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I seem to have been only like a boy
playing on the seashore, and diverting
myself in now and then finding a
smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth
lay all undiscovered before me.

Isaac Newton
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Abstract xii

Application of Multivariate Gaussian Convolution and Mixture Models for

Identifying Key Biomarkers Underlying Variability in Transcriptomic Pro-

files and the Diversity of Therapeutic Responses

Abstract
The diversity of phenotypes and conditions observed within the human species is driven by multiple
intertwined biological processes. However, in the context of personalized medicine and the treatment
of increasingly complex, systemic, and heterogeneous diseases, it is crucial to develop approaches that
comprehensively capture the complexity of the biological mechanisms underlying the variability in
biological profiles. This spans from the individual level to the cellular level, encompassing tissues
and organs. Such granularity and precision are essential for clinicians, biologists, and statisticians to
understand the underlying causes of the diversity in responses to clinical treatments and predict potential
adverse effects.

This manuscript primarily focuses on two biological entities of interest, namely transcriptome profiles
and immune cell populations, for dissecting the diversity of disease outcomes and responses to treat-
ment observed across individuals. The introductory section provides a comprehensive overview on the
intertwined mechanisms controlling the activity and abundance of these inputs, and subsequently details
standard physical methods for quantifying them in real-world conditions.
To comprehensively address the intricate multi-layered organization of biological systems, we considered
two distinct resolution scopes in this manuscript. At the lowest level of granularity, referred to in
this manuscript as an “endotype” we examine variations in the overall bulk expression profiles across
individuals. To account for the unexplained variability observed among patients sharing the same disease,
we introduce an underlying latent discrete factor. To identify the unobserved subgroups characterized
by this hidden variable, we employ a mixture model-based approach, assuming that each individual
transcriptomic profile is sampled from a multivariate Gaussian distribution.
Subsequently, we delve into a bigger layer of complexity, by integrating the cellular composition of
heterogeneous tissues. Specifically, we discuss various deconvolution techniques designed to estimate the
ratios of cellular populations, contributing in unknown proportions to the total observed bulk transcriptome.
We then introduce an independent deconvolution algorithm, DeCovarT, which demonstrates improved
accuracy in delineating highly correlated cell types by explicitly incorporating the co-expression network
structures of each purified cell type.

Keywords: gaussian mixture models, cellular deconvolution, transcriptome pipeline, drug repositioning
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Abstract xiii

Application de modèles de convolution et de mélange gaussiens pour l'identi-

fication des biomarqueurs clés sous-jacents à la variabilité des profils trans-

criptomiques et à la diversité des réponses thérapeutiques

Abrégé

La diversité des phénotypes et des conditions observées au sein de l’espèce humaine est le résultat de
multiples processus biologiques interdépendants. Cependant, dans le contexte de la médecine personnalisée
et du traitement de maladies de plus en plus complexes, systématiques et hétérogènes, il est crucial de
développer des approches qui capturent de manière exhaustive la complexité des mécanismes biologiques
sous-jacents à la variabilité des profils biologiques. Cela s’étend du niveau individuel au niveau cellulaire,
englobant les tissus et les organes. Une telle précision et une telle granularité sont essentielles pour que
les cliniciens, les biologistes et les statisticiens comprennent les causes sous-jacentes de la diversité des
réponses aux traitements cliniques et puissent prédire d’éventuels effets indésirables.

Afin d’aborder de manière exhaustive la complexité hiérarchique et stratifiée des systèmes biologiques,
nous avons considéré deux niveaux d’étude dans ce manuscrit. Au niveau de granularité le plus bas,
désigné dans ce manuscrit sous le terme “endotype”, nous examinons les processus conduisant aux
variations observées ans les profils d’expression transcriptomiques entre individus. Notamment, pour
tenir compte de la variabilité non expliquée observée entre patients affectés par la même maladie, nous
introduisons une variable latente discrète. Pour identifier les sous-groupes non observés, dépendant de
cette variable cachée, nous utilisons des modèles de mélange probabilistes, en supposant que chaque profil
transcriptomique individuel est échantillonné à partir d’une distribution gaussienne multivariée, dont les
paramètres ne peuvent pas être directement estimés dans la population générale.
Ensuite, nous nous intéressons à un niveau de complexité supplémentaire, en passant en revue les
méthodes canoniques permettant d’estimer la composition des tissus, souvent très hétérogènes, au sein
d’un même individu. Plus précisément, nous discutons de diverses techniques de déconvolution conçues
pour estimer les ratios de populations cellulaires, ces dernières contribuant en proportions inconnues au
profil transcriptomique global mesuré. Nous présentons ensuite notre propre algorithme de déconvolution,
nommé “DeCovarT”, qui offre une précision améliorée de la délimitation de populations cellulaires
fortement corrélées, en incorporant explicitement les réseaux de co-expression propres à chaque type
cellulaire purifié.

Mots clés : modèles de mélange gaussiens, déconvolution cellulaire, filière de traitement de données
transcriptomiques, repositionnement de médicaments
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Résumé long de la thèse

La diversité des réponses thérapeutiques à un même traitement, au sein de patients affectés
par la même maladie, résulte d’interactions complexes entre de nombreuses entités biologiques.
Or, dans le cadre du paradigme de la médecine personnalisée, associée à la prise en charge de
maladies complexes et hétérogènes et avec l’explosion du volume de données biologiques fournies
par des méthodes de pointe, l’utilisation d’outils statistiques dédiés est devenu indispensable pour
embrasser une approche holistique et robuste des mécanismes sous-jacents de la variabilité inter-,
and intra-individuelle, des systèmes biologiques.

Pour ce faire, nous allons décomposer la tâche intrinsèquement complexe de l’identification
des acteurs causaux de la variabilité biologique, en considérant deux niveaux d’organisation
biologiques. Soit, au niveau le plus général, l’étude de la diversité au sein d’une cohorte de
patients, quantifiée par leurs profils d’expression transcriptomiques globaux. Puis, à une strate
plus fine, nous allons nous intéresser aux méthodes pour caractériser l’hétérogénéité au sein d’un
même échantillon biologique, telle que mesurée par ses composantes cellulaires (voir le résumé
graphique, 1).

Figure 1: Résumé visuel du manuscrit de thèse. Nb: les deux strates intermédiaires du diagramme
en entonnoir ne sont évoqués qu’en annexe.

xiv
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Nous proposons en complément la figure 2 replaçant les acteurs biologiques présentés aupara-
vant dans la hiérarchie communément admise de la “biologie des systèmes”. Cette dernière expose
trois grandes sources biologiques distinctes contribuant à la diversité des profils transcriptomiques
obervés entre les individus, voire au sein d’un même tissu, ordonnés par niveau hiérarchique:
l’environnement ou la condition phénotypique (stade d’avancement d’une maladie donnée, locali-
sation du tissu prélevé, etc.), les profils de mutations génétiques (haplotypes) et les altérations de
la composition cellulaire.

Enfin, il convient de souligner que le signal biologique d’intérêt pour le biologiste est souvent
dégradé par la présence d’artefacts introduits par des biais techniques (erreurs humaines de
manipulations, variations des protocoles entre centres de séquençage, etc.), potentiellement
inconnus.

Figure 2: La diversité des profils moléculaires, entre individus, voire au sein d’un même tissu, d’une
combinaisons de facteurs intrinsèques, et extrinsèques. Les sources intrinsèques incluent les mécanismes
génétiques, transcriptionnels et protéomiques, généralement de nature stochastique. Les sources extrin-
sèques englobent entre autres les interactions entre les populations cellulaires résidant habituellement
dans le tissu et l’environnement extérieur proche. Dans la figure, ces dernières sont illustrées par les
échanges complexes tissés entre les populations immunitaires circulant dans le système lymphatique, et
les cellules épithéliales ou mutées appartenant au clone tumoral. La figure est reproduite de [Kas+22b,
Fig. 1].
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Partie I: Introduction Biologique

Chapitre 1: Étude du transcriptome Le transcriptome est l’ensemble des transcrits,
c’est à dire des portions d’ADN effectivement convertis en ARNm, mesurés dans un échantillon
biologique donné. L’étude des variations des profils d’expression génique, au sein d’individus
affectés par la même maladie permet entre autres d’identifier les principaux facteurs responsables
de la défaillance des mécanismes de régulation de l’expression transcriptomique, souvent à l’origine
de l’apparition d’états pathologiques.

Nous passons en revue dans cette section différents mécanismes de régulation du transcriptome,
en soulignant que ces derniers agissent potentiellement sur l’ensemble du processus conduisant
d’une matrice nucléaire ADN initiale à la synthèse d’une protéine fonctionnelle. Parmi ces
derniers, nous soulignons notamment l’importance des réseaux de co-expression impliquant des
facteurs transcriptomiques. Ces derniers agissent finement sur le niveau d’expression d’un gène,
en contrôlant l’accessibilité du génome par l’ARN polymérase chargé de transcrire l’ADN en
ARNm. Nous verrons ensuite dans les autres chapitres comment la prise en compte explicite de
ces réseaux permet une identification plus fine et robuste des acteurs biologiques responsables de
la diversité moléculaire des individus.

Nous présentons ensuite un ensemble de méthodes physiques dédiées à quantifier le tran-
scriptome. Nous nous focalisons notamment sur les nouvelles technologies de séquençage (NGS).
L’intérêt de cette nouvelle génération de méthodes réside principalement en leur flexibilité à
répondre à un grand nombre de questions biologiques complexes, auparavent non résolues par
les méthodes pionnières de puces à ARN. Nous montrerons toutefois que cette flexibilité vient
avec un coût analytique complexe, requérant le développement de routines bio-informatiques
automatisées de traitement de données, afin d’assurer la reproductibilité des analyses.

Chapitre 2: Introduction au système immunitaire Le système immunitaire joue un rôle
central dans la défense de l’organisme contre les agents pathogènes et la régulation de l’homéostasie.
Nous montrons notamment que les voies de signalisation transcriptomiques contrôlent finement les
interactions entre les populations cellulaires, jouent un rôle pivot dans la flexibilité et l’efficacité
du système immunitaire humain. Notamment, nous mettons en exergue l’importance de la
coopération entre les acteurs de l’immunité inné, généralistes mais peu spécifiques, et les acteurs
de l’immunité adaptative. Nous montrons toutefois qu’un accroc dans cette mécanique bien
huilée peut entraîner une dérégulation du système immunitaire, et dans le pire scénario, conduire
selon la situation à la prolifération incontrôlée de métastases ou au développement de maladies
auto-immunes handicapantes.

Ensuite, nous exposons une série de techniques physiques pour estimer la composition immu-
nitaire d’un échantillon biologique. Ces méthodes sont généralement catégorisées en deux groupes
: les méthodes de cytométrie de flux, qui nécessitent la séparation physique des populations
cellulaires, et les méthodes d’imagerie, qui permettent l’identification des types cellulaires in-situ,
à l’aide de marqueurs fluorescents. Si les premières se caractérisent par leur moindre coût et leur
capacité de traitement supérieure, nous montrons aussi que les secondes permettent de conserver
l’organisation spatiale des sous-types cellulaires.
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Après une introduction exhaustive aux concepts biologiques de ma thèse, le corps principal
de mon manuscrit détaille un ensemble de méthodologies statistiques destinées à analyser les
principales sources de variation des profils moléculaires des patients. Notamment, nous nous
focalisons sur les modèles de mélange et les algorithmes de déconvolution. Pour chacune de ces
approches, nous commençons par un état de l’art des solutions existantes, puis nous illustrons leur
intérêt sur un cas biologique concret, tout en proposant des pistes d’amélioration pour améliorer
leur robustesse, et leur performance.

Partie II: Transcriptome et Modèles de mélange

Chapitre 3: Article 1, modèles de mélange Gaussiens dans l’environnement R
Les modèles de mélange sont des outils statistiques qui permettent de décrire des distributions
multimodales, tirées de plusieurs lois statistiques. En médecine de précision, ces modèles sont
utilisés pour regrouper des patients, présentant des profils en apparence distincts en sous-groupes
homogènes, dénommés endotypes. Il est alors commun de supposer que chacun de de ces profils
peut être modélisé par sa distribution propre, souvent une loi gaussienne car présentant de
nombreuses propriétés statistiques utiles. L’objectif est alors de retrouver la classe, non observée,
de chaque observation.

Dans cette perspective, nous avons comparé systématiquement les performances de 7 packages
R: bgmm, EMcluster, GMKMcharlie, flexmix, mclust, mixtools, et Rmixmod. Ces derniers in-
fèrent les paramètres caractérisant les modèles de mélange gaussiens, en utilisant l’algorithme EM
pour ce faire. En effet, [DLR77] a démontré la consistance, la convergence et l’efficacité asympto-
tique vers les paramètres recherchés de cette approche itérative. Notre étude comparative évalue
notamment les performances statistiques et computationnelles de ces packages en fonction du
choix de la méthode d’initialisation des paramètres et de la complexité du mélange à reconstituer.

Nous montrons une réduction significative de la précision et de la robustesse associées à
l’estimation des mélanges gaussiens, lorsque le niveau de recouvrement et d’entropie des classes
identifiées, ainsi que la dimensionalité du problème, augmentent. De façon imprévue, cette
étude a aussi mis en évidence une nette dichotomie de performance entre les packages comparés.
En particulier, nous montrons que de légères déviations à la méthode originelle pour gérer les
débordements numériques entrainent un comportement atypique et non consistent des packages,
notamment bgmm et EMcluster en grande dimension. Plus généralement, les packages mixtools
et Rmixmod présentent une tendance de fonds à retourner des estimations moins biaisées mais
aussi plus variables que les autres. Ce travail est actuellement sous presse au sein du R Journal,
et devrait être officiellement publié et accessible en octobre 2023.

Chapitre 4: Article 2, une nouvelle classification moléculaire pour le syndrome
primaire du Sjögren Nous avons appliqué cette comparative exhaustive de la modélisation
par modèles de mélanges gaussiens pour la stratification de 304 patients atteints du syndrome de
Sjögren primaire (pSD). Ce travail a notamment fait l’objet d’une publication dans le journal
Nature Communications. La maladie de Sjögren est une affection auto-immune, caractérisée
notamment par un asséchement des glandes salivaires.

Une classification non supervisée des patients en endotypes, reposant sur l’utilisation de
modèles de mélange gaussiens appliquées sur des données transcriptomiques de sang, ont permis
d’identifier quatre groupes distincts. Chacun d’eux est caractérisé par une signature biologique
unique, analysée plus en détail à l’aide de données de cytométrie, métaboliques et sérologiques.



Résumé long de la thèse xviii

L’identification agnostique d’endotypes a notamment mis en relief des changements significatifs
de populations cellulaires immunes entre les clusters identifiés, liés à une activation différentielle
des voies de signalisions contrôlant le niveau d’activation et l’abondance de ces dernières. Plus
généralement, cette étude, en révélant des mécanismes pathogéniques propres à chaque sous-
groupe, suggère d’adapter les traitements en fonction de l’endotype prédit pour chaque patient.
Par exemple, seuls les individus du groupe 3 présentent une sur-activation des modules de gènes
liées à la maturation des lymphocytes B naifs en lymphocytes mémoires ou plasmocytes effecteurs,
et donc pourraient bénéficier d’un traitement visant à diminuer la proportion de ces derniers.

Toutefois, des analyses de sensibilité supplémentaires ont révélé que les variations observées
dans l’expression transcriptomique entre les patients étaient principalement dues à des altérations
de la composition cellulaire immunitaire et non à des changements inhérents de l’activité de
populations cellulaires nativement présentes.

Il s’agit d’un problème majeur rencontré par les méthodes statistiques utilisant des données
RNA-Seq à une échelle globale. En effet, l’étude du transcriptome au niveau d’un tissue implique
de moyenner les contributions individuelles de chaque population cellulaire. Ce faisant, elles
ignorent l’impact d’altérations du pool cellulaire, provoquées par des variations de la motilité ou
de la différenciation. Or, ces dernières jouent aussi un rôle clé dans la régulation des processus
biologiques, qui se retrouvent ainsi ignorées dans les analyses de sensibilité et d’identifcaiton des
facteurs clés menées ultérieurement.

A ce titre, dans la partie concluant ce manuscrit de thèse, nous détaillons des modèles
statistiques alternatifs, dédiés à l’estimation de la composition cellulaire. En offrant une granularité
améliorée, nous verrons que ces approches permettent de retrouver les composantes individuelles
d’un mélange au niveau tissulaire, et donc d’analyser les causes des variations du transcriptome
au niveau individuel.

Partie III: populations cellulaires et algorithmes de déconvolution

Chapitre 5: Article 3, état de l’art des méthodes de déconvolution cellulaires Dans
cet article, nous présentons un état de l’art actualisé des algorithmes de déconvolution pour inférer
automatiquement la composition cellulaire d’un échantillon biologique. Nous nous focalisons en
particulier sur les approches numériques dites “partielles”, qui retrouvent les abondances relatives
des composants cellulaires d’un mélange hétérogène à partir des profils d’expression cellulaires
purifiées et de l’expression transcriptomique totale, quantifiés par les nouvelles technologies de
séquençage.

Si la majorité des modèles de déconvolution analysés supposent que l’expression transcrip-
tomique totale du mélange peut être retrouvée en sommant les contributions individuelles de
chaque sous-type cellulaire, pondérées par leur abondance, nous montrons toutefois que ces
derniers se distinguent par la nature des objectifs poursuivis et des contraintes biologiques prises
en compte dans le modèle. Par exemple, certains des algorithmes ont été développés pour estimer
les caractéristiques d’une population cellulaire inconnue (souvent un clone tumoral), tandis que
d’autres approches se focalisent sur la robustesse des résultats, en incluant des étapes de sélection
supplémentaire des gènes utilisés dans la déconvolution.

Les méthodes actuellement développées présentent toutefois des performances limitées pour
l’estimation de populations cellulaires rares, ou présentant un profil moléculaire proche de celui
d’autres populations présentes dans l’échantillon. Ces limitations ont notamment été soulignées
dans la revue comparative de [FT18], dans laquelle il suppose qu’une des causes de la faible
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robustesse des algorithmes de déconvolution est leur hypothèse commune d”absence d’interactions
entre les gènes.

Pour pallier à ces défauts, nous proposons, dans le dernier chapitre de cette thèse, un algorithme
de déconvolution cellulaire, DeCovarT, adoptant une approche multivariée et connectée de la
résolution de la “soupe” transcriptomique.

Nous élargissons ensuite notre attention à l’ensemble du protocole de déconvolution, de la
récupération des données jusqu’à l’évaluation statistique et l’interprétation biologique des résultats.
Nous montrons notamment dans cette partie l’importance du choix, du prétraitement et du
nettoyage des données transcriptomiques sur la qualité finale des résultats. Ainsi, l’obtention
de profils d’expression transcriptomiques purifiées de qualité, en nombre suffisant et proches
du contexte biologique étudiée, est certainement plus importante que le choix de l’algorithme
lui-même ([Fin+19b]).

Nous terminons cet état de l’art par une discussion plus spécifique sur l’avenir que nous
entrevoyons pour les méthodes de déconvolution cellulaire. Nous montrons notamment la complé-
mentarité de ces dernières avec les technologies de single cell RNA-Sequencing pour améliorer la
précision et la résolution des méthodes de transcriptomiques spatiales.

Chapitre 6: Article 4, DeCovarT, un algorithme de déconvolution robuste ex-
ploitant les réseaux transcriptomiques La principale contribution personnelle statistique de
cette thèse est le développement d’une méthode de déconvolution innovante, DeCovarT, capable
d’intégrer explicitement les réseaux de co-expression transcriptomiques. Contrairement aux
méthodes de déconvolution classiques évoqués plus haut, nous relaxons en effet les hypothèses
d’exogénéité et d’indépendance entre les expressions individuelles des gènes au sein d’une popula-
tion cellulaire. Nous avons ainsi changé de paradigme, en replaçant les profils transcriptomiques de

chaque population cellulaire dans son réseau de co-expression. Précisément, nous postulons que le
vecteur d’expression purifiée xj , caractérisant l’expression transcriptomique de chaque population
cellulaire, suit une distribution gaussienne multivariée. La matrice de covariance, Σj , de cette
dernière, permet notamment d’encoder explicitement les interactions directes entre gènes. Nous
supposons alors que le mélange transcriptomique global peut être reconstruit comme une convo-
lution de variables statistiques indépendantes, les profils d’expression cellulaires, pondérées par
des poids fixés inconnues, les ratios cellulaires. Nous montrons, par la propriété d’invariance par
transformation affine des lois multivariées gaussiennes, que la distribution du profil d’expression
totale, conditionnée par les profils d’expression purifiés individuels, est identifiable à une loi
multivariée gaussienne. La représentation graphique de ce cadre de modélisation est reportée
dans la figure 3.
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Figure 3: DAG décrivant le modèle génératif sous-tendant l’algorithme de déconvolution DeCovarT.

Puisque la loi de distribution du mélange est connue, nous pouvons alors aisément dériver
la log-vraisemblance du modèle génératif associé, et retrouver par maximum de vraisemblance
les paramètres d’intérêt, à savoir les ratios cellulaires (p) et les variations transcriptomiques
individuelles pour chaque population cellulaire (X). En pratique, nous avons utilisé l’algorithme
de minimisation itératif de Levenberg-Marquardt pour extraire les racines du gradient de la
fonction de vraisemblance.

Sur une simulation numérique réduite, ne considérant que deux populations cellulaires carac-
térisées par deux gènes, nous avons démontré que le niveau de corrélation mutuel entre les deux
gènes influence significativement l’estimation finale des ratios cellulaires. Nous avons toutefois
montré que la baisse de précision imputable au niveau de corrélation entre les deux distributions
bivariées décrivant chaque population cellulaire, était partiellement contrebalancé par la prise en
compte des structures de co-expression avec l’algorithme DeCovarT. En particulier, nous avons
montré que DeCovarT présentait des performances systématiquement supérieures par rapport à un
algorithme standard, reposant sur une fonction d’optimisation quadratique du simplex unitaire.

De plus, comme le nouvel algorithme de déconvolution que nous proposons repose sur un
modèle génératif, nous pouvons aisément dériver asymptotiquement des intervalles de confiance,
et donc des tests statistiques. Ces derniers permettent d’évaluer théoriquement la significativité
des variations de la composition cellulaire du milieu biologique.

Conclusion et perspectives Nous concluons cette thèse en passant en revue quelques pistes
d’exploration, dont certaines en cours d’implémentation, visant à améliorer la pertinence biologique
et la justesse statistique des modèles présentés dans cette thèse. Nous discutons notamment
des opportunités offertes par l’intégration de sources biologiques diverses, tout en soulignant
la difficulté de coupler des données pouvant aboutir à des conclusions contradictoires. Nous
suggérons enfin brièvement une généralisation possible des modèles présentés, en remplaçant
les distributions symétriques et standardisées des lois gaussiennes par des densités de Poisson
log-normales ou de binomiales négatives; ces dernières sont en effet susceptibles de décrire plus
justement la nature des processus biologiques.
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Annexes Nous présentons dans ces annexes des tâches relevant plus de l’ingénierie, liées à mon
statut de doctorant CIFRE. Plus précisément, le matériel supplémentaire se décompose ainsi;
tout d’abord, les quatre premières annexes viennent compléter les chapitres principaux 1, 3, 5
et 6 de la thèse, respectivement. Les deux derniers chapitres de l’annexe présentent ensuite des
collaborations en lien avec les objectifs thérapeutiques de Servier, ayant fait par ailleurs l’objet
de publications respectivement publiés dans Plos One Communications (actuellement en phase
de révision) et Plos One.

Annexe A du chapitre 1 de thèse Le pipeline développé englobe notamment le nettoyage
des données et leur standardisation sous la forme d’un ExpressionSet, le prétraitement et la
normalisation des matrices de compte pour corriger les biais techniques et se conformer aux
hypothèses des modèles d’analyse, validées par différents contrôles visuels de qualité. Finalement,
nous avons adapté en interne les principaux outils statistiques visant à comprendre les mécanismes
sous-tendant la variabilité observée de l’expression transcriptomique, entre différentes conditions
biologiques. Notamment, nous proposons des outils de visualisation “maisons” pour l’identification
de modules, ou de gènes significativement variants. Nous concluons ce tutoriel technique en
soulignant les l’utilité de la mise en place d’une filière standardisée pour l’analyse de données
omiques pour la reproductibilité des résultats, et la réduction drastique des coûts d’analyse.

Annexe B du chapitre 3 et article 1 de la thèse Dans cette annexe, nous présentons
des simulations numériques étendant la portée des résultats évoqués dans le chapitre 3 de la
thèse. Tout d’abord, nous avons comparé les performances des modèles de mélange gaussien
standards avec des modèles supprimant automatiquement les observations aberrantes, sur des
jeux de données volontairement bruités. Les résultats montrent sans surprise que le package
otrimle est significativement plus robuste que les packages canoniques, notamment mclust, en
intégrant explicitement une composante additionnelle modélisée par une loi uniforme impropre.
Dans un autre cadre de simulation, j’ai exposé théoriquement, puis illustré en pratique, l’intérêt
des méthodes de projection et d’une paramétrisation parcimonieuse des modèles de mélange
gaussiens pour visualiser et estimer des structures latentes en grande dimension.

Annexe C du chapitre 5 et article 3 de la thèse Dans cette partie, nous présentons
plus en détail différentes techniques d’optimisation, très documentées, et utilisées en pratique
par de nombreux algorithmes de déconvolution pour contrebalancer le manque de données de
qualité et la complexité du calcul des paramètres minimisant la fonction de coût. Nous rappelons
aussi le théorème de Gauss-Markov, étant donné que les hypothèses statistiques sous-tendant son
application, sont rarement remises en question par la majorité des méthodes de déconvolution.

Annexe D du chapitre 5 et article 4 de la thèse Dans cette annexe, nous proposons
deux pistes d’amélioration possibles pour améliorer la robustesse et la précision de DeCovarT.
Premièrement, il serait intéressant d’intégrer l’approche réseau de notre algorithme de déconvolu-
tion, dès la sélection de l’ensemble minimal de gènes discriminants utilisés pour la construction
de la matrice de signature cellulaire. Nous présentons notamment une stratégie holistique, qui
prendrait en compte non seulement les variations de moyenne mais aussi de voisinage dans le
réseau de co-expression, pour la sélection de marqueurs spécifiques d’une population cellulaire.
Enfin, nous dérivons une méthode de Monte-Carlo, reposant sur une estimation des paramètres
via une chaîne de Markov, pour échantillonner la distribution a posteriori des paramètres d’intérêt.
L’intérêt majeur de cette méthodologie est la possibilité de prendre en compte les variations
individuelles du transcriptome, ainsi que la dérivation naturelle d’intervalles de crédibilité pour
les ratios cellulaires.
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Annexe E: Article 5, classification non supervisée de gènes, appliqué au syndrome
primaire de Sjögren Cet article présente une autre méthode de classification non super-
visée, l’algorithme de Louvain, reposant sur l’optimisation de la modularité pour la séparation
automatique de groupes de gènes. Elle favorise ainsi les sous-groupes de gènes fortement intercon-
nectés entre eux. Cette approche modulaire facilite l’interprétation biologique des groupes de
gènes identifiés, prélude à une compréhension causale et systémique de la diversité des réponses
thérapeutiques observées à un même traitement.

En pratique, la majorité des 13 modules a pu être effectivement annotée, et reliée à une
population cellulaire et/ou une voie de signalisation. D’autre part, des études cliniques sur des
données réelles ont confirmé l’intérêt de ces groupes de gènes comme biomarqueurs prognostiques
pour l’évolution de la sévérité des cas de Sjögren primaires ou l’évaluation de l’efficacité d’un
traitement thérapeutique.

Annexe E: Article 6, repositionnement de médicaments appliqué au traitement de
la COVID-19 basé sur une approche réseau Si nous avons évoqué différentes approches
statistiques pour décrypter la diversité des profils biologiques observés chez l’homme, l’objectif
poursuivi est la conception de thérapies ciblées et présentant moins d’effets secondaires, dans
le cadre de la médecine de précision. Il s’agissait d’ailleurs de l’objectif initial de mon sujet de
thèse, avant un changement orthogonal de direction, vers des approches orientées sur la biologie
des systèmes.

Après avoir rappelé les difficultés et les forts taux d’attrition associés au développement
d’une nouvelle thérapie, nous montrons dans cette annexe, en guise de préambule, l’intérêt
général des méthodes de repositionnement de médicaments pour réduire les coûts et la durée
de développement. Nous passons ensuite en revue les principales approches statistiques pour
accélérer l’identification agnostique de biomarqueurs, via l’exploitation d’importants volumes de
données.

J’introduis enfin la solution de repositionnement de médicaments historiques, propre aux
laboratoires Servier et dénommé Patrimony. Cette dernière repose sur une approche systématique
et holistique, dont le point de départ est la reconstruction d’un graphe de connaissances combinant
de nombreux types de données omiques et cliniques.

Le projet Patrimony a été appliqué expérimentalement, et avec succès, pour l’identification
de thérapies anti-inflammatoires visant à réduire la sévérité des formes les plus graves de la
COVID-19. Des anticorps, contrecarrant la production d’interférons pro-inflammatoires, ont été
notamment identifié pour traiter les cas de “tempête de cytokines”. Leur intérêt thérapeutique a
été ultérieurement validée par des essais cliniques.
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Part I

Biological introduction



Chapter1
Study of the transcriptome

1.1 Regulation of the Transcriptome
Introduction to Omics Data and Their Role in Computational Medicine Omics
data refers to commonly large datasets, generated using cutting-edge technologies; they notably
encompass genomics, transcriptomics, proteomics, and metabolomics. These methodologies enable
biologists to explore interactions between biological systems on a large scale, providing valuable
insights into cellular functions and mechanisms.

This chapter primarily focuses on transcriptomic data. The transcriptome represents the
set of transcripts, namely DNA segments effectively transcribed into mRNA, measured within
a biological sample at a given time. Transcriptomic analyses, by retrieving differential gene
expression patterns and co-expression networks, yield crucial insights into how genes are activated
or silenced under various conditions.

Analysing such variations of the expression profiles facilitates the identification of the key
drivers responsible for the breakdown of transcriptomic expression regulation mechanisms, one of
the core onset of pathological conditions.

1.1.1 Overview: Importance of meticulous Regulation of Gene Expres-
sion

The central dogma is a structural cornerstone of molecular biology that states that genetic
information is unidirectional, from Deoxyribonucleic Acid (DNA) to proteins. DNA stores the
hereditary material of an organism while Ribonucleic Acid (RNA) serves as a template for the
synthesis of proteins.

The process by which RNA is synthesised from DNA is called transcription while the synthesis
of proteins from RNA is called translation. The central dogma states that DNA is never directly
translated into proteins, implying that the flow of genetic information is uni-directional [Cri70].
The genetic information flow from DNA to proteins is usually referred to as gene expression.

Fined-tuned regulation of gene expression plays a crucial role in the development and adapta-
tion of the human organism to diverse environmental conditions. Remarkably, every individual
cell type contains an identical set of genetic material; yet, by selectively expressing specific subsets
of genes in a precise temporal pattern, each cell type acquires the capability to fulfil highly
specialized biological functions.

2
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In the following subsections, we present an overview of the regulatory mechanisms that govern
the activation or suppression of genes with precision.

A relevant analogy for visualizing these complex regulatory processes is the symphony concert
illustration. As individual orchestra members tune their instruments, the resulting sound is initially
a disordered cacophony. However, as soon as the conductor’s baton is raised, all instruments
harmonize, synchronizing their pitch with precision and right on time, turning the initial discord
into a gleeful symphony.

Among the various regulatory processes involved, we particularly underscore the relevance
of co-expression networks that involve transcriptomic factors. Additionally, we illuminate the
pervasiveness of regulatory processes throughout the transformation from a DNA template to a
functional protein. These mechanistic controls of the regulation of the transcriptomic expression
encompass:

Regulation of the chromatin structure

Firstly, the level of transcription is modulated by the availability of the initiation sites and by
extension to the level of compactness of the chromatin fibre. Indeed, the DNA of eukaryotic cells
is packed with proteins in a “protein complex” known as chromatin, the basic unit of which is the
nucleosome. When histones and DNA are tightly bound in the chromatin fibre, they limit the
access of the RNA polymerase to promoters. This dynamic control of the chromatin architecture
is termed chromatin remodelling.

The regulation of gene expression, in terms of chromatin compactness, is influenced by three
primary factors: firstly, the gene’s promoter location relative to initiation sites; secondly, the overall
compactness of the chromatin structure, exemplified by genes within heterochromatin, a densely
packed region, which typically remain unexpressed; and lastly, local chemical modifications.

Chemical modifications are catalysed by specific enzymes that modify the tri-dimensional
configuration of histone tails protruding from nucleosomes or the DNA sequence. Reversible
addition of methyl groups (-CH3) to amino acids in histone tails can promote the condensation of
the chromatin, while addition of a phosphate group, namely phosphorylation, or histone acytelation,
namely when acetyl groups attach to lysines, induce a looser structure of the chromatin.

The histone code hypothesis suggests that the specific combination and order of chemical
modifications yields the final configuration of the chromatin, which in turn influences transcription.

While some enzymes interact chemically with the tails of histone proteins, DNA methylation
refers to the process performed by a different set of enzymes, methylating directly certain bases
in the DNA itself. It generally occurs at CpG (Cytosine-phosphate-Guanine) sites, the regions
of the DNA sequence where a guanine follows a cytosine. DNA methylation mechanisms play a
critical roles in gene silencing by inducing the condensation of the chromatin.

Interestingly, unlike the reversible changes induced by histone methylation, DNA methylation
patterns, termed genomic imprinting, remain permanent, with highly-specialised cells keeping the
methylation blueprint acquired during the developmental phase.

Co-expression networks of transcription factors

Chromatin-modifying enzymes provide the first initial regulation of the gene expression by
controlling the access of a region of the DNA either more. Once the promoter site is reachable, the
initiation of transcription involves the recruitment of proteins, building a transcription initiation
complex.
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Among them, the RNA polymerase II transcribes the gene and synthesises it into a primary
RNA transcript (pre-mRNA). However, appropriate binding and efficient transcription requires
the combination of regulatory proteins called Transcription Factors (TF) with their corresponding
binding sites acting as control elements. Together, Transcription Factor interplay to precisely
achieve the fine-tune regulation of gene expression seen, either activating or inhibiting the
transcription process.

We set apart two types of transcription factors:

• General transcription factors: They are required for the initiation of the transcription of all
genes, by either binding to the TATA box, a sequence present in most promoters, to other
Transcription Factor or to RNA polymerase. However, their presence only leads to a low
rate of RNA production.

• Specific transcription factors: Context-dependent production of a given gene involves another
set of proteins, the so-called specific Transcription Factor. They recognise specific sequences
of DNA, that might be located close to the promoter, hence termed proximal control
elements, or may be distant up to thousands of nucleotides upstream or downstream, hence
called the distal control elements. A group of control elements acting together to which a
TF uniquely binds to is called an enhancer. Interestingly, while a gene may be associated
to several enhancers, whose availability varies over time, each enhancer is only associated
with a gene.
Transcription Factor can either act as activators or repressors, and bind to other Tran-
scription Factor or the DNA sequence itself. In the last case, they display the same two
structural elements: a DNA-binding domain that binds to the corresponding DNA control
elements and several activation domains that ease or inhibit Protein-Protein Interactions
(PPI) networks and by extension the efficiency of the transcription.

Amazingly, while up to 20 000 genes must be regulated in a human cell, only a dozen distinct
nucleotide sequences control the pairing between TF and the DNA sequence, each enhancer being
composed on average of about ten control elements. It is the particular combination of control
elements that yields the one-way matching between the enhancer and its corresponding TF.

In summary, interactions between transcription factors form complex co-expression networks
that delicately modulate gene expression levels by controlling genome accessibility for the RNA
polymerase.

Post-transcriptional regulation

The strand of mRNA resulting from the transcription is not yet mature, and undergoes a series of
biochemical interactions modifying its properties. Among them, alternative splicing is the most
fundamental mechanism of post-transcriptional regulation.

Indeed, while all the introns are removed, not all the exons, even though coding directly for a
protein, are kept in the final mature mRNA. It enables the production of protein variants, isoform
proteins, starting from the same pre-mRNA, as illustrated with the troponin gene (Figure 1.1).
Thus, a single gene can achieve different functions in the cell by controlling the proportion of
each isoform produced. In fact, alternative splicing is the most likely explanation until now (90%
of human protein-coding genes undergo splicing) for the low number of human genes identified
(around 20 000), similar to that of a soil worm (nematode) or a mustard plant.

Once the mature mRNA produced, it still must be translated into a protein. Conversion from
a mRNA fragment to a functional protein highly depends on its average life span, which in return
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Figure 1.1: Alternative RNA splicing of the troponin T gene..This figure is reproduced from [Cam+20,
Fig. 18.14, p. 378]. Colour background of the exons are dark and introns light. The primary transcript of
this gene can be spliced in several mRNA strands: one ended up with exon 3 (in green) and the other
with exon 4 (in purple). Both mRNAs are muscle proteins, differing slightly by their operational region.

is related to the presence of translation regulatory proteins that recognise sequences of the 3 or 5’
UTR(specific inhibition control, by preventing the binding of both RNA ends to the ribosome) or
general effect protein factors, notably involved in development and differential phase. We display
the mechanisms involved in Figure 1.2.

Interestingly, recent researches highlight the combined role of small non-coding RNAs (ncRNAs)
molecules, known as microRNAs or miRNAs, and regulatory proteins in modulating gene activity.
By base pairing to mRNAs, microRNAs mediate translational repression or the degradation
of mRNAs. Other non-coding RNAs, including long intergenic ncRNAs (lincRNAs) or small
interfering RNAs (siRNAs), seems to be involved but the associated regulation mechanism still
needs to be deciphered ([dSou12], [Eck+12], [Ger+07] and [Sny+20]).

The most complex biological functions require a coordinate set of chemical reactions, for
instance the enzymes involved in a metabolic pathway or a transduction signal. Unlike bacteria,
in which genes involved in the same biological function are associated to the same promoter, a
structural organisation termed operon, genes requiring simultaneous expression are often scattered
over the whole genome in human cells. In that case, coordinate control is triggered by cellular
communication, that in turn promote the recruitment of Transcription Factor.

Post-translational regulation

Finally, post-translational modifications can occur at any time after the translation of the protein.
By inducing chemical modifications to proteins, they alter its metabolic function or targeting, a
part of the protein sequence itself that addresses the final polypeptide sequence to its appropriate
localisation. The most common modifications involve covalent additions of one or more side
groups, including phosphorylation, acetylation, alkylation, and glycosylation.
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Figure 1.2: Model for the coordinate action of RNA polymerase and Transcription Fac-
tor..This figure is reproduced from [Cam+20, Fig. 18.11, p. 375]. The transcription initiation complex
involves the coordinate binding of RNA polymerase II and general transcription factors, while fine-tune
regulation is enabled by specific Transcription Factor that bind to the enhancers (here, represented with
three control elements in gold) and to mediator proteins. It is DNA bending that enables enhancers to
influence the regulation remotely.

Finally, the life span of each protein is strictly regulated by selective degradation. Giant
protein complexes, the proteasomes, recognise the ubiquitin-tagged proteins and degrade them.

In section 1.1.2, we exemplify the substantial impact of epigenetic mechanisms on the multitude
of cell types, each addressing a specific biological function, and the spectrum of molecular profiles.
We subsequently detail how the variations in the regulation of the transcriptomic expression
influence treatment responses and disease progression.

1.1.2 Epigenetics: Implications in Molecular Profile Diversity
The various modifications discussed earlier do not involve changes in the DNA sequence, yet they
can still be passed on to future generations of cells. The transmitted patterns are referred to as
epigenetic inheritance which, unlike DNA mutations, are generally reversible.

An increasing number of experiments confirm the significance of epigenetics in the development
of genetically-based diseases or the initiation of pro-tumoral conditions that promote the onset of
cancers. We gather all the processes involved in gene regulation in Figure 1.3.

It’s worth noting that all these regulation processes are usually intertwined. For instance,
Transcription Factor (TF) can additionally influence chromatin structure by recruiting proteins
that acetylate histones to enhance transcription or directly by removing acetyl groups, resulting
in transcriptional silencing [Wal+12].

In Appendix E, we detail unsupervised, data-driven methods, borrowed from the graph theory
field coupled with high-dimensional clustering methods, to reconstruct from mere correlations
across transcripts these set of intertwined regulation mechanisms.
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Figure 1.3: The key stages of gene regulation. This figure is reproduced from [Cam+20, Fig. 18.6,
p. 370]. In this diagram, each colour indicates the type of molecule regulated (blue = DNA, red or orange
= RNA, purple = protein).
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Gene expression is quantified using advanced techniques, including microarrays and RNA
sequencing (RNA-seq). These methods enable comprehensive profiling of the transcriptome and
the identification of changes in gene expression levels under various disease states.

In the following section 1.2), we provide a detailed overview of the latest sequencing tools
capable of simultaneously measuring transcripts at the tissue scale and with high-throughput
analysis capacity.

1.2 Tools for exploring the transcriptome
Overview: historical outline Historically, tools for quantifying gene expression were primarily
designed for single-gene analysis. The most commonly used methods included in-situ hybridization
techniques like Northern Blots or Reverse Transcriptase Polymerase Chain Reaction (RT-PCR),
as well as sequence-based approaches such as Serial Analysis of Gene Expression (SAGE) or
Comparative Expressed Sequence Tag (EST) analysis.

All the technologies described hereafter harness the sequence of interest as a template (or
primer) to synthesise a complementary and single-stranded RNA using nucleic acid hybridisation.

RT-PCR first involves synthesising a double strand, complementary to the DNA sequence
and trimmed of introns, by the combined use of reverse transcriptase and DNA polymerase with
a RNAse enzyme in charge of degrading the original mRNA material. Indeed, RNA is reverse
transcribed to cDNA since DNA is more stable and enables more efficient amplification and
the use of mature DNA sequencing technology. Then follows an amplification stage generating
many copies of the RNA segment of interest: the PCR step, which notably requires primers,
short chemically synthesised oligonucleotides that initiate the replication by attaching the DNA
polymerase in place. Finally, newer methods such as qRT-PCR (q stands for quantitative) enable
precise quantification while avoiding the burdensome and time-consuming electrophoresis step.

However, any of the methods described previously can only capture a limited number of
mRNAs, while it is usually more interesting to pursue a systematic mRNA estimation. As seen
in Section 1.1.1, different genes, scattered across the human genome, act in concert to perform
complex cellular process.

To that end, we focus in this chapter on the technologies that truly enable to analyse system-
atically the transcriptome, with, by chronological order, microarray technologies Section 1.2.1,
followed by more versatile Next-Generation Sequencing methods Section 1.2.2.

Of note, the Human Genome Project ([Col+98]), in early 21th century underlies the fast
development of these high-throughput technologies. Indeed, most of them rely on a reference and
universal human genome mapping to target specific mRNAs in the biological sample.

1.2.1 Microarray technology to quantify gene expression
Microarray plates are small chips onto which tens of thousands oligonucleotide probes, with
sequences complementary to fragments of actual genes, are engraved. Generally, each gene is
normally represented by a set of probes, so called a probeset, each representing a different but
highly-specific gene region.

one of the most widely used technology being the Affymetrix suite 1, with a bunch of dedicated
1For instance, the Human Genome U133 Plus 2.0 Array (HGu133+, released by the Affymetrix company) gathers

54 000 probesets, spotted by 11 different probes, comprising overall more than 1 300 000 distinct oligonucleotide
sites.

https://www.affymetrix.com/support/downloads/manuals/chas_2_1_user_manual.pdf
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R packages and methods to aggregate probesets into an unique gene expression measure while
discarding background noise or accounting for specific bias ([Gau+04]).

However, the versatility of microarray technologies is significantly hindered by the complex
design of probes. The main challenge is to identify a set of nucleotides both specific to the gene
targeted and unrelated to any other genome region, whereas technical limitations prevent the
length of the complementary probe going beyond 60 base pairs. Without careful and customised
choice of probes, the risk is otherwise of detecting a spurious pairing.

New promising microarray applications continue to emerge, ranging from SNPs detection to
copy number variations through identification of methylated regions or protein binding sites. Due
to their high miniaturisation and standardisation, they strike the balance between the requirement
of high-throughput capacity analysis and cost-saving.

1.2.2 RNASeq technology
Historical development of RNA-Seq

Next-Generation Sequencing (NGS) methods are cutting-edge technologies, emerging from early
2000’s, that bridge the gap between the high-throughput capacity analysis of microarray-based
technologies and the versatility of traditional sequencing methods. We generally classify sequencing
methods in three generations, differing by the nature of the reads generated (either short or long,
direct RN or requiring prior conversion to cDNA) and the sequencing throughput.

First-generation RNASeq Sequencer platforms, like the ABI capillary technology, offer high
accuracy and longer read lengths, but lack high-throughput sequencing.

Second-gen platforms (e.g., Illumina’s MiSeq, HiSeq, NextSeq and Thermo Fisher Scientific’s
Ion Torrent) achieve both high throughput and accurate base-calling via parallel sequencing.
However, their shorter read lengths pose challenges in assembling repetitive sequences.

In contrast, third-gen sequencers (e.g., Pacific Biosciences’ PacBio, Oxford Nanopore Technolo-
gies’ MinION, PromethION, SmidgION) generate long reads at high throughput by sequencing
single-molecule, at the expense of a higher error rate.

In next section 1.2.2, we focus on the Illumina sequencing protocol, since all the datasets used
for our analysis were sequenced through this platform 2.

However, the interested reader may report to glossary keys RNASeq Sequencer platforms
for a comprehensive review of other sequencing techniques and RNA librarys for an overview of
biological applications with respect to the nature of the generated reads.

Additionally, [SGA18] thoroughly elucidates the fundamental principles that underpin each
technological advancement in the field, accompanied by a compilation of valuable papers and web
resources for each sequencing platform. Furthermore, [Lam+12], [VD18] and [Cot18] benchmark
comprehensively various RNA-Seq methodologies, while proposing future avenues for new biological
applications.

Outline of RNA-Seq analysis

Library preparation The transcriptome of the sample or tissue of interest, after an isolation
stage, is reverse-transcribed into complementary DNA (cDNA) for stability purposes. The next

2Going further,it is up to 90% of all DNA sequenced data that were generated with the Illumina platform, from
estimations reported in Illumina leaflet, in 2015.

https://emea.illumina.com/techniques/sequencing/rna-sequencing/total-rna-seq.html
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step consists of randomly fragmenting cDNA into strands of smaller sizes, called inserts, and
ligating two distinct adaptors, one at each end, in a process called “tagmentation”. The set of
obtained cDNA fragments is termed the “library” (see also subfigure a, in Figure 1.4).

DNA amplification Compared to old-fashioned sequencing methods, NGS technologies mostly
differ by their higher capacity of DNA amplification and sequencing. After an initial amplification
stage, employing similar techniques to RT-PCR, comes the clonal amplification stage itself in
order to increase by several orders of magnitude the total amount of DNA available for sequencing,
compared to more traditional approaches 3.

Precisely, the clonal amplification stage mitigates the lower sequencing quality inherent to NGS
in comparison to conventional methods, while achieving a significantly stronger genome coverage
4. This is particularly valuable for sequencing challenging regions of the genome, including
repetitive segments, GC-rich regions and homopolymers, which tend to pose accuracy hurdles
during sequencing.

With respect to Illumina process, initial amplification relies on a lawn of oligonucleotides,
complementary to the sequences of the adaptors, which are attached to a glass flow cell, composed
of thousands of tiles. In parallel, the DNA library is denatured to form single-stranded DNA
(ssDNA) fragments which subsequently tether to the surface-bound oligonucleotides. Subse-
quently, “bridge amplification” hybridised each tethered fragment and cloned it separately and
simultaneously into ≈ 1000 copies. The set of copies is called a cluster. This process is enabled
by the two types of oligonucleotides bound to the flow cell: they indeed allow alternated synthesis
in both directions of the cDNA fragments, a process repeated until the desired amount of DNA
has been reached (see also subfigure b, in Figure 1.4).

Raw sequencing Genome sequencing consist of determining the sequence of nucleotides of the
whole set of fragments composing the DNA library and the technique is itself highly dependant
on the platform used. The resulting data output is typically stored in FASTA or FASTQ files.

Again, we focus on the Illumina high-throughput and massively parallel sequencing protocol.
Briefly, fast sequencing of fragments rely on a proprietary reversible “terminator” method that
detects single addition of bases in the mean time they are incorporated.

Specifically, each sequencing cycle starts with the addition of a primer and fluorescent
reversible-terminator nucleotide (rt-dNTPs), ensuring that only one nucleotide is added at a time.
Any unbound nucleotide is then washed away, while lasers excite the fluorescent tags of each
incorporated nucleotide, each being associated to its own wavelength. Finally, the tag is cleaved
off, putting an end to the cycle.

This procedure, known as “sequencing-by-synthesis” is iteratively performed until the desired
sequence length is achieved. The number of cycles employed dictates the resulting sequence
length, a balanced trade-off between generating overly brief strands that might yield ambiguous
mapping information in the subsequent assembly stage, and overly extended ones that carry an
elevated risk of compromised synthesis quality at the 3’ end.

The resulting images are then processed to return the reads themselves (the string sequence,
each character coding for one of the four RNA nucleotides). To achieve this, the nucleotide
identification process computes the signal intensity and noise for each of the identified cluster,

3Amplification is mostly required for methods that do not directly sequence RNASeq, but rather convert it first
into c(omplementary)DNA (Figure 1.4)

4Up to 180 million reads are generated by the HiSeq 2000 platform
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in every set of raw image files generated during the “sequencing-by-synthesis” phase. This
multifaceted procedure is referred to as base-calling (see also [ill23] for an industrial overview or
[RP18] and [MK10] for a didactic and unbiased academic point of view).

Better sequencing quality can be further achieved by synthesising fragments in both directions
of each cDNA sequence, as illustrated in [ill23, Figure 4: Paired End Sequencing]. The resulting
“paired-end” library has twice the number of reads for the same dedicated efforts, increasing
the quality of the alignment and providing refined opportunities for the detection of “indels”
(insertion deletion modifications), SNVs and SNPs mutations (see also subfigure c, in Figure 1.4).

Mapping From the billions of reads sequenced, computer software and bioinformatic tools
rebuild the whole transcriptome, by locating each read in the genome. Two strategies are used,
depending on the level of prior information available: de-novo strategy, as its name suggests,
refers to construction of genomes when no annotations are available while the genome-guided
strategy aligns and maps reads onto a genome of reference.

De-novo alignment is a highly-challenging task, especially for covering highly repetitive regions
of the genome, or rare and abnormal genomic events, such as chromosomic rearrangements,
Single-Nucleotide Polymorphism (SNPs) or even indels (for inserts and deletions).

However, such issues can be alleviated by coupling short-read assembly with long-read paired-
end sequencing information. This strategy, known as Genomic scaffoldings involves generally
an intermediate step which consists of generating larger individual Contigss before the final
reconstruction of the whole genome. [Luo+21], [RG19] and [SN18] established that the optimal
sequencing quality and coverage are achieved by combining reads of diverse sizes: shorter ones
derived from NGS and longer inserts obtained through traditional sequencing methods, generally
with lower read depth.

We now focus on the reference-based strategy. Historically, the methods developed focused
on alignment methods for long reads generated through conventional sequencing, such as the
renowned BLAST [Alt+90].

However, such methods are not tailored for aligning short reads returned by NGS technologies,
nor mapping fragmented and discontinuous RNA fragments 5. In addition, short reads with
repetitive patterns have an equal chance of aligning to various distant regions of the genome, as
discussed in [TS12].

Hence, numerous bioinformatic alignment tools have been developed to address the challenge
of short-read sequencing (see a comprehensive review in [TS12]). These tools often use a strategy
called “seed-and-extend” to align shorter portions of the reads, through dynamic programming, to
find the best alignment with the most overlapping sequences. Some of the most commonly used
mapping methods include BowTie2 [LS12], TopHat2 [Kim+13], STAR [Dob+13], and HISAT2
[Kim+19] algorithms.

In particular, in our custom industrial Nextflow pipeline (Appendix A.2), we use the STAR
(Spliced Transcripts Alignment to a Reference) ([Dob+13]) mapping process, whose operational
steps encompass:

1. Before mapping reads, STAR builds an index of the reference genome. This index facilitates
fast alignment by pre-processing the genome into smaller segments, called “seeds” and
storing them in a compact hash table, allowing for direct memory access.

5The alternative splicing phenomena, Section 1.1.1, involves that sections of the DNA sequence template are
discarded in the transcription of a mature mRNA, including all introns
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2. STAR then identifies similar seed patterns from the read sequences and matches them in
the indexing hash table. The seed extension algorithm allows for robust mapping, even
with mismatches and sequencing errors.

3. Interestingly, STAR is designed to handle spliced reads across exon-exon junctions, ac-
counting for the presence of introns, thus enabling better accurate mapping of transcripts
in eukaryotic organisms. To integrate this feature, STAR integrates a two-pass mapping
strategy to improve alignment accuracy. The first pass identifies potential splice junctions
which are further utilised in the second pass to align reads across spliced junctions.

4. STAR evaluates the quality of all potential alignments of a given read onto the reference
genome, prioritising the mapping associated with the lower number of mismatches, indels,
and mapping quality.

5. STAR returns SAM/BAM files that contain the aligned reads with their mapping positions
on the reference genome and their overall quality alignment score.

The final output is a BAM file, which can be interpreted as a global map of the genome, in
which each read is assigned to a unique pair of “genomic spatial coordinates”.

[Sri+20] benchmarks a huge collection of alignment and mapping methods to determine their
impact on the estimation of transcript abundance estimation. They observe significantly different
and variable performance between lightweight-mapping and more traditional alignment-based
methods. They notably observe that preprocessing spliced alignment to the genome and then
projecting these alignments to transcriptome provides better mapping performance, compared to
directly aligning against the transcriptome.

Quantification Once all reads are aligned to a reference genome, the final stage of the RNA-seq
pre-processing workflow involves the estimation of transcript abundances, generally under the form
of raw count measures at the gene or transcript isoform level. The final number of high-quality
reads that could have been mapped unequivocally to the reference genome, is the library size,
alternatively the sequencing depth (see also Panel d, in Figure 1.4).

Historically, only the reads overlapping perfectly a given exon of the original genome sequence
were annotated, for instance consider HTSeq [APH15] and FeatureCounts [LSS14] tools. Since
then, advanced methods that are particularly effective with limited annotation information
involve a preliminary construction of Contigss, enabling to rebuild from scratch newly unobserved
transcript variants by including junction reads and unannotated transcripts (see for instance
Cufflinks [Tra+10] or StringTie [Per+15] tools).

Ultimately, Kallisto [Bra+16] and Salmon [Pat+17], an updated version that accounts for
sample-specific biases, such as fragment GC content or positional bias, are both lightweight
methods relying both on a probabilistic framework and the identification of k-merss regions,
to make the alignment methods more scalable and accurate. Hence, they both stand out as
cutting-edge methodologies by achieving similar accuracy to predecessors while being significantly
faster.

We delve into details about the functional operations involved in FeatureCounts [LSS14],
since it is the primary method to quantify reads for a given gene implemented in our industrial
Nextflow RNA-Seq pipeline (refer to Appendix A.2):
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1. Any quantifier algorithm usually accepts SAM/BAM files, storing the mapped reads and
their position on the reference genome, as returned by any aligner tool, such as STAR or
HISAT2 (refer to Section 1.2.2).

2. Quantifier algorithms additionally require a transcript feature annotation table, which
capitalises on databases like GTF or GFF (General Transfer/Feature Format), to select a
subset of reads mapping the regions of interest (usually exons, introns, or whole genes).

3. Each mapped read is then assigned to the most appropriate functional gene, matching the
position of the read with the most universally known boundaries of the known genes on the
genome. If a read overlaps with multiple features, genes are ranked by order of priority,
receiving a larger weight if associated with a longer transcript or closer to the read’s start
position.

4. Once unambiguously associated to a known biological feature, the algorithm simply counts
the number of reads assigned to a given gene, and this integer number is in turn considered
as a proxy of the expression level or abundance of that gene.

Of note, raw counts from RNA-Seq data are in reality, inherently compositional, meaning they
only reflect relative gene expression levels, due to variations in sequencing library depth across
samples and batches.

This variability in sequencing depth can complicate direct inter-sample comparisons, but ap-
proaches like spike-in normalization (consider for instance the Bioconductor package BRGenomics
([DeB23]), or the use of normalization functions (Appendix A.3.3), can facilitate meaningful
comparison between samples.

Experience-dependant and quality controls A variety of quality controls and optional
operations can additionally be performed throughout the whole RNA-Seq workflow process,
depending on the biological context and the objectives of the study.

Ribosomal RNA makes up a significant portion of total RNA and can even dominate nucleic
RNA-Seq data. When the study focuses on protein-coding genes, bioinformaticians often remove
rRNA reads using tools like SortMeRNA [KNT12] or rRNASelector [LYC11].

Adaptive trimming removes low-quality bases and trims adapter sequences on raw reads, using
adaptive trimming tools like Trimmomatic [BLU14] or Cutadapt[Mar11].

FastQC [And10] is a tool designed to compute multi-quality control metrics, such as read
length distribution, per-base sequence quality, GC content, and adapter contamination, helping
to identify potential biases in the data at an early stage of the workflow pipeline.

RSeQC [WWL12] and SAMtools [Li+09] provides additional quality control metrics, including
gene body coverage, read distribution, and strand specificity, performed on the BAM files outputs
of aligner tools (refer to Section 1.2.2).

The main stages involved in any RNA-Seq sequencing workflow are summarised in Figure 1.4.

Microarray vs RNA-Seq

RNA-seq offers several advantages over microarrays.
Firstly, it doesn’t require a labelled probe or a well-annotated genome, making it versatile

for studying model organisms without reference transcriptome [WGS09], whereas microarray
methodologies require a reference organism to build customised, complementary probe sites.
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Figure 1.4: The entire NGS workflow can be broken down into four steps:
1. Sample extraction: When RNA is the starting template, an additional step, between the RNA extrac-

tion, and the library preparation itself, is required to convert the RNA into c(omplementary)DNA
by reverse transcription (reproduced from [Cam+20, Fig 20.10]).

2. Library preparation: Preparation of a sequencing library typically involves two steps: 1) RNA
amplification to increase the amount of appropriately sized target sequences and 2) the addition of
adapters to uniquely identify them. PCR (for polymerase chain reaction) is one of these techniques
to copy many times any target sequence within a test tube, which only requires double-stranded
DNA containing the target sequence, a heat-resistant DNA polymerase, all four nucleotides, and
two single DNA strands that serve as primers, one for each end of the target sequence (reproduced
from [Cam+20, Fig 20.7]).

3. Sequencing RNA library: Currently, we generally classify all sequencing platforms into three
generations, each coming with distinct strengths and weaknesses (subfigure c reproduced from
[Ron+16, Fig .1]).

4. RNASeq analysis: when studying an organism with a reference genome, it is possible to directly
map the reads onto the reference transcriptome. However, without a reference organism, the
individual genome must be reconstructed from scratch: “de-novo assembly”, see key Contigs and
Genomic scaffolding for details (subfigure d reproduced from [Ron+16, Fig. 1]).

The general framework of this illustration is reproduced from [G20, Fig. 1].
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Secondly, RNA-seq provides a broader dynamic range for expression levels, quantifying gene
expression as integer counts, and reducing issues related to noise and saturation [WL09].

Thirdly, RNA-seq is highly versatile, enabling the detection of alternative splicing isoforms and
rare genetic mutation disorders, including single nucleotide polymorphisms (SNPs) and complex
transcript fusion events. These capabilities make RNA-seq a powerful tool for transcriptomic
analysis [Man+14].

Comprehensive benchmarking of RNA-seq against microarray technologies, relying on concor-
dance correlation with RT-qPCR expression data, is proposed in [Eve+17].

To mitigate these statements on the presumed better performance of RNASeq-based techniques
over microarray, [Zha+15] demonstrates that while RNA-seq outperformed in quantifying the
transcriptome of neuroblastoma, both methods performed similarly in predicting clinical endpoints
(see also [Xu+13] for a benchmark between Illumina RNA-Seq and Affymetrix).

Confirming empirically these specific clinical examples, the meta-review [MO11] and opinion
paper [Man+14] confirm the utility of microarrays, notably as being more cost-effective and
reliable for gene expression profiling in model organisms. In addition, both approaches exhibit a
strong congruence when asked the same biological question.

In the subsequent section 1.2.3, we review emerging RNA-Seq applications that enhance our
understanding of biology, by going down to single-cell level, or by preserving the spatial and
temporal context of tissue structural organization.

1.2.3 Perspectives: single cell and spatial transcriptomics
Limitations of RNA-Seq technologies Conventional RNA-Seq technologies, while perform-
ing accurate and high-throughput sequencing, are tailored to dissect bulk mixtures, aggregating
different biological entities. Thus, they hinder the identification of key biological drivers involved
in complex cellular processes.

Additionally, RNA-Seq outcomes are simply snapshots of the current transcriptome state,
without temporal or spatial context. Thus, they can not be used to understand long-term
interactions occurring between distinct biological compartments.

Single-cell RNASeq technologies

Outline of Single-cell RNASeq Single cell RNA-Seq is a promising technological ad-
vancement, that has notably been employed to investigate rare subpopulations at a single-cell
resolution level, and which are typically silenced in bulk transcriptomics [GA18].

The isolation of individual cells, notably those strongly embedded within tissues, is one of
the major challenge of scRNA-Seq ([FFF15]). Historical methods relied on manual isolation of
individual cells, hereby limiting the analysis to a few dozen cells, including micro manipulation
[Tan+09] and laser capture micro-dissection (LCM) techniques [GCS21].

In contrast, modern approaches involve high-throughput and automated dissection and sorting
of tissues, encompassing microdroplets [BR19], microfluidics (10X Chromium,[Zhe+17] [Sar+19])
or microchips (Smart-seq2, [Pic+13].

scRNA-Seq additionally require amplification of minute amounts of RNA for each individually
captured cell. The sequencing and amplification of RNA-Seq implies the same stages as standard
RNA-Seq methods, namely (1) reverse transcription, (2) cDNA amplification with PCR, for
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an exponential amplification, or in vitro hybridisation, for a linear amplification, and (3) the
sequencing of the library itself (see Section 1.2.3, Section 1.2.2 and [Isl+14]).

Applications and limitations of single-cell The high resolution of scRNA-Seq tech-
nologies allows a better understanding of complex biological pathways, which were not accessible
to standard methods of bulk cell population profiling, a snapshot of new avenues offered by
this groundbreaking technology is unveiled in Section 1.2.3. Notably, they can be used to finely
characterise subpopulations within a sample by identifying cellular cell markerss ([Seg+18]).

Pioneering and promising approaches go a step further, by attempting to reconstruct the
continuum of cell states rather than definite stages [Ren+20]. Such models even allow the
possibility to switch from one cell phenotype to another.

pseudo-time analysis hence consider a continuous paradigm, able to provide temporal context
of the mechanisms involved in the regulation of cell differentiations. Notably, this approach aims
at inferring “cell trajectories”, namely ordering the developmental stages of single cells, based on
the variations of the transcriptome. For instance, [Mys+21] reconstructs the branching trajectory
of the cell state transitions conducing naive cells into differentiating into cytotoxic CD8+ T cells,
with the DDRTree algorithm [Qiu+17]. Monocle [Tra+14] uses a minimal spanning tree approach
to prove that CX3CR1+ macrophages and iNOS+ macrophages could not coexist in an early
tumoral stage.

We should point out that scRNA-Seq is proned to technical biases, expensive and resource-
consuming ([Pfi+21], [DC21]).

The major limitations of scRNA-Seq encompass dropouts, biased capture of cell types,
detection of “doublets” or deal cells and identification of isolated cell types.

dropouts are technical artefacts, due to inefficient RNA capture, that result in highly variable
and sparse transcriptomic expression matrices, exhibiting numerous null values [Xu+20]. These
dropouts are challenging for downstream analysis, masking gene-gene relationships in complex
niches or blurring detection of rare genetic variations ([Qiu20], [Kim+21] and [Lei+20]).

As RNA-Seq, the library preparation is a destructive process ([Tan22]). [Lam+18] posits
that particular cell types, such as neutrophiles, were more susceptible to undergo deadly damage,
resulting in a consistent underestimation of their expression. In addition, scRNA-Seq can not
be applied on biological tissues that are strongly intertwined, such as brain neurons ([Sos+21]).
Finally, isolation can induce “ectopic” expression, resulting from the stress induced by the lysis
process ([vdBri+17]).

The annotation of each isolated cell, either mapped to a known cell type or to a novel one is
challenging. Specifically, semi-supervised clustering techniques dedicated to that task must not
confuse rare cell subtypes with aberrant transcriptomic profiles or alterations proceeding from
the stochastic and plastic nature of transcriptomics regulation ([PY15], [Sha+14]).

Paired captured cells at the same spot, termed “doublets”, generate a hybrid profile, that
might wrongly interpreted as a intermediate developmental stage, especially when proceeding from
distinct cell types. Deconvolution algorithms, such as DoubletFinder [Han+21] and DoubletDecon
[XL21], can automatically remove multiplets and dead cells upstream.

Spatial transcriptomics While scRNA-Seq enables to deconvolve cell populations within
a tissue, it does not capture their spatial distribution, nor reveal in real time, in situ cellular
mechanisms. On the contrary, ST methods aim at replacing variations of expression profiles in
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(a) Common applications of single-cell RNA sequencing.(a) Deconvolving hetero-
geneous cell populations. The single-cell resolution level can enhance the identification of
rare cell species or subtypes. (b) Trajectory analysis of cell state transitions. (c) Dissecting
the intricacy of transcription kinetics, inherently stochastic. (d) Network inference. Genes
can be clustered by expression profiles to identify modules of co-regulated genes, further
unravelled through studying the covariance matricial structure to infer gene regulatory
networks. Reproduced from [LT16, Fig .1].

(b) Overview of a standard single cell RNA sequencing pipeline.(A) Tissue dissociation at the
cellular level (B) Single cell RNA sequencing of the single cell suspension. (C) Bioinformatics analysis
of the library of reads sequenced. (D) Experimental validation. Reproduced from [CH20, Fig. 2].
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their spatial context. ST encompass two main techniques, each with its strengths and limitations
(see also Section 1.2.3).

Image-based approach: It comprises in situ sequencing (ISS, [YGN20]) and in situ hy-
bridisation (ISH, [Vic+19]), both methods using probes to target specific genes. ISH notably
encompass seqFISH+ [Eng+19] and MERFISH [Che+15])protocols, in which target sequences are
hybridised with a complementary fluorescent probe. Recently developed multiplexing methods do
not rely anymore on an unique fluorescent barcode for each transcript, significantly increasing their
sequencing analysis. For instance, HighPlex RNA imaging ([He+22])) is accordingly able with n
distinct fluorescent colours and k sequential rounds of hybridisation cycles to unambiguously set
apart kn distinct transcripts. While these methods exhibit a lower coverage of the whole genome,
requiring a prior selection of target genes, and strong noisiness, resulting from the molecular
crowding phenomena 6, their single cell resolution and their conservation approach make them
relevant to track complex temporal dynamics.

in-situ capture (Spatial Transcriptomics [Stå+16] and Slide-seq [Rod+19]) is a contemporary
method that measures the transcriptome level for each of the individual spots of a finely-tuned
lattice and tag it with an unique spatial “ID” barcode, with the spatial coordinates of the associated
spot. Then, the sequencing protocol reconstructs the nucleotides sequence, while keeping track of
its original localisation, a technique consistently termed spatial barcoding (Section 1.2.3). One of
the current best performing methods, Visium, released by 10x Genomics, displays an increased
resolution (55 µm in diameter) and sensitivity (∼ 10 000 transcripts per spot) [NSH20]. Compared
to the Image-based approach, spatially resolved transcriptomics is cheaper, and enables enhanced
and agnostic coverage of the transcriptome.

Both techniques return a three-dimensional tensor of transcriptomic expressions, each gene
being represented by a matrix of intensities representing its 2D spatial expression profile, as
pictured in Section 1.2.3. The resolution and conservancy of ST is likely to reveal new biological
insights. Spatial transcriptomics has already been successively applied to survey dysregulated
expression patterns, induced by neurodegenerative disorders (Alzheimer’s disease [Che+20], AML
[War+20]) to immuno-inflammatory affections (influenza, [Cur+21], sepsis, [Jan+21]). See also
[Rao+21, Fig. 2] for a graphical summary of biological applications enabled by ST, at any layer
of the organism.

1.2.4 Conclusion: The Significance of Transcriptomic Data in Compu-
tational Medicine

High-throughput sequencing analysis, streamlined by RNA-Seq methodologies, is double-edged:
it unveils valuable biological insights, yet the inherent noisiness and high-dimensionality of the
generated datasets demand finely-tuned and dedicated statistical methods (Appendix A).

To that end, a variety of downstream analyses (see Appendix A.4) have specifically been
developed, encompassing differential analysis for identify genes impacted by biological state,
patient stratification (Chapter 4) ensuring patients receive the most effective therapies, and
identification of key biomarkers associated with disease progression or treatment response.

6Molecular crowding designs the spatial overlap of fluorescence signals, restraining the number of fluorescent
tags used to a few dozens.
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(a) Overview of Spatial Transcriptomics Methods.(1) Microdissection method. (2) in-situ Hybridisation
method. (3) in-situ Sequencing method. (4) in-situ Capture method, alternatively named spatial barcoding. (5)
in-silico method. Reproduced from [Sli23, Fig .1], using the BioRender software [].

(b) Zoom on the spatial barcoding technique.Reproduced from [Che23, Fig. 3].
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In addition, the relative affordability of RNA-Seq technologies, compared to methods quanti-
fying the proteome, make them relevant to approximate the proteome. Yet, post-transcriptional
events (Section 1.1.1) mitigate the precision and reproducibility of such studies, as discussed in
[Mei+13].

By pinpointing dysregulated pathways, downstream analyses streamline the development of
targeted therapies that focus on the molecular drivers of a disease. More generally, real-time
monitoring of the variations of gene expression can allow meticulous adjustment of drug doses,
uphold switching to alternative treatments or design robust clinical trials, with more homogeneous
cohorts.

Overall, transcriptomic data is a major input of computational medicine, enabling a deeper
understanding into the gene expression patterns and regulatory mechanisms that underlie the
variability of disease profiles and individual treatment responses.

Nonetheless, bulk RNA-Seq analysis is oblivious to variations in cell-type composition, av-
eraging the contributions of individual cell subtypes. In the following chapter 2, we go down a
biological strata, by specifically detailing the interactions that occur across immune cell types.
We will notably see that the intertwined network between the innate and adaptive system are
essential for repelling efficiently harmful invaders.

We have opted to focus on immune cell populations for two primary reasons. First, all
the studies presented in this manuscript harness whole blood samples, in which white cells
represent the primary contributors to transcriptomic expression. Red cells and platelets, being
enucleated cells, are unable to engage in protein synthesis or mRNA transcription. Secondly,
the progression of diseases under scrutiny, notably primary Sjögren’s disease, are predominantly
driven by dysregulated immuno-inflammatory processes.



Chapter2
Introduction to the Immune System

Biological Perspective: Introduction to the Immune System In this chapter, we shed
light on the actors of the immune system. The immune system plays a central role in defending
the body against pathogens and maintaining homeostasis. Notably, we highlight throughout this
chapter the significant role of transcriptomic signalling pathways, which finely tune interactions
between cellular populations and play a pivotal role in the flexibility and effectiveness of the
human immune system. Specifically, we emphasize the importance of cooperation between innate
immune actors, which are generalist but presenting numerous harmful side effects, and adaptive
immune actors, highly specialised, but requiring upon prior activation.

However, we recall in a second phase that a meaningless hitch in this well-oiled machinery
can lead to immune system dysregulation, and in the worst-case scenario, leads to uncontrolled
metastatic proliferation or the development of debilitating autoimmune diseases, depending on
the circumstances.

2.1 Key actors of the Immune System
Overview: the immune system, the keeper of our body The immune system is an
intertwined network of cells, and molecules that collaborate in protecting the body against
infectious agents. Such threats are collectively named pathogens, ranging from viruses to bacteria
and fungi.

Its primary role is to early recognise these intruders, in order to eliminate them quickly, while
avoiding as much as possible side effects against innocuous molecules or self entities. Specific
identification of harmful elements is enabled by molecular recognition, and perturbations in its
underlying mechanism is at the root of most immune disorders. The immune system accordingly
plays a crucial role in keeping the homoeostasis of the human body.

The immune system is traditionally split between the actors of the innate immune system
(Section 2.1.1) and those of the adaptive immune system (Section 2.1.2).

2.1.1 The innate system
The innate immune system is the first line of defence and provides immediate, non-specific
protection against invading pathogens. This includes:

21
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• Barrier defences: Physical barriers, such as the skin and mucous membranes, are the
first line of defence, preventing pathogens from accessing the inner environment. However,
entire sealing is impossible, since the human organism must interact with its environment,
through gas exchange and nutrition to maintain homoeostasis and perform vital biochemical
functions.
Thus, these protections are completed with chemical secretions trapping pathogens, spe-
cialised organelles such as lysosomes and reservoir of innate cells poised to fend off potential
invasion.
The mucous membranes of epithelium tissues, such as the digestive or airway tract, are
the ultimate barriers against infection. Mucus, saliva and other enzymes secreted prevents
colonisation by fungi and bacteria, by destroying their cell walls and increasing the acidity
of the ambient medium.

• Naive and generalist Immune cells These cell populations recognise proteins universally
shared among pathogens that bound to the Toll-like receptors (TLRs). TLRs, for which the
Nobel Prize in Physiology was awarded in 2011, is remarkably widespread and preserved in
the animal kingdom [AT04a]. In details, the TLR3 complex binds to double-stranded RNA,
a common nucleic organisation in viruses [MS08] while the TLR4 and TLR5 respectively
target the lipopolysaccharide found on the surface of many bacteria [Tak+99] and flagellin
[Gew+01], the main protein of bacterial flagella.
Upon recognition, macrophages (“big eaters”) and neutrophiles wipe out pathogens that
breach the natural physical barriers by phagocytosis. Generally, influx of neutrophils
precedes the arrival of monocytes that rapidly differentiate into macrophages within tissues.
Natural killer (NK) cells are a type of immune cells known for their ability to induce the
death of virus-infected or abnormal cells. They do so by detecting surface receptor proteins,
like stress signals or tumour antigens, and releasing toxic molecules that initiate apoptosis,
a programmed cellular death process.
Mast cells contribute to the inflammatory response but are also involved in aberrant
reactions such as allergies, alongside eosinophils and basophils. Their primary function was
the protection against multicellular parasites, such as worms.
Finally, dendritic cells are more specialised, and ensure the coordination between the innate
and the adaptive response ( section 2.1.3).

• Signalling and antimicrobial proteins The complement system is a set of of 30 identified
proteins in blood plasma that interact with each other in a highly coordinated and sequential
manner. This cascade of biochemical reactions leads to the formation of protein complexes
that trigger the lysis of invading cells (destruction through bursting of the membrane),
the opsonisation (marking for destruction) and the recruitment of immune cells to the site
of infection. The complement system additional plays a pivotal role in tissue repair and
development.
Interferons interfere with cells hosting virus, whose activation patterns depend on their type:
α, β and γ. Interferons are released by virus-infected cells and by binding to neighbouring
immune cells, they inhibit viral replication or promote the phagocytic ability of macrophages.
Cytokines, released by various immune cells (and even non-immune ones), play a dual
role in inflammation. Some, like interleukin-1 (IL-1) and tumour necrosis factor alpha
(TNF-alpha), are pro-inflammatory and can recruit for instance neutrophils. Others, on the
contrary, resolve inflammation and facilitate tissue repair, like interleukin-10 (IL-10) and
transforming growth factor beta (TGF-beta).



2.1. Key actors of the Immune System 23

• The inflammatory response (from Latin inflammare, “set on fire”) is the set of events that
modify the microenvironment, triggered by an intertwined cellular signalling released upon
infection. The first stage often involves mast cells secreting cytokines, such as histamine,
that promote growth, migration, and activation of endothelial cells, thus contributing to
vasodilation [RTA20]. The dilatation of blood vessels causes the well-known, localised
inflammatory response, characterised by the increase of the skin temperature, redness, and
enhanced blood flow.
Subsequently, the released cytokines promote the migration of immune cells towards the
inflamed region through a process called chemoattraction (movement of a cell following
the chemical gradient of a signalling molecule). Then, the coordinate interaction between
signalling mechanisms and cellular responses keep on sustaining the inflammation process,
with the deployment of the complement system and the recruitment of additional immune
cells [Mol+20].

Unfortunately, this generalist first line of defence may reveal insufficient to fend off particularly
harsh pathogens strengthened by millions of years of co-evolution. Indeed, some pathogens evolve
specifically to overbalance the immune defences (a set of mechanisms referred to as immune
escape). For instance, some bacteria have an outer capsule that prevents recognition, while others
are resistant to breakdown by lysosomes.

2.1.2 The adaptive system
The adaptive immune system, on the other hand, provides a targeted response to pathogens
that have already overwhelmed the innate system, through receptors specific to the intruders.
Adaptive immunity relies on two types of lymphocytes: B cells and T cells 1.

All receptor proteins on a single B or T cell share the same antigen receptor and recognise
the same antigen, any foreign molecule detected as non-self and able to elicit recognition. To
recognise any potential antigen, millions of distinct lymphocytes coexist in the body, each with
its own recognition pattern that is able to bind to a protruding antigen surface or a circulating
agent, such as microbial toxins.

The adaptive immune response decomposes into four stages:

(a) cell diversity It is a crucial step for generating the diverse array of lymphocyte subtypes,
which, in turn, gives them the capacity to recognize a broad range of antigens 2. Random
alternative splicing and gene recombination processes, specifically referred to as “V(D)J
recombination”, play a pivotal role in creating unique sequence arrangements.

(b) Self-tolerance This step aims at eliminating self-reactive lymphocytes, namely those that
recognise own molecules as non self, and thus could trigger improper immune reaction
against the body’s own molecules and cells. These self-reactive lymphocytes are either
destroyed through apoptosis, or rendered non functional.

1Like all blood cells, lymphocytes originate from stem cells in the bone marrow, but while T cells migrate to
the thymus, B cells undergo their maturation stage in the bone marrow. Generally, Hematopoiesis is the biological
process involved in renewing all the cell populations circulating in the blood, while the corresponding scientific
field focuses on resolving their lineage relationships.

2[BSA02] and [Guo12] demonstrate that one million of different B cell antigen receptors and 10 million different
T cell antigen receptors coexist in the human organism.
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(c) Clonal selection and Cell Proliferation The activation of a unique set of B or T cells
hinges on the binding between the antigen’s epitope and an antigen receptor, primarily
taking place within the lymph nodes ([Cam+20, Figure 6, Chapter 43]).
Upon activation by binding to an antigen, lymphocytes undergo proliferation, forming
a clonal population of cells carrying thousands of receptors targeting the same antigen.
Subsequently, these cells differentiate into “effector cells”, including (1) T CD4 or Th Helper
cells that coordinate the adaptive response through the clonal amplification of effective
lymphocytes, (2) T CD8 cells responsible for eliminating virus-infected host cells, and
(3) activated B cells, also known as “plasma cells”, which produce soluble proteins called
antibodies circulating within body fluids. This entire process is commonly referred to as
clonal selection.
Helper T cells, by their multifaceted role, notably in coordinating and conducting the
actors of the adaptive response, play a pivotal position. Upon recognition of antigens,
presented by class II MHC molecules of antigen-presenting cells (APC) (dendritic cells
(DC), but also macrophages or B cells), T CD4 cells activate metabolic pathways secreting
cytokine. Excreted signalling molecules, in turn, enhances clonal amplification and triggers
two immune responses, namely the humoral and cell-mediated immune response, depending
on the nature of the antigen ([Cam+20, Figure 18, Chapter 43]).

(d) Immunological Memory The immunological memory is responsible for the long-term
protection elicited by a prior infection. This protective mechanism differs from the primary
immune response by a faster and prolonged response (peak intensity within two days against
10 days), with a greater magnitude (the concentration of antibodies or killer T cells increases
by two or three folds).
This heightened secondary response to the same antigen relies on a subset of the effector
lymphocytes, called memory cells. Upon initial activation following the exposure of an
antigen, memory lymphocytes are preserved in storage tissues. Indeed, while the majority
of lymphocytes are eliminated once the infection is overcome, by regulatory T cells, their
longer life places memory cells at the forefront to initiate clonal amplification of thousands
of highly-specialised effector cells in case of repeated exposure.

This mechanism finds direct application in the process of immunization, which involves the
deliberate introduction of antigens into the body to induce the production of memory cells. Better
known as vaccination, this concept dates back to the late 1700s, witho Jenner’s observation of
better protection conferred by cowpox early exposure, against the deadliest smallpox. In modern
times, vaccines have evolved from first-generation formulations containing killed or weakened
pathogens to third-generation advancements, such as mRNA vaccines by Pfizer and Moderna,
and overall contribute to significant reductions of infectious and crippling diseases, such as polio
and measles.

2.1.3 Exchange of goodwill between the two immune systems
Contrary to the standard approach which opposes the innate system, shared by all animals, to
the seemingly more efficient adaptive system, only developed among jawed vertebrates, we show
in this point that it is the constant interplay between lymphocytes and other innate cells that
together provides this efficient, coordinated and constantly remodelled protection against a variety
of pathogens.
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Figure 2.1: Cooperation mechanisms between the innate and the adaptive immunity. This iconography
shows the inner mechanisms intervening in the innate (left) and adaptive (right) response, each able to
trigger a cellular (lower half) or humoral reaction (upper half). Reproduced from [Dia20, Fig .1].

The cooperation between innate and adaptive system generates a positive feedback loop whose
main stages are reported on Figure 2.1, emphasising how much these two systems are closely
intertwined:

The multiple interactions occurring between the older and generalist innate system with the
adaptive and highly-specific immune system include:

• A local inflammatory response generally produces pus, a mixture of white blood cells, and
dead pathogens, that is flushed away through the lymphatic system towards the lymph
nodes. There, residential macrophages, or circulating dendritic cells, can engulf antigenic
fragments, then exhibit them on their surface [Cam+20, Figure 12, Chapter 43]. Precisely,
the phagocytosis pathway cradles antigens in the MHC II complex.
Finally, the interaction of the MHC with its antigen fragment and the TCR receptor of
a TCD4 cell [Cam+20, Figures 12, 13 and 23, Chapter 43], triggers an adaptive immune
response, through either a cell-mediated or humoral response.

• Antibodies directly facilitate phagocytosis, by aggregating toxins or pathogens and marking
them to macrophages and neutrophils. In return, the phagocytosis enables macrophages and
dendritic cells to capture antigens and ultimately stimulate helper T cells, which activate
the very B cells whose antibodies contribute to phagocytosis. Indirectly, cytotoxic T cells,
by bursting out cells hosting virus, exposes viral contents and increase the likelihood that
APC or antibodies trap foreign peptides, which would have remained out of reach otherwise.

• Complement to neutralisation and opsonisation mechanisms, antibodies interplay with the
proteins of the complement system [Cam+20, Figure 21, Chapter 43]. The associated
cascade of biochemical reactions is likely to promote cell lysis.

• The virus uses the cell’s biosynthetic machinery to replicate whom some of them can appear
on the cell surface through the MHC class II. Recognition of these protruding epitopes by
the complementary antibodies could possibly promote the recruitment of NK cells. Notably,
[GR14] premises that T cells could act as antigen-specific sensors to amplify the local
immune response of innate lymphocytes (alternative name for NK cells, as non specialised
cytotoxic T cells).
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Figure 2.2: An overview of the immune system.The red and the blue edges display direct cell-cell
interactions, requiring ligand-receptor bound. On the contrary, the purple and orange edges characterise
long-range interactions, through the release of respectively chemical signals or antibodies. Finally, the
green edge depicts differentiation from one developmental stage to another for a given cell lineage. This
figure is reproduced from [Det21, Figure 1, Chapter 42].

From the previous subsections, we understand the importance of cross-talks between distinct
immune cell subtypes in order to provide a balanced immune reaction against any intruder.
Exploring all interactions within this intricate machinery would necessitate a whole volume of an
encyclopedia, where researchers are still debating regarding the functions of certain immune cell
types.

We summarised in Figure 2.2 the interactions occurring between the main actors of the
immune system:

In the following section 2.1.4, we instead focus on the disorders of the immune system, when
it is not anymore in its operating order.

2.1.4 Immune dysregulation
While the immune system is essential to fend off pathogens or wipe out tumoral cells, the strength
of the response, especially when occurring at the scale of the organism, results in detrimental
side effects. Hence, a heightened inflammatory response triggered by global tissue damage or
blood contamination, is likely to lead to a life-threatening condition, called septic shock. It is
notably characterised by an increase by several folds of the number of white blood cells, a higher
temperature resulting in fever at the human organism scale and low blood pressure. We discuss
of one of these exacerbated mechanisms in the context of patients infected by a COVID-19 strain,
in Appendix F.

Additionally, not only pathogens can be recognised as non-self, but also any foreign molecule,
even issued from other human bodies. The huge number of variations of the MHC molecules 3

between two individuals prompts transplants or grafts rejection. The only way to counterbalance
rejection is to pair match the MHC molecules of the donor and the receptor as much as possible,
and to use immuno-suppressor drugs. A similar mechanism is involved in blood transfusions, but
instead of the HLA complex, glycoproteins on the surface of red blood cells are recognised as
foreign, eliciting lysis of the transferred blood cells, necrosia and kidney failure ([OC08]). For

3The MHC complex not only displays antigen fragments, but a subset of the proteins composing it, the Human
leukocyte antigens (HLA) act as an identity card that asserts the immune system that the investigated cell belongs
to self
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(a) Autoimmune diseases and cancers: the
two sides of the same coin. Regarding cancer, the
main mechanism involving immune cells is tumour
escape, in which the immune response is incapable
of eliminating self-cells that have undergone trans-
formation. Conversely, autoimmune diseases are
characterised by an over-active immune response
directed towards self-particles wrongly recognised
as antigens, resulting in tissue damage and chronic
inflammation. However, autoimmunity and cancer
both hinge on a failure of the immune system in
controlling abnormal cell proliferation (respectively
auto-reactive immune cells or tumour cells). Repro-
duced from [Sar18, Fig .4].

(b) Aetiological factors of auto-immune dis-
eases Dysregulation at several layers of the immune
system, such as the complement system, interferon
or cytokine production, can contribute to a variety
of autoimmune diseases (Crohn’s disease) and in-
flammatory disorders. Cross-reactivity is thought
to be one of the major aetiological factor initiating
auto-immune diseases. Reproduced from [Det21,
Fig. 1, Chap. 40].

long, the only way to overcome this process was to control, prior to the transfusion, that the the
patient and the donor had compatible blood groups.

Nonetheless, all previous situations correspond to an expected behaviour of the immune system
against foreigners, and it is either medicine progress or particularly virulent pathogens that trigger
life-threatening conditions. However, the immune system can display aberrant behaviour, often
elicited by a failure of the regulation mechanisms (see Section 2.1.4 and [Sch+20]).

Bad regulation of the immune system often come as the two sides of a coin. Dysregulation of
the immune system leads to an over-activation of the immune system [RRA15], while misregulation,
an under-activation of the immune system plays a prominent role in the evolution of the cancer,
acting as the prime actor of immune escape [Cha+22].

Although auto-inflammatory diseases, triggered by an over-activation of the immune system,
are typically not fatal, they are debilitating affections. The Sjögren’s primary syndrome, one of
the disease addressed by Servier, is notably described in Chapter 4.

Briefly, we display in Section 2.1.4, the cross-reactivity mechanism that elicits the production
of self-antigens, believed to underscore the parthenogenesis of most immuno-modulated diseases.

If there a key message to keep in mind, the reader should recall that the immune system is an
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intricate and interconnected network of cell populations and cytokines interplaying altogether to
safeguard the body against foreign invaders. However, even a slight disruption in one of these
mechanisms can result in a potentially life-threatening condition. Hence, fine-tuning the immune
system is a highly challenging task, requiring a comprehensive and systemic understanding of the
actors involved.

Related with auto-immune subjects, and having personally to debate on the hypothetical
benefits of alternative therapies over complex and costly treatments designed by pharmaceutical
companies, you should never fall for the miracle effects claimed by the homeotherapy branch. To
quote the author of the Kurzgesagt – In a Nutshell initiative, [Det21]:

At least for now, there are no scientifically proven ways to directly boost your immune
system with any products that are easily available. And if there were, it would be
very dangerous to use them without medical supervision.

2.2 Physical methods for studying changes of cellular Com-
position

After providing a comprehensive description of the components of the immune system and their
interactions, we present a proficient array of tools for estimating cell populations. No special
consideration is required for quantifying immune cell populations, particularly in whole blood
samples, where the isolation of individual cells is relatively straightforward.

These methods are typically categorized into two groups: flow cytometry methods, which
require the physical separation of cell populations, and imaging methods, which enable the
identification of cell types “in-situ”, using fluorescent markers. While the former are known for
their lower cost and superior processing capacity, we also demonstrate that the latter allow for
the preservation of the spatial organization of cell subtypes.

2.2.1 Cytometry analyses
Cytometry analyses quantify the relative frequencies of cell subsets (both their number and type)
in blood or previously disaggregated tissues in a high-throughput manner, enabling consistent
and extended comparisons across samples or conditions. To that purpose, individual cells must
be first isolated, then marked to identify and classify them.

Gating specifically designs this process of selecting subpopulations of cells for quantifying
them. Gating is important because it allows researchers to focus on specific cell populations and
exclude unwanted cells from analysis, based on their fluorescent 4 or light scattering characteristics.
Gating is a crucial step in cytometry analysis as it allows for the identification and characterization
of specific cell populations [Sta+19]. Gating used to be performed manually based on expert
knowledge of cell characteristics, using physical methods, such as Fluorescence-Activated Cell
Sorting (FACS) or Laser Capture Microdissection.

FACS require a specific set of markers, usually cell-surface proteins, and corresponding
antibodies for each set of cell population included in the cytometry analysis, which might not be
available for closely related cell populations. FACS are also intrusive methods, damaging cell
structure and resulting in numerous dead cells, and requires a large amount of biological material.

4In that case, fluorophore-conjugated antibodies are used to target markers of interest. Identification of each
cell’s marker is then performed by detecting the stimulation of the fluorophore by a laser emitted at a specific
wavelength.
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Interestingly, FACS technologies pioneered the quantification of tumour-infiltrating immune
cells, with early description of dendritic cells (DC) [Thu+96] or myeloid-derived suppressor cells
(MDSC) (Veglia, Perego, and Gabrilovich [VPG18]).

CyTOF (cytometry by Time-Of-Flight, also termed mass cytometry) [Nom+94] is an alter-
native method for the analysis of single cells, close to FACS, in which heavy metals-barcoded
antibodies binding to the cell-surface-expressed proteins enable unequivocal identification of the
cell type. Cell content is then ionised in a plasma state and analysed using a quadrupole time-
off-light (TOF) mass spectrometer. Hence, CyTOF utilises mass spectrometry to detect cellular
markers while FACS uses fluorescence-based detection, enabling to characterise simultaneously a
much higher number of markers compared to classical FACS owing to a reduced spectral overlap
([RE04], [Bis81], [Mae+20] and [Fri+21]). CyTOF can serve specific biological purposes, such
as surveying the evolution of stereo-selective enzymes or measuring enantiopurity (see [TH18],
[hos23] and Section 2.2.2).

To overcome the first bottleneck, namely isolation of cells limitations, novel disassociation
systems relying on the automatic discrimination of cell sizes by means of microfluidics [Huh+05]
[PG14] or dielectrophoretic separation [Wan+00] have been developed. And nowadays, the most
recent FACS-gating methods is able to quantify up to 30 markers and 10 000 cells per second
[SK14].

Regarding the simultaneous annotation of thousands of cells, automated gating strategies
based on machine-learning approaches have been developed to improve the accuracy and high-
throughput of cytometry analyses. By training these algorithms on a gold-standard dataset
of manually annotated gating definitions, machine learning pipeline reveal consistently better
oracles to annotate cell types than pathologists experts, overcoming the non-standardised and
non-interpreted nature of gating definitions ([Li+17] and the DeepCyTOF approach, [Bec+19] and
its Hypergate protocol).

LCM is a lab technique used to isolate specific cells from a histological section. It involves the
user of a laser to precisely cut and capture the target cells, while leaving the surrounding tissue
intact ([Lok+90]). Facing the same limitations as flow cytometry-based techniques, it requires
manual annotation of the captured cells ([MO19], [Sta+19] and [McK18]), limiting its throughput
capacity. In addition, LCM is more costly, resource and time-consuming than FACS [ZW21].
Nonetheless, this technique is better suited to preserve the integrity of the tissue [AS19].

2.2.2 Imaging methods
On the one hand, Immunohistochemistry(IHC, see Section 2.2.2) [Ju+13] and closely related
immune fluorescence (IF) techniques, along with the in-situ hybridization (ISH, see for instance the
FISH-Flow protocol in [Kuh+11]), enable an in-situ and accordingly a spatial characterization of
the cell composition, contrary to the previously described cytometry workflow (see Section 2.2.1).
We detail in next section the principle underlying ISH, along with its main limitations.

In order to fulfil an optimal microscopic visualisation at single-cell resolution, it is imperative
to use tissue slides of approximately one-cell width, such as the ones returned by formalin-fixed
paraffin-embedded (FFPE) samples. Individual cells are first detected by segmenting the raw
images, and then classified by detecting signal emitted from the markers (can be present in
nucleus, cytoplasm or on within the membrane). To spot markers, these methods use one, or more
commonly, a combination of two antibodies, for an enhanced signal: the primary one targets the
cell marker of interest while the secondary antibody, conjugated to either a catalytic agent (IHC)
or a fluorophore (IF, see Section 2.2.2), amplifies the signal. The staining is then observed through
a microscope and spatial identification of the marked cell types is performed by pathologists or
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with comparable performance by a deep deconvolution neural network. For instance, [Lah+19]
developed a deep learning method, UNET, that automatically segments and annotates digitised
slide images into compartments of tumour, healthy tissue, and necrosis. The method utilizes
a (CNN, convolutional neural network) and color deconvolution to handle staining variability.
Finally, the combination of different markers conjugated with a given antibody can be used to
unequivocally assign any stained cell to a specific population [Tau+18].

Until recently, this methodology was limited to a small number of markers, owing to cross-
reactivity phenomena. Indeed, the secondary antibodies should be precisely tailored to target and
recognise specifically epitopes of their paired first antibodies, without binding to other species’
immunoglobulins that may exhibit similar ligand structures. This cross-reactivity may result in
wrong signal from a non-target primary antibody: in [Ver+15a], the cross-reaction between the
epitopes of HER2 and EGFR antibodies biased the markers identified in the progression of breast
carcinomas.

The traditional way consists in staining consecutive tissue slides with different antibodies.
However, correctly realigning and combining single slices is error-prone, losing the cell-cell distance
information. To overcome it, a recent methodology, the tyramide signal amplification (TSA)
system (see top subfigure, Section 2.2.2), allowed to increase the number of markers to seven
colours that could be stained simultaneously. In this system, TSA free radicals catalysed by
conjugation of the horseradish peroxidase to the secondary antibody allows isolation of the
complex formed by the primary and secondary antibodies. It decreases then the risk of antibody
cross-reactivity when adding new antibodies to stain distinct markers. In contrast to other
methods, the multiplexed analysis of several markers reveals in detail the anatomical structure,
including cell types’ location, detection of lymphoid structures or formation of blood vessels
related to angiogenesis [Lim+18].

Other IF-based methods that use a combination of sequential staining with innovating
staining approaches to enable highly multiplexed quantification of biomarkers include multiplexed
immunofluorescence (MxIF)[Ger+13] and multiepitope ligand cartography (MELC) [Sch+06].
They use photobleaching to stop cell fluorescence from the previous marker and can stain 100
markers in a row. Finally, combination of mass cytometry with IHC enable to get a deeper
resolution at the subcellular level (imaging mass cytometry (IMC) [Gie+14], Multiplexed ion
beam imaging: MIBI [Ang+14]. Nonetheless, both technologies require heavy instrumentation,
with a weak throughput. Finally, [Gol+18] developed a simpler technique, CODEX, that requires
less material. It allows for highly multiplexed single-cell quantification of membrane protein
expression in densely packed solid lymphoid tissue, which was previously considered impossible,
enabling deep characterization of cellular niches and their dynamics during autoimmune disease.
The CODEX technique involves the use of dye-labelled nucleotides inserted into the DNA tag
of the antibodies (inspired from spatial barcoding techniques, see Section 1.2.3), combined with
an image-based deconvolution algorithm that quantifies the expression of multiple membrane
proteins in individual cells, and has been successfully applied to three-color fluorescence images.
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(a) ISH (in-situ hybridisation) illustration.
Top figure, reproduced from [YJW20, Fig .1], de-
scribes the main technical stages of in situ hybridi-
sation development. Bottom figure, reproduced
from [SC05, Fig .1], describes the most popular ISH
method, namely FISH (Fluorescence in situ hybridi-
sation).

(b) IHC (Immuno Histo Chemistry) illustration.
Top figure, comparison between IHC and immunofluores-
cence (IF), from [mer22, Fig .1]. Bottom figure, zoom on
tyramide signal amplification (TSA) system, reproduced
from autocite[Fig .1]aatbio20.

(c) FACS Top picture, reproduced from
[Ver+15b, Fig. 1], illustrates FACS guidelines
in order to isolate T helper from cytotoxic T-
lymphocytes. Bottom picture, reproduced from
[BFM19, Fig. 35.15], compares the overlap of
the blurred fluorophore-related peaks used in a
FACS panel with the clearly distinct peaks from
a Cytof output.

(d) CyTOF illustration. [hos23] illustrates the
principle of “mass cytometry”, alternatively referred
to as Cytometry by Time-Of-Flight (CyTOF), see
also [Col20].

Figure 2.4: Overview of physical methods to infer cell composition.
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To conclude this section, a systematic and comparative review, with their respective advantage
and main limitations, are summarised in Section 2.2.2:

Figure 2.5: Comparison of the main experimental methodologies used to analyse complex
biological environments. Top figure is reproduced from [Pet+18, Table. 1] and bottom figure, more
directly connected to the study of the TME and its relation with the immune system, is drawn from
[Fin+19b, Fig. 2].

After this comprehensive biological introduction, describing the main features of the inputs
provided to my models, the remainder, and core part, of my manuscript, elaborates on a set
of statistical endeavours for analysing in a consistent manner the primary sources of variation
in patients’ molecular profiles. Specifically, we focus on mixture models and deconvolution
algorithms for delineating variations of global bulk expression profiles across individuals (Part II)
and dissecting heterogeneous samples within tissues (Part III), respectively.

Chapters 3 and 4 focus on decomposing multimodal distributions, using parametric mixture
models. In particular, GMM assumes that a set of seemingly heterogeneous observations can be
clustered into subgroups, each following its own Gaussian distribution. Overall, mixture models
are thus valuable when dealing with heterogeneous molecular profiles, in which the underlying
phenotypical condition is unobserved, and conducted by a latent and hidden discrete variable.

In Chapters 5 and 6, we introduced deconvolution methods, which are designed to unveil
the actors of the variability within an observation instead. These methods consider indeed that
the global expression profile, measured at the tissue level, conceals the inherent intricacy of
heterogeneous biological samples. Specifically, in order to uncover the internal constituents of this
“mixture”, deconvolution methods posit that the bulk expression profile can be reconstructed by
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aggregating the individual contributions of the cell types believed to constitute the sample and
contribute to the transcriptome library.

For both approaches, we start by reviewing existing solutions, and subsequently propose
a practical biological application and a putative statistical framework avenues to bolster the
robustness and accuracy of gold-standard methods.



Part II

Transcriptome and mixture
models



Chapter3
Article 1: Gaussian Mixture Models in R

Methodological Objective: Conduct a benchmark analysis to evaluate the perfor-
mance of a wholesome ecosystem of R packages in retrieving parameters of Gaussian
mixture models. Mixture models are widely used statistical tools within the realm of precision
medicine, facilitating the clustering of patients into distinct subgroups known as “endotypes”.
Each class is additionally assumed to follow a unique distribution, with its own and specific
characteristics. Hence, mixture models are particularly valuable when dealing with heterogeneous
and multimodal molecular profiles, in which the underlying phenotypical condition is unobserved.

The fundamental objective of employing mixture models is subsequently to determine the
appropriate number of levels/groups composing the latent variable, and employed the parameters
inferred to assign each patient to its most probable subgroup. Among the various statistical
distributions available for this purpose, Gaussian Mixture Modelss (GMM)) are highly favoured for
their appealing statistical properties, ease of interpretation, and straightforward implementation.

A wholesome array of R packages has been developed to infer the parameters of GMMs.
However, a comprehensive comparative review, thoroughly benchmarking their performance and
choices of algorithmic implementation, is lacking. In light of this situation, we systematically
compared the performance of seven R packages: bgmm, EMCluster, GMKMcharlie, flexmix,
mclust, mixtools, and Rmixmod, in Article 3.1.

We selected them on the basis of their popular reporting in numerous biological analyses, and
for the shared optimisation strategy adopted for inferring parameters. All of them indeed retrieve
the parameters of the mixtures using the Expectation-Maximization (EM) algorithm, which is
widely popular for guaranteeing the asymptotic consistency, convergence, and efficiency of the
parameters returned.

Specifically, our comparison delves into comparing their statistical and computational perfor-
mances as a function of the choice of initialization algorithm and the complexity of the mixture, in
various numerical bootstrap/bagging simulations. Notably, while the EM algorithm for mixtures
of Gaussian distributions is relatively straightforward to implement in pure R programming, it
turned out that seemingly small differences in the implementation of the EM algorithm result
ultimately in significant variations in statistical performance.

3.1 Article 1

35
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Gaussian Mixture Models in R
by Bastien Chassagnol, Antoine Bichat, Cheïma Boudjeniba, Pierre-Henri Wuillemin, Mickaël Guedj,
David Gohel, Gregory Nuel, and Etienne Becht

Abstract Gaussian mixture models (GMMs) are widely used for modelling stochastic problems. Indeed,
a wide diversity of packages have been developed in R. However, no recent review describing the
main features offered by these packages and comparing their performances has been performed.
In this article, we first introduce GMMs and the EM algorithm used to retrieve the parameters of
the model and analyse the main features implemented among seven of the most widely used R
packages. We then empirically compare their statistical and computational performances in relation
with the choice of the initialisation algorithm and the complexity of the mixture. We demonstrate
that the best estimation with well-separated components or with a small number of components with
distinguishable modes is obtained with REBMIX initialisation, implemented in the rebmix package,
while the best estimation with highly overlapping components is obtained with k-means or random
initialisation. Importantly, we show that implementation details in the EM algorithm yield differences
in the parameters’ estimation. Especially, packages mixtools (Young et al. 2020) and Rmixmod
(Langrognet et al. 2021) estimate the parameters of the mixture with smaller bias, while the RMSE
and variability of the estimates is smaller with packages bgmm (Ewa Szczurek 2021) , EMCluster
(W.-C. Chen and Maitra 2022) , GMKMcharlie (Liu 2021), flexmix (Gruen and Leisch 2022) and mclust
(Fraley, Raftery, and Scrucca 2022). The comparison of these packages provides R users with useful
recommendations for improving the computational and statistical performance of their clustering
and for identifying common deficiencies. Additionally, we propose several improvements in the
development of a future, unified mixture model package.

1 Introduction to Mixture modelling

Formally, let’s consider a pair of random variables (X, S) with S ∈ {1, . . . , k} a discrete variable and
designing the component identity of each observation. When observed, S is generally denoted as
the labels of the individual observations. k is the number of mixture components. Then, the density
distribution of X is given in Equation (1):

fθ(X) = ∑
S

fθ(X, S)

=
k

∑
j=1

pj fζ j(X), X ∈ R

(1)

where θ = (p, ζ) = (p1, . . . , pk, ζ1, . . . , ζk) denotes the parameters of the model: pj is the proportion
of component j and ζ j represents the parameters of the density distribution followed by component j.
In addition, since S is a categorical variable parametrized by p, the prior weights must enforce the unit
simplex constraint (Equation (2)):

{
pj ≥ 0 ∀j ∈ {1, . . . , k}
∑k

j=1 pj = 1
(2)

In terms of applications, mixture models can be used to achieve the following goals:

• Clustering: hard clustering consists in determining a complete partition of the n observations x1:n
into k disjoint non-empty subsets. In the context of mixture model-based clustering, this is done
by assigning each observation i to the cluster ŝi = arg maxj ηi(j) that maximises the posterior
distribution (MAP) (see Equation (3)):

ηi(j) := Pθ(Si = j|Xi = xi) (3)

• Prediction: the purpose is to predict a response variable Y from an explanatory variable X. The
dependent variable Y can either be discrete, taking values in classes {1, . . . , G} (classification
task) or continuous (regression task). In this paper, we do not extensively discuss application of
mixture models to regression purposes but refer the reader to Bouveyron and Girard (2009) for
mixture classification and Shimizu and Kaneko (2020) for mixtures of regression models.
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In section Univariate and multivariate Gaussian distributions in the context of mixture models,
we describe the most commonly used family, the Gaussian Mixture Model (GMM). We then present
the MLE estimation of the parameters of a GMM, introducing the classic EM algorithm in section
Parameter estimation in finite mixtures models. Finally, we introduce bootstrap methods used to
evaluate the quality of the estimation and metrics used for the selection of the best model in respectively
appendices Derivation of confidence intervals in GMMs and Model selection.

Univariate and multivariate Gaussian distributions in the context of mixture models

We focus our study on the finite Gaussian mixture models (GMM) in which we suppose that each of
the k components follows a Gaussian distribution.

We recall below the definition of the Gaussian distribution in both univariate and multivariate
context. In the finite univariate Gaussian mixture model, the distribution of each component fζ j(X) is
given by the following univariate Gaussian p.d.f. (probability density function) (Equation (4)):

fζ j(X = x) = φζ j (x|µj, σj) :=
1√

2πσj
exp

− (x−µj )
2

2σ2
j (4)

which we note: X ∼ N (µj, σj).

In the univariate case, the parameters to be inferred from each component, ζ j, are: µj, the location
parameter (equal to the mean of the distribution) and σj, the scale parameter (equal to the standard
deviation of the distribution with a Gaussian distribution).

Following parsimonious parametrisations with respect to univariate GMMs are often considered:

• homoscedascity: variance is considered equal for all components, σj = σ, ∀j ∈ {1, . . . , k}, as
opposed to heteroscedascity where each sub-population has its unique variability.

• equi-proportion among all mixtures: pj =
1
k j ∈ {1, . . . , k} 1

In the finite multivariate Gaussian mixture model, the distribution fζ j(X) of each component j,
where X ∈ RD = (X1, . . . , XD)

⊤ is a multivariate random variable of dimension D, is given by the
following multivariate Gaussian p.d.f. (Equation (5)):

fζ j(X = x) = det(2πΣj)
− 1

2 exp
(
−1

2
(x − µj)Σ

−1
j (x − µj)

⊤
)

(5)

which we note X ∼ ND(µj, Σj). The parameters to be estimated for each component can be
decomposed into:

• µj =




µ1j
...

µDj


 ∈ RD, the D-dimensional mean vector.

• Σj, the MD(R) positive-definite 2covariance matrix, whose diagonal terms are the individual
variances of each feature and the off-diagonal terms are the pairwise covariance terms.

Three families of multivariate GMMs are often considered:

• the spherical family, Σj = σ2
j ID, with σj ∈ R∗

+, refers to GMMs whose covariance matrix is
diagonal with an unique standard deviation term. The corresponding volume representation is
a D−hypersphere of radius σj.

1A rarer constraint considered implies to enforce a linear constraint over the clusters’ means, of the following
general form: ∑k

j=1 ajµj = 0, with {a1, . . . , ak}. For instance, the R package epigenomix considers a k = 3
component mixture in the context of transcriptomic (differential analyses) and epigenetic (histone modification)
to automatically identify undifferentiated, over and under-expressed genes between case and control samples.
A common constraint then is to enforce the distribution of fold changes corresponding to the undifferentiated
expressed genes to have a distribution centred on 0. Combining equality of means and equality of variances is
irrelevant, as the model is then degenerate. Additionally, setting constraints on the means makes the estimation of
the parameters challenging, as detailed in Appendix Extensions of the EM algorithm to overcome its limitations.

2The positive-definiteness constraint can be interpreted from a probabilistic point of view as a necessary
condition such that the generalised integral of the multivariate distribution is defined and sum-to-one over R or
from the statistical definition of the covariance. A symmetric real matrix X of rank D is said to be positive-definite if
for any non-zero vector v,∈ RD , the following constraint v⊤Xv > 0 is enforced.
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• the diagonal family, Σj = diag
(

σ2
1j, . . . , σ2

1D

)
, with σj ∈ RD

+, refers to GMMs whose covariance
matrix is diagonal. Its associated volume representation is an ellipsoid whose main axes are
aligned with the D canonical basis of RD. Of note, the null constraint imposed over the off-
diagonal terms in the spherical and diagonal families imply that the multivariate distribution
can be further decomposed and analysed as the product of univariate independent Gaussian
realisations.

• the ellipsoidal family, also named the general family, refer to GMMs whose covariance matrix,
Σj, can be any arbitrary positive-definite D × D matrix. Thus, the corresponding clusters for
each component J are ellipsoidal, centred at the mean vector µj, and volume and orientation
respectively determined by the eigenvalues and the eigenvectors of the covariance matrix Σj.

In the multivariate setting, the volume, shape, and orientation of the covariances can be con-
strained to be equal or variable across clusters, generating 14 possible parametrisations with dif-
ferent geometric characteristics (Banfield and Raftery 1993; Celeux and Govaert 1992). We review
them in Appendix Parameters estimation in a high-dimensional context and Table 5. Of note, the cor-
relation matrix can be easily derived from the covariance matrix with the following normalisation:

cor(X) =

(
cov(xl ,xm)√

var(xl)×
√

var(xm)

)

(l,m)∈D×D
. Correlation if strictly included between -1 and 1, the

strength of the correlation is given by its absolute value while the type of the interaction is returned by
its sign. A correlation of 1 or -1 between two features indicates a strictly linear relationship.

For the sake of simplicity and tractability, we will only consider the fully unconstrained model in
both the univariate (heteroscedastic and unbalanced classes) and multivariate dimension (unbalanced
and complete covariance matrices for each cluster) in the remainder of our paper.

Parameter estimation in finite mixtures models

A common way for estimating the parameters of a parametric distribution is the maximum likelihood
estimation (MLE) method. It consists in estimating the parameters by maximising the likelihood,
or equivalently the log-likelihood of a sample. In what follows, ℓ(θ|x1:n) = log( f (x1:n|θ)) is the
log-likelihood of a n-sample. When all observations are independent, it simplifies to ℓ(θ|x1:n) =
∑n

i=1 log( f (xi|θ)). The MLE consists in finding the parameter estimate θ̂ which maximises the log-
likelihood θ̂ = arg max ℓ(θ|x1:n).

Recovering the maximum of a function is generally performed by finding the values at which its
derivative vanishes. The MLE in GMMs has interesting properties, as opposed to the moment estimation
method: it is a consistent, asymptotically efficient and unbiased estimator (J. Chen 2016; McLachlan
and Peel 2000).

When S is completely observed, for pairs of observations (x1:n, s1:n), the log-likelihood of a finite
mixture model is simply given by Equation (6):

ℓ(θ|X1:n = x1:n, S1:n = s1:n) =
n

∑
i=1

k

∑
j=1

[
log

(
fζ j (xi, si = j)

)
+ log(pj)

]
1si=j

(6)

where an analytical solution can be computed provided that a closed-form estimate exists to
retrieve the parameters ζ j for each components’ parametric distribution. The MLE maximisation, in this
context, involves the estimation of the parameters for each cluster, denoted as ζ j. The corresponding
proportions, pj, can be straightforwardly computed as the ratios of observations assigned to cluster j
relative to the total number of observations, n.

However, when S is unobserved, the log-likelihood, qualified as incomplete with respect to the
previous case, is given by Equation (7):

ℓ(θ|x1:n) =
n

∑
i=1

log




k

∑
j=1

pj fζ j (xi)

︸ ︷︷ ︸
sum of of logs




(7)

The sum of terms embed in the log function (see underbrace section in Equation (7)) makes it
intractable in practice to derive the null values of its corresponding derivative. Thus, no closed form
of the MLE is available, including for the basic univariate GMM model. This is why most parameter
estimation methods derive instead from the EM algorithm, first described in Dempster, Laird, and
Rubin (1977). We describe its main theoretical properties, the reasons for its popularity, and its main
limitations in the next section.
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The EM algorithm

In cases where both S and the parameters associated to each cluster are unknown, there is no available
closed-form solution that would jointly maximise the log-likelihood, as defined in Equation (7), with
respect to the set of parameters (θ, S). However, when either S or θ are known, the estimation of the
other parameters is straightforward. Hence, the general principle of EM-like algorithms is splitting this
complex non-closed joint MLE estimation of (S, θ) into the iterative estimation of Sq from θ̂q−1 and X
(expectation phase, or E-step of the algorithm) and the estimation of θ̂q from (Sq and X (maximisation
phase, or M-step), with θ̂q−1 being the estimated parameters at the previous step q − 1, until we reach
the convergence.

The EM algorithm sets itself apart from other commonly used methods by taking into account
all possible values taken by the latent variable S. To do so, it computes the expected value of the
log likelihood of θ, conditioned by the posterior distribution Pθ̂q−1

(S|X), also named as the auxiliary
function. Utilising the assumption of independence among observations in a mixture model, the
general formula of this proxy function of the incomplete log-likelihood is given in finite mixture
models by Equation (8).

Q(θ|θ̂q−1) := ES1:n |X1:n ,θ̂q−1
[ℓ(θ|X1:n, S1:n)]

=
n

∑
i=1

k

∑
j=1

ηi(j)
(

log(pj) + log(P(Xi|Si = j, θ))
) (8)

with θ̂q−1 = θ̂ the current estimated parameter value.

In practice, the EM algorithm consists in performing alternatively E-step and M-step until conver-
gence, as described in the pseudocode below (Box 1):

Box 1: the EM algorithm

• step E: determine the posterior probability function ηi(j) for each observation of X for
each possible discrete latent class, using the initial estimates θ̂0 at step q = 0, or the
previously computed estimates θ̂q−1. The general formula is given by Equation (9):

ηi(j) =
pj fζ j (xi)

∑k
j=1 pj fζ j (xi)

(9)

• step M: compute the mapping function θ̂q := M(θ|θ̂q−1) = arg max Q(θ|θ̂q−1) which
maximises the auxiliary function. One way of retrieving the MLE associated to the
auxiliary function is to determine the roots of its derivative, namely solving Equation
(10)a:

∂Q(θ|θ̂q−1)

∂θ
= 0 (10)

aTo ensure that we reach a maximum, we should assert that the Hessian matrix evaluated at the MLE is
indeed negative definite.

Interestingly, the decomposition of the incomplete log-likelihood associated to a mixture model
ℓ(θ|X) reveals an entropy term and the so-called auxiliary function (Dempster, Laird, and Rubin
1977). It can be used to prove that maximising the auxiliary function at each step induces a bounded
increase of the incomplete log-likelihood. Namely, the convergence of the EM algorithm, defined by
comparisons of consecutive log-likelihood, is guaranteed, provided the mapping function returns
the maximum of the auxiliary function. Yet, the convergence of the series of estimated parameters
(θq)q≥0 −→

i→+∞
θ̂ is harder to prove but has been formally demonstrated for the exponential family (a

superset of the Gaussian family), as stated in Dempster, Laird, and Rubin (1977).

Additionally, the EM algorithm is deterministic, meaning that for a given initial estimate θ0 the
parameters returned by the algorithm at a given step q are fixed. However, this method requires the
user to provide an initial estimate, denoted as θ0, of the model parameters and to specify the number
of components in the mixture. We review some classic initialisation methods in Initialisation of the
EM algorithm and some algorithms used to overcome the main limitations of the EM algorithm in the
Appendix Extensions of the EM algorithm to overcome its limitations.
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Finally, the prevalent choice of Gaussian distributions to characterize the distribution of random
observations is guided by a set of interesting properties. In particular, Geary (1936) has shown that
the Normal distribution is the only distribution for which the Cochran’s theorem (Cochran 1934) is
guaranteed, namely for which the the mean and variance of the sample are independent of each other.
Additionally, similar to any distribution proceeding from the exponential family, the MLE statistic is
sufficient3.

Initialisation of the EM algorithm

EM-like algorithms require an initial estimate of the parameters, θ0, to optimise the maximum like-
lihood. Initialisation is a crucial step, as a bad initialisation can possibly lead to a local sub-optimal
solution or trap the algorithm in the boundary of the parameter space. The most straightforward
initialisation methods, such as random initialisation, are standalone and do not require any addi-
tional initialisation algorithms, whereas meta-methods, such as short-EM, still need to be initialised by
alternative methods. The commonly-used initialisation methods encompass:

• The Model-based Hierarchical Agglomerative Clustering (MBHC) is an agglomerative hierarchical
clustering based on MLE criteria applied to GMMs (Scrucca and Raftery 2015). First, the
MBHC is initialised by assigning each observation to its own cluster. Next, the pair of clusters
that maximises the likelihood of the underlying statistical model among all possible pairs is
merged. This procedure is repeated until all clusters are merged. The final resulting clusters
are then simply the last k cuts of the resulting dendrogram. When the data is univariate and
homoscedastic, or when the underlying distribution has a diagonal covariance matrix, the
merging criterion performs similarly to Ward’s criterion, in that merging of the two clusters also
simultaneously minimizes the sum of squares. As opposed to the other initialisation methods
described hereafter, MBHC is a deterministic method which does not require careful calibration
of hyperparameters. However, as acknowledged by the author of the method (Fraley 1998), the
resulting partitions are generally suboptimal compared to other initialisation methods.

• The conventional random initialization method, frequently employed for the initialization step
of the k-means algorithm, involves the random selection of k distinct observations, which are
referred to as centroids. Subsequently, each observation is assigned to the nearest centroid, a
process reminiscent of the C-step in the CEM algorithm (Biernacki, Celeux, and Govaert 2003).
This is the method used in this paper, unless otherwise stated. Alternative versions of this
method have been developed: for instance, the package mixtools draws the proportions of the
components from a Dirichlet distribution, whose main advantage lies in respecting the unit
simplex constraint (Equation (2))4, but uses binning methods to guess the means and standard
deviations of the components. Similarly, Kwedlo (2013) proposes a method in which the means
of the components are randomly chosen, but with an additional constraint of maximising the
Mahalanobis distance between the selected centroids. This enables to cover a larger portion of
the parameters’ space.

• k-means is a CEM algorithm, in which the additional assumption of balanced classes and
homoscedascity implies that each observation in the E-step is assigned to the cluster with
the nearest mean (the one with the shortest Euclidean distance). K-means is initialised by
randomly selecting k points, known as the centroids. It is often chosen for its fast convergence
and memory-saving consumption.

• The quantile method sorts each observation xi in an increasing order and splits them into equi-
balanced quantiles of size 1/k. Then, all observations for a given quantile are assumed to belong
to the same component. 5

• The Rough-Enhanced-Bayes mixture (REBMIX) algorithm is implemented in the rebmix (Nagode
2022) package and the complete pseudo-code is described thoroughly in (Nagode 2015; Panic,
Klemenc, and Nagode 2020). The key stages implemented by the rebmix algorithm for initialis-
ing the parameters of GMMs encompass:

3The Pitman–Koopman–Darmois theorem (Koopman 1936) states that only the exponential family provides
distributions whose statistic can summarize arbitrary amounts of iid draws using a finite number of values

4Without prior knowledge favouring one component over another, the Dirichlet distribution is generally
parametrised by α = 1

k , implicitly stating that any observation has equal chance to proceed from a given cluster.
In that case, the corresponding distribution is parametrised by a single scalar value α, called the concentration
parameter.

5This method is only available in the univariate framework, since it is not possible to define a unique partition of
the observable space into k-splits. For example, in bivariate setting, a binning with k = 2 components on each axis
leads to a total of 2 × 2 = 4 binned regions, which raises the selection issue of the best k hyper-squared volumes for
the initial parameters estimation. More generally, (D

k ) binning choices are possible in the multivariate setting.
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– First, the observations are processed using one of these three methods: k-nearest neigh-
bours (KNN), Parzen kernel density estimation, or binned intervals. With the binned
interval method, the observations are initially divided into

√
nD intervals of equal lengths.

The mode of one of the components’ distribution is subsequently determined by the
midpoint of the interval with the highest frequency. The observations lying within the
interval are used as preliminary estimates, referred to as “rough” parameters in Nagode
(2015).

– All other observations and intervals are then iteratively assigned to the currently estimated
component or to residual components, the ones that have not yet been characterised. The
decision to assign an interval to either the currently estimated component or one of the
residual components depends on the magnitude of the discrepancy between the observed
and the expected frequency within the interval.

– Finally, all intervals assigned to the currently estimated component (and not only the
interval including the mode of the distribution) are used to determine the parameters
of the associated Gaussian distribution. Since this step relies on a more comprehensive
number of observations for parameter estimation, guaranteeing in principle more robust
estimates, this stage is referred to as “enhanced” estimation in Nagode (2015). The
algorithm terminates when all intervals have been assigned to a cluster, and the parameters
of the various distribution components have been estimated.

The rebmix algorithm can thus be seen as a natural extension of the quantile method, with more
rigorous statistical support. Two drawbacks of the algorithm include the need for intensive calibration
of hyperparameters and its inadequacy for the estimation of highly overlapping or high dimensional
mixture distributions6.

• The meta-methods consist generally in short runs of EM-like algorithms, namely CEM, SEM and
EM (see Appendix B: Extensions of the EM algorithm to overcome its limitation), with alleviated
convergence criterion. The main idea is to use several random initial estimates with shorter
runs of the algorithm to explore larger regions of the parameter space and avoid being trapped
in a local maximum. Yet, these methods are highly dependent on the choice of the initialisation
algorithm (Biernacki, Celeux, and Govaert 2003).

• In the high-dimensional setting, if the number of dimensions D exceeds the number of ob-
servations n, all previous methods must be adjusted, usually by first projecting the dataset
into a smaller, suitable subspace and then inferring prior parameters in it. In particular, EM-
MIXmfa, in the mixture of common factor analysers (MCFA) approach, initialises the shared
projection matrix Q by either keeping the first d eigen vectors generated from standard principal
component analysis or uses custom random initialisations (Baek, McLachlan, and Flack 2010).

Following this theoretical introduction, we empirically evaluate the performance of the aforemen-
tioned R packages, considering various initialization algorithms and the complexity of the GMMs
distributions. Precisely, we outline the simulation framework used to compare the seven packages in
Methods and report the results in Results. We conclude by providing a general simplified framework
to select the combination of package and initialisation method best suited to its objectives and the
nature of the distribution of the dataset.

2 A comprehensive benchmark comparing estimation performance of
GMMs

We searched CRAN and Bioconductor mirrors for packages that can retrieve parameters of GMM
models. Briefly, out of 54 packages dealing with GMMs estimation, we focused on seven packages that
all estimate the MLE in GMMs using the EM algorithm, were recently updated and allow the users
to specify their own initial estimates: bgmm, EMCluster, flexmix, GMKMcharlie, mclust, mixtools
and Rmixmod. The complete inclusion process is detailed in Appendix C, the meta-analysis workflow
for the final selection of CRAN and Bioconductor platforms. The flowchart summarising our choices is
represented in Figure 1.

6The method we describe here to preprocess the observations in order to estimate the empirical density
estimation, namely the “histogram method” is not well suited for high dimensional data, as the exponential
growth of the volume with respect to dimensionality leads to data sparsity, related to the well-known issue of the
“curse of dimensionality”. Indeed,

√
nD distinct intervals will be parsed by the method and the probability with

an increasing number of features and decreasing number of observations that no clear local maximum emerges
converges to 1. In high-dimensional context, the Parzen window or the KNN method should be favoured, see
(Nagode 2015), p. 16.
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Figure 1: A minimal roadmap used for the selection of the packages reviewed in our benchmark.

We also include two additional packages dedicated specifically to high-dimensional settings,
namely EMMIXmfa (Rathnayake et al. 2019) and HDclassif (Berge, Bouveyron, and Girard 2019) to
compare their performance with standard multivariate approaches in complex, but non degenerate
cases. We summarise the main features and use cases of the seven + two reviewed packages in Table
1. The three most commonly used packages are mixtools, mclust and flexmix. However, the mclust
package is by far the most complete with many features provided to visualise and evaluate the quality
of the GMM estimate. bgmm has the greatest number of dependencies, while mclust only depends
of base R packages. Additionally, in parallel to clustering tasks, flexmix and mixtools packages
perform regression of mixtures and implement mixture models using other parametric distributions
or non-parametric methods via kernel-density estimation.

Table 1: Main features of the reviewed packages, sorted by decreasing number of daily downloads.
Downloads per day returns the daily average number of downloads for each package on the last 2 years.
Recursive dependencies column counts the complete set of non-base packages required, as first-order
dependencies depend on other packages as well.

Package Version Regression Implemented
models

Downloads
per day

Last
update Imports Recursive

dependencies Language

mclust 5.4.7 5223 31/10/2022 R (≥ 3.0) 0 Fortran

flexmix 2.3-17
Poisson, binary,
non-parametric,
semi-parametric

3852 07/06/2022 R (≥ 2.15.0), modeltools,
nnet, stats4 3 R

mixtools 1.2.0
multinomial, gamma,

Weibull, non-parametric,
semi-parametric

178 05/02/2022 R (≥ 3.5.0), kernlab,
segmented, survival 6 C

Rmixmod 2.1.5 39 18/10/2022 R (≥ 2.12.0), Rcpp,
RcppEigen 4 C++

EMCluster 0.2-13 33 12/08/2022 R (≥ 3.0.1), Matrix 3 C

bgmm 1.8.4 27 10/10/2021 R (≥ 2.0),
mvtnorm, combinat

77 R

GMKMcharlie 1.1.1 12 29/05/2021 Rcpp, RcppParallel,
RcppArmadillo 3 C++

EMMIXmfa 2.0.11 12 16/12/2019 NA 0 C
HDclassif 2.2.0 35 12/10/2022 rARPACK 13 R

We further detail features specifically related to GMMs in Table 2. We detail row after row its
content below:

• The parametrisations used to provide parsimonious estimation of the GMMs are reviewed in
Parameter estimation in finite mixtures models and summarised in rows 1 and 2 (Table 2) for the
univariate and multivariate setting. We refer to the package as “canonical” when it implements
both homoscedastic and heteroscedastic parametrisations in the univariate setting, and the
14 parametrisations listed in Supplementary Table 3 in the multivariate setting. Adding the
additional constraint of equi-balanced clusters results in a total to 14 × 2 = 28 distinct models
and 2 × 2 = 4 parametrisations, respectively in the univariate and multivariate setting. Since
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EMMIXmfa and HDclassif are dedicated to the analysis of high-dimensional datasets, they
project the observations in a smaller subspace and are not available in the univariate setting.
Given an user-defined or prior computed intrinsic dimension, we can imagine using any of the
standard parametrisations available for instance in the mclust package, and listed in Appendix
Parsimonious parametrisation of multivariate GMMs. In addition, HDclassif allows each cluster j
to be represented with its own subspace intrinsic dimension dj, as we describe in further details
in Appendix Parameters estimation in a high-dimensional context.

• The EM algorithm is the most commonly employed method for estimating the parameters of
GMMs, however, alternative algorithms based on the EM framework, are reviewed in Appendix
B: Extensions of the EM algorithm to overcome its limitations and row 3 of Table 2. Especially, GMMs
estimation is particularly impacted by the presence of outliers, justifying a specific benchmark
(see Appendix A small simulation to evaluate the impact of outliers). We briefly review the most
common initialisation algorithms in section Initialisation of the EM algorithm and row 4 of
Table 2, a necessary and tedious task for both the EM algorithm and its alternatives.

• To select the best parametrisations and number of components that fit the mixture, several met-
rics are provided by the reviewed packages (Model selection and row 5). Due to the complexity of
computing the true distribution of the estimated parameters, bootstrap methods are commonly
used used to derive confidence intervals (see Appendix Derivation of confidence intervals in GMMs
and row 6 in Table 2).

• Six packages supply several functions for visualisation, summarised in the last row of Table 2, to
display either the distributions corresponding to the estimated parameters or compare quickly
the performance across packages. However, mclust is by far the most complete one, with density
plots (in the univariate setting) and isodensity plots (bi-dimensional in the bivariate setting
or in higher dimensions after appropriate dimensionality reduction), with the option to plot
custom confidence intervals and critical regions, and finally boxplot bootstrap representations
for displaying the distribution of the benchmarked estimated parameters.

High-dimensional packages provide specific representations adjusted to the high-dimensional
settings, notably allowing the user to visualise the projected factorial representation of its dataset in a
two or three-dimensional subspace. They also provide specialised performance plots, notably scree
plots or BIC scatter plots to represent in a compact way numerous projections and parametrisations.

Table 2: Custom features associated to GMMs estimation for any of the benchmarked packages.

mclust flexmix mixtools Rmixmod EMCluster bgmm GMKMcharlie EMMIXmfa HDclassif

Models Available (univariate) canonical unconstrainedcanonical canonical unconstrainedcanonical unconstrained NA NA

Models Available (multivariate) canonical
unconstrained
diagonal
or general

unconstrainedcanonical unconstrained

4 models
(diagonal
and
general,
either
compo-
nent
specific or
global)

unconstrained

4 models
(either
component-
wise or
common,
on the
intrinsic
and
diagonal
residual
error co-
variance
matrices)

canonical
on
projected
dimen-
sion

Variants of the EM algorithm VBEM SEM,
CEM ECM SEM,

CEM CW-EM, MML AECM SEM,
CEM

Initialisation hierarchical clustering,
quantile

short-EM,
random random

random,
short-EM,
CEM,
SEM

random,
short-EM

k-means,
quantile k-means

k-means,
random,
heuristic

short-EM,
random,
k-means

Model or Cluster Selection BIC, ICL, LRTS AIC, BIC,
ICL

AIC, BIC,
ICL,
CAIC,
LRTS

BIC, ICL,
NEC

AIC, BIC,
ICL, CLC GIC BIC, ICL,

CV

Bootstrap Confidence Intervals

Visualisation

performance, histograms
and boxplots of
bootstrapped estimates,
density plots (univariate),
scatter plots with
uncertainity regions and
boundaries (bivariate),
isodensity (bivariate , 2D
projected PCA or
selecting coordinates)

density
curves

density
curves,
scatter
plots with
uncer-
tainty
bound-
aries

performance,
scatter
plots with
uncer-
tainty
bound-
aries

projected
factorial
map

projected
factorial
map, per-
formance
(Cattell’s
scree plot,
BIC per-
formance,
slope
heuristic)

Methods

In addition to the the seven packages selected for our benchmark, we include a custom R implementa-
tion of the EM algorithm used as baseline, referred to as RGMMBench, and for the high-dimensional
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setting we select packages EMMIXmfa and HDclassif, on the basis of criteria detailed in Appendix C,
General workflow. Code for RGMMBench is provided in Appendix Application of the EM algorithm to
GMMs. To compare the statistical performances of these packages, we performed parametric bootstrap
(Derivation of confidence intervals in GMMs) and built an experimental design to cover distinct mixture
distributions parameter configurations, using prior user-defined parameters.

For each experiment, we assign each observation to an unique cluster by drawing n labels S1:n from
a multinomial distribution whose parameters were the prior user-defined proportions p = (p1, . . . , pk).
Then, each observation xi assigned to hidden component j is drawn from a Normal distribution using
the stats::rnorm() function for the univariate distribution and MASS::mvrnorm for the multivariate
distribution. The complete code used for simulating data is available on GitHub at RGMMBench.
Finally, we obtain an empirical distribution of the estimated parameters by computing the MLE of
each randomly generated sample.

For all the packages, we used the same convergence threshold, 10−6, and maximum of 1,000
iterations, as a numerical criterion for convergence. We generated simulated data with n = 200
observations in the univariate setting and n = 500 observations in the bivariate setting. We set the
number of observations in order to minimise the probability of generating a sample without drawing
any observations from one of the components7. Unless stated explicitly, we kept the default hyper-
parameters and custom global options provided by each package. For instance, the flexmix package
has a default option, minprior, set by default to 0.05, which removes any component present in the
mixture with a ratio below 0.05. Besides, the fully unconstrained model was the only one which
we implemented both in the univariate and multivariate settings, as it is the only parametrisation
implemented in all the seven packages.

We compared the packages’ performances using five initialisation methods: random, quantile,
k-means, rebmix and hierarchical clustering in the univariate setting. We benchmarked the same
initialisation methods in the multivariate setting, except for the quantile method which has no
multivariate equivalent (see section Initialisation of the EM algorithm):

• We used the function EMCluster::rand.EM() with 10 random restarts and minimal cluster
size of 2 for the random initialisation. The method implemented by EMCluster is the most
commonly used, described in details in Biernacki, Celeux, and Govaert (2003) and in section
Initialisation of the EM algorithm.

• To implement the k-means initialisation, we used the stats::kmeans() function with a conver-
gence criterion fo 10ˆ{-2} and maximum of 200 iterations. The initial centroid and covariance
matrix for each component were computed by restricting to the sample observations assigned to
the corresponding component. The approach is close to the one adopted by the CEM algorithm
(see Appendix B: Extensions of the EM algorithm to overcome its limitations).

• We used the mclust::hcV() function for the MBHC algorithm. This method has two main
limitations: just like the k-means implementation, it only returns a cluster assignment to each
observation instead of the posterior probabilities, and the splitting process to generate the
clusters sometimes results in clusters composed of only one observation. To avoid this, we
added a small epsilon to each posterior probability.

• We used in the univariate setting bgmm::init.model.params for the quantiles initialisation.

• To implement the rebmix method, we used the rebmix::REBMIX function, using the kernel density
estimation for the estimation of the empirical density distribution coupled with EMcontrol set to
one to prevent the algorithm from starting EM iterations.

• Any of the seven packages could be used to implement the small EM method. We decided
to use the mixtools::normalmixEM as it is the closest one to our custom implementation. We
specified 10 random restarts, a maximal number of iterations of 200 and an alleviated absolute
threshold of 10−2. Preliminary experiments have led us to consider the removal of the small EM
initialization method from the simulation benchmark. This decision is based on the observation
that the differences of performance observed between the packages were no longer significant
(see supplementary Figure 9).

We sum up in Table 3 the general configuration used to run the scripts. Additionally, all simulations
were run with the same R (R Core Team 2023) version 4.0.2 (2020-06-22).

Preliminary experiments suggested that the quality of the estimation of a GMM is mostly affected
by the overlap between components’ distribution and level of unbalance between components. We
quantified the overlap between two components by the following overlap score (OVL, see Equation
(11)), with a smaller score denoting well-separated components:

7It is especially critical in cases of highly unbalanced configurations, as detailed in Appendix Practical details for
the implementation of our benchmark
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Table 3: Global options shared by all the benchmarked packages.

Initialisation methods Algorithms Criterion threshold Maximal iterations Number of observations

midrule hc, kmeans, small
EM,rebmix, quantiles,

random

EM R, Rmixmod, bgmm,
mclust, flexmix,

EMCluster, mixtools,
GMKMCharlie

10−6 1000 100, 200, 500, 1000, 2000,
5000, 10000

OVL(i, j) =
∫

min( fζi (x), fζ j (x))dx with i ̸= j (11)

We may generalise this definition to k components by averaging the individual components’
overlap. We use the function MixSim::overlap from the MixSim package (Melnykov, Chen, and
Maitra 2021) that approximates this quantity using a Monte-Carlo based method (see appendices An
analytic formula of the overlap for univariate Gaussian mixtures and Practical details for the implementation of
our benchmark for further details).

The level of imbalance may be evaluated with entropy measure (Equation (12)):

H(S) = −
k

∑
j=1

pj logk(pj) (12)

with k is the number of components and pj = P(S = j) is the frequency of class j.
We considered 9 distinct configuration parameters, associated with distinct values of OVL and

entropy in the univariate setting, 20 configurations in the bivariate setting, and 16 configurations in the
high-dimensional setting. Briefly, in the univariate setting, we simulated components with the same set
of four means (0, 4, 8, and 12), three sets of mixture proportions [(0.25, 0.25, 0.25, 0.25); (0.2, 0.4, 0.2, 0.2); (0.1, 0.7, 0.1, 0.1)]
and three variances: (0.3, 1, 2). In the bivariate setting, we consider two sets of proportions: [(0.5, 0.5); (0.9, 0.1)],
two sets of coordinate centroids: [(0; 20), (20, 0)] and [(0; 2), (2, 0)], the same variance of 1 for each
feature and for each component for illustrative purposes of the direct relation linking the correlation
and the level of OVL and five sets of correlation:[(−0.8,−0.8); (0.8,−0.8); (−0.8, 0.8); (0.8, 0.8); (0, 0)].

Finally, we tested eight configurations in the high-dimensional framework, setting to D = 10 the
number of dimensions. We modified the level of overlap (definition is reported in Equation (11)) and
the imbalance between the component proportions across our simulations. Additionally, we tested
two types of constraints on the covariance matrix: fully parametrised and spherical (see Appendix
Parsimonious parametrisation of multivariate GMMs). Each of the parameter configurations tested in
the high-dimensional setting was evaluated with n = 200 observations and n = 2000 observations.
Additionally, instead of manually defining the parameters for the high-dimensional simulation, we
used the MixSim function from the MixSim package (Melnykov, Chen, and Maitra 2021). This function
returns the user a fully parametrised GMM, with a prior defined level of maximum or average
overlap8.

The complete list of parameters used is reported respectively in Table 4 for the univariate setting,
Table 5 for the bivariate setting and 6 for the high-dimensional setting. We benchmarked simulations
where the components were alternatively very distinct or instead very overlapping, as well as of equal
proportions or instead very unbalanced. The adjustments made to meet the specific requirements of
high dimensional packages are detailed in Practical details for the implementation of our benchmark.

We report the most significant results and features and the associated recommendations in next
section Results.

Results

All figures and performance overview tables are reported in Supplementary Figures and Tables in the
univariate simulation for the univariate setting, Supplementary Figures and Tables in the bivariate simulation
for the bivariate scenario and Supplementary Figures and Tables in the HD simulation for the high
dimensional scenario.

Balanced and non-overlapping components

8Unfortunately, as discussed in further details in Appendix An analytic formula of the overlap for univariate Gaussian
mixtures, the MixSim package does not compute the global distribution overlap, but instead returns the mean
of pairwise overlap between any component (however, with two components, these two alternative definitions
match.) Finally, it is not possible to set the proportions of the components before the generation of the parameters,
except for clusters with equal proportions, and contrary to the expect behaviour of additional parameter PiLow,
supposed to define the smallest mixing proportion.
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In the univariate setting, with balanced components and low OVL (scenario U1 in Table 4), the
parameter estimates are identical in most cases across initialisation methods and packages, notably
the same estimates are returned with k-means or rebmix initialisation. However, the random initial-
isation method leads to a higher variance and bias on the parameter estimates than other methods
(Supplementary Figure 4 and Supplementary Table 6), with some estimates fitting only local maxima,
far from the optimal value.

Similarly, the scenarios in the bivariate setting (configurations B6-B10 in Table 5), with a focus on B6,
B7 and B10 visualised in Supplementary Figure 16, feature well-separated and balanced components.
Consistent with conclusions from the corresponding univariate configurations, all benchmarked
packages return the same estimates across initialisation methods.

Unbalanced and non-overlapping components

However, with unbalanced classes and low OVL (scenario U7 in 4), the choice of the initialisation
method is crucial, with quantiles and random methods yielding more biased estimates and proned to
fall in local maximum. Rebmix initialisation provides the best estimates, with the smallest MSE and
bias across packages (Supplementary Figure 5 and supplementary Table 7, always associated with
the highest likelihood. Overall, with well-discriminated components, most of the differences on the
estimation originate from the choice of initialisation method, while the choice of the package has only
small impact.

In the bivariate framework, two configurations featured both strongly unbalanced and well-
separated components, similarly to scenario U3 in Table 4: the configurations B12 (Supplementary
Figure 12 and Table 12) and B14 (Supplementary Figure 13 and Supplementary Table 13). Similarly,
configurations B16, B17 and B20 (Table 5) with similar characteristics are summarised in supplementary
Figure 17. In all these configurations, neither the initialisation method nor the package have a statistical
significant impact on the overall performance.

Similarly, configurations HD1a-HD4b in Table 6) in the high dimensional setting display well-
separated clusters, with a representative outcome represented in Supplementary Figure 19 and
Supplementary Table 16. Consistent with the results obtained in the analogous univariate and bivariate
scenarios, in the unbalanced and non-overlapping framework, the majority of the benchmarked
packages produce highly consistent and similar estimates when hierarchical clustering and k-means
were used for parameter initialisation. However, bgmm and EMCluster clearly perform worse when
the rebmix initialization method is used (however, overall, rebmix performs poorly, regardless of the
package used for estimation). Notably, initialisations with the rebmix package tend to display a much
larger number of poor estimations, some of which can be identified with the local maxima associated
with parameter switching between the two classes. Finally, the two additional packages dedicated to
high-dimensional clustering display the worst performances, with EMMIXmfa returning the most
biased parameters and HDclassif the most noisy estimates. EMMIXmfa is the only package that
returned highly biased estimates of the components’ proportions in this setting.

Balanced and overlapping components

When the overlap between components increases, the bias and variability of the estimates tends to
increase, and the choice of initialisation method becomes more impactful. The least biased and noisy
estimations with balanced components in the univariate setting (scenario U3 in Table 4) are obtained
with the k-means initialisation (Supplementary Figure 3 and Table 8) while the rebmix initialisation
returns the most biased and noisy estimates. Similar results are found in the bivariate setting with a
balanced and highly overlapping two-component GMM (configurations B1-B5 from Table 5), with
the best performance reached with the k-means initialisation method, followed by MBHC. This is
emphasised in supplementary Figure 16, in the top three most complex configurations, namely B1, B2
and B5. If the shape of the covariance matrix is well-recovered, no matter the package, the Hellinger
distances are significantly higher (and thus the estimate further away from the target distribution)
with the random and rebmix methods.

Similarly, in the high-dimensional scenario HD7 of Table 6), presenting balanced but highly
overlapping clusters with a full covariance structure, the best performance was obtained with k-means
initialisation, while the rebmix initialisation returned the most biased and noisy estimates. While
EMMIXmfa performed well when it converged, it returned an error in most cases (see Column Success
of supplementary Table 17). The least biased estimates were returned by mixtools and Rmixmod
and the least noisy by flexmix, mclust and GMKMCharlie (smaller MSE). Interestingly, in the high-
dimensional setting, the packages EMCluster and bgmm exhibited worse performance. In particular,
as can be seen in panel E of supplementary Figure 20, the proportions of the components recovered
the ]0 − 1[k simplex.

Conversely, the EMCluster package, and to a lesser extent, the bgmm package, performed sur-
prisingly well when datasets were simulated with an underlying spherical covariance structure, even
though the estimation was not performed explicitly with this constraint (Supplementary Table 19).
Indeed, it seems like that the off-diagonal terms tended to converge towards 0, as showcased in
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Supplementary Figure 21, in Panel C, in which the fourth row from top represents the bootstrap
intervals associated to the pairwise covariance between dimension 1 and 2 of each cluster.

Unbalanced and overlapping components

With unbalanced components and high OVL (scenario U9 in Table 4), all packages, no matter the
initialisation method, provided biased estimates, with a higher variability of the parameter estimates
compared to other configurations. The least biased estimates were obtained with k-means or random
initialisation, but with a higher variability on the estimates with random initialisation (Supplementary
Table 9). Delving further into the individual analysis of the parameter estimates associated to each
component, we found out that the least biased estimates were achieved with rebmix initialisation
for the most distinguishable components. For instance, in our configuration, the clusters 2 and 4
(see Supplementary Figure 7 and Table 9) were better characterised with the rebmix method. This
observation aligns with the rebmix’s underlying framework, using the modes of the distribution for
initialising the component (Nagode 2015). With highly-overlapping distributions and unbalanced
components, both the choice of the initialisation algorithm and the package have a substantial impact
on the quality of the estimation of this mixture.

Two configurations in our bivariate simulation feature distributions with both strong OVL and
unbalanced components. Especially, the scenario B11 (Table 5) has the strongest OVL overall, with
notably a risk of wrongly assigning minor component 2 to major component 1 of 0.5 (a random method
classifying each observation to cluster 1 or 2 would have the same performance).

First, we observe that the the random and rebmix initialisation methods have similar performance,
significantly better than k-means or MBHC (Supplementary Figure 11). Specifically, the rebmix
method returns the least biased estimates, while the random method is associated with the lowest
MSE (respectively for configurations B11 and B15, the supplementary Tables 11 and 14). Second, the
estimates differ across packages only in these two complex configurations, with packages Rmixmod
and mixtools returning more accurate estimates than the others. It it is particularly emphasised in
Scenario B15, where the component-specific covariance matrices are diagonal with same non-null
input, and thus should present spherical density distributions. However, only the first class of
packages correctly recovers the spherical bivariate 95% confidence regions while they are slightly
ellipsoidal with the second class of packages (Panel B, Supplementary Figure 14).

With full covariance structures and unbalanced proportions, as depicted in the high-dimensional
Scenario HD8a) and b) of Table 6, the general observations stated in the previous subsection for the
high dimensional setting hold, namely that the least biased estimates are returned by packages not
specifically designed for high-dimensional data, with the k-means initialisation (Supplementary Table
12 and supplementary Figure 22). Furthermore, the EMCluster and bgmm packages and the two
packages dedicated to high-dimensional, perform similarly with n = 200 observations (sub-scenario
a) and n = 2000 observations (sub-scenario b), whereas we would expect narrower and less biased
confidence intervals by increasing the number of observations by a factor of 10.

Finally, with spherical covariance structures and unbalanced proportions, the best performances,
both in terms of bias and variability, are obtained with flexmix, mclust and GMKMCharlie. Indeed,
as detailed later in Conclusions, these packages are more sensitive to the choice of the initialisation
method and have a greater tendency to get trapped in the neighbourhood of the initial estimates (Sup-
plementary Table 19 and supplementary Figure 22). Accordingly, k-means initialisation performs best
since it assumes independent and homoscedastic features for each cluster. Furthermore, EMMIXmfa is
the package that best estimates the off-diagonal terms in this setting, as highlighted in supplementary
Table 19.

Identification of two classes of packages with distinct behaviours

By summarizing the results obtained across all simulations, we identify two classes of packages
with distinct behaviours (Figure 2):

• The first class of packages, represented by Rmixmod and mixtools, returns similar estimates to
our baseline EM implementation. The estimates returned by these packages are less biased but
at the extent of a higher variability on the estimates. Additionally, with overlapping mixtures,
they tend to be slower compared to the second class, since they require additional steps to reach
convergence.

• The second class of packages, composed of the other reviewed packages, is more sensitive to
the initialisation method. This leads to more biased but less variable estimates, especially when
assumptions done by the initialisation algorithm are not met.

Panels A, B and C display, respectively in the univariate, bivariate and high-dimensional setting,
the heatmap of the Pearson correlation between the estimated parameters across the benchmarked
packages for the most discriminative scenario (the one featuring the most unbalanced and overlapping
components): scenario U9, Table 4 in the univariate setting, scenario B11, Table 5, for the bivari-
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Figure 2: Panels A, B and C show respectively the heatmap of the Pearson correlation in the univari-
ate, bivariate and high-dimensional framework between the parameters estimated by the packages,
evaluated for the most discriminating and complex scenario. The correlation matrix was computed
using the function stats::cor with option complete to remove any missing value related to a failed
simulation, and the heatmap generated with the Bioconductor package ComplexHeatmap. Panel D
represents a tree summarising the main differences between the benchmarked packages, in terms of
the EM implementation. They are discussed in more detail in Appendix EM-implementation differences
across reviewed packages.

ate simulation and scenario HD8, Table 6 for the high-dimensional simulation, with the k-means
initialisation.

We further identified with this representation minor differences for the estimation of the pa-
rameters between Rmixmod and mixtools, while three subgroups can be identified in the second
class of packages: the first subset with bgmm and mclust, the second subset with EMCluster and
GMKMcharlie packages and the flexmix package, which clearly stands out from the others, as being
the one most likely to be trapped at the boundaries of the parameter space. After examining the
source codes of the packages, we attribute this differences to custom implementation choices of the
EM algorithm, such as the way numerical underflow is managed or the choice of a relative or absolute
scale to compare consecutive computed log-likelihoods (see Appendix EM-implementation differences
across reviewed packages and Panel D, Figure 2). In the high-dimensional setting, the second class of
packages showed additional heterogeneity, with EMCluster and bgmm setting themselves apart from
the other three packages.

Failed estimations

Finally, in some cases, neither the specific EM algorithm implemented by each package nor the
initialisation method were able to return an estimate with the expected number of components, or
converged to a degenerate distribution (e.g., with infinite or zero variances). In that case, we considered
the estimation as failed and accordingly we did not include it into the visualisations and the summary
metric tables.

Most of the failed estimations occurred with the rebmix initialisation. Indeed, an updated version
of the package forced the user to provide a set of possible positive integer values for the number
of components, with at least a difference of two between the model with the most components and
the model with the least components (we therefore set the parameter cmax to k + 1 and cmin to
k − 1).In scenarios where the distributions associated with each cluster exhibit significant overlap,
there is an increased risk of incorrectly estimating the number of components. This arises from the
inherent difficulty of discerning the modes within the overall distribution. For instance, in the most
complex scenario B11, characterized by strong overlap and imbalanced clusters (refer to Table 5),
up to 20% of initialisations were unsuccessful. Similarly, in the second most challenging scenario,
B15, approximately 10% of initializations failed against an averaged number of 4% of the simulations
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exhibiting an inaccurate estimation of the number of components.

Removing errors proceeding from the initialisation method, only the flexmix package failed in
returning an estimate matching the user criteria in some configurations of the univariate and bivariate
settings. In both cases, the strong assumption that any cluster with less than 5% of the observations is
irrelevant, results in trimming one or more components9. This strong agnostic constraint on component
proportions led to failures in configurations featuring strongly overlapping clusters, with up to 20%
failed estimations with the random initialisation method in scenario B11 (Table 5) and 80% failed
estimations in the univariate setting10 with the rebmix initialisation with scenario U9, Table 4.

In a relatively high dimensional framework, as tested on our third benchmark (Table 6), none
of the algorithms that were initialised with the random method (EMCluster::rand.EM()) converged
successfully. Indeed, of the 16 configurations tested, the covariance returned during the initialisation
was systematically non-positive definite for at least one of the components, violating the properties
of covariance matrices. Furthermore, an analysis of summary metrics in scenarios HD1 and HD8,
reported in supplementary Tables 20 and 21, revealed a notably higher rate of failures when employing
rebmix initialisation in conjunction with packages tailored for high dimensionality, such as HDclassif
EMMIXmfa. This discrepancy was in stark contrast to the more reliable and consistent initial estimates
returned by k-means or hierarchical clustering.

Furthermore, as shown by the comparison of summary metrics with n = 200 and n = 2000
observations in supplementary Tables 20 and 21, respectively for the simplest scenario HD1 and the
most complex one HD8, the rebmix initialisation on the one hand, and the packages dedicated to high
dimensionality or those of the second class of packages that show a particular behaviour, present
much more failures than the k-means or hierarchical clustering initialisation.

3 Conclusions

There are many packages that implement the EM algorithm for estimating the parameters of GMMs.
But only few are regularly updated, implement both the unconstrained univariate and multivariate
GMM, and enable the user to provide its own initial estimates. Hence, among the 54 packages dealing
with GMMs available on CRAN or Bioconductor repositories, we focused our review on 7 packages
which implement all of these features. We believe that our in-depth review of the packages can help
users to quickly find the best package for their clustering pipeline and highlight limitations in the
implementation of some packages. Our benchmark covers a much broader range of configurations
than the previously-published studies (Nityasuddhi and Böhning 2003; Lourens et al. 2013; Leytham
1984; Xu and Knight 2010), as we studied the impact of the level of overlap and the imbalance of the
mixture proportions on the quality of the estimation.

Interestingly, the EM algorithm occasionally yields biased and inefficient estimates when the
components overlap a lot, which agrees with the past literature (Lourens et al. 2013; Leytham 1984; Xu
and Knight 2010). This appears to go counter to the theoretical results presented by Leytham (1984),
which demonstrated the asymptotic consistency, unbiasedness, and efficiency of maximum likelihood
estimates of GMMs. However, it’s important to note that this theoretical demonstration relies on the
definition of a “local” environment, necessitating the prior setting of boundaries within which the
theorem’s conditions are met (in other words, the definition of the support, which delineates the region
where the initial values can be sampled from). It’s not then surprising that the EM algorithm struggles
in reaching the global maximum of the distribution in the presence of multiple local extremes.

When all components are well-separated or have a relatively small number of components (three or
fewer), we found that the best estimation (lowest MSE and bias) is reached with the latest initialisation
method developed, namely the rebmix one. Notably, the global maximum is always properly found in
our simulations with distinguishable components. Yet, with overlapping components, the least biased
and variable estimates overall are obtained with k-means initialisation, enforcing the robustness of the
method while the assumptions for using it are not met.

On the contrary, with unbalanced and numerous components (above three), the quantiles initiali-
sation leads to the most biased estimates while the rebmix initialisation induces the highest variability.
Indeed, rebmix initialisation is not fit for highly overlapping mixtures, since one of its most restrictive
assumption is that each generated interval of the empirical mixture distribution can be associated
unambiguously to a component (see Initialisation of the EM algorithm and Nagode (2015)).

Furthermore, rebmix is not particularly adjusted to deal with high-dimensional mixtures, display-
ing systematically poorer performance compared to other initialisation strategies, such as k-means or
hierarchical clustering, as illustrated by the summary metrics listed in Appendix Supplementary Figures

9With a two-components mixture like our bivariate scenario, this even implies to consider an unimodal distribu-
tion of the dataset

10the gap proceeds from the stronger level of imbalance and the greater number of components
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and Tables in the HD simulation. Higher risk of returning a sub-optimal extremum likely arises from the
increased data sparsity in high dimensional datasets, which grows as the square root of the number of
dimensions

√
D (Convergence of distance definitions). Thus, we expect that most of the equally-large

intervals binning the sampling space and that are used to initiate the rebmix algorithm contain either
no or only observation, preventing from retrieving the numerically defined mode of the distribution
and increasing the risk of initiating the algorithm in a spurious neighbourhood.

About the remaining initialisation strategies, we observed that, even in the well-separated case,
random initializations can sometimes yield highly biased estimates, far from the true parameter values.
Consistent with our observations, it was shown in Jin et al. (2016) that the probability for the EM
algorithm to converge from randomly initialised estimates to a local suboptimal maximum is non
null above two components, increasing with the number of components. Additionally, the local
maximum of the likelihood function obtained can be arbitrarily worse than the global maximum.
Finally, hierarchical clustering does not take into account any uncertainty on the assignment for an
observation to a given class, which explains its rather bad performances with overlapping components.
Overall, there is always an initialisation algorithm performing better than the hierarchical clustering,
and further it is also by far the slowest and most computationally intensive initialisation method (see
supplementary Figure 10).

Our study reveals that while the EM algorithm is supposed to be deterministic, the estimates
obtained from its implementations can differ across packages. We were able to link these differences
with custom choices of EM implementations across the benchmarked packages. Two distinct classes of
packages emerge, each with specific approaches to address certain limitations of the EM algorithm.
The first class, exemplified by mixtools and Rmixmod typically yields smaller but less biased estimates
that exhibit lower sensitivity to the choice of initialization method. However, these estimates tend to
have higher variability and require longer running times to achieve convergence. The second class,
composed of the remaining packages, provide estimates with reduced MSE, but at the extent of a
higher bias on the estimates. One plausible explanation is that the first class of packages, comparing
absolute iterations of the function to be maximised, tends on average to perform more iterations. The
estimated results are accordingly more consistent and closer to the true MLE estimation but at the
expense of an increased risk of getting trapped in a local extrema or a plateau, explaining the greater
number of outliers observed. Among them, flexmix stands out by choosing an unbiased but non
MLE-estimate of the covariance matrix, without any clear improvement of the overall performance in
our simulations.

Based on these results, we design a decision tree indicating the best choice of package and
initialisation method in relation with the shape of the distribution, displayed in Figure 3. Interestingly,
our conclusions are consistent between the univariate and bivariate settings. Furthermore, most of the
general recommendations on the best choices of packages with respect to the characteristics of the
mixture model generally hold in a relatively higher dimensional setting11. From this, we assume that
projection into a lower-dimensional space is only beneficial in a very high-dimensional setting, for
example when the number of dimensions exceeds the number of observations, or when unrestricted
parameter estimation (with the full covariance structure) is practically infeasible for computational
reasons.

Comparing all these packages suggest several improvements.

1. The use of C++ code speeds up the convergence of the EM algorithm compared to a native R
implementation.

2. All packages dealing with GMMs should use k-means for overlapping, complex mixtures and
rebmix initialisation for well-separated components, provided that the dimension of the dataset
is relatively small. The final choice between these two could be set after a first run or visual
inspection aiming at determining roughly the level of entropy across mixture proportions and
the degree of overlap between components.

3. The packages should allow the user to set their own termination criteria (either relative or
absolute log-likelihood or over the estimates after normalisation). Interestingly, EMMIXmfa is
the only package among those examined that allows the user to consider an absolute or relative
convergence endpoint of the EM algorithm, through the conv_measure attribute, with diff and
ratio options respectively.

4. With a great number of components or complex overlapping distributions, the optimal package
should integrate prior information when available, e.g. via Bayesian estimation.

While mclust appeared as the most complete package to model GMMs in R, none of the packages
reviewed in this report features all the characteristics mentioned above. We thus strongly believe that

11We should note, however, that a larger sample space revealed that the packages bgmm and EMCluster display
more biased and noisy parameters compared to the other packages benchmarked and that their performance was
surprisingly unaffected by the number of simulated realisations
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Figure 3: A decision tree to select the best combination of package and initialisation method with
respect to the main characteristics of the mixture. It’s worth pointing that in both univariate and low
dimension multivariate settings, the recommandations are similar.

our observations will help users identify the most suitable packages and parameters for their analyses
and guide the development or updates of future packages.
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5 Simulation settings

For ease of reading, we reproduce below the parameter configurations used to run the three bench-
marks, respectively for the univariate (Table 4), bivariate (5) and high dimensional setting (Table
6).

Table 4: The 9 parameter configurations tested to generate the samples of the univariate experiment,
with k = 4 components.

ID Entropy OVL Proportions Means Correlations

U1 1.00 3.3e-05 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U2 1.00 5.7e-03 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U3 1.00 2.0e-02 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U4 0.96 3.3e-05 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U5 0.96 5.8e-03 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U6 0.96 2.0e-02 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U7 0.68 2.7e-05 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U8 0.68 4.4e-03 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U9 0.68 1.5e-02 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 2 / 2 / 2 / 2
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Table 5: The 20 parameter configurations tested to generate the samples of the bivariate experiment.

ID Entropy OVL Proportions Means Correlations

B1 1.00 0.15000 0.5 / 0.5 (0,2);(2,0) -0.8 / -0.8

B2 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) -0.8 / 0.8

B3 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) 0.8 / -0.8

B4 1.00 0.00078 0.5 / 0.5 (0,2);(2,0) 0.8 / 0.8

B5 1.00 0.07900 0.5 / 0.5 (0,2);(2,0) 0 / 0

B6 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / -0.8

B7 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / 0.8

B8 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / -0.8

B9 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / 0.8

B10 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0 / 0

B11 0.47 0.06600 0.9 / 0.1 (0,2);(2,0) -0.8 / -0.8

B12 0.47 0.01600 0.9 / 0.1 (0,2);(2,0) -0.8 / 0.8

B13 0.47 0.05000 0.9 / 0.1 (0,2);(2,0) 0.8 / -0.8

B14 0.47 0.00045 0.9 / 0.1 (0,2);(2,0) 0.8 / 0.8

B15 0.47 0.03900 0.9 / 0.1 (0,2);(2,0) 0 / 0

B16 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / -0.8

B17 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / 0.8

B18 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / -0.8

B19 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / 0.8

B20 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0 / 0

6 Additional files

• Additional files related to the univariate setting

– S1. Bootstrap distributions of the estimated parameters for each scenario described in 4.
– S2. Mean, standard deviation, bias and MSE for each individually estimated parameter in

configurations listed in 4.
– S3. Distribution of the running times taken for the EM estimation of the parameters of the

GMM, across all nine configurations described in 4, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.

– S4. Distribution of the time computations taken by the six initialisation methods listed in
Table 3.

• Additional files related to the outliers setting:

– S5. Bootstrap distributions of the estimated parameters used to generate Supplementary
Figure 2. We additionally include the otrimle package, dedicated to these extreme distri-
butions. Two configurations were tested, introducing 2% and 4% of outliers drawn from
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Table 6: The 16 parameter configurations tested to generate the samples in a high dimensional context.
The first digit of each ID index refers to an unique parameter configuration (identified by its level
of overlap, entropy and topological structure, either circular or ellipsoidal, of the covariance matrix,
while the lowercase letter depicts the number of observations, a) with n = 200 and b) with n = 2000.

ID OVL Number of
observations Proportions Spherical

HD1a 1e-04 200 0.5 / 0.5

HD1b 1e-04 2000 0.5 / 0.5

HD2a 1e-04 200 0.19 / 0.81

HD2b 1e-04 2000 0.19 / 0.81

HD3a 1e-04 200 0.5 / 0.5

HD3b 1e-04 2000 0.5 / 0.5

HD4a 1e-04 200 0.21 / 0.79

HD4b 1e-04 2000 0.21 / 0.79

HD5a 2e-01 200 0.5 / 0.5

HD5b 2e-01 2000 0.5 / 0.5

HD6a 2e-01 200 0.15 / 0.85

HD6b 2e-01 2000 0.15 / 0.85

HD7a 2e-01 200 0.5 / 0.5

HD7b 2e-01 2000 0.5 / 0.5

HD8a 2e-01 200 0.69 / 0.31

HD8b 2e-01 2000 0.69 / 0.31

an improper uniform distribution.
– S6. Mean, standard deviation, bias and MSE for each individually estimated parameter

in both configurations visualised on Supplementary Figure 2, for each combination of
package and initialisation method.

• Additional files related to the bivariate benchmark:

– S7. Bootstrap distributions of the estimated parameters for each scenario described in 5.

– S8. Mean, standard deviation, bias and MSE for each individually estimated parameter in
configurations listed in 5.

– S9. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 5, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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• Additional files related to the high-dimensional benchmark:

– S10. Bootstrap distributions of the estimated parameters for each scenario described in 6.

– S11. Mean, standard deviation, bias and MSE for each individually estimated parameter
in configurations listed in 6.

– S12. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 6, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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3.2 Main results
Overall, we observed a significant decrease in the precision and robustness of Gaussian mixture
estimation as the overlap, entropy (level of unbalancedness between cluster proportions), and
dimensionality of the problem increased. In details, we have identified two distinct behavioural
categories. mixtools and Rmixmod exhibit smaller bias in estimating mixture parameters, while
the remaining packages display the smallest Root Mean Square Error (RMSE) and variability on
average.

However, these differences become even more pronounced in high dimensions, with the sta-
tistical performances of bgmm and EMCluster significantly lagging behind their counterparts.
Interestingly, we demonstrated that software packages specifically designed to address high dimen-
sionality, such as EMMIXmfa or HDclassif, certainly achieve significantly improved computational
efficiency and enhanced result interpretability, but at the expense of increased bias and reduced
accuracy compared to conventional clustering approaches, when applied to moderately-large
datasets.

This work is currently in press, and should be published in the next release of the R Journal,
in November 2023. The R Journal is an open-access and peer-reviewed journal dedicated to
statistical development with real-world applications, programmed in the R language.

Our paper aligns well with the R community’s commitment to promoting best statistical
practices and sharing comprehensive documentation and guidelines. Indeed, this comprehensive
review provides new guidelines to R users for choosing the best package features based on
the characteristics of the dataset analysed. Ultimately, we provide recommendations for the
development of a comprehensive, and multifaceted mixture model package, concatenating the
most promising cutting-edge clustering innovations introduced by the packages benchmarked in
this analysis.

3.3 Perspectives
While Gaussian distributions exhibit a large array of interesting theoretical properties and are
relevant to describe most biological phenomena, they perform badly to approximate distributions
with outliers, high-dimensional datasets (especially when the number of features exceeds the
number of observations) and flawed distributions (quasi-Gaussian distributions displaying a
significant skewness or kurtosis, bounded datasets, . . . ).

To expand the scope of our paper, we conducted additional benchmark simulations, closer to
biological scenarios:

• Description of variants of the EM-algorithm tailored to account for the presence of an
unknown (or user-provided) number of outliers. These tools grapple with two significant
challenges: characterising the distribution of outliers, usually modelled by an improper
probability distribution (typically, the uniform distribution with infinite support), and
striking the correct balance between identifying aberrant data points and unveiling insightful
biological phenomena occurring within a small subpopulation (please refer to Appendix B
for comprehensive details).

• Robust inference of parameters within a high-dimensional framework. We employed two
complementary strategies for this purpose: parsimonious parametrisations of the covariance
matrix structure (with the most stringent approach considering homoscedastic noise and
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independent features, corresponding to the identity covariance matrix modulo a constant
multiplicative factor), and projection into a lower-dimensional space using Principal Com-
ponent Analysis (PCA) or Singular Value Decomposition (SVD) decomposition approaches
(see Appendix B).

• Inference of quasi-Gaussian distributions exhibiting strong skewness or kurtosis.

• Utilization of mixtures of left-truncated Gaussian distributions within the log2 space of RNA-
Seq counts. Alternatively, we could directly employ zero-inflated log-Normal distributions
within the raw or TPM transcriptomic space. We could leverage these methods to automate
the removal of background noise inherent to any transcriptomic output (see Appendix A.3.2
for more details). In that benchmark scenario, it would be interesting to include additional
discrete probabilistic models for inferring the parameters the bimodal distribution of raw
counts. For instance, Negative Binomial or Poisson distributions naturally captures the
discrete nature of RNA-Seq counts, while the former methods only adhere to the positive
constraint of transcriptomic expression.

We investigate in next Chapter 4 an immediate application of mixture models, assuming
Gaussian-distributed data, to recover subcategories of individuals sharing similar transcriptomic
profiles within a versatile and heterogeneous auto-immune pathology. We will particularly observe
that in the medical lingo, this classification of individuals, based on molecular fingerprints, are
referred to as “endotypes”.

In part III, in Chapter 6, we explore another statistical extension of multivariate Gaussian
distributions. Precisely, we employed a convolution-based approach rather than a mixture-based
approach, in order to describe other biological drivers of the variability observed across bulk
RNASeq samples, namely cell populations. Nonetheless, the benchmark analysis conducted in
this chapter revealed insightful for the creation of this pioneering deconvolution algorithm, by
benchmarking the best methods to retrieve the parameters controlling the individual multivariate
Gaussian distribution underlying each purified cell population.



Chapter4
Article 2: A new molecular classification
in primary Sjögren’s syndrome

Clinical Objective: Establishing a Mapping Between the Diversity of Therapeutic
Responses in Primary Sjögren’s Syndrome and Molecular Fingerprints

Personalised medicine: a brief overview In recent years, a paradigm shift has moved
clinical research from a traditional “one-size-fits-all” approach to the realm of personalized
medicine, often referred to as precision medicine ([Twy+23] and [Guc17]).

Personalised medicine tailors healthcare decisions based on individual patient characteristics,
encompassing genetic, molecular, and clinical features. Individuals sharing similar molecular
profiles are often clustered together, and referred to as endotypes. Precision medicine is hereby
expect to reduce adverse drug reactions and improving health patient outcomes, by providing
targeted treatments.

To retrieve latent variables underlying the classification of patients, mixture models, already
mentioned in previous chapter 3, are widely advocated by clinicians and biostatisticians, these
tools streamlining the exploration of disease heterogeneity across individual patient observations.

Primary Sjögren’s syndrome: A Debilitating Chronic Disease of Daily Life My
former pharmaceutical company, Servier, addressed three immune-mediated disorders: Systemic
Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Primary Sjögren’s Disease (pSD), for
which the immunopathological mechanisms remain largely unclear. In addition, these ailments
typically exhibit strong heterogeneity, characterised by a wide spectrum of clinical symptoms and
varying degrees of severity.

In addition, currently developed treatments are primarily tailored to enhance patients’ quality
of life and alleviate disabling symptoms, but most of them have not been formally validated in
clinical trials, nor impact disease progression on the long run.

In this paper, we focused on pSD, which mostly differs from the other diseases by lymphoid
infiltration of exocrine glands and Sicca’s syndrome. To better unravel the protean clinical
symptoms characterising this ailment, we conducted a comprehensive stratification study on a
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collection of blood samples, derived from a cross-sectional cohort of 304 patients. Of note, this
project is part of, and funded by the PRECISESADS IMI overarching consortium 1.

By integrating several orthogonal modalities, encompassing genetics, epigenomics, and tran-
scriptomics, alongside immuno-phenotypic analyses via flow cytometry, we expect enhanced
performance in retrieving meaning endotypes, compared to more traditional classification ap-
proaches, based solely on Interferon (IFN) activation scores or clinical features. The latter indeed
tend to nelgect the intrinsic molecular heterogeneity of pSD ([Li+13], [GT16]).

This analysis was complemented by a collection, from [Cha+08], of immune-related transcrip-
tomic modules.

Statistical Framework for Unsupervised Patient Stratification Using Gaussian
Mixture Models The clustering algorithm was performed on pre-processed RNAseq data, for
N = 304 individuals. It encompasses the following steps:

1. The top 25% most variant genes, defined by their degree of variation coefficient(CV), were
selected to perform the clustering analysis.

2. The robust clustering, originally outlined in [Gue+12], was leveraged to cluster patients
based on their transcriptomic profiles. This method capitalises on two other clustering
methods, namely Agglomerative Hierarchical Clustering ([Scr+16]) and k-means clustering
[Mac67], in addition to standard Gaussian mixture clustering. All these methods are
implemented in the versatile toolkit of the mclust package [Scr+16]. We selected the
hyperparameters that achieved the best overarching consensual cluster assignment for the
three clustering algorithms overall (Figure 4.1(a)).

3. From the initial cohort of 304 patients, a subset of 149 “core” patients exhibited consistent
cluster assignments for all three clustering methods employed. They have subsequently
been selected for deriving a minimal transcriptomic signature of 257 top discriminating
genes, after initial gene feature selection using ANOVA and further reduction refinement by
a Random Forest approach [CW22].

4. Finally, patients inconsistently assigned for the 3 clustering methods were mapped to their
respective closest centroid. Of note, since the overall classification process consists of
unsupervised and supervised steps, it is commonly referred as “semi-supervised”.

1The consortium notably focuses on the discovery of discriminative biomarkers, coupling cutting-edge statistical
frameworks with numerous modalities, for accurately predicting disease progression. Once a promising set of
putative targets have been identified, the Necessity group endeavours to bring about transformative clinical trial
designs, referred to as “multi-arm multi-stage platform”, and relying intensively on prior patient stratification
[Bar+18]
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(a) Flow chart describing the “semi-supervised” clustering approach used for patient stratification. A bagging
ensemble approach, inspired from [Gue+12], has notably been used for increasing the robustness of the
classification.

(b) Cell population composition in blood samples from the 4 identified clusters.. The bar
charts denotes the relative cellular composition for each cluster. To the right, the cell ratios inferred using
Fluorescence-Activated Cell Sorting (FACS) analyses (Section 2.2.1), and to the left, numerically estimated
cell ratios using the CIBERSORT deconvolution algorithm ([New+15]).

Figure 4.1: Visual summary of Chapter 4, Article 2.
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Perrine Soret1,29, Christelle Le Dantec2,29, Emiko Desvaux1,2, Nathan Foulquier2, Bastien Chassagnol 1,

Sandra Hubert1, Christophe Jamin 2,3, Guillermo Barturen 4, Guillaume Desachy1,

Valérie Devauchelle-Pensec2,3, Cheïma Boudjeniba1, Divi Cornec 2,3, Alain Saraux2,3, Sandrine Jousse-Joulin2,3,

Nuria Barbarroja5, Ignasi Rodríguez-Pintó 6, Ellen De Langhe 7, Lorenzo Beretta8, Carlo Chizzolini9,

László Kovács10, Torsten Witte11, PRECISESADS Clinical Consortium*, PRECISESADS Flow Cytometry

Consortium*, Eléonore Bettacchioli3, Anne Buttgereit12, Zuzanna Makowska12, Ralf Lesche12,

Maria Orietta Borghi13, Javier Martin14, Sophie Courtade-Gaiani 1, Laura Xuereb1, Mickaël Guedj1,

Philippe Moingeon 1, Marta E. Alarcón-Riquelme 4, Laurence Laigle1 & Jacques-Olivier Pers 2,3✉

There is currently no approved treatment for primary Sjögren’s syndrome, a disease that

primarily affects adult women. The difficulty in developing effective therapies is -in part-

because of the heterogeneity in the clinical manifestation and pathophysiology of the disease.

Finding common molecular signatures among patient subgroups could improve our under-

standing of disease etiology, and facilitate the development of targeted therapeutics. Here,

we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren’s syn-

drome patients based on the multi-omic profiling of whole blood samples from a European

cohort of over 300 patients, and a similar number of age and gender-matched healthy

volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cyto-

metry data, combined with clinical parameters, we identify four groups of patients with

distinct patterns of immune dysregulation. The biomarkers we identify can be used by

machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation

of response to treatments in clinical trials.
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Primary Sjögren’s syndrome (pSS) is a chronic, disabling,
complex systemic autoimmune disease that mostly affects
adult women and still lacks a specific therapy. Although the

involvement of salivary and lachrymal glands is the hallmark of
the disease, during pSS progression, various organs and systems
can be involved including joints, lungs, kidneys, liver, nervous
and musculoskeletal system1. Thus, the clinical spectrum of the
disease ranges from a benign slowly progressive autoimmune
exocrinopathy to a severe systemic disorder with significant
symptom heterogeneity and scattered complications. The diag-
nosis of pSS is currently based upon a combination of clinical,
serological, histological, and functional parameters which are
most often only satisfied at a late stage of the disease, i.e., when
glandular dysfunction and symptoms already severely affect a
patient’s overall quality of life. Moreover, one fifth of pSS patients
may present major organ involvement with potentially severe
end-organ damage2 and five percent of patients may also develop
non-Hodgkin’s lymphoma3. Primary SS is one of the few pro-
totypic diseases to link autoimmunity, cancer development and
infections, offering unique insights in many areas of basic science
and clinical medicine. However, the pathogenesis of the disease
remains elusive. Specifically, limited knowledge of existing pSS
disease variants arguably represents the greatest obstacle to
improve patients’ diagnosis and identify patients’ subsets in view
of early stratification and personalized treatment4. It was recently
shown in the PRECISESADS IMI JU project that systemic
autoimmune diseases exhibit a diverse spectrum and a complex
nuanced or overlapping molecular phenotype with four clusters
identified, representing ‘inflammatory’, ‘lymphoid’, ‘interferon’
and ‘healthy-like’ patterns each including all diagnoses and
defined by genetic, clinical, serological and cellular features5.
Many of them share susceptibility genes6 and an overexpression
of interferon (IFN) inducible genes known as the IFN signature is
observed in many of these patients7. Such autoimmune diseases
are driven by numerous environmental factors, therefore dis-
playing a marked variability in their natural course as it relates to
their initiation, propagation and flares.

The present study was undertaken to establish a precise
molecular classification of patients affected by pSS into more
homogeneous clusters whatever their disease phenotypes, activity
or treatment. We report herein on the integrated molecular
profiling of 304 pSS patients compared to 330 matched healthy
volunteers (HV) performed using high-throughput multi-omics
data collected within the PRECISESADS IMI JU project (genetic,
epigenomic, transcriptomic, combined with flow cytometric data,
multiplexed cytokines, as well as classical serology and clinical
data). We identify 4 groups of patients with distinct patterns of
immune dysregulation. The Cluster 1 (C1), C3 and C4 display a
high IFN signature reflecting the pathological involvement of the
IFN pathway, but with various Type I and II IFN gene enrich-
ment. C1 has the strongest IFN signature with both Type I and
Type II gene enrichment when compared to C3 (intermediate)
and C4 (lower). C4 has a Type II gene enrichment stronger than
Type I and equivalent to C3 while C3 has the opposite compo-
sition. C2 exhibits a weak Type I and Type II IFN signature with
no other obvious distinguishable profile relative to HV. We fur-
ther characterized C1, C3 and C4 using multi-omics and clinical
data. C1 patients present a high prevalence of SNPs, C3 patients
an involvement of B cell component more prominent than in the
other clusters and especially an increased frequency of B cells in
the blood while C4 patients have an inflammatory signature
driven by monocytes and neutrophils, together with an aberrant
methylation status. Algorithms derived from machine learning
discriminate the 4 clusters based on distinct biomarkers that can
be easily used in a composite model to stratify patients in clinical
trials. This composite model is validated by using an independent

inception cohort of 37 pSS patients. In conclusion, this work
provides a clear understanding of pSS heterogeneity providing
clinically and immunopathologically relevant signatures to guide
precision medicine strategies. Decision trees coming from this
patient classification have an immediate application to re-evaluate
response to treatments in clinical trials.

Results
Four functional molecular clusters of pSS patients were iden-
tified. Our initial study population comprised 382 pSS patients
enrolled in the PRECISESADS cross-sectional study. Following
complete quality control and diagnosis validation (each patient
had to present either anti-SSA/Ro antibody positivity or focal
lymphocytic sialadenitis with a focus score of ≥1 foci/mm2), 78
patients were removed (Supplementary Fig. 1a–c). Patient char-
acteristics are presented in Table 1. To perform the clustering of
the remaining 304 samples, transcriptomics data were analyzed
with a semi-supervised robust approach previously applied to
breast cancer8 that iterates unsupervised and supervised steps and
relies on the concordance between 3 methods of clustering (see
Methods). Samples were divided into a discovery set and an
independent validation set, representing 75 and 25% of samples,
respectively. The discovery set allowed to cluster patients in four
groups, as confirmed in the validation set (Fig. 1a). When the two
sets were merged, Cluster 1 (C1) contained 101 patients (33.2%),
Cluster 2 (C2) 77 patients (25.3%), Cluster 3 (C3) 88 patients
(28.9%) and Cluster 4 (C4) 38 patients (12.5%). The supervised
step allowed to select a subset of 257 top genes discriminating the
4 clusters of patients (Supplementary Fig. 2) and divided into 3
modules: M.a (105 genes), M.b (20 genes) and M.c (132 genes).
An enrichment analysis was used to annotate each gene module,
showing that M.a was enriched in IFN signaling, M.b in lymphoid
lineage pathways and M.c in inflammatory and myeloid lineage
transcripts (Supplementary Fig. 3). C1, and to a lesser extent C3,
presented overexpression of gene module M.a, whereas
C3 showed overexpression of M.b as well and C4 strong over-
expression of M.c (Fig. 1a). Because C2 had no obvious dis-
cernible pattern, healthy volunteers (HV) were assigned to the 4
molecular clusters distance to centroids (Fig. 1b). When projected
into the patient population, HV did not constitute a separate
cluster but mainly matched with C2 (0.5%, 93%, 4% and 2.5% of
HV merged with C1, C2, C3, and C4, respectively). This means
that the C2 transcriptional signature is not different from HV, at
least at the blood level. Interestingly, our data are consistent with
the previous observation of a healthy-like patient group detected
in a pooled population of 7 different autoimmune diseases5.

We then assessed whether covariates like systemic treatments
could drive the transcriptome-based clustering. Indeed, half of the
pSS patients were treated with either anti-malarials, immuno-
suppressants, or steroids at the time of the visit with a statistically
significant difference in the distribution among the four clusters
(p-values were respectively 0.002 for anti-malarials, <0.001 for
immunosuppressants and steroids) (Table 2). When compared to
the 3 other clusters, a higher proportion of patients treated with
anti-malarials in C2 and a higher proportion of patients receiving
immunosuppressants or steroids in C4 were observed. Impor-
tantly, sensitivity analyses of treated versus untreated patients in
each cluster showed no impact of treatments on cluster
distribution (Supplementary Fig. 4).

In depth functional pathway analysis of individual pSS clusters.
To investigate molecular processes and their biological function
underlying each of the pSS patients’ clusters, specific differentially
expressed genes (DEG) signatures compared to HV were assessed
using Limma in the 4 clusters. Ingenuity Pathway Analysis (IPA)
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was subsequently applied to determine the most significantly
dysregulated canonical pathways with Benjamini–Hochberg false
discovery rate (FDR) adjusted p-value ≤ 0.05 and absolute fold
change (FC) ≥ 1.5. As a result, 284 DEG were found significant in
C1, 301 DEG in C3 and 1686 DEG in C4 (Supplementary Data 1).

Since no DEG were noticed in C2 when compared to HV, only
C1, C3, and C4 were functionally annotated. Top 20 significant
canonical pathways within each DEG signature are presented in
Supplementary Data 2 and pathways related to the most
significantly enriched immunological responses are reported as
radar plots in Fig. 1c. While all 3 clusters were enriched in genes
involved in antiviral and anti-bacterial responses indicative of an
innate-mediated activation profile, C1 was mainly enriched with
IFN-related pathways including IFN signaling, role of pattern
recognition receptors for bacteria and viruses and Interferon
Regulatory Factor (IRF) activation. Notably, C3 and C4 were
further characterized by alterations in biological networks linked
to adaptive immunity. Specifically, significant activation of
canonical pathways related to B cell activation such as B cell
receptor signaling, and B cell development were observed in C3.
In addition, comparative analyses provided evidence for IL7-
signaling up-regulation and LXR/RXR activation in C3
compared to C1.

Interestingly, C4 was the endotype with the highest number of
DEG compared to HV with highly heterogeneous dysregulated
canonical pathways. Ingenuity pathway analysis confirmed the
activation of T and B lymphocyte related pathways reflecting Th1
and Th2 activation, B cell receptor signaling, together with

prominent inflammatory signatures most particularly linked to
cytokine signaling (IL-6 and IL-10 signaling, IL-15 production,
STAT-3 pathway).

Further upstream regulator analysis predicted significant
activation of IFN-α in all three clusters, as well as CpG ODN
in C3 and LPS, IFNγ, TNF-α, and IL-4 in C4, further highlighting
B cell activity and inflammatory responses in C3 and C4,
respectively.

Noteworthy, while C2 displayed no DEG compared to HV, 14
genes were differentially expressed in C2 patients positive for SSA
antibodies compared to HV whereas only 2 DEG were found in
SSA-negative C2 patients. These SSA-positive C2 patients were
characterized by significant enrichment in IFN-related genes
compared to HV including IFI44, IFI44L, IFI6, IFIFT1, IFIT3,
ISG15, MX1, OAS3, SERPING1, and SIGLEC1 (Supplementary
data 1).

To further characterize patient cluster variability at a molecular
level, we then used the blood transcriptome modular repertoire
recently established on an expended range of disease and
pathological states. The latter includes 382 transcriptome
modules based on genes co-expression patterns across 16 diseases
and 985 unique transcriptome profiles9. Again, no aggregate was
found differentially expressed in C2 confirming the healthy-like
profile of these patients, whereas an up-regulated IFN signature
dominated in C1, C3, and C4 (Fig. 2). In C4, the most induced
modules include genes associated with inflammation and
neutrophils. As the highest inflammatory phenotype, C4 is
associated with a hypercytokinemia/hyperchemokinemia

Table 1 Healthy volunteers (HV) and Primary Sjögren’s syndrome (pSS) patient characteristics.

HV (N= 330) pSS Discovery
(N= 227)

pSS Validation
(N= 77)

pSS All
(N= 304)

Demography
Age n 330 227 77 304

Mean ± SD 53.294 ±
10.998

58.524 ± 13.440 58.039 ± 13.554 58.401 ± 13.448

Gender n 330 227 77 304
Female n (%) 302 (91.52) 211 (92.95) 71 (92.21) 282 (92.76)

Obesity (BMI >= 30) n 328 218 74 292
Yes n (%) 24 (7.27) 30 (13.76) 3 (4.05) 33 (11.30)

Race n 330 227 77 304
Asian n (%) 2 (0.61) 1 (0.44) 1 (1.30) 2 (0.66)
Black/African
American

n (%) — — 1 (1.30) 1 (0.33)

Caucasian/White n (%) 328 (99.39) 224 (98.68) 74 (96.10) 298 (98.03)
Other n (%) — 2 (0.88) 1 (1.30) 3 (0.99)

Diagnostic criteria
Focus score > 1 n — 82 27 109

Yes n (%) — 73 (89.02) 24 (88.89) 97 (88.99)
Anti-SSA positivity n — 227 77 304

Yes n (%) — 205 (90.30) 69 (89.61) 274 (90.13)
Disease activity
Disease
duration, years

n — 225 77 302

Mean ± SD — 10.788 ± 7.535 11.094 ± 9.620 10.866 ± 8.101
Disease activity
(PGA*)

n — 211 75 286

Mean ± SD — 25.687 ± 18.976 24.840 ± 20.984 25.465 ± 19.488
ESSDAI (**) n — 133 60 193

Mean ± SD — 4.609 ± 5.358 4.850 ± 5.495 4.684 ± 5.388
ESSPRI (**) n — 106 44 150

Mean ± SD — 5.176 ± 2.286 4.568 ± 2.648 4.998 ± 2.405

n: Number of patients with available information.
(*) PGA: Physician Global Assessment.
(**) collected in a substudy.
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observed in modules (M13.16, M15.84, M16.80) consistent with
an upregulation of the TNF-associated module (M16.47) and a
downregulation of the TGFβ-associated module (M16.65) (Fig. 2).
Some modules were under-expressed, such as those associated
with both protein synthesis (M12.7, M11.1, M13.28, M14.80), B

cells (M13.27, M12.8) and T cells (M15.38, M14.42, M12.6).
Genes mainly overexpressed in C1 were also implicated in
inflammatory responses and neutrophils (A33, A35), in parallel
with down-regulated B and T cell signatures (Supplementary
Fig. 5). Moreover, distinct sub-modules expressed in opposite

Discovery set Validation set
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cb

C1 C3 C4

Role of JAK1, JAK2 and TYK2 in Interferon Signaling
Communication between Innate and Adaptative Immune Cells

Antigen Presentation Pathway
Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza

Fig. 1 Molecular pattern distribution is represented by 4 clusters of pSS patients with different canonical pathways. a Heatmap performed for 304 pSS
patients (Discovery set: 227, Validation set: 77) showing the distribution of gene transcripts across the 4 clusters. In columns patients are grouped by
cluster assignment and in rows genes are grouped by functional modules. Each subset of patients (discovery set on the left and validation set on the right)
is presented separately. Red represents overexpression and blue represents under-expression. At the top of the figure annotations show: each of the
treatment groups for each individual (AM: antimalarials, STED: steroids and IMS: immunosuppressors, red represents patients with treatment and gray
represents patients without treatment), age (levels of yellow to green with yellow for younger patients and dark green for older patients), gender (red
represents woman and gray represents man), ANTISSAPOS: anti-SSA/Ro antibody positivity, FOCUSSCOREPOS: focus score of ≥1 foci/mm2 (red
represents focus score of ≥1 foci/mm2 and gray represents focus score of <1 foci/mm2). b Scatterplot of the first two components PCA (performed for 304
pSS patient and 330 HV) model showing clearly defined clusters in signature gene. HV (gray dot) are confused with C2 cluster (yellow dot). c Top 20 most
significant canonical pathways for each cluster. Radar plots are represented according to ‒log (p-value) (Fisher’s exact test) associated to the most
significant pathways of each cluster; C1 (pink), C3 (green), C4 (blue).
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directions allows to functionally discriminate C1 and C3. Patients
from C3 demonstrated a significant under-expression of modules
related to erythrocytes (A37; M9.2, M11.3) and cytokines/
chemokines (A35; M15.84, M13.16) and an increased expression
in some of the B cell modules (A1; M12.8) (Supplementary Fig. 5
and Fig. 2).

IFN signatures. Consistent with the literature, the most sig-
nificantly enriched pathway confirmed to be up-regulated in all
three clusters was the IFN signaling pathway (Fig. 2, Supple-
mentary Fig. 5). In SLE, Chiche et al. have previously identified
three strongly up-regulated IFN-annotated modules (M1.2, M3.4,
and M5.12) from peripheral blood transcriptomic data, with for
each module a distinct activation threshold10. Genes within the

M1.2 module are induced by IFNα, while other genes from both
M1.2 and M3.4 are up-regulated by IFNβ, corresponding to a
type I IFN signature. The M5.12 genes are poorly induced by
IFNα and IFNβ alone but are rather up-regulated by IFNγ
characterizing a type II IFN signature11. Moreover, transcripts
belonging to M3.4 and M5.12 were only fully induced by a
combination of Type I and Type II IFNs. Kirou et al. made
similar observations and identified genes preferentially induced
by IFNα or IFNγ12. The different z-scores were then calculated
accordingly to characterize further the IFN signature observed in
the various clusters (Fig. 3). All IFN z-scores were increased to
some extent in C2 when compared to HV. In line with the strong
signal observed, C1 patients had the highest Type I and type II
scores. Interestingly, C3 had higher Type I IFN score than C4 but
these 2 clusters were not different for Type II IFN score.

Table 2 Descriptive analysis of the clinical parameters by primary Sjögren’s syndrome cluster.

C1 (n= 101) C2 (n= 77) C3 (n= 88) C4 (n= 38) p-value

Age, years n 101 77 88 38
Mean ± SD 57.327 ± 13.705 58.805 ± 13.688 57.250 ± 12.032 63.105 ± 14.790 0.10

Gender n 101 77 88 38
Female n (%) 96 (95.05) 71 (92.21) 81 (92.05) 34 (89.47) 0.70

Age at onset, years n 101 76 88 37
Mean ± SD 45.663 ± 14.475 50.428 ± 14.532 47.606 ± 12.687 51.739 ± 16.053 0.071

Disease duration, years n 101 76 88 37
Mean ± SD 12.247 ± 8.921 8.965 ± 7.336 10.183 ± 7.210 12.625 ± 8.524 0.029

Disease activity (PGA*) n 94 71 85 36
Mean ± SD 27.245 ± 20.535 22.718 ± 17.698 23.212 ± 18.766 31.556 ± 20.646 0.092

ESSDAI n 70 52 44 27
Mean ± SD 5.029 ± 5.959 3.731 ± 4.594 4.227 ± 4.017 6.370 ± 6.828 0.10

ESSPRI n 56 43 30 21
Mean ± SD 4.833 ± 2.460 5.031 ± 2.429 5.300 ± 2.703 4.937 ± 1.803 0.87

Arthritis n 98 77 86 38
Past n (%) 39 (39.80) 18 (23.38) 20 (23.26) 12 (31.58) 0.016
Present n (%) 2 (2.04) 3 (3.90) 4 (4.65) 5 (13.16)

Focus score > 1 n 96 29 21 14
Yes n (%) 39 (40.63) 28 (96.55) 17 (80.95) 12 (85.71) 0.4

Anti-SSA positivity n 101 77 88 38
Yes n (%) 99 (99.00) 56 (72.72) 87 (98.86) 31 (81.57) <0.001

Anti-SSB positivity n 100 77 86 38
Yes n (%) 61 (61.00) 12 (15.58) 39 (45.35) 11 (28.95) <0.001

Hypergammabulinemia n 97 73 86 38
Past n (%) 23 (23.71) 8 (10.96) 9 (10.47) 3 (7.89) <0.001
Present n (%) 44 (45.36) 10 (13.70) 41 (47.67) 7 (18.42)

Abnormal inflammatory indexes n 100 77 87 38
Past n (%) 28 (28.00) 13 (16.88) 20 (22.99) 12 (31.58) 0.003
Present n (%) 35 (35.00) 11 (14.29) 22 (25.29) 10 (26.32)

Reduced C3 levels n 93 74 82 35
Past n (%) 13 (13.98) 5 (6.76) 11 (13.41) 4 (11.43) 0.8
Present n (%) 7 (7.53) 4 (5.41) 5 (6.10) 3 (8.57)

Reduced C4 levels n 93 74 82 35
Past n (%) 13 (13.98) 3 (4.05) 9 (10.98) 4 (11.43) 0.10
Present n (%) 10 (10.75) 3 (4.05) 3 (3.66) 4 (11.43)

Abnormal Creatinine n 98 77 88 38
Past n (%) 10 (10.20) 4 (5.19) - 2 (5.26) 0.009
Present n (%) 5 (5.10) 2 (2.60) 7 (7.95) 6 (15.79)

Proteinuria n 65 58 56 25
Moderate n (%) 5 (7.69) 2 (3.45) 1 (1.79) 3 (12.00) 0.093
Past n (%) 5 (7.69) — 3 (5.36) —

Current use of antimalarials n 101 77 88 38
Yes n (%) 33 (32.67) 42 (54.55) 24 (27.27) 15 (39.47) 0.002

Current use of Immunosuppressants n 101 77 88 38
Yes n (%) 17 (16.83) 14 (18.18) 7 (7.95) 15 (39.47) <0.001

Current use of steroids n 101 77 88 38
Yes n (%) 23 (22.77) 14 (18.18) 10 (11.36) 23 (60.53) <0.001

n: Number of patients with available information, (*) PGA: Physician Global Assessment.
Statistical tests performed: chi-square test of independence for categorial variable and Kruskal–Wallis test for continue variable.
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Upstream analysis of C4 DEG predicted IFNγ as an important
regulator suggesting that Type II IFN activation was prominent
in C4.

Genome-wide association study analysis. We investigated whe-
ther clusters showed any differences in the genetic contribution of
risk alleles known to be associated with pSS13–15. Even in the
mid-size cohort of patients analyzed (304 pSS and 330 HV), we
unambiguously detected (with signals genome wide significance
level <5 × 10−8) 35 single nucleotide polymorphisms (SNPs) in
C1 compared to only six in C3 and one in C4 (Fig. 4a, Supple-
mentary Data 3). Interestingly, no significant enrichment was
found in C2. The 35 SNPs assessed in C1 are found within genes
associated with either the immune system (HLA-DQB1, HLA-
DQA1, HLA-DRA, HLA-C, HLA-G), signal transduction
(NOTCH4), developmental biology (POU5F1), gene expression
(DDX39B) or cell cycle (TUBB). The presence of such significant
genetic associations was already found in clusters of systemic
autoimmune disease patients whose molecular disease pathway is
the Type I IFN pathway5. Moreover, a strong association of SNPs
with HLA class II genes was reported in SLE patients with a high
level of autoantibodies16. One SNP (rs2734583) was common to
C1 and C3 and is associated to the DDX39 gene. Of note,
DDX39B, the protein encoded by this gene, is required for the
prevention of dsRNA formation during influenza A virus infec-
tion, thereby preventing the activation of the Type I IFN
system17. The five others SNPs in C3 are nearby HLA-DQA,
HLA-DRA (2 SNPs), BTNL2 and HCG23. The only SNP
(rs2247056) found in C4, also common with C1, is located in
intron 1 of the LINC02571 gene and was previously associated
with a risk for developing SLE.

Linkage disequilibrium is a non-random association of alleles
at different loci in a given population. When analyzing linkage
disequilibrium (Fig. 4b) in the loci of the 35 SNPs detected in C1

and located on chromosome 6 (from base 29809362 to
32681631), three SNPs were strongly associated in HLA-DQA1
locus (rs9272219, rs9271588, rs642093), five SNPs in HLA-DRA |
HLA-DQA1 locus (rs7195, rs1041885, rs3129890, rs9269043,
rs7749057) and three SNPs in HCG27 |HLA-C locus (rs3130473,
rs2394895 and rs3130467). Two other regions contain strongly
associated SNPs. The NOTCH4 | C6orf10 locus presented 5
associated SNPs (rs3130347, rs204991, rs3132935, rs7751896,
rs9268220) as well as the IER3 |DDR1 locus (rs3094122,
rs6911628, rs3094112, rs2517576, rs3095151).

Methylation analysis. The methylation analysis was performed
with a Benjamini Hochberg FDR < 0.1 and absolute ΔBeta >
0.075. Only two differentially methylated positions (DMPs) cor-
responding to two genes were found in C2. Those DMPs were
common with the 3 other clusters (Fig. 5a) and were located in
the TSS1500 shore of the NLRC5 gene and in the 5’UTR of the
gene encoding MX1, two genes involved in the IFN signature.
NLRC5 plays a role in cytokine response and antiviral immunity
through inhibition of NF-kappa-B activation and negative reg-
ulation of Type I IFN signaling pathways18. MX1 encodes an IFN
induced dynamic-like GTPase with antiviral activity which was
proposed as a clinically applicable biomarker for identifying
systemic Type I IFN in pSS19.

145 DMPs corresponding to 87 genes and 96 DMPs
corresponding to 56 genes were found in C1 and C3 respectively,
whereas an aberrant methylation status with 8,445 DMPs
corresponding to 3,636 genes characterized C4 (Fig. 5a). In order
to test whether the methylation defect in C4 was associated with
steroids treatment, we compared the 9 untreated to the 17 treated
patients. No CpG with a Benjamini-Hochberg FDR adjusted p-
value < 0.1 was found to be differentially methylated in treated
versus untreated patients. A global hypomethylation of CpG was
observed for all clusters (89.6% in C1, 100% in C2, 67.7% in C3
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Fig. 2 Patterns of abundance of the different modules distinguish the four pSS clusters. Each heatmap, achieved with BloodGen3Module R package9,
represents one of the most significant patterns differentiating the four clusters of 304 pSS patients (C1: 101, C2: 77, C3: 88, and C4: 38) compared to 330
healthy volunteers (HV). These patterns correspond to modules associated with IFN, neutrophils, inflammation, cytokines/chemokines, protein synthesis,
erythrocytes, monocytes, B cells and T cells. Columns on this heatmap corresponds to clusters. Each row corresponds to one of the modules associated
with the pattern. For each module, the percentage of increased genes (from 0 to 100) and decreased genes (from 0 to 100) were calculated. A red spot on
the heatmap indicates an increase in abundance of transcripts comprising a given module for a given cluster. A blue spot indicates a decrease in abundance
of transcripts. The absence of color indicates no changes.
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and 80.4% in C4). Because functionally important DNA
methylation occurs in promoter regions and in CpG islands20,
DMP distribution across the different genomic regions was
investigated (Fig. 5b). A higher representation of DMPs in the
promoter region was found in C3 (36.4%) and C1 (33.1%) when
compared to C4 (29.1%). The consequence was a lower
representation of DMPs in intergenic regions for C3 (8.8%)
compared to C1 (22.8%) and C4 (23.1%). To gain insight on this
pattern, we divided the probes according to CpG islands; shores
(regions up to 2 kb from CpG island), shelves (regions from 2 to
4 kb from CpG island) and open sea (the rest of the genome).
Interestingly, 21.8% of the DMPs for C3 were located in CpG
islands versus 6.9 and 7.4% for C1 and C4, respectively.

To identify the most robust and significant signature of hypo-
and hyper-methylated genes, we fixed the ΔBeta cut-off at 0.15.
Regarding hypomethylated CpGs, 13 DMPs were found in C1, 17
in C3 and 1,194 in C4, corresponding to 10, 11 and 761
hypomethylated genes, respectively. Five genes with hypomethy-
lated DMPs were common to these 3 clusters (IFI44L, IFIT1,
MX1, PARP9 and PLSCR1) (Fig. 5c), corresponding to genes

reported to present strong interactions (Fig. 5d). Interestingly,
these genes were also significantly hypomethylated in C2 when
compared to HV (Supplementary Fig. 6). Of note, 5 additional
genes (HLA-A, DDX60, CMPK2, IFITM1 and NLRC5) were
common to C1 and C3 and were also strongly associated with the
previous ones, reinforcing the IFN signature in these two clusters
(Fig. 5e). These common 10 hypomethylated genes are implicated
in defense responses to virus and are induced by IFN21.

The remaining 756 hypomethylated genes in C4 were mainly
associated with the neutrophil degranulation pathway. Regarding
hypermethylated CpGs, 41 DMPs corresponding to 25 genes were
only found in C4. Those genes are mainly implicated in
translocation of ZAP-70 to the immunological synapse, phos-
phorylation of CD3 chains including zeta, platelet activation,
signaling and aggregation, homeostasis and PD-1 signaling.

Combining transcriptomic (FC ≥ 1.5) and methylomic (abso-
lute ΔBeta > 0.15) analyses, the transcripts of 8, 8 and 126 genes
were found to be increased in association with a decreased
methylation status in C1, C3 and C4, respectively. Interestingly,
the previously isolated 5 common hypomethylated genes
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Fig. 5 Methylation analysis confirms the strong IFN signature in C1 and C3 and reveals an aberrant methylation status in C4.Whole blood methylation
analysis was performed for 226 pSS patients (C1: 81, C2: 57, C3: 62, and C4: 26) and 175 healthy volunteers (HV) doing pairwise comparisons between
each cluster and HV. a Venn diagram showing the overlap of differentially methylated CpG sites and genes between the 4 clusters with absolute ΔBeta >
0.075. b DMP distribution across the different genomic regions (gene body, 3’UTR, intergenic (IGR), 5’UTR, Exon 1, TSS 1500 and TSS 200; and according
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0.4 reveals a common IFN signature. e Interaction network of the 10 genes hypomethylated common to C1 and C3 by STRING analysis with a confidence
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implicated in IFN signaling were also overexpressed at the
transcriptional levels in the 3 clusters. Transcript overexpression
was strongly associated with hypomethylation in C1 (8/10) and
C3 (8/11) and to a less extend in C4 (126/761). Among the 126
genes from C4, 21 were implicated in neutrophil degranulation
which constitutes the most relevant pathways according to
Reactome Pathway Database22 (Fig. 5f). Only 6/25 transcripts
were repressed in association with an increased methylation
status of their genes in this cluster (CD247, CD3G, CDC25B,
CXCR6, TBC1D4, UBASH3A).

Flow cytometry analysis. As significant alterations in patterns of
peripheral blood leukocytes have been previously described23,24,
we then investigated the composition of leukocyte subsets in the
various clusters. (Fig. 6a, b, Supplementary Fig. 7). In C2, the
frequency and absolute numbers were similar to HV in all the
different subsets analyzed. An increase in the frequency of
monocytes and lymphocytes characterized C3, in association with
a marked increase in the frequency of B cells. At the same time, a
lymphopenia affecting mainly T cells was found in C1. Finally,
the most distinguishable cluster in terms of distribution and
absolute number of cells is C4. Specifically, C4 was characterized
by higher percentages and absolute numbers of PMN (especially
neutrophils) in peripheral blood in comparison with those in
other clusters and HV. Conversely, the percentages of lympho-
cytes (B and T cells) and monocytes were markedly decreased in
C4 compared to either the controls or the other clusters. Finally,
lower frequencies and absolute numbers of basophils and DCs
were also found in this cluster.

An in-depth analysis of the different cell subpopulations was then
conducted. First, monocytes represent a heterogeneous cell
population in terms of both phenotype and function. Based on

the expression of CD14 and CD16, 3 monocyte subsets can
be defined, including classical (CD14++CD16–), intermediate
(CD14++CD16+) and non-classical (CD14+CD16++). Classical
monocytes are critical for the initial inflammatory response, can
differentiate into macrophages in tissue and contribute to chronic
disease. Intermediate monocytes are highly phagocytic cells that
produce high levels of ROS and inflammatory mediators. Non
classical monocytes have been widely viewed as anti-inflammatory,
as they maintain vascular homeostasis and constitute a first line of
defense in recognition and clearance of pathogens25. Interestingly,
the frequency and absolute number of intermediate monocytes were
increased in C1 and C3 whereas the frequency of classical
monocytes was decreased when compared to the 2 others and the
nonclassical subset was markedly decreased in C4, in line with the
inflammatory response observed in these different clusters.

Second, NK cells are defined by the expression of CD56 and
the lack of CD3-TCR complex. Moreover, based on CD16 and
CD56 expression levels, they are classified in two subsets:
CD56hiCD16lo and CD56loCD16hi. The latter NK cell subset
mediates natural and antibody-dependent cellular cytotoxicity,
exhibiting high levels of perforin and enhanced killing. In
contrast, CD56hiCD16lo NK cells are characterized by low levels
of perforin, and are primarily specialized for cytokine production
including IFN26,27. Accordingly, the frequency of CD56hiCD16lo

NK cells subset over CD56loCD16hi was increased in C4, C1, C3
and to a lower extent in C2. This may partly explain the up-
regulation of cytokines and interferon pathways in disease
clusters. Although plasmacytoid dendritic cells (pDCs) are
thought to represent the main IFNα producing cells, no
differences were observed between clusters and their reduction
was confirmed in peripheral blood of pSS patients when
compared to HV28.
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Fig. 6 Cell subset distribution in blood and cytokines, chemokines and inflammatory mediators in serum in the 4 clusters and healthy volunteers (HV).
a Flow cytometry analysis was performed for 283 patients (C1: 96, C2: 71, C3: 80, and C4: 36) and 309 HV. The 2 heatmaps show the mean distribution of
blood cell subsets in frequency (0–100%) and in absolute numbers (per µL of blood) across the 4 clusters and HV assessed by flow cytometry. Columns
represent clusters and HV and rows the different cell subsets. The asterisk means that the cluster (or HV) is statistically different from all the others.
b Flow cytometry data represented by bar charts cell types proportion per cluster. c Serum mediators were analyzed for 192 pSS patients (C1: 67, C2:48,
C3: 61, C4:16) and 171 HV. Patient and HV distribution according to each analyzed variable is described in Methods. CXCL13/BLC, FAS Ligand, GDF-15,
CXCL10/IP-10, CCL8/MCP-2, CCL13/MCP-4, CCL4/MIP-1β, MMP-8, CCL17/TARC, IL-1 RII, TNF-RI, and IL1-RA were measured using the Luminex system
and expressed as pg/ml. Soluble MMP-2, CRP, TNFα, IL-6, BAFF, and TGFβ were measured by the quantitative sandwich enzyme immunoassay technique
and expressed as pg/ml. Cytokine or chemokine concentration levels for each cluster were compared to HV. Statistical significance is determined using a
one-way ANOVA followed by post-hoc Tukey’s test. The significance between the cluster and HV is represented as bullet ranging from small (non-
significant) to big (significant). The direction of the association is shown as the z-score where red bullet is up-regulated, and blue bullet is down-regulated.
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Cytokine analysis. We subsequently assessed whether pSS clus-
ters also showed differences in systemic parameters of inflam-
mation, such as cytokines, chemokines and other soluble factors
(Fig. 6c and Supplementary Fig. 8). The IFNγ-induced protein
(CXCL10/IP-10) as well as CCL8/MCP-2 and TNFα were
increased in C1 and C3, i.e. the two main clusters associated with
a strong IFN signature. At the same time, IL-1 RII, the decoy
receptor for cytokine belonging to the IL-1 family, was down
regulated in C1 and C3. Overall, C1 was largely enriched in
CXCL13/BLC, IL-6, and IL-1RA. Levels of MMP-8, a protease
mainly expressed by neutrophils, were not different from HV in
C4 but lower in the other clusters. Of note, many cytokines such
as CXCL10/IP-10, CXCL13/BLC, BAFF, and GDF15 were
increased in all clusters including C2 when compared to HV.
However, no differences between clusters were found for CRP,
Fas Ligand, CCL13/MCP-4, CCL4/MIP-1β, CCL17/TARC and
TGFβ.

To confirm that patients with an active IFN signature have
elevated circulating Type I IFN, we measured levels of IFNα in
plasma using Simoa Single Molecule Array Technology in pSS
patients and HV. Median levels of IFNα in plasma were 807
(177–1744) fg/ml and 530 (106–1033) fg/ml in C1 and C3,
respectively, while circulating levels in the other clusters and
HV were close to the lower limit of quantification (Supplementary
Fig. 9a). Interestingly, IFNα in serum was positively correlated
with the two IFN transcriptomic modules (M1.2 and IFNα
module) described in Fig. 3, especially in C1 and to a lesser extent
in C3, confirming the Type I IFN signature observed in these
patients (Supplementary Fig. 9b). Of note, half of the patients in
C2 received antimalarials and previous studies have also shown
that hydroxychloroquine use can reduce the levels of circulating
Type I29,30 and Type II31,32; IFN z-scores. IFNα in serum was not
associated with ESSDAI (Supplementary Fig. 9b) but higher levels
of serum IFNα were associated with hematological and biological
domains of ESSDAI (Supplementary Data 4).

Clinical symptoms and serological characteristics. Patient
medical history and disease characteristics including clinical and
serological parameters were collected for the 304 pSS patients.
Details are displayed in Table 2 and Supplementary Data 5.
Patients from C2 had a lower disease duration when compared to
patients from other clusters.

Although the Physician Global Assessment (PGA) was
collected for the whole population, ESSDAI and ESSPRI were
only assessed in expert centers (Barcelona, Brest, Cordoba,
Geneva, Hannover, Leuven, Milano, Porto and Szeged) in a subset
of 193 and 150 respectively of the 304 pSS studied patients (70/
101 and 56/101 from C1, 52/77 and 43/77 from C2, 44/88 and 30/
88 from C3 and 27/38 and 21/38 from C4, Supplementary
Data 5).

The lowest mean ESSDAI score was observed in C2 and the
highest ESSDAI and PGA mean scores in C4 (Table 2, Fig. 7a)
but there were no statistically significant differences between the 4
clusters. No clear difference in the ESSDAI components nor in
the objective measures of ocular and salivary dryness was
observed between the 4 clusters. Moreover, there was no
significant difference for the global ESSPRI score and its 3
components (i.e. dryness, pain and fatigue) except between SSA-
positive C2 patients who reported lower ESSPRI scores (p-value <
0.001) compared to the SSA-negative patients (Supplementary
Data 6).

Statistically significant differences in the distribution of
reported arthritis (p-value= 0.016), rate of cancer history (p-
value= 0.028), coronary artery disease (p-value= 0.002) and
chronic obstructive pulmonary disease (p-value = 0.016) were

observed between the four clusters. (Supplementary Data 7).
Interestingly, patients from C4 reported more severe clinical
symptoms compared to the 3 other clusters.

Some serological characteristics were significantly different
across the 4 clusters, hypergammaglobulinemia (p-value < 0.001)
(Table 2), extractable nuclear antigen (ENA) antibodies (p-value
<0.001), the presence of serum anti-SSA52/anti-SSA60 autoanti-
bodies (p-value < 0.001) and higher circulating kappa and lambda
free light chains (cFLC) (p-value < 0.001) (Fig. 7b, and
Supplementary Data 8). C1 and C3 were associated with higher
levels of these parameters when compared to C2 and C4.
Moreover, C2 and C4 were enriched in patients with glandular
manifestations of the disease assessed by a positive focus score in
the absence of anti-SSA antibodies (Table 2).

In addition, the levels of rheumatoid factor (p-value < 0.001)
and complement C4 fraction levels (p-value= 0.003) were
statistically different between the four clusters. C1 was character-
ized by a higher rheumatoid factor and by a reduced complement
C4 fraction levels compared to the other clusters. While some
patients presented anti-dsDNA antibodies in C1 and C3 and anti-
CCP antibodies in C4, almost none of these autoantibodies were
present in the other clusters (Supplementary Data 8).

Prediction of patient membership to each of the four clusters.
We then developed through machine learning approaches a
composite model able to predict, according to a small number of
variables, to which of the 4 clusters each patient belongs (see
Methods). The proposed composite model was built with a 2-step
approach to allocate patient to the right cluster (Supplementary
Fig. 10). The final sets of selected features were composed of 10
genes for the C4 prediction model (first step) and 31 genes for the
C1, C2, and C3 classification model (second step). The distribu-
tion among clusters of the variance stabilizing transformation
(vst) normalized expression for all these transcripts is shown in
Supplementary Fig. 11. The validation set (Fig. 1 and Table 1) was
used for training, due to the heterogeneity of C4 pSS patients in
this set, and the composite model was then run on the discovery
set. The accuracy of the model was 95.15%, with 99.12% and
95.57%, for the first and the second steps respectively. The con-
fusion matrix, the corresponding discriminant function analysis,
and the probabilities to belong to one of the 4 clusters are shown
in Fig. 8a, b, and Supplementary Data 9, respectively.

To generalize the composite model, we used an independent
inception cohort of 37 pSS patients. After prediction, C1
contained 16 patients (43.2%), C2 6 patients (16.2%), C3 7
patients (18.9%) and C4 8 patients (21.6%). The corresponding
discriminant function analysis and the probabilities for a patient
to belong to one of the 4 clusters are shown in Fig. 8c and
Supplementary Data 10, respectively. We then used the minimal
list of 257 discriminative genes signature previously selected in
Fig. 1a to generate a heat map with the prediction established by
the composite model (Supplementary Fig. 12a). The clusters
observed had the same profile than those identified in the
discovery set and observed again in the validation set (Fig. 1a),
confirming once more the clustering model. Furthermore, the
predicted patients showed a distribution of the IFN signatures
(Supplementary Fig. 12b) consistent with the one characterizing
the identified clusters (Fig. 3). Altogether, these observations
strengthen the validation of our composite model.

Finally, in order to allow our model to process other cohorts of
patients, we implement an interpolation function based on 6
genes presenting a constant expression across all 4 clusters and
HV (Supplementary Fig. 13). The composite model is integrated
into an analysis tool available on the laboratory’s github
repository33.
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Discussion
Over the last decade, numerous targeted immunomodulatory
therapies for pSS have failed to show a benefit in clinical trials,
hence no disease-modifying therapy has yet been approved for
this disease34–39. The heterogeneous nature of pSS and its non-
linear development, with flares of activity and subsequent
remission associated to a very heterogeneous clinical presentation

may explain clinical trial failures40. In this context, there is
growing interest in the identification of well-characterized sub-
groups of patients, a prerequisite to the identification of mole-
cular biomarkers predictive of treatment response41.

We report herein on a large molecular profiling study carried
out in pSS patients, a comprehensive molecular profiling of these
patients irrespective of their clinical phenotypes. Previous studies
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Fig. 7 Disease activity and serological distributions in the 4 clusters. a ESSDAI collected for 193 pSS patients (C1: 70, C2: 52, C3: 44, C4: 27), PGA
collected for 286 pSS patients (C1: 94, C2: 71, C3: 85, C4: 36,) and ESSPRI collected for 150 pSS patients (C1: 56, C2: 43, C3: 30, C4: 21) distributions are
shown in the 4 clusters. Two-tailed pairwise Wilcoxon-rank sum test results are shown. b The barplot shows the proportion of past (light orange) or
present (orange) hypergammaglobulinemia (C1: 97, C2: 73, C3: 86, C4: 38) in each cluster. c Extractable nuclear antigen antibodies, anti-SSA antibodies,
anti-SSA antibodies (Ro-52), anti-SSA antibodies (Ro-60), anti-SSB antibodies, rheumatoid factor were performed for 304 pSS patients (C1: 101, C2:77,
C3:88, C4:38) and 330 HV and measured in serum, at the same center, using an automated chemiluminescent immunoanalyzer (IDS-iSYS). Barplots show
the proportion of concentration level in each cluster (black: negative, light pink: low, orange: medium, red: elevated and dark red: high). Turbidimetry was
used for rheumatoid factor (RF), complement fractions C3c and C4 determination and circulating free light chains. Statistical significance is determined by
two-tailed pairwise Wilcoxon-rank sum test. Plots show median with error bars indicating ± interquartile range. Patient and HV distribution according to
PGA and biological parameters analyzed variable is described in Methods.
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in pSS focus particularly on the IFN signaling involvement11.
Thereby, pSS patients could be stratified in interferon negative,
Type I or Type I+ II positive subgroups with higher prevalence
of anti-SSA and anti-SSB among those with IFN activation
without relation with systemic activity. Another group42 per-
formed a clustering analysis of blood gene expression microarray
which classified the 47 pSS patients in three clusters characterized
by IFN and inflammation with no discriminant clinical features
Moreover, four subgroups of patients with similar patients’
clinical characteristics were identified based on absolute cell
counts per μL of blood23. Lastly, a stratification based on patient
clinical phenotypes characterized a posteriori at the molecular
level was proposed43. These works provide good basis for building
a molecular taxonomy of pSS. Our integrative approach using
multi-omics and patient clinical characteristics allows going fur-
ther in understanding pSS heterogeneity.

We identified transcriptional modules allowing to separate pSS
patients into four distinct clusters, irrespective of their treatment,
reflecting specific patterns of immune dysregulation, with disease
activity and patient reported symptom mean scores similar to
naturalistic cohorts like ASSESS44 and UKPSSR 45.

Patients from C2 displayed a healthy-like profile which none-
theless encompasses bona fide pSS patients reporting a similar
level of objective symptoms of dryness, pain and fatigue, albeit a
lower ESSDAI compared to the 3 other clusters. C2 was also
enriched in patients with glandular manifestations of the disease
assessed by a positive focus score and no anti-SSA antibodies. A
similar cluster was recently described42 with no increase in the
IFN modules and minimal activity of inflammation-related gene
modules. Noteworthy, all molecular profiling data reported here
were obtained from blood samples which could affect inter-
pretation of some of the results. For example, the reduction of
peripheral blood pDCs of pSS patients when compared to HV
already reported28 does not consider that pDC are enriched in the
salivary glands and the possibility that tissue sites may be the

major source of IFNα in these individuals46. Extending in
the future those analyses to the salivary gland will provide a more
complete picture of the pathophysiology of the disease,
especially in C2.

The three other clusters exhibited significant differences with
HV and in particular a prominent IFN gene signature. These
findings add to the growing evidence towards a significant role of
the IFN pathways in the pathogenesis of systemic and organ-
specific disorders including pSS. Whereas Type I IFN were pro-
posed as predominant contributors in the pathogenesis of pSS, a
role of Type II IFN in disease pathogenesis has also been
highlighted6,47. Interestingly, our results show that the IFN sig-
nature in the 3 IFN-driven clusters is different. C1 patients had
the highest Type I and Type II IFN scores, C3 a higher Type I IFN
score than C4, these 2 clusters having similar Type II IFN score.
Thus, C4 IFN score was mainly driven by IFN Type II activation.
Consequently, C1 and C3 were similar to the IFN cluster recently
described by James et al.42 also associated with high blood protein
levels of CXCL10/IP-10.

In line with observed IFN scores, circulating serum levels of
IFNα were positively correlated with Type I IFN signature
(Supplementary Fig. 9 and Fig. 3) especially in C1 and to a lesser
extent in C3. However, levels of IFNα in serum were not corre-
lated with ESSDAI global score, but higher levels of serum IFNα
were associated with hematological and biological domains of
ESSDAI.

While C1 was mainly driven by IFN, an increase in frequency
of B lymphocytes in the blood associated with a significant acti-
vation of canonical pathways related to B cell activation such as B
cell receptor signaling, and B cell development were observed in
C3. Main biological features associated with C3 but also C1 were
hypergammaglobulinemia, anti-nuclear antibodies, the presence
of serum anti-SSA52/anti-SSA60 autoantibodies and higher cFLC
confirming what was already reported in autoantibody-positive
pSS patients21. Finally, SNPs associated with HLA class II genes
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Fig. 8 Development of a composite model to predict the belonging of a patient to one of the 4 clusters. a Confusion matrix of the composite model in
the discovery cohort performed for 227 pSS patients (C1: 79, C2: 60, C3: 66, and C4: 22) is shown. b Discriminant function analysis (DFA) of the predicted
patients from the discovery cohort shows clearly separated clusters. Two different views of the same DFA are shown. c DFA of the predicted patients from
the inception cohort shows clearly separated clusters. Two different views of the same DFA are shown. Thirty-seven pSS patients from the inception cohort
were analyzed and predicted as C1: 16, C2: 6, C3: 7, and C4: 8.
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were mainly reported in patients from C1 and C3 presenting a
positive IFN signature and high levels of autoantibodies as
already shown in SLE16.

Patients from C4 exhibited a more severe clinical phenotype
compared to the others with an inflammatory transcriptomic
signature particularly linked to cytokine signaling from the acute
phase response. C4 was also characterized by a massive lym-
phopenia and high levels of neutrophils. The neutrophil-to-
lymphocyte ratio (NLR) has been previously shown to correlate
with disease activity in systemic autoimmunity48,49 and elevated
NLR are thought to represent a pro-inflammatory state. Indeed,
in a study of 483 adult patients with multiple sclerosis, NLR could
differentiate between relapsing-remitting and primary progressive
multiple sclerosis and predict worsening disability50. Further
studies are required in pSS to evaluate the importance of
this ratio.

Because the main current challenge in clinical trials of new
therapies for pSS is the selection of the appropriate patients, we
propose here a combination of molecular parameters allowing
patient classification by endotypes (Supplementary Fig. 14). We
then developed a composite model derived from machine learn-
ing, based on the use of a limited number of transcripts from
whole blood RNASeq and validated in an independent data set
from a pSS inception study, to allow a reanalysis of the previous
and ongoing clinical trials to depict predictors of treatment
response.

These findings have major implications for the treatment of
pSS patients, providing a rationale for both optimal drug posi-
tioning and combinations of drugs with complementary
mechanisms of action. Specifically, our findings provide a strong
rationale for treating patients with either a C1, C3, or C4 profile
with inhibitors of type I IFN responses alone or in combination as
they support the relevance of B cells as potential therapeutic
targets in C3 patients. Trials with B cell depleting antibodies
(rituximab) have shown promising results primarily in reducing
systemic activity in pSS51.

Areas requiring further investigation have been identified.
First, although our identified cluster gene signatures are strong
enough to overcome the disequilibrium in blood cell counts and
are not associated with disease duration, except for C2, RNA-Seq
analysis is oblivious to sample cell-type composition52. Further
analyses are on-going, using deconvolution approaches. Second,
as hypotheses were derived from a cross-sectional study and a
small inception cohort, findings need to be confirmed in long-
itudinal cohorts to clarify whether patients will stay longitudinally
in their initial cluster whatever the disease activity level and the
treatments received, or whether treatments decrease disease
activity by modifying the extent and scope of gene signaling
dysregulations.

Altogether, our results can improve pSS treatment strategies
allowing a patient centric approach. This paradigm already
implemented in the oncology field will increase the probability of
trial successes and boost the development of new efficient drugs
against pSS.

Methods
Computational tools. Except when indicated, data analyses were carried out using
either an assortment of R system software (http://www.R-project.org, V2.10.1)
packages including those of Bioconductor or original R code. R packages are
indicated when appropriate. For GWAS analysis, we used Plink, an open-source
whole genome association analysis toolset. Machine learning approaches were
carried out using python programs (v3.8.5) based on the following modules: scikit-
learn, numpy and xgboost.

Patient population. The present study was conducted in patients with pSS and HV
included in the European multi-center cross-sectional study of the PRECISESADS
IMI consortium which involved patients from seven systemic autoimmune

diseases. This study was a pre-planned substudy to be specifically conducted in the
pSS population and fulfill the STROBE statements (Supplementary note). Diag-
nosis of pSS was made according to the 2002 American-European Consensus
Group classification criteria, with at least the presence of anti-SSA and/or a positive
focus on a minor salivary gland biopsy. Choice of the patient analysis set is detailed
in Supplementary Fig. 1a. Recruitment was performed between December 2014
and October 2017 involving 19 institutions in 9 countries (Austria, Belgium,
France, Germany, Hungary, Italy, Portugal, Spain and Switzerland). The composite
model was validated using transcriptome of 37 pSS newly diagnosed patients
recruited in the inception study also obtained from the PRECISESADS consortium.
Inception patients were recruited by 10 institutions in Spain, Belgium, France, Italy,
Germany and Switzerland. Eligible patients were diagnosed within less than a year
since pSS diagnosis.

The two studies (cross-sectional and inception) adhered to the standards set by
International Conference on Harmonization and Good Clinical Practice (ICH-
GCP), and to the ethical principles that have their origin in the Declaration of
Helsinki (2013). Each patient signed an informed consent prior to study inclusion.
The Ethical Review Boards of the 19 participating institutions approved the
protocol of the cross-sectional study. Moreover, the protocol of the inception study
was approved by the ethical committees of the 10 participating institutions. These
10 sites were also participating to the cross-sectional study, therefore these ethical
committees reviewed both protocols. The ethical committees involved were:
Comitato Etico Milano, Italy; Comité de Protection des Personnes Ouest VI Brest,
France; Louvain, Comité d’Ethique Hospitalo-Facultaire, Belgium; Comissao de
ética para a Saude—CES do CHP Porto, Portugal; Comité Ética de Investigación
Clínica del Hospital Clínic de Barcelona, Spain; Commissie Medische Ethiek UZ
KU Leuven/Onderzoek, Belgium; Geschaftsstelle Ethikkommission, Cologne,
Germany; Ethikkommission Hannover, Germany; Ethik Kommission.
Borschkegasse, Vienna, Austria; Comité de Ética e la Investigación de Centro de
Granada, Spain; Commission Cantonale d‘éthique de la recherche Hopitaux
universitaires de Genève, Switzerland; Csongrad Megyei Kormanyhivatal, Szeged,
Hungary; Ethikkommission, Berlin, Germany; Andalusian Public Health System
Biobank, Granada, Spain.

The protection of the confidentiality of records that could identify the included
subjects is ensured as defined by the EU Directive 2001/20/EC and the applicable
national and international requirements relating to data protection in each
participating country. The cross-sectional and inception studies are registered in
ClinicalTrials.com with respectively number NCT02890121 and number
NCT02890134.

For each individual, blood samples as well as biological and clinical information
were collected as described in the next Methods sections. For more technical details
on sample and data collection, please refer to the main PRECISESADS paper 5.

After quality control on transcriptomics RNAseq data (described below),
verification of the ARC/EULAR classification criteria (focus score ≥ 1 foci/mm²
and anti-SSA/Ro antibody positivity), and match of the HV to the patients based
on age and gender, our final study cohort comprises 304 patients with pSS and 330
HV. This selection is detailed in Supplementary Fig. 1. Among the 304 pSS, 227
(75%) were used for the discovery step and 77 (25%) were kept for validation
(Table 1).

Available data. High-dimensional omics genotype, transcriptome, DNA methy-
lome and proportions of relevant cell types using flow cytometry custom marker
panels were analyzed from whole blood samples. Low dimensional information was
obtained from serum samples, including selected serology information such as
autoantibodies, cytokines, chemokines and inflammatory mediators. Of note,
except for samples collected for flow cytometry analysis, all samples were shipped
by the clinical sites to a Central Biobank (Granada) for processing, storage, and
onward shipment to the analysis sites, where the various determinations were
performed. Flow cytometry was managed at each center on fresh blood after a
multi-center harmonization of flow cytometers to ensure mirroring of all
instruments53,54, thereby allowing subsequent integration of all the data obtained
across the different sites and instruments. Consequently, all the different omics
samples were processed with the same protocols at the same site (RNA-Seq at
Bayer, cytokines at UNIMI, autoantibodies and integrated analyses of flow cyto-
metry at UBO, methylome at IDIBELL, GWAS at CSIC which guarantees the high
quality of the data generated.

Methods used for RNA sequencing, quality control, data processing, and
expression profiling are detailed below and in Supplementary Fig. 1c.

RNA-Seq. Methods used for RNA sequencing, quality control, data processing, and
expression profiling are detailed below and in Supplementary Fig. 1c. Total RNA
was extracted from whole blood samples collected in Tempus tubes using Tempus
Spin technology (Applied Biosystems). 1857 samples were processed in batches of
384, randomized to four 96-well plates with respect to patient diagnosis, recruit-
ment center and RNA extraction date. The samples were depleted in alpha- and
beta-globin mRNAs using globinCLEAR protocol (Ambion) and 1 μg of total RNA
was used as input. Subsequently, 400 ng of globin-depleted total RNA was used for
library synthesis with TruSeq Stranded mRNA HT kit (Illumina). The libraries
were quantified using qPCR with PerfeCTa NGS kit (Quanta Biosciences), and
equimolar amounts of samples from the same 96-well plate were pooled. Four
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pools were clustered on a high output flow cell (two lanes per pool) using HiSeq SR
Cluster kit v4 and the cBot instrument (Illumina). Subsequently, 50 cycles of single-
read sequencing were performed on a HiSeq2500 instrument using and HiSeq SBS
kit v4 (Illumina). The clustering and sequencing steps were repeated for a total of
three runs in order to generate sufficient number of reads per sample. The raw
sequencing data for each run were preprocessed using bcl2fastq software and the
quality was assessed using FastQC tools. Cutadapt55 was used to remove 3′ end
nucleotides below 20 Phred quality score and extraneous adapters, additionally
reads below 25 nucleotides after trimming were discarded. Reads were then pro-
cessed and aligned to the UCSC Homo sapiens reference genome (Build hg19)
using STAR v2.5.2b56. 2-pass mapping with default alignment parameters were
used. To produce the quantification data, we used RSEM v1.2.3157 resulting in gene
level expression estimates (Transcripts Per Million, TPM and read counts).

For sample filtering, samples were filtered in at least one of the following
situations: (i) the total sum of count is too low (<5000,000), (ii) they were extracted
with another method than Tempus Spin, and (iii) the RIN (RNA Integrated
Number) value of the sample is below 6.5, (iv) samples with RNAseq inferred
gender inconsistent with clinical data, and (v) there was a disagreement between
genotypes inferred from RNA-Seq and those obtained from GWAS genotyping.

For normalizations and batch correction, read counts were normalized by the
variance stabilizing transformation vst function from DESeq2 (v1.30.0) R
package58. To reduce the effect of the RIN, a correction was applied using the
ComBat function from sva (v3.38.0) R package59, after categorization of RIN values
into 7 classes: (7.5, 8], (8.5, 9], (9.5, 10], (8, 8.5], (7, 7.5], (9, 9.5], (6.5, 7].

For Gene filtering, among the 55,771 genes detected in the data, those with 0
count over all the samples or having an expression level below 1 in more than 95%
were filtered. At the end, our final RNA-Seq data comprises 16,876 genes. This
selection is detailed in Supplementary Fig. 1.

Molecular subgroups discovery. Our rational was to produce a robust classifi-
cation scheme and to ensure the greatest possible homogeneity within identified
subgroups. To this aim, subgroup discovery was based on the pre-processed RNA-
seq data of the discovery set (after vst transformation). We implemented a strategy
already applied in breast cancer that iterates unsupervised and supervised steps,
which was, therefore, designated as “semi-supervised” approach8. It is described
hereafter and summarized in Supplementary Fig. 2.

Step 1: Unsupervised gene selection
The coefficient of variation (CVg ¼

σg
μg
, with σg is the standard deviation of the

gene g and μg the mean of the gene g estimated on discovery population) and its

robust version (rCVg ¼
γg
μg
, with γg is the median absolute deviation) were

calculated for each gene. Both were highly concordant. The top 25% most variants
were selected to perform the subsequent clustering analysis.

Step 2: Robust consensus clustering
To determine the number of clusters, a consensus clustering between three

methods was performed: (i) Agglomerative Hierarchical Clustering (hclust function
from stats v4.0.2 R package) with Pearson correlation as a similarity measure and
the Ward’s linkage method, (ii) K-means clustering (kmeans function from stats R
package) with 4 groups and (iii) Gaussian mixture clustering (mclust function from
mclust v5.4.6 R package).

Step 3: Identification of molecular signature
A supervised analysis was performed on the 149 patients with consistent cluster

assignments between the three clustering methods (considered as “core” molecular
profils), in order to identify the most discriminating signature of the 4 clusters. The
first signature of set of 3577 genes was selected from a classical one-way ANOVA
(FDR < 1e-10), and then reduced by Random Forest to 257 top discriminating
genes (randomForest function from randomForest v4.6-14 R package60).

Step 4: Robustness classification
To validate the robustness of our clustering, we re-applied Step 2 on our

discovery set and on the final signature.
Step 5: Classification of discordant patients
Patients assigned to different groups with the 3 clustering methods were

assigned to one of the 4 clusters by applying a distance-to-centroid method based
on Pearson correlation.

Molecular subgroup validation. Validation datasets were independently classified
in the pSS molecular subgroups by applying a classical distance-to-centroid
approach based on correlation. Following the same approach, HV did not con-
stitute a separate cluster but mainly matched with C2 (0.5% in C1, 93% in C2, 4%
in C3, and 2.5% in C4) pSS molecular subgroups by applying a classical distance-
to-centroid approach based on correlation. The final clustering (without HV) is
represented with heatmap using the Heatmap function from ComplexHeatmap
(v2.6.2) R package. Clusters are separately constrained for better visualization. This
method allows to spotlight heterogeneous intra-clusters. The principal component
analysis (PCA) representation will explore the clearly defined clusters and the
matching between C2 and HV.

Half of the pSS patients was treated with either anti-malarial,
immunosuppressant, or steroids at the time of the visit. When compared to the 3
other clusters, we observed higher proportion of treated patients in C4. To
investigate the impact of the treatment on the clustering, we compared treated

patients and untreated patients. For this, we apply a hierarchical clustering on
treated patients and untreated patients and compare the cluster distribution. The
heatmap (Supplementary Fig. 4) of treated vs untreated patients were highly similar
which shows that the final clustering is not driven by treatments.

Enrichment analysis. Enrichment analysis was performed by applying a two-tailed
Fisher-exact test61 against different sources of gene modules or pathways: (i)
3 strongly upregulated IFN-annotated modules from10 (M1.2, M3.4, and M5.12)
determined from peripheral blood transcriptomic data with for each a distinct
activation threshold, (ii) genes preferentially induced by IFNα or IFNγ identified
by10, (iii) canonical pathway from Ingenuity Pathway Analysis (IPA, Release Date:
2020-06-01), (iv) repertoire recently established on an expended range of disease
and pathological states (382 transcriptome modules based on genes co-expression
patterns across 16 diseases and 985 unique transcriptome profiles) by 9.

Differential gene expression analysis. To identify genes differentially expressed
between pSS subgroups and HV, we performed a linear model (lmFit function from
limma v3.46.0 R package62) on vst transformation gene expression dataset.
Resulting p-values were adjusted for multiple hypothesis testing and filtered to
retain DE genes with FDR adjusted p-value ≤ 0.05 and a |Fold-Change (FC) | ≥ 1.5.

Genome-wide association study. Genome-wide association studies (GWAS) were
performed for each pSS subgroups (C1: 101, C2: 77, C3: 88, and C4: 38) versus 330
HV. After DNA extraction, the samples were genotyped using HumanCore-24 v1.0
and Infinium CoreExome-24 v1.2 genome-wide SNP genotyping platform (Illu-
mina Inc., San Diego, CA, USA). Individuals were excluded on the basis of
incorrect gender assignment, high missingness (>10%), non- European ancestry
(<55% using Frappe15 and REAP), and high relatedness (PLINK v1.945, pi_hat
>0.5)63. Genotypes were filtered before imputation due to high missingness (>2%),
Hardy–Weinberg equilibrium (HWE) < 0.001, minor allele frequency (MAF) <1%,
and AT/CG changes with MAF >40%. PLINK v1.945 was used to carry out quality
control (QC) measures, genotype data filtering. The basic association for a cluster
trait locus, based on comparing allele frequency between patients from each cluster
vs HV, was also obtained with this toolset thanks to computational resources from
the Roscoff Bioinformatics platform ABiMS. Genotypes were phased using Eagle
v2.3 and imputed using Minimac3 against the HRC v1.1 Genomes reference panel
from the Michigan Imputation Server platform. Genotypes were filtered after
imputation to have HWE p-value > 0.001, MAF > 1% and imputation info score >
0.7 and resulted in 6,664,685 imputed genotypes. Statistical analysis of association
for each cluster versus HV was performed by logistic regression under the additive
allelic model. The GWAS significant level was fixed at p-value < 5 × 10−8. SNP
annotations and Manhattan plot were obtained using the web-based tool SNP snap
from the Broad Institute64 and qqman (v0.1.8)65 R packages respectively.

Methylation. Whole blood methylation analysis was performed for 226 pSS
patients (C1: 81, C2: 57, C3: 62, and C4: 26) and 175 healthy volunteers (HV).
DNA was extracted using a magnetic-bead nucleic acid isolation protocol (Che-
magic DNA Blood Kit special, CHEMAGEN) automated with chemagic Magnetic
Separation Module I (PerkinElmer) from K2EDTA blood tube (lavender cap, BD
Vacutainer) of 10 ml (extractions were performed on 3ml). 2 μg of DNA were sent
for DNA methylation assay. The samples were analyzed using Infinium Human
Methylation 450 K BeadChip (Illumina, Inc., San Diego, CA, USA) which covers
more than 400,000 CpG sites. DNA samples were bisulfite-converted using the EZ
DNA methylation kit (Zymo Research, Orange, CA, USA). After bisulfite con-
version, the remaining assay steps were performed following the specifications
recommended by the manufacturer. The array was hybridized using a temperature
gradient program, and arrays were imaged using a BeadArray Reader (Illumina
Inc., San Diego, CA, USA). Sample QC and functional normalization were com-
pleted using minfi (v3.3) R package66. Briefly, during QC steps, subjects were
removed based on outliers for methylated vs unmethylated signals, deviation from
mean values at control probes, and high proportion of undetected probes (using
minfi default parameters). DNA methylation probes that overlapped with SNPs
(dbSNPs v147), located in sexual chromosomes or considered cross-reactive were
removed. Additionally, only probes quality controlled and shared between both
arrays were used in the subsequent analysis (368,607 probes). Measure of methy-
lation level (B values) were produced for each CpG probe and ranged from 0 (0%
molecules methylated at a particular sites) to 1 (100% molecules methylated).

To identify differentially methylated positions (DMPs) between HV and each
pSS subgroups (C1 to C4), the champ.DMP function of ChAMP (v2.18.3) R
package67 was implemented doing pairwise comparison between each cluster and
HV. Many Δ-beta thresholds were described in the literature and the most
frequently used for whole blood studies in autoimmune diseases were 0.05 (5%
difference) and 0.1 (10% difference). In order to fix the best threshold for our study,
we tested the values of 0.05, 0.075, 0.1, and 0.15 for the absolute ΔBeta.
Supplementary Data 11 presents the numbers of DMPs and genes obtained with
these different thresholds.

Then, we decided to analyze the data in two steps: the first step with a
significant adjusted p-value (Benjamini Hochberg) at 0.1 and an absolute ΔBeta >
0.075. We assumed that a threshold of 0.05 was too low and it would have been
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very difficult to interpret the signification of these defects in methylation for C4. If
we had applied a ΔBeta threshold of 0.1 in the first intention, we could have missed
DMPs. In the second step in order to identify the most robust and significant
signature of hypo and hyper methylated genes, a significant adjusted p-value
(Benjamini Hochberg) at 0.1 and an absolute ΔBeta > 0.15 were applied.

For network viewing, we tested gene lists onto the STRING 9.1 Network of
Known and Predicted Protein–Protein Interactions (http://string-db.org/)68.

Flow cytometry. Multi-parameter flow cytometry analyses have been performed in
eleven different centers from the PRECISESADS consortium. Therefore, the inte-
gration of all data in common bioinformatical and biostatistical investigations has
required a fine mirroring of all instruments54. The calibration procedure elaborated
to achieve this prerequisite and the antibody panels used have been previously
described53.

The antibody panels, specificities, and clones used are shown in Supplementary
Fig. 15a.

The strategy developed to avoid any redundancy in the different cell subsets and to
increase the accuracy of the phenotypes has been automated by AltraBio (Lyon,
France). The generated automatons have been validated in a preliminary study on 300
patients comparing data from automated gating to data manually gated by the same
operator (coefficient of correlation 0.9996). The gating strategy was as follows: after
exclusion of debris, dead cells and doublets, frequencies and absolute numbers of
CD15hiCD16hi neutrophils, CD15hiCD16+ eosinophils, CD14+CD15hi LDGs,
CD14++CD16− classical monocytes, CD14++CD16+ intermediate monocytes,
CD14+CD16++ non classical monocytes, CD3+ T cells (with CD4+CD8-,
CD4+CD8+, CD4−CD8+, CD4−CD8− T cell subsets), CD19+B cells, CD3−CD56+

NK cells (with CD16loCD56hi and CD16hiCD56lo NK cell subsets), CD3+CD56+

NK-like cells, Lin-HLA-DR+ DCs (with CD11c−CD123+ pDCs, CD11c+CD123−

mDCs (with CD141−CD1c+ mDC1, CD141+CD11c− mDC2 and CD141−CD1c−

mDC subsets)) and CD123+HLA-DR− basophils were automatically extracted from
FCS and LMD files of 283 patients and 309 HV and sent in an Excel flow cytometry
workflow. The mean distribution of blood cell subsets in frequency (0–100%) and
absolute numbers by clusters are compared using a Kruskal–Wallis test.

Gating strategies of the automatons are shown in Supplementary Fig. 15b. For
all instruments, the data from the flow cytometry files are analyzed with a similar
strategy by one automaton for panel 1 and another automaton for panel 2, and
then specifically for each instrument from the gate [S4] to account for the
variability of FSC and SSC signals. The desired cell populations are identified by
gating strategies identical for all instruments for panel 1 and panel 2 stainings. The
mean distribution of blood cell subsets in frequency and absolute numbers are
shown in Supplementary Data 12 and 13, respectively.

Cytokines. Cytokines were measured on serum samples. CXCL13/BLC, FAS
Ligand, GDF15, CXCL10/IP-10, CCL8/MCP-2, CCL13/MCP-4, CCL4/MIP-1β,
MMP-8, CCL17/TARC, IL-1 RII, TNF RI, and IL1-Ra were measured using the
Luminex system. The 12-analyte customized panel was built using human pre-
mixed multi-analyte Luminex assay (R&D Systems). Samples were thawed on the
day of analysis and tested in batches. Soluble MMP-2, CRP, TNFα, IL-6, BAFF, and
TGFβ were measured using ELISA assay. Descriptive statistics are shown in Sup-
plementary Data 14. We measured levels of IFNα in plasma using Simoa Single
Molecule Array Technology. Results were calculated referring to a standard curve
created using a four parameters logistic curve fit and were expressed as pg/ml. For
more technical details on sample and data collection, please refer to the main
PRECISESADS study5. The differential cytokine concentration between subgroups
vs HV was performed using a one-way ANOVA followed by post-hoc Tukey’s test
(function ghlt from multicomp multcomp v1.4-13 R package69). The z-score
indicate the direction of the concentration between the cluster and the HV. A
z-score > 0 means that the cluster has an overexpression compare to HV. A
z-score < 0 means that the cluster has a lower expression compare to HV (Fig. 6).
Concentration distribution by subgroup is represented in Supplementary Fig. 8.
Two-tailed pairwise Wilcoxon-rank sum tests have been computed.

Autoantibodies. Autoantibodies (Extractable nuclear antigen antibodies, anti-SSA
antibodies, anti-SSA antibodies (Ro-52), anti-SSA antibodies (Ro-60), Anti-SSB
antibodies), were measured in serum using an automated chemiluminescent
immunoanalyzer (IDS-iSYS). After processing, the final result is indicative of the
concentration of the specific autoantibody present in the sample. Rheumatoid
factor (RF), complement C3c, C4, and individualized (kappa, lambda) free light
chains (Combilite and freelight, respectively) were measured in serum using a
turbidimetric immunoassay method according to manufacturer’s recommenda-
tions (SPAPLUS analyser). For more technical details on sample and data collec-
tion, please refer to the main PRECISESADS study5. Autoantibodies and RF
distribution have been described by concentration level (Negative/Low/Medium/
Elevated/High) and a Fisher’s exact test was applied to compare the proportion and
the concentration across the 4 clusters. Complements C3 and C4 and circulating
free light chains have been described in continued concentration expressed in g/L
and mg/L respectively and a Krukal–Wallis test was applied to compare the con-
centration level across the 4 clusters. Descriptive statistics are described in Sup-
plementary Data 8.

Clinical data. Clinical data on 304 patients with pSS and 330HV describing the
disease phenotype was collected using an electronic case report form (eCRF). A
working group of experts on systemic autoimmune diseases was established and the
desired items were selected via a Delphi technique. A final set of items was created,
digitalized and pilot tested divided into 8 domains (constitutional symptoms, gas-
trointestinal, vascular, heart and lung, nervous system, skin and glands, muscu-
loskeletal, therapy). After the confirmation of patient inclusion, clinical data were
collected including patient’s age, sex, ethnicity, dates of first disease manifestation
(disease onset), clinical and biological characteristics at baseline, the physician global
assessment of disease activity, comorbidity, and current use of treatments.

Another working group of pSS pathology experts was established to select pSS
disease-specific items, mainly pSS disease activity scales like ESSDAI and its
components, and ESSPRI and its components. These items were collected on a pSS
sub-population (n= 193).

To characterize pSS subgroups, association test was performed with clinical
data. A two-tailed Fisher’s exact test (fisher.test function from stats R package) or
chi-square test (chisq.test function from stats R package) as appropriate was
applied to evaluate the association between the pSS supbgroups and a qualitative
clinical factor. A Kruskal–Wallis test (Kruskal.Wallis function from stats R
package) was used to evaluate the association between pSS subgroups and
quantitative clinical variables.

Development of the composite model for cluster prediction. This feature
selection process is composed of two distinct parts: (i) identify a subset of genes
potentially interesting to predict the 4 clusters, (ii) use these previously identified
subsets to actually craft a prediction model and extract the features used by the
model to increase its precision. In the first part, with FC ≥1.5 and FDR ≤0.05, we
selected the DEGs according to the following 7 combinations: C2 vs C1, C3 vs C1,
C4 vs C1, C4 vs C2, C3 vs C2, C4 vs C2, C4 vs C3. We identified 14,240 and
selected those common to all combinations representing 1154 DEGs.

We used the Boruta algorithm70 on all dataset (discovery and validation sets) to
extract features that significantly contributed to predict the patient’s cluster.

The algorithm started to extend the dataset by adding copies of each feature in
the original dataset. These features were called “shadow features” and consisted in
random permutation of the modality of the original feature, in order to remove any
correlation with the target variable, in our case, the cluster assignment. Once
shadow features were crafted, a random forest classifier was run on the whole
dataset and z-scores were computed for all features (real and “shadow”). Shadow
features were then sorted according to their z-score and the maximum score was
kept in memory as a threshold. The algorithm assigned a hit to each real feature
that had a z-score above this threshold. Finally, Boruta marked the features which
had a z-score significantly lower than the shadow with maximum z-score as
“unimportant” and removed them from the dataset, before removing all shadow
features and returning a clean dataset.

This process allowed us to identify variables in the dataset that were significantly
more contributing to the classification problems than noisy variables and random
artefacts emulated by the original variable modality permutation, ensuring the use of
robust features for the second step of our feature selection strategy.

The relatively small size and heterogeneity of C4 in comparison to the other
clusters can impact the feature selection process, therefore we chose to solve two
classification problems: (i) identify C4 versus all clusters, (ii) discriminate between
C1, C2, and C3.

The operation was performed twice: one to predict C4 cluster versus all other
clusters and one to discriminate between C1, C2, and C3. In both cases, the
algorithm ran over 100 iterations with a max depth of 5 and balanced classes for
initializations of random forests.

The two sets of selected features were respectively composed of 255 genes for
the C4 prediction dataset and 597 genes for the C1, C2, and C3 prediction dataset.

We then used xgboost-tree71 approach, to train a model on the dataset with a
binary logistic objective function to predict C4 vs all (using the 255 genes
previously identified by the Boruta algorithm) and to extract features that have
been used by the algorithm to craft the decision tree of the model.

The model can be summarized by ŷi ¼ ∑K
k¼1f k xi

� �
; f k 2 F where ŷi is the

cluster prediction for the patient i, xi the vector describing the patient i (composed
of the selected features), F the set of estimators for the model (4 in our case, one for
each cluster) and K the number of trees by estimator which is 3 for C4 and 4 for
C1, C2, and C3. In this context, f k refers to the tree number k of the estimator f
where f 2 F. K has been manually refined in order to find a compromise between
good predictive performance and a low complexity model.

We performed the same approach with a softmax objective function in a multi-
classification context to predict the C1, C2, and C3 cluster based on the 597
features previously highlighted by Boruta for this specific classification problem.

The final sets of selected features were composed of 10 genes for the C4
prediction model and 31 genes for the multi-classification (C1, C2, or C3) model
(Supplementary Fig. 10). The accuracies of the models, during the training phase
perform on the validation set (Table 1) were 94.81% for the C4 prediction model
and 96.72% for the multi-classification model.

We then created a composite model, using the combinatorial results of the C4
predictor model and the multi-classification model to predict all 4 clusters on the
patients of the discovery set.
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Patients were first evaluated by the C4 predictor model. If C4 was not assigned,
the patients were evaluated by the multi-classification model.

In order to allow our model to process other cohorts of patients we
implemented an interpolation function described by (2). We selected 6 genes with
FC ≤ 1.1 and FDR ≥ 0.05 based on their constant expression across all 4 clusters
and HV. Their expressions were between 4 and 14 vst normalized counts [SPIRE
(4), NUP210L (6), GATAD1 (8), HVCN1 (10), ENO (12), and FLNA (14)]
(Supplementary Fig. 13). This set of genes was denoted G. The interpolated value of
a gene x, IðxÞ was computed as I xð Þ ¼ I að Þ þ I bð Þ � I að Þð Þ ´ x�a

b�a with a and b
representing the vst normalized expression value of two genes such as genes
a; b 2 G, a < x < b and b≠ a.

The composite model is integrated into an analysis tool available33 and the
pseudocode description is reported in Supplementary Fig. 16.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data included in our study is available upon request at ELIXIR Luxemburg, except the
GWAS data that cannot be anonymized, with the permanent link: https://doi.org/
10.17881/th9v-xt85 and access procedure is described on the ELIXIR data landing page.
The PRECISESADS Consortium committed to secure patient data access through the
ELIXIR platform. This commitment was formerly given by written to all patients at the
end of the project and to the involved Ethical Committees. The future use of the Project
database was framed according to the scope of the patient information and consent
forms, where the use of patient data is limited to scientific research in autoimmune
diseases. ELIXIR reviews applicants requests and prepares Data Access Committee’s
decisions on access to Data, communicates such decisions to the Data Providers, who
have 10 days to exercise their right to veto; otherwise access is granted to the User.

Code availability
Except when indicated, data analyses were carried out using either an assortment of R
system software (http://www.R-project.org, V4.0.1) packages including those of
Bioconductor or original R code. R packages are indicated when appropriate. For GWAS
analysis, we used Plink, an open-source whole genome association analysis toolset.
Machine learning approaches were carried out using python programs (v3.8.5) based on
the following modules: scikit-learn, numpy, and xgboost. The composite model designed
to predict the patient’s cluster is integrated into an analysis tool available on the
laboratory’s github repository at the following address: https://lbai-infolab.github.io/
SjTree/(33).
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Figure 4.2: Heatmap resulting from stratification of patients with primary Sjögren’s syndrome. Patients,
in columns, are grouped according to their cluster assignments, while genes are classified into functional
modules (three identified). The transcriptomic expression level is color-coded, with red indicating higher
expression values. At the top, additional phenotypic annotations are provided, such as treatment (AM:
antimalarials, STED: steroids, IMS: immunosuppressants), sex, and antinuclear autoantibodies. This
figure is reproduced from [Sor+21, Fig. 1].

4.2 Main results
Four endotypes identified using data-driven approaches The unsupervised patient
stratification identified four different clusters of pSS patients, each defined by distinct molecular
signatures. The four clusters are represented with the corresponding Heatmap expression profiles
in Creffig:heatmap-sjogren,

and were further annotated through integrative analysis as:

• The C2 cluster displays a healthy-like profile, gathering patients with on average, lower
disease activity and no Anti-SSA and anti-SSB autoantibodies.

• In contrast, cluster C4 displays the most distinct and severe clinical phenotype, marked by
a pronounced Type II inferferon signature activation signature, significant lymphopenia,
and elevated neutrophil counts, collectively indicative of an inflammatory profile. This
inflammatory pattern was further confirmed by methylation analysis whicih revealed signifi-
cant hypomethylation of genes associated with IFN signalling 2. Additionally, it’s worth
noting that C4 is the smallest cluster, making up only for 12.5% of the total cohort.

2High levels of gene expression are often associated with low promoter methylation ([Wag+14])
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• The cluster C1 showcases the highest Type I and Type II IFN scores. Genome-wide associ-
ation study (GWAS) analysis only pinpoints significant differences in genomic sequences
in this endotype, particularly for genes associated with the immune system, and signal
transduction.

• Cluster C3 exhibits a salient Type I IFN score, alongside significant activation of B cell-
related pathways, highlighting the potential therapeutic significance of addressing B cells
proliferation for patients assigned to this cluster.

Composite model for refining patient molecular fingerprints A composite model has
further been developed to map each patient to one of the four clusters identified, achieving an
impressive overall accuracy of 95%, assigning membership to a given cluster employing only ten
genes. The robustness of the model was confirmed using an external validation dataset of pSS
patients, and thus, revealed helpful in selecting patients, prior to clinical trials, based on their
molecular profile and related predictive therapeutic outcome.

In conclusion, the biological insights gained from this data-driven clustering approach shed
light on the intricate role of pathways, particularly IFN signalling, in driving the complex
heterogeneity of pSS patients. Besides, dissecting the heterogeneity of pSS patients should
promote the development of personalised therapies, for instance, targeting B cells using depleting
antibodies, like rituximab, has already proved efficient in reducing immuno-inflammatory activity
in C3-like patients ([Gri+19]).

Personal Contributions I personally contribute to this paper by standardising a pipeline
for processing RNASeq data (see Details in Section 3.3), by providing guidelines for designing a
robust clustering method and finally, I performed the statistical analyses to evaluate whether the
cellular composition differs significantly between the identified clusters.

To analyse the pool of cell populations, I combine mass cytometry datasets with numerical
estimation of cellular ratios. Flow cytometry analyses were conducted in eleven medical centres
by the PreciseSADS consortium, using the same calibrations to avoid batch effect. In particular,
the automated gating protocol outperformed against the manual gating. We used CIBERSORT
[New+15], as this deconvolution method proved the most robust and accurate in a variety of
benchmark studies performed recently ([Stu+19] and [Fa+20]).

We specifically utilized the LM22 signature matrix, derived from whole blood samples of
Systemic Lupus Erythematosus (SLE) patients. Indeed, the performance of supervised deconvo-
lution algorithms rely partly on the closeness of the signature used with the patient phenotype
profile, and SLE patients exhibit similar molecular profiles to those affected by Sjögren’s disease.
In addition, LM22 offered better characterization of the B cell population, a key contributor
to inflammation in C3-like patients, with further classification into naive, plasma, and memory
subtypes.

However, we excluded certain ectopic cell lines, such as macrophages and mast cells, from the
original purified signature, as they are not typically found in circulating blood. 3.

We ultimately checked the concordance between the numerically inferred ratios with flow
cytometry outputs using RMSE scores. Since cell populations were not always available at the

3We recommend in addition the fusion of subsets of cell types, for instance, combining “resting” and “activated”
dendritic cells, or merging subsets of T cell helpers (naive, central and effector memory, follicular helper) could
be considered. This suggestion is based on the observation that the transcriptomic differences between these
subcategories are nearly insignificant, and integrating highly correlated cell lines might introduce potential
“spillover” effects.
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same scale, we summed children cell lines to reconstitute consistently cell lineages. Kruskal-Wallis
tests, the unparametric equivalent of the ANOVA test, wered used to evaluate whether global
differences of cell composition across cluster assignment were statistically significant.

Biological interpretation of numerical deconvolution outputs, focusing on B cells
Flow cytometry analyses have already exhibited a stronger proportion of B cells in cluster C3
and a down-regulation of pathways involved in B cell development in cluster C4, resulting in
lymphopenia.

However, the increased granularity provided by the LM17 signature matrix allows for a
deeper exploration of potential mechanistic factors underlying the alteration of B cell composition
(Figure 4.1(b), right panel). Notably, the C3 cluster sets apart by a higher proportion of
naive B cells, which aligns with elevated activity of the IL-7 pathway ([Cla+14], known for its
involvement in B cell lymphopoiesis and signalling). The presence of self-reactive memory B cells,
combined with chronic inflammation, indicates the possibility of a cross-reactivity phenomenon
(Section 2.1.4). Lastly, cluster C3 displays an elevated proportion of plasma cells, known for
producing substantial quantities of antinuclear autoantibodies, as emphasized in [Mor+14].

I personally hypothesized that different mechanisms underlie the significant alterations of B
cell composition observed for both clusters C3 and C4.

The cluster C4 aggregates the patients with the most severe clinical features, which are thus
more likely to take immunosuppressant medications, such as corticosteroids. These treatments
tend to down-regulated the pathway involved in the maturation of naive B cells, [Cri+21] notably
observed that relapses in B cell-mediated autoimmune diseases, treated by rituximab treatment,
were associated with the reactivation of ancestral memory B cells.

In addition, [Mau+23] and [DGvM23] demonstrated that autoimmune diseases, in their acute
phases, induce specific alterations of the immune cell composition. Notably, it has been shown
that the relative proportion of plasma cells and autoreactive memory B cells, even without antigen,
increases compared to naive B cells. Possibly, similar mechanisms altering the B cell homoeostasis
explain the contradictory overarching lymphopenia observed in cluster C4, with a general decrease
of B cell populations, but a comparatively increase of plasma and memory B cells.

4.3 Limitations and perspectives
The scope of these preliminary findings is limited by the cross-sectional design of the study
itself. Longitudinal studies, on the contrary, would enable to characterise the stability of cluster
assignment, and the impact of treatments on gene signalling dysregulation over time.

In addition, only blood samples have been used to cluster patients into endotypes, while
the Sjögren’s disease is a systematic auto-immune disease, affecting several organs and tissues,
notably the salivary glands [BW17]. This may explain the lack of significant correlation between
the observed clinical features and the patients clustered on the basis of transcriptomic data.

Secondly, k-means and hierarchical clustering are rather used for initialising the parameters of
Gaussian mixture models, as they make stronger assumptions on the distribution of the data and
thus are not able to capture as meaningful patterns. For instance, k-means assumes equi-balanced
and homoscedastic clusters (see Initialisation of the EM algorithm, in Chapter 3).

Simultaneously, the model’s robustness could have been performed through hyper-parameter
tuning using a bootstrap approach, for selecting the overarching parametrisation and final number
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of clusters selected. In addition, the resulting bootstrap estimates could have been used to derive
confidence intervals, thereby assessing the statistical uncertainty associated with the parameters
specific to each cluster (see sections “Model selection” and “Derivation of confidence intervals in
GMMs” in Chapter 3).

Ultimately, standard parametric mixture models are not tailored for high-dimensional datasets,
especially when the number of variables significantly exceeds the number of observations, as it is
the case in this patient stratification. By contrast, lower-dimensional projection (e.g., Principal
Component Analysis) techniques or parsimonious model parametrisations could enhance the
discriminative ability of Gaussian mixture models in identifying patient subgroups and streamline
biological interpretation of the inferred endotypes(see Appendix B).

Thirdly, we only leverage transcriptomic data to classify Sjögren’s patients into molecular
endotypes, possibly explaining our failure to relate the clusters with a specific set of clinical
symptoms. Expanding the repertoire and diversity of biological tissue origins, including salivary
glands—a primary site of involvement in Sjögren’s syndrome, and using multiple orthogonal
modalities, hence hold significant promise in retrieving the aetiological factors contributing to
Sjögren’s syndrome pathophysiology, a challenge still remnant.

In particular, as detailed in Section 4.2, we observed that the inference of clusters and the
variations of transcriptomic expression across patients were mostly driven by changes of the cell
composition in whole blood samples, rather than intrinsic changes of the RNA-Seq expression
within native cell groups.

In next chapter 5, we precisely review several numerical methods, aimed at retrieving the
cellular composition of heterogeneous samples. We notably exhibit in next part how such ap-
proaches, by unravelling the intrinsic heterogeneity of tissues, improve the accuracy of downstream
analyses, and contribute to streamline the exploration of complex niches, such as the tumoral
micro-environment.



Part III

Cell populations and
deconvolution algorithms



Chapter5
Article 3: review of cellular deconvolution
methods

Methodological Objective: Evaluating the Performance of Deconvolution Algorithms
in the Endeavour of Biological Features of the sample As we have seen in previous
Chapter 4, the biological relevance of unsupervised stratification, based solely on transcriptomic
datasets, for patients afflicted by Sjögren’s primary syndrome, is limited by the nature of bulk
RNA-Seq analysis itself. By averaging transcriptomic measures over a heterogeneous biological
mixture, such measures are indeed oblivious to variations in cell-type composition, hindering
partially the identification of the key cell subtypes involved in disease progression and diverse
response to treatments (see also index Heteroskedasticity).

In section 5.1, we present an up-to-date review of deconvolution algorithms designed to
automatically infer the cellular composition of a biological sample. We notably focus on so-
called “partial” numerical approaches, which aim to deduce the relative abundances of cellular
components within a heterogeneous mixture, harnessing purified cellular expression profiles.

While the majority of the analysed deconvolution models assume that the total transcriptomic
expression of the mixture can be reconstructed by summing the individual contributions of
each cell subtype, weighted by their abundance, we emphasize that these models differ in their
objectives and biological constraints. For instance, some algorithms have been developed to
estimate the characteristics of an unknown cell population, often a tumoral clone, while others
concentrate on the robustness of the outputs, by incorporating additional feature selection steps
in the refinement of signature profiles.

We subsequently broaden our focus to encompass the entire deconvolution process, from data
retrieval to statistical evaluation and biological interpretation of the results. In this section, we
underscore the critical importance of data collection, preprocessing, and cleaning in shaping the
final result’s quality. To paraphrase [Fin+19a], obtaining high-quality purified transcriptomic
expression profiles, in sufficient quantities and closely aligned with the biological context under
study, is arguably more crucial than the choice of the algorithm itself.

We conclude this review with a more specific discussion regarding the future of cellular
deconvolution methods. Notably, we emphasize their complementarity with single-cell RNA
sequencing (scRNA) technologies to enhance their own accuracy, alongside the resolution of
spatial transcriptomics methods.
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Abstract

Although bulk transcriptomic analyses have significantly contributed to an enhanced comprehension of
multifaceted diseases, their exploration capacity is impeded by the heterogeneous compositions of
biological samples. Indeed, by averaging expression of multiple cell types, RNA-Seq analysis is
oblivious to variations in cellular changes, hindering the identification of the internal constituents of
tissues, involved in disease progression. On the other hand, single-cell techniques are still time,
manpower and resource-consuming analyses.

To address the intrinsic limitations of both bulk and single-cell methodologies, computational
deconvolution techniques have been developed to estimate the frequencies of cell subtypes within
complex tissues. These methods are especially valuable for dissecting intricate tissue niches, with a
particular focus on tumour microenvironments (TME).

In this paper, we offer a comprehensive overview of deconvolution techniques, classifying them
based on their methodological characteristics, the type of prior knowledge required for the algorithm,
and the statistical constraints they address. Within each category identified, we delve into the
theoretical aspects for implementing the underlying method, while providing an in-depth discussion of
their main advantages and disadvantages in supplementary materials.

Notably, we emphasise the advantages of cutting-edge deconvolution tools based on probabilistic
models, as they offer robust statistical frameworks that closely align with biological realities. We
anticipate that this review will provide valuable guidelines for computational bioinformaticians in
order to select the appropriate method in alignment with their statistical and biological objectives.

We ultimately end this review by discussing open challenges that must be addressed to accurately
quantify closely related cell types from RNA sequencing data, and the complementary role of
single-cell RNA-Seq to that purpose.

1 1/33



1 INTRODUCTION

1 Introduction

The transcriptome refers to the complete set of RNA transcripts, expressed within a biological sample.
By providing a snapshot of gene expression patterns, studying its variations across phenotypical
conditions provide valuable insights into the regulatory mechanisms of gene expression that underlie
disease progression and individual responses to treatments.

The main biological sources of transcriptomic expression, between individuals and within tissues,
proceed from three main biological factors, summarised in Figure 1: the global environmental and
topic condition of the sample, encompassing disease state and tissue location; the genotype condition,
involving single-nuclear polymorphisms, haplotypes, and comparable genetic aspects; and the cellular
composition. Changes of cell composition are notably driven by intertwined physiological processes
activating cell motility and cell differentiation mechanisms ([SG13]). In addition, the pertinent
biological signal is often entangled with extraneous technical noise, requiring specific corrections in
subsequent downstream analyses.

In addition, intrinsic heterogeneity is also present at the cell population level itself, arising from the
presence of unspecified and infrequent population subtypes, coexistence of different developmental cell
states or asynchronous biological processes (such as the cell cycle or circadian rhythm). Lastly, the
kinetics of transcriptome regulation is inherently stochastic [Bue+15] (see Figure 1).

Figure 1. Main sources of transcriptomic variability, illustrated by the the intricacy of tumoral
environments. The diversity of molecular profiles proceeds from a combination of intrinsic and extrinsic fac-
tors. Intrinsic factors encompass stochastic genetic, transcriptional, and proteomic mechanisms, while extrinsic
factors include interactions between the resident cell populations and the surrounding microenvironment. The
interconnection between these factors requires a systematic and multi-layered approach to comprehensively un-
derstand the intricacy of such biological environments. Figure reproduced from [Kas+22, Fig. 1]

While the analysis of the transcriptome through bulk RNA-Seq reveals meaningful co-expression
patterns, by averaging measurements over several cell populations, it tends to ignore the intrinsic
heterogeneity and complexity inherent to biological samples. Accordingly, bulk RNA-based methods
are usually not able to determine whether significant changes in gene expression stem from a change of
cell composition, from phenotype-induced variations or a combination of these factors ([Kuh+12]).

Hence, failure to account for changes of the cell composition is likely to result in a loss of specificity
(genes mistakenly identified as differentially expressed, while they only reflect an increase in the cell
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1 INTRODUCTION

population naturally producing them) and sensibility (genes expressed by minor cell populations are
amenable being masked by highly variable expression from dominant cell populations), as simply
illustrated in Section 1. Overall, the intrinsic heterogeneity of complex tissues, above all tumoral ones,
reduces the robustness and reproducibility of downstream analyses, notably differential gene
expression analysis or clustering of co-expression networks 1.

Figure 2. Changes in cell composition impact the transcriptomic expression. Here, at least two
distinct biological mechanisms can likely explain the increased expression of transcriptomic activity observed for
a given marker gene. In the scenario (A), the cell composition is unchanged, but previously inactivated cells are
stimulated and released the TF in the biological medium. In scenario (B), there is a change of cell composition,
with the infiltration of a second cell type in the sample. Reproduced from [Sho+12, Fig. 1].

Various computational methodologies have emerged in recent years to estimate automatically cell
type proportions in biological samples from bulk transcriptomic profiles, alleviating the high costs of
single-cell RNA-Seq technologies or enabling the exploitation of archived patient datasets whose
original material is not anymore available [Avi+18]. Furthermore, by requiring prior isolation of cell
populations single-cell technologies hinder the analysis of interactions occurring between them.

In contrast to bulk RNA-Seq and single cell methodologies, computational techniques (see
Section 2) can simultaneously capture systemic and cell-specific information, respectively ([SG13]).
Accordingly, by dissecting the intricacy of tissues, they reveal a strong potential to identify causal
drivers and provide insights on regulation mechanisms.

In section 2, we present an updated review of deconvolution algorithms, with a specific focus on
partial methods designed to automatically infer the cellular composition of heterogeneous biological
samples utilising purified cellular expression profiles. These methods are usually categorised into those
using a common purified expression profile, as discussed in section 2.1 (Reference-Based Approaches),
and algorithms relying on gene markers specific to unique cell populations, as outlined in section 2.2
(Marker-Based Approaches). We also briefly touch upon reference-free methods in section 2.3
(Unsupervised and Reference-Free Deconvolution Methods), which are applicable when no prior
information is available about the composition or characteristics of the mixture.

Throughout this section, we emphasise that adaptations and variations from the original
deconvolution framework address specific biological questions and challenges, such as identifying rare
tumoral clones or reconciling discrepancies between cell ratios estimated from transcriptomic
expression data and those measured by physical cytometry technologies.

1[Whi+03] notably exhibits that most of the variability of gene expression in whole blood samples proceeds from relative
changes of the composition in neutrophils, the most abundant immune cell type.
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2 OVERVIEW OF NUMERICAL DECONVOLUTION METHODS

We subsequently broaden our perspective to cover the entire deconvolution process, spanning from
data collection to the statistical evaluation and biological interpretation of the results, as detailed in
section 3 (Deconvolution Pipeline). In this section, we emphasise the pivotal significance of meticulous
data collection, preprocessing, and quality control in shaping the quality of the deconvolution output.

We conclude this review with a general discussion in the fate of cellular deconvolution methods in
the context of expanding use of single-cell RNA sequencing and spatially resolved transcriptomics
(SRT) technologies in section 4. We specifically underscore the relevance of integrating single-cell-based
profiles into the spatial deconvolution framework to enhance transcriptomics resolution.

2 Overview of Numerical Deconvolution Methods

Deconvolution generally speaking names the process that consists in retrieving from a mixture its
individual sub-components, popularised as the “cocktail party problem” [Che53]. In a biological
sample (whole blood, tissue, . . . ), this consists generally in retrieving the distinct cell populations
(immune, stromal. . . ) composing it, but it can be directly extended to identify the different sources of
the RNA production (for instance, many studies investigate on estimating a tumour purity score
returning the proportion of malignant cells in [Yos+13]) or, at higher resolution, identify the cycle
stages within a cell population (see Figure 3).

Figure 3. We detail some common applications of deconvolution methods, ordered by tier of resolution, from
the least detailed resolution: tissue level ([QM09, Fig .1]), to the most detailed one, cell cycles ([LNM03, Fig
.1]), through the cell population strata ([Fin+19a, Fig .1]).

Traditionally, deconvolution models assume that the total bulk expression is linearly related to the
individual cell profiles. Precisely, they posit that the global expression can reconstructed by summing
the distinct contributions of every cellular population weighed by their respective abundance within
the sample (see Equation (1) and graphical illustration in Section 2):

yi = X × pi matricial form

ygi =
J∑

j=1

xgj × pj algebraic form
(1)

, with the following notations:

• (y = (ygi) ∈ RG×N
+ is the global bulk transcriptomic expression, measured in N individuals.

• X = (xgj) ∈ MRG×J the signature matrix of the mean expression of G genes in J purified cell
populations.

• p = (pji) ∈]0, 1[J×N the unknown relative proportions of cell populations in N samples

4 4/33



2.1 Reference-based Approaches: Deciphering Cell Mixture through Expression Signatures2 OVERVIEW OF NUMERICAL DECONVOLUTION METHODS

Overall, the system includes G linear equations with J unknowns (the cellular proportions). In
addition, most deconvolution problems explicitly integrate the compositional nature of cell ratios,
enforcing in the estimation process the unit-simplex constraint (Equation (2)):

{∑J
j=1 pji = 1

∀j ∈ J̃ pji ≥ 0
(2)

Implicitly, Equation (2) implies that no other, unknown cell population could contribute to the
measured bulk mixture. The main classes of deconvolution methods, defined on the basis of their
biological objectives, are summarised in Figure 4(b), ranging from the approaches requiring the most
information to the most unsupervised approaches:

In the following Section 2.1, we focus on partial deconvolution methods, that require individual
cellular expression profiles to infer cell composition [Stu+04]. Besides, in the remainder of this paper,
we posit, as most deconvolution algorithms, that the samples are uncorrelated with each other
(independence assumption), allowing simultaneous and parallel cell ratio estimations. While this
assumption reduces computational complexity, [Efr09] demonstrates cross-correlation across samples in
real-world transcriptomic profiles.

2.1 Reference-based Approaches: Deciphering Cell Mixture through
Expression Signatures

2.1.1 Regression-based approaches

OLS Regression The system of linear equations, given in Equation (1) rarely holds in practice, due
to technical noise or unaccounted environmental variations. Most deconvolution algorithms model
explicitly the error with a residual unobserved term, added to each individual transcriptomic measure,
ϵg.

Subsequently, the usual approach is to retrieve the ordinary least squares (OLS) estimate which
minimise the sum of squares (SSE) between predicted values fitted by the linear model: ŷ = X p̂ and
the actually observed and measured values: y:

p̂OLS ≡ argmin
p

||ŷ − y||2 = argmin
p

||Xp− y||2 =
G∑

g=1


yg −

J∑

j=1

xgjpj




2

(3)

with p̂ the unknown coefficients to estimate, y known as the predicted, response variable in a linear
regression context and X the design matrix, storing the J purified profiles. Note that the
“Rouché-Capelli” theorem states that the uniqueness of a solution to Equation (3) requires that the
number of genes is at least equal to the number of cell ratios to estimate. The OLS estimator,p̂OLS is
explicitly given by the Normal equations (see Theorem A.1):

Interestingly, if we consider a generative approach, in which the error term is described by a
white-Gaussian process (homoscedastic, null-centred), the Gaussian-Markov theorem (see Theorem
A.2) states that the OLS estimate is unique and equal to the Maximum Likelihood Estimate (see
Proof A.3).

Linear modelling, whose cellular ratios are the ones given by the Normal Equations (Theorem A.1),
has first been used as such in [Abb+09] paper, using the lsfit function. The same method is used in
[Li+16],to identify subgroups of melanomas characterised by varying levels of TCD8 subsets and
correlate them with prognostic factors. To avoid accounting for tumoral cells when asserting ratios of
infiltrated cells, only genes both highly correlated to the cell types of the sample and negatively
correlated to the tumour purity, defined as the ratio of aneuploid cells exhibiting a non canonical
number of chromosomes.

However, assumption of homoscedasticity of the residuals makes standard linear approaches
sensitive to outliers, while they do not endorse explicitly the unit-simplex constraint (Equation (2)),
requiring posterior normalisation of the coefficients.
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(a) Graphical abstract, illustrating the fundamental linear assumption of bulk mixture construction underlying
the cellular deconvolution framework.

(b) The deconvolution methods are classified according to their input data requirements as well as the output
type and resolution they provide. Supervised, alternatively named partial methods, methods utilise markers,
signatures, or cytometry proportions, to achieve cell detection (A), estimating cell proportions (B), correcting
heterogeneity (C), or estimating cell type-specific expression profiles (D), ranked from the simplest to the most
challenging task.On the other hand, complete deconvolution methods (E) simultaneously estimate cellular
proportions and purified expression profiles. Reproduced from [SG13, Fig. 3].
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Weighted linear approaches The presence of an unknown cell population might be relaxed by
including a constant intersection term p0, adding in practice a column of ones in the design matrix. To
account for potential heteroscedascity (variance of the errors depends on the gene value), weighted
linear approaches allow users to add prior weights to modify the leverage (contribution) of each gene
to the computation of the OLS estimate. Considering W the diagonal matrix of weights, the Weighted
version of the Least Square estimate is given by Equation (4):

p̂wOLS = (X⊤WX)−1X⊤Wy (4)

EPIC [Rac+17] combines this weighted approach with the addition of a column characterising the
tumour profile in the signature matrix. [Rac+17] notably provides two signatures of circulating and
tumour-infiltrating immune cells, CAFs (cancer-associated fibroblasts) and epithelial cells, respectively
designed for whole-blood and solid tumoral tissues, aggregating bulk and scRNA-Seq data.

Instead, the quanTIseq [Fin+19a] algorithm integrates an additional constant intersection term to
quantify the contribution of the unknown tumoral content. In addition, to address the issue of cell
“drop-outs” (cell populations, generally infrequent and/or exhibiting a strong correlation with other
cell types, that are wrongly estimated as absent), a heuristic approach is employed whereby the final
Tregs estimate is computed as the average of two Tregs measures, in the presence and absence of the
TCD4+ subset in the design matrix. Tregs are indeed highly correlated with TCD4+ cell populations.

In weighted linear approaches, individual gene contributions are usually provided by the user.
Without prior knowledge, the usual approach is then to give less importance to genes exhibiting strong
variability within a cell population. However, assigning appropriate weights to each gene typically
necessitates either prior knowledge or strong assumptions about the dataset’s distribution. We
subsequently review in next Section 2.1.1 robust linear regression methods that compute the weights
or trim outlying gene expression in a automated manner.

Robust Linear Regression and SVR Approaches for Automated Selection of
Transcriptomic Markers In the previously described approaches, the inclusion of all genes in the
regression framework may yield biased estimates when the expression of some genes significantly differ,
due to significant changes of sequencing protocol or phenotype condition between the bulk mixture
and purified expression profiles. Unfortunately, outlying genes in least-square approaches have the
strongest influence on the parameters estimation, in reason of the Euclidean metric used to evaluate
the prediction error.

Several robust methods, making a compromise between efficiency and robustness of the estimate,
have been proposed. They are usually classified into M-estimates (see Definition A.4), whereby an
adaptive function is enforced on the residuals, giving less weights to those with strong leverage, and
LTS estimates, where a user-provided ratio of aberrant genes is automatically identified and trimmed
(see Definition A.5).

With both methods, the weights assigned to each observation depend on the estimator which in
turn depend on the weights. As a result, the robust estimator must be computed sequentially, these
methods are accordingly referred to as Iteratively Reweighted Least Squares (IRLS) approaches.
Uniform weights are usually assigned to each observation, subsequently, a standard least regression
estimate is computed. Once the OLS obtained, each observation is reweighted, using the
transformation induced by the influence function, and which usually depends on its leverage on the
regression framework. The subsequent IRLS estimates are then computed with those new weights, and
the process continues until convergence [Yoh87]).

The RCR (Robust Computational Reconstitution) deconvolution algorithm, by [Hof+06], notably
couples the LAD (see Definition A.5) regression framework while adhering to the unit-simplex
constraint (eq. (2)).

A variant of the LTS (least trimmed squares) approach has been implemented by the FARDEEP
algorithm [Hao+19]. It has notably been modified to ensure convergence towards a final set of
trimmed observations, in a linearly growing number of iterations. However, the algorithm is highly
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sensitive to the tuning parameter that controls the final number of observations trimmed during the
regression. And while convergence and consistency of the algorithm is guaranteed, there’s no
theoretical guarantee that the final estimate returned is indeed optimal.

Overall, all the variants proposed in this section are proned to overfitting. Indeed, since these
weights are derived from the model’s performance, they are highly sensible to dataset-specific patterns,
leading to potential inconsistent and poor results on newly observed datasets. In addition, they are
less efficient than the standard OLS estimate in case the Gauss-Markov assumptions hold.

Support-vector-regression are supervised machine learning algorithm featuring an alternative
strategy to select genes. It turned out that in real-world experiences, they tend to exhibit increased
robustness to noisy observations. The first historical mention to SVR approach, termed ϵ-SVR [CV95],
uses a insensitive loss function, whose parameter ϵ is provided by the user to control the error rate
tolerated on the outputs (see Definition A.6).

CIBERSORT (Cell Type Identification By Estimating Relative Samples Of RNA Transcripts),
developed by [New+15], utilises the the ν−SVR ([CC02]) variant. Instead of optimising the precision
(error rate tolerance), the ν parameter controls the proportion of Support Vectors integrated in the
regression framework ([Sch+00]) 2. Compared to standard robust linear regression approaches,
[New+15] exhibits the better performance of SVR methods with “spillover effects” (see Section 3.2),
enabling them to integrate more closely related cell types in their analysis while providing a more
robust and explainable model.

In practice, CIBERSORT implements the nu− SVR approach with the svm function from R
package e1071 ([Mey+21]). CIBERSORT additionally provides a standalone web application, and
relevant purified signatures. The most popular is the LM22 profile, a meta transcriptomic collection of
6 studies of 22 distinct immune cell types (see Section 3). The ImmuCC algorithm ([Che+17])
harnesses the implementation from CIBERSORT algorithm, with a new reference signature
aggregating 25 cell types and tailored for murine deconvolution.

Correcting the Uncoupling Between RNA and Cytometry Fractions It appears that most
of the existing deconvolution algorithms estimate the fraction of mRNA coming attributable to each
cell type, rather than the underlying cell proportion itself. In other words, they assume homogeneous
cell populations, e.g. they consider that each cell subtype exhibits the same RNA library depth
([Sos+21]). However, in real-world settings, this premise usually does not hold, for both technical and
biological reasons. For instance, the RNA extraction efficiency may depend on the cell type, and its
survival capacity to the lysis and extraction phase. Once the average production of total
transcriptomic expression has been estimated (or phsyically measured), it becomes feasible to
subsequently re-normalise the inferred cellular transcriptomic ratios, such that they align with the
anticipated, biologically interpretable cellular ratios (see Equation (5)):

p̂∗j = K
p̂j
rj

, K =
1

∑J
j=1

p̂j

rj

(5)

with rj the average number of transcripts extracted per cell type, and K the normalisation constant.
Post-correction of this uncoupling is accounted in [Rac+17] and [Fin+19a] studies, with direct

measures of the total expression of cell subtypes, as quantified with RNAeasy mini kit (Qiagen) and he
Proteasome Subunit Beta 2, respectively 3.

When direct measures are not available, the MMAD (microarray microdissection with analysis of
differences, [LHP14]) proposes an iterated approach for estimating the coefficient extraction efficiency,
rj . Yet, the regression framework is not anymore linear, and the new cellular estimate is computed
using a non-linear conjugate gradient search algorithm.

2[CC02] demonstrates the equivalence between the two approaches: increasing the ν hyper-parameter results in a
smaller ϵ-tube and a higher precision on the results. Asymptotically, determining the ν-proportion of support vectors
reaching a given precision ϵ̂, is even equal to the output of the ϵ-SVR with that degree of precision.

3In the back-end, they utilise the expression of the housekeeping genes as a surrogate variable of the absolute number
of transcripts produced by the cell population
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Linear Regression Approaches with Explicit Unit-Simplex Constraint All the previously
described algorithms do not explicitly integrate the unit-simplex constraint Equation (2) during the
estimation process, and re-normalise instead, posterior to the estimation, the inferred ratios.

The NNLS (Non Negative Least Squares) estimate relies on the Lawson Hanson algorithm [HH81],
and its output is often provided as a reference in most review papers benchmarking deconvolution
algorithms ([Stu+19], [JL21]). The nnls function from the R limSolve package can be used to solve
this optimisation problem.

The Least Squares with Equality and Inequality Constraints (LSEI) generalises this approach by
enforcing both non-negativity and sum-to-one constraints. The lsei function in R, from limSolve
package, can be used to solve the corresponding optimisation problem. The Matlab lsqlin function,
returning the same output as lsei, is used by the Bioconductor package DeconRNASeq ([Gon+11],
[GS13]) .

Both algorithms belong to the class of QP (quadratic programming), which aims at optimising a
system of linear, convex functions, with a guaranteed unique solution.

Regularised linear regression When the number of cell types J exceeds the number of transcripts
G, the deconvolution problem stated in Equation (1) is undetermined, with potential infinite set of
solutions verifying the set of G equations. Several regularised linear approaches have been
implemented to deal specifically with problems where the number of unknowns exceeds the number of
variables (see Definition A.7).

The DCQ algorithm [Alt+14] uses in particular the Elastic Net regularisation, a compromise
between the L1 and L2 penalties proposed by the Lasso and Ridge methods. In R, the glmnet [Fri+11]
offers a straightforward and versatile implementation of the method. The benchmark study led by
[JL21] exhibits the reduced performance of deconvolution methods applying these regularised
approaches. However, a comprehensive analysis of the settings used to conduct the benchmark study
show that they somehow miss the point: penalised linear regression approaches are not intended to
retrieve the cell ratios of a given biological sample, but rather retrieve the optimal support of cell
populations that induce transcriptomic variations from a biological state to another. Implicitly, these
methods assume that the proportions of most cell populations do not vary over time.

To illustrate the point, DCQ has been used to identify the dynamical evolution of immune cell
ratios during influenza infection. Indeed, dozens of immune cell types coordinate their efforts to
maintain tissue homeostasis. Precisely, DCQ studied the evolution dynamics of up to to 213 immune
cell subpopulations in mice lungs for ten time points and retrieve significant changes in 70 immune cell
type ratios.

Two years after, the ImmQuant package [Fri+16] offers a user-friendly tool for inferring immune
cells in both human and mice organisms. The pipeline includes automatic data import and cleansing,
selection of the marker genes, deconvolution of the biological samples provided and visualisation of the
output.

2.1.2 Probabilistic-based approaches

The second family of methods for inferring cellular ratios from purified reference profiles utilises
probabilistic models to capture the generative process underlying the bulk expression production.
Interestingly, these approaches naturally address the unit-simplex constraint (Equation (2)), provide a
more accurate representation of the discrete nature of transcript counts and can even account for an
unknown cell population or individual variations of the gene expression. In particular, these
approaches accurately reproduce the commonly observed correlation between the mean and the
variance of the gene expression ([Lob+08]).

Since a large number of parameters might be introduced in these models, it is common practice to
represent the conditional independence relating them using a directed acyclic graph and the
homogenised notation illustrated in Section 2.1.2.
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Discrete probabilistic approaches Latent Dirichlet Allocation (LDA) is a straightforward
approach to model abundances (see also [BNJ03] and Definition A.8). The NNML (Non-negative
maximum likelihood model) algorithm, by [Qia+12], extends the frequentist LDA model adopting a
Bayesian approach. Precisely, the prior distribution of the cell ratios is modelled by a symmetric
Dirichlet distribution. This kind of distributions exhibits several advantages: it naturally endorses the
unit-simplex constraint Equation (2) and streamlines the integration of prior knowledge, such as
equibalanced hypothesis or inclusion of cytometry measures 4

Extensions of the NNML algorithm introduce generative models that relax controversial
assumption, such as the completeness (no unknown cell population) or the validity (no sample-specific
variations of the purified signatures) of the reference profile. However, these probabilistic frameworks
often require regularisation strategies, classified as “hard” and “soft” constraints, to ensure problem
identifiability. Practical regularisation strategies often rely on strong constraints and assumptions
about the distribution of purified expression profiles. They must balance the trade-off between
introducing too much bias and risk overfitting, or insufficiently define the problem and suffer from
ill-conditioned modelling.

To that end, the ISOLATE algorithm ([QM09]) assumes that the expression profile of any gene of
the unknown cell type can be rewritten as the expression of one of the cell types already described, up
to an additional multiplicative perturbation described by an uninformative Gamma prior. In a
tumoral context, this constraint can be interpreted as a change of gene expression induced by
heterotypic tumoral conditions, on an unique cell population subset, termed CSO in the paper (cancer
site of origin). The basic framework described above has been extended in the ISOpure algorithm
([Quo+13]). Unlike the naive approach, ISOpure not only computes a shared cancer profile common
across all samples but also refines it to incorporate sample-specific variations in tumoral expression.
However, the CSO assumption only holds if the mutations concern only one cell line, an assumption
that usually does not hold in intricate TMEs, wehre both tumoral and normal cell lines expression are
impacted by the clonal growth.

Accordingly, the NNMLnp algorithm ([Qia+12] and Section 2.1.2) assumes instead that the
transcriptomic profile of the unknown cell type can be rewritten as a potential convex combination of
all (possibly a subset) the included cell populations. Biologically, this approach hypothesises that the
tumoral part of the sample is not a new cell line, but rather a mixture itself of the original cell
populations, whose expression has been altered upon tumoral mutations, or changes induced by the
new conditions of the medium. Their approach is nonetheless hindered by the stringent regularisation
assumption that the perturbation factor for a given gene is the same across cell populations.

The PERT algorithm ([Qia+12] and Section 2.1.2) relaxes the strong assumption that the purified
cell expression profiles are representative of the expression profiles of the mixture. Specifically, the
vector representing the expression profile of a cell population is altered through a multiplicative
perturbation factor ρG, which is gene-specific and sampled from a non-informative Gamma
distribution with an average value of 1.

TEMT (Transcript Estimation from Mixed Tissue samples, Section 2.1.2 ), by [LX13], harnesses
directly the reads (sequence of nucleotides) themselves, instead of raw RNA-Seq counts. This approach
enables to account for multiple transcripts resulting from alternative splicing ([Cam+20, Chap 14])
and technical biases issued from read sequencing itself 5. The methodology is thus particularly
relevant for decomposing, and correcting technical artefacts from relevant biological signal, and can be
used as an alternative normalisation method for making samples comparable, regardless of the
sequencing platform used.

This approach uniquely incorporates technical artefacts into the deconvolution process, addressing
the assumption made by other methods that input data has been corrected for such noise.
Additionally, it estimates an unknown cell profile, in a process similar to the NNMLnp approach.

4To note, the Beta distribution is a variant of Dirichlet distribution with two-component mixtures, used as prior for
binomial distributions.

5Technical artefacts in RNA-Seq encompass length, positional and amino bias. For instance, longer transcripts may
yield more counts (“effective length”), while sequence-related biases include over-transcription around transcript ends.
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The complexity of the likelihood or the posterior function requires specific optimisation methods to
retrieve the relevant parameters: PERT and NNML uses a conjugate gradient descent algorithm, while
TEMT and the ISOLATE algorithm utilise a variational online EM [DLR77]. Since diverse
regularisation strategies do not address the same biological constraints, and often require different
optimisation strategies, [QM09] suggests to systematically benchmark the method against manually
annotated tumours, as evaluated by pathologists.

Continuous probabilistic approaches The Demix generative model, by [Ahn+13], and its direct
DemixT extension,by [Wan+18], infer the proportion and expression profile of the tumoral content, in a
two and three-component mixture, respectively. Briefly, Demix(T) models the distribution of the bulk
expression for each gene as a convolution (sum of independent variables) univariate log Normal
distributions (see Section 2.1.2), each purified profile parametrised by its own parameters, inferred
prior to the study. For the sake of comparison, a generative model based on a convolution of Normal
distributions is also compared to the log Normal approach. This model streamlines the estimation
process as a closed-form can be derived for the log-likelihood. However, the log2-transformation
required to endorse the assumptions of the model is likely to disrupt the fundamental linearity
deconvolution assumption (Equation (1)).

Modelling the mixture problem as a convolution offers several advantages, including the elimination
of a residual error term to account for the stochasticity of the resulting bulk profile, and the utilisation
of distributions that accurately depict the inherent compositional characteristics of RNA-Seq datasets.

However, no explicit form for the convolution of log2-normalised variables is known, and an iterated
conditional modes-like ([Bes86]) approach 6 is used to maximise the log-likelihood of the resulting
generative model:

• The unknown general parameters of interest (cellular proportions and mean and variance of the
tumoral profile), are determined by maximising the log-likelihood of the generative model
depicting the convolution, conditioned on the previously known mean and variance for healthy
cell populations. Since the closed form of the log-likelihood is not known for a convolution of
log-Normal, it is approximated through numerical integration (not needed with a convolution of
Normal distributions), and the MLE is obtained using a Nelder-Mead procedure.

• In a second time, tumoral profiles are estimated by plugging-in the parameters estimated in the
previous step. With a two-component model, the unit-simplex constraint (Equation (2)) and the
fundamental linear deconvolution assumption (Equation (1)), only one degree of freedom, or
unknown, namely the tumoral content, must be inferred (see [Ahn+13, Eq.1]).

[Erk+10] implements instead a Bayesian framework, Dsection (see Section 2.1.2, in which the bulk
expression of each gene in each sample, ygi, follows a Normal distribution whose parameters are
stochastic variables rather than point values. For instance, the distribution of the inverse of the
variance, referred to precision in the paper, is modelled by a Gamma distribution.

The posterior distribution of individual cell-specific expressions and bulk gene variances is
identifiable to known density distributions (conjugate priors). However, the posterior distribution of
cellular ratios lacks a known density distribution due to the intractable integration of the normalising
constant. The Metropolis-Hasting algorithm is employed to sample this posterior distribution, which is
only known up to a normalising constant, while Gibbs sampling is used to retrieve simultaneously the
joined posterior distributions of the whole set of parameters composing the generative model. Note
that in opposition to the Demix(T) approach ([Ahn+13]), the variance of the bulk expression is
uncoupled to the individual variance of the purified cellular profiles.

6The parameters are iteratively maximised, conditioned on the current updated value of the remaining subset of
parameters, rather than simultaneously
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(a) To each biological requirement, its suited
probabilistic model. The non-negative least squares
model (NNLS) and the non-negative maximum like-
lihood model (NNML) can only predict proportions
of pre-specified reference populations. In scenario ii),
the non-negative maximum likelihood new population
model (NNMLnp) can additionally account for an un-
known cell population, while in scenario iii) the per-
turbation model (PERT) can integrate sample-specific
variations. Reproduced from [Qia+12, Fig. 1].

(b) DAGs of the generative model described
in section 2.1.2. All the discrete probabilistic mod-
els derived from the LDA generative framework. This
DAG notably encompasses, using different colour no-
tations, the NNML, NNMLNP and PERT algorithms
([Qia+12]), along wihth the TEMT model [LX13].

(c) Graphical representation of the Demix(T)
([Ahn+13] and [Wan+18]) probabilistic model.

(d) Graphical representation of the Dsection
[Erk+10] probabilistic model.

Figure 5. Partial probabilistic models to infer cellular ratios.We follow the RevBayes convention to
homogenise indexes and parameters across a set of generative models. Notably, the likelihood density functions
describing the distribution of the observations, are in green colour while the prior distributions of the parameters
to estimate are in red colour.
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2.2 Marker-Based Approaches: Pathway Enrichment Analysis and
Hyper-Geometric Scores

Some deconvolution algorithms simplify the estimation process by adopting a marker-based paradigm.
The definition of “markers” genes has gradually broadened, from designing genes uniquely expressed in
a cell a population to include genes comprehensively expressed in one cell type relatively to other cell
groups. Marker-based relied historically on strong definitions of marker genes ([GPT07], [CSC10]),
however, nowadays, weak markers approaches are favoured (markers are only required to be
consistently over-expressed in a given cell population), since they also enable to delineate closely
related cell types.

These markers can be derived through either knowledge-driven approaches ([Ang+15], [Roo+15])
or data-driven methods [CZS15], [Bec+16], [Zha+17]. The initial data-driven strategy for identifying
marker genes involved identifying genes whose mean expression value in a give cell population
consistently exceeded the expression value measured across other cell types ([Sho+12], [CZS15]). More
robust statistical approaches, evaluating the relevance of selected markers through the computing of
empirically estimatedp-values, have been developed since then, ranging from SNR (signal-to-noise)
ratios [Bec+16], to the F-statistic ([Wan+10]) through the Gini index ([Zha+17]).

Integrating the definition of a gene marker into the fundamental presumption of linear
deconvolution simplifies framework Equation (1)) into Equation (6):

y∀g∈G̃j
=

J∑

j′=1

xgj′ × pj′ = xgjpj ,

since by definition xgj′ = 0,∀j′ ̸= j



y
G̃1

y
G̃2

...
y
G̃J


 =




x
G̃1,1

. . . 0

0 x
G̃2,2

0
...

. . .
...

0 . . . x
G̃J ,J


×




p1
p2
...
pJ




(6)

with the following notations:

• G̃ = {1, . . . , G} is the set indexing the total number of genes selected in the signature matrix (we
introduce the tilde as a shorthand indicator for a set).

• G̃j ⊂ G̃ is the subset of genes expressed uniquely in cell population j ∈ J̃

• We additionally assume the unique existence of a partition G̃, shared across samples, such that
G̃j ∩ G̃l = ∅, ∀(l, j) ∈ J̃ , l ̸= j and

⋃J
j=1 G̃j = G̃.

• We introduce the shorthand y
G̃j

and X
G̃j ,j

to respectively denote the measured expression of the

market set G̃j in the bulk mixture, and its respective expression in the purified cell population j.

If eq. (6) holds, the bulk expression associated to a gene marker set is proportional to the
expression of the cell population associated to this marker, the multiplicative constant being the ratio
associated to this cell type, pj .

However, as already specified in Section 2.1, the presence of technical noise or intrinsic biological
stochasticiy usually renders the system of equations inconsistent. Assuming the same framework
detailed in Section 2.1.1, the Normal Equations give the following OLS solution (Equation (7)):

p̂j =
1

|Gj |
∑

g∈G̃j

yg
xgj

(7)
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with |Gj | the module, namely the number of genes composing the marker set of a cell population.

Once specific markers for each population have been identified, the estimation of cellular ratios
relies either on abundance score (see Section 2.2.1) or enrichment score (see Section 2.2.2 and
Section 2.2.3).

2.2.1 Abundance scores

Historical endeavours, by [GPT07] and [CSC10], assume the strong definition of a marker (section 2.2)
holds, and the cellular ratios that were returned correspond to the estimates given in eq. (7). [CSC10]
only differed by the addition of a link function, precisely a log2 transformation to reduce the noise bias
associated to small ratio values, applied to the bulk and purified profiles.

Later, the MCP (Micro-environment Cell Populations)-counter, by [Bec+16], adopts a weak marker
paradigm, and replaces the abundance score given in Equation (7), by the geometric mean of the genes
characterising a given cell population (eq. (8)):

ES(G̃j ∈ G̃) =


 ∏

g∈G̃j

yj




1/|G̃j|
∝ pj (8)

2.2.2 Enrichment scores, based on KS metric

Most of the methods computing an enrichment score rely on a variant of the weighted
enrichment-based method named ssGSEA, for single-sample gene set enrichment analysis ([Sub+05]
and [Bar+09]). The computation of enrichment scores, based on the Kolmogorov–Smirnov metric, is
reported in Definition B.1, while its main limitations.

[Yos+13] implements the ESTIMATE metric to compute immune and stromal enrichment scores in
tumoral samples. Te best link function coupling the purity score (proportion of tumoral cells) with the
ESTIMATE measure was computed with the https://en.wikipedia.org/wiki/Eureqa software. [ASB15]
implements an extension of this method integrating orthogonal modalities. Precisely, the tumour
purity score is computed from four distinct sources: the ESTIMATE score itself , ABSOLUTE
(quantify the proportion of cancer cells based on the number and location of somatic copy-number
mutations), LUMP (correlation between the degree of methylation and the tumour proportion) and
immunehistochemistry image analysis.

[Roo+15] and [Ang+15] uses GSEA-based metrics to compute the tumoral activity and relate it to
mechanisms involved in immune tumour resistance. [Ang+15] notably demonstrates the co-existence
of two kinds of tumoural environments, distinguishing hypermutated tumours showing upregulation of
immunoinhibitory molecules from non-hypermutated and stagnant tumours, enriched with
immunosuppressive cells.

[Şen+16] infers gene markers for 24 distinct cell populations in 19 cancer types. With these
enrichment scores, they demonstrate that the over-expression of Th17, CD8+ and Tregs increases
chances of survival, while strong activity of Th2 cells is correlated with a negative prognostic.

Ultimately, the xCell algorithm, by [AHB17], claims to identify up to 64 distinct cell types,
including immune and stromal ones, derived from a compendium of 1822 purified transcriptomic cell
lines. Calibration, using a power link function to couple abundance scores with true cell ratios, and
reduction of the multi-collinearity of the signature matrix to avoid “spillover” effects, underlie the
originality, and robustness of the method.

Finally, TIminer, by [Tap+17], is a free Docker pipeline, aggregating the marker sets of [AHB17],
[Ang+15] and [Cha+17]. It was initially designed for estimating the proportion of infiltrated immune
cell types, along with neoantigen prediction and tumour immunogenicity.
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2.2.3 Enrichment scores, based on alternative metrics

Alternative strategies can be employed to compute enrichment scores, such the hypergeometric test
(see Definition B.2).

[BUK11] implements SPEC (Subset Prediction from Enrichment Correlation) to predict which cell
population is more likely to contribute to an observed change in the gene expression, based on Pearson
correlation. SPEC notably demonstrates that the main resistance mechanism of the gold-standard
treatment against Hepatis C was the cross-interaction between the myeloid cells and the
anti-interferon therapy.

[Sho+12] uses the z-score (negative log10 of p-value), resulting from a Fisher’s exact test.
The Bioconductor package BioQC, by [Zha+17], computes abundance scores by evaluating the

relevance of median differential expressions with a non-parametric Wilcoxon-Mann-Whitney test.

In conclusion, marker-based methodologies provide abundance scores that are only proxy of relative
cellular ratios. [AHB17] and [Yos+13] attempt to mitigate this issue, by learning a link function
coupling these two features. Overall, these restrictions render marker-based methods impractical for
intra-sample comparisons, in contrast to the signature-based methods, discussed in previous
Section 2.1 (see also Appendix B.3).

We outline the major categories of deconvolution algorithms used to estimate cell ratios in a
heterogeneous biological sample in Figure 6:

Figure 6. General classification of partial-based deconvolution algorithms.

2.3 Reference-Free Approaches: Simultaneous Deconvolution of Cell
Fractions and Purified Expression Profiles

Complete deconvolution algorithms attempt to simultaneously estimate both the proportions and the
pure expression profile of cell types [SG13] from the bulk profile alone, namely minimising the
following quantity (Equation (9)):

(
P̂ , X̂

)
= arg min

P ,X
{|Y −X × P |} Y ∈ RG×N

+ , X ∈ RG×J
+ , P ∈ RJ×N

+ (9)

Without further information, the system of equations described in Equation (9) is undetermined,
having either an infinite set of solutions or no one at all. Hence, the identifiability of the unsupervised
deconvolution problem require strong assumptions on the distribution.
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2.3.1 Unsupervised approaches

[Ven+01] proposes the first version of a reference-free approach, inspired from Gaussian mixtures, to
deconvolve colon cancer samples, from which two clusters, on a total of four identified, could be
labelled with strong evidence as hematopoietic and fibroblast cells. [Ven+01] also demonstrates that
the marker-based assumption (see Section 2.2) is a necessary condition for the existence and
uniqueness of the system of equations (Equation (9)).

Repsilber and colleagues then extended the method proposed by [Ven+01], by solving Equation (9)
using a Non-Negative Matrix Factorisation algorithm. NMF notably guarantees that both X and P
are strictly non-negative (see Definition C.1 and [Rep+10]), as reported in Equation (10):

min
P ,X

∥Y − PX∥2F
subject to the non-negativity constraints:

P ≥ 0, X ≥ 0

(10)

Variants of the NMF approach were used in UNDO, by [Wan+15] and CAM, by [Wan+16],
methodologies. The Convex Analysis of Mixtures (CAM) enforces both the non-negativity of the
outputs returned, and the unit-simplex constraint Equation (2) for the ratios. Precisely, these convex
geometry-based methods project the resulting bulk expression matrix Y into a J-dimensional polytope,
whereby each cell population profile forms a convex hull whose vertices are the marker genes of the
so-called cell population. The final set of convex solutions are the ones covering the most precisely the
facets of the convex hulls derived from the bulk profile. CAMTHC, by [Che19], for Convex Analysis of
Mixtures for Tissue Heterogeneity Characterisation, and CAMfree, by [JL21], are both R package
implementing the CAM methodology.

2.3.2 Semi-supervised approaches integrating prior information

Since then, semi-supervised approaches, coupling partial prior knowledge of markers associated with a
cell type with numerically inferred de-novo molecular markers, enable to increase the identifiability of
the problem by reducing the set of possible solutions. Semi-approaches directly extending [Wan+16]
have been implemented in R, as packages CAMmarker and CellMix 7 The usual approach to integrate
prior information is to constrain all input values of the purified expression profile to zero, except
whether the gene has formally been associated with a cell population.

Closely related is the semi-CAM approach, by [Don+20]. In details, the semi-CAM approach is a
two-step estimation procedure; first, it identifies the final gene partition for the deconvolution process,
assigning each unlabelled gene to its most probable cell type, given the already identified marker
genes. To achieve this, it enhances the k-means clustering employed by the CAMfree approach,
whereby the initial centroids are the vertices covering the most the convex hulls, by incorporating
known marker information into the cluster centre construction. Whenever known marker genes for
partially described cell types are available, [Don+20] demonstrates that the semi-CAM method
outperforms the unsupervised historical CAMfree method.

The Digital Sorting Algorithm (DSA, [Zho+13]), is another semi-supervised approach, adopting a
EM-like approach. Precisely, the cellular ratios and the purified expression profiles are iteratively
estimated, conditioned on the current update of the remaining parameters, until convergence. Prior
information can easily be integrated as initial values for either cellular ratios or purified expression
profiles. However, the identifiability of the problem still requires the marker assumption.

Overall, all the methods described in this section are much more sensitive to the quality of data
provided, especially when no prior information is provided.

7CellMix, by [Gau13], benchmarks a whole set of deconvolution methods, in particular, ssKL and ssFrobenius that solve
optimisation problem Equation (10) by minimising the KullBack Leibler divergence and the Frobenius norm, respectively.
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3 Outline of the Cellular Deconvolution Procedure

The estimation of the composition of a biological sample is only one of the steps composing the
deconvolution framework. In the remainder of the text, we define as pipeline this whole process,
ranging from the pre-processing and collection of purified profiles to the downstream analyses, while
the term “algorithm” only refers to the estimation stage itself.

A standard cellular deconvolution pipeline typically involves the following main steps:

1. Data Collection: This step, illustrated in the stage 1, in Section 3, involves the selection of
tissues and purified cell populations, subsequently followed by their preprocessing. The choice of
tissues and cell populations should be guided by the biological objective the experimenter
pursues and the characteristics of the bulk profiles to deconvolve.

2. Gene Marker Selection and the Refined Construction of Cellular Signatures: Partial
methods inferring cell ratios requires an additional step consisting of identifying and
characterising a subset of genes, able to delineate all the cell populations ought to compose the
mixture. Following the identification of gene markers, the purified expression profiles should
undergo the same preprocessing operations and transformations as the bulk mixture samples,
including the removal of unwanted batch effects induced by technical artefacts. This step is
illustrated in Section 3, part 2.

3. Parameter Estimation: This step refers to the deconvolution algorithm itself (stage 3,
Section 3). The type of tissue or/and organism to deconvolve along with the objective biological
goal guide the final choice of the algorithm used.

4. Evaluate the output: This step involves the formulation of statistical tests to assess the
presence of a cell population within the sample (intra-sample comparison) or to compare two cell
fractions across different biological conditions (inter-sample comparison). Surprisingly, there is a
notable absence of robust and widely accepted methods proving theoretically the consistency and
precision of the outputs returned by most deconvolution methods. Alternatively, it is possible to
benchmark the performance of a new deconvolution algorithm against gold-standard
deconvolution methods and against cytometry data.

5. Visualisation and biological interpretation: Ultimately, various visualisations and expert
validations play a pivotal role in verifying the precision and biological relevance of the algorithm
in deciphering disease mechanisms, or providing new biomarkers (see stage 4, in Section 3).

A practical use case, with the construction and the application of the LM22 signature in
conjunction with the CIBERSORT algorithm is reported in [Che+18]. In the following sections, we
provide a summary of guidelines for enhancing the performance of deconvolution algorithms, based on
insights drawn from recent benchmark studies.
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Figure 7. Workflow for bulk deconvolution methods. Inspired from [Avi+18, Fig. 1].

Since we have already elaborated in the previous section 2 about deconvolution algorithms, we now
focus on preliminary steps that are likely to improve the performance and reproducibility of any
deconvolution algorithms.

In section 3.1, we provide general guidelines for selecting datasets to create purified cellular
signatures, underscoring the significance of obtaining samples that closely match the phenotype
condition and technology platform of the bulk mixtures to be deconvoluted.

In section 3.2, we review strategies for identifying the minimal subset of genes that best
discriminates the cell populations included in the signature matrix.

3.1 Guidelines for Data Collection

3.1.1 Guidelines for Cell Population Selection in Data Collection

Many deconvolution methods are highly sensitive to the absence of cell subtypes in the reference
signature, yielding the best estimates when the reference profile faithfully represents the actual
composition of the biological sample [Stu+19].

These discrepancies, most pronounced in the absence of closely correlated or orthogonal cellular
profiles, lead to the “spillover” phenomena ([SG13], [Fa+20]). For instance, [Hao+19] demonstrates
substantial reduction in estimating the cellular ratios of moncotyes, when myeloid dendritic cells are
not included in the reference profile, despite being truly present in the mixture.

On the other hand, background prediction refers to erroneous identification of a cell population as
being present in a mixture. This issue is even more pronounced with marker-based methods
(section 2.2), assuming transcriptomic markers are associated with an unique cell population.

Overall, Cibersort [New+15], CibersortX [New+19] and MuSiC [Wan+19] are the least sensitive to
the presence of undescribed highly-correlated or rare cell types in the mixture ([JL21]).

3.1.2 Guidelines for Phenotype and Tissue Selection in Data Collection

To mitigate the recommendations of constructing the most representative cell signature, we should
highlight that comprehensive and simultaneous estimation of the whole array of cell populations
composing the mixture is usually infeasible.

Firstly, some rare cell types may remain unprofiled, in particular, tumoral profiles are complex to
dissect. Tumoral microenvironments display significant variability and plasticity, characterised by
distinct mutation patterns, and intra-tumour heterogeneity resulting from the joint presence of diverse
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tumoral subclones ([Bok+22]). In addition, somatic mutations in native cell lines may lead to the loss
of certain markers, posing challenges in defining pro-metastatic immune cell subsets ([Boe+22]),
especially for marker-based approaches.

TIMERtumour, by [Li+16] and EPICabsolute, by [Rac+17], are computational methodologies
specifically tailored to quantify the level of infiltration and contamination of tumoral tissues by
immune cells. Yet, none of the existing deconvolution methodologies address the intra tumoral
heterogeneity, stemming from the potential presence of distinct tumoral subclones ([Yu22]).

[Rac+17] additionally pinpoints that the actual deconvolution solutions for unravelling tumoral
heterogeneity are targeted towards decomposition of solid tumours, rather than ”liquid” tumours, such
as haematological malignancies (leukaemia).

Secondly, there is no unique and consistent nomenclature for identifying immune cell subsets, as
translating functional insights into reliable phenotypic definitions based on protein markers is
challenging ([ALH21]). It is noteworthy to mention that a suite of R packages, ontologyX [GRT17],
specially tailored to store biological annotations in a structured and tree-like format, have been
developed in order to homogenise cell nomenclature with updated ontologies, integrating updated cell
atlases ([Lew20]) and dictionary of immunological terms ([Uni23]).

Thirdly, it is strongly deterred to incorporate cell populations from different hierarchical levels in
the analysis, as this may lead to increased multicollinearity or even violate the independence
assumption between purified expression profiles. The best results are typically achieved by
constructing signature matrices at the finest level of granularity, as they mitigate “dropouts” effects by
better delineating closely related cell types.

In order to compute back the contributions of the parental and higher-ranked cell lines, [Stu+19]
provides the R function map result to celltypes in the immunedeconv package, which automatically
aggregates estimated descendant ratios to compute the parental fraction (or even cell lines separated
by further layers of lineage).

Ultimately, bad characterisation of cell populations may stem from existing intra-variability within
a cell population, which results from asynchronous dynamics, such as the coexistence of different
phases of the cell cycle.

While in controlled conditions, such as cell cultures, chemical arrest or nutrient starvation can
achieve synchronisation of the cell cycles [Bar+08], it becomes a challenging task when profiling living
tissue 8.

Sample-specific events, such as heterotypic contamination (for instance, infiltrates of blood
circulating immune cells, [Cha+19]), disease-induced ([Gau13]) or microenvironment dysregulations
([TPZ20]) may additionally alter the transcriptomic profiles of purified cell lines.

Accordingly, to mitigate the significant loss of performance commonly observed between artificial
benchmarks and real-world conditions, it is recommended to collect purified profiles in a variety of
tissues, or at least representative of the phenotype condition of the bulk profiles to deconvolve 9. The
performance of deconvolution algorithms in real conditions depends more on the representativeness of
cell types profiled in the signature and environmental conditions than the choice of the regression or
probabilistic framework, as discrepancies between the phenotype and tropic conditions of purified
samples, compared to bulk profiles, can introduce significant bias and reduce model accuracy ([SFL20],
[Cai+22]).

As a final side note, we quote [Stu+19], who believed that the “improvements made to signature
matrices largely outweigh potential algorithmic improvement”. We refer the reader to Section 3.1.2

8For instance, the CD3 marker, commonly used to define T cell subsets, may exhibit variable expression levels or even
be entirely absent, depending on the cell cycle phase.

9Unfortunately, this recommendation is rarely observed, for instance, the expression profile of eosinophils, in the LM22
signature of Cibersort ([New+15]) was solely estimated from three distinct samples, from the same cohort.
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providing general guidelines on the best signature to harness, with respect to the cell populations
profiled.

Figure 8. Guidelines for the selection of a deconvolution algorithm. The overall metric quantifies the
correlation between the inferred fractions with the initial parameters used in the benchmark. The background
prediction is a proxy of of the inclined of a deconvolution method to forecast the presence of a cellular classifi-
cation, even when absent in the mixture. Reproduced from [Stu+19, Table. 2].

Figure 9. Outline and general guidelines for practical application of deconvolution algorithms.

3.2 Guidelines for the Refined Construction of Cellular Signatures

3.2.1 Best Strategy for the Selection of Marker Genes in Cellular Signatures

Regarding the construction of a signature matrix, [Avi+18] emphasises that pre-filtering genes
exhibiting the strongest differences between cell types improves the robustness and reproducibility of
the algorithm. These techniques for refining the final subset of genes included in the signature matrix
fall under the general feature-engineering machine-learning framework. Feature selection usually refers
to the preprocessing stage that filters irrelevant variables before applying the model itself ([GE03]).

Precisely, partial deconvolution methods based on signature profiles (Section 2.1) typically employ
the “one-vs-all strategy” to identify the minimal set of transcripts consistently expressed in a given cell
population, compared to all others. This strategy notably aims to reduce gene expression variance
within a given cell type while simultaneously maximising the variance between different cell
populations. However, once concatenated, the number of identified markers is still usually intractable
to perform deconvolution tasks, and the resulting signature matrix often exhibits strong
multicollinearity.

To select the genes in a global approach, the most common approach, for models based on
regression optimisation, relies on optimising the condition number of the final reference matrix. In
short, the idea is to identify the subset of quantified genes whose combined expression in the
transcriptomic expression profile has the smallest condition number. This approach is particular
favoured within linear regression-based methods (see Section 2.1.1), [New+15] notably demonstrates
that minimising the condition number of the signature matrix effectively reduces its multicollinearity
and improves the performance and robustness of the deconvolution algorithm (see also Appendix D).

3.2.2 Best Strategy for Normalisation and Transformation in Cellular Signatures

Several benchmarks have recently been developed to compare the performances of numerical
deconvolution methods in relation with the preprocessing protocol chosen to normalise datasets
([Fa+20]) or the noise structure and magnitude ([JL21]).
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[Fa+20] defines data normalisation as the set of techniques to make samples’ distribution
comparable, including universal scaling methods (min-max, z -score, row or column-wise). It also
encompasses more specific methods, such as TPM or FPKM, to account for variations of the library
size and depth. On the other hand, data transformation refers to the link function applied on raw
datasets, such that the assumptions underlying the generative model hold.

[Fa+20] exhibits that scaling methods, such as row scaling, or z-score, which are used to smooth
extreme values, decrease overall the performance of the deconvolution algorithms. In addition, [Fa+20]
demonstrates that applying log-normalisation leads to suboptimal performances while the best results
are reached without transforming the data, conclusions consistent to the findings from [Zho+13].
Indeed, [Hof+06] shows that the log2 transformation, while better guaranteeing the normality
requirements on the distribution of the residuals, breaks the fundamental linear assumption
(Equation (1)).

[JL21] suggests to apply the same transformations on both the purified signature matrix and the
bulk matrix expression, with the best performances obtained with TPM (Transcripts Per Million)
normalisation. [Rac+17] indeed suggests that the TPM normalisation, as a linear mapping, naturally
enforces the unit-simplex constraint Equation (2).

To counterbalance technical biases induced by the transcriptomic quantification technology, either
RNA-Seq or microarray, some deconvolution methodologies, such as CibersortX ([New+19]) propose
automated batch correction effect with the ComBat function, prior to the deconvolution process.
Interestingly, [JL21] demonstrates that Cibersort [New+15], CibersortX [New+19] and MuSiC
[Wan+19] were less sensitive to the choice of normalisation and sequencing platform, compared to
other methods benchmarked.

In conclusion of this section, [JL21] shows that penalised regression approaches, including Lasso,
Ridge and Elastic Net ([Alt+14]) approaches were usually outperformed by robust linear regression
approaches (RLR, FARDEEP, SVR, see Section 2.1.1).

For readers interested in further exploration of this topic, we recommend the following review
papers, which offer comprehensive insights into recently developed deconvolution approaches and
outline future perspectives and unmet needs for enhancing their exploratory capabilities: [Fin+19b],
[Pet+18], [Avi+18] and [Bla+21].

4 General Discussion: the Fate of Deconvolution Algorithms
in the Fields of Spatial Transcriptomics and single cell
RNA-Seq

4.1 Overview of Spatial Transcriptomics and Single-Cell RNA Sequencing

Spatial transcriptomics enables the simultaneous profiling of gene expression at a high spatial
resolution in-situ, while preserving the global cellular layout. ST reveals notably useful to determine
the general layout of cell populations within a tissue and to identify hotspots, also known as “niches”
(localised microenvironments in which stem cells prevail over fully differentiated cell subtypes) 10.

However, the design of the lattice of spots in ST technologies, such as HDST [Vic+19] or Slide-Seq
[Rod+19]), is constrained by physical limitations that directly alleviate the final resolution (namely
the distance between capture spots). Hence, it is not uncommon that the mRNA collected at a given
sport constitutes a mixture of cell types, rather than representing a single cell.

Thus, SRT techniques have to meet a middle ground between cellular resolution and the depth and
coverage of the RNA library. For instance, approaches like SeqFISH+ ([Eng+19]) and MERFISH

10It is common to use the abbreviation “SRT”, for Spatially Resolved Transcriptomics, when referring to the general
spatial sequencing framework, in order to mitigate nomenclature confusion with the specific and corporate technology
“Spatial Transcriptomics” ([St̊a+16])/
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([Che+15]) provide subcellular resolution but are limited in throughput. Conversely, Spatial
Transcriptomics ([St̊a+16]) and FISSEQ ([Lee+14]) exhibit larger coverage of the genome, yet they
cannot achieve single-cell resolution sequencing and are further constrained by high detection
thresholds 11.

Single-cell RNA sequencing (scRNA-Seq) provides a high-resolution view of the transcriptome, by
quantifying RNA content at the single-cell level. scRNA-Seq enabled to uncover cellular heterogeneity,
identify rare cell populations, and capture complex dynamic changes in gene expression, that were
typically obscured in bulk RNA-Seq analysis.

However, scRNA-Seq is costly and time-consuming, making it challenging to scale up for large
sample sizes. In addition, the sparse nature of scRNA-Seq outputs, resulting from “drop-outs” and the
complexity of the technology, renders the analysis challenging and prone to higher technical biases and
variability. Hence, going down to the single cell level, scRNA-Seq typically exhibits lower coverage and
depth compared to bulk RNASeq (but still higher compared to SRT).

Coupling scRNA-Seq with spatial transcriptomic data streamlines the understanding of the
mechanisms relating gene expression patterns with changes of cell populations within tissues, by
bridging the advantages of both methodologies while mitigating their major limitations. However,
mismatch, designing the discordance between the cell types inferred from expression profiles derived
from single-cell RNA sequencing and SRT, is commonly observed. Mismatch usually results from
pre-sequencing and post-sequencing artefacts. Pre-sequencing mismatch can stem from sampling bias
of the tissue section (lower depth with spatial barcoding or lower access to intertwined tissue
structures with HPRI) or from an artificial and ectopic stimuli perturbing the cellular expression
profile (stress response, or less likely, alteration of cell phenotype due to the disruption of in situ
spatial dynamics resulting from tissue dissociation).

4.2 Construction of reference signatures, based on single Cell RNA-Seq
profiles

On the other hand, single-cell RNA sequencing technologies empower cellular deconvolution
algorithms, by enabling the derivation of signature matrices more representative of the phenotype
condition.

Indeed, by capturing gene expression profiles at the single-cell level, scRNA-Seq allows better
discrimination of closely related cell types, and identification of rare cell type variants, which are likely
to be confused with noise using bulk RNA-Seq.

Even better, the stronger granularity of scRNA-Seq outputs enables to capture the heterogeneity
within cell populations, including unravelling asynchronous states of a cell population.

4.3 Integrating Spatial Transcriptomics with Single-Cell RNA-Seq Data
Through Deconvolution Approaches

Recent alternative to mitigate the low detection threshold of scRNA in SRT and better handle
mismatch issues, involve two primary approaches: deconvolution algorithms and mapping (report to
Appendix E).

Spatial deconvolution tools, a close synonym to stochastic profiling techniques, estimate the cell
composition for each capture spot. While sequencing the transcriptome at the single cell level is
usually infeasible in a spatial context, aggregating the expression of a random pool of cells (usually
rather small, aggregating no more than a dozen of them) automatically increases the depth and
coverage of the RNA library, which in turn counterbalances the intrinsic noisiness and low resolution
of scRNA-Seq methods.

11A minimal number of 200 mRNA molecules per cell is required to detect the expression of a transcript, excluding
practically a large amount of genes involved only in specific phases of the cell cycle
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Spatial deconvolution algorithms usually capitalise on reference signatures obtained from single-cell
RNA sequencing profiles (see section 4.2), instead of bulk expression. The final signature is finally
computed by summing the individual cellular contributions in order to reconstitute a “pseudo-bulk”
mixture.

Nonetheless, spatial deconvolution algorithms necessitate specific adjustments compared to
traditional approaches, as conventional deconvolution algorithms, designed for bulk transcriptome,
often yield suboptimal results when dealing with sparse expression matrices, inherent to the SRT
framework ([Kle+20]). In addition, spatial deconvolution methods face similar challenges to
traditional deconvolution algorithms, as they too, cannot obtain absolute estimation of cell ratios, thus
limiting their applicability for meaningful intra-sample comparisons.

The most population spatial deconvolution methods encompass, ranked by analytical complexity:

• The most basic methods calculate “enrichment scores” that indicate the degree of association
between an individual spatial location and a specific cell type. These scores are computed using
the same techniques outlined in Section 2.2. For example, in Seurat, by [Kis+17], each spatial
location is assigned to the cell type whose expression profile, composed of the markers within its
gene set, exhibits the highest similarity.

Taking a more advanced approach, the Multimodal Intersection Analysis (MIA, [Mon+20])
combines gene pathway information inferred from scRNA-Seq data with gene modules that are
identified as enriched through spatial barcoding techniques.

• SPOTlight [Elo+21] and SpatialDWLS [DY21] are both regression-based models that used linear
solvers to estimate cellular ratios while enforcing the unit-simplex constraint, through the
non-negative least squares (NNLS) algorithm.

• Probabilistic models, represent the mixture as a convolution of parametric distributions whose
estimated cell ratios are the MLE (alternatively the MAP whereby a prior distribution is
assigned to the cell ratios) of the distribution. Stereoscope ([Kho+21], also illustrated in
section 4.3) and Cell2location ([Kle+20]) fit the distribution with a mixture of negative
binomial(NB) distributions, while Robust cell-type decomposition (RCTD, [Cab+22]) utilises
Poisson distributions.

• NMF regression (NMFref) is an unsupervised algorithm used both by SlideSeq [XHB16] and
SPOTLight [Gul+13] to infer simultaneously cellular ratios and individual expression profiles.

• More exotic and recent methods explore alternative ways, such as DSTG [He+20] algorithm
using mutual nearest neighbour clustering or deep-learning methods, with Tangram [Ber+20].
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Figure 10. Illustration of a spatial deconvolution algorithm principle, with stereoscope.A decon-
volution algorithm is used to model and infer the mixture composition of cell populations at a specific capture
site using signatures derived from single-cell datasets. stereoscope precisely employs a convolution of Negative
Binomials to model the mixture of cell types within a captured side. Reproduced from [Kho+21, Fig. 1].

Promising studies extend the investigational capacity of spatial transcriptomics, by coupling
high-resolution tissue images with histological annotations (cell sizes and shapes, for instance) and
SRT data ([Lar+22]). It is hence believed that the integration of distinct biological modalities in a
spatially resolved context is poised to elucidate the as-yet-unsolved biological processes driving the
spatial organisation of tissue niches([Roz+17]).

SpaDecon, by [Col+23], is one of the most promising spatial integrated approach, coupling
histological annotations with metabolic and transcriptomic activity. 34P, by [Occ+23], even claims to
be able to dissect intra-tumour heterogeneity in luminal breast cancer by integrating morphological
annotations, SRT data and whole slide images to a neural network architecture. As a complementary
resource, we refer the interested readers to [Rao+21], [Lon+21], [Kre21] and [Wil+22] for a
comprehensive and updated review of a whole array of pioneering methods integrating spatial
transcriptomic, scRNA-Seq technologies and imagery annotations.

To close this discussion, [Tes+17] pinpointed that the lack of reproducibility and robustness
observed for most deconvolution methods may be mitigated by coupling cellular estimates obtained
from distinct biological sources. Yet, a comprehensive benchmark comparing the performance of
deconvolution approaches with regard to the biological input still lacks.
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5.2 Conclusion: major Limitations of existing Deconvolu-
tion Algorithms Solutions

All the the deconvolution methods we reviewed in Section 5.1 exhibit limited performance in
estimating rare cell populations, or delineating cell populations with closely related molecular
profiles, limitations that were also reported in the comparative review by [FT18]. We posit that
the biologically erroneous assumption of the absence of gene-gene interactions is one of the major
sources of the limited robustness and reproducibility of deconvolution algorithms.

To address these shortcomings, in the final chapter of this thesis (Section 6.1), we propose
an innovative deconvolution algorithm, DeCovarT, assuming a paradigm shift by considering a
multivariate and integrated approach to unravel the constituents of the “soup of transcripts”.



Chapter6
Article 4: DeCovarT, a deconvolution
algorithm leveraging co-expression
networks

Statistical Objective: Enhancing the Robustness of Deconvolution Algorithms
through Integration of Co-Expression Networks The truly innovative statistical contri-
bution of this thesis is underscored by the implementation of a new deconvolution algorithm,
“DeCovarT”, to address common limitations of recently developed deconvolution solutions. No-
tably, gold-standard approaches (see Chapter 5), such as CIBERSORT, tend to underperform
when estimating closely related, or rare, cell populations. In order to alleviate these limitations, we
relax the assumption of independence between individual gene expressions, integrating explicitly
transcriptomic co-expression networks in the generative model. Finally, by constraining that the
parameters controlling the individual distribution of cell profiles are known prior to the simulation,
and by modelling explicitly the stochastic nature of the regulation of transcriptomic expression,
we indeed expected that the method proposed would be less sensible to sample-specific variations
of the transcriptome.

Specifically, we modelled the purified expression profile, characterizing the transcriptomic
expression of each cell population, as a random vector following a multivariate Gaussian distribu-
tion. The associated covariance matrix explicitly encodes direct gene interactions. In addition,
we assume that the bulk transcriptomic mixture can be reconstructed as the convolution of these
multivariate variables describing the cell expression profiles, each weighted by unknown cellular
ratio.

6.1 Article 4
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Abstract

Although bulk transcriptomic analyses have greatly contributed to a better understanding of complex
diseases, their sensibility is hampered by the highly heterogeneous cellular compositions of biological
samples. To address this limitation, computational deconvolution methods have been designed to
automatically estimate the frequencies of the cellular components that make up tissues, typically using
reference samples of physically purified populations. However, they perform badly at differentiating
closely related cell populations.

We hypothesised that the integration of the covariance matrices of the reference samples could
improve the performance of deconvolution algorithms. We therefore developed a new tool, DeCovarT,
that integrates the structure of individual cellular transcriptomic network to reconstruct the bulk profile.
Specifically, we inferred the ratios of the mixture components by a standard maximum likelihood
estimation (MLE) method, using the Levenberg-Marquardt algorithm to recover the maximum from the
parametric convolutional distribution of our model. We then consider a reparametrisation of the
log-likelihood to explicitly incorporate the simplex constraint on the ratios. Preliminary numerical
simulations suggest that this new algorithm outperforms previously published methods, particularly
when individual cellular transcriptomic profiles strongly overlap.
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1 Introduction

The analysis of the bulk transcriptome provided new insights on the mechanisms underlying disease
development. However, such methods ignore the intrinsic cellular heterogeneity of complex biological
samples, by averaging measurements over several distinct cell populations. Failure to account for
changes of the cell composition is likely to result in a loss of specificity (genes mistakenly identified as
differentially expressed, while they only reflect an increase in the cell population naturally producing
them) and sensibility (genes expressed by minor cell populations are amenable being masked by highly
variable expression from major cell populations).

Accordingly, a range of computational methods have been developed to estimate cellular fractions,
but they perform poorly in discriminating cell types displaying high phenotypic proximity. Indeed, most
of them assume that purified cell expression profiles are fixed observations, omitting the variability and
intrinsically interconnected structure of the transcriptome. For instance, the gold-standard
deconvolution algorithm CIBERSORT [New15] applies nu-support vector regression (ν-SVR) to recover
the minimal subset of the most informative genes in the purified signature matrix. However, this
machine learning approach assumes that the transcriptomic expressions are independent.

In contrast to these approaches, we hypothesised that integrating the pairwise covariance of the
genes into the reference transcriptome profiles could enhance the performance of transcriptomic
deconvolution methods. The generative probabilistic model of our algorithm, DeCovarT (Deconvolution
using the Transcriptomic Covariance), implements this integrated approach.

2 Model

First, we introduce the following notations:

• (y = (ygi) ∈ RG×N
+ is the global bulk transcriptomic expression, measured in N individuals.

• X = (xgj) ∈ MRG×J the signature matrix of the mean expression of G genes in J purified cell
populations.

• p = (pji) ∈]0, 1[J×N the unknown relative proportions of cell populations in N samples

As in most traditional deconvolution models, we assume that the total bulk expression can be
reconstructed by summing the individual contributions of each cell population weighted by its frequency,
as stated explicitly in the following linear matricial relationship (Equation (1)):

y = X × p (1)

In addition, we consider unit simplex constraint on the cellular ratios, p (Equation (2)):

{∑J
j=1 pj = 1

∀j ∈ J̃ pj ≥ 0
(2)

2.1 Standard linear deconvolution model

However, in real conditions with technical and environmental variability, strict linearity of the
deconvolution does not usually hold. Thus, an additional error term is usually considered, and without
further assumption on the distribution of this error term, the usual approach to retrieve the best of
parameters is by minimising the squared error term between the mixture expressions predicted by the
linear model and the actual observed response. This optimisation task is achieved through the ordinary
least squares (OLS) approach (Equation (3)),

p̂OLS
i ≡ argmin

pi

||ŷi − yi||2 = argmin
pi

||Xpi − yi||2 =
G∑

g=1


ygi −

J∑

j=1

xgjpji


 (3)
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If we additionally assume that the stochastic error term follows a homoscedastic zero-centred
Gaussian distribution and that the value of the observed covariates (here, the purified expression
profiles) is determined (see the corresponding graphical representation in Figure 1a and the set of
equations describing it Equation (4)),

ygi =

J∑

j=1

xgjpji + ϵi, ygi ∼ N




J∑

j=1

xgjpji, σ
2
i


 , ϵi ∼ N (0, σ2

i ) (4)

then, the MLE is equal to the OLS, which, in this framework, is given explicitly by Equation (5):

p̂OLS
i = (X⊤X)−1X⊤yi (5)

and is known under the the Gauss-Markov theorem.

2.2 Motivation of using a probabilistic convolution framework

In contrast to standard linear regression models, we relax in the DeCovarT modelling framework the
exogeneity assumption, by considering the set of covariates X as random variables rather than fixed
measures, in a process close to the approach of DSection algorithm and DeMixt algorithms. However, to
our knowledge, we are the first to weaken the independence assumption between observations by
explicitly considering a multivariate distribution and integrating the intrinsic covariance structure of the
transcriptome of each purified cell population.

To do so, we conjecture that the G-dimensional vector xj characterising the transcriptomic
expression of each cell population follows a multivariate Gaussian distribution, given by Equation (6):

Det(2πΣj)
− 1

2 exp

(
−1

2
(xj − µ.j)Σ

−1
j (xj − µ.j)

⊤
)

(6)

and parametrised by:

• µ.j , the mean purified transcriptomic expression of cell population j

• Σj , the covariance matrix of each cell population, constrained to be positive-definite (see
Appendix A.1). Precisely, we retrieve it from inferring its inverse, known as the precision matrix,
through the gLasso [Maz11] algorithm. We define Θj ≡ Σ−1

j the corresponding precision matrix,
whose inputs, after normalisation, store the partial correlation between two genes, conditioned on
all the others. Notably, pairwise gene interactions whose corresponding off-diagonal terms in the
precision matrix are null are considered statistically spurious, and discarded.

To derive the log-likelihood of our model, first we plugged-in the mean and covariance parameters
ζj =

(
µ.j ,Σj

)
estimated for each cell population in the previous step. Then, setting

ζ = (µ,Σ), µ = (µ.j)j∈J̃ ∈ MG×J , Σ ∈ MG×G the known parameters and p the unknown cellular
ratios, we show that the conditional distribution of the observed bulk mixture, conditioned on the
individual purified expression profiles and their ratios in the sample, y|(ζ,p), is the convolution of
pairwise independent multivariate Gaussian distributions. Using the affine invariance property of
Gaussian distributions, we can show that this convolution is also a multivariate Gaussian distribution,
given by Equation (7).

y|(ζ,p) ∼ NG(µp,Σ) with µ = (µ.j)j∈J̃ , p = (p1, . . . , pJ) and Σ =

J∑

j=1

p2jΣj (7)

The DAG associated to this modelling framework is shown in Figure 1b).
In the next section, we provide an explicit formula of the log-likelihood of our probabilistic

framework, its gradient and hessian, which in turn can be used to retrieve the MLE of our distribution.
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(a) Standard linear model representation.

(b) The generative model used for the DeCovarT framework.

Figure 1. We use the standard graphical convention of graphical models, as depicted in RevBayes webpage. For
identifiability reasons, we conjecture that all variability proceeds from the stochastic nature of the covariates.

2.3 Derivation of the log-likelihood

From Equation (7), the conditional log-likelihood is readily computed and given by Equation (8):

ℓy|ζ(p) = C + log


Det




J∑

j=1

p2jΣj




−1

− 1

2
(y − pµ)⊤




J∑

j=1

p2jΣj




−1

(y − pµ) (8)

2.4 First and second-order derivation of the unconstrained DeCovarT
log-likelihood function

The stationary points of a function and notably maxima, are given by the roots (the values at which the
function crosses the x-axis) of its gradient, in our context, the vector: ∇ℓ : RJ → RJ evaluated at point
∇ℓ(p) :]0, 1[J→ RJ . Since the computation is the same for any cell ratio pj , we give an explicit formula
for only one of them (Equation (9)):

∂ℓy|ζ(p)

∂pj
= ∂ log(Det(Θ))

∂pj
− 1

2

[
∂(y−µp)⊤

∂pj
Θ(y−µp)+(y−µp)⊤ ∂Θ

∂pj
(y−µp)+(y−µp)⊤Θ

∂(y−µp)
∂pj

]

=−Tr
(
Θ ∂Σ

∂pj

)
− 1

2

[
−µ⊤

.jΘ(y−µp)−(y−µp)⊤Θ ∂Σ
∂pj

Θ(y−µp)−(y−µp)⊤Θµ.j

]

=−2pj Tr (ΘΣj) + (y − µp)⊤Θµ.j + pj(y − µp)⊤ΘΣjΘ(y − µp)

(9)

Since the solution to ∇
(
ℓy|ζ(p)

)
= 0 is not closed, we had to approximate the MLE using iterated

numerical optimisation methods. Some of them, such as the Levenberg–Marquardt algorithm, require a
second-order approximation of the function, which needs the computation of the Hessian matrix.
Deriving once more Equation (9) yields the Hessian matrix, H ∈ MJ×J is given by:

Hi,i =
∂2ℓ

∂2pi
= −2Tr (ΘΣi) + 4p2i Tr

(
(ΘΣi)

2
)
−2pi(y − µp)⊤ΘΣiΘµ.i − µ⊤

.iΘµ.i −

2pi(y − µp)⊤ΘΣiΘµ.i − (y − µp)⊤Θ
(
4p2iΣiΘΣi −Σi

)
Θ(y − µp), i ∈ J̃

Hi,j =
∂2ℓ

∂pi∂pj
= 4pjpi Tr (ΘΣjΘΣi)−2pi(y − µp)⊤ΘΣiΘµ.j − µ⊤

.iΘµ.j −

2pj(y − µp)⊤ΘΣjΘµ.i − 4pipj(y − µp)⊤ΘΣiΘΣjΘ(y − µp), (i, j) ∈ J̃2, i ̸= j

(10)
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in which the coloured sections pair one by one with the corresponding coloured sections of the gradient,
given in Equation (9).

Matrix calculus can largely ease the derivation of complex algebraic expressions, thus we remind in
Appendices A.1 and A.2 relevant matrix properties and derivations. The numerical consistency of these
derivatives was asserted with the numDeriv package, using the more stable Richardson’s extrapolation
([For81]).

However, the explicit formulas for the gradient and the hessian matrix of the log-likelihood function,
given in Equation (9) and Equation (10) respectively, do not take into account the simplex constraint
assigned to the ratios. While some optimisation methods use heuristic methods to solve this problem, we
consider alternatively a reparametrised version of the problem, detailed comprehensively in Appendix
A.3.

3 Simulations

3.1 Simulation of a convolution of multivariate Gaussian mixtures

To assert numerically the relevance of accounting the correlation between expressed transcripts, we
designed a simple toy example with two genes and two cell proportions. Hence, using the simplex
constraint (Equation (2)), we only have to estimate one free unconstrained parameter, θ1, and then uses
the mapping function, defined in Appendix A.3 to recover the ratios in their original space.

We simulated the bulk mixture, y ∈ MG×N , for a set of artificial samples N = 500, with the
following generative model:

• We have tested two levels of cellular ratios, one with equi-balanced proportions
(p = (p1, p2 = 1− p1) = (12 ,

1
2 ) and one with highly unbalanced cell populations: p = (0.95, 0.05).

• Then, each purified transcriptomic profile is drawn from a multivariate Gaussian distribution. We
compared two scenarios, playing on the mean distance of centroids, respectively
µ.1 = (20, 22), µ.2 = (22, 20) and µ.2 = (20, 40), µ.2 = (40, 20)) and building the covariance matrix,
Σ ∈ M2×2 by assuming equal individual variances for each gene (the diagonal terms of the
covariance matrix, Diag(Σ1) = Diag(Σ1) = I2) but varying the pairwise correlation between gene
1 and gene 2, Cov [x1,2], on the following set of values: {−0.8,−0.6, . . . , 0.8} for each of the cell
population.

• As stated in Equation (1), we assume that the bulk mixture, y.i could be directly reconstructed by
summing up the individual cellular contributions weighted by their abundance, without additional
noise.

3.2 Iterated optimisation

The extremum, and by extension the MLE, is a root of the gradient of the log-likelihood. However, in
our generative framework, the inverse function cancelling the gradient of Equation Equation (8) is
non-closed. Instead, iterated numerical optimisation algorithms that consider first or second-order
approximations of the function to optimise are used to approximate the roots.

The Levenberg-Marquardt (LM) algorithm ([Lev44]) bridges the gap between between the steepest
descent method (first-order) and the Newton-Raphson method (second-order) by inflating the diagonal
terms of the Hessian matrix. Far from the endpoint, a second-order descent is favoured for its faster
convergence pace, while the steepest approach is privileged close to the extremum since it allows careful
refinement of the step size. Specially, we used the LM implementation of R package marqLevAlg to infer
estimates of the cellular ratios from the bootstrap simulations ([Phi+21]). It notably includes an
additional convergence criteria, the relative distance to the maximum (RDM), that sets apart extrema
from spurious saddle points.
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Figure 2. We used the package ComplexHeatmap to display the mean square error (MSE) of the estimated
cell ratios, comparing the NNLS output, as implemented in the DeconRNASeq algorithm ([Gon13]), in Panel A,
with our newly implemented DeCovarT algorithm, in Panel B. The lower the MSE, the least noisy and biased
the estimates. In addition, we added the two-dimensional density plot for the intermediate scenario, for which
each population is parameterised by a diagonal covariance matrix, and the most extreme scenarios (those with
the highest correlation between genes). The ellipsoids represent for each cell population the 95% confidence
region and the red spherical icon and the green triangular icon represent respectively the centroids (average
expression of gene 1 and gene 2) of cell population 1 and cell population 2.

3.3 Results

We compared the performance of DeCovarT algorithm with the DeconRNASeq algorithm ([Gon13]).
Even with a limited toy example including two cell populations characterised only by two genes, we

observe that the overlap was a good proxy of the quality of the estimation: the less the overlap between
the two cell distributions, the better the quality of the estimation Figure 2.

The package used to generate the simulations and infer ratios from virtual or real biological mixtures
with the DeCovarT algorithm is implemented on my personal Github account DeCovarT.

4 Perspectives

The new deconvolution algorithm that we implemented, DeCovarT, is the first one based on a
multivariate generative model while enforcing explicitly the simplex constraint. Hence, it provides a
strong basis to further derive statistical tests to assert whether the proportion of a given cell population
differs significantly between two distinct biological conditions.

Extend the Simulation Framework To evaluate the biological and statistical interest of DeCovarT,
we need to expand the simulation framework, by encompassing a larger number of cell types, genes, and
testing the sensitivity of the model by voluntarily including noise in the benchmark evaluation.

The next phase of our evaluation involves real-world experiments, encompassing both blood and solid
tumoral samples. To that end, we could start from the Kassandra benchmark, by [Zai22]. This
large-scale project evaluates the performance of five established gold-standard and signature-based
deconvolution algorithms, including EPIC [Rac17], CIBERSORT [New15], CIBERSORTx [New+19],
quanTIseq [Fin19], and ABIS [Mon+19]. The evaluation involves deconvolving six publicly available
datasets annotated with both flow cytometry and bulk RNA-seq expression.
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Enhanced Inference and Integration of Co-Expression Networks All the popular differential
gene expression analyses, such as limma + voom ([Rit+15]), EdgeR ([RMS10]) and Deseq2 ([Var+16]),
tend to overlook gene-gene interactions, comparing independently the expression between two conditions
for each gene. The usual univariate approach of DGEAs additionally underlies the need of adjusting p−
values, as numerous genes are examined simultaneously, and without accounting for interactions between
them, the probability of observing false positives increases.

To account for correlations among observations, two consecutive papers, by [CL23] and [CCB22],
present an innovative Bayesian framework which models proteomic expression across diverse biological
conditions as multivariate Gaussian distributions. Insightful discussions with the main author, Marie
Chion, suggest a straightforward extension of the method to transcriptomic expression, given the close
relationship between two kinds of omics, both depicting counts.

While the methodology was originally designed to delineate differentially expressed genes between
two conditions, the method can be readily extended to incorporate a one-vs-all strategy. This extension
allows for the identification of markers specific to a particular cell population in comparison to all others.
Furthermore, the generative model aligns closely with our deconvolution framework, leveraging the same
distributions to describe cellular omic profiles. Alternatively, differential network approaches, such as
INDEED, by [Zuo16], implement heuristic and dual-optimisation approaches, finding the sweet spot
between maximising the mean differences between purified expression profiles and differentiating the
neighbourhood network structure.

The gLasso algorithm used to derive the precision matrix associated to each purified cell profile is
subjected to parameter shrinkage, like any penalty regularisation approach. Notably, in our setting,
shrinkage tends to systematically underestimate the non-zero partial correlations of the precision matrix.

To mitigate this issue, one approach is to incorporate the support (indicating non-null inputs),
derived from the gLasso output, into a conventional Maximum Likelihood Estimation (MLE) framework.
The general concept is to utilising the true ”zeros” to impose topological constraints on the final
Gaussian Graphical Model (GGM). However, it’s important to note that unless the undirected Markov
network obtained from the gLasso output is a chordal graph, there is usually no straightforward mapping
between the two topological spaces.

Finally, the inclusion of prior biological knowledge, such as the strength of relationships between
transcription factors, retrieved from Protein-Protein Interaction (PPI) networks, can help reduce the
exponential space of undirected graphs to explore.

Enhanced Inference and Integration of Co-Expression Networks All the methods outlined in
Section 4 yield a subset of genes that distinguish a particular cell population from all others. However,
when we combine these gene subsets, we often end up with a non-scalable signature matrix, presenting
strong multicollinearity resulting from the redundancy between the gene markers identified.

To further refine the final set of genes able to delineating any cell population included in the
signature matrix, AutoGeneS, by [Ali21], introduces a greedy genetic approach coupled with a dual
optimisation approach 1. Precisely, the loss function involves minimising inter-population correlation
while simultaneously maximising the distance of the centroids.

We propose instead of this dual optimisation approach the minimisation of the global overlap
between the concatenated distributions of the cellular profiles. Indeed, this metric not only captures in a
single criterion the combined influence of mean inter-cluster distance and differential network structure
in delineating purified cellular expression profiles, but supplies a straightforward score easy to interpret.
The overlap metric precisely measures the shared probability mass and the degree of concurrence in
probability densities. In simpler terms, it quantifies the global probability of incorrectly assigning an
expression profile to the wrong cell subtype when utilising a maximum a posteriori approach, with the
knowledge of each cellular profile’s individual parameters.

1In standard approaches that rely on linear regression, the condition number serves as the gold-standard metric for
assessing the level of precision of the linear model achievable with the design matrix

7/9



Joint Estimation of purified Expression Profiles and Cellular Ratios The generative model
underlying the DeCovarT framework (Figure 1b) assumes that both the ratios and the purified cellular
expression profiles are unobserved and need to be inferred from our model. However, we derived explicit
formulas for the Gradient (eq. (9)) and Hessian (eq. (10)) of the associated log-likelihood function as if
the purified expression profiles had been observed, by heuristically replacing the unknown and
sample-specific purified expression profiles X .i with their averaged counterparts µ. However, jointly
optimising the cellular ratios and the purified expression profiles results in a non identifiable problem
exhibiting an infinite number of solutions, without strong prior assumptions or regularisation of the
unknown parameters to estimate. Finally, it’s a highly intractable analytical task, and it is quite likely
that no explicit form of the Gradient, nor the Hessian, could be derived.

We detail in Appendix B a Gibbs sampler to approximate the target distribution, here the joint value
of the purified profiles and the cellular ratios. In addition, MCMC sampling allows for straightforward
incorporation of prior knowledge, and streamlines the derivation of Maximum a Posteriori (MAP)
estimates and credible intervals.

Precisely, by coupling Gibbs and Metropolis Hasting samplers, we ensure at each iteration that the
estimated parameters adhered to the “balance condition”, an essential property guaranteeing the
convergence of MCMC chains to a stationary distribution identifiable to the target distribution.
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6.2 Conclusion
In a reduced toy example, involving two cell populations characterized solely by two genes, we
first demonstrated that the level of mutual correlation between the two transcripts significantly
influences the final precision of the estimated cellular ratios. We additionally exhibited that
the loss of performance resulting from overlapping purified profiles was partially mitigated with
DeCovarT, thanks to the explicit integration of underlying transcriptomic networks, compared to
standard algorithm DeconRNASeq that relies on a quadratic optimisation approach. Moreover,
the utilization of a generative model simplifies the development of statistical tests, allowing for a
meaningful detection of significant changes in cell composition.

As detailed in Section 6.1, the current implementation version of DeCovarT, did not scale well
with noisy datasets or unbalanced cellular composition. As briefly evoked in the manuscript, it
turned out that the significant discrepancy observed between the estimated cellular ratios and
the values used to simulate the artificial bulk mixtures proceeds essentially from the heuristic
approach we adopted to integrate the unobserved and individual cellular expression profiles.
Briefly, instead of considering them as another multidimensional parameter to estimate, in this
first approach, we approximate sample-specific expression variations by the prior mean parameter.

As, the joint estimation of the purified expression profiles and the cellular ratios is challenging,
we briefly introduce a Gibbs sampling approach in the perspectives of the paper to alleviate
the analytical burden. Additionally, this novel modelling framework would provide a more
comprehensive description of the transcriptomic variability, at the individual level.

6.3 Publication Outline
Adopting a network-based and multidimensional approach to model the bulk mixture impacts the
whole deconvolution process, from the selection of marker genes to the derivation of statistical
tests asserting a level of confidence to the cellular ratios estimated (chapter 5).

Accordingly, we plan to decompose the publication process in three stages. First, a method-
ological paper, in collaboration with [Chi18] and extending the findings from [AT21], would focus
on a differential network approach to select the set of best discriminating genes to be included
in the signature matrix. Subsequently, a forthcoming manuscript, extending the current arXiv
preprint, will provide a comprehensive exposition of the fundamental theoretical concepts that
underpin the development of the DeCovarT algorithm. We intend to submit this preliminary
manuscript to a peer-reviewed journal renowned for its statistical acumen. Computo, by [Chi23],
would completely fulfil these demands, since the editorial boarding focuses not only on the quality
and originality of the statistical methods submitted, but also emphasises on the reproducibility
of the results by constraining the submission of data necessary to repeat the simulations and
enforcing efficient coding.

Furthermore, I have initiated a collaborative effort with Michael Rera and Savandara Besse to
empirically validate the performance and robustness of the DeCovarT algorithm on a practical
biological case study. Specifically, Michael Rera’s research team is keen on applying the first
cellular deconvolution method to Drosophila transcriptomic samples, with the ultimate goal of
advancing their understanding of the causal mechanisms underlying the ageing process.

We conclude this thesis in the following section 6.3 by reviewing some avenues and ongoing
endeavours to improve the biological applicability and statistical relevance of the models presented

https://cnrs.hal.science/hal-04208010
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in this thesis. We notably discuss the opportunities presented by the integration of orthogonal
biological modalities, and suggest, on a side note, to generalise the models presented to non-
Gaussian distributions that may offer a more accurate representation of the biological context.
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Conclusion Throughout this PhD manuscript, we adopted a data-driven approach to explore
the biological drivers underlying the variability of biological mechanisms involved in the evolution
and severity of diseases. In particular, we explored the relevance of two biological inputs, namely
immune cell populations and transcriptomic expression profiles, to better understand the drivers
of the intrinsic heterogeneity of living human organisms.

In addition, recently, the advent of cutting-edge methodologies like next-generation sequencing
has led to an exponential growth in biomedical data. This staggering data volume has posed a
challenge for human researchers in identifying meaningful biological patterns. Simultaneously,
there has been a notable shift in the therapeutic paradigm, transitioning from “one-size-fits-all”
treatments to Precision Medicine, theoretically customized to address each patient’s unique
biological profile.

In order to navigate the magnitude and intricacy of these extensive datasets, we conducted
an extensive review of various statistical methodologies to unravel the biological determinants
underlying the fluctuations observed in biologiocal activity and response. Most of them expand
directly Gaussian distributions, precisely we exhibit the interest of mixtures models and convolution
of independent variables to adjust to complex and multi-modal distributions that do not not seem
normally distributed at first glance.

At a low level of granularity, the tropic context, such as disease state and tissue location,
strongly impacts the variety of transcriptomic profiles across individuals. However, even within
a cohort of patients affected by the same ailment, we observed strong heterogeneity of clinical
factors, which often translates in varying response to clinical treatments. The unaccounted
variability observed among patients afflicted by the same disease suggests the presence of an
underlying latent factor influencing the progression of the disease. We demonstrated in Part II
the interest of mixture models, and in particular Gaussian Mixture Models, for the unsupervised
classification and stratification of heterogeneous individual profiles into endotypes.

We first started by reviewing a whole set of computational solutions, implemented as R
packages, to infer gaussian-distributed clusters. We compared for the seven most popular ones
their relevance in estimating the hidden parameters of GMMs, visualising the clustering inferred
and asserting the quality of the estimation. We notably demonstrate the versatility of the mclust
package, providing the end-users with a vast array of computational methods and visualisations
to perform tasks as varied as initiating the cluster assignments, providing prior information in a
Bayesian framework or extracting key variables for visualisation in high dimension. Interestingly,
we also pinpointed the impact of initialisation and the characteristics of the mixture (overlap,
number of components, . . . ) on the accuracy of the final estimate returned, exhibiting significant
differences across packages.

We ended this section by a practical biological use case, in which we leveraged the mclust
package to separate and classify patients from the same cohort affected by the Sjögren’s primary
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syndrome into endotypes. This data-driven, unsupervised approach, pioneered by the number of
patients and omics integrated in the study, revealed notably the presence of four clearly distinct
endotypes, characterised by specific molecular fingerprints. On top of hat, sensibility analyses
revealed that most of the transcriptomic differences between subgroups of patients were actually
driven by changes of the cell pool, as revealed by both physical, cytometry-based approaches and
numerical deconvolution algorithms.

This finding led us in focusing on data-driven, numerical approaches, referred to as deconvolu-
tion algorithms, to estimate the cellular composition of heterogeneous biological samples in part
III. They notably enable to retrospectively analyse historical bulk analysis, for which the original
raw material is not available anymore and no cytometry analysis has been carried out.

We started to review a number of them in the last part of this PhD manuscript, focusing
on partial, semi-supervised approaches relying on cell transcriptomic references. In brief, these
signatures of purified cell population are composed of the averaged transcriptomic expression
measures for a minimal set of highly discriminative genes. We showed however that not of these
methods account for intrinsic co-expression networks within a homogeneous cell population.

Hence, we conclude our manuscript by the introduction of a new standalone deconvolution
tool, DeCovarT. In opposition to gold-standard deconvolution approaches, such as CIBERSORT
([New+15]), we embraced a paradigmatic shift by adopting a systematic and connected approach
of the deconvolution problem. To that end, we modelled the bulk transcriptome as a convolution of
multi-dimensional variables, each characterising the distribution of a purified cell expression profile.
Expanding the generative model to a multi-dimensional framework facilitates the incorporation
of transcriptomic co-expression structures, encoded explicitly in the covariances of the individual
cell profiles. This new feature, in turn, has been found to significantly improve the precision and
robustness to noisiness of cellular ratio estimations.

Genes, environment, proteins, cell populations, and many other biological entities intertwine
altogether and impact general well-being and treatment outcomes. Biological systems, far from
being the mere sum of atomic entities acting independently, are better described by large networks
connecting a variety of biological processes.

Similarly, only the cooperation between a variety of life-research fields are susceptible to
unravel the causal mechanisms underlying the complexity of biological systems. I further highlight
in next Section 6.3 the relevance of systematic approaches integrating several biological modalities
in the field of computational medicine.
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Perspectives We voluntary choose to restrain on Gaussian distributions and direct extensions
of the to model the variability of the interactions occurring between biological features. Indeed,
normally distributed datasets exhibit a number of interesting statistical properties, streamlining
the derivation of complex analytical formulas and the inference of confidence intervals to assert the
quality of the model. However, they perform quite badly in approximating real-world biological
data when the assumptions of symmetric and bell-shaped distributions do not hold. In particular,
they tend to underperform in the presence of outliers, high-dimensional datasets, or skewed or
inflated distributions.

It would thus be interesting to compare the performance of the computational tools we
implement and deploy with other kinds of distributions, closer to the reality. For instance,
transcriptomic data is by nature counts, usually exhibiting strong zero-inflation and negative
skewness ([MLR12]). Hence, mixtures or convolutions of Poisson log-Normal (PLN) or Negative
Binomials ([RMS10]) are likely better tailored for describing mixtures or convolutions of raw bulk
RNASeq datasets.

For instance, PLN distributions have been used in [CMR21] to propose a new Joint Species
Distribution Models (JSDM) for studying the combined abundances of multiple species in
ecological communities. We can predict that the versatility of PLN models would enable to easily
extend that study to transcriptome, encoding gene co-expression dependencies in the covariance
matrix instead of species relations.

It is important to acknowledge that the accuracy of the methods we have devised to unravel
the intricacies of biological systems among patients, or even within tissues, is somewhat limited
since they only leverage a single biological entity. For example, the patient stratification in
chapter 4 is solely reliant on individual transcriptomic profiles, processed from bulk RNASeq
techniques. Integrated methods aimed at combining diverse biological modalities. They are
usually classified into early, late, or intermediate approaches ([Pic+21]). Early integration merges
all datasets into a single comprehensive dataset for model learning, while late integration builds
individual models for each dataset and then combines the resulting probabilistic frameworks.

On the other hand, intermediate approaches represent an hybrid strategy, aiming at deriving
a model for each modality, strengthened by the input of other relevant biological annotations.
An array of network-based approaches, such as Similarity Network Fusion (SNF, [Wan+14]),
Non-Negative Matrix Tri-Factorization (NNMF, [Mal+19]) or spectral clustering ([Don+14]),
have been precisely designed to uncover shared structures and similarities across multi-layered
graphs, connecting several kinds of omics and clinical features.

However, striking the perfect balance between integrating diverse datasets, which may lack of
shared biological mechanism, and creating a robust and insightful model, is a challenging task,
especially for this kind of knowledge hypergraphs exhibiting large noises and numerous spurious
correlations.

Studying omics and clinical datasets, even more so when combining distinct biological features
together, generated from distinct medical centres, is highly challenging. This analytic complexity is
further strengthened by the diversity of tools and methods to address roughly the same objectives.
In particular, I should emphasize on the importance of data cleaning and preprocessing, coupled
with clean documentation of the parameters of the algorithms used, to ensure the reproducibility
and robustness of the statistical models. Indeed, the quality and abundance of datasets and
the choice of the hyperparameters controlling the behaviour of the algorithm have a substantial
impact on the performance of any model, even, and maybe more critical, on the most advanced
approaches. As an illustrative example, we demonstrated that even minor alterations in the
algorithmic implementations to mitigate numerical underflows strongly impact the outcome of
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the benchmarked R packages (Chapter 3). These adjustments to the native EM algorithm, often
poorly documented, yield substantial disparities in the accuracy and variance of the estimated
parameters for Gaussian mixture estimations, particularly conspicuous in inherently complex
distributions characterised by pronounced overlap or disequilibrium across clusters.

Adherence to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles is
undeniably a pivotal strategy for addressing the persistent “reproducibility crisis” ([Bak16]),
a recurrent issue that undermines the robustness of findings in the biomedical domain. This
challenge is poignantly exemplified in the meta-analysis [SB16], an eye-opener in the specific field
of mechanistic Boolean models that revealed that fewer than half of the results submitted to
BioModels could be consistently reproduced. This issue is, in part, attributed to inadequacies
in coding practices and data cleansing within the field of bioinformatics, coupled with lack of
comprehensive documentation. In addition to adhering to universal guidelines, any statistical
model developed for predicting disease outcomes, based on the molecular profiles of patients,
should also adhere to the principles of robustness and interpretability. Robustness ensures that
the model remains stable in the face of minor alterations of the assumptions of the model,
and/or the presence of noisiness. An interpretable model enables biologists to readily discern
the significance of the results, facilitating the identification of the factors underpinning the
algorithm’s outcomes. Moreover, the alignment with FAIR principles is likely to foster enhanced
interdisciplinary collaboration among teams with diverse expertise. By compelling researchers
to conduct their modelling endeavours in accordance with universal guidelines and language, it
promotes a more cohesive and collaborative environment.

In order to achieve an universal modelling framework, shared by distinct end-users and
integrating knowledge for multiple biological sources, we should highlight in particular two
collaborative initiatives, achieved by a consortium of researchers guided by the same ideal of
reproducible and reusable science. The SBML language, for Systems Biology Markup Language
(see [Kea+20, Fig. 1]) is an unique attempt to describe with the same language seemingly unrelated
modelling approaches. It notably encompasses descriptions of Boolean models, metabolic networks
(such as flux balance analysis), or more closely related to my statistical background, a distrib
add-on to store parameters of stochastic distributions. More directly involving and affecting me,
Computo ([Chi23]) is an open, peer-reviewed journal developed in response to the reproducibility
crisis, focusing not only on the quality and originality of the statistical methods submitted, but
also emphasising on the reproducibility of results, including the submission of necessary data and
efficient coding.

As a closing note, I truly believe that comprehending the intricacies of biological systems
necessitates the adoption of a collaborative and interconnected approach, mirroring in doing so
the complex interplay among the atomic units of a living organism that collectively contribute to
its biological fitness.



AppendixA
Appendix of Chapter 1

Outline of an industrialised pipeline for analysing transcriptomic expression In this
chapter, we detail a comprehensive pipeline to perform gene expression analysis in RNA-seq,
encompassing the mapping of raw reads to downstream analysis. This pipeline involves the
following steps:

• Data cleansing, better known as data cleaning, is the process of detecting and correcting
corrupt records from an Expression matrix, precisely identifies incomplete or irrelevant
parts of the data to gain biological insights and save memory storage. It also involves
identifying primary keys consistently characterising a sample, and replacing ambiguous
terms, such as erroneous gene notations or special non-ASCII character symbols that are
not computer-readable on any operating system (report to Appendix A.1).

• Preprocessing refer to any task evaluating the quality of the collection of raw reads, which
make up the RNA-Seq library, and composes the output of sequencing technologies (refer
to Section 1.2.2). Preprocessing operations involve a variety of Quality Control and Quality
Filtering, followed by Alignment to a reference genome(report to Appendix A.3).

• Different normalization and transformation functions enable to correct for technical vari-
ability, such as library size and sequencing depth and enforce assumptions required by
the differential analysis models, respectively. It is usually coupled with a second stage of
Quality Control to check the distribution of read counts, in order to ensure data quality
post-normalization, and assess the similarity between samples, notably that samples with
the same phenotype group together (report to Appendix A.1).

• Downstream analyses usually involve Differential Gene Expression Analysis (DGEA) (Ap-
pendix A.4.1) and Functional Pathway Analysis, in order to identify individual genes, or
modules of genes, that constitute the fingerprint of a disease/phenotype condition.

• The final phase typically involves establishing a centralized repository to comprehensively
document the entire analysis workflow and its primary outcomes. Visual report provides
biologists with a succinct and clear overview of the methods employed and the main findings,
which in turn simplifies the biological interpretation of the results.
Experts can additionally evaluate the performance of the pipeline, by confirming the
biological significance of the identified differentially expressed genes. For instance, when
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working with tumour samples, the absence of observed dysregulations in the mechanisms
associated with tumourigenesis can be a cause for concern.

Historically, omic analyses were primarily conducted using point-and-click and user-friendly
software like OmicSoft [Li+14]. However, these tools came with a hefty price tag and offered
limited access to core functionalities of the functions implemented.

In addition, these tools are not regularly updated, since they do usually dot not provide
open-access resources, and depend on the releases and involvement of a limited team.

Ultimately, they do not comply FAIR principles: since their business model requires to pay
on a regular basis fees, code is mostly internal, preventing from understanding the choices of
implementation.

Consequently, our team of biostatisticians started using individual scripting languages like R,
Python, or SAS (although SAS required an extensive license) to conduct omic analyses. While
this approach provided greater flexibility, it also resulted in diverse outcomes and procedures,
which often depended on the developer’s skillset and personal preferences. The development
of an integrated RNA-Seq pipeline was conceived to tackle this diversity, with the objective of
producing consistent and reliable outputs.

Precisely, I contributed to the Development of the First Industrial RNA-Seq Pipeline as a
member of a team of six statisticians at Servier company, all from diverse professional back-
grounds, including biostatisticians focusing on biomarker discovery from transcriptomic data and
bioinformaticians dedicated to raw sequence analysis (see Appendix A).

Advantages of Developing a Unified Repertoire: Standardising best practices in RNA-Seq
analysis encompassed multiple objectives:

• As a team member, my primary goal was to collaborate with colleagues, some of whom
I had never interacted with before, in order to establish a robust, consensus-driven, and
efficient workflow for processing and analysing transcriptomic data within an industrial
context. Simultaneously, I aimed to enhance my own skills in the fields of biostatistics,
bioinformatics, and best practices for code sharing. Being part of this multidisciplinary
team provided a unique opportunity to learn from experts with diverse backgrounds, thereby
expanding my proficiency in a wide field of areas related to computational medicine.

• Additionally, this experience heightened my awareness of the importance of Findable,
Accessible, Interoperable, Reusable (FAIR) practices, and I actively advocated for their
implementation within my statistical team. Indeed, RNA-seq analysis is a complex and
time-consuming process, necessitating the collaboration of multiple teams, which can make
it susceptible to human and technical errors. Notably, the choice of tools and parameters
may vary depending on the specific research question and dataset characteristics. Therefore,
it is crucial to thoroughly document the analysis and identify universally applicable best
practices to ensure the reproducibility of results across teams and projects.
In the industrial context of the Servier environment, the creation of a centralised Github
repository for storing all code snippets used in the analysis of transcriptomic data has had
a profound impact. It has not only significantly improved the reproducibility of our data-
processing workflow but has also resulted in substantial time and computational resource
savings, ultimately leading to cost reductions. Moreover, it has increased interdisciplinary
collaboration: indeed, one of our primary objectives was to compile the best practices in
each key stage of the RNA-Seq workflow, and we achieved this purpose by aggregating
enlighten recommendations from domain experts. We notably focused on developing versatile
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differential analysis frameworks tailored for complex experimental designs and creating
insightful visualisations (PCA, volcano plots, . . . ) that are both professional-looking and
insightful.

• Transcriptomic data, offering detailed insights into gene expression, plays a pivotal role in
advancing our understanding of complex biological processes and facilitating the development
of personalized treatment strategies. This type of data is a treasure trove of information,
actively harnessed by biologists, physicians, and biostatisticians to conduct research on
multifaceted and heterogeneous diseases.
Furthermore, as the cost of collecting and analysing transcriptomic data continues to
decline, thanks to automated bioinformatic pipelines and the increasing prevalence of
high-throughput RNA-Seq technologies (as discussed in Section 1.2.3 and Section 1.2.2), it
is the the cleanest and most abundant sources of omics data at our disposal in the Servier
ecosystem, accordingly, all the papers reported throughout this manuscript depend on
transcriptomic datasets as raw material inputs, as referenced in Chapter 4, Appendix E,
and Appendix F.3). And the first common task of these analyses usually involves rigorously
process transcriptomic data and produce comprehensive reports detailing the methods,
parameters, and key findings from our analyses.

• My personal specific interest with respect to my PhD project was to implement a robust
and versatile transcriptomic routine, specially designed to retrieve the signature matrix of
purified cell populations. This matrix is required as input for most partial deconvolution
algorithms (see section 5.1). While the order and general principles of each step of the
RNA-Seq pipeline are similar, collecting and retrieving a robust and versatile reference
profile presents its own specific challenges:

1. The reference signature matrix must enable flexible, accurate, and robust deconvolution
across various tissues and biological conditions. Specific challenges arise due to
multi-collinearity and noise resulting from the intrinsic complexity and variability
of heterogeneous tissues. This complexity becomes more pronounced when the goal
is to discriminate among a large pool of closely related cell populations at different
abundance levels.

2. To generate the most reproducible and informative signature matrix, it’s often necessary
to collect data from different studies, which may have been conducted on different
sequencing platforms. Consequently, it becomes essential to evaluate and correct for
blocking variables that introduce strong batch effects and can significantly reduce
statistical power and sensitivity.

By pursuing these objectives, I not only contributed to the successful establishment of the
RNA-Seq pipeline at Servier but also applied this pipeline in practice in 3-4 pre-clinical studies
to which I was personally involved during my thesis. This experience proved to be mutually
beneficial for both myself and the industrial team. In the upcoming Appendix A, I will delve into
the guidelines we adhere to for the development of this industrial tool.

Modularity design of the pipeline This pipeline follows a modular design approach by
dividing the overall workflow into separate, dedicated modules (in our use case, R packages).
The key design principle was uncoupling the different tasks, as this makes each module easier
to maintain, with one dedicated expert for the maintenance of an individual module. It also
helps facilitates comprehension of the whole workflow while allowing straightforward access to
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specific functions. For example, boxplot drawing is logically located in the visualisation module.
Interestingly, this strong modularity mirrors the core principles and philosophy underlying the
Linux system design [TD01], in which each function focuses on accomplishing perfectly well a
single, well-defined task.

The most important packages, ordered by operational sequence and detailed further in this
chapter, include:

1. The bbcWrangling package provides functions for data management and cleaning. These
functions include trimming missing values, filtering samples based on phenotype features, or
merging expression matrices together. They are specifically designed to handle the unique
format of Bioconductor ExpressionSet objects. This module is complemented by the
optional bbcFetch package, which is used to download, clean, and format datasets from
online and public repositories, such as GEO or ArrayExpress, into the ExpressionSet format.
Both are employed in Appendix A.1.

2. The bbcPreprocessing package encompasses all functions related to data transformation
and normalization, ensuring that samples can be compared to each other across studies and
integrated in downstream analyses (refer to Appendix A.3).

3. The bbcViz package gathers all functions implementing quality control representations,
including those evaluating the impact of normalisation functions through boxplots and
kernel plots. It also includes multi-dimensional projections such as PCA, t-SNE and UMAP,
to ensure that samples with similar biological functions group together in lower-dimensional
spaces. We utilised it to generate the various plots in Appendix A.3.4.

4. The bbcSupervised package houses all functions dedicated to downstream analyses, no-
tably functional enrichment and Differential Gene Expression Analysis (DGEA) (refer to
Appendix A.4).

5. In addition to the core packages, we have implemented a wide ecosystem of wrapper and
helper functions:

• bbcUtils: This package contains short statistical or data management functions that
are consistently used by most of the packages.

• bbcCorpo: It includes corporate themes and templates for professional reports.
• bbcData: This package stores toy example datasets as well as regularly updated gene

databases.
• bbcVerse: This is a wrapper utility package designed to load main packages without

impacting the user and manage potential compatibility conflicts between modules or
with the operating system.

In conclusion, all these packages are accessible to any internal member of the Servier company
via a centralised and secured Github repository through an individual token. We uphold the
FAIR principles and enforce a comprehensive set of guidelines that must be adhered to before
any package in development can be released as an industrial version on the main branch of each
package.

Biological annotations Throughout this chapter, we employ the following abbreviations:

1. We use the following short names for cell populations:
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(a) Brief historical outline conducting to
the development of an unified industrial
pipeline.We represent on this simplified schematic
the main stages in the development of a standard-
ised repertoire of functions dedicated to RNA-Seq
analysis, starting from a corporate software to a
modular Github folder, including the asynchronous
and individual development of code snippets.

(b) Modularity and versatility: guidelines of
our industrial RNA-Seq workflow.The design
principle underlying the development of our RNA-
Seq workflow, inspired from the best programming
practices enforced by the Linux architecture team,
consists of uncoupling pre-processing tasks, each
dedicated to a specific functionality (quality control,
visualisation, download online datasets, . . . ).

(c) Comprehensive review of the operations implemented in our RNA-Seq workflow.The left panel
details the main tasks integrated in our pipeline, as well as the tools and papers used to execute each of them. The
top right panel details the main input and output required by our pipeline, namely the Bioconductor ExpressionSet
object (we choose this object for its comprehensiveness and for the automatic process controls preventing any
misused). The bottom right panel enumerates the core custom packages developed and integrated in our pipeline,
along with the main available internal resources.

Figure A.1: Industrial R pipeline, taking as input the counts matrix returned by Appendix A.2.

https://www.Bioconductor.org/packages/devel/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf
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• t_cells and b_cells to design subsets of lymphocytes, namely T cells characterised
by a CD3+ marker, and B cells characterised by a CD19+ marker.

• c_dc and p_dc, for conventional (or classical) and Plasmacytoid dendritic cells, respec-
tively

• c_mo, for conventional monocytes characterised by the CD14+ marker
• pmn stands for Polymorphonuclear neutrophils, in opposition to Peripheral Blood

Mononuclear Cell (PBMC)

See details about the features and biological functions of these immune cells in Section 2.1

2. We use the following short names for diseases:

• hc, for healthy controls
• sle, short for Systemic lupus erythematosus

A.1 Data import and cleaning
In this section, we aim to introduce the most widely used online repertoires housing transcriptomic
data as well as describing the structure underlying the organisation of the datasets stored within
these repositories. Additionally, we will delve into the utility functions employed to compress and
clean the retrieved datasets, retaining only the most pertinent biological and technical factors and
standardising gene, tissue, and cell population notations for enhanced consistency across projects.

A.1.1 Import relevant files
The majority of high-throughput transcriptomic datasets that are publicly accessible are deposited
in the following two public repositories: Gene Expression Omnibus (GEO), which is hosted by
the NCBI organization, and ArrayExpress, hosted by the EMBL-EBI organization.

GEOs objects are stratified with the following hierarchical structure:

1. A Platform object details the general sequencing protocol and lists the probes or gene
annotations. Besides, it gathers all the experiences that have been performed under this
specific sequencing method. Platform ID follows the following notation: GPL, followed with
an accession number.

2. A Series object identifies a set of Samples associated with the same biological experiment
and additionally summarises phenotype features and the global design. It is identified with
the GSExxx flag.

3. A Sample record, identified as GSMxxx, describes the conditions under which an individual
Sample was handled, the manipulations it undergoes like the platform used, and the
abundance measurement of each annotated transcript.

The second biggest source of public datasets is ArrayExpress, with differs from GEO with
additional restrictions on the format of the datasets submitted, imposing to make them MIAME-
compliant. Currently, 76,635 studies are represented in the ArrayExpress compendium. The
general format is for each repository, a zipped MAGE-TAB document which splits itself into
an Investigation Description Format (IDF) file, equivalent to the MIAME experimental data of
the ExpressionSet object and describing top-level protocol experiences: experimentData, Array

https://rdrr.io/pkg/Biobase/man/abstract.html
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Design Format (ADF), equivalent to the feature data: Biobase::fData, with the position (for
microarray only) and the annotation of the measured transcripts, Sample and Data Relationship
Format (SDRF), equivalent to the phenotype data: Biobase::pData and eventually the raw and
processed data files, that store transcriptomic expression.

While the packages GEOquery, [Dav22], [DM07], and ArrayExpress, [KES22], [Kau+09], have
been designed to automatically query and fetch online databases, they are rather restricted to a
specific format, unfortunately rarely met in practice. Depending on the level of precision required,
along with general feature description files, we let the user to choose between raw or pre-processed
data (generally, a tab-delimited file enumerating for each probe or identified transcript its total ex-
pression). In practice, one of the major bottlenecks is the absence of pre-processed expression data
in the majority of RNASeq experiments, and the lack of standardisation of raw datasets. We have
therefore attempted to partially resolve these limitations by respectively developing proprietary
functions bbcFetching::import_normalised_data and bbcFetching:::import_raw_files for
normalised and raw datasets, both functions attempting at first to parse local files, then fetch
them online, and finally homogenises the output into an ExpressionSet object:

In addition, we display respectively the architecture of ArrayExpress and GEO databases1, in
Figure A.2.

A.1.2 Data wrangling with ExpressionSet
An ExpressionSet object is composed of an expression matrix, a gene annotation dataset and
a phenotype dataset storing patient information, associated with general metadata stored in a
MIAME object. In this section, we enumerate all the data formatting and quality check-ups
performed to clean and leverage essential information from ExpressionSet:

1. Data format: We require that transcriptomic expression is stored in a matrix, and that the
annotation sets are data.frame objects.

2. All elements composing the ExpressionSet must be documented with colnames and rownames,
such that the colnames of the ExpressionSet match the rownames of the pData object
(correspond to unique identification of samples) and its rownames match the rownames of
the fData object (unique identification of transcripts). We recall the general structure of
ExpressionSet objects as well as the operations required to manipulate them in Figure A.2.

3. Variable types: carefully prepare samples and features annotation data by formatting
numerical variables in numeric format and converting textual variables as factors. When
comparing several ExpressionSet objects, it is relevant to keep track of factor assignment,
and homogenises them across batches. We marked unequivocally any misisng information
using the “reserved” R variable NA, see Appendix A.1.2 for details.

4. Gene annotation: this step ensures that gene ID used can be uniquely mapped to their
corresponding most updated HGNC symbol. We can additionally filter out genes that are
not involved in any of the biological functions of interest, see details in Appendix A.1.2.

5. (Optional) There is currently a strong lack of standard nomenclature to refer to cell types.
We thus provide in Appendix A.1.2 helper functions to homogenise them across samples.
Similarly, we may as well use ontologies to uniquely identify diseases or tissues.

1This last repository is specifically dedicated to store high throughput sequencing experiments, and reveals
its full potential as an unlimited and parallel data storage, at the raw read alignment level, along with NCBI
GEO and EBI ArrayExpress databases. Currently, the R package SRAdb, [ZD22], [Zhu+13], is recommended for
automatically querying, downloading and extracting alignment information

https://rdrr.io/pkg/Biobase/man/featureData.html
https://rdrr.io/pkg/Biobase/man/phenoData.html
http://seandavi.github.io/GEOquery/articles/GEOquery.html
https://Bioconductor.org/packages/release/bioc/vignettes/ArrayExpress/inst/doc/ArrayExpress.pdf
http://www.ncbi.nlm.nih.gov/books/NBK47537/
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(a) Relation database and user API interface, from
Wiki GEO

(b) The ArrayExpress architecture, with user func-
tionality detailed at the bottom on its vignette.

(c) The graphical representation describing the entity
relationships between the tables in SRAdb vignette

Figure A.2: ERD (Entity-Relationship Diagram), of GEO, ArrayExpress and SRA databases

https://ecoliwiki.org/colipedia/index.php/Gene_Expression_Omnibus_(GEO)
https://www.Bioconductor.org/packages/release/bioc/vignettes/SRAdb/inst/doc/SRAdb.pdf
https://www.Bioconductor.org/packages/release/bioc/vignettes/SRAdb/inst/doc/SRAdb.pdf
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(a) Structure of a Bioconductor’s ExpressionSet ob-
ject [Hub+15]–[KR18].

(b) The SummarizedExperiment object [Mor+22]
is a generalisation of ExpressionSet. It is tradition-
ally used to store the results of several experiences
(provided at least some Gene IDs match). Besides,
this format is required in some normalisation and
differential analysis functions, notably for the vst nor-
malisation applied by DeSeq2 Bioconductor package
[LAH22].

Figure A.3: General structure of the objects most commonly used in R to store transcriptomic data

Sample annotation

Data cleansing is partly automated with bbcWrangling::clean_ExpressionSet_names:

1. First, simplify the identification colnames of objects Biobase::pData and Biobase::fData,
mostly by complying them with the ruling names’ syntax of R.

2. All non-ascii characters can be trimmed, however, perform this operation with care, since
some of the characters of gene names may not comply with ASCII character encoding
format.

3. The most useful function, removes any constant colname of object Biobase::pData(), and
stores it as a MIAME object in slot Biobase::experimentData. We mean by constant any
column that stores information common to all the samples, or patients, considered for the
experiment, which can be typically the sequencing technology, the general experimental
name or setting, or general information about laboratory and biologists contacts.

In addition to simplifying the manual curation of phenotype data, these management operations
improve the identification of relevant ((e.g., phenotype condition) and confusing factors (e.g.,
batch replicates). Additionally, they optimise storage space utilization required to keep in memory
the ExpressionSet object. For instance, the size taken by the phenotype dataset in memory
hardware shifts from 322.8 Kb and 64, to 228 Kb and 26 on the cleaned ExpressionSet.

However, while part of the data curation is automated, there is usually an additional need of
manual curation, and we displayed code snippets to perform data wrangling operations carried
on purified cell expression sets:

https://www.researchgate.net/figure/Structure-of-Bioconductors-ExpressionSet-class_fig1_326163413
https://combine-australia.github.io/2017-05-19-Bioconductor-melbourne/data_structures.html
https://Bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://rdrr.io/pkg/Biobase/man/phenoData.html
https://rdrr.io/pkg/Biobase/man/featureData.html
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• Rename columns, such that shared phenotype information, are labelled consistently across
several Expression Sets, for instance the columns returning the cell assignment or the patient
id

• Convert to factor any categorical variable which may contribute to biological or technical
variability, since they will be required for batch correction and downstream analysis. Perform
similarly for continuous values. For the last two experiences described, we identified three
shared categorical variables of interest: patient assignment, cell type assignment and disease
phenotype, and one continuous variable, age of the patient.

• Regarding categorical variables, you may attempt to merge closely related cell factors to
gain statistical power and promote comparison across samples, a point further developed in
Appendix A.1.2

In our example, we decided to concatenate closely related cell populations, by summing up
their expressions within the same individual, based on our linear assumption of the reconstruction
of the whole mixture:

# helper function to bind expression and phenotype feature
GSE137143_TPM_count_clean <- bbcWrangling::aggregate_by_pdata(
GSE137143_TPM_count_clean,
col=c("sample_id"), sum)

We display respectively in Table A.1 and Table A.2, the relevant variables for phenotype
description, along with the potential confusing technical factors. All these variables may contribute
to the global transcriptomic variability across samples:



A.1. Data import and cleaning 149

Table A.1: Visualise some phenotype characteristics of the patients from cohort GEO 149050

sample_id cell_type disease age
GSM4489145 t_cells hc 33.0
GSM4489146 t_cells hc 41.0
GSM4489147 t_cells hc 32.0
GSM4489148 t_cells hc 52.0
GSM4489149 t_cells hc 37.0
GSM4489150 t_cells hc 24.0
GSM4489151 t_cells hc 58.0
GSM4489152 t_cells hc 50.0
GSM4489153 t_cells hc 35.0
GSM4489154 t_cells hc 36.0
(10 first lines / 288 lines)
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Table A.2: Visualise some phenotype characteristics of the patients from cohort GEO 137143

sample_id cell_type disease age
x13311_c_mo c_mo hc
x13311_t_cells t_cells hc
x13311_t_cells t_cells hc
x22012_c_mo c_mo hc
x43213_c_mo c_mo ms 34.0
x43213_t_cells t_cells ms 34.0
x43213_t_cells t_cells ms 34.0
x46913_c_mo c_mo ms 72.0
(8 first lines / 427 lines)

Gene annotation

One possibility to automatically update gene symbols to their respective modern gene nomencla-
ture, typically the HUGO Gene Nomenclature Committee (HGNC) nomenclature, is to benefit
from regularly cleaned online databases, which are available with R package AnnotationDbi.

However, we implemented our own set of annotation functions, that both extend significantly
the bare features provided in R packages, while easing the interface with the specific R object
Biobase::ExpressionSet(). The core function, bbcPreprocessing::from_probe_to_gene, is
available externally for the regular user, and enables to automatically update genes to their
newest format, performing the following steps:

1. (Optional) Unfortunately, most of the objects downloaded on GEO or ArrayExpress
are not provided with recent, update gene nomenclature. In the worst case, the fea-
ture dataset is only composed of the row.names argument of the expression matrix,
in that case, you may attempt to infer the type of nomenclature used. However, un-
fortunately, it may happen that the format used to name genes is exotic, or that ex-
pression is provided at a lower level than of the gene (typically, at the transcript iso-
form level for RNASeq, or at the probe level for microarray datasets). In that case,
function bbcPreprocessing::add_ExpressionSet_annotation() retrieved automatically,
from slot Biobase::annotation(), the gene feature annotation. For instance, GPLs (GEO
Platforms) are often provided for microarray expression, or even made available as R
packages of datasets, that can be queried using standard AnnotationDbi requests.

2. Function bbcPreprocessing::get_genes_info is called internally to update gene annota-
tion. To uniformise the output of our analysis, we decided to force conversion to HGNC.
However, any type of gene format among HGNC, Ensembl and ENTREZID can be provided
as input, with its category manually filled in through argument input_type. The process
joint is performed depends mostly on the nature of the input type:

https://Bioconductor.org/packages/release/bioc/vignettes/AnnotationDbi/inst/doc/AnnotationDbi.pdf
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• ENTREZID symbols can be directly matched (mapping between HGNC symbols and
ENTREZID is 1-1), while the mapping between HGNC and ENSEMBL is of type
one-to-many, requiring additional nesting operations. Indeed, an Ensembl stable ID
consists of four compulsory parts: ENS(species)(object type)(identifier) and an optinal
suffix indexing the (version), for example, ENSG00000141510.11 and the version index
is likely to confuse most of automated naming tools.

• Mapping is more challenging for type HGNCSYMBOL. First of all, HGNC symbols are
not all R syntaxic, and we commonly observed unwanted transformation of th original
name (typically, when genes are used as colnames for datasets). Second, numerous
aliases (old reference names, resulting generally from poor gene alignment) have
been used as alternative names, some matching more than one current gene. For
instance, the OR4H6P pseudogene, an old remnant of the olfactory superfamily, is
known under 32 distinct names. In addition, we observe an invariant transformation
(unique identification) under upper and punctuation trimming (replaced by a dash)
transformation for column HGNCSYMBOL, and punctuation trimming alone for column
ALIAS. Thus, from the original set of input genes, we first remove genes from the genes
that match HGNCSYMBOL column under capitalisation and punctuation transformation,
then remove genes that match ALIAS column, and displays those genes which have not
been found in any of the NCBI_gene database.

3. Additional gene annotations, for 61538 unique HGNC symbols, are available in our regularly
updated internal database bbcData::NCBI_gene(), among the following 12 features:

• HGNCSYMBOL and its counterpart ALIAS, ENTREZID and ENSEMBL store gene updated cor-
respondences, among the three most common gene nomenclatures. Of note, HGNCSYMBOL
is the primary key of our table, uniquely identiyfing each row of our database, and
there’s a 1-1 match with ENTREZID symbol. General format for ENTREZID is the use
of numbers, while the Ensembl nomenclature requires to precede the gene name with
ENSG, followed by a series of number. They have been extensively used to identify
genes in more than 70 species.

• GENENAME and GENEBIOTYPE store respectively the specific and the general biological
function of each transcript. 11 biological functions are available for the GENEBIOTYPE
class, including protein_coding, tRNA(transfer RNA), rRNA(ribosomal RNA) that
play an active role in the gene transcription and traduction phases and finally a
wide ecosystem of microRNA subtypes, such as scRNA (small conditional RNA),
snoRNA(small nucleolar RNA) and snRNA(small nuclear RNA). The role of microRNA
in the regulation of gene expression has notably garnered extensive attention over the
last few years [MVS14]-[CCZ16].

• MAP locates the general position in the genome, detailling notably the chromosome
name and arm. GENESEQSTART and GENESEQEND locate precisely the nucletoide position
of the gene.

• Finally, TRANSCRIPTLENGTH and TRANSCRIPTNUMBER return respectively the averaged
size and the total known number of transcripts associated to the gene2. We detail in
Appendix A.6 the protocol to fetch, aggregate and map distinct gene IDs conventions,
and then how to populate them with additional general biological features.

2Remember from general biological introduction, Section 1.1.1 Post-transcriptional regulation, that an unique
gene can give rise to several distinct transcripts, a phenomena known as alternative splicing

https://rdrr.io/pkg/bbcData/man/NCBI_gene.html
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4. When mapped back to the ExpressionSet object, we performed the following series of data
wrangling operations:

• Any of the original genes that could not have been mapped to an updated HGNC-
SYMBOL, as well as genes with a different biological function than the one listed in
user-provided argument gene_function (by default, we discard any gene that does
not code for a functional protein) are removed.

• Any old gene that matches more than one recent HGNC symbol are also trimmed
(typically, some aliases have been used to name recent HGNC symbols with completely
distinct biological functions).

• On the contrary, the expression of a whole set of genes that match the same recent
HGNC symbol is aggregated, under the following default protocol: it is summed
with RNASeq (since bulk sequencing technologies directly return the total number of
counts observed in the sample), while it is averaged with microarray technology. For
instance, in the Affymetrix technology, the expression of a RNA transcript is given
by the number of complementary probe sequences, of 25 bases long each, it matches.
However, this small size increases the risk of mismatch and it is thus common to design
several probe sequences that target different regions of the genes of interest.

• As a practical example, Table Table A.3, illustrates practical gene feature tidying
operations of the function bbcPreprocessing::from_probe_to_gene, applied on the
raw ExpressionSet of the GSE149050 study. Gene 5_8S_rRNA (ribosomal RNA),
alternatively known as ENSG00000276871, is removed since it is not associated to
any known HGNC symbol. Old aliases that are mapped to more than one updated
gene, such as CH507-154B10.1 (not assigned to any known biological function and
associated to more than three distinct locations in the genome), or DEC1 have thus
been removed. In the former two cases, the paired HGNC symbols even correspond to
genes with distinct biological functions, with only one coding actually for a protein.
On the contrary, old aliases that can be unequivocally associated to one known HGNC
symbol are conserved, such as AAED1, mapped to gene PRXL2C, both involved in
the glycolysis pathway.
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Table A.3: Feature table illustrating some difficulties handled automatically by corporate function, to
handle one-to-many or one-to-null gene mapping. We additionally highlight genes associated with more
than one ENSEMBL ID.

original_input HGNCSYMBOL ENTREZID GENEBIOTYPE GENELENGTH

5_8S_rRNA

7SK RN7SK 125050 snRNA 328.0

AAED1 PRXL2C 195827 protein_coding
15,741.0

AIM1 CRYBG1 202 protein_coding
211,301.0

AIM1 AURKB 9212 protein_coding
5,868.0

AIM1 SLC45A2 51151 protein_coding
24,980.0

CH507-154B10.1 LOC102724701 102724701

CH507-154B10.1 LOC105379499 105379499

CH507-154B10.1 LOC107987290 107987290

DEC1 BHLHE40 8553 protein_coding
5,887.0

DEC1 DELEC1 50514 lncRNA
551,677.0

GGTA1P GGTA1 2681 protein_coding
55,037.0

GGTA1P GGTA2P 121328 processed_pseudogene
1,125.0

(13 first lines / 13 lines)

GSE149050_raw_count_clean <-
bbcPreprocessing::from_probe_to_gene(GSE149050_raw_count_clean,
microarray_type = FALSE

)
# add explicitly a column with some annotation
Biobase::fData(GSE149050_raw_count_clean) <-

Biobase::fData(GSE149050_raw_count_clean) %>%
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dplyr::mutate(Genes = row.names(.))

Cell type annotation

It turns out that the nomenclature for naming cell populations is inconsistent between the
pathologists and haematologists, the former focusing on the functionality and the latter on surface
markers. In addition, tabular structures, complying with the DBMS, for database management
system, format (an unit in the table is necessarily atomic) are not tailored to store efficiently
complex lineage relationships between distinct entities.

To that end, noSQL approaches, notably graph approaches, are way better to store intercon-
nected and heterogeneous relations across variables. In addition, a whole array of graph-search
algorithms can be leveraged to perform valuable mining operations, such as retrieving automat-
ically all the cell lines descending from an overarching cell population, or, applied to cellular
deconvolution (Section 5.1), ease the computation of ancestral cell lines, summing the individual
ratios of descending cell populations.

We exemplified this concept with the Kassandra project [Zai+22]. This initiative gathered
a compendium of more than 212 datasets, with 17 distinct cell annotations. We displayed in
Table A.4 canonical purified datasets of cell populations collected by the consortium. However,
even this highly pre-processed database collection, the cell types concatenated together are
not consistent in terms of cell lineage, hence the interest of automate the annotation of cell
populations.
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Table A.4: A quick summary of the datasets collected by the Kassandra algorithm, for the top 8
databases containing the most samples.

Array accession Samples Num cell typesCell types

GSE133822 219 3 CD4_T_cells, CD8_T_cells, Monocytes

GSE103844 178 1 CD4_T_cells

GSE104744 129 3 Monocytes, CD8_T_cells, CD4_T_cells

GSE129829 89 1 CD4_T_cells

GSE60424 80 6
Neutrophils, CD4_T_cells, Monocytes, CD8_T_cells,

Non_plasma_B_cells, NK_cells

GSE124073 73 1 Monocytes

GSE114065 71 1 CD4_T_cells

GSE117970 60 1 Monocytes

(8 first lines / 212 lines)

To simplify and standardise in an automated manner the mapping from the original Kassandra
cell type annotation to updated cell ontologies, we benefit from the features implemented by the
suite of R packages ontologyX [GRT17a], specially tailored for working with biological ontological
datasets, and composed of three main compartments:

• ontologyIndex [Gre22], [GRT17b] can read in arbitrary ontologies and converts them as R
objects. Besides, it provides a set of highly-relevant wrapper functions to prune complex
graph ontologies, or perfom complex graph queries.

• ontologyPlot [Gre21a] enables visualisation of ontological terms and ontological annotation
with a wide variety of graphical options.

• ontologySimilarity [Gre21b] facilitates fast semantic comparison across multiple ontological
objects, including assessment of statistical significance.

• ontoProc [Car22a] is an extension of the three previously cited packages, specially de-
signed to work with biological ontologies. It provides base commands to annotate cell
or tissue ontologies, as well as wrapper functions of ontologyX packages, for example
ontoProc::onto_plot2 to visualise quickly cell ontologies.

We illustrate the increased reproducibility power provided by these tools, providing useful
commands to identify and map cell terms, especially when they slightly differ from the ones
provided by default in the cell ontology, as well as commands to handle more easily the graph, for
instance enforcing the directed graph to be a tree and performing standard network queries, such
as retrieving the set of siblings, ancestors, descendants and first-order relatives for a given node:



A.1. Data import and cleaning 156

### load cell ontology
co <- ontoProc::getCellOnto()

### get correspondence to a specific term, when there is no direct match
monocytes_matches <- ontoProc::liberalMap(c("Monocytes"), co, useAgrep = TRUE,

ignore.case=T) #36 possible matches are returned

### from unique ontology ID key, retrieve the scientific, readable term
ontologyIndex::get_term_property(ontology=co, property="name",

term="CL:0000576", as_names=F)
#> CL:0000576
#> "monocyte"

### get all children (direct-link), from monocyte lineage (5 children returned)
ontoProc::children_TAG(Tagstring = "CL:0000576", co)@ontoTags
#> CL:00005763 CL:00005764 CL:00005761 CL:00005765 CL:00005762
#> "CL:0001022" "CL:0001054" "CL:0000860" "CL:0002393" "CL:0000875"

### rebuild Kassandra cell ontology

# get all ancestors of Kassandra

ancestors_kassandra <- co$id[ontologyIndex::get_ancestors

(co, updated_kassandra_annotations$ontoid)]

# get the root (leukocyte = CL:0000738 is the closest common ancestor)
ancestral_root <- co$id[ontologyIndex::get_ancestors(co, c("CL:0000738"))]

# prune the cell line, by removing spurious ancestral terms
# minimal_set enables to remove spurious or redundant terms
cell_ids <- setdiff(ancestors_kassandra, ancestral_root) %>%

ontologyIndex::minimal_set(co, .)
# ontoProc::onto_plot2(co, cell_ids, cex = 0.8) plot the associated lineage

We represent in Table A.5 the final mapping between the original Kassandra cell notations
and approved cell ontology terms:
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Table A.5: This table displays the mapping between the original cell type notations of the 17 cell
populations identified within the Kassandra repertoire, Cibersort terms, and their corresponding usual
notation in the haematologist and pathologist community. In addition, the primary ID key, identifying
each cell term with an unique and computer-readable notation, is reported in the last column ontoid, and
consists of upper-case prefix CL (for cell lineage) followed by an unique Arabic numeral ID. We highlight
the rows storing cell populations that we were not able to unequivocally map to an unique ontology term.

old_annotation cell_type ontoid cibersort_mapping

B_cells B cell CL:0000236 B cell

T_cells T cell CL:0000084 T cell

CD4_T_cells CD4-positive, alpha-beta T cell CL:0000624 T cell

CD8_T_cells CD8-positive, alpha-beta T cell CL:0000625 T cell

Classical_monocytes classical monocyte CL:0000860 monocyte

Eosinophils eosinophil CL:0000771 eosinophil

Basophils basophil CL:0000767 basophil

memory_B_cells memory B cell CL:0000787 B cell

Monocytes monocyte CL:0000576 monocyte

Naive_B_cells naive B cell CL:0000788 B cell

NK_cells natural killer cell CL:0000623 natural killer cell

Neutrophils neutrophil CL:0000775 neutrophil

Non_classical_monocytes non-classical monocyte CL:0000875 monocyte

Non_plasma_B_cells mature B cell CL:0000785 B cell

Plasma_B_cells plasma cell CL:0000786 B cell

PDC plasmacytoid dendritic cell CL:0000784 Dendritic cell

Granulocytes granulocyte CL:0000094 neutrophil

(17 first lines / 17 lines)

In Figure A.4, we present the finalised cell lineage tree, highlighting the overlapping cell
populations from the Kassandra signature:

While we were able to find a 1-1 mapping for most of the cell type annotated by Kassandra,
we were unable to find any direct correspondence to design Non_plasma_B_cells. Instead, we
choose arbitrary to refer to them as mature B cells, but at least two other possible choices,
illustrated in Figure Figure A.5 are likely valid:

• The most straightforward choice would have been to select a sibling term, at the same lineage
hierarchical level, namely select B-cell, C19+ term (most of B cells are unequivocally
annotated with the so-called CD19 marker). However, we observe that among the first-order
descendants of B-cell, CD19+, only the mature B cell population is likely to be found in
blood tissues, since the other described B cell stem lines are precursors, more likely to
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Figure A.4: Cell lineage tree of the cell types included in the Kassandra fingerprint

Figure A.5: Descendants up to third lineage of B cell clones, including all terms of tke Kassandra
annotaiton database relating to B cells
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prevail in bone marrow.

• Alternatively, it would have been possible to group all B cells that are not plasma cells under
a single, overarching term by merging all lineages of B cells exhibiting distinct terminal
biological functions, such as naive B-cells, memory B-cells or regulatory B-cells (see glossary
term B-cell and Section 2.1.2).

A.2 Pre-processing of raw counts, using a Nextflow pipeline
Pre-processing, from raw reads to quantifying RNA-Seq counts through mapping to a reference
genome, is particularly computationally intensive and usually requires powerful and high-scalable
dedicated algorithms, built directly on assembly on in C++. For these reasons, the R environment,
highly versatile and easy to handle for beginner programmers, is not particularly tailored to
handle such operations (see Appendix A.2).

On the contrary, the programming framework Nextflow is designed for building and executing
data-intensive, scalable, and reproducible computational pipelines, combining in an unified
repertoire computational tools written in different programming scripts. To that end, it provides a
domain-specific language (DSL) that simplifies the creation and management of complex workflow.

Accordingly, Nextflow offers several key benefits for implementing a pipeline to analyse raw
reads, ensuring reproducibility (the entire pipeline’s configuration, including software dependencies
and versions, are stored in a computer-readable format), scalability (native parallel and distributed
implementation), versatility (execution on a variety of computing infrastructures, including
coupling local cluster with cloud computing platforms) and flexibility (same modular approach
discussed in Appendix A underlies the Nextflow architecture design), enabling bioinformaticians
to leverage their preferred assembly and mapping tools. This flexibility is highly valuable in RNA-
seq analysis, where different tools and algorithms may be required for preprocessing, alignment,
quantification, and downstream analysis, with regard to the nature of the platform and the quality
of the library (single-end or paired-end, percentage of adapter contamination, . . . ). Finally,
Nextflow provides the end-users with a variety of diagnostic tools to evaluate errors or warnings
occurring throughout the pipeline process and controlling the individual computational cost of
each task (see Appendix A.2).

To that end, Servier’s bioinformatics team implemented its own custom Nextflow framework,
RNAExp, using its own favoured alignment and mapping tools. I will not delve into comprehensive
details on the hyper-parameters and methods implementation choices, since I was not personally
involved in the development of this computational tool and since most of the transcriptomic
datasets I studied were already mapped to a human reference genome and formatted as raw
counts. However, I outline in Appendix A.2, the key tasks implemented in this Nextflow workflow.

Nextflow exhibits however some limitations: it has a strong learning curve, especially for
users who are new to workflow management systems, the DSL syntax of Nextflow can indeed
be particularly challenging for beginners, as it may appear obscure and unfamiliar. Developing
complex pipelines dealing with intricate version dependencies or advanced workflow patterns
(notably those requiring human inspection or cyclic loops) in Nextflow can be challenging. And
the versatility and flexibility of the tool entails hard time in debugging and troubleshooting,
particularly when dealing with issues across multiple stages or parallel executions. Accordingly,
error handling strategies are essential to facilitate the resolution of a wide variety of exceptions
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returned by a whole ecosystem of tools pre-processing raw reads. Ultimately, since Nextflow is
relatively recent in the history of computational development, it may still have fewer resources
and community support compared to more established programming framework, leading to fewer
readily available solutions to specific problems.

Interestingly, [Ewe+20] discusses about a similar implementation of our Nextflow pipeline,
namely the nf-core/rnaseq project, which provides an unique suite of testing and automation
tools with comprehensive documentation for both developers and end users for assembling and
mapping raw RNA-Seq reads. Notably, this framework project adheres to all nf-core guidelines,
homogenising the coding style and increasing the reproducibility and interoperability across
multiple operating systems and software versions.

A.3 Quantification of Gene Expression
In this section, we will provide a concise overview of various multi-faceted metrics used to
globally assess the quality of a given RNA-Seq sample. Subsequently, we will delve into semi-
supervised techniques designed to eliminate background noise and identify genes that do not
exhibit consistent expression patterns across samples. Finally, we will conclude this section by
presenting a comprehensive array of methods dedicated to correct for technical artefacts and
ensuring the comparability of RNA-Seq distributions across different samples and studies.

A.3.1 Sample filtering
It is common to find individual RIN annotations in the phenotype dataset. The RNA Integrity
Number (RIN) is a quality metric used in RNA-Seq experiments to assess the integrity of RNA
samples, providing insights on the level of degradation or damage that RNA molecules have
undergone, and thus can be used as a proxy of the accuracy and reliability of gene expression
measurements.

The RIN quality score is computed using an automated electrophoresis system, such as the
Agilent Bioanalyzer or TapeStation, by aggregating several measures: the ratio of 28S ribosomal
RNA (rRNA) to 18S rRNA, the presence of degradation products, and the overall shape of the
RNA profile. Samples with high RIN scores are indicative of intact RNA, while lower scores
suggest RNA degradation. Accordingly, the commonly used RIN threshold for sample inclusion
in RNA-Seq studies is typically set above seven, or eight a for more stringent quality control.

However, it is recommended to combine this metric in a broader quality control process, for
example by projecting samples in low dimension ((see Appendix A.3.4 or Appendix A.3.4) or
compute Heat map distance matrices (see Appendix A.3.4) to confirm their status of outliers.
Indeed, there is no universal consensus on the RIN threshold to apply, and RIN calculation is not
totally insensitive to the choice of the Electropherogram software. Ultimately, this metric does
not provide information about potential infiltrates that may affect RNA-Seq quality and is not
adjusted to evaluate small RNA-Seq data, usually coming along in lower quality.

A.3.2 Gene filtering
Discarding background noise in transcriptomic expression data is critical for the statistical
power of downstream analyses. Indeed, removing genes with low expression levels that not
provide meaningful biological insights, increase the overall Signal to Noise Ratio (SNR) of
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(a) Didactic illustration of the RNA-seq bioinformatics
pipeline..The RNA-Seq pipeline is usually split into generation
of the raw reads RNA-Seq library (through amplification followed
by sequencing, refer to Section 1.2.2), followed by quality controls
and trimming of adapater sequences (see Section 1.2.2). Then, the
subset of high-quality reads is mapped on the reference genome (see
Section 1.2.2), and the total number of reads matching the features
of interest (such as protein-coding genes) are quantified and returned
as a matrix of raw counts (see Section 1.2.2). Illustration reproduced
from [Sim+21, Fig. 1]. Comprehensive schematics are also reported
in Figure 1.4.

(b) Total Computational Cost per
Operation Implemented in the
Nextflow Pipeline.On the x-axis, you
can see the whole set of pre-processing
tasks implemented in the pipeline. The
y-axis represents the percentage of CPU
utilization. It’s worth noting that
the percentage may exceed 100% since
Nextflow allows for the implementation
of highly-parallelised operations.

(c) Tree graph outlining the sequence of operations within our industrial Nextflow
RNA-seq bioinformatics pipeline.This pipeline encompasses all pre-preocessing tasks, starting
from quality control and the removal of erroneous bases in the raw read sequences, till quantification
of transcript counts, including the alignment and mapping of reads to a human reference genome.
It’s worth noting that the preprocessing steps need not be executed sequentially, as the Nextflow
distributed implementation allows for the concurrent execution of multiple preprocessing tasks.

Figure A.6: Industrial Nextflow framework for processing raw RNA-Seq reads
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the transcriptomic dataset and automatically contribute to better identification of genes truly
differentially expressed across cohorts.

Most of the methods used to perform this filtering assume that transcriptomic expression
distributions exhibit a bimodal distribution, the first peak describing the background noise,
and the second peak assumed to describe expressed genes and correspond to relevant biological
signal. They traditionally return a threshold expression value, below which genes are considered
unexpressed and filtered out, the challenge being to identify this threshold in a robust and
consistent manner across samples and studies (alternatively, the Signal to Noise Ratio (SNR) or
inter-variability score of a given gene across samples can be leveraged as a threshold, since genes
with low variance are often considered uninformative).

The tools implemented for filtering Genes are further classified into manual-based filtering
methods (simpler to implement, computationally efficient, but usually requires prior expert
knowledge and usually does not consider the nature of the data distribution) and unsupervised,
data-driven filtering methods, that retrieve automatically the parameters of the bimodal Dis-
tribution (requires more sophisticated statistical tools and substantial computational resources,
however, based on a sound theoretical framework, they can effectively control the false posi-
tives/negatives ratio). These machine-learning methods subsequently use these parameters to
consistently classify genes as “expressed” or “unexpressed”.

Among the data-driven approaches, zero-inflated models effectively account for the commonly
observed drop-out event, in which a significant proportion of genes have zero expression across all
samples. Such methods are better tailored for scRNA-Seq analysis that usually exhibit a lower
library depth compared to more traditional sequencing approaches, and increase the detection of
lowly expressed genes with meaningful biological significance.

Up to now, we mostly employed existing, heuristic methods, or manual observation of the
distribution, to infer the threshold setting apart background noise from truly expressed genes.
Among them, we mostly capitalise on:

• We employed the zFPKM method first reported in [Har+13], to identify active genes from
background noise. The authors of the study validate their conclusions on the ENCODE
project and additionally show that lowly-expressed genes are usually associated with
repressed chromatin.
Briefly, the idea underlying the zFPKM normalisation is to mirror the half-Gaussian curve
to the right half of the main peak of the bimodal distribution (assume to capture the true
biological insights) to a full Gaussian distribution, of parameters (µ, σ). To that end, the
distribution on the log2 FPKM expression values space is approximated by a kernel density
estimation (kde) method, from which we derive the required parameters: mean expression µ
as the kde maximum and the standard deviation, σ = E[X≥µ]−µ√

2π
, using the statistical method

of moments that links the conditional expected mean of a sample following a Gaussian
distribution to its mean and variance (see Gaussian distribution, section Moments).
However, this paper does not discuss the specific limitations of the zFPKM normalisation
method proposed, such as its performance in different experimental conditions, with dis-
tinct normalisation methods (recall from Appendix A.3.3 that FPKM or RPKM are not
particularly advised for DGEA), or its sensitivity to outliers, limiting the generalizability
of their conclusions to other datasets, experimental settings or pipelines. On a statistical
point of view, the method is not really satisfactory, since a strong first peak noise may
significantly bias the estimation of the variance and the mean of the second mode. Without

https://en.wikipedia.org/wiki/Normal_distribution
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explicitly considering a mixture of two distributions, the method does not provide statistical
evaluation of the probability that each gene is truly expressed in the mixture.

• To generalise the approach described before to any kind of normalisation, we developed
custom filtering algorithms tailored to the most popular RNA-Seq normalization methods,
before and after the log2 transformation. These methods are all variants of zFPKM, aiming
to transform the original data to approximate a symmetric, bell-shaped Normal distribution.
However, we departed from the conventional zFPKM framework by symmetrically adjusting
the left half of the first peak (and not anymore the right half of the second peak). Subse-
quently, we extracted the maximum of each peak using the same kernel density estimation
(kde) method.
We then initiated an EM algorithm with the corresponding rough estimates, which was
employed to simultaneously infer the parameters (mean and standard deviation) of both
modes, assuming each follows ahead a Gaussian distribution. Interestingly, this approach
bears some resemblance to the REBMIX algorithm ([NF11]). Consequently, we were able to
precisely evaluate the uncertainty for each gene to be classified as noise or truly expressed.
However, it’s important to note that this method comes with several theoretical limitations.
By altering the original distribution, we tend to overestimate the dispersion of the first
peak, artificially increasing the overlap between the two clusters. Furthermore, we observed
in a wide range of simulations that even after imposing this artificial symmetrisation of
the distribution, the EM algorithm, as implemented in the ‘mixtools‘ package, struggles to
converge. Code snippets illustrating some of these functions, with regard to the nature of
the transcriptomic dataset, are displayed hereafter:

# This function is applied on the distribution of raw counts
threshold_GSE149050 <- bbcPreprocessing::estimate_cutoff_lowcounts(

GSE149050_raw_count_clean %>%
Biobase::exprs())

# This function is applied with TPM counts
threshold_GSE137143 <- bbcPreprocessing::estimate_cutoff_lowcounts_norm(

GSE137143_TPM_count_clean %>% Biobase::exprs())

After automatically determining a global threshold (typically set as the 0.95 quantile of the
first peak of the bimodal distribution), biostatisticians must evaluate the minimal proportion of
samples in which a gene surpasses this threshold, to be considered as expressed. In this framework,
we employ a rigorous filtering criterion, retaining only those genes that exhibit expression levels
exceeding the threshold in a minimum of 30% of the entire cohort.

NSample <- 0.3 * ncol(GSE149050_raw_count_clean) %>% round()
threshold_GSE149050 <- 7
GSE149050_raw_count_filtered <-

bbcPreprocessing::filter_background(GSE149050_raw_count_clean,
filter=threshold_GSE149050, NSample)

#> [1] "Start : 19121"
#> [1] "End : 12265"
#> [1] "Diff : 6856"
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To conclude, filtering genes enhance the signal-to-noise ratio in downstream analyses and leads
to faster and more efficient analyses by reducing the size of expression matrices. Accordingly,
such methods increase the statistical power of Differential Gene Expression Analysis (DGEA),
by removing uninformative genes and alleviating multiple test problem. Anecdotally, it simplifies
multi-dimensional visualisation by enhancing biologically insightful expression patterns.

Nonetheless, the process of eliminating background noise must be executed with utmost
caution as it has the potential to exclude genes that, while lowly expressed, might hold significant
biological relevance, and the choice of the filtering method should align with the specific goals
followed by downstream analyses and characteristics of the dataset.

Unfortunately, there is no universally agreed-upon method that outperforms all others in
accurately and robustly estimating the background noise of transcriptomic datasets. The heuristic
methods we have developed for this purpose lack strong theoretical statistical foundations, aren’t
versatile enough to handle all types of bimodal distributions, and do not fully capture the discrete
count nature of RNA-Seq data nor the inherent positive constraints associated with transcriptomic
expression.

To address the lack of flexibility, we are currently implementing non-parametric mixture-based
models. To better reflect the discrete nature of RNA-Seq data and the positive constraints, we
are considering probabilistic distributions, such as Negative Binomials or zero-inflated log-Normal
distributions, that inherently accommodate these characteristics. For more details, please refer to
Section 3.3.

A.3.3 Normalization and transformation
This step encompasses normalisation and transformation applied on RNA-Seq. Normalisation
is applied to correct for variability in library size and sequencing depth, thus enabling to make
samples comparable, while transformation functions are rather employed to guarantee that the
distributions of RNA-Seq counts comply with the assumptions of downstream analyses, notably
parametric methods (see Appendix A.4).
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ò Information: Introduction to straightforward Normalisation methods

Conventional normalisation functions to correct for technical artefacts encompass:

• RPKM (Reads Per Kilobase Million) and FPKM (Fragments Per Kilobase Million)
are both considered Library Size Normalization techniques. RPKM was designed for
single-end RNA-seq, whereas FPKM was developed for paired-end RNA-seq, where
each read is typically duplicated. In paired-end sequencing, it’s possible for one read
in a pair to fail to map to the reference genome. Consequently, FPKM accounts for
the fact that two reads may map to a single fragment. Precisely, RPKM is computed
as Equation (A.1), inserting the notations introduced in Definition C.1.8:

RPKM(ygi) = Number of Reads Mapped to the Gene :=
∑Li

l=1 tli 1tli=g(
Gene Length in Kilobases

1000

)
×
(

Total Number of Mapped Reads
1,000,000

) (A.1)

, with g indexing the gene, i indexing the sample, l the read and Li =
∑G

g=1 ygi

the library length of a given sample, namely the number of reads mapped to the
reference genome. Both methods can correct for library depth and gene length,
and should be used for in-sample comparison between genes of the expression levels
rather than differential expression analysis.

• TPM, for Transcripts Per Million, is a Total Count Scaling method. TPM is calcu-
lated similarly to RPKM, both methods only diverge by the order of operations: in
TPM, you normalise for gene length first, and then for sequencing depth. However,
the effects of these operations are fundamental: with TPM, the total sum in each
sample is the same (normalised to equal one million of reads), enabling straightfor-
ward comparisons of the proportion of reads mapped across samples. In contrast,
with RPKM and FPKM, the sum of the normalised reads in each sample may be
different, and this makes it harder to compare samples directly. Accordingly, TPM
is often preferred when quantifying gene expression levels and in Differential Gene
Expression Analysis (DGEA) analysis, especially for comparing the expression levels
of long transcripts.

• Quantile Normalisation aligns the quantiles of expression distributions across sam-
ples, thus rendering distributions comparable between samples, and is agnostic to the
sequencing technique, hence suitable for both microarray and RNA-Seq data. How-
ever, it does not account for differences in library size and should not be employed
for differential expression analysis.

The choice of normalization method depends on the specific goals of the analysis and the
characteristics of the RNA-Seq dataset. Differential Gene Expression Analysis (DGEA), such as
like DESeq2 or limma framework, typically require more sophisticated normalisation techniques,
while simple methods, like RPKM or TPM, may be suitable for general expression quantification.
To better understand these concepts, we refer the interested reader to [Blo15].

Indeed, [Zha+21] compares the performance and statistical power of TPM, FPKM, and
Normalized Counts approaches for the Analysis of RNA-seq Data from Patient-Derived Models
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(precisely patient-derived xenograft, which better reproduce true biological conditions compared to
pure in-vitro cell lines models). They notably found that transformed counts, such as VST or RLR
in DESeq2 or TMM in EdgeR, described hereafter, showed the lowest coefficient of variation (CV)
and highest intraclass correlation (ICC) values, otherwise the highest Signal to Noise Ratio (SNR)
across biological conditions, and so likely the best classification predictability using clustering
approaches. Overall, the simulations they carried on support the use of transformed counts for
downstream analyses of RNA-seq data across samples, highlighting their accuracy and consistency
in inter-sample comparisons.

. Warning: Limitations of straightforward normalisation methods

It’s worth noting that all the normalisation methods described previously do not stabilise
the variance of the count data, whereas genes with very low read counts tend to exhibit,
on average, a higher SNR. We detail hereafter some transformation methods that account
for the intrinsic variability of gene expressions, and in key Heteroskedasticity the main
causes for this phenomena.
In addition, none of the aforementioned methods account for compositional biases in
RNA-Seq data, resulting from the nature of the sequence itself. The TEMT algorithm,
natively implemented for deconvolution purposes, features an additional normalisation of
the counts, based on the composition of the sequence ([LX13]).
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ò Information: Introduction to Complex normalisation methods

We enumerate hereafter standard transformations, ordered by increasing computational
and statistical complexity:

• The RLE (for Relative Log Expression) normalisation is also implemented in the
DESeq2 package [And+13], and is computed as follows Equation (A.2):

RLE(xg,i) = log2

(
xg,i

med(xg.)

)
(A.2)

where med(xg.) is the median count of gene g across all N samples.

• DESeq2 Normalisation, also known as “median of ratios” [LHA14], is given by
Equation (A.3):

DESeq2(yg,i) = log2

(
yg,i

si

)
(A.3)

The size factor si, specific to each sample, is given by Equation (A.4)

si =
∑G

g=1 yg,i

med(
∑G

g=1 yg,1, . . . ,
∑G

g=1 yg,N )
(A.4)

and Med(
∑G

g=1 yg1, . . . ,
∑G

g=1 ygN ) the median of total counts across all samples,
and is computed assuming a Negative Binomial (NB) distribution.

• The Variance Stabilising Transformation (VST) transformation, described in [AH10],
is close in principle to Equation (A.3), replacing the median operator of the scaling
factor si (Equation (A.4)) by the mean of counts for that gene across all samples.
Both methods assume Negative Binomial (NB) distributions to compute the scaling
factor for each gene. NBs simplify the modelling of the count distribution character-
istics, such as the library size and RNA composition, in the modelling process. In
addition, the VST transforms the raw counts data into a space where the variance is
approximately independent of the mean, making it suitable for statistical modelling
and visualisation.

• TMM, for Trimmed Mean of M-values , computes the trimmed mean of log-fold
changes for each gene, as given in Equation (A.5).

TMM (ygi) = si ×
∑G

g=1 wgiygi
∑G

g=1 wgilg
(A.5)

where si is the same scaling factor reported in Equation (A.4), wg is the weight
assigned to each gene g, and lg is the effective gene length. This method is notably
used by the EdgeR differential analysis framework [RMS10].

To put it into a nutshell, TMM is better suited for between-sample comparisons, and VST
for stabilising the variance, rendering these methods tailored for DGEA, by enforcing the

https://Bioconductor.org/packages/release/bioc/html/edgeR.html
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homoscedascity constraint. On the contrary, RLM is primarily used for quality control and
visualisation purposes, assessing whether the quantified counts within each sample behave as
expected.

However, [Maz16] suggests that all these transformation functions (TMM from edgeR, RLE
from DESeq2, and MRN (Median Ratio Normalization, first reported in [Maz+13]), another
transformation function, are closely related and further demonstrates that the computation of
the relative size of transcriptome, si, or even the normalised counts are strictly equal in simple
experimental designs, such as the “two-conditions-without-replicates” (referring to replicate as
repeated measures of the same tissue, in the same individual) scenario illustrated in Appendix A.4.1.
Aligning with these theoretical properties, [Maz16] has shown with numerical simulations on a
simple experimental design, which involves only two conditions and no replicates, that any of the
normalization methods described before yield similar estimates.

We present our wrapper custom functions that apply VST transformation directly on an
ExpressionSet object:

# Creation of a DESeq object
dds <- DESeq2::DESeqDataSetFromMatrix(

countData = Biobase::exprs(GSE149050_raw_count_filtered),
colData = Biobase::pData(GSE149050_raw_count_filtered),
design = ~ 1 + cell_type)

# Estimation of vst normalized expression matrix
counts_vst <- SummarizedExperiment::assay(dds %>% DESeq2::vst(blind = F))

# Update the ExpressionSet with vst normalised expression
GSE149050_vst_filtered <- bbcWrangling::update_ExpressionSet_object(

ExpressionSet = GSE149050_raw_count_filtered,
expression_data = counts_vst)

. Warning: Limits of normalisation/transformation methods

It should be noted, however, that none of these methods are well-suited for datasets
characterised by a substantial proportion of differentially expressed genes, since the
majority of these methods assume that the expression of most genes remains unaffected
by changes in the phenotype or experimental conditions.
In addition, it is recommended to apply all these methods in the raw count space to
achieve optimal performance. Regarding this issue and the strong assumptions underlying
these transformations, all these methods usually come along with their custom differential
analysis pipeline. Indeed, the raw count distributions are not Normal-shaped, deterring for
instance from using the conventional limma package which considers that the Gauss-Markov
assumptions (see Theorem C.1.2).

To conclude, the choice of the normalisation and transformation functions depend on the
objectives and the nature of the study. Study [Dil+13], under the Statomique initiative, compares
the performance of the seven most employed normalisation methods for RNA-seq differential
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analysis and demonstrates that DESeq [AH12] and TMM [RMS10] are the more accurate methods,
acknowledged by robust reconstruction and correction of a set of 30 Housekeeping genes genes.
Indeed, fundamental genes are anticipated to exhibit similar expression levels across samples,
irrespective of the underlying biological conditions. Consequently, we expect precise normalization
methods to consistently yield estimates for these genes, regardless of variations in library size or
specific compositional biases.

A.3.4 Quality control and data exploration
Once these filtering and normalisation operations have been performed, it is common to perform
quality controls using a variety of visualisations to ensure their correctness and interest in
enhancing biological insights. We further decompose these methods into univariate quality plots
to control the distribution of Counts (see Appendix A.3.4, and Multidimensional Scaling (MDS,
see Appendix A.3.4) Plot to assess the similarity between samples, and verifies that samples
associated to the same phenotype are indeed clustered together. For a comprehensive comparison
of best practices to verify the integrity of RNA-Seq analysis, we kindly refer the reader to the
following review papers: [Sch+23], [Col+21], [Cor+18] and [Su+14].

Control the distribution of read counts

Univariate visualisations, such as kernel plots (Appendix A.3.4), or boxplots (Appendix A.3.4), help
bioinformaticians to verify the effectiveness of normalisation methods, reported in Appendix A.3.3,
on the correction of technical artefacts at a low resolution level, by providing a quick overview of
the distribution of gene expression values across samples.

Boxplots Complementary to density plots reported in Appendix A.3.4, we display in Fig-
ure A.7 the boxplot distributions concatenated per cell type, plotted with the internal function
bbcViz::draw_boxplot

. Conclusion: Boxplot insights

Boxplots can reveal batch effects or systematic variations between groups of samples.
Unwanted batch effects can lead to differences in the central tendency (median) and spread
(interquartile range) of expression values between groups. They highlight outliers samples
that deviate significantly from the rest of the distribution, suggesting a sample quality
issue, such as contaminations or human-made errors. Finally, by comparing boxplots of
gene expression values before and after normalization, biologists can easily assess whether
the normalization process has effectively reduced variability between distributions.
Paired comparison reported in Figure A.7 confirm the absence of outlier samples, and
confirms that the VST normalisation has effectively homogenised the variability across
samples.

Kernel plots We report the kernel plots, before and after gene filtering respectively, with the
custom function bbcViz::draw_kernel, in Figure A.8:
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Figure A.7: Boxplot representations of transcriptomic expression aggregated per cell type are shown
before (Subfigure A) and after normalization (Subfigure B). The x-axis represents the cell population,
while the y-axis represents transcriptomic expression, after applying a log2 transformation.
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Figure A.8: Density distribution of the gene counts, after applying log2 transformation and removing
null counts
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Figure A.9: In the left panel, the PCA projection is colourized by cell population, while in the right
panel, the same projection is colourized by disease. For abbreviations used in this representation, report
to Appendix A.

. Conclusion: Kernel plot insights

Kernel Density Plots provide more details of data distribution compared to boxplots, by
returning the empirical probability density function of the data. Accordingly, Kernel
density plots can reveal bimodal (or more) distributions, which might be indicative of
subpopulations within the samples and can help assess whether the data follows a Normal,
bell-shaped distribution.
Paired comparison reported in Figure A.8 confirms the threshold used to filter background
genes, reported in Appendix A.3.2, followed by a log2 normalisation, effectively turns the
bimodal distribution observed into an unimodal one (removal of the peak related to the
background noise), and enforces that the transcript distributions approximate Gaussian
distributions.

Multidimensional projections to identify patterns of expression

Principal component analysis (PCA) Principal component analysis (PCA) allows a repre-
sentation of the samples in a low dimensional space estimated considering all genes’ expressions
(after background genes filtering). We compute the matrix resulting from PCA projection using
internal function bbcUnsupervised::compute_pca. The projection of individual samples from
the GEO149050 cohort onto the two-dimensional space described by the two largest eigenvectors
is depicted in Figure A.9:
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Figure A.10: PCA projection for cohort GEO137143, colourised by cell type. For abbreviations used in
this representation, report to Appendix A

. Conclusion: Evaluation of PCA projections

• Most of the cell populations are well clustered, on the simple basis of transcriptomic
expression, and notably the PMN group expression clearly differentiates from the
other cell types. Expected, the transcriptomic expression of B cells and T cells is
relatively close.

• The general phenotype (disease, whether the sample proceeds from a patient suffering
from SLE, or an healthy control) appears to have a negligible impact on the final
transcriptomic profile.

Briefly, we represent in Figure A.10 the resulting pca projection for study GEO 137143, after
performing the same normalisation and pre-preprocessing steps as described before:

. Warning: Detection of outliers through PCA projection

We note at least five samples which seem to be clearly outliers, maybe resulting from
technician wrong annotation of the samples.

Partial least squares - discriminant analysis (PLS-DA)
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ò Information: Introduction to Partial least squares

Partial least squares - discriminant analysis (PLS-DA) allows a representation of the
samples in a low dimensional space estimated considering genes that are selected as the
most discriminant between groups of a variable of interest.

PLS-DA is computed with function bbcSupervised::compute_plsda and visually projected
in a two dimensional space with bbcViz::draw_plsda_individuals. We displayed in Figure A.11
the corresponding PLS-DA bi-dimensional projections, enabling to quickly identify whether we
are able or not to discriminate cell populations on the one hand, phenotype origin on the other.

Heat map and sample clustering Unsupervised clustering methods were employed to assess
whether the normalization functions applied in Appendix A.3.3 keep on grouping the phenotypic
contrasts of interest together. We utilized the Agglomerative hierarchical clustering method,
implemented by the R mclust::hc function from the mclust package [Scr+16] to compute the
similarity distance matrix. Subsequently, we employed the pheatmap package to generate the
heat map shown in Figure A.12.

ò Information: PCA exploration preliminary conclusions

Unsupervised clustering tends to confirm that cell types are perfectly separated, once
accounted in the design, with in particular, a strong dichotomy in terms of expression pro-
files between Polymorphonuclear Neutrophils (PMN) and Peripheral Blood Mononuclear
Cell (PBMC) cell populations. On the other hand, discriminating disease phenotypes
within a given cell population, namely identifying cell populations extracted from normal
tissues from those displaying a disease phenotype is a comparably much harder task.

A.3.5 Batch effect correction
A blocking factor is a categorical variable, that is not of primary interest in the main experimental
objectives. Identifying blocking factors is crucial to control for unwanted sources of variation
that could otherwise confound the analysis. The most common sources of undesired variability
proceed from batch effects, which refers to the variation introduced during sample processing or
sequencing from the use of different equipment or reagents.

When unwanted sources of variation are not accounted for, they can introduce noise into
the analysis, making it harder to spot true differences between biological conditions. Hence,
blocking these confusing factors can increase the statistical power of your analysis and contribute
to identify meaningful differences.

Two complementary strategies can effectively mitigate batch effects in the analysis: the first
strategy involves directly incorporating batch information into the design of the differential
analysis, as discussed in Appendix A.4.1. Alternatively, the second approach focuses on correcting
technical variations before conducting the subsequent downstream analyses.

https://mclust-org.github.io/mclust/reference/hc.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Figure A.11: In Panel A, the first 10 loadings, representing the 10 genes that contribute the most
to the prediction of the six cell subsets included in the PLS-DA analysis, are displayed. The x-axis
indicates the log2 fold-change value (lFC) after data standardization. Notably, the most distinguishable
populations are monocytes (in red) and PMN (in blue). The correlation circle, reported in Panel B, of the
associated PLS-DA projection, restrained to the top 10 genes with the highest loading, is an interesting
complementary representation. This visualization illustrates how strongly these genes are correlated with
the first two principal components. The module of the gene vectors denotes their total contribution to
the cross-covariance matrix, and the angle with each axis is the degree of cosine correlation with respect
to the first two loadings. PLS-DA projections are reported for Panel C and for Panel D, colourized by
cell type and disease, respectively. For abbreviations used in this representation, report to Appendix A
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Figure A.12: Heat map followed by hierarchical clustering, showing explicitly that the profile of all
listed cell populations clearly discriminate.
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We illustrate this concept by applying the supervised ComBat (appendix A.3.5) method to the
expression matrix resulting from merging the two separate cohorts, GSE149050 and GSE137143,
for the two cell populations shared by both datasets: monocytes and PMN. We demonstrate
with PCA visualisations that the batch correction effectively addresses some of the variations
introduced by differences of sequencing technology and protocols.

Combat

To apply Combat correction, a parametric empirical Bayes framework for originally adjusting
batch expression across microarray datasets (see [JLR07]), we need at least one observation
for each factorial combination of categorical variables. Indeed, if this assumption is violated,
there is no reference anymore to set apart explicitly the noise resulting from the technical bias
from the expected biological variability, of interest. That’s why we use the helper function
bbcWrangling::filter_samples_from_expr to select genes and factors (concerning cell popu-
lations, only monocytes and T cells populations are shared in both experiences) present in both
conditions (failure to enforce so results in a singular, degenerate problem).

We use the supervised sva::ComBat [Lee+22] to apply ComBat correction. This function
is versatile, allowing users to specify both the design of the experience (the expected biological
variability, that should not be impacted by the correction process) and the technical indicator
variable. The resulting PCA from the aggregation of both GEO datasets, GSE149050 and
GSE137143, before and after batch removal, is pictured in Figure A.13

. Conclusion: Graphical evaluation of Combat normalisation

By comparing the PCA plots before and after batch correction, biologists can visually
assess whether the batch effect has been mitigated. Successful batch effect reduction is
indicated by bringing closer previously distant samples from different batches. Indeed,
the key paradigm that underlies batch correction is to decrease the influence of technical
bias as a source of variation, while optimising the separation between samples reflecting
biological variation.
We can observe in Figure A.13 that the ComBat correction only partially mitigated the
batch effects. Samples from the same cell population are now closer to each other, but we
can still distinguish different cohorts within the same cell subtype.

Surrogate Variable Analysis (SVA)

To conclude that section, note that unsupervised methods can alternatively be used to identify
and account for hidden sources of variability in high-dimensional datasets, by reproducing and
estimating their effect using latent variables.

https://rdrr.io/pkg/sva/man/ComBat.html
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Figure A.13: PCA projection before (left column) and after (right column) applying ComBat correction
to assess how much the observed batch effect between the two cohorts, GSE149050 and GSE137143, has
been mitigated. Each row in the panel, from top to bottom, is colour-coded by technical batch (identified
as the cohort), disease, and cell type.
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. Warning: Surrogate Variable Analysis (SVA)

SVA is a statistical method, mostly used in a high-dimensional framework. By removing
the effects of undesired variability and controlling false positives by amplifying the true
biological signals from unwanted sources of variation, SVA can enhance the statistical
power of downstream analyses and make them more robust.
We refer to these factors that capture unmodelled sources of variability as surrogate
variables (also known as hidden or latent variables) and in particular, SVA utilizes a
singular value decomposition (SVD) to estimate them from the covariance structure of
the data.

However, we should highlight that these unsupervised methods for addressing non modelled
variability in high-dimensional data may not effectively capture all sources of unmodelled
variability, leading to suboptimal correction, and are not straightforward to interpret.
Indeed, without domain-specific knowledge to make sense of the identified hidden sources
of variability, it is usually infeasible to interpret whether the detected surrogate variables
are biologically meaningful (“wanted” insight, [Jin+21], [Law+20]), such as variation
associated with a specific cell type or stem from technical causes (“unwanted” variation),
such as batch effect ([HS21], [Kas+22a]) .

SVA also comes along with its own limitations: this projection method assumes that
non modelled variability follows the Gaussian framework reported in Theorem C.1.2, or
at least is linearly related to the observed data. SVA, is computationally intensive and
time-consuming when applied to high-dimensional data, can be computationally intensive
and time-consuming, but on the other hand, it tends to work best with large sample sizes.
Finally, optimising the hyper-parameters, such as the number of surrogate variables to
estimate, is critical for its performance.

A.4 Downstream analyses
In this section, within the realm of downstream analyses handling transcriptomic data, we focus
on Differential Gene Expression Analysis (DGEA), since these methods are widely popular among
biologists for their straightforward interpretability.

For an exhaustive examination of enrichment-based methods, which constitute the second
category of downstream methods, we kindly direct interested readers to refer to Section 5.1, in
which we applied these methods to identify pathways and marker genes that characterize distinct
cell populations.

A.4.1 Differential expression analysis
Differential Gene Expression Analysis (DGEA) aim to test whether the difference of the mean
expression of a given gene between two (or more) biological conditions (often control versus
disease, or drug 1 outcome vs drug 2) is statistically significant [Smy+22].

It usually involves the following steps:

1. First, build a design matrix that describes the experimental design and sample groups,
possibly including any covariates or confusing variables.
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2. Apply one of the most popular statistical tools employed for differential analysis, namely
DESeq2, edgeR, or limma-voom, to identify genes that are significantly differentially ex-
pressed between groups. Precisely, each gene comparison undergoes a hypothesis test, where
the alternative to the null hypothesis concludes to a significant difference in gene expression
between biological conditions. Alternatively, you may employ any of the parametric or
unparametric method listed in Appendix A.4.1: they are easier to implement and agnostic
to the nature of the dataset compared, but this flexibility and robustness comes at the
expense of statistical power and precision (especially when the assumptions underlying the
theoretical application of counts-based models, such as DeSeq2, or Gaussian-distributed,
such as limma, hold [Jea+10]).

3. Conducting numerous statistical tests simultaneously, on thousands of genes, to determine
which are differentially expressed between conditions, requires to deal with “multiple
testing” problem. Indeed, with thousands of tests performed independently, the probability
of observing false positives (genes that appear differentially expressed by chance) becomes
significant.
To address the multiple testing problem, researchers commonly adjust the p-values obtained,
using methods designed to either control the family-wise error rate (FWER) or the false
discovery rate (FDR). FDR control methods focus on controlling the expected proportion
of false positives among the set of differentially expressed genes, while FWER control
methods aim to control the total probability of making at least one Type I error across
all conducted tests. FWER control methods, such as the Bonferroni Correction, are more
conservative, thereby better fitted when stringent control over Type I errors is critical,
while FDR methods, like the Benjamini-Hochberg procedure, are more flexible, and often
preferred when finding the sweet sport between the ability to detect true positives while
controlling the rate of false discoveries.

4. Define a fold change (FC) and p− value threshold to identify genes with biologically
meaningful changes

5. Generate visualisation plots, such as volcano plots, heatmaps, concordance plots, and
interaction plots to visualise the set of differentially expressed genes and apprehend intricate
co-expression patterns.

From scratch

Without assumption on the distribution of the transcripts, or without using any non base R
package, the easiest way to compare transcriptomic expression is certainly by resorting to tests
provided in stats package:

• t-test should be used for normally distributed variables

• Wilcoxon and Kruskall-Wallis are non-parametric tests, particularly relevant for small
samples, that make no assumption on the distribution of the data, the first one being
tailored to compare two groups, while the second one is used to determine whether a
significant change occurs globally across multiple conditions.
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# Contrasts
contr_matrix <- c("sle//hc")

# Perform group comparison with the chosen test ("t", "kruskal")

# For two contrasts
GC_res <- dea_univariate(

ExpressionSet = GSE149050_vst_filtered,
var = "disease",
contrasts = contr_matrix,
test = "t",
correction = "BH")

# Across multiple conditions, no need to provide contrast
GC_res <- dea_univariate(

ExpressionSet = GSE149050_vst_filtered,
var = "cell_type",
test = "kruskal",
correction = "BH")

DESeq2 framework

ò Information: Design and contrasts in differential analysis with DESeq

• First, we consider a simple linear regression model in which the cell type origin is
the unique source of variability in transcriptomic expression across samples.

• We use the Bioconductor package DESeq([AH12]) to perform the differential expres-
sion analysis, in which counts are modelled using Negative Binomial distribution
and the regression model fitting using a Generalized Linear Model framework.

• Fold-change (FC) and adjusted p-values (FDR of Benjamini-Hochberg correction)
are used to identify differentially expressed genes (DEG).

• A common standard for identifying genes that are significantly differentially expressed
uses the following dual criteria: an absolute fold-change greater than 1.3, |FC| > 1.3,
and an adjusted p-value below 0.05, padj < 0.05, used as a proxy to control for the
false discovery rate [Dey+22].

The following script performs DESeq analysis and returns a tibble with, for each contrast, the
table of DEGs (differentially expressed genes):

# common biological thresholds
t_pvalue <- 0.05; t_FC <- 2

https://www.Bioconductor.org/packages//2.10/bioc/html/DESeq.html
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# Model without covariate
model <- formula(~0 + cell_type)

# Contrasts (two possibilities to create them)
contr_list <- list(

c("cell_type", "t_cells", "b_cells"),
c("cell_type","p_dc", "c_dc"))

# Perform differential expression analysis with DESeq
DEA_res_seq <- bbcSupervised::dea_deseq(

ExpressionSet_object = GSE149050_raw_count_filtered,
model = model,
contr_list = contr_list,
feature_colname = "Genes")

# Add the tables of DEGs to the results
DEA_res_seq <- DEA_res_seq %>% mutate(DEgenes = purrr::map(

data,
~ .x %>% bbcSupervised::subset_deg(., "FC", t_FC,
"FDR", t_pvalue,
order = "FC")

))

Limma framework

ò Information: Design and contrasts in differential analysis with limma

• We consider in first intention the same linear regression framework reported in
Appendix A.4.1, including only one discrete explanatory variable. We refer to this
configuration as fixed, since we observe all the possible modalities taken by the
covariatecell_type.

• In that section, we consider the R package limma to perform the differential expression
analysis

• Normalized expressions are modelled through a Normal distribution and fitted
using a Linear Model. A moderated t-statistics is then derived through a Bayesian
estimation of the variance.

• Fold-change (FC) and adjusted p-values (FDR of Benjamini-Hochberg correction)
are used to identify differentially expressed genes (DEG)

# common biological thresholds
t_pvalue <- 0.05; t_FC <- 2
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# We do not consider the presence of intercept
# Instead, we compute the averaged expression for each cell type
model <- model.matrix(~ 0 + cell_type, data = GSE149050_raw_count_filtered)
colnames(model) <- GSE149050_pheno_data %>%

pull("cell_type") %>% unique ()

# Contrasts (as a proof of concept, we consider only two cell contrasts,
# in order to separate closely related cell populations)
# makeContrasts function enables to precisely compute the contrast of interest,
# even when the resulting design is singular
contr_matrix <- limma::makeContrasts(

T_vs_Bcell = t_cells - b_cells,
cDC_vs_pDC = p_dc - c_dc,
levels = colnames(model))

# Perform count data normalization to apply Limma to be tested
data_normalized <- bbcSupervised::dea_limma_normalization(

ExpressionSet_object = GSE149050_raw_count_filtered, model = model)

# Perform differential expression analysis with Limma
DEA_res <- bbcSupervised::dea_limma(

ExpressionSet_object = GSE149050_raw_count_filtered,
data_norm = data_normalized,
model = model,
contr_matrix = contr_matrix,
feature_colname = "Genes")

# Add the tables of DEGs to the results
DEA_res <- DEA_res %>% dplyr::mutate(DEgenes = purrr::map(

data,
~ .x %>% bbcSupervised::subset_deg("FC", t_FC, "FDR", t_pvalue, order = "FC")

))

Instead, we could have considered a linear-mixed model, including in the experimental design
both random and fixed variables (in that context, we assume that cell_type has a fixed effect,
while patient_id has a random effect, since the patients included in the clinical trial are likely
to constitute only a sample of the whole population). An example of such a design is proposed in
the code hereafter:

# Linear-mixed model specification
model <- model.matrix(~ 0 + cell_type + patient_id,

data = GSE149050_raw_count_filtered)

# Perform count data normalization to apply limma
data_mixed_normalized <- bbcSupervised::dea_limma_normalization(



A.4. Downstream analyses 183

ExpressionSet_object = GSE149050_raw_count_filtered,
model = model,
random = TRUE,
var_random = "patient_id")

# Perform differential expression analysis with Limma
DEA_mixed_res <- bbcSupervised::dea_limma(

ExpressionSet_object = GSE149050_raw_count_filtered,
data_norm = data_random_normalized,
model = model,
contr_matrix = contr_matrix,
random = TRUE,
var_random = "patient_id",
feature_colname = "Genes")

Visualisations

DEGs table We displayed in Table A.6 the total number of genes identified as DEGs, as a
relation of the prior thresholds established, between C(lassical) and P(lasmacytoid) cells subsets3.

Table A.6: Total number of DEGs identified, for the following respective thresholds, FC: {1.3, 1.5, 2},
and adjusted p-values: {0.05, 0.1}.

pvalue threshold 0.05 0.1

foldchange Total Up Down Total Up Down

1.3 5,397 2,480 2,917 5,400 2,481 2,919
1.5 3,659 1,619 2,040 3,659 1,619 2,040
2.0 1,883 781 1,102 1,883 781 1,102

and we displayed the top 10 most differentially expressed genes in Table A.7, ordered by
decreasing absolute value of log2 Fold change:

3Second contrast studied can be observed as well on the HTML report
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Table A.7: Table of differentially expressed genes, showing for each of them their respective p-value and
fold change.

Genes log2FC_T_vs_Bcelllog2FC_cDC_vs_pDCFDR_T_vs_BcellFDR_cDC_vs_pDC

JCHAIN -7.7 8.4 0.0 0.0

MS4A1 -7.5 0.2 0.0 0.2

BANK1 -7.1 0.0 0.0 0.8

TCL1A -6.7 7.3 0.0 0.0

IL7R 6.5 -0.3 0.0 0.1

CD3D 6.2 0.0 0.0 0.8

CD3E 6.1 1.4 0.0 0.0

CD19 -6.1 -0.0 0.0 0.8

CD22 -5.9 -0.5 0.0 0.0

HLA-DRA -5.9 -1.9 0.0 0.0

(10 first lines / 10 lines)

. Conclusion: Analysis of DEGs table

• Even being stringent on these thresholds, by considering a high fold-change of 2 and
a small adjusted p− value of 0.05, we still observe a great number of genes identified
as DEGs (1883 in total, with 781 up-regulated in cDC in comparison with pDC and
so 1101 down-regulated)

• Similarly, the number of identified DEGs between B cells and T cells is significant,
with 525 up-regulated genes identified in T cells in comparison with B cells and 687
down-regulated)

P-value distribution For the two-described contrasts, we plot in Fig Figure A.14 the density
distribution and histograms of the computed p− values.

. Conclusion: Sound evaluation of P-values distributions

P-value distributions for both studied cell contrasts display strong signal, since the
distribution has a strong left heavy tail, implying that many genes are significantly
differentially expressed (on average, if the assumption H0 of null differential expression
between two cell types hold, you would expect an uniform distribution between 0 and 1,
with on average, 5% of the genes considered as differentially expressed, with a p-value
below 0.05).
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Figure A.14: P-value histogram distribution

Volcano plots

Concordance plots One way to evaluate the quality of the batch correction, reported in
Appendix A.3.5, is to compare whether the fold changes, or the related p-values, for the same
biological contrast, are similar across several cohorts. Visually, this would correspond in the
perfect scenario to an unidimensional manifold scatter plot (fold change values in that context
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Figure A.15: As a proof of concept, we displayed first to the left the scatter plot between two conditions
highly dissimilar (subfig A) and then between the two same biological contrastst, but processed in distinct
batch conditions (subfig B).

should all line up along a straight line of slope 1 and of null intercept), we displayed as a toy
example two contrast comparisons in Fig Figure A.15

More interestingly, it can be interesting to compare the set of genes that are differentially
expressed between monocytes and T cells, for each batch and for the concatenated expression
matrix. It can also be interesting to evaluate the global impact of the batch effect on the
transcriptomic expression. We supply in the following snippet of code instructions to generate
the corresponding contrasts of interest

# add dummy variable combining all categorical modalities
Biobase::pData(combined_ExpressionSet) <-

Biobase::pData(combined_ExpressionSet) %>%
tidyr::unite(col="combined_factor", platform, cell_type, remove = FALSE)

# First the design
design_interaction <- model.matrix(

~ 0 + combined_factor, data = combined_ExpressionSet)
colnames(design_interaction) <- c("GEO149_M", "GEO149_T", "GEO137_M", "GEO137_T")

# Then, compute the contrasts (coefficients of interest)
contr_matrix_interaction <- limma::makeContrasts(

TvsMinGEO149 = GEO149_T - GEO149_M,
TvsMinGEO137 = GEO137_T - GEO137_M,
Diff = (GEO137_T - GEO137_M) - (GEO149_T - GEO149_M),
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Figure A.16: Correspondance plot of fold-change values, before and after batch correction, comparing
monocytes and T cells expression

levels = design_interaction)

# Finally, perform differential expression analysis with Limma
DEA_uncorrected <- bbcSupervised::dea_limma(

ExpressionSet_object = combined_ExpressionSet,
model = design_interaction,
contr_matrix = contr_matrix_interaction,
feature_colname = "Genes")

Biobase::pData(combined_ExpressionSet_combat) <-
Biobase::pData(combined_ExpressionSet_combat) %>%
tidyr::unite(col="combined_factor", platform, cell_type, remove = FALSE)

DEA_corrected <- bbcSupervised::dea_limma(
ExpressionSet_object = combined_ExpressionSet_combat,
model = design_interaction,
contr_matrix = contr_matrix_interaction,
feature_colname = "Genes")

The impact of batch correction effect, as the difference between the averaged fold change
values, is computed in Figure A.16

Heatmaps
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Figure A.17: Heatmaps (left: before applying batch correction, right: after applying batch correction)
of the log2-transformed transcriptomic expression resulting from the merging of studies GSE149050
and GSE137143. For the sake of comprehensiveness, we employed the Bioconductor ComplexHeatmap
package to visualise the expression matrices, instead of the pheatmap package used in Appendix A.3.4.

Profile plots The purpose of profile plots is to visualize the potential presence of any interaction
for each subset of the universe of possible categorical combinations, in a multivariate linear
approach including more than one discrete variable. An interaction between two factors occurs
when the effect of one of the factors on the variable to be explained varies according to the levels
of the other factor.

The interaction plot can be visualized with the R function stats::interaction.plot or
with our custom ggplot-like function bbcViz::draw_profile. In Figure A.18 , we present the
interaction plot of the two genes that exhibit the greatest variability between the two cohorts,
GSE149050 and GSE137143.

Venn diagram Venn diagrams are standard representation to compare enriched sets of genes
across biological conditions or cell types (Figure A.19):

For the interested reader, we refer to [Gau21, Chapter 1, Section 3] for a detailed review
of the statistical framework and assumptions underlying the top 3 most popular differential
methods, namely limma, EdgeR and DESeq2 (in addition, the PhD manuscript introduces its own
DGEA method, described hereafter), and to [Gau21, Chapter 2, Section 2] and [Bic20, Chapter 2,
Section 2] for a comprehensive review of family of methods dealing with multiple testing problem,
occurring when performing simultaneous comparisons of independent genes across two biological
conditions.

To conclude, [CDL17] demonstrates the better performance achieved by NOIseq [Tar+11],
DESeq2 [LHA14] and limma+voom [Law+14] methods, consistent with findings from [Rit+15]
compared to a compendium of six mapping methods combined with nine differential expression
analysis frameworks and evaluated against qRT-PCR data. They additionally demonstrate that
mapping methods have minimal impact on the final DEGs analysis, and the combination of

https://Bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://rdrr.io/r/stats/interaction.plot.html
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Figure A.18: Interaction plot, showing the difference of averaged fold change for the two genes displaying
the most dissimilar contrast, before any batch correction is applied.
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Figure A.19: Compare the set of genes considered as differentially expressed in T cells with respect to
monocytes, before and after Combat batch correction
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different methods can produce more accurate results, this consensual option being included in
the available software, consexpression, implemented on Github by the Bioscience team.

[Hej+22] introduced recently the dearseq DGEA method, that implements a robust statistical
test, accounting for data heteroscedasticity, and which was released as a Bioconductor package.
This method outperforms other differential analyses methods in a number of virtual simulation
experiences, and notably the agnostic and non-parametric Wilcoxon rank-sum test. Ultimately,
the paper recalls the intrinsic difficulty of generating insightful and biological relevant numerical
simulations, highlighting a major flaw in the data generation process of previous study [Li+22],
which led to incorrect comparisons of the performance of differential expression analysis.

A.4.2 Multi-level classification of cell populations
Intrinsic complexity of multi-classification prediction In the previous section, the design
matrix was straightforward to build, since we’ve only compared two pairwise levels, such as
phenotypes or cell type. Nevertheless, in a multivariate contrast that involves comparing multiple
conditions, the task is much more challenging.

Indeed, while binary classification is a common machine learning problem, multi-class classifi-
cation is inherently more complex due to the combinatorial explosion of possible outcomes to
consider (time- and memory-consuming), and the commonly observed pattern of increased overlap
when increasing the number of classes (especially when two classes exhibit similar characteristics,
or the dataset is strongly imbalanced). Out of this exponential explosion of computational cost,
most of the machine learning algorithms have been designed for binary classification and do not
scale well with increasing number of levels to predict.

Furthermore, interpreting and visualising the outputs and key features driving the classification
decisions is usually intricate, as it involves understanding how the model makes decisions across
multiple classes. In particular, it becomes more complex to evaluate globally the performance of
the algorithm (accuracy is commonly used in binary classification, while multi-class problems
often require specialized metrics such as confusion matrices). Finally, the risk of overfitting
increases with the number of classes, especially with small or imbalanced datasets, even though
this issue can be partly alleviated by a whole realm of regularisation techniques.

The conventional approach when tackling multi-class classification involves beginning with
standard algorithms initially designed for binary classification and subsequently adapting them
to handle multi-class problems through feature engineering methods. Among them, the “one-hot
encoding”, using a dummy variable to decompose the complex multi-class problem into a series
of simpler binary classifications (see details in Definition A.4.1), is certainly the most popular.

Definition A.4.1: One-vs-all (OvA) strategy

The OvA strategy, also known as “one-vs-rest”, is a commonly used technique in machine
learning for multi-level classification problems. This strategy consists of transforming a
complex multi-class classification problem into several binary classification problems, for
which most of the classification techniques have natively been developed. Applied to our
deconvolution problem, for each of the J cell populations, you train a binary classifier to
distinguish a given cell population j from all others. While this approach is straightforward,
interpretable and can be easily deployed with any binary classifier, it is sensitive to class
imbalance and performs badly when there is significant overlap between two closely related
classes.

https://github.com/costasilvati/consexpression
https://Bioconductor.org/packages/release/bioc/html/dearseq.html
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Practical use case: identify gene markers of a cell population Let’s delve into a practical
example of a complex multi-class problem, as outlined in Appendix A.4.2. In this analysis, we
employ the “limma + voom” statistical framework, with the objective of identifying the smallest
subset of genes that distinctly define a specific cell population when compared to all others.

In practice, the one-hot encoding (Definition A.4.1) can be implemented in both versions,
with distinct statistical properties:

• The most straightforward strategy consists of creating a “dummy” indicator variable for each
cell population: it equals 1 when the sample belongs to the cell population of interest and 0
otherwise. However, this strategy may mask individual differences between cell populations,
so it’s not recommended when the profile of the remaining cell populations strongly diverges
(risk of losing relevant biological information), or when the dataset is imbalanced (which is
an actual issue in our use case, as illustrated in our frequency table in Table A.1).

• Alternatively, we can evaluate the significance of the difference between the cell population
of interest and the averaged expression of all other cell types (assuming equal contribution of
each cell population, denoted as the common denominator). This strategy is recommended
when the groups being compared are heterogeneous.

For a detailed explanation of the differences between these two approaches and their respective
pros and cons, we recommend the Bioconductor discussion thread Limma: Contrasts comparing
one factor to multiple others.

We display hereafter a code snippet to automatically build the associated design contrast
for GEO study 149035, combing the power of limma package with our user-friendly differential
functions:

### Retrieve the minimal set of coefficients
# Compute the averaged expression of each cell type,
# without intercept or reference cell line
model <- model.matrix(~ 0 + cell_type,

data = GSE149050_raw_count_filtered)
colnames(model) <- GSE149050_pheno_data %>%
pull("cell_type") %>% unique ()
# Perform vst data normalization to apply limma,
# enforcing its gaussian-distributed assumptions
data_normalized <- bbcSupervised::dea_limma_normalization(

eset_object = GSE149050_raw_count_filtered, model = model)

### Build the contrasts of interest
# the number of contrasts to be compared against
num_cells <- length(cell_type_labels)

# build the contrast programmatically for each cell population
contr_matrix <- purrr::map(cell_type_labels, function(.x) {

# identify the other cell types to be aggregated
other_celltypes <- setdiff(cell_type_labels, .x)

# contrast of the cell of interest, vs all-others

https://support.Bioconductor.org/p/26251/
https://support.Bioconductor.org/p/26251/
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contr_matrix_per_cell <- limma::makeContrasts(
contrasts= paste0(.x, "-",

"(", paste(other_celltypes, collapse = " + "), ")/",
num_cells -1),

levels = colnames(model))
return(contr_matrix_per_cell %>% as.data.frame())

}) %>% purrr::list_cbind() %>% as.matrix() # combine all contrasts together
colnames(contr_matrix) <- paste0(cell_type_labels, "_Vs_All")

### Perform differential expression analysis
DEA_res_all_contrasts <- bbcSupervised::dea_limma(

eset_object = GSE149050_raw_count_filtered,
data_norm = data_normalized,
model = model,
contr_matrix = contr_matrix,
feature_colname = "Genes")

It can be interesting now to represent marker genes that are shared across several populations,
however, Venn diagrams are not anymore adapted with multiple conditions. Indeed, the total
number of subsets, grows exponentially with the number of pairwise conditions to compare: with
J the number of cell types, there are possibly 2J − 1 non-empty intersection sets to consider.

Upset plots, using R function ComplexUpset::upset [Kra20], displays an alternative, user-
friendly graphical representation. To generate the global table of indicator assignments, we design
the bbcUtils::binary_membership function.

ò Information: Upset plots: interest

The upset plot consists of three panels:

• The Set size panel, located in the bottom left corner, displays the size of each set
being compared (i.e., the number of genes identified as differentially expressed for al
six cell populations).

• The Intersection size panel, positioned in the top right corner, indicates the size
of each possible subset. The total number of subsets considered is equal to the
combinatorial enumeration of partial permutations on J items, and the cardinality
for each of them is given by the intersection of the cell populations included. Setting
the “group_by” argument to true orders them by cell population and then by
decreasing cardinality.

• Lastly, the group panel provides a customizable representation of the groups being
compared.

We illustrate this concept in Figure A.20.

https://krassowski.github.io/complex-upset/reference/upset.html
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Figure A.20: Upset plot of the overlapping subsets of genes identified as DEGs, in study GEO149050.

. Conclusion: Upset plots: conclusions

From Figure A.20, we can clearly see that the PMN group stands out as the most dissimilar.
This aligns with our earlier observations in the PCA projection (refer to Appendix A.3.4),
where we observe that the PMN cluster exhibited the highest contribution to the overall
variability in transcriptomic expression and appeared the most distant from all other
clusters.
Far behind, the second most unique profile is composed of the conventional (or classical)
dendritic cells (c_DC).

From Figure A.20, the union of DEGs, length(Reduce(union, list_venn))=6712, is still
too large to perform efficient and robust deconvolution. In linear regression framework, it is thus
typical to refine the resulting signature matrix by optimising the condition number of the union
of the merged gene sets (see Section 5.1 for details).

However, this approach, including other popular linear regression frameworks, such as EdgeR
and Deseq2, tend to overlook gene-gene interactions. Instead, they perform statistical tests
independently for each individual gene.

A.5 Conclusions and perspectives
To conclude that chapter illustrating an example of integrated and user-friendly RNA-Seq pipeline,
I review some other freely available public initiatives which have been implemented.

For instance, the SARTools R pipeline, described in [Var+16] is designed for conducting
seamlessly integrating differential analysis of RNA-Seq count data, using either DESeq2 [And+13]
or EdgeR [RMS10] implementations. It is crafted to facilitate user-friendly multi-class comparisons
of a single biological factor, and allows the inclusion of potentially confounding variables such as
batch effects or sample pairing. One of the primary objectives of SARTools is indeed to provide
access to the core functionalities of these analysis packages while preventing users, including
those with limited experience, from misusing certain features. Additionally, the package offers a
range of diagnostic plots for systematic quality control and hypothesis testing at critical stages
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of the analysis workflow. Furthermore, SARTools automates the generation of a comprehensive
HTML report that summarize all downstream analysis and quality control outputs. This report
can be utilised as a centralized repository, documenting the entire analysis process, including
parameter values and versions of R packages employed. Such an approach significantly enhances
the reproducibility of experiments, promotes method standardization, and can lead to reductions
in both time and cost.

[Cor+20] and [Con+16] provide bioinformaticians with comprehensive guidelines detailing
the advantages and disadvantages of RNA-Seq methods and procedures, with the purpose of
simplifying the selection of the most appropriate algorithms and pipelines with respect to the
objectives and nature of the study.

Precisely, [Cor+20] tested the performance of 192 RNA-seq pipelines using different combina-
tions of algorithms for trimming, alignment, counting, and normalisation, evaluated against two
independent cell lines, and assessed the differential gene expression performance of 17 methods,
validated against qRT-PCR. The respective precision, reproducibility and accuracy in quantifying
raw gene expression and differential gene expression are reported in [Cor+20, Table 1], in which
we observe that the counting algorithm HTSeq ([APH15]) coupled with the TMM [RMS10]
normalisation and either the RUM [Gra+11], STAR [Dob+13] and TopHat2 [Kim+13] alignment
algorithms exhibit the best accuracy and precision performance. They additionally conclude
the absence of significant impact resulting from trimming algorithms. Regarding differential
analyses frameworks, reported on [Cor+20, Fig. 7], they conclude that the most robust and
reproducible method was limma with “trend” normalisation [Rit+15] followed respectively by
baySeq [HK10], limma with “voom” normalisation [Law+14] and edgeR GLM (for generalised
linear model, [RMS10]).

While [Cor+20] evaluate quantitatively the performance of several RNA-Seq pipelines,
[Con+16] focuses on describing qualitatively the major steps involved in RNA-seq data analysis
along with challenges associated, including experimental design, quality control, read alignment,
quantification of gene and transcript levels, visualization, differential gene expression, and optional
operations, depending on the objectives of the study, such as alternative splicing, functional
analysis, gene fusion detection, and eQTL mapping. It notably addresses the interest, and the
best guidelines to introduce control samples and a randomised sample processing, as well as
advices to sequence error-free runs.

It also discusses the integration of RNA-seq with other functional genomics techniques, to
connect gene expression regulation with molecular, physiological and functional annotations.

Although I did not delve into details about other technologies for analysing transcriptomic
data, such as microarrays or q(for quantitative)PCR, the general principles, order of steps, and
objectives outlined in Appendix A to analyse end-to-end this type of data hold.

In essence, all methods dealing with transcriptomic data must go through a series of pre-
processing steps. These steps begin with an assessment of the overall quality of the raw data
(as discussed in Appendix A.2). Then, gene counts aggregation and normalisation processes
enable quantitative comparisons between samples, as described in Appendix A.3. Eventually, the
Variance Stabilizing Transformation (VST) normalization method, which coerces datasets into
following Gaussian distributions, simplifies the application of DGEA with the limma package,
regardless of the sequencing platform (refer to Appendix A.4.1).

For a comprehensive comparison of the advantages and disadvantages of RNA-Seq versus
microarray, please refer to Section 1.2.2. Additionally, for a detailed and didactic introduction to
microarray processing, applied to Affymetrix microchips, please see the work by [KR18].
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A.6 Appendix A: Gene notations

A.6.1 Gene terminologies
The need for a standardised convention to refer to human genes is essential, advocating the
development of universal gene naming protocols. Practical examples, where the use of symbol
aliases instead of their updated HGNC symbol, led to wasted clinical experiences and more
worryingly to harmful and erroneous medical recommendations, are reviewed in [Bra+21]. Consider
for instance the confusion involving the two unrelated genes currently approved as SF3B3
(splicing factor 3b subunit 3, plays a role in activating the immune system, notably in triggering
inflammatory bowel condition of the Crohn’s disease [Gon+20]) and SAP130 (Sin3A associated
protein 130, a co-repressor protein associated with histone deacetylases, [FYA03]), that both
encode proteins that are around the same molecular weight. It turns out that numerous papers
use SAP130 as an alias to the HGNC approved name for SF3B3, starting from a 2013 publication,
that referred to SAP130, a subunit of histone deacetylase, when they were actually studying
SF3B3 [Suz+13] Antibody companies then wrongly attached this article to products for both
the SAP130 and SF3B3 genes, which finally leads to misidentification of an identified biomarker
in [Liu+20] study, in which they survey the activity of the SAP130 protein rather than the
SF3B3-encoded protein.

We decided to use HGNC symbol as the primary key of our database, namely the unique
identifier index of each row of our table. We chose HGNC convention since is the only interna-
tionally appointed authority for providing standardised guidelines for naming any gene, from
protein-coding genes to pseudogenes [Bru+20]-[Yat+17]. In addition, the committee focused on
ensuring consistency and clarity in research publications, by requiring that each entry matches a
DNA segment with proved phenotype or function. Starting from 1979, more than 40 000 carefully
curated human loci inputs can be retrieved from the HGNC database, half of them coding for
proteins. To alleviate common confusion regarding Human Genome Organization (HUGO) and
HUGO Gene Nomenclature Committee (HGNC) terms, note that the HGNC working group is
one of the components of the larger initiative led by the overarching HUGO organisation. HUGO
oversees various aspects of human genomics research that extends beyond gene nomenclature. Its
general purpose is to provide a platform for any initiative related to human genomics, not only
including gene naming, but also promoting genomics education, supporting genomic data sharing,
and developing global coordination in genomics research [Lee+21].

It appears than only eight HGNC symbols (retrieved with key SYMBOL) matched ambiguously
more than an unique ENTREZID symbol. Once removed, by keeping for each of them the most
general annotation, we successfully generate a 1-1 mapping for both ENTREZID and chromosome
name. On the contrary, one HGNC symbol is likely to match more than several old aliases
(ALIAS) still commonly used by biologists, or more than one ENSEMBL symbol.

Ultimately, contrary to ENTREZID nomenclature, HGNC names provide insights on the biological
function of the gene they referred to [Bru+20], Table 1, while ENTREZID entries are just ordered
integer indexes. Delving into details, all the members of a gene family (genes grouped together
based on homology, shared phenotype characteristic or membership of a protein complex) are
usually designated by the same root symbol, followed by an Arabic numeral for unique identification
(for example, KLF1, KLF2 and KLF3 are all antibodies). Pseudogenes (genetic sequence incapable
of producing a functional protein product but homologous to a functional gene) are named after
their ancestral parent gene, and non-coding RNA genes are prefixed according to their RNA
type (miRNA, snRNA, snoRNA for instance, see [Bru+20], Table 2 and [WB11] for details). We
should note however that a consensual nomenclature lacks for long non-coding RNAs (lncRNAs,

https://www.genenames.org/
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> 200) nucleotides) and the HGNC can not be used for naming isoforms (alternate transcripts
or splice variants, see Section 1.1.1).

Contrary to HGNC guidelines, ENSEMBL protocol, which names a gene after a specific
localisation and mapping, does not prevent from naming mutated genes, such as an alternative-
sequence variant or a by-product resulting from gene translocation or fusion. Precisely, ENSEMBL
naming [Bir+04] is a partly unsupervised process, summarised in [Ake+16, Fig. 3] in which
gene sequences are mapped onto genome assemblies and uniquely indexed through their genomic
coordinates, which are not always manually curated, while the precise localisation in the genome
might differ from an individual to another.

Hence, most of the many-to-one mappings between HGNC and ENTREZID can be explained
mostly by the presence of haplotypes (regions of the genome which are known under two or
more versions, possibly vastly differing across individuals) or duplicated genes, with distinct
loci (genome localisations). For instance, AGPAT1 is mapped to 9 distinct ENSEMBL sites, each
corresponding to a specific haplotype, see forums Why am I getting different ensembl gene ids for
a given gene symbol?, Alternative sequence gene Ensembl ID, How to deal with the case that one
gene symbol matches multiple ensembl ids? and illustrative haplotype video for details.

However, the advantage of Ensembl database lies in the documentation of a cluster of related
spliced transcripts (ENST. . . ) with overlapping coding sequences4.

To conclude that part, in order to minimise gene symbol confusion, the HGNC recommends
to pair each HGNC symbol with its unique, most consensual ID, since they are less proned to
nomenclature changes, being directly associated with the gene sequence. Another way to minimise
confusion between approved and alias symbols is by displaying curator notes on the approved
gene symbols that are used as well as alias for another gene or when multiple genes share the
same alias 5. Finally, the HGNC multi-symbol checker tool is another fast and easy way to check
that you are using HGNC-approved gene symbols in your manuscripts.

A.6.2 Automated methods for gene annotation
Let’s step in programmatic details: to build automatically our own, regularly updated NCBI_gene
database, we first start by loading org.Hs.eg.db [Car22b], a genome annotation database
for Human, together with the wrapper Bioconductor package AnnotationDbi [Pag+23], an
user-friendly interface using SQLite-based conventions to query omics databases6.

library(org.Hs.eg.db); library(AnnotationDbi)
symbol_humans <- AnnotationDbi::keys(org.Hs.eg.db, keytype="SYMBOL")
NCBI_gene <- AnnotationDbi::select(org.Hs.eg.db,
keys=symbol_humans,

columns=c("SYMBOL", "GENENAME","ENTREZID"),
keytype="SYMBOL")

# remove duplicated genes (when HGCN SYMBOLs match more than one ENTREZID)

4Indeed, transcripts that belong to the same gene may vastly differ in transcription start and end sites, as well
as the sequence of exons, and can give rise to very different proteins, see biological introduction, Section 1.1.1
Post-transcriptional regulation.

5More than 450 approved gene symbols match aliases for different genes
6Alternatively, you may leverage [Rai17] database, another AnnotationDbi object, however, keep in mind that

Ensembl databases are less curated and homogenised than ENTREZID or HUGO-based databases. A wrapper
function to AnnotationDbi::select, clusterProfiler::bitr() is also available in clusterProfiler package
[Yu22]–[Yu+12]

https://www.biostars.org/p/119540/#119767
https://www.biostars.org/p/119540/#119767
https://www.biostars.org/p/169596/#169623
https://www.biostars.org/p/352492/
https://www.biostars.org/p/352492/
https://www.youtube.com/watch?v=sPE9j_Hw9HU
https://www.genenames.org/tools/multi-symbol-checker/
https://rdrr.io/pkg/AnnotationDbi/man/AnnotationDb-class.html
https://rdrr.io/pkg/clusterProfiler/man/bitr.html
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duplicated_genes <- unique(NCBI_gene$SYMBOL[duplicated(NCBI_gene$SYMBOL)])
NCBI_gene <- NCBI_gene %>% dplyr::filter(!SYMBOL %in% duplicated_genes)

# get chromosome localisation
NCBI_chrom_location <- AnnotationDbi::select(org.Hs.eg.db, keys=symbol_humans,

columns=c("SYMBOL","MAP"),
keytype="SYMBOL")

NCBI_gene <- NCBI_gene %>% dplyr::inner_join(NCBI_chrom_location, by="SYMBOL")
# get aliases for each symbol
NCBI_aliases <- AnnotationDbi::select(org.Hs.eg.db, keys=symbol_humans,

columns=c("SYMBOL","ALIAS"),
keytype="SYMBOL") %>%

tidyr::chop(cols=c("ALIAS"))
NCBI_gene <- NCBI_gene %>% dplyr::inner_join(NCBI_aliases, by="SYMBOL")

#get ensembl for each symbol
NCBI_ensembl <- AnnotationDbi::select(org.Hs.eg.db, keys=symbol_humans,

columns=c("SYMBOL","ENSEMBL"),
keytype="SYMBOL") %>%

tidyr::chop(cols=c("ENSEMBL"))

NCBI_gene <- NCBI_gene %>%
dplyr::inner_join(NCBI_ensembl, by="SYMBOL") %>%
dplyr::rename(hgnc_symbol = SYMBOL)

In a second time, we use biomaRt [Dur+05]–[DH22] package to access detailed gene annotations,
such as the most likely biological function assigned to the transcript, or its precise localisation in the
genome. To do so, we first download the database storing Homo sapiens annotation with function
biomaRt::useEnsembl, then retrieve biological function and precise nucleotide/mapping locations
in the human genome with biomaRt::getBM function and respectively keys gene_biotype,
start_position and end_position7. Finally, we use the key cdna to retrieve all the known
RNA transcripts of a given HGNC gene8.

# download associated database
human_ensembl <- biomaRt::useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

# get biological types
gene_biologic_functions <- biomaRt::getBM(

7Since there is no 1-1 mapping between biological function and HGNC symbol, we only keep the first entry
in the list, except when coding for a gene. Similarly, there is no unique localisation of the start and the end
of the gene sequence, thus, we compute instead the mean of all known positions. From these values, we can
then easily deduce the GENELENGTH for each gene, a required entry for most RNASeq normalisation methods:
GENESEQEND − GENESEQSTART + 1

8Since this operation might generate memory overflow due to the size taken by the complementary sequences,
and since we are only interested in getting the number and the average size of transcripts, it is recommended to
run this last operation in parallel, or sequentially process each transcript.

https://rdrr.io/pkg/biomaRt/man/useEnsembl.html
https://rdrr.io/pkg/biomaRt/man/getBM.html
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attributes= c("gene_biotype", "hgnc_symbol"),
filters=c("hgnc_symbol"),
values = NCBI_gene %>% dplyr::pull(hgnc_symbol),
mart=human_ensembl) %>% dplyr::distinct(hgnc_symbol, .keep_all=TRUE)

# get gene positions
gene_positions <- biomaRt::getBM(attributes= c("start_position", "end_position",
"hgnc_symbol"),
filters=c("hgnc_symbol"),

values = NCBI_gene %>% dplyr::pull(hgnc_symbol),
mart=human_ensembl) %>%

dplyr::group_by(hgnc_symbol) %>%
dplyr::summarise(GENESEQSTART = round(mean(end_position)),

GENESEQEND = round(mean(start_position)),
GENELENGTH = end_position - start_position + 1)

# transcript number and size
transcript_base <- biomaRt::getBM(
attributes= c("hgnc_symbol", "cdna"),
filters=c("hgnc_symbol"),

values = NCBI_gene %>% dplyr::pull(hgnc_symbol),
mart=human_ensembl) %>%

dplyr::group_by(hgnc_symbol) %>%
dplyr::summarise(TRANSCRIPTLENGTH = round(mean(nchar(cdna))),

TRANSCRIPTNUMBER = dplyr::n()))

# Populate NCBI database with additional feature informations
NCBI_gene <- NCBI_gene %>%

dplyr::left_join(gene_biologic_functions, by = "hgnc_symbol") %>%
dplyr::rename(GENEBIOTYPE = gene_biotype)

NCBI_gene <- NCBI_gene %>% dplyr::left_join(gene_positions, by = "hgnc_symbol")
NCBI_gene <- NCBI_gene %>% dplyr::left_join(transcript_base, by = "hgnc_symbol")

In summary, we use AnnotationDbi to match HGNC symbols with Ensembl ones, and then
uses the biomaRt package to retrieve the biological function and the known transcripts. Additional
gene feature annotations, such as pathway assignment (GO terms), can also be retrieved using
biomaRt or clusterProfiler, see biomaRt vignette, however all these packages depends on
Bioconductor annotation packages (datasets stored and documented as R objects), limiting the
number of organisms available and regular updating (every day for NCBI databases, against every
six months for Bioconductor package). Additionally, requiring download of the entire Ensembl
or HUGO database each time you perform a query is cumbersome, hence several R packages
alternatives have been developed to partly handle these limitations:

• gProfileR [RKA19] is a R API to the web server, unfortunately it only supports one-to-one
conversion, preventing for instance to convert gene symbols to Ensembl.

• UniprotR [SM22], [Sou+20] is a R API to the Uniprot protein database, which supports

https://Bioconductor.org/packages/release/bioc/vignettes/biomaRt/inst/doc/
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almost all species. However, being a protein database implies that it can only be used to
fetch protein-coding genes.

• genekitr [Liu23] is a wrapper package that aims at combining both Ensembl and NCBI
databases to provide comprehensive gene annotations, while optimising running speed, all
these operations performed using genekitr::transId function. The features enabled by
this package are closely related to the ones implemented in our own internal annotation
function bbcPreprocessing::from_probe_to_gene, enabling for instance to set apart
HGNC from ALIAS symbols, or to return simultaneously several gene nomenclatures. In
addition to our own implementation, it allows through genekitr::plotVenn to quickly
identify overlapping and unmatched gene sets between several databases.

• On the contrary, we strongly deter from using functions limma::alias2Symbol, a helper
function from limma package, since it does not preserve the original order and does not
explicitly detail discriminate input genes mapping several standard HGNC symbols from
ones that could have been formally identified and Seurat::GeneSymbolThesarus, since its
speed is slow and suffers from the same limits as limma::alias2Symbol function.

https://rdrr.io/pkg/genekitr/man/transId.html
https://rdrr.io/pkg/genekitr/man/plotVenn.html
https://rdrr.io/pkg/limma/man/alias2Symbol.html
https://satijalab.org/seurat/reference/UpdateSymbolList.html
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Supplementary Notes on Gaussian Mixture Models in R
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For the sake of readibility, we display in Table 1 the general configuration used to run all the benchmarks tested.

Table 1: Global options shared by all the benchmarked packages.

Initialisation methods Algorithms Criterion threshold Maximal iterations Number of observations
midrule hc, kmeans,
small EM,rebmix,
quantiles, random

EM R, Rmixmod,
bgmm, mclust, flexmix,
EMCluster, mixtools,

GMKMCharlie

10−6 1000 100, 200, 500, 1000,
2000, 5000, 10000

Furthermore, the code snippets, data, and figure subfolders required for replicating the figures documented in this
supplementary material are readily accessible through the following public GitHub repository: GMM_appendix.

Appendix A: In-depth statistical elements about parameters estimation in
GMMs
Application of the EM algorithm to GMMs
While solving Equation (10) to retrieve the MLE estimates in the M-step of the EM algorithm, we have to
enforce the non-negativity and sum-to-one constraint of the mixture models (Equation (2)). This is enabled by
the Lagrange multipliers tip, which consists in practice to add the equality constraint over the parameters to
estimate, here −λ(∑k

j=1 pj − 1), to the function to be optimised (Walsh 1975).

The evaluation of the roots of the derivative of the auxiliary function (see Equation (10)) at the parameter pj

with the additional unit simplex constraint (2) allows to readily compute a MLE estimate of the ratios, valid for
any finite mixture model (Equation (1)):

p̂j =
∑n

i=1 ηi(j)
n

(1)

Additionally, we restrained in both the univariate and multivariate settings to the fully unconstrained parametri-
sation, in which each component follows its own parametric distribution. The general derivative of the auxiliary
function with respect to each component parametric distribution ζj , is given by Equation (2)1:

∗LPSM, Sorbonne Université, bastien\protect_chassagnol@laposte.net
†Les Laboratoires Servier, IRIS
‡Les Laboratoires Servier, IDRS
§LIP6, Sorbonne Université
¶Les Laboratoires Servier, IRIS
‖ArData

∗∗LPSM, Sorbonne Université
††Les Laboratoires Servier, IRIS, etienne.becht@polytechnique.edu
1It is equivalent to compute the MLE of a sample following distribution fζj weighted by the vector of posterior probabilities.
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∂Q(θ|θ̂q−1)
∂ζj

=
n∑

i=1
ηi(j)

∂ log(fζj
(Xi|Si = j))
∂ζj

(2)

Accordingly, if a closed form for the computation of the MLE in supervised cases is known (and fortunately this
is the case for both the univariate and multivariate Gaussian distributions), the computation of the maximum of
the auxiliary function can be readily calculated.

Plug-in the corresponding parametric distribution in the auxiliary function (10) yields the following formula for
the univariate GMM (Equation (3)):

Q(θ|θ̂q−1) =
n∑

i=1

k∑

j=1
ηi(j)

(
log(pj) − log(σj) − (Xi − µj)2

2σ2
j

)
+ K (3)

and Equation (4) for the multivariate GMM:

Q(θ|θ̂q−1) =
n∑

i=1

k∑

j=1
ηi(j)

[
log(pj) − 1

2
(
log(det(Σj)) + (xi − µj)⊤Σ−1

j (xi − µj)
)]

+ K (4)

K is a constant with respective values of −nD log(2π)
2 and −n log(2π)

2 in the univariate and multivariate setting.

In the univariate setting, the individual MLE mean µj , and variance, σj , estimates are readily available (Equations
(5) - (6)):

∂Q(θ|θ̂q−1)
∂µj

= 0 ⇔ µj =
∑n

i=1 ηi(j)Xi∑n
i=1 ηi(j) (5)

∂Q(θ|θ̂q−1)
∂σj

= 0 ⇔ σ2
j =

∑n
i=1 ηi(j)(xi − µj)2
∑n

i=1 ηi(j) (6)

Before finding the optimum of the auxiliary function in the multivariate setting, we remind the interested reader
of some relevant calculus formulas below:

Transpose matrix properties

a. det(pA) = pG det(A) b. det(A−1) = 1
det(A)

c.
(
A−1)⊤ = A−1a

awhen A is itself symmetric, as by
definition, A⊤ = A

Matrix calculus
Given a symmetric matrix A of full rank D and two vectors x and µ of size D, the following derivative
properties hold:

a. ∂x⊤Ax
∂A = xx⊤ b. ∂(x−µ)⊤A(x−µ)

∂µ =
−2A(x − µ)

c. ∂ log(det(A))
∂A−1 = −A a

aOther matrix calculus formulas
and notations are available on Ma-
trix calculus and demonstration de-
tails from The Matrix Cookbook (Pe-
tersen and Pedersen 2008).

Using the calculus formulas derived in the previous boxes, a closed form for the MLE estimate of the mean, µj ,
and covariance, Σj , is readily computed (see Equations (7) - (8)):
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∂Q(θ|θ̂q−1)
∂µj

=
n∑

i=1
ηi(j)Σ−1

j (xi − µj) = 0 ⇔ µj =
∑n

i=1 ηi(j)xi∑n
i=1 ηi(j) (7)

∂Q(θ|θ̂q−1)
∂Σ−1

j

= 1
2

n∑

i=1
ηi(j)

[
Σj − (xi − µj)(xi − µj)⊤

]
= 0 ⇔ Σj =

∑n
i=1 ηi(j)(xi − µj)(xi − µj)⊤

∑n
i=1 ηi(j) (8)

Explicitly optimising the equations ((3)-(4)) yield the following MLE parameters in both the univariate and
multivariate settings (Table 2), as detailed in (Leytham 1984; Redner and Walker 1984):

Table 2: An overview of the practical implementation of the EM algorithm in GMMs.

Univariate GMM Multivariate GMM

E-step ηi(j) = p̂q
j N (xi|µ̂q

j ,σ̂q
j )∑k

j=1 p̂q
j N (xi|µ̂q

j ,σ̂q
j )

ηi(j) = p̂q
j ND(xi|µ̂q

j ,Σ̂q
j )∑k

j=1 p̂q
j ND(xi|µ̂q

j ,Σ̂q
j )

Ratios estimation p̂q+1
j =

∑n

i=1 ηi(j)
n p̂q+1

j =
∑n

i=1 ηi(j)
n

Mean estimation µ̂q+1
j =

∑n

i=1 ηi(j)xi∑n

i=1 ηi(j) µ̂q+1
j =

∑n

i=1 ηi(j)xi∑n

i=1 ηi(j)

(Co)Variance estimation
(
σ̂2

j

)q+1
=
∑n

i=1 ηi(j)(xi−µ̂q+1
j )2

∑n

i=1 ηi(j)
(
Σ̂2

j

)q+1
=
∑n

i=1 ηi(j)(xi−µ̂q+1
j )(xi−µ̂q+1

j )⊤
∑n

i=1 ηi(j)

In both cases, obtaining the parameters of each component’s parametric distribution turn to be equivalent
to the computation of the mean and variance of a weighted sample, which can be computed in R with
stats::weighted.mean and stats::cov.wt functions2. Importantly, the value of the mapping function only
depends on the set of the observations X, but does not depend on the parameter to estimate θ. Indeed, the
statistic computed by the EM algorithm is sufficient, which is one of its main advantages.

The complete code associated to our R implementation is implemented respectively with enmix_univariate
and enmix_bivariate for the univariate and multivariate setting, available on GitHub at RGMMBench, as well
as the programs used to generate the several plots and tables of the article. We additionally made two choices
not clearly set in the literature:

• The algorithm stops when when the absolute difference between consecutive log-likelihoods falls below a
user-defined threshold epsilon, with a maximal number of itmax iterations allowed to reach this convergence.

• In order to avoid numerical underflows resulting in inconsistent ratios, of type 0/0, we rely on the fact
that Gaussian distributions belong to the exponential family to log-rescale our observations and compute
efficiently the posterior probabilities in the E-step of the EM algorithm. First, to avoid null values for
highly unlikely observations, those far from the centroids, we use the log attribute of stats::dnorm and
mvtnorm::dmvnorm functions, see Equation (9):

ℓ(θ|x) = log(
k∑

j=1
pjfζj(x))

= log (exp [log(pj) + log(fζj(x))])
(9)

Second, we rewrite our sum of exponentials, the one enclosed into the log, to use the Taylor’ series of log(1 + x),
with |x| ≪ 1, see Equation (10):

2We assign “ML” to the argument method to get the biased but true MLE estimate of the covariance
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 = log


exp(a′
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∑

j ̸=j′
exp
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aj′

)




= aj′ + log1p


∑

j ̸=j′
exp

(
aj

aj′

)
 , with j′ = arg max

∀j∈{1,...,k}
(eaj )

(10)

with log1p the R function dedicated for this Taylor’s development. The posterior probabilities are then given
by Equation (11):

log (Pθ(S = j|X = x)) = log(pj) + log(fζj
) − ℓ(θ|x) (11)

• We stop the algorithm early when the estimates are trapped in the boundaries of the parameter space,
typically when the ratio of a component or its associated variance tends to zero. This case rarely occurs in
our simulations: once in univariate and never in multivariate.

Parsimonious parametrisation of multivariate GMMs
Parsimonious parametrisation of GMMs models are provided by the following eigenvalue factorisation of the
covariance matrix (Equation (12)):

Σj = λjQjDjQ⊤
j (12)

with λj = det (Σj)
1
D a scalar proportional to the total volume of the ellipsoid (or area in bi-dimensional setting),

Dj a diagonal matrix storing the eigenvalues normalised such that |Dj | = 13 and Qj a MD(R) orthogonal
matrix whose columns are D linearly independent eigenvectors generating an orthonormal basis in RD while
Q⊤

j is its corresponding transpose matrix. The existence of the decomposition is guaranteed by the positive
definiteness constraint over the covariance matrix while the orthogonality of Qj results from its symmetry. When
the matrix to factorise is positive-definite and symmetric, we also refer to it as spectral decomposition, a special
case of eigendecomposition.

Each of these matrices can be constrained to be equal or variable across clusters, hence this decomposition
reveals 14 possible models with different geometric characteristics, namely:

• two models with the spherical family, for which only λj is used to control the isotropic (same radius in any
dimension) volume of each component of the corresponding distribution structure

• four models with the diagonal family, using λj with possibly distinct diagonal elements and Dj to specify
the shape of the density contours. In that context, Qj is henceforth a permutation matrix, whose inputs
are only zeros and an unique one per row.

• eight models with the general family, using additionally Qj to determine the orientation of the main axes
of the ellipsoids. Indeed, in the last two families described, this matrix was equal to the identity, hence the
axis of the ellipsoids were aligned with the standard RD basis.

We detail the main characteristics of the 14 parametrisations (28 if we add for each model the equiproportional
hypothesis) in Table (3):

• The first column describes in general and understandable terms each parametrisation, with I meaning
invariant (alternatively, not used in the parametrisation), E means equal and V variable while the second
column matches the corresponding matrix decomposition of the covariance matrix. These 14 models are all

3Langrognet et al. (2021) enforces an additional but, in our opinion, superfluous constraint that the eigen values are sorted by
decreasing order
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Table 3: The 14 canonical parametrisations of the within-group covariance matrix Σj with the corresponding
geometric representations.

Model Notation Family M-step Number of parameters Representation

EII [λI] Spherical CF α + 1

VII [λjI] Spherical CF α + k

EEI [λD] Diagonal CF α + d

VEI [λjD] Diagonal IP α + d + k − 1

EVI [λDj ] Diagonal CF α + kd − k + 1

VVI [λjDj ] Diagonal CF α + kd

EEE [λQDQ⊤] Ellipsoidal CF α + β

EVE [λQDjQ⊤] Ellipsoidal IP α + β

VEE [λjQDQ⊤] Ellipsoidal IP α + β + (k − 1)(d − 1)

VVE [λjQDjQ⊤] Ellipsoidal IP α + β + d(k − 1)

EEV [λQjDQ⊤
j ] Ellipsoidal CF α + kβ − d(k − 1)

VEV [λjQjDQ⊤
j ] Ellipsoidal IP α + kβ − (k − 1)(d − 1)

EVV [λQjDjQ⊤
j ] Ellipsoidal CF α + kβ − k + 1

VVV [λjQjDjQ⊤
j ] Ellipsoidal CF α + kβ
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included in one of the three super-families: spherical, diagonal and ellipsoidal listed before. As an example,
the model VEI has variable volumes λj in relation with the cluster, however shares same general shape
(as we can note on the Representations, all isodensities are distributed along the x-axis) and invariant
directions (in other words, the transition matrix is the identity matrix, entailing that all scatter plots are
aligned with the Cartesian coordinate axes).

• Varying the volume λj , given a fixed Q and D, amounts to an enlargement (when all dimensions of a
figure are changed in the same scale, also referred to as isotropic transformation), varying the eigenvectors
Qj , given a fixed volume λj and D is equivalent to a rotation and finally varying the diagonal matrix Dj ,
given the other parameters of Equation (12) are fixed, results in a distortion of the representation.

• CF means that the M-step is in closed form while IP entails that the M-step is iterative.

• The number of parameters enumerates the degrees of freedom, namely the number of parameters to
truly estimate once the sum-to-one constraint is enforced (Equation (2)). In detail, k is the number of
components of the GMM model, D its dimension, α = kD + k − 1 is the number of parameters required to
identify the mean vector of each component (kD) and the ratios k − 1 and β = D(D+1)

2 the number of
covariance terms to estimate for a given component (D variance diagonal terms, the remaining terms being
the pairwise symmetric covariance terms between the features). Note that the complexity of the covariance
matrix in the fully unconstrained model (Model VVV) grows linearly with the number of components
while exploding in the order O(D) with the number of dimensions. Meantime, the complexity of the
parametrisation with the homoscedastic spherical family (Model EII) is constant.

• Last column displays the 14 most common GMMs parametrisations, by plotting the ellipses and centroids
of a three components bivariate GMM parametrised by the mean vector and covariance of each component.
For any additional detail, we refer the interested reader to mclust (Scrucca et al. 2016) and Rmixmod
(Langrognet et al. 2021) vignettes for a general introduction to GMMs and to (Banfield and Raftery 1993;
Celeux and Govaert 1992; Browne and McNicholas 2014) for the closed formulas of the models.

Parameters estimation in a high-dimensional context
However, while parsimonious representations can largely reduce the computational burden, none of them in
the general family is able to handle degenerate cases where the number of features, D, exceeds the number
of observations n. Likewise situations, when the number of features is consequent, are referred to as high-
dimensional, raising the well-known issue of the “curse of the dimensionality”. Two distinct approaches have
been developed in the literature to handle these degenerate cases:

• The most naive approach aims to eliminate the least informative variables by applying a strong Lasso-type
penalty on the parameters to be estimated. We only came across such an approach twice among the
reviewed R packages, in the specific context of regressions of mixtures (seeRobMixReg and fmerPack
packages).

• The second category includes a larger diversity of methods, all inspired from the factor analysis approach
whose paradigm is to consider that all the D features used to describe the observations can be spanned in a
smaller subspace without lose of information. Precisely, the factor analysis theory describes the variability
among observed and correlated variables by a substantial lower number of unobserved variables called
factors or latent variables. In practice, for a given component j, the diagonal matrix storing the eigenvalues
is decomposed into two-blocks. The first upper-right diagonal block, assumed generally of dimension
dj ≪ D, stores the largest dj eigenvalues and model the variance of the actual data of component j while
the lower-left diagonal block, of dimension D − dj , stores an unique parameter that can be interpreted
as the variance of the residual error terms, constrained to be strictly inferior to the lowest variability of
the informative variables. The dimension dj can be considered as the intrinsic dimension of the latent
subspace of cluster j spanned by the first dj eigenvectors of Qj

4.
4Starting from eigen-decomposition described in (Equation (12)), this approach is equivalent to consider only the dj largest

eigenvalues resulting from the decomposition and sets the others to null.
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When the sub dimension dj is known, a closed version is generally available for the M-step of the EM algorithm,
however dj is itself an hyperparameter to estimate. Though, (Bouveyron, Celeux, and Girard 2011) has shown
that a classical Cattell’s scree-test could be used to asymptotically estimate the intrinsic dimension of each
cluster. Compared to the previous approach, this method has a strong theoretical background and strong impact
on the running times performance.

Taking a concrete use case from the help documentation of the package HDclassif, it enabled to cluster a dataset
of 10 classes with 130 observations overall and described in a 1024-dimensional space (consider the famous
machine-learning digit recognition problem). Variants of these approaches have been developed in the following
packages: HDclassif, fabMix, EMMIXmfa and pgmm. We refer the interested reader to the educational vignette
of HDclassif: HDclassif and papers (Paul David McNicholas and Murphy 2008; P. D. McNicholas et al. 2010;
Paul D. McNicholas and Murphy 2010).

Historically, the first mention of a probabilistic framework with an application to dimension reduction in the
context of finite mixture models goes back to Tipping and Bishop (1999), based on principal component analysis.
G. J. McLachlan, Peel, and Bean (2003) and Mclachlan and Peel (2000) extend this original model by postulating
that the distribution of the data within any latent class could be described using the tools of the factor analysis
field5 Finally, building on the parsimonious parametrisations already theorised for GMMs (see previous section)
, Paul David McNicholas and Murphy (2008), P. D. McNicholas et al. (2010) and Bouveyron, Girard, and
SCHMID (2007) proposed a variety of constraints, but this time directly defined on the projected subspace.
Since all methods based on factor analysis provide a transition matrix, using the two or three most informative
eigen values and their associated eigen vectors in order to project the dataset on a smaller subspace provides a
simple visualisation tool for representing high dimensional datasets. However, this method may is not suitable
for unravelling the clustering structure. Instead, the GMMDR method, first proposed by Scrucca (2010) and
implemented in the MclustDR function, from mclust package, aims at recovering the subspace that best captures
the underlying latent clustering structure (we notably expect invariance of the global overlap in the sampling
space and the corresponding projected subspace). More precisely, the main objective of the GMMDR technique
is to infer the global change-of-basis matrix Q that minimises the differences in the a posteriori probabilities
of assigning each observation i to a given cluster si, knowing the value of the vector of observed covariates xi.
Namely, we are looking for the orientation matrix Q that maximally ensures the following objective (Eq. (13)):

Q̂ = arg max
Q

(Pθ(Si = j|X = xi) = Pθ(Si = j|XQ)) such that S ⊥ X|XQ (13)

This procedure itself derives from the sliced inverse regression algorithm (K.-C. Li 1991), but instead of
conditioning on the known response variable, GMMDR conditions on the estimated MAP cluster assignments.
Since the solution returned by the following optimization problem is not unique, we generally constrain the
projection matrix to be orthonormal (any of the vectors forming the basis are pairwise orthogonal, and individually
of norm 1).

Model selection
When comparing several models with several number of components or parametrisations, the likelihood is
uninformative as it can be arbitrarily minimised by increasing the complexity of the model or adding components.
it is then necessary to penalise for complexity when comparing them. The general form of the penalty metric,
GIC (for generalised information criteria), is given by Equation (14):

GIC(θ) = p(θ)︸︷︷︸
penalty term

− 2ℓ(X|θ)︸ ︷︷ ︸
log-likelihood of the model

(14)

5Although principal component analysis and factor analysis are closely related, we can differentiate both approaches by their
differing objective: while PCA seeks to capture the overall variability of the dataset, factor analysis focuses on describing the
intra-variability between covariates. In practice, the differences between the two approaches are minor, we can notably show that the
output of PCA is one of the solutions suggested by standard factor analysis.
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Among them, we set apart scores focused on selecting selecting the right number of parameters and components,
namely the degrees of freedom (d.o.f.) of the model (3k − 1 parameters for the univariate unconstrained GMM),
and those focusing on retrieving readable clusters.

In the first category, the AIC (Akaike information criterion) (Schwarz 1978) is a minimax-rate optimal (score
that minimises the risk in the worst case) but inconsistent metric (Yang 2005) , proned to overestimate the
true number of components. BIC (Bayesian Information Criterion), and CAIC (consistent AIC), accounting
for both the number of parameters and the sample size, are consistent metrics. Finally, the MDL(Minimum
Description Length) criterion accounts for the number of parameters, sample size and number of components.
Its core objective differs from the others as it aims at reducing the amount of code to encode both parameters
and observations but is practically close to the BIC metric. A thorough description of these scores, with their
formulas and theoretical properties, can be found in Fonseca (2008), Celeux, Fruewirth-Schnatter, and Robert
(2018).

In the second category, the most commonly implemented is the ICL (integrated complete-data likelihood), a
BIC criterion with an additional entropy penalty (G. McLachlan and Peel 2000). As opposed to BIC, the
entropy term reduces the number of components to a well-separated and readable clustering. Hence, it tends to
underestimate their true number when components are overlapping. Alternative similar metrics are the CLC
(Classification Likelihood Criterion), AWE (Approximate Weight of Evidence) and NEC (Normalised Entropy
Criterion) metrics (Bacci, Pandolfi, and Pennoni 2012). The several metrics implemented by the reviewed
packages are listed in Table 2.

The Likelihood-ratio test (LRTS) can also be used to compare nested models, with additional advantage to possibly
derive a p-value yielding the probability that a complex model (with more components) should preferentially be
used over a simpler one. Traditionally, common process is to add one component after the other, until hypothesis
H0 can not be rejected anymore. Under standard regularity conditions of Cramer’s theorem, Wilk’s theorem
states that the Likelihood Ratio distribution follows asymptotically a χ2 distribution, but unfortunately these
conditions are not met in mixture models (G. McLachlan and Peel 2000). To counterbalance it, bootstrap
inference (G. McLachlan and Peel 2000) is often used to derive an empirical distribution of the Likelihood Ratio.

Derivation of confidence intervals in GMMs
Punctual estimation, with a single estimate θ̂ for a given n-sample, is not enough to evaluate the performance
of a specific method, as drawing another n-sample using the same parameters is likely to lead to a different
distribution and estimation of θ̂. Instead, it can be interesting to retrieve the distribution or at least the
variability of the estimated parameters, which can reveal useful to derive confidence intervals. However, obtaining
the distribution or even an asymptotic approximation of the distribution of the parameters is not feasible in
practice with mixture models (G. McLachlan and Peel 2000). Hence, most authors recommend to use bootstrap
methods for the generation of confidence intervals, as suggested in (Efron and Tibshirani 1993; Basford et al.
1997).

Bootstrap distributions of the parameters are generally retrieved via empirical or parametric bootstrap, both
available in the mclust package. In the empirical or non-parametric bootstrap Jaki et al. (2018), we draw
iteratively N samples of size n with replacement from the original observed variable x1:n. In the parametric
bootstrap, N simulations are built from the parameter estimated with the available observations of X, via the EM
algorithm or any method used for parameter estimation. In both cases, we obtain an empiric distribution of the
parameter estimate: θ̂1:N = (θ̂1, . . . , θ̂N ). Sample mean and standard deviation (SD) of this empirical distribution
can be used to retrieve an asymptotic estimate of the variability of the parameter estimate θ̂, the bias or the MSE
of the parameter estimates. To get unbiased estimates of the true standard deviation and mean of the estimates,

it is of common practice to compute the empirical covariance matrix of the sample cov[θ̂] =
∑N

j=1(θ̂j−E[θ̂])(θ̂j−E[θ̂])T

N−1 ,
the square roots of its diagonal terms corresponding to the empiric SDs. Symmetric 1 − α asymptotic confidence
intervals using the Central Limit Theorem (CLT) can then be simply derived Equation (15):
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E[θ̂t] ± 1√
n

z1− α
2

√
var(θ̂t, ∀t ∈ {1, . . . , 3k} (15)

with z1− α
2

the 1 − α
2 quantile of the standard Gaussian distribution.

If computing the covariance matrix is not possible analytically, it can be approximated by the expected Fisher
Information Matrix Iexp(θ) (FIM), given by Equation (16):

[Iexp(θ)]1≤i≤3k,1≤j≤3k = −E
[

∂2

∂θi∂θj
ℓ(θ|X)

]
(16)

Indeed, the Cramér-Rao theorem states that the diagonal elements of the inverse of the FIM are upper bounded
by the variability of the parameters: var(θ̂) ≥ 1

I(θ) . This implies that the ratio between inverse of the FIM and

the variance e(θ̂) = I(θ̂)−1

var(θ̂) converges to 1, using the asymptotic efficiency of the MLE estimate of GMMs.

Unfortunately, the computation of the expected FIM is still a hard task. Hence it is generally replaced by
the observed FIM, the negative of the Hessian matrix of the incomplete log-likelihood function: Iobs(θ) =
− ∂2

∂θi∂θj
ℓ(θ|X). Exact general formulas are provided for the univariate case in Louis (1982) and for the multivariate

case in Oakes (1999). Yet, it has to be noted that the expected FIM generally outperforms the observed FIM in
estimating the covariance matrix of the MLE (X. Cao and Spall 2012).

However all these methods require to compute second derivatives of the log-likelihood leading to some disad-
vantages from a computational point of view. More recently, L. Meng (2016) and Delattre and Kuhn (2019)
proposed an accelerated algorithm requiring only computation of first order derivatives. A similar alternative
is implemented in the mixsmsn package (Prates, Lachos, and Cabral 2021): mixsmsn::im.smsn, in which the
Hessian matrix is approximated by the cross-product of the gradient of the log-likelihood Equation (17):

Iobs(θ) ≈ −∂ log(ℓ(θ|X))
∂θ

∂ log(ℓ(θ|X))
∂θ

T

(17)

according to an idea developed in paper Basford et al. (1997). For a more general introduction to Gaussian
mixtures, including other models and parametrisations in the multivariate case, we refer the reader to the
reference book Gaussian parsimonious clustering models Celeux and Govaert (1992).

An analytic formula of the overlap for univariate Gaussian mixtures
From an analytic point of view, the overlap between k components of variable X is given by Equation (18):

OVL(X) = 1 −
∫

R
max

j
(pjφζj

(x))dx (18)

The 1 in Equation (18) corresponds to the integration of probability fθ(X) distribution over its domain. The
second part is the area under the curve of the component density function maximised on R, with j the index
of the component maximised at that point. It should be noted that the definition used here for the overlap is
closely related to the definition of the false clustering rate (FCR) (Marandon et al. 2022).

Equation (18) simplifies for a two component mixture distribution to Equation (19):

OVL(X) =
∫

R
min (p1φζ1(x), p2φζ2dx(x)) (19)

From a probabilistic point of view, we can rewrite Equation (19) as the overall probability of assigning a wrong
label to a given observation. With two components, this simply decomposes as the sum of the probability of
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mistakenly assigning an observation from component 2 to component 1 and the probability of assigning an
observation from component 1 to component 2 Equation (20):

OVL(1, 2) = OVL(1|2) + OVL(2|1)
= P (p1φ(X, µ1, σ1) ≤ p2φ(X, µ2, σ2)) + P (p2φ(X, µ2, σ2) ≤ p1φ(X, µ1, σ1))

=
∫

R
p1φζ1(x)1p1φζ1 ≤p2φζ2

dx +
∫

R
p2φζ2(x)1p2φζ2 ≤p1φζ1

dx

(20)

We illustrate the computation of the overlap in some hard-hitting cases below, showing relation between the level
of entropy and the individual standard deviations with the overlap measured in Figure 1. Means of component 1
and 2 are 5.28 and 8.45. Panels A and C correspond to balanced classes, while in panel B and D, class 1 is more
abundant with a frequency of 0.9. Finally, in panels A and B, the variance of component 1 is smaller than the
variance of component 2 with respective SDs of 1 and 3 and reciprocally for panels B and D. Interestingly, in
panel D, using the MAP as defined in Equation (21), all observations issued from class 2 are wrongly assigned
to class 1.

ηi(j) := Pθ(Si = j|Xi = xi) (21)

The red area corresponds to the probability of misclassifying component 1 as component 2, while the green area
corresponds to the probability of misclassifying component 2 as component 1. Total overlap is since the sum of
red and green area, in Figure 1.
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Figure 1: Illustration of the overlaps between a two-components GMM. Density function of component 1 is given
by the red line, its of component 2 by the green line, and total density function fθ(X) is represented in blue.
The total overlap is given by the sum of the green and red areas.

There are two intersection points, x1 and x2 , with µ1 < µ2 when solving equation Equation (22):

p1φ(x, µ1, σ1) = p2φ(x, µ2, σ2) (22)
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in following case: if σ2 > σ1, then we must have p1 > σ1
σ1+σ2

, else if σ2 < σ1, then p1 < σ1
σ1+σ2

. In that case, they
are given by following formula Equation (23):

(x1, x2) =




σ2
1µ2 − σ2

2µ1 ± σ1σ2

√
(µ1 − µ2)2 + 2(σ2

2 − σ2
1)
[
log(p1

p2) + log(σ2
σ1

)
]

σ2
1 − σ2

2


 (23)

Again, sign of term A and order of the roots yield two several cases, depending whether σ1 is greater or not
than σ2. Both situations with unbalanced classes are illustrated in panel B and D on Figure 1:

• When σ1 < σ2, then x2 < x1 and p1φ(x, µ1, σ1) < p2φ(x, µ2, σ2) on interval [x2, x1]. Hence, total overlap
is given by Equation (24):

OVL(1, 2) = p1 (Φ(x2, µ1, σ1) + 1 − Φ(x1, µ1, σ1)) + p2 (Φ(x1, µ2, σ2) − Φ(x2, µ2, σ2)) (24)

• When σ1 > σ2, then x1 < x2 and p1φ(x, µ1, σ1) < p2φ(x, µ2, σ2) on interval [x1, x2]. Hence, total overlap
is given by Equation (25):

OVL(1, 2) = p2 (Φ(x1, µ2, σ2) + 1 − Φ(x2, µ2, σ2)) + p1 (Φ(x2, µ1, σ1) − Φ(x1, µ1, σ1)) (25)

An interesting result is obtained with the homoscedascity and balanced classes’ assumptions of the k-means
algorithm. There is only one intersection point in that case: xc = µ1+µ2

2 , that is simply the centre of the segment
bounded by the means of the two components. The overlap is simply then OVL(1, 2) = 2Φ(− |µ1−µ2|

2σ ).

To our knowledge, no closed formula has been determined returning the overlap generalised to more than two
components (combinatorial set of inequations to solve), in the unconstrained multivariate setting (cubic equation
to solve in bi-dimensional space). Indeed, even restraining the study to the bivariate setting (the calculation of
the OVL then amounts to estimating the zone of intersection between two ellipses), the exact computation of
the OVL involves multiple integration and the algebraic resolution of a quartic equation. A first step is provided
by (Alberich-Carramiñana, Elizalde, and Thomas 2017), stating algebraic conditions for the existence of an
intersection region and computing where applicable a closed formula of the OVL between two coplanar ellipses.

Accordingly, only stochastic approximations, relying on randomised algorithms, such as the Monte-Carlo
integration with a rejection technique (knowing that the total area under the curve is normalised to one, we
randomly simulate observations and the ratio of the number of observations falling in the intersection area is
then used as a proxy of the overlap), are available so far (Maitra and Melnykov 2010; Pastore and Calcagnì
2019; Nowakowska, Koronacki, and Lipovetsky 2014).

Appendix B: Extensions of the EM algorithm to overcome its limitations
Two main alternatives were developed in parallel to the EM algorithm and are implemented in some of the
reviewed packages: the CEM and the SEM algorithm. However, they do not have its theoretical properties,
especially guarantee of the consistency of the algorithm.

The M-step of the classification EM (CEM) algorithm (Biernacki, Celeux, and Govaert 2000) maximises a
function where each observation was assigned to the maximum a posteriori (MAP) estimate Equation (21). It
generalises the well-known k-means algorithm making no assumption of homoscedascity or equibalanced clusters.
Its main drawback is to not take into account uncertainty of the cluster assignment, inducing inconsistency
of the algorithm (G. McLachlan and Peel 2000). EM*, referred in Kurban, Jenne, and Dalkilic (2017) and
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implemented in the DCEM package, is a faster implementation of the CEM algorithm, with roughly a twice
smaller complexity. To do so, only the posterior distributions associated to the lower half of the most uncertainly
assigned observations are re-computed in the E-step of the EM-algorithm. This normally avoids to recompute
data that is unlikely to change of cluster attribution from an iteration to another. However, the higher speed of
this algorithm has not been theoretically proven, as the gain of running time per iteration of the algorithm may
be alleviated by a greater number of steps to reach the convergence.

The Stochastic EM (SEM) replaces the MAP value for S in the E-step of the CEM algorithm by a random
draw (or N of them in the N- variant of the algorithm) of the posterior distribution Pθ(S|X). As this algorithm
does not converge to a unique solution, but rather oscillates around a local maximum, the estimation is usually
performed by averaging the late estimated values while ignoring the first estimates from the burn-in phase. A
theoretical description of these algorithms, with discussion on their convergence properties, is detailed in Celeux
and Govaert (1992). SEM algorithm has also a relatively faster convergence than EM algorithm but it is more
proned to be trapped in a local maximum or to remove a component. Increasing the number of draws N may
alleviate this issue, but at the extent of computational performances.

A wide variety of fast algorithms derived from the EM algorithm have been developed. cwEMM (component-wise
EM algorithm), described in Celeux, Chrétien, and Forbes (2012), is a variation of the EM algorithm aiming
at speeding up its convergence. The M-step at each iteration is only performed for one of the components
θj = (pj , µj , σj), implying that the parameters of a given component are estimated sequentially rather than
simultaneously. The theory behind relies on a Gauss-Seidel scheme and was first used by the SAGE algorithm.
However, the constraints on the proportions set in Equation (2) are only guaranteed if the algorithm converges.
Additionally, faster convergence is not theoretically proven for any situation. A list of general acceleration
methods for the EM algorithm, not specific to GMMs, is available on turboEM (Bobb and Varadhan 2021).

Other EM-inspired algorithms focus on counterbalancing the main limitations of the EM algorithm. The
Variational Bayesian EM (VBEM) algorithm performs a Bayesian estimation of the parameters. Indeed, the
large space of all possible parameter estimates Θ can be hard to explore and the usual initialisation methods
are uninformative, not taking into account expert recommendations. VBEM uses these prior assumptions on
the parameters’ distribution P(θ) to optimise the posterior distribution P(θ|X), based on Bayes’ rule. Direct
determination of the Bayesian posterior law of the parameters is generally an intractable problem, hence
Variational Bayes only maximises an approximation of the true posterior, assuming that the parameters can be
partitioned in independent distributions. This hypothesis is known as mean-field approximation (Murphy 2012).

The minimum message length (MML) EM algorithm, implemented in the GMKMcharlie package, is a completely
unsupervised algorithm as it does not require any prior selection of the number of components (Figueiredo
and Jain 2002) , by dealing explicitly with the possibility of discarding a component during the iteration. To
do so, the selection criteria for the number of components is directly included in the optimisation procedure.
However, its implementation is close from a Bayesian estimation of the parameters of the model, setting a
non-informative Dirichlet prior distribution on the ratios and the higher expected performances of the algorithm
are not demonstrated on real use cases (Figueiredo and Jain 2002).

The Expectation/Conditional Maximisation (ECM) (MENG and Rubin 1993) belongs to the super-family
of GEM (general EM) algorithms, generally used when the maximisation of the auxiliary function yields a
non-closed form to solve. To do so, the ECM algorithm replaces the intractable M-step of the EM algorithm by
a number of computationally simpler conditional maximization (CM) steps (instead of inferring all parameters at
once, the conditional step retrieves a set of optimal parameters, conditioned by the current value of the others).
ECM is for instance used with GMMs including an additional linear constraint on the means of the components,
as provided by the mixtools package. As documented in Table 2, EMMIXmfa implements an extension of the
ECM, termed alternating expectation–conditional maximization (AECM) algorithm (X.-L. Meng and Van Dyk
1997), and which can be used to reduce the computational burden of estimating the parameters of mixtures of
factor analysers. The AECM algorithm is an extension of the ECM algorithm that allows the complete data
used for estimation to differ on each CM-step (generally, in order to speed the computation, by selecting a subset
of the most leveraged observations). GEM algorithms share the same asymptotic theoretical properties of the
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EM algorithm, especially the local consistency of the estimates returned.

A small simulation to evaluate the impact of outliers
Classical methods used for the parameters’ estimation, especially the maximum likelihood estimation (MLE), are
sensitive to the presence of outliers. A naive solution consists in assigning null weights to observations suspected
to be outliers, so that they do not contribute 6. Trimming aberrant observations from the distribution is justified
theoretically by the principle of the spurious outlier model (Gallegos and Ritter 2005). However, this method is
quite stringent, requiring human expertise or the use of general outlier detection tools not necessarily adapted to
GMM estimation.

Two general approaches for dealing with outliers with a well-defined theoretical background are the outliers
mixture modelling and the trimming approach. Outliers mixture modelling integrate an additional component
accounting for the outliers in the distribution. Notably, the mclust (Fraley, Raftery, and Scrucca 2022) and
otrimle (Coretto and Hennig 2021) packages use an improper uniform distribution to model the distribution of
outliers. Unlike mclust, the otrimle package does not require the user to set in advance the proportion of outliers
in the mixture (Coretto and Hennig 2016). As opposed, in the trimming approach, outliers are first removed
before the complete estimation of parameters. Such methods are implemented in tclust (Iscar, Escudero, and
Fritz 2022) and oclust (Clark and McNicholas 2019) packages.

tclust (Iscar, Escudero, and Fritz 2022) uses a robust constrained clustering method, where the user has to
set an upper threshold to the ratio between the highest and the lowest variability among all components and
a trimming ratio α. It extends the work of García-Escudero et al. (2008), with released constraints on the
Gaussian distribution. First, the maximal degree of affinity, defined in Equation (26):

D(xi|θ) = max
j

(
pjφζj

(xi)
)

(26)

is computed for each observation xi, and corresponds for each point to the maximum probability to observe
it in the distribution, given parameter θ. Then, α observations the least likely to be observed are trimmed
for the estimation of the parameters. When we reach convergence of the estimated parameter and there is
no change in the outliers identification from one iteration to another, the iterative algorithm stops. The use
of constraints is an additional feature that avoids building over-dispersed or unbalanced clusters, the highest
constraint of a ratio of 1 yielding clusters with equal sizes. However, the identification of an observation as
aberrant is highly dependant on the variability constraint and the determination of these two hyperparameters
is complex and highly dependant on the shape of the distribution. Additionally, a CEM algorithm is used to
retrieve the parameters and the proportion of outliers, for which the MLE, in contrast to the EM algorithm, is
not asymptotically consistent nor efficient.

Unlike tclust, oclust (Clark and McNicholas 2019) both retrieves the proportion of outliers and identifies them.
To do so, it compares the complete log-likelihood of the mixture ℓ(θ|X) with its value removing one observation
ℓ(θ|X \Xi), for all observations. Observations are iteratively removed, based on the assumption that the Kullback-
Leibler divergence between the original log-likelihood and the trimmed log-likelihood KL (ℓ(θ|X)||ℓ(θ|X \ Xi))
follows a Beta distribution. At each step, the observation that maximises the Kullback-Leibler divergence at a
statistically significant threshold is removed. The algorithm stops trimming outliers, when this measure is not
anymore statistically significant. However, the assumption of a Beta distribution only holds asymptotically and
with non-overlapping clusters.

To integrate the impact of outliers in the estimation, we simulated a two-components GMM with well-separated
and balanced clusters. The outliers distribution, corresponding to the additional noise component, was retrieved
by randomly selecting prop.outliers points out of the total number of observations and drew their values from

6The use of weighted distributions has more general applications. It can be used to deal with a component distribution that does
not fit exactly a Gaussian shape. For instance, to deal with heavy tail distributions, more weight can be given to central components
and less weight to the tails.
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an uniform distribution bounded by an interval five times as big as the 0.05 and 0.95 quantiles of fθ(X). All
estimates were obtained comparing the five reviewed initialisation methods, except with otrimle which has its
own hierarchical clustering initialisation method.

The slowest package is otrimle, most of the time being taken by the initialisation step where proportion and
identification of the outliers is performed. Running times of the other packages are generally not impacted by
the presence of outliers.

Most of the reviewed packages, except the bgmm package, are not impacted by the choice of initialisation method.
Additionally, the proportions are rather correctly estimated (related to the choice of an uniform distribution to
model outliers), but the reviewed packages tend to overestimate the true variability of each component, with
the worst results obtained with rebmix initialisation. bgmm sets apart from the others by its reduced bias on
the means and standard deviations estimated, a feature left undocumented. However, increasing the number of
outliers (Figure 2, panel C) lead also to biased estimations for bgmm, while otrimle, a dedicated package, is still
able to correctly estimate the individual parameters of the components’ distributions with a high proportion
of outliers. Yet, analysing the code used to implement the bgmm reveals that there is no dedicated feature to
remove outliers but rather a specific method used to deal with numerical underflow that artificially increases the
probability of observing outlying distributions (EM-implementation differences across reviewed packages).

Appendix C: the meta-analysis workflow for the final selection of CRAN
and Bioconductor platforms
General workflow
Table 4 lists the terms used in the search, the number of packages returned by the search, the number of packages
excluded from review after the search, and the names of the packages ultimately selected for review. Indeed, the
CRAN and Bioconductor platforms are the two most popular repositories for R packages, with a constraining
review before publication.

Most packages we excluded from review did not focus on the GMM model, but on supplying tools for visualising
and asserting the quality of a given clustering. For instance, the search term “cluster” returned many packages
implementing other unsupervised clustering methods, such as k-means, KNN or graph clustering, were specifically
dedicated to specific data, such as single cell analyses. The search term “mixture” returned either packages
dealing only with non-Gaussian components, such as fitmix with log-normal distributions or were dedicated to
chemical mixture designs.

Table 4: Meta-analysis summary about the selection of packages implementing the estimation of GMMs, on
CRAN and Bioconductor.

Platforms Searched
terms

Number of
returned packages

Number of packages
implementing GMMs Packages implementing GMMs Packages kept

Bioconductor mixture 15 3 epigenomix, fmrs, semisup ∅

Bioconductor cluster 69 1 Melissa ∅

CRAN mixture 179 44

AdaptGauss, bgmm
bmixture, bpgmm, CAMAN, ClusterR, deepgmm

DPP, dppmix, EMCluster, EMMIXgene
EMMIXmfa, fabMix,

flexmix, fmerPack, GMKMcharlie, IMIX, ManlyMix
mclust, MGMM, mixAK, MixAll, mixdist, mixR

mixreg, mixsmsn, mixtools, mixture
MixtureInf, MMDvariance, nor1mix

pcensmix, pgmm, pmclust, polySegratioMM
rebmix, Rmixmod, RMixtComp

RobMixReg, RPMM, SAGMM, sensory, SMNCensReg

bgmm, EMCluster
flexmix, GMKMcharlie

mclust, mixtools, Rmixmod

CRAN cluster 418 16

ClusterR, clustMD, DCEM, EMCluster, HDclassif
ManlyMix, mclust, mixAK, MixAll
mixture, oclust, otrimle, pmclust, rebmix
Rmixmod, tclust

EMCluster
mclust, Rmixmod
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At this stage, too many packages for a tractable benchmark remained. We hence perform stricter selection of
them, based on the following criteria:

• Some of the packages did not implement the unconstrained GMM (no constraint of homoscedascity or
equibalanced proportions). Hence, epigenomix (Klein and Schaefer 2022) , EMMIXgene (Andrew Thomas
Jones 2020) , pcensmix (Fallah and Hinde 2017) , mixAK (Komárek 2022) (homoscedastic components),
mixture (Pocuca, Browne, and McNicholas 2022) (multi-dimension only), AdaptGauss (Thrun, Hansen-
Goos, and Ultsch 2020) and MMDvariance (X. Li et al. 2018) add constraints on the number of components,
on the standard deviation of each component or on mean values of each population, leaving no choice to
the user to remove such assumptions. semisup (Rauschenberger 2022) restrains on mixtures with two
components, for which a part of the observations are labelled. Additionally, it is designed for GWAS or
differential analyses. Other packages were designed to deal with high-dimensional data, projecting the data
on a smaller subspace using a factor analysis model. Hence, these packages can not learn a GMM for an
univariate distribution, as we can not project on a smaller space than the unidimensional space. This led
to the exclusion of HDclassif, fabMix (Papastamoulis 2020) , EMMIXmfa and pgmm (Paul D. McNicholas
et al. 2022) packages. The sensory (Franczak, Browne, and McNicholas 2016) package both imputes
missing data and performs factor regression on a subspace up to 3 dimensions at most, but requires the
user to provide its own initial estimates. Alternatively, clustvarsel (Dean, Raftery, and Scrucca 2020)
discards the least informative variables, in an attempt to find a locally optimal subset of variables that
best discriminate clusters.

• We assume that our original data is continuous. However, some packages are dedicated to deal with
discrete data, for instance binned size distributions of medical patients. This led to the exclusion of mixdist
(Macdonald and Juan Du 2018).

• We restrained our review to packages that use the classic EM algorithm, using maximum likelihood
estimation to retrieve the parameters of GMMs. For instance, some packages offer a Bayesian estimation
of the parameters of the model using MCMC methods, such as bmixture Mohammadi (2021)], bpgmm (Lu,
Li, and Love 2022), DPP (Avila, May, and Ross-Ibarra 2018) , dppmix (Xu et al. 2020), BayesCR (Garay
et al. 2017) and Melissa (Kapourani 2022). polySegratioMM (Baker 2018) uses the Bayesian framework
JAGS’s interface in R. Alternatively, other algorithms focusing on maximising the likelihood do exist, but
rely on different statistical methods, such as RPMM (Houseman et al. 2017) which implements a recursive
algorithm, and SAGMM (Andrew T. Jones and Nguyen 2019) offering a stochastic approximation.

We then removed the packages in which the MLE estimation of the unconstrained GMM model was an ancillary
task:

• We removed the packages that focus on learning mixture of Gaussian regressions such as fmrs (Shokoohi
2022) , mixreg (Turner 2021) or fmerPack (Y. Li and Chen 2021) , an extension of the flexmix package
with an additional feature selection using the lasso method. nlsmsn (Prates, Lachos, and Garay 2021)
implements regression of skewed Gaussian mixtures, but in unidimensional space only. RobMixReg (S.
Cao, Chang, and Zhang 2020) performs robust regression of Gaussian mixtures using five several methods:
CTLERob, a component-wise adaptive trimming likelihood estimation; mixbi, bi-square estimation; mixL,
Laplacian distribution; mixt, t-distribution; TLE, trimmed likelihood estimation, and flexmix which only
performs flexmix regressions with multiple random starts.

• Some packages were built to deal with highly specific tasks. RMixtComp (Kubicki, Biernacki, and
Grimonprez 2021) and clustMD (McParland and Gormley 2017) deal with mixed data (continuous +
discrete). The deepgmm (Viroli and McLachlan 2020) package learns deep Gaussian mixture models,
generalising the classical GMM with multiple layers. IMIX (Wang 2022) focuses on clustering multi-omic
data that is learnt with the mclust package, and coseq (Rau 2022) implements RNA-Seq transcriptome
clustering using the Rmixmod package.

• Some extend the EM algorithm on Gaussian distributions and overcome its main limitations. The MGMM
(McCaw 2021) package deal with missing data, which is not relevant in unique dimension. The mixsmsn

15



package estimates skewed GMMs. SMNCensReg (Garay, Massuia, and Lachos 2022) fit univariate right,
left or interval censored data. Some packages offer a robust implementation of the algorithm, automatically
trimming possible outliers. otrimle models the presence of outliers by an extra component following an
improper uniform distribution, while tclust and oclust automatically removes possible outliers before the
estimation step (A small simulation to evaluate the impact of outliers).

• We also removed packages that were limited in their functionalities or complex to install. Indeed, ClusterR
(Mouselimis 2022) (k-means), rebmix (REBMIX), nor1mix (univariate dimension only, wrong initialisation
process), MixAll (Iovleff 2019) (random and small EM) do not allow to perform the EM algorithm with its
own initial estimates. The function to provide its own initial estimates for the \pkg{DCEM] package is
only internal, and not supposed to be available for the common user. pmclust (W.-C. Chen and Ostrouchov
2021) depends on the availability of the OpenMPI framework for its parallelised implementation of the
EM algorithm.

• We also removed the mixR (Yu 2021) and CAMAN (Schlattmann, Hoehne, and Verba 2022) packages
which have not been updated in the last two years or are still in beta version.

The popularity of the selected packages varies largely, as illustrated in Figure 3. Among them, mclust and
flexmix are the most popular, followed by mixtools and Rmixmod packages. We used the cranlogs (Csárdi 2019)
package to retrieve the daily number of downloads for each of the benchmarked packages, between the 30st of
January, 2023 and the 30th of April, 2023.

Only the packages dedicated to high-dimensionality, listed in our first bullet point, are relevant to benchmark
their performance as a function of the number of dimensions. Indeed, although some packages computing
mixtures of regressions do implement features allowing to handle high-dimensional datasets, such as RobMixReg
and fmerPack, they all assume a diagonal covariance structure, and accordingly independent covariates.

The two existing strategies are then limited to projection to a smaller subspace, usually within the theoretical
framework of factor analysis or to perform a feature selection strategy. We quickly discarded fabMix, since it
only retrieves the parameters of GMMs within a Bayesian framework, while we focused on strategies retrieving
the MLE via the EM algorithm. The core function pgmmEM in the pgmm package unfortunately includes a seed
for the the algorithm’s initialisation that cannot be disabled. Such a feature is generally not recommended for
reproducibility, since by defining the seed internally in the function, we were not able to independently generate
new reproducible datasets in our benchmark (instead, it is recommended to set the seed value once and for
all at the beginning of the virtual simulation). Additionally, while implementing the same AECM variant of
the EM algorithm as EMMIXmfa, as detailed in Appendix B: Extensions of the EM algorithm to overcome its
limitations, its convergence criteria differs from the other benchmarked packages. Indeed, instead of considering
a limiting number of iterations along with a prior threshold, either absolute or relative, it examines only the
difference between the current value of the log-likelihood and a corresponding asymptotic estimate, based on
the Aitken acceleration (Lindsay 1995). In brief, the asymptotic value of the log-likelihood is the limiting sum
of a geometric series, whose common ratio, the so-called Aitken acceleration, is the relative fraction of the
log-likelihood gain of the current iteration. Therefore, the use of a different termination criterion precludes any
further fair comparison with the other benchmarked packages, as there is no direct equivalence between the two
methods.

Finally, clustvarsel is not really tailored for datasets with a large number of dimensions, but rather for datasets
with a small number of observations. Indeed, by performing a sequential search in the model space in a
forward-backward process (namely by adding variables to the null model till we recover the full model, with all
features), the algorithm requires intensive computational resources (for instance, there are already 210 = 1024
models to be tested in dimension 10). In addition, rather than employing a sequential and greedy strategy, an
independent and parallelisable feature selection procedure, through the model space, would have sped up by
several orders of magnitude the estimation. To that end, (J. Chen and Chen 2008; He and Chen 2016) suggests
a stochastic and greedy feature selection strategy, using notably the eBIC criteria in order to have an equal
chance to draw a model of any dimension7. Such a strategy is commonly used in ensemble learning.

7Indeed, by simply uniformly sampling among the 2D models available, the probability of getting models with D/2 features is
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Practical details for the implementation of our benchmark
First, the number of observations (n = 200 and n = 500 respectively in the univariate and bivariate setting)
was chosen enough high to both lower the probability of generating a sample without drawing any observation
from one of the components in case of highly-unbalanced clusters and decreases the margin of error related
to the random sampling error. Specifically, the probability of generating at least one simulation among the
N generated fo which less than two observations proceed from component j (the minimal number of elements
required to estimate both the mean and the variance of the corresponding cluster), with a two-components
mixture of n observations, is given by the following formula (Equation (27)):

1 −
(
1 − (1 − pj)n − n × (1 − pj)n−1 × pj

)N
(27)

Interestingly, the probability of generating a sample among the N repetitions increases exponentially as the
level of imbalance increases. For instance, considering N = 100 repetitions, n = 200 observations per sample
and proportion for the minor component pj = 0.1, the probability of generating a degenerate simulation is
insignificant: 1.63 × 10−6 while the risk considerably increases, keeping the same general simulation parameters
and setting minor proportion to pj = 0.05, with a probability of 0.04. We have focused on one of the impacts
of high dimensionality, namely that related to the homogenisation and convergence of any distance norm and
the increase in sparsity in relation with the number of features added. We deliberately do not consider the
case where the number of dimensions exceeds the number of observations (namely, when D > n), since in this
configuration, the covariance matrix is no longer of full rank and invertible, implying that the corresponding
probability distribution does spans completely over a smaller subspace. However, with so few observations,
(n = 200 in scenarios identified as a), we reveal the impact in terms of the quality of the estimation when the
number of observations is closed to the number of free parameters required to parametrise the full GMM model
(with k = 2 clusters and D = 10 dimensions, k × D(D+1)

2 + kD + 1 = 131 are needed.).

Unless stated explicitly, we keep the default hyper-parameters and custom global options provided by each
package. For instance, the flexmix package has a default option, minprior, set by default to 0.05 which removes
any component present in the mixture with a ratio below 0.05. Besides, we only implement the fully unconstrained
model in both univariate and multivariate settings, as it is the only parametrisation implemented in all the
seven packages and the most popular to perform classic GMM clustering, as no restrictive and difficult-to-test
assumptions are required.

Additionally, as stated in Parameters estimation in a high-dimensional context, the intrinsic dimension dj for each
cluster j is a hyperparameter, which is generally inferred independently from the GMM estimation itself. While a
variety of methods from the field of factor analysis, enumerated in Factor criteria selection, have been developed to
estimate the intrinsic dimension, to our knowledge, only two of them have been implemented in CRAN packages:
the Cattell’s scree-test (Cattell 1966) or the dimension selection graph using one of the penalty metric discussed
in the appendix Model selection (Bergé, Bouveyron, and Girard 2012). However, while HDclassif natively
implements a performance criterion method for determining the dimension of the spanning space, performed
under the hood by function mixsmsn::hdcc, none of the other packages evaluated implemented a dimension
selection feature. Instead, we infer it for each of the packages dedicated to high-dimensionality with HDclassif,
using using the so-called model “AkjBkQkD”, for which the intrinsic dimension is common to all components
but the characteristics unique for each component Finally, we use among all supplied parametrisations, the least
constrained one. Namely, we used the model “AkjBkQkDk” with HDclassif, in which not only the individual
features of the covariance matrix but also the spanning dimension are unique for each cluster, and function mcfa
of the EMMIXmfa package, in which the transition matrix is common to all components (referred to as the
orientation matrix in Appendix Parameters estimation in a high-dimensional context.

If all the seven reviewed packages accept initial estimates provided by the user, both the input and the output
format differ between them, requiring an intensive processing to standardise both the initial estimates input,
and the output estimates. Notably, a well-known issue with the mixture models is that they identifiable up to a

much higher than drawing models at the boundaries, displaying either few or close to |D| covariates.

17



permutation of the components (alternatively, changing the index of the labels do not change the likelihood of
the model). Assigning one component of the mixture to a specific index is generally immaterial, as the main
objective is to return the estimates. However, when it comes to compare the estimated parameters with the
true estimates, we must associate unequivocally each component to a specific index. To do so, we set a partial
ordering, sorting the components by increasing order of their mean components. Actually, if the ratio or the
covariance estimates can be equal for all the components, it is generally not the case for the centroids, as this
would result into a degenerate distribution. The consequence and some illustrations of the non-identifiability of
the mixture distributions are discussed in section Identifiability of finite mixture models, in Dai and Mukherjea
(2001) and in Book Robert and Casella (2010).

We detail below some additional functions we implement to both homogenise input and output of the packages
and ease the user’s task when comparing the performance of these packages:

• The input observations, mean and covariance matrices have to be transposed compared to the conventional
format in packages bgmm, EMCluster, GMKMcharlie and Rmixmod, namely D × k mean matrix and
D2 × k covariance array (D2 matrix to store each component variance).

• To save some storage, the EMCluster package reshapes the covariance matrix, benefiting from its symmetry.
Hence, instead of a three-dimensional array, EMCluster expects a compressed k × D(D+1)

2 matrix, each line
storing the upper triangular part of the covariance. The memory gain is yet controversial, as decreasing
only by a factor two the total space required for the computation. To switch from one format to another,
we developed specifically two functions: trig_mat_to_array() and array_to_trig_mat() in our GitHub
package RGMMBench, partly inspiring from vec2sym function Handy R functions.

• Instead of the covariance matrix, the mclust package requires the lower triangular matrix resulting from
its Cholesky decomposition. One of the main advantages of this input, in addition to save storage space, is
that it ensures that the covariance matrix is indeed positive-definite, as the Cholesky factorisation is only
defined if this condition is respected Cholesky decomposition.

• flexmix starts by the M-step of the EM algorithm instead of the E-step. Hence, it expects the posterior
probabilities assigned to each cluster j for each observation i, ηi(j) (Equation (21)), instead of the initial
estimates. Both approaches are, however, equivalent.

On the contrary, none of the packages we evaluated that were dedicated to high-dimensional datasets allow the
user to provide its own estimates. Thus, when any of the benchmarked initialisation methods listed in Table
1, was internally available in the package, we use it with the same hyperparameters described in main paper,
section Initialisation of the EM algorithm. If not, we provide instead a vector containing the MAP assignments
inferred by the native initialisation method, in a process similar to that used used with hierarchical clustering.

In addition to the plots displaying the bootstrap parameter estimations associated to Scenarios in Tables 5, 10
and 15, we have computed summary statistics to compare the performances of the reviewed packages:

• The bias measures the deviation between the sample mean value of the estimate and the true parameter:
Bias(θ̂) = E[θ̂] − θ.

• The Mean Squared Error (MSE) summarises both the variability of the estimator and its bias: MSE(θ̂) =
E
[
(θ̂ − θ)2

]
= var(θ̂) + Bias(θ̂)2, where var(θ̂) is the empiric variance of each estimator given by the

diagonal terms of the empiric covariance matrix.

• We enumerate the number of successes (either the package or the initial method returns an error, or fails
in returning a set of parameters enforcing standard constraints of multivariate GMMs, namely the unit
simplex constraint over the ratios, positive-definite covariance matrices and in general no missing or infinite
value).

• For each scenario, we measured independently the running times taken by the initialisation step and by the
estimation of the parameters by the EM algorithm. To do so, the microbenchmark package (Mersmann
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2021) was used for its higher accuracy and flexibility for the computation of the running times in place of
System.time.

The main differences across packages as well as performance results obtained across packages in each univariate,
bivariate and high-dimensional simulation scenario are thoroughly described in the next section.

Appendix D: comprehensive report from the univariate and multivariate
benchmark
Packages used to generate the reports and visualisations
To compute the summary metrics and generate the corresponding boxplots of the bootstrapped parameters, we
made extensive use of the facilities provided with the tidyverse (Wickham et al. 2019) packages, including:

• tibble (Müller and Wickham 2023) to visually and uniformly store the many datasets generated by our
benchmark. We then used readr (Wickham, Hester, and Bryan 2023) to save and import in a readable
format the summary metrics associated with each scenario and the tables listing the main functionalities
implemented in the packages studied, dplyr (Wickham, François, et al. 2023) to manipulate the data
stored in the tibbles and purrr (Wickham and Henry 2023) to manipulate the nested tibbles and perform
functional programming.

• ggplot2 (Wickham, Chang, et al. 2023; Wickham 2016) for data visualization, including generating
density graphs in the univariate and bivariate framework, and factorial projection for the high-dimensional
framework.

• stringr (Wickham 2022), for strings, and forcats (Wickham 2023), for factors, were particularly useful for
customising and ordering the packages in our graphical representations, in order to highlight differences
between them.

In addition to the array of packages within the tidyverse ecosystem, we utilized the flextable (Gohel and Skintzos
2023) and kableExtra (Zhu 2021) packages to facilitate the generation of summary reports in HTML and PDF
formats.

Furthermore, we would like to express our gratitude for the contributions of knitr (Xie 2023, 2015), rmarkdown
(Xie, Allaire, and Grolemund 2018; Allaire et al. 2023), and the associated wrapper package rjtools(O’Hara-Wild
et al. 2023), which greatly streamlined the process of creating these HTML and PDF reports.

In a more specialised context, we harnessed the features offered by these packages:

• ComplexHeatmap (Gu, Eils, and Schlesner 2016; Gu 2022) to generate the heatmaps of the correlation
matrices. This was complemented by RColorBrewer (Neuwirth 2022) for effective management of the R
colour palette.

• cowplot (Wilke 2020), grid (R Core Team 2023), and gridExtra (Auguie 2017) were used for aggregating
and merging multiple plots.

• ggtext (Wilke and Wiernik 2022), glue (Hester and Bryan 2022), and scales (Wickham and Seidel 2022)
were employed to enhance the clarity and readability of both x and y ticks and labels.

EM-implementation differences across reviewed packages
Most of the distinct behaviours between the packages result from additional choices external to the EM algorithm
itself, aiming at partly overcoming its main limitations (Panel B, Figure 9). We detail below their differences
ranked by decreasing order of their leverage effect on the final estimate:

1. Most of the differences between the two classes of packages (Figure (2)) are related to the either relative
or absolute choice for the termination criterion of the EM algorithm. Given an user-defined threshold,
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the absolute method early stops the estimation by comparing the difference between two consecutive log-
likelihoods, |ℓ(θ̂q|X) − ℓ(θ̂q−1|X)|, while the relative method examines the variation rate,

∣∣∣∣
ℓ(θ̂q |X)−ℓ(θ̂q−1|X)

ℓ(θ̂q−1|X)

∣∣∣∣.
2. Several methods can be used to deal with numerical underflow, mostly happening with highly unlikely

observations, distant from any centroid.
• The least elaborate feature is from Rmixmod, returning an error when either any of the posterior

probabilities or any of the estimated parameters goes below to the precision threshold of the machine
(2.22 × 10−16 for most OS).

• If the maximal value of any posterior probability is null, bgmm subtracts the minimal logarithm
posterior probability to any log-computed probability. This method avoids numerical underflow by
preventing computation of null ratios but the correctness of the estimates is no longer enforced8.

• The remaining packages handled numeric underflow in a more convincing manner as they guarantee
to return the MLE estimate. The flexmix, GMKMcharlie and EMCluster packages use the same
log-rescaling tip detailed in (Application of the EM algorithm to GMMs). The mixtools and mclust
packages use a variant of this trick, taking profit of the factorisation by the greatest element (Equation
(28), Equation 3 p.5 Benaglia et al. (2009)), but without exploiting the tip of Taylor’s development
over log(1 + x):

ηi(j) =
pj φζj

(x)
∑k

j=1 pj φζj
(x)

=

pj φζj
(x)

pjmin φζjmin
(x)

1 +
∑

j ̸=jmin
pj φζj

(x)
pjmin φζjmin

(x)

(28)

In both cases, the computation of the smallest posterior probability, the most proned to be assigned a null value,
is avoided, avoiding inconsistent ratios of type 0/0.

• The previous two items deal with specific numeric limitations, but do not directly address one of the main
theoretical limitation of the EM algorithm, namely the risk of falling into a suboptimal maximum, plateau
or getting trapped on the boundary space (occurs when the proportion of one of the component converges
to zero). Some packages specifically handle the case of a vanishing component during the EM optimization:
the mixtools package performs random re-initialisations in case one of the computed variance goes below
a user-defined threshold (default 10−8). flexmix and GMKMcharlie deal explicitly with the removal of
a component, by updating the corresponding MLE parameters. flexmix removes any component whose
associated weight is by default below 0.05 (such a stringent limitation tends to an underestimation of
the true number of components in highly unbalanced mixtures)9, while GMKMcharlie both implements a
lower limit on the proportions of the components and an upper threshold over the ratio of the maximum
and minimal eigenvalue resulting from the factorisation of the covariance matrix (Equation (12))10.

We enumerate below some additional features supplied by the packages:

• In addition to log rescaling, GMKMcharlie includes an additional argument, embedNoise, to avoid degenerate
GMMs by adding a small constant to any diagonal term (by default 10−6). Besides, instead of controlling
whether there was a relative change of the log-likelihood, the EM implementation of GMKMcharlie controls
instead that there was no significant relative difference in the estimated parameters in the ten previous
optimisations11. Finally, since GMKMcharlie has implemented a parallelised version of the algorithm, it
ensures using a a time limit that the algorithm indeed terminates (by default, set to one hour).

8Additionally, bgmm does not update the estimated variances if any newly computed variance is below the criterion stop. A
remarkable side-effect of these features, as shown in Figure 2, is that the bgmm package is less sensitive to the presence of outliers.

9Indeed, at least one of the component was removed in 80% of our estimations in the unbalanced and overlapping case (scenario
U9 in 5) and in 20% of the simulations in the unbalanced and well-separated case (scenario U3 in 5).

10These options are set respectively to 0 and +∞ by default, thus they did not impact our simulations
11In our simulation, the behaviour of the GMKMcharlie did not differ significantly from the remaining packages of the second class.

However, the use of an Euclidean distance criterion may be problematic when parameters are not on the same order of magnitude,
requiring their prior normalisation

20



• flexmix performs an unbiased estimate of the covariance matrix, instead of the corresponding ML covariance
estimate (divides by a factor n − 1 instead of the number of observations n). Such a choice does not affect
the results in our simulations, but may have a stronger impact when fitting models to a small number of
observations.

• Similarly to flexmix, the HDclassif package implements some constraints to preserve numerical stability.
The min.individuals attribute, like the minprior attribute of flexmix function, discards any cluster
having fewer observations12. However, unlike flexmix, the algorithm stops instead of re parametrising
the mixture problem with a smaller number of components. Coupled with the Cattell’s scree-test, the
noise.ctrl attribute is the minimum threshold of a feature’s contribution to the overall variance, computed
as the corresponding normalised eigenvalue, in order to be included in the mixture of factor analysers. This
additional constraint ensures a parsimonious dimension selection process, so that the number of selected
intrinsic dimensions cannot be greater than or equal to the order of the discarded eigenvalues.

12by default, set to two, i.e. the minimum number of replications to derive an unbiased estimate of the empirical variance of a
sample
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Supplementary Figures and Tables in the univariate simulation
Table below (5) lists the complete set of parameters used to simulate the univariate Gaussian mixture distribution
in our benchmark:

Table 5: The 9 parameter configurations tested to generate the samples of the univariate experiment, with k = 4
components.

ID Entropy OVL Proportions Means Correlations
U1 1.00 3.3e-05 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3
U2 1.00 5.7e-03 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 1 / 1 / 1 / 1
U3 1.00 2.0e-02 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 2 / 2 / 2 / 2
U4 0.96 3.3e-05 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3
U5 0.96 5.8e-03 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U6 0.96 2.0e-02 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 2 / 2 / 2 / 2
U7 0.68 2.7e-05 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3
U8 0.68 4.4e-03 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 1 / 1 / 1 / 1
U9 0.68 1.5e-02 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 2 / 2 / 2 / 2

Figure 4-Figure 8 each summarise the benchmarking results associated with one of the scenarios listed in Table
5.

Summary tables 6- 9 display the average performance for each package of the benchmark with each initialisation
method. The best performing pair (lowest bias or MSE) is highlighted in green, and the worst performing in
red. The MSE and bias columns were derived by summing respectively the estimated proportions, means and
standard deviations associated with the individual components.
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Table 6: MSE and Bias associated to scenario U1, in Table 5 (balanced and well-separated components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
random 0.0061 1.90000 0.19000 0.0290 0.5300 0.1100

EMCluster / GMKMcharlie

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
random 0.0064 1.80000 0.19000 0.0290 0.5300 0.1100

flexmix

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
random 0.0062 1.80000 0.19000 0.0290 0.5300 0.1100

mclust / bgmm

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
random 0.0064 1.90000 0.19000 0.0290 0.5300 0.1100

mixtools

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028
random 0.0064 1.90000 0.19000 0.0290 0.5300 0.1100

Rmixmod / RGMMBench

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

The panels indexed by the B letter, from Figure 4 to Figure 8, display the 0.05, 0.5 and 0.95 quantiles of the
distribution of the operating times taken for parameter estimation, for the scenarios listed in Table 5.

First, we note that the execution time grows asymptotically linearly with the number of observations, confirming
empirically the expected linear complexity of the EM algorithm. The most important factor playing on the
differences observed is related to the complexity of the distribution, and especially the degree of overlap between
the components:

• On the one hand hand, when components are well-separated (scenarios 1 and 3 in Table 5), the estimation
of the parameters is simple, leading to a reduced number of iterations required to reach the convergence
and shorter running times.

• On the other hand, the time taken by the slowest package for the estimation of the parameters increases
by a hundred factor with the most complex scenario (see scenario U9, 5, illustrated in Figure 7), compared
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Table 7: MSE and Bias associated to scenario U7, in Table 5 (unbalanced and well-separated components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.02900 2.8000 0.45000 0.1000 0.840 0.250
kmeans 0.00730 0.7900 0.13000 0.0260 0.240 0.075
quantiles 0.16000 19.0000 3.20000 0.6400 6.100 1.800
random 0.17000 10.5000 1.40000 0.3600 3.100 0.780

EMCluster / GMKMcharlie

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014
hc 0.05500 2.8000 0.45000 0.1100 0.850 0.250
kmeans 0.00760 0.7800 0.13000 0.0260 0.240 0.075
quantiles 0.11000 19.0000 3.20000 0.5400 6.000 1.900
random 0.15000 8.4000 1.00000 0.3000 2.500 0.580

flexmix

rebmix 0.00027 0.0015 0.00076 0.0025 0.014 0.011
hc 0.03200 2.8000 0.45000 0.1000 0.850 0.250
kmeans 0.00740 0.7800 0.13000 0.0260 0.240 0.075
quantiles 0.14000 19.0000 3.20000 0.6000 6.000 1.900
random 0.18000 10.4000 1.40000 0.3600 3.100 0.800

mclust / bgmm

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014
hc 0.03200 2.8000 0.45000 0.1000 0.850 0.250
kmeans 0.00620 0.7600 0.13000 0.0170 0.230 0.079
quantiles 0.15000 19.0000 3.20000 0.5800 6.000 1.800
random 0.18000 10.3000 1.40000 0.3600 3.100 0.800

mixtools

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014
hc 0.02900 2.8000 0.45000 0.1000 0.850 0.250
kmeans 0.00540 0.7700 0.13000 0.0190 0.230 0.078
quantiles 0.14000 19.0000 3.20000 0.5900 6.000 1.800
random 0.17000 10.4000 1.40000 0.3600 3.100 0.800

Rmixmod / RGMMBench

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014

to the simplest scenario (see U1, 5, shown in Figure 4). Indeed, the average running time for a complete
run of the EM algorithm increases from 0.215 seconds to 10.8 seconds.

To better understand the running times’ differences observed between the packages for a given scenario, we
perform a three-way anova, taking into account the choice of initialisation method, the programming language
and the class of packages13:

• With well-separated components (Scenarios U1 and U7 in Table 5), the class of packages (namely the choice
of the convergence criterion) has a negligible impact compared to the choice of initialisation algorithm or
the programming language. The effect sizes associated to the programming language and the initialisation
method are respectively 1.688 × 10−2 (p-value of 3 × 10−60) and 13 × 10−5 (p-value of 3 × 10−60), while

13To compare whether differences between mean running times or estimation performances differ across packages, we used the
between-subjects Anova test rstatix::anova_test() to generate the p-values and rstatix::partial_eta_squared() to compute
the corresponding effect sizes.
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Table 8: MSE and Bias associated to scenario U3, in Table 5 (balanced and overlapping components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.0170 1.60 0.45 0.1950 1.320 0.93
kmeans 0.0054 0.81 0.18 0.0125 0.023 0.32
quantiles 0.0070 0.67 0.30 0.0930 0.590 0.56
random 0.0440 8.40 1.00 0.0710 0.330 0.63

EMCluster / GMKMcharlie

rebmix 0.0990 11.00 1.60 0.2000 1.600 0.78
hc 0.0260 2.60 0.94 0.1120 1.160 1.22
kmeans 0.0044 0.67 0.14 0.0036 0.091 0.27
quantiles 0.0054 0.57 0.27 0.0850 0.670 0.55
random 0.0420 8.20 1.10 0.0450 0.450 0.68

flexmix

rebmix 0.1210 14.30 2.70 0.2700 2.700 1.17
hc 0.0110 2.50 0.84 0.0330 1.160 1.10
kmeans 0.0068 0.86 0.24 0.0294 0.114 0.36
quantiles 0.0075 0.70 0.32 0.1110 0.720 0.63
random 0.0490 9.10 1.20 0.0800 0.320 0.68

mclust / bgmm

rebmix 0.1410 10.90 2.90 0.2900 1.800 1.47
hc 0.0320 2.40 0.80 0.0670 0.360 0.25
kmeans 0.0415 2.51 1.11 0.1000 0.664 0.74
quantiles 0.0383 2.40 1.00 0.1170 0.770 0.78
random 0.0660 9.40 1.80 0.0130 0.340 0.48

mixtools

rebmix 0.1090 9.60 2.50 0.2600 1.800 1.33
hc 0.0220 2.00 0.67 0.0490 0.370 0.25
kmeans 0.0318 2.31 0.85 0.0952 0.602 0.67
quantiles 0.0297 2.19 0.80 0.1210 0.770 0.76
random 0.0620 9.40 1.70 0.0160 0.310 0.50

Rmixmod / RGMMBench

rebmix 0.1140 10.30 2.60 0.2600 1.900 1.31

the choice of the termination criteria did not significantly impact the execution time, with an effect size
of 8.119 × 10−4( p-value of 0.35). Faster running times with packages natively encoded in Fortran or C
compared to those encoded in R only were expected, as R is a high-level programming language known
to be slower. Indeed, the flexmix package is the slowest, preceded by our baseline R implementation.
Additionally, mclust, followed by mixtools, Rmixmod and bgmm are the fastest.

• On the other hand, with overlapping components (Scenarios U3 and U9 in Table 5), the package class and
the programming language have a statistically significant impact on the average running times (the effect
sizes associated to the choice of the termination criteria and the programming language are respectively
0.111 (numerical null p-value) and 0.0852 (p-value of 8 × 10−307)) while the initialisation method has no
substantial impact (effect size of 2.967 × 10−4 and p-value of 0.32). In the context of highly overlapping
mixture, the fastest ones are mclust and GMKMcharlie, benefiting from both using relative ratios and
a fast programming language, while our baseline implementation emnmix, preceded by Rmixmod and
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Table 9: MSE and Bias associated to scenario U9, in Table 5 (unbalanced and overlapping components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.230 9.3 0.94 0.78 4.9 1.33
kmeans 0.094 5.1 0.57 0.50 3.4 0.89
quantiles 0.230 9.9 1.00 0.80 5.1 1.34
random 0.270 11.5 0.90 0.63 2.8 0.85

EMCluster / GMKMcharlie

rebmix 0.330 20.0 2.20 0.53 5.3 0.84
hc 0.170 10.5 0.88 0.64 5.2 1.14
kmeans 0.051 5.6 0.61 0.34 3.6 0.94
quantiles 0.210 11.3 1.20 0.75 5.6 1.53
random 0.180 9.5 0.77 0.43 2.7 0.86

flexmix

rebmix 0.110 10.0 1.70 0.15 2.3 1.48
hc 0.230 10.2 0.84 0.79 5.1 1.20
kmeans 0.107 5.5 0.62 0.53 3.6 0.96
quantiles 0.270 11.4 1.20 0.87 5.6 1.59
random 0.300 12.2 1.06 0.66 2.9 0.84

mclust / bgmm

rebmix 0.270 21.0 2.50 0.46 5.2 1.13
hc 0.200 9.7 1.19 0.64 3.4 0.69
kmeans 0.135 7.7 1.16 0.46 2.1 0.48
quantiles 0.280 11.2 1.60 0.74 4.2 0.72
random 0.350 15.7 1.62 0.65 2.1 0.64

mixtools

rebmix 0.240 22.0 2.70 0.47 5.1 1.18
hc 0.210 9.5 1.07 0.69 3.8 0.79
kmeans 0.113 6.5 0.90 0.46 2.4 0.43
quantiles 0.240 10.1 1.30 0.74 4.2 0.81
random 0.320 14.6 1.45 0.61 2.1 0.58

Rmixmod / RGMMBench

rebmix 0.250 22.0 2.70 0.49 5.2 1.18

mixtools, are on average a hundred times slower.
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Supplementary Figures and Tables in the bivariate simulation
Table below (10) lists the complete set of parameters used to simulate the multivariate Gaussian mixture
distribution in our benchmark:

Table 10: The 20 parameter configurations tested to generate the samples of the bivariate experiment.

ID Entropy OVL Proportions Means Correlations
B1 1.00 0.15000 0.5 / 0.5 (0,2);(2,0) -0.8 / -0.8
B2 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) -0.8 / 0.8
B3 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) 0.8 / -0.8
B4 1.00 0.00078 0.5 / 0.5 (0,2);(2,0) 0.8 / 0.8
B5 1.00 0.07900 0.5 / 0.5 (0,2);(2,0) 0 / 0

B6 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / -0.8
B7 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / 0.8
B8 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / -0.8
B9 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / 0.8
B10 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0 / 0

B11 0.47 0.06600 0.9 / 0.1 (0,2);(2,0) -0.8 / -0.8
B12 0.47 0.01600 0.9 / 0.1 (0,2);(2,0) -0.8 / 0.8
B13 0.47 0.05000 0.9 / 0.1 (0,2);(2,0) 0.8 / -0.8
B14 0.47 0.00045 0.9 / 0.1 (0,2);(2,0) 0.8 / 0.8
B15 0.47 0.03900 0.9 / 0.1 (0,2);(2,0) 0 / 0

B16 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / -0.8
B17 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / 0.8
B18 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / -0.8
B19 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / 0.8
B20 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0 / 0

Figures 11- 14 are associated to scenarios B11 - B15 of Table 10. Summary tables 11-14 show the average
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performance for each combination of a benchmarked package and initialisation method, with the same conventions
as discussed in Supplementary Figures and Tables in the univariate simulation.

First, we can directly observe that the OVL increases as the individual variance of each component, the proximity
of the centroids of the clusters and the level of imbalance is increased. We demonstrate this statement formally
in section An analytic formula of the overlap for univariate Gaussian mixtures. Nonetheless, the influence of
the correlation between the x and the y-axis (the off-diagonal term of the covariance matrix) is not immediate,
notably the assumption of independent features does not automatically entail a lower OVL or simpler estimation.

From our experiments, we deduce that the highest OVL is obtained when the main axis of the two respective
components aligns with the line joining the two centroids. For instance, in our scenario, the lowest OVL is
obtained when the correlation term is positive for both clusters (scenario 14, Table 10 and isodensity plot in
panel A, Figure 13), whereas the highest OVL is obtained with a negative correlation (scenario 11, Table 10and
isodensity plot in panel A, Figure 11). Recall that the slope joining the two centroids of the two components in
all our simulated distributions is indeed negative.

Table 11: MSE and Bias associated to scenario B11, in Table 10 (unbalanced, overlapping and negative correlated
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.230 3.90 1.8 0.550 2.30 1.200
kmeans 0.136 2.80 1.9 0.450 2.30 2.200
random 0.028 1.27 1.1 0.084 0.12 0.140EMCluster / GMKMcharlie

rebmix 0.071 2.20 1.4 0.170 0.66 0.111
hc 0.260 3.90 1.9 0.480 2.40 1.300
kmeans 0.077 2.80 1.9 0.270 2.40 2.300
random 0.028 0.96 1.0 0.064 0.77 0.720flexmix

rebmix 0.087 1.90 1.0 0.170 1.02 0.468
hc 0.230 3.90 1.8 0.550 2.30 1.200
kmeans 0.136 2.80 1.9 0.450 2.30 2.200
random 0.028 1.27 1.1 0.084 0.12 0.140mclust / bgmm

rebmix 0.071 2.20 1.4 0.170 0.66 0.111
hc 0.210 3.30 1.8 0.470 1.80 1.100
kmeans 0.131 2.60 1.8 0.380 1.80 1.800
random 0.051 1.61 1.1 0.129 0.20 0.180mixtools

rebmix 0.093 2.40 1.4 0.210 0.60 0.063
hc 0.210 3.30 1.8 0.470 1.80 1.100
kmeans 0.131 2.60 1.8 0.380 1.80 1.800
random 0.051 1.61 1.1 0.129 0.20 0.180Rmixmod / RGMMBench

rebmix 0.093 2.40 1.4 0.210 0.60 0.063
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Table 12: MSE and Bias associated to scenario B12, in Table 10 (unbalanced, overlapping and opposite correlated
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.00076 0.049 0.16 0.0063 0.056 0.131
kmeans 0.00076 0.049 0.16 0.0063 0.056 0.131
random 0.00075 0.049 0.16 0.0057 0.055 0.123EMCluster / GMKMcharlie

rebmix 0.00087 0.066 0.17 0.0070 0.063 0.190
hc 0.00144 0.049 0.16 0.0101 0.055 0.071
kmeans 0.00144 0.049 0.16 0.0101 0.055 0.071
random 0.00144 0.050 0.16 0.0099 0.054 0.067flexmix

rebmix 0.00145 0.048 0.16 0.0142 0.047 0.110
hc 0.00076 0.049 0.16 0.0063 0.056 0.131
kmeans 0.00076 0.049 0.16 0.0063 0.056 0.131
random 0.00075 0.049 0.16 0.0057 0.055 0.124mclust / bgmm

rebmix 0.00087 0.066 0.17 0.0070 0.063 0.190
hc 0.00075 0.050 0.16 0.0049 0.054 0.112
kmeans 0.00075 0.050 0.16 0.0049 0.054 0.112
random 0.00075 0.050 0.16 0.0049 0.054 0.112mixtools

rebmix 0.00086 0.066 0.17 0.0061 0.062 0.170
hc 0.00075 0.050 0.16 0.0049 0.054 0.112
kmeans 0.00075 0.050 0.16 0.0049 0.054 0.112
random 0.00075 0.050 0.16 0.0049 0.054 0.112Rmixmod / RGMMBench

rebmix 0.00086 0.066 0.17 0.0061 0.062 0.170
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Table 13: MSE and Bias associated to scenario B14, in Table 10 (unbalanced, overlapping and positive correlated
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.00043 0.044 0.13 0.00081 0.044 0.060
kmeans 0.00043 0.044 0.13 0.00081 0.044 0.060
random 0.00043 0.044 0.13 0.00080 0.044 0.060EMCluster / GMKMcharlie

rebmix 0.00040 0.044 0.13 0.00120 0.047 0.053
hc 0.00043 0.044 0.13 0.00072 0.043 0.035
kmeans 0.00043 0.044 0.13 0.00072 0.043 0.035
random 0.00043 0.044 0.13 0.00072 0.044 0.035flexmix

rebmix 0.00040 0.044 0.14 0.00110 0.047 0.044
hc 0.00043 0.044 0.13 0.00081 0.044 0.060
kmeans 0.00043 0.044 0.13 0.00081 0.044 0.060
random 0.00043 0.044 0.13 0.00080 0.044 0.060mclust / bgmm

rebmix 0.00040 0.044 0.13 0.00120 0.047 0.053
hc 0.00043 0.044 0.13 0.00078 0.044 0.060
kmeans 0.00043 0.044 0.13 0.00078 0.044 0.060
random 0.00043 0.044 0.13 0.00078 0.044 0.060mixtools

rebmix 0.00040 0.044 0.13 0.00110 0.047 0.053
hc 0.00043 0.044 0.13 0.00078 0.044 0.060
kmeans 0.00043 0.044 0.13 0.00078 0.044 0.060
random 0.00043 0.044 0.13 0.00078 0.044 0.060Rmixmod / RGMMBench

rebmix 0.00040 0.044 0.13 0.00110 0.047 0.053
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Table 14: MSE and Bias associated to scenario B15, in Table 10 (unbalanced, overlapping and uncorrelated
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.1110 2.30 1.30 0.280 1.40 0.90
kmeans 0.0500 1.50 1.30 0.200 1.05 1.06
random 0.0290 0.71 0.63 0.070 0.28 0.19EMCluster / GMKMcharlie

rebmix 0.0163 0.69 0.78 0.074 0.37 0.44
hc 0.1330 2.40 1.40 0.240 1.50 1.05
kmeans 0.0320 1.60 1.40 0.110 1.21 1.26
random 0.0370 0.71 0.64 0.048 0.35 0.29flexmix

rebmix 0.0058 0.70 0.84 0.028 0.49 0.62
hc 0.1110 2.30 1.30 0.280 1.40 0.90
kmeans 0.0500 1.50 1.30 0.200 1.05 1.06
random 0.0290 0.71 0.63 0.070 0.28 0.19mclust / bgmm

rebmix 0.0163 0.69 0.78 0.074 0.37 0.44
hc 0.0860 1.90 1.20 0.220 1.10 0.75
kmeans 0.0470 1.30 1.10 0.170 0.79 0.78
random 0.0230 0.67 0.66 0.065 0.24 0.19mixtools

rebmix 0.0158 0.69 0.77 0.068 0.30 0.37
hc 0.0860 1.90 1.20 0.220 1.10 0.75
kmeans 0.0470 1.30 1.10 0.170 0.79 0.78
random 0.0230 0.67 0.66 0.065 0.24 0.19Rmixmod / RGMMBench

rebmix 0.0158 0.69 0.77 0.068 0.30 0.37
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In contrast to the univariate setting (Supplementary Figures and Tables in the univariate simulation), the
fastest packages are bgmm, EMCluster, flexmix, and Rmixmod, and the slowest ones mclust, GMKMcharlie
and mixtools, independently from the difficulty of the simulation.

Finally, Figures 15, 16 and 17 represent in a synthetic way less interesting scenarios benchmarked with to the
left, the contour maps and to the right the corresponding Hellinger boxplots, with one scenario being illustrated
per row.
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Supplementary Figures and Tables in the HD simulation
Table below (15) lists the complete set of parameters used to simulate Gaussian distributions in the high
dimensional benchmark:
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Figure 2: A) Execution times for the nine reviewed packages using hierarchical clustering initialisation, with
on the left 2% of outliers in proportion and on the right, 4% of outliers. B) and C) Boxplots of the estimated
parameters with N = 200 repetitions, n = 2000 observations and respectively 2% and 4% of outliers. The red
dashed horizontal line corresponds to the true value of the parameters.
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Figure 3: Number of daily downloads (logarithmic scale) from the CRAN mirror from the 1st of January to the
30th April 2022 for the seven R packages reviewed.
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Figure 4: Benchmark summary plots of scenario U1 in Table 5 (balanced and well-separated components),
organised as such: The panel A displays the distribution of the global mixture distribution fθ(X) (pink solid
line) and of each of its constitutive components scaled by their respective proportions (dotted lines). Running
times are displayed in Panel B with the k-means initialisation. The number of observations (x-axis) and the
running time (y-axis) is in log(10) scale, implying that any linear relationship between the running time and the
number of observations is represented by a slope of 1. The points represent median running time. The coloured
bands represent the 5th and 95th percentiles of the running time. In panel C are represented the boxplots
associated with the distribution of the estimates, with one box per pair of package and initialisation method.
The median is displayed with bold black line, the mean with a yellow cross and the 0.25 and 0.95 quantiles
match the edges of the rectangular band. Solid black lines extending past the box boundaries represent the 1.5
IQR, estimates above these limits considered as outliers and omitted from the plot. Finally, the true value of the
parameter is represented as a dashed red line. The bold black writing in the upper right-hand corner refers to
the parameter whose distribution is shown in the corresponding facet. The first, second and third rows are the
distributions of the ratios, means and variances of each component, identified by the column index.
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Figure 5: Benchmark summary plots of scenario U7 in Table 5 (unbalanced and well-separated components),
with same layout as in Figure 4.
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Figure 6: Benchmark summary plots of scenario U3 in Table 5 (balanced and overlapping components), with
same layout as in Figure 4.
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Figure 7: Benchmark summary plots of scenario U9 in Table 5 (unbalanced and overlapping components), with
same layout as in Figure 4.
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Figure 8: Benchmark summary plots of scenarios U4 and U6 in Table 5 (small unbalance, with additional overlap
in scenario U6). Panel A and B display the univariate GMM distributions of respectively scenarios U4 and U6,
and Panel C and D the benchmarked distributions of respectively scenarios U4 and U6, built as Panel C of
Figure 4.
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Figure 9: Correlation heatmaps of the estimated parameters extended to the four initialisation methods
benchmarked, using the same configuration described in Figure (2), in the bivariate setting.
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Figure 10: Distribution of the running times taken by each initialisation algorithm enumerated in Table 1, across
all scenarios listed in Table 5, sorted by increasing ID number in the lexicographical order.
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Figure 11: Results of scenario B11 in Table 10 (unbalanced, overlapping and negative correlated components),
organised as such: The panel A displays the bivariate contour maps associated to the two-components multi-
variate Gaussian distribution corresponding to the parametrisation described by the scenario, warmer colours
corresponding to regions of higher densities. The two centroids, whose coordinates are given by the mean
components’ elements, are represented with distinct shaped and coloured point estimates. In both Panels A
and B, the ellipsoids correspond to the 95% confidence region associated to each component’s distribution.
To generate them, we largely inspired from the mixtools::ellipse() and website How to draw ellipses. To
generate them, we retain for each individual parameter its mean (similar results with the median) over the
N = 100 sampling experiments, restrained to the random initialisation method. The running times are displayed
in Panel C with the k-means initialisation. The number of observations (x-axis) and the running time (y-axis) is
in log(10) scale. The coloured bands represent the 5th and 95th percentiles of the running time. The distributions
of the Hellinger distances are computed for each component, each initialisation method and each package with
respect to the true Gaussian distribution expected for each component. The more dissimilar are the distributions,
the higher is the Hellinger distance, knowing it is normalised between 0 and 1. We represent them using boxplot
representations in Panel D. In panel E we represent the boxplots associated with the distribution of the estimates,
with each column panel associated to the parameters of one component. First row represents the distribution of
the estimated ratios, second and third respectively the distributions of the mean vector on the x-axis and on the
y-axis, third and fourth the distributions of the individual variances of each feature and finally the fifth row
shows the distribution of the correlation between dimension 1 and 2.
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Figure 12: Results of scenario B12 in Table 10 (unbalanced, overlapping and opposite correlated components),
with the same layout as Figure 11.
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Figure 13: Results of scenario B14 in Table 10 (unbalanced, overlapping and positive correlated components),
with the same layout as Figure 11.

45



Figure 14: Results of scenario B15 in Table 10 (unbalanced, overlapping and uncorrelated components), with
the same layout as Figure 11.
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Figure 15: Benchmark summary plots of respectively scenarios B1, B2 and B5 in Table 10 featuring balanced
and overlapping clusters. Summary plots of B1, B2 and B5 are represented in this order on each row, with the
left column displaying the 95% confidence ellipsoidal regions associated to the mean estimated parameters across
each package and the right column the distribution of the Hellinger distances.
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Figure 16: Benchmark summary plots of respectively scenarios B6, B7 and B10 in Table 10 featuring balanced
and well-separated clusters, with the same layout as Figure 15.
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Figure 17: Benchmark summary plots of respectively scenarios B16, B17 and B20 in Table 10 featuring unbalanced
and well-separated clusters, with the same layout as Figure 15.
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Figure 18: Correlation heatmaps of the estimated parameters in the bivariate setting extended to the four
initialisation methods benchmarked, with the most discriminating scenario B11, using the same process described
in Figure (2).
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Table 15: The 16 parameter configurations tested to generate the samples in a high dimensional context. The
first digit of each ID index refers to an unique parameter configuration (identified by its level of overlap, entropy
and topological structure, either circular or ellipsoidal, of the covariance matrix, while the lowercase letter
depicts the number of observations, a) with n = 200 and b) with n = 2000.

ID OVL Number of
observations Proportions Spherical

HD1a 1e-04 200 0.5 / 0.5

HD1b 1e-04 2000 0.5 / 0.5

HD2a 1e-04 200 0.19 / 0.81

HD2b 1e-04 2000 0.19 / 0.81

HD3a 1e-04 200 0.5 / 0.5

HD3b 1e-04 2000 0.5 / 0.5

HD4a 1e-04 200 0.21 / 0.79

HD4b 1e-04 2000 0.21 / 0.79

HD5a 2e-01 200 0.5 / 0.5

HD5b 2e-01 2000 0.5 / 0.5

HD6a 2e-01 200 0.15 / 0.85

HD6b 2e-01 2000 0.15 / 0.85

HD7a 2e-01 200 0.5 / 0.5

HD7b 2e-01 2000 0.5 / 0.5

HD8a 2e-01 200 0.69 / 0.31

HD8b 2e-01 2000 0.69 / 0.31
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Table 16: MSE and Bias associated to scenario HD4a, in Table 15 (unbalanced, separated and ellipsoidal
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100
kmeans 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100mixtools / Rmixmod / RGMMBench
rebmix 0.3244 0.1980 0.0845 0.0720 0.395 0.535 98
hc 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100
kmeans 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100mclust / flexmix / GMKMcharlie
rebmix 0.2553 0.1444 0.0924 0.0470 0.364 0.596 85
hc 0.0337 0.0214 0.0107 0.0070 0.064 0.096 100
kmeans 0.0338 0.0216 0.0106 0.0074 0.064 0.096 100bgmm
rebmix 0.4818 0.1152 0.3442 0.0320 0.223 2.329 94
hc 0.0333 0.0212 0.0107 0.0023 0.056 0.096 100
kmeans 0.0334 0.0213 0.0106 0.0018 0.056 0.096 100EMCluster
rebmix 1.5983 1.0992 0.3794 0.3100 2.018 2.575 84

hc 8.4062 8.3936 0.0111 0.0020 10.426 0.149 100
kmeans 7.9407 7.9282 0.0111 0.0019 10.081 0.149 100HDclassif
rebmix 7.9803 7.9514 0.0273 0.0044 10.128 0.262 84
hc 4.0605 3.3317 0.3357 0.6500 5.757 2.772 95
kmeans 3.8790 3.2175 0.3372 0.5400 5.781 2.777 96EMMIXmfa
rebmix 4.0127 3.2715 0.3337 0.5700 5.680 2.757 80

Table 17: MSE and Bias associated to scenario HD7a, in Table 15 (balanced, overlapping and ellipsoidal
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 5.8544 2.2153 3.5586 0.0450 2.084 6.704 100
kmeans 5.4773 1.9490 3.4819 0.0086 2.323 6.861 100mixtools / Rmixmod / RGMMBench
rebmix 6.9243 2.5185 4.2898 0.0620 2.670 7.626 97
hc 6.0584 2.4737 3.5198 0.0180 2.565 7.624 100
kmeans 5.6388 2.1597 3.4549 0.0140 2.744 8.266 100mclust / flexmix / GMKMcharlie
rebmix 6.5397 2.4738 3.9661 0.0700 2.774 7.764 93
hc 9.5015 5.1348 4.1086 0.1000 3.720 10.310 100
kmeans 8.7930 4.7119 3.8693 0.1500 3.932 10.108 100bgmm
rebmix 10.3630 5.6474 4.4026 0.2700 3.798 10.049 97
hc 6.4022 2.8255 3.5124 0.0120 3.141 9.086 100
kmeans 6.4333 2.8740 3.5523 0.0110 4.210 11.007 100EMCluster
rebmix 6.5527 2.9643 3.4862 0.0580 3.051 9.253 93

hc 15.9010 11.5382 4.2950 0.1400 10.846 10.100 100
kmeans 15.3377 10.9441 4.3716 0.0087 10.990 10.771 100HDclassif
rebmix 16.1231 11.1103 4.9113 0.1600 10.761 10.513 93
hc 4.8606 1.6546 3.1856 0.0160 2.030 7.395 15
kmeans 4.4039 1.4129 2.9701 0.0260 1.734 6.236 21EMMIXmfa
rebmix 5.0984 2.0057 3.0689 0.0470 2.314 7.613 16
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Figure 19: Results of scenario HD4a) in Table 15 (unbalanced, overlapping and negative correlated components),
organised as such: The panel A displays the bivariate factorial projection of a random sample drawn from the
10-dimensional multivariate Gaussian distribution parametrised by Table 15. Each component is associated to a
specific color, a centroid whose coordinates are given by the mean components’ elements in the bivariate projected
space and a 95% confidence ellipse. Arrows represent the correlation circle of the dimensional variables. Both
panels were displayed respectively using functions factoextra::fviz_eig and factoextra::fviz_pca_biplot
while the underlying computations proceed from the principal component analysis performed by ade4::dudi.pca
preceded by standard scaling of the sampling dataset. The panel B pictures the parallel distribution plots
from a random sampling of n = 100 observations, generated using GGally::ggparcoord, and representing the
coordinates of each simulated data point in 10 dimensions. The running times are displayed in Panel C with the
k-means initialisation. The number of observations (x-axis) and the running time (y-axis) is in log(10) scale.
The distributions of the Hellinger distances are computed for each component in Panel D, each initialisation
method and each package with respect to the true Gaussian distribution expected for each component. In panel
E we represent the boxplots associated with the distribution of some of the estimates. Since it was impractical
to represent all of the k + kD + k D×(D+1)

2 with k = 2 and D = 10 parameters, we only represent the first
component’s mean, two first components’ variances and their covariance term.
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Figure 20: Results of scenario HD7a) in Table 15 (balanced and overlapping components, with full covariance
structure), with the same layout as Figure 19.
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Table 18: MSE and Bias associated to scenarios HD5a) and HD6a), in Table 15 (overlapping and spherical-
distributed components). We delimite each scenario by doubled backslashes with respectively balanced and
unbalanced clusters.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 4.2772 // 19.5172 0.9198 // 1.9835 3.3027 // 17.4943 0.017 // 0.069 0.995 // 0.6 3.571 // 4.381 100 // 100
kmeans 3.9776 // 17.2212 0.8279 // 1.6336 3.1111 // 15.5684 0.072 // 0.069 0.841 // 0.82 3.023 // 5.034 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 9.3136 // 25.8028 2.7793 // 4.2893 6.4009 // 21.3519 0.15 // 0.22 3.619 // 2.507 9.061 // 11.826 96 // 80
hc 2.9743 // 18.1175 0.5862 // 1.7729 2.3612 // 16.3168 0.024 // 0.057 0.449 // 0.514 2.127 // 4.412 100 // 100
kmeans 2.5629 // 15.2959 0.4642 // 1.5608 2.0855 // 13.7206 0.085 // 0.086 0.671 // 1.047 1.67 // 5.801 100 // 100mclust / flexmix / GMKMcharlie
rebmix 8.2907 // 23.7588 2.6468 // 4.1629 5.5421 // 19.4579 0.12 // 0.22 3.438 // 2.543 8.792 // 11.94 96 // 69
hc 2.4088 // 33.8392 0.7261 // 9.0609 1.6153 // 24.6796 0.12 // 0.038 0.652 // 1.986 1.98 // 10.77 100 // 100
kmeans 2.0912 // 28.5103 0.5899 // 7.5426 1.4577 // 20.8989 0.091 // 0.025 0.566 // 1.45 1.738 // 9.783 100 // 100bgmm
rebmix 4.6278 // 35.9294 1.9526 // 11.0184 2.5372 // 24.6276 0.048 // 0.22 0.632 // 2.023 2.96 // 12.729 98 // 86
hc 2.5152 // 17.7053 0.5087 // 2.1191 1.9849 // 15.5379 0.024 // 0.12 0.321 // 0.929 1.512 // 5.611 100 // 100
kmeans 1.793 // 12.8799 0.3527 // 1.6839 1.4344 // 11.155 0.062 // 0.24 0.593 // 2.177 2.547 // 9.595 100 // 100EMCluster
rebmix 6.9275 // 23.0817 2.7461 // 5.4713 4.0985 // 17.4511 0.044 // 0.32 3.177 // 3.836 8.535 // 15.437 96 // 70

hc 11.4938 // 49.4328 9.1746 // 12.2155 2.2913 // 36.5886 0.027 // 0.91 8.899 // 9.56 1.98 // 19.55 100 // 100
kmeans 11.1438 // 40.4749 9.0384 // 11.9946 2.0912 // 28.0385 0.096 // 0.7 9.059 // 9.024 1.682 // 16.35 100 // 100HDclassif
rebmix 14.6998 // 47.2364 8.7649 // 12.6715 5.8029 // 33.929 0.22 // 0.92 8.135 // 9.145 8.018 // 21.824 96 // 70
hc 5.6809 // 21.1181 3.7272 // 6.1206 1.7452 // 14.9126 0.41 // 0.019 5.772 // 3.645 4.299 // 12.812 96 // 45
kmeans 5.7063 // 21.3775 3.6759 // 6.589 1.79 // 14.5681 0.39 // 0.17 5.788 // 4.08 4.357 // 13.352 96 // 40EMMIXmfa
rebmix 5.8175 // 19.9703 3.8142 // 6.3202 1.7592 // 13.5389 0.35 // 0.033 5.819 // 4.402 4.349 // 13.812 93 // 34

Table 19: Minimal example setting apart MSE and Bias whether it proceeds from diagonal or offset terms
of the covariance matrix, for scenarios HD5a) and HD6a), in Table 15 (overlapping and spherical-distributed
components). We delimite each scenario by doubled backslashes with respectively balanced and unbalanced
clusters.

Package Initialisation
Method

Global
MSE diag(Σ)

Global
MSE upper.tri(Σ)

Global
Bias diag(Σ)

Global
Bias upper.tri(Σ)

hc 1.1 // 5.9 2.2 // 12 0.9194 // 2.3003 2.651 // 2.081mixtools / Rmixmod / RGMMBench kmeans 0.99 // 5.6 2.1 // 10 0.8929 // 2.7422 2.13 // 2.292
hc 0.76 // 5.5 1.6 // 11 0.5698 // 2.418 1.557 // 1.994mclust / flexmix / GMKMcharlie kmeans 0.67 // 5.2 1.4 // 8.5 0.6909 // 3.4316 0.979 // 2.37
hc 0.67 // 11 0.94 // 14 0.7755 // 6.9204 1.205 // 3.849bgmm kmeans 0.58 // 9.1 0.88 // 12 0.6004 // 6.124 1.138 // 3.659
hc 0.62 // 6.1 1.4 // 9.5 0.4985 // 3.4685 1.013 // 2.143EMCluster kmeans 0.48 // 7.5 0.95 // 3.6 0.9269 // 7.6352 1.621 // 1.96

hc 0.72 // 26 1.6 // 11 0.5383 // 17.2225 1.441 // 2.328HDclassif kmeans 0.68 // 20 1.4 // 8.5 0.7156 // 13.7249 0.966 // 2.626
hc 1.6 // 10 0.13 // 4.6 3.7632 // 10.0798 0.536 // 2.733EMMIXmfa kmeans 1.6 // 11 0.17 // 3.9 3.7621 // 10.8057 0.594 // 2.546

Table 20: MSE and Bias associated to scenarios HD1a) and HD1b), in Table 15 (well-separated and spherical-
distributed components). We delimite by doubled backslashes for each entry of the summary metrics table
respectively the scores with n = 200 and n = 2000 observations.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 0.5611 // 0.0058 0.2364 // 0.0028 0.3035 // 0.0026 0.019 // 0.00071 0.372 // 0.018 0.915 // 0.04 98 // 100
hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0095 // 0.00071 0.053 // 0.018 0.14 // 0.04 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0095 // 0.00071 0.053 // 0.018 0.14 // 0.04 100 // 100mclust / flexmix / GMKMcharlie
rebmix 0.3134 // 0.0058 0.1305 // 0.0029 0.1729 // 0.0026 0.0039 // 0.0022 0.2 // 0.02 0.537 // 0.044 88 // 81
hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0098 // 0.00071 0.053 // 0.018 0.139 // 0.041 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100bgmm
rebmix 0.7437 // 0.1977 0.3409 // 0.0028 0.3895 // 0.1946 0.02 // 0.00034 0.308 // 0.017 1.602 // 0.926 97 // 99
hc 0.0577 // 0.0058 0.0289 // 0.0028 0.0264 // 0.0026 0.0093 // 0.00061 0.054 // 0.018 0.139 // 0.041 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0092 // 0.00039 0.054 // 0.017 0.139 // 0.04 100 // 100EMCluster
rebmix 0.6887 // 0.3391 0.2466 // 0.1276 0.4201 // 0.1969 0.019 // 0.048 0.519 // 0.289 1.721 // 0.875 87 // 81

hc 11.3787 // 11.3322 11.3499 // 11.3293 0.0264 // 0.0026 0.0094 // 0.00071 11.166 // 11.179 0.139 // 0.04 100 // 100
kmeans 11.3831 // 11.3301 11.3543 // 11.3271 0.0264 // 0.0026 0.0094 // 0.00068 11.162 // 11.181 0.139 // 0.04 100 // 100HDclassif
rebmix 11.5949 // 11.6085 11.5167 // 11.6055 0.072 // 0.0026 0.0024 // 0.0022 11.227 // 11.369 0.27 // 0.044 87 // 81
hc 5.9739 // 5.9149 4.0397 // 3.9727 1.8288 // 1.8228 0.32 // 0.47 6.999 // 7.042 4.25 // 4.296 100 // 100
kmeans 5.972 // 5.8863 4.0431 // 3.9596 1.8283 // 1.8259 0.33 // 0.43 6.997 // 7.051 4.255 // 4.34 100 // 100EMMIXmfa
rebmix 5.9835 // 5.9078 4.0477 // 3.9671 1.8257 // 1.8244 0.37 // 0.46 6.994 // 7.045 4.232 // 4.301 87 // 81
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Figure 21: We gathered on the same plot two multivariate benchmark scenarios, in which we consider a strictly
spherical structure of the covariance matrix: We represent in Panel A and B, respectively the bivariate projection
and parallel distribution plot, associated to scenario HD5a) in Table 15 (balanced and overlapping components,
with spherical covariance structure). In Panel C, we display the boxplots associated to scenario HD5a), computing
them similarly as in Panel E of Figure 19. In Panel D, we display the boxplots associated to scenario HD6a)
(unbalanced and overlapping components, with spherical covariance structure).
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Table 21: MSE and Bias associated to scenarios HD8a) and HD8b), in Table 15 (overlapping components with
full covariance structure). We delimite by doubled backslashes for each entry of the summary metrics table
respectively the scores with n = 200 and n = 2000 observations.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 18.6085 // 0.6735 3.566 // 0.0536 14.9495 // 0.6193 0.23 // 0.0017 3.327 // 0.107 14.475 // 0.649 100 // 100
kmeans 16.7452 // 0.6735 2.9065 // 0.0536 13.7662 // 0.6193 0.2 // 0.0016 2.819 // 0.107 12.552 // 0.649 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 22.2986 // 0.6738 4.3127 // 0.0536 17.8418 // 0.6196 0.25 // 0.0021 3.768 // 0.108 16.249 // 0.648 95 // 100
hc 20.6916 // 0.728 4.5672 // 0.0696 16.0328 // 0.6557 0.28 // 0.064 4.381 // 0.459 18.656 // 2.07 100 // 100
kmeans 17.9622 // 0.7169 3.7547 // 0.0671 14.1405 // 0.6474 0.27 // 0.062 3.88 // 0.465 16.802 // 2.049 100 // 100mclust / flexmix / GMKMcharlie
rebmix 22.4636 // 0.7553 4.7502 // 0.0678 17.5784 // 0.6853 0.26 // 0.0054 4.165 // 0.158 17.735 // 0.725 94 // 98
hc 35.6085 // 13.8411 12.8826 // 3.6502 22.3428 // 10.0718 0.29 // 0.46 6.212 // 5.661 26.812 // 23.753 100 // 100
kmeans 33.8007 // 12.5545 11.7236 // 3.1419 21.7292 // 9.2934 0.28 // 0.47 6.348 // 5.654 26.546 // 23.141 100 // 100bgmm
rebmix 35.3167 // 13.106 12.2374 // 3.3747 22.6615 // 9.6213 0.37 // 0.42 6.007 // 5.273 26.287 // 23.02 96 // 100
hc 23.4472 // 16.4192 6.2451 // 4.9191 17.0777 // 11.3124 0.35 // 0.51 5.469 // 6.279 23.503 // 22.821 99 // 100
kmeans 21.0058 // 14.6852 5.9951 // 4.1684 14.9329 // 10.4293 0.38 // 0.42 5.604 // 6.592 24.628 // 24.706 100 // 100EMCluster
rebmix 23.0408 // 19.7372 6.4923 // 7 16.3824 // 12.5099 0.36 // 0.35 5.272 // 5.454 23.419 // 23.9 93 // 98

hc 36.5924 // 33.4077 16.108 // 14.4007 20.3809 // 18.8638 0.3 // 0.44 12.706 // 13.085 25.393 // 29.363 100 // 100
kmeans 34.7935 // 30.1935 15.4329 // 13.78 19.2529 // 16.2816 0.4 // 0.41 12.766 // 12.756 24.988 // 25.151 100 // 100HDclassif
rebmix 38.9707 // 24.0327 16.134 // 12.9266 22.6961 // 11.0138 0.25 // 0.21 12.811 // 12.275 25.79 // 15.996 95 // 98
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Figure 22: Overview of scenarios HD1 a) and b) and HD8 a) and b) in Table 15comparing the performance of
the algorithms in respectively the easiest and most complex scenario. The left-hand column shows box plots of
the estimated parameters from simulations with n = 200 observations on the left and n = 2000 observations on
the right.
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Figure 23: Correlation heatmaps of the estimated parameters in the high dimensional (HD) setting extended to
the three initialisation methods benchmarked (respectively hc, k-means and rebmix) in the most discriminating
scenario HD8a), using the same process described in Figure (2).
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AppendixC
Appendix of Article 3

C.1 Appendix of Reference-Based Approaches
Fundamental Assumptions on the Partial Deconvolution Framework

In this section, for the sake of readability, we recall fundamental relations underlying the
deconvolution framework.

Traditionally, deconvolution models assume that the total bulk expression is linearly related
to the individual cell profiles by the linear equation Equation (C.1):

yi = X × pi matricial form

ygi =
J∑

j=1
xgj × pj algebraic form

(C.1)

.
In addition, most deconvolution problems explicitly enforce the unit-simplex constraint (Equa-

tion (C.2)) on the cellular ratios:
{∑J

j=1 pji = 1
∀j ∈ J̃ pji ≥ 0

(C.2)

C.1.1 Linear regression and Gauss-Markov theorem

Theorem C.1.1: Normal equations

The Normal equations provide the following Ordinary Least Squares (OLS) estimate
Equation (C.3):

p̂OLS = (X⊤X)−1X⊤y (C.3)

whose existence implies that the design matrix Xis invertible.
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Theorem C.1.2: Gauss-Markov theorems

The Gauss-Markov assumptions encompass:

1. Strong exogeneity: The cell type-specific expression profiles are not random
variables but rather fixed and constant observations, underlying implicitly that cell
populations do no interact: ∀i ∈ J̃ ,∀j ∈ J̃ , i ̸= j, Cov [x.i,x.j ] = 0.

2. Gaussian-Markov noise: This hypothesis postulates that the residual error term is
described by a white Gaussian noise process, characterised by null mean and variance
that is independent on the gene, thus homoscedastic, which yields, in mathematical
terms:

yg =
J∑

j=1
xgjpj + ϵg, ϵg ∼ N

(
0, σ2

g

)

.
By integrating the exogeneity and homoscedasticity assumptions, it is possible to
derive the distribution of each transcript, which reveals Gaussian as articulated in
Equation (C.4):

y1:G|X ∼ NG(Xp, σ2IG) (C.4)

The second line highlights that the conditional distribution is identifiable to a
spherical multivariate Gaussian distribution.

3. Independence: From the aforementioned Gaussian-Markov and exogeneity as-
sumptions, we readily deduce that the gene expressions of the bulk measures are
independent: ∀j ∈ G̃,∀k ∈ G̃, j ̸= k, Cov [yj , yk] = 0.

4. Completeness: We assume no additional latent variable.

If they hold, the MLE estimate is then equal to the OLS estimate given by the Normal
equations (Equation (C.3)). Additionally, the MLE is the unique BLUE (best linear
unbiased estimator), i.e. the unbiased estimator with the lowest variance.
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Proof C.1.3: Gauss-Markov proof

Under the Gaussian-Markov assumptions (see Theorem C.1.2 and notably Equation (C.4))
and assumption of independence between samples, then, the global log-likelihood distribu-
tion of the response variable y conditioned on X is given by Equation (C.5):

θ̂MLE = ℓθ(y,X)

= arg max
θ

[
G∑

g=1
log (Pθ(yg|xg.)

]

= arg max
θ




G∑

g=1
log


 1√

2πσ
e−

(
yg−
∑J

j=1
xgj pj

)2

2σ2






= K −G log(σ)−
G∑

g=1

(
(yg −

∑J
j=1 xgj × pj)2

2σ2

)

(C.5)

with K = −G
2 log(2π), the normalising constant. Finding the values for which the

derivative of the function Equation (C.5) cancels yield the same estimate returned by the
OLS method Equation (C.3).
The MLE estimate provides additionally an estimate of the standard deviations:

σ̂2 = 1
G

G∑

g=1
yg −

J∑

j=1
xgj × p̂j

Ultimately, to prove that the estimate p is indeed the unique global maxima of the
log-likelihood function Equation (C.5), we just have to differentiate the equation once
more, and show that the resulting Hessian matrix is indeed positive definite.
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C.1.2 Robust regression approaches

Definition C.1.4: M-estimates Regression

M-estimates, short for “maximum likelihood estimates” design the class of estimators that
maximise a likelihood function. In practice, M-estimates replaces the equally weighted
observations from lls regression with an adaptive function of the residuals:

p̂M = arg min
p

G∑

g=1
ρ (yg|xg.;p) (C.6)

where ρ is the robust loss function and ψ = ρ′ is its derivative called the influence function.
Different loss functions lead to different properties of M-estimators, and the choice of the
loss function depends on the distribution of the dataset and the desired properties of the
estimator:

• Tukey’s bisquare function is a softer smoothing function Equation (C.7):

ρ(x,p) =





c2

6

[
1−

(
1−

(
x−p

c

)2)3
]
, if |x− p| ≤ c

c2

6 , if |x− p| > c
(C.7)

With c = 4.6885, its efficiency is equal to the Huber’s estimate (95% of an OLS
estimate). Although not implemented independently in any deconvolution paper, the
standard rlm (for robust linear modelling) function in the R MASS package, which
performs the Tukey’s biweight iterative regression, is often used as a gold-standard
robust linear regression method in most of the deconvolution benchmark papers
([Stu+19], [Gau13]).

• The Least Absolute Deviation (LAD) minimises the absolute differences of the
residuals (L1 distance) rather than their squared differences (L2 distance):

p̂MAE = arg min
p̂

(|xp− y|) (C.8)

where MAE stands for Mean Absolute Deviation. A distribution of these functions
is reported in Appendix C.1.4.

https://rdrr.io/cran/MASS/man/rlm.html
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Definition C.1.5: Least Trimmed Squared Regression

The LTS method was first proposed in [Rou85], with the idea to select the gene subset
that exhibit the smallest residuals altogether. Practically, the estimate is given by
Equation (C.9):

p̂LTS = arg min
p

G∑

g=1

∗rg(p)2 (C.9)

with
∣∣∣G̃∗
∣∣∣ = G(1−α) + 1 with α the trimming proportion, and rg(p) the residuals ordered

by increasing order. Taking α = G
2 , LTS asymptotically displays a strong BP of 0.5,

implying it is robust to outliers, but a very low efficiency of 0.08. In addition, LTS is an
NP-hard problem [Rou85], as any combination of

( G∣∣G̃∗
∣∣
)

observations should be tested, to

find the
∣∣∣G̃∗
∣∣∣ genes with the minimal residual error. [RV06] hence extends the method in

high dimension, or with a large number of observations, by proposing a stochastic and
faster version of this algorithm. However, its performance is highly dependent on the
initial random

∣∣∣G̃∗
∣∣∣-subset chosen. Last but not least, the trimming ratio is an additional

hyper-parameter that plays a key role on the accuracy of the estimate.

A comprehensive review of robust linear estimates is supplied in [YYB14], with 10 influence
functions benchmarked. It notably demonstrates that MM-estimates and RWLSE estimates have
overall the best performance in terms of robustness and asymptotic efficiency.
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Definition C.1.6: Support Vector Regression

Linear SVR identifies the hyperplane that fits as many data points as possible. However,
instead of levering all observations as the standard OLS approach, only a subset of
data points, termed as “support vectors” (SVs) impact the prediction. In addition, the
optimisation function underlying the SVR framework (Equation (C.10)) aims at finding
the sweet spot between minimising the prediction error and maintaining a controlled level
of complexity to prevent overfitting:

τ(p, ζ, ϵ) = 1
2

J∑

j=1
p2

j

︸ ︷︷ ︸
L2 metric

+C

(
νϵ+ 1

G

G∑

g=1
(ζg + ζ∗

g )
)

︸ ︷︷ ︸
ν−insensitive function

(C.10)

where C is a regularisation parameter controlling the trade-off between complexity and
error control, p the estimates, referred to as the weights of the model, and ζg and ζ∗

g slack
variables to control the number of points outside the ϵ-tube. The penalty function of
the L2-norm in Equation (C.10), which is identical to that employed in ridge regression,
penalises the model complexity by putting less weight on the estimated ratios of highly
correlated cell types [CM04].
Finally, each pair of observation and covariates, yg,xg., are subjected to the following
constraints Equation (C.11):

yg − pTxg. − b ≤ ϵ+ ξg

pTxg + b− yg ≤ ϵ+ ξ∗
g

(C.11)

with b is the bias term (corresponding to the intercept in linear regression models), ϵ the
margin of tolerance, and slack variables ξi and ξ∗

i the allowed deviations from the margin.
The bias term corresponds to the null intercept in standard linear regression framework,
and is usually negative in SVM models ([Yan19]).

To quantify the relative performance of these robust approaches, two metrics are generally
used: the efficiency of the robust estimate relatively to the OLS estimate when the assumptions
of the Gaussian-Markov theorem hold 1, and the breakdown point.

The breakdown point is a measure of the robustness of the regression estimator to outliers.
Precisely, it represents the proportion of data points that can be perturbed before the estimator’s
behaviour becomes meaningless and unstable. For instance, the OLS estimate has a small BP of
1
G , implying that only one single unusual observation can contribute to the mean of the estimated
ratios [Rou85].

1The OLS estimate is indeed efficient, reaching asymptotically the Cramér-Rao bound



C.1. Appendix of Reference-Based Approaches 271

C.1.3 Regularised linear approaches

Definition C.1.7: Regularised linear regression

Historically, the Ridge regression [HK70] employs a L2-penalty Equation (C.12):




p̂Ridge = arg minp




G∑

g=1


yg −

J∑

j=1
pjxgj




2

︸ ︷︷ ︸
linear regression

+ λ

J∑

j=1
p2

j

︸ ︷︷ ︸
penalty function




subject to
∑J

j=1 p
2
j ≤ c

(C.12)

Ridge regression shrinks the coefficients but not necessarily to zero, implying that there is
no hard feature selection. Otherwise, Ridge is particularly useful when multicollinearity is
a concern.

Subsequently, the Lasso regression [Tib96] uses a L1-penalty, which allows a hard variable
selection:




p̂Lasso = arg minp

[∑G
g=1

(
y −∑J

j=1 pjxgj

)2
+ λ

∑J
j=1 |pj |

]

subjected to
∑J

j=1 |pj | ≤ c
(C.13)

Efficiency of this optimisation approach relies strongly on the sparsity of the dataset,
inducing that most of the coefficients are truly null (the set of coefficients with non-null
values is called the true support). However, Lasso regression underperforms with highly
correlated transcriptomic profiles, especially when the irrepresentable condition is violated,
namely when the correlation between the explanatory and confusing variables is larger
that the within correlation between the explanatory variables. In that case, the Lasso
algorithm tends to arbitrarily choose one out of a group of correlated features.

Elastic net [ZH05] has been developed to keep the middle ground of both worlds Equa-
tion (C.14):

p̂ElasticNet = arg min
p




G∑

g=1


yg −

J∑

j=1
pjxgj




2

︸ ︷︷ ︸
regression function

+λ

J∑

j=1
(1− α)p2

j + α|pj |
︸ ︷︷ ︸

penalise complexity




(C.14)

in which α is a trade-off parameter between the L2-penalty (α = 0) and the L1-penalty
(α = 1). This formulation enables continuous shrinkage, including hard feature selection,
and can even by deployed with highly correlated cell expression profiles.

Interestingly, [Zho+14] demonstrates that the Elastic net problem is identifiable to a linear
SVR under specific reparametrisation, allowing to utilise highly-scalable and parallel SVM solvers.
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C.1.4 Probabilistic approaches

Definition C.1.8: Latent Dirichlet Allocation: introduction

LDA, as a generative probabilistic model, has first been used in natural language pro-
cessing and topic modelling, with the goal of inferring the distribution of topics across
documents. Precisely, LDA assumes that documents are mixtures of topics, and topics
are mixtures of words. Applied to our cellular deconvolution context, the documents, for
which only the respective number of words is available, represent each patient or sample
bulk transcriptomic profile and the distribution of words represent read counts. Finally,
the latent topics describe cell populations that make up each document.
Formally, let’s introduce the following couple of independent random variables (T,Z) in
the probabilistic framework, along with L =

∑G
g=1 yg, the total number of counts in the

sample (aka the library depth):

• Z = Z1:L ∈ {1 : J}L: a discrete latent variable identifying from which reference
population each count originates. With that modelling, the cell ratios (document-
topic proportions) can be recovered with:

pj =
∑L

l=1 zl1zl=j

L

, note that this framework naturally enforces the unit-simplex constraint on the
ratios.

• T = T1:L ∈ {1 : G}L: it its the vectorised transcriptomic expression profile y. The
total expression of a given gene g is retrieved by summing all transcripts from T
associated to this gene: yg =

∑L
l=1 tl 1tl=g.

• Finally, let’s introduce the individual purified expression profile for a gene g produced
by a given cell population j: xgj =

∑L
l=1 tl 1(tl=g) ∩(zl=j), then the ratio of this

specific gene over the total transcriptomic expression for population j (topic-word
proportions) is given by: βgj = xgj

Lj
, with Lj the total number of counts in population

j and βj its multidimensional generalisation.
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Definition C.1.9: Latent Dirichlet Allocation: estimation

With this modelling approach, the joint distribution of (T,Z) in the LDA model for a
given sample is given by Equation (C.15):

Pθ(Z1:L, T1:L) = P(p)×
L∏

l=1

J∑

j=1

pj︷ ︸︸ ︷
P(Z = j)

βg,j︷ ︸︸ ︷
P(T = g|Z = j) (C.15)

which corresponds to a parametric mixture model of multinomial (the generalisation of
binomial distributions, with more than two outputs for each generation) distributions, and
θ = (p,β) the minimal set of parameters to estimate (all other quantities of interest can
be deduced from them).
Simultaneously optimising both sets of parameters is analytically intractable. Instead, an
ECM (Expected Conditional Maximisation) algorithm ([MR93]), a direct extension of the
EM framework ([DLR77]), has been used to iteratively optimise the set of parameters
until convergence. In brief, the ECM approach consists of replacing the maximisation step
of EM with a set of conditional maximisation steps, decomposing here the difficult joint
maximisation of the parameters into several easier and conditionally dependent ones:

1. Initialisation: LDA requires an initialisation step, initial parameters θ0 = (p0,β0)
being drawn from prior distributions that should generate candidates in the support
of the solution space.

2. E-step: At step (q), MAP (maximum a posteriori) is used to assign the production
of each gene g for the count l ∈ {1, . . . L} to a given population j Equation (C.16):

Ẑq
l , l ∈ {1, . . . , L} = arg max

j∈J̃
[P(Zl = j|Tl = g)] (C.16)

, using the prior inferred parameters of the mixture of multinomial distributions
θq−1

3. M-step: Injecting the latent variables inferred in the previous estimation step,
the parametric vector θ = (p,X) which maximised the conditional distribution
Pθ(T1:L|Z1:L) =

∏L
l=1 Pθ(Tl|Zl) is returned.

The main advantage of LDA relies on its versatility, since this approach can be applied
to various types of data (provided it has been discretised), can be easily interpreted and
is close to the biological process. We refer the reader to [Lee+18] and [Xu+23] for a
comprehensive report of the main features and limitations provided by this “bag-of-words”
approach.
However, determining the number of cell types J can be challenging without proper
biological annotation, the method is highly sensitive to preprocessing choices, and struggles
with sparse data or short documents (in a biological context, this implies that this method
should not be used to characterise rare cell populations, contributing poorly to the final
pool of transcripts).
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(a) LLS principle. Here, we present briefly the
methodology with a simplified univariate regression
framework, including an intersection term β0. Re-
produced from [MAL21, Fig. 2].

(b) Common influential functions.The weight
function distributions for Huber’s robust estimator
and Tukey’s bisquare (or biweight) compared with
least squares estimation, in which each observation is
assigned the same weight, no matter its contribution
to the residuals errors. Reproduced from [Wri09,
Fig. 1]

(c) Overview of three pathway enrichment
analysis methods. Over-representation tech-
niques focus on investigating whether a given gene
list displays any pathways that are more prevalent
than expected by chance when compared to a refer-
ence set. (B) In ranking-based methods, the whole
gene set is examined to determine whether genes as-
sociated with the same pathway exhibit a tendency
to cluster at either the top or the bottom of the
ordered list of the universe of quantified genes. Such
methods return an enrichment score reflecting the
amplitude and the sense of the variation induced
by the phenotype (C) Topology-based strategies
incorporate scores that gauge both gene absolute
positions and gene pairwise interactions (up to our
knowledge, none of the marker-based methods we
reviewed integrate this feature). Reproduced from
[ZR23, Fig. 1].

(d) Illustration of support vector regression (SVR).ξ
and ξ∗ are slack variables controlling the upper and
lower error margins, respectively. Together, slack
variables enable to define boundary decision lines,
all points lying outside of the ϵ− tube making up
the set of “support vectors” (red circles). ν−SVR
is a recent approach, in which the so-called hyper-
parameter controls the amount of SVs (for instance,
in the right picture, half of the genes lie beyond the
confidence boundaries). Interestingly, only the set
of SVs is required to predict cellular ratios, avoiding
as such overfitting. Reproduced from [New+15,
Supplementary Fig. 1].
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C.2 Statistical Appendix of Marker-Based Approaches

C.2.1 Gene Set Enrichment Analysis

Definition C.2.1: Principles of GSEA

Gene Set Enrichment Analysis (GSEA) is a bioinformatics method used initially to
determine whether a predefined set of genes shows significant differences between two
biological states. They hence differ from Differential Gene Expression Analysis (DGEA)
analyses, since GSEA operates on groups of genes associated with a biological function or
process rather than considering independently one gene after the other. In a second time,
GSEA assigns a statistical significance score to each gene set which evaluates the null
hypothesis of randomly distributed throughout the ranked gene list against the alternative
hypothesis of a clustering pattern at the top or bottom of the ranked list.
The enrichment score (ES) for each gene set returned by GSEA analyses, reflecting the
degree to which genes are unequally distributed in the ties of the ranked list, is given by
the following running sum statistic, assuming beforehand that G̃ and G̃j are ranked by
decreasing order of fold change (or any relevant metric) Equation (C.17):

ES
(
G̃j ∈ G̃

)
=

|G̃j |
sup
g=1

∣∣∣F ∗
g∈G̃j

(g)− F
g∈G̃

(g)
∣∣∣

with F ∗
g∈G̃j

(g) = P∗(G̃j ≤ g) = R∗(g)∣∣∣G̃j

∣∣∣
, F

g∈G̃
(g) = R(g)∣∣∣G̃

∣∣∣

(C.17)

with
∣∣∣G̃
∣∣∣ = G the number of genes (I commonly use the second notation for consis-

tency and conciseness reasons, since there is no real risk of confusion), |G̃j | the module,
namely the number of genes composing the gene set associated to cell population j,
F ∗

g∈G̃j

(g) = index of gene g, alternatively number of genes higher ranked∣∣G̃j

∣∣ and F
g∈G̃

(g) are the cumula-

tive distribution functions (CDF) of the gene rankings/positions (ordered by decreasing
order of fold change) of gene set Gj (R∗(g) being the index of gene g in gene module G̃j),
respectively within the module itself and with respect to the total set of genes quantified
in the study G̃ (note the asterisk to set apart both distributions).
Note that this score, without weights, is the standard Kolmogorov-Smirnov running sum
statistic, used traditionally to compare empirical distributions and for which the existence
for an asymptotic one-sided statistical test of the null hypothesis distribution is known
[SL11], and that ES scores can be easily computed in R with the gsva function.

https://Bioconductor.org/packages/release/bioc/html/GSVA.html
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C.2.2 Hypergeometric Distribution

Definition C.2.2: Using Hypergeometric Laws for Gene Pathway Enrichment
Analysis:

Hypergeometric distribution is commonly used in gene pathway enrichment analysis, such
as in the Gene Ontology (GO) database. The main purpose is to assess whether a particular
set of genes, often the set of differentially expressed genes, is statistically over-represented
in a predefined gene pathway compared to what would be expected by chance. If the
observed overlap is larger than expected, it suggests that the pathway is enriched.
Mathematically, the hypergeometric distribution returns the probability of observing
X = k ≡

∣∣∣G̃j

diff∣∣∣ genes (likely the subset of genes differentially expressed) from the set of

interest in a pathway of size
∣∣∣G̃j

∣∣∣, drawn randomly without replacement from the total set

of genes marked as differentially expressed in DGEA G̃diff ∈ G̃, and is computed by the
following probability mass function Equation (C.18):

P(X = k) =

(∣∣G̃j

∣∣
k

)
·
(∣∣G̃
∣∣−
∣∣G̃j

∣∣∣∣G̃diff
∣∣−k

)

( ∣∣G̃
∣∣∣∣G̃diff
∣∣
) (C.18)

C.2.3 Limitations of Marker-Based Approaches
The GSEA and hypergeometric approaches are constrained by some strong assumptions on the
nature of gene pathways. Both methods presuppose that genes are selected independently for
inclusion in the cell marker set.

In addition, the statistical assessment of the enrichment score depends on the gene pathway
cardinality ([Aba+09]) and the size of the background set, denoting the cardinality of the gene
universe used in the enrichment analysis. In particular, smaller pathways are consistently prone to
being spuriously labelled as enriched. Finally, when multiple pathways are assessed concurrently,
multiple testing corrections are required to control the inflation of the false discovery rate (FDR).
To mitigate these statistical limitations, it is possible to incorporate additional metrics, such
as weighting the rank indexes of fold-change with the p-values derived from Differential Gene
Expression Analysis (DGEA). However, hypergeometric tests usually offer less versatility and
informativeness compared to GSEA approaches because they treat all genes within a pathway
equally, irrespective of the magnitude of gene expression changes.

Both GSEA and hypergeometric methods remain neutral regarding the direction of transcrip-
tomic variation, whether it involves up- or down-regulated genes. In contrast, the algorithm
exploiting the Connectivity Map dataset ([Lam07] and [Lam+06]), extends the investigational
capacity of Enrichment Scores (Equation (C.17)), with the calculation of two separate metrics for
up-regulated and down-regulated genes, possibly followed by their aggregation when biologically
relevant.

On a side note, any test for evaluating compositional data, and notably equality of proportions,
can be used. It notably encompasses the asymptotic χ2 statistical test and the Fisher’s exact test.
When quantitative gene expression is available, any test comparing two continuous statistical
distributions, including the Pearson correlation score, could alternatively be employed.
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C.3 Statistical Appendix of Reference-Free Approaches

Definition C.3.1: Principles of LS-NMF

Least-Square Non-Negative Matrix Factorization (LS-NMF) is originally a dimensionality
reduction technique, based on factorising a given non-negative data matrix into a product
of two non-negative matrices. LS-NMF enables to reduce the dimensionality of the
original data in a meaningful manner, by representing the data as a product of two
lower-dimensional matrices while keeping the fundamental linear assumption of linearity in
cell deconvolution methods (see Equation (C.1)) and enforcing non-negativity in both the
factor matrices P and X (indeed, in both cases, negative values can not be interpreted).
More generally, it is a powerful method to extract relevant features or components of
the data (here we assume that the subdimensional features match the individual cellular
profiles, X), while the coefficients in P represent the weights of these features for each
data point (in a deconvolution framework, they are assimilated to cellular ratios). The
number of hidden components/spanning dimensions J , which is also the rank of X are
interpreted as the number of cell populations at the same lineage level.
Given a non-negative data matrix Y ∈ RG×N

+ , LS-NMF seeks to determine the best
two-terms matrix factorisation that approximate Y ∼XP , both non-negative matrices,
by minimising the Frobenius norm of the difference a Equation (C.19):

min
P ,X
∥Y − PX∥2

F

subject to the non-negativity constraints:
P ≥ 0, X ≥ 0

(C.19)

This optimisation problem is often intractable, and thus typically solved iteratively using
algorithms like multiplicative updates or gradient descent.
However, LS-NMF suffers from two main limitations: it is highly sensitive to the initial
set of values provided for P and X, and different initialisation can lead to different
factorisation and convergence to local optima. The choice of the number of components,
which can be interpreted as the rank of X is often arbitrary and critical.

aInstead of the Frobenius norm, it is also possible to employ the Kullback-Leibler divergence, as in
[Don+20]
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C.4 Appendix of Cellular Deconvolution Pipeline

Definition C.4.1: Condition number: general definition

The condition number is defined more precisely to be the maximum ratio of the relative
error in the measured value to the relative error made on the input. Consider for an
explicit mathematical formula the following variables: p is the input of our problem, y
(alternatively f(p) the measured value, and f̃(p)) (alternatively ŷ) the predicted value
by any algorithm or predictive function. Then, the relative condition number is formally
defined by Equation (C.20):

κ(f,p) = lim
ϵ→0+

sup
∥δp≤ϵ∥

∥δf(p)∥ / ∥f(p)∥
∥δp∥ / ∥p∥ (C.20)

with || ||, namely the double vertical bars, the usual typology used to mark any matrix
norm a and ∥δf(p)∥ =

∥∥f(p)− f̃(p)
∥∥ the relative error.

aSee definitions, properties and popular matrix norm definitions on this Wikipedia page: Matrix Norm.

Theorem C.4.2: Application of the Condition Number as a predictive quality
metric for linear-based regression problems

The condition number, associated to the OLS estimate given in Equation (C.3), is Equa-
tion (C.21) :

κ(X) = ||X|| × ||X⊤|| (C.21)

It is then possible to show the following inequality, derived directly from the definition of
a matrix norm, holds Equation (C.22):

||X|| × ||X⊤|| ≥ ||XX⊤|| ≥
∥∥XX−1∥∥ = 1 (C.22)

, which provides an upper bound on the precision we can achieve with linear regression in
the best case scenario. This bound is only reached if, and only if, the condition number of
X is equal to 1.
Defining ∥∥ as the L2 or Euclidean norm, and building the design matrix such that it is
normal yields an explicit general formula relating the condition number of the matrix to
its eigen values Equation (C.23):

κ(X) ≡ cond(X) = λmax

λmin
(C.23)

with λmax and λmin respectively the largest and smallest eigenvalues resulting from the
singular value decomposition of X. In R, this condition number can be easily computed
with the kappa function.
As such, this metric assesses how small perturbations in the input data can affect the
stability and robustness of the regression model, successfully identifying ill-posed or
multicollinear regression problems. Indeed, a matrix associated with a high condition
number indicates that matrix X⊤X is close to being singular and often exhibits strong
Multicollinearity, rendering the task of correlating the variations of the response variable
with the dependent challenging.

https://en.wikipedia.org/wiki/Matrix_norm
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/kappa
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Theorem C.4.3: Correlating Condition Number with a MLE approach

A probabilistic approach provides meaningful insights to reconsider the LLS regression
problem. Remember that we model the error by explicitly adding an error term following
a null-centred and homoscedastic Gaussian distribution: ϵ ∼ N (0, σ2) a. Supposing that
the MLE estimate, p̂mle, is unbiased, its variability is given by Equation (C.24):

Var [p̂] =
(
X⊤X

)−1
σ2 (C.24)

, then, we have the following equality Equation (C.25):

Var [p̂] = σ2

⇔
(
X⊤X

)−1
= 1

⇔
∥∥∥X⊤X

∥∥∥
−1

=
∥∥∥X⊤X

∥∥∥ = 1

⇔
κ(X) = 1

(C.25)

In other words, the variability Var [p̂], which we can interpret here as the error made by
the algorithm oracle, of the estimated ratios, is equal to the measure error made on the
response variable σ2, if, and only if, the condition number of the design matrix is equal to
1. In addition, the precision we can achieve on the estimates is bounded by the precision
on the response variable.

However, the condition number as a predictive metric for the robustness of a model
suffers from specific limitations. First, hampered by its global encompassing approach of a
problem, it can not be used to determine which variables are most influential. In addition,
it is often diverted from its original purpose and misused to quantify and predict the
impact of numerical stability, while it should not be used to take into account round-off
numerical errors nor floating-point accuracy of the computer.

aremember from the Gaussian-Markov theorem Proof C.1.3 proves that both approaches are equivalent

C.5 Biological Appendix to the Fate of Deconvolution Al-
gorithms

Mapping, generally employed for highplex RNA imaging assays, consists first to assign each
spatially detected cell to its corresponding (scRNA-seq) profile and secondarily, infer a pattern
predicting the location of each scRNA-seq cell based on its transcriptome.

Mapping workflow can be subdivided into four main stages, often referred to as the four A’s
([Lon+21, Fig. 4]):
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• Adopt From literature, a subset of the tissues or the populations of interest, with intricate
spatial patterns, is selected for further analysis.

• Assay Survey the same tissue (to keep the same phenotypical conditions and limit technical
variability) with scRNA-sequencing (its higher coverage and unbiased nature makes it a
promising candidate for the selection of candidate genes) and spatial barcoding to locate
their prevailing location within the tissue. Then, track the spatial and temporal dynamics
of this subset of genes with HPRI imaging (recall that this method requires to know in
advance the sequence of the genes).

• Assemble Using deconvolution and mapping algorithms, generate maps that assigns each
coordinate to one cell type. Matching histology images may reveal informative landmarks
and help denoising complex areas, such as the tumour leading edge, transition region
between cancer and normal tissue.

• Analyse The high-dimensionality of ST datasets was use to corroborate ligand-receptor
interactions involved in cellular signalling, or to survey evolving dynamics occurring in a
disease progressing condition.
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We recall for readability motivations the log-likelihood of DeCovarT’s non-constrained generative
model, conditioned on the purified and global bulk expression profiles, along with its gradient
and its Hessian.

The conditional log-likelihood is readily computed and given by Equation (D.1):

ℓy|ζ(p) = C + log


Det




J∑

j=1
p2

jΣj




−1

− 1

2(y − pµ)⊤




J∑

j=1
p2

jΣj




−1

(y − pµ) (D.1)

The Jacobian is given by Equation (D.2):

∂ℓy|ζ(p)
∂pj

= −2pj Tr (ΘΣj) + (y − µp)⊤Θµ.j + pj(y − µp)⊤ΘΣjΘ(y − µp) (D.2)

The Hessian, H ∈MJ×J , is given by Equation (D.3):

Hi,i = ∂2ℓ

∂2pi
= −2 Tr (ΘΣi) + 4p2

i Tr
(

(ΘΣi)2
)
− 2pi(y − µp)⊤ΘΣiΘµ.i − µ⊤

.i Θµ.i−

2pi(y − µp)⊤ΘΣiΘµ.i − (y − µp)⊤Θ
(
4p2

i ΣiΘΣi −Σi

)
Θ(y − µp), i ∈ J̃

Hi,j = ∂2ℓ

∂pi∂pj
= 4pjpi Tr (ΘΣjΘΣi)− 2pi(y − µp)⊤ΘΣiΘµ.j − µ⊤

.i Θµ.j −

2pj(y − µp)⊤ΘΣjΘµ.i − 4pipj(y − µp)⊤ΘΣiΘΣjΘ(y − µp), (i, j) ∈ J̃2, i ̸= j

(D.3)
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D.1 Optimisation and calculus

D.1.1 Multivariate distributions and basic algebra properties

Definition D.1.1: Multivariate Gaussian distributions

If random vector X of size G follows a random multivariate Gaussian distribution,
X ∼ NG(µ,Σ), then its distribution is given by:

Det(2πΣ)− 1
2 exp

(
−1

2(x− µ)Σ−1(x− µ)⊤
)

in which:

• µ = X is the G-dimensional mean vector

• Σ is a G×G positive-definite Definition D.1.2 covariance matrix, whose diagonal
terms, Diag(Σ) = [(Var [Xi,j ]), ∀(i, j) ∈ G̃2, i = j]⊤ are the individual variances
of each purified gene transcript in population j and off-diagonal terms, Σi,j =
Cov [Xi, Xj ] , ∀(i, j) ∈ G̃2, i ̸= j are the covariance between variables. We note
Θ = Σ−1, the inverse of the covariance matrix, called the precision matrix.

Property D.1.1: Affine invariance property of multivariate GMMs

The two following properties hold for a multivariate Gaussian distribution:

• if X ∼ NG(µ,Σ), then pX, with p a constant, follows itself a multivariate Gaussian
distribution, given by: pX ∼ NG(pµ, p2Σ)

• given two independent random vectors X1 ∼ NG(µ1,Σ1) and X2 ∼ NG(µ2,Σ2)
following a multivariate Gaussian distribution, then the random variable X1 +X2
follows itself the multivariate Gaussian distribution:

X + Y ∼ NG(µ1 + µ2,Σ1 + Σ2)

By induction, this property generalises to the sum of J independent random vectors
of same dimension RG.

Deriving the characteristic function of the multivariate GMM yields directly results reported
in Property D.1.1.
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Definition D.1.2: Definite matrix

A symmetric real matrix A of rank G is positive-definite if:

x⊤Ax > 0, x ∈ RG (D.4)

To gain a clearer grasp of the positive-definite constraint imposed on the covariance
parameter of a multivariate Gaussian distribution, let’s delve into the most straightfor-
ward scenario, in which we assume that any of the individual features exhibit pairwise
independence. This particular setup is parametrised by a covariance matrix containing
exclusively diagonal elements.
If the matrix is not strictly positive-definite, then some of the diagonal elements can
display negative values, otherwise that the individual variances for some of the covariates
are negative. It is not physically possible and leads to improper, degenerate probability
distributions.
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D.1.2 Matrix calculus
Fundamental algebra calculus formulas used to derive first-order and second-order derivatives of
the generative model of DeCovarT are reported in Property D.1.2 and Property D.1.3, respectively.

Property D.1.2: First-order matrix calculus

Given two invertible matrices, A = A(p) and B = B(p), functions of a scalar variable p,
the following matrix calculus hold:

(a) ∂ Det(A)
∂p =

Det(A) Tr
(
A−1 ∂A

∂p

) (b) ∂UAV
∂p = U ∂A

∂p V (c) ∂A−1

∂p = −A−1 ∂A
∂p A

−1

From a) and fundamental linear algebra properties, we can readily compute applying the
chain rule property on the logarithm:

∂ log (Det(A))
∂p

= Tr
(
A−1 ∂A

∂p

)

∂ log
(
Det(A−1)

)

∂p
= −Tr

(
A−1 ∂A

∂p

)

Finally, injecting these first-order matrix derivatives, we obtain:

∂(y − xp)⊤Θ(y − xp)
∂p

= −2(y − xp)⊤Θx

= −2x⊤Θ(y − xp)
with A = D = −x ∈ RG, b =e = y, C = Θ symmetric

Property D.1.3: Second-order matrix calculus

Given an invertible matrix A depending on a variable p, the following calculus formulas
hold:

(a) ∂2A−1

∂pi∂pj
= A−1

(
∂A
∂pi
A−1 ∂A

∂pj
− ∂2A

∂pi∂pj
+ ∂A

∂pj
A−1 ∂A

∂pi

)
A−1

(b) ∂ Tr(A)
∂pi

=
Tr
(

∂A
∂pi

)

Combining Property D.1.2 with the linear property of the trace operator yields:

∂2 log
(
Det(A−1)

)

∂2p
= −Tr

[
A−1 ∂

2A

∂2pi

]
+ Tr

[(
A−1 ∂A

∂pi

)2
]
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D.1.3 First and second-order derivation of constrained DeCovarT
To reparametrise the log-likelihood function (Equation (D.1)) in order to explicitly handling
the unit simplex constraint (Equation (C.2)), we consider the following mapping function:
ψ : θ → p | θ ∈ RJ−1, p ∈]0, 1[J (Equation (D.5)):

1.

p = ψ(θ) =




pj = eθj∑

k<J
eθk + 1 , j < J

pJ = 1∑
k<J

eθj +1

(D.5)

2. θ = ψ−1(p) =
(

ln
(

pj

pJ

))
j∈{1,...,J−1}

that is a C2-diffeomorphism, since ψ is a bijection between p and θ twice differentiable.
Its Jacobian, Jψ ∈MJ×(J−1) is given by Equation (D.6):

Ji,j = ∂pi

∂θj
=





eθi Bi

A2 , i = j, i < J
−eθj eθi

A2 , i ̸= j, i < J
−eθj

A2 , i = J

(D.6)

with i indexing vector-valued p and j indexing the first-order order partial derivatives of the
mapping function, A =

∑
j′<J eθj′ + 1 the sum over exponential (denominator of the mapping

function) and B = A− eθi the sum over ratios minus the exponential indexed with the currently
considered index i.

The Hessian of the multi-dimensional mapping function ψ(θ) exhibits symmetry for each cell
ratio component j, as anticipated in accordance with Schwarz’s theorem. It is is a third-order
tensor of rank (J − 1)(J − 1)J , given by Equation (D.7):

∂2pi

∂k∂j
=





eθi eθl(−Bi+eθi)
A3 , (i < J) ∧ ((i ̸= j)⊕ (i ̸= k)) (a)

2eθi eθj eθk

A3 , (i < J) ∧ (i ̸= j ̸= k) (b)
eθi eθj (−A+2eθj )

A3 , (i < J) ∧ (j = k ̸= i) (c)
Bieθi(Bi−eθi)

A3 , (i < J) ∧ (j = k = i) (d)
eθj (−A+2eθj )

A3 , (i = J) ∧ (j = k) (e)
2eθj eθk

A3 , (i = J) ∧ (j ̸= k) (f)

(D.7)

with i indexing p, j and k respectively indexing the first-order and second-order partial
derivatives of the mapping function with respect to θ. In line (a), ⊕ refers to the Boolean XOR
operator, ∧ to the AND operator and l = {j, k} \ i.

To derive the log-likelihood function in Equation (D.2), we reparametrise p to θ, using a
standard chain rule formula. Considering the original log-likelihood function, Equation (D.1), and
the mapping function, Equation (D.5), the differential at the first order and at the second order
is given by Equation (D.8) and Equation (D.9), respectively defined in RJ−1 and M(J−1)×(J−1):

[
∂ℓy|ζ

∂θj

]
j<J

=
J∑

i=1

∂ℓy|ζ
∂pi

∂pi

∂θj
(D.8)

[
∂ℓ2

y|ζ

∂θkθj

]
j<J, k<J

=
J∑

i=1

J∑

l=1

(
∂pi

∂θj

∂2ℓy|ζ
∂pi∂pl

∂pl

∂θk

)
+

J∑

i=1

(
∂ℓy|ζ
∂pi

∂2pi

∂θkθj

)
(d) (D.9)
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D.2 A MCMC Algorithm for the Joint Distribution of
Purified Profiles and Ratios

We introduce two variations of the MCMC algorithm, namely the Metropolis-Hasting and the
Gibbs sampling algorithms. They are respectively tailored to approximate distributions for which
no explicit form is known (Definition D.2.1) or streamline the optimisation of strongly dependent
parameters (Definition D.2.2).
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D.2.1 An Introduction to Gibbs and Metropolis Hasting Samplers

Definition D.2.1: Metropolis-Hasting algorithm

First of all, we introduce some key notations:

• Function f(θ|.) is the target distribution, usually the posterior distribution that
encompasses both prior knowledge and new data.

• The distribution q(θ|θ(q−1)) is the proposal distribution, alternatively known as the
transition kernel, and the transient value sampled from it, θ(∗), is the proposal
estimate.

• The probability of accepting the proposal is naturally called the acceptance probability.

Each iteration, indexed by (q), of the MH algorithm includes the following steps:

1. Draw a proposal, θ(∗), from conditional distribution q(θ|θ(q−1)).

2. Compute the acceptance probability parameter, noted α:

K(θ(∗)) = min
(

f(θ(∗)|.)
f(θ(q−1)|.)

q(θ|θ(q−1))
q(θ(q−1)|θ) , 1

)

Typically, choices of the acceptance probability and the kernel distribution are
tailored to satisfy the balance condition of the MCMC chains and ensure that the
chain behaviour reproduces the sampling pattern of the desired distribution.

3. The decision of whether to accept or reject the new state proposal is determined by the
previously computed acceptance probability parameter, denoted as α. This parameter
sets the threshold for accepting a value drawn from a standard Uniform distribution,
u ∼ U [0, 1]. This mathematical protocol is further described in Equation (D.10):

θ(q) =
{
θ(∗), u ≤ K(θ(∗))
θ(q−1), u > K(θ(∗))

(D.10)

In the first case, we say that the proposal is accepted, while in the second case, it is
rejected.

One of the major advantages of the Metropolis-Hastings (MH) algorithm lies in the design
of its acceptance probability function, denoted as K(θ(∗)). Indeed, by involving the
computation of a ratio between two density functions, the normalisation constant, which
represents the value of the marginal likelihood and is usually intractable to compute is
naturally cancelled out.

In our modelling framework, the acceptance function further simplifies with the choice of
proposing a new proposal by adding an error term following a null-centred, multivariate and
symmetric distribution (Property D.2.1):
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Property D.2.1: Random walk Metropolis-Hastings

Indeed, from the analytical properties of the kernel distribution (Equation (D.11) and
Equation (D.12)):

q(θ(∗)|θ(q−1)) = q(ϵ)
q(θ(q−1)|θ∗) = q(−ϵ)

(D.11)

q(ϵ) = q(−ϵ) (D.12)

,
the acceptance probability function simplifies to Equation (D.13) ([Tab21]):

K(θ(∗)) = min
(

f(θ(∗)|.)
f(θ(q−1)|.) , 1

)
(D.13)

Definition D.2.2: Gibbs sampling

The fundamental concept behind Gibbs sampling is to break down the joint posterior
distribution of the parameters, into a product of conditional distributions of the parameters.
To that end, it is generally assumed that there exists a natural partition of the hidden
parameters allowing them to factorise in a meaningful way.

It is usually implemented when the joint conditional posterior distribution is intractable to
compute, whereas the conditional distribution for a subset of the parameters, conditioned
on all others, is rather straightforward to derive. This is especially the case when the set
of hidden parameters is linked to each other, and that numerous numerical constraints
linking them must be endorsed.

Using our notations, the following joint posterior distribution f(p,X|D), with D denoting
the observed data, here y is analytically complex to derive, while f(p|X,D) and f(X|p,D),
the posterior cellular ratios and purified individual cell expression profiles, respectively,
can be simply computed. In practice, like any MCMC framework, you start to initiate the
values for all the parameters. Then, the iterated Gibbs process samples each parameter
(or subset of parameters), one at a time, and updates its value conditioned on the other
parameters at their current values. It can be proven that after a sufficient number of
iterations, the corresponding Markov chain of parameters converges and approximates
well the desired joint distribution.

D.2.2 Pseudo-code Gibbs sampler
We detail in Algorithm 0 a potential pseudo-code to generate MCMC chains of the joint distribution
of the parameters of interest, in which variable q denotes the running index, B the number of
burn-in iterations to be discarded after sampling, and Q the actual length of the resulting Markov
chain.
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Algorithme 0 : Pseudo-code of the iterated optimisation method, to
retrieve the parameters of DeCovarT’s generative model.

Input :
• Prior estimates of the mean,

[
µji ∈ RG

]
, j ∈ {1, . . . , J} and covariance,

[Σji ∈MRG×G ] , j ∈ {1, . . . , J} of each cell population.

• Initial estimates of cellular ratios, p0i, and purified cell expression profiles,
X0i, for each individual. They should align with both the fundamental
linear deconvolution assumption (Equation (C.1), and the unit-simplex
constraint (Equation (C.2)).

• Standard deviation, σ0(ρ) and σ0(X) of the additional residual term added to
each cellular ratio and each individual cell profile of the transition kernel,
respectively. [SK19], [And+18], [VK21] and [Mar+20] suggests tuning these
hyper-parameters such that the acceptance rates in the long term are
bounded between 0.234 and 0.574.

1 for q ← 1 to (B +Q) do
2 for i = 1 : N do
3 ϵi(ρ) ∼ NJ−1(0, σ2

0(ρ) IJ−1)
4 ρ

(∗)
i = ρ

(q−1)
i + ϵi(ρ)

5 for j = 1 : (J − 1) do
6 u ∼ U(0, 1)
7 if u < min

(
1,Kρ

(
ρ

(q−1)
j → ρ

(∗)
j

))
then

8 ρ
(q)
ji ← ρ

(∗)
ji

9 else
10 ρ

(q)
ji ← ρ

(q−1)
ji

11 end
12 p

(q)
i = ψ(ρ(q)

i ) (i)
13 MCMC.pi ← p

(q)
i

14 end
15 for j = 1 : (J − 1) do
16 εji(X) ∼ NG(0, σ2

0(X) IG)
17 x

(∗)
ji = x

(q−1)
ji + εji(X)

18 u ∼ U(0, 1)
19 if u < min

(
1,Kx

(
x

(q−1)
ji → x

(∗)
ji

))
then

20 x
(q)
ji ← x

(∗)
ji

21 else
22 x

(q)
ji ← x

(q−1)
ji

23 end
24 end

25 x
(q)
Ji ←

yi−
∑J−1

j=1
x

(q)
ji

p
(q)
ji

p
(q)
Ji

(ii)

26 MCMC.Xi ←X
(q)
i

27 end
28 end
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We implemented two reparametrisations at each global iteration (outer loop) to ensure that
the kernel distribution generates proposals that fall within the “support” of the target distribution,
and notably the adhesion to the fundamental linear deconvolution relation (Equation (C.1)) and
the unit-simplex constraint over the cellular ratios (Equation (C.2)):

1. First, the mapping function, described in (i) and in eq. (D.5), enforces that the estimated
cellular ratios adhere to the unit-simplex constraint (Equation (C.2)).

2. Second, the fundamental linearity of deconvolution, Equation (C.1), is endorsed by the
update formula (ii). Formula Equation (C.1) implies that the last J cellular expression
profile, x.j is not a free parameter, and can be rewritten as a combination of the others,
given by Equation (D.14):

yi =
J−1∑

j=1
p

(q)
ji x

(q)
ji + p

(q)
Ji x

(q)
Ji =

J∑

j=1
p

(q−1)
ji x

(q−1)
ji

⇐⇒

x
(q)
Ji =

yi −
∑J−1

j=1 x
(q)
ji p

(q)
ji

p
(q)
Ji

(D.14)

D.2.3 Derivation of the Acceptance Probability Function
By utilising a Random Walk MH approach, additionally cancelling out the normalisation constant
(Equation (D.13)), the acceptance probability function to compute is simply the product of the
prior distributions and the likelihood of the observed data, f(θ)× f(D|θ).

To simplify further this product of distributions, we preliminary suppose that the density
distribution characterising the priors is improper, in other words, that f(θ) is always equal to
1 on Θ. As we provide a closed form of the log-likelihood of our generative model (eq. (D.1)),
and not the likelihood, we need to apply an exponential transformation to recover the desired
acceptance probability (Equation (D.15)):

K(θ(∗)) = min
(

1, exp
(
ℓ(θ(∗)|.)− ℓ(θ(q−1)|.)

))
(D.15)

with:

• θ(∗), the current proposal (either p(∗) or X(∗))

• ℓ(θ(∗)|.) = log
(
f(Y |θ(∗), ζ)

)
, the log-likelihood of the currently observed data, conditioned

on the current values of the latent parameters to estimate and the user-defined parameters
ζ, given in our generative model by Equation (D.1).

• ζ = (µ,Σ), µ = (µ.j)
j∈J̃
∈ MG×J , Σ =

∑J
j=1 p

2
jΣj ∈ MG×G denote the parameters

provided by the user before conducting the study.



AppendixE
Article 5: Gene clustering applied to
primary Sjögren’s disease

In this appendix, we present a comprehensive transcriptome clustering method aimed at
expanding upon and elucidating the patient clustering outlined in Chapter 4 (see also [Sor+21])
by adopting a holistic paradigm. Actually, the Gaussian mixture-based clustering approach we
employed in Chapter 4 assumes that each covariate input, such as gene expression, is independent
to each other. In addition, the high dimensionality of the dataset used for clustering Sjögren’s
patients prevents from uncovering the key drivers contributing to the biological heterogeneity
observed among patients.

Hence, the primary rationale driving the unsupervised inference of gene modules is to under-
stand the variety of molecular profiles observed across patients afflicted by the Sjögren’s syndrome,
by explicitly integrating gene co-expression structures. Indeed, studying the biological mechanisms
at the gene pathway, or module, level, reduces by several factors the dimensionality and the
complexity of the data space studied. It thus enables better understanding of highly-connected
biological mechanisms, and the exploratory capability of downstream analyses.

To summarise the major output of the paper, we identified 13 Consensus gene Modules
(CMs) that contribute the most to the variability of the transcriptome across pSD patients. We
retrieved them using unsupervised clustering methods on four different transcriptomic datasets,
all processes from blood samples. Then, gene set enrichment analyses were used to annotate
each module based on its connection with cell populations or biological function. Finally, flow
cytometry data and cytokine measurements were used to validate the biological annotations
inferred from pathway enrichment analysis. Figure E.1 details the major steps of the clustering
pipeline, as well as the major biological results.

In details, the four datasets originate from both private sources, all composing the NECESSITY
consortium meta-analysis (ASSESS [Got+13], PRECISEADS [Bar+18], and UKPSSR [Ng+11])
and publicly available repositories (GSE84844 [Tas+17]).To reduce partly the intrinsic high
dimensionality of transcriptomic data 1, often prone to high confusing technical noise, we tailored
a dedicated analysis workflow, summarised in Figure E.1(a).

1With 20 000 identified genes coding for proteins, the number of pairwise interactions reaches the staggering
number of 4 × 108 correlation coefficients.
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Initially, each cohort’s gene expression matrix was transformed into an affinity matrix rep-
resenting the gene co-expression network. Each pairwise Pearson correlation coefficient was
mapped to a non-linear but monotonic custom affinity function. This transformation provides
similar benefits to the sigmoid function by effectively reducing low and insignificant correlation
coefficients towards zero, as reported in [Wan+14]. Subsequently, an additional filtration step
allows for further refinement of the constructed network, retaining only the most significant
pairwise interactions between co-expressed genes, thereby generating a sparse weighted graph.
Secondly, we used the Similarity Network Fusion (SNF) algorithm ([Wan+14] and Figure E.1(b))
to integrate multiple affinity matrices, in order to optimise shared correlation patterns across the
four distinct cohorts of pSD patients.

Finally, we applied Louvain clustering [Blo+08] to this sparse, consensus graph and identified
13 CMs. In brief, Louvain’s method is one of the graph clustering algorithms that focuses on
maximising the modularity of the network. This metric, bounded between -1 and 1, aims at
computing the averaged density of edges within clusters with respect to the interaction density
between communities, a graph composed only of cliques unconnected to each other displaying
a score of 1. However, Louvain’s paper implements two innovative features: an approximate
heuristic algorithm, briefly described in Figure E.1(c) to increase the scalability of the method to
larger datasets (it has even been applied to social network, with tens of millions of user nodes) and
an internal hierarchical approach, enabling to adjust the level of granularity to user requirements.

We found that these CMs were highly consistent and correlated across cohorts. We found out
that CM1 was correlated with type 1 interferon signalling, CM7 corroborates cell cycle-related
genes and out of the 11 remaining, 9 modules were significantly enriched in pathways involved in
lymphoid and myeloid development and signalling.

We also looked into the therapeutic effect of a drug combination of hydroxychloroquine and
leflunomide on the blood transcriptome of pSD patients and revealed that the expression of
some modules was significantly linked to treatment outcome, suggesting these modules could be
leveraged as predictive biomarkers.

While the development of the primary components of the pipeline and the biological inter-
pretation of the results were primarily conducted by another member of my research team, my
contributions to this paper encompass the following tasks:

• I largely contributed with my industrial research team to the release of a consensual pipeline,
dedicated to the pre-processing, normalisation and downstream analysis of transcriptomic
datasets (see Appendix A).

• While various clustering methods were assessed for identifying closely related transcript
networks, the Gaussian mixture approach exhibited significantly lower performance compared
to the Louvain’s method. This could be attributed to certain assumptions associated with
standard GMM not being met, such as the requirement for the number of observations
(genes) to significantly exceed the number of variables (biological samples).
Parsimonious parametrisations or projections to sub-dimensional space, as detailed in
Appendix B combined with careful optimisation of the hyper-parameters (number of
components, initial estimates, . . . ), may improve the performance of the clustering.
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Abstract Primary Sjögren disease (pSD) is an autoimmune disease characterized by lym-
phoid infiltration of exocrine glands leading to dryness of the mucosal surfaces and by the30

production of autoantibodies. The pathophysiology of pSD remains elusive and no treatment
with demonstrated efficacy is available yet. To better understand the biology underlying
pSD heterogeneity, we aimed at identifying Consensus gene Modules (CMs) that summa-
rize the high-dimensional transcriptomic data of whole blood samples in pSD patients. We
performed unsupervised gene classification on four data sets and identified thirteen CMs.35

We annotated and interpreted each of these CMs as corresponding to cell type abundances
or biological functions by using gene set enrichment analyses and transcriptomic profiles
of sorted blood cell subsets. Correlation with independently measured cell type abundances
by flow cytometry confirmed these annotations. We used these CMs to reconcile previ-
ously proposed patient stratifications of pSD. Importantly, we showed that the expression40

of modules representing lymphocytes and erythrocytes before treatment initiation is associ-
ated with response to hydroxychloroquine and leflunomide combination therapy in a clinical
trial. These consensus modules will help the identification and translation of blood-based
predictive biomarkers for the treatment of pSD.

Keywords Precision Medicine, Sjögren Disease, Unsupervised learning, Integrated analy-45

sis.

Introduction

Primary Sjögren Disease (pSD) is a chronic, disabling inflammatory autoimmune disease charac-
terized by lymphoid infiltration of exocrine glands leading to dryness of the mucosal surfaces, such as
the mouth and eyes and by the production of specific auto-antibodies[1–3]. Long-term complications50

include ocular and dental diseases, systemic involvement, organ damages and increased risk of lym-
phoma with excess mortality[4, 5]. This pathology is affecting between 0.05% and 0.4% of the adult
population[6–9] and is the second most common systemic autoimmune disease[10]. It affects women
more often than men (9:1) and the peak frequency of the disease is around fifty years of age[11].
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The advent of new technologies has provided a path towards the development of classification55

criteria for autoimmune diseases that are based on molecular patterns representing disease mechanisms
and molecular pathways[12, 13]. By applying computational methodologies to clinical and multi-
omic datasets, several pSD disease taxonomies have recently been proposed. Indeed, Tarn et al.
proposed a symptom-based stratification of patients with pSD[14], while Soret et al.[15] and Trutschel
et al.[16] proposed a molecular classification of pSD based on whole blood transcriptomic profiles of60

pSD patients. These classifications may provide useful clinical insights on disease subtypes of pSD
patients but remain limited in the characterization of the biology underlying the disease in each
patient subgroup. Indeed, pathogenesis of autoimmunity involves dysfunction of the entire immune
system, and many cellular or functional components, including neutrophils, dendritic cells (DCs),
macrophages, T and B cells, cytokine signaling pathways or autoantibodies[17, 18].65

The clinical manifestations and biological disturbances associated with pSD are indeed highly het-
erogeneous among individuals which complicates its diagnosis. Mechanistically, the pathophysiology
of pSD remains elusive[19]. No targeted therapy is therefore currently approved and only symptomatic
treatments are offered[20, 21]. Precision Medicine approaches designed to better address the needs of
patients based on the specific biological mechanisms underlying their symptoms would greatly improve70

the management of patients suffering from pSD.

The IMI 2 NECESSITY European consortium was launched in 2019 to identify a new composite
clinical endpoint, biomarkers for stratifying patients and predictive biomarkers of treatment response
for pSD, and test them in a prospective clinical trial. To achieve these goals, members of the NECES-
SITY consortium share clinically-annotated datasets, including whole blood transcriptomic datasets75

of pSD patients. These transcriptomes allow the identification of biological heterogeneity across pSD
patients and its potential link with response to treatments, but were produced using diverse transcrip-
tomic technologies, making their combined analysis challenging.

In order to jointly analyze independent whole blood transcriptomic datasets of pSD patients, we
used a graph theoretical approach to unify four correlation networks into a consensus graph linking80

positively correlated genes. By clustering this unified representation of multiple cohorts, we identi-
fied 13 consensus transcriptomic gene modules that summarize the pathophysiology of pSD at the
blood level. We annotated each of these modules for correspondence with cell types or molecular
pathways, and validated these biological interpretation with matching flow cytometry data or cy-
tokine measurements whenever available. We used these modules to better characterize and reconcile85

previously-published pSD patient stratifications[15, 16]. Importantly, we investigated clinical trial
data to decipher the impacts of treatments on the peripheral blood of patients and propose a model
predictive of the response to leflunomide-hydroxychloroquine combination therapy.

Results

Identification of thirteen consensus gene modules (CMs) from whole blood90

transcriptomes of pSD patients

We analyzed four whole blood transcriptomic datasets from pSD patients. Three were provided by
the NECESSITY consortium: ASSESS[22] (n = 371), PreciseSADS[12] (n = 341) and UKPSSR[23]
(n = 144). We also included the publicly-available GSE84844[24] dataset (n = 30). Our goal was to
identify consistent signals across these four sources, and in particular consensus gene modules (CMs)95

of coexpressed genes. Transcriptomic data sets are however high dimensional which can hamper
the correct identification of gene modules. Indeed, spurious correlations may appear due to the size
and noisiness of the data: 20,000 protein coding genes indeed correspond to 400 × 106 correlation
coefficients. To ensure that the CMs we identify were reproducible across a large range of blood
transcriptomic data sets (from distinct pSD cohorts), we used a dedicated analysis workflow summa-100

rized in Figure 1A. We first converted each cohort’s gene expression matrix to an affinity matrix
(gene co-expression network). This affinity is non-linearly and monotonically linked to the observed
correlation between two genes and shrinks low correlation coefficients towards 0 (See Methods and
Wang et al.[25]). We applied Similarity Network Fusion (SNF)[25], a computational method designed
for the merging of multiple affinity matrices, generating a consensual representation of genes’ pairwise105
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similarities in the blood of pSD patients across these four independent cohorts (Figure 1B). We
pruned the consensual affinity matrix to obtain a sparse weighted graph with edges corresponding to
highly co-expressed genes (Supplementary Figure 1). Finally, Louvain clustering[26] of the sparse
graph (see Methods) identified 13 CMs (Supplementary Table 1). We confirmed a posteriori that
these CMs are reproducible groups of highly co-expressed genes that are reproducible across the four110

datasets (Figure 1C).

Biological interpretation of the CMs

The 13 CMs represent the main axes of heterogeneity of the blood transcriptome across pSD
patients and can therefore facilitate the interpretation of high dimensional transcriptomic data by
summarizing it using 13 dimensions. In order to biologically interpret these 13 axes of variation,115

we annotated each of them as corresponding to cell types or biological functions by using gene set
enrichment analyses using gene sets from the Gene Ontology[27] and Altman et al.[28] databases
(Figure 2A, 2B), as well as their average expression in transcriptomic profiles of sorted blood cell
subsets[29] (Figure 2C).

CM1 was enriched in Interferon related as well as response to viruses pathways, and we inter-120

preted it as representing type 1 IFN signaling. CM7 was enriched in cell cycle-related genes, and we
interpreted it as a transcriptomic signature of mitosis within blood cells.

Out of the 11 other modules, 9 represent different cell types. We found four modules corresponding
to lymphoid cells: CM4, CM5 and CM11 were respectively enriched in pathways associated with T
cells, NK cells and B cells functions (Figure 2A, 2B) and that were overexpressed in the transcrip-125

tome of the corresponding purified cell types (Figure 2C). CM8 was enriched in genes associated
with gene transcription and overexpressed across the transcriptomes of purified lymphocytes (T, B
and NK cells) and therefore represents a shared gene transcription signature across all lymphocytes
(Figure 2C). We found six modules (CM2, CM6, CM9, CM10, CM12, CM13) representing myeloid
cell subsets. CM2 was enriched in erythrocytes-annotated gene sets and CM10 in platelets-annotated130

gene sets. Module CM6 was overexpressed in the transcriptome of eosinophils. CM9 and CM13 were
enriched in inflammation and neutrophil-related gene sets and overexpressed in the transcriptome
of purified granulocytes and neutrophils. CM13 was in addition enriched in genes from the I-κB
kinase/NF-κB signaling pathway, an inflammatory transcription factor expressed by neutrophils[30].
Finally, CM12 was enriched in gene sets related to monocytes and overexpressed in the transcriptome135

of cells derived from monocytes.

Among the 13 CMs, CM3, which contains the highest number of genes (n=1247), was the least co-
expressed, had the lowest absolute expression levels (Supplementary Figure 2) module and showed
inconsistent characterization results (Figure 2A, 2B). We therefore did not take it into consideration
for further analysis. In summary, we interpreted CM1 as type 1 interferon (IFN) activation, CM2 as140

representing the frequency of erythrocytes within the blood, CM3 as residual variance, CM4, CM5,
CM6 as the frequencies of respectively T cells, NK cells and Eosinophils, CM7 as a signature of cell
proliferation, CM8, CM10, CM11 and CM12 as the frequencies of respectively lymphocytes, platelets,
B cells and monocytes, and CM9 and CM13 as representing neutrophils.

Validation of the biological interpretations of the CMs145

To confirm the biological interpretations of the CMs representing cell types, we compared their
average expressions (Material and Methods) to the corresponding cellular frequencies measured
by flow cytometry in matching samples whenever available (Figure 3A). For functional modules,
we compared them to previously-published gene signatures (Figure 3B) or cytokines concentrations
(Figure 3C).150

For all the cellular modules for which we had matching cytometry data, we observed a high and
significant correlation of the average module expression with the frequency among live single cells
measured by flow cytometry (Figure 3A). More precisely, we observed correlation coefficients of 0.71
between the CM4 module and the frequency of T cells, of 0.51 between the CM5 modules and NK cells,
of 0.39 between CM6 and eosinophils, 0.75 (respectively 0.64) between CM9 (respectively CM13) and155
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neutrophils, 0.84 between CM11 and B cells, 0.67 between CM12 and monocytes, and 0.62 between
CM8 and lymphocytes (all p-values < 2× 10−12).

For functional modules, we observed a strong correlation (Pearson’s r > 0.94) of the CM7 with
genes signatures corresponding to phases of the mitotic cycle identified with single cell RNA-sequencing
data[31]. The other functional module CM1 was highly correlated with the concentration of type 1160

IFN (measured by SIMOA) in the blood (r = 0.65, p = 3.3× 10−11) (Figure 3C). Collectively, these
analyses confirm the interpretation of the CMs derived from gene set enrichment analyses.

The consensus gene modules identify consistency and heterogeneity across pSD patient
stratifications

Three studies have proposed pSD patients stratifications according to molecular and clinical fea-165

tures of the disease[14–16]. Two methods were based on blood transcriptomic profiles of pSD patients
on two distinct cohorts[15, 16]. Both studies identified four clusters of patients hereafter referred to as
S1, S2, S3 and S4 (respectively T1, T2, T3 and T4) for the Soret (respectively Trutschel) classification.
These stratifications were established using unsupervised clustering methods. Algorithmic classifiers
to stratify new pSD cohorts according to these classification systems are however currently lacking,170

and no direct comparison has been performed so far.

Briefly, from Soret et al., cluster S1 exhibited high levels of interferon (IFN) activity and an
increased frequency of B lymphocytes in the blood. Cluster S2 showed a similar expression profile to
that of healthy volunteers. Cluster S3 displayed a high IFN signature, along with a more prominent
involvement of B cell components compared to other clusters, including an increased frequency of175

B cells in the blood. Lastly, cluster C4 was characterized by an inflammatory signature driven by
monocytes and neutrophils. Confirming the findings of et al.[15], our analysis confirmed the defining
characteristics of these patient clusters. We consistently observed an upregulation of the Interferon
module CM1 in S1 patients, the Neutrophils module CM9 in S4 patients, and the B cell module CM11
in S3 patients (Figure 4A). Our analysis further revealed that S3 is defined by a high abundance of180

lymphocytes (B, T, and NK cells represented by the CM11, CM4, and CM5 modules, respectively)
associated with cell proliferation (CM7). Cluster S4 is characterized by a high abundance of platelets
(CM10), erythrocytes (CM2), and neutrophils (CM9 and CM13). S1 is distinguished by high activation
of type 1 IFN (CM1), while S2, described as normal-like by Soret et al., has fewer monocytes (CM12)
and more T cells (CM4) compared to the cohort’s averages.185

In a separate study by Trutschel et al., four patient clusters were also identified. These clusters
were based on two modules: IFN-stimulated genes (ISGs) and the erythroid module (ERM). Cluster
T1 showed high expression of both these modules, while cluster T2 had low ISG expression but high
ERM expression. Cluster T3 had high ISG expression and low ERM expression, and cluster T4 had
low expression in both ISGs and ERM. We observed a high interferon signature (CM1) in clusters T1190

and T3, with cluster T1 exhibiting a higher platelet presence compared to cluster T3 (Figure 4B).
Cluster T2 had a lower abundance of monocytes (CM12), while cluster T4 had a high neutrophil
signature (CM13). Cluster T1 had a high presence of erythrocytes, cluster T3 had fewer eosinophils
(CM6), and clusters T3 and T4 had a higher abundance of lymphocytes (CM8).

To formally study the correspondence between the Soret and Trutschel classification systems,195

we computed Pearson correlation coefficients across centroids computed on mean-centered and unit
variance-scaled module expression scores. This comparison highlighted a very high concordance be-
tween cluster S2 and T2 (r = 0.9), good concordance between clusters S1 and T1 (r = 0.6), moderate
across clusters S3 and T3 (r = 0.4), and poor concordance across clusters S4 and T4 (r = 0) (Figure
4E). This analysis shows that there is a substantial overlap between the two classification systems,200

especially in the identification of T2 patients.

It therefore appears that cluster S1 of the Soret classification corresponds to cluster T1 of the
Trutschel classification, marked by high type 1 IFN signaling (CM1) (Figure 4C, 4D). Cluster
S3 matches cluster T3, as identified by high type 1 IFN signaling (CM1) in the context of a lower
abundance of platelets (CM10) and erythrocytes (CM2). Cluster S2 matches cluster T2, with the205

lowest type 1 IFN signature (CM1). Cluster S4 in resembles cluster T4, as both have the highest
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expression of the Neutrophil activation module (CM13), although other modules such as platelets
(CM10) and erythrocytes (CM2) had discordant expression levels across the two patient classification
systems. In general, there were no differences in the lymphoid modules (CM4, CM5 and CM11) across
Trutschel clusters.210

Tarn et al. propose a stratification model based on patient-reported symptoms and identified four
clusters of patients: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant
with fatigue (DDF), and pain dominant with fatigue (PDF). We were unable to see any significant
difference in the level of expression of any CM across the four subgroups of patients (Supplemen-
tary Figure 3). Consistently, we observed -in the PreciseSADS and ASSESS cohorts- weak cor-215

relations of the CMs expression scores with the ESSDAI[32] and ESSPRI[33] disease activity scores
(Supplementary Figure 4). We however noted that unlike other components of the ESSDAI and
ESSPRI disease activity scores, the presence of autoantibodies (anti-SSA, anti-SSB, PFLC, IgG) was
positively-associated with the CM1 module representing type 1 IFN (Supplementary Figure 5).
These observations suggest that among pSD clinical manifestations, the presence of autoantibodies is220

the most associated with a specific blood transcriptomic profile.

CM8 and CM2 are associated with response to hydroxychloroquine and leflunomide
combination

Many clinical trials for Sjögren’s patients have shown poor results especially for response to treat-
ment[34–37] but, negative clinical trials can still provide valuable information about the efficacy of225

a particular treatment and can help guide future research. However, positive trials provide a unique
opportunity to compare responder and non-responder patients’ characteristics. Within the IMI2 NE-
CESSITY, data from both positive and negative clinical trials are available for exploratory retrospec-
tive analyses. RepurpSS-1[38] is a placebo-controlled, double-blinded, phase 2A randomized clinical
trial that evaluated the combination therapy of hydroxychloroquine and leflunomide and is one of the230

first positive clinical trials in pSD.

Firstly, we validated the co-expression of the genes within each CM on this cohort independent of
those used for the identification of the modules, highlighting the reproducibility and generalizability
of the CMs to independent pSD blood transcriptomic datasets (Supplementary Figure 7).

Secondly, we looked at the evolution of the expression of each module between treatment initiation235

and completion. We observed that lefluonomide-hydroychloroquine combination led to a decrease in
the expression of CMs representing T cells, platelets and B cells, and an increase expression of the
CMs representing monocytes and neutrophils, thus suggesting that this treatment combination favored
the number of myeloid immune cells over lymphoid immune cells in the blood (Figure 5A). While
treatments received by patients before blood transcriptomic profiling were more heterogeneous in the240

PreciseSADS cohort, we consistently observed an influence of the type of treatment received on the
expression level of the CMs (Supplementary Figure 6).

Finally, we examined whether the heterogeneity of the patients encompassed in the modules could
help identify responders in the RepurpSS-1 trial before treatment initiation. To do so, we focused
on the recently developed STAR clinical endpoint[39]. The CM8 Lymphoid Lineage module was245

significantly overexpressed in responders before treatment initiation (q = 0.013) (Figure 5B, 5C,
Supplementary Figure 8). Conversely, a trend for higher expression in non-responders of the
CM2 module representing erythrocytes was also found (q = 0.055). By combining CM2 and CM8,
we were able to perfectly separate responders and non-responders in this clinical trial (Figure 5D).
These analyses suggest that these cell populations could represent biomarkers predictive of therapeutic250

efficacy of this treatment combination.

Discussion

Primary Sjögren’s disease (pSD) is a debilitating and clinically heterogeneous disease with no well-
established causal mechanism, nor approved targeted therapy. There is therefore an urgent need to
identify biomarkers able to inform treatment selection as well as to stratify patients in clinical trials255

in the context of personalized medicine. High throughput transcriptomic profiling is an appealing
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technology for biomarker discovery as it allows the interrogation of tens of thousands of genes for
differential expression across groups of patients, such as responders and non-responders to a drug in
a clinical trial. The interpretation of transcriptomic profiles is however difficult, as groups of differen-
tially expressed genes may represent dysregulation of functional pathways or changes in the cellular260

composition of samples, or both. In addition, the very high dimensionality of whole transcriptome
assays makes difficult distinguishing true and replicable biological signal from noise.

To overcome these difficulties in the interpretation of the transcriptome in the context of pSD,
we jointly analyzed four independent transcriptomic datasets profiling whole blood samples from pSD
patients. We used clustering methods to identify the main axes of variation across these four datasets.265

As clustering algorithms are sensitive to noise, we implemented a method to perform a gene clustering
analysis on a joint representation of the pairwise gene correlations matrix across the four datasets,
rather than on each dataset separately. To do so, we recast the four observed matrices of pairwise gene
correlations as graphs and used the SNF[25] algorithm to obtain a consensus graph representation
of the gene correlation network across the four cohorts, on which we applied the Louvain graph270

clustering algorithm. We importantly showed that the gene modules we identified are reproducible
across the four cohorts on which they were discovered (Figure 1C) as well as on an independent
cohort (Supplementary Figure 7). These modules therefore represent the main biological features
contained in the transcriptomic profile of the whole blood in pSD patients, therefore facilitating its
interpretation for translational research.275

In order to make the CMs more biological meaningful, we interpreted them using distinct public
databases of pathways and blood cells transcriptomes[29]. This allowed us to identify both functional
modules (interferon signaling or cell proliferation) or modules reflecting the cellular composition of
the patients’ blood. Importantly, we observed highly significant correlations between the expression
of the gene modules and corresponding cellular frequencies or cytokine levels, thus validating these280

computationally derived biological interpretations. In the recent years, so called transcriptomic de-
convolution methods have been proposed in order to infer cellular proportions from transcriptomic
measurements[40]. Most of these methods rely on a reference averaged transcriptomic profiles of cell
types, usually derived from purified cells from the blood of healthy donors and use genes that are
discriminative across cell populations in a given context, such as cancer[29]. In contrast, our approach285

is driven by the observed variations in the blood of pSD patients across multiple cohorts, ensuring that
the gene signatures of the identified cell types are valid in this context. In addition, this data driven
approach allowed us to define gene modules indicative of rare cell populations such as eosinophils or
signatures of non-immune cell types such as erythrocytes or platelets which are not typically quantified
by deconvolution algorithms[41]. Moreover, we found functional modules (CM1 type 1 IFN and CM7290

Cell Cycle) that do not correspond to variations in the frequencies of blood cell types. The consensus
gene modules described herein therefore could help understanding the complex pathophysiology of
pSD as they represent biologically meaningful, reproducible, and sensitive sources of heterogeneity in
the blood transcriptome of pSD patients.

The gene modules that we identified can serve as a building block for translational research in pSD,295

by providing a concise list of potential biomarkers provided by whole blood transcriptomic profiling.
Multiple independent studies have recently focused on the stratification of the disease into discrete
patient subgroups, based on whole blood transcriptomic profiles[15, 16] or clinical characteristics[14].
These classifications systems may become relevant in future clinical trials, as new treatments may
benefit only to a restricted subset of patients. Our approach complements these classifications by300

highlighting the functional and cellular composition differences across patient subgroups, as well as
highlighting the consensus and differences across classification systems. Our analyses notably suggest
that the patient subgroups in published transcriptomic-based patient stratification systems can be dis-
tinguished based on the measurement of three variables: the frequency of neutrophils in the peripheral
blood, the concentration of type 1 IFN, as well as the frequency of either erythrocytes or platelets305

within the blood (Figure 4C, 4D). These observed differences across patient subgroups may provide
clinically actionable biomarkers for disease stratification in settings where whole blood transcriptomic
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profiling is impractical. Indeed, these key features of pSD drive disease heterogeneity and altogether
may be useful predictors of response.

Some medications are designed to target specific genes or proteins, altering their activities and310

ultimately leading to changes in cellular behavior. Understanding the complex relationship between
medications and gene expression is an important area of research that includes Drug Repurposing
computational activities and may eventually lead to the definition of more effective treatment strate-
gies for a wide range of diseases and conditions. Our analyses showed that the CMs can be used to
understand the effect of drugs on the composition and functional orientation of the peripheral blood315

(Figure 5, Supplementary Figure 7). We also confirmed, in two independent cohorts, the corre-
lation between the presence of anti-SSA and anti-SSB autoantibodies and the level of type 1 IFN in
the peripheral blood. The pathogenic role of the IFN pathway has been extensively described: type
I IFN signature is correlated with the development of systemic extra-glandular manifestations, and
a substantial production of autoantibodies and inflammatory cytokines[42]. Moreover, in the context320

of systemic autoimmune manifestations, pSD patients may present with hematologic abnormalities
including anaemia, leukopenia (mainly neutropenia or lymphopenia), and thrombocytopenia[43, 44].
These three components are indeed evaluated in the haematological domain of the ESSDAI scale. As
these patient characteristics are recapitulated by our CMs, whole blood transcriptomic profiling thus
appears informative in the context of pSD translational research.325

The CMs we identified indeed provide a succinct list of candidate blood-based biomarkers that
recapitulate whole transcriptome profiles in a biologically interpretable manner. These modules can
therefore be examined in exploratory and clinical research for their potential association with the
response to a treatment or to study drug mechanism of action. We exemplified this idea by retrospec-
tively analyzing data from the RepurpSS-1 phase IIa clinical trial[38] which evaluated a combination330

of leflunomide and hydroxychloroquine for the treatment of pSD. Longitudinal whole blood tran-
scriptomic profiling allowed us to show that this combination led to a decreased expression of CMs
corresponding to T cells, platelets and B cells, and an increase in modules representing monocytes
and neutrophils. Our results therefore show that this combination of treatments influence the cellular
composition of the peripheral blood in pSD patients.335

Importantly, we investigated the relationship between each CM expression levels before treatment
initiation and the observed clinical response upon completion of the clinical trial. Our results show
that responders to this treatment combination featured higher expression of the module representing
lymphocytes and a trend for lower expression of the module representing erythrocytes. These observa-
tions are consistent with the mechanism of action of leflunomide, an immunomodulatory drug known340

to inhibit de novo synthesis of pyrimidine, preventing lymphocytes from expanding in inflammatory
context[45]. While the mechanism of hydroxychloroquine is less clear considering its initial use as
an antimalarial drug, this molecule has widely been used in rheumatic autoimmune diseases such as
systemic lupus erythematosus[46]. Studies have shown that hydroxychloroquine can contribute to
regulate inflammation by blocking Toll-like receptors (TLR) leading to type I IFN pathway inhibi-345

tion[47]. Hydroxychloroquine has also demonstrated inhibitory effect on platelet activation[48], in
accordance with modulations seen on CM relating to platelets in the RepurpSS-1 clinical trial. Our
results suggest that clinical efficacy for this treatment combination may be restricted to patients with
high lymphoid frequency and low erythrocytes frequency, thus providing new hypotheses guiding the
treatment strategy of pSD patients and the design of future clinical trials.350

Our work is therefore expected to facilitate translational and clinical research on primary Sjögren’s
disease by presenting a set of reproducible and annotated gene modules that capture the major vari-
ations in the blood transcriptome of patients, which will open up the path for identifying biomarkers
in clinical trials for this disease that is still poorly managed.

Acknowledgements355

Funding: This project has received funding from the Innovative Medicines Initiative 2 Joint Under-
taking (JU) under grant agreement number 806975. JU receives support from the European Union’s

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.05.23292036doi: medRxiv preprint 



Horizon 2020 research and innovation program and EFPIA. The present article reflects only the au-
thors’ view and JU is not responsible for any use that may be made of the information it contains.

The UKPSSR is established with the funding provided by the Medical Research Council (G0800629),360

with additional infrastructural support from the British Sjogren’s syndrome association, NIHR New-
castle Clinical Research Facility and the NIHR Newcastle Biomedical Research Centre.

Author contributions

Conceptualization: C.B., M.G., E.Be, E.Bi, L.L.

Methodology: C.B., M.G., E.Be, E.Bi, A.H., B.C.365

Validation: D.T, P.S, E.D.

Formal analysis: C.B, A.H, B.C., A.B, E.Be

Writing – Original Draft: C.B., E.Be, E.Bi, L.L.

Writing – Review and Editing: P.S., D.T., A.H., B.C, C.L., A.A., S.H., P.M., E.D, A.B, M.A.R,
W.F.N, J.R, J-E.G., B.S., X.M, M.G.370

Resources: J-E.G, M.E.A.R, W.F.N, J.R.

Supervision: M.G., E.Be, E.Bi, L.L.

We, the authors of this manuscript, confirm that we have collectively agreed to submit this work
for publication. We have read and approved the final draft and take full responsibility for its content,
including the accuracy of the data presented. We have also ensured that the statistical analysis, where375

applicable, was conducted appropriately and accurately. As authors, we are committed to upholding
the highest standards of scientific integrity and ethical conduct, and we affirm that this work represents
our best efforts to contribute to the advancement of knowledge in our field.

Declaration of Interests

While engaged in the research project, C.B., B.C. and E.D. were phD students financed by Institut380

de Recherches Internationales Servier when they contributed to the research project. P.S., A.B., A.A.,
P.M., M.G., L.L., C.L., S.H., and E.Be were employees Institut de Recherches Internationales Servier
when they contributed to the research project. W.F.N. has provided consultation for Novartis, Glaxo-
SmithKline, Abbvie, BMS, Sanofi, MedImmune, Argenx, Janssen, Resolves Therapeutics, Astella and
UCB.385

Figures

Figure 1 A) Schematic summary of the work. pSD = primary Sjögren Disease B) Heatmap of
the consensus pairwise gene affinity computed by Similarity Network Fusion (SNF). Side annotations
represent gene modules.C) Heatmaps of Pearson’s correlation matrices of the four input datasets, with
genes grouped by their consensus gene modules.390

Figure 2 A) For each module, the two most significantly-enriched pathways in the Chaussabel
database[28]. B) Most significantly-enriched pathways in the GO database[27] C) Average expression
of modules in transcriptomes of purified cells

Figure 3 A) Significant Pearson’s correlations between the average expression of the CMs and cell
types abundances measured by flow cytometry. Scatter plots of average CMs expression and matching395

cellular frequencies. B) Scatter plots illustrating the average expression of CM7 versus averages of cell
cycle signatures C) Scatter plot of the average expression of CM1 type 1 IFN and dosage of type 1
IFN

Figure 4 CMs scores across patient subgroups of A) the Soret classification B) the Trutschel
classification. Average expression of the CM1 type 1 IFN, CM2 Erythrocytes, CM10 Platelets and400

CM13 Neutrophils.2 CMs in the C) Soret classification and D) Trutschel classification. E) Correlation
across cluster centroids of the two stratification systems.
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Figure 5 A) Boxplots illustrating the evolution of the modules significantly differentially-expressed
at baseline (BL) versus Week 24 for treated patients B) Heatmap of baseline average gene expression
of the CMs. Patients are split by their responder status according to the STAR clinical endpoint.405

Right side annotations indicate FDR corrected p-value (qvalue) C) Avegage expression of CM8 and
CM2 at baseline in responders versus non-responders D) Dotplot of average expression of the CM8
and CM2 modules, colored by response statuses.

Material and Methods

Data collection410

Gene expression and associated clinical and biological data was obtained through tranSMART, the
NECESSITY consortium data sharing platform for the ASSESS (Assessment of Systemic complications
and Evolution in Sjögren’s Syndrome) cohort[22], PRECISESADS[12] and UKPSSR[23] cohort. Data
from the fourth cohort was downloaded from the Gene Expression Omnibus repository, under the
accession number GSE84844[24].415

Transcriptomic data pre-processing

The UKPSSR RNA-seq count data was transformed as in[14]. RNA-seq data from the PreciseSADS
cohort was normalized as in Soret et al.[15]. The ASSESS Affymetrix Clariom S microarray data were
normalized as in[16].

The GSE84844 Affymetrix Human Genome U133 Plus 2.0 Array data was pre-treated by filter-420

ing out probesets indistinguishable from background noise. For that purpose, we modeled probe-
sets expression after applying a log2(x + 1) transformation by a two component Gaussian mixture
model[dempster˙maximum˙1977] with the first peak corresponding to unexpressed genes, and the
second peak to expressed genes. We retrieved the parameters of the mixture distribution using the
function normalmixEM from the mixtools R package. The 0.95th quantile of the first component425

of the distribution was used as a threshold. Probesets whose expression were below that thresh-
old in more than 95% of the samples were removed. Finally, the fRMA function from the fRMA R
Package[McCall˙Bolstad˙Irizarry˙1970] was used to normalize probesets intensities across samples.

Finally, to have comparable data sets, the intersection of the 80% most varying common genes
across all the data sets was selected (5443 genes).430

Integrated affinity network

The construction of the integrated network involves two steps: First, gene affinity (affi) is com-
puted independently on each data set as follow : for each pair of genes (x, y), we consider the affinity
between x and y as affi(x,y) = exp((1 − cor(x, y))/σ) where cor is the Pearson correlation coef-
ficient and σ = 3, as suggested by Wang et al.[25]. The four networks are then merged into an435

integrated affinity network by using the Similarity Network Fusion (SNF) method[25], with 30 neigh-
bours per gene and 20 iterations. The SNF algorithm produces a weighted fully connected graph
with 50002 = 2.5 × 106 edges. Visual inspection of the distribution of the weights showed that their
distribution was bimodal, with a largely preponderant low weight peak [Supplementary Figure 1].
To convert the fully connetected output of the SNF algorithm to a sparse graph, we removed edges440

below the 0.9775th quantile of the weights distribution (Supplementary Figure 1).

Consensus modules identification

Consensus gene modules were identified by applying the Louvain clustering algorithm[26] on the
fused and truncated graph of pairwise gene affinities. This method is based on a modularity optimiza-
tion algorithm that aims to partition genes into communities with high within-group affinity and low445

between-group affinity. The modularity score of a community structure is calculated as the difference
between the weighted proportion of intra-community edges and the expected weighted proportion of
such edges if the edges were randomly distributed.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.05.23292036doi: medRxiv preprint 



Gene modules summarization

We used the mean expression the genes contained in a module to represent that module’s expression450

as performed in Becht et al[29].

Gene set enrichment analysis

Enrichment analysis is performed by applying a Fisher-exact tests on the human blood-derived
transcriptomic modules of Altman et al.[28] as well as the Gene Ontology database[27]. P-values
were corrected using the Benjamini-Hochberg procedure to select pathways by controlling the false455

discovery rate at a 0.05 level.

Mapping with purified and sorted immune cells

To identify modules representing the abundances of blood cell types, we used the GSE86362
dataset[29], which consists of 1936 gene expression profiles from immune cell populations, non-immune
non-malignant cell populations and non-hematopoietic cancer cell lines. For consistency with our460

sample types, we only retained samples corresponding to blood cell populations (n = 1095).

Correlation between CMs and cell type abundances measured by Flow Cytometry

On the PreciseSADS cohort, proportions of relevant cell types using flow cytometry custom marker
panels were analyzed for samples where matched transcriptomic profiles and cytometry data were
available. Correlations were performed between summarized CM expression levels and log-frequencies465

of the corresponding cell populations among live single cells, as previously described[29]. We corrected
the p-values by Benjamini-Hochberg (BH) procedure by controlling the False Discovery Rate (FDR)
at a 0.05 level.

Correlation between CMs and cytokines

On the PreciseSADS cohort, relevant cytokines were measured as in[12]. A log transformation was470

applied on the concentrations. Finally, we computed correlations tests between the average expression
of the CMs and the cytokines levels we corrected the p-value by controlling the FDR at a 0.05 level
(BH procedure).

Application to clinical trial

RepurpSS-1 (registered under trial number EudraCT, 2014–003140–12) was a phase II a placebo-475

controlled clinical trial testing a combination of Leflunomide and Hydroxychloroquine[38]. Gene ex-
pression and associated biological and clinical data for the RepurpSS-1 trial was obtained through the
NECESSITY consortium. Transcriptomes of samples with a RIN < 6 or DV200 > 70 were excluded,
resulting in the analysis of 16 patients. Pre-treatment and post-treatment (at week 24) CM expression
levels were compared using paired t-tests with Benjamini-Hochberg correction. Responder status was480

determined based on the STAR clinical composite endpoint[39]. Patients with a STAR score of 5
or above were classified as responders. Difference in CM expression levels between responders and
non-responders were assessed using univariate t-tests with BH FDR correction.

Supplementary materials

Table 1. List of genes (SYMBOL) in each Concensus Modules (CMs)485

Supplementary Fig1. Histogram showing the distribution of weights in the SNF matrix. The x-axis
denotes the weight range (logged) and the y-axis represents the frequency of weights. A vertical red line
indicates the discretization threshold corresponding to the 0.975th quantile (for better visualization).

Supplementary Fig2. A)Average correlation of the 4 input datasets B) Average of average corre-
lation matrices C) Average gene expression levels for each CM in cohorts profiled by RNA-sequencing490

Supplementary Fig3. CMs scores across patient subgroups of the Tarn classification in UKPSSR
cohort

Supplementary Fig4. Pearson’s correlation between average CMs expression and ESSDAI and
ESSPRI scores in A) PRECISESADS and B) ASSESS cohorts
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Supplementary Fig5. Pearson’s correlation between average CMs expression and autoantibodies495

levels in A) PRECISESADS and B) ASSESS cohorts

Supplementary Fig6. A)T-test between average CMs expression and treatment. q = corrected p-
value B)CMs expression scores across patients stratified by treatments received. AM = Antimalarials,
STD = Steroids, IS = Immunosupressors C)Significant diffrences observed in treated versus untreated
patients.500

Supplementary Fig7. Correlation matrix in REPURPSS-1 cohort, sorted by CMs.

Supplementary Fig9. Boxplots of average expression of the CMs at baseline versus after treatment
splitting patients by treatment and placebo.

Supplementary Fig8. Boxplots of average expression of the CMs versus response status.
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1. Mariette, X. & Criswell, L. A. Primary Sjögren’s Syndrome. New England Journal of Medicine
378 (ed Solomon, C. G.) 931–939 (Mar. 2018).
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Fig. 1. A) Schematic summary of the work. pSD = primary Sjögren Disease B) Heatmap of the consensus
pairwise gene affinity computed by Similarity Network Fusion (SNF). Side annotations represent gene modules.
C) Heatmaps of Pearson’s correlation matrices of the four input datasets, with genes grouped by their consensus
gene modules.
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Fig. 2. A) For each module, the two most significantly-enriched pathways in the Chaussabel database[?]. B)
Most significantly-enriched pathways in the GO database[?] C) Average expression of modules in transcriptomes
of purified cells
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Fig. 3. A) Significant Pearson’s correlations between the average expression of the CMs and cell types abun-
dances measured by flow cytometry. Scatter plots of average CMs expression and matching cellular frequencies.
B) Scatter plots illustrating the average expression of CM7 versus averages of cell cycle signatures C) Scatter
plot of the average expression of CM1 IFN-α and dosage of IFN-α
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Fig. 4. CMs scores across patient subgroups of A) the Soret classification B) the Trutschel classification and
ANOVA tests for each clusters. Average expression of the CM1 IFN-α, CM2 Erythrocytes, CM10 Platelets and
CM13 Neutrophils.2 CMs in the C) Soret classification and D) Trutschel classification. E) Correlation across
cluster centroids of the two stratification systems.
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Fig. 5. A) Boxplots illustrating the evolution of the modules significantly differentially-expressed at baseline
(BL) versus Week 24 for treated patients B) Heatmap of average gene expression of the CMs. Patients are split
by their responder status according to the STAR clinical endpoint C) Avegage expression of CM8 and CM2 at
baseline in responders versus non-responders D) Dotplot of average expression of the CM8 and CM2 modules,
colored by response statuses.
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APPENDIX E. Article 5: Gene clustering applied to primary Sjögren’s disease 312

(a) Schematic representation of the pipeline used in this paper, in which step i) encompasses all the
construction steps to retrieve a fused transcriptomic network, step ii) covers the network and clustering
operations to return consensual modules across all studied datasets and iii) includes all the post statistical
and biological experiences to assert the soundness and relevance of the inferred gene clusters.

(b) SNF ([Wan+14]) is a cross-diffusion process
that outputs enhanced metrics by averaging in
an integrated manner multiple similarity measures.
Briefly, it consists first of computing similarity matri-
ces for each dataset, discarding remote nodes. Then,
iterative steps of matrix projection on the same
graph space and a final averaged operation results
in a fused global network that concatenates relevant
neighbourhood information across all datasets.

(c) A schematic visualisation of Louvain’s algorithm
[Blo+08] each pass (alternatively epoch) is made
of two phases: a local optimisation phase, where
modularity is increased only by local changes of
community assignment followed by an aggregation
phase, where sub-communities are merged in order
to build a global network of clusters. The passes
are repeated iteratively until the total modularity
score no longer increases.

Figure E.1: Infographic of Chapter 5, about a practical use case of high dimensional
clustering
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E.1 Conclusion
In summary, this study revealed that 13 gene modules, inferred in an unsupervised framework from
a collection of 4196 genes, were enough to apprehend most of the heterogeneity characterising the
blood transcriptome across pSD patients. We were additionally able to annotate these modules
with either a cell type signature, or metabolic function.

Overall, we demonstrated with this analysis that adopting a holistic paradigm for the study of
the transcriptome, enables enhanced understanding of the pathophysiology of pSD, and notably
the intertwined mechanisms involved in the evolution of this complex disease. Furthermore, this
approach, by projecting noisy and high-dimensional data into meaningful functional gene groups,
not only increases the robustness and reproducibility of our predictive models, but also improves
their interpretability by medical experts. We indeed demonstrate with real-world experiences
that these modules could be used as accurate biomarkers to predict the response to a treatment.

E.2 Perspectives
One of the major challenges we encountered when applying unsupervised and interconnected
clustering methods in this study was determining the optimal threshold for removing spurious
edges from the graph representing pairwise transcript interactions. In this work, we selected this
threshold arbitrarily by visually inspecting the modes of the associated distribution of correlation
weights. However, it’s important to note that this threshold can vary between datasets, as it is
heavily influenced by the sequencing technology and normalization procedures employed.

Truncated parametric mixture models, which naturally adhere to the inherent constraints of
correlation coefficients (bounded between -1 and 1) or non-parametric, agnostic methods (see
details in Section 3.3) could alleviate this issue in a robust and reproducible setting. Indeed, such
approaches are able to automatically determine the threshold and adjust to the nature and shape
of transcriptomic datasets, reducing the need for manual intervention.

We also found out that one of the modules, with the largest number of genes (n = 1247) and the
lowest average expression value, exhibited inconsistent biological characterization. Accordingly, we
did not consider it for downstream analyses, hypothesising that it was a residual, spurious nuisance
cluster. This phenomenon is common in studies involving the clustering of gene expression profiles,
as documented in several previous works ([Slo+13], [LdCL09],[ZA18], [AH05], [IBB04]).

The existence of this residual cluster can be attributed to a combination of factors, both
intrinsic and extrinsic. Intrinsic factors stem from biological variability, arising from the stochastic
nature of gene expression regulation ([IBB04]). Extrinsic factors, on the other hand, result from
technical issues, such as errors during data collection and laboratory contaminations ([LdCL09]).
Additionally, the high dimensionality of the datasets under analysis and the potential overlap
with other clusters further mitigate the signal of interest ([GKT05]).

Hence, it may be advantageous to explore alternative approaches with noisy datasets exhibiting
strong technical batch effect. Low-dimensional representations of transcriptomic data, such as
Independent Component Analysis (ICA) ([ZA18]), or dedicated clustering methods to account
for noise ([AH05]), could potentially yield more robust transcriptomic modules, by uncovering
latent and irrelevant factors contributing to transcriptomic variability.

Ultimately, we underscore that the validation of the biological utility of the identified modules,
as markers of the prognosis of pSD evolution, necessitates further clinical validation and in vitro
experimentation.



AppendixF
Article 6: Network-based repurposing
applied to COVID-19

The main part of this appendix chapter focuses on paper [Des+21], in which we developed a
new industrial, computational repurposing approach named Patrimony and applied it to identify
candidate therapeutic drugs that could help control the progression of severe inflammation during
COVID-19. I summarised the key concepts related in the following graphical infographic, in
Figure F.1.

Indeed, the COVID-19 pandemic, caused by SARS-CoV-2 strain virus, leads to millions of
hospitalization in intensive care, with an estimated requirement of ICU transfer ranging from 5%
to 32% with respect to the country, 768 560 000 confirmed cases worldwide and 6 951 000 deaths,
according to the most updated statistics provided by the world health organisation by July 2023
[Aba+20]. And at the time we published the paper, no current approved FDA medication nor
vaccine were widely available, while there were strong concerns about the effectiveness of vaccines
against emerging new variants of the virus.

Practically, we focused on repurposing therapeutic drugs addressing severe lung inflammation
caused by COVID19 pathophysiology.

To identify driver proteins and transcriptomic pathways involved in the severe cases of COVID-
19, we have collected in a first time various public gene expression data from both SARS-CoV-2
infected and control pulmonary cells 1 and then identified proteins significantly related with early
lung inflammation and the severity of cytokine storm events [MM20]. After a comprehensive
pre-processing step, which included removing outliers and discarding genes with low expression,
we ran standard Differential Gene Expression Analysis (DGEA), comparing the COVID-19
patients.

The identification of new drug targets itself was performed through two complementary drug
repurposing strategies:

• In the network-based approach to drug repurposing, we capitalise on the existing integrated
network of PPI of [CKB19], compiling 15 894 distinct proteins with up to 213 861 significant

1We leveraged two distinct cell lines: bronchial epithelial (NHBE, [Bla+20]) and human lung epithelial cancer
(Calu-3, [Ack+20]) cells
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(a) The tree step progression describing the pathophysiology of COVID-19 in the airways, inspired
from [Sum+21, Fig. 1].

(b) Patrimony general framework.First, data sources are integrated into a knowledge graph, then refined with
omics sources specific to each disease. Finally, mining algorithms are used to extract putative, biologically-relevant
targets. Reproduced from [Gue+22, Fig.1].

(c) Main steps of the computational Patrimony platform. Once data sources are curated, they are merged
together to build the Patrimony “knowledge graph”, encompassing biomolecular, pharmacological, disease, and
clinical datasets. Once key driver genes or clusters of highly-interconnected entities have been identified, they
are ranked according to a global score aggregating five meaningful criteria, including druggability and safety.
Reproduced from [Gue+22, Fig.2 and Fig.3].

Figure F.1: Infographic of Appendix C, describing our internal repositioning platform “Patrimony”.
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pairwise interactions, all derived from a compendium of 15 distinct protein databases. We
then fused this integrated network with two drug target databases: the Therapeutic Target
Database (TTD, [CJC02]) and Drugbank [Wis+08], gathering 3092 drugs. The network
proximity between disease-related proteins and drug targets within the PPI network was
used as proxy of the relevance of drugs to the disease. Measure similarity was estimated
through two complementary metrics: a topological distance and a diffusion-based distance,
the first one returning the averaged shortest path length between the disease-related proteins
and the drug targets and the second quantifying the similarity of the perturbations induced
on disease-related proteins by biological mechanisms dysregulated by the COVID-19 on one
side and drug targets on the other. The second metric is largely inspired from the Diffusion
State Distance (DSD, [Cao+13]), a proven metric [Cao+13, Lemma 1] that leverages
asymptotic random walk transition probabilities to estimate the distance between two nodes
2. Then, for each metric used, bootstrap distributions for nodes having the same degree in
the graph were computed to derive p-values, then combined using the Fisher’s probability
test and finally the drugs were ranked by decreasing order of aggregated p-value.

• To strengthen the connectivity findings, we then take profit of the Connectivity Map (CMap,
[Lam+06]), perturbagen database, which aggregates more than 3000 compounds known
as distributing the transcriptomic expression. We then compute CMap scores (compiling
different comparison methods, we determine that Pearson correlation was the most robust
and reproducible one for our experiment) reflecting the potential therapeutic effect of each
of the listed perturbagen. Indeed, the core idea underlying the use of connectivity maps is
to extract a set of perturbagens displaying a reversed gene expression profile, a negative
correlation metric being an indicator of a reversed profile and accordingly a suggested
therapeutic indication of the perturbagen.

F.1 Drug repurposing: a brief historical overview
Overview: Drug Development Process Drug development is an essential process for
the discovery and availability of life-saving and life-improving medications. However, from
the identification of potential biological markers to post-marketing surveillance, it is also a
complex and challenging journey with numerous obstacles and failures. Throughout this process,
pharmaceutical companies face various setback, with many drug candidates failing at different
stages due to issues with efficacy, safety, or lack of sufficient clinical evidence. In addition, the
experimental, human and computational burden deter numerous small companies into developing
their own molecules, instead relying on the resiliency of bigger pharmaceutical groups.

While the ancestry of each successfully developed drug is quite unique, most of them follow
generally the following storyline development (Figure F.2(a)):

1. The first phase is Discovery and Target Identification, where researchers identify potential
drug targets (e.g., proteins, enzymes, receptors) that are involved in a disease process,
leveraging high-throughput screening, omics combined with prior knowledge or literature
review techniques to identify ligands interacting with these targets. The next stage consists
of selecting the most promising drug candidates, termed “lead compounds” that interact
with the target, displaying both strong molecular activity and specificity towards the target.
Numerous steps make up the early drug discovery, that for obvious reasons of brevity, we

2This metric has some interesting asymptotic properties, notably proof of asymptotic convergence [Cao+13,
Lemma 2] and even derived explicit form in the limit [Cao+13, Claims 2 and 3].
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can not detail in this section. We hence recommend the interest reader the reading of
[Hug+11], which encompasses the description of the key preclinical stages, ranging from
initial target identification and validation, through assay development, high throughput
screening, hit identification, lead optimisation up to the final selection of a reduced subset
of candidate molecule for clinical development.

2. Before testing on humans, the selected lead compounds undergo extensive preclinical testing,
which involves in-vivo testing on animals, in-vitro testing on cell lines and recently in-silico
simulations, with the development of “twin models” expected to reproduce the complexity
of the highly connected biological mechanisms, with extensive safety assessments to evaluate
the drug’s efficacy, toxicity, and pharmacokinetics.

3. Following the Investigational New Drug Application to the regulatory authorities (e.g.,
FDA in the US), ascertaining the validity of the preclinical testing and outlining the human
clinical trials, there is the most critical phase of drug development, since it involves human
patients and enables the final commercialisation of the drug. This step generally decomposes
in three stages:

• Phase 1: Small-scale trials on healthy volunteers to assess safety, dosage, and side
effects.

• Phase 2: Trials on a larger group of patients with the target disease to evaluate
efficacy and safety further, in some cases further splinted into a step a) to evaluate the
pharmacokinetics and a phase b) to evaluate the pharmacodynamics.

• Phase 3: Large-scale trials involve a much bigger human cohort, to confirm efficacy
and safety and monitor on the other hand any rare side effects.

4. If the results from Phase 3 trials are favourable, a New Drug Application is submitted to
the regulatory agency for approval to market the drug, which, after conclusively stating the
drug’s benefits outweigh the risks for its intended use, approve the drug for marketing and
use by the public.

5. The process does not stop once the drug enters the market, indeed, its safety and efficacy
are continuously monitored through post-marketing surveillance, notably to detect any
adverse reactions or long-term effects. This phase has gained recently increasing interest,
related to horrendous clinical scandals, as well as the enumeration of side effects may help
towards the development of repositioned drugs, with new indications, or suggest more
efficient combination of therapies as detailed in next Appendix F.1. The commercialisation,
the study of the side effects and the potential additional therapeutic use cases describe the
Life Cycle Management.

Even after successful completion of clinical trials and regulatory approval, drugs previously
approved might be ultimately withdrawn from the market, resulting from post-marketing surveil-
lance that detect unveiled drug’s toxicity or introduction of a new compound with undeniable
efficiency, one of the most controversial case hitting recently the headlines certainly being the
Mediator health scandal [21]. However, even failures help researchers and industrials into refining
their approaches, while potentially suggesting new therapeutic uses, within a drug repurposing
strategy (see Appendix F.1).
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Motivation for drug repurposing The main purpose of drug repurposing is to identify
existing drugs, generally clinically approved for a given medical use case, but displaying additional
therapeutic value for other diseases or conditions. Determining new biological applications of
existing drugs reveal paramount, since, despite increasing investments, the number of newly
released molecules keep on decreasing.

Thereby, by determining new drug use case, repositioning is expected to speed up the drug
development process, avoiding to reproduce the pharmacokinetics studies, and to reduce the
sky-rocketing costs of drug development, compared to design molecules from scratch. Finally,
and of utmost significance, the attrition rates are expected to significantly decrease, notably
when anterior early-stage trials were conducted and positively evaluated the risk of safety failure.
[Nos16] has estimated that the average cost of introducing a repurposed drug to the market
is approximately 300 million dollars, against on average around 2− 3 billion dollars for a new
molecule. In addition, the development process to release a new drug on the market has been
estimated to 15 years while promising candidates undermined within the exploratory phase
undergo a strikingly drop-out rate of 90% reaching Phase II clinical trials, mostly due to safety
worries or inadequate effectiveness. This pattern of decreased R&D efficiency, gauged by the count
of new drugs delivered to patients for each dollar expended and which decreased by half every 10
years since 1950, is commonly known as Eroom’s Law, or the “valley of death”, illustrated by the
attrition funnel diagram in Figure F.2(a). This trend contrasts with the familiar Moore’s Law
that describes the exponential growth in computational power per unit of surface on a microchip
over time.

Notably, such approaches are particularly relevant to provide novel treatment options for
orphan diseases, rare affections with still unmet medical needs, or in case of emergency, such as
outbreaks like the COVID-19, for which the standard drug development process storyline is not
adjusted Appendix F.1.

Historically, many drug discoveries were accidental. For example, sildenafil citrate was
originally developed as an antihypertensive drug, but then successfully repurposed to treat erectile
dysfunction [YCh], an opportunistic process commonly known as serendipity. Yet, the recent fast
accumulation of organised biomedical and omics datasets, coupled with innovative computational
methods, have promoted the development of “data-driven” approaches. By analysing and
integrating various types of data (e.g., chemical structure, omics, electronic health records, . . . ),
such approaches have identified numerous candidate drugs and targets in an agnostic manner,
uncovering unforeseen and unexpected connections between diseases and therapeutic compounds
(see [Pus+19, Table 1 and Box 1], for a comprehensive review of repurposed drug success stories).

Data-driven repurposing strategies Notably, data-driven approaches are classically sepa-
rated between experimental and purely computational, data-driven strategies, the latter being
subdivided into the following categories:

• Signature matching is the process of comparing the unique characteristics, such as tran-
scriptomic, structural, or adverse effect profiles, all combined composing the so-called drug
or disease “signature”, with those of another drug or disease phenotype. Transcriptomic
signature can be used to unravel novel drug-disease and drug-drug associations, aiming to
identify shared mechanisms of action between dissimilar drugs, alternative drug targets
and/or potential off-target side effects. The underlying approach of this computational
method relies on the signature reversion principle, where it is assumed that a drug displaying
a reverse transcriptomic profile can counterbalance the dysregulated expression patterns
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making up the hallmark for a given disease phenotype. In other terms, we hypothesise
that an opposite drug signature should shift back the abnormal profile towards a healthy
state (see Figure F.2(b), blue section). Chemical signature matching involves comparing
the chemical composition of drugs with molecular patterns or sequences known for their
biological activity. These approaches rely heavily on publicly accessible gene expression
data, the largest and most famous one being certainly the Connectivity Map (CMap)
project [Lam+06], [Lam07], and are largely inspired from previously developed “pathway
enrichment analysis” methods [ZR23] [Sub+05] and [Lam+03]. We give a brief overview of
the actual method used to compute enrichment scores (ES) in Definition C.2.1, and discuss
briefly of its limitations in Appendix C.2.3.

• Biomolecular or pathway network-based approaches involve studying the impact of drug or
disease on omics networks, based on gene expression patterns, protein interactions or Genome
wide association study (GWAS). The main purpose is to identify key gene drivers, through
genetic variant information combined with tissue-specific interaction networks, that could
either mitigate downstream the dysregulation pattern induced by disease-related mechanistic
disorders, or used upstream as a biomarker indicator of the efficiency of a treatment. For
instance, the perturbation analysis of gene expression data induced by respiratory viruses led
in study [Smi+12] to unravelling 67 common biological pathways associated with respiratory
viral infections, which were ultimately checked against the DrugBank database to identify
drugs targeting host-viral interactions (see details in Figure F.2(b), red section).

• Clinical and side-effects databases, either retrospective or undergoing, such as electronic
health records (EHRs), post-marketing surveillance data and publicly available clinical trial
data, has led to numerous drug repurposing successes, since the phenotypic effect observed
is straightforward compared to the previously described methods. However, a systematic
approach for analysing clinical data may provide additional drug repurposing opportunities,
by not only considering explicit repurposing strategies, but also eliciting intricate similarity
drug patterns by considering as well adverse effects 3. Among them, EHRs offer the most
comprehensive source of information to identify drug-disease or drug-drug associations,
however, leveraging these resources reveal a highly challenging task, including ethical and
legal obstacles related to personal health records and painstaking extraction of highly
unstructured information. New natural language processing (NLP) combined with efficient
computational power and alleviated open access from companies and governments to these
health records could nonetheless keep pace of drug repurposing based on clinical trial and
pharmacovigilance studies ([Pai+15] and Figure F.2(b), green section).

• Molecular docking predicts binding compatibility between a ligand (e.g., a drug) and a
target receptor (e.g., a protein, see Section 2.1.3 for ligand and receptor definition). This
technique can thus be used to identify potential drug-receptor interactions but further
development of the tool is hindered by missing 3D structures for certain proteins [Hua+18],
inconsistent target databases, and limited prediction ability, notably in detecting emergent
entropic forces occurring at the total molecular system [PST17].

• The number of Genome-wide association studies highly increased in the recent years, with a
common goal of identifying genetic variants linked to specific disease traits. Interestingly, it
turns out that the genes highlighted by GWAS studies, are more likely to code for “druggable”
proteins, and thereby, supply potential targets for drug development. Furthermore, the

3This principle of matching drugs based on indirectly shared side-effects, or diseases by similar drugs, is known
as “guilt-by” association, see [Pai+15] and Figure F.2(b), green section, for practical examples
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continuous discovery of new gene variants and functions contributes to a enhanced and
dynamic understanding of the biological mechanisms, concurring altogether to maintain the
homoeostasis of the human genome [San+12]. However, setting apart gene variants that
have a causal effect on disease phenotypes from spurious relations is a highly intractable
task, especially in gene-rich loci displaying strong linkage disequilibrium [WZ13].

• Finally, large-scale in vitro drug screens paired with genomic data (pharmacogenomic
interactions), EHR-linked large biobanks and self-reported patient data, are promising
avenues and databases sources for drug repurposing. For instance, human cancer cell
lines (CCLs, [HV16]) have been used to test the impact of hundreds of compounds on
cell viability and thereby identify molecular characteristics of the cells related to drug
response. Recent studies showed thus recently that CCL datasets were able to clinically
replicate pharmacogenomic interactions of primary tumours, and among newly discovered
interactions relating drugs to tumoral cell lines survival, many involved drugs already used
against distinct types of cancer. Specifically, this higher resolution up to the genomic and
cell type level can contribute to personalised cancer therapy, by targeting groups of patients
displaying specifically identified genomic variants associated with stronger drug response
[Ior+16].

In addition to these data-driven approaches, machine learning methods promote the devel-
opment of high-throughput experimental techniques, including phenotypic screening, in which
the idea is to rapidly test a vast amount of putative compounds and subset those with a specific
phenotype [Ilj+09], and binding assays, to identify novel target interactions from known drugs,
using proteomic methods such as affinity chromatography or mass spectrometry [Als+16]. It is
important to acknowledge that all these methods, compiled in Figure F.2(c), are now increasingly
utilised in synergy as they are complementary.

However, a bunch of barriers related specifically with drug repurposing, including patent
licenses, regulatory considerations and pharmaceutical organisational hurdles, hinder further
development of computational or experimental repositioning. Legally approved drug patents are
required to obtain the market exclusivity for drugs and thus ensure the economic sustainability
of its commercialisation. However, repurposed drugs pose specific challenges: indeed, to register
a new drug therapeutic indication (termed new method-of-use, MOU), you must enforce that
the new repurposed use is innovative enough, leading thereby to early removal of promising
candidates, since their extensive use was already described in the scientific literature.

Repurposed drugs with an orphan indication display a stronger potency of patent, since the
EU approves 10 years of market exclusivity. However, in other disease cases, data exclusivity
does not generally hold for other indications relying only on variations to existing marketing
authorisations, while in the US, a new use of a previously marketed drug receives only 3 years of
data exclusivity, a period usually not sufficient to recover the investment costs. Finally, off-label
use of generic repurposed drugs does not always promote their commercial value, consider for
instance a drug originally developed to cure for cancers, repurposed to cure common diseases
[Mur+14].

The heterogeneity and the scattering of the available data across several companies and coun-
tries, on par with the requirement of innovative machine learning and network-based methods,
promote stronger collaboration between small Biotech firms, academic communities and big phar-
maceutical companies. For instance, initiatives like the AstraZeneca Open Innovation Platform
or the Pfizer’s Centers for Therapeutic Innovation [AT04b] endorse external collaborations, yet,
challenging data management arise when the repurposed indication falls outside the company’s
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disease area, the development of the compound has been long stopped or no cured repository of
the known side effects or parmacokinetics of a drug exist.

F.2 Introduction to the Patrimony initiative
To handle the ingestion of the ever-increasing data generated from genetics, multi-omics, molecular
interactions or real-life evidence sources, pharmaceutical industries are increasingly developing
dedicated computational environments, with the final purpose to identify both disease targets
and promising drugs, in other words, to facilitate decision-making in drug development based
on agnostic and data-driven approaches. Computing platform encompasses hardware, software
and user interface components, while integrating diverse biomedical databases. While existing
public or public-private initiatives, like Open Targets [Kos+17] (reach an extensive description
of consortium projects in [Gue+22, Supplementary. Table 2]), were already implemented, and
after an extensive benchmark on external solutions and examination of projects from numerous
start-ups, my former manager decided to implement a corporate computational solution, offering
reactivity, flexibility, better integration of internal data sources and relapsing legacy concerns.
To that end, the Computational biology team, whom I am an active member, contributed to
the implementation of the high-throughput computing platform “Patrimony”, so called since
we capitalise on both proprietary and public data to foster innovation and decrease the strong
attrition rates in drug development 4.

The development of this computational platform involves first identifying and curating relevant
data sources, both in-house and public, to integrate them into an uniformed knowledge graph.
Then, machine-learning algorithms combined with graph theory were developed to mine the
network. Finally, we adjust the platform by supplementing it with application-specific add-ins,
tailored to the disease of interest, including immuno-inflammatory, oncological or even neurological
disorders. This whole process is summarised in Figure F.1(c), ranging from data acquisition to
experimental validation, through hypothesis generation and target prioritisation.

The proprietary knowledge graph underlies the core of Patrimony, by displaying in a compact
and interpretable structure a wide set of entities and their relationships. To explore the resulting
complex network, we applied different techniques from the graph theory and statistical field,
which enable to identify hubs (key driver genes displaying a high degree) and clusters (highly
interconnected cliques of vertices) within the graph or measure using an integrative and connected
approach the impact of a drug or a disease on the biological pathways, benefiting from various
diffusion and propagation algorithms 5. Furthermore, a distance value alone is not meaningful, as
highly dependent on the level of graph sparsity, hence, we derive an ad-hoc p-value to evaluate
statistically the dissimilarity observed between two conditions, generating empirical distribution
from bootstrapping nodes defined by the same degree in the graph. In addition, we enrich
each node or interaction with attributes derived from ontology databases, while we make the
tool versatile to each disease case by complementing each node with statistics resulting from
multi-omics analyses (e.g. differential expression) and gene–gene co-expression values to weight

4Servier has not released any new drug on the market, nor receive additional NDA (New Drug Application) for
15 years, and its sale margins are comparable to those of generic drug company, which, by definition, only rely on
existing drugs [16].

5One of the main challenge in developing a relevant similarity metric is underscored by the hub protein bias
[Fis+21], occurring when key driver proteins display a high degree = high level of pairwise connections in the
network, while strong sparsity is generally required to generate discriminatory metrics. Contrary to common
beliefs, it was discovered that the distribution of the degree of vertices, i.e., the number of connections per gene or
protein, did not follow a scale-free hypothesis, in other words, that the number of highly-connected genes was not
significantly smaller than the number of weakly-connected regions of the graph [BC19].
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pairwise interactions. Once a disease-specific knowledge graph has been established, therapeutic
targets to a given condition of interest are prioritised through a summarised criteria. This global
metric integrates five scores: Biological Relevance that quantifies the level of statistical evidence
supporting a gene or protein’s involvement in the disease pathophysiology, through for instance
similarity metrics; Causality, which is used to heuristically counterbalance the absence of direction
in our summarised graph, aiming notably at discriminating the cause and effect of a biological
response; Tractability, which evaluates the “druggability”; Safety, which considers the adverse
events associated with drugs known to bind to the target of interest and Innovativeness, which
assesses the novelty of the application and the marketing opportunity associated. These criteria
are then combined together in a global scoring system to rank the most promising therapeutic
targets, and returned through interactive, appealing and user-friendly target “ID cards” that
summarise the attributes assigned to it. After sub-setting the most promising biological targets,
the biologists within our team conducted a comprehensive literature review to confirm the
target’s involvement in disease pathways and its druggability. Wet-lab experimental validation is
then potentially performed to demonstrate the target’s pharmacological activity when still not
described in the literature.

The industrialised implementation of the Patrimony computing platform at the scale of
Servier involved three stages (Figure F.1(b)): a proof-of-concept, a structuration and ultimately
an industrialisation step for scalability. The Agile project management approach [SHZ15]
was used for a rapid implementation of the methods, combining Python and R languages to
implement the machine learning algorithms, Google Cloud Platform to host the network remotely,
BigQuery for scalability and Neo4J [LC15] to support graph visualisation. Still, generalisation
and adjustment of the method was particularly challenging, with the integration of large-scale,
scattered and multidimensional data, subjected to access restrictions and regulations, especially
regarding patient-level clinical information, keeping in mind the FAIR (findability, accessibility,
interoperability and reusability) principles [Wil+16] to ensure the robustness and consistency of
the integrated datasets.

It rapidly turned out that implementing the Patrimony initiative in an “old-fashioned” and
highly compartmentalised pharmaceutical industry was a tedious task: the process required
transversality between multidisciplinary and numerous teams with no universal terminology,
the consolidation step, to validate the scientific rationale of predicted targets, demands ex-
tensive human resources, with extensive literature search and experimental validation, finally,
biological interpretation of the model outputs was made challenging by the complexity and multi-
dimensionality of the integrated biomedical data sets. The performance of the method was partly
hampered as well by the lack of consistency across databases, and the existing gaps in medical
knowledge, for instance, the current Human Interactome [Men+15] covers only around 25% of all
molecular interactions described in the specialised literature. Experimentally, it appears that
protein expression was a more consistent and straightforward approach to understanding intricate
disease pathological mechanisms than gene expression alone. Another challenge in reconstructing
valuable knowledge graphs was raised by the lack of overlap between omics, and we experimentally
observed in our proof-of-concepts that the protein expression, measured through proteomics or flow
cytometry, provided more meaningful and faithful insights into disease pathological mechanisms
compared to transcriptomic expression alone, an empirical statement confirmed in [Mei+13].

Of note, I contribute to evaluate and complement the first two proofs of concept, respectively
on an immuno-inflammatory condition (Sjögren’s disease, see Chapter 4), and a viral pandemic
COVID-19-repurposing).



F.3. Repurposing applied to severe COVID-19 cases 323

F.3 Repurposing applied to severe COVID-19 cases



RESEARCH ARTICLE

Network-based repurposing identifies anti-

alarmins as drug candidates to control severe

lung inflammation in COVID-19

Emiko Desvaux1☯, Antoine Hamon2☯, Sandra Hubert1☯, Cheïma Boudjeniba1,

Bastien Chassagnol1, Jack Swindle2, Audrey AussyID
1, Laurence Laigle1,

Jessica Laplume1, Perrine Soret1, Pierre Jean-François1, Isabelle Dupin-Roger1,
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Abstract

While establishing worldwide collective immunity with anti SARS-CoV-2 vaccines, COVID-

19 remains a major health issue with dramatic ensuing economic consequences. In the tran-

sition, repurposing existing drugs remains the fastest cost-effective approach to alleviate

the burden on health services, most particularly by reducing the incidence of the acute respi-

ratory distress syndrome associated with severe COVID-19. We undertook a computational

repurposing approach to identify candidate therapeutic drugs to control progression towards

severe airways inflammation during COVID-19. Molecular profiling data were obtained from

public sources regarding SARS-CoV-2 infected epithelial or endothelial cells, immune dys-

regulations associated with severe COVID-19 and lung inflammation induced by other respi-

ratory viruses. From these data, we generated a protein-protein interactome modeling the

evolution of lung inflammation during COVID-19 from inception to an established cytokine

release syndrome. This predictive model assembling severe COVID-19-related proteins

supports a role for known contributors to the cytokine storm such as IL1β, IL6, TNFα, JAK2,

but also less prominent actors such as IL17, IL23 and C5a. Importantly our analysis points

out to alarmins such as TSLP, IL33, members of the S100 family and their receptors (ST2,

RAGE) as targets of major therapeutic interest. By evaluating the network-based distances

between severe COVID-19-related proteins and known drug targets, network computing

identified drugs which could be repurposed to prevent or slow down progression towards

severe airways inflammation. This analysis confirmed the interest of dexamethasone, JAK2

inhibitors, estrogens and further identified various drugs either available or in development

interacting with the aforementioned targets. We most particularly recommend considering

various inhibitors of alarmins or their receptors, currently receiving little attention in this indi-

cation, as candidate treatments for severe COVID-19.
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Introduction

Since the emergence of the new strain of Coronavirus SARS-CoV-2 in December 2019, the

ongoing crisis associated with the COVID-19 disease has affected more than 170 million indi-

viduals worldwide, causing over 3.5 million deaths (World Health Organization Dashboard,

June 1st, 2021), mainly as the consequence of an Acute Respiratory Distress Syndrome

(ARDS). The pandemic is still progressing actively despite lockdown measures throughout the

world, with the recent emergence of highly transmissible viral strains [1]. To date, the only

proven medications for reducing either viral loads, hospitalization rates, invasive mechanical

ventilation or patient mortality include corticosteroids such as dexamethasone, the antiviral

remdesivir, the anti-IL6R tocilizumab as well as neutralizing monoclonal antibodies directed

to the spike protein of the virus [2–5]. Many additional drugs have been tested, including the

lopinavir antiviral, the anti-malarial hydroxychloroquine or IFNβ with as of today disappoint-

ing efficacy results [6].

Recently, several vaccines have been approved by regulatory authorities based on remark-

able efficacy results, with evidence that they can protect against infection by eliciting high titers

of neutralizing antibodies against the Spike protein of the SARS-CoV-2 virus [7]. Whereas

such vaccines will very positively transform the course and gravity of the COVID-19 pan-

demic, a recent concern is whether they will be fully effective against emerging new variants of

the virus bearing point mutations in the Spike protein [1]. Furthermore, the challenge of

manufacturing and administering billions of vaccine doses in order to establish a protective

herd immunity at a worldwide population level will not be met in a short time frame.

During the time needed to deploy preventive vaccines at such a scale, the repurposing of

existing drugs is a valid solution to better address severe forms of COVID-19 and alleviate the

burden on health services in a time and cost-effective manner. Previous repurposing strategies

have been undertaken in the context of a limited understanding of COVID-19 pathogenesis,

prompting to use related viruses such as SARS-CoV and MERS-CoV as proxies to model

SARS-CoV-2 infection [8–13]. Several network computing studies have been successful to pre-

dict drug disease associations for repurposing in COVID-19. Many of those initial approaches

were aiming to identify existing compounds to prevent viral infection by either targeting

mechanisms involving the viral receptor ACE2 (angiotensin converting enzyme 2), the

TMPRSS2 transmembrane protease serine 2, or clathrin-mediated endocytosis [14–16]. In the

present repurposing study, we rather focused on drugs predicted to interfere with pro-inflam-

matory mediators identified by modelling immune dysregulations caused in the airways by

SARS-CoV-2 infection.

Since a vast majority of patients infected with SARS-CoV-2 develop no or only mild symp-

toms, we reasoned that ideal candidate drugs to repurpose should rather inhibit severe airways

inflammation in the course of the disease. Lung inflammation is the main cause requiring hos-

pitalization in up to 20% of COVID-19 cases, with life threatening ARDS affecting 75% of

COVID-19 patients transferred to intensive care units [17]. In this subset of patients with

severe lung inflammation, persisting proinflammatory immune responses result in a cytokine

release syndrome (CRS) linked to the activation of myeloid cells secreting cytokines such as

IL1β, IL6 and TNFα [18–20].

Capitalizing on the most recent scientific insights on the pathophysiology of COVID-19,

we undertook computational network analyses to integrate a wide variety of data sources

encompassing extensive molecular profiling of SARS-CoV-2 infected epithelial or endothelial

cells, genetic susceptibilities and immune dysregulations linked to severe COVID-19 as well as

molecular mechanisms elicited during lung infection by other respiratory viruses. From this

approach, a short list of COVID-19 disease-related proteins considered as potential
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therapeutic targets was established and used to computationally assess a topological proximity

with drug targets within the comprehensive human protein-protein interactome [21, 22].

Herein, we report on the identification of candidate therapeutic targets, as well as drugs pre-

dicted to interact with some of those targets which could be repurposed to prevent or slow

down severe lung inflammation during COVID-19.

Materials and methods

Sources of data on COVID-19 pathophysiology

To identify proteins related to lung inflammation in COVID-19, we selected relevant catego-

ries of data from the scientific literature (detailed in S1 Table), such as genes differentially

expressed following SARS-CoV-2 infection of (i) primary normal human bronchial epithelial

cells (NHBE) or of the ACE2-expressing lung-epithelial Calu-3 cell line, (ii) endothelial cells or

cells recovered from bronchoalveolar lavages or lung biopsies of patients with severe COVID-

19 [23–25]. We also mined public data regarding immunological signatures obtained in the

blood or in tissues of patients, distinguishing those with mild COVID-19 from others rather

affected by severe forms of the disease [26–34]. We included as well information from previous

studies on lung inflammation caused by other respiratory viruses (including asthma exacerba-

tion), in light of an involvement of monocytes, macrophages, myeloid dendritic cells, innate

lymphoid cells in those conditions similarly to COVID-19 [18, 35–38].

Identification of disease-related proteins

COVID-19 disease-related proteins predicted to be involved in early lung inflammation and in

the transition to the cytokine storm were identified following data mining from scientific pub-

lications listed in S1 Table. To establish molecular pathways dysregulated during lung inflam-

mation due to COVID-19, we first used RNAseq data from NHBE (normal human bronchial

epithelial) and Calu-3 (human lung epithelial cancer) cells infected or not with SARS-CoV-2.

These data were pre-treated by removing outlier samples whose total sum of counts was below

5 000 000. In order to filter out genes undistinguishable from background noise, we modelled

gene expression after applying a log2(x + 1) transformation by a two component Gaussian

mixture model, with a first peak corresponding to unexpressed genes, and the second peak to

truly expressed genes. Numbers of genes pre and post-filtering were 17557 and 21797, respec-

tively. We retrieved the parameters of the mixture distribution using function normalmixEM

from mixtools package and determined that the 0.95 quantile for the noise distribution was

1.6. We subsequently removed all genes whose expression was below that threshold in more

than 95% of samples. We performed a differential analysis (COVID versus mock) in each cell

line using the limma R package and eBayes function (with mock group corresponding to

healthy & no treatment patients). Disease signatures were then extracted by considering differ-

entially expressed genes (DEG) as those with adjusted p-value below 0.05 with an absolute fold

change superior to 1.3 (commonly used as a threshold for biological significance). Canonical

pathway enrichment analyses were subsequently performed by using the Ingenuity Pathway

Analysis (IPA) software.

Network-based drug repurposing

Network-based drug repurposing relies on the hypothesis that the closer a target is to a group

of disease related genes in the PPI network, the higher the chance of having a significant

impact on the disease. Many approaches focus on the shortest path to determine proximity,

with some variations in order to avoid hub protein bias [15, 39]. The latter bias occurs from
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certain proteins that have an extremely high degree in the network and thereby cause a highly

dense graph. Other approaches take advantage of the diffusion process to define proximity

[40] while considering all the topological features of the graph. Diffusion based metrics have a

comparable advantage over shortest path distances when in highly dense graphs such as PPI

graphs [41]. Other metrics distinct from shortest path and diffusion can be used such as such

as largest connected component -based methods [42].

Our computational repurposing approach (Fig 1A) takes advantage of the proximity

between disease-related proteins and drug targets through an established network of protein-

protein interactions (PPIs, referred to as an interactome). Drug-target links were gathered

from the Therapeutic Target Database (TTD, version 7.1.01) and Drugbank [43, 44]. The PPIs

network was derived from previous work by Cheng et al [45]. It was built from 15 different

databases such as BioGRID and HPRD by compiling binary PPIs tested by high-throughput

yeast-two-hybrid (Y2H) systems, kinase-substrate interactions from literature-derived low-

throughput and high-throughput experiments, high-quality PPIs from three-dimensional

(3D) protein structures, and signaling networks from literature-derived low-throughput

experiments.

Relevance of drugs to the disease was assessed based on proximity of their targets to dis-

ease-related proteins according to two complementary metrics, namely a simple topological
distance and a more advanced diffusion-based distance.

The topological distance (dtopo) corresponds to the shortest path length in the PPIs network

between the disease-related proteins and the drug targets, computed according to the follow-

ing formula:

dtopo P;Tð Þ ¼
1

kTk

X

t2T

min
p2P

SP p; tð Þ

With P the set of nodes corresponding to the disease-related proteins, T the set of nodes

corresponding to the drug targets, and SP(p,t) the shortest path length between a node p of P
and another node t of T. When calculating a topological distance, we generate a distribution

from bootstrapping similar nodes defined by same degree in the graph. From the given distri-

bution, we calculate a z-score (and p-value).

The diffusion-based distance (ddiff) is computed based on the similarity of the impact on the

network of perturbations starting from disease-related proteins on one side and drug targets

on the other. The impact of a perturbation starting from a given node ni on the network is

assessed by use of a diffusion algorithm. Let (ni,nj) being a pair of nodes, then P ni; nj

� �
repre-

sents the random walk-based probability that a perturbation starting from ni reaches nj. It

allows us to define a numerical vector V (ni) representing the impact perturbation of ni on the

whole interactome:

V nið Þ ¼ P ni; n1ð Þ; P ni; n2ð Þ; . . . ; P ni; nnð Þ½ �

The similarity between two perturbations starting from ni and nj is then assessed by com-

puting the Manhattan distance between V (ni) and V (nj). In order to extend this principle to

the distance between sets of nodes, we derived the following formula:

ddiff P;Tð Þ ¼
1

kTk

X

t2T

min
p2P

MD p; tð Þ

With P the set of nodes corresponding to the disease-related proteins, T the set of nodes

corresponding to the drug targets, p one given node of P, t one given node of T, and MD (p,t)
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the Manhattan distance between V(p) and V(t). This diffusion-based distance was imple-

mented via the DSD algorithm [46]. For each diffusion-based distance, we also calculate asso-

ciated z-scores (and p-values). Note that DSD is by construction normally distributed. In

order to prioritize drugs from this network-based repurposing approach, we defined a network

rank resulting from the mean rank aggregation of dtopo and ddiff. Given that we have p-values

for both of our distance measures, we perform a Fisher’s combined probability test to obtain a

unique combined p-value per drug. Using the DSD algorithm, we generated a computed dis-

tance matrix of 15 894 X 15 894 encompassing all proteins in our interactome.

Cmap-based drug repurposing

We complemented the network-based approach by using Cmap as a supportive method (Fig

1B). Cmap identifies drugs inducing a reverse gene expression profile compared to the disease

state using a method of similarity [47]. The Cmap database comprises human cancer cell lines

either treated or not with chemical drugs, referred to as perturbagens. We used the R package

Fig 1. General principles of network and Cmap-based repurposing approaches. A) Network-based repurposing. Disease-related proteins and drug

targets are mapped into a network of protein-protein-interactions (PPI). Drugs are prioritized according to their distance to disease-related proteins. B)

Supportive Cmap-based repurposing. In those supportive analyses, disease-related as well as drug induced gene expression states are compared in order

to identify drugs eliciting reverse profiles compared to those found in the disease.

https://doi.org/10.1371/journal.pone.0254374.g001
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ccdata which encompasses expression profiles for 1309 perturbagens over 13832 genes. Disease

state was obtained from gene expression profiles induced in NHBE and Calu-3 cells following

infection by SARS-CoV-2. We compare expression profiles induced by disease state with those

induced by perturbagens, using mainly the Pearson correlation between transcriptome values

of the query signature and the perturbagen signature. A negative correlation score provides a

potential therapeutic indication of the perturbagen. Cmap scores (the smaller the better) were

first computed on both NHBE and Calu-3 data and then averaged.

Results and discussion

Identification of COVID-19 disease-related proteins

Based on recent scientific advances, the pathophysiology of COVID-19 can be summarized as

three sequential steps (Fig 2). We reasoned that treatments suitable to control severe COVID-

19 should interfere with molecular pathways involved in the evolution from mild to severe

Fig 2. Three step progression towards severe COVID-19. The pathophysiology of COVID-19 in the airways encompasses schematically three

successive steps, including (i) Disease onset following viral infection of alveolar epithelial or endothelial cells expressing the ACE2 receptor (left panel)

leading to the activation of the innate immune system, with IFNα production by plasmacytoid dendritic cells (pDC). (ii) An early inflammatory phase

within lung tissues where a cross-talk between infected epithelial/endothelial cells and innate immune cells such as monocytes, macrophages, myeloid

dendritic cells (mDC) and innate lymphoid cells (ILCs) leads to a release of pro-inflammatory alarmins, cytokines and chemokines (center panel). This

results in the activation of adaptive immunity, involving both CD4+ T cell help, CD8+ T cells cytotoxic for virally-infected cells as well as production of

neutralizing antibodies against surface viral antigens. (iii) A late inflammatory phase with two potential outcomes: 85 to 90% of cases evolve towards

resolution of inflammation with downregulation of T and B cell responses concomitant with the release of anti-inflammatory mediators (right upper

panel); whereas 10 to 15% patients rather exhibit major tissue damage and severe acute respiratory distress syndrome (ARDS) caused by a deleterious

uncontrolled inflammation linked with persisting T cell activation, excessive myeloid cell activation associated with a cytokine storm as well as oxidative

stress (right lower panel).

https://doi.org/10.1371/journal.pone.0254374.g002
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lung inflammation (Fig 2, central panel), while preserving anti-viral protective immune mech-

anisms. We thus compiled a comprehensive list of genes differentially upregulated in NHBE
and Calu-3 human epithelial cells following SARS-CoV-2 infection, providing important

quantitative information [23]. We cross-validated this list in comparison with molecular signa-

tures reported at the level of endothelial cells, bronchoalveolar lavage cells or lung biopsies in

other studies to be associated with severe COVID-19 or exposure to other respiratory viruses

(S1 Table). The latter was further completed with deep immunophenotyping, RNA seq and

cytokine profiling data related to dysregulated innate or adaptive immune responses in the

blood or the lungs of patients with severe COVID-19. A compilation of the most relevant

COVID-19 disease related-proteins thus obtained, together with data sources supporting their

relevance to lung inflammation in COVID-19 are presented in S1 Table.

Ingenuity pathway analyses were then performed on this list, allowing to confirm that

genes/proteins upregulated following SARS-CoV-2 infection in the airways belong to multiple

well-known pro-inflammatory pathways (Fig 3, S2 Table). Further data interpretation led us to

classify disease-related proteins in two distinct sets of highly represented proinflammatory

mediators and cytokines termed Alarmins and Cytokine storm, respectively (S1 Table). Alar-

mins represent a family of immunomodulatory proteins acting as damage-associated molecu-

lar patterns provided by injured stromal cells to recruit and activate various innate immune

cells such as monocytes, macrophages, innate lymphoid cells as well as myeloid dendritic cells.

Multiple proteins belonging to this family (i.e. defensins, HMGB1, IL1α, IL25, IL33, TSLP,

S100A4, S100A7, S100A8, S100A9, S100A12, S100B, S100P) as well as their receptors such as

IL1R1, RAGE, ST2 were predicted by our model to be involved in the evolution towards severe

lung inflammation in COVID-19.

Our study also draws attention on disease-related proteins linked to the cytokine storm

occurring in severe forms of COVID-19. The latter includes proinflammatory cytokines pro-

duced by activated myeloid cells such as IL1β, IL6 and TNFα directly involved as a cause of the

CRS observed in COVID-19 [18, 35, 36]. Other potential targets associated with the cytokine

storm include various cytokines (e.g. IL1β, IFNγ, IL2, IL12, IL15, IL17, IL23, IL32), chemo-

kines (e.g. CCL5, CCL20, CXCL5, CXCL10, CXCL11), as well as selected proinflammatory fac-

tors (e.g. JAK1, JAK2, C5a) (S1 Table) [19, 20, 26–28, 36, 48–50].

Mapping into the interactome and identification of drug candidates for

repurposing

COVID-19 disease-related proteins were mapped in parallel with known drug targets into the

human complete interactome made of 15894 proteins (including 951 known drug targets) and

213861 interactions (Fig 4). From this, 3092 drugs were ranked according to computational

proximity of their targets to each of the alarmins and cytokine storm sets by using a network-

based method (S3 Table). Both COVID-19-related proteins as well as some functionally-

related proteins in the interactome (such as the NR3C1 glucocorticoid receptor or receptors

for reproductive steroids) were identified as candidate therapeutic targets.

Table 1 provides a list of selected targets as well as drugs interacting with those targets pre-

dicted to be of interest in severe COVID-19. Specifically, several high-ranking drugs were

identified to treat severe COVID-19, such as anti-IL1β, anti-IL6 and IL6R or anti-TNFα anti-

bodies. Our model supports as well the interest of corticosteroids such as dexamethasone,

broadly used currently to treat severe COVID-19 [2]. Other high-ranking candidates for

repurposing identified in our study are JAK2 inhibitors, with drugs not yet approved such as

momelotinib or gandotinib previously shown by structure-based virtual screening to interact

with ACE2 and the SARS-CoV-2 main protease, but also baricitinib, as well as other JAK1/
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JAK2 inhibitors currently being evaluated in COVID-19 patients (Table 1). Interestingly, some

network computing approaches aiming to repurpose drugs inhibiting cell infection by SARS--

CoV-2 also concluded to the interest of blocking antibodies against IL1β, IL6 and TNFα as

well as JAK inhibitors in treating COVID-19 patients, in agreement with the present study [15,

16]. In addition, we also identify several reproductive steroids (estrogens and progesterone) as

interesting candidates for treating COVID-19 patients.

Whereas the previous targets and some of the drugs directed to them could be expected

from the current state of knowledge, our modeling study provided as well interesting hypothe-

ses regarding other therapeutic options receiving less attention as of today. For example, drugs

interacting with alarmins were also strongly suggested to be useful in COVID-19. To our

knowledge, only three clinical studies have been initiated in COVID-19 with anti-alarmins,

despite the availability of multiple additional drug candidates in this class (Table 1). Notewor-

thy, since Alarmins of the S100 family activate Toll-like receptors such as TLR2 and TLR4, a

therapeutic option might be to target specific TLRs downstream of alarmins. Indeed, several

TLR-antagonists are currently undergoing clinical evaluation in order to restore immune-

homeostasis in patients with COVID-19 [51].

Similarly, anti-IL17 antibodies rank very high in our repurposing analysis, suggesting that

inhibitory drugs directed to this well-known pro-inflammatory cytokine as well as the

Fig 3. Pathway enrichment analysis from disease signatures (COVID-19 versus mock) in epithelial cell lines infected by SARS-CoV-2. The top 40

most significantly dysregulated immunological canonical pathways in either the Calu-3 (yellow) and NHBE (brown) infected cell lines are represented

in a radar plot according to -log (p-value). Pathway enrichment z-scores, based on fold change direction, represent predicted up-regulation (green dots)

or down-regulation (blue dots) for positive or negative values, respectively.

https://doi.org/10.1371/journal.pone.0254374.g003
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functionally related IL23 cytokine or their receptors should be further investigated in COVID-

19, with only one ongoing clinical trial in COVID-19 as of today [52]. In addition, the C5 com-

plement inhibitor eculizumab is also predicted to represent an interesting treatment option, in

agreement with recent evidence that the C5a-C5aR axis contributes to severe lung inflamma-

tion in COVID-19 patients [53]. As a strong chemoattractant, C5a provides in parallel to alar-

mins a link between innate and adaptive immune responses during severe COVID-19.

The thrombopoietin receptor appears as well to be a valid therapeutic target for agonists in

light of the high incidence of thrombocytopenia associated with COVID-19 infection [54].

Rather unexpectedly, Topoisomerase 1 inhibitors, currently used as cytotoxic drugs in

Fig 4. Druggable interactome of proteins contributing to lung inflammation in COVID-19. Extraction of the interactome encompassing proteins

predicted to contribute to COVID-19 evolution towards a cytokine storm. Following SARS-CoV-2 infection of lung tissues and ensuing activation of

innate and adaptive immune cells, different categories of proteins represent potential therapeutic targets to prevent or slow down lung inflammation

associated with severe COVID-19. The latter include Alarmins, as well as cytokines, chemokines and selected proinflammatory factors associated with

the Cytokine storm. For clarity, this figure only displays the disease related proteins (Alarmins & Cytokine storm) identified in our model, our top

ranking repurposed drugs as well as some functional partners. The latter represent additional proteins needed in order to form a minimal principal

component graph.

https://doi.org/10.1371/journal.pone.0254374.g004
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Table 1. Overview of main therapeutic targets and clinical-stage candidate drugs for repurposing in COVID-19- related lung inflammation.

Therapeutic targets

[Disease-related genes]

Candidate drugs for repurposing

[Company name]

Modalities Marketed

drugs: Yes/

No

Clinical status in COVID-19 [Clinical trial ref] Ref.

Cytokine Release

Syndrome: IL1β, IL6,

TNFα and their receptors

Anti-IL1 β Canakinumab [Novartis] Antibody Yes Completed phase 2 in COVID-19 severe

pneumonia [NCT04476706]. No impact on survival

without the use of an invasive artificial respirator.

[4, 5,

18, 35,

56–58]

Anti-IL1 β GLS1027 [GeneOne Life

Science]

Small molecule No Recruitment planned for phase 2 in severe COVID-

19 pneumonia [NCT04590547].

Anti-IL6 Clazakizumab [CSL

Limited]

Antibody No Ongoing phase 2 in life-threatening COVID-19

infection [NCT04343989].

Anti-IL6 Olokizumab [R-Pharm] Antibody Yes Completed phase 3 in acute respiratory distress

syndrome [NCT04380519]. Results not yet

available.

Anti-IL6 Siltuximab [EUSA Pharma] Antibody Yes Ongoing phase 3 in acute respiratory Distress

Syndrome [NCT04616586].

Anti-IL6 Sirukumab [Johnson &

Johnson]

Antibody No Ongoing phase 2 in severe COVID-19 infection

[NCT04380961].

Anti-IL6R Sarilumab [Sanofi] Antibody Yes Completed phase 3 in severe or critical COVID-19

infection [NCT04327388], which did not meet its

primary endpoint. Some improvement in survival

when treating critically ill COVID-19 patients in

association with dexamethasone.

Anti-IL6R Tocilizumab [Roche] Antibody Yes Several trials completed in severe COVID-19

showing only limited efficacy [NCT04381936].

Some improvement in survival when treating

critically ill COVID-19 patients in association with

dexamethasone.

Anti-TNFα Infliximab [Johnson &

Johnson]

Antibody Yes Ongoing phase 3 in COVID-19 [NCT04593940].

Anti-TNFα Adalimumab, [AbbVie] Antibody Yes Ongoing phase 3 in mild to moderate COVID-19

[NCT04705844].

TNF-α inhibitor XPro-1595

[INmune Bio]

Peptide No Ongoing phase 2 in pulmonary complications of

COVID-19 [NCT04370236].

Anti-TNFα Etanercept [Amgen] Fusion protein Yes No evaluation yet in COVID-19.

Glucocorticoid receptor

NR3C1

Corticosteroids Dexamethasone

[Mylan], Hydrocortisone [Sanofi-

Aventis], Prednisolone [Mylan]

Small agonist

molecules

Yes Positive results obtained in the RECOVERY phase 3

study [NCT04381936], confirmed by a WHO-

sponsored meta-analysis of 7 randomized clinical

trials, collectively providing evidence for a reduced

mortality of critically ill patients.

[2, 59]

Dexamethasone is broadly used as a treatment for

severe COVID-19.

JAK1, JAK2 JAK1/JAK2 inhibitor Baricitinib [Eli

Lily]

Small molecule Yes Ongoing phase 2 in moderate pneumonia

[NCT04358614]. Recent evidence that Baricitinib

can inhibit viral entry by clathrin-mediated

endocytosis.

[60,

61]

JAK/JAK2 inhibitor Ruxolitinib

[Novartis]

Small molecule Yes Ongoing phase 2 in severe COVID-19 pneumonia

[NCT04359290].

JAK2 inhibitor Jaktinib [Suzhou

Zelgen Biopharmaceutical]

Small molecule No Completed phase 2 in severe and acute exacerbation

of COVID-19 pneumonia [ChiCTR2000030170].�

JAK2 inhibitor Pacritinib [CTI

BioPharma]

Small molecule No Ongoing phase 3 in severe COVID-19

[NCT04404361].

JAK2 inhibitor TD-0903 [Theravance

Biopharma]

Small molecule No Ongoing phase 2 in symptomatic acute lung injury

associated with COVID-19 [NCT04402866].

Reproductive steroids:

Estrogens, progesterone

and their receptors

Receptor agonists Ethinylestradiol

+ Norelgestromin [Johnson &

Johnson]

Small molecules Yes Planned phase 2 in non-severe COVID-19 patients

[NCT04539626].

[63]

(Continued)
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oncology, were also identified as of potential interest in COVID-19, with as of today only pre-

clinical evidence that they can inhibit SARS-CoV-2 inflammation and death in animal models

[55].

Supportive Cmap-based for drug repurposing

Given the rather limited set of transcriptomics data available and the small Cmap coverage for

repurposable drugs (i.e. only 17% of molecules in our drug database, with none of the biolog-

ics), results were taken as supportive in the present study. Among the top network-based

drugs proposed for repurposing, only 2 corticosteroids (betamethasone and hydrocortisone)

were confirmed to elicit a reversed gene expression profile (Cmap score < -0.3) when com-

pared to the disease gene expression state.

Table 1. (Continued)

Therapeutic targets

[Disease-related genes]

Candidate drugs for repurposing

[Company name]

Modalities Marketed

drugs: Yes/

No

Clinical status in COVID-19 [Clinical trial ref] Ref.

Cytokines: IL2, IL15, IL17 IL2Rβ superagonist

Bempegaldesleukin [Nektar]

Recomb protein No Ongoing phase 1b in mild COVID-19

[NCT04646044].

[52]

IL15 super agonist ALT803 [Altor

Biosciences]

Recomb protein No Planned phase 1 study in mild to moderate

COVID-19.

Anti-IL17 Secukinumab [Novartis] Antibody Yes Ongoing phase 2 in mild and severe COVID 19

[NCT04403243].

Anti-IL17, -IL17R, -IL23 Antibodies Yes No evaluation yet in COVID-19. Anti IL17

[Ixekizumab, Eli Lilly], anti IL17R [Brodalumab,

Astra Zeneca/ Amgen], anti IL23 [Ustekinumab,

Johnson & Johnson; Tildrakizumab, Merck]

antibodies are commercialized as treatments for

inflammatory diseases.

C5, C5aR Anti C5 Eculizumab [Alexion] Antibody Yes Proof-of-concept evidence suggesting that

eculizumab provides some benefit in severe

COVID-19. Ongoing phase 2 in moderate, severe or

critical COVID-19 pneumonia [NCT04346797].

[53,

64–66]

Anti C5aR Avdoralimab [Innate

Pharma]

Antibody No Ongoing phase 2 in severe COVID-19 pneumonia

[NCT04371367].

Alarmins and their

receptors: IL1α, TSLP,

IL33

IL1R1 antagonist Anakinra [Sobi] Peptide Yes Completed phase 2 in severe COVID-19

[NCT04366232]. Results not yet available.

[71, 75,

77]

Anti-IL33R [ST2]

AMG282-Astegolimab [Genentech]

Antibody No Ongoing phase 2 in severe COVID-19 Pneumonia

[NCT04386616].

TSLP inhibitor HY-209- NuSepin

[Shaperon] agonist for G protein-

coupled TGR5 receptor

Small molecule No Ongoing phase 2 in COVID-19 pneumonia

[NCT04565379].

Anti IL25, -IL33, -TSLP Antibodies No No evaluation yet in COVID-19. Anti IL25 [ABM-

125, Abeome], Anti-IL33 [REGN3500, Regeneron]

and anti TSLP [Teepelumab, Amgen] are in clinical

evaluation as treatments for asthma or atopic

dermatitis.

Anti S100A4, -S100A7,—S100P Antibodies No No evaluation yet in COVID-19. Antibodies in

preclinical development in cancer or autoimmune

diseases by Cancer Res Technol and Lykera

Biomed.

Thrombopoietin receptor Receptor agonist Romiplostim

[Amgen]

Peptibody

[peptide agonist

fused to Fc IgG1]

Yes Case study documenting platelet recovery following

treatment by Romiplostim of a pediatric patient

with thrombocytopenia due to COVID-19.

[54]

All clinical trial information are available in Clinical trials gov: https://www.clinicaltrials.gov/ or� in Chinese clinical trial Registry: http://www.chictr.org.cn/.

https://doi.org/10.1371/journal.pone.0254374.t001
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Conclusion

This study was designed to identify existing drugs which could be repurposed in a short time

frame as a treatment for severe forms of COVID-19. We reasoned that such drugs should tar-

get those molecular pathways involved in the transition from mild lung inflammation caused

by viral infection up to the cytokine storm associated with advanced stages of the disease (Fig

2, central and right lower panels). To this aim, using multiple sources of molecular profiling

data from the literature relevant to distinguish mild from severe forms of the disease at the

level of tissues and immune cells, we established a model of lung inflammation associated with

COVID-19 in the form of an interactome of disease-related proteins. Combined with pharma-

cological knowledge of drug targets, this interactome allowed us to identify existing com-

pounds which could be made available to patients in a short time frame.

Our network computational analyses identified several candidate therapeutic targets and

corresponding drugs to repurpose which were confirmatory of existing knowledge (Table 1).

This includes for example therapeutic antibodies interfering with either IL1β, IL6, TNFα or

their receptors directly contributing to the CRS associated with severe COVID-19. Various

inhibitory antibodies directed to these targets have already been evaluated in COVID-19

patients, such as anti-IL11 (canakinumab), anti-IL6R (tocilizumab, sarilumab) or anti-TNFα
(infliximab, adalimumab) antibodies [4, 56]. Overall, these drugs yielded conflicting efficacy

results, likely explained by evidence that such anti-cytokine treatments are rather effective if

administered to patients before they develop advanced COVID-19 [57]. Nonetheless, a recent

study evaluating the anti-IL6R antibodies tocilizumab and sarilumab demonstrated some

improvement in survival when treating critically ill COVID-19 patients, even more so when

these drugs were associated with dexamethasone [4, 5, 58]. Corticosteroids, are also predicted

by the present study to be useful in severe COVID-19, in agreement with positive results previ-

ously obtained in multiple randomized clinical trials, eventually leading to a broad use of dexa-

methasone as a treatment for severe COVID-19 [2, 59]. JAK1 and JAK2 inhibitors came out

also as interesting candidates for repurposing, with several inhibitors being actively tested in

COVID-19 patients [60]. In this therapeutic class, the JAK1/JAK2 inhibitor baricitinib is cur-

rently raising most of the interest in light of recent evidence that it interferes with virus entry

mediated by clathrin-associated endocytosis (Table 1) [61]. We also identified drugs interfer-

ing with reproductive steroids or their receptors as valid candidates for repurposing. This

observation makes sense in light of the strong bias towards males among patients with severe

COVID-19, perhaps explained in part by the upregulation by androgens of the expression of

the SARS CoV-2 receptor [62]. In contrast estrogens and progesterone are rather considered

to be protective in light of their anti-inflammatory properties as well as their capacity to pro-

mote proliferation and repair of respiratory epithelial cells [63]. On this basis, treatment with

estrogens are being considered in patients with mild COVID-19 (Table 1).

Perhaps more interestingly, our repurposing study sheds light on other therapeutic classes

which as of today receive insufficient attention as potential treatments for severe COVID-19.

We predict that inhibitors of the well-known IL17 and IL23 proinflammatory cytokines (or

their receptors) could be useful in COVID-19, with to our knowledge a single clinical trial eval-

uating as of today the anti-IL17 antibody secukinumab in COVID-19 [52]. Multiple monoclo-

nal antibodies blocking those cytokines have been registered as treatments for other

inflammatory diseases, which thus could be promptly repurposed in COVID-19 (Table 1).

Similarly, the C5 complement inhibitor eculizumab was also identified to represent a valid

therapeutic option, in agreement with recent evidence that the C5a-C5aR axis promotes severe

lung inflammation in COVID-19 patients by mediating recruitment and activation of pro-

inflammatory myeloid cells [53, 64]. Only proof of concept studies have been conducted so far
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in human with eculizumab, suggesting that this antibody may provide some benefit in severe

COVID-19 [65, 66], with a confirmatory trial ongoing in a larger cohort of patients. Notewor-

thy, another clinical study has been recently initiated to evaluate as well in this indication the

anti C5a receptor antibody avdoralimab (Table 1). Also, approaches combining JAK1/2 inhibi-

tors with blockade of C5a with eculizumab are being considered as a treatment of severe pul-

monary damage in COVID-19 patients [67]. Moreover, drugs such as romiplostim acting as

an agonist for the thrombopoietin receptor are also predicted to be useful to treat COVID-

19-associated thrombocytopenia, in agreement with a recent case study documenting platelet

recovery following treatment with this drug of a COVID-19 pediatric patient [54].

The most significant outcome of our repurposing study is the prediction that several mem-

bers of the alarmin family such as defensins, HMBG1, IL1α, IL25, IL33, TSLP, S100A4,

S100A7, S100A8, S100A9, S100A12, S100B, S100P likely contribute to lung inflammation dur-

ing COVID-19 (Fig 4) [68–70]. The role of each individual alarmin in this regard remains to

be investigated, with presumably some of them (e.g. IL25, TSLP) rather contributing to the ini-

tial recruitment of myeloid cells and innate lymphoid cells following epithelial or endothelial

cell infection, whereas others (IL33, S100 members) are likely being involved in later stages of

lung inflammation culminating in the cytokine storm. The later assumption is consistent with

recent observations that some alarmins can stimulate the production of both IL1β, IL6 and

TNFα as well as multiple other proinflammatory cytokines and chemokines [71]. Further-

more, blood levels of IL1α, calprotectin (a heterodimer made of S100A8 and S100A9),

S100A12, S100B and HGBM1 appear to correlate with COVID-19 severity [72–76] (S1 Table).

Also, IL33 has been recently proposed to play a broad role in the pathophysiology of COVID-

19 pneumonia by dampening both the antiviral interferon response as well as regulatory T

cells, while promoting thrombosis and activating pro-inflammatory type 2 innate lymphoid

cells and γδ T cells [77]. To our knowledge, only few clinical studies are being conducted as of

today in COVID-19 with a TSLP inhibitor or with blocking antibodies directed to receptors

for IL1α or IL33 (i.e. ST2), whereas multiple additional blocking monoclonal antibodies

directed to IL25, IL33 or TSLP are well under clinical evaluation to treat severe forms of

asthma or atopic dermatitis [62, 69]. Furthermore, various inhibitors of the S100 family of pro-

teins currently in preclinical development may represent promising drug candidates for the

future (Table 1). We thus recommend considering existing anti-alarmins therapies to treat

severe COVID-19, most particularly in the context of the converging rationale from this

computational study as well as recent wet-lab evidence that this important class of proteins

conveying proinflammatory signals plays a critical role in the pathophysiology of severe

COVID-19. Lastly, this first model of severe lung inflammation in COVID-19 should be

updated as new data are generated to better distinguish at an early stage patients with a high

risk of evolving towards severe lung inflammation from those who will only develop mild

forms of the disease.
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F.4 Conclusion
This repurposing study identified putative drug targets to reduce severe cases of inflammation
occurring in patients suffering from COVID-19 (see [Yal+21], [Rot+20] and [Idr+20]).

Interestingly, we also highlighted the potential therapeutic effect of drugs that received
insufficient attention till now for COVID-19 treatment, such as IL17 and IL23 inhibitors [PSE20],
the C5 complement inhibitor eculizumab [Car+20], and agonists for the thrombopoietin receptor
intervening in mitigating thrombocytopenia (when the platelet population, key for tissue clogging,
is too low, [Sch+21]).

In parallel, we highlighted the role of alarmin family proteins (e.g. defensins, HMGB1,
IL1alpha, IL25, IL33, and S100 proteins, a comprehensive review is proposed in [YHO17]) in
COVID-19 cases. Last but not least, Topoisomerase 1 inhibitors [Ho+20], currently used as
cytotoxic drugs in oncology, were also identified as potential candidates in inhibiting SARS-CoV-2
inflammation and death in animal models.

Overall, our comprehensive data-driven and agnostic approach enabled to identify disease-
related proteins and potential drugs for repurposing in the treatment of severe lung inflammation
during COVID-19 scourge, as demonstrated in [Yad+], [Bel+21] and [Tai+22].

In this paper, I mostly contribute by retrieving a transcriptomic signature of COVID-19-
infected lung cells, leveraging the RNASeq expression extracted from Calu-3 and NHBE. To
perform these standard differential analyses, we notably capitalise with my PhD partner on
our newly industrial and homogenised RNASeq pipeline, see Appendix A for details. Then, I
profit from the same pipeline to homogenise the perturbagen transcriptomic profiles of the CMap
database, ensuring notably to reduce batch and normalisation artefacts between the infected
samples and the ones from the molecular profile collection. Finally, I compared several enrichment
analyses or distant-metrics scores to assert statistically how similar two gene expression profiles are,
providing complementary material to section Supportive CMap-based for drug repurposing
of [Des+21]. In our study, it appears that a simple Pearson correlation metric, while making
strong naive assumption of linearity between two compared profiles, showcases the most consistent
results with respect to the drug-disease links returned by the network-based methodology.

F.5 Perspectives
Given the rather limited set of transcriptomics data available and the small CMap coverage for
repurposable drugs (i.e. only 17% of molecules in our drug database), results were only used to
support the present study. Indeed, among the top network-based drugs, only 2 corticosteroids
(betamethasone and hydrocortisone) exhibited a significantly inverted gene expression profile
(CMap score < -0.3) when compared to the COVID-19 gene expression profile. To that end,
the L1000 project is a promising avenue by extending by several orders of magnitude the CMap
expression profiles database. Through the new L1000 technology 6, an experimental high-
throughput profiling platform, the large-scale L1000 database embraces a much larger diversity of
perturbagen signature profiles, ranging from drugs to genetic manipulations (mostly elicited from
Knock out or Knock down experiences) through mutagen factors. While the general principle of
treating human cells with different perturbagens is comparable to the CMap underlying principle,
the generation of the L1000 database involves an additional step, since, instead of measuring the
expression level of the entire genome, only a subset of landmark genes are directly acknowledged,

6hence named, as this method represents both a 1,000-fold scale-up of the CMap profiling database and only
accounts for the expression of 1000 key genes
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carefully selected such that they are representative of the entire transcriptome and can be used
as proxies to infer the expression of remaining genes. Interestingly, [Sub+17] demonstrate that
this protocol compared favourably to RNA sequencing in terms of robustness and accuracy to
infer the expression levels of approximately 81% of transcripts coding for proteins, that were not
yet directly measured. Ultimately, by taking up to a much larger scale the CMap compendium,
the measured aggregation of dozens of thousands of perturbagen profiles is expected to provide a
priceless resource for understanding cellular responses to different stimuli and hereby elucidating
novel biological pathways and insights into disease mechanisms, while providing an integrative
way to explore shared transcriptomic mechanisms induced by various treatments, facilitating drug
discovery or repositioning (see also their web, user-friendly API, available here clue.io).

A significant limitation of the methodology devised with Patrimony is the potential loss of
meaningful and interpretable biological information, since we fuse diverse datasets, from multiple
omics to drug interaction databases, into a single global knowledge graph. Furthermore, searching
for drug similarities and interactions reveal a highly memory- and time-consuming task, primarily
due to the high-dimensionality and number of datasets that were integrated in the Patrimony
project. By reviewing the recent repurposing literature, I was stunned by the iCell method
[Mal+19] to tackle these scalability and integration issues, since iCell was precisely set up to
determine clusters of highly co-expressed genes across dissimilar interaction databases.

Briefly, the iCell framework merges three molecular interaction networks (Protein-protein
interaction: PPI, Genetic interaction: GI and gene Coexpressions: COEX), all represented as
indicator adjacency matrices (symmetric matrices in which an off-diagonal 1 encodes for an
existing interaction, 0 otherwise), by projecting them into a smaller subspace of shared cluster of
genes. Precisely, these three matrices were simultaneously decomposed into a common matrix G,
describing gene cluster annotations shared across all networks, and a compressed, omic-specific Si

matrix, showing how gene clusters are related to each other. This decomposition was achieved by
minimizing a Multiple Symmetric Non-negative Matrix Tri-Factorization (MSNMTF) objective
function.

Since then, this methodology was extended to integrate completely distinct sources of informa-
tion, firstly in a naive manner, by taking profit of the cluster-indicator matrix returned by iCell
as compact and informative input for other biological applications, such as patient clustering
and stratification [Xen+23] or inferring new drug-pathway interactions [Mal+23]. [Mal+23]
generated new drug repurposing hypotheses to cure severe cases of COVID-19 cases, computed
with the previously described iCell methodology 7, with drug-target interactions (DTIs) and
Drug Chemical Similarity (DCS) networks from DrugBank, the latter being represented by its
Laplacian version (the diagonal degree matrix subtracted to the drug-drug adjacency matrix,
in other words a matrix whose diagonal stores the degree vertices, and the off-terms pairwise
interactions, with a -1 positively coding for a direct connection). Precisely, the main idea was
to retrieve the low-dimensional gene clusters-drug interaction matrix, resulting from both a
matrix factorisation with an additional regularisation term to account for the known structure
of the DCS network, which predicts the best the global drug-target interaction matrix while
projected into a much lower dimensional space (see [Mal+23, Eq 1.] for the explicit optimisation
problem). Ultimately, the new drug-target interaction matrix, supposedly with higher comple-
tion as inferred from disease-specific omics, was reconstructed to predict individual drug-target
interactions. Indeed, each entry in the reconstructed matrix stands for an association score,
supposed to be significant if the predicted drug-target interaction scores higher than the mean
of existing interactions. [Xen+23] implements a novel Non-negative Matrix Tri-Factorization

7Interestingly, the same two cell lines that we used to retrieve enriched pathways in [Des+21], namely Calu3
and NHBE, were used to that purpose.

https://clue.io/
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(NMTF) strategy to overcome the lack of genetic samples (five samples make up the cohort)
to identify novel disease-related genes for antithrombin resistance, since GWAS, while relevant
to find disease-associated variants for common diseases, are not suited to rare diseases due to
the sparsity of genetic data. And precisely, matrix factorisation techniques can deal with low
sample size by integrating prior knowledge and combining different types of biological and medical
data.Precisely, the NMTF method was used to integrate four different data types: germline
mutations, protein-protein interactions (PPIs), co-expressions (COEXs) and genetic interactions
(GIs), the last three being summarised into an indicator matrix G in which hard assignment to a
gene cluster is indicated by a 1, 0 otherwise. Then, the genetic patient information matrix M is
simultaneously decomposed into the product of three lower dimensional factors, P , S and G; the
latter, storing the k1 gene clusters, being the standard output of the iCell methodology and P
storing the k2 patient clusters (see [Xen+23, Eq.1] for details).

This heuristic method to fuse heterogeneous data entities was further extended to capture
in an unified framework all systematic interactions while providing gene and patient clusters
and supplying drug target candidates, with respectively applications to COVID-19 repurposing
again [Zam+21], cancer stratification to generate personalised treatment [GMP15] or an ongoing
work to determine Parkinson’s trajectories through multiple single-cell RNA-seq time points [,
Poster ID: 8328, session P236-M]. These matrix factorisation methods embody a new powerful
way-of-thinking to add in the computational toolbox.

To conclude, by explicitly incorporating interactions across multiple biological entities and
systems in an integrated way, thus keeping the mechanistic biological interpretation and facilitating
prior knowledge integration, these approaches have the potential to bridge the gap between
powerful yet less biologically interpretable and robust AI-based models and more standard
statistical methods that struggle with high-dimensional datasets, particularly in the presence of a
limited number of replicates.

However, the methods described earlier are not well-suited for identifying causal genes and
reconstructing the chronological sequence of genes involved in pathway signalling. In other words,
they may not effectively distinguish between downstream resulting phenotypes and upstream
activation events in biological processes, since the inferred graphs are not directed. In this regard,
Bayesian networks and their natural extension to Causal networks appear to be particularly
well-suited for capturing complex and mechanistic interactions of biological phenomena, and such
in their entirety.

For instance, the study conducted by [Li+19], Bayesian networks were used to infer pathways
specifically involved in Systemic Lupus Erythematosus (SLE), from a cohort of 1760 SLE patients.
Of note, the analysis identified and confirmed the significance of both the JAKSTAT and the
Interferon signature, while capitalising on both prior knowledge and novel inferred interactions.
Precisely, the pipeline to infer the structure of Bayesian networks comprised three main steps:
first, co-expression networks were constructed using the R WGCNA package, returning 3 gene
modules highly correlated to the phenotype, encompassing 431 differentially expressed genes.
Second, text mining was employed to uncover literature-based gene pairwise connections. Third,
both observational data (transcriptomic expression) and prior edges were combined to generate
the Bayesian networks:

1. Random graphs were initially created, by integrating the edges inferred through text mining.

2. Subsequently, the igraph package was utilized to remove bidirectional edges and cycles in
the graph. Indeed, one of the primary limitations of Bayesian networks is that they are
restricted to the space of Directed Acyclic Graphs (DAGs), which makes them less valuable
for describing positive or negative feedback regulation loops.
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3. A score-based method from the bnlearn package, employing a hill-climbing algorithm to
maximise the likelihood of the generated network structure, was then used to generate an
ensemble model composed of 100 graphs, in which edges appearing with low frequency were
discarded.

A similar process was used in [Mos+18], to build a molecular network of the aging human frontal
cortex, and identifies specifically the pathways leading to Alzheimer’s degeneracy and cognitive
decline. [Mos+18] includes an additional validation step to highlight key driver genes, through
direct interventions, in the form of knock-outs to directly silence the expression of genes one by
one, and evaluated by conducting standard ANOVA analysis.

However, instead of integrating causal information posterior to the Bayesian network con-
struction, it is also possible to directly combine interventional and observational information
when learning the structure of Bayesian networks. We already discuss a possible framework to
do so in Section 6.3, in relation with paper [RJN13]. An alternative approach, in the absence
of interventional datasets, is to integrate biological causal prior information. For example, by
incorporating the knowledge that DNA nodes should precede RNA nodes, which in turn should
be parents of protein nodes. This strategy was demonstrated in [Gru+16] using the proprietary
REFSTM causal inference engine, where they combined transcriptomic data, clinical features and
treatment annotations in an ensemble model of 256 Bayesian networks with 30 084 variables. The
goal was to identify severe pathways involved in myeloma severity and identify patient subpop-
ulations that would benefit most from stem cell transplantation treatment. The RIMBANET
algorithm was also used to distinguish simple correlations from causal relations by leveraging
DNA-based variations (expression quantitative trait loci, eQTL, or SNP, for single nucleotide
polymorphisms), respectively revealing unexplored interconnections between lipid metabolism
and glucose regulation pathways in type 2 diabetes [Coh+21] and identifying key regulators of
Alzheimer’s disease [Bec+20].

However, it is important to note that the performance of Bayesian networks is partly hindered
by their lack of scalability to high-dimensional datasets (the sampling space of possible causal node
orderings grows exponentially with the number of variables), the strong assumptions they make
on the distribution of the datasets (most Bayesian algorithms were developed to accommodate
either discretised or Gaussian-shaped distributions), and their high sensitivity to even minor
alterations or noise present in the samples.
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[FC05], [Goë+07], [GE13], [SD03], [PF17], [Lou23] [Cal+22], [De +17] [MJ18], [Che+11] [EL13],
[LA18], [Pla05], [Le +01] [ZH14], [Mur+02] [Pat+06], [Kuo+06], [Sev+06], [Sîr+12] [Daw23],
[SGH19] [DrS17], [DML23], [Cle22], [Sîr+12], [Cal11], [Amb20], [GM13], [Ngu21] [MA23], [LHM21]
[LGN16], [Moh+22], [Nak20], [Gro+16], [RA15], [hae11], [Shr22], [DMW19], [Gal23], [dBru+21]
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(a) The “valley-of-death” in drug-development. We detail the main stages of the drug-development cycle,
the chances of success being modelled by an “attrition funnel”([phi22, Fig.1]).

(b) Main computational repositioning strategies implemented in Patrimony. a) First approach consists
of constructing knowledge graphs, combining molecular profiles them with drug targets. The second approach
matches transcriptomic profiles between perturbagens and disease phenotype, with [Mus+17, Fig.1], detailing
the principle underlying the CMap enrichment score. Various guilt-by-association strategies, reproduced from
[Hod+16, Fig.3].

(c) The most popular Drug repurposing strategies are enumerated in that diagram. Reproduced
from [Pus+19, Fig. 1].

Figure F.2: Infographic 2) of Appendix C
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Glossary

Anti-SSA and anti-SSB Anti-SSA autoantibodies (anti-Sjögren’s syndrome A-related autoan-
tibodies) are antinuclear autoantibodies associated with many autoimmune diseases, such as
systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS) [FC05] [Goë+07], or rheumatoid
arthritis (RA). Anti-Ro autoantibodies are often associated with autoantibody anti-La/SSB,
displaying similar molecular structure [GE13]. 82
antibodoy Antibodies, also known as immunoglobulins (Ig), are Y-shaped proteins composed of
four polypeptide chains: two identical heavy chains and light chains. Each chain is additionally
split into (1) a variable region at each end of the y-arm, responsible for binding to the antigen
and (2) a constant region at the stem of the antibody, which determines the effector functions of
the antibody, such as activating complement, recruiting other immune cells or neutralising toxins
(left Panel).
On the other hand, the structure of the antigen receptor of T cells slightly differs, with only one
antigen-binding site and only two different polypeptide chains (α and β). However, akin to the
antibody structure, its base is a constant region that anchors the molecule in the cell’s plasma
membrane, while the outer tip of the molecule is a variable region that gives the specificity of the
epitope-receptor bound (right Panel).
B cells can express five different classes of immunoglobulin (IgA, IgD, IgE, IgG, and IgM):

• All B cells display the same antigen receptor, known as IgD, at its surface.

• IgM antibodies are the first deployed on the battlefield and act as an early activator of
the innate immune system. They are composed of five antibodies merged together at their
hips, speeding up additionally the activation of the complement system.

(a) The structure of a B cell antigen receptor
(b) The structure of a T cell antigen receptor

352
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• IgG antibodies are the most specialised: some are involved in passive immunity, passing
trough mother activated antibodies to the fetus, while some down regulate the activity of
the innate system, preventing chronic inflammation.

• IgA antibodies It mostly intervenes in the multiple openings of the human body, acting
as a guardian of the mucous tissues: respiratory and digestive tract, sexual organs . . . . IgA
antibodies generally work by pairs, preventing access to their constant regions, and attack
multiple targets by clumping them together. Additionally, IgA antibodies are transmitted
when mothers are breastfeeding their babies, providing them simultaneously with the breast
milk. These antibodies then saturate the gut of the newborn and enforce a well-balanced
microbiota.

• IgE antibodies are involved in allergic reactions, overreacting to innocuous foreign sub-
stances, from the pollen of plants to peanuts or seafood. Originally, they used to target
multicellular enemies, such as parasitic worms. But the strong development of prophylac-
tic measures in developed countries since early 1900’s deprived them from their original
cumbersome enemies, and they just in turn found new irrelevant targets, a theory detailed
in [Det21, Chapter 39] The distinctive structure of an antibody is what imparts upon it
its singular capacity for identifying with an high specificity foreign molecules, acting as a
lock-and-key system.

The antibody does not bind to the entire foreign particle, but rather to small peptide fragments
commonly known as epitopes. B cells and circulating antibodies can directly bind to epitopes
present in the extracellular medium, such as in the blood or lymphoid system or to antigens
protruding from the surface of pathogens.
Conversely, T cells exclusively identify antigens that are exhibited on the surface of host cells via
the major histocompatibility complex (MHC). 349

B-cell B cells, also known as B lymphocytes, are usually classified in circulating whole blood
samples into the three major cell subtypes:

1. Naïve B cells are fully differentiated, but have not yet encountered any antigen. They
circulate in the bloodstream system, constantly scanning for foreign invaders.
Plasma Cells, aka Effector B Cells, are the terminally differentiated form of B cells. They
become activated (and so not anymore naive) when they encounter an antigen matching their
B cell receptor. They are the massive antibody producing plants of the human organism
(see details in Section 2.1.2). Accordingly, their primal function is to neutralise pathogens
by tagging them for destruction and activating the complement system.

2. The final stage corresponds to memory B cells, long-lived cells that “remember” previous
encounters with pathogens and are thus crucial for the enhanced secondary immune response
(see Section 2.1.2). Notably, if the same pathogen infects the body again, memory B cells
can quickly differentiate into plasma cells and provide faster and more effective protection.

3. Other residual B cells subsets have been identified in early differentiation stage, but they
are not usually found in whole blood, such as B-1 cells and T-Independent B Cells, found
primarily in body cavities and involved in the early defence against bacterial infections (the
latter is even able to stimulate B cell activation without the help of T cells and primarily
produce IgM antibodies) and are critical for early responses to certain pathogens.
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Follicular B Cells are typically found in the the spleen and involved in the production of
high-affinity antibodoy. Regulatory B Cells play an immuno-suppressive role by regulating
the immune responses through tolerance mechanisms.

We should note however that B cell subtypes and functions can overlap, since immunologists and
pathologists tend to use a distinct terminology approach, the former focusing on clearly identified
protein markers while the latter classified them based on their localisation in the micro-anatomical
compartments and differentiation status ([SD03] and [PF17]). 159, 353

cell markers Cells markers, expressed either on the cell surface or intracellular, (proteins, lipids,
glycosylation, . . . ) can be used to set apart unique cell types 16
cell-mediated In the cell-mediated immune response, another subset of T cells, the TCD 8,
proliferate and differentiate into cytotoxic T cells. Initiation of the cell-mediated response first
requires activation signals from Th Helper, while the identification of the cells to eliminate relies
on the detection of an antigen fragment displayed by the class I MHC of infected cells. In a
process similar to NK cells (2.1.1), destruction of host cells involves the release of perforines
that puncture the membrane structure (generate “pores”), leading to cell lysis, and granzymes
that cleave essential proteins, leading to cell apoptosis. Cytotoxic T cells are also equipped with
an accessory protein, the CD8 marker, that guaranties strong binding all along the destructive
process [Cam+20, Figure 22, Chapter 43]. Even though not directly targeting virus, depriving
the pathogens from potential hosts reduces practically the magnitude and the propagation of the
infection. 24
cellular communication Cellular communication enumerates the process by which cells coordi-
nate their activities and functions. This communication can be either direct (e.g. through gap
junctions) or indirect (e.g. through the release of signalling molecules).
Generally, the intermediate signalling molecules are special proteins named hormones (from the
Greek “horman”, to excite) that circulate throughout the body. The communication between
cells is further classified with respect to two criteria: the type of secreting cell and the distance
between the signal and its target:

Figure F.4: Categories of intercellular communication. This figure is reproduced from [Cam+20,
Fig. 45.2, p. 1000].
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5
Contigs Contig are contiguous DNA sequences, assembled from overlapping DNA reads through
computational algorithms, and issued from the same origally fragmented genome. One of the main
advantages of contigs is that they allow biologists to study specific regions of the genome, even
when the complete genome sequence is not available, see also glossary entry Genomic scaffolding.
11, 12, 14, 351

endotype An endotype is an intermediate compartment between the genotype and phenotype
scale, describing a disease condition. It is characterised by genetic mutations, activation of
specific pathways and the chronological phases of the disease. Endotypes have notably been
identified in chronic inflammatory conditions and Alzheimer’s disease ([Cal+22] and [De +17]).
Understanding endotypes is crucial for the development of personalised medicine, as it enables to
tailor targeted treatments to subgroup of patients within the same disease that share the same
underlying pathophysiological mechanisms of the disease. 60
epithelium The epithelium is one of the four types of tissues making up the organs of the body,
along with the connective (support function), muscular and nervous components. Similarly to
the frontiers of a country, they have a protective role against potential intruders (mucous tissues,
skin) and an exchange role (transfer of nutrients to the blood in the digestive tract and transfer of
oxygen while flushing away carbon dioxide in the respiratory tract). Finally, as main component
of glands, they play a key role in maintaining the homoeostasis, releasing hormones in the blood
system. 22
eukaryotic Eukaryotic organisms exibit more complex cells (compartmented nucleus that houses
their genetic material, highly-specialised organoids, . . . ), and encompass the animals, plants,
fungi, and protists realms. They are defined with respect to prokaryotic organisms, such as
bacteria and archea, which lack membrane-bound true nucleus and organelles. 12

FASTA FASTA files gather a collection of sequences (a string of characters, such as A, U, G, C
for RNA, that can span multiple lines and is not case-sensitive), each uniquely identified by a
header line (starting with symbol >, this line provides the name, source or any relevant context
related to the sequence). FASTA files are easily readable by both humans and computational
tools. 10

Genomic scaffolding Genomic scaffolding is a crucial intermediate step in genome assembly,
designed to connect individual Contigss into larger and more complete genome sequences. To do
so, the relative order, distance (with potential uncovered gaps) orientation of contigs must be
addressed.
Genomic scaffolding is typically achieved by providing to automated aligner algorithms either
“mate-pair” (come from non-adjacent regions) or “paired-end” (sequences from opposite ends of a
DNA fragment) sequences. The resulting alignment is a scaffold, namely a sequence of connected
contigs with estimated gap sizes in-between.
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Figure F.5: De novo Assembly Process:. Overlapping reads from paired-end sequencing form
contigs; overlapping contigs combined with gaps of known length form scaffolds; sets of scaffolds are
joined into a single chromosome. Subfigures a) and b) are reproduced from [Cal11].

11, 14, 350

hematopoiesis The general process describing the generation and the renewal of the blood cells.
23
Heteroskedasticity Heteroskedasticity in RNA-Seq data refers to the phenomenon where the
variance of gene expression varies within and between samples. We now detail the reasons, ordered
by categories, of the common observation that genes with low read counts exhibit, on average, a
higher Signal to Noise Ratio (SNR) ratio, compared to highly expressed genes (report to [MJ18]
and [Che+11] for details):

• The major reason proceeds from pure statistical considerations. Indeed„ RNA-Seq data is
inherently counts, which are usually modelled by Poisson or negative binomial distributions.
For both of them, the variance is linearly correlated to the mean, and even equal for Poisson:

yg ∼ Poisson(µg) −→ Var [yg] = µg (F.1)

. Consequently, the standard deviation of the gene expression, modelled by such distributions,
tends to evolve relatively faster than the mean for smaller values.
This related consequence is further highlighted by SNR formula:

SNR(yg) = µg√
Var [yg]

(F.2)

with σg =
√
Var [yg] the standard deviation of gene expression. , and is used to measure

how strong the true signal is relative to the background noise. Coupling the SNR formula
with the variance of a Poisson’s model mathematically implies that lowly expressed genes
exhibit a lower SNR, in other words display a signal closer in magnitude to the noise.

• Technical noise also contribute to the higher variability of lowly expressed genes, indeed,
since they are close to the detection limit of the sequencing technology, even minor fluc-
tuations or noise in the measurement process can strongly impact the quantification of
observed counts.

• Ultimately, mechanistic biological factors that intervene on the regulation of the gene
expression tend to reduce the variability observed for highly-expressed genes. Indeed, they
are often involved in key cellular processes and are thus more tightly regulated through
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robust feedback, leading to more stable expression patterns across samples. Among them,
Housekeeping genes genes are continuously expressed in all cells of an organism since they
play fundamental roles in maintaining the basic cellular functions necessary for the survival
of all cells.

To summarise, genes with high expression levels tend to exhibit lower SNR in RNA-Seq compared
to lowly expressed genes. 87, 166
Housekeeping genes Housekeeping genes, also known as constitutive genes, are continuously
expressed in all cells, regardless of their type, developmental stage, or environmental conditions.
We qualify such expression as Ubiquitous, since present in all tissues and cell types. This broad
expression pattern distinguishes them from tissue-specific or condition-specific genes, which are
only active in specific situations or cell types.
They are characterised by a Constant and Stable Expression, they are usually involved in
fundamental cellular functions, such as energy production (e.g., genes involved in glycolysis and
oxidative phosphorylation), structural maintenance (e.g., genes encoding cytoskeletal proteins),
and cellular metabolism (e.g., genes involved in protein synthesis and degradation). Some
housekeeping genes encode proteins that are involved in regulating key cellular processes. Their
consistent expression makes them relevant in gene expression studies, allowing researchers to
normalise data and compare the expression of other genes ([EL13]). 169, 352
humoral The humoral immune response involves the release of antibodies by plasma cells, that
in turn promote bacteria elimination by facilitating phagocytosis (act as markers of foreign cells)
and promoting the complement response. The released antibodies do not directly kill pathogens,
but by targeting circulating toxins or epitopes cradled by the class I MHC of infected cells,
prevent viral infection or bacterial activity through neutralisation or opsonisation mechanisms.
The activation of B cells requires a two-factor authentication process: the first contact with a
circulating antigen antigen in lymph nodes turns a naive B-cell into a mature B cell and starts
clonal amplification. In the mean time, the activated lymphocyte engulfs some foreign molecules
by endocytosis and displays them through its MHC class II molecules. Ultimately, it is only
when the B cell meets an helper T cell that was activated in parallel by a macrophage or a
dendritic cell that it can turn into an efficient Plasma Cell, a true antibody-secreting factory.
This two-step activation is described in [Cam+20, Figure 19, Chapter 43] and in [Det21, Figures
1 and 2, Chapter 21]. 24

Illumina While the chemical strategy underlying the core Illumina sequencing protocol has
long been known, relying on “sequencing-by-synthesis”, a process similar to modern Sanger
sequencing, the Illumina protocol differs by its enhanced parallel sample-throughput, with the
ability to sequence thousands of reads simultaneously thanks to its proprietary clustering and
clonal amplification (see Section 1.2.2 and [Amb20]).
This achievement is realised through a combination of physically isolated sequencing lines coupled
with the utilization of multiplexing. Besides reducing the risk of introducing technical biases,
early-stage multiplexing is a cost-saver by curtailing both reagent consumption and labour
demands.
Specifically, the Illumina flow cell incorporates eight physically segregated lanes, enabling to
process up to eight distinct samples, further extended by multiplexing technique which permits
the simultaneous sequencing of multiple libraries within the same lane. This is accomplished
by uniquely identifying each read to a sample using a specific barcode added during the library
preparation, the final operation consisting of assigning unequivocally each read to a sample is
so-called the demultiplexing procedure.
Due to the nature of the reads generated by Illumina and its prevailing market position, it is
often referred to short-read sequencing (SRS) protocol, or Second Next Generation Sequencing,
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extending the historical Sanger method. Some key features about Illumina company: they released
the first sequencing tool enable to reconstruct from scratch an entire human genome for less
than $1000 and foresees an expected $100 commercial target in a near future ( [ill23, Chapter 3:
Illumina DNA-to-Data NGS Solutions]). 355, 356
inferferon signature There are two main classes of interferons: type I IFNs and type II IFNs
[LA18] [Pla05]. While there are many distinct type I IFNs (including IFN-α and IFN-β) binding to
the same cell surface receptor, there is only one type II IFN, IFN-γ, which binds to a distinct cell
surface receptor. Type I and type II IFNs activate common and distinct STAT (signal transducer
and activator of transcription) pathways, hereby playing an important role in regulating the
expression of transcriptome and the intensity of the immune response.
Traditionally, type I IFNs are linked to the humoral immune response [Le +01], namely the
activation of B cells and the release of antibodies directly targeting foreign invaders, such as
viruses or bacteria [ZH14].
On the other hand, type II IFN conducts the cell-mediated response ([Mur+02]), by activating
the production of TCD4 and TCD8 cells, which in turn target self cells displaying aberrant
phenotypic activity. 82
Ion Torrent Proton In this method, first, DNA templates are attached and amplified on beads,
which are then loaded into wells on a semiconductor chip. Then, sequential addition of nucleotide
to the DNA strand is detected by the induced changes in pH: precisely, when a complementary
nucleotide is included, it releases a proton that causes a specific pH change which is detected
by ion-sensitive sensors (see [kchouk_etal17]). This technology allows for fast sequencing of
relatively short read lengths (see [Ngu21], [kchouk_etal17] and [GM13]). 356

k-mers K-mers are contiguous sequences of a given size, extracted from longer DNA sequences,
and commonly found and shared across many individuals of the same species. Their application
in bioinformatics is manifold, including sequence alignment, genome assembly and Homology
Search studies. 12

linkage disequilibrium Linkage disequilibrium refers to the genetic observation that alleles at
different loci on a chromosome tend to be inherited together more often than expected by chance,
implying that the genetic recombination during inheritance was not performed independently.
This phenomena is usually triggered by the physical proximity of the linked variants on the
chromosome.
Notably, strong linkage disequilibrium may negatively impact bioinformatic analysis. When
conducting genome-wide association studies (GWAS), identifying Causal Variants responsible for
a particular trait is much more challenging, since identify the one variant driver truly responsible
for the observed effect is much harder in a set of highly related genetic variants due to strong
LD, leading to numerous spurious associations. Similarly, it negatively impacts the sensibility of
Genetic Risk Prediction, since they assume that genetic variants are independently contributing
to the risk of a disease. Strong LD can violate this assumption, leading to overestimation or
underestimation of the true risk. 320

microarray The quantification protocol is common to most of microarray-based technologies.
First, the mRNA samples, called the “targets”, are extracted from the investigated biological
sample. Then, the targets hybridise to their complementary probe on the microarray and are
labelled using fluorescence or radioactive labels.
Two competitive methods are used to quantify gene expression between two biological conditions,
as presented in right panel below. Either the two mRNA preparations are hybridised at the same
time, the RNA strands competing for the access to the probes, or each sample is assigned its
own array, but with the same dying label (an extensive comparison of the pros and perks of both
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approaches is reviewed in [Pat+06], [Kuo+06], [Sev+06] and [Sîr+12]). In both cases, each probe
is generally duplicated thousands of time in the same “probe cell” (see right panel, below), called
a spot, to trap the target mRNA fragment.
High-spatial resolution pictures of the plate are subsequently taken, on which a spot usually
matches more than one single pixel. The segmentation stage sets apart pixels proceeding from a
spot, marked as relevant signal, from background noise. Ultimately, the quantification stage sums
the individual signals from a spot, and the resulting intensity is used as proxy of the abundance
of mRNA. The output is filed in a CEL document.

(a) Probe set structure. A micro-array chip
is composed of a large collection of probe oligonu-
cleotides. To enhance detection power and assess
variability, the probes are further organised into
probe sets: a collection of perfect match probes (PM)
that precisely match the target sequence paired with
mismatch probes (MM) that only differ by a single
base mismatch. Hereby, we can assert the specificity
of each probe by quantifying the relative binding
of the target sequence between the PM and MM
probe.

(b) a) Two-channel and b) Single-
channel microarray platforms. This in-
fographic (reproduced from [Daw23, Fig. 6])
illustrates the technical protocol differences
between single-channel and two-channel mi-
croarray technologies.

Figure F.6: A brief overview of micro-array chips to quantify the transcriptome.

8

neutralisation Neutralisation is the process by which antibodies prevent viral infection of a host
cell or necrosis due to toxins circulating in blood, by binding to surface proteins, thus preventing
the virus from entering body cells [Cam+20, Figure 20a, Chapter 43]. On the other hand,
opsonisation fends off bacteria invasion, not by stopping the infection, but rather by promoting
phagocytosis (Figure 43.20b): the two antigen-binding sites can aggregate foreign substances,
easing their engulfment, while the other end-tail acts as a marker for macropahes and neutrophiles
[Cam+20, Figure 20b, Chapter 43] 353

Oxford Nanopore After library preparation and adaptor ligation which includes a subsequent
step of attaching motor proteins, individual DNA templates are loaded into a flowcell and dock
with nanopores (tiny holes dug into the flow membrane).
The motor protein ensures the good translocation of the RNA strand, namely that it is well-
threaded through the nanopore. As each nucleotide passes through, it temporarily blocks the
nanopore, causing a specific and noticeable change in the electrical current. Precisely, the speed
at which the current is blocked indicates the type of nucleotide, while its duration corresponds to
the nucleotide’s position within the DNA strand.
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Oxford Nanopore sequencing protocol can generate long reads of 1 to 10 kb (kilobases) size,
however, it tends to have a higher error rate. By keeping the native RNA structure (no prior
conversion into cDNA is required, see key RNA library), it has revolutionized personalised
medicine and microbiome studies, allowing the detection of larger structural variants( see [MA23],
[LHM21], [maitra_etal12] and [LGN16]). 356

Pacific Biosciences Pacific Bio comprises two main stages. First, thousands of DNA templates
are first coupled with DNA polymerase and tethered on the bottom of a nanowell. Then, a
miniature camera underneath each well captures in the second step the sequential extension of
nucleotides to the DNA templates, by measuring the resulting fluorescent reactions: when a base
pairs with the DNA template, its signal’s intensity increases. PacBio is tailored for the generation
of long, preserved reads (see [Moh+22], [Nak20], [Gro+16] and [RA15] for details and concrete
biological applications, and [hae11] for a Youtube tutorial introduction). 356
phagocytosis Phagocytosis, originating from the Greek term “cell eater”, is the intricate process
through which phagocytes internalise and digest foreign intruders and dead cells. After a first
recognition stage, the phagocyte encapsulates the intruder in the phagosome, then fuses within
its cytoplasm with the lysosome organelle, whose enzymes cut into several pieces the foreign
molecules. 22

RNA library Briefly, the library, in the Bioinformatics fields, refers to the total collection of
reads generated by a sequencing platform.
The protocol to generate this collection of sequences largely differs depending on the sequencing
platform and the size and nature of reads generated:
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(a) Ecosystem of library preparation.
Presented is a summary of library preparation
techniques for the most common RNA-seq
methods, classified with respect to the pro-
tocol preparation and the resulting sequenc-
ing opening frame into short-read (black line),
long-read c(omplementary)DNA (green) or
direct long-read (blue). Reproduced from
[SGH19, Fig. 1, part A]).

(b) Comparison of short-read, long-read and direct
RNA-seq analysis: More complex and detailed can be
captured as we move from short-read cDNA sequencing to
long-read methods that can directly sequence isoforms. In-
deed, detecting isoforms with short-read cDNA sequencing
is hampered by unclear mapped reads, especially when
exons are shared between isoforms. Long-read cDNA
methods, by returning the complete isoform in a single
stage, largely alleviate these issues. Reproduced from
[SGH19, Fig. 1, part C]).

(c) Comprehensive comparison of RNA sequencing applications, reproduced from [DMW19, Fig. 1].

Figure F.7: Pros and cons of short-read (Illumina) or long-read-based (PacBio and Nanopore)
sequencing platforms.

The biological application of each sequencing platform will depend notably on the quality, the
number and the averaged size of reads within ([SGH19]). 9
RNASeq Sequencer platform All three sequencing platform generation are briefly reviewed
in Figure below:
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(a) Sequencing techniques. We generally
classify sequencing techniques in the Sanger
sequencing with low throughput analysis and
Next-Generation Sequencing with much higher
throughput analysis, cheaper process and of-
ten increased sequencing quality. It is further
possible to set apart NGS methods focusing on
short read from those sequencing long reads
(reproduced from [Gal23, Fig. 1]).

(b) Comparison of Sequencing methods. This scat-
ter plot (reproduced from [DrS17, Fig. 1]) illustrates
the relationship between the average length of processed
sequences (representing the reading frame) on the x-axis
and the total genome size that can be simultaneously
analysed on the y-axis.

(c) RNASeq generation: We illustrate key technical concepts underlying three distinct RNASeq tech-
nologies: briefly, the first generation refers to the Sanger sequencing, the second generation to the Illumina
sequencing, reviewed in details in Section 1.2.2 and the “third generation” refers to a range of recent
sequencing methods that share the same objective, namely sequencing long reads: Pacific Biosciences, Ion
Torrent Proton and Oxford Nanopore. The central figure is reproduced from [dBru+21, Fig .3], the Sanger
workflow from [Shr22, Fig .1], the Illumina principle from [DML23] and the third generation from [SGH19,
Fig. 1].

Figure F.8: An overview of sequencing techniques, by generation..

It is further common to separate ngs technologies according to the average length of the reads
output by the method (short-reads or long-read sequencing, [Cle22]). 9

Sanger sequencing Sanger sequencing, also known as the chain termination method, was
first developed in 1977. Briefly, it relies on the joint presence of modified nucleotides called
dideoxynucleotides (ddNTPs) with a specific DNA polymerase able to resist to high temperatures.
The ddNTPs lack a 3’ hydroxyl group that block the transcription of the DNA strand.
By ranking the reads generated by increasing size and identify for each of them the terminal
nucleotide, namely identified by the ddNTP incorporated in the original DNA sequence, the
sequence of the target DNA can be determined.
Historically, classifying the reads require gel electrophoresis and manual annotation, but this task
has since been automated through an analyser device. In addition, modern Sanger sequencing
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alleviates the integration of ddNTPs into the original genome, since the four different reactions,
each corresponding to the addition of one of the four dideoxynucleotides, can be performed in
one single reaction (see also video [quickbiochemistrybasics19], Wikipedia page [Sanger23]
and first original mention to this technique in [sanger_etal77]).
Interestingly, while Sanger sequencing tends to lag behind other NGS technologies, by generating
longer DNA reads and upholding a minimal error rate ( base calling accuracy close to 99.99%,
[shendure_ji08] ), it prevails other contemporary NGS methods, particularly in public health
endeavours like decoding the spike protein of SARS-CoV-2 ([daniels_etal21], [Lam+12]). 356
serendipity Serendipity refers to fortunate discoveries performed by chance or accident. 318
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Application of Multivariate Gaussian Convolution and Mixture Models for

Identifying Key Biomarkers Underlying Variability in Transcriptomic Pro-

files and the Diversity of Therapeutic Responses

Abstract
The diversity of phenotypes and conditions observed within the human species is driven by multiple
intertwined biological processes. However, in the context of personalized medicine and the treatment
of increasingly complex, systemic, and heterogeneous diseases, it is crucial to develop approaches that
comprehensively capture the complexity of the biological mechanisms underlying the variability in
biological profiles. This spans from the individual level to the cellular level, encompassing tissues
and organs. Such granularity and precision are essential for clinicians, biologists, and statisticians to
understand the underlying causes of the diversity in responses to clinical treatments and predict potential
adverse effects.

This manuscript primarily focuses on two biological entities of interest, namely transcriptome profiles
and immune cell populations, for dissecting the diversity of disease outcomes and responses to treat-
ment observed across individuals. The introductory section provides a comprehensive overview on the
intertwined mechanisms controlling the activity and abundance of these inputs, and subsequently details
standard physical methods for quantifying them in real-world conditions.
To comprehensively address the intricate multi-layered organization of biological systems, we considered
two distinct resolution scopes in this manuscript. At the lowest level of granularity, referred to in
this manuscript as an “endotype” we examine variations in the overall bulk expression profiles across
individuals. To account for the unexplained variability observed among patients sharing the same disease,
we introduce an underlying latent discrete factor. To identify the unobserved subgroups characterized
by this hidden variable, we employ a mixture model-based approach, assuming that each individual
transcriptomic profile is sampled from a multivariate Gaussian distribution.
Subsequently, we delve into a bigger layer of complexity, by integrating the cellular composition of
heterogeneous tissues. Specifically, we discuss various deconvolution techniques designed to estimate the
ratios of cellular populations, contributing in unknown proportions to the total observed bulk transcriptome.
We then introduce an independent deconvolution algorithm, DeCovarT, which demonstrates improved
accuracy in delineating highly correlated cell types by explicitly incorporating the co-expression network
structures of each purified cell type.

Keywords: gaussian mixture models, cellular deconvolution, transcriptome pipeline, drug repositioning



Application de modèles de convolution et de mélange gaussiens pour l'identi-

fication des biomarqueurs clés sous-jacents à la variabilité des profils trans-

criptomiques et à la diversité des réponses thérapeutiques

Abrégé

La diversité des phénotypes et des conditions observées au sein de l’espèce humaine est le résultat de
multiples processus biologiques interdépendants. Cependant, dans le contexte de la médecine personnalisée
et du traitement de maladies de plus en plus complexes, systématiques et hétérogènes, il est crucial de
développer des approches qui capturent de manière exhaustive la complexité des mécanismes biologiques
sous-jacents à la variabilité des profils biologiques. Cela s’étend du niveau individuel au niveau cellulaire,
englobant les tissus et les organes. Une telle précision et une telle granularité sont essentielles pour que
les cliniciens, les biologistes et les statisticiens comprennent les causes sous-jacentes de la diversité des
réponses aux traitements cliniques et puissent prédire d’éventuels effets indésirables.

Afin d’aborder de manière exhaustive la complexité hiérarchique et stratifiée des systèmes biologiques,
nous avons considéré deux niveaux d’étude dans ce manuscrit. Au niveau de granularité le plus bas,
désigné dans ce manuscrit sous le terme “endotype”, nous examinons les processus conduisant aux
variations observées ans les profils d’expression transcriptomiques entre individus. Notamment, pour
tenir compte de la variabilité non expliquée observée entre patients affectés par la même maladie, nous
introduisons une variable latente discrète. Pour identifier les sous-groupes non observés, dépendant de
cette variable cachée, nous utilisons des modèles de mélange probabilistes, en supposant que chaque profil
transcriptomique individuel est échantillonné à partir d’une distribution gaussienne multivariée, dont les
paramètres ne peuvent pas être directement estimés dans la population générale.
Ensuite, nous nous intéressons à un niveau de complexité supplémentaire, en passant en revue les
méthodes canoniques permettant d’estimer la composition des tissus, souvent très hétérogènes, au sein
d’un même individu. Plus précisément, nous discutons de diverses techniques de déconvolution conçues
pour estimer les ratios de populations cellulaires, ces dernières contribuant en proportions inconnues au
profil transcriptomique global mesuré. Nous présentons ensuite notre propre algorithme de déconvolution,
nommé “DeCovarT”, qui offre une précision améliorée de la délimitation de populations cellulaires
fortement corrélées, en incorporant explicitement les réseaux de co-expression propres à chaque type
cellulaire purifié.

Mots clés : modèles de mélange gaussiens, déconvolution cellulaire, filière de traitement de données
transcriptomiques, repositionnement de médicaments
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