions PASS are included during the search.
We also see how different ordering and concurrent execution can quickly generate
numerous paths in the graph. This illustrates well why the original AND/OR tree
representation quickly becomes overwhelming and resource-consuming to manipulate.

In this partial DAG, we see that the human can start by either picking c1, c2, or
being passive (PASS). The compliant and concurrent robot possibilities are to pick
the other cube w.r.t. the one being picked by the human, or to pick c3. Interestingly,
the robot can pick c3 concurrent to all human actions. Thus, pick(c3) never conflicts
with human decisions but can be inefficient for the task. A pattern can be identified
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in the DAG for any concurrent action pair. Most of the time, the agents can perform
the three following sequences from a same state and leading to a same other state as
depicted in Figure 4.6:

aH

aR
PASS

aR
aH

PASS

aH

PASS

PASS

aR

[...]

[...]

Figure 4.6: Reccurent pattern of possible executions of a human-robot concurrent
action pairs (aH | aR).

Three such patterns can be identified in the figure, corresponding to 18 depicted
possible plans. These similar, but not identical, sequences significantly increase the
branching factor of the AND/OR representation, make the DAG one efficient.
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4.5 Exploration and Search Phase
This section details how the exploration happens and, thus, how the search graph is
generated. This requires several sub-processes, each of which is detailed here. First,
the overall exploration process is presented, and the following subsections provide
details on the sub-processes mentioned in the overall process.

Overall Exploration Process
We keep track of the states to explore, and this set is being initialized with the initial
state s0. Then, until the set is empty, we select one and explore it. First, from
this selected state, every possible concurrent human-robot action pair is computed
considering both agendas, the beliefs, and reasoning on the compatibility of the actions
in terms of preconditions and effects. This process requires several sub-steps and is
detailed later. Thus, we obtain several action pairs leading to several new states,
comprising beliefs and agendas updated by applying the effects of the corresponding
actions. Second, we check if a newly created state is similar to any existing one. If
so, they are “merged” to avoid redundant exploration and computations. Eventually,
the remaining new states are added to the set of states to explore. The exploration is
over when the set of states to explore is empty. The obtained DAG corresponds to the
search graph where any path from the initial state to a leaf corresponds to a possible
execution trace. The optimal paths and the robot policy are yet to be determined.

Compute Next Agent Actions
From a state, we can estimate the next actions an agent is likely to perform. Doing
so is referred to as the refinement process. We use the corresponding action model in
the form of a Hierarchical Task Network (HTN). Here, the agendas are considered as
lists of abstract or primitive tasks, where primitive tasks can be executed (actions),
and abstract ones must be decomposed into several other subtasks. The refinement
process consists of applying applicable methods of the first task of the agenda until it
is primitive. When several methods are applicable, they are all applied in a distinct
refinement trace. Eventually, for each different sequence of applied methods, we obtain
a new agenda starting with a primitive task. For each such primitive task, we create
a copy of the beliefs vali contained in the given state and apply the corresponding
action’s effects. Finally, a new state is created for each possible action with the refined
agent agenda, the unchanged other’s agenda, and the updated beliefs. Note that this
process can “generate” default passive actions in several cases. First, when an agent’s
agenda is empty, an IDLE passive action is inserted as the first primitive task in the
agenda. This means that the agent has nothing to do and, thus, is likely to remain
passive. When there are no applicable methods or the primitive task is not applicable,
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then a WAIT passive action is inserted. This means that the agent still has something
to do but cannot do it. Note that when computing the concurrent pairs of action,
we also add the PASS action, which corresponds to the agent being voluntary passive
despite having something to do. Note also that these different passive action types
help to understand the generated plans better, but they are treated similarly in the
planning process.

Concurrent Action Pairs Computation
This sub-process computes from a given state all possible concurrent action pairs that
may be executed. It is based on the previously described refinement process. The
main objective of this sub-process is to identify the next actions the agents are likely
to perform to reach the goal and identify which of them can be executed in parallel.
The classical way to do such reasoning is by analyzing the preconditions and effects of
the two actions and determining if there are conflicts between them, e.g., the effects of
the first action make the preconditions of the other false. However, our current Python
implementation of the planner is convenient but has no “explicit” preconditions and
effects. Everything is defined through Python functions. The effects of an action are a
function with beliefs as input, which returns the updated beliefs. Action preconditions
are functions with beliefs as input and return a boolean. Methods are functions that
use the beliefs as input and return a list of tasks with which to update the agenda.
Methods also have preconditions working similarly to action preconditions. Hence,
extracting the explicit effects and preconditions of an action is challenging. That is
why we decided to rely on an assumption to check the compatibility of concurrent
actions. This assumption defines if two actions can be performed concurrently and is
described in Definition 18.

Definition 18 (Action concurrent compatibility.) Two actions A and B can be
performed concurrently if they can be performed sequentially in any order and if they
do not use a same shared resource.

To provide more details about the definition above, let us consider two actions A
and B that can be sequentially performed in both orders. That is:

A→ B and B → A

Then, we assume that there are no causal links between the two actions and that
they can be performed concurrently. The only care to take is about shared resources
such as tools that would only be used during the action, making them available before
and after but not during the action. To tackle this issue, shared resources are explicitly
declared in the problem specification and in the action models. Two actions requiring
the same shared resource cannot be parallelized.
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Such an approach to parallelize two actions comes with a benefit. Indeed, it only
needs an action precondition boolean function. As a result, action estimations can be
a black box with only basic low-level action precondition descriptions. This way, we
can easily replace the way we estimate the next actions each agent is likely to perform.
Especially for humans, we could use a pre-trained human activity estimator using a
neural network or a more classical planner like PDDL.

With the causal principle above in mind, we proceed as follows to compute the
possible concurrent action pairs from a given state. We start by estimating all possible
human actions by refining the human agenda, which generates a new state for each
possible action. For each such state, we first create an action pair where the robot
is passive by inserting a PASS robot action. This PASS pair is stored among all
other ‘human pass pairs”. Second, we refine the robot agenda to obtain all feasible
sequences of human then robot actions and their associated states. We refer to them as
the sequential human starting pairs. Symmetrically, we compute the sequential robot
starting pairs and "robot pass pairs" by starting with the robot and then refining the
human agenda.

Eventually, every action pair present in both the human and robot starting pairs
is extracted and added to a set of concurrent action pairs. Additionally, here, passive
actions are always parallelizable with other regular actions. The only case where this
could not be the case is when considering “joint actions” requiring the two agents to
lift an object together. For now, such actions are not considered. Thus, the two sets of
PASS pairs are directly added to the set of concurrent action pairs. Lastly, a double
passive pair with two PASS is generated and added to the concurrent set. This pair
is special since it does not update the beliefs or the agendas. Hence, it leads back to
the previous state without progressing toward the goal. These pairs do not need to be
explored and are helpful in different ways. First, it helps the execution, for instance,
when only the human can act but decides to pass voluntarily. Then, the policy will
natively stay in the same state. Second, it is easy to detect dead-ends because they
correspond to double WAIT pairs. In such cases, both agents cannot act and remain
stuck without solving the task. Last, double IDLE pairs indicate that both agendas
are empty and, thus, that the task is solved.

The obtained set of concurrent action pairs corresponds to all possible concurrent
actions that the human and the robot can execute in parallel in the initially given state.
Each possible pair leads to a new state with updated agendas and beliefs, creating a
tree structure.

Merging states
Although the tree structure produced by the process described above is complete and
sound, it is inefficient and scales poorly. Indeed, during the exploration, we will likely
encounter similar states several times as depicted in the previous example partial DAG
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in figure 4.7. That is why, after each computation of the concurrent action pairs, we
check if any newly generated states are similar to an existing one. If so, we connect the
corresponding pair to the existing state to avoid redundant explorations. Doing so,
we transform the tree structure used in the previous chapters into a Directed Acyclic
Graph (DAG). In the manner of a tree, we will refer to nodes without children as leaves
nodes, which are goal states. Unlike before, each leaf can now be reached with several
paths. When looking for similar existing states, we assume that all parent states of the
new state, directly or not, will necessarily be different thanks to the previous merging
checks. Thus, they are excluded from the potentially similar states set. This speeds
up the comparison process.

4.6 Generating the Robot Policy using Estimated
Human Preferences

First, all child concurrent action pairs of a state (si) can actually be seen as an AND-
OR graph. This representation is depicted in figure 4.8 and helps to highlight the
possible human decisions. Since we want to preserve the latitude of choice the human
has at execution, each possible human choice of action is considered as an AND edge
and leads to a partial state s′. We note sj

i the j-th partial state of the state si. A partial
state sj

i corresponds to the state where the human made the j-th decisions available
in the state si. However, this decision may not be visible yet, and the associated j-th
human action has not yet been executed. Every partial state is followed by several
compliant concurrent robot actions considered as OR edges, leading to other states.
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Figure 4.8: AND-OR graph representation of the action pairs. This representation
highlights the possible human decision (AND nodes) to identify the best concurrent
and compliant robot action (OR nodes) to put in the robot’s policy.

Generating the robot policy Π consists of identifying the best concurrent compliant
robot action RA∗ for each possible human action or partial state s′. These best
concurrent robot actions are determined by aiming to optimally satisfy an estimation
of the human preferences regarding the task. Eventually, at execution, the human is
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free to perform any of the explored actions. The robot will accordingly perform an
optimal concurrent action to solve the task and satisfy their estimated preferences.

Hence, before giving more details about the policy itself, we first describe the
format of the estimated human preferences, how we could estimate them, and
what it allows us to do. After, we describe the actual process to generate the robot
policy from the DAG using the estimated human preferences

Using Estimated Human Preferences for Plan Evaluation
In this approach, instead of trying to minimize action and social costs, which are
challenging to estimate accurately and quantitatively, we aimed to satisfy an estimation
of human preferences. In a way, the costs are reflected in human preferences. Our
approach is to characterize each possible trace with a set of various metrics. Objective
and general metrics can be complemented with additional domain-specific metrics
(marked with *), which must be given in the problem specification. The metrics used
are the following:

• Time of Task Completion (TTC): Time step at which the task is achieved.

• Time of End of Human Duty (TEH): Time step after which the human can
remain passive.

• Human Effort (HE): Number of non-passive human action.

• Global Effort (GE): Number of non-passive human and robot action.

• *Passive While Holding (PWH): Number of steps where an agent is passive
while holding a cube.

• *Number of Drops (ND): Number of times an agent drops a cube (place back
a cube on the table, not in the stack).

The set of metrics helps to characterize and evaluate each possible trace. However,
even if the possible plans are characterized, we so far have no way to compare them
and find the best one. Doing so requires additional criteria indicating how to prioritize
and compare the different metrics.

The preferences can be given verbally or estimated by any other means. Here, we
consider human preferences in the following form. These preferences are an ordered
list of the metrics characterizing the traces. Note that all metrics in the list above do
not need to be present. This ordered list indicates if each metric should be maximized
or minimized and with which priority. For instance, assuming the preferences aim to
minimize all metrics, the plan with the lowest first metric of the list will be considered
as better. If the plans have an equal first metric, then we use the second metric, and
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so on. Here are two arbitrary examples of human preferences trying respectively to
finish the task as fast as possible (TaskEndEarlyPrefs) and to minimize the human
effort (MinHumanEffortPrefs). They both minimize all metrics according to the
priority orders below:

TaskEndEarlyPrefs : TTC > GE > HE > TEH > PWH > ND

MinHumanEffortPrefs : HE > TEH > TTC > GE > PWH > ND

Note that estimating either human preferences or explicit action and social costs
is challenging and is hardly accurate. Those are very context-dependent and can even
vary over time. Being aware of this, we use the estimated human preferences as a guide
for the robot behavior. However, we also make sure to comply with human activity to
lessen the impact of erroneous estimations.

Policy Generation
Generating the robot policy Π from the DAG consists of repeating two processes,
namely, Propagation and Selection. The overall process is depicted in figure 4.9 and
summarized below before being detailed in the following subsections. Since the DAG’s
nodes correspond to states, both names will appear and be mixed in the following
descriptions.

Starting from the leaves with a default set of metrics, we progressively update the
set of metrics for each possible trace. When reaching a state with several children,
we compare the metrics of the different traces leading to this node. This process uses
the AND/OR graph representation shown in figure 4.8, but figure 4.9 uses the initial
concurrent action pair representation for legibility purposes. We can then identify the
best trace leading to each partial state, and then the best trace leading to the upper
state. Each best trace to a partial state is used to update the robot policy, and the
overall best trace is used to continue the propagation with the best reachable set of
metrics. The robot policy is complete when every state has an identified best action
pair and when every partial state has an identified best concurrent robot action.

Format and Initialization

During this generation, we compute and store the best reachable set of metrics alter-
natively in the states and in the action pairs. Initially, we store default null metrics
in every leaf state. Then, we keep track of two types of nodes. First, the nodes
whose metrics should be propagated in the upper steps. They are stored in the set
{sToPropagate}, which is initialized with all leaf state. The Selection process later
populates this set. Secondly, we keep track of the nodes where the best action pair to
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Figure 4.9: Policy generation process illustration on an arbitrary search graph. Prop-
agation and Selection processes repeat until there are no more nodes to propagate or
for selection. Overall, it consists of identifying the best child action pair for every node
by comparing the propagated set of metrics.

perform among several must be identified. The propagated sets of metrics stored in
the pairs are used to identify the best pair and the best robot actions to put in the
policy. These nodes are stored in the {sForSelection} set, which is populated by the
Propagation process, while being emptied by the Selection process. The policy is com-
plete when the two sets are empty, thus, when there are no more nodes to propagate
or for selection.

Propagation

The Propagation process is depicted in algorithm 1 and described here. It consists of
picking a node to propagate from the set {sToPropagate}. For each parent action
pair of that node, we create a copy of the set of metrics of the propagated node and
update the metrics according to the various rules described below. The metrics must
be cumulative.

The rules to update the standard metrics are the following (all metrics start at 0):
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• If the pair is not IDLE-IDLE, then Time of Task Completion is incremented by
1.

• If the pair is not IDLE-IDLE, if the human action is passive, and if the current
Human Effort is zero, then the temporary metric Number Last Passive Human
Action is incremented by 1.

• Time of End of Human Duty = Time of Task Completion - Number Last Passive
Human Action.

• If human action is not passive, then Human Effort and Global Effort are incre-
mented.

• If robot is not passive, then Global Effort is incremented.

Rules to update domain-specific metrics must be provided:
• If human action is passive while holding a cube, then *Passive While Holding is

incremented.
• (Similarly with the robot)
• If the human action is to drop a cube back on the table, then *Number of Drops

is incremented.
• (Similarly with the robot)

The updated metrics are stored in their corresponding action pair. Then, two cases
can occur for each parent action pair with stored metrics, referred to as propagated
pairs. First, if the parent node of the propagated pair has more than one child, then we
add this parent node to the set {sForSelection}. Otherwise, the metrics of the action
pair are stored in the parent node, which is also added in the set {sToPropagate}.
The process repeats until the set {sToPropagate} is empty.

Algorithm 1 Propagation Process
1: while sToPropagate 6= ∅ do
2: s ∈ sToPropagate
3: sToPropagate← sToPropagate \ {s}
4: for each P in s.parents do
5: P.metrics← CopyAndUpdateMetrics(s.metrics, s, P )
6: if HasOneChild(P.parent) then
7: P.parent.metrics← P.metrics
8: sToPropagate← sToPropagate ∪ {P.parent}
9: else
10: sForSelection← sForSelection ∪ {P.parent}
11: end if
12: end for
13: end while
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Selection

When a node has several children, i.e., several possible action pairs, we must evaluate
and compare them in order to identify the best course of action and the best reachable
set of metrics. Additionally, we can identify the best robot choices to make according
to each possible human decision. The plan evaluation is done by the Propagation
process. The Selection process checks when robot choices are ready to be made, then
it updates the robot policy, and eventually prepares the next Propagation phase.

The Selection process is depicted in algorithm 2 and described here. It checks every
node in the {sForSelection} set to know if we are ready to make a choice, i.e., if every
child pair of that node has metrics stored in it and has been propagated. If not, nothing
happens, and the node remains in the set. If so, we are ready to compare the pairs and
update the policy. Since we want the human to be free to perform any action, even
suboptimal, we must find the best concurrent robot action for each possible human
action. The first step is to organize the child pairs by similar human action, i.e., use
the AND/OR graph representation and group the pairs by partial state. Then, for each
group of pairs, we compare the pairs’ metrics using the estimated human preferences
and identify the best pair of the group, which is marked a “best compliant pair”. The
robot action in the “best compliant pair” is added to the robot’s policy and mapped to
the associated partial state. After this, all marked pairs are compared, and the overall
best pair is identified and marked as “best pair”. Eventually, the metrics of the “best
pair” are stored in the node from {sForSelection}, and the node is removed from the
set and added to the other set {sToPropagate}.

Algorithm 2 Selection Process
1: for each s in sForSelection do
2: if ReadyForSelection(s) then
3: bestPairs← ∅
4: for each partialS in GetPartialStates(s) do
5: pairs← GetCorrespondingPairs(partialS)
6: P ← IdentifyBestPair(pairs) . Compare metrics and identify best
7: Π(partialS)← P.robotAction
8: bestPairs← bestPairs ∪ {P}
9: end for
10:
11: bestPair ← IdentifyBestPair(bestPairs)
12:
13: S.metrics← bestPair.metrics
14: sForSelection← sForSelection \ {S}
15: sToPropagate← sToPropagate ∪ {S}
16: end if
17: end for
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Additional policy updates

After repeating these two processes, each partial state s′ is mapped to a robot action
to execute through the robot policy Π. Therefore, partial states must be identified at
runtime to execute the robot policy. The human action choice characterizes a partial
state. Therefore, identifying partial state consists of running the ID process mentioned
in the Model of Execution, which briefly tries to identify which action the human is
starting to execute during a step. However, such identification can be challenging, so
we try to avoid it when possible.

Indeed, remember the conflicting example in figure 4.1. Sometimes, the best robot’s
action w.r.t. every possible human decision, like picking c3. In such cases, there is no
need to identify a partial state, but only the current state. Consequently, ∀si ∈ S, if
∀j,Π(sj

i ) = RA with RA being the same robot action, then the best robot action does
not depend on the human choice. Thus, the ID process can be avoided and the policy
is complemented as follows Π(si)← RA.

Moreover, we consider cases where the ID process failed to identify the human
action and is noted as λ. To prevent potential conflicts due to identification failure, the
policy is updated s.t. Π(λ) = PASS. Note that this work only considers identification
failures and not wrong identifications.

Execution

The execution of the policy stems from the Model of Execution automaton and is
depicted in Algorithm 3. The robot starts by informing the human that the step has
started, then waits for its decision. After, we check if the current state s is already
part of the robot policy Π, i.e., if the ID process is not necessary. If so, the associated
robot action Π(s) is executed. Otherwise, the partial state s′ must be identified. The
synchronization and perception routine WaitHumanDecision waits for a human signal.
Hence, if an explicit passive signal is detected or no signal, the human is assumed to be
passive, permitting the identification of the partial state s′ and executing the associated
best robot action Π(s′). Otherwise, the ID is executed, hoping to identify the human
decision and, thus, the partial state. This identification process returns either a failure
λ or the identified partial state s′. In both cases, the policy will indicate which action
the robot should perform. Eventually, the robot waits for the step to be over with
WaitEndStep, i.e., when both human and robot actions are done. After, the situation
assessment process is executed to identify or confirm which actions have been executed
and, thus, what the next state is.
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Algorithm 3 Execution of the Robot Policy
1: s← s0 . Initial state
2: while s.children 6= ∅ do
3: IndicateStepStarted() . Inform the human
4: WaitHumanDecision()
5: if s ∈ Domain(Π) then . If ID not needed
6: Execute(Π(s))
7: else
8: if HumanIsPassive() then . Detected by WaitHumanDecision
9: Execute(Π(s′))
10: else
11: idPartialS ← IDProcess() . ∈ {λ} ∪ {s′}
12: Execute(Π(idPartialS))
13: end if
14: end if
15: WaitEndStep() . Human and Robot actions are done
16: s← AssessementProcess() . Identify executed pair, and next s
17: end while

4.7 Empirical Results
We provide results obtained after simulating symbolically the execution of robot poli-
cies produced with our approach, thus without durative actions.

Simulated Scenario
The execution is symbolically simulated by running an implemented version of the
automaton described in the model of execution. This implementation is close to the
presented algorithm 3 where action execution is mocked and replaced by symbolic and
instantaneous actions. The ID process is assumed to be always successful. Thus, the
current state progresses in the search graph based on the human decision and the
produced robot policy before eventually reaching a leaf node, indicating that the goal
is satisfied. We then retrieve which course of action has been executed and analyze it.
The human behavior is simulated and described just after.

We evaluated our approach in the BlocksWorld domain. Figure 4.10 shows one
problem instance. The human and the robot are on two sides of a big table, and their
shared task is to stack colored cubes, as shown in the given goal pattern. Initially,
all colored cubes are arranged on the table that is divided into three zones: Each
agent has a dedicated zone (RZ & HZ ) and a common zone (CZ ) is in the middle
and accessible for both. Each agent can only pick cubes from either their own zone or
from CZ. There is a box in RZ in which cubes can be inserted. The robot must first
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Figure 4.10: An instance of the BlocksWorld domain. The ideal plan is strongly
influenced by the human desired preferences. For the earliest end of the task, the
human prevents using the box. A lazy human will only place the required pink bar
from their side. A human in a hurry will concurrently place the yellow cube to place
the pink bar as soon as possible and be able to leave.

perform a dedicated action to open the box before being able to use the cubes inside
it like the regular ones.

Human Behavior and Erroneous Preferences Estimations
To simulate human behavior, we consider and define human preferences that produce
a human policy in the same manner as for the robot. The produced human policy
makes the human always perform the best action regarding their defined preferences.
The robot does not have access to human preferences but only to an estimation of
them.

In order to evaluate the quality of the executed trace regarding the actual human
preferences, we compare and rank every possible trace from the search graph, from
best to worst. For legibility purposes, we normalize the ranks to obtain a score (H-
score) s.t. the trace with the lowest rank has a score of 0.0, while the highest rank
corresponds to a score of 1.0. This score represents a quality indicator independent of
the instance’s size. Similarly, we can do the same and acquire the score regarding the
robot’s estimation of the preferences (R-score). Keep in mind that the R-score is an
estimation of the actual H-score, and the robot acts in order to maximize its R-score,
hoping to maximize the H-score as well.

However, the estimation of human preferences can be more or less accurate, causing
the robot’s decisions to differ from what humans would have preferred. Once again,
that is why making the robot compliant with human online decisions and actions gives
the human more influence over the execution and helps to reach a high H-score even
when the robot’s estimation is incorrect. Despite the robot trying to maximize its
R-score, it is essential to note that reaching a low R-score is fine as long as a high
H-score is attained.

When solving the task, a pair of human preferences and their estimation creates a
correlation between the possibly obtained H-scores and R-scores. Figure 4.11 depicts
several possible correlations for the same task and the same search graph but different
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Figure 4.11: Correlation between the H-score and R-score according to different robot
estimations. Four pairs of human preferences and their estimation are considered. For
each pair, all possible traces are plotted as blue crosses according to their H-score and
R-score. (1) show a correct estimation while the others show incorrect estimations.
(3) and (4) depict adversarial estimations.

pairs of human preferences and their estimation. Each sub-figure shows all possible
traces as blue crosses according to their H-score and R-score. Let’s consider the first
case where the estimation is perfectly accurate (correct). Here, the robot’s choices that
maximize the R-score will necessarily maximize the H-score. Indeed, when considering
the few top possible robot plans (crosses with near 1.0 R-score), the human preferences
are always well satisfied (near 1.0). Let’s now consider the second case where the robot
estimation is incorrect. When considering again the few top possible robot plans a wide
range of H-score can be reached (near 1.0 as well as close to 0.0). Thus, an incorrect
estimation can satisfy human preferences but not necessarily, leading to a wide range
of H-scores. Eventually, consider the last two cases. Here, the lack of blue crosses in
the top-right corners means that the H-score cannot be near 1.0 while also having a
high R-score. Consequently, when maximizing the R-score, the robot will necessarily
deteriorate the quality of the plan w.r.t. the H-score. We refer to these cases as
adversarial estimations since the robot involuntary goes against the human will. Such
cases occur when the robot estimation is far from the actual preferences and intuitively
goes against the latter, for instance, the robot trying to minimize the human effort
while the human is actually trying to do as much as possible.

Results
For the simulations, we first generated three problems of the BlocksWorld domain with
different initial states and shared tasks, and we produced their corresponding search
graph for each. After that, we generated numerous pairs of human preferences and
associated robot estimation, and all those pairs were categorized into three distinct
sets.

In Set A, the estimations are mostly correct and close to the human preferences
(case (1) in figure 4.11). Set B includes incorrect estimations (case (2) in figure 4.11).
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Figure 4.12: R-scores and H-scores of the obtained executed plans after simulating the
execution of the robot and the human policy generated by considering three problems
and three sets of pairs of preferences/estimations. The estimations in each set are (A)
Never, (B) Sporadically, and (C) Always adversarial. On the right, the scores obtained
using an enhanced human policy that can correct the robot’s estimation online while
using the set (C) are shown.

And Set C contains only adversarial estimations (cases (3) and (4) in figure 4.11).
Then, for each preference-estimation pair and each problem, we generated the associ-
ated human and robot policies. Their execution was simulated symbolically using an
execution automaton directly shaped upon the presented Model of Execution, and the
obtained executed traces were retrieved. The R-score and H-score of every obtained
executed trace are shown as heatmaps for each distinct set of pairs in Figure 4.12.
This will help us to highlight the benefits of using such an execution scheme.

In Set A, the estimation of the robot is close to the real human preferences and
is never adversarial. So, the robot policies (maximizing the R-score) should naturally
lead to high H-scores, which we observed. Some plans had an R-score lower than 1.0,
which shows that the estimation was imperfect. Nevertheless, compliance with human
actions and the robot’s non-adversarial choices permit to always satisfy the maximal H-
score of 1.0, i.e., human preferences are satisfied every time. With Set B, the incorrect
estimations induced some detrimental robot choices, preventing the human from always
reaching a score of 1.0. This is depicted by the minimal H-score of 0.498 obtained.
Nonetheless, the average H-score of 0.985 indicates that the human preferences were
overall largely met. Set C captures the worst possible estimations, inducing the robot
to always make adversarial choices. This is depicted by the lower average H-score
(0.742) and the very low minimal H-score obtained (0.161). However, we can notice
that the average H-score is still high and that the R-score drops significantly. A low
R-score means that the robot could not follow its policy correctly. Indeed, thanks to
our model of execution, the robot complies with human online decisions and purposely
deviates from its “optimal” policy to let the human follow their own optimal policy.
Eventually, the relatively high H-score obtained shows that the compliance is effective
and compensates significantly (of course, not totally) for a very poor estimation of
human preferences.
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Additionally, we can reasonably complement the human policy, which is based
solely on preferences, with a rule. Whenever the robot performs an action that signifi-
cantly degrades the best reachable H-Score, the human reacts by correcting the robot’s
estimation online. The rightmost sub-figure in Figure 4.12 shows the new scores ob-
tained using the Set C and the complemented human policy. We notice that correcting
the estimation online avoids very low human scores (minimum of 0.677) and signifi-
cantly increases the average H-score compared with the original Set C results (from
0.742 to 0.894). Hence, making the robot compliant with online preferences effectively
improves the quality of the joint plan executed.

Overall, we can see that the compliant robot behavior regarding both online human
actions and preferences benefits the collaboration thanks to the high human scores
obtained.

Consider some counter-cases from social robotics (or HA collaborative planning).
Assume a robot not giving the initiative to humans, always executing the best ac-
tion it found. It is less acceptable and restricting for humans this way, even if the
robot computed its best action by taking into account some social rules and estimated
preferences. Unlike here, humans would appear compliant with the robots. In those
cases, as evident from our simulation results in adversarial setups, the robot strongly
impacts the solution H-score. Thus, wrong robot choices can significantly degrade
human scores. In some sense, being compliant and adjusting to online preferences can
be seen as some social factor that robots should maximize, and our framework helps
achieve that.

4.8 Performances
In this section, we discuss the computational performances of our approach and provide
some empirical measurements.

Our approach is based on exploring every decision the human is likely to make
and every possible robot concurrent and compliant actions to those decisions. This
offline search produces a Directed Acyclic Graph (DAG), which captures all possible
courses of action. From this graph, we can easily extract online the optimal robot
policy to adapt to and satisfy dynamic human preferences. However, this exhaustive
approach does not scale since the more complex and lengthy the task is, the more
possible coordinations and courses of action exist, and the longer it takes to produce
the graph. Despite this existing combinatory explosion, I would like to discuss and
explain why our approach is still relevant.

It is essential to have in mind two different HRC cases. The first is industrial
setups, and the other is household environments. Industrial tasks can be complex,
constrained, and where mistakes can have heavy consequences. However, household
tasks are usually simpler, shorter, and have fewer constraints and consequences. Due
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to the nature of industrial tasks, there is usually a known pre-defined protocol or plan
to solve the task. The human is also in a working mental state, being more focused and
willing to collaborate and accept robot decisions. In such setups, it is more acceptable
for the robot to produce a joint plan and negotiate with the human to accept and
follow it without anticipating every possible human decision, significantly reducing
the planning algorithm’s complexity. On the other hand, when considering household
tasks, which is more our focus in this work, we want to preserve the human’s latitude
of choice as much as possible to allow them to change their mind, be distracted, or
impose their choice. For this reason, it is adequate to run an exhaustive search and
account for every possibility.

Overall Human-Robot Collaboration scenarios never require long plans, especially
household tasks, and are often limited to about 20 actions per agent. For such length,
our exhaustive approach performs efficiently. Our approach takes about 0.34s to pro-
duce the DAG for the BlocksWorld task described in chapter 6. This graph comprises
700 nodes and 6 leaves, corresponding to 6839430 different possible plans of length
19.77±1.59 steps. With millions of plans, we explore sufficient possibilities to address
such collaboration problems correctly. Moreover, it takes only 0.019s to extract the
robot’s policy from the produced graph.

In order to better picture the performance of the approach, we conducted per-
formance measures on ten problems in the same BlocksWorld domain. The chosen
problems involve more or less complex goals and cube dispositions on the table. For
each, we measured the time to conduct the exploration and produce the DAG, the
time to generate the policy from the DAG, and the memory usage. Then, we also
measured several data from the produced DAG such as the number of leaves (different
goal states), the number of states, the number of possible execution traces, the average
plan length (with standard deviation), and the minimal/maximal plan lengths. We
also show the number of cubes needed in the goal pattern. However, this number is not
directly correlated with the problem’s complexity because the goal stack configuration
and the cube disposition on the table have a strong impact. All results are gathered
in Table 4.1, but additional plots are shown in figure 4.13 for legibility purposes.
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Figure 4.13: Performances of our planning approach. The exploration time, policy
generation time, and memory usage are plotted w.r.t. the number of states in the
associated DAG.
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The top part of figure 4.13 shows the time to explore and produce the DAG.
The exploration time increases exponentially according to the number of states, as
depicted by the top figure and the quadratic polynomial trendline computed with
R = 0.991. This tendency confirms that our approach does not scale well. However,
the exploration time remains reasonable for the scale of our HRC problems.

The middle part of figure 4.13 represents the time to generate the robot policy using
the already computed DAG and estimated human preferences. Unlike the exploration
phase, the generation time increases linearly (R = 0.998) w.r.t. to the number of
states. We also notice that the generation times are relatively low, less than 0.25s.
This confirms that the robot’s policy is quick to generate and that it can be updated
at runtime to consider newly estimated human preferences. These new preferences
can be directly given by the human, verbal or not, or they can be estimated by an
external process during execution. Being reactive to changing human preferences will
likely benefit the overall interaction and collaboration.

Finally, the bottom part depicts the approach’s memory (RAM) usage. The mem-
ory usage increases linearly (R = 1) with the number of states. This is expected
because most of the information stored during the exploration are part of the state
definition. The maximum memory needed in our tests is 127.13MiB, which is rela-
tively low compared to the many possible plans the DAG captures (over 250 million).

We implemented this planning approach in Python, which is an excellent program-
ming language for prototyping but lacks efficiency. Therefore, it would be relevant to
reimplement the scheme using a more efficient language such as C or C++ and con-
duct additional performance tests. Nevertheless, despite improving the performance,
a novel implementation will likely have the same scaling issues.
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4.9 Discussion and Limitations

This section discusses a few limitations of the proposed approach and possible future
works to overcome them.

First, in order to explore relevant courses of action, we assume a step-based pro-
gression toward the goal. Hence, we assume that the human and the robot must
synchronize together after every action. This can work efficiently as long as we assume
that all actions have roughly the same durations. However, in practice, this is never
precisely the case, and one agent must wait for the other at every step. Since the
robot tends to be slower, the human might have to often wait for the robot during
the collaboration with these assumptions. To be implemented on a real robot, this
approach requires an additional execution scheme supervising the plan execution. In
specific situations, this scheme could skip one synchronization and synchronize after
the next step. Such a scheme could allow humans to perform more actions than robots
before synchronizing, thus promoting smooth and flexible execution.

Speaking of execution, the results presented in this chapter have only been simu-
lated symbolically, without durative actions nor real human decisions. The next two
chapters (5 and 6) present a user study conducted on an interactive simulator where
participants collaborated with a simulated robot executing the produced policy. To do
so, we created an execution scheme that supervises the execution of the robot policy
with agent synchronizations. This scheme is directly based on the model of execution
presented in this chapter. Thus, it relies on the steps and does not provide the flexible
execution mentioned just above.

Additionally, in the proposed model of execution, the robot always gives the ini-
tiative to the human. We show that this decision makes the collaboration robust to
erroneous human preference estimations and, thus, is beneficial. However, sometimes,
it could be relevant for the robot to switch from follower to leader intelligently. In-
deed, currently, even when there are no possible conflicts between agents’ actions, the
robot waits for the human to start acting to begin. Such synchronization is not really
necessary, so the robot could start acting directly to solve the task faster.

Eventually, the plan evaluation is limited. For now, plan selection relies on the
estimated human preferences, which are a list of metrics to maximize or minimize in
the priority order given by the list. This means that there is no balance between the
metrics so, depending on the ordering, a plan of length N where the robot is never
intrusive and always compliant could be rejected against a plan of length N − 1 where
the robot is intrusive twice and never compliant. However, in our examples, we tend to
explore numerous very similar possible plans. Thus, there are always several possible
plans with the same top-priority metric value, e.g., plan length, and the ordering will
help select the best plan that satisfies the other listed metrics.
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4.10 Conclusion
We addressed the complex challenge of concurrent task planning for a shared goal in the
context of human-robot collaboration, acknowledging the inherent need for autonomy
in humans’ choices of ‘what’ and ‘how’ aspects during task execution.

Based on studies about joint action, we formulate an execution model and present a
new human-aware task planner designed to accommodate the uncontrollability factor
inherent in human agents while employing this execution model leveraging social sig-
nals to facilitate the exploration of human-robot joint actions and smooth execution.
We also propose a plan evaluation and selection based on estimations of the human
inner preferences. As a result, the planner produces the behavioral policy for a robot
that complies with online human decisions and their estimated preferences, which can
be updated online. This policy ensures that the task is solved, that the estimated
human preferences are satisfied at best, and that the execution of concurrent joint
action is smooth and sound.

We provide a detailed account of the novel planning process and joint action model.
We demonstrated its effectiveness through symbolically simulated BlocksWorld scenar-
ios and how our model makes the robot robust to erroneous preference estimations.

Additionally, as mentioned in the previous section, we implemented an interactive
simulator in which a real human can collaborate with a simulated robot running the
generated policies. We used this simulator to conduct a user study to validate our
approach with real humans. This simulator and study are described in the next two
chapters.
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The joint action model we proposed in the previous chapter was ab-
stracted and used to guide our planning approach. This chapter proposes
implementing this model as an execution scheme integrated into a dedi-
cated simulator. The latter allows human operators to collaborate with a
simulated robot, executing the policies produced by our planning approach.
We provide more details about our joint action model and technical de-
tails about the developed simulator used to conduct a user study, which
will be described in the next chapter.
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5.1 Introduction

In order to validate the approach presented in the previous chapter (4), we would
like to be able to perform a task collaboratively with a simulated robot executing
the produced policy. For that, we refined our model of concurrent and compliant
joint action execution. In Chapter 4, this model was abstracted and used to guide the
planning process to explore further relevant courses of action. As another contribution,
we implemented the model as an execution scheme capturing subtleties and social cues
of a smooth collaboration. Then, we integrated this scheme into a simulator, allowing
human operators to collaborate with a simulated robot running policies produced by
our planning approach. An overview of the complete system is shown in figure 5.1.
Eventually, we used this simulator to conduct a user study, which will be described in
the next chapter.
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Figure 5.1: Overview of the Interactive Simulator’s Architecture

This chapter first presents details about the refined joint action model and high-
lights the additions compared with the abstracted model presented in Chapter 4. Then,
technical details about its implementation and the overall simulator are given. After
describing the simulated scene, details about the various controllers used to run the
simulator are provided. We also explain how a human operator can interact with the
simulator and effectively collaborate with the robot. Finally, we describe the data we
collect during and after each collaboration.
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5.2 Execution Controller - Joint Action Model for
Execution

The model of execution presented in the last chapter was simplified and abstracted
to be used to guide the planning algorithms and explore further relevant courses of
action. This allows for anticipating possible coordination and compliance with online
human decisions. However, we need an execution controller to supervise the execution
of the produced policy. Here, we propose a refined and implemented model, matching
the abstraction previously made, to be able to execute the produced robot policy and
supervise its execution by synchronizing with the human through social signals.

The next page depicts the complete model in fig 5.2. In addition to refining the
‘robot automaton’ present in the abstracted version, it also models the human agent’s
behavior with another automaton that captures the possible decisions the human may
make during execution. Additionally, this complete model makes all the social signals
exchanged between the agents explicit and shows how they are used for coordination.
These differences are discussed in detail below. This execution controller takes as
input the solution DAG produced by the approach of Chapter 4. Then, the controller
progresses from the initial state to a goal state in the solution graph. The controller
handles the state transitions, step by step, by sending and synchronizing on social
cues. Thanks to this controller and the associated simulator, we now have a durative
task execution that effectively affects a simulated environment.

In the execution controller, the robot automaton is refined and more detailed.
First, we show the social cues sent by the robot, which are the following: START
corresponds to the visual and audible signal indicating to the human that the step
begins; S_RA corresponds to the start of a robot action; R_PASS corresponds to the
robot being explicitly passive. The other signals, including the human ones, will be
described below. Also, we modeled the case where the robot cannot act in the current
step. This can be determined easily given the search graph and the current state
si and by checking if there is at least one non-passive robot action in the following
arcs. This checking process is represented in the figure by the diamond shape with
the label “R can act”, and the respective positive and negative answers “yes” (y) and
“no” (n). When the robot cannot act, it sends a specific signal to inform the human
that the step has started and cannot act (START_IDLE), then goes in the IDLE
pose. This is a visually passive posture where the robot looks at the human with its
arm retracted, indicating that it cannot act. Only a human action can progress to
the next state. Thus, the robot waits for this action to start and eventually finish.
Then, the Situation Assessment process identifies the executed action, and thus, the
new state si+1 to continue. Depending on the possible actions, the robot can stay in
this IDLE pose for several steps. Once the robot can act again, the “yes” branch of
the automaton is followed, and the robot returns to the HOME pose. In this posture,
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the robot’s arm is deployed, showing that the robot is ready to grab objects on the
table.

Additionally, the process of waiting for a human signal at the beginning of each
step is more detailed. This process is interrupted by one of the three following signals:
H_PASS is an explicit signal (hand gesture, verbal communication) sent by the human
to share its desire to be passive; S_HA is the start of human actions, and is detected
by tracking human’s motion; TO is the internal timeout signal sent by a clock 4s after
the start of the waiting process. However, the perception layer on a real robot would
induce a delay in this synchronization process. An additional waiting time of 1s is
added to compensate for the robot’s reaction time, allowing the human to send signals
just before the timeout. Without it, the human could start moving just before the
timeout, but the robot would interpret this information too late and consider them as
passive. Note that the robot only waits for a human signal if the human can act in
the current step. This check is done similarly to the first diamond process. However,
it is not shown in the figure for legibility reasons. Hence, it means that in situations
where only the robot can act, it will not wait and will directly start acting.

The last visual difference with the abstracted model on the robot’s side is the case
where the human decides to be passive. In this branch, the human decision is pictured
as a question mark. This is because we first identified the human as passive, and thus,
the robot performs the best corresponding action provided by the policy. However,
while the robot is acting, the human is free to start performing any action that does not
conflict with the already-started robot’s action. These possible decisions are modeled
in the human automaton described after but are identified by the robot only during
the Situation Assessment process.

On the other hand, a human automaton now explicitly models how humans should
behave to coordinate with robots and collaborate successfully. This automaton starts
by always waiting for the beginning of the current step, indicated by the robot with
the signals START or START_IDLE. The simplest but less common case is when
the robot cannot act during the step (after receiving START_IDLE). This case is
depicted in the rightmost branch. Since the robot cannot act, only the human can
make progress in the task by acting. Thus, the human is free to take as much time
as desired, represented by the decision time in the range [0; +∞]. After the start of
the human action, both human and robot automatons wait for the end of the human
action, and then they proceed. Let us discuss now the most common case where the
robot can act. This time, the human must decide before the defined robot timeout
(TO), otherwise they will be considered passive. The human can decide either to
start acting (ACT), to indicate their passivity (PASS), or do nothing corresponding to
being passive without informing the robot (WAIT). If the human decides to be passive
(PASS or WAIT cases), they can either remain passive until the next step or decide to
perform an action not conflicting with the robot one. This is represented by the last
human diamond shape labeled “Compliant choice” made after a duration referred to
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as “compliant decision time”.

5.3 Gazebo Simulated Scene
This interactive simulator is based on the Gazebo Simulator. It is an open-source 3D
simulator able to simulate articulated robots in a dynamic and complex environment.
This section describes all aspects directly linked to this existing 3D simulator on which
our framework has been developed.

The overall scene is depicted in the figure 5.3. The stacking goal is displayed in the
top left corner, and a text prompt is shown in the top right corner so that the robot
can communicate with the human.

Figure 5.3: Participant view of the interactive simulator. It depicts the colored cubes
on the table’s left, the stacking area on the table’s right (the two darker spots), the
goal pattern on the top left, the collaborative robot in front, the text prompt on the
top right, and the human hand at the bottom right.

The static scene consists of a large room, with a ground and four walls, and a table
placed in the center with two marks on its right side. The marks represent the locations
where the cubes must be stacked. The agents are represented as follows. First, the
human is represented only with a floating hand as the camera simulates a first-person
point-of-view. Then we used a Tiago robot from PAL Robotics because it has an arm to
manipulate its environment, a head to send gaze information and signals, and because
many related resources are available for it (3D models, controllers, tutorials). The
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human and the robot are facing each other, each from one opposite side of the table.
Finally, colored cubes were disposed of on the table in three distinct zones. Cubes
are either close to one agent’s side or in the middle of the table. This disposition
influences the reachability of the agents as one agent can only reach cubes from their
side (just in front of them) or the middle, but never from the other agent’s side. This
scene corresponds to one specific collaborative task, but another setup could be easily
implemented.

The Gazebo simulator can be integrated with the Robot Operating System (ROS),
which is a set of software libraries and tools that help build robot applications. The
main pros of ROS are its ability to run several sub-programs in parallel and allow
them to communicate with each other. Hence, the other components of the interactive
simulator have been developed with ROS.

5.4 Controllers
Four distinct controllers have been developed to control the simulated agents and the
overall simulation execution. Each controller is described below.

5.4.1 Robot Arm Motion
First, there is one controller that moves the robot’s arm. This controller is called
with either a 3D position to reach (pose target) or a predefined configuration (named
target). In both cases, when called, this controller uses the MoveIt framework. MoveIt
creates links between several libraries in order to have access to a unified interface for
Motion Planning algorithms, Inverse Kinematics, Control, or Collision Checking. This
way, our controller can “simply” request MoveIt to find a trajectory to a given position
and then make the robot follow this trajectory while taking into account the geometry
of the robot arm.

In fact, this controller is slightly more sophisticated. Indeed, in our collaborative
context, we prefer the robot to be reactive rather than to have optimal motions. This
is why, through the MoveIt interface, we use two different motion planners. The first
one is RRT ∗, which is an optimal planner that stops only when the optimal motion
plan has been found. It is desirable to have the robot exhibit consistent and efficient
motions. However, this process sometimes takes too much time (4-5s), which breaks
the rhythm of the interaction. As a consequence, a short timeout (0.6s) has been set
for this optimal motion planner. If the optimal plan is not found within the defined
timeout, we use the second motion planner. The second planner is SBL, which is not
an optimal planner. That is, the planner stops when a solution is found, but there is
no guarantee of optionality. The major pro of this planner is its speed. Overall, for
every robot arm motion, we first try to find an optimal motion within a short amount
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of time. If the optimal motion is not found, we quickly find a suboptimal solution to
prevent the robot from being passive for too long.

Additionally, to reduce motion planning time, a few simplifications have been done.
First, collisions are only considered with the table and the robot’s body. Hence, the
robot arm sometimes goes through the other cubes. Also, the pick and place orientation
are ignored. When picking a cube, the robot gripper just reaches the cube’s center
from any angle, and then the cube is attached to the gripper. When placing a cube,
the robot moves its arm to the target position, and the cube is detached from the
gripper. Eventually, the cube’s orientation and position are overwritten to match the
target location. This way, the robot always performs perfect place action, improving
both the reactivity of the robot and its robustness, but the robot’s motions are less
realistic.

5.4.2 Robot Head Motion
The robot head is controlled to look at various elements during the interaction to
exhibit a more intuitive and collaborative behavior. Indeed, when waiting for the
human, the robot looks at the camera. As soon as the human hand moves to either
perform an action or indicate its passivity, the robot starts following the hand to show
it is observing the human motions and estimating their intentions. Then, the robot
looks at a cube to indicate its intention to pick it since this is faster than the arm
motion. Also, the robot looks at the target position when placing a cube to indicate
its intention to place the cube there.

A dedicated controller has been developed to perform those head motions based
on an existing controller provided in the Tiago robot modules. The existing controller
could only change the robot’s gaze through a visual and clickable window, allowing
an operator to manually click on the scene to change the robot’s gaze. This controller
has been modified to allow additional features, such as directly requesting to look at
a 3D point or an object. Moreover, we can now ask to follow an object. That’s how
we are able to exhibit the head behavior described just above.

5.4.3 Human Hand Motion
Moving the human hand requires a dedicated controller but is much simpler than the
robot arm motion one. Here, the hand must either move to a position or perform a
PASS signal. The PASS signal is a hand gesture indicating to the robot that the human
desires to be passive for the current step. This motion is performed by simply rotating
the hand back and forth at a constant speed. The PASS motion has a duration of 0.7s.
On the other hand, we do not use a real motion planner to move the hand to a target
position. We simply compute a straight line between the current hand pose and the
target pose. Then, we update the hand position at 50Hz to move at a constant speed



5.4. Controllers 111

set to 0.25m/s. The planning time is thus negligible compared to the robot motion
planning times.

5.4.4 Simulation
Last but not least, I developed a fourth controller called the simulation controller.
Its main jobs are to decompose high-level actions into low-level commands for the
simulator, to keep track of the step-based synchronization used in our joint action
model, and to generate the visual social signals used in our model to coordinate the
agents.

5.4.4.1 Action Decomposition

First, we describe how we translate the high-level actions from the plan produced by
our task planner to low-level motions that can be executed by the controllers listed
above. Some parts of this controller are domain-specific, but a major part is generic
for manipulation tasks. This controller received high-level agent actions to execute,
such as “Robot pick(b1)” for the robot picking the cube b1. The first step is to
decompose this action into low-level generic actions, which are themselves made of
low-level motions. This controller also keeps track of a few low-level facts to check
low-level preconditions, such as what each agent is holding or which object is still on
the table. Hence, the controller throws an error when an agent tries to pick a cube
while already holding one.

Let’s first comment on the low-level generic actions available. This controller is
given a list of the object names (cubes) and the names of some predefined locations
in the scene (placing locations in the stack). Except for the last five, the following
actions are not agent-specific and can be performed by any agent. This is defined by a
parameter given when calling the action. The following low-level actions are available:

• move_pose_target: moves either the hand/robot arm to a given position.
• move_location_target: moves either the hand/robot arm to the position of

a given location.
• move_obj_target: moves the hand/robot arm to the position of a given ob-

ject.
• move_home: puts the agent in its “home” (default) configuration.
• move_named_target: moves the robot arm to the given configuration.
• grab_obj: attaches the given object to the hand/robot gripper.
• drop_obj: detaches the given object to the hand/robot gripper.
• set_obj_rpy: sets the orientation of a given object.
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• set_obj_pose: sets the position of a given object.

• delta_move_obj: sets the position of a given relative to its current position.

• human_hand_gesture: makes a hand gesture to indicate passivity.

• robot_head_look_pose: makes the robot look at a given position.

• robot_head_look_human: makes the robot look at the human (camera).

• robot_head_follow_obj: makes the robot follow a given object.

• robot_head_follow_hand: makes the robot follow the human hand.

Then, the high-level actions from the plan produced are the following with their
respective simplified low-level decomposition:

• PickCube: Starts by retrieving the cube’s current position by sending a request
to the Gazebo simulator. If it is the robot, call robot_head_look_obj to look at
the cube. Then, call move_pose_target with the retrieved cube position. Once
over, grab the cube with grab_obj. After, move_home is called to retract the
robot arm or bring the hand to its initial position. Finally, if it is the robot, it
looks to the human with robot_head_look_human.

• PlaceCube: Starts by retrieving the position of the target location to stack the
cube. If it is the robot, call robot_head_look_pose with this position. Then, we
move either the arm or the hand to that position with move_pose_target before
dropping the cube in the stack with drop_obj and adjusting its position. After,
we go back to the home configuration with move_home. And for the robot, we
look at the human with robot_head_look_human.

• BePassive: The human waves their hand to explicitly be passive. Thus, hu-
man_hand_gesture is called. The robot does not move and only displays some
texts saying the robot wants to be passive. More details about the text prompts
will be provided later.

• DropCubeTable: When an agent cannot stack a cube they are holding, they
can place it back on the table. First, the drop position is defined. It corresponds
to the initial position of the cube being held, except for the green one, which
is initially on top of another cube and has a dedicated drop position. The
robot looks at the drop position with robot_head_follow_pose. The hand or
the robot arm is moved to the position with move_pose_target. The cube is
dropped with drop_obj, and its position is adjusted. Then, the agent is put in
its home configuration with move_home, and the robot looks at the human with
robot_head_look_human.
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5.4.4.2 Manage Steps Synchronizations

The simulator controller is also in charge of indicating when a step is over. Since we do
not consider steps where both agents are passive, a step begins when an agent starts
an action. A step is over when both agent actions are done. These rules cover many
situations, such as if the human initially wants to be passive and wave their hand. As
a result, the robot starts performing an action, which starts the next step. Currently,
the step would be over as soon as the robot’s action is over since the human is passive.
However, if the human decides to start performing an action concurrently, then the
step will be over when both the robot’s and human’s actions are over. This may imply
that if the human starts acting right before the end of the robot’s action, then the
robot will just wait for the end of the human action, and thus, the end of the step
before the next step begins.

5.4.4.3 Send Visual Signals

The model of execution synchronizes the agents based on explicit visual signals such
as the start of a step, the start of an action, the end of an action, or a hand gesture
(PASS). Those signals are modeled explicitly inside the system and managed by the
simulator controller.

Indeed, when starting an action, the associated visual signal is sent only when
the agent starts to move. Hence, we track the arm and hand motions to know when
the action is visible to the other agent. Then, when an action is over, the associated
visual signal is sent directly. It is worth mentioning that humans will naturally have a
reaction time when seeing the robot’s visual signals (start/end of action, step start).
However, the robot natively does not have any reaction time to such symbolic visual
signals. Thus, to simulate the delay introduced by an actual perception module (here
perfectly simulated), the human visual signals are delayed to the robot by a reaction
time set to 0.3 seconds. This is still quite fast, but at least the robot does not interpret
human motions instantly.

5.5 Human-Machine Interface (HMI)
The human operator, or participant, can interact with the simulation by performing
any feasible action during the process. However, humans must synchronize with robots
by following the execution model. For this purpose, every step starts with a robot
sound/beep. Additionally, a dedicated process receives internally the list of the feasible
human actions for the current step. This list is sent by the robot execution scheme
and is extracted from the solution DAG. However, the participants do not see or know
of feasible actions.

Each possible human action is associated with a rectangular clickable area on the
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Figure 5.4: Hidden clickable areas triggering human actions, if feasible. Areas from
1 to 5 trigger picking the respective cube if it is on the table and the human is not
holding one already. Area 6 corresponds to placing a held cube in the stack. Area 7
makes a hand gesture indicating the human desire to be passive to the robot.

screen. When the human clicks in an area associated with a currently feasible action,
the process requests the simulation controller to perform the corresponding human
action. Areas 1 to 5 request to pick the corresponding cube if it is on the table and the
human is not holding one already. Area 6 corresponds to placing a cube being held
into the stack. Since cubes only have one possible stacking place at a time for this
task, we consider a large area to trigger placing actions. The controllers determine
the exact location to place the cubes. Finally, area 7 makes a hand gesture indicating
the human desire to be passive to the robot. It corresponds to sending the H_PASS
signal shown in figure 5.2.

5.6 Execution Data: Logs, Metrics, and Timeline
There is also a dedicated process to record the different events and signals during
one execution. All other components can send events to log to this process to save
them for later post-processing. A log event is defined with a name and a time stamp.
Additionally, visual signals are also captured by this logging process and saved both
as a signal and as a corresponding event. Logged events mostly help trace the robot’s
internal states and processes during the execution. The human ones mainly serve to
identify when the human is acting or not since we do not have access to the internal
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Robot Activities Human Activities
Waiting for human decision Decision Time
Identification Process (ID process)

Human ActionPlanning arm motion
Robot Action
Waiting for human action when
itself cannot act

Being passive with signaling
(after PASS hand gesture)

Being passive Being passive without signaling
(after TimeOut is reached)

Waiting for the end of the step
Waiting for the next step to startSituation Assessment Process (SA process)

Getting ready for the next step (GRNS)

Table 5.1: Agent activities extracted from logs. The activities’ orders and relative
positions try to match the execution, but not all activities are present at every step.

reasoning process of the human participant.

5.6.1 Extraction of Agents’ Activities
All logs are saved after each execution and can be loaded later for post-processing.
The post-processing involves three steps. First, the agent activities are extracted from
the event list. The human and the robot have different possible activities, but since
we do not have access to internal human reasoning, there are more robot activities
than human ones. The extracted activities are shown in the following table 5.1. The
activities’ orders try to match what can happen during the execution, but not all
activities are present at every step. Indeed, on the robot side, the ID process is not
always necessary and thus not always executed, and the robot either performs an
action or is passive for diverse reasons. But the robot always ends up waiting for the
end of the step, performing the SA process and getting ready for the next step. On
the human side, if the human performs an action or makes a hand gesture, there will
be a measurable decision time. If the human remains passive without signaling the
robot, then the only activity is passive without signaling. The “waiting next step to
start” activity is only added if the human is active. Otherwise, being passive for a
step is implicitly equivalent to waiting for the next step.

5.6.2 Metrics Computation
When loading the execution logs, we extract a set of metrics from the events and
extracted activities. Currently, 27 metrics are extracted, but the following table 5.2
only shows 11 because several sub-metrics are hidden. Indeed, for four of the listed
metrics, we compute the sum, average, standard deviation, min, and max values of
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Metric Description
Task Completion Time Time for the task to be completed.

Number of steps Number of executed steps.
Number of optimal
human actions

Number of human action being optimal regarding a
given objective.

Ratio of optimal
human actions

Number of optimal human action divided by the
number of steps.

Human decision time* Duration for the human to make a visible decision
in a step.

Waiting next step* Duration during which the human waits for the next
step to start.

Number of
human action

Number of non-passive human actions executed in
the scenario.

Human action
duration* Duration of the human actions.

Number of
robot action

Number of non-passive robot actions executed in
the scenario.

Robot action
duration* Duration of the robot actions.

Time human free Time after which the human is free, i.e., as soon as
the robot can finish alone.

Table 5.2: Metrics extracted from the execution logs for each scenario. Marked items
with a star (*) correspond to five sub-metrics computed over all steps: sum, average,
standard deviation, min, and max values.

the corresponding metric.

5.6.3 Execution Example with Detailed Timeline
A complete scenario is presented and commented on in this section. Using the previ-
ously extracted agent activities, we can draw a visual timeline depicting the different
steps, the extracted activities, and the visual signals exchanged between the agents.
Figure 5.5 depicts the complete commented timeline, including agents’ activities, ex-
changed signals, and snapshots from the simulator. The table 5.3 describes the different
signals exchanged during the execution and shown on the timeline.

In this execution example, according to the extracted metrics, the task has been
completed in 77.14s in 12 steps. The average human decision time is 1.00s ± 0.69s
with max = 2.77s and min = 0.42s. The human waited on average for the start of the
next step during 1.68s± 1.28s. There were 8 human actions with an average duration
of 3.67s ± 0.72s. According to the objective/preferences to finish the task as fast as
possible, the human acted 9 times optimally out of 12 steps (optimal ratio= 75%).
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Figure 5.5: Complete execution timeline commented.
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Signal name Description

START Visual and audible signal from the robot indicating that the
current step has started.

START_IDLE Visual and audible signal indicating the start of a step where
the robot cannot act.

S_RA / E_RA Signals sent respectively from the start (S) and the end (E) of
a robot action (RA).

S_HA / E_HA Signals sent respectively from the start (S) and the end (E) of
a human action (HA).

H_PASS Explicit hand gesture from the human informing their desire
the be passive.

TO The TimeOut is an internal robot signal indicating that the
absence of human signal.

Table 5.3: Signals exchanged between the agents during the execution and used for
synchronization and coordination.

Indeed, the human agent purposely decided to be passive during steps 5 and 6, but
they could have picked the orange cube in parallel to complete the stack faster. In
this example, the task description forbids agents from picking cubes in advance. They
must be able to immediately place a cube in the stack to pick it. This rule is detailed
and justified later in the next chapter 6.3. Hence, in step 9, the human picked the
white cube, but the robot could not pick the bar until the white cube was placed.
Thus, the human could have let the robot place the white cube to reduce their effort
without slowing the task. There were 8 robot actions with an average duration of
3.97s± 0.69s. Overall, the robot took 5.25s to plan its arm motions.
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This chapter presents a user study validating the approach proposed
in Chapter 4 using the simulator described in Chapter 5. For this pur-
pose, several scenarios have been designed using a BlocksWorld task, and
human participants were asked to collaborate with the simulated robot to
evaluate its behavior. We compared our approach with a baseline behavior
where the robot always imposes its decisions on the human. This study
uses objective and subjective metrics to show how our approach performed
significantly better than the baseline.
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6.1 Introduction
To validate the approach presented in the previous chapter, we conducted a user study
of more than twenty participants. The purpose of this study is two-fold. First, we
want to validate our overall planning approaches. Thus, we want to show how it
allows successful collaboration with humans. Secondly, we want to validate our model
of concurrent and compliant joint action, that is, showing how it allows the human to
always be the leader and able to decide while the robot follows concurrently. We use a
baseline where the robot imposes its decision on humans, and we show how our model
allows satisfying human preferences better and is thus preferred.

We decided to conduct this study in simulation for various reasons. First, one of
our assumptions is that all actions should roughly have the same duration. However,
real-life robots are slow and not very reactive. Those aspects may bias the results of
our study, which is focused on decision-making. Secondly, simulation allows several
simplifications that are acceptable for study. Collision with the cubes has been disabled
to make the robot faster both in planning and executing its arm movements. In
addition, simulation allows for a perfect perception of the environment. In a real-life
experiment, perception errors may occur, leading to replan and thus slower execution
or even wrong decisions. Moreover, our model assumes that both agents synchronize
after each step. Hence, it was easy in simulation to prevent the human from acting too
soon and synchronize automatically their actions. In a real-life scenario, we could not
physically prevent the participant from acting. This would imply a heavier training
process for the participants to avoid desynchronizing with the robot. In practice,
an additional execution supervisor should be developed to permit desynchronizing as
long as they are not too big and hence, prevent the system from crashing. This would
require a significant technical effort to implement.

To conduct this study, I developed a dedicated interactive simulator using a Tiago
robot. In addition, the automaton described by the MoE has been implemented and
integrated with the simulator to provide a proper execution and supervision scheme.
Eventually, through carefully designed scenarios and using a shortened version of the
PeRDITA questionnaire [Devin 2018], we gathered the feelings and impressions of
the participants regarding the different robot behaviors. We also recorded logs from
each executed scenario, allowing us to draw a timeline of the execution and compute
objective metrics for each scenario, among which can be found the time to complete
the task, the human decision time, or the time for the human to be free. Several
relevant facts and conclusions can be extracted from the collected results, which are
discussed in this chapter.

This chapter is organized as follows. First, the interactive simulator functionalities
and operations are described. Then, the methodology of the user study is provided
along with anonymous information on the participants. After that, the results obtained
are presented and discussed, validating the proposed approach and our model.
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6.2 Existing HRI Questionnaires
Many questionnaires are used in the field of HRI. The main ones are
GodSpeed [Bartneck 2009], HRIES [Spatola 2021], PeRDITA [Devin 2018],
RoSAS [Carpinella 2017], and Trust Perception Scale-HRI [Schaefer 2016].

Each questionnaire has specificities and helps to measure certain aspects of the
robot. Many include appearance items to evaluate the look of the robot. Since our
focus is on robot decision-making, we decided to base our questionnaire on PeRDITA.
Indeed, this questionnaire has been designed to evaluate the pertinence of robot de-
cisions in a Human-Robot Joint Action Context, which is exactly our case. However,
the full questionnaire is a bit heavy and also covers communication, which is not our
topic in this work. That is why we decided to shorten the questionnaire by remov-
ing the section on communication and a few redundant items. Redundant items are
helpful to evaluate the consistency of a questionnaire, and this has already been done
in [Devin 2018]. However, we exposed each participant to several scenarios, sometimes
only slightly different from each other, and were asked to fill out the questionnaire af-
ter every scenario. Therefore, to avoid participants getting bored and lost, we reduced
the questionnaire to 12 items covering the following dimensions: robot perception,
interaction, collaboration, and acting.

6.3 Study Protocol
In this study, each participant is made to collaborate six times with a simulated robot
to achieve a shared task. Each occurrence is referred to as a scenario. The robot
exhibits different behaviors in each scenario. After each scenario, the participant
evaluates the robot’s behavior through the PeRDITA questionnaire [Devin 2018], and
logs about the execution are saved. An overview of such protocol is shown in figure 6.1.

Estimated
Human

Preferences

Human
Preferences 

Execution 
Regime

Questionnaire 

Joint Task 

Execution
Logs 

Figure 6.1: A scenario of the User Study Protocol. Each participant goes through six
scenarios and answers six questionnaires to evaluate each different robot’s behavior.
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Beforehand, every participant answers a few demographic questions and is famil-
iarized with the simulator functionalities through an interactive tutorial. Only then
the participants start the six consecutive collaborative scenarios, answering a ques-
tionnaire to describe the interaction every time. Eventually, they are asked to share
their general impressions about the overall interaction with the simulated robot, and
they are asked to tell which scenario they preferred the most and the least.

We now provide details about the task, the scenarios, and how the different robot
behaviors are generated. The shared goal, which is stacking the cubes to match the
given pattern, remains the same in all scenarios. The cube disposition on the table also
does not change either. The task description is depicted in fig 6.2. For this problem,
our planning approach generated a solution graph with 700 states/nodes leading to 6
different final states/leaves. This solution graph comprises 6839430 different possible
courses of action. The length of the plans is about 19.77± 1.59 steps, with a minimal
length of 11 steps and a maximal length of 23 steps.

H

C

R
Goal

Figure 6.2: Description of the shared task to achieve in the study.

To progress in the task, the agents can perform three different primitive actions,
which are the following: pick a cube, place a cube in the stack, or drop a cube back
on the table. These actions have a few preconditions, more or less intuitive, that are
communicated and experienced by the participant during the integrated tutorial. First,
one can place a cube if they hold it and if the targeted location is free and supported.
That is, the cubes directly below the targeted location must be placed before being
able to place a cube in the targeted location. Secondly, one can only pick a cube from
their respective reachable zones of the table, i.e., Human and Center zones for the
human and Robot and Center zones for the robot. Also, one can only pick a cube if
it can be placed immediately. Thus, one cannot pick a cube “in advance” and must
wait for its placement condition to be true before picking it up. For instance, both
pick bars can only be picked up after the yellow and red cubes have been placed. This
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rule helps to create interaction conflicts serving the purpose of this study. Moreover,
although the participants found this not intuitive, they got used to it quickly, and this
feeling seemed to be significantly reduced during the experiment. Third, one can drop
a cube back on the table only if they hold it and if it cannot be placed.

For each scenario, the participant is given instructions on how to solve the task. The
participants are asked to consider these instructions as their own choice and preferences
regarding the task resolution and, thus, to act accordingly while collaborating. The
instructions for each scenario are one of the two following. On the first hand, the
participant shall act in a way to finish the task as soon as possible. Here, it consists
of trying to perform as many actions in parallel as possible to progress faster. These
preferences are later referred to as Task End Early (TEE). On the other hand, the
participant shall act in a way to be freed as soon as possible. That is, they should finish
their mandatory part of the task as soon as possible so they can leave and let the robot
finish alone. Here, it consists in placing the pink bar from the Human zone as soon as
possible. These preferences are later referred to as Human Free Early (HFE). On its
side, the robot does not directly have access to these instructions/preferences. Hence,
for each scenario, the robot is given a more or less accurate estimation of the human
preferences that are communicated to the participant. Note that the participants
are not aware that the robot has an estimation of their preferences, nor that this
estimation can be inaccurate. This way, we created three scenarios with different pairs
of human preferences and associated estimation. In the first pair, the human shall
finish the task early, and the robot has a correct estimation, i.e., the robot’s policy
helps the human finish the collaborative task early. In the second pair, the human
preferences remain the same, but the robot estimation is incorrect. The robot is trying,
mistakenly, to minimize the human effort. As a consequence, the robot tends to pick
cubes that the human could pick, preventing the human from acting and making the
task completion longer. In the third pair, the human shall free themselves early, but
the robot estimation is again erroneous. The robot will try to finish the task early
while its priority is to place the first pink bar, which conflicts with the given human
preferences.

Additionally, in each scenario, the robot follows one of the two following execution
regimes:

• Robot-First (RF): the robot always initiates actions first, and the participant
takes action afterward.

• Human-First (HF): the robot always lets the participant take the initiative
and acts after.

The Human-First execution regime corresponds to the Model of Execution described
in the previous chapter. At each step, the robot waits for the human’s decision and
will execute the best action that complies with it. The human always starts acting
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Table 6.1: Name of the six scenarios. Columns represent the preferences/estimation
pairs, and the rows correspond to the execution regimes.

Pair A Pair B Pair C
TEE: correct TEE: incorrect HFE: incorrect

Human-First S1 S3 S5
Robot-First S2 S4 S6

first, and the robot follows. On the other hand, the Robot-First regime corresponds
to a naive and straightforward policy execution where, at each step, the robot directly
starts executing the overall best robot action given by the policy. The robot always
starts acting, forcing humans to comply. The Robot-First regime serves as a baseline
to evaluate the proposed Human-First regime, described by our Model of Execution
and used in policy generation. Eventually, we associate each of the three previous
pairs of preferences and estimation with one of the two different execution regimes.
As a result, we obtain six different scenarios with six different robot behaviors named
in table 6.1.

Note that our goal is to evaluate and compare the different robot behaviors. How-
ever, at the beginning, the participants do not have any references to compare with,
which can influence their answers in the very first scenarios. One solution is to ask the
participants to answer all six questionnaires at the end after being familiar with the
six scenarios. We consider that this option demands a too heavy mental workload to
recall accurately each specific scenario and may bias the answers. As a consequence,
we decided to ask the participants to answer the questionnaire after each scenario as
a draft. During the experiment, they can rectify their answers to match their feel-
ings more accurately. At the end, using the drafts, they share their final answers for
each scenario. We believe this process gathers the feelings of the participants more
accurately. Moreover, the ordering in which the participants encounter the scenarios
is uniformly randomized to prevent any order effect.

The questionnaire filled by the participants after each scenario is a shortened ver-
sion of the PeRDITA questionnaire, and its items are gathered in table 6.2. In addition
to the questionnaires, for each scenario, the interactive simulator produces logs from
which we extract several metrics and an overall timeline of the execution. The time-
line depicts the activities and actions of each agent along the progression of the task.
The subjective measures done through the questionnaire are complemented with the
objective metrics extracted, such as the duration to complete the task, the number of
human actions, the total duration of human inactivity, and more.

There are a few restrictions on the actions that can be performed. First, an agent
can only pick cubes that can be placed immediately. This means that agents cannot
pick cube in advance to anticipate each other’s actions. Allowing such behavior could
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Dimension Question Item

Robot perception In your opinion,
the robot is rather:

Apathetic/Responsive
Incompetent/Competent
Unintelligent/Intelligent

Interaction In your opinion, the interaction
with the robot was:

Negative/Positive
Complicated/Simple
Ambiguous/Clear

Collaboration In your opinion, the collaboration
with the robot to perform the task was:

Restrictive/Adaptive
Useless/Useful

Inefficient/Efficient

Acting In your opinion, the robot
choices of action were:

Inappropriate/Appropriate
Annoying/Accommodating
Unpredictable/Predictable

Table 6.2: PeRDITA Questionnaire: Participants have to place themselves between
the two antonym items on a scale of 7.

generate a very interesting scenario. However, here, we want to purposely generate
some conflicts to evaluate the robot’s behavior and reactions. Without this restriction,
the agents would have too much flexibility in their actions and decisions, making it
harder for conflicts to happen. Additionally, when holding a cube, the agents can
only place the cube in the stack on back to its original place. As a result, the agents
cannot displace the cube on the table to make them reachable to the other agent.
This restriction has been added for the same reasons as the first one and simplifies the
conflict generation.

The participants were collaborating with the robot using a mouse. The simulation
was run on a laptop connected to a bigger screen, allowing participants to see the
simulated environment clearly. After each scenario, participants answered the printed
questionnaire using a pencil. Figure 6.3 depicts the execution of a scenario where the
participant collaborates with the simulated robot using the mouse. Once the task
is completed and the scenario is over, the participant is asked to fill out the printed
questionnaire on the desk with a pencil. For each scenario, a new paper sheet is
provided to the participant.

6.4 Participants
This section shares and analyzes some information about the 25 participants involved
in the study.

The participants were aged of 29.64±10.67 (min = 21 and max = 62), as depicted
on figure 6.4.

About 36% (9/25) of the participants indicated they were Females and 64% (16/25)
indicated being Males (figure 6.5). Participants could choose not to share their gender,
but none selected this option.
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Figure 6.3: One scenario execution where a participant is collaborating with the sim-
ulated robot using the mouse. Once the task is completed, the participant is asked to
fill the questionnaire on the desk with a pencil to transcribe their impressions.

Participants were asked to rate their opinion about robotics from 1 (negative) to
5 (positive). On average, participants had a highly positive opinion about robotics:
4.24±0.6, without answers below 3. Most participants were excited about this subject.

Only 6 participants were not from my lab. Nevertheless, various profiles were
requested to participate. Among all participants, 8 were more or less familiar with
robotic decision-making. All other participants were not familiar with robotic decision-
making, like some biologists. However, 12 participants were generally familiar with
robotics, like drone control researchers.

We conducted numerous correlation analyses between the participants’ personal
information (age, gender, affiliation, familiarity with robotics), the questionnaire an-
swers, and the execution metrics. Due to the considerable possible combinations, we
could not exhaustively test every possible correlation. Nevertheless, our numerous
Pearson and Point biserial correlation tests never identified a significant correlation
between the participants’ personal information and the obtained results. The only few
significant correlations are between the questionnaire answers themselves representing
the “coherent” rating of the participants. That is, participants tend to rate similarly
similar situations. For instance, the better a participant rates the interaction in the
first scenario, the better they tends to rate the interaction in the third scenario, in
which execution is similar.
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Figure 6.4: Participants’ age: 29.64± 10.67 (min = 21 and max = 62)
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Figure 6.5: Participants’ gender.
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6.5 Study Results
In this section, we analyze the results of the study. First, we share some technical
comments regarding the experiment. After, we analyze the results obtained from the
execution logs. Then, we discuss the answers to the questionnaire. Finally, we discuss
the participant’s comments regarding the experiment. Note that all the numeric re-
sults of the study are given in appendix A, including questionnaire answers, execution
metrics, comments, and scenario preferences.

6.5.1 Technical Comments
Numerous scenarios were executed in the simulator to conduct this study. More pre-
cisely, 150 scenarios were executed, and a total of 1914 steps were executed. It is
interesting to share a few technical comments about how those executions.

To begin with, very few technical issues or crashes occurred during the study.
About 2 or 3 crashes were due to a failure in the HMI that had happened when
participants clicked at a very specific instant. I was not able to identify the origin of
the issue, but this only happened a few times, considering that 1048 human actions
were performed during the whole study. This means that 0.29% of the human action
failed. Then, about 4 to 6 crashes occurred due to a failure of the robot arm motion
controller. The arm motions were planned successfully, but the controller failed to
execute the planned trajectory in the simulator, which led to a crash of the controller
and the robot freezing. This kind of failure was specific to the MoveIt framework, and I
could not find a solution to it. But again, those issues were quite rare considering that
the robot performed a total of 1586 actions during the study. This means that 0.38% of
the robot action failed. Overall, less than ten scenarios crashed during the study, i.e.,
less than 6% of failures. In practice, recovering from a crash was quite easy and fast.
After a brief intervention of less than 30s, the participants were able to start again
from the scenario that crashed. Sometimes, this implies that the participants repeat
a large part of the crashed scenario, which affects the participant’s impression (less
novelty effect). However, none of these crashes significantly changed the participant’s
actions when repeating such a scenario.

On the other hand, it is worth mentioning and discussing the durations of the
different processes run by the robot. At every step, the robot has to decide which action
to perform, move its head, plan its arm motion, and move its arm. First, the decision
time of the robot is negligible because it is given by the policy computed previously by
our planning approach. Before every step, the robot identifies the current state. Given
a state, the policy dictates which action the robot should perform, including if the
human action must be identified first. Since all this is precomputed, the decision time is
negligible. Head motions are also not demanding, and their execution occurs in parallel
with the other robot processes. Hence, they can be neglected. However, planning the
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robot’s arm motions is heavy computing and takes about 0.56s ± 0.28s. Notice that
the standard deviation (SD) is quite high, about half of the average value. Indeed,
the motion planning is based on algorithms using randomized exploration, making the
solving time random, sometimes beginning very fast (min u 0.001s) and sometimes
quite slow (max = 5.37s). Nevertheless, we were able to plan the arm motion online.
Eventually, the robot arm motion durations are about 4.09s (max=9.09s, min=1.46s)
and will be discussed more precisely below

Additionally, since the task is quite simplistic, repetitive, and deterministic, one
could say that we could have pre-computed the robot arm motions in order to lighten
the execution and avoid technical problems linked to motion planners. First, we insist
on the fact that the arm motion failures were due to execution failure, not planning.
Thus, it is unclear if pre-computed trajectories would have helped regarding those
failures. Doing so would certainly make the simulator less demanding in terms of
computation power. But here, we wanted to keep a generic simulator able to conduct
any other task. Thus, movements could not be pre-computed.

6.5.2 Statistical Assumptions
Our data are close to following a normal distribution (checked using Kolmogorov-
Smirnov, Shapiro-Wilk, and Anderson-Darling tests). Thus, parametric tests can be
applied, and we used both paired t-tests and Analysis Of the VAriance (ANOVA) with
repeated measures to analyze the collected data, more precisely, to identify significant
differences between different group of measures. In the last case, Bonferroni Post-hoc-
Tests are performed to identify exactly which groups are significantly different from
others.

It has been commonly assumed that a statistical test demonstrates a significant
difference if a p-value lower than 0.05 is obtained. However, obtaining a value lower
than 0.001 is desired. To make the p-values more legible, the following standard
notation is commonly used and will be used below:

p > 0.05⇒ ns (non significant)
p ≤ 0.05⇒ ∗ (significant)
p ≤ 0.01⇒ ∗ ∗ (very significant)
p ≤ 0.001⇒ ∗ ∗ ∗ (highly significant)

Additionally, the value of a metric x will often be given in the following format
depicting the average value M and the associated standard deviation (SD) σ: x =
M ± σ.
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6.5.3 From Execution Logs
This section is focused on analyzing the results obtained through the execution logs
saved after each scenario.

Preferences Satisfaction (task completion time + time to be freed)
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Figure 6.6: Human preference satisfaction. According to the scenarios, it corresponds
either to completing the task as fast as possible (Pair A and B) or being free as soon
as possible (Pair C). Using t-tests for paired samples, we can identify in pairs B and
C that the criteria of preferences are significantly better satisfied. In pair A, the
difference is not significant, but the completion time is slightly shorter when using RF.

In this study, the human preferences consist of either finishing the collaborative
task as soon as possible or being free as soon as possible while letting the robot finish
alone. Thus, to evaluate how the human preferences were satisfied, we can measure
the time to complete the task in the first case and the time after which the human can
leave in the second case.

Figure 6.6 depicts through box plots the corresponding relevant metric for each
pair of scenarios to evaluate the human preferences’ satisfaction. We used t-tests for
paired samples for pairwise comparison. For each pair, the tests for normal distri-
bution suggest that the data does not significantly deviate from normality, and thus,
parametric tests such as t-tests can be conducted.

In Pair A, in addition to completing the stack, the human wants it to be completed
as soon as possible. The robot has a correct estimation of human preferences. The
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completion time using HF and RF are shown. The completion times in S1 and S2
are roughly similar with the respective values: 59.84s ± 5.83s and 56.64s ± 6.46s.
The completion time of Scenario 1 is higher than Scenario 2. However, a t-test for
paired samples showed that this difference was not statistically significant (p = 0.055),
and there was a small effect (d = 0.4) according to Cohen’s d [Cohen 1988] (small
effect = 0.2, medium effect = 0.5, large effect = 0.8). Thus, the RF regime allowed
participants to solve the task slightly faster than the HF regime. Therefore, human
preferences were satisfied slightly better than using the HF regime. In both scenarios,
the collaboration goes smoothly, and the task is achieved without trouble.

In Pair B, the human still wants the stack to be completed as fast as possible.
However, the robot has an erroneous and adversarial estimation of their preferences.
This time, the HF regime in S3 had lower values (66.62s±14.87s) than the RF regime
in S4 (82.82s±4.42s). This difference is statistically significant (p < 0.001), and there
was a large effect (d = 1.07). This indicates that in S4, the participants’ preferences
were significantly less satisfied than in S3. Indeed, in this pair, the robot erroneously
thinks that the human wants to minimize their effort. Thus, the robot ends up trying
to “steal” cubes from the human to prevent them from acting, thus minimizing their
effort. With RF, the human has no choice and cannot act most of the time, leading to a
high completion time with a low SD due to the restricted human choices, which leads
to very similar executions. With HF, the robot always acts compliantly in parallel
right after the human. Hence, the human is able to pick the cubes they want and
that the robot wants to pick, forcing the robot to adapt and pick other cubes. This
eventually leads to executions close to S1. However, if the human decides not to
pick a cube, the robot will likely pick it, preventing the participant from acting. A
few participants were distracted and let the robot pick the common cubes, leading to
significantly different executions than the non-distracted participants, which explains
the high SD. Comments about the feelings of the participants in each of these scenarios
are given in the next subsection using the answers to the questionnaire. Overall, S4
was perceived as frustrating, and S3 was perceived similarly to S1 and S2.

In Pair C, the human prefers to be freed as soon as possible. Hence, we measured
the time after which the human is not required to finish the task, i.e., the time after
which the robot can finish the task alone. Scenario 5 (HF) allowed the human to
be free earlier (22s ± 2.35s) than Scenario 6 (RF) (65.45s ± 9.08s). This difference
is statistically significant (p < 0.001), and there was a very large effect (d = 4.43).
This indicates that the HF regime allowed the participants to satisfy their preferences
significantly better than the RF regime. Here, the erroneous estimation of human
preferences makes the robot try to place its pink bar first, which implies that the
human should place their own at the top of the stack as the last cube. Such a plan
forces the human to stay until the end of the task which is in direct contradiction
with the actual human preferences. Hence, after placing the yellow and red cubes
concurrently, both agents tend to pick their pink bar. At this point, in S5 (HF), the
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robot waits for the human’s decision, and the human can place their bar and free
themselves from the task. The robot compliantly drops its pink bar before finishing
the stack alone. However, in S6 (RF), the robot does not wait for the human decision
and places its pink bar before the human can do anything, forcing them to stay until
the end to place the pink bar. As a result, the S6 values are significantly higher than
S5. Moreover, the participants had various reactions to the frustrating robot action of
placing the pink bar before them. Some remained passive until the end while holding
their bar, while some others dropped it to help the robot, aiming to place the bar as
fast as possible anyway. These various reactions led to various executions, explaining
the high SD in S6.

Overall, RF tends to slightly better satisfy human preferences only when the esti-
mation is correct (Pair A), yet the difference was not significant compared to the HF.
On the other hand, when the estimation is erroneous, HF satisfies human preferences
significantly better than RF due to how compliant the robot is when using HF. This
indicates that using our model of execution instead of a simplistic baseline (RF) is
beneficial for collaboration in terms of satisfying human preferences.

Ratio Human Optimally

The participants were given in every scenario an objective to satisfy, to consider as their
own preferences regarding the task, and that should guide their behavior. However, in
practice, the explicit actions to conduct were not given, and the participants were free
to act as they would. Naturally, not all participants behaved in the same way. There
were differences in the decision time of each, as well as in the action decisions, leading
to different execution traces. Since different execution traces significantly influence
the timeline metrics, it is worth discussing how the participants behaved.

First, table 6.3 depicts the number of different execution traces per scenario and
overall. There were 45 different execution when considering all scenarios, which can
appear quite low compared to the 6839430 possible plans. This also means that our
exploration covers enough possibilities for this task. Additionally, it is worth noticing
the high number of different plans in S6 and the low number in S1. In S6, the robot
acts quite frustratingly, leading to various reactions from the participants. On the
other hand, it seems that S1 was quite clear since participants performed only four
different sequences of actions. It is also worth mentioning that since there are only two
different human objectives or preferences, we would expect only two different optimal
traces, one satisfying each objective. All other 43 other obtained traces are due either
to “wrong” robot decisions or suboptimal human decisions.

In the same manner as for the robot, an optimal human policy is generated for
each scenario (considering the actual preferences given to the participant). Hence, it
is possible to check at each step if the participant performed the optimal action or not
and, thus, compute an optimal ratio, which is the number of optimal human actions
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Total S1 S2 S3 S4 S5 S6
Number of different
executed plan 45 4 9 10 6 7 16

Table 6.3: Number of different plans executed in each scenario and overall.

performed divided by the total number of human actions performed. This helps us
analyze the results and explain some outlier values.

Though there are no significant differences between the different scenarios, some
scenarios still have a lower average optimal ratio and high SD, meaning that partic-
ipants tend to have more varied behaviors in these specific scenarios. The average
number of human actions per scenario is about 7, from 2 to 10.

S1 S2 S3 S4 S5 S6
Mean 95.52 95.4 92.04 98.03 96.74 87.09

Std. Deviation 7.56 7.78 8.28 4.58 7.65 13.48
Minimum 71.43 71.43 78.57 81.25 75 61.54
Maximum 100 100 100 100 100 100

Table 6.4: Optimal human action ratio per scenario

As depicted in the table 6.4, S6 has the lowest average optimal ratio and the highest
SD. In this scenario, the robot places its own pink bar even though the human holds
one already, preventing the human from placing it and forcing them to drop it back on
the table. This surprising behavior seems to cause frustration and confusion, which led
to various human decisions and actions, and more likely to deviate from the optimal
course of action. In practice, many participants get confused and are passive during
several steps after the frustrating robot action. Some even remain passive almost for
the whole task, waiting for the robot to stack the cubes alone until the human pink
bar has to be placed. This diversity in the participants’ reaction is reflected in the
high SD of S6.

The low SD of S4 is also noticeable. Indeed, here, the robot tends to steal the cube
from the human’s reach. This behavior prevents participants from acting and, thus,
from making decisions. As a result, fewer decisions are taken by the human in this
scenario which results in less possible deviation from the optimal course of action.

Decision Time

Participants’ decision time fluctuates a lot, especially with HF. Indeed, at every step,
the HF robot waits for a defined amount of time to observe the human decision and
acts accordingly. Any human visual signal received interrupts this timer. This amount
of time will be referred to as the HF Timeout because after it is reached, the robot
considers the human to be passive. This timeout was initially set to 3s with the
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hypothesis that it should be quite small to allow fluent interaction. With a precise
action in mind, humans act first and fast. Otherwise, the robot fluently takes the lead
and acts first. However, during the preliminary tests, the participants felt in a rush
and oppressed by this relatively low timeout. Indeed, when they did not have a precise
action to perform when the step started, they did not have the time to think properly
and tended to be rushed by the timer, progressing towards the timeout. Hence, we
decided to increase the timeout from 3s to 4s, which made it feel way more comfortable.

One could think about comparing the total (sum, cumulative) decision time over
each scenario. However, since different human actions can lead to various number of
steps, this is not representative.

We compare the average human decision times, measured similarly with HF and
RF, and as follows. After one participant finished one scenario, we measured their
decision time on each step. To do so, we first consider the time when the step begins
for each step, which is signaled with text, a gaze, and a sound from the robot. Then,
we consider the time when the human sends a signal by either starting an action or by
waving their hand. The duration between these two times is considered as the human
decision time. Note that if the human remains passive (no signal until) for a step, no
decision time is computed for this specific step. Then, we extract the average decision
time of the participant on the scenario from all the computed ones, compute the SD,
and get the maximum and minimum values.

A one-factor analysis of variance with repeated measures showed that there was
a significant difference between the variables, F = 5.99, p =< .001, with an effect
size Eta squared η2 = 0.2, which corresponds to a large effect. When doing pairwise
comparisons with t-tests, the following results were obtained:

In pair A, S1 (HF) had lower values (0.66± 0.41) than S2 (RF) (1.04± 0.58). This
difference is statistically significant (p = 0.002) with a medium effect (d = 0.68).

In pair B, S3 (HF) had lower values (0.54± 0.51) than S4 (RF) (0.62± 0.55). This
difference is not statistically significant (p = 0.551) with a very small effect (d = 0.12).

In pair C, S5 (HF) had lower values (0.56± 0.11) than S6 (RF) (0.91± 0.46). This
difference is statistically significant (p = 0.001) with a medium effect (d = 0.76).

Considering the defined scenario pairs, the decision time with RF tends to be
longer. However, this difference is statically significant only for pair C (S5-S6). This
is expected because when the robot places the first pink bar, the human gets confused
and takes time to adapt to the situation. On the other hand, this is not reflected
in S4 despite the similar confusing robot actions. Indeed, in S4, the robot “steals”
cubes from the human reach, which is confusing. Since this prevents participants from
acting, no decision time can be computed.

I think the overall slower human decision time in the RF scenarios is because the
human acts after the robot. This way, the human has to pay attention to the scene and
the robot’s action, which is longer than only looking at the scene, like in HF scenarios.

Overall, the decision time of the participants is an average of about 0.72s± 0.49s.
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Figure 6.7: Average human decision time in the six scenarios. This decision time tends
to be lower when using HF than with RF.

Agent Actions’ Duration

As depicted in fig. 6.8, the human actions are significantly faster than the robot ones on
average. In addition, the duration of the robot’s actions tends to fluctuate more than
human ones. This can be explained by the difference in motion execution between
the avatar and the robot. The human has a simplified motion planner that simply
moves the hand at a constant speed and in straight lines to the cubes or the stack.
However, the robot uses a real motion planner to move its arm, which is longer than
human motion. The motion planning process does not always find the same solutions,
nor in the same amount of time. Meaning that both the motion planning duration
and the motion execution duration can fluctuate. Here, only the motion execution
duration is considered in this metric. Note that to avoid having too much difference
between the human and robot action durations, collisions with the dynamic objects
are not considered in the robot motion planner, nor the objects’ orientation. Hence,
the robot can pick or place cubes from any angle and pass through the other cubes.
When placing a cube, its orientation is corrected. Collisions with the table were kept,
preventing the robot from picking cubes from below.

Overall scenarios and steps, mean = 3.27s, the maximum human action duration
is 4.63s, and the minimum is 2.55s. For the robot, mean=4.09s, the maximum action
duration is 9.09, and the minimum duration is 1.46.
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Figure 6.8: Average action duration of the human and robot agents over the six sce-
narios, with standard deviations. Compared to the human action durations, the robot
ones tend to be longer and have various durations.

6.5.4 From Questionnaires
This section is focused on providing the results obtained by analyzing the answers to
the questionnaires filled out by the participants after each scenario.

To help the reader understand the following plots, we list here the items of the
questionnaire from the table 6.6 with their associated numeric ID in table 6.5. These
IDs will be used in many plots on the x-axis to analyze the questionnaire’s answers.

Robot perception Interaction Collaboration Acting
1 Responsive 4 Positive 7 Adaptive 10 Appropriate
2 Competent 5 Simple 8 Useful 11 Accommodating
3 Intelligent 6 Clear 9 Efficient 12 Predictable

Table 6.5: Questionnaire items with their associated IDs.

6.5.4.1 Overall Analysis

We start by commenting on the overall questionnaire’s results using relevant average
values and standard deviations before having a deeper statistical analysis in the next
subsection.
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Figure 6.9: W.r.t. each scenario, average answers (M, top) and standard deviations
(SD, bottom) obtained for each question of the questionnaire.

Figure 6.9 depicts the answers obtained for each question of the questionnaire
w.r.t. each scenario. This figure provides a very visual overall summary of the study.
On the top part, for each of the 12 questions on the x-axis, the average answers
obtained are plotted for each scenario, 7 being the maximal or best value and 1 being
the minimal or worst value. We can see that four scenarios !obtained quite similar
high answers, whereas scenarios S4 and S6 have noticeably worse answers. Those
scenarios are the Robot-First scenarios of pairs B and C, where the robot has an
erroneous, and even adversarial, estimation of human preferences. Note that question
1 (Q1), which evaluates the reactivity of the robot, is the only question whose answers
are relatively high in every scenario. Considering the answers to all questions other
than Q1, S4 and S6 seem to deviate significantly from the other scenarios, which
can be analyzed as follows: First, it means that with a correct estimation, both HF
and RF regimes are roughly perceived similarly. Second, an erroneous estimation
does not seem to induce lower answers, and thus, despite the wrong estimation, the
robot in S3 and S5 is roughly perceived similarly to the one in S1 with a correct
estimation. On the other hand, when using RF, an erroneous estimation seems to have
a significant detrimental impact on how the robot is perceived by the participants. All
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these preliminary conclusions will be confirmed in the statistical analysis below.
It is also worth commenting on the standard deviations obtained, depicted in the

bottom part of figure 6.9. The standard deviations depend a lot on the scenarios and
go from 0.6 up to 2.1. There are two noticeable facts to comment on. First, question 3,
evaluating how intelligent the robot is perceived, is the only question with a relatively
high SD for every scenario. Participants had various definitions of “intelligence”, which
led to a wide range of answers. Some participants evaluated the robot’s intelligence
on its choices of actions, and thus, fluctuated depending on the scenario. Some others
evaluated the intelligence of the robot on other criteria independent of the robot’s
decisions. Thus, they would rather indicate that the robot was always intelligent (or
not) over all scenarios. Additionally, we can see that the SD of S4 and S6 seem to be
higher than the other scenarios.

Figure 6.10: W.r.t. each regime of execution, average answers (M, top) and standard
deviations (SD, bottom) obtained for each question of the questionnaire.

In contrast with the previous figure, Figure 6.10 shows the answers obtained for
each question w.r.t. to each execution regime. Indeed, the HF average answers and
standard deviations, shown in blue, correspond to the union of the scenario’s answers
using the Human-First regime, i.e., S1 ∪ S3 ∪ S5. Similarly, the RF values, shown in
red, correspond to S2 ∪ S4 ∪ S6 where the Robot-First regime is used. Additionally,
the combined results for all scenarios are shown in light yellow. The results shown here
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can be deduced from the previous figure since we already commented on all scenarios.
Nevertheless, this new figure highlights more visually the difference between the HF
and RF regimes.

The first noticeable fact is that when using the HF regime, the average answers to
each question are better than when using the RF regime. Again, the only question
where the answers are roughly the same regardless of the regime is when questioning
the reactivity of the robot. HF’s average answers are relatively high for all questions
which indicates that the collaborations with HF seem to be appreciated. On the other
hand, RF’s answers are average (around 4), indicating that collaborating with RF
seems less appreciated.

Concerning the standard deviations, it is also noticeable that the answers concern-
ing the RF regime have higher SD. This indicates that there was a wider range of
answers from the participants when collaborating with the RF regime. This means
that participants tend to be less certain about their answers when evaluating RF than
with HF. This can be expected because when facing the HF regime, the collabora-
tion is quite positive overall. Therefore, participants concentrated their answers on
the higher part of the scales. However, the frustrating robot actions due to the RF
regime degraded the collaboration, and participants had to evaluate how bad this
degradation was. Some participants were more emotionally affected than others by
the robot’s actions. Hence, it led to a wide range of answers. Another interesting fact
is that regardless of the regime, question 3 has a high SD. This question evaluates the
intelligence of the robot. Participants had various definitions of intelligence, which is
reflected in this high SD. Indeed, some participants evaluated the robot as unintelli-
gent because of its nature and, thus, regardless of its actions or the scenario. Others
perceived less intelligence when the robot performed frustrating actions. Also, we can
see that the SD regarding the reactivity of the robot is quite close and low for both
regimes. This is a consequence of the very high average values regarding Q1 for both
regimes.

Eventually, I would like to insist on the average answers concerning the RF regime.
Even if these answers are mediocre, it is important to note that they are not very
low. In comparison, consider another robot behaving completely erratically. This
robot would randomly pick and place cubes around itself. Consequently, the robot
would neither help humans nor solve the task. On the contrary, it might only disturb
the human trying to achieve the task. The robot could make the task impossible for
the human by picking a relevant cube and never placing it or removing already well-
placed cubes from the stack. Here, during one step, the RF regime forces humans to
comply with the robot’s decisions, which can be frustrating. However, the robot takes
human action into account and adapts its actions accordingly for the next step. This
is thanks to our planning approach, which is common to both regimes and explores
every possible human action to generate the robot policy. Thus, we can say that
our planning approach seems to benefit the collaboration and interaction between the
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human and the robot.

6.5.4.2 ANOVA Analysis

So far, we only conducted a preliminary analysis of the questionnaire’s answers using
only the average values and standard deviations. Now, a statistical analysis must be
conducted to confirm the preliminary comments of the previous subsection. For each
question, and thus each item of the questionnaire, we performed an analysis of the
variance with repeated measures. Each analysis led to p-values <= 0.001, indicating
that there is a significant difference between the six scenarios. To evaluate the strength
of this significant difference, the effect size Eta squared η2 has been calculated where
the limits are .01 (small effect), .06 (medium effect), and .14 (large effect). However,
ANOVA tests can only indicate if there is a significant difference between N-samples,
but it is only of interest to identify between which exact group that difference exists. In
the Bonferroni post-hoc test in an ANOVA with repeated measures, multiple t-tests
are calculated for dependent samples. However, the problem with multiple testing
is that the so-called alpha error (the false rejection of the null hypothesis) increases
with the number of tests. To counter this, the Bonferroni post-hoc test calculates
the obtained p-values times the number of tests. The obtained p-values indicate in a
pairwise manner between which samples the significant difference exists. The results
from the ANOVA and Bonferroni post-hoc test are shown in table 6.6.

As suggested by the preliminary analysis, the robot’s reactivity is the item with
the lowest difference. The ANOVA indicates that answers regarding the reactivity are
significantly different with a large effect over the six scenarios. However, compared
to other items, the effect size η2 is quite low, indicating that this difference is less
significant than for other items. Also, the Bonferroni post-hoc test was not able to
identify where exactly the difference exists, which means again that this difference is
not very significant in the end.

Besides reactivity, all other items have significant differences according to the sce-
nario, which can be exploited using the Bonferroni post-hoc test. Indeed, the pairwise
comparisons indicate the existence of major significant differences for every question in
the following pairs: S1-S4, S1-S6, S2-S4, S2-S6, S3-S4, S3-S6, S4-S5, and S5-S6 (in bold
in the table). Having in mind that S4 and S6 are the two scenarios using Robot-First
with erroneous estimations, we can see that erroneous estimation with RF system-
atically leads to significant differences compared to all other scenarios using HF or
RF with a correct estimation (S4-S1, S4-S2, S4-S3, S4-S5, and S6-S1, S6-S2, S6-S3,
S6-S5). This is a clear indicator that the RF regime is very sensitive to the estimation
of human preferences. Thus, an erroneous estimation is significantly detrimental to
the collaboration and the overall interaction.

Only a few other significant differences exist in S1-S5 and S3-S5. Indeed, in S5, the
robot’s actions were perceived as more or less significantly less appropriate (p = 0.004)
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and predictable (p = 0.004) than in S1, slightly less predictable (p = 0.017) than in S3.
Indeed, in S5, the HF robot surprisingly picks up its pink bar while the human picks up
its own whereas the human wants to place their bar to be freed from the task. Using
HF allows the human to place their bar anyway, but the robot actions were therefore
perceived as less predictable and appropriate than in S1 or S3. We can also notice
that despite S3 having an erroneous estimation in contrast to S1, there is no significant
difference in answers for each question between S1 and S3. This indicates that using the
HF regime allows the robot to be way more robust to erroneous estimation than RF.
However, the few existing significant differences among the HF scenarios indicate that
an erroneous estimation is still noticeable and can still have a detrimental influence.
Thus, the robot cannot fully rely on being reactive and compliant to human actions.
Estimating human preferences accurately to plan the robot’s actions appropriately is
mandatory for optimal collaboration.

Looking at the eta squared η2 of every question, one can notice that we can group
the items into four groups.

1. η2 = 0.16: First, the Reactivity item is alone with the lowest effect size. This
group does not help to distinguish the regimes.

2. η2 ' 0.33: Secondly, we can state that when using RF, the robot was perceived
as slightly less intelligent, and the interaction as slightly less simple than when
using HF.

3. η2 ' 0.45: Then, due to the moderate effect size, we can state that when using
RF, the robot was perceived as moderately less competent, the interaction as
moderately less clear, the collaboration as moderately less useful, and the robot
actions as moderately less predictable.

4. η2 ' 0.64: Eventually, with a high effect size, when using the RF regime, the
interaction was perceived as significantly less positive, the collaboration as sig-
nificantly less adaptive and efficient, and the robot actions as significantly less
appropriate and less accommodation. Since the five items from the last group
are the ones with the highest effect size, they can be seen as the main charac-
teristics differentiating the HF from the RF regimes and thus are highlighted in
the table.

6.5.5 From Comments
At the end of the experiment, every participant was asked two questions, gathering
their general impressions. First, they were asked to comment on the overall experiment
and robot interaction they just had. Secondly, participants were asked to indicate
which scenario they preferred the most and the least.
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Participants’ comments concern several aspects of the experiment and are worth
discussing. Overall, the comments confirm the outcome of the statistical analysis, and
they also provide some feedback about the overall experiment protocol and conditions,
especially regarding the simulator itself. The comments are discussed per categories
below.

6.5.5.1 Simulation

First, most of the participants found the experiment and the simulation to be a good
experience. They felt committed and active during the different scenarios. The simula-
tion has been described several times as clear, simple, pleasant, intuitive, captivating,
and funny. Some participants mentioned that it was like a video game and enjoyed it.
These comments suggest that collaborating with a simulated robot has been appreci-
ated, and they raise the question of whether the participant had felt the same way in
an experiment with a real robot.

6.5.5.2 Display

Some participants think that the simulation display had too much information (goal
+ scene + text prompt), and a few had trouble reading the text prompt. Yet, the
robot can be seen well. Indeed, the text prompts could be a bit fast and written white
on black, which can be disturbing when not used to. However, I believe this did not
affect much the executions, maybe slightly the decision times.

6.5.5.3 General

A few participants would have appreciated the robot giving instructions and guidance
regarding the actions to perform. This is linked to another comment saying that using
the Robot-Fist regime with correct estimation felt better because it makes the task
simpler. If the human trusts the robot, it can be appreciated to let the robot compute
the optimal plan and just follow the robot’s instructions, lowering the cognitive load
of the human. Indeed, some participants consider that they made mistakes and that
they could have acted better in some scenarios.

6.5.5.4 Steps

The step synchronization was not appreciated by everyone. Some participants found
this kind of synchronization useful as it structured the collaboration. However, many
others found this a bit confusing at first and frustrating because they had to wait for
the robot’s actions to be done before being able to act again.
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6.5.5.5 Task

The task was found to be clear and quite simple. One participant said that they felt
significant emotions such as satisfaction and frustration and that if the task was less
abstract and more real, these emotions would have been enhanced. Moreover, another
participant said that in such simple tasks, humans think they know better how to
solve the task than the robot. Thus, the robot should follow human decisions in such
cases, with a hierarchy relation. A few participants also mentioned that performing
the last action, i.e., placing the last cube, is very satisfying. These people liked the
robot adapting to allow them to do so. The fact that both agents must perform actions
to solve the task makes the collaboration relevant and useful.

6.5.5.6 Action

Many participants said that not being able to pick cubes in advance is not natural and,
at first, it is confusing, frustrating, and a bit complicated. Yet, they also said that
they got used to it quite fast. One also said that they felt obliged to act at every step.
Indeed, a majority of the participants were signaling their passivity to the robot even
when they were not able to act. About the movements, one participant stated that the
actions were stiff and rigid, in contrast to being able to drag and drop the cubes thanks
to the physics simulation. Additionally, the lack of collision with the cubes felt a bit
unrealistic but not very confusing. On the other hand, another participant said that
the robot’s movements seem real. This is probably because we used an online motion
planner to move the robot arm. Thus, the movements were not always optimal.

6.5.5.7 Objective

A few participants said that the objective of "trying to be free early" is a bit frustrating
since they would like to keep acting, even if not necessary. It was hard for them
to consider this objective as their personal preference and, thus, to act accordingly.
Additionally, one participant mentioned that Scenario 5 creates double satisfaction:
being free early (preferences) and fulfilling the task.

6.5.5.8 Regimes

One participant said that they did not see much difference between the two execution
regimes, HF and RF. The same participant could not indicate which scenario they
preferred at the end. Moreover, some participants also indicated that the difference
between HF and RF was unclear at first. However, once used to the task and the
scenarios, the difference becomes clearer, and before the end of the experiment, most
of the participants had a clear idea of each regime and even apprehended the RF one.
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6.5.5.9 Being in control

Participants indicated that when using HF, they felt in control and free to decide
which action they performed and that the robot was adapting to their decisions and
actions, which was appreciated. In contrast, when using RF, participants did not feel
in control and were forced to adapt to the robot’s decisions. Even when the robot’s
decisions are good, the lack of control is uncomfortable. One participant stated that
they disliked when the robot took the initiative because the robot could be wrong.

6.5.5.10 Human-First (HF) regime

Most of the participants enjoyed the HF regime and stated that they were able to
fulfill their objective with it. Some comments qualify the HF regime as slower than
RF and sometimes inconsistent. The latter is mostly referring to the robot picking
up the pink bar in S5. However, especially when used to it, HF has been qualified
as smooth, efficient, interesting, predictable, and less frustrating than RF. Several
participants mentioned that they enjoyed being able to predict the robot’s behavior,
proving that having predictable behavior is crucial for a seamless collaboration. It
has been mentioned that HF makes less wrong choices than RF. Moreover, some
participants said that compared to the RF regime with a correct estimation, HF is less
efficient. However, in pairs B and C, HF is more efficient than RF.

6.5.5.11 Robot-First (RF) regime

RF, bad, not in control, bad choices: having to drop bar + using common resources
first

Every participant had an overall negative opinion regarding the RF regime. The
latter has been qualified as very frustrating, confusing, constraining, unpredictable,
inefficient, and even adversarial. A significant number of participants stated that
finishing the task quickly with RF could be great, fast, efficient, and less cognitively
demanding despite the lack of control. Also, a few participants noticed that even
if, during a specific step, the human is forced to comply with the robot’s actions,
the robot takes into account the human action and adapts its behavior in the next
step. However, it has been said that RF does not consider the human’s objective or
preferences. Participants really disliked when the robot forced them to drop a cube
back on the table (pink bar in S6) and when the robot picked cubes in the middle
zone instead of its own zone. The latter was perceived as the robot stealing the cubes
from the human. Due to those frustrating robot actions, the RF regime was putting
the participants in an adversarial setup, and the robots were explicitly qualified as
“enemies”. Some participants said that they were more focused on preventing the
robot’s mistakes than on the actual task.
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6.6 Discussion
There are several elements to discuss in this study, including several participants’
comments.

First, we decided to conduct the simulation study instead of implementing the
system on a real robot. The main reason for this choice is that using a real robot
would have required significant additional work. We could not physically force the
human to synchronize with the robot according to our step-based model. Therefore,
many executions could have failed, and thus, the study would have been longer to
conduct. Real robot motions are likely to be slower than our simulated ones, which
could also result in bias. An in-between solution could be to use Virtual Reality (VR)
to make the participant more immersed.

Our study focused on the robot decisional aspect of collaboration. For this reason,
we simplified a few elements of the simulation, such as collisions and physics. Despite
being noticeably less realistic than real life, participants seem to find it adequate.

The text prompts raised several questions about which information to show, when,
and how. A few participants stated that it was sometimes hard to read the prompts.
Further study on these prompts would be necessary.

Due to our limited number of participants, we had to focus on a single collaborative
task in order to obtain significant results. Asking participants to solve various tasks
would have been too cognitively demanding. Therefore, additional results from another
collaborative task would strengthen our results.

Finally, using another baseline would also benefit our study. We mentioned a
possible baseline where the robot behaves completely erratically. Such a baseline
would have highlighted that the RF regime is not so bad and permits always solving
the task, and in an efficient way when human preferences are correctly estimated.

6.7 Conclusion
Thanks to this study, we aimed to validate the overall planning approach and the
model of execution Human-First, which is critical to our approach.

After statistically analyzing the execution log data as objective metrics and the
questionnaire answers and participants’ comments as subjective metrics, we can con-
fidently state that this study successfully validates both our planning approach and
our model of execution.

Indeed, we have solid proof that the HF regime gives humans control over the
execution, which was significantly appreciated. The participants perceived the robot
as accommodating, adaptive, and acting appropriately while being predictable. HF
also helps to satisfy better human inner preferences, which makes it more robust to
erroneous estimations and thus more enjoyable. On the other hand, we show how the
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RF regime can be greatly appreciated when estimating human preferences correctly.
However, we demonstrate how erroneous estimations strongly harm collaboration and
interaction using the RF regime. Hence, the Human-First regime is preferred and
allows for achieving smooth, efficient, and positive collaborations. Nevertheless, thanks
to our planning approach, we also show that the RF regime always solves the task with
humans, and thus, it is always helpful. Additionally, it also always adapts to human
action in the next step.
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This chapter describes the InHuS system, endowing a simulated hu-
man agent with decision-making capabilities to challenge robot navigation
schemes. We describe a generic architecture and then applied to the nav-
igation use case. This chapter also compares two robot navigation sys-
tems using InHuS, proving that our approach effectively challenges robot
schemes and allows measuring and comparing human-aware navigation
properties.
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7.1 Introduction

Significant efforts are being dedicated today toward the development of robots that
interact, assist, or work side-by-side with humans. However, people working in the
field of Human-Robot Interaction (HRI) face constraining issues while testing and
evaluating their systems. Apart from being mandatory to validate mature systems,
experimenting using real humans and robots is burdensome: they are slow, hardly
repeatable, expensive, etc. Moreover, the system needs to be run extensively for
debugging and tuning before it reaches maturity. Doing so with real-life experiments
is generally a long and tiresome process where colleagues in the lab and volunteers
spend unproductive hours, if not days, interacting with a robot running a system
under debugging. Moreover, such methods require exclusive physical access to the
robot and a place to run the tests.

Simulations are well suited for such tasks as they allow working without a real
robot or a physical space. Further, they allow multiple tests to run simultaneously
and with a time factor greater than in real life. The simulated test environment can be
changed very quickly compared to real-life tests. However, simulating realistic human
behaviors and interactions is challenging, which could make simulations unreliable.
Consequently, HRI researchers face some difficulties such as: “How to test repeatedly
and intensively their systems even when they are not sufficiently robust?” and “How to
challenge their systems in a large variety of environments and situations?”. Therefore,
there is a need for an “intelligent artificial human” that would help challenge the
robot’s interactive and decision-making abilities.

7.1.1 Human Simulations in Human-Aware Robot Navigation

Being a part of HRI, the field of human-aware social robot navigation inherits all these
limitations. One way to simulate an intelligent avatar in this field is to manually con-
trol the human avatar in real-time [Echeverria 2012]. This can be done using a variety
of devices like a gaming controller, keyboard, or motion capture. Such approaches re-
quire a real human operator only focused on controlling the avatar, bringing back some
already-mentioned limitations like human fatigue. On the other hand, autonomous hu-
man avatars seem to offer an adequate solution to this, but they often lack intelligence
and rationality.

Most of the current autonomous avatars available are either scripted or reac-
tive. A scripted avatar executes a series of predefined actions, like following a fixed
path, without being reactive to its environment, which limits interactions. Reac-
tive agents use models like social force [Helbing 1995] or optimal reciprocal collision
avoidance (ORCA) [Van Den Berg 2011]. These highly scalable systems can simu-
late groups or even crowds of numerous agents. MengeROS [Aroor 2018] and Ped-
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Sim_ROS1 are some examples. Despite their number, the generated agents usually
fail in intricate social scenarios. Some recent works like VirtualHome [Puig 2018] and
SEAN [Tsoi 2020, Tsoi 2022] discuss simulating human agents to challenge robot sys-
tems, but the navigation of the agents in these systems is still based on reactive-only
models. The work presented in [Yige 2021] proposes a learning-based method to gen-
erate more realistic pedestrian navigation. This ongoing work shows an interesting
navigation behavior like waiting and letting the other agent pass embedded in iGib-
son [Shen 2020] simulator. However, this work is more focused on motion generation
than decision-making to solve conflicts.

We propose the Intelligent Human Simuator (InHuS) System to contribute to the
lack of intelligent and rational human agents with conflict-resolution skills to challenge
the human-aware robot navigation systems. Our contribution includes 1) an intelligent
human agent controller, 2) a high-level interface to control the simulated agents, and
3) a Graphical User Interface (GUI) to plot execution data and metrics for evaluating
the interaction. Such a system could help people working in the field of human-
aware robot navigation to test and debug their schemes. Our system is designed to
run, analyze, and evaluate repeatable and long navigation scenarios involving a robot
and an autonomous reactive and rational avatar. This work focuses on intricate and
narrow scenarios where, in addition to being reactive, rational decisions should be
taken in order to solve the conflicts occurring. Note that our contribution is focused
on navigation decision-making and not the motion generation part. Throughout this
chapter, we use the term ‘rational’ in a meaning close to Goal Reasoning [Vattam 2013,
Johnson 2018], i.e., the ability of autonomous agents that can dynamically reason
about and adjust their goals. It enables the agents to adapt intelligently to changing
conditions and unexpected events, allowing them to address a wide variety of complex
situations.

7.2 Architecture Description
The InHuS System2 works along with a human operator, a chosen simulator, and the
challenged robot controller as depicted in Fig 7.1. The system is mainly implemented
using ROS. The InHuS System is three-sided. First, the system comes with a high-
level interface called Boss that helps to manage the simulated agents. Secondly, the
main part is the intelligent human avatar controller itself, called InHuS. Finally, a
GUI provides an interactive visualization of the data and metrics computed by InHuS
during execution that can help to evaluate interactions. Below, we present some details
for each component.

1https://github.com/srl-freiburg/pedsim_ros
2https://github.com/AnthonyFavier/InHuS_Social_Navigation
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Figure 7.1: The InHuS System interacts with three external systems: the simulator,
the robot controller, and a human operator. Our system is separated into three parts:
the Boss high-level interface gathering inputs from the human operator, InHuS which
is the actual human controller, and a GUI to plot the metrics and other data produced.

7.2.1 Boss

For the human operator to easily control the simulated agents and run repeatable
scenarios, we provide a simple graphical user interface component called Boss. Prede-
fined or manually entered goals can be sent to the human, the robot, or both. Goals
are by default considered as “Pose goals” that only require one navigation action to
be achieved. However, the human agent (only) can handle “Compound goals” that
need a specified sequence of navigation and waiting for actions to be achieved. This
type of compound goal is useful to emulate more complex activities. For example,
“Make coffee” could be described as a sequence of three actions: nav(coffeeMachine),
wait(15s), nav(myOffice).

The Boss allows defining scenarios with start positions and goals for each agent to
repeatedly generate the same situation. Running a scenario consists of first sending
each agent to their respective starting position. Then, the corresponding goals are sent
to the human and the robot. A delay can be specified while starting the scenario to
delay either the robot’s or the human’s goal. This is very useful to adjust the timing
of a specific situation or conflict. The Boss can also put an agent in “endless” mode,
where the agent continuously gets a new goal from a given list after completing one.

Each navigation action can specify a radius for the “Pose goal”, within which a new
“Pose goal” is randomly sampled. This mechanism adds randomness to the execution
and diversifies the situations encountered, especially in the “endless” mode. Setting
the radius to zero disables the randomization and selects the given goal.

All the goals, scenarios, and endless goal sequences are defined using an XML
format. Hence, defining new goals or scenarios is straightforward. There is an XML
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goal file associated with each map/environment. Thus, it is easy to switch between
environments since the corresponding goal file is automatically loaded.

7.2.2 InHuS
The macro component InHuS is mainly in charge of controlling the avatar and gener-
ating rational behaviors. InHuS itself is made of several components, as depicted in
Fig. 7.2. However, three components, namely HumanBehaviorModel, Supervisor, and
GeometricPlanner, constitute the major functional part of InHuS. We discuss each of
these major components in detail.
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Figure 7.2: The human controller InHuS is depicted with its components and subsys-
tems.

7.2.2.1 HumanBehaviorModel

The HumanBehaviorModel is responsible for most of the rational behavior of the agent.
The first role of this component is to manage the goals. Goals can either be received
from the Boss component or generated by the HumanBehaviorModel using the same
XML file as the Boss. When a goal is selected, it is sent to the Supervisor for execution.

This component is also responsible for detecting and handling navigation conflicts.
Currently, the kind of navigation conflict handled by InHuS is path blockage (e.g.
another agent standing in a doorway). While the human agent is navigating, a path
to the goal is calculated at regular intervals using Dijkstra’s algorithm, and its length
is tracked to detect such conflicts. If the tracked path length increases significantly
or the path ceases to exist, it could mean that another agent is blocking either the
only possible way or the shortest way. When such situations are detected, the plan
execution is temporarily suspended, and the agent performs an approach action to get
close to the blocking location. This shows the agent’s intention to move in a specific
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direction and might induce the blocking agent to react and clear the way. Eventually,
once the avatar is at a specified distance from the blocking location, set to 1.5m, the
agent stops its approach and actively waits for the path to be cleared.

To generate a lot of different and specific situations, we created what we call At-
titudes. They are operating modes affecting both goal decisions and reactions toward
the other agents. One can activate them through the Boss to generate diversified
behaviors of the agent. Some of the Attitudes currently implemented in InHuS are
the following: 1) randomly picking a new goal, like someone suddenly changing their
mind; 2) harassing the robot by constantly going in front of it, like a child would do
[Nomura 2016]; 3) stopping close to the robot and looking at it for a few seconds before
resuming its goal which emulates a curious behavior.

The final purpose of this component is to build the perception of the human agent
based on the map and information about the other agents from the simulator. We build
the perception by directly accessing the simulation data rather than adding simulated
sensors to the human avatar. Using this perception, we compute the visibility of the
human agent and then update the human’s knowledge about the robot’s position and
speed.

7.2.2.2 Supervisor

The Supervisor is a central component as it coordinates different components to exe-
cute the plan and achieve the current goal. When the Supervisor receives a goal from
the HumanBehaviorModel, it requests the TaskPlanner component a plan to achieve
the goal. For now, the plan generation is quite simplistic. For a “Pose goal”, a plan
filled with a single navigation action is generated. For a “Compound goal”, the navi-
gation and waiting actions sequence is extracted from the XML goal file, and the plan
is populated. Despite the simplistic plan generation, this architecture handles complex
goals that require several steps to be achieved and emulate human activities.

The Supervisor then supervises the execution of each action of the plan by sending
requests to other components. When a navigation action needs to be performed, the
Supervisor starts by sampling a random position if the given action radius is not
zero. Then, it requests the GeometricPlanner to plan for the target position without
considering other agents initially. This way, the avatar starts following the shortest
path, and we initialize the conflict detection. After this, the system starts to consider
the other agents, and the Supervisor periodically requests the HumanBehaviorModel
component to check for potential navigation conflicts. The Supervisor can suspend
and resume the plan execution at any time, which can be used to resolve the detected
conflicts or to generate specific reactions like the Attitudes.
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7.2.2.3 GeometricPlanner

The last major component is the GeometricPlanner. This motion planner component
receives a target position from the supervisor to reach and generates velocity commands
to make the avatar move. This component defines how the agent moves around and
adapts its velocity to the other agents in the scene. Since the system is implemented
in ROS, we use the standard ROS navigation stack for the GeometricPlanner.

The planner used in InHuS is a publicly available human-aware navigation planner
called CoHAN [Singamaneni 2021]. It is built over the ROS navigation stack and uses
a local planner based on a modified version of the timed elastic band with human-
aware properties. We benefit from the high-level decision-making of InHuS and the
enhanced local navigation of CoHAN with trajectory predictions. Moreover, CoHAN
is highly tunable, which helps generate different agent behaviors.

7.2.3 Logs, Metrics and GUI
The InHuS system logs the execution data, such as the positions and speeds of the
agents, along with some computed metrics. All the logged data is sent to the GUI
component, which generates interactive plots. These plots can help evaluate the in-
teraction and, thus, the performance of the given robot controller. The snapshot of
the GUI shown in Fig. 7.3 shows two kinds of visualizations. On the right side, there
is a colored visualization of the paths taken by each agent. These paths are colored
over time according to a corresponding legend that helps estimate an agent’s position
at a specific moment. The left side comprises several plots showing some computed
metrics over time. The first plot is about conflict detection and solving. It shows the
path length to the goal computed when checking for conflicts. Without any conflict,
the path length should decrease linearly over time. If it’s not the case, the avatar has
been disturbed during the navigation. This plot also shows the state of conflict of
the agent: Nominal (no conflict), approach (conflict detected), blocked (stopped and
waiting). The subsequent plots show the speeds of each agent over time, their rela-
tive speed, the distance separating them, and a metric called time to collision (TTC).
This metric estimates the time remaining before the agents collide with their current
velocities. We can argue that TTC corresponds to a “threat feeling” since a low TTC
value corresponds to a high collision threat. Hence, social robots should be tuned not
to exceed a minimum TTC value to make humans more comfortable.
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7.3 Main Results
In this section, we show some results through a set of experiments to highlight how our
system can help challenge human-aware robot navigation systems. First, we discuss
the limits of reactive-only systems to strengthen the need for rational avatars. Then,
we present how our system effectively challenges robot navigation systems, and we
interpret the corresponding plots. Next, we show how the InHuS System can compare
the human-aware performances of two different robot controllers. Finally, we present
additional experiments showing the diverse behaviors that can be produced using the
Attitudes and how “long runs” can benefit the development of a robot controller.

7.3.1 Limits of Reactive-only Agents
Most of the current human agent simulations used by the social navigation community
rely either on the social force model or ORCA. In order to highlight the limitations of
such approaches, we present results obtained with a PedSim_ROS (or simply PedSim)
agent. PedSim is a pedestrian simulator that uses the social force model. It is very
efficient for generating crowds to test robot navigation. However, at the individual
level, the simulated agents are purely reactive and have no decisional abilities like
most pedestrian simulators.

Figure 7.4: In the doorway scenario (left), the reactive-only (Pedsim) agent never stops
moving while trying to go through the robot, even though its path is blocked. In the
narrow corridor scenario (right), the agent squeezes itself between the wall and the
robot, colliding with both.

Consider the doorway scene shown in the left part of Fig. 7.4. Both agents have
to cross a narrow opening. Here, the robot is blocking the way that the human agent
intends to cross. The PedSim agent approaches the robot and tries to push itself
through, but it fails due to a very high value of social force. The agent never stops
moving and tends to go right or left along the wall before wiggling again just in front
of the robot. This confusing behavior can make the agent’s intentions unclear to the
robot planner. The narrow corridor scenario, shown in the right part of Fig. 7.4, also
exposes some limits. In this scene, there is not enough space for the agents to cross
each other. The only solution is for one of them to back off. Here, the path is blocked
by the static robot. The PedSim agent slowly gets closer and closer to the robot
before squeezing itself between the wall and the robot. For some reason, the social
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forces allowed the agent to pass, unlike the previous example. It highlights that the
PedSim agent does not use a defined hitbox or footprint for the agent and relies only
on repulsive social forces to prevent collisions. This lack of defined collision shapes
makes the agent temporarily pass through the walls and other agents. Consequently,
it breaks many intricate scenarios where a rational decision should be taken, resulting
in unrealistic situations. Despite being efficient for large spaces or crowds, based on
the above observation, we can state that such approaches can lead to confusing and
even unrealistic behaviors in intricate scenarios.

7.3.2 Interpretation of Plots with Human-Aware Planner
The InHuS System is able to generate challenging situations and associated logs to al-
low further evaluation. Here, we present one such conflict and a detailed interpretation
of the corresponding plots. The plots were produced while challenging the CoHAN
system in the doorway scenario.
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Figure 7.5: A condensed view of the InHuS GUI and MORSE simulator for the doorway
scenario with a robot running the CoHAN planner. Several plots depict the detection
and resolution of the conflict created.

The robot starts closer to the opening and enters the doorway first. The execution
can be analyzed with the metric plots and the time-colored paths of the agents in
Fig. 7.5. We notice that the robot’s speed (red line on the second graph) goes down
around 50 s as it enters the doorway and creates a conflict. The conflict is detected
by InHuS (zero path length = no path), and the agent switches to the approach state
(green to the yellow line on the first graph). The non-zero path length in the approach
state corresponds to how the approach is performed. In order to keep moving despite
the blocked path, the GeometricPlanner is requested at a defined frequency to plan
without considering the robot (all non-zero path length). In between these requests,
to check if the path is still blocked, the conflict detection plans while considering the
robot (zero path length). When the avatar is at a predefined distance from the blocking
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robot around 53 s, it switches to the blocked state (red line) to stop and wait for the
path to be cleared. Further, the time-colored paths show that the GeometricPlanner
made the avatar move aside while approaching to avoid blocking the robot. As a
result, the agents were no longer moving toward each other, and thus, there was no
longer any collision threat (no TTC values). When there is no more collision threat,
around 51 s, the robot’s speed starts to increase again. Such behavior is a good sign
of human-aware properties and might increase human comfort.

From the plots produced by our system, a lot of useful information can be extracted
for improving or evaluating the social robot planner’s performance like a) finding ways
to decrease the blocked state time for the human, b) maintaining a particular threshold
for TTC, c) slowing down near the human, or waiting for the human to cross the door
without blocking.

7.3.3 Quantitative Comparison between Two Robot Con-
trollers

Our system can be used to run similar scenarios repetitively to produce robust metric
values. These values can help to evaluate the human-aware performances of a given
robot controller. To show this, we present a comparison between two different robot
controllers. The first one is again the CoHAN system, and the second one is the Simple
Move Base (SMB). It uses the teb_local_planner and the ROS navigation stack with
default parameters. We just add an additional process to consider the human agent
as a static obstacle to avoid it, so it is not human-aware. Therefore, we should be
able to notice a clear difference through the metrics computed by our system. For
this comparison, we used three different scenarios: 1) The doorway scenario, where
the agents have to cross a narrow opening; 2) the corridor scenario, where the agents
cross each other with just enough space; 3) the open space where they cross each
other without any environmental constraints. We performed ten repetitions of each
scenario for each robot controller. For each set of 10 repetitions, we extracted the
mean values of three different metrics and presented them in Table 7.1. The metrics
are the following. First, the time to goal (TTG) is the time taken by the avatar to
reach its goal. Second, the minimum distance between the robot and the human (Min
HRDist). And the minimum time to collision (TTC). Intuitively, we want the TTG
to be as small as possible, the minimum HRDist to be as high as possible, and since a
low TTC value represents a collision threat, we want the minimum TTC to be as high
as possible.

At first glance, Table 7.1 shows that almost all CoHAN values are better than SMB
values. Due to the nature of the doorway environment, the execution of the scenario is
quite constrained, which explains why the values are not too different between the two
controllers. However, we notice anyway that, compared to SMB, the CoHAN planner
tends to keep a greater distance between the agents and a greater TTC (lower collision
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CoHAN SMB

Scenario TTG
(s)

min Dist
(m)

min TTC
(s)

TTG
(s)

min Dist
(m)

min TTC
(s)

Doorway 18.38 2.32 1.33 18.26 2.23 1.16
Corridor 16.34 2.06 1.03 17.05 1.59 0.81

Open Space 9.55 2.52 1.61 11.01 2.34 1.18

Table 7.1: Mean values of three InHuS metrics over ten repetitions in three different
scenarios and with two different robot controllers. Bold values indicate when the
corresponding robot controller performs better than the other.

threat). The time to goal of CoHAN is slightly higher because the robot slows down
when crossing and moving in the direction of the human. Thus, in this scenario, it is
the price to maintain adequate TTC values.

In the corridor scenario, The SMB robot tends to wait until the last moment to
move aside, which is threatening. On the other hand, the CoHAN robot proactively
moves to one side of the corridor. As a consequence, it leaves more space for humans
and reduces the threat of collision, which is visible in the obtained values. Also, this
pro-activity has the effect of smoothing the trajectory of the avatar, which makes this
last one reach its goal faster.

Finally, the open space scenario is a bit similar to the previous one. The SMB robot
waits until the last moment to avoid the human, which puts the load of the avoidance
maneuver on the human. As a result, humans have to move aside, extending the
duration of their efforts to reach the goal. Also, the SMB robot is closer to the avatar
and more threatening on average due to the same behavior. Since the CoHAN robot
moved again aside early, its metric values are noticeably better than SMB.

In summary, the human-aware behavior of the CoHAN controller was captured
through significant value differences in the computed metrics compared to a non-
human-aware robot controller. This implies that our system can help evaluate and
compare human-aware robot controllers.

7.3.4 Generating Different Behaviors with Attitudes
By activating Attitudes, InHuS is capable of producing more complex behaviors to
diversify the conflicts and challenges imposed on the robot. We present the time-
colored paths for the execution of two Attitudes: Harass and StopAndLook in Fig. 7.6.
Concerning the Harass Attitude, by paying attention to the colors, we see that the
human is always in front of the robot that continuously tries to avoid the harassing
agent, causing erratic movements. The robot should be able to detect such non-
cooperative behavior from humans and act accordingly. On the same figure, we see
the execution of the StopAndLook Attitude. The color discontinuity behind the human
marker shows how the human suspended its goal to stop and briefly stare at the robot
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Figure 7.6: Behaviors obtained by activating the Harass and StopAndLook Attitudes.
With Harass, the human is always in front of the robot. With StopAndLook, when
close to the robot, the human stops to look at it for a few seconds.

before moving again. A robot that is not proactive enough could be disturbed by the
sudden stop of the human, which could be a situation of interest to handle.

7.3.5 Long Run Scenarios

Figure 7.7: Execution of the long run scenario using the TDP robot planner and
InHuS. We see the complete set of time-colored paths on the left. On the right, the
same path is cut around when the robot gets stuck in the wall.

The proposed system can help test the stability and robustness of the robot plan-
ner by conducting long randomized runs. Indeed, thanks to the Boss component,
possibly randomized goals can be sent autonomously to the agents. This can generate
unexpected situations and conflicts that can be of interest. Fig. 7.7 depicts such a
test conducted with InHuS and a human-aware robot planner from Kollmitz et al.
[Kollmitz 2015] here referred to as TDP. The agents were made to endlessly loop over
four goal positions (each with a 1m radius) in reverse order to create as many con-
flicts as possible. After 3 minutes, the robot got stuck in the wall of the doorway,
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indefinitely blocking the path of the human. In addition to highlighting problematic
situations where the robot does not act as expected, long runs can expose low-level
issues like unexpected crashes or memory leaks.

7.4 Discussion and Limitations
Although InHuS provides an autonomous human agent, the agent can be controlled
manually if needed. We do not yet provide a handy controller, but velocity commands
generated by any means can be sent to the Boss component to control the human.
This extends the usability of InHuS as one can use scripted trajectories or motion
capture to control the human agent in the simulator.

The proposed system interacts with an external simulator and robot controller.
Since the system is mainly implemented using ROS, switching from one simula-
tor to another is straightforward if it has a ROS interface. InHuS has specific
components to abstract the simulation data format. Thus, just by slightly editing
these components, we were already able to run InHuS on three different simulators:
MORSE [Echeverria 2011], Stage3 and Gazebo [Koenig 2004]. Furthermore, any robot
controller using the ROS Navigation Stack can be directly used with InHuS.

Simulating intelligent human avatars is a novel field, and only a few works apart
from ours have tried to address this limitation. A similar work in ROS2 was recently
presented in [Pérez-Higueras 2023]. Clearly, the idea of intelligent human agents is of
interest to the community, and it is necessary to test social navigation effectively. Like
any other system, InHuS has limitations, too. We claim to generate only reactive and
somewhat rational behavior, which is still far from natural or realistic human behavior.
We currently handle scenarios with two agents only: the human and the robot. We
can run scenarios with other human agents, but they will be treated like robots.

7.5 Conclusion
Human-aware social robot navigation is rapidly growing, but the community lacks
good human agent simulations to test and debug their systems. The existing reactive
approaches offer only limited testing. Through the InHuS system, we proposed a
pertinent approach to address this issue. We showed that our system could generate
conflicting situations that need resolution by making rational choices. Moreover, all the
metrics and data recorded during execution and their visual plots allow us to evaluate
the interaction and behavior of the robot. With such evaluation, we showed that we
could compare different robot controllers. InHuS can also generate various tunable
behaviors that can diversify the situations and conflicts imposed on the robot, and

3https://github.com/ros-simulation/stage_ros
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thus, it helps to debug and tune the system. Long runs provide additional potential
ways to improve the system.
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This chapter presents the IMHuS system designed to choreograph sev-
eral agents with group movements and social behaviors. This system com-
plements the InHuS system presented in the previous chapter by generat-
ing multi-human scenarios. This system has been qualitatively evaluated
in an elevator scenario.
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8.1 Introduction

In chapter 7, we showed that the InHuS system effectively challenges robot navigation
systems in intricate and human-populated environments. However, simulating the
interactive agent is computationally demanding. This is why we limited the simulation
to only a single intelligent agent. Nevertheless, it is also relevant to general intricate
scenarios with several agents. Existing works simulating crowds are only based on a
reactive approach and are not necessarily designed to be used to benchmark robot
systems.

This is why we propose the Intelligent Multi-Human Simulator (IMHuS). This
work is strongly inspired by and complementary to the InHuS framework presented
in chapter 7. Together with two researchers from the University of Leon in Spain and
an intern, we designed this framework based on InHuS. The implementation of this
system has been majorly done by the intern. This system allows choreographing several
interactive agents with group or individual movements and social behaviors. The
individual agents are less complex and demanding than the InHuS one, allowing the
simulation to run smoothly. This system has been evaluated in the elevator scenario,
as defined for the SciRoc competition 2019.

We begin with a comparison between InHuS and this additional work while briefly
describing it. After, a more formalized presentation of IMHuS is provided, detailing the
information given in the prior comparison. Eventually, the elevator use case evaluation
is presented.

8.2 Comparison InHuS vs. IMHuS

8.2.1 Similarities

Let’s first mention the similarities between InHuS and IMHuS work. Like InHuS, this
work aims to replicate scenarios involving humans to help social robotics research.
Similarly, the simulated interactive agents can be choreographed in a step-based man-
ner to create high-level social behaviors such as waiting for an elevator, getting in and
out of it, or standing in front of a store window and moving to the next one. The
agents navigate in the environment while avoiding static obstacles and being reactive to
moving obstacles to prevent collisions. The agents can also wait for a defined amount
of time or turn to look in a direction. Like in InHuS, Attitudes can be activated to
generate specific behavior, such as harassing the robot. This work also analyzes the
execution to compute metrics evaluating the robot’s performance in defined social sit-
uations. The framework architecture is close to the InHuS one and can also be used
with different robotic simulators. Here, it has been implemented with Gazebo.



8.2. Comparison InHuS vs. IMHuS 171

8.2.2 Differences

However, IMHuS differs from InHuS in several ways. The primary reason is that it
manages several interactive agents instead of a unique one in InHuS. Moreover, the
agents can exhibit social behavior using explicit social groups. For instance, they can
move together to another location or talk in pairs. This requires the new grouping
actions which create or dismantle groups of humans. An interesting addition is the
implementation of asynchronous actions. They differ from synchronous actions, such as
navigation/turning/grouping actions, which the agents accomplish during one specific
step. Asynchronous actions are not associated with a specific step and correspond to
a system of request and response. Thanks to them, one agent can request another to
perform a specific task. For instance, the robot can request a human agent to call
the elevator, or if supported, a human agent can request the robot to go somewhere.
Not every agent can respond to the robot’s requests. For instance, if the robot asks
for someone to press the button and no one is around, the request will be dropped,
counting as a failure.

In order to handle several human agents, some simplifications were made compared
to the InHuS framework. First, when navigating, IMHuS agents are reactive to other
agents. However, their movements are less smooth than the InHuS agent. This is
because InHuS couples a frequent global path replanning, taking into account static
and moving obstacles and an elaborated local planner to follow the planned path. The
local planner used is the Human-Aware robot navigation planner CoHAN, which was
presented in the previous chapter. It also allows the agent to have proactive avoidance
movements. Also, InHuS uses frequent global path replanning to be even more reactive
and to identify sudden path blockage due to other agents. Hence, instead of blindly
following the global path it can identify when its optimal path is blocked and switch
into a conflicted mode where it reasons on its goal to adapt it potentially. Currently,
the agent approaches the blocked spot before stopping to wait for the path to be
cleared. On the other hand, IMHuS agents do not use any local planner and simply
move at a defined speed along the updated global path. This induces human agents to
sometimes move abruptly and avoid obstacles at the last moment. In addition, IMHuS
agents’ actions are dictated by the given choreography and do not have individual goal
reasoning processes like in InHuS. Hence, IMHuS agents are currently incapable of
identifying path blockage situations and may behave erratically in such cases.

However, this new scheme is still very interesting because of the multitude of human
agents generated and the social behaviors that can be choreographed. It can generate
relevant and challenging situations for social robotics to handle.
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8.3 Rational
The goal of IMHuS, the tool described in this chapter, is to provide a means to generate
scenarios in which predefined social interactions of groups of reactive humans can be
used to test the social performance of a robot behavior under evaluation. In the rest
of the chapter, we will refer to it as tested robot. The aim is to use the system to
benchmark human-robot interaction behaviors.

Just like InHuS, the proposed IMHuS framework aims to provide an open-source
toolkit for defining high-level reactive simulated humans with the ability to show the
behavior of social groups but using realistic standard robotics simulators that allow
researchers to use models of their real robots, both for debugging their algorithms and
for benchmarking and repeatability.

8.4 Design of a Step-based Social Simulation
The goal of IMHuS is to standardize the validation of autonomous robot behavior in the
presence of people, allowing researchers to design repeatable human social situations.
For example, we can define a set of waypoints where different simulated people arrive,
meet, and move as a group to a different position, or two people facing each other and
then moving together to a different location.

Our proposal considers that both individuals and groups must be included in the
simulated environment and that each simulated person should exhibit adaptive behav-
ior in both cases. To achieve this goal, we assume that global path planning for the
whole set of agents is more suitable for defining fixed social behaviors than the indi-
vidual path planning approach. This assumption also serves the purpose of humans
exhibiting a typical social behavior that the robot must be able to detect in order not
to cross, for example, through the middle of a social group.

A central process can have perfect knowledge of the simulated environment, access-
ing the real and accurate positions of all the elements of the simulations (obstacles,
robots, etc.). It is not designed to emulate an embedded agent since the robot simula-
tion process has to obtain the information through the noise-simulated sensor readings
provided by the simulator. This process can use the API of the simulator to get all
the information directly, without noise and identification problems (it will know which
types of elements are in the simulation and their state). For instance, it does not
need to identify if something is “a door" or if it is opened. The door state is obtained
directly from the simulator.

8.4.1 Choreography Oriented Simulation
The constraints and assumptions made for IMHuS are:
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1. The set of persons P = {p1, p2, ...pn} in the environment is defined a priori, and
each person will be unequivocally identified by its ID (pi) during each execution.

2. The number of locations L = {l1, l2..., lm} for these people is also known a priori.

3. The number of locations will be greater than the number of people |L| ≥ |P |.

4. In a given time-step, only one person can stay at an individual location li.

5. Group locations Ln
i will have a maximum number n of individual positions

l1, l2, ..., ln. For instance, an elevator with four positions will be named L4.

6. The number of actions is also finite and known.

The tool aims to give researchers a high-level definition of a “choreography” of
people moving in a social way. For instance, let’s consider an example: first, a set of
people (p1 to p4) is defined. In the first step, p1, p2 and p3 must move from their initial
positions to a “group location” (L3). This joint navigation is represented in figure
8.1 as a continuous top-opening box grouping the three people at time-step t0 and a
double arrow labeled with the goal destination. In the same way, p4 will remain in its
position but will face a particular direction (30 degrees), indicated by the circle with
an arrow.

At t1, p1 and p2 engage in a pair-move to L4, while p3 and p4 initiate individual
moves, indicated by a single arrow. A pair-move is a specific type of group move
included in the design because it is usually the most common and can be considered
the smallest group unit. At t2, the two persons moving as a pair would have reached
their destination, and p1 will initiate its movement towards l10, while p2 remains in its
current position with no particular orientation (indicated by a circle with no arrow),
and p3 and p4 continue to navigate to their targets.

p1 at t2 begins to move individually towards l10, which reaches at t3 while p3 and
p4 continue to execute their solo movement. p3 reaches l11 at t4, when p1 and p2 begin
to face in the same direction. Finally, at t5, p4 reaches its destination (l12) and the
choreography ends.

Time-step (ti) in figure 8.1 means “choreography steps”, that is, significant moments
for the definition of the simulation. It does not refer to a magnitude measured by a
clock. We will refer to them as steps, which is an increased ordered sequence of discrete
points in time at which a given set of events has to occur. For example, step0 usually
specifies the initial state of all the elements of the simulation, i.e., the position of the
robot, human’, and the other elements. A typical step specifies a set of actions that
are initiated at that instant, a navigation task for one of the humans, for instance, at
step1 (t1 in figure 8.1).

This is the type of simulation that the tool should be able to generate. Figure 8.2
shows the general architectural framework. This tool receives the definitions of the
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Figure 8.1: Schematic representation of the definition of a social navigation choreog-
raphy

social scenarios in a definition file (an XML in its current version). It then manages the
simulation, obtains the simulation data, uses existing libraries and other tools (such
as move_base to calculate trajectories in ROS), and finally generates the log data for
evaluation.

The definition of the choreography shown in the upper left of the figure 8.2 is defined
in XML. The design allows five types of basic actions that the agents (simulated robots
or simulated people) can perform:

Navigation actions : Those actions modify the global pose of the agents in the
environment. Typical actions in this group are GoToPose and Wait.

Turning actions : Actions related to the facing of the agents, such as LookAt and
Turn, depending on the way the action is specified.

Grouping actions : These actions manage the creation and dismantling of groups.

Attitude actions : Actions modeling the high-level behavior of the agent. For in-
stance, a simulated human can be ordered to harass the robot.

Synchronous actions : Actions related to the environment to be accomplished by
an agent during one specific step of the simulation. They have been standardized
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Figure 8.2: Global simulation architecture. Red signifies existing tools. Blue com-
ponents are those described in this chapter. Green signifies ongoing development.
Uncolored boxes are alternative simulators under consideration.

as publish and subscribe.

Asynchronous actions : Actions related to the environment and not associated with
a specific step in the timeline of the simulation. They have been standardized
as request and respond.

These actions can be applied to a single agent or a group. Basic actions can be in-
tegrated into a compound_task. For defining these actions, the following components
are used:

• map: corresponds to the “world" where the simulation will happen. Inside the
map, a set of objects can be defined, specifying their individual ID.

• poses: correspond to the “location" used in figure 8.1. They comprise the x, y
position and orientation θ and a radius of tolerance for the motion planner to
consider that the goal has been reached.

• agents: that can be either robots or humans, each of them identified by an
unique ID. They are given an initial pose where they appear in the world.

• groups: they can be created and dismantled during the simulation
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The evolution of the simulation is based on steps, as described in the previous
section. The regular steps are synchronous, but there is an asynchronous step for
interacting with the tested robot:

• A scenario is composed of a set of regular steps and a singular asynchronous
step.

• Steps are made up of different actions like navigation, grouping, etc.

• Every action of a step is executed at the same time, meaning that the actions
are executed in simulated parallelism.

• One step ends when all its actions have finished.

• The asynchronous step runs in parallel to the execution of the synchronous steps.

• The scenario ends when the last regular step ends.

8.5 Implementation
In the current version, choreographies are defined in an XML file that includes four
main sections:

• Map = poses and objects. Example: poses definition.

<poses> ::= <pose> (<pose>)* ;
<pose> ::= <poseID> <x> <y> <theta> <radius> ;

• Agents = humans/choreographed robots with their initial poses and groups with
their composition. Example: group definition.

<groups> ::= (<group>)* ;
<group> ::= <groupID> <pair> (<human> (<human>)*) ;

<pair> ::= <pairID> <human> <human> ;

• Tasks = generic actions. Example: compound tasks and look-at action definition.

<compound_tasks> ::= <compound_task>* ;
<compound_task> ::= <compound_taskID> <action> (<action>)*;

<lookAt_action> ::= <actionID> (<humanID>|<robotID>|<objectID>);

• Scenarios = step elements of synchronous steps and asynchronous steps. Exam-
ple: scenario definition.
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<scenario> ::= <name> <step> (<step>)* (async_step);
<step> ::= <stepID> <stepElement>;

<stepElement> ::= <agentsID> <pose>|<compound_task>;
<agentsID> ::= <humanID>|<robotID>|<pairID>|<groupID>;

<async_step> ::= <respond_event_action>;

The prototype has been implemented as a new version of the InHuS tool
([Favier 2023]), which connects to the Gazebo simulator to obtain information about
the world. It uses the move_base ROS to generate the global plan for each agent and
updates the positions of each agent in the next step of the simulation accordingly.
The new version is capable of handling the navigation of multiple agents (humans) in
parallel while managing conflicts and completing individual tasks as in the previous
version. It also provides an updated graphical user interface for repeatedly selecting
and executing scenarios defined in the XML file.

The IMHuS tool shown in Figure 8.3 has been structured in three layers: the IMHuS
layer (in blue), its configuration in the application layer (in yellow), its communication
with the simulator and ROS (in red). The robot whose behavior would be tested in
the tool has also been included (in violet).

Application layer This layer includes the XML configuration file needed to use
IMHuS by defining its main components: map, agents, tasks, and scenarios.
The map includes all the locations of the agents to be used during the choreog-
raphy and those of static objects. These locations are represented as poses, and
a name is assigned to each. The description of the agents includes the name,
and initial position of all humans and robots choreographed, as well as the name
and composition of the groups that will appear at any step. Generic tasks are
described with no specific subject to perform them so that several agents can
reuse them. Lastly, the scenarios describe the choreography steps. Each step
includes a set of tasks assigned to a particular agent or a group. They are the
step elements.

IMHuS layer The tool interprets the information contained in the XML configu-
ration file to represent the tasks as actions and the humans/robots as agents.
When the scenarios are run, a command combines actions with agents for every
step element. The commands concerning each agent are executed in a separate
thread inside a step. The step finishes when all the threads are done. This is
the way simultaneous movements of agents are achieved. This is the behavior
of the tool for the choreography, but considering that the tested robot will be
present, there must be a way for it to communicate with the simulation agents,
just as it would happen in the real world. The asynchronous step is responsible
for this task. At any point, the tested robot can ask something, for example, to
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Figure 8.3: Structure of the new IMHuS tool.

press the elevator button. This action would be done through the communica-
tion module and answered by the agents in the simulation in this asynchronous
step by a response action. Not every agent can respond to a request from the
tested robot. For instance, if the robot asks for someone to press the button and
no one is around, the request will be dropped, counting as a failure.

ROS/Simulator layer IMHuS uses this layer to place the agents in the simulation,
ask for the trajectories to move them around, and communicate with the tested
robot. The agents are placed in the world as obstacles so that they are avoided
when move_base is asked for a new path. The costmap obstacle layer has
been modified to obtain what we call the agents-observable costmap that IMHuS
needs.

Interface of the tested robot The way to include the software of a robot in the



8.6. Use Cases 179

simulator for its social behavior to be tested would be through the simulator,
here Gazebo. Outside the simulator, the only communication would be through
asynchronous actions. They allow the robot to send a request action to be
answered by a response action from one agent of the simulation.

8.6 Use Cases
This module is available as Open Source, and it has been evaluated in the elevator
scenario, as defined for SciRoc competition (IMHuS repository link).

An elevator scenario will be used to show a running example of the behavior of the
IMHuS system with a tested robot and also to explain the communication between
the tested robot and the agents of IMHuS (video available at this link). The proposed
scenario includes five human agents and the tested robot, whose goal is to go to the
second floor. In order to do that, it has to ask a human agent to push the elevator
button. Figure 8.4 shows the initial situation where the tested robot is approaching
the elevator, human_2 is walking, and the rest of the humans are idle.

Figure 8.4: Initial situation.

Once the tested robot gets to the elevator door, it requests that one of the humans
perform an action. In order for a tested robot to trigger an action in IMHuS, it has to
publish a specific message type on the async_action topic (see Figure 8.3). Doing
so triggers an asynchronous action response from IMHuS. This message should contain
the time of emission, the name of the agent requesting it, the pose of this agent, and
the name of the task it is requesting. If the scenario includes in its configuration an

https://github.com/LAAS-HRI/IMHuS
https://github.com/LAAS-HRI/IMHuS/videos
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asynchronous action response corresponding to the requested action, that action is
triggered on the human’s side.

At this point, two different things can happen. If there is no human close enough
to the tested robot, or there is a human but it is not in an idle state, no one will respond
to the request, and it will be dropped, as Figure 8.5 shows.

Figure 8.5: Request dropped.

The tested robot repeats the request every five seconds until human_2 enters an
idle state and responds to the request. Figure 8.6 shows this moment of the simulation.
When an asynchronous action request is triggered, IMHuS periodically checks if one
human is able to respond. The requirements for a human agent to respond are to be in
the idle state and within a 3m radius from the tested robot position when it requested
the action. If several human agents can accept the task, the task will be assigned to
the closest human.

Figure 8.7 shows the final situation where the tested robot has reached the second
floor, simulated in the scenario as the room on the other side of the elevator.
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Figure 8.6: Request accepted by human2.

Figure 8.7: Final situation. Tested robot in second floor.
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8.7 Conclusions and Future Work
The proposed tool, IMHuS, offers the possibility to create a realistic and challenging
simulated environment in which groups of humans can be choreographed to evaluate
the behavior of a tested robot. Different scenarios can be easily created using an XML
configuration file in which social situations can be defined to measure the behavior of
tested robots in a replicable environment. Furthermore, human agents are programmed
to respond to interactions related to the particular situation of each scenario and their
communication with the tested robot.

IMHuS’s code is available as Open Source in the IMHuS repository. The current
version has been implemented for the Gazebo simulator, but the design presented
in section 8.4 can be easily migrated to other simulators, such as MORSE or Unity.
The tool could be used to benchmark competitions such as SciRock or RoboCup as a
previous step for the teams before getting to the physical robot challenges. To create
a new scenario with IMHuS, all that is needed is a map and the configuration file
to choreograph the human agents. The software has been designed to easily support
the addition of both new tasks to be performed by the humans and new interactions
between them and the tested robot.

One of the ongoing developments is the automatic generation of simulation metrics
such as the distance between the robot and the agents, time-to-collision, etc. Another
line of work is the extension of basic actions, especially towards the social behavior
of groups of agents. Last, IMHuS is being tested with CoHAN [Singamaneni 2021],
a human-aware robot navigation planner, to challenge CoHAN under several human-
robot interaction settings. From this, we plan to identify the areas of improvement for
human-aware navigation planners and provide a benchmark for testing these planners.

https://github.com/LAAS-HRI/IMHuS






Conclusion

Contributions
In this thesis, we addressed the challenge of enhancing the decision-making of robots
to ensure seamless collaboration with a human partner. Several contributions have
been proposed, contributing to robotic human-aware task planning on the one hand
and to robot navigation by simulating intelligent social agents on the other.

To better capture my contributions, we presented in Chapter 1 the specificities and
the multidisciplinarity of the Human-Robot Interaction field and the Human-Robot
Collaboration subfield. Eventually, we presented state-of-the-art approaches in task
planning and simulation for HRC.

Task Planning Conclusions
Task planning for human-robot collaboration is a research topic of high interest to
which numerous works have contributed. However, most of these works do not consider
distinct agent models and, thus, do not consider different beliefs, action models, or
goals. Moreover, works from the literature tend to produce a joint plan that must
be shared and accepted by humans, assuming that humans are controllable and must
follow the produced plan, which is an approach close to multi-robot planning. Finally,
existing approaches usually assume the agents have already established a shared goal.
However, exploring scenarios where the robot should decide ‘when’ and ‘how’ to start
the collaboration is also relevant. Hence, there is a lack of task planning approaches
that preserve the human latitude of online decisions while collaborating efficiently to
solve both shared and individual tasks.

In Chapter 2, we presented the HATP/EHDA human-aware task planner designed
to address the highlighted gap in the literature. After participating in its develop-
ment, this planning scheme became a laboratory to explore relevant human-aware
task planning challenges, leading to two main contributions.

In Chapter 3, we proposed models and algorithms to integrate concepts of Theory
of Mind in the planning process of HATP/EHDA and plan the robot’s actions appro-
priately. The main idea is that agents only update their beliefs from observable facts
in their surroundings or by observing a co-present agent acting. More precisely, we
modeled observability as follows. First, each fact describing the state of the world is
associated with a place, which can be symbolic. The agents are situated and can move
from one place to another. When situated in the same place, two agents are said to
be co-present, and an agent and a fact are said to be co-located. Second, each fact is
associated with an observability type, stating whether the fact is observable or not.
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For instance, the color of an object is observable and can be acquired if situated near
the object. However, the presence of salt in water or the temperature of an object is
not observable, but it can be inferred in certain situations. Based on these models, we
propose two rules to update agent beliefs. First, an agent acquires information from
observing a co-located observable fact. These updates are done through a systematic
Situation Assessment process inserted in the planning process of HATP/EHDA and
executed after each planned action. Hence, the agent will automatically acquire in-
formation from its observable surroundings. For instance, when moving to another
room, the agent’s beliefs will be updated with (only) observable facts located in the
other room. There is no need to script this assessment in the ‘move’ action’s effects.
On the other hand, an agent acquires information from observing a co-present agent
performing an action (including the agent itself). In this case, the agent’s beliefs are
directly updated with all action effects, including effects affecting non-observable facts.
This rule models the inference that humans internally perform when observing their
surroundings. For instance, if a human observes the robot adding some salt to the
water, they can naturally infer that some salt is now in the water, although it is not
observable. Using those two rules, we can maintain human beliefs more precisely to
predict their behavior better and detect false beliefs that may be detrimental to col-
laboration. Finally, we solve relevant false human beliefs as follows. First, from the
erroneous facts in human beliefs, we identify which ones must be corrected to solve
the task. Then, a communication action correcting the minimal number of false beliefs
is inserted into the robot’s plan, potentially leaving some non-detrimental erroneous
facts in the human beliefs. As a second possible solution, we check whether the false
beliefs are due to a non-observed robot action. If so, we create another possible plan
where the robot delays the relevant action until the human can observe its execution,
avoiding the creation of a false belief. We evaluated this approach empirically using
three domains, including shared tasks, several places, and non-observable facts. We
showed that the proposed models and algorithms allow us to solve a broader class of
problems than the original HATP/EHDA planner. Moreover, our relevant false beliefs
detection and minimal communication already avoid systematic communication, and
considering delaying robot actions reduces the communication rate of the solution plan
produced even more.

In Chapter 4, we proposed another contribution to bringing planning and execution
closer. We proposed a step-based model of concurrent and compliant joint action exe-
cution. This model describes several possible coordination of the agents, including the
four following cases: 1) the human decides to perform any desired action and the robot
complies by executing its best non-conflicting action in parallel; 2) the human decides
to be passive and let the robot act alone; 3) the human is acting alone while the robot
remains passive; 4) the human decides to let the robot decide and start acting pur-
posely, then the human accompany the robot with a concurrent non-conflicting action.
We use an abstracted version of this model to guide our search and explore further con-
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current courses of action, allowing the robot to anticipate possible execution conflicts.
The exhaustive exploration produces a directed acyclic graph where each path from
the root to a leaf is a sequence of concurrent human-robot actions leading to the goal.
From this graph produced offline, the robot’s behavioral policy is extracted using an
estimation of the human preferences regarding the joint task. These preferences can
optimize various objectives, for instance, minimizing human efforts, finishing the task
as soon as possible, or freeing the human as soon as possible. This policy indicates
the best concurrent robot action to satisfy the estimated human preferences in every
state and for each possible human action. This allows the robot to comply optimally
with any human online decision. Moreover, this extraction is light and can be done
online. As a result, as the execution progresses, the estimated human preferences can
be reevaluated, and the robot policy can be updated accordingly on the fly. To evalu-
ate our approach, we used BlocksWorld scenarios where the human and the robot had
to collaborate to stack colored cubes to match a given goal pattern. As a first step,
we evaluate the approach by symbolically simulating possible executions, following
the abstracted model of execution proposed. To highlight the compliance endowed to
the robot, we simulated erroneous estimations of the human preferences, making the
robot’s behavior more or less adversarial to the human preferences. However, despite
contributing to the shared task, the robot may not necessarily achieve the task as the
human would have preferred. The results showed that despite erroneously estimated
human preferences, the actual human preferences are correctly satisfied overall because
the robot constantly adapts to and follows human decisions.

As another contribution in Chapter 5 and 6, we implemented our proposed joint
action model as an execution scheme into an interactive simulator permitting collabo-
ration with a robot executing policies produced by our approach. Using this simulator,
we conducted a user study with 25 participants and compared our approach with a
contrasting baseline where the robot always imposes its decisions on humans. By
recording execution data and requesting participants to answer a questionnaire, we
showed that our approach performed and was appreciated significantly better than
the baseline. Over the different scenarios, our approach satisfied the human prefer-
ences significantly better and the baseline. Moreover, the most significant differences
using our approach are that the participant perceived the Interaction as more Positive,
the Collaboration as more Adaptive and Efficient, and the Robot’s Decisions as more
Appropriate and Accommodating.

Simulating Intelligent Human Agents Conclusions
It is challenging to test and evaluate HRI systems. To tackle this issue, we proposed
a generic architecture capable of simulating intelligent human agents to interact and
challenge robot systems. We presented and evaluated an implementation of such ar-
chitecture for the navigation use case. Various approaches address the human-aware
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navigation subject, but only a few recent works propose tools to challenge, test, de-
bug, and evaluate robot human-aware navigation systems. Without such simulation
tools, preliminary experimentation and debugging must be achieved using a real robot,
which is slow and burdensome. Most existing simulated interactive agents are based
only on reactive approaches, making them suitable for crowded scenarios but lim-
ited and unrealistic in intricate ones. Thus, there is a lack of simulated interactive
agents endowed with some decision-making processes allowing them to resolve more
realistically intricate scenarios, like path blockage or narrow corridor crossing.

In Chapter 7, we proposed a complete system to simulate agents endowed with
decision-making capabilities. The InHuS architecture has been designed to be generic,
but we implemented it as a first step for the navigation use case. This system aims
to challenge and evaluate robot navigation in intricate human-populated scenarios.
It simulates an environment including a robot and a human avatar. The robot is
controlled by a navigation system that challenges and evaluates. The InHuS system
controls the human agent. Scenarios, including start position and a goal for each agent,
can easily be defined and reproduced. The avatar can be given compound goals corre-
sponding to sequences of navigating and waiting actions to simulate complex human
activities. The avatar uses the CoHAN human-aware navigation planner to navigate,
producing proactive and legible trajectories. Additionally, the avatar detects when the
robot blocks the shortest path to its goal. Instead of following another path, the sys-
tem switches to a conflict mode, makes the avatar approach, and eventually stops near
the blocking spot to show its intention to cross. Once the path is cleared, the avatar
proceeds with nominal navigation. To diversify the challenging situations, Attitudes
can be defined in the system. They are modes that can be activated anytime, influenc-
ing the avatar’s goals and reactions to the robot. We can simulate curious, distracted,
and non-cooperative humans through these modes. There is also an Endless mode,
making the agents repeatedly move to defined agent-specific positions. This is useful
for generating unexpected situations and testing the robustness of the robot system
over time. Another interesting feature is the ability to randomize all position goals.
The final goal position is randomly sampled around the original within a given radius.
To make the avatar’s behavior more realistic, the system computes the visibility of the
avatar and updates the robot’s known position only when it is observable. Finally,
the system records execution logs, such as agents’ positions, speeds, and additional
computed metrics. Among these metrics are the Time To Collision, the estimated
time until the agents collide, and the Surprised metrics. The latter helps identify sud-
den close robot appearances from behind the avatar. All these data are plotted on
an interactive visual interface, providing real time feedback while running the system.
We evaluated this system using two robot navigation systems. One is CoHAN, with
human-aware properties. The other is close to the default ROS robot navigation stack,
without human-aware properties. After running both systems in a few challenging sce-
narios, the data gathered with InHuS indicates that, as expected, CoHAN exhibited
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significantly better human-aware properties than the default system. This suggests
that InHuS can effectively challenge and evaluate the human-aware properties of a
robot navigation system.

Eventually, in Chapter 8, we proposed the IMHuS system, a complementary ap-
proach to the InHuS system. Indeed, InHuS is limited to simulating a single avatar.
IMHuS permits the choreographing of several agents and the production of group and
social behaviors. The IMHuS agents do not have individual decision-making capa-
bilities. However, this framework allows producing intricate scenarios with multiple
human agents to challenge robot navigation systems. Hence, it is an interesting solu-
tion between intricate single-agent scenarios and wide crowded scenarios. We showed
the effectiveness of the approach in an elevator scenario.

Limitations and future works
In this section, we discuss the limitations of the contributions presented in this thesis
and the possible future works they suggest.

Theory of Mind in Human-Aware Task Planning
There are some limitations to the approach presented in Chapter 3 that introduce
Theory of Mind concepts in the HATP/EHDA planner. First, we do not consider
uncertainties in the robot’s knowledge about the world. Despite being linked to agent
knowledge, and thus chapter 3, this limitation is common to everything linked to
HAPT/EHDA. Indeed, since the planner is part of the robot, there is no choice but
to rely on the robot’s knowledge about the world, hoping it is correct. An interesting
future work could be to abstract the perception layer of the robot and associate each
state variable to a confidence level. This confidence level would indicate how much
the corresponding fact is sure. Then, the robot could rely only on the high-confidence
ones.

Secondly, we do not consider uncertainties in human beliefs. We assume to be in the
worst-case scenario where humans do not know about facts they did not see. However,
considering the pasta cooking example of Chapter 3, the human could assume that the
robot effectively did its work while being away fetching the pasta. Thus, the human
could believe that there is salt in the post even without seeing the robot’s action.
Keeping track of such different possible worlds is an approach used in epistemic task
planning. It would be an interesting future work that we already started investigating
in our lab.

Another promising future work is to add more reasoning and inference processes to
the planning process. We have already introduced the situation assessment process,
updating agents’ beliefs concerning their observable surroundings. However, adding
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logical reasoning and deduction would be interesting, like in the Dynamic Epistemic
Logic in [Bolander 2017]. For instance, if it is known that A or B is true and the
agent knows that B is false, then it can be deduced that A is true. However, it would
undoubtedly require using a knowledge representation different from state variables.

Inference processes based on causality could also be promising. For instance, if
action a2 can only be performed after a1 and an agent notices that a2 has been
performed, then the agent can infer that a1 has also been performed.

Finally, we can identify the minimal relevant information to communicate in the
proposed approach. However, it would be an interesting future work to explore ‘when’
to communicate. Currently, the robot communicates at the last moment, just before
the estimated false human beliefs have an effect. However, it could be wiser to plan
the communication earlier, maybe even before the human leaves.

Task Planning for Concurrent and Compliant Joint Action
There are also a few limitations in my second contribution, each that can be relevant
to address in future work. First, we can mention the “passive action pairs”. Indeed,
when planning the robot’s policy, the cases where both the robot and the human are
passive are explicitly modeled but not explored because, without any action, there is
no modification to the state and, thus, no need to create a new state. These situations
could happen during execution but are not considered in the current plan evaluation
to generate the robot’s policy. Nevertheless, in some rare situations, it can be relevant
for the robot to remain passive even if the human is passive. This would insist on and
non-verbally communicate that it is better for humans to act than robots.

Secondly, exploring and adding the possibility for the robot to take the initiative
in the execution model would be interesting. A step starts with the robot waiting
for a human signal before proceeding. The only exception is when the human cannot
act, the robot directly starts acting. Nevertheless, when the robot’s action does not
depend on the human decision, it could be relevant to skip the initial synchronization
and make the robot act since there is no possible conflict.

Moreover, the model’s step-based aspect can be considered a limitation. It benefits
the search but constrains the execution with many synchronizations. Investigating a
proper execution controller based on the model that can supervise the robot’s pol-
icy execution in a flexible manner, avoiding systematic synchronizations, would be
interesting.

Eventually, we conducted a user study to validate the approach using an interactive
simulator. Simulation and mouse control could bias the results obtained. Hence, a
pertinent future work is to make the simulation more immersive and natural, e.g., using
Virtual Reality (VR). Implementing the scheme on a real robot is also interesting but
would require a significant amount of engineering work to avoid bias created by a
slow-moving robot or perception errors.
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Performances of the planning approach

The overall planning approach proposed in this thesis is based on an exhaustive, ex-
pensive search, which does not scale. Collaboration scenarios are not usually very
long, making our approach sufficient and adequate for this context. Nevertheless, de-
spite the short scenarios, their complexity can be significantly high. In Chapter 4, we
proposed switching from the AND/OR tree search space to a Directed Acyclic Graph,
significantly improving performance. Still, the approach does not scale. As a result,
it would be relevant to identify pertinent heuristics to avoid exhaustive exploration.
One idea is to investigate the risk estimation of subtasks. It would allow starting the
execution of a non-fully refined plan. As humans, we tend to apply this reasoning. For
instance, consider a collaborative scenario where the task is to set the table. Due to the
numerous types and number of objects to set, the possible orderings are considerable,
making the exhaustive search infeasible. However, knowing that there are no risks of
deadends or failure in this context, one could start with the closest objects without
precisely knowing from the beginning the future sequence of actions to perform.

Simulating Social Navigating Agents

The InHuS was initially designed as a generic intelligent agent simulation architecture
to solve and benchmark any collaborative task. However, implementing the entire
generic architecture is very challenging, and as a first step, we limited the scheme
to navigation. Hence, future work could be to integrate a complex task planner like
HATP/EHDA inside InHuS as well as manipulation controllers.

The major limitation of InHuS is that it simulates only a single agent. This lim-
itation has been addressed with the IMHuS system, which allows the designing and
reproducing of challenging navigation scenarios with several humans. However, in
IMHuS, agents lack individual decision-making processes like in InHuS. Another ap-
proach to extending InHuS to multi-human scenarios could be switching agent control
dynamically. We could run two instances of InHuS to control the two closest humans
to the robot, and we would control the other agents using reactive approaches. This
would require reasonable computational power but necessitate carefully keeping track,
pausing, and resuming each agent’s goal.

Finally, this work was done at the beginning of my PhD. Since then, other recent
works have proposed stimulating social interactive navigating agents to benchmark
robot navigation. An interesting future work is to look deeper into these recent ap-
proaches and compare them with InHuS to potentially combine them and propose a
more refined and efficient version of InHuS.
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Unexplored features of HATP/EHDA
When working on my contributions based on HATP/EHDA, I reimplemented the
original planner several times to address specific challenges. As a result, I sometimes
simplified some aspects of the planner and even removed some features irrelevant to
my focus. However, it is worth indicating that all original HATP/EHDA features are
pertinent to collaborative scenarios and could be integrated back into my contributions’
planner versions. I provide a few details on two aspects not present in my thesis
examples, but they would be worth investigating further.

First, I would like to mention the “Trigger” mechanism implemented in HAT-
P/EHDA. Triggers model agent’s reactions to particular situations rather than goal-
oriented actions. For instance, whatever the human is doing, when handed over an
object or asked a question, the human is likely to interrupt their activity to grab the
object or answer the question. Triggers are helpful to describe complex human action
models, later used to estimate the next actions the human partner is likely to perform
in a given state. For simplicity reasons, I did not implement Triggers in my experi-
mental version of the planner, but this feature does not conflict with my contributions.
Adding this feature would only require a small amount of additional work.

Additionally, the use cases of my contributions always considered that a shared goal
had been established priorly between the agents. However, it is worth mentioning that
HATP/EHDA can manage scenarios without shared goals. Their creation is handled
by the given agent action models, where Triggers help model questions and answers.
Scenarios without an initial shared goal were less illustrative for my examples, but the
proposed approaches are not limited to this case. Moreover, designing and integrating
reasoning processes indicating, in a principled way, ‘when’ and ‘how’ to create a shared
goal with a human partner is an interesting work in the future.
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Appendix A

User Study results

This appendix provides the raw results obtained through the User Study described
and discussed in chapter 6.

A.1 Participants information
Anonymized information on the participants is shared in the tables A.1 and A.2. It in-
cludes the date of each participation, the age and gender of the participant, their opin-
ion about robotics (1=negative, 5=positive), if they are from my laboratory (LAAS
= yes, EXT = no), if they are familiar with robotics and task planning, and if they
already interacted with a robot, if so which ones. The comments are given in the
participants’ language, hence, mostly in French, except for participants 10 and 16.

A.2 Scenario Ordering per Participant
The ordering in which each participant encountered each scenario is shown in table A.3.
These orderings have been randomized to avoid order effect and follow a uniformed
distribution.

A.3 Questionnaire answers
The participants’ answers are provided in the 3 tables A.4, A.5, A.6. For each partic-
ipant, the answer on a Likert scale from 1 to 7. Be careful, by default, 1 corresponds
to the worst answer and 7 to the best. However, some questions have inverted scales
in the questionnaire. The inverted questions are : Q2, Q5, Q6, Q8, and Q9. In the
rest of the manuscript, especially in chapter 6, the inverted scales are inverted to have
a uniform and more legible representation.

A.4 Execution metrics extracted
The extracted execution metrics are abbreviated corresponding to the table A.7. The
metrics values are shown in ten tables from A.8 to A.17.
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A.5 Participants comments
The participants’ comments about the experiment are shown in the tables A.18, A.19,
and A.20. Since these comments were given verbally they are here described as note-
taking, in French which is the language spoken by a large majority of participants,
and using as much as possible the participant’s own words.

A.6 Scenario preference
The results obtained after asking participants which scenario they preferred the most
and the least are shown in the table A.21.

A.7 PeRDITA questionnaire
The PeRDITA questionnaire filled by the participant after each scenario can be found
in the next two following pages. Both the original French version and an English
translation done by myself and based on other already translated versions.



N° Participant : N° Scénario :

Afin d’étudier votre évaluation personnelle de chaque comportement du robot, vous allez répondre à
un questionnaire. Vous allez devoir vous situer entre deux adjectifs en plaçant une croix dans la case
qui se rapporte le plus à votre impression.

- Lisez attentivement les énoncés en gras avant de répondre.
- Vous pourrez modifier vos réponses plus tard.
- Il n’y a pas de bonne ou de mauvaise réponse. Répondez le plus sincèrement possible.

Rappelez les propriétés du scénario en cochant les cases correspondantes:
Régime d’exécution Objectif

Human-First □ Robot-First □ Finir la tâche
au plus vite □ Être libéré au

plus vite □
Selon vous, le robot est plutôt :

Apathique □ □ □ □ □ □ □ Réactif

*Compétent □ □ □ □ □ □ □ Incompétent

Inintelligent □ □ □ □ □ □ □ Intelligent

Selon vous, globalement, l’interaction avec le robot a été :

Négative □ □ □ □ □ □ □ Positive

*Simple □ □ □ □ □ □ □ Compliquée

*Claire □ □ □ □ □ □ □ Ambiguë

Selon vous, la collaboration avec le robot pour réaliser la tâche a été :

Contraignante □ □ □ □ □ □ □ Adaptative

*Utile □ □ □ □ □ □ □ Inutile

Inefficace □ □ □ □ □ □ □ Efficace

Selon vous, le robot a choisi d’agir de manière :

*Adéquate □ □ □ □ □ □ □ Inadéquate

Gênante □ □ □ □ □ □ □ Accommodante

Imprévisible □ □ □ □ □ □ □ Prévisible

*Les items précédés d’un astérisque sont des items inversés.

PeRDITA Questionnaire FR



Participant N° : Scenario N° :

In order to study your personal evaluation of each robot behavior, you're going to answer a
questionnaire. You'll be asked to place a cross between two adjectives in the box that most closely
matches your impression.

- Read carefully the bold statements before answering.
- You will be able to modify your answers later.
- There are no right or wrong answers. Answer as truthfully as possible.

Recall the properties of the scenario by ticking the appropriate boxes:
Execution Regime Your objective

Human-First □ Robot-First □ Finish the task as
soon as possible □ Be freed as soon

as possible □
In your opinion, the robot is rather:

Apathetic □ □ □ □ □ □ □ Responsive

*Competent □ □ □ □ □ □ □ Incompetent

Unintelligent □ □ □ □ □ □ □ Intelligent

In your opinion, generally, the interaction with the robot was:

Negative □ □ □ □ □ □ □ Positive

*Simple □ □ □ □ □ □ □ Complicated

*Clear □ □ □ □ □ □ □ Ambiguous

In your opinion, the collaboration with the robot to perform the task was:

Restrictive □ □ □ □ □ □ □ Adaptive

*Useful □ □ □ □ □ □ □ Useless

Inefficient □ □ □ □ □ □ □ Efficient

In your opinion, the robot choices of action were:

*Appropriate □ □ □ □ □ □ □ Inappropriate

Annoying □ □ □ □ □ □ □ Accommodating

Unpredictable □ □ □ □ □ □ □ Predictable

*Items preceded by an asterisk are reversed items.

PeRDITA Questionnaire EN
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W
om

an
4

E
X
T

N
on

Jouet

23
25/01/2024
12:15:45

47
W
om

an
4

LA
A
S

O
ui

P
R
2,robot

m
obile,

bras
m
anipulateurs

24
25/01/2024
13:47:39

26
W
om

an
4

LA
A
S

N
on

P
R
2
+

Jouets

25
26/01/2024
14:20:54

62
M
ale

5
LA

A
S

O
ui

B
ras

interactif,
hum

anoïdes,drones

Table
A
.2:

Inform
ation

on
the

participants.
(part

2/2)
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Participant
N°

S1
pose

S2
pose

S3
pose

S4
pose

S5
pose

S6
pose

1 1 2 3 6 5 4
2 3 1 2 6 5 4
3 5 3 6 1 2 4
4 2 5 4 6 3 1
5 1 5 2 6 4 3
6 6 3 4 2 1 5
7 3 5 6 4 1 2
8 4 5 3 6 2 1
9 4 2 1 5 6 3
10 1 5 3 2 4 6
11 5 4 6 2 3 1
12 3 1 5 2 6 4
13 1 2 5 6 4 3
14 4 2 3 1 5 6
15 4 1 6 5 3 2
16 2 6 3 1 4 5
17 2 3 1 5 4 6
18 5 1 3 6 2 4
19 6 1 5 2 4 3
20 4 5 6 3 1 2
21 6 2 4 3 1 5
22 1 4 6 3 2 5
23 2 4 1 3 6 5
24 5 1 4 3 2 6
25 2 1 4 6 3 5

Table A.3: Ordering in which each participant encountered each scenario.
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N
°

S1Q
1

S1Q
2

S1Q
3

S1Q
4

S1Q
5

S1Q
6

S1Q
7

S1Q
8

S1Q
9

S1
Q
10

S1
Q
11

S1
Q
12

S2Q
1

S2Q
2

S2Q
3

S2Q
4

S2Q
5

S2Q
6

S2Q
7

S2Q
8

S2Q
9

S2
Q
10

S2
Q
11

S2
Q
12

1
6

2
5

6
2

2
6

2
6

3
6

6
6

3
3

6
2

2
5

2
5

5
2

2
2

6
1

7
7

1
1

7
1

7
1

7
7

7
1

7
7

1
1

7
1

7
1

7
7

3
6

2
5

6
2

2
7

2
7

1
7

7
4

1
6

7
1

1
7

1
7

1
7

3
4

7
1

1
7

2
1

7
2

7
1

7
7

6
1

1
7

1
3

7
1

7
1

7
5

5
6

3
3

6
3

3
6

3
6

2
5

6
6

2
5

6
3

3
6

3
6

3
5

6
6

4
1

7
7

1
1

7
1

7
1

7
7

7
1

7
7

1
2

7
1

7
1

7
6

7
6

2
2

6
2

2
5

3
5

2
5

5
6

2
2

6
2

2
6

2
6

2
4

4
8

7
1

7
7

1
1

7
1

7
1

7
7

7
2

7
7

3
2

6
3

6
2

6
5

9
7

1
7

7
1

1
7

1
7

1
7

7
7

1
7

7
2

1
6

1
7

1
7

7
10

6
2

5
6

2
3

6
2

5
2

6
6

6
2

6
6

2
2

6
2

6
2

6
6

11
7

1
7

7
1

1
7

1
7

1
7

7
7

1
7

7
1

1
7

1
7

1
7

7
12

6
2

6
5

2
2

6
3

6
2

6
6

3
3

3
4

5
6

3
3

2
5

3
4

13
5,5

6
4

6
1

1
6

3
5

2
7

7
7

1
4

7
1

1
7

2
7

1
7

6
14

6
2

3
5

3
2

4
3

6
2

6
4

6
2

6
6

3
3

6
2

6
3

6
5

15
7

1
7

7
1

1
7

1
7

1
7

7
7

1
7

7
1

1
6

1
7

1
7

7
16

6
3

6
6

2
2

7
6

6
2

6
6

6
2

6
6

2
2

7
2

7
2

5
5

17
6

2
5

6
3

2
6

6
6

2
5

5
5

2
5

6
2

3
4

1
6

2
4

6
18

7
2

6
6

2
2

7
1

6
1

7
6

6
2

5
6

2
2

6
2

6
1

6
7

19
6

1
7

6
1

1
7

1
7

1
7

7
7

1
6

6
4

4
6

2
6

1
7

7
20

7
1

7
7

1
1

7
1

7
1

7
7

7
1

7
7

1
1

7
1

7
1

7
6

21
6

2
6

6
2

2
6

2
6

2
6

6
7

2
6

6
2

1
6

2
6

2
7

6
22

7
1

4
7

1
1

7
1

7
1

7
7

7
2

4
6

2
2

5
1

7
1

7
6

23
6

2
5

6
2

2
6

2
6

2
6

6
6

2
5

6
2

2
5

3
5

2
6

6
24

7
1

7
7

1
1

7
1

7
1

7
7

7
1

7
7

1
1

7
1

7
7

7
4

25
6

2
6

5
2

2
6

2
6

2
6

6
6

2
6

5
2

2
3

2
5

2
6

2

TableA
.4:Participants’answersto

thetwelvequestionsofthequestionnaire(from
Q
1
to

Q
12),foreach

ofthesix
scenarios

(from
S1

to
S6),on

a
-Part

1/3
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N
°

S3 Q
1

S3 Q
2

S3 Q
3

S3 Q
4

S3 Q
5

S3 Q
6

S3 Q
7

S3 Q
8

S3 Q
9

S3 Q
10

S3 Q
11

S3 Q
12

S4 Q
1

S4 Q
2

S4 Q
3

S4 Q
4

S4 Q
5

S4 Q
6

S4 Q
7

S4 Q
8

S4 Q
9

S4 Q
10

S4 Q
11

S4 Q
12

1
6

3
3

6
2

2
5

2
5

5
2

2
6

2
6

6
2

2
6

1
6

2
6

5
2

6
1

7
7

1
1

7
1

7
1

7
7

7
6

3
6

6
7

2
3

3
6

3
6

3
6

2
6

5
5

2
5

2
6

1
6

7
4

7
2

2
1

2
1

6
1

7
2

1
4

7
1

1
6

1
1

7
1

7
2

7
7

7
7

1
3

1
1

3
2

4
6

3
7

5
6

2
6

5
2

2
6

4
7

2
7

7
4

6
1

1
6

7
1

7
1

7
1

1
6

7
1

6
7

2
2

7
1

6
1

7
7

7
6

2
1

7
2

1
4

2
6

1
2

7
4

2
6

6
2

2
4

5
6

2
6

6
6

2
6

2
6

6
2

6
2

6
2

6
8

7
1

7
7

1
1

7
1

7
1

7
7

5
3

5
5

2
5

3
5

3
2

5
3

9
7

1
7

7
2

1
6

1
7

1
6

7
7

6
2

5
1

1
3

4
2

6
2

1
10

5
3

5
6

2
3

5
3

5
5

4
4

3
5

3
3

2
4

3
4

2
6

2
4

11
7

1
7

7
1

1
7

1
7

1
7

7
7

1
6

6
1

1
5

1
5

2
7

6
12

6
3

5
5

1
2

4
3

5
1

6
7

2
3

4
2

3
5

3
6

3
5

1
1

13
7

1
6

7
1

1
7

2
7

1
7

7
7

2
3

6
1

1
3

4
5

5
6

3
14

5
3

3
6

2
3

5
3

6
3

6
5

5
5

5
5

2
3

5
3

4
4

6
6

15
7

2
6

5
3

4
7

1
7

2
7

7
7

4
6

3
4

4
2

1
5

2
3

6
16

6
3

6
6

2
2

7
6

6
2

6
6

5
5

5
5

3
3

4
4

3
5

3
3

17
5

6
3

3
5

4
3

3
1

6
3

4
5

6
2

3
5

5
3

5
6

6
3

2
18

7
2

6
7

1
2

6
1

6
2

6
6

2
6

2
3

6
7

1
7

2
7

1
1

19
7

1
7

7
1

1
7

1
7

1
7

7
6

7
1

1
7

5
1

7
2

7
1

1
20

7
1

7
7

1
1

7
1

7
1

7
7

4
5

3
3

5
5

3
3

4
3

5
4

21
6

2
6

6
2

2
6

2
6

2
6

6
5

4
3

3
5

5
2

5
2

5
3

3
22

7
1

4
7

1
1

7
1

7
1

7
7

7
6

3
1

6
7

2
6

3
7

1
1

23
6

2
6

6
2

2
6

2
6

2
6

6
6

3
5

5
3

3
6

2
6

2
5

6
24

7
1

6
7

1
1

7
1

7
1

7
6

7
3

2
6

5
1

5
4

4
5

3
4

25
6

2
2

7
2

2
6

2
6

2
6

7
6

6
2

2
3

4
2

3
2

6
2

3

Ta
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e
A
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:
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e
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)
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th
e
6
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s
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t
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N
°

S5Q
1

S5Q
2

S5Q
3

S5Q
4

S5Q
5

S5Q
6

S5Q
7

S5Q
8

S5Q
9

S5
Q
10

S5
Q
11

S5
Q
12

S6Q
1

S6Q
2

S6Q
3

S6Q
4

S6Q
5

S6Q
6

S6Q
7

S6Q
8

S6Q
9

S6
Q
10

S6
Q
11

S6
Q
12

1
5

6
2

4
2

2
3

5
3

7
3

3
6

3
2

5
2

2
3

6
3

6
1

1
2

7
1

7
7

1
1

7
1

7
1

7
7

7
5

4
5

7
7

4
2

5
5

3
5

3
6

2
4

6
2

1
5

3
7

1
7

7
4

5
3

3
4

2
1

4
1

5
3

5
4

7
1

1
6

1
2

7
1

6
1

7
6

7
5

1
5

1
2

3
4

6
4

6
7

5
4

3
5

4
1

2
4

4
4

3
4

6
4

6
3

2
4

5
1

6
2

6
1

2
6

7
1

7
7

1
2

7
1

7
1

7
6

7
6

4
2

6
4

1
3

4
6

1
4

7
6

2
6

5
4

5
4

3
6

5
4

4
6

2
6

2
6

6
3

3
5

5
2

2
8

7
1

6
7

1
1

7
1

7
2

7
6

6
3

5
5

5
6

3
3

2
6

3
6

9
7

1
6

7
1

2
7

1
6

2
7

6
5

2
3

6
2

5
7

1
3

5
3

3
10

6
1

7
6

2
2

6
1

6
3

5
5

4
5

2
3

2
4

2
5

2
5

2
4

11
7

1
7

7
1

1
7

1
7

2
7

6
7

1
6

7
1

1
3

2
3

5
3

5
12

5
3

2
3

1
5

7
2

5
4

3
5

5
6

3
1

2
6

1
6

2
7

2
3

13
5

2
4

6
1

1
6

1
6

2
7

5
5

4
4

5
1

1
5

4
5

5
4

5
14

6
2

2
6

2
2

6
2

6
2

6
5

5
5

5
4

2
2

5
5

3
4

4
4

15
7

2
5

6
3

4
7

2
6

3
7

4
7

3
3

3
2

4
2

5
2

5
2

3
16

7
2

7
6

2
2

5
2

5
2

6
6

4
4

4
5

3
4

4
3

3
5

3
5

17
5

4
5

4
4

5
4

2
3

5
4

3
5

3
5

2
6

4
4

3
2

6
2

3
18

6
3

6
7

3
3

6
1

6
3

6
7

6
2

5
6

2
2

5
2

2
6

2
6

19
6

4
5

5
3

3
4

2
5

6
4

4
5

2
5

4
4

5
5

2
6

4
2

6
20

7
1

7
7

1
1

7
1

6
1

7
6

6
2

6
4

3
2

6
2

6
3

6
6

21
6

2
6

6
2

2
6

2
6

2
6

6
6

2
6

5
2

2
5

3
4

3
3

4
22

7
1

4
7

1
1

6
1

7
2

7
6

7
7

1
1

7
7

1
7

1
7

1
1

23
6

3
5

6
3

3
4

2
5

3
5

5
5

3
5

5
3

4
5

2
5

3
6

5
24

7
2

5
7

1
1

7
1

6
2

7
6

7
7

2
5

2
5

1
7

1
7

1
4

25
6

2
2

7
2

2
7

1
7

2
6

6
6

2
2

2
4

3
2

3
2

6
2

2

Table
A
.6:

Participants’answers
to

the
12

questions
(Q

)
ofthe

questionnaire,for
each

ofthe
6
scenarios

(S)
-Part

3/3
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M1 task_completion_time M17 h_action_time_average
M2 number_steps M18 h_action_time_sd
M3 nb_h_optimal_action M19 h_action_time_max
M4 ratio_h_optimal_action M20 h_action_time_min
M5 decision_time_total M21 r_action_nb
M6 decision_time_average M22 r_action_time_total
M7 decision_time_sd M23 r_action_time_average
M8 decision_time_max M24 r_action_time_sd
M9 decision_time_min M25 r_action_time_max
M10 wait_ns_total M26 r_action_time_min
M11 wait_ns_average M27 time_human_free
M12 wait_ns_sd M28 plan_mvt_total
M13 wait_ns_max M29 plan_mvt_min
M14 wait_ns_min M30 plan_mvt_max
M15 h_action_nb M31 plan_mvt_average
M16 h_action_time_total M32 plan_mvt_sd

Table A.7: Execution metrics abbreviations.
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N
°

S1
M
1

S1
M
2

S1
M
3

S1
M
4

S1
M
5

S1
M
6

S1
M
7

S1
M
8

S1
M
9

S1
M
10

S1
M
11

S1
M
12

S1
M
13

S1
M
14

S1
M
15

S1
M
16

S1
M
17

S1
M
18

S1
M
19

1
56,6

10,0
10,0

100,0
8,2

1,0
0,5

1,8
0,3

12,5
1,6

0,9
3,2

0,6
8,0

26,2
3,3

0,6
4,4

2
58,7

10,0
10,0

100,0
9,7

1,2
0,5

2,0
0,6

14,3
1,8

1,2
3,9

0,7
8,0

25,6
3,2

0,6
4,2

3
61,6

10,0
9,0

90,0
10,3

1,0
0,8

2,9
0,4

14,9
1,9

1,2
4,0

0,7
8,0

26,6
3,3

0,6
4,3

4
56,7

10,0
9,0

90,0
3,8

0,4
0,4

1,2
0,0

17,6
2,2

1,5
5,3

0,6
8,0

26,1
3,3

0,6
4,3

5
55,3

10,0
10,0

100,0
2,9

0,4
0,5

1,2
0,0

17,7
2,2

1,4
4,3

0,6
8,0

26,3
3,3

0,6
4,3

6
52,6

10,0
10,0

100,0
3,6

0,4
0,5

1,7
0,0

14,4
1,8

1,0
3,8

0,7
8,0

25,9
3,2

0,6
4,3

7
83,5

14,0
10,0

71,4
12,0

0,9
0,7

2,4
0,1

11,8
2,0

1,1
4,0

0,6
6,0

18,7
3,1

0,5
4,2

8
60,6

10,0
9,0

90,0
2,8

0,3
0,6

1,9
0,0

14,5
1,8

1,2
4,2

0,7
8,0

26,4
3,3

0,6
4,3

9
61,3

10,0
10,0

100,0
7,3

0,9
0,5

2,0
0,6

18,3
2,3

1,3
4,3

0,7
8,0

25,9
3,2

0,6
4,3

10
62,4

10,0
10,0

100,0
14,1

1,8
2,3

6,8
0,0

13,9
1,7

1,0
3,6

0,7
8,0

26,0
3,3

0,6
4,3

11
58,6

10,0
10,0

100,0
4,6

0,5
0,5

1,8
0,1

20,2
2,5

1,8
6,5

0,6
8,0

25,8
3,2

0,6
4,3

12
58,3

10,0
10,0

100,0
3,6

0,5
1,0

3,2
0,0

18,9
2,4

1,7
5,7

0,7
8,0

26,2
3,3

0,6
4,3

13
61,4

12,0
10,0

83,3
1,6

0,1
0,2

0,4
0,0

17,9
1,8

1,1
4,1

0,7
10,0

32,7
3,3

0,6
4,3

14
57,5

10,0
10,0

100,0
3,5

0,4
0,6

1,7
0,0

20,7
2,6

1,8
6,8

0,6
8,0

26,0
3,2

0,6
4,3

15
62,3

10,0
9,0

90,0
2,7

0,3
0,6

1,9
0,0

18,3
2,3

1,5
4,8

0,6
8,0

26,4
3,3

0,6
4,3

16
60,2

10,0
10,0

100,0
4,5

0,6
1,0

3,1
0,0

19,4
2,4

1,5
4,7

0,6
8,0

25,9
3,2

0,6
4,3

17
59,3

10,0
10,0

100,0
10,2

1,3
1,8

5,8
0,0

13,0
1,6

0,9
3,0

0,6
8,0

25,8
3,2

0,6
4,2

18
56,5

10,0
10,0

100,0
2,7

0,3
0,2

0,8
0,0

18,9
2,4

1,7
5,6

0,6
8,0

26,1
3,3

0,6
4,3

19
59,7

10,0
9,0

90,0
4,9

0,5
1,0

3,0
0,0

14,2
1,8

1,5
5,1

0,6
8,0

26,6
3,3

0,6
4,3

20
54,8

10,0
10,0

100,0
2,8

0,3
0,2

0,7
0,0

17,2
2,2

1,7
5,1

0,6
8,0

26,2
3,3

0,6
4,4

21
55,2

10,0
10,0

100,0
1,6

0,2
0,2

0,5
0,0

18,6
2,3

1,4
4,9

0,6
8,0

25,8
3,2

0,6
4,3

22
60,3

10,0
10,0

100,0
8,7

1,1
0,5

1,9
0,5

16,1
2,0

1,0
4,0

0,6
8,0

26,1
3,3

0,6
4,3

23
67,4

12,0
10,0

83,3
6,8

0,7
1,1

3,5
0,0

19,5
2,0

1,4
4,6

0,7
10,0

32,6
3,3

0,6
4,3

24
56,5

10,0
10,0

100,0
9,8

1,1
0,5

2,0
0,4

11,6
1,5

0,7
2,5

0,7
8,0

26,0
3,3

0,6
4,3

25
58,5

10,0
10,0

100,0
2,7

0,3
0,5

1,8
0,0

18,9
2,4

1,4
5,0

0,6
8,0

25,8
3,2

0,6
4,2

Table
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N
°

S1 M
20

S1 M
21

S1 M
22

S1 M
23

S1 M
24

S1 M
25

S1 M
26

S1 M
27

S1 M
28

S1 M
29

S1 M
30

S1 M
31

S1 M
32

S2 M
1

S2 M
2

S2 M
3

S2 M
4

S2 M
5

S2 M
6

1
2,
6

8,
0

28
,2

3,
5

0,
6

4,
5

2,
6

22
,1

5,
7

0,
0

1,
2

0,
6

0,
3

59
,5

10
,0

10
,0

10
0,
0

18
,3

2,
3

2
2,
5

8,
0

31
,3

3,
9

0,
9

5,
8

2,
7

22
,7

3,
2

0,
0

0,
7

0,
3

0,
2

54
,7

10
,0

10
,0

10
0,
0

7,
8

1,
0

3
2,
6

8,
0

29
,8

3,
7

0,
9

6,
1

3,
0

61
,6

5,
8

0,
1

1,
8

0,
7

0,
4

53
,9

10
,0

10
,0

10
0,
0

11
,0

1,
4

4
2,
5

8,
0

33
,4

4,
2

1,
2

7,
0

2,
9

56
,7

4,
1

0,
2

0,
7

0,
5

0,
2

50
,0

10
,0

10
,0

10
0,
0

3,
8

0,
4

5
2,
7

8,
0

34
,0

4,
2

1,
4

6,
7

3,
1

18
,8

3,
9

0,
0

0,
7

0,
4

0,
3

51
,1

10
,0

10
,0

10
0,
0

1,
6

0,
2

6
2,
7

8,
0

28
,8

3,
6

0,
8

5,
2

2,
8

18
,2

5,
5

0,
0

0,
8

0,
6

0,
3

50
,0

10
,0

10
,0

10
0,
0

2,
0

0,
3

7
2,
6

12
,0

53
,2

4,
4

1,
5

7,
9

3,
1

21
,0

6,
1

0,
0

0,
7

0,
4

0,
3

54
,4

10
,0

10
,0

10
0,
0

6,
5

0,
8

8
2,
6

8,
0

32
,5

4,
1

1,
2

5,
8

2,
7

60
,6

5,
0

0,
3

1,
0

0,
6

0,
2

59
,4

11
,0

10
,0

90
,9

6,
2

0,
8

9
2,
6

8,
0

35
,4

4,
4

1,
0

5,
9

3,
0

22
,9

4,
2

0,
0

0,
8

0,
4

0,
3

52
,7

10
,0

10
,0

10
0,
0

3,
8

0,
5

10
2,
6

8,
0

30
,6

3,
8

0,
8

5,
0

2,
6

25
,2

4,
5

0,
0

0,
7

0,
5

0,
3

64
,0

12
,0

10
,0

83
,3

17
,1

2,
1

11
2,
6

8,
0

34
,6

4,
3

1,
3

6,
9

3,
1

22
,5

5,
4

0,
0

1,
1

0,
5

0,
3

53
,1

10
,0

10
,0

10
0,
0

9,
7

1,
2

12
2,
6

8,
0

35
,3

4,
4

1,
2

6,
2

3,
0

21
,0

4,
9

0,
0

1,
2

0,
5

0,
4

54
,5

10
,0

10
,0

10
0,
0

12
,3

1,
5

13
2,
6

8,
0

32
,2

4,
0

0,
8

5,
6

3,
3

17
,5

4,
9

0,
0

0,
8

0,
4

0,
3

57
,0

10
,0

10
,0

10
0,
0

8,
2

1,
0

14
2,
7

8,
0

34
,4

4,
3

1,
2

6,
2

3,
0

24
,4

5,
0

0,
0

2,
3

0,
5

0,
6

63
,0

11
,0

10
,0

90
,9

12
,7

1,
6

15
2,
7

8,
0

33
,9

4,
2

1,
2

6,
5

3,
0

62
,3

5,
2

0,
5

0,
8

0,
6

0,
1

58
,3

10
,0

10
,0

10
0,
0

12
,0

1,
5

16
2,
6

8,
0

36
,2

4,
5

1,
2

6,
2

2,
8

19
,8

5,
0

0,
0

0,
7

0,
5

0,
3

60
,9

11
,0

10
,0

90
,9

11
,3

1,
4

17
2,
6

8,
0

30
,6

3,
8

1,
1

5,
5

2,
3

19
,2

3,
7

0,
0

0,
7

0,
4

0,
3

75
,8

14
,0

10
,0

71
,4

5,
4

0,
9

18
2,
6

8,
0

34
,3

4,
3

1,
5

7,
4

3,
1

18
,4

5,
0

0,
0

0,
8

0,
5

0,
3

52
,3

10
,0

10
,0

10
0,
0

5,
8

0,
6

19
2,
6

8,
0

29
,9

3,
7

1,
2

6,
7

2,
9

59
,7

4,
3

0,
1

0,
7

0,
5

0,
2

54
,0

11
,0

10
,0

90
,9

0,
9

0,
1

20
2,
7

8,
0

33
,0

4,
1

1,
3

6,
7

3,
1

20
,3

4,
4

0,
0

0,
8

0,
4

0,
3

56
,7

10
,0

10
,0

10
0,
0

10
,9

1,
4

21
2,
6

8,
0

33
,9

4,
2

1,
0

6,
0

2,
7

20
,5

5,
0

0,
0

0,
9

0,
5

0,
3

44
,7

10
,0

10
,0

10
0,
0

1,
7

0,
2

22
2,
7

8,
0

31
,3

3,
9

0,
9

5,
8

2,
8

23
,2

5,
7

0,
0

0,
9

0,
6

0,
3

51
,8

10
,0

10
,0

10
0,
0

9,
0

1,
1

23
2,
6

8,
0

32
,2

4,
0

0,
9

5,
4

3,
1

24
,5

5,
3

0,
0

0,
7

0,
4

0,
3

64
,6

12
,0

10
,0

83
,3

6,
9

1,
0

24
2,
6

8,
0

28
,3

3,
5

0,
4

4,
1

2,
8

20
,9

4,
1

0,
0

0,
7

0,
4

0,
3

54
,2

10
,0

10
,0

10
0,
0

10
,2

1,
3

25
2,
6

8,
0

36
,5

4,
6

1,
3

6,
6

2,
7

19
,9

4,
6

0,
0

0,
9

0,
5

0,
3

65
,2

12
,0

10
,0

83
,3

11
,5

1,
4
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N
°

S2
M
7

S2
M
8

S2
M
9

S2
M
10

S2
M
11

S2
M
12

S2
M
13

S2
M
14

S2
M
15

S2
M
16

S2
M
17

S2
M
18

S2
M
19

S2
M
20

S2
M
21

S2
M
22

S2
M
23

S2
M
24

S2
M
25

1
1,4

5,4
0,9

5,9
0,7

0,1
1,1

0,6
8,0

26,0
3,3

0,6
4,3

2,6
8,0

31,2
3,9

0,9
5,9

2
0,4

1,9
0,4

8,3
1,0

0,4
1,6

0,6
8,0

26,1
3,3

0,6
4,3

2,6
8,0

31,2
3,9

0,6
4,9

3
0,8

2,8
0,2

8,3
1,0

0,5
2,0

0,6
8,0

26,2
3,3

0,6
4,3

2,6
8,0

30,3
3,8

0,8
5,3

4
0,5

1,5
0,0

11,7
1,5

1,1
3,6

0,6
8,0

26,2
3,3

0,6
4,2

2,6
8,0

30,1
3,8

1,2
6,7

5
0,2

0,6
0,0

14,8
1,8

1,5
5,3

0,6
8,0

26,3
3,3

0,6
4,3

2,7
8,0

32,1
4,0

1,2
6,9

6
0,2

0,6
0,0

12,9
1,6

1,2
4,3

0,7
8,0

26,1
3,3

0,6
4,3

2,6
8,0

32,6
4,1

0,9
5,7

7
1,5

4,7
0,0

10,8
1,4

1,0
3,8

0,6
8,0

26,3
3,3

0,6
4,3

2,6
8,0

31,9
4,0

0,9
5,8

8
1,2

3,8
0,0

12,4
1,6

1,5
4,8

0,6
8,0

26,3
3,3

0,6
4,3

2,7
8,0

35,4
4,4

1,2
6,4

9
0,5

1,6
0,0

11,1
1,4

0,8
2,5

0,6
8,0

26,2
3,3

0,6
4,3

2,6
8,0

33,0
4,1

1,2
6,3

10
1,9

5,9
0,0

8,2
1,0

0,6
2,4

0,6
8,0

26,1
3,3

0,6
4,3

2,6
8,0

30,2
3,8

1,1
5,9

11
0,9

2,9
0,0

9,7
1,2

0,8
2,6

0,6
8,0

25,9
3,2

0,6
4,3

2,6
8,0

30,0
3,8

1,1
6,3

12
1,1

3,9
0,0

6,2
0,8

0,2
1,2

0,6
8,0

26,1
3,3

0,7
4,4

2,6
8,0

30,9
3,9

0,8
5,4

13
1,2

3,7
0,0

14,4
1,8

1,3
4,7

0,6
8,0

26,0
3,3

0,6
4,3

2,6
8,0

34,8
4,3

2,0
8,7

14
1,9

4,8
0,0

9,7
1,2

0,6
2,4

0,6
8,0

26,0
3,3

0,6
4,4

2,6
8,0

31,4
3,9

0,6
4,8

15
1,5

4,7
0,0

12,2
1,5

1,6
5,6

0,6
8,0

26,0
3,2

0,6
4,3

2,7
8,0

34,5
4,3

1,2
6,3

16
1,3

3,5
0,0

7,6
0,9

0,7
2,8

0,6
8,0

26,3
3,3

0,7
4,4

2,7
8,0

34,3
4,3

1,1
6,2

17
1,8

5,0
0,0

13,7
2,3

1,0
3,6

0,7
6,0

19,7
3,3

0,7
4,3

2,6
12,0

48,6
4,1

1,0
6,0

18
0,8

2,5
0,0

11,5
1,4

0,9
3,3

0,6
8,0

26,5
3,3

0,6
4,4

2,6
8,0

31,1
3,9

0,7
4,7

19
0,2

0,6
0,0

8,9
1,1

0,6
2,2

0,6
8,0

26,3
3,3

0,6
4,3

2,6
8,0

28,1
3,5

0,3
3,9

20
1,4

4,7
0,0

10,6
1,3

1,4
5,0

0,6
8,0

26,4
3,3

0,6
4,3

2,7
8,0

33,1
4,1

0,9
5,8

21
0,3

0,9
0,0

9,0
1,1

0,5
1,9

0,6
8,0

26,1
3,3

0,6
4,3

2,6
8,0

26,4
3,3

0,3
3,7

22
1,4

4,2
0,0

8,0
1,0

0,6
2,4

0,6
8,0

26,3
3,3

0,6
4,3

2,7
8,0

32,1
4,0

0,8
5,5

23
1,0

2,9
0,0

6,6
1,1

0,6
2,1

0,6
6,0

20,4
3,4

0,7
4,4

2,6
10,0

40,5
4,1

0,6
4,8

24
0,9

2,9
0,4

8,1
1,0

0,8
3,2

0,6
8,0

26,3
3,3

0,6
4,3

2,6
8,0

31,4
3,9

0,9
5,4

25
1,6

4,7
0,0

8,5
1,1

0,8
3,1

0,6
8,0

26,0
3,3

0,6
4,4

2,6
8,0

36,5
4,6

1,3
7,2
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N
°

S2 M
26

S2 M
27

S2 M
28

S2 M
29

S2 M
30

S2 M
31

S2 M
32

S3 M
1

S3 M
2

S3 M
3

S3 M
4

S3 M
5

S3 M
6

S3 M
7

S3 M
8

S3 M
9

S3 M
10

S3 M
11

S3 M
12

1
2,
8

26
,0

5,
1

0,
2

1,
1

0,
6

0,
3

54
,8

10
,0

10
,0

10
0,
0

4,
9

0,
6

0,
2

1,
0

0,
4

15
,4

1,
9

1,
4

2
2,
9

54
,7

5,
2

0,
5

0,
7

0,
6

0,
1

55
,0

10
,0

10
,0

10
0,
0

6,
3

0,
8

0,
5

2,
0

0,
0

14
,6

1,
8

0,
9

3
2,
8

22
,9

4,
7

0,
2

0,
7

0,
6

0,
2

88
,1

12
,0

10
,0

83
,3

9,
0

1,
1

0,
6

2,
1

0,
1

16
,6

2,
1

1,
6

4
2,
7

50
,0

4,
1

0,
3

0,
7

0,
5

0,
2

60
,7

10
,0

9,
0

90
,0

4,
6

0,
5

0,
7

2,
5

0,
0

20
,3

2,
5

1,
7

5
3,
0

18
,8

5,
1

0,
3

1,
2

0,
6

0,
3

60
,4

12
,0

10
,0

83
,3

0,
7

0,
1

0,
1

0,
5

0,
0

19
,2

1,
9

1,
1

6
3,
0

19
,9

4,
7

0,
2

1,
0

0,
6

0,
2

83
,3

12
,0

10
,0

83
,3

6,
4

0,
7

0,
6

2,
2

0,
0

19
,5

2,
4

1,
6

7
3,
0

54
,4

5,
8

0,
2

1,
5

0,
7

0,
3

84
,3

12
,0

10
,0

83
,3

20
,5

1,
9

3,
0

10
,8

0,
1

22
,4

2,
2

1,
6

8
2,
9

23
,0

4,
9

0,
3

0,
9

0,
6

0,
2

63
,9

12
,0

10
,0

83
,3

1,
9

0,
2

0,
4

1,
2

0,
0

21
,1

2,
1

1,
2

9
2,
6

19
,1

5,
2

0,
4

0,
8

0,
7

0,
1

63
,5

10
,0

10
,0

10
0,
0

6,
8

0,
9

0,
5

2,
0

0,
4

22
,2

2,
8

1,
8

10
2,
7

24
,2

4,
5

0,
4

0,
7

0,
6

0,
1

80
,1

14
,0

11
,0

78
,6

2,
4

0,
3

0,
3

1,
0

0,
0

17
,5

2,
2

2,
0

11
2,
8

20
,6

5,
3

0,
3

1,
0

0,
7

0,
2

58
,6

10
,0

10
,0

10
0,
0

3,
0

0,
3

0,
2

0,
5

0,
0

21
,5

2,
7

1,
9

12
3,
1

19
,6

4,
8

0,
2

0,
7

0,
6

0,
2

62
,8

12
,0

10
,0

83
,3

2,
9

0,
3

0,
4

1,
2

0,
0

17
,1

1,
7

1,
0

13
2,
9

21
,4

5,
8

0,
3

1,
4

0,
7

0,
3

71
,9

12
,0

11
,0

91
,7

1,
2

0,
1

0,
2

0,
5

0,
0

20
,2

2,
5

1,
7

14
2,
8

25
,6

5,
1

0,
4

0,
9

0,
6

0,
1

71
,1

10
,0

10
,0

10
0,
0

15
,2

1,
9

1,
4

3,
8

0,
1

21
,6

2,
7

1,
8

15
2,
9

25
,5

5,
4

0,
1

1,
3

0,
7

0,
4

74
,1

12
,0

11
,0

91
,7

3,
8

0,
6

0,
8

1,
7

0,
0

14
,8

2,
5

1,
9

16
2,
7

21
,6

6,
4

0,
2

1,
5

0,
8

0,
4

67
,8

12
,0

10
,0

83
,3

5,
1

0,
6

1,
1

3,
1

0,
0

12
,8

1,
6

1,
4

17
2,
7

32
,0

8,
3

0,
3

1,
3

0,
7

0,
2

11
6,
2

17
,0

14
,0

82
,4

0,
8

0,
1

0,
1

0,
4

0,
0

11
,0

1,
8

1,
2

18
3,
0

52
,3

4,
7

0,
2

0,
7

0,
6

0,
2

53
,5

10
,0

10
,0

10
0,
0

1,
7

0,
2

0,
3

0,
9

0,
0

18
,1

2,
3

1,
1

19
3,
0

54
,0

4,
3

0,
2

0,
7

0,
5

0,
2

55
,5

10
,0

10
,0

10
0,
0

1,
3

0,
2

0,
2

0,
5

0,
0

17
,9

2,
2

1,
5

20
2,
9

23
,5

5,
2

0,
2

1,
2

0,
7

0,
3

55
,5

10
,0

10
,0

10
0,
0

2,
6

0,
3

0,
4

1,
3

0,
0

17
,7

2,
2

1,
7

21
2,
7

16
,6

4,
7

0,
3

0,
7

0,
6

0,
1

51
,7

10
,0

10
,0

10
0,
0

1,
6

0,
2

0,
2

0,
6

0,
0

15
,2

1,
9

1,
0

22
2,
9

18
,1

3,
8

0,
2

0,
8

0,
5

0,
2

51
,8

10
,0

10
,0

10
0,
0

2,
2

0,
3

0,
2

0,
8

0,
0

16
,1

2,
0

1,
4

23
2,
8

64
,6

6,
2

0,
1

1,
4

0,
6

0,
3

61
,1

12
,0

10
,0

83
,3

0,
4

0,
0

0,
0

0,
1

0,
0

19
,5

2,
0

1,
2

24
2,
8

23
,0

4,
1

0,
2

0,
7

0,
5

0,
2

65
,7

10
,0

10
,0

10
0,
0

8,
7

1,
1

1,
1

3,
7

0,
2

19
,7

2,
5

1,
4

25
3,
0

20
,8

4,
3

0,
3

0,
8

0,
5

0,
2

53
,7

10
,0

10
,0

10
0,
0

1,
7

0,
2

0,
4

1,
3

0,
0

16
,8

2,
1

1,
1
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N
°

S3
M
13

S3
M
14

S3
M
15

S3
M
16

S3
M
17

S3
M
18

S3
M
19

S3
M
20

S3
M
21

S3
M
22

S3
M
23

S3
M
24

S3
M
25

S3
M
26

S3
M
27

S3
M
28

S3
M
29

S3
M
30

S3
M
31

1
4,8

0,6
8,0

25,9
3,2

0,6
4,3

2,6
8,0

30,1
3,8

0,9
5,8

3,1
21,6

4,3
0,0

0,7
0,4

2
3,1

0,6
8,0

25,8
3,2

0,6
4,3

2,6
8,0

27,6
3,4

0,6
4,4

2,6
21,2

5,8
0,0

1,1
0,6

3
5,6

0,7
8,0

26,0
3,3

0,5
4,2

2,6
10,0

40,5
4,1

1,2
6,5

2,2
88,1

5,0
0,2

0,7
0,5

4
6,2

0,7
8,0

26,4
3,3

0,6
4,3

2,6
8,0

33,4
4,2

1,4
7,1

3,0
60,7

6,2
0,3

1,9
0,8

5
3,6

0,6
10,0

32,8
3,3

0,6
4,3

2,6
8,0

31,7
4,0

0,7
4,9

2,8
19,2

4,0
0,0

0,7
0,3

6
6,2

0,7
8,0

26,1
3,3

0,5
4,2

2,6
10,0

41,8
4,2

1,2
7,6

3,2
83,3

5,5
0,2

0,7
0,6

7
5,0

0,6
10,0

32,5
3,3

0,6
4,2

2,7
10,0

45,7
4,6

1,3
7,5

2,9
32,9

5,8
0,0

0,8
0,5

8
3,5

0,7
10,0

32,9
3,3

0,6
4,3

2,6
8,0

33,2
4,2

0,8
5,5

3,0
21,2

4,5
0,0

0,7
0,4

9
5,8

0,7
8,0

26,1
3,3

0,6
4,3

2,6
8,0

36,3
4,5

1,5
7,4

3,1
25,4

4,7
0,0

1,1
0,5

10
6,5

0,6
8,0

25,8
3,2

0,5
4,2

2,7
10,0

44,2
4,4

1,5
8,3

2,8
32,8

5,3
0,0

1,0
0,4

11
6,1

0,6
8,0

25,9
3,2

0,6
4,3

2,6
8,0

36,4
4,5

1,5
7,7

3,0
21,6

4,0
0,0

1,0
0,4

12
3,4

0,6
10,0

32,9
3,3

0,6
4,3

2,6
8,0

31,4
3,9

0,4
4,6

3,3
19,2

4,4
0,0

0,7
0,4

13
6,1

0,7
8,0

25,7
3,2

0,5
4,2

2,7
10,0

42,8
4,3

1,5
7,4

2,6
20,2

6,1
0,0

0,7
0,5

14
6,3

0,7
8,0

26,0
3,2

0,6
4,3

2,6
8,0

35,0
4,4

1,2
7,0

3,1
25,8

4,9
0,0

1,0
0,5

15
6,2

0,7
6,0

19,2
3,2

0,5
4,3

2,7
10,0

45,2
4,5

1,4
7,5

2,9
36,0

5,3
0,0

0,7
0,4

16
5,0

0,6
8,0

26,6
3,3

0,6
4,3

2,6
8,0

31,1
3,9

1,0
6,1

2,9
21,4

4,1
0,0

0,7
0,3

17
3,7

0,6
6,0

19,8
3,3

0,7
4,3

2,6
14,0

61,0
4,4

1,2
7,1

2,7
31,5

9,2
0,0

1,2
0,5

18
3,9

0,6
8,0

26,1
3,3

0,6
4,2

2,6
8,0

31,5
3,9

0,8
5,2

2,7
21,1

4,8
0,0

0,8
0,5

19
5,2

0,6
8,0

26,2
3,3

0,6
4,3

2,6
8,0

34,0
4,2

1,4
6,6

2,8
19,6

4,3
0,0

0,7
0,4

20
6,1

0,7
8,0

26,5
3,3

0,6
4,4

2,7
8,0

32,3
4,0

1,3
7,2

2,9
19,6

5,0
0,0

0,7
0,5

21
3,7

0,6
8,0

26,1
3,3

0,6
4,3

2,6
8,0

29,1
3,6

0,5
4,7

3,2
19,0

5,0
0,0

0,7
0,5

22
5,2

0,6
8,0

26,2
3,3

0,6
4,3

2,6
8,0

28,9
3,6

1,2
6,6

2,6
18,1

4,9
0,0

0,8
0,5

23
4,1

0,6
10,0

33,0
3,3

0,6
4,3

2,6
8,0

31,8
4,0

0,9
6,0

3,0
18,6

4,7
0,0

0,7
0,4

24
4,5

0,7
8,0

26,2
3,3

0,6
4,4

2,6
8,0

36,0
4,5

1,0
5,5

2,9
27,7

4,9
0,0

1,2
0,5

25
4,3

0,7
8,0

25,8
3,2

0,6
4,3

2,6
8,0

31,2
3,9

0,5
5,3

3,5
18,4

4,8
0,0

0,7
0,5
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N
°

S3 M
32

S4 M
1

S4 M
2

S4 M
3

S4 M
4

S4 M
5

S4 M
6

S4 M
7

S4 M
8

S4 M
9

S4 M
10

S4 M
11

S4 M
12

S4 M
13

S4 M
14

S4 M
15

S4 M
16

S4 M
17

S4 M
18

1
0,
2

91
,7

18
,0

16
,0

88
,9

0,
6

0,
3

0,
0

0,
3

0,
3

1,
3

0,
7

0,
0

0,
7

0,
6

2,
0

6,
0

3,
0

0,
3

2
0,
3

80
,7

16
,0

16
,0

10
0,
0

0,
7

0,
2

0,
1

0,
3

0,
0

6,
0

1,
5

1,
4

4,
0

0,
7

4,
0

12
,9

3,
2

0,
7

3
0,
2

82
,4

16
,0

16
,0

10
0,
0

3,
7

0,
9

0,
7

2,
1

0,
1

7,
2

1,
8

2,
0

5,
2

0,
6

4,
0

13
,1

3,
3

0,
6

4
0,
4

78
,1

16
,0

16
,0

10
0,
0

1,
8

0,
4

0,
4

0,
9

0,
0

4,
4

1,
1

0,
7

2,
4

0,
7

4,
0

13
,4

3,
3

0,
7

5
0,
3

78
,2

16
,0

16
,0

10
0,
0

2,
9

0,
7

0,
7

1,
8

0,
0

5,
2

1,
3

1,
1

3,
1

0,
6

4,
0

13
,0

3,
3

0,
6

6
0,
2

79
,0

16
,0

16
,0

10
0,
0

0,
4

0,
1

0,
1

0,
3

0,
0

5,
6

1,
4

1,
3

3,
6

0,
6

4,
0

13
,0

3,
3

0,
7

7
0,
3

86
,3

16
,0

16
,0

10
0,
0

4,
0

1,
0

1,
2

2,
9

0,
0

3,
4

0,
8

0,
3

1,
4

0,
6

4,
0

13
,0

3,
3

0,
7

8
0,
3

77
,8

16
,0

16
,0

10
0,
0

2,
9

0,
7

1,
1

2,
6

0,
0

8,
8

2,
2

2,
2

6,
0

0,
6

4,
0

13
,1

3,
3

0,
6

9
0,
3

88
,0

16
,0

16
,0

10
0,
0

1,
6

0,
4

0,
7

1,
6

0,
0

8,
0

2,
0

2,
2

5,
7

0,
6

4,
0

13
,2

3,
3

0,
7

10
0,
3

79
,7

14
,0

13
,0

92
,9

12
,7

2,
1

0,
7

3,
3

1,
1

5,
9

1,
0

0,
7

2,
6

0,
6

6,
0

19
,6

3,
3

0,
6

11
0,
3

87
,2

16
,0

13
,0

81
,3

4,
5

1,
1

1,
1

2,
6

0,
0

5,
7

1,
4

1,
3

3,
6

0,
7

4,
0

12
,7

3,
2

0,
4

12
0,
3

82
,6

16
,0

15
,0

93
,8

1,
4

0,
3

0,
3

0,
8

0,
0

6,
3

1,
6

1,
3

3,
8

0,
6

4,
0

13
,0

3,
3

0,
7

13
0,
3

77
,4

16
,0

16
,0

10
0,
0

0,
1

0,
0

0,
0

0,
0

0,
0

7,
2

1,
8

1,
8

4,
9

0,
6

4,
0

13
,0

3,
2

0,
7

14
0,
4

86
,3

17
,0

16
,0

94
,1

5,
2

1,
3

1,
2

2,
7

0,
0

3,
2

0,
8

0,
2

1,
2

0,
7

4,
0

13
,2

3,
3

0,
7

15
0,
3

85
,7

16
,0

16
,0

10
0,
0

0,
1

0,
0

0,
0

0,
0

0,
0

6,
7

1,
7

1,
2

3,
7

0,
6

4,
0

13
,1

3,
3

0,
6

16
0,
3

88
,1

16
,0

16
,0

10
0,
0

1,
0

0,
3

0,
4

1,
0

0,
0

5,
4

1,
4

1,
1

3,
3

0,
6

4,
0

13
,1

3,
3

0,
7

17
0,
4

86
,9

16
,0

16
,0

10
0,
0

0,
8

0,
2

0,
3

0,
6

0,
0

6,
7

1,
7

1,
2

3,
5

0,
6

4,
0

13
,0

3,
3

0,
7

18
0,
3

76
,5

16
,0

16
,0

10
0,
0

0,
7

0,
2

0,
3

0,
6

0,
0

4,
7

1,
2

0,
8

2,
6

0,
6

4,
0

12
,9

3,
2

0,
7

19
0,
2

80
,6

16
,0

16
,0

10
0,
0

1,
3

0,
3

0,
5

1,
3

0,
0

4,
4

1,
1

0,
6

2,
1

0,
6

4,
0

13
,2

3,
3

0,
7

20
0,
3

86
,0

16
,0

16
,0

10
0,
0

5,
9

1,
5

1,
3

3,
0

0,
0

4,
0

1,
0

0,
6

2,
0

0,
6

4,
0

13
,2

3,
3

0,
6

21
0,
3

78
,6

16
,0

16
,0

10
0,
0

0,
8

0,
2

0,
3

0,
8

0,
0

4,
2

1,
1

0,
7

2,
3

0,
6

4,
0

13
,1

3,
3

0,
6

22
0,
3

84
,7

16
,0

16
,0

10
0,
0

5,
9

1,
5

0,
8

2,
4

0,
1

6,
7

1,
7

1,
8

4,
8

0,
6

4,
0

13
,1

3,
3

0,
7

23
0,
3

83
,9

16
,0

16
,0

10
0,
0

0,
1

0,
0

0,
0

0,
0

0,
0

7,
0

1,
8

1,
1

3,
2

0,
6

4,
0

13
,1

3,
3

0,
6

24
0,
4

76
,4

16
,0

16
,0

10
0,
0

3,
3

0,
8

0,
6

1,
8

0,
0

3,
6

0,
9

0,
3

1,
5

0,
7

4,
0

13
,0

3,
3

0,
6

25
0,
3

87
,4

16
,0

16
,0

10
0,
0

3,
5

0,
9

1,
5

3,
4

0,
0

9,
0

2,
2

1,
8

5,
0

0,
7

4,
0

13
,1

3,
3

0,
7
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N
°

S4
M
19

S4
M
20

S4
M
21

S4
M
22

S4
M
23

S4
M
24

S4
M
25

S4
M
26

S4
M
27

S4
M
28

S4
M
29

S4
M
30

S4
M
31

S4
M
32

S5
M
1

S5
M
2

S5
M
3

S5
M
4

S5
M
5

1
3,3

2,7
16,0

67,0
4,2

1,1
6,6

2,6
29,0

10,8
0,2

1,6
0,7

0,4
67,9

12,0
9,0

75,0
6,7

2
4,3

2,6
14,0

58,4
4,2

1,3
7,6

2,3
31,1

8,3
0,2

1,4
0,6

0,3
89,1

17,0
17,0

100,0
8,5

3
4,3

2,7
14,0

57,6
4,1

1,3
7,6

2,7
29,1

9,0
0,3

1,0
0,6

0,2
88,9

17,0
17,0

100,0
11,6

4
4,4

2,7
14,0

52,8
3,8

0,8
5,6

2,5
27,0

9,8
0,3

1,7
0,7

0,4
95,6

17,0
17,0

100,0
8,0

5
4,3

2,7
14,0

56,0
4,0

0,9
5,7

2,5
29,8

7,2
0,2

0,8
0,5

0,2
93,0

17,0
17,0

100,0
9,1

6
4,3

2,7
14,0

57,2
4,1

1,0
5,7

2,7
27,4

8,3
0,2

0,7
0,6

0,2
90,3

17,0
17,0

100,0
8,1

7
4,3

2,7
14,0

63,9
4,6

1,3
7,2

3,0
29,5

7,3
0,1

0,7
0,5

0,2
65,0

12,0
9,0

75,0
3,3

8
4,3

2,7
14,0

54,2
3,9

1,2
7,7

2,3
28,3

7,7
0,1

0,7
0,6

0,2
89,9

17,0
17,0

100,0
10,2

9
4,4

2,7
14,0

64,5
4,6

1,3
7,2

3,0
33,3

8,6
0,1

1,9
0,6

0,4
97,7

17,0
17,0

100,0
10,2

10
4,2

2,6
12,0

52,5
4,4

1,4
6,4

2,6
34,7

7,9
0,2

1,9
0,7

0,4
87,0

17,0
17,0

100,0
7,0

11
3,7

2,7
14,0

61,6
4,4

1,0
6,3

3,3
34,1

9,3
0,2

1,4
0,7

0,3
88,2

17,0
17,0

100,0
10,2

12
4,4

2,6
14,0

59,3
4,2

1,3
6,7

2,8
28,4

9,5
0,1

1,9
0,7

0,4
90,6

17,0
17,0

100,0
8,3

13
4,3

2,6
14,0

57,2
4,1

1,0
6,3

2,6
25,9

7,0
0,1

0,7
0,5

0,2
97,9

18,0
18,0

100,0
11,7

14
4,4

2,7
14,0

59,0
4,2

1,2
6,9

2,7
31,8

8,2
0,2

1,1
0,6

0,2
80,9

15,0
14,0

93,3
9,9

15
4,3

2,7
14,0

64,3
4,6

1,0
7,4

3,0
29,0

8,4
0,2

0,9
0,6

0,2
104,0

17,0
17,0

100,0
7,0

16
4,4

2,6
14,0

61,9
4,4

1,3
7,6

2,8
34,0

12,2
0,2

5,4
0,9

1,3
88,7

17,0
17,0

100,0
10,2

17
4,3

2,6
14,0

61,6
4,4

1,5
7,2

2,8
32,3

11,3
0,1

4,3
0,8

1,0
100,4

17,0
17,0

100,0
10,1

18
4,3

2,6
14,0

53,6
3,8

1,1
6,7

2,0
29,8

9,0
0,2

1,7
0,6

0,3
92,0

17,0
17,0

100,0
9,5

19
4,3

2,7
14,0

59,3
4,2

1,0
6,1

2,6
29,5

7,1
0,1

0,8
0,5

0,2
81,7

15,0
14,0

93,3
9,3

20
4,3

2,7
14,0

62,0
4,4

1,4
7,7

3,2
28,3

7,0
0,1

0,7
0,5

0,2
95,9

17,0
17,0

100,0
9,1

21
4,3

2,7
14,0

54,4
3,9

0,7
5,6

2,9
28,7

10,0
0,2

2,1
0,7

0,5
65,4

11,0
9,0

81,8
7,4

22
4,3

2,7
14,0

59,9
4,3

1,4
7,9

2,6
28,8

6,9
0,1

0,8
0,5

0,2
89,0

17,0
17,0

100,0
8,8

23
4,3

2,7
14,0

61,9
4,4

1,3
6,6

2,4
30,7

8,5
0,2

1,1
0,6

0,2
90,0

17,0
17,0

100,0
9,0

24
4,3

2,7
14,0

53,0
3,8

0,7
5,8

3,0
27,2

8,3
0,2

1,1
0,6

0,2
92,2

17,0
17,0

100,0
10,2

25
4,4

2,7
14,0

61,7
4,4

1,2
6,5

2,6
32,5

9,0
0,2

1,3
0,6

0,2
91,5

17,0
17,0

100,0
8,1
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N
°

S5 M
6

S5 M
7

S5 M
8

S5 M
9

S5 M
10

S5 M
11

S5 M
12

S5 M
13

S5 M
14

S5 M
15

S5 M
16

S5 M
17

S5 M
18

S5 M
19

S5 M
20

S5 M
21

S5 M
22

S5 M
23

S5 M
24

1
0,
7

0,
5

2,
0

0,
1

19
,1

1,
9

1,
4

5,
1

0,
6

10
,0

32
,7

3,
3

0,
6

4,
3

2,
6

10
,0

40
,1

4,
0

1,
0

2
0,
5

0,
2

1,
1

0,
4

7,
6

1,
9

1,
2

3,
8

0,
6

4,
0

12
,6

3,
2

0,
6

4,
1

2,
6

16
,0

61
,6

3,
8

0,
7

3
0,
7

0,
6

2,
4

0,
4

7,
7

1,
9

1,
4

4,
3

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

61
,8

3,
9

0,
8

4
0,
5

0,
5

2,
4

0,
0

9,
2

2,
3

1,
4

4,
3

0,
6

4,
0

12
,9

3,
2

0,
7

4,
2

2,
6

16
,0

69
,3

4,
3

1,
4

5
0,
5

0,
6

3,
0

0,
0

8,
7

2,
2

0,
9

3,
0

0,
7

4,
0

12
,9

3,
2

0,
6

4,
2

2,
6

16
,0

68
,6

4,
3

1,
1

6
0,
5

0,
2

1,
2

0,
4

8,
6

2,
2

1,
8

5,
1

0,
7

4,
0

12
,9

3,
2

0,
6

4,
2

2,
6

16
,0

66
,6

4,
2

1,
5

7
0,
3

0,
7

2,
5

0,
0

19
,0

1,
9

1,
1

3,
6

0,
7

10
,0

32
,8

3,
3

0,
6

4,
4

2,
6

10
,0

39
,7

4,
0

0,
9

8
0,
6

0,
8

3,
8

0,
0

6,
7

1,
7

0,
7

2,
4

0,
7

4,
0

12
,9

3,
2

0,
7

4,
3

2,
6

16
,0

63
,0

3,
9

0,
8

9
0,
6

0,
5

2,
5

0,
2

8,
4

2,
1

1,
2

4,
1

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

71
,2

4,
4

1,
4

10
0,
4

0,
3

1,
5

0,
0

10
,2

2,
6

2,
0

5,
1

0,
6

4,
0

12
,7

3,
2

0,
6

4,
1

2,
6

16
,0

62
,6

3,
9

1,
0

11
0,
6

0,
6

3,
1

0,
1

8,
0

2,
0

1,
7

4,
9

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

61
,7

3,
9

1,
0

12
0,
5

0,
6

2,
9

0,
0

6,
8

1,
7

0,
8

2,
6

0,
7

4,
0

12
,9

3,
2

0,
7

4,
2

2,
6

16
,0

66
,8

4,
2

1,
1

13
0,
7

0,
8

3,
2

0,
0

6,
3

1,
6

1,
2

3,
5

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

66
,3

4,
1

1,
2

14
0,
7

0,
8

2,
9

0,
0

11
,3

1,
9

1,
0

3,
2

0,
6

6,
0

19
,1

3,
2

0,
5

4,
2

2,
7

14
,0

52
,3

3,
7

0,
9

15
0,
4

0,
5

2,
4

0,
0

10
,1

2,
5

1,
7

5,
2

0,
7

4,
0

12
,9

3,
2

0,
6

4,
2

2,
7

16
,0

75
,1

4,
7

1,
8

16
0,
6

0,
8

3,
6

0,
0

7,
4

1,
8

1,
5

4,
4

0,
6

4,
0

12
,7

3,
2

0,
7

4,
2

2,
6

16
,0

63
,0

3,
9

1,
3

17
0,
7

1,
2

5,
2

0,
0

9,
3

2,
3

1,
2

3,
7

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

64
,8

4,
1

1,
4

18
0,
6

0,
7

3,
2

0,
0

9,
8

2,
4

1,
7

5,
2

0,
6

4,
0

12
,9

3,
2

0,
6

4,
2

2,
6

16
,0

66
,7

4,
2

1,
2

19
0,
6

0,
7

2,
5

0,
0

15
,2

2,
5

1,
9

6,
2

0,
7

6,
0

19
,1

3,
2

0,
5

4,
2

2,
7

14
,0

54
,7

3,
9

1,
3

20
0,
5

0,
3

1,
4

0,
1

9,
5

2,
4

1,
2

3,
9

0,
7

4,
0

13
,0

3,
2

0,
6

4,
2

2,
7

16
,0

70
,0

4,
4

1,
3

21
0,
8

1,
1

3,
1

0,
0

16
,6

2,
1

1,
4

5,
4

0,
6

8,
0

26
,0

3,
3

0,
6

4,
3

2,
6

10
,0

39
,2

3,
9

1,
0

22
0,
5

0,
5

2,
3

0,
0

10
,2

2,
6

1,
4

4,
4

0,
7

4,
0

12
,9

3,
2

0,
6

4,
3

2,
6

16
,0

63
,6

4,
0

0,
9

23
0,
5

0,
8

3,
8

0,
0

6,
8

1,
7

1,
1

3,
1

0,
7

4,
0

12
,8

3,
2

0,
6

4,
2

2,
6

16
,0

65
,2

4,
1

1,
3

24
0,
6

0,
4

1,
7

0,
4

7,
8

1,
9

2,
0

5,
3

0,
6

4,
0

12
,9

3,
2

0,
7

4,
3

2,
6

16
,0

65
,6

4,
1

1,
2

25
0,
5

0,
4

1,
6

0,
0

5,
1

1,
3

0,
5

1,
9

0,
6

4,
0

12
,8

3,
2

0,
7

4,
2

2,
6

16
,0

68
,6

4,
3

1,
9

Ta
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N
°

S5
M
25

S5
M
26

S5
M
27

S5
M
28

S5
M
29

S5
M
30

S5
M
31

S5
M
32

S6
M
1

S6
M
2

S6
M
3

S6
M
4

S6
M
5

S6
M
6

S6
M
7

S6
M
8

S6
M
9

S6
M
10

S6
M
11

S6
M
12

1
6,1

2,9
21,9

5,7
0,0

0,7
0,5

0,2
53,0

10,0
9,0

90,0
7,2

0,9
0,9

2,9
0,0

9,8
1,2

0,7
2

5,0
2,7

23,1
8,9

0,0
0,8

0,5
0,2

59,2
11,0

11,0
100,0

11,8
1,2

1,0
2,7

0,0
11,3

1,1
0,7

3
5,5

2,9
24,0

9,1
0,0

0,7
0,5

0,2
65,9

11,0
11,0

100,0
20,5

2,1
2,0

5,7
0,0

7,8
0,8

0,2
4

8,2
3,0

21,8
11,8

0,0
1,3

0,7
0,3

62,8
11,0

11,0
100,0

11,8
1,2

2,3
7,7

0,0
11,7

1,2
1,0

5
6,9

2,9
21,8

8,8
0,0

0,7
0,5

0,2
54,8

11,0
11,0

100,0
2,3

0,2
0,2

0,7
0,0

15,1
1,5

1,2
6

8,1
2,6

22,4
8,5

0,0
0,7

0,5
0,2

67,4
13,0

9,0
69,2

8,5
0,9

1,1
3,5

0,0
8,1

1,0
0,8

7
5,8

2,8
17,6

6,7
0,0

1,5
0,6

0,4
60,5

11,0
11,0

100,0
11,2

1,1
1,6

4,4
0,0

11,0
1,1

0,7
8

5,6
2,7

20,3
10,2

0,0
1,3

0,6
0,3

85,9
17,0

11,0
64,7

6,3
0,9

1,3
3,7

0,0
7,3

1,2
0,8

9
7,8

2,8
24,2

9,6
0,0

1,4
0,6

0,4
54,5

11,0
11,0

100,0
6,6

0,7
0,4

1,2
0,0

10,4
1,0

0,7
10

6,2
2,6

22,7
10,9

0,0
1,7

0,6
0,4

64,9
13,0

10,0
76,9

2,5
0,3

0,6
1,7

0,0
12,2

1,5
1,0

11
6,0

2,8
22,1

9,7
0,0

1,3
0,6

0,3
65,9

12,0
11,0

91,7
8,8

0,9
1,0

3,3
0,0

15,9
1,6

1,6
12

6,4
2,7

19,2
9,2

0,0
1,0

0,5
0,2

59,2
11,0

11,0
100,0

9,4
0,9

1,1
3,3

0,0
10,6

1,1
0,7

13
6,7

2,7
26,3

9,2
0,0

1,0
0,5

0,3
76,0

13,0
12,0

92,3
6,3

0,6
1,2

3,4
0,0

23,3
2,3

1,8
14

5,8
2,4

19,8
8,5

0,0
1,6

0,6
0,3

70,0
14,0

11,0
78,6

13,4
1,7

2,1
5,1

0,0
8,2

1,0
0,7

15
9,1

2,4
22,5

9,7
0,0

1,3
0,6

0,3
58,2

11,0
11,0

100,0
5,4

0,5
0,8

2,5
0,0

15,4
1,5

1,1
16

6,7
2,5

20,9
9,0

0,0
0,7

0,5
0,2

64,3
12,0

9,0
75,0

7,6
0,9

1,2
3,7

0,0
9,1

1,1
0,9

17
8,0

2,6
26,6

9,1
0,0

0,9
0,5

0,2
66,3

13,0
8,0

61,5
0,5

0,1
0,2

0,4
0,0

7,8
1,3

0,6
18

7,0
2,7

23,1
9,5

0,0
1,4

0,6
0,3

54,0
11,0

11,0
100,0

3,7
0,4

0,7
2,3

0,0
13,4

1,3
0,7

19
7,7

2,6
20,6

8,3
0,0

0,7
0,6

0,2
75,4

13,0
11,0

84,6
16,2

1,6
2,9

8,2
0,0

11,4
1,1

0,6
20

7,6
2,8

24,7
10,1

0,0
1,4

0,6
0,3

66,7
13,0

11,0
84,6

9,5
1,0

1,3
3,8

0,0
8,9

0,9
0,5

21
6,7

3,0
19,4

5,7
0,0

0,7
0,5

0,2
69,3

13,0
10,0

76,9
7,6

0,9
1,1

3,2
0,0

12,1
1,5

1,6
22

5,5
2,7

24,0
10,0

0,0
0,8

0,6
0,2

69,1
13,0

10,0
76,9

8,1
1,0

1,0
2,4

0,0
10,3

1,3
1,1

23
7,1

2,3
19,1

9,0
0,0

0,7
0,5

0,2
62,9

12,0
11,0

91,7
5,2

0,5
1,0

3,4
0,0

13,4
1,3

1,0
24

5,9
2,1

23,5
9,6

0,0
1,3

0,6
0,3

60,4
11,0

11,0
100,0

13,9
1,4

1,1
3,4

0,0
8,6

0,9
0,6

25
8,1

2,2
18,4

8,2
0,0

0,8
0,5

0,2
89,5

16,0
10,0

62,5
4,0

0,7
0,8

1,9
0,0

8,6
1,4

0,8

Table
A
.16:

Execution
m
etrics

-Part
9/10



A.7. PeRDITA questionnaire 217

N
°

S6 M
13

S6 M
14

S6 M
15

S6 M
16

S6 M
17

S6 M
18

S6 M
19

S6 M
20

S6 M
21

S6 M
22

S6 M
23

S6 M
24

S6 M
25

S6 M
26

S6 M
27

S6 M
28

S6 M
29

S6 M
30

S6 M
31

S6 M
32

1
2,
6

0,
6

8,
0

26
,3

3,
3

0,
6

4,
3

2,
6

8,
0

32
,3

4,
0

1,
7

6,
7

1,
5

53
,0

6,
8

0,
2

3,
4

0,
9

1,
0

2
2,
8

0,
6

10
,0

32
,7

3,
3

0,
5

4,
3

2,
6

8,
0

34
,1

4,
3

1,
2

6,
0

2,
8

59
,2

4,
9

0,
4

0,
9

0,
6

0,
2

3
1,
3

0,
6

10
,0

33
,2

3,
3

0,
5

4,
3

2,
6

8,
0

32
,2

4,
0

0,
7

4,
9

3,
2

65
,9

4,
9

0,
2

0,
7

0,
6

0,
2

4
4,
2

0,
6

10
,0

35
,1

3,
5

0,
6

4,
6

2,
9

8,
0

32
,5

4,
1

1,
9

7,
7

0,
5

62
,8

6,
6

0,
2

2,
9

0,
8

0,
8

5
4,
7

0,
6

10
,0

33
,2

3,
3

0,
5

4,
3

2,
7

8,
0

30
,6

3,
8

1,
3

6,
8

2,
2

54
,8

5,
0

0,
4

0,
7

0,
6

0,
1

6
3,
2

0,
6

8,
0

26
,8

3,
3

0,
6

4,
3

2,
6

10
,0

41
,3

4,
1

1,
1

6,
5

2,
9

67
,4

6,
1

0,
1

1,
2

0,
6

0,
3

7
3,
0

0,
6

10
,0

32
,8

3,
3

0,
5

4,
3

2,
6

8,
0

30
,6

3,
8

0,
9

5,
7

2,
8

60
,5

5,
4

0,
6

0,
8

0,
7

0,
1

8
2,
9

0,
6

6,
0

19
,8

3,
3

0,
5

4,
3

2,
6

14
,0

53
,5

3,
8

1,
1

6,
5

2,
7

85
,9

8,
1

0,
2

1,
0

0,
6

0,
2

9
3,
1

0,
6

10
,0

33
,1

3,
3

0,
5

4,
3

2,
6

8,
0

31
,7

4,
0

1,
1

6,
5

2,
8

54
,5

4,
3

0,
3

0,
7

0,
5

0,
1

10
3,
8

0,
6

8,
0

26
,8

3,
4

0,
6

4,
3

2,
6

10
,0

39
,5

3,
9

1,
0

6,
2

2,
9

64
,9

5,
8

0,
1

0,
7

0,
6

0,
2

11
5,
7

0,
6

10
,0

33
,0

3,
3

0,
5

4,
3

2,
6

8,
0

33
,4

4,
2

1,
2

7,
0

3,
2

65
,9

5,
4

0,
2

1,
6

0,
7

0,
4

12
2,
7

0,
6

10
,0

33
,0

3,
3

0,
5

4,
3

2,
6

8,
0

34
,1

4,
3

1,
3

6,
7

2,
5

59
,2

4,
0

0,
1

0,
7

0,
5

0,
2

13
5,
8

0,
6

10
,0

32
,6

3,
3

0,
4

4,
1

2,
6

10
,0

47
,2

4,
7

1,
6

8,
3

2,
6

76
,0

7,
0

0,
5

1,
2

0,
7

0,
2

14
2,
8

0,
6

8,
0

27
,0

3,
4

0,
6

4,
3

2,
6

10
,0

37
,7

3,
8

1,
3

7,
4

2,
9

70
,0

6,
7

0,
6

0,
8

0,
7

0,
0

15
3,
8

0,
6

10
,0

33
,1

3,
3

0,
5

4,
3

2,
6

8,
0

32
,3

4,
0

1,
3

7,
1

2,
7

58
,2

4,
8

0,
2

0,
7

0,
6

0,
2

16
3,
4

0,
6

8,
0

26
,9

3,
4

0,
6

4,
2

2,
6

10
,0

40
,1

4,
0

1,
0

6,
5

3,
0

64
,3

5,
9

0,
1

1,
0

0,
6

0,
3

17
2,
4

0,
7

6,
0

20
,0

3,
3

0,
7

4,
3

2,
6

10
,0

43
,8

4,
4

1,
7

8,
1

3,
0

66
,3

5,
3

0,
2

1,
0

0,
5

0,
2

18
2,
7

0,
6

10
,0

33
,2

3,
3

0,
5

4,
3

2,
6

8,
0

31
,2

3,
9

0,
5

4,
8

3,
1

54
,0

4,
5

0,
2

0,
7

0,
6

0,
2

19
2,
2

0,
6

10
,0

33
,4

3,
3

0,
5

4,
3

2,
6

10
,0

39
,1

3,
9

0,
9

5,
7

2,
8

75
,4

4,
9
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1

0,
7

0,
5

0,
2

20
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9
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6
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33
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4
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5
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4
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7
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2
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8

66
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4

0,
2

0,
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0,
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2
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3

0,
6

8,
0

26
,9

3,
4

0,
6

4,
3

2,
6

10
,0

39
,4

3,
9

1,
2

6,
8

2,
5

69
,3

5,
7

0,
2

1,
6

0,
6

0,
4

22
3,
7

0,
6

8,
0

27
,0

3,
4

0,
6

4,
3

2,
6

10
,0

38
,9

3,
9

0,
7

5,
2

3,
2

69
,1

5,
4

0,
2

0,
7

0,
5

0,
2

23
3,
8

0,
6

10
,0

32
,9

3,
3

0,
5

4,
3

2,
6

8,
0

33
,5

4,
2

1,
1

6,
2

3,
0

62
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4,
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0,
3

0,
7

0,
6

0,
2
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2,
6

0,
6

10
,0

33
,3

3,
3

0,
5

4,
3

2,
7

8,
0

33
,6

4,
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0,
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3,
2
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4
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0,
1
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6
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0

19
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0,
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,0
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4,
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6,
1

3,
0
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0,
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0,
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e
A
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ec
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n
m
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s
-P
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t
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ID
C
om

m
ents

1
Q
uand

robot
défie

notre
logique

perturbant
et

frustant.
G
lobalem

ent
bien

aim
é.

N
otion

de
hierarchie,en

fonction
de

la
tâche

(notam
m
ent

sim
ple)

on
se

supérieur
(on

sait
m
ieux

faire)
et

donc
le

robot
doit

nous
suivre.

(2)
bien

pour
tâche

au
+

vite
car

va
vite

m
ais

m
oins

bien
pour

être
lib,dépend

de
la

tâche,pire
(4)

2
R
F
est

bien
m
ais

les
m
auvais

choix
sont

pénible,frustrant,ilne
concidère

pas
m
on

objectif/preferences.
C
ependant

il
s’adapte

quand
m
êm

e
une

fois
l’action

faite.
(2)

R
F
trop

cool,va
+

vite
pour

faire
la

tâche
m
ais

m
arche

pas
bien

pour
lib.

H
F
est

plus
effi

cace
en

fonction
de

l’objectif.
pire

(4)

3

C
hrono

T
O

stressant.
ne

pas
pouvoir

prendre
les

cubes
à
l’avance

n’est
pas

naturel,pertubant
et

rend
un

peu
com

pliqué
m
ais

devient
sim

ple
une

fois
habitué.

Son
de

fin
de

tâche.
Se

sent
obligé

de
faire

quelque
chose

à
chaque

étape,et
donc

m
em

e
en

R
F
clique

sur
la

m
ain

pour
confirm

er
que

je
seraipassif.

R
appeller

à
la

fin
de

tache
le

regim
e
et

obj.
(5)

et
(1)

H
F
pour

finir
la

tâche
une

fois
habitué

va
relativem

ent
vite

et
fluide.

H
F
pour

etre
libéré

aussi,apres
rien

a
faire.

4

Bon
m
om

ent,C
lair

preference
pour

H
F.R

F
est

une
catastrophe.

En
R
F
on

n’a
pas

vraim
ent

son
m
ot

à
dire.

En
plus,quand

R
F
com

m
ence

à
faire

une
erreur

on
est

plus
concentré

à
l’em

pecher
de

continuer
à
faire

des
erreurs

plutot
que

sur
la

tâche,très
frustant.

M
em

e
quand

R
F
fait

bon
choix

on
se

sent
obligé

de
l’ecouter

et
im

puissant.(5)
H
F
et

lib,car
fluide

en
controle

et
j’aipu

atteindre
m
on

objectif.
Pire

(6)

5

Intuitif,m
arche

bien,effi
cace.

Etre
libere

un
peu

frustant
car

on
a
envie

d’agir,regarder
le

robot
faire

etre
penible..

Sol:
D
onner

une
tache

auxiliaire
à
l’hum

ain
a
faire

uniquem
ent

quand
se

désengage
de

la
tache

principale
?

(3)
H
F
et

tache
w
rong.

C
ar

H
agit

le
plus,R

agit
seulem

ent
quand

necessaire.
D
e
plus,le

robot
s’adapte.

Ila
anticipé

sijam
ais

je
ne

prend
pas

le
bleu

en
prenant

le
vert,m

ais
une

fois
qu’ilm

’a
vu

prendre
le

bleu
iln’a

pas
pris

le
sien.

pire
(4)

6
G
lobalem

ent
positif.

A
uraiaim

é
que

le
robot

donne
plus

d’indication,guide
plus

les
actions.

(2)
vif,m

ieux
pour

la
tache,m

ais
m
oins

prévisible.
(1)

bien
aussim

ais
plus

lent/passif.
pire

le
(6)

7
C
ertain

scenario
vraim

ent
contraignant

et
frustant.

U
iliser

ressource
com

m
une

en
1er

est
vraim

ent
un

m
auvaix

choix.
G
lobalem

ent
ok.

2
effi

cace
une

fois
com

pris.
Faire

la
dernière

action
est

gratifiant,donc
que

le
robot

s’adapte
pour

le
perm

ettre
s’est

positif.Preféré
(2),rapide

et
bon

choix,pire
4

Table
A
.18:

C
om

m
ents

from
participants

given
after

the
experim

ent.
Part

1/3
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ID
C
om

m
en
ts

8

Pa
rfo

is
fru

st
an

t
a
ca
us
e
de
s
m
au

va
is

ch
oi
x
du

ro
bo

t.
Le

s
ac
tio

ns
so
nt

"r
ig
id
e"
,p

as
na

tu
re
l(
at
tr
ap

er
cu
be

bl
eu

so
us

ve
rt
,l
e
fa
isa

nt
"t
om

be
r"

le
ve
rt
).

Bi
en

da
ns

l’e
ns
em

bl
e,

le
fa
it
qu

e
ch
ac
un

ai
sa

pa
rt

re
nd

la
co
lla

bo
ra
tio

n
pe

rt
in
en
te

et
ut
ile

.
Je

pr
ef
èr
e
qu

e
la

pr
io
rit

é
de
s
ch
oi
x
et

ac
tio

ns
so
it
à
l’h

um
ai
n.

(3
)
ca
r
s’a

da
pt
e
à
ce

qu
e
je

fa
is

et
c’
es
t
cl
ai
r.

Pi
re

(4
)
un

m
au

va
is

ch
oi
x
du

ro
bo

t
a
im

pl
iq
ué

un
m
au

va
is

ch
oi
x
de

m
a
pa

rt
,f
ru
st
ra
nt

(1
)
sim

pl
em

en
t
fru

st
ra
nt
,l
e
ro
bo

t
se
m
bl
e
co
nt
re

m
oi
.

9
R
F
pa

s
effi

ca
ce
,m

ai
s
fo
llo

w
es
t
pl
us

sim
pl
e,

m
oi
ns

co
m
pl
iq
ué
.
H
F
m
ie
ux

m
ai
s
pa

rfo
is

in
co
hé
re
nt

(b
ar
re

ro
se
).

(1
)
es
t

le
pl
us

sa
tis

fa
isa

nt
.
(4
)
es
t
le

pi
re

10

ne
pa

s
po

uv
oi
r
at
tr
ap

er
en

av
an

ce
un

pe
u
ag
aç
an

t.
Le

fa
it
de

de
vo
ir

re
ga
rd
er

le
bu

t
à
ga
uc
he

+
la

sc
èn
e
+

lir
e
le

pr
om

pt
te
xt

un
pe

u
co
m
pl
ex

=
>
m
ie
ux

si
ro
bo

t
di
t
qu

oi
fa
ire

.P
re
fè
re

qu
an

d
le

ro
bo

t
es
t
"p
as
sif
",
da

ns
le

se
ns

fo
llo

we
r.

Q
ue

le
ro
bo

t
at
te
nd

e
qu

’o
n
de
ci
de

pu
is

ag
iss

es
.
N
’a
im

e
pa

s
qu

an
d
le

ro
bo

t
"p
re
nd

de
s
in
iti
at
iv
es
"c

ar
po

ss
ib
le

m
au

va
is

ch
oi
x:

vo
le

le
s
cu
be

s
tr
ès

ag
aç
an

t..
+

pr
en
d
cu
be

co
m
m
un

en
1e
r.

Pr
ef

1
Pi
re

4

11
Bo

nn
e
sim

u,
cl
ai
re
.
M
vt

on
t
l’a

ir
ré
el

ta
ch
e
cl
ai
re

et
gl
ob

al
em

en
t
se

pa
ss
e
bi
en
.
Le

s
st
ep
s
ca
de
ns
e
bi
en
,p

ra
tiq

ue
M
ei
lle

ur
(1
)
pi
re

(4
)

12
Te

m
ps

d’
at
te
nt
e
(s
te
p)

fru
st
ra
nt
.
Se
ra
it
bi
en

de
po

uv
oi
r
pr
en
dr
e
av
an

t
po

ur
in
di
qu

er
in
te
nt
io
n,

do
nn

er
in
fo
.
H
F
+

in
te
re
ss
an

t
+

de
co
nt
ro
l,
-e

ffi
ca
ce

m
ai
s
-f
ru
st
ra
nt
,-

im
pr
ev
u
et

do
nc

de
m
au

va
is

ch
oi
x.
(+

)
1
(-
)
6
ca
r
on

es
t

ob
lig

é
de

re
po

se
r
le

cu
be

.

13
In
te
ra
ct
io
n
sim

pl
e,

co
m
m
e
un

je
u
vi
de
o.

Le
s
m
au

va
is

ch
oi
x
du

ro
bo

t
so
nt

as
se
z
fru

st
ra
nt
.
Si
m
pl
e
et

pl
ai
sa
nt
.(+

)
3
ca
r

s’e
st

bi
en

ad
ap

té
m
al
gr
é
er
re
ur

hu
m
ai
ne

(-
)
4
ca
r
vo
le

le
s
cu
be

s

14
Tr

es
bi
en

da
ns

l’e
ns
em

bl
e.

G
én
é
pa

r
l’a

ffi
ch
ag
e,

du
m
al

à
lir
e.

C
er
ta
in

sc
en
ar
io

effi
ca
ce

d’
au

tr
e
no

n.
Si
m
pl
e,

sa
uf

le
ct
ur
e/
te
xt
e.

(+
)
5
fin

ir
ap

id
em

en
t,
do

ub
le

sa
tis

fa
ct
io
n
de

fin
ir

sa
pa

rt
vi
tr
e
pu

is
vo
ir

la
pi
le

fin
ip

ar
le

ro
bo

t
(-
)
6
de
go
ut
é,

fru
st
ra
nt

15
Bi
en
,a

vo
lé

2
fo
is

le
s
cu
be

s,
pa

s
ag
ré
ab

le
.
H
F
+

fa
ci
le
.(+

)
2
(-
)
4,

3

16
Si
m
pl
e,

ag
ré
ab

le
.
Le

m
an

qu
e
de

co
lli
sio

n
av
ec

cu
be

ré
du

it
le

ré
al
ism

e
m
ai
s
ok

.
U
n
pe

u
co
nf
u/

pe
rt
ub

an
t
et

un
pe

u
fru

st
ra
nt

de
de
vo

ir
at
te
nd

re
qu

e
ro
bo

t
fin

iss
e
ac
tio

n
av
an

t
d’
ag
ir

à
no

uv
ea
u.
(+

)
2,

R
F
ca
r
ra
pi
de

(-
)
6

Ta
bl
e
A
.1
9:

C
om

m
en
ts

fro
m

pa
rt
ic
ip
an

ts
gi
ve
n
af
te
r
th
e
ex
pe

rim
en
t.

Pa
rt

2/
3
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ID
C
om

m
ents

17
certain

scenario
ok

=
>
c’est

plutot
H

quia
m
alagit,2

sce
avec

m
auvais

choix
de

R
.H

F/R
F
pas

tellem
ent

choix
!=

(-)
6
R
F
etre

lib
(+

)
2

18
pas

pouvoir
prendre

cube
en

avance
frustrant.

En
R
F,R

devient
prévisiblem

ent
génant,on

prévoit
et

réfléchipour
s’adapter

et
anticiper

m
auvais

choix
(defensif).

H
F
m
ieux.(+

)
H
F
tache

plus
vite,plus

interessant
que

lib
rapidem

ent,
ennuyeux.

(-)
4,R

im
prévisible,devient

ennem
i

19
G
lobalem

ent
ok

reagit
bien,com

prend
bien

ce
que

je
faisait

(pink),avant
dernier

tres
frustrant,vole

les
cubes..

Sinon
bien

passé
(+

)
2
(-)

4

20
Sim

u
claire,voit

bien
le

R
et

quand
ilagit,interaction

bonne
et

claire,4
m
auvais

m
ais

globalem
ent

benefique
interaction.

Prefau
quotidien

laisser
R

faire
les

tache
chronophage,donc

bien
aim

é
objlib

au
plus

vite.(+
)
5
puis

2
(-)

4
21

R
prévisible

cool,on
peut

preshot
et

anticiper.
(+

)
1
3
(-)

4

22
Sym

pa,sim
u
bien

faite.
interactif,on

est
pris

dedans
et

acteur.
Beaucoup

d’ém
otion

déjà
(satisfaction

/
frustration)

donc
sic’était

une
tache

plus
concrete

ça
serait

encore
plus

frustrant.(+
)
1
3
(-)

4

23
Sim

u
bien

faite,s’im
agine

bien
interaction.

A
u
debut

un
peu

confu
diff

entre
H
F/R

F
puis

ok.
C
onfusion

cube
blanc

et
gris(+

)
aucun

(-)
6

24
Interessant,jam

ais
une

gène,interaction
am

usante,sym
pa

de
prédire

R
A
(+

)
1,3

(-)
6

25
H
F
ok,qd

R
F
on

peut
rien

faire.
Sim

ulation
m
oins

naturelle,pas
parfaitem

ent
réaliste.

N
otion

etape/synchronisation
perturbant

un
peu

(+
)
5
H
F
lib

(-)
4

Table
A
.20:

C
om

m
ents

from
participants

given
after

the
experim

ent.
Part

3/3
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S1 S2 S3 S4 S5 S6
Times preferred

the most 9 7 3 0 5 0

Times preferred
the least 0 0 0 16 0 9

Table A.21: Number of times each scenario has been respectively preferred the most
and the least. HF scenarios are never disliked and RF scenarios with erroneous esti-
mations are never preferred.





Bibliography

[Alami 1993] Rachid Alami, Raja Chatila and Bernard Espiau. Designing an intel-
ligent control architecture for autonomous robots. In ICAR, volume 93, pages
435–440, 1993. (Cited in page 15.)

[Alami 1998] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand. An Archi-
tecture for Autonomy. The International Journal of Robotics Research, vol. 17,
no. 4, pages 315–337, April 1998. (Cited in page 15.)

[Alili 2009] Samir Alili, Rachid Alami and Vincent Montreuil. A task planner for an
autonomous social robot. Distributed autonomous robotic systems 8, pages
335–344, 2009. (Cited in page 30.)

[Anderson 2004] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass,
Christian Lebiere and Yulin Qin. An integrated theory of the mind. Psycholog-
ical review, vol. 111, no. 4, page 1036, 2004. (Cited in page 15.)

[Annett 1967] John Annett and Keith D Duncan. Task analysis and training design.
Journal of Occupational Psychology, 1967. (Cited in page 17.)

[Arntz 2022] Alexander Arntz, Carolin Straßmann, Stefanie Völker and Sabrina C.
Eimler. Collaborating eye to eye: Effects of workplace design on the perception
of dominance of collaboration robots. Frontiers in Robotics and AI, vol. 9, page
999308, September 2022. (Cited in page 55.)

[Aroor 2018] Anoop Aroor, Susan L. Epstein and Raj Korpan. MengeROS: a Crowd
Simulation Tool for Autonomous Robot Navigation. arXiv:1801.08823 [cs], Jan-
uary 2018. (Cited in page 154.)

[Bartneck 2009] Christoph Bartneck, Dana Kulić, Elizabeth Croft and Susana Zoghbi.
Measurement Instruments for the Anthropomorphism, Animacy, Likeability,
Perceived Intelligence, and Perceived Safety of Robots. International Journal of
Social Robotics, vol. 1, no. 1, pages 71–81, January 2009. (Cited in page 123.)

[Bartneck 2020] Christoph Bartneck, Tony Belpaeme, Friederike Eyssel, Takayuki
Kanda, Merel Keijsers and Selma Šabanović. Human-robot interaction: An
introduction. Cambridge University Press, 2020. (Cited in page 10.)

[Belle 2023] Vaishak Belle, Thomas Bolander, Andreas Herzig and Bernhard Nebel.
Epistemic planning: Perspectives on the special issue. Artificial Intelligence,
vol. 316, page 103842, March 2023. (Cited in page 54.)



224 Bibliography

[Bolander 2017] Thomas Bolander. A Gentle Introduction to Epistemic Planning:
The DEL Approach. Electronic Proceedings in Theoretical Computer Science,
vol. 243, pages 1–22, March 2017. (Cited in pages 54 and 190.)

[Bolander 2021] Thomas Bolander, Lasse Dissing and Nicolai Herrmann. DEL-based
Epistemic Planning for Human-Robot Collaboration: Theory and Implementa-
tion. In Proc. of KR, 2021. (Cited in page 60.)

[Bratman 1987] Michael Bratman. Intention, plans, and practical reason. Cambridge,
MA: Harvard University Press, Cambridge, 1987. (Cited in page 13.)

[Buckingham 2020] David Buckingham, Meia Chita-Tegmark and Matthias Scheutz.
Robot planning with mental models of co-present humans. In International Con-
ference on Social Robotics, pages 566–577. Springer, 2020. (Cited in page 34.)

[Buisan 2021] Guilhem Buisan. Planning For Both Robot and Human: Anticipating
and Accompanying Human Decisions. PhD thesis, INSA Toulouse, France,
2021. (Cited in pages 23 and 30.)

[Buisan 2022] Guilhem Buisan, Anthony Favier, Amandine Mayima and Rachid
Alami. HATP/EHDA: A Robot Task Planner Anticipating and Eliciting Hu-
man Decisions and Actions. In Proc. of ICRA, 2022. (Cited in pages 2, 70,
and 71.)

[Carpinella 2017] Colleen M. Carpinella, Alisa B. Wyman, Michael A. Perez and
Steven J. Stroessner. The Robotic Social Attributes Scale (RoSAS): Devel-
opment and Validation. In Proceedings of the 2017 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, pages 254–262, Vienna Aus-
tria, March 2017. ACM. (Cited in page 123.)

[Chakraborti 2015] Tathagata Chakraborti, Gordon Briggs, Kartik Talamadupula,
Yu Zhang, Matthias Scheutz, David E. Smith and Subbarao Kambhampati.
Planning for serendipity. In 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems, IROS 2015, Hamburg, Germany, September 28
- October 2, 2015, pages 5300–5306. IEEE, 2015. (Cited in page 16.)

[Chakraborti 2017] Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang and Sub-
barao Kambhampati. Plan explanations as model reconciliation: moving be-
yond explanation as soliloquy. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 156–163, 2017. (Cited in page 33.)

[Chatila 1992] Raja Chatila, Rachid Alami, Bernard Degallaix and Herve Laruelle.
Integrated planning and execution control of autonomous robot actions. In Pro-
ceedings 1992 IEEE International Conference on Robotics and Automation,
pages 2689–2690. IEEE Computer Society, 1992. (Cited in page 15.)



Bibliography 225

[Chen 2018] Xu Chen, Martin Treiber, Venkatesan Kanagaraj and Haiying Li. Social
force models for pedestrian traffic–state of the art. Transport reviews, vol. 38,
no. 5, pages 625–653, 2018. Publisher: Taylor & Francis. (Cited in page 24.)

[Cherry 1957] Colin Cherry. On human communication; a review, a survey, and a
criticism. The Technology Press of MIT, 1957. (Cited in page 11.)

[Cirillo 2009a] Marcello Cirillo, Lars Karlsson and Alessandro Saffiotti. A Human-
Aware Robot Task Planner. In Proc. of ICAPS 2009, 2009. (Cited in page 70.)

[Cirillo 2009b] Marcello Cirillo, Lars Karlsson and Alessandro Saffiotti. Human-aware
task planning for mobile robots. In ICAR 2009, 2009. (Cited in page 70.)

[Clodic 2017] Aurélie Clodic, Elisabeth Pacherie, Rachid Alami and Raja Chatila.
Key Elements for Human Robot Joint Action. In Sociality and Normativity for
RobotsPhilosophical Inquiries into Human-Robot Interactions, Studies in the
Philosophy of Sociality, pages 159–177. Springer, 2017. This document is an
extended version of the one published in the proceedings of RoboPhilosophy
conference. (Cited in pages 70 and 71.)

[Cohen 1970] Philip Cohen and Hector Levesque. On Team Formation. February
1970. (Cited in page 11.)

[Cohen 1988] Jacob Cohen. The concepts of power analysis. Statistical power analysis
for the behavioral sciences. Hillsdale: Elrbaum, 1988. (Cited in page 133.)

[Cohen 1991] Philip R Cohen and Hector J Levesque. Teamwork. Nous, vol. 25, no. 4,
pages 487–512, 1991. Publisher: JSTOR. (Cited in pages 11 and 13.)

[Crosby 2014] Matthew Crosby, Anders Jonsson and Michael Rovatsos. A Single-
Agent Approach to Multiagent Planning. In Proc. of ECAI, 2014. (Cited in
pages 66 and 71.)

[Curioni 2019] Arianna Curioni, Cordula Vesper, Günther Knoblich and Natalie Se-
banz. Reciprocal information flow and role distribution support joint action co-
ordination. Cognition, vol. 187, pages 21–31, 2019. (Cited in pages 71 and 72.)

[Curioni 2022] Arianna Curioni, Pavel Voinov, Matthias Allritz, Thomas Wolf, Josep
Call and Günther Knoblich. Human adults prefer to cooperate even when it
is costly. Proceedings of the Royal Society B: Biological Sciences, vol. 289, 04
2022. (Cited in page 72.)

[Darvish 2021] Kourosh Darvish, Enrico Simetti, Fulvio Mastrogiovanni and Giuseppe
Casalino. A Hierarchical Architecture for Human-Robot Cooperation Processes.
IEEE Trans. Robotics, vol. 37, no. 2, pages 567–586, 2021. (Cited in page 35.)



226 Bibliography

[De Carolis 2000] Berardina De Carolis, Catherine Pelachaud and Isabella Poggi.
Verbal and nonverbal discourse planning. In Proc. AAMAS 2000 Workshop
“Achieving Human-Like Behavior in Interactive Animated Agents, 2000. (Cited
in page 21.)

[De Carolis 2001] Berardina De Carolis, Catherine Pelachaud, Isabella Poggi and
Fiorella de Rosis. Behavior planning for a reflexive agent. In Interna-
tional Joint Conference on Artificial Intelligence, volume 17, pages 1059–1066.
LAWRENCE ERLBAUM ASSOCIATES LTD, 2001. Issue: 1. (Cited in
page 21.)

[Devin 2016] Sandra Devin and Rachid Alami. An implemented theory of mind to
improve human-robot shared plans execution. In 2016 11th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI), pages 319–326,
Christchurch, New Zealand, March 2016. IEEE. (Cited in pages 53 and 54.)

[Devin 2018] Sandra Devin, Camille Vrignaud, Kathleen Belhassein, Aurelie Clodic,
Ophelie Carreras and Rachid Alami. Evaluating the Pertinence of Robot Deci-
sions in a Human-Robot Joint Action Context: The PeRDITA Questionnaire.
In 2018 27th IEEE International Symposium on Robot and Human Interac-
tive Communication (RO-MAN), pages 144–151, Nanjing, August 2018. IEEE.
(Cited in pages 122 and 123.)

[Echeverria 2011] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote and Séverin
Lemaignan. Modular open robots simulation engine: Morse. In 2011 ieee in-
ternational conference on robotics and automation, pages 46–51. IEEE, 2011.
(Cited in page 166.)

[Echeverria 2012] G. Echeverria, S. Lemaignan and A. et Al. Degroote. Simulat-
ing Complex Robotic Scenarios with MORSE. In Simulation, Modeling, and
Programming for Autonomous Robots, volume 7628, pages 197–208. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. (Cited in page 154.)

[Erdogan 2022] Emre Erdogan, Frank Dignum, Rineke Verbrugge and Pınar Yolum.
Abstracting Minds: Computational Theory of Mind for Human-Agent Collabo-
ration. In Stefan Schlobach, María Pérez-Ortiz and Myrthe Tielman, editors,
Frontiers in Artificial Intelligence and Applications. IOS Press, September 2022.
(Cited in page 53.)

[Erol 1996] Kutluhan Erol, James Hendler and Dana S Nau. Complexity results for
HTN planning. Annals of Mathematics and Artificial Intelligence, vol. 18, no. 1,
pages 69–93, 1996. Publisher: Springer. (Cited in page 18.)



Bibliography 227

[Favier 2023] Anthony Favier, Phani Teja Singamaneni and Rachid Alami. Challeng-
ing Human-Aware Robot Navigation with an Intelligent Human Simulation Sys-
tem. In Social Simulation Conference (SSC), Glasgow, France, September 2023.
(Cited in page 177.)

[Ferrari 2022] Davide Ferrari, Federico Benzi and Cristian Secchi. Bidirec-
tional Communication Control for Human-Robot Collaboration, June 2022.
arXiv:2206.05202 [cs]. (Cited in page 55.)

[Fusaro 2021] Fabio Fusaro, Edoardo Lamon, Elena De Momi and Arash Ajoudani.
A Human-Aware Method to Plan Complex Cooperative and Autonomous Tasks
using Behavior Trees. In 2020 IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids), pages 522–529, Munich, Germany, July 2021.
IEEE. (Cited in page 35.)

[Galland 2022] Lucie Galland, Catherine Pelachaud and Florian Pecune. Adapting
conversational strategies to co-optimize agent’s task performance and user’s
engagement. In Proceedings of the 22nd ACM International Conference on
Intelligent Virtual Agents, pages 1–3, Faro Portugal, September 2022. ACM.
(Cited in page 55.)

[Ghallab 2016] Malik Ghallab, Dana Nau and Paolo Traverso. Automated planning
and acting. Cambridge University Press, 2016. (Cited in pages 18, 20, and 37.)

[Gmytrasiewicz 1995] Piotr J Gmytrasiewicz and Edmund H Durfee. A Rigorous,
Operational Formalization of Recursive Modeling. In ICMAS, pages 125–132,
1995. (Cited in page 22.)

[Gombolay 2015] Matthew Gombolay, Reymundo Gutierrez, Shanelle Clarke, Gian-
carlo Sturla and Julie Shah. Decision-Making Authority, Team Efficiency
and Human Worker Satisfaction in Mixed Human-Robot Teams. Autonomous
Robots, vol. 39, 07 2015. (Cited in page 72.)

[Gordon 2023] Jeremy Gordon, Guenther Knoblich and Giovanni Pezzulo. Strategic
Task Decomposition in Joint Action. Cognitive Science, vol. 47, no. 7, page
e13316, 2023. (Cited in page 70.)

[Grice 1975] HP Grice. Logic and Conversation. Syntax and Semantics, vol. 3, pages
43–58, 1975. (Cited in page 11.)

[Gurney 2022] Nikolos Gurney and David V. Pynadath. Robots with Theory of Mind
for Humans: A Survey. In 2022 31st IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), pages 993–1000, August
2022. ISSN: 1944-9437. (Cited in page 53.)



228 Bibliography

[Helbing 1995] Dirk Helbing and Peter Molnar. Social force model for pedestrian dy-
namics. Physical review E, vol. 51, no. 5, page 4282, 1995. (Cited in pages 24
and 154.)

[Hirth 2011] Jochen Hirth, Syed Atif Mehdi, Norbert Schmitz and Karsten Berns. De-
velopment of a simulated environment for human-robot interaction. KOMNIKA
(Telecommunication Computing Electronics and Control), vol. 9, no. 3, pages
465–472, 2011. (Cited in page 22.)

[Hoffman 2004] Guy Hoffman and Cynthia Breazeal. Collaboration in human-robot
teams. In AIAA 1st intelligent systems technical conference, page 6434, 2004.
(Cited in page 14.)

[Hoffman 2007] Guy Hoffman and Cynthia Breazeal. Effects of anticipatory action on
human-robot teamwork efficiency, fluency, and perception of team. In Proceed-
ings of the ACM/IEEE international conference on Human-robot interaction,
pages 1–8, 2007. (Cited in page 33.)

[Hoffmann 2005] Jörg Hoffmann and Ronen Brafman. Contingent planning via heuris-
tic forward search with implicit belief states. In Proc. ICAPS, volume 2005.
Citeseer, 2005. (Cited in page 35.)

[Iocchi 2016] Luca Iocchi, Laurent Jeanpierre, Maria Lazaro and Abdel-Illah Mouad-
dib. A practical framework for robust decision-theoretic planning and execution
for service robots. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 26, pages 486–494, 2016. (Cited in
page 35.)

[Izquierdo-Badiola 2022] Silvia Izquierdo-Badiola, Gerard Canal, Carlos Rizzo and
Guillem Alenya. Improved Task Planning through Failure Anticipation in
Human-Robot Collaboration. In 2022 International Conference on Robotics
and Automation (ICRA), pages 7875–7880, Philadelphia, PA, USA, May 2022.
IEEE. (Cited in page 35.)

[Johannsmeier 2016] Lars Johannsmeier and Sami Haddadin. A hierarchical human-
robot interaction-planning framework for task allocation in collaborative indus-
trial assembly processes. IEEE Robotics and Automation Letters, vol. 2, no. 1,
pages 41–48, 2016. (Cited in page 32.)

[Johnson 2018] Benjamin Johnson, Michael W. Floyd, Alexandra Coman, Mark A.
Wilson and David W. Aha. Goal Reasoning and Trusted Autonomy. In Foun-
dations of Trusted Autonomy, volume 117. Springer, 2018. (Cited in page 155.)



Bibliography 229

[Kaelbling 1998] Leslie Pack Kaelbling, Michael L. Littman and Anthony R. Cassan-
dra. Planning and acting in partially observable stochastic domains. Artificial
Intelligence, vol. 101, no. 1-2, pages 99–134, May 1998. (Cited in page 22.)

[Köckemann 2014] Uwe Köckemann, Federico Pecora and Lars Karlsson. Grandpa
hates robots-interaction constraints for planning in inhabited environments. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 28, 2014.
(Cited in page 70.)

[Koenig 2004] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2149–2154. IEEE, 2004. (Cited in page 166.)

[Kollmitz 2015] Marina Kollmitz, Kaijen Hsiao, Johannes Gaa and Wolfram Burgard.
Time dependent planning on a layered social cost map for human-aware robot
navigation. In 2015 European Conference on Mobile Robots (ECMR), pages
1–6, Lincoln, United Kingdom, September 2015. IEEE. (Cited in page 165.)

[Koppula 2016] Hema S Koppula, Ashesh Jain and Ashutosh Saxena. Anticipatory
planning for human-robot teams. In Experimental robotics, pages 453–470.
Springer, 2016. (Cited in page 34.)

[Kourtis 2014] Dimitrios Kourtis, Günther Knoblich, Mateusz Woźniak and Natalie
Sebanz. Attention allocation and task representation during joint action plan-
ning. Journal of Cognitive Neuroscience, vol. 26, no. 10, pages 2275–2286, 2014.
(Cited in page 71.)

[Laird 1987] John E Laird, Allen Newell and Paul S Rosenbloom. Soar: An architec-
ture for general intelligence. Artificial intelligence, vol. 33, no. 1, pages 1–64,
1987. Publisher: Elsevier. (Cited in page 15.)

[Lallement 2014] Raphaël Lallement, Lavindra De Silva and Rachid Alami. HATP:
An HTN planner for robotics. arXiv preprint arXiv:1405.5345, 2014. (Cited in
page 30.)

[Lemaignan 2017] Séverin Lemaignan, Mathieu Warnier, E. Akin Sisbot, Aurélie
Clodic and Rachid Alami. Artificial cognition for social human–robot inter-
action: An implementation. Artificial Intelligence, vol. 247, pages 45–69, June
2017. (Cited in page 15.)

[Lemaignan 2018] Séverin Lemaignan, Yoan Sallami, Christopher Wallbridge, Aurélie
Clodic, Tony Belpaeme and Rachid Alami. Underworlds: Cascading situation



230 Bibliography

assessment for robots. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 7750–7757. IEEE, 2018. (Cited in
page 54.)

[Levesque 1990] Hector J Levesque, Philip R Cohen and José HT Nunes. On acting
together. SRI International Menlo Park, CA 94025-3493, 1990. (Cited in
page 11.)

[Levine 2014] Steven James Levine and Brian Charles Williams. Concurrent plan
recognition & execution for human-robot teams. In ICAPS, 2014. (Cited in
page 71.)

[Martinie 2019] Célia Martinie, Philippe Palanque, Elodie Bouzekri, Andy Cock-
burn, Alexandre Canny and Eric Barboni. Analysing and demonstrating tool-
supported customizable task notations. Proc. of the ACM on HCI, vol. 3,
no. EICS, pages 1–26, 2019. (Cited in page 18.)

[McEllin 2018] Luke McEllin, Natalie Sebanz and Günther Knoblich. Identifying oth-
ers’ informative intentions from movement kinematics. Cognition, vol. 180,
pages 246–258, 08 2018. (Cited in page 72.)

[McMillan 2023] Donald McMillan, Razan Jaber, Benjamin R. Cowan, Joel E. Fischer,
Bahar Irfan, Ronald Cumbal, Nima Zargham and Minha Lee. Human-Robot
Conversational Interaction (HRCI). In Companion of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’23, pages 923–
925, New York, NY, USA, March 2023. Association for Computing Machinery.
(Cited in page 55.)

[Mehrabian 1967] Albert Mehrabian and Morton Wiener. Decoding of inconsistent
communications. Journal of personality and social psychology, vol. 6, no. 1,
page 109, 1967. (Cited in page 11.)

[Michael 2016] John Michael, Natalie Sebanz and Günther Knoblich. Observing Joint
Action: Coordination Creates Commitment. Cognition, vol. 157, pages 106–
113, 09 2016. (Cited in page 71.)

[Muise 2015] Christian Muise, Vaishak Belle, Paolo Felli, Sheila McIlraith, Tim Miller,
Adrian Pearce and Liz Sonenberg. Planning Over Multi-Agent Epistemic
States: A Classical Planning Approach. Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 29, no. 1, March 2015. (Cited in page 54.)

[Nomura 2016] Tatsuya Nomura, Takayuki Kanda, Hiroyoshi Kidokoro, Yoshitaka
Suehiro and Sachie Yamada. Why do children abuse robots? Interaction Stud-
ies, vol. 17, no. 3, pages 347–369, 2016. (Cited in page 158.)



Bibliography 231

[Paternò 2004] Fabio Paternò. ConcurTaskTrees: an engineered notation for task mod-
els. The handbook of task analysis for human-computer interaction, pages
483–503, 2004. (Cited in page 17.)

[Pecora 2012] Federico Pecora, Marcello Cirillo, Francesca Dell’Osa, Jonas Ullberg and
Alessandro Saffiotti. A constraint-based approach for proactive, context-aware
human support. Journal of Ambient Intelligence and Smart Environments,
vol. 4, no. 4, pages 347–367, 2012. (Cited in page 22.)

[Pérez-Higueras 2023] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero and
Luis Merino. HuNavSim: A ROS2 Human Navigation Simulator for Bench-
marking Human-Aware Robot Navigation. arXiv preprint, 2023. (Cited in
page 166.)

[Perille 2020] Daniel Perille, Abigail Truong, Xuesu Xiao and Peter Stone. Bench-
marking metric ground navigation. In 2020 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), pages 116–121. IEEE, 2020.
(Cited in page 23.)

[Puig 2018] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja
Fidler and Antonio Torralba. VirtualHome: Simulating Household Activities
Via Programs. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8494–8502, Salt Lake City, UT, June 2018. IEEE. (Cited
in page 155.)

[Ramachandruni 2023] Kartik Ramachandruni, Cassandra Kent and Sonia Cher-
nova. UHTP: A User-Aware Hierarchical Task Planning Framework for
Communication-Free, Mutually-Adaptive Human-Robot Collaboration. ACM
Transactions on Human-Robot Interaction, 2023. (Cited in page 71.)

[Romeo 2022] Marta Romeo, Peter E. McKenna, David A. Robb, Gnanathusharan Ra-
jendran, Birthe Nesset, Angelo Cangelosi and Helen Hastie. Exploring Theory
of Mind for Human-Robot Collaboration. In 2022 31st IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN), pages
461–468, August 2022. ISSN: 1944-9437. (Cited in page 53.)

[Roncone 2017] Alessandro Roncone, Olivier Mangin and Brian Scassellati. Transpar-
ent role assignment and task allocation in human robot collaboration. In Proc.
of ICRA, 2017. (Cited in pages 70 and 71.)

[Samarakoon 2022] SM Bhagya P Samarakoon, MA Viraj J Muthugala and AG Bud-
dhika P Jayasekara. A Review on Human–Robot Proxemics. Electronics,
vol. 11, no. 16, page 2490, 2022. (Cited in page 24.)



232 Bibliography

[Sanelli 2017] Valerio Sanelli, Michael Cashmore, Daniele Magazzeni and Luca Iocchi.
Short-term human-robot interaction through conditional planning and execu-
tion. In Proceedings of the International Conference on Automated Planning
and Scheduling, volume 27, pages 540–548, 2017. (Cited in page 35.)

[Schaefer 2016] Kristin E. Schaefer. Measuring Trust in Human Robot Interactions:
Development of the “Trust Perception Scale-HRI”. In Ranjeev Mittu, Donald
Sofge, AlanWagner andW.F. Lawless, editors, Robust Intelligence and Trust in
Autonomous Systems, pages 191–218. Springer US, Boston, MA, 2016. (Cited
in page 123.)

[Scheutz 2013] Matthias Scheutz, Jack Harris and Paul Schermerhorn. Systematic in-
tegration of cognitive and robotic architectures. Advances in Cognitive Systems,
vol. 2, pages 277–296, 2013. (Cited in page 15.)

[Schmitz 2010] Norbert Schmitz, Jochen Hirth and Karsten Berns. A Simulation
Framework for Human-Robot Interaction. In 2010 Third International Confer-
ence on Advances in Computer-Human Interactions, pages 79–84, St Maarten,
Netherlands Antilles, 2010. IEEE. (Cited in page 22.)

[Schmitz 2017] Laura Schmitz, Cordula Vesper, Natalie Sebanz and Günther
Knoblich. Co-Representation of Others’ Task Constraints in Joint Action. Jour-
nal of experimental psychology. Human perception and performance, vol. 43,
04 2017. (Cited in page 71.)

[Sebanz 2006a] Natalie Sebanz, Harold Bekkering and Günther Knoblich. Joint action:
bodies and minds moving together. Trends in cognitive sciences, vol. 10, no. 2,
pages 70–76, 2006. (Cited in pages 11 and 70.)

[Sebanz 2006b] Natalie Sebanz, Harold Bekkering and Günther Knoblich. Joint Ac-
tion: Bodies and Minds Moving Together. Trends in Cognitive Sciences, vol. 10,
no. 2, pages 70–76, 2006. (Cited in page 1.)

[Sebanz 2009] Natalie Sebanz and Günther Knoblich. Prediction in Joint Action:
What, When, and Where. Top. Cogn. Sci., vol. 1, no. 2, pages 353–367, 2009.
(Cited in page 70.)

[Selvaggio 2021] Mario Selvaggio, Marco Cognetti, Stefanos Nikolaidis, Serena Ivaldi
and Bruno Siciliano. Autonomy in physical human-robot interaction: A brief
survey. IEEE Robotics Autom. Lett., 2021. (Cited in page 70.)

[Shekhar 2020] Shashank Shekhar and Ronen I. Brafman. Representing and planning
with interacting actions and privacy. AIJ, vol. 278, 2020. (Cited in page 71.)



Bibliography 233

[Shen 2020] Bokui Shen, Fei Xia, Chengshu Li, Roberto Martın-Martın, Linxi Fan,
Guanzhi Wang, Shyamal Buch, Claudia D’Arpino, Sanjana Srivastava, Lyne P
Tchapmi, Kent Vainio, Li Fei-Fei and Silvio Savarese. iGibson 1.0: a Simulation
Environment for Interactive Tasks in Large Realistic Scenes. arXiv preprint,
2020. (Cited in page 155.)

[Shvo 2022] Maayan Shvo, Ruthrash Hari, Ziggy O’Reilly, Sophia Abolore, Sze-
Yuh Nina Wang and Sheila A. McIlraith. Proactive Robotic Assistance via
Theory of Mind. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9148–9155, October 2022. ISSN: 2153-
0866. (Cited in page 53.)

[Singamaneni 2021] Phani Teja Singamaneni, Anthony Favier and Rachid Alami.
Human-Aware Navigation Planner for Diverse Human-Robot Ineraction Con-
texts. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021. (Cited in pages 23, 159, and 182.)

[Smith 1998] I.A. Smith, P.R. Cohen, J.M. Bradshaw, M. Greaves and H. Holmback.
Designing conversation policies using joint intention theory. In Proceedings
International Conference on Multi Agent Systems (Cat. No.98EX160), pages
269–276, Paris, France, 1998. IEEE Comput. Soc. (Cited in page 11.)

[Spatola 2021] Nicolas Spatola, Barbara Kühnlenz and Gordon Cheng. Perception and
Evaluation in Human–Robot Interaction: The Human–Robot Interaction Eval-
uation Scale (HRIES)—A Multicomponent Approach of Anthropomorphism. In-
ternational Journal of Social Robotics, vol. 13, no. 7, pages 1517–1539, Novem-
ber 2021. (Cited in page 123.)

[Strachan 2020] James Strachan and Georgina Török. Efficiency is prioritised over
fairness when distributing joint actions. Acta Psychologica, vol. 210, page
103158, 10 2020. (Cited in page 72.)

[Thierauf 2024] Christopher Thierauf, Theresa Law, Tyler Frasca and Matthias
Scheutz. Toward Competent Robot Apprentices: Enabling Proactive Trou-
bleshooting in Collaborative Robots. Machines, vol. 12, no. 1, page 73, January
2024. (Cited in page 15.)

[Thomaz 2016] Andrea Thomaz, Guy Hoffman and Maya Cakmak. Computational
Human-Robot Interaction. Foundations and Trends in Robotics, vol. 4, no. 2-3,
pages 104–223, 2016. (Cited in page 12.)

[Tsoi 2020] Nathan Tsoi, Mohamed Hussein, Jeacy Espinoza, Xavier Ruiz and Marynel
Vázquez. SEAN: Social Environment for Autonomous Navigation. In Proceed-



234 Bibliography

ings of the 8th International Conference on Human-Agent Interaction (HAI),
November 2020. (Cited in page 155.)

[Tsoi 2022] Nathan Tsoi, Alec Xiang, Peter Yu, Samuel S Sohn, Greg Schwartz, Sub-
ashri Ramesh, Mohamed Hussein, Anjali W Gupta, Mubbasir Kapadia and
Marynel Vázquez. Sean 2.0: Formalizing and generating social situations for
robot navigation. IEEE Robotics and Automation Letters, vol. 7, pages 11047–
11054, 2022. (Cited in page 155.)

[Unhelkar 2020] Vaibhav V Unhelkar, Shen Li and Julie A Shah. Decision-making
for bidirectional communication in sequential human-robot collaborative tasks.
In Proceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, pages 329–341, 2020. (Cited in page 33.)

[Van Den Berg 2011] Jur Van Den Berg, Stephen J Guy, Ming Lin and Dinesh
Manocha. Reciprocal n-body collision avoidance. In Robotics research, pages
3–19. Springer, 2011. (Cited in page 154.)

[Vattam 2013] Swaroop Vattam, Matthew Evans Klenk, Matthew Molineaux and
David W. Aha. Breadth of Approaches to Goal Reasoning: A Research Survey.
In Annual Conference on Advances in Cognitive Systems: Workshop on Goal
Reasoning, 2013. (Cited in page 155.)

[Verhagen 2022] Ruben S. Verhagen, Mark A. Neerincx and Myrthe L. Tielman. The
influence of interdependence and a transparent or explainable communication
style on human-robot teamwork. Frontiers in Robotics and AI, vol. 9, page
993997, September 2022. (Cited in page 55.)

[Wang 2015] Ning Wang, David V. Pynadath, K. V. Unnikrishnan, Santosh Shankar
and Chirag Merchant. Intelligent Agents for Virtual Simulation of Human-
Robot Interaction. In Randall Shumaker and Stephanie Lackey, editors, Vir-
tual, Augmented and Mixed Reality, volume 9179, pages 228–239. Springer
International Publishing, Cham, 2015. Series Title: Lecture Notes in Com-
puter Science. (Cited in page 22.)

[Yamaguchi 2019] Motonori Yamaguchi, Helen J. Wall and Bernhard Hommel. The
roles of action selection and actor selection in joint task settings. Cognition,
vol. 182, pages 184–192, 2019. (Cited in page 71.)

[Yige 2021] Liu Yige, Li Siyun, Li Chengshu, Perez-D’Arpino Claudia and Savarese
Silvio. Interactive Pedestrian Simulation in iGibson. RSS Workshop on Social
Robot Navigation, 2021. (Cited in page 155.)



Bibliography 235

[Yu 2023] Chuang Yu, Baris Serhan, Marta Romeo and Angelo Cangelosi. Robot The-
ory of Mind with Reverse Psychology. In Companion of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction, pages 545–547, Stock-
holm Sweden, March 2023. ACM. (Cited in page 53.)

[Ziparo 2011] Vittorio A Ziparo, Luca Iocchi, Pedro U Lima, Daniele Nardi and
Pier Francesco Palamara. Petri net plans: A framework for collaboration and
coordination in multi-robot systems. Autonomous Agents and Multi-Agent Sys-
tems, vol. 23, pages 344–383, 2011. (Cited in page 35.)



Titre : Planifica�on de tâches pour un robot collabora�f : théorie de l'esprit et an�cipa�on des décisions et ac�ons de l'humain
Mots clés : Collabora�on Humain-Robot, Intérac�on Humain-Robot, Décision, False beliefs, Adapta�on, Parallélisme
Résumé : Bien que la collabora�on humain-robot puisse être bénéfique, la plupart des robots actuels travaillent dans des espaces physiquement
séparés de l'humain ou alors leurs capacités sont dras�quement limitées à proximité d'un humain. Ce travail vise à combler le fossé entre les
capacités robo�ques et les a�entes humaines, en favorisant une nouvelle ère de collabora�on transparente et intui�ve entre les humains et les
robots dans des environnements partagés pour réaliser à la fois des tâches industrielles, de services ou domes�ques. Plus précisément, ce manuscrit
présente une étude sur la prise de décision dans le contexte de la collabora�on humain-robot, en par�culier dans les domaines de la naviga�on et de
la planifica�on des tâches. 

 D'abord, nous discutons de divers travaux en lien avec la Collabora�on Humain-Robot afin de mieux comprendre le contexte de mon travail. Après
une familiarisa�on avec le planificateur de tâches HATP/EHDA, je présente ma première contribu�on qui incorpore certains concepts de la Théorie De
l'Esprit dans la planifica�on de tâches. Certains modèles et algorithmes sont proposés et évalués pour mieux es�mer et maintenir les connaissances
de l'humain afin de mieux an�ciper son comportement. Ainsi, nous pouvons iden�fier quand l'humain a une fausse connaissance d'un fait évalué
comme per�nent pour la tâche. Dans ce cas, le robot peut informer l'humain de manière proac�ve pour corriger la fausse informa�on ou le robot
peut retarder volontairement ses ac�ons afin qu'elles soient vu par l'humain. Les résultats montrent que ce schéma permet de maintenir
efficacement les connaissances de l'humain et permet de résoudre une classe plus large de problèmes que HATP/EHDA tout en ne communiquant pas
systéma�quement. 

 Ma deuxième contribu�on est une nouvelle approche de planifica�on des tâches produisant une poli�que comportementale du robot assurant une
collabora�on fluide où l'humain a toujours une la�tude de décision totale et où le robot se conforme toujours en parallèle à ces décisions. Ce�e
approche est basée sur un modèle d'ac�on conjointe simultanée et accommodante que nous avons conçu. Ce modèle, sous la forme d'un automate,
�ent compte de l'incontrôlabilité de l'humain et des signaux sociaux. Nous proposons également une nouvelle méthode d'évalua�on et de sélec�on
des plans basée sur l'es�ma�on des préférences internes de l'humain concernant la tâche. Les résultats empiriques montrent que ce�e approche
permet un comportement concourant du robot qui se conforme aux décisions et aux préférences en temps réel de l'humain. 

 Pour valider l'approche précédente, nous avons mené une étude u�lisateur à l'aide d'un simulateur spécialement développé à cet effet. Les
par�cipants ont été invités à collaborer dans plusieurs scénarios avec un robot simulé suivant les poli�ques produites par notre approche. Nous
avons u�lisé comme référence une approche opposée à la nôtre dans laquelle l'humain est forcé de se conformer aux choix du robot. Nous avons
montré par une analyse sta�s�que que notre approche perme�ait de sa�sfaire les préférences des humains de manière ne�ement plus
sa�sfaisante. De même, nous avons montré que notre approche induit une interac�on significa�vement plus posi�ve, une collabora�on plus
adapta�ve et efficace, et des décisions du robot significa�vement plus adéquates et accommodantes. 

 Enfin, ma troisième contribu�on concerne la prise de décision dans le domaine de la naviga�on. Je propose un système simulant un avatar humain
qui, en plus d'être réac�f, prend des décisions ra�onnelles sur les tâches de naviga�on. Ce système sert d'ou�l de test et d'évalua�on pour les
systèmes de naviga�on robo�que. Ainsi, ces derniers peuvent être évalués, ajustés et robus�fiés en simula�on pour réaliser plus rapidement des
expériences matures dans la vie réelle. Un travail supplémentaire perme�ant de simuler plusieurs avatars est également présenté.

Title: Human-aware robot task planning: theory of mind and an�cipa�on of human decisions and ac�ons
Key words: Human-Robot Collabora�on, Human-Robot Interac�on, Decision-Making, False beliefs, Adapta�on, Concurrency
Abstract: Although human-robot collabora�on can be beneficial, most of today's robots work in spaces physically separated from humans, or their
capabili�es are severely limited in close proximity to humans. This work aims to bridge the gap between robo�c capabili�es and human expecta�ons,
fostering a new era of seamless and intui�ve collabora�on between humans and robots in shared environments to perform industrial, service or
domes�c tasks. More specifically, this manuscript presents a study of decision-making in the context of human-robot collabora�on, par�cularly in
the areas of naviga�on and task planning. 

 First, we discuss various fields and works related to human-robot collabora�on in order to be�er understand the context of my work. A�er an
introduc�on to the HATP/EHDA task planner, I present my first contribu�on, which incorporates some concepts from the Theory Of Mind into task
planning. Some models and algorithms are proposed and evaluated to be�er es�mate and maintain human knowledge during collabora�on, in
order to be�er an�cipate human behavior. As a result, we can iden�fy when the human has a false belief about a fact evaluated as relevant to the
task. In this case, the robot can proac�vely inform the human to correct the false informa�on, or the robot can deliberately delay its ac�ons so that
they can be seen by the human. The results show that this scheme effec�vely maintains the human's beliefs and solves a wider class of problems
than HATP/EHDA, while not systema�cally communica�ng. 

 My second contribu�on is a new approach to task planning producing a robot behavioral policy ensuring smooth collabora�on where the human
always has full decision la�tude and the robot always conforms in parallel to these decisions. This approach is based on a model of concurrent and
compliant joint ac�on that we have designed. This model, in the form of an automaton, takes into account human incontrollability and social cues.
We also propose a new method of plan evalua�on and selec�on based on the es�ma�on of the human's internal preferences regarding the task.
Empirical results show that this approach enables concurrent robot behavior that conforms to the human's real-�me decisions and preferences. 

 To validate the above approach, we conducted a user study using a specially developed simulator. Par�cipants were invited to collaborate in several
scenarios with a simulated robot following the policies produced by our approach. We used as a reference an approach opposite to ours, in which
the human is forced to conform to the robot's choices. We showed through sta�s�cal analysis that our approach sa�sfies human preferences
significantly more successfully. Similarly, we have shown that our approach induces significantly more posi�ve interac�on, more adap�ve and
effec�ve collabora�on, and significantly more appropriate and accommoda�ng robot decisions. 

 Finally, my third contribu�on concerns decision-making in naviga�on. I propose a system simula�ng a human avatar which, in addi�on to being
reac�ve, makes ra�onal decisions about naviga�on tasks. This system serves as a test and evalua�on tool for robo�c naviga�on systems. In this way,
they can be evaluated, adjusted, and robus�fied in simula�on, so that mature real-life experiments can be carried out more quickly. An addi�onal
work capable of simula�ng several avatars is also presented.
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