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Titre : Processus ponctuels temporels et apprentissage scalable de dictionnaires convolutionnels :
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Résumé : Dans le domaine de l’imagerie
cérébrale non invasive, la magnéto- et
l’électroencéphalographie (M/EEG) offrent un
précieux aperçu des activités neuronales. Les
données enregistrées consistent en des séries
temporelles multivariées qui fournissent des
informations sur les processus cognitifs et sont
souvent complétées par des détails auxiliaires
liés au paradigme expérimental, tels que
l’horodatage des stimuli externes ou des actions
entreprises par les sujets. En outre, l’ensemble
des données peut inclure des enregistrements de
plusieurs sujets, ce qui facilite les analyses en
population.

Cette thèse de doctorat présente un nouveau
cadre pour l’analyse des signaux M/EEG
qui synergise l’Apprentissage Convolutif de
Dictionnaire (CDL) et les Processus Ponctuels
Temporels (TPP). Ce travail est divisé en
deux composantes principales : les avancées
en modélisation temporelle et le passage

à l’échelle computationnelle. En matière
de modélisation temporelle, deux nouveaux
modèles de processus ponctuels sont introduits,
accompagnés de méthodes d’inférence efficaces
pour capturer les activités neuronales liées
aux tâches. La méthode proposée d’Inférence
Discrétisée Rapide pour les Processus de Hawkes
(FaDIn) a également des implications pour des
applications plus larges. De plus, ce travail
aborde les défis computationnels de l’analyse
des données M/EEG à grande échelle basée sur
le CDL, en introduisant un nouvel algorithme
robuste de CDL avec fenêtrage stochastique.
Cet algorithme permet de traiter efficacement
les signaux entachés d’artefacts ainsi que les
études de population à grande échelle. Le CDL
populationnelle a ensuite été utilisé sur le grand
ensemble de données en libre accès Cam-CAN,
révélant des aspects de l’activité neuronale liée
à l’âge.

Title: Temporal Point Processes and Scalable Convolutional Dictionary Learning: A Unified
Framework for M/EEG Signal Analysis in Neuroscience
Keywords: Convolutional Dictionary Learning (CDL); Temporal Point Processes (TPPs); Kernel
Inference; Computational Neuroscience; M/EEG

Abstract: In the field of non-invasive
brain imaging, Magnetoencephalography
and Electroencephalography (M/EEG) offer
invaluable insights into neural activities. The
recorded data consist of multivariate time
series that provide information about cognitive
processes and are often complemented by
auxiliary details related to the experimental
paradigm, such as timestamps of external
stimuli or actions undertaken by the subjects.
Additionally, the dataset may include recordings
from multiple subjects, facilitating population-
level analyses.

This doctoral research presents a novel
framework for M/EEG signal analysis that
synergizes Convolutional Dictionary Learning
(CDL) and Temporal Point Processes (TPPs).
The work is segmented into two primary

components: temporal modeling advancements
and computational scalability. For temporal
modeling, two novel point process models are
introduced with efficient inference methods to
capture task-specific neural activities. The
proposed Fast Discretized Inference for Hawkes
Processes (FaDIn) method also has implications
for broader applications. Additionally, this
work addresses the computational challenges of
large-scale M/EEG data CDL-based analysis,
by introducing a novel Stochastic Robust
Windowing CDL algorithm. This algorithm
allows to process efficiently artifact-ridden
signals as well as large population studies.
Population CDL was then used on the large
open-access dataset Cam-CAN, shedding light
on age-related neural activity.
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Résumé en français des travaux de
thèse

Les neurosciences forment un domaine interdisciplinaire où convergent la biologie,
la psychologie et les mathématiques, cherchant à démystifier les mécanismes du
cerveau et du système nerveux. Une composante centrale consiste en l’analyse
des activités neuronales, capturées à l’aide de techniques sophistiquées telles que
la magnétoencéphalographie (MEG) et l’électroencéphalographie (EEG). Ces mé-
thodes non invasives exploitent respectivement les principes physiques des champs
magnétiques et électriques pour fournir un aperçu des processus dynamiques du
cerveau. Typiquement, plusieurs dizaines voire centaines de capteurs sont dispo-
sés autour de la tête d’un individu, permettant l’enregistrement des fluctuations
du champ électrique ou magnétique à une résolution temporelle élevée, générale-
ment de l’ordre de 1000Hz, sur des périodes allant de quelques minutes à plusieurs
heures.

Les données M/EEG, caractérisées par leur haute résolution temporelle, sont
représentées sous forme de signaux de séries temporelles multivariées – un par
capteur –, capturant les modèles complexes d’activité neuronale. Parallèlement,
un composant tout aussi essentiel de notre recherche implique l’enregistrement
minutieux des événements externes. Ces événements vont des stimuli contrôlés et
des actions des participants dans des dispositifs expérimentaux aux interventions
cliniques, telles que les injections de médicaments lors de procédures chirurgicales.
L’intégration de ces événements avec les données M/EEG fournit un cadre complet
pour comprendre l’activité cérébrale dans divers contextes.

La MEG et l’EEG ont joué un rôle crucial dans l’avancement de notre com-
préhension de divers processus cognitifs et neurologiques. À partir de ces signaux,
nous pouvons extraire une multitude d’informations, y compris, mais sans s’y li-
miter, les oscillations neuronales, les potentiels évoqués – liés aux événements –,
et les modèles de connectivité neuronale. Ces aperçus ont des implications pro-
fondes tant dans les contextes cliniques que de recherche, offrant des voies vers de
nouvelles stratégies thérapeutiques et une compréhension plus approfondie de la
fonctionnalité du cerveau.



Résumé en français des travaux de thèse

Dans cette thèse, nous abordons deux défis principaux :

1. Développement d’un cadre unifié pour l’analyse des dépendances
temporelles. Notre premier défi consiste à utiliser la décomposition en
Dictionnaire Convolutionnel (CDL) pour transformer les signaux M/EEG en
un flux d’événements. Nous visons à établir un cadre capable d’apprendre
les dépendances temporelles entre les motifs neuronaux récurrents – appelés
“atomes” – et les stimuli externes, modifiant ainsi la manière dont on modélise
l’interaction entre l’activité neuronale et les influences externes.

2. Extension de la décomposition CDL à l’échelle de populations. Le
second défi est d’élargir et de raffiner le processus de décomposition CDL
pour une application à une population plus large. Cet élargissement est
double. D’une part, nous visons à améliorer la vitesse et la robustesse du
processus CDL, le rendant résistant à une variété de données aberrantes.
Ces anomalies peuvent provenir de multiples sources, allant de facteurs en-
dogènes tels que des défaillances de capteurs à des facteurs exogènes comme
les mouvements des sujets. D’autre part, notre objectif est de développer
une nouvelle méthodologie d’agrégation pour synthétiser les résultats CDL
spécifiques à chaque sujet. Cette approche nous permettra de découvrir des
effets au niveau de la population, offrant de nouvelles perspectives sur la gé-
néralisabilité et la variabilité des motifs neuronaux entre différents individus.

Développement d’un cadre unifié pour l’analyse des
dépendances temporelles

Ainsi, le premier défi est de développer un cadre unifié visant à élucider les relations
complexes entre les stimuli externes et les réponses neuronales, avec un minimum
de traitement des données et d’intervention experte. Au cœur de ce cadre se trouve
l’analyse de données de séries temporelles neuronales, riches en formes d’ondes de
signaux prototypiques connues sous le nom d’“atomes”. Ces atomes invariants
par translation, essentiels dans la recherche clinique et cognitive, sont extraits
pour comprendre la chronologie et l’occurrence des événements neuronaux. Les
méthodes traditionnelles, telles que le “moyennage d’époques” – epoch averaging
en anglais, c’est-à-dire le moyennage de segments temporels “centrés” autour d’un
événement particulier –, échouent souvent à saisir les nuances de ces réponses
synchronisées en raison de légères déviations temporelles.
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Résumé en français des travaux de thèse

En réponse à cela, cette thèse tire parti de l’apprentissage de dictionnaire convo-
lutifs (CDL ; Convolutional Dictionary Learning), spécialement adapté aux prin-
cipes physiques sous-jacents aux signaux électrophysiologiques, comme décrits par
les équations de Maxwell. Le CDL offre une approche efficace et non supervisée
pour l’extraction de motifs dans les signaux électrophysiologiques. Le modèle re-
présente les données comme des combinaisons linéaires parcimonieuses – sparse
– de convolutions entre atomes du dictionnaire et codes invariants par décalage,
présentant ainsi une nouvelle représentation basée sur les événements des dyna-
miques temporelles. Ces atomes sont définis par leurs caractéristiques spatiales
et temporelles et peuvent correspondre à diverses activités physiologiques – par
exemple les battements de cœur ou les clignements d’yeux – ou à des réponses
neuronales à des stimuli externes tels que des indices auditifs ou visuels.

Les processus ponctuels temporels (TPP ; Temporal point processes) fournissent
un cadre statistique idéalement adapté pour modéliser ces activations d’événements
discrets. Historiquement utilisés en neurosciences pour modéliser les enregistre-
ments monocellulaires et les trains de spikes neuronaux – neural spike trains –, ces
processus n’ont cependant pas directement abordé l’interaction entre les déclen-
chements de stimuli déterministes et les activations aléatoires d’atomes.

Pour combler cette lacune, cette thèse introduit deux modèles : les proces-
sus ponctuels temporels dirigés (DriPP ; Driven Temporal Point Processes) et
l’inférence discrétisée rapide (FaDIn ; Fast Discretized Inference). DriPP étend
les capacités du CDL en reliant les occurrences d’événements à des conditions ou
des tâches expérimentales spécifiques, en utilisant un modèle statistique novateur
qui connecte les fonctions d’intensité des processus ponctuels aux événements de
stimulation. Cette approche est soutenue par un algorithme efficace d’expectation-
maximisation (EM), montrant des résultats prometteurs dans la révélation de ré-
ponses neuronales évoquées et induites. FaDIn, quant à lui, s’attaque aux défis
inhérents à l’inférence des TPP, en particulier avec les processus auto-excitants de
Hawkes, en introduisant un solveur rapide basé sur le gradient. Cette méthode
améliore considérablement la précision et l’efficacité dans la modélisation des mo-
tifs induits par les stimuli dans les signaux cérébraux, améliorant notamment les
estimations de latence.

Collectivement, DriPP et FaDIn contribuent à un cadre analytique unifié pour
les données M/EEG, offrant des méthodes robustes pour identifier et interpréter
les motifs temporels influencés par les stimuli externes.
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Extension de la décomposition CDL à l’échelle de
populations

Le second défi se concentre sur l’évolution du CDL, passant d’une application
individuelle à un protocole robuste au niveau de la population. L’objectif final est
d’établir une méthodologie basée sur le CDL capable de générer un dictionnaire
commun de motifs neuronaux applicables à un ensemble de sujets.

L’utilisation actuelle du CDL est principalement limitée à des sujets individuels,
avec des contraintes computationnelles posées par les algorithmes existants, tels
que ceux du package Python AlphaCSC, qui représentent un frein significatif pour
les études en population. De plus, les enregistrements expérimentaux contiennent
souvent des artefacts provenant de diverses sources, y compris des défaillances de
capteurs (facteurs endogènes) ou des mouvements des sujets (facteurs exogènes).
Ces anomalies, si elles ne sont pas identifiées et éliminées, peuvent compromettre
l’intégrité de l’analyse. En outre, la variabilité spatiale des motifs neuronaux,
influencée par les morphologies cérébrales individuelles, présente un défi dans le
transfert des atomes appris d’un sujet à un autre.

Pour relever ces défis, la première contribution significative est le développe-
ment du CDL stochastique et robuste par fenêtrage – Stochastic Windowing and
Robust Convolutional Dictionary Learning. Cette approche vise à surmonter les
limitations computationnelles rencontrées dans l’analyse de données de séries tem-
porelles étendues et à gérer la qualité variable des mesures. En mettant en œuvre
le fenêtrage stochastique combiné à la computation sur GPU et à la différentiation
automatique de PyTorch, le processus devient plus efficace sur le plan computation-
nel. De plus, un mécanisme de détection des anomalies en cours d’apprentissage est
intégré, améliorant ainsi la robustesse de la CDL contre les anomalies de données.

Le second développement clef implique l’application du CDL au niveau de
la population. En utilisant une approche basée sur les données sur un grand
jeu de données en libre accès (Cam-CAN), couplée à un algorithme d’agrégation
spécialisé, ce travail révèle la relation complexe entre la performance de tâches et
le vieillissement dans les caractéristiques spatiotemporelles des rafales transitoires
neuromagnétiques – neuromagnetic transient bursts. Cette analyse au niveau de la
population révèle des tendances liées à l’âge dans les niveaux d’activation de types
spécifiques de rafales, offrant de nouvelles perspectives sur l’évolution de l’activité
cérébrale humaine au cours de la vie.

Collectivement, ces avancées améliorent l’application du CDL dans l’analyse
des données M/EEG, en surmontant les défis computationnels et en étendant la
portée du CDL aux études en population.
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Introduction

Neuroscience, an interdisciplinary domain at the confluence of biology, psychol-
ogy, and mathematics, is dedicated to unraveling the functioning of the brain
and nervous system. Central to this endeavor is the analysis of neuronal activi-
ties, captured through sophisticated modalities such as magnetoencephalography
(MEG) and electroencephalography (EEG). These two non-invasive techniques,
leveraging the physical principles of magnetic and electric field measurements, re-
spectively, offer a window into the brain’s dynamic processes. In concrete terms,
a few dozen or hundreds of sensors are placed around a subject’s head, and the
machine records the intensity of the electric or magnetic field at high temporal
resolution, of the order of 1000Hz, for durations ranging from a few minutes to
several hours. Characterized by this high temporal resolution, M/EEG data, are
represented as multivariate time-series signals – one per sensor –, encapsulating
the intricate patterns of neuronal activity. In parallel, an equally critical com-
ponent of our research involves the meticulous logging of external events. These
events range from controlled stimuli and participant actions in experimental setups
to clinical interventions, such as drug injections during surgical procedures. The
integration of these logs with M/EEG data provides a comprehensive framework
for understanding brain activity in diverse contexts.

MEG and EEG have been instrumental in advancing our comprehension of
various cognitive and neurological processes. From these signals, we can extract
a wealth of information including, but not limited to, neural oscillations, event-
related potentials, and network connectivity patterns. These insights have pro-
found implications in both clinical and research settings, offering pathways to
novel therapeutic strategies and deeper understanding of the brain’s functionality.
The foundational processing and classical analysis methods applied to M/EEG
data – including filtering and time-frequency analysis, independent component
analysis, and segmentation and epoching – are crucial for accurately interpreting
these complex signals and extracting meaningful information, thereby facilitating
the exploration of the brain’s intricate dynamics.



Introduction

In this thesis, we confront two principal challenges.

1. Developing an end-to-end framework for temporal dependency anal-
ysis. Our first challenge involves leveraging Convolutional Dictionary Learn-
ing (CDL) decomposition to transform M/EEG signals into a stream of
events. Our aim is to establish a framework capable of learning the tem-
poral dependencies between recurrent neural patterns – called “atoms” – and
external stimuli, rethinking how we model the dynamic between neural ac-
tivity and external influences.

2. Extending CDL decomposition across populations. The second chal-
lenge is to scale and refine the CDL decomposition process for applicability
across a broader population. This extension is two-fold. Firstly, we aim to
enhance the speed and robustness of the CDL process, making it resilient to
a variety of outliers. These outliers can arise from multiple sources, rang-
ing from endogenous factors like sensor failures to exogenous factors such
as subject movements. Secondly, our goal is to develop a novel aggregation
methodology for synthesizing subject-specific CDL results. This approach
will enable us to uncover population-level effects, offering new insights into
the generalizability and variability of neural patterns across different indi-
viduals.

Developing an end-to-end framework for temporal
dependency analysis

Thus, the first challenge is to develop an end-to-end framework aiming to eluci-
date the intricate relationships between external stimuli and neural responses with
minimal data processing and expert intervention. At the core of this framework
is the analysis of neural time-series data, rich in prototypical signal waveforms
known as “atoms”. These shift-invariant atoms, essential in clinical and cogni-
tive research, are extracted to understand the timing and occurrence of neural
events. Traditional methods like epoch averaging – i.e., averaging of time-bound
segments “centered” on a particular event – often fail to capture the nuances of
these time-locked responses due to minor temporal deviations.

In response, this thesis leverages Convolutional Dictionary Learning (CDL),
specifically tailored to the physical principles underlying electrophysiological sig-
nals, as described by Maxwell’s equations. CDL offers an efficient, unsupervised
approach for pattern extraction in electrophysiological signals. The model repre-
sents data as sparse linear combinations of convolutions between dictionary atoms
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and shift-invariant codes, presenting a novel event-based representation of tempo-
ral dynamics. These atoms are defined by both spatial and temporal characteristics
and may correspond to various physiological activities – e.g., heartbeats or eye-
blinks – or neural responses to external stimuli such as auditory or visual cues.
Temporal point processes (TPP) provide a statistical framework ideally suited for
modeling these discrete event activations. Historically used in neuroscience for
modeling single-cell recordings and neural spike trains, these processes, however,
have not directly addressed the interaction between deterministic stimuli onsets
and stochastic atom activations.

To bridge this gap, the thesis introduces two models that contribute to a unified
analytical framework for M/EEG data: Driven Temporal Point Processes (DriPP)
and Fast Discretized Inference (FaDIn). DriPP extends CDL’s capabilities by link-
ing event occurrences with specific experimental conditions or tasks, using a novel
statistical model that connects point process intensity functions to stimulation
events. This approach is underpinned by an efficient expectation-maximization
(EM) algorithm, showing promising results in uncovering both evoked and in-
duced neural responses. FaDIn, on the other hand, tackles the inherent challenges
in TPP inference, particularly with self-exciting Hawkes processes, by introducing
a fast gradient-based solver. This method significantly enhances the accuracy and
efficiency in modeling stimuli-induced patterns in brain signals, notably improving
latency estimations.

Extending CDL decomposition across populations

The second challenge is dedicated to evolving CDL from a subject-wise application
to a robust, population-level protocol. The ultimate goal is to establish a CDL-
based methodology capable of generating a common dictionary of neural patterns
applicable to entire populations. The current use of CDL is primarily limited to
individual subjects, with computational constraints posed by existing algorithms,
such as those in the Python package AlphaCSC, acting as significant bottlenecks for
population studies. Additionally, experimental recordings often contain artifacts
originating from various sources, including sensor failures (endogenous factors)
or subject movements (exogenous factors). These outliers, if not identified and
removed, can compromise the integrity of the analysis. Furthermore, the spatial
variability of neural patterns, influenced by individual brain morphologies, presents
a challenge in transferring learned atoms from one subject to another.

To address these challenges, the first significant contribution is the develop-
ment of Stochastic Windowing and Robust Convolutional Dictionary Learning.
This approach is designed to tackle the computational limitations encountered in
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analyzing extensive time-series data and to manage the variable quality of mea-
surements. By implementing stochastic windowing combined with GPU compu-
tation and PyTorch ’s automatic differentiation, the process becomes more com-
putationally efficient. Additionally, an in-learning outlier detection mechanism is
integrated, enhancing the robustness of CDL against data anomalies.

The second key development involves applying CDL at the population level.
Utilizing a data-driven approach on a large open-access dataset (Cam-CAN), cou-
pled with a specialized aggregation algorithm, this work uncovers the intricate
relationship between task performance and aging in the spatiotemporal charac-
teristics of neuromagnetic transient bursts. This population-level analysis reveals
age-related trends in activation levels of specific burst types, offering novel insights
into the evolution of human brain activity across the lifespan.

Organization of the Thesis

This thesis is structured into three distinct parts, each focusing on a different aspect
of M/EEG signal analysis and modeling, providing a comprehensive exploration
of the field.

Part I, titled “General Background”, lays the foundational knowledge necessary
for the subsequent sections. It begins with chapter 1, which introduces the basic
principles of neuroscience and the nature of neurophysiological signals. Chapter 2,
delves into the technical aspects of dictionary learning, a key method used in
this research, then chapter 3 provides a detailed examination of temporal point
processes, setting the stage for their application in later chapters.

Part II, “Temporal Modeling and Inference in M/EEG Signals: A Point Process
Approach”, presents the two developed models that are at the core of the thesis:
“DriPP”, in Chapter 4, introduces a novel approach to modeling M/EEG signals
using driven point processes ; while “FaDIn” in chapter 5, further develops these
methods, focusing on fast discretized inference techniques for complex temporal
models.

Part III, “Advancements in Convolutional Dictionary Learning for Large-Scale
M/EEG Data Analysis: Stochastic Approaches and Population Studies”, shifts the
focus to convolutional dictionary learning and its applications in large-scale data
analysis. Chapter 6, “Stochastic Windowing CDL”, explores innovative approaches
to dictionary learning in the context of M/EEG data, and chapter 7 concludes the
thesis by applying an CDL aggregation method to a large dataset to uncover
patterns related to specific tasks and aging trends.
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Part I

General Background





The first part of this thesis manuscript is dedicated to furnishing the reader
with the essential general context and knowledge base required for a compre-

hensive understanding of the research conducted herein. This part is multifaceted
in its intention. Not only does it aim to elucidate the complex interplay of neu-
rophysiological signals and mathematical concepts that underpin the subsequent
contributions, but it also serves as a reference tool addressed to a broad audience,
including future doctoral students in neuroscience applications with magneto- and
electroencephalography (M/EEG) signals and seasoned scholars at the intersection
of neuroscience, mathematics, and machine learning.

This part begins with a detailed overview of the background on neuroscience
and neurophysiological signals in chapter 1. It covers the fundamental biology of
neuroscience, emphasizing the brain’s role as the central organ of the neural system
and the origin of neurophysiological signals. Further, it delves into the intricacies
of M/EEG data pre-processing and classical analysis in neuroscience, including
topics such as filtering and time-frequency analysis, independent component anal-
ysis, and segmentation and epoching. This chapter is particularly useful for a
general knowledge in neuroscience as well as having a better grasp of experiments
performed on real data in chapters 4 to 7.

The mathematical background in chapters 2 and 3 is equally rigorous. The
former is a comprehensive exploration of dictionary learning that encompasses
motivation and sparse representation, mathematical formulation and optimiza-
tion problems, convolutional dictionary learning and its various applications. This
chapter also includes a targeted examination of how convolutional dictionary learn-
ing finds application in neuroscience. Chapter 3 is a thorough look at temporal
point processes, including definitions, characteristics, Hawkes processes, and good-
ness of fit analysis. The decomposition of M/EEG signals using CDL is used
throughout this thesis, especially in part II as it is used as input of the developed
point processes models when applied to real data.

This part has been diligently crafted to serve as a primer for those commencing
a doctoral journey in neuroscience, particularly those dealing with M/EEG signals
but lacking specific background or initial training in this domain. It also facilitates
the learned reader to easily navigate the contributions, referring back to this section
as needed to clarify points.





Chapter 1

Background on Neuroscience and
Neurophysiological Signals

Contents
1.1 Biology of neuroscience . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 The brain, the central organ of the neural system . . . 10

1.1.2 Origin of the neurophysiological signals . . . . . . . . . 15

1.2 Pre-processing and classical analysis in neurosciences . . . . . 21

1.2.1 Filtering and time-frequency analysis . . . . . . . . . . 24

1.2.2 Independent Component Analysis . . . . . . . . . . . . 27

1.2.3 Segmentation and epoching . . . . . . . . . . . . . . . 29

Neuroscience designates the scientific study of the structure, function, and de-
velopment of the brain and the nervous system, which can be traced back to the

Hellenistic world, with significant advancements in the late 19th and early 20th
century (see section A). This vast field covers everything from the molecular level
to the level of organs such as the brain, spinal cord, and peripheral nerves. This
complex, multidisciplinary science involves various sub-disciplines – in particular
neuroinformatics and computational neuroscience –, each of which brings its own
specific knowledge and techniques to improve our understanding of the nervous
system. Neuroscience is not only essential for understanding the brain’s normal
functions but also for identifying, treating, and preventing neurological disorders
and injuries. Conditions such as Alzheimer’s and Parkinson’s diseases, schizophre-
nia, depression, and stroke can be better understood with a deeper knowledge of
how the neural system operates.



Chapter 1. Background on Neuroscience and Neurophysiological Signals

This chapter aims to provide the reader with the requisite insights into the
biological and technical aspects of the field. The first section begins by exploring
the brain, the central organ of the neural system, offering an in-depth look into
its structure and function (p. 10). It further delves into the biological origin of
neurophysiological signals (p. 15), uncovering the mechanisms that give rise to the
intricate signals that form the basis of neural communication.

Moving from the biological to the analytical, the second section (p. 21) provides
an essential guide to the methods employed in the transformation and interpre-
tation of magneto- and electroencephalography (M/EEG) data. This includes a
comprehensive review of filtering and time-frequency analysis (p. 24), indepen-
dent component analysis (p. 27), and segmentation and epoching (p. 29). These
techniques are vital in translating complex neural signals into usable data, con-
tributing to the advancements in treating and understanding neurological disorders
and conditions.

This chapter serves as a bridge, connecting neuroscience’s broad and multidisci-
plinary nature to the specific biological and analytical tools that enable researchers
to unravel the mysteries of the nervous system. Whether for the investigation of
normal brain functions or the pursuit of solutions to debilitating neurological dis-
eases, the foundational knowledge provided in this chapter equips the reader with
a nuanced perspective on the science of the neural system.

1.1 Biology of neuroscience

1.1.1 The brain, the central organ of the neural system

In this section, we delve into the foundational elements of the neural system, with
a particular focus on the brain as its central organ. We explore the architecture
of the nervous system, the role of neurons as its basic units, and the biological
intricacies of the brain itself.

The nervous system, the network of neurons

The nervous system, a complex web of neural connections, serves as the body’s
control hub and communication network. This intricate system is composed of
the brain, spinal cord, and a vast network of billions of neurons that pervade the
body. Its key roles include organizing and coordinating bodily functions, as well as
mediating interactions with the external environment. As established by Thomas
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1.1 Biology of neuroscience

(a) Central Nervous System (CNS) (b) Peripheral Nervous System (PNS)

Figure 1.1.1: Composition of the CNS (a) and the PNS (b). [Pelz]

Willis (1621-1675) very early on in his Cerebri Anatome (1664), this expansive
network of neurons is fundamentally divided into two subsystems: the Central
Nervous System (CNS) and the Peripheral Nervous System (PNS) [Dehaene, 2021],
as presented in fig. 1.1.1.

The CNS, comprising the brain and spinal cord, is the primary control center
of the body, tasked with system regulation, information processing, and memory
formation. The PNS, on the other hand, consists of all the neurons linking the
CNS to the rest of the body, responsible for transmitting signals to and from the
brain or spinal cord. This division of the nervous system effectively facilitates
communication between the CNS and the body’s periphery.

Further, the PNS itself can be split into two components: the Autonomic
Nervous System (ANS) and the Somatic Nervous System (SNS). The ANS governs
the body’s unconscious actions including regulating functions such as heart rate,
respiration, blinking, and digestion. Conversely, the SNS handles voluntary control
of the body, facilitating conscious and deliberate actions. Whenever a specific
action, like raising a hand or pushing a button, is planned and executed, the
SNS transmits signals from the brain to our muscles, instructing them on the
necessary movements. Thus, the nervous system as a whole plays an integral role
in the body’s function, coordinating everything from basic physiological processes
to complex voluntary actions.
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The neuron, the basic unit of the neural system

Figure 1.1.2: Structure and composition of
a neuron. [Pollock, 2023]

A neuron, also known as a nerve cell, is
an electrically excitable cell that serves
as the fundamental unit of the ner-
vous system. Characterized by their
ability to transmit bioelectrical signals
known as nerve impulses or action po-
tential, neurons carry communication
within the body, allowing for both pri-
mary and complex functions ranging
from physiological regulation to cogni-
tion and movement. Physiologically,
neurons exhibit two fundamental properties: excitability, which is the capacity
to respond to stimuli and convert them into nerve impulses; and conductivity,
which denotes the ability to transmit these impulses across the length of the neu-
ron. These impulses propagate at remarkable speeds, capable of traveling through
a nerve cell at velocities of up to 118 meters per second.

Structurally, every neuron comprises three principal parts: the cell body (soma),
dendrites, and an axon (see fig. 1.1.2). The cell body houses the neuron’s nucleus
and other vital organelles, serving as the metabolic center of the neuron. Den-
drites, tree-like appendages extending from the cell body, receive signals from
other neurons or the external environment and deliver them to the cell body. The
axon, typically a singular elongated projection attached to the cell body, carries
signals away from the cell body and towards other neurons, muscle cells, or glands.
In humans, axons can be several centimeters, with some up to a dozen [Dehaene,
2021]. The dendrites and axons are called nerve fibers.

Contrary to the contiguous appearance of the nervous system, no two neurons
directly touch each other. Instead, they communicate across a tiny space known
as the synaptic gap or synapse, as shown in fig. 1.1.3. Indeed, the arrival of the
action potential1 at the axon terminals triggers a transformation of the signal from
electrical to chemical in nature, which is essential for the signal to pass through
the synaptic gap and into the next neuron. Precisely, within the axon terminals
are vesicles loaded with neurotransmitters, which are chemical messengers that
convey signals across the synapse. Some common examples of neurotransmitters
are dopamine, serotonin, and epinephrine. Protecting these essential communi-
cation channels, a fatty layer of insulation known as the myelin sheath envelops
the dendrites and the axon. The myelin sheath ensures the integrity of the nerve

1A detailed discussion of the action potential and its underlying mechanisms will be presented
later in section 1.1.2.
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signals by preventing them from interfering with one another, while also enhancing
the speed of impulse propagation along the axon.

Figure 1.1.3: Synapse structure and
function. [Pollock, 2023]

Despite the basic uniformity in the
structure of neurons, there exist variations
optimized for their specific functions, lead-
ing to the classification of neurons into
three primary types: sensory neurons, in-
terneurons, and motor neurons. Sensory
neurons, also known as afferent neurons,
carry signals from sensory organs such as
the skin, tongue, ears, eyes, and nose to
the brain and spinal cord, thereby enabling
sensory perception. Interneurons, residing
entirely within the central nervous system,
form a link between sensory and motor neu-
rons, often integrating and interpreting in-
coming sensory information and formulat-
ing an appropriate response. Motor neu-
rons, or efferent neurons, then convey sig-
nals from the brain or spinal cord to the

muscles and glands, facilitating voluntary and involuntary actions.

Contrary to most cells in the body, neurons possess a limited capacity for
regeneration. An individual is born with over 100 billion neurons that grow and
form connections as the individual develops. However, once an individual reaches
adulthood, the total number of nerve cells begins to decrease due to natural cell
death. This unique trait underscores the importance of maintaining neuronal
health for lifelong function and well-being.

Biology of the brain

The human brain, an intricate organ, serves as the body’s command center, con-
trolling every action, whether it is an overt gesture like picking up an object or
an unconscious action such as breathing or blinking. It forms a crucial part of the
central nervous system, connecting with the rest of the body through the spinal
cord and its extending nerves. Residing within the protective confines of the skull,
the brain is shielded by three layers of membranes known as the meninges. More-
over, a fluid known as cerebrospinal fluid is present to buffer the brain and prevent
its violent movement within the skull. At birth, a baby’s brain boasts billions of
neurons or nerve cells, and all the major cortical connection clusters are already
in place. They are established on a mainly genetic basis. However, their termi-
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Figure 1.1.4: Composition of the brain. [Pollock, 2023]

nation has not yet been established with certainty. Axons search for their target
for a long time and their wiring depends on experience. Synapse after synapse,
learning shapes our nerve endings [Dehaene, 2021]. Indeed, as the child grows
and matures, connections between these neurons continue to form, strengthening
and proliferating with learning and memory formation. This intricate, dynamic
network embodies the brain’s incredible plasticity.

When we talk about brain plasticity, we mean it literally: neurons move, their
axonal endings grow and shrink. Numerous buds (dendritic spines) are constantly
appearing and disappearing on their dendritic trees, ready to receive new synapses.
These organelles are constantly on the move: their size, their very presence, can
change on the scale of a few tens of minutes, depending on the learning process [De-
haene, 2021]. Neuronal activity selectively modulates the strength and stability of
synapses. A synapse whose two neurons, presynaptic and postsynaptic, activate
together increases in strength. Its size increases to accommodate more receptor
molecules. Conversely, if a synapse is not useful, its effectiveness decreases and it
may retract completely [Dehaene, 2021].

The brain is not just made up of neurons: at least 50% of cells are non-neuronal
cells that do not produce electrical impulses called glial cells, or neuroglia. Neu-
roglia are also present in the spinal cord as well as in the Peripheral Nervous
System. They are involved in all sorts of functions that support neurons, for ex-
ample, recycling neurotransmitters released at the synapse, or acting as a link
between synaptic activity and cerebral blood flow, ensuring neurons optimal func-
tionality. For instance, it is the glial cells, the astrocytes, which detect that a
region of the brain is working and which, in a few seconds, dilate the neighboring
capillary arteries in order to supply the extra oxygen and glucose that the tissue
needs – which generates the signal that we detect in functional MRI [Fields et al.,
2014].
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The human brain, home to approximately 86 billion neurons, predominantly
comprises gray and white matter (fig. 1.1.4). Grey matter constitutes 40% of
the brain and includes neuron cell bodies, dendrites, and unmyelinated axons that
appear gray. It forms the cortex – in Latin, the bark of the brain –, a thin surface a
few millimetres thick that covers our two hemispheres hosting a myriad of neuronal
cell bodies and synapses: 1 cubic millimeter of cortex contains around 50 000
neurons [Dehaene, 2021]. Meanwhile, white matter constitutes 60% of the brain.
It is situated in the brain’s deeper regions, comprising bundles of myelinated axons
that appear white, and serves as a conduit for connecting different brain regions.

The brain is organized into three major parts: the brainstem, the cerebellum,
and the cerebrum. The brainstem, forming the bridge between the spinal cord
and the brain’s higher regions, houses control centers for automatic body func-
tions such as breathing, swallowing, blinking, and vomiting. Situated above the
brainstem, the cerebellum is integral to controlling muscle movements and main-
taining posture and balance. The cerebrum, the brain’s most prominent part,
is divided into the left and right hemispheres. It governs higher cognitive pro-
cesses, including memory formation, interpretation of signals from the senses, and
emotional responses.

1.1.2 Origin of the neurophysiological signals

Neurophysiological signals refer to the magnetic field and the electrical currents
generated by the biological processes within neurons. As previously described, the
communication mechanism in neurons is an electrochemical process characterized
by changes in the electric potential across the neuron’s membrane, known as action
potentials. Action potentials in neurons are also known as “nerve impulses” or
“spikes”, and the temporal sequence of action potentials generated by a neuron is
called its “spike train”. A neuron that emits an action potential, or nerve impulse,
is often said to “fire”. These action potentials are the basis of the electrical signals
that can be measured on the scalp, the electroencephalogram (EEG), or on the
skin, the electromyogram (EMG). The recording methods of such signals will be
elaborated upon in this section.

In neuroscience, we are particularly interested in the electrical activity of the
neurons and especially in the emission of post-synaptic potentials (PSP). PSP are
changes in the membrane potential – the difference in electrical potential between
the outside and inside of a cell – of the postsynaptic neuron consecutive to the
binding of neurotransmitters to the postsynaptic cell’s receptors, reflecting the ex-
change of ions between pre- and postsynaptic neurons (see fig. 1.1.5). There are
two primary types of postsynaptic potentials, excitatory and inhibitory. Excita-
tory Postsynaptic Potentials (EPSPs) occur when the binding of neurotransmit-
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Figure 1.1.5: Post-synaptic potentials in a neuron, consecutive to ion exchange. [Gram-
fort]

ters to the postsynaptic receptors opens positive ion channels, allowing positively
charged ions to enter the neuron, resulting into a net gain of positive charge across
the membrane. This process depolarizes the neuron, making it more likely to fire
an action potential. Inhibitory Postsynaptic Potentials (IPSPs) occur when the
binding of neurotransmitters to the postsynaptic receptors opens channels for neg-
atively charged ions or positively charged ions to exit. This hyperpolarizes the
neuron, making it less likely to fire an action potential.

In a single patch of postsynaptic membrane, multiple EPSPs can likely occur.
EPSPs, when occuring close in time, have an additive effect, which means that the
sum of all the individual EPSPs will result in a combined effect. Greater membrane
depolarization takes effect when there are larger EPSPs created. The larger the
EPSPs become, the more it reaches the limit of firing an action potential. Indeed,
action potentials are “all-or-nothing” events – contrary to PSPs that are said to
be “graded potentials” –: when enough depolarization accumulates to bring the
membrane potential up to a certain level, called the threshold, the action potential
will fire [Kandel et al., 2000, chap. 9]. Note that human dendrites contain almost
30 000 synapses, and the activation of just 135 of them is enough to generate an
activation potential [Dehaene, 2021]. If the membrane potential does not reach this
threshold, the action potential will not fire. Action potential occurs thus within a
neuron when it transmits electrical impulses. During this signal transmission, the
membrane potential of the neuron – specifically the axon – fluctuates with rapid
rises and falls.

Electro- and Magneto- encephalography Just as the moving charges on a
wire – the ions in the axon – induce an electromagnetic field, a group of activated
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neurons in the gray matter would form a current generator that produces such a
field. More precisely the M/EEG signal measured is mostly emitted by pyramidal
cells in the cortex, due to their unique topology and placement relative to the
scalp. Indeed, pyramid cells, named for their characteristic pyramid-like shape,
are a prominent type of excitatory neuron found in the cerebral cortex and play a
pivotal role in cortical information processing.

Figure 1.1.6: Approximate plot of a typical
action potential and its different phases as
the action potential passes a point on the
cell membrane. [Wikipedia, 2023a]

These neurons exhibit a unique
structure, with a single apical dendrite
extending towards the cortical surface
and multiple basal dendrites radiat-
ing from the cell body. They consti-
tute approximately 80% of the neurons
of the cortex – the proportion varies
with cortical regions –, each of them
receiving around 10 000 synapses [De-
haene, 2021]. Their primary neuro-
transmitter, glutamate, facilitates ex-
citatory communication within intri-
cate neural networks that span vari-
ous cortical layers and regions [Sprus-
ton, 2008, Yuste, 2015]. Pyramidal
cells are instrumental in diverse cog-
nitive functions, and their dysfunction
has been implicated in neurological dis-
orders such as Alzheimer’s disease and
schizophrenia [Selkoe, 2002, Konopaske

et al., 2008]. The study of these cells has significantly contributed to understanding
the complex connectivity and functional dynamics of the human brain [Markram
et al., 2015].

Various techniques exist to record these signals, providing invaluable insights
into brain function. Electroencephalography (EEG) is a technique that captures
differences in electric potential in the brain using electrodes placed directly on
the scalp. Magnetoencephalography (MEG), on the other hand, measures the
magnetic flux density outside the head. For a measurable M/EEG signal, a large
number of neurons, approximately 50 000, need to be simultaneously active. Both
methods record synchronized neural activity at a very high temporal resolution,
about the millisecond – sampling is often between 250Hz to 1000Hz –, and have
the advantage of being non-invasive, unlike electrocorticography (ECoG) that uses
electrodes surgically placed directly on the exposed surface of the brain. Such neu-
rophysiological data also typically include a spatial dimension, as multiple sensors
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(a) EEG recordings (b) MEG recordings

Figure 1.1.8: Recordings of the electrical field (a) and the magnetic field (b). [Gramfort]

are placed across the scalp, and different sensors will detect different signals de-
pending on their location.

Figure 1.1.7: An
EEG recording setup.
[Wikipedia, 2023b]

This high temporal resolution is what makes MEG
and EEG attractive for the functional study of the brain.
Despite their poor spatial resolution, with only a few
hundred spatial data points acquired simultaneously –
about 300 to 400 sensors for MEG [Velmurugan et al.,
2014] and up to 256 electrodes for EEG [Soufineyestani
et al., 2020] –, these methods can localize neural activity
with appropriate models and methods2. This is what is
called the inverse problem, whose objective is to deter-
mine the current generators that produced the M/EEG
measurements, as opposed to the forward problem whose
objective is to predict the M/EEG surface signal to cur-
rent dipoles in the brain [Pascual-Marqui, 1999, Galka
et al., 2004, Grech et al., 2008]. While both EEG and
MEG can provide information about brain activity, their
sensitivity to different types of signals and spatial resolu-
tion differ. EEG, for instance, is often employed in sleep

analysis due to its high temporal resolution, while MEG, capable of detecting sig-
nals from deeper brain structures, can provide more accurate source localization.

A critical limitation to recognize in the use of EEG as a neural imaging modality
is its inherent constraints on spatial localization of brain activity. Given the exter-
nal positioning of electrodes on the scalp, compounded by the brain tissue’s highly
conductive nature and surrounding cerebrospinal fluid, EEG signals often reflect
a diffusion of neural activity across multiple regions. Essentially, an electrode sit-
uated externally can potentially capture signals emanating from anywhere within
the neural structure. This becomes particularly complex when considering mul-

2Inria: MEG/EEG vs. other functional brain imaging modalities
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1.1 Biology of neuroscience

tiple brain regions’ simultaneous or rapidly successive activation. Consequently,
any signal intercepted by an external electrode is usually an amalgam of activities
from distinct, active neural sites capable of producing a signal potent and coherent
enough to transverse the impedance presented by the skull [Newman et al., 2023].
From a mathematical standpoint, the inverse problem is ill-posed, offering an in-
finite array of potential solutions. Despite this, source localization is not entirely
unfeasible. It has been demonstrated to be effective, mainly when neural activ-
ity is concentrated in well-defined regions, such as the primary visual or auditory
cortices. However, a prevailing practice in EEG research remains the study of
signals as they are captured on the scalp surface. Years of empirical studies have
furnished robust evidence that correlates specific EEG signatures with particular
cognitive functions or tasks. Hence, one of the main applications of EEG remains
in identifying the presence, or assessing the magnitude, of these known signals in
relation to specific cognitive activities or task conditions [Newman et al., 2023].

Other recording techniques In addition to EEG and MEG, other techniques,
such as functional Magnetic Resonance Imaging (fMRI) and single-unit recording,
are widely used in neuroscience research. fMRI leverages the blood-oxygen-level-
dependent (BOLD) contrast to indirectly measure neural activity in the brain.
The technique capitalizes on the hemodynamic response, a process where local-
ized neural activity triggers a cascade of metabolic events leading to an increase in
cerebral blood flow and a subsequent change in the ratio of oxygenated to deoxy-
genated hemoglobin [Ogawa et al., 1990]. By sensitizing the MRI signal to these
blood oxygenation changes, BOLD fMRI provides a non-invasive window into the
dynamic interplay of neural activation, metabolism, and vascular response. fMRI
provide a very good spatial resolution but a rather poor temporal one3 – of the
order of a second for fMRI. On the other hand, single-unit recording involves plac-
ing a microelectrode directly onto a single neuron to record its electrical activity,
offering precise measurement of individual neuron firing. Contrary to M/EEG
and fMRI, it is an invasive recording technique. It provides insights into the basic
physiological properties of neurons and neuronal networks.

Paradigm of a M/EEG experiment In an EEG experiment, a professionally
trained nurse meticulously positions approximately 250 electrodes on the subject’s
scalp. These electrodes come equipped with a range of sensors, including some
designed for particular localizations and electrooculography (EOG) sensors for eye
movement tracking. These are also electrodes, the same as EEG electrodes, but
intentionally placed close to the eyes specifically to monitor for blinks and eye
movements, as shown in fig. 1.1.7. They are typically placed above and below one

3Other methods such as positron emission tomography (PET) and single-photon emission
computed tomography (SPECT) have similar characteristic.
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eye (to monitor blinks and vertical eye movements, as well as on the temples of
the head laterally to the eyes (to monitor horizontal eye movements) [Newman
et al., 2023]. MEG experiments, on the other hand, make use of a complex de-
vice comprising a vast array of around 300 to 400 ultra-low magnetic field sensors,
cooled in liquid helium to −269 ◦C, methodically situated above the subject’s head
to record neural activity with high precision [Dehaene, 2021]. Concurrent EEG
recordings are often part of MEG experiments, offering supplementary informa-
tion that bolsters the overall data quality. The duration of these recordings can
fluctuate significantly based on the experimental design, with active experiments
lasting mere minutes and more extensive analyses, such as sleep stage investigation,
spanning several hours.

Figure 1.1.9: Person
undergoing a MEG.
[Wikipedia, 2023c]

Given that the brain’s magnetic signals measure
in the femtotesla range, it is essential to shield the
experiment from external magnetic disturbances, in-
cluding those from Earth’s magnetic field. To en-
sure data integrity, rooms used for M/EEG experiments
are constructed with materials like aluminum and mu-
metal, which effectively reduce high-frequency and low-
frequency noise, respectively. This careful choice of ma-
terials creates a controlled environment for accurate de-
tection and analysis of subtle neural signals – we are able
to reconstruct the activity of the brain to the scale of a
millisecond –, thereby improving the reliability of the
data collected and subsequent findings.

During a typical task-based experiment, subjects are
presented with external stimuli like auditory or visual
signals, somatosensory inputs, or other pertinent cues.
Occasionally, subjects are assigned active tasks, such as pressing a button in re-
sponse to specific cues. The precise timing of these “events” is carefully recorded
in tandem with the M/EEG signals to link them to brain activity patterns.

Additional sensors are often used to enhance data accuracy and reliability, in-
cluding heartbeat monitors to track cardiac activity and sensors positioned near
the eyes to capture eye movements (EOG, as previously mentioned), which can
produce artifacts in the recordings4. These supplemental sensors are integral to

4The organization of neurons within the retina constitutes a specialized arrangement, giving
rise to an electrical dipole characterized by distinct positive and negative poles. This configu-
ration aligns precisely with the underlying principles of EEG detection, where such dipoles can
be readily identified and monitored. Under stable conditions, where the eye’s position remains
fixed, the dipole generated by the retina exerts a constant effect, leaving the EEG recordings
unaffected due to the unchanging nature of the dipole. However, the dynamics alter with changes
in the eye’s orientation, corresponding to different spatial locations. As the dipole adjusts with
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the post-processing phase, aiding in the removal of artifacts from the recorded
signals and leading to more precise and clean data. Indeed, in neuroscience, par-
ticularly within EEG studies, an artifact is any signal interference not originated
from the primary source of interest: the brain’s neuronal activity. These inter-
ferences, grouped as environmental, instrumentation, or biological, add noise to
the data. Environmental artifacts can emerge from sources like AC power line
oscillations or electromagnetic field noise from surrounding objects. Instrumenta-
tion artifacts come from the experimental setup itself, including electromagnetic
interference from stimuli presentation or sensor malfunctions. Biological artifacts
comprise disturbances from physiological actions such as heart electrical activity,
eye movements, and muscle contractions during actions like swallowing. Even
brain signals related to activities not central to the study can be considered arti-
facts. For reliable results, it is crucial to accurately identify and eliminate these
artifacts, ensuring the interpreted data truly represent brain activity [Newman
et al., 2023].

As shown in fig. 1.1.10, the final outcome of these experiments is multivariate
continuous time series data that encapsulate brain activity over time, possibly
including timestamps related to the events (stimuli or subject’s actions). However,
the inherent noise in the recorded data due to the nature of neural signals and
external influences necessitates the use of advanced data analysis techniques to
reveal meaningful patterns and provide insightful conclusions.

In sum, understanding how neurophysiological signals are produced and propa-
gated in the human brain and the methodologies employed to record these signals
is central to neuroscience. Such knowledge not only broadens our understanding
of the human brain’s workings but also paves the way for advances in diagnos-
ing and treating neurological conditions. It thereby motivates the development of
computational tools for learning such signals from data.

1.2 Pre-processing and classical analysis in neuro-
sciences

Data pre-processing is an indispensable step when dealing with real-world sig-
nals obtained from magnetoencephalography (MEG) and electroencephalography

the movement of the eye, this shift is captured by the scalp electrodes used in EEG. Specifically,
lateral eye movements, either to the left or right, induce variations in the electrical potential at
the frontal electrodes. This results in an asymmetric response, with an increase in potential on
one side of the head and a corresponding decrease on the other. The directionality of this asym-
metry is contingent on the trajectory of the eye’s movement, reflecting the complex interplay
between ocular mechanics and neural electrical activity [Newman et al., 2023].
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Figure 1.1.10: Raw signals over some M/EEG sensors, on MNE sample dataset. The
most common way of viewing M/EEG data is in the time domain, with time plotted
on the x-axis, and electrical potential (voltage) or magnetic field (tesla) on the y-axis.
The observed signal can be represented as a matrix X ∈ RP×T , with P sensors over T
timestamps.
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(EEG) experiments. Due to the inherent nature of the acquired signals and the
fallibility of the machines used for measurement, these real-world signals often
contain not only the desired neural information but also various forms of noise or
artifacts. Therefore, a meticulous pre-processing routine, complemented by man-
ual inspection rooted in domain knowledge, is necessary to discern artifacts and
differentiate between evoked and induced responses. This section briefly presents
some classic data pre-processing procedures and standard methods for analyzing
M/EEG data. The aim is to provide a better understanding of the upstream
processing carried out during real data experiments presented in the rest of the
manuscript. Indeed, in the subsequent sections of this thesis, particularly in part II,
encompassing chapter 4 and chapter 5, we introduce a comprehensive framework
for temporal analysis in M/EEG data. This framework aims to simplify the pre-
processing steps by utilizing only filtered raw data as its input. We thus start this
section by giving an overview of usual pre-processing, before detailing each step.

General pre-processing As mentioned, M/EEG data pre-processing is a cru-
cial step in the analysis pipeline, aiming to mitigate the effects of various artifacts
and noise that are inevitably present in the raw data. Initially, the data undergoes
a band-pass filtering process to focus on the frequency bands of interest, which
largely depend on the specifics of the study [Widmann et al., 2015]. In a nutshell,
this step entails applying mathematical transformations to remove high-frequency
noise via low-pass filters and eliminate low-frequency drifts and slow trends using
high-pass filters. Additionally, M/EEG signals can often be exposed to strong
power line noise, typically a consistent interference at 50Hz or 60Hz depending
on the geographic location. A commonly used method to remove line noise is the
notch filter, but it comes with the risk of potentially severe signal distortions [Leske
and Dalal, 2019]. This filter selectively attenuates a narrow frequency band cen-
tered around the power line frequency, thus effectively reducing its influence on the
recorded signals without affecting the overall data integrity. As a general rule, filter
cut-off frequencies must respect the Nyquist theorem to prevent aliasing [Shannon,
1949].

Whenever the acquired data contains defective or missing channels, i.e., sen-
sors, methods such as interpolation are used to deal with these data irregularities
and ensure the overall integrity of the data set. The data might then be sub-
jected to further steps, such as downsampling, to synchronize the sampling rates
between different recordings and reduce the computational load during analysis;
epoching, where continuous data is cut into shorter segments, typically time-locked
to an event of interest; or ICA, to separate the data into statistically independent
components and manually removed artifacts. Lastly, a procedure for dealing with
remaining artifacts after epoching is often implemented, such as artifact rejection
or correction, before the data is ready for analysis.
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1.2.1 Filtering and time-frequency analysis

Time-frequency analysis is an essential step in the data pre-processing pipeline in
neuroscience, particularly in the context of M/EEG, and allows for an in-depth
examination of how the frequency content of signals changes over time. Leveraging
mathematical transformations such as the Short-Time Fourier Transform (STFT)
– a Fourier-related transform –, time-domain signals can be decomposed into the
time-frequency space, presenting a dual view of the data. This method unveils the
intricate spectral dynamics of M/EEG signals, offering insights into the brain’s os-
cillatory activities and their variations across time. Thus, it offers a more detailed
perspective of brain activity beyond the constraints of studies limited to either
time or frequency domains.

Transition from time to frequency domain The Time-Domain Representa-
tion, where signals are displayed according to their evolution over time, is the most
frequently used signal representation, as shown in fig. 1.1.10. However, these time-
domain signals can be transformed into the Frequency-Domain using the Fourier
Transform (FT). The principle behind FT is that any time-varying signal can be
decomposed into a set of sine waves, each characterized by specific frequencies and
amplitudes. Even complex EEG waveforms, where amplitude and frequency are
variable, can be accurately described through this combination of sine waves. FT
estimates the amplitudes of a broad range of sine waves, which can then be plotted
in the frequency domain, with each frequency’s power – or amplitude – represented
along the y-axis, as represented in fig. 1.2.1.

However, this conversion into the frequency domain comes with a loss of tem-
poral information. In the frequency domain, power at each frequency indicates the
average power across the entire duration of the input data. There is no need to
use the entire time range of the data to compute a FT and generate data in the
frequency domain; however, it is pretty intuitive that, at a minimum, the signal
should be long enough for at least one cycle of a sine wave to occur. In practice,
2 to 3 cycles would be preferable [Newman et al., 2023]. Therefore, the duration
of the available data determines the lowest frequency that can be estimated, un-
veiling an inverse relationship between precision in time and frequency domains.
Hence, an optimal balance between time and frequency precision is required for
accurate analysis.

Relevance to neuroscience A common hypothesis in neuroscience is that brain
activity involves periodic oscillations — oscillating sine wave — and aperiodic sig-
nals — “one-off” peaks and troughs. Generally, the time domain is often best
suited for viewing and analyzing aperiodic signals, while the frequency domain
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Figure 1.2.1: Time-frequency analysis of a signal. The top panel shows the original signal
in the time domain. The middle panel depicts the signal decomposed into its sinusoidal
components, with frequencies at 10Hz, 40Hz, and 70Hz, respectively. The bottom panel
presents the Fourier Transform (FT) of the signal, revealing its frequency content.
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Chapter 1. Background on Neuroscience and Neurophysiological Signals

proves ideal for examining periodic signals. Different ranges of frequencies, called
frequency bands, are often associated with various tasks and signals between dif-
ferent brain regions, revealing different aspects of brain activity.

Table 1.1: Natural brain frequen-
cies bands.

Band Frequency
Range (Hz)

Delta <3
Theta 4–7
Alpha 8–14
Mu 8–12
Beta 15–30
Gamma >30

For example, delta waves are typically ob-
served during sleep, while alpha waves over oc-
cipital electrodes often appear when individuals
close their eyes, thus blocking visual stimula-
tion. Similarly, mu waves, while having a simi-
lar frequency band to alpha, are associated with
motor activity and are typically focal over the
motor cortex. However, these associations are
not exclusive, and an increase in power in a spe-
cific frequency band could reflect various neu-
rocognitive processes. Therefore, the context
in which the EEG data were recorded is vital
for accurate interpretation of these frequency
bands, as well as their scalp localization where
they are the most intense.

Noise in EEG data and filtering The EEG signals that are most relevant to
neuroscience research typically fall within the 1Hz to 30Hz frequency range [New-
man et al., 2023]. However, EEG data inherently comes with noise from various
sources, which show up as oscillating frequencies. While low-frequency noise may
originate from head movements or electrode wires and appear as slow drifts in
the signals, high-frequency noise might arise due to electromagnetic interference
or muscle contractions, especially facial and neck ones. The frequencies of these
noise sources may overlap with the crucial 1Hz to 30Hz EEG frequency band,
thereby necessitating noise reduction to minimize the impact of noise on the sig-
nals of interest.

Reducing the signal’s power at the frequencies above and below the range of ex-
perimental interest is called filtering. Filtering is typically performed at two stages:
during data recording — online filtering, where a low pass filter by the amplifier
attenuates high frequencies while passing lower frequencies through —, and during
pre-processing. This approach is critical in digital recording to prevent aliasing, a
phenomenon that causes high-frequency noise to appear as low-frequency artifacts
in the data and occurs when a high-frequency signal is sampled at a much lower
frequency.

The highest frequency that can be accurately recorded at a given sampling
rate, known as the Nyquist frequency [Shannon, 1949], is defined as either 1/2
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1.2 Pre-processing and classical analysis in neurosciences

or 1/3 of the sampling rate. In practice, the 1/3 rule is safer and used in most
real-world situations where noise is unpredictable. In Event-Related Potentials
(ERP) analysis, a high-pass (low frequency) cutoff of 0.1Hz5 and a low-pass (high
frequency) cutoff of 30Hz are usually applied. This is called a bandpass filter, as it
preserves a “band” of frequencies between the high-pass and low-pass cutoffs. This
setting strikes a balance between reducing artifacts outside the range of human
EEG signals of interest and avoiding the induction of new artifacts. It should be
noted that the high-pass cutoff must be much lower (by a factor of about 10) than
the lowest frequency of interest, whereas the low-pass cutoff can be closer to the
highest one.

Time-frequency visualization Time-domain and frequency-domain analyses
offer valuable insights, but they cannot capture the full complexity of these sig-
nals, which often exhibit time-varying spectral characteristics [Cohen, 2014]. To
address this issue, time-frequency analysis techniques, such as the Short-Time
Fourier Transform (STFT) or wavelet transforms, are employed. These techniques
provide a two-dimensional representation – known as a spectrogram, or scalogram
in the case of wavelet – that reveals how the power of different frequency compo-
nents in the signal evolves over time. In essence, these techniques extend the Fast
Fourier Transform (FFT) to sliding windows of the signal, allowing for a dynamic
view of the signal’s spectral content [Mallat, 1999]. This is particularly useful
in neuroscience, where transient, time-limited neural events – such as sensory re-
sponses, cognitive processing events, or epileptic spikes – may occur [Tallon-Baudry
and Bertrand, 1999, Pfurtscheller and Da Silva, 1999]. These events can be bet-
ter understood by observing their spectral content and how it changes over time.
Thus, the time-frequency representation – as presented in fig. 1.2.2 – offers a pow-
erful tool for the analysis and interpretation of M/EEG data, enabling researchers
to capture the rich, time-varying spectral dynamics of neural activity.

1.2.2 Independent Component Analysis

ICA [Comon, 1994] forms a critical part of the pre-processing pipeline by separat-
ing the recorded signal into independent components. Each of these components

5The low frequency cutoff at 0.1Hz is a standard value used in ERP analysis to reduce the
influence of slow drifts and baseline shifts in the signal. By applying this high-pass filter, the
signal is transformed so that it has a zero-mean, effectively removing the Direct Current (DC)
component (frequency 0) which corresponds to the mean value of the signal. Indeed, the value
of the frequency 0 component can be mathematically expressed as follow: X(0) = 1

N

∑N−1
n=0 x[n],

where N is the number of points in the signal, and x[n] is the value of the signal at time n. This
pre-processing step enhances the detection of event-related oscillatory components by minimizing
potential distortions caused by low-frequency trends.

27



Chapter 1. Background on Neuroscience and Neurophysiological Signals

0.0 0.5 1.0 1.5 2.0
Time (s)

6.00
7.72
9.93

12.78
16.44
21.15
27.21
35.00

Fr
eq

ue
nc

y 
(H

z)

(1.00 s,
7.7 Hz)

(1.30 s,
7.7 Hz)

1.0
0.5

0.0
0.5
1.0

1e 21

Figure 1.2.2: Time-frequency plane for epoched signals following a somatosensory stim-
ulus (cue at time = 0), on MNE somato dataset, with overviews at 1 and 1.3 seconds
and 7.7Hz. Baseline correction applied from time point -0.5 until time point zero.

represents a full time course for a source signal. By manually identifying artifact
components, it is possible to separate noise from the signal [Winkler et al., 2015].

More precisely, ICA is an algorithm for blind source separation. This task aims
to extract independent source signals from a set of recordings where these signals
are mixed together in unknown ratios. In the context of M/EEG analysis, this can
be thought of as having several “microphones” (sensor channels) simultaneously
recording many “instruments” (source signals like blinks, heartbeats, muscular ac-
tivity, and brain activity) that are mixed together. ICA effectively separates these
source signals based on their distinctive spatio-temporal properties.

Likewise, in EEG, the use of multiple electrodes is necessary for the successful
application of ICA. The maximum number of ICA components is equivalent to the
number of electrodes, though, in practice, the number of independent sources is
typically less than the number of electrodes. ICA has found extensive use in EEG
for identifying and removing artifacts, particularly ocular artifacts (blinks and eye
movements) and muscle artifacts. Once these “noise” components are identified,
they can be removed from the data without affecting the other components. Thus,
the effects of artifacts can be eliminated from the data while preserving the EEG
signals. ICA is particularly effective at capturing features in the data that account
for the most variance, such as blinks and eye movements, which are larger than
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1.2 Pre-processing and classical analysis in neurosciences

EEG and therefore contain significant variance. Furthermore, low-frequency drift
in the data explains substantial amounts of variance, making ICA most effective
on data with more low-frequency power removed. Each independent component
(IC) identified by ICA is a signal varying over time, with a “weighting” at each
channel indicating the presence of that IC in the channel. These components can
be visualized as scalp topography maps, showing where on the scalp the IC is most
significant, as shown in fig. 1.2.3. Some ICs may be identified as ocular artifacts
as they weigh most heavily around the front of the head.

While ICA is often used for its ability to reconstruct the original signals without
identified artifacts, it comes with two key limitations. The first is the need for
domain-specific knowledge to accurately identify artifacts. The second concerns
the reconstruction process after removing some components. This step inevitably
leads to an information loss across all channels, given that artifacts are generally
shared across all sensors.

Mathematical formulation In the context of Independent Component Analy-
sis (ICA), the observed data is considered to be a linear mixture of some unknown
source signals. Let X ∈ RP×T be the observed data matrix, where P is the num-
ber of observed variables (e.g., sensors in M/EEG) and T is the number of time
points. The ICA model can be written as: X = AS, where A ∈ RP×N is the
mixing matrix, N being the number of independent components, and S ∈ RN×T

is the source matrix (independent components). The goal of ICA is to find an
unmixing matrix W ∈ RN×P that transforms the observed data into signals that
are as statistically independent from each other as possible: S = WX.

Once the independent components have been computed, some components can
be visually identified and manually selected for removal, e.g., those related to noise
or artifacts. The reduced set of independent components is denoted as S ′ ∈ RN ′×T ,
where N ′ ≤ N is the number of remaining components after selection. The cleaned
data X ′ ∈ RP×T can then be reconstructed by multiplying the selected components
with the corresponding rows of the inverse of the unmixing matrix W ′ ∈ RN ′×P

and then adding back the mean µ ∈ RP of the original data: X ′ = W ′S ′ + µ.

1.2.3 Segmentation and epoching

Segmentation – or epoching – is another vital process in data pre-processing. An
epoch is defined as a specific segment of time-bound data “centered” on a particular
event. This event could range from a stimulus presentation to a specific behavioral
response. The alignment of epochs to these specific events facilitates event-related
analysis. The average of these epochs, often referred to as the evoked response,
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Figure 1.2.3: The first five independent components (over 15 fitted) alongside electroocu-
lography (EOG) signal (top) and their corresponding topomaps (bottom), on MNE sam-
ple dataset. ICA000 can be associated with the eye-blink artifact, whereas ICA001 can
be associated with the heartbeat artifact (this inference is drawn from the activation of
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Figure 1.2.4: Evoked signals following an auditory stimulus (cue at time = 0), on MNE
sample dataset. Baseline correction applied from beginning of the data until time point
zero.

is frequently used for subsequent analysis. fig. 1.2.4 presents an example of such
evoked signals on MNE sample dataset, obtained by averaging per channel, i.e., per
sensor, the segments “centered” – in fact 0.2 s before and 0.5 s after – around
every auditory stimuli, left and right ones combined. A baseline correction has
been applied before the stimulus, i.e., the averaged value of the signal during
this interval is calculated and then subtracted from the entire epoch, including
both the pre-stimulus and post-stimulus periods. This effectively sets the average
value of the signal during the baseline period to zero, allowing for a more accurate
comparison of activity across different epochs and subjects. This correction serves
to remove any slow drifts or shifts in the signal that are unrelated to the event
of interest, ensuring that any observed changes in the signal after the event are
not confounded by pre-existing trends or differences in baseline activity. By using
a consistent baseline period across all epochs, researchers can more confidently
attribute any observed differences in post-stimulus activity to the effects of the
event itself, rather than to unrelated variations in the underlying signal. The choice
of baseline period can depend on the specific research question and experimental
design. Other studies may choose different baseline periods, depending on the
timing of the events and the nature of the expected neural responses. Here, one
can observe a strong response captured by sensors close to ears around 0.1 s after
the stimuli.

Having discussed the intricacies of M/EEG data pre-processing and classical
analysis techniques in neuroscience, we now turn our attention to more advanced
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methods for information extraction. Specifically, we will explore how Convolu-
tional Dictionary Learning (CDL) can be employed to analyze the cleaned and
pre-processed M/EEG recordings.
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In the realm of data analysis and signal processing, developing efficient represen-
tations of data presents a key challenge. This quest becomes particularly complex

when dealing with natural signals, such as images, audio, or magneto- and elec-
troencephalography (M/EEG) recordings, as they are rarely sparse in their raw
form. However, a closer examination reveals that these signals often possess an
underlying structure that can allow for a more compact and meaningful repre-
sentation. Emerging from the field of signal processing in the late 20th century,
Dictionary Learning (DL) – a technique that stands at the intersection of sparsity
and adaptability – has established itself as a cornerstone in this pursuit. As a pow-
erful framework, DL offers the potential to create such representations, learning
adaptable and efficient structures through the principle of sparsity [Aharon et al.,
2006, Mairal et al., 2009].

Sparsity refers to the idea that signals, although living in high-dimensional
spaces, can be represented succinctly as a linear combination of a few basic ele-
ments called atoms. These atoms are part of an overcomplete dictionary, a care-
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fully chosen set that captures the inherent structure of the data [Olshausen and
Field, 1997, Elad, 2010]. The sparser the representation, the better the dictio-
nary [Le Magoarou and Gribonval, 2015, Le Magoarou et al., 2015]. For example,
a M/EEG signal might consist of distinct chunks corresponding to heartbeats,
eye-blinks, or visual stimulations. When viewed through the right “basis” or set
of atoms, this signal becomes sparse and can be more easily understood and pro-
cessed.

The application of this principle is not without challenges. First, one must
identify the right family of atoms or a transformation that enables a sparse rep-
resentation. This can be achieved either through expert knowledge or by learning
directly from the data, a process known as sparse coding [Elad, 2010]. Second, the
linear combination of atoms that constitutes each measurement must be recovered.
While some analytical transforms like wavelets for images or Gaborlets for audio
signals provide satisfactory results, the complexity and variability of signals often
necessitate a more adaptive approach [Mallat, 1999].

This is where Dictionary Learning shines. Unlike traditional bases such as
canonical bases or wavelets, DL learns the atoms from the data, leading to more
adaptable and efficient representations [Aharon et al., 2006]. This adaptability is
especially valuable in the analysis of natural images or biomedical applications like
magnetoencephalography (MEG) and electrocardiograms (ECG), where specific
patterns and structures are key to understanding the underlying phenomena [Cole
and Voytek, 2017, Dupré la Tour et al., 2018, Xiang et al., 2018].

The field of Dictionary Learning has evolved to include various methods of
decomposition, including the Lasso-based approach. This sparse representation
paradigm offers significant benefits in terms of computational efficiency, inter-
pretability, and even denoising, where it assists in removing noise not sparse in the
same domain as the signal [Elad and Aharon, 2006].

2.1 Motivation and sparse representation

The mathematical nature of the inverse problems in Dictionary Learning can be
articulated as follows. Let x ∈ Rn represent a real-valued signal of dimension
n, and y ∈ Rm a real-valued measurement of dimension m. The forward model,
denoted by A, enables the computation of y from x, incorporating additive noise
b ∈ Rm to model the degradation of the signal through the measurement device,
leading to:

y = A (x) + b . (2.1.1)
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When A is a linear operator1, this relationship is expressed as:

y = Ax+ b, A ∈ Rm×n . (2.1.2)

In the noiseless case, i.e., b = 0, the inverse problem simplifies to matrix
inversion. If n = m and A is invertible, a unique and well-defined solution exists.
However, complexities arise when these conditions are not met. A particularly
pertinent scenario, especially in the context of M/EEG where the dimension of
observation is smaller than the dimension of the signal, i.e., m < n, is referred to
as an under-determined problem. A common approach might involve seeking the
Ordinary Least Square (OLS) solution, expressed as solving the following problem:

min
x∈Rn
∥y − Ax∥22 , (2.1.3)

where ∥·∥2 denotes the Euclidean ℓ2 norm.

The Ordinary Least Square (OLS) solution, characterized as the orthogonal
projection of y onto (kerA)⊥, leads to an ill-posed problem with infinite solutions.
This complexity is compounded by the fact that noise cannot realistically be con-
sidered zero, especially in the case of Gaussian noise where the OLS solution often
falls short. This insufficiency underlines the necessity of incorporating additional
information or priors to construct a viable model. A strategic response to this
issue is the introduction of regularization, where a specific function R, reflecting
the properties of the desired signal, is integrated into the model. The optimization
problem we would like to solve becomes:

min
x∈Rn
∥y − Ax∥22 + λR(x) . (2.1.4)

For example, Ridge – or Tikhonov regularization – [Ito and Jin, 2014], where
R(x) := ∥x∥22, creates a strictly convex problem with a unique solution. Such
regularization techniques, adaptable through hyperparameters, offer a pathway to
penalize undesirable characteristics. The evolution of these strategies converges
on the influential concept of sparsity.

2.1.1 Sparsity and the Lasso

Sparsity, where most entries of a vector or matrix are zero, is a crucial concept
that facilitates the recovery process in signal processing, as it reduces the need for

1Though constraining A to be linear may appear restrictive, it is a realistic assumption in
many applications, including imaging or neuroimaging.
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extensive measurements. This idea is central to compressed sensing theory [Foucart
and Rauhut, 2013] and has spawned a variety of optimization techniques. Within
the context of under-determined scenarios, sparsity allows for the construction of
effective penalization. One approach is to employ sparsity-inducing regularization
R, such as the ℓ0 pseudo-norm, to constrain the number of non-zero coefficients in
a signal [Elad, 2010]. This pseudo-norm is defined as follows:

∥x∥0 = # {i, xi ̸= 0} , (2.1.5)

where # denotes the cardinal operator. The set of indexes of non-zero coordinates
is called the support. Then, the optimization problem becomes:

min
x∈Rn
∥y − Ax∥22 s.t. ∥x∥0 ≤ ko , (2.1.6)

where k0 is a pre-determined upper bound on the number of non-zero coefficients in
x. Though this leads to a non-convex and NP-hard problem, various heuristics and
algorithms, like matching pursuit [Mallat and Zhang, 1994], have been developed
to tackle it [Elad, 2010].

An alternative strategy involves convex relaxation that promotes sparsity, using
ℓp norms, resulting in a convex optimization problem. ℓp norms are defined as
follows:

∥x∥p =
(

n∑
i=1

|xi|p
) 1

p

, p ≥ 1 . (2.1.7)

A well-known example of this approach is the Least Absolute Shrinkage and Selec-
tion Operator (Lasso; Tibshirani 1996) problem, where the cost function is convex
and bounded, leading to a convex set of solutions, using ℓ1 norm as regularization:

min
x∈Rn
∥y − Ax∥22 + λ ∥x∥1 . (2.1.8)

This convexity ensures that the solution set contains either a unique solution or
an infinite number of solutions, providing a more tractable pathway to exploit
sparsity.

2.1.2 Lasso and its optimization

The Lasso optimization problem expressed in eq. (2.1.8) can be expressed as a
more general one:

min
x∈Rn

L(x) + λR(x) , (2.1.9)

where L measure the goodness of fit and is supposed to be differentiable, L-smooth
and convex; R penalizes the complexity and is supposed to be convex and “easy to
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optimize”; and where λ > 0 is the regularization parameter that controls tradeoff
between fit and complexity. A solution x∗ of this problem must verify the following
optimality condition:

0 ∈ ∂ (L (x∗) + λR (x∗)) (2.1.10)
⇔ 0 ∈ ∇L (x∗) + λ∂R (x∗) (2.1.11)

⇔ −∇L (x∗) ∈ λ∂R (x∗) , (2.1.12)

where ∇f denotes, when its exists, the full gradient of f and ∂f denotes the
sub-gradient of f , defined as follows, for f : Rn → R ∪ {∞} convex:

∂f(x) := {g ∈ Rn, f(y) ≥ f(x) + ⟨g, y − x⟩ ,∀y ∈ dom(f)} . (2.1.13)

Applied to the Lasso problem – when R (·) = ∥·∥1 – , it gives that:

−A⊤ (Ax∗ − y) ∈ ∂ ∥x∗∥1 . (2.1.14)

As the ℓ1 norm of x is given by ∥x∥1 =
∑n

i=1 |xi|, the subgradient of the ℓ1 norm
at a point x can be described as a set of vectors, and its calculation depends on
the components of x. For each component xi, the partial subgradient with respect
to that component is:

∂ |xi| =


1 if xi > 0

−1 if xi < 0

[−1, 1] if xi = 0

(2.1.15)

Thus, the subgradient of ∥x∥1 is the set of all vectors that can be formed by
selecting a value for each component according to the above rules:

∂ ∥x∥1 = (∂ |x1| , . . . , ∂ |xn|) . (2.1.16)

If all components of x are non-zero, the subgradient is a single vector, and it has
the same sign as the corresponding components of x. If some components are
zero, the subgradient is a set of vectors, reflecting the ambiguity in the derivative
at those points.

Using the definition of smoothness of L, we have that, ∀x, y ∈ Rn:

L(x) + λR(x) ≤ L(y) + ⟨∇L(y), x− y⟩+ L
2
∥x− y∥22 + λR(x) . (2.1.17)

By setting y := x(t), minimizing the right-hand side of eq. (2.1.17) in x suggests a
iterative procedure, known as the Proximal Gradient Descent :

x(t+1) = prox λ
LR

(
x(t) − 1

L∇L
(
x(t)
))

, (2.1.18)
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where prox denotes the proximal operator. It is defined as follows:

proxγR(y) = argmin
x

1

2
∥x− y∥22 + γR(x) . (2.1.19)

The proximal operator for the ℓ1 norm regularization, as in the Lasso problem, is
known as the soft-thresholding operator. It is given by the following expression:

STλ(x) := proxλ∥·∥1(x) = sign(x)max (|x| − λ, 0) (2.1.20)

where the operations are applied element-wise. The soft-thresholding operator
shrinks the absolute value of each component of the input vector by λ and re-
tains the sign. Introduced in Daubechies et al. [2004], the Iterative Shrinkage
Thresholding Algorithm (ISTA) produces the following procedure:

x(t+1) = STτλ

(
x(t) − τA⊤(Ax(t) − y)

)
, (2.1.21)

where τ > 0 is the step size. ISTA has the advantage of simplicity and the ability to
handle non-smooth regularization terms like the ℓ1-norm. It converges to a solution
of the Lasso problem under suitable conditions on the step size τ – for 0 < τ < 2

L
,

L being the highest eigenvalue of A⊤A – and other parameters. This algorithm is
a foundational building block in sparse recovery and has inspired several variations
and extensions, including the faster FISTA (Fast ISTA; Beck and Teboulle 2009)
algorithm, that is an adaptation of gradient descent with momentum, described
in algorithm 1. Other algorithms to solve the Lasso are presented in Hastie et al.
[2015].

Algorithm 1: FISTA with constant stepsize [Beck and Teboulle, 2009]
1 Input proxλR

L
(·), ∇L(·), λ > 0 and L;

2 Set x(1) = 0Rn , w(1) = 0Rn , β(1) = 1;
3 for t = 1, . . . , T do
4 x(t+1) = proxλR

L

(
w(t) − 1

L∇L
(
w(t)
))

;

5 β(t+1) =
1+

√
1+4(β(t))

2

2
;

6 w(t+1) = x(t+1) + β(t)−1
β(t+1)

(
x(t+1) − x(t)

)
;

7 end
8 return x(T+1)

2.2 Dictionary Learning: mathematical formula-
tion and optimization problem

Dictionary Learning (DL) is typically formulated as an optimization problem with
the objective of finding a dictionary that yields the sparsest representation of
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the given data, often subject to a reconstruction error constraint [Aharon et al.,
2006]. Thus, the mathematical formulation of the DL problem can be expressed
as follows. Given a set of training signals X ∈ RN×T , the objective is to find a
dictionary D = [d1d2 . . .dK ] ∈ RN×K , with dk ∈ RN and a sparse code matrix
Z = [z1, z2, . . . , zK ] ∈ RK×T that minimize the following cost function:

min
D∈C,Z∈RK×T

F (D,Z;X) :=
1

2
∥X −DZ∥2F + λ

K∑
k=1

∥zk∥1 , (2.2.1)

where C is a convex set of constraints for D. ∥.∥F denotes the Frobenius norm,
defined as follows:

∥X∥F :=

√√√√ N∑
n=1

T∑
t=1

|Xn,t|2 . (2.2.2)

The reconstructed signal X̂ := D̂Ẑ is invariant to several transformations of(
D̂, Ẑ

)
∈
(
C × RK×T

)
, where D̂, Ẑ denote the argmin solutions of eq. (2.2.1).

Permutation invariant

Let P ∈ RK×K be a permutation matrix, i.e., the identity matrix IK with per-
muted columns, and (D,Z) ∈

(
C × RK×T

)
. Then X̂ = D̂Ẑ = D̂P⊤PẐ. There-

fore,
(
D̂, Ẑ

)
and

(
D̂P⊤, P Ẑ

)
are equivalent representations of the signal, and

F
(
D̂, Ẑ

)
= F

(
D̂P⊤, P Ẑ

)
.

Sign invariant

Let S ∈ RK×K be a sign change matrix, i.e., a diagonal matrix with coefficients
1 and −1, and (D,Z) ∈

(
C × RK×T

)
. Then X̂ = D̂Ẑ = D̂SSẐ. There-

fore,
(
D̂, Ẑ

)
and

(
D̂S, SẐ

)
are equivalent representations of the signal, and

F
(
D̂, Ẑ

)
= F

(
D̂S, SẐ

)
.

Scale invariant

Let α > 0, and (D,Z) ∈
(
C × RK×T

)
. Then X̂ = D̂Ẑ = αD̂ 1

α
Ẑ. Therefore,(

D̂, Ẑ
)

and
(
αD̂, 1

α
Ẑ
)

are equivalent representations of the signal. However, if
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α > 1, then F
(
D̂, Ẑ

)
> F

(
αD̂, 1

α
Ẑ
)

and the optimization problem in Equa-
tion 2.2.1 will prefer solutions with smaller ℓ1 norm, and thus α as big as possible.
To alleviate this issue, the constraint set C generally includes a normalization cri-
terion, where each atom of D is constrained to belong to a ball of fixed radius.
Thus, the optimization problem becomes:

min
D∈RN×K ,Z∈RK×T

1

2
∥X −DZ∥2F + λ

K∑
k=1

∥zk∥1 s.t. ∀k, ∥dk∥2 ≤ 1 , (2.2.3)

where constraint on the dictionary atoms dk ensures that they have unit norm,
which avoids trivial solutions as mentioned.

All this shows that the optimization problem in Equation 2.2.1 is highly non-
convex. Indeed, for each solution (D,Z), there are at least 2KK!− 1 other equiv-
alent solutions given by permutations and change of sign of coordinates of Z and
columns of D.

The optimization problem is typically solved using an iterative approach, where
two steps are alternated: sparse coding, where for a fixed dictionary D, the sparse
code Z is updated; and dictionary update, where for a fixed sparse code Z, the dic-
tionaryD is updated. Despite the non-convex nature of the global problem, various
efficient and effective algorithms have been proposed to solve each of these steps,
including Orthogonal Matching Pursuit (OMP) for sparse coding and K-SVD for
dictionary update [Aharon et al., 2006], as well as online dictionary learning [Mairal
et al., 2009] and Proximal Alternating Linearized Minimization (PALM; Bolte et al.
2013).

The most simple example is the Method of Optimal Direction (MOD; Engan
et al. 1999). It consists of minimizing F over Z with a sparse coding algorithm
like FISTA (cf. algorithm 1), and then performing a projected gradient descent
over D, with a sequence

(
τ (t)
)
1≤t≤T

of step sizes:

Z(t+1) = argmin
Z∈RK×T

1

2
∥X −DZ∥2F + λ

K∑
k=1

∥zk∥1 (2.2.4)

D(t+1) = projC

(
D(t) − τ (t)

(
D(t)Z(t+1) −X

)
Z(t+1)⊤

)
(2.2.5)

The process of initializing the dictionary is pivotal in the success of alternating
minimization algorithms, particularly due to the non-convex nature of the prob-
lem. Agarwal et al. [2016] give theoretical convergence guarantees regarding the
“basin of attraction” of the true solution and establish that alternating minimiza-
tion succeeds in its recovery when a dictionary is initialized with a limited error,
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2.3 Convolutional Dictionary Learning

inversely proportional to the sparsity level. Common strategies for this initializa-
tion include employing random values or utilizing segments – “chunks” – of signals
as starting points. Moreover, the selection of the hyperparameter λ significantly
influences the algorithm’s performance. Determining an optimal value for λ can
be especially challenging in unsupervised scenarios, where there may be limited
guidance or constraints to inform this choice.

2.3 Convolutional Dictionary Learning

Traditional Dictionary Learning is not well suited to handle the local structure and
shift-invariance that are common in images and other high-dimensional signals.
This led to the development of convolutional dictionary learning (CDL) which
extends traditional dictionary learning by introducing the convolution operation
and provides an even more efficient representation for signals that have a temporal
or spatial structure. In CDL, the data is modeled as a sparse linear combination of
convolutions between dictionary atoms and shift-invariant codes. This paradigm
allows signals to be represented as convolutions of sparse activation maps with
dictionary filters, capturing local and shift-invariant structures in the data [Papyan
et al., 2017, Zeiler et al., 2010]. These convolutional dictionaries have the advantage
of being able to represent signals with fewer parameters due to shared filter usage,
making them more efficient and scalable for large datasets [Bristow et al., 2013].

The concept of CDL was first introduced by Grosse et al. [2007] in the context
of audio classification. This approach was further expanded and refined in the
subsequent years, with significant contributions from researchers such as Mairal
et al. [2009] and Sulam et al. [2018], among others. CDL has since found applica-
tions in a wide range of areas, including image and video processing, audio signal
processing, and neuroscience.

The mathematical formulation of CDL is similar to that of dictionary learning,
but with the inner product replaced by convolution, and with appropriate modi-
fications to the constraints and regularization term. Here, and for what follows,
the adopted formulation and notations are adapted from Moreau et al. [2018] and
Dupré la Tour et al. [2018], that follows Grosse et al. [2007]. We thus denote the
value of signals at time t ∈ J0 , T − 1K into brackets, i.e., for x ∈ RT , x[t] ∈ R and
for X ∈ RP×T , X[t] ∈ RP . Note that, ∀t /∈ [0 , T − 1] ,x[t] = 0 and X[t] = 0RP .
The convolution of two signals z ∈ RT−L+1 and d ∈ RL is denoted by z ∗ d ∈ RT

and is defined by:

∀t ∈ J0 , T − 1K , (z ∗ d) [t] :=
L−1∑
τ=0

z[t− τ ]d[τ ] . (2.3.1)
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Chapter 2. Background on Dictionary Learning

Figure 2.3.1: Decomposition of a noiseless univariate signal X (blue) as the convolution
Z ∗D between a temporal pattern D (orange) and a sparse activation signal Z (green).
[Moreau and Gramfort, 2019]

Thus, for N measures of a univariate signal X =
{
xn ∈ RT , n = 1, . . . , N

}
, the

goal is to recover a dictionary of K atoms D =
{
dk ∈ RL, k = 1, . . . , K

}
and, for

each measurement n, its associated sparse codes Zn =
{
znk ∈ RT̃ , k = 1, . . . , K

}
,

by solving the following optimization problem:

min
D∈C,znk∈RT̃

F (D,Z;X) :=
N∑

n=1

1

2

∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥
2

2

+ λ
K∑
k=1

∥znk∥1

 , (2.3.2)

where C =
{
D ∈ RK×L, ∥dk∥2 ≤ 1, k = 1, . . . , K

}
is the set of dictionaries com-

posed of filters with unit norm, and where znk ∗dk ∈ RT , with T̃ := T −L+1. With
a slight abuse of notation, Z represents the set of all sparse codes Zn, n = 1, . . . , N .

Convolutional Dictionary learning can be written as a bi-level optimization
problem to minimize the cost function with respect to the dictionary only, as
mentioned in Mairal et al. [2009], by solving

min
D∈C

G(D;X) := F (D,Z∗(D);X)

with Z∗(D) := argmin
Z

F (D,Z;X) .
(2.3.3)

Computing the sparse codes Z∗(D) is often referred to as the inner problem, while
the global minimization is the outer problem.

Conventional approaches to dictionary learning address this bi-convex opti-
mization challenge through the Alternating Minimization (AM) technique [Mairal
et al., 2009]. The procedure iteratively refines two distinct components. Initially,
the cost function F is minimized over Z while keeping the dictionary D fixed. This
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2.3 Convolutional Dictionary Learning

is commonly achieved using sparse coding algorithms such as (F)ISTA [Daubechies
et al., 2004, Beck and Teboulle, 2009], coordinate descent [Wu et al., 2008], or
ADMM [Boyd et al., 2011]. Subsequently, the second stage either employs the
gradient ∇1F (D,Z;X) – where ∇1 specifies the gradient with respect with the
first variable in F – to execute one or more steps of projected gradient descent
for dictionary refinement, or it directly identifies the optimal D by solving a least
squares problem, which typically involves the computation of a pseudo-inverse.

As mentioned, the main advantage of CDL over traditional dictionary learning
is its ability to capture spatial and temporal dependencies in data, making it
particularly effective for image and audio signals. However, CDL involves a higher
computational cost due to the convolution operation z ∗ d, especially when the
size of the signal gets large. Empirically, CDL has been shown to outperform
traditional dictionary learning in tasks such as image denoising and audio signal
separation [Grosse et al., 2007, Sulam et al., 2018].

Initialization strategies and optimization techniques for efficient learn-
ing As for classical Dictionary Learning, initialization plays a crucial role in the
performance and convergence of the dictionary learning algorithms. There are
two main strategies for initialization. The first is random initialization, where the
initial dictionary is populated with random values typically drawn from a Gaus-
sian distribution. The second strategy is the “chunk” strategy, where the initial
dictionary is composed of segments (“chunks”) of the original signal.

Additionally, an important aspect of the optimization process is resampling.
Resampling comes into play when an atom in the dictionary is underutilized,
i.e., not used, or only used once (which is particularly likely if the atom was
initialized using the chunk strategy, as it might be represented at least once in
the signal). In such cases, the ineffective atom is discarded and replaced with a
new one. The new atom is generated based on the initialization strategy: it could
be another random atom or a new chunk of the original signal. This resampling
process ensures that all atoms in the dictionary are effectively contributing to the
signal representation, thereby enhancing the overall efficiency and performance of
the dictionary learning algorithm.

Trade-offs between dictionary size, sparsity, computational time, and
reconstruction quality Choosing the appropriate dictionary size, degree of
sparsity, and computational resources involves significant trade-offs. Larger dic-
tionaries and higher levels of sparsity can lead to better reconstruction quality but
at the expense of increased computational time. An essential aspect of this trade-
off is the selection of the hyperparameter λ, which regulates the balance between
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reconstruction fidelity and sparsity. Finding an optimal value for λ is particularly
challenging, especially in unsupervised scenarios where there is limited guidance.
One effective method to address this challenge is through cross-validation, where
different values of λ can be systematically evaluated to determine the one that of-
fers the best compromise between accuracy, sparsity, and computational efficiency.
This approach is crucial in settings where the optimal balance between dictionary
size, sparsity, computational time, and reconstruction quality must be achieved
for the specific requirements of the application [Aharon et al., 2006]. Therefore,
the choice of λ through cross-validation becomes a pivotal factor in tuning the
algorithm for desired performance.

2.4 Convolutional Dictionary Learning in neuro-
science

Dictionary learning, and in particular convolutional dictionary learning, has shown
promising results in the field of neuroscience. The nature of neural data, especially
electroencephalogram (EEG) and magnetoencephalogram (MEG) data, is such
that it exhibits temporal structures, making it a good candidate for CDL. For
example, in the analysis of M/EEG data, the goal is often to identify the underlying
sources in the brain that gave rise to the recorded signals. Since these sources often
have a temporal structure, CDL can provide a more efficient representation of the
data, making it easier to identify the sources [Dupré la Tour et al., 2018].

The data recorded from one subject via M/EEG is complex, as presented in
fig. 1.1.10. Most observed MEG signal X ∈ RP×T – with P sensors also called
channels, and T timestamps – contains heavy noise bursts and have low signal-to-
noise ratio [Jas et al., 2017]. Thus, we cannot work directly with this result, we
have to pre-process it in some way. Neural time-series data contain a wide variety
of prototypical signal waveforms – atoms – that are of significant importance in
clinical and cognitive research. In order to analyze such data, one of the goals is
hence to extract such “shift-invariant” atoms2, as events can happen at any instant
[Jas et al., 2017]. While alpha waves (8Hz to 14Hz, cf. table 1.1) are known
to closely resemble short sinusoids, and thus are revealed by Fourier analysis or
wavelet transforms, there is an evolving debate that electromagnetic neural signals
are composed of more complex waveforms that cannot be analyzed by linear filters
and traditional signal representations [Cole and Voytek, 2017, Dupré la Tour et al.,

2In the context of CDL and the decomposition of neural signals, the time-invariant property
implies that the spatio-temporal atoms (or patterns) learned from the signal are consistent across
different time points. This means that the same patterns can be observed at various time shifts
within the signal, and these patterns are not dependent on the specific time instance.
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2.4 Convolutional Dictionary Learning in neuroscience

2018]. Such patterns in electrophysiological signals can be extracted efficiently in
an unsupervised way using CDL [Barthélemy et al., 2013, Dupré la Tour et al.,
2018].

This approach provides a unsupervised data-driven way to uncover meaningful
and interpretable features in the data, paving the way for new insights into neural
processes. For brain signals, specific techniques have been developed based on
convolutional sparse coding (CSC) [Jas et al., 2017, Dupré la Tour et al., 2018,
Moreau and Gramfort, 2019]. This method aims at finding a dictionary of atoms
and some associated activation vectors, in order to recover the original signal X by
doing a convolution between the dictionary of atoms D and their sparse activation
vectors Z, as shown in Figure 2.3.1. Similarly as eq. (2.3.1), the convolution
between z ∈ RT−L+1 and D ∈ RP×L is denoted by z ∗D ∈ RP×T and obtained by
convolving every row of D by z, i.e., it is defined by:

∀t ∈ J0 , T − 1K , (z ∗D) [t] :=
L−1∑
τ=0

⟨z[t− τ ], D[τ ]⟩ . (2.4.1)

We now are in the case of multivariate signals, thus the cost function from
eq. (2.3.2) is adapted, and the optimization problem is as follows,

min
Dk∈RP×L,znk∈RT̃

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥
2

F

+ λ
K∑
k=1

∥znk∥1


s.t. ∥Dk∥2F ≤ 1 and znk ≥ 0RT̃ ,

(2.4.2)

where X =
{
Xn ∈ RP×T , n = 1, . . . , N

}
are N observed multivariate signals of

length T that are recorded over P channels (mapping to space locations), λ > 0 is
the regularization parameter, D =

{
Dk ∈ RP×L, k = 1, . . . , K

}
are the K spatio-

temporal atoms constituting the dictionary, Z =
{
Zn ∈ RK×T̃ , n = 1, . . . , N

}
the

set of all sparse codes, with Zn =
{
znk ∈ RT̃ , k = 1, . . . , K

}
the K sparse signals

of activations associated with Xn, with T̃ := T − L + 1. The element-wise con-
straint on znk comes from the fact that it is assumed that its entries are positive,
which means that the temporal patterns are present each time with the same
polarity [Dupré la Tour et al., 2018].

This problem is bi-convex and solved with alternate minimization: first, given
K fixed atoms Dk and a regularization parameter λ > 0, retrieve the NK acti-
vation signals znk associated to the signals Xn, e.g., by locally greedy coordinate
descent (LGCD); then, given NK fixed activation signals znk , update the K spatial
patterns Dk, and so forth.

45



Chapter 2. Background on Dictionary Learning

2.4.1 Rank-1 constraint

The incorporation of a rank-1 constraint into multivariate CDL is motivated by the
physical properties governing electrophysiological signals such as EEG and MEG.
Rooted in Maxwell’s equations, the physical model dictates that each sensor in-
stantaneously receives a linear transformation of every source emanating from the
brain. Importantly, this transformation is characterized by a constant topographic
map; that is, a signal originating from the same neural source but captured at dis-
parate time points will be projected across the sensor array via the same linear
transformation. As electromagnetic waves traverse the brain at the speed of light,
all sensors register the same waveform simultaneously, albeit with varying inten-
sity levels due to factors like tissue conductivity and sensor-source distance. To
model these nuances effectively, Dupré la Tour et al. [2018] advocate for the use
of multivariate CSC with a rank-1 constraint. This constraint ensures that each
learned atom possesses distinct spatial and temporal patterns, as depicted in Fig-
ure 2.4.1. Mathematically, the rank-1 constraint formalizes each atom Dk ∈ RP×L

as the outer product ukv
⊤
k , where uk ∈ RP encapsulates the spatial activations

across channels and vk ∈ RL embodies the temporal evolution. This constraint
not only adheres to the underlying physical model but also significantly constrains
the solution space to more realistic and interpretable dictionary atoms.

Thus, the ∥Dk∥2F ≤ 1 constraint in (2.4.2) is now replaced by ∥uk∥22 ≤ 1 and
∥vk∥22 ≤ 1, making the problem tri-convex:

min
uk∈RP ,vk∈RL,znk∈RT̃

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗
(
ukv

⊤
k

)∥∥∥∥∥
2

F

+ λ
K∑
k=1

∥znk∥1


s.t. ∥uk∥22 ≤ 1, ∥vk∥22 ≤ 1 and znk ≥ 0RT̃ .

(2.4.3)

Despite these successes, there are still many challenges and open questions in
the application of DL and CDL to neuroscience data. One challenge is the high
dimensionality and complexity of the data, which makes the dictionary learning
problem more difficult to solve. Another challenge is the interpretability of the
learned dictionaries. While DL provides a data-driven and adaptive basis for
representing the data, it does not provide an explicit model of the data generation
process, which can be a disadvantage in certain applications [Mairal et al., 2014].
Furthermore, the choice of dictionary size, the level of sparsity, and the balance
between representation accuracy and computational cost are all critical yet tricky
issues to address.

In conclusion, Dictionary Learning and its extensions such as Convolutional
Dictionary Learning provide a powerful framework for representing data in a sparse
and efficient manner. While there are still many challenges to overcome and open
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Figure 2.4.1: Spacial (up) and temporal (down) representation of three atoms obtained
by dictionary learning. (alphacsc)

questions to answer, the potential of these methods in various applications, includ-
ing neuroscience, is vast and promising. As we continue to develop more advanced
algorithms and gain access to larger and more complex datasets, we can expect to
see even more impressive results from these methods in the future.
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The study of temporal point processes has evolved significantly since its incep-
tion, serving as a rich intersection between statistical physics, stochastic pro-

cesses, and more recently, machine learning and finance. Originating from the
foundational work on point processes by Cox and Moran in the mid-20th cen-
tury [Moran, 1953, Cox, 1955], the field underwent a pivotal transition to incor-
porate time-dependent phenomena, notably advanced by Daley and Vere-Jones
[Daley and Vere-Jones, 2003, 2007]. This shift opened new vistas for applications
ranging from seismology to financial markets. A landmark in this development
was the introduction of Hawkes processes by Alan G. Hawkes in 1971 [Hawkes,
1971], which enabled the modeling of complex, self-exciting systems, finding im-
mediate applications in epidemiology and later in neural spike train analysis. As
computational capabilities expanded, so did methodological advancements, includ-
ing the development of efficient algorithms for parameter estimation, such as the
Expectation-Maximization (EM) algorithm and Maximum Likelihood Estimation
(MLE) [Lewis and Shedler, 1979]. The 21st century witnessed a resurgence of
temporal point processes in machine learning, tackling challenges in anomaly de-
tection, event prediction, and recommendation systems [Zhou et al., 2013a].



Chapter 3. Background on Temporal Point Processes

In this chapter, we will give a short introduction on point processes, particularly
on temporal point processes, with a focus on Hawkes processes. Further details can
be found in Daley and Vere-Jones [2003, 2007]. We use the notation from Achab
[2017], as described in section 3.1.

3.1 Definitions

A point process is a type of mathematical model used to describe patterns formed
by points randomly distributed in a space. This space, denoted as S, is a locally
compact metric space equipped with its Borel σ-algebra B. Essentially, S is a
space where points can be placed, and the Borel σ-algebra is a mathematical
framework that allows us to measure and analyze these points. The term “locally
finite counting measures on S” refers to a way of counting points in S such that
in any bounded region, there are only a finite number of points. This concept is
crucial for ensuring that the point process is well-defined and manageable. We
denote this set of counting measures as XS. Let NS the smallest σ-algebra on
XS such that all point counts fB : Xs → N, ω 7→ #(ω ∩B) are measurable for B
relatively compact in B, where #A denotes the cardinality of the set A. This
means that we can count the number of points in any reasonably sized (relatively
compact) region in a consistent and well-defined manner. A point process on S is
a measurable map ξ from a probability space (Ω,F ,P) to the measurable space
(XS,NS).

In simpler terms, one can think of a point process as a way to randomly scatter
a number of points in a space, like stars in the night sky or raindrops falling
on a surface, where the exact pattern of these points is governed by the rules of
probability.

Every realization of a point process ξ can be written as ξ =
∑n

i=1 δXi
, where δ

denotes the Dirac measure, n is an integer-valued random variable, and each Xi

is a randomly located point within the space S. A point process can be equiva-
lently represented by a counting process N (B) :=

∫
B
ξ(x) dx. In simple terms, this

counting process N (B) counts the number of events in each Borel subset B ∈ B.
The mean measure M of a point process ξ is a measure on S that assigns to every
B ∈ B the expected number of event of ξ in B, i.e.,

∀B ∈ B, M (B) := E [N (B)] .
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3.2 Temporal point processes

3.2 Temporal point processes

A temporal point process is a stochastic, or random, process composed of a time
series of binary events that occur in continuous time [Paninski, 2019]. However,
unlike time series that model events occurring at a fixed rate or interval, temporal
point processes can study multiple time scales at once [Bompaire, 2019], as they
do not assume a fixed time interval between events.

In this particular case, S is the time interval [0 , T ), equipped with the Borel
σ-field of the real line B (R). Here, a realization of a point process is simply
a set of time points ti ∈ S: ξ =

∑n
i=1 δti . With a slight abuse of notation,

we associate to the set of distinct random timestamps ξ = {t1, . . . , tn} occurring
before T , the counting process Nt =

∑
ti∈ξ 1{ti≤t}, which is then simply the number

of points in the time interval [0 , t]. This counting process is a random process that
evolves over time by jumps of size 1. Studying temporal point processes consists in
analyzing when these jumps occur. The conditional intensity function λ (t|Ft) is
the usual way to characterize temporal point processes, where the present depends
only on the past. It is defined as the expected infinitesimal rate at which events
are expected to occur after t given the information Ft available up to – but not
including – time t, i.e., the history of the counting process Nt prior to t. Namely,

λ (t|Ft) = lim
dt→0

P (Nt+dt −Nt = 1|Ft)

dt
, (3.2.1)

where Ft = {ti, ti < t, i = 1, . . . , n} is the natural filtration of the process. The
conditional intensity function is sometimes denoted λ∗(t).

As the quantity dNt := Nt+dt − Nt ∈ {0, 1} can only increase by one event at
each dt, it readily follows that P (dNt = 1|Ft) = λ∗(t)dt and

E [dNt|Ft] = 1× P (dNt = 1|Ft) + 0× P (dNt = 0|Ft) = λ∗(t)dt . (3.2.2)

Hence, we can also think of the conditional intensity function λ∗(t) as an instan-
taneous rate of events per time of unit.

The homogeneous Poisson process is the simplest temporal point process,
which assumes that the events arrive at a constant rate, which corresponds to a
constant intensity function λ (t|Ft) = λ∗(t) = λ > 0, as shown in fig. 3.2.1a. In
other words, it describes a phenomenon with no memory and a constant probability
of occurrence, in which Nt+∆t−Nt follows a Poisson distribution of parameter ∆t
for any ∆t > 0. For this process, ∀B ∈ B (R), M (B) = λ |B|, where |·| denotes
the Lebesgue measure on (S,B (R)).

The inhomogeneous Poisson process is a more general process, for which
the conditional intensity function is not constant as it depends on t but not on the
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(a) Homogeneous Poisson process
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(b) Inhomogeneous Poisson process

Figure 3.2.1: Comparison of event occurrence in one-dimensional Poisson Processes. The
red line represents the intensity function λ(t) for two Poisson processes, demonstrating,
in the case of the inhomogeneous one, the variability of event rates over time. The black
crosses denote the actual events, each positioned to indicate the time at which the event
occurred. The density of crosses reflects the probability of events occurring at different
times, according to the intensity function. The underlying objective in point process
inference is to uncover the latent intensity function from these observed events.
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history, i.e., λ (t|Ft) = λ∗(t) = λ(t), as depicted in fig. 3.2.1b. For this process,
M (B) =

∫
B
λ(x) dx, for all B ∈ B (R).

Let us denote f ∗(t) = f (t|Ft) the conditional probability density function of
the inter-event time, i.e., the probability that the next event will occur during the
interval [t , t+ dt) conditioned on the history Ft. Let us also denote

F ∗(t) = F (t|Ft) = P (tn ≤ tn+1 ≤ t|Ft) =

∫ t

tn

f ∗(τ) dτ , (3.2.3)

the conditional cumulative density function, i.e., the probability that the next
event tn+1 will occur before time t conditioned on the history Ft, where here tn is
the last event in Ft, i.e., the last event before time t, and tn+1 the random next
one. Finally, we denote S∗(t) = 1 − F ∗(t) = P (tn+1 ≥ t|Ft) the complementary
cumulative distribution, also called the survival function, i.e., the probability that
the next event will not occur before time t conditioned on the history Ft [De et al.,
2019].

Now,

λ∗(t) = lim
dt→0

P (t ≤ tn+1 ≤ t+ dt|tn+1 > t)

dt

= lim
dt→0

1

dt

P (t ≤ tn+1 ≤ t+ dt)

P (tn+1 > t)

= lim
dt→0

(
1

dt

f ∗(t)dt

S∗(t)
+ o(1)

)
=
f ∗(t)

S∗(t)

= − 1

S∗(t)

dS∗(t)

dt

= −d logS∗(t)

dt

(3.2.4)

By integrating the left and right-hand sides in the above equation, we have that∫ t

tn

λ∗(τ) dτ =

∫ t

tn

−d logS∗(τ)

dτ
dτ = − logS∗(t) + logS∗(tn)︸ ︷︷ ︸

=0

, (3.2.5)

and thus,

S∗(t) = exp

(
−
∫ t

tn

λ∗(τ) dτ

)
. (3.2.6)

Finally, we get that

f ∗(t) = λ∗(t) exp

(
−
∫ t

tn

λ∗(τ) dτ

)
. (3.2.7)

53



Chapter 3. Background on Temporal Point Processes

3.2.1 Poisson process and likelihood function

This section is taken and adapted from [Daley and Vere-Jones, 2003, chap. 2, p. 19-
23] and aims to give a more in-depth presentation of the Poisson processes, with
a focus on the computation of the likelihood function, as it is crucial information
for what follows in the manuscript.

The stationary Poisson process – what we previously called the homogeneous
Poisson process, cf. fig. 3.2.1a – on the line is completely defined by the following
equation, in which we use N (ai , bi] to denote the number of events of the process
falling in the half-open interval (ai , bi] with ai < bi ≤ ai + 1:

P (N (ai , bi] = ni, i = 1, . . . , k) =
k∏

i=1

[λ (bi − ai)]ni

ni!
e−λ(bi−ai) . (3.2.8)

This definition embodies three important features: i) the number of points
in each finite interval (ai , bi] has a Poisson distribution of parameter λ; ii) the
numbers of points in disjoint intervals are independent random variables; and iii)
the distributions are stationary, i.e., they depend only on the lengths bi−ai of the
intervals.

The likelihood of a finite realization of a Poisson process may be defined as
the probability of obtaining the given number of observations in the observation
period, times the joint conditional density for the positions of those observations,
given their number.

Suppose that there are N observations on (0 , T ] at time points t1, . . . , tN . From
3.2.8, we can write down immediately the probability of obtaining single events
in (ti −∆ , ti] and no points on the remaining part of (0 , T ]. Let A and B be
respectively those events, namely,

A = {N (ti −∆ , ti] = 1, i = 1, . . . , N} , (3.2.9)

and

B = {N (0 , t1 −∆] = 0, N (tN , T ] = 0, N (ti , ti+1 −∆] = 0, i = 1, . . . , N − 1}

54



3.3 Hawkes processes

P (A ∩B) =

(
N∏
i=1

λ∆e−λ∆

)
× e−λ(t1−∆) × e−λ(T−tN ) ×

N−1∏
i=1

e−λ(ti+1−∆−ti)

=

(
N∏
i=1

λ∆

)
× e−λ∆N × e−λ(T−N∆)

= e−λT

N∏
i=1

λ∆

= λN∆Ne−λT .

Dividing by ∆N and letting ∆ −→ 0, to obtain the density, we find as the
required likelihood function:

L(0 ,T ] (N ; t1, . . . , tn) = λNe−λT . (3.2.10)

We can extend this result to a Poisson process with time-varying rate λ(t), com-
monly called the nonhomogeneous or inhomogeneous Poisson process, cf. fig. 3.2.1b.
The process can be defined exactly as in 3.2.8, with the quantities λ (ai , bi] =∫ bi
ai
λ dx replaced wherever they occur by quantities

Λ (ai , bi] =

∫ bi

ai

λ(x) dx , (3.2.11)

called the compensator of the point process. Thus, the joint distributions are still
Poisson, and the independence property still holds. The likelihood function takes
the more general form

L(0 ,T ] (N ; t1, . . . , tn) = e−Λ(0 ,T ]

N∏
i=1

λ(ti)

= exp

(
−
∫ T

0

λ(t) dt+
N∑
i=1

log λ(ti)

)

= exp

(
−
∫ T

0

λ(t) dt+

∫ T

0

log λ(t)N (dt)

)
.

(3.2.12)

Note that this result could also be obtained by using the Equation (3.2.7).

3.3 Hawkes processes

In this section, we give the main definitions and properties of Hawkes processes
and multivariate Hawkes processes, and set the notations that will be used in
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the rest of the manuscript. Hawkes processes [Hawkes, 1971, Hawkes and Oakes,
1974] are temporal point processes in which the intensity depends on the process
history with an excitation mechanism. They can be understood as the equivalent
of auto-regressive time series models (AR; Box et al. 2015) but in continuous time.
This allows to study cross causality that might occur in one or several events
series [Bompaire, 2019].

A Hawkes process is defined by a history dependent intensity λ defined as
follows,

λ (t|Ft) = ψ

(
µ+

∫ t

−∞
ϕ(t− s) dNs

)
, (3.3.1)

where ∫ t

−∞
ϕ(t− s) dNs =

∑
i,ti≤t

ϕ(t− ti) . (3.3.2)

The parameter µ ≥ 0 is referred as the baseline intensity – or background intensity
– and it corresponds to the exogenous intensity of the considered events. The
function ϕ(·) : R+ → R is called the kernel function, or the transfer function [Chen
et al., 2017], and quantifies over time and in magnitude the influence of past events.
Note that the occurrence of each event ti makes the intensity vary by a certain
amount, determined by the kernel, making the intensity history dependent and a
stochastic process by itself [De et al., 2019].

If the link function ψ on the right-hand side of Equation 3.3.1 is non-linear, then
λ(t) is the intensity of a non-linear Hawkes process [Brémaud and Massoulié, 1996].
Various forms of non-linear link functions exist, each with their own specific appli-
cations. For instance, ψ(·) = exp(·) is often used in financial markets to capture
exponential increases in trading activities. The logistic function ψ(·) = 1

1+exp(−·)
is commonly applied in social network analysis, particularly in modeling the vi-
rality of information spread, as it accounts for saturation effects. In seismology, a
power-law function ψ(·) = (·)α, α ̸= 1, is employed to model the heavy-tailed dis-
tribution of aftershock occurrences over time. More recently, neural network-based
link functions have been introduced in computational neuroscience to capture the
complex, nonlinear dependencies in neural spike trains. Each of these non-linear
forms offers specific advantages in capturing the dynamics of the system being
modeled, thereby extending the applicability of Hawkes processes to a wider range
of phenomena.

In contrast to non-linear Hawkes processes, a linear link function ψ offers a
simplified yet flexible model. Specifically, if ψ(·) = a(·)+ b, where a and b are con-
stants, the Hawkes process retains its linearity but allows for a scaling and shifting
of the intensity function. This can be particularly beneficial in systems where the
impact of historical events on future occurrences is scaled by a factor a or shifted
by b. For instance, in queueing systems, the linear scaling factor a can model the

56



3.3 Hawkes processes

rate at which incoming tasks trigger additional tasks in the queue [Daley and Vere-
Jones, 2007]. In epidemiology, the constant b can account for external factors such
as vaccination rates that uniformly shift the intensity of disease spread [Becker,
1977]. Thus, a linear ψ provides a useful compromise between model complexity
and interpretability, allowing for adjustments to the intensity function without
introducing non-linearity [Hawkes, 1971].

In what follows, we restrict ourselves to the simplest case where ψ is the identity
function.

Multivariate Hawkes process

We can extend the univariate Hawkes process to model the interactions of K ≥ 1
temporal point processes, called nodes.

Namely, it models timestamps
{
t
(i)
k

}
k≥1

of nodes i = 1, . . . , K associated with

a multivariate counting process Nt =
[
N

(1)
t , . . . , N

(K)
t

]
. Note that for all nodes

i = 1, . . . , K, we still have that all of its timestamps t(i)k occur in the time interval
[0 , T ]. The excitation dynamic between the nodes is encompassed by the auto-
regressive structure of the conditional intensity. For component N (i)

t it writes:

λi (t|Ft) = µi +
K∑
j=1

∫ t

−∞
ϕi,j(t− s) dN (j)

s , (3.3.3)

where ϕi,j(t) quantifies the excitation rate of an event of type j on the arrival rate
of events of type i after a time lag t. In general it is assumed that each kernel is
causal and positive, meaning that Hawkes processes can only account for mutual
excitation effects since the occurrence of some event can only increase the future
arrival intensity of other events. If the kernels are integrable, each entry of the
K×K matrix (Φ)i,j =

∫ T

0
ϕi,j(t) dt denotes the expected number of events of type

i directly triggered by an event of type j.

Kernels parametrisation

The kernel function in a Hawkes process plays an indispensable role, determining
how past events exert influence on future occurrences. The choice of kernel is
often predicated on the specific dynamics of the system under examination. In
this section, we explore a variety of kernel parametrizations, elucidating their
applications, scholarly references, and inherent limitations.

57



Chapter 3. Background on Temporal Point Processes

Figure 3.3.1: A realisation of a 2 nodes multivariate Hawkes process using Tick package
[Bacry et al., 2017b]. The four excitation kernels are shown on the left-hand side. The
intensities are displayed on the right-hand side (against time, up to time 20), where
events are represented by colored dots (blue corresponding to node 1 and orange to node
2). [Bompaire, 2019]

Exponential kernel The main parametric model is the so-called exponential
kernel, in which the kernels have the following form:

ϕi,j(t) = αi,jβ exp (−βt), αi,j > 0, β > 0 . (3.3.4)

In this model the integral matrix Φ = (αi,j)1≤i,j≤K and β > 0 is a memory param-
eter. A more general approach is the sum of exponentials kernels [Lemonnier and
Vayatis, 2014], namely

ϕi,j(t) =
U∑

u=1

α
(u)
i,j β

(u) exp
(
−β(u)t

)
, α

(u)
i,j > 0, β(u) > 0 . (3.3.5)

Exponential parametrization is predominantly employed in financial markets
for the modeling of high-frequency data, as it has the capacity to model instant
response to event with a rapid return to baseline. One significant limitation is
the kernel’s assumption of exponential decay in the influence of past events, which
may not be suitable for capturing long-range dependencies

Gaussian kernel Similarly, we can define the gaussian kernel and the sum of
gaussians kernels :

ϕi,j(t) =
U∑

u=1

1√
2πσ

(u)
i,j

exp

−
(
t− µ(u)

i,j

)2
2σ

(u)
i,j

2

, σ
(u)
i,j > 0 . (3.3.6)
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This kernel is commonly used in natural language processing and seismology.
Ogata [1999] utilized this kernel for modeling aftershocks following earthquakes.
The kernel’s tendency to smooth out abrupt changes in event dynamics serves as
a limitation.

Power-law kernel The Power-Law kernel can be expressed as:

ϕi,j(t) = t−αi,j . (3.3.7)

It is a prevalent choice in network analysis and studies within the social sciences.
Crane and Sornette [2008] applied this kernel in the modeling of social systems.
The main drawbacks are its computational complexity and the necessity for large
datasets for accurate parameter estimation.

Piecewise-constant kernel A piecewise-constant kernel can be defined as:

ϕi,j(t) = αi,j, t ∈ [tn−1 , tn) . (3.3.8)

This form of kernel is especially useful in epidemiological models that feature
diseases spreading in distinct phases. One of the risks is overfitting if the number
of intervals is not correctly specified.

In Python, the Tick package allows us to easily manipulate Hawkes process
with exponential and gaussian kernels [Bompaire, 2019, Bacry et al., 2017b]. Other
kernel functions are presented in Mehrdad and Zhu [2014].

3.4 Goodness of fit

We call goodness-of-fit a function telling how well a statistical model fits a set of
observations [Bompaire, 2019]. It has roots in classical statistics, tracing back to
the foundational works of Pearson [1900] and Fisher [1922].

Negative log-likelihood The notion of negative log-likelihood (NLL) finds its
origins in the maximum likelihood estimation (MLE) framework proposed by
Ronald A. Fisher in the early 20th century. For temporal point processes, the
concept was prominently highlighted in the seminal works of Daley and Vere-Jones
[2003] and Ogata [1988], obtained from (3.2.12) and given by:
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L (λ,FT ) = − logL (λ,FT ) =

∫ T

0

λ (s|Fs) ds−
NT∑
k=1

log λ (tk,Ftk) , (3.4.1)

where FT = {t1, . . . , tn} is the full history of the process and NT is the total
number of events that have occurred in [0 , T ].

The minimization of NLL essentially aligns with the maximization of the likeli-
hood of the observed events under the model parameters θ. It has been extensively
used in fields such as seismology, telecommunications, and more recently, neuro-
science, particularly in the modeling of neuronal spike trains [Brown et al., 2003].
Under some assumptions, the maximum likelihood estimator obtained by mini-
mizing this error is consistent, asymptotically normal, and asymptotically efficient
[Bompaire, 2019, Ogata, 1978].

Least squares error We now focus on the least squares loss inspired from empir-
ical risk minimization (ERM). Assuming a class of parametric kernel parametrized
by η, the objective is to find parameters that minimize the following loss function
(see e.g., eq. (I.2) in Bompaire, 2019, Chapter 1; Reynaud-Bouret and Rivoirard
[2010], Hansen et al. [2015], Bacry et al. [2020]):

L (θ,FT ) =
1

NT

p∑
i=1

∫ T

0

λi
(
s
∣∣F i

s

)2
ds− 2

∑
tin∈F i

T

λi

(
tin

∣∣∣F i
tin

) , (3.4.2)

where FT := {F 1
T , . . . ,F

p
T} is the set of all considered timestamps across all pro-

cesses, NT :=
∑p

i=1N
i
T is the total number of timestamps, and where θ := (µ,η),

where bold version of parameter denotes the associated vector, e.g., µ = (µ1, . . . , µp).
Interestingly, when used with an exponential kernel, this loss benefits from some
precomputations of complexity O (NT ), making the subsequent iterative optimiza-
tion procedure independent of NT [Bompaire, 2019]. This computational ease is
the main advantage of the loss L over the log-likelihood function. However, when
using a general parametric kernel, these precomputations require O

(
(NT )

2) oper-
ations, killing the computational benefit of the ℓ2 loss L over the log-likelihood. It
is worth noting that this loss differs from the quadratic error minimized between
the counting processes and the integral of the intensity function, as used in Wang
et al. [2016], Eichler et al. [2017] and Xu et al. [2018].
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Part II

Temporal Modeling and
Inference in M/EEG Signals: A

Point Process Approach





Traditionally, several methodologies have been employed to unearth hidden
patterns from high-dimensional time-series data produced by M/EEG, ranging

from statistical models to machine learning algorithms. However, the need for
more advanced techniques to model these time-series data’s intricacies has never
been more evident. This chapter amalgamates two crucial contributions in this
direction: the Driven Temporal Point Processes (DriPP) and the Fast Discretized
Inference for Hawkes Processes with General Parametric Kernels (FaDIn). These
two methods contribute to a more nuanced understanding of event-related neuronal
activity by exploiting the power of point processes.

Driven Temporal Point Processes (DriPP) extend the capabilities of Con-
volutional Dictionary Learning, an unsupervised learning technique that has been
successfully applied to extract temporal patterns in M/EEG data. DriPP takes this
a step further by modeling how these event occurrences are influenced by specific
tasks or experimental conditions. Using a novel statistical point process model,
DriPP links the intensity function of the point process to stimulation events, thus
providing a framework to study how cognitive or sensorial stimulation modulates
neural events. An efficient expectation-maximization (EM) algorithm has been
developed to estimate the parameters of this model, which has shown promising
results in revealing both evoked and induced event-related neural responses.

Fast Discretized Inference (FaDIn), on the other hand, focuses on the in-
herent challenges in Temporal Point Process (TPP) inference, particularly in the
context of Hawkes processes. Traditional Hawkes processes often employ exponen-
tial or non-parametric kernels, which have limitations regarding data requirements
or their ability to model latencies effectively. FaDIn addresses these issues by in-
troducing a fast ℓ2 gradient-based solver for TPPs using general parametric kernels
with finite support. The method offers a more accurate and computationally ef-
ficient approach to model stimuli-induced patterns in brain signals, significantly
improving the estimation of pattern latency.

Both DriPP and FaDIn contribute to a unified framework for the analysis of
M/EEG data, offering robust and efficient methods to identify and interpret tem-
poral patterns modulated by external stimuli. By integrating these methods, this
second part aims to provide a comprehensive view of advanced point process mod-
els in analyzing neural time-series data. It underlines the statistical and computa-
tional advancements in point process modeling and highlights their applicability
and effectiveness in neuroscience research.
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Statistical analysis of human neural recordings is at the core of modern neu-
roscience research. Thanks to non-invasive recording technologies such as elec-
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troencephalography (EEG) and magnetoencephalography (MEG), or invasive tech-
niques such as electrocorticography (ECoG) and stereotactic EEG (sEEG), the
ambition is to obtain a detailed quantitative description of neural signals at the
millisecond timescale when human subjects perform different cognitive tasks [Bail-
let, 2017]. During neuroscience experiments, human subjects are exposed to sev-
eral external stimuli, and we are interested in knowing how these stimuli influence
neural activity.

After pre-processing steps, such as filtering or Independent Component Anal-
ysis (ICA; Winkler et al. 2015) to remove artifacts, common techniques rely on
epoch averaging – to highlight evoked responses – or time-frequency analysis to
quantify power changes in certain frequency bands [Cohen, 2014] – for induced
responses (cf. section 1.2 for more details on this matter). While these approaches
have led to numerous neuroscience findings, it has also been criticized. Indeed,
averaging tends to blur out the responses due to small jitters in time-locked re-
sponses, and the Fourier analysis of different frequency bands tends to neglect the
harmonic structure of the signal, leading to the so-called “Fourier fallacy” [Jasper,
1948, Jones, 2016]. In so doing, one may conclude to a spurious correlation be-
tween components that have actually the same origin. Moreover, artifact removal
using ICA requires a tedious step of selecting the correct components.

Driven by these drawbacks, a recent trend of work aims to go beyond these
classical tools by isolating prototypical waveforms related to the stimuli in the sig-
nal [Cole and Voytek, 2017, Dupré la Tour et al., 2018, Donoghue et al., 2020]. The
core idea consists in decomposing neural signals as combinations of time-invariant
patterns, which typically correspond to transient bursts of neural activity [Sherman
et al., 2016], or artifacts such as eye blinks or heartbeats. In machine learning, var-
ious unsupervised algorithms have been historically proposed to efficiently identify
patterns and their locations from multivariate temporal signals or images [Lewicki
and Sejnowski, 1999, Jost et al., 2006, Heide et al., 2015, Bristow et al., 2013,
Wohlberg, 2016b], with applications such as audio classification [Grosse et al.,
2007] or image inpainting [Wohlberg, 2016a]. For neural signals in particular, sev-
eral methods have been proposed to tackle this task, such as the sliding window
matching (SWM; Gips et al. 2017), the learning of recurrent waveforms [Brock-
meier and Príncipe, 2016], adaptive waveform learning (AWL; Hitziger et al. 2017)
or convolutional dictionary learning (CDL; Jas et al. 2017, Dupré la Tour et al.
2018). Equipped with such algorithms, the multivariate neural signals are then
represented by a set of spatio-temporal patterns, called atoms, with their respec-
tive onsets, called activations. Out of all these methods, CDL has emerged as
a convenient and efficient tool to extract patterns, in particular due to its abil-
ity to easily include physical priors for the patterns to recover. For example, for
M/EEG data, Dupré la Tour et al. [2018] have proposed a CDL method which ex-
tracts atoms that appertain to electrical dipoles in the brain by imposing a rank-1
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structure. While these methods output characteristic patterns and an event-based
representation of the temporal dynamics, it is often tedious and requires a certain
domain knowledge to quantify how stimuli affect the atoms’ activations. Knowing
such effects allows determining whether an atom is triggered by a specific type
of stimulus, and if so, to quantify by how much, and with what latency. See
section 2.4 for more details on this matter.

As activations are random signals that consist of discrete events, a natural
statistical framework is the one of temporal point processes (PP). PP have received
a surge of interest in machine learning [Bompaire, 2019, Shchur et al., 2020, Mei
et al., 2020] with diverse applications in fields such as healthcare [Lasko, 2014,
Lian et al., 2015] or modelling of communities on social networks [Long et al.,
2015]. In neuroscience, PP have also been studied in the past, in particular to
model single cell recordings and neural spike trains [Truccolo et al., 2005, Okatan
et al., 2005, Kim et al., 2011, Rad and Paninski, 2011], sometimes coupled with
spatial statistics [Pillow et al., 2008] or network models [Galves and Löcherbach,
2015]. However, existing models do not directly address our question, namely, the
characterization of the influence of a deterministic PP – the stimuli onsets – on a
stochastic one – the neural activations derived from M/EEG recordings.

This work proposes a novel method – called driven point process (DriPP) – to
model the activation probability for CDL. This method is inspired from Hawkes
processes (HP; Hawkes 1971), and models the intensity function of a stochastic
process conditioned on the realization of a set of PP, called drivers, parametrized
using truncated Gaussian kernels to better model latency effects in neural re-
sponses. The resulting process can capture the surge of activations associated to
external events, thus providing a direct statistical characterization of how much a
stimulus impacts the neural response, as well as the mean and standard deviation
of the response’s latency. We derive an efficient expectation-maximization (EM)
based inference algorithm and show on synthetic data that it reliably estimates
the model parameters, even in the context of M/EEG experiments with tens to
hundreds of events at most. Finally, the evaluation of DriPP on the output of CDL
for standard MEG datasets shows that it reveals neural responses linked to stimuli
that can be mapped precisely both in time and in brain space. Our methodology
offers a unified approach to decide if some waveforms extracted with CDL are
unrelated to a cognitive task, such as artifacts or spontaneous brain activity, or
if they are provoked by a stimulus – no matter if they are “evoked” or “induced”
as more commonly described in the neuroscience literature [Tallon-Baudry et al.,
1996]. While these different effects are commonly extracted using different analysis
pipelines, DriPP simply reveals them as stimuli-induced neural responses using a
single unified method, that does not require any manual tuning or selection.
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4.1 Mathematical formulation

Recall from chapter 3 that the conditional intensity function λ : R+ → R+ of a
temporal point process (TPP) of events {ti} is defined as follows:

λ (t|Ft) := lim
dt→0

P (Nt+dt −Nt = 1|Ft)

dt
, (4.1.1)

where Nt :=
∑

i≥1 1{ti≤t} is the counting process associated to the process and
where Ft := {ti, ti < t}. This function corresponds to the expected infinitesimal
rate at which events are occurring at time t given the arrival times of past events
prior to t [Daley and Vere-Jones, 2003].

The proposed model DriPP is adapted from the Hawkes process (HP; Hawkes
1971), as the occurrence of a past event in the driver increases the likelihood of oc-
currence of activation events in the near future. However, here we suppose that the
stochastic point process in our model of neural activations does not have the self-
excitatory behavior characteristic of HP. Instead, the sources of activation in the
DriPP model are either the drivers or some spontaneous background activity, but
not its own previous activations. More specifically, in DriPP, the intensity function
at time t between a stochastic process k – whose set of events is denoted Ak – and a
non-empty set of drivers P – whose events are denoted Tp := {t(p)1 , . . . , t

(p)
np }, p ∈ P

– is composed of a baseline intensity µk ≥ 0 and triggering kernels κk,p : R+ → R:

λk,P(t) = µk +
∑
p∈P

∑
i,t

(p)
i ≤t

αk,pκk,p

(
t− t(p)i

)
, (4.1.2)

where αk,p ≥ 0 is a coefficient which controls the relative importance of the driver p
on the occurrence of events on the stochastic process k. Note that when the driver
processes are known, the intensity function is deterministic, and thus corresponds
to the intensity of an inhomogeneous Poisson process [Daley and Vere-Jones, 2003].
The coefficient αk,p is set to be non-negative so that we only model excitatory ef-
fects, as events on the driver only increase the likelihood of occurrence of new
events on the stochastic process. Inhibition effects are assumed non-existent. Fig-
ure 4.1.1 illustrates how events Tp on the driver influence the intensity function
after a short latency period.

A critical parametrization of this model is the choice of the triggering kernels
κk,p. To best model the latency, we use a parametric truncated normal distribution
of meanmk,p ∈ R and standard deviation σk,p > 0, with support [a , b] ⊂ R+, b > a.
Namely,

κk,p(x) := κ (x;mk,p, σk,p, a, b) =
1

σk,p

ϕ
(

x−mk,p

σk,p

)
Φ
(

b−mk,p

σk,p

)
− Φ

(
a−mk,p

σk,p

)1{a≤x≤b} , (4.1.3)
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Figure 4.1.1: Top: Convolutional dictionary learning (CDL) applied to a univariate
signal (blue) decomposes it as the convolution of a temporal pattern (orange) and a
sparse activation signal (black). Bottom: Intensity function λk,p defined by its baseline
µk and the stimulus events Tp (green). Intensity increases following stimulation events
with a certain latency.

where here, ϕ (resp. Φ) denotes the probability density function (resp. cumulative
distribution function) of the standard normal distribution. This parametrization
differs from the usual exponential kernel usually considered in HP, that captures
responses with low latency. Note that the truncation values a, b ∈ R+ are supposed
independent of both the stochastic process and the drivers, hence they are similar
for all kernel p ∈ P . Indeed, in the context of this paper, those values delimit the
time interval during which a neuronal response might occur following an external
stimulus. In other words, the interval [a , b] denotes the range of possible latency
values. In the following, we denote by T := T (k) the duration of the process k.

As previously mentioned, our research into point processes is motivated by the
need to unravel the complex relationships between external stimuli and neuronal
responses in the context of M/EEG data. The Convolutional Dictionary Learning
framework (CDL; cf. section 2.4) has provided us with a means to extract meaning-
ful atoms from raw signals. Our endeavor is to use point processes to analyze these
temporal, sparse activations, thereby paving the way for a more nuanced under-
standing of how the brain processes stimuli. Figure 4.1.2 offers a visual depiction
of this decomposition of raw signals into atoms and their respective activations.
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Figure 4.1.2: Schematic operation of the CDL on MEG signals. Raw MEG signals
alongside timestamps of external stimuli of type visual and auditory (left). CDL output
composed of a set of spatio-temporal atoms alongside their respective onsets (right). One
may claim to associate each atom to a physical phenomenom, i.e., heartbeat or eye blink
artifact, auditory or visual neural response.

4.2 Parameters inference with an EM-based algo-
rithm

We propose to infer the model parameters Θk,P = (µk,αk,P ,mk,P ,σk,P), where
we denote in bold the vector version of the parameter, i.e., xk,P = (xk,p)p∈P , via
maximum-likelihood using an EM-based algorithm [Lewis and Mohler, 2011, Xu
et al., 2016]. The pseudocode of the algorithm is presented in Algorithm 2. The
expectation-maximization (EM) algorithm [Dempster et al., 1977] is an iterative
algorithm that allows to find the maximum likelihood estimates (MLE) of param-
eters in a probabilistic model when the latter depends on non-observable latent
variables.

First, we derive the negative log-likelihood of the model.
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Proposition 4.2.1. Given an intensity function modelled as follows,

λk,P(t) = µk +
∑
p∈P

∑
i,t

(p)
i ≤t

αk,pκk,p

(
t− t(p)i

)
,

with µk ≥ 0, αk,p ≥ 0 and where κk,p (·) denotes the truncated normal distribution
of mean mk,p ∈ R and standard deviation σk,p > 0, with support [a , b] ⊂ R+, b > a,
the negative log-likelihood for the model’s parameters Θk,P = (µk,αk,P ,mk,P ,σk,P)
is:

Lk,P (Θk,P) = µkT +
∑
p∈P

αk,pnp −
∑
t∈Ak

log

µk +
∑
p∈P

∑
i,t

(p)
i ≤t

αk,pκk,p

(
t− t(p)i

) .

(4.2.1)

Proof 4.2.1

From (3.4.1), the negative log-likelihood for our model’s parameters Θk,P is as
follows:

Lk,P (Θk,P) =

∫ T

0

λk,P(t)dt−
∑
t∈Ak

log λk,P(t) . (4.2.2)

Now, we show that ∫ T

0

λk,p(t)dt = µkT +
∑
p∈P

αk,pnp

Without loss of generality, we can first assume that ∀p ∈ P , t(p)np + b ≤ T ,
i.e., the signal ends after every possible neurological response driven by a stim-
ulus, or equivalently, T ≥ max

p=1,...,P
t
(p)
np + b. Hence,

∀p ∈ P ,∀i = 1, . . . , np,

∫ T

0

κk,p

(
t− t(p)i

)
dt = 1 .

Thus, we have that

∫ T

0

λk,p(t) dt =

∫ T

0

µk +
∑
p∈P

∑
i,t

(p)
i <t

αk,pκk,p

(
t− t(p)i

) dt

= µkT +
∑
p∈P

αk,p

 ∑
t
(p)
i ∈Tp

∫ T

0

κk,p

(
t− t(p)i

)
dt


= µkT +

∑
p∈P

αk,pnp .
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Finally, we have that the negative log-likelihood writes

Lk,P(Θk,P) = µkT +
∑
p∈P

αk,pnp −
∑
t∈Ak

log λk,P(t) .

Substituting λk,P(t) by its full expression using (4.1.2) concludes the proof.

Expectation step

For a given estimate, the E-step aims at computing the events’ assignation, i.e., the
probability that an event comes from either the kernel or the baseline intensity.
At iteration n, let P (n)

k (t) := P
(n)
k (t; p, k) be the probability that the activation at

time t ∈ [0 , T ] has been triggered by the baseline intensity of the stochastic process
k, and P

(n)
p (t) := P

(n)
p (t; p, k) be the probability that the activation at time t has

been triggered by the driver p. By the definition of our intensity model (4.1.2), we
have:

P
(n)
k (t) =

µ
(n)
k

λ
(n)
k,P(t)

and ∀p ∈ P , P (n)
p (t) =

α
(n)
k,p

∑
i,t

(p)
i ≤t

κ
(n)
k,p

(
t− t(p)i

)
λ
(n)
k,P(t)

,

(4.2.3)
where θ(n) denotes the value of the parameter θ at step n of the algorithm, and
similarly, if f is a function of parameter θ, f (n) (x; θ) := f

(
x; θ(n)

)
. Note that,

∀t ∈ [0 , T ] , P
(n)
k (t) +

∑
p∈P

P (n)
p (t) = 1 .

Maximization step

Once this assignation has been computed, one needs to update the parameters of
the model using MLE. To obtain the update equations, we fix the probabilities
P

(n)
k and P

(n)
p , and cancel the negative log-likelihood derivatives with respect to

each parameter.
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For given values of probabilities P (n)
k (t) and P

(n)
p (t), we here derive succinctly

the update for parameters µ and α:

∂Lk,P

∂µ
(n)
k

(
Θ

(n)
k,P

)
= 0

⇔ T −
∑
t∈Ak

1

λ
(n)
k,P(t)

= 0

⇔ T −
∑
t∈Ak

P
(n)
k (t)

µ
(n)
k

= 0

⇔ µ
(n+1)
k =

1

T

∑
t∈Ak

P
(n)
k (t)

(4.2.4)

∂Lk,P

∂α
(n)
k,p

(
Θ

(n)
k,P

)
= 0⇔ np −

∑
t∈Ak

P
(n)
p (t)

α
(n)
k,p

= 0⇔ α
(n+1)
k,p =

1

np

∑
t∈Ak

P (n)
p (t) (4.2.5)

Note that by definition of P (n)
p , α(n+1)

k,p maintains the same sign as its initialization
α
(0)
k,p. This property stems from the inherent characteristics of the algorithm and

remains consistent throughout its iterations. These two updates amount to maxi-
mizing the probabilities that the events assigned to the driver or the baseline stay
assigned to the same generation process.

Then, we give the update equations for m and σ, which corresponds to para-
metric estimates of each truncated Gaussian kernel parameter with events assigned
to the kernel. First, let us rewrite the kernel function to have it under a form that
simplifies further computations.

κ(x;m,σ, a, b) =
1

σ

ϕ
(
x−m
σ

)
Φ
(
b−m
σ

)
− Φ

(
a−m
σ

)1{a≤x≤b}

=
exp

(
−1

2
(x−m)2

σ2

)
C (m,σ, a, b)

1{a≤x≤b}

where

C (m,σ, a, b) :=

∫ b

a

exp

(
−1

2

(u−m)2

σ2

)
du

= σ
√
2π

(
Φ

(
b−m
σ

)
− Φ

(
a−m
σ

))
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and similarly, we denote by subscripts the partials derivatives:

Cm (m,σ, a, b) :=
∂

∂m
C (m,σ, a, b)

=

∫ b

a

u−m
σ2

exp

(
−1

2

(u−m)2

σ2

)
du

=

[
− exp

(
−1

2

(u−m)2

σ2

)]b
a

= exp

(
−1

2

(a−m)2

σ2

)
− exp

(
−1

2

(b−m)2

σ2

)
,

and

Cσ (m,σ, a, b) :=
∂

∂σ
C (m,σ, a, b)

=

∫ b

a

(u−m)2

σ3
exp

(
−1

2

(u−m)2

σ2

)
du

=

[
−u−m

σ
exp

(
−(u−m)2

2σ2

)]b
a

+
1

σ

∫ b

a

exp

(
−1

2

(u−m)2

σ2

)
du

=
a−m
σ

exp

(
−(a−m)2

2σ2

)
− b−m

σ
exp

(
−(b−m)2

2σ2

)
+

1

σ
C (m,σ, a, b) .

Hence, we can precompute the kernel’s derivatives with respect to m and σ:

∂

∂m
κ(x;m,σ, a, b) =

(
x−m
σ2

− Cm (m,σ, a, b)

C (m,σ, a, b)

)
κ(x;m,σ, a, b) , (4.2.6)

and

∂

∂σ
κ(x;m,σ, a, b) =

(
(x−m)2

σ3
− Cσ (m,σ, a, b)

C (m,σ, a, b)

)
κ(x;m,σ, a, b) . (4.2.7)
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Update equation for mk,p

∂Lk,P
∂mk,p

(Θk,P) = −
∑
t∈Ak

∑
i,t

(p)
i ≤t

(
t− t(p)i −mk,p

σ2
k,p

− Cm (mk,p, σk,p, a, b)

C (mk,p, σk,p, a, b)

)
αk,pκk,p

(
t− t(p)i

)
λk,P(t)

=

(
mk,p

σ2
k,p

+
Cm (mk,p, σk,p, a, b)

C (mk,p, σk,p, a, b)

)∑
t∈Ak

Pp(t)

− αk,p

σ2
k,p

∑
t∈Ak

∑
i,t

(p)
i ≤t

(
t− t(p)i

)
κk,p

(
t− t(p)i

)
λk,P(t)

(4.2.8)

Hence, by canceling the previous derivative,

m
(n+1)
k,p =

α
(n)
k,p

∑
t∈Ak

∑
i,t

(p)
i ≤t

(
t−t

(p)
i

)
κ
(n)
k,p

(
t−t

(p)
i

)
λ
(n)
k,P (t)∑

t∈Ak
P

(n)
p (t)

− σ(n)
k,p

2Cm

(
m

(n)
k,p , σ

(n)
k,p , a, b

)
C
(
m

(n)
k,p , σ

(n)
k,p , a, b

) ,

(4.2.9)
where Cm (m,σ, a, b) := ∂C

∂m
(m,σ, a, b), as previously defined.

Update equation for σk,p

∂Lk,P
∂σk,p

(Θk,P) = −
∑
t∈Ak

∑
i,t

(p)
i ≤t


(
t− t(p)i −mk,p

)2
σ3
k,p

− Cσ (mk,p, σk,p, a, b)

C (mk,p, σk,p, a, b)

 αk,pκk,p

(
t− t(p)i

)
λk,P(t)

=
Cσ (mk,p, σk,p, a, b)

C (mk,p, σk,p, a, b)

∑
t∈Ak

Pp(t)

− αk,p

σ3
k,p

∑
t∈Ak

∑
i,t

(p)
i ≤t

(
t− t(p)i (t)−mk,p

)2
κk,p

(
t− t(p)i

)
λk,P(t)

(4.2.10)
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Hence, by canceling the previous derivative,

σ
(n+1)
k,p =

 C
(
m

(n)
k,p , σ

(n)
k,p , a, b

)
Cσ

(
m

(n)
k,p , σ

(n)
k,p , a, b

) α(n)
k,p

∑
t∈Ak

∑
i,t

(p)
i ≤t

(
t−t

(p)
i (t)−m

(n)
k,p

)2
κ
(n)
k,p

(
t−t

(p)
i

)
λ
(n)
k,P (t)∑

t∈Ak
P

(n)
p (t)


1/3

,

(4.2.11)
where Cσ (m,σ, a, b) :=

∂C
∂σ

(m,σ, a, b), as previously defined.

Finally, to ensure that the σ coefficient stays strictly positive in order to avoid
computational errors, we add a projection step onto [ε ,+∞), with ε > 0 that is
pre-determined:

σ
(n+1)
k,p = proj[ε ,+∞)

(
σ
(n+1)
k,p

)
. (4.2.12)

In practice, we set ε such that we avoid the overfitting that can occur when the ker-
nel’s mass is too concentrated. Note that once the initial values of the parameters
are determined, the EM algorithm is entirely deterministic.

Algorithm 2: EM-based algorithm
input : Ak, Tp, a, b, T,N
output: The estimated values for parameters µ,α,m and σ

1 Initialize µ(0),α(0),m(0),σ(0) // Eq (4.2.14), (4.2.15) and (4.2.16)
2 for i = 0, . . . , N − 1 do
3 if α(i) = 0R#P then
4 µ(i+1) = µ(MLE) // Eq (4.2.13)
5 break
6 end
7 Define λ(i) // Eq (4.1.2)
8 Compute µ(i+1),α(i+1),m(i+1),σ(i+1) // Eq (4.2.4), (4.2.5), (4.2.9),

(4.2.12)
9 end

10 return µ(i+1),α(i+1),m(i+1),σ(i+1)

Also, when the estimate of parameter m is too far from the kernel’s support
[a , b], we are in a pathological case where EM is diverging due to indeterminacy
between setting α = 0 and pushing m to infinity due to the discrete nature of
our events. Thus, we consider that the stochastic process is not linked to the
considered driver, and fall back to the MLE estimator defined in (4.2.13). The
algorithm is therefore stopped and we set α = 0R#P .

It is worth noting that if ∀p ∈ P , αk,p = 0, then the intensity is reduced to
its baseline, thus the negative log-likelihood is Lk,p (Θk,p) = µkT − #Ak log µk,
where #A denotes the cardinality of the set A. Thus, we can terminate the EM
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algorithm by directly computing the MLE for µk, namely:

µ
(MLE)
k =

#Ak

T
, (4.2.13)

that corresponds to the average number of event per timestamps, like the param-
eter λ in a homogeneous Poisson Process.

Initialization strategy

We propose an initialization strategy based on moment matching [Bowman and
Shenton, 2004], where parameters are initialized based on their role in the model.
It reads:

µ
(0)
k =

#Ak −#
(⋃

p∈P Dk,p

)
T − λ

(⋃
p∈P

⋃
t′∈Tp [t

′ + a , t′ + b]
) (4.2.14)

α
(0)
k,p =

#Dk,p

λ
(⋃

t′∈Tp [t
′ + a , t′ + b]

) − µ(0)
k , ∀p ∈ P (4.2.15)

m
(0)
k,p =

1

#Dk,p

∑
d∈Dk,p

d and σ
(0)
k,p =

√√√√ 1

#Dk,p

∑
d∈Dk,p

∣∣∣d−m(0)
k,p

∣∣∣2, ∀p ∈ P ,

(4.2.16)

where λ (·) denotes the Lebesgue measure, and where

Dk,p :=
{
t− t(p)∗ (t), t ∈ Ak

}
∩ [a , b]

is the set of all empirical delays possibly linked to the driver p, with

t(p)∗ (t) := max {t′, t′ ∈ Tp, t′ ≤ t}

denoting the timestamp of the last event on driver p that occurred before time t.

Here, the initial baseline intensity µ(0) is set to the average number of process’
events that occur outside any kernel support, i.e., the events that are guaranteed to
be exogenous or spontaneous. Similarly, the kernel intensity α(0) is computed as the
increase in the average number of activations over the kernel support, compared
to µ(0). The initial guess for m(0) and σ(0) are obtained with their parametric
estimates, i.e., the mean and standard deviation of delays, considering that all
event on the kernel support are assigned to the considered driver.
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4.3 Experiments

We evaluated our model on several experiments, using both synthetic and empirical
MEG data. We used Python [Python Software Foundation, 2019] and its scientific
libraries [Virtanen et al., 2020, Hunter, 2007, Harris et al., 2020]. We relied on
alphacsc for CDL with rank-1 constraints on MEG [Dupré la Tour et al., 2018]
and we used MNE [Gramfort et al., 2013] to load and manipulate the MEG datasets.
Computations were run on CPU Intel(R) Xeon(R) E5-2699, with 44 physical cores.

4.3.1 Evaluation of the EM convergence on synthetic data

For a given number of drivers and a set of corresponding parameters Θ, we first
generate the drivers’ processes and then simulate the stochastic process for a pre-
determined duration T . Each driver’s timestamps are simulated as follows: given
an interstimuli interval (ISI), a set of S =

⌊
T
ISI

⌋
equidistant timestamps is generated

– where ⌊·⌋ denotes the floor function. Then P timestamps are uniformly sampled
without replacement from this set. In all our experiments, we fixed the ISI to 1 s
for the “wide” kernel, and to 1.4 s for the “sharp” one. Finally, a one-dimensional
non-homogeneous Poisson process is simulated following Lewis’ thinning algorithm
(Algorithm 3; Lewis and Shedler 1979), given the predefined intensity function λ
and the drivers’ timestamps.

Figure 4.3.1 illustrates the intensity function recovery with two drivers consid-
ered together: the first one has a “wide” kernel with standard deviation σ = 0.2 s,
and the second one has a “sharp” kernel with σ = 0.05 s. Both kernels have sup-
port [0.03 s , 0.8 s] and mean m = 0.4 s, the coefficients α are both set to 0.8 and
the baseline intensity parameter µ to 0.8. We report 8 estimated intensities ob-
tained from independent simulations of the processes – using T = 10 000 s and
P/S = 0.6 – that we plot over each one of the driver’s kernel’s support. The EM
algorithm is run for 50 iterations using the moment matching initialization strat-
egy described in section 4.1. Note that here, the randomness only comes from the
data generation, as the EM algorithm uses a deterministic initialization. Figures
demonstrate that the EM algorithm is able to successfully recover the parameters
for both shapes of kernels.

To provide a quantitative evaluation of the parameters’ recovery, we compute,
for each driver p ∈ P , the ℓ∞ norm between the intensity λ∗ computed with the
true parameters Θ∗

p and the estimated intensity λp with parameters Θ̂p:∥∥∥λ∗ − λ̂p∥∥∥
∞

:= max
t∈[0 ,T ]

∣∣µ∗ + α∗
pκ

∗
p(t)− µ̂− α̂pκ̂p(t)

∣∣ . (4.3.1)
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Algorithm 3: Lewis and Shedler [1979], p.7, Algorithm 1, One-
dimensional nonhomogeneous Poisson process simulation
Data: λ(t), T

1 initialize n = m = 0, t0 = s0 = 0, λ̄ = max
t∈[0 ,T ]

λ(t);

2 while sm ≤ T do
3 Draw u ∼ Unif[0 ,1];
4 w ← − ln(u)/λ̄ ; // so that w ∼ Exp

(
λ̄
)

5 sm+1 ← sm + w;
6 Draw D ∼ Unif[0 ,1];
7 if D ≤ λ(sm+1)/λ̄ then
8 tn+1 ← sm+1;
9 n← n+ 1;

10 end
11 m← m+ 1;
12 end
13 if tn ≤ T then
14 return {tk}k=1,2,...,n;
15 else
16 return {tk}k=1,2,...,n−1;
17 end
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µ = 0.8, α = 0.8, m = 0.4, σ = 0.05

Ground truth
Estimated

Figure 4.3.1: True and estimated intensity functions following a driving event at time
zero for two different kernels, on synthetic data. Left: “wide” kernel with σ = 0.2.
Right: “sharp” kernel with σ = 0.05. Parameters used are T = 10000, P/S = 0.6. On
synthetic data, the EM algorithm successfully retrieves the true values of parameters, for
both shapes of kernels.
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Figure 4.3.2: Mean (top) and standard deviation (bottom) of the relative infinite norm
as a function of process duration T and the percentage of events kept P/S, for two kernel
shapes on synthetic data: wide kernel (left) and sharp kernel (right). The accuracy of
the EM estimates increases with longer and denser processes.

The rationale for using the ℓ∞ norm is to ensure that errors during baseline and
within the kernel support are given equal importance. Figure 4.3.2 presents the
parameter recovery for the same scenario with varying P/S and T . To easily com-
pare the EM performances on the two shapes of kernels, Figure 4.3.2 reports the
mean and standard deviation of the relative ℓ∞ norm – that is the ℓ∞ divided by
the maximum of the true intensity λ∗ – computed for each of the driver over 30
repetitions with different realizations of the process. The results show that the
more data are available, either due to a longer process duration (increase in T ) or
due to a higher event density (increase in P/S), the better are the parameter esti-
mates. The convergence appears to be almost linear in these two cases. Moreover,
the average computation time for an EM algorithm in Figure 4.3.2 took 18.16 s,
showing the efficiency of our inference method. In addition, we report the scaling
of the EM computation time as a function of T , presented in Figure 4.3.3. For
each value of T , the mean computation time is computed over 90 experiments (3
values of P/S times 30 random seeds).
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Figure 4.3.3: Mean and 95% CI of computation time (in seconds) for one EM algorithm,
as a function of the process duration T (in seconds). Results are obtained on synthetic
data.

4.3.2 Evoked and induced effects characterization in MEG
data

Datasets Experiments on MEG data were run on two datasets from MNE Python
package [Gramfort et al., 2013, 2014]: the sample dataset and the somatosensory
(somato) dataset1. These datasets were selected as they elicit two distinct types of
event-related neural activations: evoked responses which are time locked to the on-
set of the driver process, and induced responses which exhibit random jitters. Com-
plementary experiments were performed on the larger Cam-CAN dataset [Shafto
et al., 2014]2. Presentation of the dataset, data pre-processing and obtained re-
sults on 3 subjects are presented in subsection 4.3.4. The presented results are
self-determined as they exhibit, for each subject, the atoms that have the higher
ratio α/µ. For all studied datasets, full results are presented in supplementary
materials.

The sample dataset contains M/EEG recordings of a human subject presented
with audio and visual stimuli. In this experiment, checkerboard patterns are pre-
sented to the subject in the left and right visual field, interspersed by tones to the
left or right ear. The experiment lasts about 4.6min and approximately 70 stim-
uli per type are presented to the subject. The interval between the stimuli is on
average of 750ms, all types combined, with a minimum of 593ms. Occasionally, a
smiley face is presented at the center of the visual field. The subject was asked to
press a button with the right index finger as soon as possible after the appearance
of the face. In the following, we are only interested in the four main stimuli types:
auditory left, auditory right, visual left, and visual right. For the somato dataset,

1Both available at https://mne.tools/stable/overview/datasets_index.html
2Available at https://www.cam-can.org/index.php?content=dataset
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a human subject is scanned with MEG during 15min, while 111 stimulations of
his left median nerve were made. The minimum ISI is 7 s.

Experimental setting For both datasets, only the 204 gradiometer channels
are analyzed. The signals are pre-processed using high-pass filtering at 2Hz to
remove slow drifts in the data, and are resampled to 150Hz to limit the atom
size in the CDL. CDL is computed using alphacsc [Dupré la Tour et al., 2018]
with the GreedyCDL method. For the sample dataset, 40 atoms of duration 1 s
each are extracted, and for the somato dataset, 20 atoms of duration 0.53 s are
estimated. The extracted atoms’ activations are binarized using a threshold of
6× 10−11 (resp. 1× 10−10) for sample (resp. somato), and the times of the events
are shifted to make them correspond to the peak amplitude time of the atom.
Then, for every atom, the intensity function is estimated using the EM-based
algorithm with 400 iterations and the moment matching initialization strategy.
Kernels’ truncation values are hyper-parameters for the EM and thus must be pre-
determined. The upper truncation value b is chosen smaller than the minimum ISI.
Here, we used in addition some previous domain knowledge to set coherent values
for each dataset. Hence, for the sample (resp. somato) dataset, kernel support is
fixed at [0.03 s , 0.5 s] (resp. [0 s , 2 s]). See subsection 4.3.3 for an analysis on how
these hyperparameters influence on the obtained results presented below.

Table 4.1 presents the main information related to real MEG datasets available
with the MNE Python package [Gramfort et al., 2013, 2014].

Dataset # Atoms Duration of
Atoms (s.)

# Atom’s
events # Drivers # Driver’s

events
Sequence
length (min.)

sample 40 1 ≈ 401.025 4 ≈ 72.25 4.6
somatosensory 20 0.53 10408 1 111 15

Table 4.1: Statistics of each MNE dataset. ≈ N denotes that N is the average
number.

Evoked responses in sample dataset Results on the sample dataset are pre-
sented in Figure 4.3.4. We plot the spatial and temporal representations of four
selected atoms, as well as the estimated intensity functions related to the two types
of stimuli: auditory (blue) and visual (orange). The first two atoms are specif-
ically handpicked to exhibit the usual artifacts, and the last two are selected as
they have the two bigger ratios α/µ for their respective learned intensity functions.
Even though the intensity is learned with the two stimuli conjointly, we plot the
two corresponding “intensities at the kernel” separately, i.e., ∀p ∈ P , ∀t ∈ [0 , 0.5],
we plot λk,p(t), k = 0, 1, 2, 6.
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Figure 4.3.4: Spatial and temporal patterns of 4 atoms from sample dataset, and their
respective estimated intensity functions following a stimulus (cue at time = 0 s), for
auditory and visual stimuli. The heartbeat and eye-blink artifacts are not linked to any
stimuli. An auditory stimulus will induce a neural response similar to atom 2, with a
mean latency of 85ms.
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Spatial and temporal representations of atom 0 (resp. atom 1) indicate that
it corresponds to the heartbeat (resp. the eye blink) artifact. These two atoms
are thus expected not to be linked to any stimuli. This is confirmed by the shape
of the intensities estimated with DriPP that is mostly flat, which indicates that
the activation of these two atoms are independent of auditory and visual stimuli.
Note that these two artifacts can also be recovered by an Independent Component
Analysis (ICA), as shown in Figure 1.2.3. Indeed, the cosine similarity between
the spatial maps of the eye blink (resp. the heartbeat) artifact extracted with
CDL and its corresponding component in ICA analysis is 99.58% (resp. 99.78%),
as presented in Figure 4.3.12. In contrast, by looking at the spatial and temporal
patterns of atom 2 (resp. atom 6), it can be associated with an auditory (resp.
visual) evoked response. Given the spatial topography of atom 2, we conclude to
a bilateral auditory response and the peak transient temporal pattern suggests an
evoked response that is confirmed by the estimated intensity function that contains
a narrow peak around 85ms post-stimulus. This is the M100 response – here the
auditory one – well known in the MEG literature (its equivalent in EEG is the
N100) [Näätänen and Picton, 1987]. The M100 is indeed a peak observed in the
evoked response between 80 and 120 milliseconds after the onset of a stimulus
in an adult population. Regarding atom 6, topography is right lateralized in the
occipital region, suggesting a visual evoked response. This is confirmed by the
intensity function estimated that reports a relationship between this atom and the
visual stimuli. Here also, the intensity peak is narrow, which is characteristic of an
evoked response. This reflects a right lateralized response along the right ventral
visual stream in this subject. This may be connected to the P200, a peak of the
electrical potential between 150 and 275 ms after a visual onset. Moreover, the
intensities estimated with DriPP for the unrelated tasks are completely flat. We
have α = 0, which indicates that atoms’ activations are exogenous or spontaneous
relatively to unrelated stimuli. For comparison, we present in subsection 4.3.5
similar results obtained with dedicated MEG data analysis tools, such as evoked
responses and time-frequency plots.

Induced response in somato dataset Results on the somato dataset are
presented in Figure 4.3.5. Similar to the results on sample, spatial and temporal
patterns of 3 handpicked atoms are plotted alongside the intensity functions ob-
tained with DriPP. Thanks to their spatial and temporal patterns, and with some
domain knowledge, it is possible to categorize these 3 atoms: atom 2 corresponds to
a µ-wave located in the secondary somatosensory region (S2), atom 7 corresponds
to an α-wave originating in the occipital visual areas, whereas atom 0 corresponds
to the eye-blink artifact. As α-waves are spontaneous brain activity, they are not
phase-locked to the stimuli. It is thus expected that atom 7 is not linked to the
task, as confirmed by its estimated intensity function where α = 0. For atom 2
– that corresponds to a µ-wave –, its respective intensity is nonflat with a broad
peak close to 1 s, which characterizes an induced response. Moreover, similar to
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Figure 4.3.5: Spatial and temporal patterns of 3 atoms from somato dataset, and their
respective estimated intensity functions following a somatosensory stimulus (cue at time
= 0 s). The eye-blink artifact (atom 0) is not linked to the stimulus, and neither is
the α-wave (atom 7). A somatosensory stimulus will induce a neural response similar to
atom 2, with a mean latency of 1 s.

results on the sample dataset, we recover the eye-blink artifact that also has a flat
intensity function. This allows us to be confident in the interpretation of the ob-
tained results. Figure 4.3.6 shows 3 atoms that correspond all to a µ-wave located
in the secondary somatosensory region (S2), with three different shapes of kernels
in their estimated intensity functions. They have an estimated intensity similar
to atom 2, i.e., non-flat with a broad peak close to 1 s. The usual time/frequency
analysis reported in Figure 1.2.2 exhibits the induced response of the µ-wave.

4.3.3 Impact of model hyperparameter

In this section, we dwell on the analysis of how setting hyperparameter values may
impact the obtained results, with the aim of determining whether it is possible to
set these parameters using a general rule of thumb, without degrading previous
results. More specifically, we will look at the impact of two hyperparameters on
the results we obtained on the MNE sample dataset: the threshold value – applied
to the atoms’ activation values to binarized them, currently set at 6× 10−11 –,
and the kernel support, currently set at [0.03 s , 0.5 s] using previous and domain
knowledge. To do so, we conducted two experiments on sample where each varies
one hyperparameter. We plot the intensity function learned by DriPP for the same
four atoms – namely, the two artifacts (heartbeat and eye blink) and the auditory
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Figure 4.3.6: Spatial and temporal patterns of 3 µ-wave atoms from somato dataset,
alongside with their respective estimated intensity functions. Below, in order to provide
further information, are the corresponding brain locations for each atom obtained with
dipole fitting.
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and visual responses –, separately for the two stimuli (auditory and visual), simi-
larly to Figure 4.3.4. We report its “true” value – the one presented in Figure 4.3.4
– in black déshed lines.

For the first experiment, presented in Figure 4.3.7, we varied the threshold,
expressed as a percentile, between 0 and 80. A threshold of 20 means that we only
keep activations whose values are above the 20% percentile computed over all
strictly positive activations, i.e., the smaller the threshold is, the more activations
are kept. The value of the threshold used in all other experiments is the 60%
percentile. One can observe that for the two artifacts (atoms 0 and 1), when
the threshold gets smaller, the learned intensity functions get flatter, indicating
that the stimulus has no influence on the atom activation. However, for the two
others atoms, the effect of a smaller threshold is the opposite, as the intensity
functions have a higher peak, indicating a bigger value of the α parameter, and
thus strengthening the link stimulus-atom. Thus, the threshold value could be set
to a small percentile and therefore computed without manual intervention, without
degrading the current results.

For the second experiment, we now focus on the kernel truncation values a
and b. Results are presented in Figure 4.3.8. We set a = 0, as we did for somato
and Cam-CAN datasets, and we vary b between 0.5 – the current value – and 10,
a large value compared to the ISI. One can observe that for b = 0.5 or b = 1,
the results are either unchanged (atoms 1, 2, and 6) or better (atom 0, as the
intensity function is totally flat for this artifact), indicating that setting a = 0
and b close to the average ISI of 0.750 s does not hinder the results. However,
when b is too large, the results degrade quickly, up to the point where all learned
intensities are flat lines, indicating that our model does not find any link between
the stimuli and the atoms. This is due to the fact that this hyperparameter is of
great importance in the initialization step, as the greater b is, the more atom’s
activations are considered being on a kernel support. Thus, setting the upper
truncation value to a value close to the average ISI seems to give reliable results.

4.3.4 Experiments on Cam-CAN dataset

The Cam-CAN dataset contains data of M/EEG recordings of 643 human sub-
jects submitted to audio and visual stimuli. In this experiment, 120 bimodal
audio/visual trials and eight unimodal trials – included to discourage strategic
responding to one modality (four visual only and four auditory only) – are pre-
sented to each subject. For each bimodal trial, participants see two checkerboards
presented to the left and right of a central fixation (34 milliseconds duration) and
simultaneously hear a 300 milliseconds binaural tone at one of three frequencies
(300Hz, 600Hz, or 1200Hz, equal numbers of trials pseudorandomly ordered). For
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Figure 4.3.7: Influence of the threshold (expressed as a percentile) on the obtained results
on MNE sample dataset, for the 4 main atoms, for auditory and visual stimulus. The
value of the threshold presented in Figure 4.3.4 is τ = 60%. The threshold value has
limited impact on obtained results, and thus could be determined with a general rule of
thumb, as a percentile over all activations values.
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Figure 4.3.8: Influence of the kernel truncation upper bound b (with a = 0) on the
obtained results on MNE sample dataset, for the 4 main atoms, for auditory and visual
stimulus. By setting b too high, all intensity functions are completely flat, indicating a
total loss of information.
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unimodal trials, participants either only hear a tone or see the checkerboards. For
each trial, participants respond by pressing a button with their right index finger if
they hear or see any stimuli [Shafto et al., 2014]. For each subject, the experiment
lasts less than 4min.

The signals are pre-processed using low-pass filtering at 125Hz to remove slow
drifts in the data, and are resampled to 150Hz to limit the atom size in the CDL.
CDL is computed using alphacsc [Dupré la Tour et al., 2018] with the GreedyCDL
method. Twenty atoms of duration 0.5 s are extracted from the signals. The
extracted atoms’activations are binarized and, similarly as previous experiments,
the events time are shifted to make them correspond to the peak amplitude time
in the atom. Then, for every atom, the intensity function is estimated using the
EM-based algorithm with 200 iterations and the moment matching initialization
strategy. Kernels’ truncation values are set at [0 s , 0.9 s]. Two drivers per atom
are considered. The first driver contains timestamps of all bimodal trials (all
frequencies combined) with in addition the 4 auditory unimodal stimuli (denoted
audivis_catch0). The second driver is similar to the first one, but instead of
the auditory unimodal stimuli, it contains the 4 visual unimodal stimuli (denoted
audivis_catch1).

This experiment is performed for 3 subjects, for each one we plot the 5 atoms
that have the highest ratio α/µ, so that we automatically exhibit atoms that are
highly linked to the presented stimuli. Similarly as results presented in section 4.3,
we plot the spatial and temporal representation of each atom, as well as the two
learned intensity functions that we plot “at kernel”. Results are presented on
Figure 4.3.9, Figure 4.3.10 and Figure 4.3.11.

First, we can observe that, as for experiments on sample and somato datasets,
we recover the heartbeat artifact (atom 0 in Figure 4.3.10) as well as the eye-blink
artifact (atoms 0 in Figure 4.3.9 and in Figure 4.3.11). Because of the paradigm
of the experiment, and in particular the instructions given to the subjects – that
is, to press a button after every stimulus, the majority of them being visual –, it
is not surprising if the eye blink artifact is slightly linked to the stimuli. Indeed, it
is often observed in such experiments – where there is no designated time to blink
– that the subject “allows” themself to blink after the visual stimulus.

As the majority of the presented stimuli are a combination of visual and audi-
tory, the CDL model struggles to separate the two corresponding neural responses.
Hence, that is why it can be observed that most of the first atoms reported exhibit
a mixture between auditory and visual response in their topographies (first row).
However, one can observe that for some such atoms, DriPP learned intensity is
able to indicate what is the main contributing stimulus in the apparition of the
atom. For instance, for atom 10 in Figure 4.3.9, the auditory stimulus is the main
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responsible stimulus of the presence of this atom, despite this latter presenting
a mixture of both neural responses. A similar analysis can be made for atom 1
in Figure 4.3.10, but this time for the auditory stimulus.
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Figure 4.3.9: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset sub-
ject CC620264, a 76.33-year-old female, and their respective estimated intensity functions
following an audiovisual stimulus (cue at time = 0 s) (audivis_catch0 represents times-
tamps for bimodal trials and 4 auditory stimuli, while audivis_catch1 represents the
same but with visual stimuli instead of auditory). Atoms are ordered by their bigger
ratio α/µ.

4.3.5 Usual M/EEG data analysis

We present in this final section some results obtained using usual M/EEG data
analysis, such as Independent Component Analysis (ICA), epoch averaging, or
time/frequency analysis. See section 1.2 for technical details on the usual methods
for analysing neurophysiological data. First, on MNE sample dataset, we proceed
to an ICA to manually identify usual artifacts. To do so, similarly as the CDL
pre-processing, the raw signals are filtered (high-pass filter at 2Hz), and 40 inde-
pendent components are fitted. The two components 0 and 1, that we manually
identify as corresponding to the eye blink and heartbeat artifacts respectively, are
presented in fig. 1.2.3. In fig. 4.3.12, we associate for each of the CDL atoms pre-
sented in fig. 4.3.4 the ICA component that has the maximum cosine similarity.
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Figure 4.3.10: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset
subject CC520597, a 64.25-year-old male, and their respective estimated intensity func-
tions following an audiovisual stimulus (cue at time = 0 s) (audivis_catch0 represents
timestamps for bimodal trials and 4 auditory stimuli, while audivis_catch1 represents
the same but with visual stimuli instead of auditory). Atoms are ordered by their bigger
ratio α/µ.

One can observe that the artifact atoms and components are highly similar, sug-
gesting that CDL and ICA have equal performance on the artifact detection. Note
that this high similarity is only based on the spatial pattern. Indeed, ICA does
not provide temporal waveforms for the atoms as well as their temporal onsets,
contrarily to CDL.

However, for the auditory and visual response, the result is different. For the
auditory one (atom 1), there is not really an ICA equivalent, as it is most correlated
with the eye-blink ICA component. Regarding the visual atom (atom 6), there is an
ICA component that presents a high similarity. While the two related components
correspond to neural sources on the occipital cortex, the atom 6 obtained with CSC
is more right lateralized, suggesting a source in the right ventral visual stream.
Note that unlike ICA, which recover full time courses for each source, CDL also
provides the onset of the patterns, which we later use for automated identification
of event related components. Finally, this demonstrates that CDL is a strong
competitor to ICA for artifact identification, while simultaneously enabling to
reveal evoked or induced neural responses in an automated way.
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Figure 4.3.11: Spatial and temporal patterns of the 5 atoms from Cam-CAN dataset sub-
ject CC723395, a 86.08-year-old female, and their respective estimated intensity functions
following an audiovisual stimulus (cue at time = 0 s) (audivis_catch0 represents times-
tamps for bimodal trials and 4 auditory stimuli, while audivis_catch1 represents the
same but with visual stimuli instead of auditory). Atoms are ordered by their bigger
ratio α/µ.

As mentioned, the ICA is commonly used to remove manually identified arti-
facts to reconstruct the original signals free of those artifacts. However, there are
two drawbacks of this method, the first one being that some domain-related knowl-
edge is needed in order to correctly identify the artifacts. The second drawbacks
happen when the signal is reconstructed after the removal of certain components.
Indeed, such a reconstruction will lead to a loss of information across all channels,
as the artifacts are shared by all the sensors. Thanks to the Convolutional dic-
tionary learning (CDL) that extracts the different artifacts directly from the raw
data, our method does not suffer from these drawbacks.

Still on MNE sample dataset, we compute from raw data the epoch average
following an auditory stimulus (stimuli in the left ear and in the right ear are
combined) and plot on fig. 1.2.4 the obtained evoked signals. fig. 4.3.13 is similar
but for the visual stimuli (again, stimuli on the left visual field and on the right
visual field are combined).

On somato dataset, in order to exhibit the induced response to the somatosen-
sory stimulus on the left median nerve of the subject, we perform a time/frequency
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Figure 4.3.12: Spatial representation of the four atoms presented in fig. 4.3.4 (top) along-
side their ICA components with the maximum cosine similarity (value indicated at the
bottom). Atoms and ICA are computed on MNE sample dataset.

analysis, presented on fig. 1.2.2. In order to perform this analysis, a complex pro-
cess including the use of Morlet wavelets is performed.

Finally, note that these methods that are commonly used in the M/EEG data
analysis comprise a thoughtfully data pre-processing as well as a manual inter-
vention requiring domain knowledge to identify both artifacts and evoked and
induced responses. As the proposed method in this paper is composed of a unified
pipeline, it is a significant gain. Indeed, DriPP is able to automatically isolate arti-
facts without prior removal of artifacts using ICA, as well as capture the diversity
of latencies corresponding to induced responses.

Regarding the statistical significance of the link between a stimulus and a
neural pattern, one can consider performing a statistical test, where one wishes to
reject the null hypothesis of independence. We have performed a statistical test
using a student t-test to check if the mean activation probability on [a, b] segments
is the same as the mean estimated on the baseline [0, T ] \ ⋃ti

[ti + a, ti + b]. We
present the results of the performed test in table 4.2. We can clearly see that both
artifacts (heartbeat and eye-blink) are not linked to stimuli while neural responses
are linked to related stimuli (p-values are very small). We would like to stress
that while this test is interesting, it is much more dependent on the selection of
the support interval [a, b] than the proposed method. Moreover, this test does not
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Figure 4.3.13: Evoked signals following a visual stimulus (cue at time = 0) on MNE
sample dataset. Baseline correction applied from beginning of the data until time point
zero.

atom id atom type p-value auditory p-value visual

0 heartbeat 2.25× 10−1 1.19× 10−1

1 eye-blink 5.85× 10−1 8.48× 10−1

2 auditory 2.31× 10−97 6.31× 10−1

6 visual 7.78× 10−1 5.12× 10−50

Table 4.2: Statistical univariate Student t-test on MNE sample dataset, H0: inde-
pendence between an atom and the stimulus (auditory or visual). The atom ids
correspond to the ones presented in fig. 4.3.4.

allow to assess the latency of the responses, and whether the atom is an induced
response or an evoked one.

4.4 Transcending limits with discretised paramet-
ric kernels

This work proposed a point process (PP) based approach specially designed to
model how external stimuli can influence the occurrences of recurring spatio-
temporal patterns, called atoms, extracted from M/EEG recordings using con-
volutional dictionary learning (CDL). The key advantage of the developed method
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is that by estimating few parameters (one baseline parameter and 3 parameters per
considered driver), it provides a direct statistical characterization of when and how
each stimulus is responsible for the occurrences of neural responses. Importantly, it
can achieve this with relatively limited data which is well adapted to MEG/EEG
experiments that last only a few minutes, hence leading to tens or hundreds of
events at most. This work proposed an EM algorithm derived for a novel kernel
function: the truncated Gaussian, which differs from the usual parametrization in
PP models that capture immediate responses, e.g., with exponential kernels. As
opposed to competing methods that can involve manual selection of task-related
neural sources, DriPP offers a unified approach to extract waveforms and automat-
ically select the ones that are likely to be triggered by the considered stimuli. Note
however that DriPP has been developed based on a point process framework, which
is event-based. When working with continuous stimuli, other techniques must be
considered, e.g., spatio-temporal response functions (STRF; Drennan and Lalor
2019).

This chapter also unveils inherent limitations, most notably in the realms of
kernel function selection and computational efficiency. The choice of kernel func-
tions has proven to be a double-edged sword; while non-parametric kernels offer
flexibility, they require a considerably larger dataset for robust statistical infer-
ence. Parametric kernels like the exponential kernel, although computationally
less demanding, impose their own set of constraints, such as a fixed decay parame-
ter, which may not be universally applicable across different experimental setups.
The next chapter aims to address these limitations by introducing a novel infer-
ence method known as FaDIn. This approach will bring improvements in kernel
selection flexibility and computational scalability. Specifically, FaDIn employs a
discretization strategy that enhances computational efficiency without sacrificing
statistical robustness, thereby offering a more versatile and efficient framework for
TPP modeling in neuroscience.
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Chapter 5. FaDIn: Fast Discretized Inference for Hawkes Processes...

As we saw, the statistical framework of Temporal Point Processes (TPPs; see
e.g., Daley and Vere-Jones 2003) is well adapted for modeling event-based

data, as it offers a principled way to predict the rate of events as a function of time
and the previous events’ history. Multivariate Hawkes processes (MHP; Hawkes
1971) are likely the most popular, as they can model interactions between each
univariate process, as well as self-excitation behavior, i.e., a past event will increase
the probability of having another event in the future on the same process.

A key feature of MHP modeling is the choice of kernels that can be either
non-parametric or parametric. In the non-parametric setting, kernel functions
are approximated by histograms [Lewis and Mohler, 2011, Lemonnier and Vayatis,
2014], by a linear combination of pre-defined functions [Zhou et al., 2013a, Xu et al.,
2016] or, alternatively, by functions lying in a Reproducing kernel Hilbert space
(RKHS; Yang et al. 2017). In addition to the frequentist approach, many Bayesian
approaches, such as Gibbs sampling [Ishwaran and James, 2001] or (stochastic)
variational inference [Hoffman et al., 2013], have been adapted to MHP in partic-
ular to fit non-parametric kernels. Bayesian methods also rely on the modeling of
the kernel by histograms [Donnet et al., 2020] or by a linear combination of pre-
defined functions [Linderman and Adams, 2015]. These approaches are designed
whether in continuous-time [Rasmussen, 2013, Zhang et al., 2018, Donnet et al.,
2020, Sulem et al., 2021] or in discrete-time [Mohler et al., 2013, Linderman and
Adams, 2015, Zhang et al., 2018, Browning et al., 2022]. These functions allow
great flexibility for the shape of the kernel, yet this comes at the risk of poor
estimation of it when only a small amount of data is available [Xu et al., 2017].

Another approach is to consider parametrized kernels to estimate the intensity
function. Although it can introduce a potential bias by assuming a particular
kernel shape, this approach has several benefits. First, it reduces inference bur-
den, as the parameter, say η, is typically lower dimensional than non-parametric
kernels. Moreover, for kernels satisfying the Markov property [Bacry et al., 2015],
computing the conditional intensity function is linear in the total number of times-
tamps/events. The most popular kernel belonging to this family is the exponential
kernel [Ogata, 1981]. It is defined by η = (α, γ) 7→ αγ exp(−γt), where α and γ are
the scaling and the decay parameters, respectively [Veen and Schoenberg, 2008,
Zhou et al., 2013b]. However, as pointed out by Lemonnier and Vayatis [2014], the
maximum likelihood estimator for MHP with exponential kernels is efficient only
if the decay γ is fixed. Thus, only the scaling parameter α is usually inferred. This
implies that the hyperparameter γ must be chosen in advance, usually using a grid
search, a random search, or Bayesian optimization. This leads to a computational
burden when the dimension of the MHP is high. The second option is to define
a γ decay parameter common to all kernels, which results in a loss of expressive-
ness of the model. In both cases, the relevance of the exponential kernel relies on
the choice of the decay parameter, which may not be adapted to the data [Hall
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and Willett, 2016]. For more general parametric kernels which do not verify the
Markov property, the inference procedure with both MLE or ℓ2 loss scales poorly
as they have quadratic computational scaling with the number of events, making
their use limited in practice (see e.g., Bompaire, 2019, Chapter 1). Recently, neu-
ral network-based MHP estimation has been introduced, offering, with sufficient
data, relevant models at the cost of high computational cost [Mei and Eisner,
2017, Shchur et al., 2019, Pan et al., 2021]. These limitations for parametric and
non-parametric kernels prevent their usage in some applications, as pointed out by
Carreira [2021] in finance or in neuroscience (cf. chapter 4) The latter application
is one of the main motivations for this work.

This work proposes a new inference method – named FaDIn – to estimate
any parametric kernels for Hawkes processes. Our approach is based on two key
features. First, we use finite-support kernels and a discretization applied to the
empirical risk minimization (ERM; Reynaud-Bouret and Rivoirard 2010, Hansen
et al. 2015, Bacry et al. 2020) inspired least-squares loss. Second, we propose to
employ some precomputations that significantly reduce the computational cost.
We then show, empirically and theoretically, that the implicit bias induced by the
discretization procedure is negligible compared to the statistical error. Further, we
highlight the efficiency of FaDIn in computation and statistical estimation over the
non-parametric approach. Finally, we demonstrate the benefit of using a general
kernel with MEG data. The flexibility of FaDIn allows us to model neural response
to external stimuli with a much better-adapted kernel than the existing method
derived in chapter 4.

5.1 Mathematical formulation

Recall from chapter 3 that given p sets of timestamps F i
T = {tin, tin ∈ [0, T ]}N

i
T

n=1,
i = 1, . . . , p , each process of a Multivariate Hawkes processes (MHP; Hawkes,
1971) is described by the following intensity function:

λi(t) = µi +

p∑
j=1

∫ t

0

ϕij(t− s) dN j
s , (5.1.1)

where µi is the baseline parameter, [N1
t , . . . , N

p
t ] the associated multivariate count-

ing process and ϕij : R+ → R+ the excitation function – called kernel – represent-
ing the influence of j-th process’ past events onto i-th process’ future events.

In this chapter, we will focus on the least squares loss inspired from empirical
risk minimization (ERM; eq. (3.4.2)). We denote FT := {F 1

T , . . . ,F
p
T} the set of

all considered timestamps across all processes, NT :=
∑p

i=1N
i
T the total number

of timestamps, and where θ := (µ,η).
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5.1.1 FaDIn

The approach we propose in this work fills the need for general parametric kernels
in many applications. We provide a computationally and statistically efficient
solver – coined FaDIn – that works with many parametric kernels using gradient-
based algorithms. Precisely, it relies on three key ideas: (i) the use of parametric
finite-support kernels, (ii) a discretization of the time interval [0, T ], and (iii)
precomputations allowing an efficient optimization procedure detailed below.

Finite support kernels

A core bottleneck for MLE or ℓ2 estimation of parametric kernels is the need to
compute the intensity function for all events. For general kernels, the intensity
function usually requires O

(
(NT )

2) operations, which makes it intractable for
long-time-length processes. To make this computation more efficient, we consider
finite support kernels. Using a finite support kernel amounts to setting a limit in
time for the influence of a past event on the intensity, i.e., ∀t /∈ [0 ,W ] , ϕij(t) = 0,
where W≪ T denotes the length of the kernel’s support. This assumption matches
applications where an event cannot have influence far in the future, such as in
neuroscience (as in chapter 4 with DriPP and in Krumin et al. 2010, Eichler
et al. 2017), genetics Reynaud-Bouret and Schbath [2010] or high-frequency trad-
ing [Bacry et al., 2015, Carreira, 2021]. The intensity function eq. (5.1.1) can then
be reformulated as a convolution between the kernel ϕij and the sum of Dirac
functions zi :=

∑
tin∈F i

T
δtin located at the event occurrences tin:

λi(t) = µi +

p∑
j=1

(ϕij ∗ zj) (t), t ∈ [0 , T ] . (5.1.2)

where

(ϕij ∗ zj) (t) :=
∫ +∞

−∞
ϕij(t− s)zj(s) ds =

∫ t

t−W

ϕij(t− s)zj(s) ds ,

as ϕij is finite support. Thus, the intensity can be computed efficiently with this
formula. Indeed, only events in the interval [t−W , t] need to be considered. See
section 5.2.3 for more details.

Discretization

To make these computations even more efficient, we propose to rely on discretized
processes. Most Hawkes processes estimation procedures involve a continuous
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5.1 Mathematical formulation

paradigm to minimize (3.4.2) or its log-likelihood counterpart. Discretization has
been investigated so far for non-parametric kernels [Kirchner, 2016, Kirchner and
Bercher, 2018, Kurisu, 2016]. The discretization of a TPP consists in projecting
each event tin on a regular grid G = {0,∆, 2∆, . . . , G∆}, where G =

⌊
T
∆

⌋
. We refer

to ∆ as the stepsize of the discretization1. Here ⌊·⌋ denotes the floor function. Let
F̃ i

T be the set of projected timestamps of F i
T on the grid G, with the projection

done to the nearest grid point. The intensity function of the i-th process of our
discretized MHP is defined as:

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃ j

s∆

ϕij(s∆− t̃jm)

= µi +

p∑
j=1

L∑
τ=0

ϕ∆
ij [τ ]zj[s− τ ]︸ ︷︷ ︸
(zj∗ϕ∆

ij)[s]

, s ∈ J0 , GK , (5.1.3)

where L :=
⌊
W
∆

⌋
denotes the number of points on the discretized support, where

ϕ∆
ij [τ ] = ϕij(τ∆) is the kernel value on the grid and where ∀s ∈ J0 , GK, zi[s] :=

#
{
|tin − s∆| ≤ ∆

2

}
denotes the number of events projected on the grid timestamp

s. Note that for s /∈ J0 , GK, zi[s] = 0. From now and throughout the rest of the
chapter, we denote ϕij : R+ → R+ as a function while ϕ∆

ij ∈ RL+1
+ represents the

associated discrete vector, with ϕ∆
ij [t] being the t-th element of that vector. Com-

pared to the continuous formulation, the intensity function can be computed more
efficiently as one can rely on discrete convolutions, whose worst-case complexity
scales as O (NTL). It can also be further accelerated using Fast Fourier Transform
when NT is large. Another benefit of the discretization is that for kernels whose
values are costly to compute, at most L values need to be calculated. This can have
a strong computational impact when NT ≫ L as all values can be precomputed
and stored.

While discretization improves the computational efficiency, it also introduces a
bias in the computation of the intensity function and, thus potentially, in estimat-
ing the kernel parameters. The impact of the discretization on the estimation is
considered in section 5.1.2 and section 5.2.1. Note that this bias is similar to the
one incurred by quantizing the kernel as histograms for non-parametric estimators.

Loss and precomputations

FaDIn aims at minimizing the discretized ℓ2 loss, which approximates the integral
on the left part of (3.4.2) by a sum on the grid G after projecting timestamps of

1In practice, we would take ∆ < 1.
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FT on it. It boils down to optimizing the following loss LG defined as:

LG
(
θ, F̃T

)
:=

1

NT

p∑
i=1

∆
G∑

s=0

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

] , (5.1.4)

where the ∆ factor comes from estimating the integral in eq. (3.4.2) by the method
of triangles. To find the parameters of the intensity function θ, FaDIn minimizes
LG using a first-order gradient-based algorithm. The computational bottleneck of
the proposed algorithm is thus the computation of the gradient ∇LG regarding
parameters θ. Using the discretized finite-support kernel, this gradient can be
computed using convolution, giving the same computational complexity as the
computation of the intensity function O (NTL). However, gradient computation
can still be too expensive for long processes with many events to get reasonable
inference times.

Using the least squares error of the process expressed in eq. (5.1.4), one can
further reduce the complexity of computing the gradient by precomputing some
constants Φj (τ ;G), Ψj,k (τ, τ

′;G) and Φj

(
τ ; F̃ i

T

)
that do not depend on the pa-

rameter θ. Indeed, by developing and rearranging the terms in eq. (5.1.4), one
obtains:

NT LG
(
θ, F̃T

)
=(T +∆)

p∑
i=1

µ2
i + 2∆

p∑
i=1

µi

p∑
j=1

L∑
τ=0

ϕ∆
ij [τ ]

(
G∑

s=0

zj[s− τ ]
)

︸ ︷︷ ︸
=:Φj(τ ;G)

+∆
∑
i,j,k

L∑
τ=0

L∑
τ ′=0

ϕ∆
ij [τ ]ϕ

∆
ik[τ

′]

(
G∑

s=0

zj[s− τ ] zk [s− τ ′]
)

︸ ︷︷ ︸
=:Ψj,k(τ,τ ′;G)

− 2


p∑

i=1

N i
Tµi +

∑
i,j

L∑
τ=0

ϕ∆
ij [τ ]

 ∑
t̃in∈F̃ i

T

zj

[
t̃in
∆
− τ
]

︸ ︷︷ ︸
=:Φj(τ ;F̃ i

T )


,

where (T +∆) comes from the fact that (G+ 1)∆ = T +∆.

The term Ψj,k (τ, τ
′;G) dominates the computational cost of our precomputa-

tions. It requires O (G) operations for each tuples (τ, τ ′) and (j, k). Thus, it has a
total complexity of O (p2L2G) and is the bottleneck of the precomputation phase.
For any m ∈ {1, . . . , p}, the gradient of the loss w.r.t. the baseline parameter is
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given by:

NT
∂LG

∂µm

= 2 (T+∆)µm + 2∆

p∑
j=1

L∑
τ=1

ϕ∆
mj[τ ]Φj (τ ;G)− 2Nm

T .

For any tuple (m, l) ∈ {1, . . . , p}2, the gradient w.r.t. ηml that parametrizes by
ϕml is:

NT
∂LG

∂ηml

= 2∆µm

L∑
τ=0

∂ϕ∆
ml[τ ]

∂ηml

Φl (τ ;G)

+ 2∆

p∑
k=1

L∑
τ=0

L∑
τ ′=0

∂ϕ∆
ml[τ ]

∂ηml

ϕ∆
mk[τ

′]Ψl,k (τ, τ
′;G)

− 2
L∑

τ=0

∂ϕ∆
ml[τ ]

∂ηm,l

Φl

(
τ ; F̃m

T

)
.

Gradients of kernel parameters dominate the computational cost of gradients.
The complexity is of O (pL2) for each kernel parameter, leading to a total complex-
ity of O (p3L2) and is independent of the number of events NT . Thus, a trade-off
can be made between the precision of the method and its computational efficiency
when varying the size of the kernel’s support or the discretization.

Remark The primary motivation for the ℓ2 loss is the presence of terms that can
be precomputed in contrast to the log-likelihood [Reynaud-Bouret and Rivoirard,
2010, Reynaud-Bouret et al., 2014, Bacry et al., 2020]. A comparison is performed
in section C.1.

Optimization The inference is then conducted using gradient descent for the ℓ2
loss LG. FaDIn thus allows for very general parametric kernels, as exact gradients
for each parameter involved in the kernels can be derived efficiently as long as
the kernel is differentiable and has finite support. Gradient-based optimization
algorithms can, therefore, be used without limitation, in contrast with the EM al-
gorithm, which requires a close-form solution to zero the gradient, which is difficult
for many kernels. A critical remark is that the problem is generally non-convex
and may converge to a local minimum.

5.1.2 Impact of the discretization

While discretization allows for efficient computations, it also introduces a pertur-
bation in the loss value. In this section, we quantify the impact of this perturbation
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on the parameter estimation when ∆ goes to 0. Through this section, we observe
a process FT whose intensity function is given by the parametric form λ(·; θ∗).
Note that if the process FT ’s intensity is not in the parametric family λ(·; θ), θ∗
is defined as the best approximation of its intensity function in the ℓ2 sense. The
goal of the inference process is thus to recover the parameters θ∗.

When working with the discrete process F̃T , the events tin of the original process
are replaced with a projection on a grid t̃in := tin + δin. Here, δin is uniformly
distributed on [−∆/2,∆/2]. We consider the discrete FaDIn estimator θ̂∆ defined
as θ̂∆ := argmin

θ
LG(θ). We can upper-bound the error incurred by θ̂∆ by the

decomposition:

∥∥∥θ̂∆ − θ∗∥∥∥
2
≤
∥∥∥θ̂c − θ∗∥∥∥

2︸ ︷︷ ︸
(∗)

+
∥∥∥θ̂∆ − θ̂c∥∥∥

2︸ ︷︷ ︸
(∗∗)

, (5.1.5)

where θ̂c := argmin
θ
L (θ) is the reference estimator for θ∗ based on the stan-

dard ℓ2 estimator for continuous point processes. This decomposition involves the
statistical error (∗) and the bias error (∗∗) induced by the discretization. The
statistical term measures how far the parameters obtained by minimizing the ℓ2
continuous loss having access to a finite amount of data are from the true ones. In
contrast, the term (∗∗) represents the discretization bias induced by minimizing
the discrete loss (eq. (5.1.4)) instead of the continuous one (eq. (3.4.2)). In the
following proposition, we focus on the discretization error (∗∗), which is related
to the computational trade-off offered by our method and not on the statistical
error of the continuous ℓ2 estimator (∗). Our work showcases that this disregarded
estimator can be efficiently computed, and we hope it will promote research to
describe its asymptotic behavior. We now study the perturbation of the loss due
to discretization.
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Proposition 5.1.1. Let FT and F̃T be respectively a MHP process and its dis-
cretized version on a grid G with stepsize ∆. Assume that the intensity function
of FT possesses continuously differentiable finite support kernels on [0,W ]. Thus,
assuming ∆ < min

tin,t
j
m∈FT

|tin − tjm|, for any i, j ∈ J1 , pK, it holds:

λ̃i[s] = λi (s∆)−
p∑

j=1

∑
tjm∈F j

s∆

δjm
∂ϕij

∂t

(
s∆− tjm; θ

)
+O(∆2),

and

LG(θ, F̃T ) =
2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

(
δjm − δin

) ∂ϕij

∂t

(
tin − tjm; θ

)
+ L (θ) + ∆h(θ) +O

(
∆2
)
.

Proof 5.1.1
Recall that by definition,

λi(s∆) = µi +

p∑
j=1

∑
tjm∈F j

s∆

ϕij

(
s∆− tjm

)
,

and

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃ j

s∆

ϕij

(
s∆− t̃jm

)
= µi +

p∑
j=1

∑
tjm∈F j

s∆

ϕij

(
s∆− tjm − δjm

)
, (5.1.6)

where eq. (5.1.6) is a consequence of hypothesis ∆ < min
tin,t

j
m∈FT

|tin − tjm| which

ensures that no event collapses on the same bin of the grid, i.e., each t̃jm corre-
sponds to a unique tjm, and that #F̃ j

s∆ = #F j
s∆.

Note that this hypothesis also implies that the intensity function is smooth
for all points on the grid G. Applying the first-order Taylor expansion to the
kernels ϕij in s∆− tjm and bounding the perturbation δin by ∆ yields the first
result of the proposition.
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For the perturbation of the loss LG, we have:

LG
(
θ, F̃T

)
=

1

NT

p∑
i=1

∆
G∑

s=0

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

]+L(θ,FT )− L(θ,FT )

= L(θ,FT )

+
1

NT

p∑
i=1

∆
G∑

s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2dt︸ ︷︷ ︸

(∗)

−2
∑

tin∈F i
T

(
λ̃i

[
t̃in
∆

]
− λi

(
tin
))

︸ ︷︷ ︸
(∗∗)

 .

The first term (∗) is the error of a Riemann approximation of the integral.
Theorem 1.2 in Tasaki [2009] shows that asymptotically with ∆→ 0,

∆
G∑

s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2 dt = ∆.hi (θ) +O

(
∆2
)
, (5.1.7)

where hi(θ) := 1
2

(∫ T

0

∣∣λi (t; θ) ∂λi

∂t
(t; θ)

∣∣1/2 dt
)2

and we denote h(θ) = 1
NT

∑p
i=1 hi(θ).

For the second term (∗∗), we re-use the expression from eq. (5.1.6) but use
a Taylor expansion in tin − tjm. The perturbation becomes δjm − δin,∑

tin∈F i
T

(
λ̃i

[
t̃in
∆

]
− λi

(
tin
))

=
∑

tin∈F i
T

(
δin − δjm

) ∂ϕij

∂t

(
tin − tjm; θ

)
+O

(
∆2
)
.

(5.1.8)
Summing eq. (5.1.7) and eq. (5.1.8) concludes the proof.

The first result is a direct application of the Taylor expansion of the intensity
for the kernels. For the loss, the first perturbation term ∆.h(θ) comes from ap-
proximating the integral with a finite Euler sum [Tasaki, 2009] while the second
one derives from the perturbation of the intensity. This proposition shows that, as
the discretization step ∆ goes to 0, the perturbed intensity and ℓ2 loss are good es-
timates of their continuous counterpart. We now quantify the discretization error
(∗∗) as ∆ goes to 0.
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Proposition 5.1.2. We consider the same assumption as in proposition 5.1.1.
Then, if the estimators θ̂c = argmin

θ
L(θ) and θ̂∆ = argmin

θ
LG(θ) are uniquely

defined, θ̂∆ converges to θ̂c as ∆ → 0. Moreover, if L is C2 and its hessian
∇2L

(
θ̂c

)
is positive definite with ε2 > 0 its smallest eigenvalue, then:

∥∥∥θ̂∆ − θ̂c∥∥∥
2
≤ ∆

ε
g
(
θ̂∆

)
,

with g
(
θ̂∆

)
= O(1).

Proof 5.1.2

We consider the two estimators θ̂∆ = argmin
θ
LG(θ) and θ̂c = argmin

θ
L(θ).

With the loss approximation from proposition 5.1.1, we have a pointwise con-
vergence of LG(θ) towards L(θ) for all θ ∈ Θ as ∆ goes to 0. By continuity of
LG, we have that the limit of θ̂∆ when ∆ goes to 0 exists and is equal to θ̂c.
This proves that the discretized estimator converges to the continuous one as
∆ decreases.

We now characterize its asymptotic speed of convergence. The KKT con-
ditions impose that:

∇LG
(
θ̂∆

)
= 0 and ∇L

(
θ̂c

)
= 0. (5.1.9)

Using the approximation from proposition 5.1.1, one gets in the limit of
small ∆:

∇LG
(
θ̂∆

)
= ∇L

(
θ̂∆

)
+∆.

∂h

∂θ

(
θ̂∆

)
+O

(
∆2
)

+
2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

(
δjm − δin

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)
.

Combining this with eq. (5.1.9), we get:

∇L
(
θ̂∆

)
=−∆.

∂h

∂θ

(
θ̂∆

)
+

2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

(
δin − δjm

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)
+O

(
∆2
)
,

and as ∇L
(
θ̂c

)
= 0 and δ ∈

[
−∆

2
, ∆
2

]
,
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∥∥∥∇L(θ̂∆)−∇L(θ̂c)∥∥∥
2
=

∥∥∥∥−∆.∂h∂θ (θ̂∆)
+

2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

(
δin − δjm

) ∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)∥∥∥∥∥∥
2

+O
(
∆2
)

≤∆

∥∥∥∥∥∥∂h∂θ
(
θ̂∆

)
+

2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)∥∥∥∥∥∥
2

+O
(
∆2
)

≤∆g
(
θ̂∆

)
,

where

g(θ) :=

∥∥∥∥∥∥∂h∂θ
(
θ̂∆

)
+

2

NT

p∑
i,j=1

∑
tin∈F i

T

∑
tjm∈F j

T

∂2ϕij

∂t∂θ

(
tin − tjm; θ̂∆

)∥∥∥∥∥∥
2

+O (∆) .

This function is a O(1). Using the hypothesis that the hessian ∇2L
(
θ̂c

)
exists

and is positive definite with smallest eigenvalue ε2 > 0 (i.e., L is locally strongly
convex at point θ̂c), we have:

ε2
∥∥∥θ̂∆ − θ̂c∥∥∥2

2
≤
∥∥∥∇L(θ̂∆)−∇L(θ̂c)∥∥∥2

2

i.e.,
∥∥∥θ̂∆ − θ̂c∥∥∥

2
≤ ∆

ε
g
(
θ̂∆

)
.

This concludes the proof.

This proposition shows that asymptotically on ∆, the estimator θ̂∆ is equiva-
lent to θ̂c. It also shows that the discrete estimator converges to the continuous
one at the same speed as ∆ decreases. This is confirmed experimentally by results
shown in fig. 5.1.1. Thus, one would need to select ∆ so that the discretization
error is small compared to the statistical one. Notice that assumptions from propo-
sition 5.1.2 are not too restrictive. Indeed, they require the existence of a unique
minimizer of L, LG and L. Moreover, if L is C2 in θ̂c, the previous hypothesis also
implies the strong local convexity at this point.
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Figure 5.1.1: Median and interquartile error bar of the ℓ2 norm between the parameters
estimated computed with EM algorithm, continuously and discretely, w.r.t. the stepsize
∆. This figure confirms the results from proposition 5.1.1; that is, that the convergence
of θ̂∆ towards θ̂c is linear with respect to ∆.

5.2 Numerical experiments

We present various synthetic data experiments to support the advantages of the
proposed approach. To begin, we investigate the bias induced by the discretization
in section 5.2.1. Afterwards, the statistical and computational efficiency of FaDIn
is highlighted through a benchmark with popular non-parametric approaches sec-
tion 5.2.2. Sensitivity analysis regarding the parameter W and additional non-
parametric comparisons are also provided, respectively in section 5.2.3 and sec-
tion C.

5.2.1 Consistency of Discretization

In order to study the estimation bias due to discretization, we run two experiments
and report the results in fig. 5.2.1. The general paradigm is a one-dimensional TPP
with intensity parametrized as in eq. (5.1.1) with a Truncated Gaussian kernel of
mean m ∈ R and standard deviation σ > 0, with fixed support [0 ,W ] ⊂ R+,
W > 0. It corresponds to ϕ(x) = ακ(x), α ≥ 0 with

κ(x) := κ (x;m,σ,W ) =
1

σ

f
(
x−m
σ

)
F
(
W−m

σ

)
− F

(−m
σ

)1{0≤x≤W},
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Figure 5.2.1: Median and interquartile error bar of the ℓ2 norm between true parameters
and parameter estimates computed with FaDIn (left) and with EM algorithm (right),
continuously and discretely, w.r.t. the stepsize of the grid ∆.

where f (resp. F ) is the probability density function (resp. cumulative distribution
function) of the standard normal distribution. Hence, the parameters to estimate
are µ and η = (α,m, σ).

In both experiments, for multiple process length T , the discrete estimates are
computed for varying grid stepsize ∆, from 10−1 to 10−3. The parameter W is set
to 1. The ℓ2 norm of the difference between estimates and the true parameter values
– the ones used for data simulation – is computed and reported. We first computed
the parameter estimates with our FaDIn method for T ∈ {103, 104, 105, 106}, for
100 simulations each time. Second, since we wish to separate discretization bias
from statistical bias, we compute the estimates with an EM algorithm, both con-
tinuously and discretely, and that for 50 random data simulations.

One can observe that the ℓ2 errors between discrete estimates and true parame-
ters tend towards zero as T increases. For T fixed, one can see plateaus starting for
stepsize values that are not particularly small, indicating that the discretization
bias is limited. The second experiment with the EM algorithm shows that when
plateau is reached, it corresponds to some statistical error. In other words, even
for a reasonably coarse stepsize, the bias induced by the discretization is slight
compared to the statistical error.

Discretization on EM estimates (DriPP)

Figure 5.2.2 presents the detailed results – i.e., parameter-wise – of the experiment
shown in Figure 5.2.1 (right). In this experiment, we are interested in the context
of Driven Point Process (DriPP; chapter 4) with an exogenous homogeneous PP.
The simulation parameter of the latter is set to 0.5, meaning that on average, 1
event occurs every 2 seconds on the driver.
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Figure 5.2.3 presents the results of the same experiment with Poisson parameter
set to 0.1 which represents roughly five times less events.
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Figure 5.2.2: Median and interquartile error bar of the ℓ2 norm between true parameters
and parameter estimates computed with EM algorithm, continuously and discretely,
w.r.t. the stepsize ∆.

Discretization effect on FaDIn estimates

This section presents additional results.We reproduce the experiments as above
with FaDIn and two other kernels: Raised Cosine and Truncated Exponential.
The Raised Cosine kernel is defined by:

ϕ(x) = α

[
1 + cos

(
x− u
σ

π − π
)]

1{x∈[u ,u+2σ]} . (5.2.1)

The parameters to estimate are µ, α, u and σ. The Truncated Exponential kernel
of decay parameter γ ∈ R+, with fixed support [a , b] ⊂ R+, b > a is defined as
ϕ(x) = ακ(x), α ≥ 0 with

κ(x) := κ (x; γ, a, b) =
h (x)

H (b)−H (a)
1{a≤x≤b}, (5.2.2)
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Figure 5.2.3: Median and interquartile error bar of the ℓ2 norm between true parameters
and parameter estimates computed with EM algorithm, continuously and discretely,
w.r.t. the stepsize ∆.

where here h (resp. H) is the probability density function of parameter γ (resp.
cumulative distribution function) of the exponential distribution. The parameters
to estimate are µ, α and γ.

Estimation results (median and 20-80% quantiles) are displayed in Figure 5.2.4
and confirm the conclusion presented above about the consistency of the discretiza-
tion for FaDIn. In addition, we display the quadratic error for each parameter
separately in Figure 5.2.5 for the Truncated Gaussian, Figure 5.2.6 for the Raised
Cosine and Figure 5.2.7 for the Truncated Exponential kernels.

5.2.2 Statistical and computational efficiency of FaDIn

We compare FaDIn with non-parametric and parametric methods by assessing ap-
proaches’ statistical and computational efficiency. To learn the non-parametric
kernel, we select various existing methods. The first benchmarked method uses
histogram kernels and relies on the EM algorithm, provided in Zhou et al. [2013a]
and implemented in the tick library [Bacry et al., 2017a]. The kernel is set with
one basis function. The three other approaches involve a linear combination of
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Figure 5.2.4: Comparison of the influence of the discretization on the parameter estima-
tion of FaDIn for a Raised Cosine kernel (left) and an Exponential kernel (right) w.r.t.
the stepsize of the grid ∆.
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Figure 5.2.5: Error on parameters for the Truncated Gaussian kernel as a function of T
and ∆.

pre-defined raised cosine functions as non-parametric kernels. The inference is
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Figure 5.2.6: Error on parameters for the Raised Cosine kernel as a function of T and ∆.

made either by stochastic gradient descent algorithm (Non-param SGD; Linder-
man and Adams, 2014) or by Bayesian approaches such as Gibbs sampling (Gibbs)
or Variational Inference (VB) from Linderman and Adams [2015]. These algo-
rithms are implemented in the pyhawkes library2. In the following experiments,
we set the number of basis to five for each method. The parametric approach we
compare with is the Neural Hawkes Process (NeuralHawkes; Mei and Eisner, 2017)
where authors represents the intensity function by a LSTM module. The latter
is calculated on a GPU. The experiment is conducted as follows. We simulate a
two-dimensional Hawkes process (repeated ten times) using the tick library with
baseline µ = [0.1, 0.2] and Raised Cosine kernels:

ϕi,j(x) = αi,j

[
1 + cos

(
x− ui,j
σi,j

π − π
)]

, (i, j) ∈ {1, 2}2

on the support [ui,j, ui,j +2σi,j] and zero outside with parameters α =

[
1.5 0.1
0.1 1.5

]
,

u =

[
0.1 0.3
0.3 0.3

]
and σ =

[
0.3 0.25
0.3 0.3

]
. Further, we infer the intensity function

2https://github.com/slinderman/pyhawkes
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Figure 5.2.7: Error on parameters for the Truncated Exponential kernel as a function of
T and ∆.

of these underlying Hawkes processes using FaDIn and the four previously men-
tioned methods setting ∆ = 0.01 for all these discrete approaches. The param-
eter W of FaDIn is set to 1. This experiment is repeated for varying values of
T ∈ {103, 104, 105}. The averaged (over the ten runs) normalized ℓ1 error on the
intensity (evaluated on the same discrete grid), as well as the associated compu-
tation time, are reported in fig. 5.2.8. Due to the high computational times of
NeuralHawkes, this approach is performed once and is not applied for T = 105.

From a statistical perspective, we can observe the advantages of FaDIn infer-
ence for varying T over the benchmarked methods. It is worth noting that this
result is expected by a parametric approach when the used kernel belongs to the
same family as the one with which events have been simulated. Also, only one
(long) sequence of data has been used, explaining the poor statistical results of
the Neural Hawkes, which is efficient on many repetitions of short sequences due
to the massive amount of parameters to infer. From a computational perspective,
FaDIn is very efficient compared to benchmarked approaches. Indeed, it scales
very well with an increasing time T and then with a growing number of events. In
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Figure 5.2.8: Comparison of the statistical and computational efficiency of FaDIn with
five benchmarked methods. The averaged (over ten runs) statistical error on the intensity
function (left) and the computational time (right) are computed regarding the time T
(and thus the number of events).

contrast, other methods depend on the number of events and scale linearly with
the time T .

5.2.3 Sensitivity analysis regarding the parameter W

To study the estimation bias induced by the finite support kernels, we conduct
an experiment using FaDIn with a (Truncated) Exponential kernel. The general
framework is a one-dimensional TPP with intensity parametrized as in eq. (5.1.1)
with a Truncated Exponential kernel having a decay parameter γ, with fixed sup-
port [0 ,W ] ⊂ R+, W > 0. It corresponds to ϕ(x) = ακ(x), α ≥ 0 with κ(x)
defined in eq. (5.2.2). In our present case, we fix a = 0 and b = W . Therefore,
when W → ∞, this Truncated Exponential kernel converges to the standard ex-
ponential kernel, i.e., t 7→ αγ exp(−γt). The parameters to estimate are µ and
η = (α, γ).

The experiment is conducted as follows. We simulate events (10 repetitions)
from a Hawkes process with baseline µ = 1.1 and a standard Exponential kernel
(non-truncated) with α = 0.8, γ = 0.5 for varying T ∈ {103, 104, 105, 106} us-
ing the tick Python library. FaDIn is then computed on each of these sets of
events using a Truncated Exponential kernel of length W ∈ [1, 100] and a stepsize
∆ = 0.01. The averaged (over ten runs) and the 25% and 75% quantiles statistical
ℓ2-error of parameters (left) and computational time (right) are displayed w.r.t.
the support length W in fig. 5.2.9. On the one hand, one can observe that the
ℓ2-error converges to a plateau once W > 10, i.e., the bias induced by the finite
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support length is reduced. On the other hand, the computational time increase
when W increases. Interestingly, for each T , the computational time is close when
W is high enough (close to 100). Indeed, optimizing the loss becomes the bottle-
neck of FaDIn since the grid size G = TL+1 only intervenes in the precomputation
part.
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Figure 5.2.9: Comparison of the influence of the kernel support size W on the parameter
estimation of FaDIn for a Truncated Exponential kernel. The averaged (over 10 runs)
statistical ℓ2-error (left) and computational time (right) are displayed w.r.t. the support
length W .

5.3 Application to MEG data

Recall that the response’s latency related to a stimulus has been identified as
a Biomarker of ageing [Price et al., 2017] and many diseases such as epilepsy
[Kannathal et al., 2005], Alzheimer’s [Dauwels et al., 2010], Parkinson’s [Tanaka
et al., 2000] or multiple sclerosis [Gil et al., 1993]. Therefore, obtaining information
on such a feature after auditory or visual stimuli is critical to characterize and
eventually detect the presence of a specific disease for a given subject. FaDIn
allows fitting a statistical model on this latency by inferring a model on the latency
of these responses through Hawkes processes kernels. This approach characterizes
the delays’ distribution more finely compared to the latency estimates.

As in chapter 4, we use Convolutional Dictionary Learning (CDL; Jas et al.
2017) with rank-1 constraint [Dupré la Tour et al., 2018] to decompose raw signal
into a set of spatio-temporal patterns, called atoms, with their respective onsets,
called activations (cf. Figure 4.1.2). Experiments on MEG data were run on the
same two datasets from the MNE Python package [Gramfort et al., 2013, 2014]: the
sample dataset and the somatosensory (somato) dataset3 (cf. section 4.3.2 for more

3Both available at https://mne.tools/stable/overview/datasets_index.html
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Figure 5.3.1: Spatial and temporal patterns of 2 atoms from MNE sample dataset, and
their respective estimated intensity functions after a stimulus (cue at time = 0 s), for
auditory and visual stimuli with non-parametric (NP), Truncated Gaussian (TG) and
Raised Cosine (RC) kernels.

details regarding these datasets). Recall that the sample dataset contains M/EEG
recordings of a human subject presented with audio and visual stimuli, while for
the somato dataset, a human subject is scanned with MEG during 15min, while
111 stimulations of his left median nerve were made.

We are interested in the paradigm of Driven Point Process (DriPP; chap-
ter 4) and for every extracted atom, its intensity function related to the corre-
sponding stimuli is estimated using a non-parametric kernel (NP) and two kernel
parametrizations: Truncated Gaussian (TG) and Raised Cosine (RC). Results
on the sample (resp. somato) dataset are presented in Figure 5.3.1 (resp. Fig-
ure 5.3.2), where only the kernel related to each type of stimulus is plotted, for
the sake of clarity.

Results show that all three kernels agree on a peak latency around 90ms for
the auditory condition and 190ms for the visual condition. Due to the limited
number of events, one can observe that the non-parametric kernel estimated is
less smooth, with spurious peaks later in the interval. Overall, these results on
real MEG data demonstrate that our approach with a RC kernel parametriza-
tion can recover correct latency estimates even with the discretization of stepsize
0.02. Furthermore, the usage of RC allows us to have sharper peaks in intensity
compared to TG, enforcing the link between the external stimulus and the atom’s

118



5.4 Discussion
Sp

at
ia

l

Atom  1

0 0.25 0.5
Time (s)

0.2

0.0

0.2

Te
m

po
ra

l

Atom  2

0 0.25 0.5
Time (s)

Atom  4

0 0.25 0.5
Time (s)

0 1 2
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Intensity

TG RC NPTG RC NP

Figure 5.3.2: Spatial and temporal patterns of three µ-wave atoms from MNE somato
dataset, and their respective estimated intensity functions following a stimulus (cue
at time = 0 s), for somatosensory stimuli with non-parametric kernel (NP) and two
parametrized kernels: Truncated Gaussian (TG) and Raised Cosine (RC).

activation. This difference mainly comes from the fact that RC does not need
pre-determined support. This advantage is even more pronounced in the case of
induced responses, such as in the somato dataset (see Figure 5.3.2), where the
range of possible latency values is more difficult to determine beforehand.

5.4 Discussion

This work proposed an efficient approach to infer general parametric kernels for
Multivariate Hawkes processes. Our method makes the use of parametric kernels
computationally tractable, beyond exponential kernels. The development of FaDIn
is based on three key features: (i) finite-support kernels, (ii) timeline discretiza-
tion, and (iii) precomputations reducing the computational cost of the gradients.
These allow for a computationally efficient gradient-based approach, improving
state-of-the-art methods while providing flexible use of kernels well-fitted to the
considered applications. Moreover, this work shows that the bias induced by the
discretization is negligible, both theoretically and numerically. By allowing the
use of a general parametric kernel in Hawkes processes, this contribution opens
new possibilities for many applications. This is the case with M/EEG data, where
estimating information about the rate and latency of occurrences of brain sig-
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nal patterns is at the core of neuroscience questions. Therefore, FaDIn makes
it possible to use a Raised Cosine kernel, allowing for efficient retrieval of these
parameters.
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Part III

Advancements in Convolutional
Dictionary Learning for
Large-Scale M/EEG Data

Analysis: Stochastic
Approaches and Population

Studies





The analysis of magneto- and electroencephalography (M/EEG) data has been
at the forefront of neuroscience research, offering a high-resolution temporal

window into the intricate activities of the human brain. M/EEG data present
specific challenges and opportunities: the data are high-dimensional, inherently
noisy, and exhibit complex spatiotemporal patterns that can be both task-related
and age-dependent. Convolutional Dictionary Learning (CDL) has emerged as a
powerful tool to distill meaningful features from these intricate data sets. However,
the application of CDL to M/EEG data is fraught with computational difficulties
and has yet to be fully exploited for large-scale, population-level studies. This part
tries to unify two critical advancements in this field.

The first contribution, Stochastic Windowing and Robust Convolutional Dictio-
nary Learning, addresses the computational bottlenecks in applying CDL to large
time-series data. By introducing a stochastic windowing technique and leverag-
ing the computational capabilities of GPU, this work offers a scalable solution to
CDL’s high computational demand. The proposed method has been rigorously
benchmarked against existing libraries and algorithms, showcasing its efficacy in
handling large-scale problems, including M/EEG multivariate time series.

The second work, Using Population CDL to Detect Task-Related Neuromag-
netic Transients and Ageing Trends, takes CDL to a population level. By apply-
ing a data-driven CDL approach to a large open-access dataset (Cam-CAN), this
research reveals the complex interplay between task performance and ageing in
the spatiotemporal characteristics of neuromagnetic transient bursts. The study
shows age-related trends in activation levels of specific burst types for the first
time, providing valuable insights into how human brain activity evolves across the
lifespan.

Together, these contributions present a holistic view of the advancements in
CDL for M/EEG data analysis. They not only solve the computational challenges
but also extend the applicability of CDL to large-scale, population-based studies.
This part aims to provide a comprehensive understanding of these advancements,
offering methodologies that are both computationally efficient and capable of re-
vealing complex neural dynamics at both individual and population scales.
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Chapter 6. Stochastic Windowing and Robust CDL for M/EEG Data

This chapter aims to delve into the advancements in the field of convolutional dic-
tionary learning (CDL), with a particular focus on M/EEG data. An extension

and enhancement of the AlphaCSC framework is presented.

Convolutional Dictionary Learning (CDL) consists of finding a sparse repre-
sentation from noisy data and is a common way to encode data-driven knowledge
on signals. Yet, it is computationally expensive on data-sets with large time series
or images, and the ones that are encountered in neuroimaging applications often
suffer from anomalies that make it hard to learn relevant patterns, in particular
when dealing with M/EEG data.. To overcome the computational burden and the
varying quality of measurements – real world data often suffer from outliers that
make the training process less efficient –, we introduce a GPU-based implementa-
tion relying on stochastic windowing – with PyTorch’s automatic differentiation –
and anomaly detection, and propose an analysis of its behavior on both simulated
and real data.

6.1 Introduction

With cheap wearable devices, physiological signals are now routine to monitor pa-
tient conditions during hospital stays or everyday life. Monitoring produces a huge
amount of data which needs automated processing to extract valuable insights. A
common task to process these signals is to extract recurring physiological events
such as QRS complex – a.k.a. heartbeats – in ECG [Luz et al., 2016], neural
oscillations in the local field potential [Cole and Voytek, 2017], or brain responses
in Magneto and Electroencephalography (M/EEG) datasets [Hämäläinen et al.,
1993, Dupré la Tour et al., 2018]. Once extracted, the frequency, variability, and
waveforms of these events can give important information about the processes that
produced the signals.

Many different event detection algorithms for physiological signals have been
developed in the literature. Traditional techniques rely on signal processing tools to
detect prototypical features of the events, such as peak-detection [Pan and Tomp-
kins, 1985] or wavelet-based approaches Martinez et al. [2004]. These methods re-
quire a lot of domain expertise and can be hard to fine-tune or adapt when working
with new signals or events. More recently, deep learning-based approaches have
been proposed to deal with detection tasks [Xiang et al., 2018, Craik et al., 2019],
framing the problem as a classification of sub-windows based on annotated signals.
While these approaches show very good performances on specific tasks, they need
a large amount of labeled data for each specific signal or event and require heavy
post-processing from individual sub-window prediction to time-localized predic-
tion.
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Another route to detect events is to consider unsupervised methods, where
the events are identified through their repeating prototypical waveforms. This
problem is typically seen as a factorization problem where the signal is assumed
to be the product of a redundant basis of patterns or atoms – the dictionary – and
of a sparse representation vector – the sparse codes. In particular, Convolutional
Dictionary Learning (CDL; Grosse et al. 2007) enables the decomposition of signals
into sparse combinations of localized spatio-temporal atoms, allowing the discovery
of patterns associated with physiological activities. A benefit of this approach is
that the algorithm learns the prototypical patterns associated with events directly
from the data, removing the need for supervision. A typical example is given by
the work of Dupré la Tour et al. [2018] who have successfully leveraged the physical
properties of the signals to learn meaningful prototypical patterns through rank-1
constrained CDL.

However, despite the appeal of such a holistic method to detect events, its us-
age is still limited to very few studies. One core limitation is that for large signals,
learning the waveforms is computationally expensive. Fast numerical solvers for
Dictionary Learning on large data have been successful on a wide range of tasks
[Mairal et al., 2009, Mensch et al., 2016]. While some efforts have also been made
to develop fast CDL solvers [Wohlberg, 2016b, Dupré la Tour et al., 2018], these
methods are still limited to small-scale studies as they are too computationally
demanding for huge datasets. Using distributed optimization, Moreau and Gram-
fort [2020] proposed a method that scales to large datasets, however not reducing
the computational burden. Moreover, CDL is also not robust to anomalies and
artifacts often found in this kind of data due to potential sensor instabilities or
external disturbances. Indeed, large artifacts tend to set astray the learning algo-
rithm, resulting in senseless dictionaries that are not usable for physiological signal
analysis. This lack of scalability and robustness limits the usability of CDL-based
analysis for population studies.

Contributions. To unlock CDL for unsupervised event detection on population-
level physiological signals, we propose to tackle these two challenges at once. First,
we extend the formulation of CDL to the setting of robust regression, which allows
to learn a model that is robust to outliers in the training distribution. Using the
ability of the model to properly encode the signal as a proxy to detect outliers,
we introduce a novel and robust CDL formulation that integrates the principles of
the Least Trimmed Squares (LTS) method [Rousseeuw, 1984]. Next, we derive an
efficient procedure based on approximate sparse coding and sub-windowing. By
performing sparse coding on signal frames, we compute cheap stochastic gradient
approximations that allow us to make fast progress on learning the dictionary. The
implementation synergistically combines the principles of stochastic windowing
with the computational prowess of PyTorch [Paszke et al., 2019] This approach also
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couples very well with the robust regression scheme, allowing the effective removal
of outliers during training. We demonstrate the efficiency of our procedure for
learning convolutional dictionaries on large ECG and M/EEG datasets, in order
to pave the way for applications of CDL to population-level datasets.

6.2 Contextualizing the current work

From chapter 2, recall that Convolutional Dictionary Learning can be written as
a bi-level optimization problem to minimize the cost function with respect to the
dictionary only, as mentioned by Mairal et al. [2009], by solving

min
D∈C

G(D;X) = F (D,Z∗(D);X) (6.2.1)

with Z∗(D) = argmin
Z

F (D,Z;X) , (6.2.2)

with C :=
{
D ∈ RK×P×L, ∥Dk∥2F ≤ 1, ∀k = 1, . . . , K

}
. Computing the sparse

codes Z∗(D) is often referred to as the inner problem, while the global mini-
mization is the outer problem.

In the following, we will focus on gradient descent on D. Once Z∗(D) is
known, Danskin [1967, Theorem 1] states that the gradient ∇G(D;X) is equal
to ∇DF (D,Z

∗(D);X). Even though the inner problem is non-smooth, this result
holds as long as the solution Z∗(D) is unique. Denoting by D⊤ the adjoint oper-
ator of D, we will assume that D⊤D is invertible on the support of Z∗(D) in the
following. This implies the uniqueness of Z∗(D).

While CDL users generally want to get both D and Z, it is of interest to
efficiently optimize eq. (2.3.3) in order to get a solution D∗ as fast as possible,
and then compute an optimal Z∗(D∗). Using this strategy, one relies on cheap
approximations of the sparse code ZN (D∗;X) ≈ Z∗ (D∗;X) to update the value
of D. Indeed, the tedious part of the calculation is generally the sparse coding
step, especially for large signals for which convolutions are expensive. To do that,
existing methods rely on approximate gradients, an approach popularized by the
usage of unrolled algorithms and automatic differentiation [Mairal et al., 2010,
Scetbon et al., 2021, Tolooshams and Ba, 2021, Malézieux et al., 2022] in the
context of Dictionary Learning.

However, when dealing with physiological signals, the gradient estimation is
often made harder by the presence of anomalies in the data. As a matter of
fact, occasional sensor malfunctions and external disturbances can corrupt the
measurements and impair the ability of traditional algorithms to estimate a good
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descent direction. This results in poor-quality dictionaries and makes CDL hard
to use on real-world neuroimaging data-sets.

In what follows, we derive a novel CDL formulation that is robust to the pres-
ence of anomalies in the data and propose cheap gradient approximation to effi-
ciently learn robust dictionaries on large ECG and M/EEG signals.

6.3 Inline outlier detection

When the recording contains segments corrupted by large amplitude artifacts, the
standard formulation of CDL usually encodes corrupted segments but fails to learn
relevant atoms that compose the majority of the signal. Indeed, the ℓ2 norm gives
strong weight to parts of the signal with large variance, thus making classical
algorithms converge to a dictionary which only succeeds in encoding artifacts. To
cope with this issue, we propose to leverage the robust regression framework to
design a robust formulation of CDL.

We consider a setting where a few segments in the signal are corrupted by large
artifacts. The core idea behind our work is that there is no need for the dictionary
to properly encode the corrupted segments. Therefore, the reconstruction errors for
corrupted segments can be considered outliers for the distribution of reconstruction
errors on all segments in the signal. Instead of minimizing the mean reconstruction
error for each segment, we propose to minimize a robust estimate of the mean, less
sensitive to outliers.

To develop our framework, let us first rewrite the original loss F for CDL as a
minimization of the mean reconstruction error on segments, i.e.,

F (D,Z;X) =
T∑

t=−L

1

L
εt ,

with εt =
1

2
∥R [t : t+ L]∥22 + λ

K∑
k=1

∥zk [t : t+ L]∥1

(6.3.1)

where R[t] = (X−∑K
k=1 Z(X;D)∗dk)[t] for t ∈ [1, T ] and R[t] = 0 when t ̸∈ [1, T ].

Note that X [a : b] denotes the restriction of X to the interval [a, b]. To get a robust
estimate of the mean, we resort to the trimmed mean, which writes

min
D,Z

F̃ρ(D,Z;X) =
T∑

t=−L

1{εt<ρ}
1

L
εt (6.3.2)

where ρ is a threshold that depends on the distribution of the errors {εt}Tt=−L, and
which allows keeping only a clean fraction of the signal segments. This formulation
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Figure 6.3.1: Raw signal X, reconstruction error, threshold and learned outlier mask on
subject a02 (minute 56) of Physionet Apnea-ECG data set. Detection method is based on
modified z-score (MAD), with α = 3.5. The method correctly identifies outliers blocks.

corresponds to a Least Trimmed Square for the regression – a robust method to
fit model parameters to data containing outliers. A critical design choice is the
selection of the statistic ρ used as the threshold.

Outliers statistics and thresholds. From the empirical distribution of patch
reconstruction errors {εt}Tt=−L, one needs to compute a threshold ρ which separates
the outlier segments in X from the normal segments. The goal is to detect extreme
points in the segments’ error distribution, which are too large compared to the
population of segment errors. Assuming a contamination level α, we propose
several statistics from the outlier detection literature.

• Method of quantiles
ρ = Qε,(1−α) (6.3.3)

where Qε,q denotes the quantile of order q of the set ε.

• Method of interquartile range (IQR)

ρ = Qε,0.75 + αIQRε (6.3.4)

where IQRε := Qε,0.75 −Qε,0.25 denotes the interquartile range of the set ε.

• Method of z-score [Iglewicz and Hoaglin, 1993] Let us define the mean and
standard deviation of the reconstruction errors, i.e., µε =

1
NPW

∑N,P,W
n,p,w=1 εn,p,w

and σε =
√

1
NPW

∑N,P,W
n,p,w=1 (εn,p,w − µε)

2. The z-score is computed as follows:

Zn,p,w :=
εn,p,w − µε

σε
. (6.3.5)

Outliers are defined as observations such that |Zn,p,w| > α, generally α = 2
or 3. Hence,

ρ = µε + ασε (6.3.6)
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• Method of modified z-score [Iglewicz and Hoaglin, 1993] Let us define
the mean absolute deviation (MAD) as follows:

MAD = mediann,p,w (|εn,p,w −Medε|) , (6.3.7)

where Medε denotes the median of the set ε. The modified z-score is thus
defined as follows:

Mn,p,w = c
εn,p,w −Medε

MAD
, (6.3.8)

where c = 0.6745 is a constant needed as E [MAD] = 0.6745σ for large
N [Iglewicz and Hoaglin, 1993].

Outliers are observations for which |Mn,p,w| > α, generally α = 3.5. Hence,

ρ = Medε + α
MAD
c

(6.3.9)

Note that these methods are initially bilateral, but only the upper bound is
considered in this work, as the goal is to detect outliers with large reconstruction
errors.

Optimization for the least trimmed square Due to the indicator in (6.3.2)
whose threshold depends on the parameters Z and D, minimizing this loss directly
would be computationally untractable and thus not adapted to large physiological
signals. To decouple the estimation of εt and the computation of the threshold ρ,
we consider the following bi-level formulation

min
D

F̃ρ(D)(D,Z
∗(D);X) ,

s.t. ρ(D) = S(ε(D,Z∗(D))) ,

and Z∗(D) = argmin ZF (D,Z;X) .

(6.3.10)

where S is the statistic chosen from the previous paragraph and ε(D,Z) denotes
the set of the segment reconstruction error for Z and D. Using this formulation,
Z∗(D;X) does not depend on the threshold ρ and can be computed directly using
classical sparse coding algorithms. Then, using Z∗(D;X), one can compute the
observed εt and thus compute the statistics necessary to get ρ.

Computation of outliers and a robust gradient estimate. One issue with
the proposed approach is that in CDL, if a sample X[t] is corrupted, them all
Z[t−L : t] coefficient can be corrupted. Indeed, due to the convolutional nature of
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the model, there is a delay effect between a non-zero coefficient in Z and its effect in
X. To take this into account, we propose to modify slightly our formulation. In our
original formulation, a mask such as m = 1{ε>ρ} ∈ {0, 1}N×T is used to select part
of the signal used to compute the loss. Here, each element indicates whether the
corresponding timestamp in the signal is an outlier (1) or not (0). To accommodate
for the delayed nature of the convolution, we modify this mask to consider as
outliers samples before an outlier, that might be badly reconstruted to to their
dependency on corrupted samples. For each identified outlier timestamp, we also
mark each of the preceding L−1 timestamps in the same channel as outliers. This
approach is inspired by the concept of the opening in mathematical morphology
and image filtering [Bolon et al., 1995, p. 386]. It ensures that the temporal
structure of the convolution process is taken into account when determining the
spread of outlier effects across timestamps. Mathematically, it can be formulated
as follows, by creating an “extended” mask1 m′ such that

m′ [n, i] = 1 if
L−1∑
l=0

m [n, i+ l] ≥ 1 else 0 . (6.3.11)

Finally, the “opposite” outlier mask is used as weights in the ℓ2 loss which is
used to learn D to select only valid samples. Figure 6.3.1 illustrates the outliers
detection method on real ECG data, with the outliers mask computed with the
reconstruction error and the threshold.

6.4 Stochastic windowing CDL

In the context of large population studies with electrophysiological data, it is not
rare to deal with very large time series consisting of minutes-long recordings sam-
pled at high frequency (from 100Hz to 1000Hz) from hundreds of subjects. Thus,
we must adapt the learning process to make it usable for very long time series,
i.e., where T ≫ 1, which is not accounted for in CDL literature. The complex-
ity of the existing methods mostly comes from the need to compute full signal
convolution, with a complexity of O(T log T ). To reduce the need for full signal
convolution, we propose the Stochastic Windowing CDL algorithm (WinCDL).
The core idea of WinCDL is to process randomly sampled sub-windows of the
signal to get a stochastic estimate of the gradient. By processing subwindows of
length W ≪ T , we ensure that our algorithm is efficient as only small convolu-
tions need to be performed. To make this algorithm even more efficient, we also
leverage some empirical observations from unrolled DL’s studies [Tolooshams and
Ba, 2021, Malézieux et al., 2022], stating that only a small number of iterations

1Note that in practice, one can simply do a convolution between m and a unit uniform filter
of size L with proper alignment.
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is sufficient to get a good estimate of the gradient. Using a few sparse coding it-
erations on small windows allows us to reduce the computational costs associated
with gradient estimation. Another issue that comes up is that the choice of step
sizes is critical to the optimization process in dictionary learning, and SGD meth-
ods based on simple heuristics like rate decay are difficult to tune in this context.
We stabilize our algorithm by using the stochastic line search procedure, proposed
by Vaswani et al. [2019]. The use of a line search is possible due to the efficient
computation of the loss with the approximate sparse codes Z(M)(D) when M is
taken sufficiently small. The algorithm is detailed in Algorithm 4, and we describe
each step in detail below.

Algorithm 4: Pseudo-code for WinCDL
1 Set T the number of iterations;
2 Set (Uα,t)t∈N a sequence of maximal step sizes decreasing to 0;
3 Set C a set of constraints for (u, v);
4 for t = 1, . . . , T do
5 Sample index i and window X[i, i+W ] in the dataset;
6 Compute gradient ∇Gi(D

(t);X[i, i+W ]) of D(t) with approximate
sparse coding and inline outlier detection;

7 Compute best step size αt with line search and starting point Uα,t;
8 D(t+1) ← PC

(
D(t) − αt∇Gi(D

(t);X[i, i+W ])
)
;

9 end
10 return D(t+1)

6.4.1 Approximate sparse coding

As illustrated in Malézieux et al. [2022] and Tolooshams and Ba [2021], optimizing
over D does not necessarily require precise sparse coding at each gradient descent
step. Here, we build our algorithm from a fixed number of FISTA iterations in
the same spirit as unrolling, but without leveraging back-propagation. Indeed, for
a given dictionary D composed of K atoms Dk and a regularization parameter
λ > 0, we would like to retrieve the NK activation signals Zn ∈ RK×T̃ (with
T̃ := T − L + 1) associated to the signals Xn ∈ RP×T by solving the following
optimization problems: ∀n = 1, . . . , N ,

(Zn)∗ (D) := argmin
znk∈RT̃

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥
2

F

+ λ

K∑
k=1

∥znk∥1

s.t. znk ≥ 0RT̃ .

(6.4.1)
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Instead of employing FISTA [Beck and Teboulle, 2009] to solve each of these
convex problems in znk to full convergence, we opt for a more computationally effi-
cient approach by limiting the algorithm to a fixed number of iterations, M . This
strategy provides a practical balance between computational efficiency and solu-
tion accuracy. However, it should be noted that this approach may not guarantee
the complete resolution of the problem within these M iterations. Thus, Z∗ (D)

would be approximated by Z(M)(D) :=
{
(Zn)(M) (D), n = 1, . . . , N

}
, the set of all

solutions of eq. (6.4.1) after M iterations of FISTA. The adapted FISTA algorithm
for CDL’s inner problem is presented in algorithm 6, in section B.

6.4.2 Stochastic sub-windowing

To update the dictionary, the loss that we want to minimize is

G(D;X) =
T∑

t=−L

1{εt<ρ} ∥R [t : t+ L]∥22 . (6.4.2)

where R is computed as in (6.3.1). For datasets composed of large time series, such
as in the case of M/EEG, the computational cost of FISTA increases dramatically
with the length of the signal, as the convolutions become more expensive, and the
sum over all windows becomes very expensive. Instead of processing all windows
at each iteration, we propose to sample small chunks of data from the recordings
when evaluating the loss. This stochastic approach allows for a dramatic reduction
of the computational cost, by reducing the number of terms in the sum as well as
reducing the cost of sparse coding. The procedure consists in choosing a random
chunk of signal X [i− L : i+W ] at each iteration, where W is a hyper-parameter
corresponding to the length of the window and where i is an index in [0, T −W ].
Then we compute the sparse code Zn,k,i for this chunk of data and get the gradient
of

Gi(D;X) =
i+W∑
t=i

1{εt<ρ} ∥R [t : t+ L]∥22 . (6.4.3)

with respect to D. The sparse codes ZN,k,i are further approximations of the
original sparse code on the chunk due to border effects. To minimize their effect,
we sample chunks of the signal, and not uniform segments from the loss. This
extra approximation does not hinder the convergence of the algorithm in practice.
As εt only depends on the reconstruction error on a local chunk, it can be com-
puted directly from ZN,k,i. This algorithm is amenable to a stochastic version of
Alternating Minimization, with sub-windows of the full signal samples from the
original signal X.
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Difference between gradients

Now, we would like to demonstrate that the stochastic gradient of Li is a good
estimate of the true one of L. Let x ∈ RT a univariate signal. Let d ∈ RL a
dictionary with a single atom. Let L ≤ W ≤ T be the length of a window. Let
i ∈ J0 , T − 1K be an index. We define,

SW,i := [i : i+W − 1] (6.4.4)
SW,i,L := [i− L+ 1 : i+W + L− 2] (6.4.5)
∂SW,i,L := [i− (L− 1) : i] ∪ [i+W − 1 : i+W − 1 + (L− 1)] (6.4.6)

Note that SW,i ∪ ∂SW,i,L = SW,i,L. We also define the restriction of Z onto
SW,i (resp. SW,i,L) by ZSW,i

:= Z [i : i+W − L] ∈ RW−L+1 (resp. ZSW,i,L
:=

Z [i− L+ 1 : i+W − 1] ∈ RW+L−1).

To avoid border effects in the gradient estimation, it is possible to compute the
sparse codes over the extended window SW,i,L and to use only its restriction over
SW,i where L ∈ N∗ is the width of the buffer zone [Moreau and Gramfort, 2020]. In
the following, we will make the assumption that the sparse code estimator obtained
as explained above is equal to the original window ZSW,i

.

Let us define the following loss function:

Li(D) =
1

2

∥∥x [i : i+W − 1]− zSW,I,L
∗ d
∥∥2
2
. (6.4.7)

We define the estimated gradient as follows:

ĝW,i := ∇Li(D) , (6.4.8)

and proposition 6.4.2 shows that this is an unbiased estimator of the true gradient
g∗.

Proposition 6.4.1. For x ∈ RT , z ∈ RT−L+1 and d ∈ RL, the gradient of the
loss function L(d) = 1

2
∥x− z ∗ d∥22 is:

∇L(d) = −z↰ ∗ (x− z ∗ d) ∈ RL , (6.4.9)

where ∀t ∈
r
0 , T̃ − 1

z
, z↰[t] = z

[
T̃ − 1− t

]
, with T̃ := T − L+ 1.

Proof 6.4.1
The loss function can be rewritten as:
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L(d) =
1

2

T−1∑
t=0

(
x[t]−

L−1∑
τ=0

z[t− τ ]d[τ ]
)2

. (6.4.10)

Taking the derivative with respect to d[l], ∀l ∈ J0 , L− 1K, we have:

∂L(d)

∂d[l]
= −

T−1∑
t=0

(
x[t]−

L−1∑
τ=0

z[t− τ ]d[τ ]
)
z[t− l] (6.4.11)

= −
T−1∑
t=0

(x− z ∗ d) [t]z[t− l] (6.4.12)

= −
(
z↰ ∗ (x− z ∗ d)

)
[l] , (6.4.13)

hence the result.

Proposition 6.4.2. Under the assumption that for each window i, we have access
to the correct value of ZSW,i,L

on the interval SW,i,L, then

Ei [ĝW,i] = g∗ .

Proof 6.4.2
The true gradient is

g∗ = z↰ ∗ x− z↰ ∗ z ∗ d = ψ − ϕ ∗ d ∈ RL (6.4.14)

where ∀s ∈ [1, L],

ψ[s] =
T−L+1∑
τ=1

z[τ ]X[s+ τ − 1] (6.4.15)

and ϕ[s] =
T−L+1∑
τ=1

z[τ ]z[s+ τ − 1] (6.4.16)

The estimated gradient on window SW,i = [i : i+W − 1] , i ∈ J1 , T −W K
is

ĝW,i = Z−
SW,i
∗XSW,i

− Z−
SW,i
∗ ZSW,i

∗D (6.4.17)

= ψW,i − ϕW,i ∗D ∈ RL (6.4.18)
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where

∀s ∈ J0 , L− 1K , ψW,i[s] =
i+W∑
τ=i

z[τ + s]x[τ ] (6.4.19)

∀s ∈ J−L+ 1 , L− 1K , ϕW,i[s] =
i+W∑
τ=i

z[τ + s]z[τ ] (6.4.20)

Here, we make the assumption that for each window i, we have access to the
correct value of z on the interval SW,i,L (we add the border of size L ∂SW,i,L).

For s ∈ [0, L− 1], we have that the value of ψ[s] for the full signal is:

ψ[s] =
T−L+1∑
τ=0

z[τ + s]x[τ ] (6.4.21)

=
T−L+1∑
i=−W+1

1

W

i+W∑
τ=i

z[τ + s]x[τ ] (6.4.22)

=
1

W

T−L+1∑
i=−W+1

ψW,i[s] (6.4.23)

(6.4.24)

where the second line derives from the fact that each coefficient is seen through
W windows. Here, to avoid border effect, we consider we can take windows on
the extended interval [−W +1, T −L+1+W ], for instance with zero padding.

Thus, we can see that

Ei

[
ψW,i[s]

]
=

1

T − L+W

T−L+1∑
i=−W+1

ψW,i[s] =
W

T − L+W
ψ[s] (6.4.25)

Similarly, we can show that Ei

[
ϕW,i[s]

]
= W

T−L+W
ϕ[s] for all s ∈ [−L+1, L−1].

Thus, by linearity of the convolution and the expectation, we get:

Ei

[
ĝW,i

]
= Ei

[
ψW,i

]
− Ei

[
ϕW,i

]
∗D = ψ − ϕ ∗D = g∗ (6.4.26)

6.4.3 Stochastic line search

Standard stochastic gradient descent algorithms fail to produce satisfying results
on our problem because of the difficulty to tune the step size. Thus, we leverage
a method called Stochastic line search, introduced in Vaswani et al. [2019], that
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extends the line search to the case where the gradient is stochastic. Indeed, line
search algorithms are very helpful in situations where the step size of the gradient
descent is hard to tune.

In usual gradient descent, the parameters θ(t) =
(
D

(t)
1 , D

(t)
K

)
are updated at

each gradient step t with the help of ∇θGθ
(t)) and a step size parameter α(t), as

follows

θ(t+1) = θ(t) − α(t)∇θG
(
θ(t)
)
. (6.4.27)

The line search algorithm consists of finding the largest possible step size α(t)

starting from an upper bound ᾱ, by iterating over n ∈ N and evaluating the loss
G
(
θ(t) − ρnᾱ∇θG

(
θ(t)
))

for 0 < ρ < 1 until the loss satisfies a condition of the
form

G
(
θ(t) − ρnᾱ∇θG

(
θ(t)
))
< G

(
θ(t)
)
− c , (6.4.28)

where c can either be constant or depend on the problem, or until ρn < ϵ where
ϵ > 0 is a stopping criterion. Then, set α(t) := ρnf ᾱ where nf is the final number
of iterations.

The idea of the Stochastic line search is to extend this principle in a scenario
where we only have access to an estimate of the true gradient. In this case, naively
applying a line search with each sample of gradient would lead to a non converging
sequence of

(
θ(t)
)
t∈N, because the algorithm restarts the process at the upper

bound ᾱ for each new window of signal. Instead, the Stochastic extension uses
a decreasing sequence of upper bounds

(
ᾱ(t)
)
t∈N that should converge to 0, with

a well-chosen heuristic. For instance, our implementation is based on a sequence
obtained through cosine annealing, starting from an initial upper bound αmax that
is a hyper-parameter of the algorithm, as described by the following equation and
presented in fig. 6.4.1:

ᾱ(t) = αmax ×
1

2

(
1 + cos

(
πt

T

))
. (6.4.29)

Thus, for each random sample i, once a gradient has been computed, the param-
eters are updated by evaluating Gi

(
θ(t) − ρnᾱ(t)∇θGi

(
θ(t)
))

for increasing values
of n ∈ N, until the stopping criterion is reached, and then α(t) := ρnf ᾱ(t).

Line search gradient descent is known to be time-consuming because it is nec-
essary to compute the new loss for each potential choice of parameters. In the case
of Dictionary Learning, this is usually a major issue, because the computation of
the loss involves a sparse coding procedure. Our implementation replaces this ex-
pensive step by N iterations of proximal gradient descent that are fast to compute
on GPU, which makes it possible to rely on a line search algorithm.
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Figure 6.4.1: Evolution of the upper bound ᾱ over epochs following a cosine annealing
evolution, highlighting the impact of varying total number of epochs T and initial upper
bounds αmax. Line styles in the legend correspond to different T values, while the color
legend represents varying αmax values.

6.5 Experiments

6.5.1 Data simulation

In the analysis of multi-dimensional time-series data, the synthesis of representa-
tive signals is vital for the evaluation and validation of signal processing algorithms.
This subsection describes the data generation, encompassing the generation of a
dictionary, sparse vector, signal, and optional contamination. The contamination
process, although not mandatory, allows for further complexity in the generated
data.

Dictionary generation The atoms dictionary D ∈ RK×P×L – K the number of
atoms, P the number of channels, and L the atom’s duration – can be simulated
following different methods.

• Random dictionary The dictionary can be generated randomly, following
either a Gaussian or uniform distribution, i.e., each element of the random
dictionary is defined as:

D[k, p, l] ∼
{
N (µ, σ2) if Gaussian
Unif[lower ,upper] if Uniform

(6.5.1)
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Figure 6.5.1: Shapes considered for dictionary simulation.

• Wave dictionary Alternatively, the dictionary can be composed of basic
wave shapes referred to as atoms. These atoms can be sinusoidal, square,
sawtooth, triangular, or Gaussian, with variations such as positive versions
to ensure non-negative values, as presented in fig. 6.5.1. The frequency of the
atoms’ pattern is determined by an integer parameter, and the shapes are
iteratively reused with incremented frequencies to ensure diversity. In the
case of multiple channels (i.e., P ≥ 2), atoms are distributed across channels
one at a time.

A Tukey window can be applied to ensure that each atom starts and ends at
0, thereby reducing artifacts.

Sparse vector generation The sparse vector Z ∈ RN×K×T̃ encapsulates the
activation values and sparsity level, with T̃ := T−L+1. The activation values can
be either random (following Gaussian or uniform distribution) or set at a constant
value. The sparsity level is specified as a ratio representing the number of non-
zero values in each vector znk ∈ RT̃ , n = 1, . . . , N, k = 1, . . . , K. An absolute value
function can be applied to obtain only positive activation values while maintaining
the desired sparsity.
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Figure 6.5.2: True dictionary in experiments on synthetic data.
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Figure 6.5.3: First 2000 timepoints of one trial (2 channels) of synthetic data, corrupted
with outliers. Final data is X ∈ R10×2×5000
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Signal construction The signal X ∈ RN×P×T is generated by computing the
convolution between the dictionary and the sparse vector, with a possible random
Gaussian noise ε ∼ N (0, σ2):

X [n, p, t] =
K∑
k=1

(D[k, p, :] ∗ Z[n, k, :]) + ε (6.5.2)

where ∗ denotes the convolution operation.

Contamination To mimic the presence of significant artifacts found in real-
world data, a contamination term Xcontam can be added to the signal. This involves
convolving a randomly generated dictionary containing P atoms – one per channel
– of length Lcontam (preferably longer than the normal atom length, e.g., Lcontam ≥
3L) with a sparse vector, following a given method and sparsity level. In practice,
the contamination signal is randomized again, i.e., each non-null timestamp is
redrawn so that it is not possible to “learn” the contamination atoms.

Simulation parameters If not stated otherwise, we used the following param-
eters in the follow-up experiments on synthetic data:

• dictionary of shape (K,P, L) = (2, 2, 64), composed of “sin” and “gaussian”
atoms shapes;

• the sparse vector is composed of constant activations of value 1, with a
sparsity of 0.4% and a length of T̃ = 50000 − 64 + 1, i.e., roughly 200
activations per atom;

• if contaminated, we add a contamination signal of sparsity 6×10−3%, i.e., on
average, 30 contamination atoms per channels, each one of length Lcontam =
3L = 192;

• the final signal is hence of duration 50 000 over 2 channels, with an additional
gaussian noise of standard deviation σ = 0.01.

6.5.2 Dictionary evaluation

In our methodology, we evaluate the effectiveness of a learned dictionary, denoted
as D̂ ∈ RK′×P×L′ , by comparing it against a set of true dictionary patterns, rep-
resented as D ∈ RK×P×L and computing a “recovery score”, using the convolu-
tional cosine similarity following optimal assignment, as defined by Moreau and
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Gramfort [2020]. The learned dictionary and the true patterns are structured as
three-dimensional arrays, where dimensions correspond to the number of atoms,
channels, and atoms’ duration. The learned dictionary may differ from the true
dictionary in terms of the number of atoms and the length of time atoms, typically
featuring more atoms and extended durations.

The evaluation process involves a computational step known as multi-channel
correlation. In this step, each atom of the learned dictionary is systematically
compared with each pattern in the true dictionary. This comparison is carried
out channel by channel, aggregating the results to capture the overall similarity
between the dictionary atom and the pattern.

After performing these comparisons for all combinations of atoms and patterns,
we create a matrix that represents the correlation strengths between each pair. To
objectively assess the quality of the learned dictionary, we use an optimization
technique called the Hungarian algorithm. This algorithm finds the best possible
“matching” between the learned dictionary atoms and the true patterns, aiming to
maximize the overall correlation.

The final score, which quantifies the performance of the learned dictionary, is
derived by averaging the values of these optimal matchings. This score is scaled
between 0 and 1, where 1 represents the best possible performance. A higher score
indicates that the learned dictionary more accurately represents the true dictionary
patterns, providing a measure of its quality and effectiveness in capturing the
essential features of the data.

Mathematically, the recovery score between the dictionaries D̂ and D can be
expressed as follow:

score =
1

K

K∑
i=1

Ci,j∗(i) , (6.5.3)

where j∗(i), i = 1, . . . , K denote the results of the linear sum assignment prob-
lem [Crouse, 2016]2 on correlation matrix C := Corr

(
D, D̂

)
∈ RK×K′ , with

∀i ∈ J1 , KK, ∀j ∈ J1 , K ′K,

Ci,j = max
l=1,...,L+L′−1

Corr2D

(
Di, D̂j

)
[l] ∈ R , (6.5.4)

where Di ∈ RP×L and D̂j ∈ RP×L′ . The multivariate “2D” correlation between the
two matrices D and D̂ is defined as follow:

Corr2D

(
D, D̂

)
=

P∑
p=1

Corr1D

(
dp, d̂p

)
∈ RL+L′−1 , (6.5.5)

2We use the SciPy’s implementation.
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where dp ∈ RL and d̂p ∈ RL′ . The 1D “full ” correlation between the two vectors d
and d̂ is defined as follow, ∀t ∈ J1 , L+ L′ − 1K:

Corr1D

(
d, d̂
)
[t] =

(
d ∗ d̂

)
[t− T + 1] =

L∑
l=1

d[l]d̂ [l − t+ T ] ∈ R , (6.5.6)

where T := max (L,L′).

6.5.3 Experimental paradigm

In our study, we implemented a specific experimental paradigm to evaluate the
performance of convolutional dictionary learning. This paradigm was carefully
designed to balance computational efficiency with the need to capture sufficient
data characteristics. The following parameters and strategies were employed.

• Atom Size Determination Our objective was to learn atoms that are
slightly larger than those used in the simulation. To achieve this, we in-
creased the size of the atoms by a factor of 1.5. Specifically, the size of each
atom was determined using the formula L′ = ⌊1.5L⌋, where L represents the
original size of atoms in the simulation, and ⌊·⌋ denotes the floor function.
This adjustment was made to capture more extensive features in the data.

• Window Size Configuration To capture a larger context around each
atom for more comprehensive analysis, we set the window size to be ten
times the size of an atom. This was calculated as W = ⌊10L′⌋. The larger
window size allows for a broader view of data characteristics around each
atom, providing a more extensive analysis context.

• Batch Size Computation Our goal was to efficiently process subsets of
data. Each batch was designed to contain p = 10% of the data segments.
We calculated the length of data loaders as D =

⌊
NT
W

⌋
and then set the batch

size to ⌊pD⌋. This strategy ensured that each batch processed a manageable
portion of data, promoting computational efficiency while ensuring thorough
data coverage.

• Epoch and Batch Processing To ensure complete data coverage in each
training epoch, we processed the data in batches, covering all available data
within each epoch. The maximum number of batches per epoch was calcu-
lated is thus simply

⌊
1
p

⌋
. This approach guaranteed that the entire dataset

was utilized for training in each epoch, enhancing the learning process.
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• Number of Learned Atoms and dictionary initialization We aimed
to increase the potential for successful dictionary learning by initializing the
model with a higher number of atoms than those explicitly present in the
simulation. Specifically, we set the number of atoms as K ′ = 2K. This strat-
egy was intended to enhance the model’s capability to capture a broader and
more diverse range of patterns, thereby increasing the likelihood of finding
a set of atoms that effectively represents the underlying data and perfectly
recovering the simulation dictionary. For the initial dictionary, we opted for
a random generation strategy where the initial values were randomly chosen
between 0 and 1, followed by norm-1 rescaling. This approach provided a
diverse and stochastic starting point for the dictionary learning process. The
combination of a higher initial number of atoms and random initialization
allowed the model to explore a more extensive feature space than what was
explicitly present in the data, potentially leading to more robust and versatile
dictionary learning outcomes.

• Optimization algorithm We employed 50 iterations of FISTA for each
batch. The experiment was configured to run for 100 epochs, implying a
total of 100×

⌊
1
p

⌋
updates of the dictionary.

6.5.4 Results

On WinCDL efficiency In fig. 6.5.4, we provide a comparison of performance
between WinCDL and two methods for rank-1 CDL implemented in the Python
package AlphaCSC. The cost value is taken as G(D,X) = F (D,Z∗(D);X), where
the unknown to optimize is the dictionary. Thus, we do not take into account the
ability of the algorithm to compute D and the sparse codes Z at the same time,
but we evaluate the dictionary D by computing F with the exact sparse codes
Z∗(D). The figure shows that the usage of line search and sub-windowing allows
to speed up the Dictionary Learning process, on both simulated and real MEG
data from the MNE sample dataset – previously introduced in section 4.3.2.

Parameter sensitivity of WinCDL To assess the sensitivity of WinCDL to
hyperparameters, we first conduct experiments on synthetic data without con-
tamination by outliers. We rigorously evaluate the impact of two critical hyper-
parameters on our algorithm’s performance: the length of the learned atom and
the window size relative to the true atom size. To assess the influence of the
learned atom length, we varied it as a percentage of the true atom size, testing at
75%, 100%, 150%, and 200% across different true values (32, 64, and 128). This
experiment was replicated 20 times for each setting. Remarkably, our findings in-
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(a) Cost evolution on simulated data (b) Cost evolution on real MEG data

Figure 6.5.4: Comparison of cost evolution during optimization between WinCDL and
AlphaCSC methods.

dicate that the model achieves near-perfect recovery scores once the learned atom
length is sufficiently long (ratio ≥ 1), highlighting that performance is robust to
overestimation of the atom size.

In a parallel set of experiments, we focused on the effect of window size, setting
it to 5, 10, and 15 times the true atom size, coupled with different batch sizes (25%,
50%, 75%, and 100% of the total available batches). The results consistently
showed near-perfect recovery across all window size factors when the batch size was
at least 50% of the total batches, emphasizing the effectiveness of our algorithm
to recover the dictionary with clean data.

These experiments – which results are presented in fig. 6.5.5 – collectively
underscore the resilience of our model’s performance to variations in key hyper-
parameters. They reveal that once the learned atom size is reasonably estimated
and sufficient data is utilized (batch factor ≥ 0.5), the model reliably achieves
high recovery accuracy, demonstrating its robustness and effectiveness in diverse
scenarios.

On outliers detection methods with synthetic data. We evaluated the
performance of outlier detection methods on contaminated synthetic data. We
examined the final recovery score over 20 repetitions and its evolution across it-
erations. Additionally, we investigated the score when no detection method is
applied to such contaminated data. This comparison was intended to provide a
clearer understanding of the relative effectiveness of each detection algorithm.

To generate corrupted synthetic data, we proceed as follows. Starting from a
clean but noisy signal, we randomly select a given percentage of timestamps, that
would be the first timestamps of a “outlier block”. Each outlier block is composed
of Gaussian noise of length 3L – i.e., 3 times longer than the true atoms – and
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Figure 6.5.5: On uncorrupted synthetic data, effect of the learned atom size (left) and
the chosen window length (right) to the final dictionary recovery score, for 20 repetitions.

their respective activation values activation is 50 times bigger than for the true
atoms. Figure 6.5.3 show the first 2000 timepoints of one trial (2 channels) with
outliers.

The contamination process results in approximately 10% of the total times-
tamps being labeled as contaminated. This is due to the fact that each contami-
nation activation corrupts Lcontam timestamps. Consequently, we implemented the
quantile detection method with three different α values: 5%, 10%, and 20%.

The results are presented in fig. 6.5.6, based on 20 repetitions. It is observed
that 4 method perform particularly well, namely MAD, IQR, z-score (with α = 1)
and the quantile (20%) methods, with recovery score above 0.8. In contrast, when
no detection method is applied, the final score is significantly lower, falling at
0.4. However, the sub-optimal performance of the other detection methods can be
explained by the fact that they do not remove enough outliers in order to learn
clean enough patterns.

Figure 6.5.9 presents additional metrics, namely recall and precision, computed
between the true outlier mask (used to generate the corrupted synthetic data) and
the learned one. In order to compute fair metrics, the learned mask is taken before
the opening step.

We observed a notable inverse relationship between precision and recall across
the different methods employed. Specifically, methods demonstrating higher recall,
indicative of their ability to successfully identify a larger number of true outliers,
concurrently exhibited lower precision. This lower precision reflects a higher rate
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Figure 6.5.6: Median recovery score evolution for different outliers detection methods on
synthetic data (20 repetitions).

of false positives, suggesting these methods may be overly permissive in classifying
data points as outliers. Conversely, methods with elevated precision levels were
adept at accurately pinpointing true outliers, yet this came at the expense of recall,
implying that a considerable number of actual outliers were overlooked.

This dichotomy highlights a classic trade-off between precision and recall, com-
mon in classification tasks, where optimizing one measure inversely affects the
other. The pattern observed in our study suggests that high-recall methods can
potentially cast a wider net, but at the risk of catching non-outlier data, whereas
high-precision methods are more conservative, prioritizing precision over coverage.

Evaluation of Outlier Detection Methods on ECG Data To assess the
efficiency of outlier detection methods on real-world data, we utilized the Physionet
Apnea-ECG dataset Penzel et al. [2000].

The ECG measures the electrical activity of the heart by using electrodes
(the number depends on the test) that are connected to the skin, which detects
small electrical changes due to depolarization and repolarization of heart mus-
cles [Mostafa et al., 2019]. The Apnea-ECG Database (AED) [Penzel et al., 2000]
is one of the most commonly used databases for ECG analysis. A total of 70 night-
time ECG recordings – with obstructive sleep apnoea (OSA) –, with one-minute
annotations, were provided by Philipps University, Marburg, Germany and are
freely available for download on the PhysioNet site3 [Goldberger et al., 2000].

3Data available at: https://www.physionet.org/content/apnea-ecg/1.0.0/
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Figure 6.5.7: Recall
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Figure 6.5.8: Precision

Figure 6.5.9: On currupted synthetic data, evolution of recall (left) and precision (right)
of outliers detection. Note that by construction, when no detection method is applied,
precision and recall are null

These ECG signals were used by Li et al. 2018, Pathinarupothi et al. 2017b,a,
Novak et al. 2008, De Falco et al. 2018 and Dey et al. 2018.

The 70 single-lead ECG records are sampled at 100Hz with lengths ranging
between 400min to 509min each, and are meticulously segmented into two sets:
a learning set encompassing 35 records (labeled a01 to a20, b01 to b05, and c01
to c10), and a test set consisting of 35 records (denoted x01 to x35). The gender
distribution – presented in fig. 6.5.10a – shows 57 males and 13 females.

The recordings are segmented into 1 minute intervals, each tagged as either
apneic or normal – i.e., indicating the presence or absence of apnea during that
minute – by a human scorer. The distribution of the “apnea minutes” percentage,
calculated for each subject as the ratio of minutes annotated as ’A’ to the total
recorded minutes, is depicted in fig. 6.5.10c. This distribution reveals distinct
patterns across categories: patients with apnea (category A) consistently exhibit
no less than 19% apnea minutes, those in the borderline apnea group (category
B) range from 2% to 18%, and control subjects (category C) show less than 1%
of their minutes as apneic. In contrast to the distributions of Age and Body mass
index (BMI), which do not delineate clear thresholds between these categories as
illustrated in fig. 6.5.10b, the percentage of apnea minutes emerges as a potentially
effective proxy for categorizing subjects within the test set (category X).
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Figure 6.5.10: Descriptive statistics on Physionet Apnea-ECG dataset

No preprocessing was applied to the signals, thereby minimizing manual inter-
ventions and ensuring the integrity of the raw data. Our experimental procedure
entailed learning a dictionary composed of three atoms, each spanning 1 s, from
a 10min segment of ECG data interspersed with blocks of outliers, as shown in
fig. 6.3.1. The objective was to evaluate the model’s ability to learn an effective
dictionary from corrupted data and subsequently apply it for encoding signals free
of outliers.

Upon training the model onXtrain ∈ R10×6000, we utilized the learned dictionary
D̂ ∈ R3×100 to compute sparse codes for Xtest ∈ R10×6000. The selection of minutes
for Xtrain and Xtest was manually curated to ensure the presence and absence of
outliers, respectively.

Given the inherent uncertainty in the actual proportion of outliers in real data,
we applied various detection methods, juxtaposed against a baseline scenario of
no detection. The findings, presented in fig. 6.5.11, indicate that all detection
methodologies yielded comparable loss values, surpassing the outcomes of learn-
ing without any detection mechanism. Illustrations of the dictionaries learned,
particularly highlighting the cases of no detection and z-score-based detection,
are presented in fig. 6.5.12. We can notice that in the absence of any detection
method, the model fails to identify significant atoms, resorting to noise patterns,
whereas the incorporation of a z-score-based detection method facilitates the re-
covery of ECG patterns by the model. This phenomenon is attributable to the
fact that outlier blocks, characterized by significantly higher variance than the
rest of the signal, are preferentially addressed during the sparse coding phase to
minimize reconstruction error, consequently leading to the neglect of non-outlier
signal segments that contain relevant ECG patterns.
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Figure 6.5.11: Loss evolution for different outliers detection method, on 10 good trials of
subject a02 of dataset Physionet Apnea-ECG.

This experiment demonstrates our capability to extract pertinent patterns from
corrupted data using detection methods, obviating the need for prior data prepro-
cessing and without prior knowledge of the exact outlier percentage.

On empirical time-series with strong artifacts This study evaluates the
performance of WinCDL on empirical time-series data characterized by strong ar-
tifacts. The data set, derived from a single Local Field Potential (LFP) channel4

recording on a rodent’s striatum, as described in [Dallérac et al., 2017], presents
a challenging scenario for signal processing due to the presence of significant arti-
facts5. The initial 200 s of raw data is illustrated in fig. 6.5.13, with the dataset
being divided into two segments of 500 s each: a “clean” segment starting from the
100th second and a “dirty” segment from the very start.

Using the Python package AlphaCSC, a Convolutional Sparse Coding (CSC)
model was first fitted on both segments. However, CSC’s performance deteriorated
when applied to the segment with stronger artifacts. To address this, we utilized
an alternative model, α-CSC [Jas et al., 2017], known for its robustness to artifacts.

4A single LFP channel refers to the recording from one location or electrode within the
brain, capturing Local Field Potentials (LFPs). LFPs are the electric potentials recorded in
the extracellular space in brain tissue, typically using micro-electrodes (metal, silicon, or glass
micropipettes) placed in or near the area of interest in the brain, and measured in millivolts.

5Dataset available at: https://github.com/alphacsc/alphacsc/blob/master/examples/
rodent_striatum.npy
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Figure 6.5.12: Learned atoms with and without outliers detection method, on 10 bad
trials of subject a02 of dataset Physionet Apnea-ECG.
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Figure 6.5.13: First 200 s of raw data from rodent striatum dataset.

Table 6.1: Global computation time, in seconds, on rodent striatum dataset.

CSC α-CSC WinCDL
Clean data 69.90 N/A 5.60
Dirty data 23.18 277.34 8.13

Further, we applied our WinCDL method to both clean and artifact-laden
data. For the clean segment, WinCDL was used without outlier detection, while
for the “dirty” data, we implemented it both with and without an outlier detection
method, specifically using a quantile at 10%. The learned atoms, each with a
duration of 1 second and totaling 3 in number, are depicted in fig. 6.5.15. In the
case of the “dirty” data, we present results only from the most effective methods,
namely α-CSC and WinCDL with outlier detection.

The comparative analysis presented in fig. 6.5.14, with global computation time
summarized in table 6.1, reveals that WinCDL not only operates faster than the
AlphaCSC methods but also demonstrates comparable performance in both clean
and dirty data when employing outlier detection. Notably, on data with signifi-
cant artifacts, WinCDL surpasses α-CSC in both computational efficiency and in
achieving a lower loss value, underscoring its effectiveness in handling challenging
empirical time-series data.

Finally, the experiment was also conducted with WinCDL on “dirty” data, both
with and without outlier detection. It clearly demonstrates, as shown in fig. 6.5.14,
the efficacy and performance benefits of the outlier detection mechanism. When
WinCDL was tested without outlier detection on data containing significant ar-
tifacts, its performance was notably inferior compared to when outlier detection
was employed. This contrast highlights that the incorporation of outlier detection
allows WinCDL to process artifact-laden data with an efficiency akin to that ob-
served in “clean” data, underscoring the practical utility of this feature in enhancing
data analysis.
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Figure 6.5.15: Learned atoms on empirical time-series with strong artifacts. For each
sub-figure, results obtained with AlphaCSC methods (top) and WinCDL (bottom).
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On real M/EEG data Finally, to assess qualitative performance on real M/EEG
data, we extract 30 atoms of duration 1 s with WinCDL from the MNE sample
dataset. The results are presented in fig. 6.5.16. We plot the spatial and temporal
representations of each pattern, which may correspond either to artefacts or to
evoked responses. The results are coherent with what is generally obtained with
AlphaCSC on the same task with equivalent parameters, as shown in fig. 6.5.17.

6.6 Conclusion

In this study, we have introduced a robust and scalable approach to Convolutional
Dictionary Learning (CDL) for unsupervised event detection in physiological sig-
nals. This approach effectively addresses the key challenges of scalability and
robustness to outliers, which have historically limited the application of CDL in
large-scale, population-level biomedical studies. By integrating robust regression,
specifically the Least Trimmed Squares (LTS) method, into the CDL framework,
we have enhanced the model’s ability to learn meaningful dictionaries from data
contaminated with outliers.

An advantage of our method, as demonstrated through our experiments with
both synthetic and real-world datasets such as the Physionet Apnea-ECG dataset,
is its ability to obviate the need for manual data inspection and complex prepro-
cessing to remove outliers. This marks a substantial advancement over traditional
approaches, as it simplifies the data preparation process, reducing the time and
effort required for preprocessing, especially in scenarios involving large and noisy
datasets.

Moreover, the introduction of stochastic gradient approximations and sub-
windowing strategies has considerably reduced the computational load, making
the application of CDL feasible on a much larger scale than was previously possi-
ble. While time constraints did not allow for extensive application at the popula-
tion level, the enhancements in speed and outlier resistance pave the way for such
large-scale studies in the future.

However, a specific challenge remains in applying our method to M/EEG
datasets, particularly concerning the identification of shared spatial patterns across
individuals with varying brain morphologies. This question is pivotal in under-
standing the generalizability and applicability of our approach in the broader con-
text of neurophysiological studies.

In summary, our work significantly extends the capabilities of CDL in process-
ing physiological signals, reducing the need for manual intervention and enabling
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its application on large datasets. Future efforts will focus on addressing the nu-
ances of M/EEG data analysis and exploring the full potential of our method in
population-level studies, thereby contributing to the advancement of diagnostic
and monitoring tools in healthcare.
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Figure 6.5.16: 30 atoms learned by WinCDL from a MEG recording.
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Figure 6.5.17: 30 atoms learned by AlphaCSC from a MEG recording.
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neuromagnetic transients and ageing trends in a large open-access dataset. Neu-
roImage, 267:119809, 2023

Human neurophysiological signals recorded by magneto- or electroencephalogra-
phy (M/EEG) consist of a series of brief bursts of neural activity with variable

underlying sources and temporal characteristics [Tal et al., 2020, Jones, 2016].
These data are often analysed by averaging across many repetitions of a task or
aggregating over time, resulting in an easily interpretable signal (see section 1.2
for more details on that matter). However, we know that this aggregation is a
simplification that results in a loss of important information about the transient
burst dynamics (e.g., burst rate, burst power, peak frequency) in the raw signal.
The first realisation of “transient bursts” in electrophysiological data dates back to
the identification of sleep spindles (spontaneous 12Hz to 14Hz transient activity)
in human EEG data in the 1930s [Berger, 1929, Loomis et al., 1935]. Since then,
transient bursts of various frequencies have been identified in electrophysiological
recordings from humans and animal models, and have been linked to physiological
and cognitive functions including attention, working memory, arousal and relax-
ation, and voluntary movement [Herbert and Lehmann, 1977, Lakatos et al., 2004,
Feingold et al., 2015, Lundqvist et al., 2016, Shin et al., 2017, Little et al., 2019,
Errington et al., 2020, He et al., 2020, Wessel, 2020]. In parallel, analysis meth-
ods have been developed to detect, characterise, and identify changes in transient
bursts at the single subject and group level.

One set of transient bursts of particular interest are sensorimotor beta and mu
bursts, which are modulated by voluntary motor tasks. Feingold et al. [2015] first
demonstrated that brief bursts of beta oscillations in the motor and pre-motor cor-
tices could account for virtually all cortical beta-band activity in monkeys. These
findings were later replicated in a multi-modal, multi-species study by Shin et al.
[2017]. Similarly, Brady et al. [2020] demonstrated that task-related reductions
in the inter-trial average beta-band power (i.e., beta suppression) in humans can
be explained mainly by a reduction in the rate of occurrence of beta bursts with
movement onset. Transient beta and mu bursts have since been shown to play a
functional role in movement initiation and cancellation [Wessel, 2020, Errington
et al., 2020], and response accuracy and reaction time [Little et al., 2019, He et al.,
2020, Wessel, 2020].

Recent work has also shown that sensorimotor beta burst characteristics change
with normal healthy ageing. Particularly, it has been demonstrated that transient
beta burst characteristics (e.g., burst rate, peak frequency, peak power) show age-
related changes [Brady et al., 2020, Brady and Bardouille, 2022] that can explain
the previously observed age-related increase in sensorimotor beta suppression in
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the average [Bardouille et al., 2019, Rossini et al., 2007]. Furthermore, it has
also been shown that the spatial localization of transient beta bursts changes with
age, expanding to recruit additional areas, and exhibiting an anterior shift in peak
localization with increasing age [Power and Bardouille, 2021].

With the increasing interest in transient burst-based analyses has come a surge
in development of analysis methods for detecting and characterising bursts. At
present, there is no gold-standard method for detecting and characterising tran-
sient bursts in electrophysiological data, and each proposed method comes with
associated advantages and limitations. In addition, there is no obvious framework
to complete a group-level analysis of the combined spatial and temporal character-
istics of identified bursts and most techniques have not been optimized for use with
large datasets. The simplest, and most commonly used burst detection method
uses amplitude thresholding to detect bursts of high power activity within a pre-
defined frequency range of interest. This method, popularized by Shin et al. [2017]
defines bursts as local maxima in the time-frequency representation that exceed
a pre-set power threshold (multiple of the median power) and fall within a pre-
defined frequency range [Shin et al., 2017, Brady et al., 2020]. While this method
has been widely used to detect mu, beta, and gamma bursts in human and animal
models [Herbert and Lehmann, 1977, Lakatos et al., 2004, Feingold et al., 2015,
Lundqvist et al., 2016, Shin et al., 2017, Little et al., 2019, Errington et al., 2020,
He et al., 2020, Wessel, 2020], it is limited in its applications due to its imposition
of assumptions about the frequency, waveform shape, and linearity of the signal
of interest. In addition, the method does not effectively account for the aperiodic
background activity when applying thresholding. Further, this method operates
on a single signal (e.g., channel, source reconstructed time course), and does not
take into consideration multi-channel interactions or signal spread, making it diffi-
cult to compare spatiotemporal characteristics between subjects. To address these
limitations, a number of alternative burst detection methods have been proposed.

The Better Oscillation Detection (BOSC) and Periodic/Aperiodic Parame-
terization of Transient Oscillations (PAPTO) methods are alternative amplitude
thresholding methods that have been designed to account for aperiodic background
activity in the signal, and have been shown to increase sensitivity to bursts [Caplan
et al., 2001, Whitten et al., 2011, Caplan et al., 2015, Kosciessa et al., 2020, Rayson
et al., 2022, Brady and Bardouille, 2022]. These methods, however, still rely on sev-
eral fundamental assumptions about the approximate frequency, waveform shape,
and spatial location of the signal of interest. To reduce these assumptions, many
have moved towards data-driven methods of burst detection. Examples of this
include Empirical Mode Decomposition (EMD) and cycle-by-cycle analyses which
automatically detect approximately sinusoidal waveforms in nonlinear or nonsta-
tionary data [Huang et al., 1998, Cole and Voytek, 2019, Fabus et al., 2021], and
Brief Amplitude Undulation (BAU) detection which automatically detects stereo-
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typical waveforms based on their shape in the temporal domain [Abeles, 2014, Tal
and Abeles, 2016, 2017]. Several types of dictionary learning algorithms including
MoTIF [Jost et al., 2006, Brockmeier and Príncipe, 2016], Sliding Window Match-
ing [Gips et al., 2017], and Adaptive Waveform Learning [Hitziger et al., 2017]
have also been applied to the burst detection problem. These algorithms, which
were largely developed for other applications such as image processing, and audio
signal segmentation, have shown promise as burst detection methods due to their
ability to learn repeating temporal motifs in the signal. While the data-driven na-
ture of all of these methods provides an improvement over traditional amplitude
thresholding methods, these methods are still limited in scope as they operate
on a single time course and fail to consider the multi-channel dynamics that are
critical to understanding electrophysiological signals, and how they change across
a population.

Analysis methods that account for multi-channel interactions, such as Hidden
Markov Modelling (HMM) and EEG Microstates have been used to detect tran-
sient states of brain activity during task-performance and in disease [Baker et al.,
2014, Vidaurre et al., 2016, Michel and Koenig, 2018, Quinn et al., 2018, Becker
et al., 2020, Seedat et al., 2020, Coquelet et al., 2022]. HMM identifies full graph-
ical networks that exist for 100ms to 200ms at a time and exhibit rapid shifts
between states, while the EEG Microstates method identifies short periods of sta-
ble scalp potentials that reflect sharp events of neural synchronization [Coquelet
et al., 2022]. A strength of these data-driven approaches is that they can identify
repeating transient states across the whole head. However, the assumption that
multiple states cannot coexist in time is a limitation as it is not uncommon to
observe independent electrophysiological processes (e.g., occipital alpha and sen-
sorimotor beta) co-occurring in time. Another method that has been proposed for
use in the multi-channel detection of transient bursts is the well-known Indepen-
dent Component Analysis (ICA) algorithm [Vigário et al., 1998, Hyvärinen and
Oja, 2000, Himberg et al., 2004, Oja and Zhijian, 2006, Briley et al., 2021]. ICA has
been a widely successful workhorse for extracting spatiotemporal components in
electrophysiological data (cf. section 1.2.2). However, assuming the independence
of sources may not be realistic when working with highly correlated task-related
brain oscillations such as sensorimotor mu and beta. In addition, ICA considers
long time course states of brain activity and does not break the signal into short
repeating temporal motifs that are characteristic of transient bursts. Therefore,
it is necessary to identify a method that employs a multi-channel, data-driven
approach while allowing for the co-occurrence of short, repeating spatiotemporal
motifs (i.e., transient bursts), that may or may not have correlated sources.

One such method that meets these criteria is multivariate convolutional sparse
coding (CSC) which is a specification of the broader class of convolutional dictio-
nary learning (CDL) algorithms. CDL represents the multivariate neural signals
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as a set of spatiotemporal patterns, called atoms, with their respective onset times
and magnitudes, called activations. CDL has emerged as a convenient and efficient
tool to extract patterns, in particular due to its ability to easily include physical
priors for the patterns to recover. For example, for M/EEG data, Dupré la Tour
et al. [2018] have proposed a CDL method which extracts atoms that relate to the
current dipoles used to model brain activity by imposing a rank-1 structure to bet-
ter account for the linear spread of the signal across channels. Each atom is thus
associated with an activation vector that provides a record of time points through-
out the signal at which the atom is present, and the associated magnitude of the
atom at those time points [Jas et al., 2017, Dupré la Tour et al., 2018, Moreau
and Gramfort, 2020]. CDL operates similarly to classical Independent Compo-
nent Analysis (ICA; Winkler et al. 2015), decomposing the signals as a sum of
topographies and sources [Dupré la Tour et al., 2018] (cf. chapter 2). However,
CDL does so not by assuming that the sources are independent, but by assuming
that the source time courses are formed by repeated waveforms. CDL has been
previously validated on single subject datasets to recover biological artifacts, non-
sinusoidal mu patterns with sensorimotor topography, occipital alpha bursts, and
evoked-type responses (Dupré la Tour et al. 2018 and chapter 4 of this present
manuscript).

Despite the success of CDL and other data-driven methods on single subject
studies, the validity of multi-channel, data-driven methods for use in between-
subject comparisons and group-level analyses has been largely unexplored. Some
work has employed HMM extended to a multi-subject setting by concatenating
data across participants to identify common repeating states [Baker et al., 2014,
Vidaurre et al., 2016, Quinn et al., 2018, Becker et al., 2020, Seedat et al., 2020],
and few studies have demonstrated that ICA and EEG Microstates yield consistent
patterns across participants [Himberg et al., 2004, Michel and Koenig, 2018]. How-
ever, none of these studies explored variability between subjects, and group-level
differences and trends, highlighting the need for methods to explore group-level
trends in transient bursts detected by a robust data-driven method. The favourable
characteristics and promising preliminary results of the CDL method make it a
logical candidate for group-level investigations of transient bursts.

The objective of the current work is thus to use the CDL method to detect and
characterise ageing trends in task-related transient bursts at the group level in a
large, open-access dataset. Here, we detect (in single subjects) repeating spatio-
temporal atoms in sensorimotor MEG data from the Cam-CAN dataset [Shafto
et al., 2014, Taylor et al., 2017], and cluster similar atoms across participants to al-
low for group-level analysis. We then assess clusters for age-related trends in atom
characteristics. It is hypothesised that CDL will successfully extract task-related
atoms that are biologically plausible, including those that resemble sensorimotor
beta and mu transient bursts. This hypothesis is based on the findings of previous
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literature that demonstrate a functional role of beta and mu transient bursts in
sensorimotor tasks [Herbert and Lehmann, 1977, Lakatos et al., 2004, Feingold
et al., 2015, Lundqvist et al., 2016, Shin et al., 2017, Little et al., 2019, Errington
et al., 2020, He et al., 2020, Wessel, 2020]. It is further hypothesised that within
task-related atom clusters, atoms will show age-related changes in their spatiotem-
poral characteristics, in line with previous findings. Specifically, it is predicted that
for sensorimotor beta-type bursts, burst frequency will decrease with age, spatial
position will shift anteriorly with age, and pre-movement activation will increase
with age as a result of increasing burst rate with age [Bardouille et al., 2019, Brady
et al., 2020]. This work presents, for the first time, the detection of group-level
trends in transient bursts using a flexible, multi-channel, data-driven CDL method.
By combining this powerful detection algorithm with the big data available in the
Cam-CAN dataset, we can increase our understanding of the role of neuromag-
netic transients in normal healthy ageing and provide an improved framework for
analysing transient bursts at the group level in future work.

7.1 Methods

Text in sections 7.1.1 and 7.1.2 was adapted from Brady et al. [2020] and Power
and Bardouille [2021]. Work described in these sections was completed previously,
except where specified. See fig. 7.1.1 for a workflow diagram describing the analysis
process for this work.

7.1.1 Participants and experimental paradigm

MEG data were collected from 650 participants in Phase 2 of the Cam-CAN ex-
amination of healthy cognitive ageing. Participant ages ranged from 18 to 88 years
of age, with an equal distribution in age per decile and equal proportions of males
and females. All participants provided written, informed consent prior to partic-
ipating in each phase of the study. The study was conducted in compliance with
the Declaration of Helsinki and data collection was approved by local ethics boards
[Shafto et al., 2014]. In the current work, we report findings from 563 participants
(86.6% of the original 650 datasets) who had sufficient MEG and anatomical MRI
data required for localization. Participants who did not have anatomical MRI data
were excluded from analysis to ensure consistent localization procedures were ap-
plied across all included participants. Each participant performed a sensorimotor
task during the MEG scan [Shafto et al., 2014]. In the task, participants responded
with a right index finger button press to unimodal or bimodal audio/visual stim-
uli. The order of bimodal and unimodal trials was randomized, and the inter-trial
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interval varied from 2 s to 26 s. The button press task did not include specific
imperatives related to performance, e.g., fast responses. Thus, brain-behaviour
interactions focused on response time were not investigated in this report.

7.1.2 Data acquisition and processing

Data were obtained from the Cam-CAN dataset [Shafto et al., 2014, Taylor et al.,
2017]1. MEG data were acquired at 1000Hz with inline band-pass filtering between
0.03Hz and 330Hz using a 306-channel Vectorview system with continuous head
position monitoring (Elekta Neuromag, Helsinki, Finland).

All MEG processing was completed in the Python programming environment
(v.3.7.7), using the MNE-Python library (v.0.23.0) [Gramfort et al., 2013, 2014].
Data were pre-processed using temporal signal space separation (tSSS) to perform
environmental noise reduction, and reconstruction of missing or corrupted MEG
channels [Taulu and Simola, 2006]. The task data was then parsed into trials
synchronized to each button press, with a duration of 3.4 s, including a 1.7 s pre-
movement interval. The 3.4 s window length was selected to ensure a sufficient
post-movement interval to capture the entire beta rebound response. Trials were
excluded if the button press occurred more than 1 s after the cue (indicating poor
task performance) or if the button press occurred within 3 s of the previous button
press (which provided insufficient baseline for subsequent analysis). In the current
work, data were bandpass filtered between 2Hz to 45Hz and resampled with a
sample rate of 150Hz.

7.1.3 Convolutional Dictionary Learning (CDL)

Recall from chapter 2 that the objective of CDL is to decompose a signal into
the convolution between a few translationally invariant recurring patterns, called
atoms, and their sparse activation vectors. In the application to M/EEG signals,
a rank-1 constraint is added to the dictionary to take into account the physics
of the signals (i.e., the instantaneous linear spread of the signals across channels;
see eq. (2.4.3)). This extra constraint decomposes the atoms with a spatial and
a temporal component, which can easily be interpreted by neuroscientists. The
result of the optimization is a set of instantaneous spatiotemporal signals and
associated sparse activation vectors (see fig. 4.1.2 for a schematic representation
of how CDL decomposes raw MEG signals).

1Available at https://www.cam-can.org/index.php?content=dataset.
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Figure 7.1.1: Workflow diagram.
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In the current work, we relied on the alphacsc2 Python package [Dupré la Tour
et al., 2018] for CDL with rank-1 constraint. The hyperparameters used in this
work are based on those established by Dupré la Tour et al. [2018] and used in the
alphacsc tutorials3. These hyperparameters were used because they have given
satisfying results for detecting similar types of induced responses (e.g., somatosen-
sory mu waves) in previous work. For each considered subject, CDL outputs 20
spatiotemporal atoms alongside their respective sparse activation vector z that
corresponds to the onsets of the waveforms. For each atom, CDL with rank-1
constraint provides the topography, later referred to as u of size number of MEG
sensors, and the temporal waveform v of duration L = 500ms.

7.1.4 Atom clustering

After applying CDL to each individual participant, atoms from all participants
were clustered into groups, based on their spatiotemporal similarity. The ap-
proach of detecting atoms in individuals and then clustering across participants
was employed to ensure that individual variability in atoms was preserved to al-
low for between-subject comparisons of atom characteristics. A correlation-based
clustering approach taking into consideration both the u (spatial) and v (tempo-
ral) vectors was applied to the atoms. The clustering relies on a simple iterative
approach that groups atoms together on the basis of high correlation without prior
specification of the number of clusters. This method is similar to that described
by Bansal et al. [2004], and has been widely used for biomedical clustering appli-
cations in the past [Bhattacharya and De, 2008, 2010, Miljkovic et al., 2010]. This
method was selected over other traditional clustering methods because it allowed
for simultaneous consideration of multiple clustering metrics (i.e., both spatial
and temporal vectors), which is not possible with other “out of the box” clustering
methods.

To compare two atoms (u1, v1) and (u2, v2), we used the Pearson correlation
coefficient of the u vectors

Ru = Ru (u1, u2) :=
⟨u1, u2⟩

∥u1∥2 · ∥u2∥2
, (7.1.1)

and the maximum cross-correlation coefficients of the v vectors

Rv = Rv (v1, v2) := max
k∈J0 ,L−1K

(
C(k)

∥v1∥2 · ∥v2∥2

)
(7.1.2)

with C(k) :=
L−k∑
i=1

v1[i] · v2[i+ k] . (7.1.3)

2Available at alphacsc.github.io/.
3Available at https://alphacsc.github.io/auto_examples/index.html.
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Cross-correlation was used for the v vector to account for phase differences in
otherwise similar waveforms. The algorithm then stepped through each atom of
interest sequentially (in no particular order), and clustered atoms with one another
based on the magnitude of their correlation coefficients (R values). Each atom was
compared to pre-existing clusters by calculating Ru and Rv values between the
current atom and each atom in the cluster, and then averaging across all R values
(for u and v separately) obtained from the cluster. If, for a given cluster, both
(Ru and Rv) average values exceeded a pre-determined threshold ρ, the atom was
considered highly correlated to the cluster. For atoms that were highly correlated
to more than one pre-existing cluster, the atom was added to the cluster to which
it had the highest cumulative correlation (averageRu + averageRv). If the atom
was not highly correlated (i.e., the average Ru and Rv values did not exceed the
threshold) to any of the pre-existing clusters, then a new cluster was created. The
algorithm proceeded through all atoms of interest, yielding a number of clusters
not a priori defined. The pseudo-code of this clustering algorithm is provided
in algorithm 5.

Algorithm 5: Atoms clustering
input : The threshold ρ and the set of atoms {(ui, vi)}Ni=1

output: The dictionary of clusters K
1 Initialize K = 1,K[1] = {(u1, v1)} // A first cluster with the

first atom
2 for i = 2, . . . , N do
3 for k = 1, . . . , K do

4 Compute R(k)
u = 1

#K[k]

∑
(u,v)∈K[k]Ru(ui, u)

5 and R(k)
v = 1

#K[k]

∑
(u,v)∈K[k]Rv(vi, v)

6 end

7 Define C =
{
k ∈ J1 , KK , R(k)

u ≥ ρ,R
(k)
v ≥ ρ

}
// Set of candidates

8 if C = ∅ then
9 K = K + 1

10 K[K] = {(ui, vi)} // Create new cluster
11 else

12 Compute k′ = argmax
k∈C

R
(k)
u +R

(k)
v

13 Append K[k′] with (ui, vi) // Append existing cluster
14 end
15 end
16 return K
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Single subject exclusion

Preliminary correlation-based analysis of single participants’ atoms revealed that
a few participants had numerous highly correlated atoms (i.e., little variability in
the spatiotemporal features of their atoms) as presented in fig. 7.1.4. Visual inspec-
tion of the atom data revealed that these participants tended to have atom profiles
dominated by artifacts (e.g., eyeblink and other global artifacts, see fig. 7.1.2 com-
pared to fig. 7.1.3) or by a persistent slow (alpha frequency) rhythm with variable
topographic representation. This observation suggested that these participants
have abnormal and/or artifactual data that should be excluded from further anal-
ysis to avoid skewing effects in the whole-group clustering process. This prompted
the development of an exclusion process based on the correlation-based clustering
methods described above, by which participants with low atom variability were
identified and excluded from further analysis.

Here, the 20 atoms computed for a given participant were compared to one
another and clusters of highly similar atoms were created within participants. In
order to select the optimal R value threshold ρ for clustering, the threshold was
varied from ρ = 0.2 to ρ = 0.9 and clustering was performed for each value of ρ.
Histograms illustrating the number of clusters yielded per participant were then
created and examined for each value of ρ (see fig. 7.1.5). The goal of the analysis
was to select a threshold that yielded maximum separation between participants
with few groups (high degree of similarity between atoms) and those with many
groups (dissimilar atoms). Therefore, histograms were examined for a bimodal
distribution with maximal separation between peaks. On this basis, a R value
threshold of ρ = 0.8 was selected. All participants with less than 13 distinct
groups of atoms were excluded from subsequent analyses. The value of 13 clusters
was selected as the point that best separated the first and second peaks of the
distribution. Based on these criteria, 25 participants were excluded at this step,
resulting in a total of 538 participants who were used for the remaining analyses,
see table 7.1 for the details.

Global clustering

The correlation-based clustering methods described above were then applied on the
whole-group level to create clusters of atoms of the same type across participants,
which would facilitate atom comparisons between participants. The selection of
an R value threshold ρ for the global clustering was conducted separately from the
single subject clustering due to the differing objectives of the two analyses. While
the single subject clustering aimed to exclude participants with an abnormally
high degree of similarity between atoms, the global clustering aimed to create
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Figure 7.1.2: Spatial and temporal representation of the 20 atoms extracted from the
subject CC121428, that obtained 7 clusters. Framed atoms are part of a single intra-
subject cluster. One can observe the low variability in the atoms obtained from the CDL
step, showing the prevalence of artifacts in the recording.
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Figure 7.1.3: Spatial and temporal representation of the 20 atoms extracted from the
subject CC723395, that obtained 20 clusters. One can observe the high variability in the
atoms.
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Figure 7.1.4: Two-variable correlation matrices from a representative sample of partici-
pants who were excluded (left) or not excluded (right) from the dataset. Each 20 × 20
cell correlation matrix shows data from a single participant, comparing each of the par-
ticipant’s 20 atoms to each other. The colour of the cells represents the magnitude of
the spatiotemporal correlation between each pair of atoms. As indicated in the legend
on the bottom right, u vector correlation is represented by a white to blue colour bar
(low to high correlation), and the v vector cross-correlation is represented by a yellow
to red colour bar. Atom pairs with a high correlation in both the u and v vector are
thus indicated by dark purple colouration in the correlation matrices. It can be observed
from the examples given here that excluded participants have numerous highly correlated
atoms presenting as many dark purple cells in their matrices. This is highly dissimilar
from other non-excluded participants, for whom the correlation matrices have few highly
correlated atoms.
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Figure 7.1.5: Histograms showing the distribution of the number of groups per partici-
pant as the correlation coefficient is increased for the single subject clustering methods.
Thresholds of 0.2 to 0.5 show approximately normal distributions with a single mode that
shifts to a higher number of clusters as the threshold increases. Thresholds of 0.6 and
above begin to show a left-skewed distribution. Thresholds of 0.8 and 0.9 show abnormal
behaviour in the tail of the distribution such that a second small peak emerges that likely
represents those participants with abnormal data that should be excluded.
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Table 7.1: Summary table of subjects excluded as they do not show enough variety
in their extracted atoms as describe in section 16.

Subject ID Age Sex Nb Clusters

CC110037 18 MALE 12
CC110182 18 FEMALE 12
CC121397 27 MALE 10
CC121428 26 FEMALE 8
CC220506 35 FEMALE 8
CC220610 32 FEMALE 10
CC221209 29 FEMALE 12
CC320850 47 FEMALE 11
CC322186 47 MALE 12
CC410325 54 FEMALE 11
CC420061 57 MALE 10
CC420167 51 FEMALE 9
CC420261 54 FEMALE 9
CC420348 57 FEMALE 7
CC420396 53 MALE 9
CC510043 58 MALE 12
CC520517 65 MALE 12
CC521040 63 FEMALE 11
CC610052 77 MALE 9
CC610292 72 FEMALE 12
CC610469 73 FEMALE 12
CC620129 75 MALE 12
CC620490 74 FEMALE 8
CC621642 73 MALE 11
CC720497 80 FEMALE 12
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clusters of atoms between participants that had a lower level of similarity but
could be presumed to be representative of similar neural processes. Therefore, it
was predicted that the ρ used for the global clustering would be lower than that
of the subject level clustering.

To select the optimal ρ for the global clustering, the threshold was once again
varied from ρ = 0.2 to ρ = 0.9 and clustering was performed for each threshold.
Because of the high computational time associated with clustering on a 538-person
dataset, threshold selection was performed using 10 randomly selected 50-person
datasets. The R value threshold ρ was selected based on the analysis of both
qualitative and quantitative metrics. Firstly, the u and v vectors of a selection
of atoms in each cluster were manually inspected to qualitatively assess the suc-
cess of the clustering. Functional labels (e.g., “occipital alpha”, “left central beta”,
“eyeblink artifact”, etc.) were assigned to atoms in each cluster to assess whether
similar types of atoms were being appropriately clustered together for various R
thresholds. This qualitative analysis suggested that ρ = 0.4 yielded the most ap-
propriately grouped atom clusters. This selection was supported by quantitative
metrics comparing the number of clusters detected at each R threshold to the
number of “top clusters” (i.e., common clusters, defined as clusters for which a
minimum of 25% of participants had atoms present in the cluster; see fig. 7.1.6).
fig. 7.1.6 shows that ρ = 0.4 yielded the highest number of top clusters relative to
the overall number of clusters, suggesting that the top clusters were most repre-
sentative of the group. These findings were consistent across 10 random selections
of data, suggesting that the choice of threshold was stable, and that the selection
and ordering of subjects did not have a large effect on the overall results. ρ = 0.4
was thus selected as the optimal clustering threshold for the global analysis and
was used in subsequent analysis of the entire dataset.

Global clustering on the entire dataset yielded 226 clusters of atoms, 11 of
which were considered “top clusters” by the criteria that a minimum of 25% of
participants had atoms present in the cluster. The 25% value was selected as
a reasonable trade-off between maximizing the number of participants in the top
clusters and ensuring that movement-related atoms of interest were being captured.
fig. 7.1.7 shows representative atoms for each of the top clusters identified when the
minimum percentage was varied to values of 50, 35, 25, 20, and 15%. Minimum
percentages above 25% primarily captured eyeblink artifacts as these were the
most stereotypical atoms in the population. The 25% cutoff was the greatest cutoff
that provided insight into movement-related atoms of interest (e.g., contralateral
sensorimotor beta) and was therefore selected as an appropriate threshold to define
top clusters. To ensure adequate sample sizes for assessing cross-sectional ageing
trends, only these top clusters are analysed in subsequent sections.
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Figure 7.1.6: Plot showing the total number of clusters (solid lines) and the number of
top clusters (dashed lines) identified with varying R value thresholds. Each colour of
line is a different random sample of 50 participants from the Cam-CAN dataset. For
all samples, the total number of clusters increases as the threshold increases, while the
number of top clusters shows a clear peak at approximately ρ = 0.4.

7.1.5 Selection of task-related clusters

Each of the top clusters were then analyzed to reveal which were “task-related”.
Clusters were classified as task-related based on criteria related to the average
characteristics of their component atoms, i.e., the individual atoms that make up
the cluster. In particular, atoms in a cluster had to have, on average, a focal
source and a task-related reduction in activation. These criteria are based on
previous findings that task-related transients – particularly the movement-related
beta transients hypothesized to be present in this work – have a focal localization
pattern [Power and Bardouille, 2021] and a marked reduction and rebound in their
rate of occurrence with the onset and offset of task performance [Brady et al., 2020].

The focality of source was determined for each atom by calculating an equiv-
alent current dipole (ECD) from the spatial representation of u. The dipole was
then projected onto the participant’s MRI to determine the anatomical position
and orientation of the source. If the average goodness of fit for atoms in a given
cluster exceeded 90%, then the cluster source was considered to be focal.

The task-related reduction in activity criteria was assessed by segmenting the
activation z vector into pre-task, task, and post-task intervals (where the task
was an unimanual button press) and calculating the percent change in activation
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Figure 7.1.7: Representative atoms (spatial topographies and temporal waveforms) for
the top clusters that are returned when the top cluster cutoff is varied. The top clusters
identified at values of 50, 35, 25, 20, and 15% are shown. Note that each percentage cap-
tures all the clusters in its row, as well as all of the above clusters. Black boxes indicate
the clusters that were determined to be “task-related” (as defined in section 7.1.5). It
can be observed that task-related clusters resemble common induced responses (e.g., oc-
cipital alpha, and sensorimotor beta and mu), while non-task-related clusters resemble
common artifacts (e.g., eyeblinks and heartbeats), and evoked responses (e.g., auditory
and visual).
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between intervals. The pre-movement, movement, and post-movement intervals
were set to −1.25 s to −0.25 s, −0.25 s to 0.25 s, and 0.25 s to 1.25 s relative to
movement onset, respectively. Percent changes were then calculated between the
movement and pre-movement, movement and post-movement, and post-movement
and pre-movement intervals. More specifically, the percent change between period
A and period B corresponds to the sum of the activations during period A divided
by the sum of activations during period B, subtracted by 1. A positive value for
this metric corresponds to a relative increase in the average number of activations
in A compared to B while a negative value corresponds to a decrease.

If, on average, activations for an atom in a given cluster had a decrease from
the pre-movement to movement interval that exceeded 10% and an increase from
the movement to post-movement interval that exceeded 10%, the cluster was con-
sidered to meet the criteria for a task-related change in activity. Clusters were also
assessed for an additional “rebound” criteria, to determine whether clusters exhib-
ited an increase in activity above pre-movement levels, characteristic of movement-
related beta transients [Brady et al., 2020]. If, on average, atoms in the cluster
had a difference between post-movement and pre-movement that exceeded 10%,
the cluster was also considered to have a rebound component. The 10% threshold
used to compare task intervals was selected based on the magnitude of task-related
changes in beta activity reported in previous analyses of the Cam-CAN dataset
[Bardouille et al., 2019, Brady et al., 2020]. Using both average power [Bardouille
et al., 2019], and burst-based [Brady et al., 2020] analyses of beta activity, task-
related changes on the order of 10-30% were observed. Therefore, to capture beta
events along with other task-related event types for which the magnitude of this
change is not defined, the threshold was set to the lower end of this range.

Of the 11 clusters included in this analysis, seven met the criteria for both
focality and activity changes and were therefore classified as task-related. Of
these, only one did not meet the additional rebound criteria.

7.1.6 Representative Atom Generation

For each of the task-related clusters identified in previous steps, a representative
atom was generated using a modified version of the CDL process described in
section 7.1.3. The creation of a representative atom allowed the cluster to be char-
acterised and visualised, and provided a basis of comparison for atoms within and
between clusters. For each of the N atoms (ui, vi) in a given cluster, representa-
tive MEG data Xi for the atom was recreated by convolving the activation vector
zi ∈ RP×(T−L+1) with the outer product of the ui ∈ RP and vi ∈ RL vectors to
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yield MEG time course data (channels × time):

∀i = 1, . . . , N,Xi = ui · v⊤i ∗ zi ∈ RP×T . (7.1.4)

The MEG data from all component atoms in the cluster was then concatenated
to create a single representative signal for the cluster: X = [X1 . . . XN ] ∈ RP×NT .
CDL was then applied to the concatenated signal to learn a single, 500ms atom
that would be representative of the most highly repetitive spatiotemporal signal in
the cluster. An ECD was also computed for each representative atom using spatial
representation of the u vector projected onto an average template brain.

The concatenated signal for each cluster was also used to generate a time-
frequency representation (TFR) to show each atom clusters’ frequency-specific
behaviour relative to the movement task, averaged over tasks and participants.
The concatenated signal was epoched based on stimulus onset as described in
section 7.1.2. TFRs were then generated using a Morlet wavelet transform with a
500ms wavelet, and were used as a basis of comparison between the atom types
detected in this work and traditional band-limited power analyses.

7.1.7 Demographic analysis

The demographic characteristics of each task-related cluster were first investigated
by creating histograms depicting the age and sex distribution of the participants
whose atoms were included in the cluster. Participants were only counted once
per cluster, regardless of how many atoms the participant had assigned to a given
cluster. The demographic distributions for each cluster were then compared to
the demographic distribution of the overall dataset (538 participants). The cluster
and overall distributions were then quantitatively compared by conducting a Chi-
squared test with a Bonferroni-corrected [Dunn, 1961] α = 0.007 (as the result
of 0.05 divided by 7 clusters) to determine whether the real cluster demographics
were significantly different from what would be expected if clusters were created
by random sampling. The results of the Chi-squared test provided information on
the presence of age- or sex-related biases within clusters.

To further investigate demographic trends within each cluster, a series of re-
gression analyses were conducted relating the component atoms’ spatiotemporal
characteristics to participant age. Atom characteristics including peak frequency
of the power spectrum, activation sum (in the pre-movement and post-movement
intervals; described in section 7.1.5), and dipole position and orientation were re-
gressed with age using both linear and quadratic models. To determine the best
fit model type, goodness of fit of each model (linear and quadratic) to the data
was assessed using a Chi-squared test. An F-test was then employed to decide

181



Chapter 7. Using Population CDL to Detect Task-Related...

the more appropriate model for each regression. A quadratic model was selected
if F > 6.635, indicating 99% confidence. Otherwise, a linear model was deemed
most appropriate. The appropriate model was then plotted, and significant trends
were assessed using Bonferroni-corrected α = 0.007.

Additional regression analyses were also implemented to disambiguate the ef-
fects of burst rate and burst power on changes in the activation sum for each task
interval and cluster. The distinction between these underlying factors is important
because they are related to fundamentally different activity of the neural network
(e.g., burst rate is related to neural firing rates while burst power is related to
neural network size). Therefore, the independent analysis of burst rate and burst
power was performed to determine whether burst rate (frequency) or burst power
(intensity) underlies age-related changes in atom activation sum, for each cluster.

Burst rate was defined as the number of non-zero activation values in the inter-
val of interest divided by the length of the interval. This was calculated for each
component atom during each task interval (pre-movement and post-movement)
and regressed against age using the linear and quadratic models as described above.

Burst power was defined as the magnitude of the non-zero activations and
was assessed as a distribution of values for each atom in each task interval. The
role of burst power in the activation sum trends was investigated by calculating
the distribution of activation values for each atom and assessing the shift in the
distribution with age. A Gaussian function was fit to the distribution of activation
values for each atom, and the µ (mean) and σ (standard deviation) values for
each distribution were regressed against age to assess for age-related changes in
the distribution.

In addition to the atoms’ characteristics, the relationship between participant
age and the correlation of their atoms to the cluster’s representative atom was also
assessed. A significant age-related change in correlation would indicate that simi-
larity to the representative atom changed with age, and would provide particular
insight into whether atom characteristics may be converging towards or deviating
from the mean with age. The correlation of the u vectors and the maximum cross-
correlation of the v vectors were calculated between each atom in a given cluster
and the cluster’s representative atom to provide a measure of atom similarity to
the representative atom for the group. As above, linear and quadratic regression
analyses relating the correlation values of each atom to the age of the participant
to whom the atom belonged were conducted. All linear and quadratic regression
analyses were assessed for significance with a Bonferroni-corrected α = 0.007. All
results are reported to two decimal places.
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7.1.8 Supplementary analysis

While large cluster sizes were necessary for the current work to assess cross-
sectional ageing trends, other applications of CDL and the associated clustering
methods may not require this. An alternative method for presenting CDL clus-
ter results is thus described below. This approach may be preferred for smaller
datasets or in cases where you wish to appreciate more of the variability between
atom clusters.

Following global clustering as described in section 7.1.4, all 226 detected clus-
ters underwent task-based filtering as described in section 7.1.5, resulting in a
total of 79 task-related clusters. In this case no top cluster criteria was imposed
to dictate a minimum cluster size. A representative atom was then generated for
each of the 79 task-related clusters using the procedure described in section 7.1.6.
The representative atoms for each of the task-related clusters then underwent an
additional round of clustering, using the methods described in section 7.1.4 to
roughly group clusters into sets based on similarity. This resulted in several sets
of clusters each associated with a different class of brain activity (e.g., “left central
beta”, “occipital alpha”, etc.) We could then select sets of interest and analyse
all clusters within those sets to appreciate additional inter-subject variability in
the atoms. The results from 3 sets identified by this method (right-central beta,
left-central beta, and occipito-temporal alpha) are shown in fig. 7.1.8.

Here, the frequency, activation strength, and age distribution of each cluster
can be compared within a set. The age distribution in the Cam-CAN dataset is
approximately flat, therefore investigating deviations from the flat age distribution
provides meaningful information about age dynamics within clusters. This type
of analysis allows for between-cluster comparison and can provide insight into the
characteristics of participants who tend to have certain variations of atoms.

7.2 Results

The global clustering methods described above resulted in seven task-related clus-
ters of atoms across participants. fig. 7.2.1 shows the spatial topographies and
temporal waveforms for each of the representative atoms for the task-related clus-
ters. Of the seven representative atoms, four had waveforms resembling alpha
waves (i.e., 8Hz to 12Hz sinusoid), one had a waveform resembling a mu wave
(i.e., complex waveform with a peak frequency of 8Hz to 12Hz), and two had
waveforms resembling beta waves (i.e., complex waveform with a peak frequency of
15Hz to 30Hz). Three of the clusters characterized by alpha-type waveforms had
topographies resembling occipital activation. These clusters were distinguished
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Figure 7.1.8: Cluster sets identified resembling (A) right central beta, (B) left central
beta, and (C) occipito-temporal alpha activity. For each set, representative atoms (spatial
topographies and temporal waveforms) are shown for each cluster within the set. Box
plots show the distribution of frequencies of the atoms composing each cluster. Bar plots
show the summed activation in the pre-movement (blue), movement (orange), and post-
movement (green) phases for each cluster. Finally, to faciliate demographic comparisons,
the age distribution of each cluster is shown.
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spatially by their tendency to activate sensors either in the left occipital lobe
(LO_alpha), right occipital lobe (RO_alpha) or more anteriorly and medially in
the medial occipitoparietal region (MOP_alpha). The fourth alpha-type wave-
form had an associated spatial topography resembling left temporal lobe activity
(LT_alpha). The cluster characterized by a mu waveform had a spatial topog-
raphy resembling right central (sensorimotor) activation (RC_mu). Finally, both
clusters characterized by beta waveforms had topographies suggesting left central
(sensorimotor) activity. One such cluster showed peak activity just anterior to the
center of the topography, near the primary motor area (LPreC_beta), and the
other showed peak activity just posterior to the center of the topography, near the
primary somatosensory area (LPostC_beta).

The distribution of the peak frequencies shown in fig. 7.2.1 suggests that there
is more variability in the frequency content of the atoms making up the beta-type
clusters than the mu- or alpha-type clusters. In terms of activation sums, all task-
related clusters had, on average, a decrease in activation from the pre-movement to
movement time intervals, and a subsequent increase in activation from movement
to post-movement, as this was one of the criteria required to classify the cluster as
“task-related”. However, it should be noted that for all clusters, there was a large
amount of variability in the level of activation of the component clusters during
each task interval, as indicated by the error bars in fig. 7.2.1. In addition, 6 of the
task-related clusters4 also had a rebound component, meaning that there was an
increase in activation from pre-movement to post-movement intervals. Notably, on
average, the beta-type clusters have the largest difference between post-movement
and pre-movement activation. This characteristic “rebound” of activation is in
line with existing literature that notes a post-movement rebound of beta power,
surpassing baseline – i.e., pre-movement – levels, in primary sensorimotor areas
contralateral to the movement.

For each component atom, and each representative atom, an equivalent current
dipole (ECD) was calculated to infer the approximate source of the atom. The rep-
resentative atom dipoles (fit to an average template brain) are shown in fig. 7.2.2,
and table 7.2 presents the positions, orientations, and goodness of fit values for
each of the representative atom ECDs. In general, the ECDs for the representative
atom localize to the expected regions based on their spatial topographies.

Average TFRs were created for each atom cluster to allow the atoms’ behaviour
to be compared to traditional average spectral power analyses (see fig. 7.2.3). In
an average power analysis of an audio-visual cued simple movement task, we would
expect to see suppression of occipital alpha and sensorimotor mu and beta activity,
and a rebound in sensorimotor beta activity. As shown in fig. 7.2.3, each atom type
shows a distinct reduction in activity near the onset of the movement (at time = 0 s)

4LO_alpha, RO_alpha, RC_mu, LT_alpha, LPreC_beta, and LPostC_beta.
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Figure 7.2.1: The seven task-related clusters identified in this work. (Left) The shift-
invariant spatial and temporal vectors of the representative atoms created for each of
the seven clusters identified. Clusters are given a functional label based on the spatial
and temporal representation of the atom. (Center) Box plots depicting the distribu-
tion of peak frequencies of the component atoms for each cluster. (Right) The mean
and standard deviation (error bars) of the summed activation during the pre-movement
(solid bar), movement (vertical striped bar), and post-movement (diagonal striped bar)
intervals for the component atoms of each of the seven clusters.
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LO_alpha RO_alpha MOP_alpha

RC_mu LT_alpha LPreC_beta LPostC_beta

Figure 7.2.2: The dipole fits for each of the seven representative atoms. Axial, sagittal,
and coronal slices are shown for each fit, with the red lines indicating the position of the
dipole in each plane and red arrows indicating the orientation of the dipole. Represen-
tative atom dipoles were fit to an average template brain.

Table 7.2: Summary of the attributes of each cluster.
Nb part.: Number of unique participants; ECD pos.: equivalent current dipole
position; GoF: Goodness of Fit

Cluster Nb
atoms

Nb
part.

Peak
freq. (Hz)

ECD
Pos. (mm)

ECD Orientation
Unit Vector GoF (%)

LO_alpha 366 210 10.5 (0.52, -2.7, 6.6) (0.23, 0.67, 0.71) 90.5
RO_alpha 311 183 10.0 (-.017, -3.1, 6.6) (-0.26, 0.60, 0.76) 86.7
RC_mu 305 194 10.5 (4.1, 2.1, 8.3) (-0.40, 0.90, 0.18) 98.3
LT_mu 230 168 9.4 (-4.0, -0.51, 4.2) (-0.065, 0.50, 0.86) 96.2
LPrecC_beta 243 146 17.6 (-3.0, 0.20, 8.7) (0.30, 0.95, -0.072) 98.7
LPostC_beta 219 144 16.4 (-3.5, 0.26, 7.7) (0.34, 0.82, 0.47) 99.1
OP_alpha 324 171 9.4 (0.19, -1.9, 8.0) (0.00011, 0.81, 0.58) 79.1
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Figure 7.2.3: Time-frequency representations generated from the concatenated signal
for each of the 7 task-related atom clusters. The signal is averaged across epochs and
atoms, and activity is shown relative to movement onset (time=0 s). Color represents
the magnitude of the activity in dB.

and an increase to baseline activity following the task. In addition, clear rebound
behaviour is evident in the beta-type atoms, reflecting the post-movement beta
rebound seen in traditional analyses, e.g., in Bardouille et al. [2019]. This suggests
that CDL reconstructs the expected brain responses. Finally, the right central mu
atoms show a frequency profile that is distinctly different from the occipital and
temporal alpha atoms, providing further confidence in the relationship between
the CDL-detected waveforms and traditional analyses.

The demographic composition of each cluster was assessed by comparing the
age and sex distributions of the cluster to the distribution generated from the
overall dataset using a Chi-squared test. Clusters LT_alpha and LPostC_beta
were found to have an age distribution that was significantly different from that
of the overall dataset, with Chi-squared values of 27.47 (p = 1.2 × 10−3) and
36.29 (p = 3.5× 10−5), respectively. Both clusters had age distributions that were
skewed towards older participants. Histograms showing the distributions of the
two significant clusters compared to the overall dataset are presented in fig. 7.2.4.
No other clusters had age or sex distributions that were significantly different from
that of the overall dataset.

All clusters were examined for age-related changes in their component atom
characteristics including peak frequency, activation sum (in the pre-movement and
post-movement intervals), dipole position and orientation, and correlation of the
u and v vectors to the mean atom’s vectors were regressed with age for each task-
related cluster. For each cluster, for pre-movement and post-movement intervals,
age-related trends in activation sum and burst rate are presented in fig. 7.2.5,

188



7.2 Results

0

0.05

0.1

0.15

0.2

0.25

18-24 25-31 32-38 39-45 46-52 53-59 60-66 67-73 74-80 81-88

N
um

be
r o

f P
ar

tic
ip

an
ts

 in
 G

ro
up

Participant Age

Dataset LPostC_beta LT_alpha

Figure 7.2.4: The age distribution of participants in the LPostC_beta (striped) and
LT_alpha (black) clusters compared to the age distribution of the overall dataset (grey).

and fig. 7.2.6 presents the age-related trends for the distribution’s parameters of
activation values for each atom. The corrected p-values and RMSE values for all
trends can be found in table 7.3.

In the pre-movement interval, regression results of the activation sum and the
burst rate are similar, with positive linear trends evident in most clusters5. All
significant effects in the post-movement interval matched those found in the ac-
tivation sum regression except for clusters LO_alpha and RO_alpha which were
better fit with a positive linear model in the burst rate regression rather than
the positive quadratic model fit in the activation sum regression. Despite the dis-
crepancy in the best model fit, LO_alpha, and RO_alpha show similar increasing
trajectories for both activation sum and burst rate. These results suggest that
burst rate can account for most of the trends observed in activation sum with age.

No significant age-related changes in the pre-movement interval were found in
the distribution mean. The lack of effects in the mean value suggested that the
magnitude of burst power does not change significantly with age. Only one signifi-
cant effect of the distribution standard deviation was found for cluster LPreC_beta,
and its standard deviation increased linearly with age, suggesting that older par-
ticipants had more variable burst power values than younger participants.

5LO_alpha, RO_alpha, MOP_alpha, LPreC_beta, and LPostC_beta.
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Table 7.3: p-values and RMSE values for age-related regression of the summed
activation vector, activation burst rate, and mu and sigma of the activation dis-
tribution. Data is shown for the pre-movement and post-movement activation
intervals. Significant p-values are indicated by an asterisk.

Cluster Pre-Movement
Sum Rate Mu Sigma

p-value RMSE p-value RMSE p-value RMSE p-value RMSE
LO_alpha 5.09e-7* 2.2e-9 2.77e-8* 4.6e-1 2.66e-2 2.9e-11 7.63e-2 1.6e-11
RO_alpha 2.76e-7* 2.0e-9 2.14e-6* 4.5e-1 8.35e-2 3.1e-11 1.63e-1 1.6e-11

MOP_alpha 1.10e-8* 2.4e-9 2.54e-7* 4.5e-1 4.28e-1 3.4e-11 6.05e-2 1.8e-11
RC_mu 8.56e-3 3.1e-9 2.19e-2 6.1e-1 9.63e-1 3.8e-11 8.42e-1 1.7e-11

LT_alpha 9.09e-3 2.6e-9 2.41e-3* 5.3e-1 3.91e-1 2.8e-11 4.77e-1 1.4e-11
LPreC_beta 2.53e-5* 2.3e-9 1.36e-3* 5.4e-1 8.87e-3 4.1e-11 4.05e-5* 1.4e-11
LPostC_beta 4.81e-5* 2.3e-9 4.80e-4* 6.2e-1 7.01e-1 3.4e-11 5.68e-1 1.3e-11

Post-Movement
Sum Rate Mu Sigma

p-value RMSE p-value RMSE p-value RMSE p-value RMSE
LO_alpha 1.71e-7* 2.7e-9 8.30e-7* 5.9e-1 2.18e-1 3.0e-11 1.65e-1 1.6e-11
RO_alpha 1.13e-9* 2.6e-9 6.07e-8* 5.4e-1 5.55e-1 3.2e-11 3.33e-1 1.6e-11

MOP_alpha 4.36e-5* 2.6e-9 3.97e-5* 4.8e-1 7.85e-1 3.3e-11 5.06e-1 1.8e-11
RC_mu 6.23e-3* 3.0e-9 3.93e-3* 6.1e-1 5.97e-1 3.7e-11 4.61e-1 1.6e-11

LT_alpha 3.44e-3* 2.8e-9 1.54e-3* 6.0e-1 2.26e-2 2.8e-11 8.08e-1 1.3e-11
LPreC_beta 9.87e-4* 3.6e-9 3.34e-5* 8.7e-1 1.39e-3* 4.4e-11 2.26e-1 1.5e-11
LPostC_beta 3.33e-1 3.2e-9 2.61e-1 8.2e-1 3.19e-2 3.2e-11 1.54e-1 1.3e-11
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Figure 7.2.5: Results of linear and quadratic regression of summed activation and burst
rate with age during pre-movement and post-movement. Summed activation and burst
rate during each interval are plotted against participant age for the component atoms
of each cluster. Blue plots represent those that were modelled by a linear fit, and green
plots were modelled by a quadratic fit. Asterisks indicate clusters and intervals for which
the best fit regression was significant (Bonferroni corrected alpha < 0.007).
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Figure 7.2.6: The mean value (mu) and the standard deviation (sigma) of the distribution
of activation values for each atom as a function of age for the pre-movement interval (top)
and the post-movement interval (bottom). Mu and Sigma values were regressed against
age. Blue plots represent those that were modelled by a linear fit and green plots were
modelled by a quadratic fit. Asterisks indicate clusters and intervals for which the best
fit regression was significant (Bonferroni corrected alpha < 0.007).

Similarly, in the post-movement interval, there was a single significant age-
related quadratic effect in the mean of the distribution for cluster LPreC_beta.
The effect was such that the atoms from the youngest and oldest participants
had a distribution that was shifted towards larger activation values, while those
atoms belonging to middle-aged participants tended to come from a distribution
with a lower mean activation value. This suggests that, for cluster LPreC_beta,
burst power is highest in young and old participants. This contrasts the results
of the activation sum regression for cluster LPreC_beta which showed that young
and old participants had a reduced activation sum compared to their middle-aged
counterparts. These results suggest that burst power plays a lesser role in the
overall activation sum trends, and in some cases may even contradict the overall
effects driven by burst rate.

In addition to the dominant age-related effects demonstrated in activation
sum, several spurious age-related trends in other atom characteristics were found.
fig. 7.2.7 shows plots of the age-related linear and quadratic effects of peak fre-
quency, y position of the dipole, and correlation of the u and v vector to the mean
atom, and highlights the clusters for which these effects were significant.
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Figure 7.2.7: Results of linear and quadratic regression of several burst characteristics
with age. Blue plots represent those that were modelled by a linear fit and green plots
were modelled by a quadratic fit. Asterisks indicate clusters and intervals for which the
best fit regression was significant (Bonferroni corrected alpha < 0.007).

There were no significant age-related effects found in the x or z position or x,
y, or z orientation of the dipole for any cluster. The correlation of the u and v
vector of the component atoms in each cluster to the cluster’s mean atom were
calculated and regressed with age to assess whether atoms were converging to or
diverging from the mean atom with age. The correlation of the u vector (spatial
topography) to the mean atom showed a significant negative linear trend with age
for cluster LO_alpha (p = 0.0035). This indicates that the spatial topography for
this cluster becomes increasingly variable, or dissimilar to the mean atom with age.
The correlation of the v vector (temporal waveform) to the mean atom showed a
significant positive linear trend with age for clusters LPreC_beta (p = 0.0029) and
LPostC_beta (p = 0.0021) indicating that these clusters showed a convergence in
their temporal waveform with age. In addition, peak frequency of the component
atoms showed a significant negative linear trend in cluster RO_alpha with age
(p = 0.0016) and a significant positive linear trend in cluster RC_mu with age
(p = 0.0014). Finally, the y position of the dipole showed a significant negative
linear trend with age in cluster LT_alpha (p = 0.0018), indicating that there may
be a posterior shift in the dipole position of cluster LT_alpha with age.

A summary of all age-related effects observed in each cluster is shown in ta-
ble 7.4. The variability in the effects observed in different clusters suggests that all
clusters are distinct and have unique individual relationships to the ageing process.
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Table 7.4: Summary of the age-related effects for each cluster

Cluster Age-related effects

Left Occipital Alpha

Linear increase in pre-movement activation
Positive quadratic effect in post-movement activation
Linear increase in pre-movement and post-movement
burst rate
Linear decrease in u vector correlation to mean atom

Right Occipital Alpha

Linear increase in pre-movement activation
Positive quadratic effect in movement and
post-movement activation
Linear increase in pre-movement, movement and
post-movement burst rate
Linear decrease in peak frequency

Medial Occipitoparietal
Alpha

Linear increase in pre-movement and
post-movement activation
Positive quadratic effect in movement activation
Linear increase in pre-movement and
post-movement burst rate

Right Central Mu
Linear increase in movement and post-movement activation
Linear increase in post-movement burst rate
Linear increase in peak frequency

Left Temporal Alpha

Age distribution skewed to older adults
Linear increase in post-movement activation
Linear increase in pre-movement and
post-movement burst rate
Linear decrease in y position of dipole (posterior shift)

Left Pre-Central Beta

Linear increase in pre-movement activation
Negative quadratic effect in post-movement activation
Linear increase in pre-movement burst rate
Negative quadratic effect in post-movement burst rate
Linear increase in pre-movement σ property
of activation distribution
Positive quadratic effect in post-movement µ property
of activation distribution
Linear increase in v vector correlation to mean atom

Left Post-Central Beta

Age distribution skewed to older adults
Linear increase in pre-movement activation
Linear increase in pre-movement burst rate
Linear increase in v vector correlation to mean atom
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7.3 Conclusion

7.3 Conclusion

In this work, we employed Convolutional Dictionary Learning (CDL) to success-
fully delineate spatiotemporal atoms, thereby shedding light on age-related varia-
tions in neural network firing rates as evidenced through M/EEG data. Notably,
occipital alpha-type clusters consistently showed an increase in activation sum with
age across different movement intervals. This accords with existing literature indi-
cating age-associated dominant alpha peaks [Chiang et al., 2011] and emphasizes
that age-related changes in transient bursts are predominantly driven by alter-
ations in neuronal firing rate. Our results on beta and mu transient activation
trends, however, partly contradict the prevailing hypotheses and extant literature.
Contrary to expectations, we observed no significant anterior shift in dipole posi-
tions or a consistent decrease in burst frequency with age [Power and Bardouille,
2021]. This necessitates a re-evaluation of the established paradigms and may also
be attributed to potential misclassifications arising from classic frequency band
limits.

The utilization of CDL combined with unsupervised clustering presents several
advantages over traditional burst detection methodologies like amplitude thresh-
olding or other data-driven approaches such as Hidden Markov Modelling (HMM)
[Quinn et al., 2021]. It permits the extraction of various transient burst types with-
out stringent assumptions about their frequency composition, waveform shape, or
spatial distribution. This makes CDL a robust analytical tool for both task-related
and resting-state applications, as well as for burst-based neurofeedback interven-
tions [Ossadtchi et al., 2017, Karvat et al., 2020].

Future work may extend this approach towards the formulation of a standard
dictionary of transient bursts, capitalizing on large datasets like the Cam-CAN
repository [Tal et al., 2020]. The potential for CDL in investigating the emergent
field of traveling cortical waves [Hindriks et al., 2014, Muller et al., 2018] also
represents an intriguing avenue for future exploration.

Nonetheless, the current work is not devoid of limitations. The bandpass filter-
ing between 2Hz and 45Hz restricts the analysis to mu and beta frequency bands,
thereby overlooking other transient activities like gamma bursts. The dependency
on user-defined hyperparameters in the clustering algorithms also necessitates fur-
ther refinement. Additionally, the pre-defined atom window size in CDL could
potentially result in exclusion of some types of transient bursts, highlighting that
even a data-driven approach like CDL comes with its own set of assumptions and
constraints.

In conclusion, while CDL offers a robust and nuanced method for the iden-
tification of spatiotemporal transient bursts, its applicability should be carefully
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weighed against the research question at hand and the specific demands of the
dataset being analyzed. It serves as a valuable alternative to existing methods
when traditional assumptions about waveform shape or frequency are not met or
when a data-driven approach is required.
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Conclusion and perspectives

This thesis aimed to address key challenges in the analysis of neural activity, focus-
ing on advanced signal processing and statistical modeling. The work was centered
on two primary objectives: enhancing temporal modeling in neuroscientific data
and improving computational scalability for large-scale data analysis. While the
contributions of this work have been substantial, they also open avenues for future
exploration and development in these two key areas.

Temporal modeling The thesis introduced novel point process models for in-
terpreting task-specific neural activities, DriPP and FaDIn. Both contribute to a
unified analytical framework for M/EEG data, offering robust methods to iden-
tify and interpret temporal patterns influenced by external stimuli. Indeed, by
allowing multivariate neural signals to be represented as event-based, Convolu-
tional Dictionary Learning (CDL) opens the doors of point processes to M/EEG
data. Therefore, these models present a new approach to modeling prototypical
neural waveforms, going beyond conventional analyses based on epoch averaging
and time-frequency planes.

Future work could extend these models, particularly FaDIn, by incorporat-
ing marked Hawkes processes to include amplitude values of atoms’ activations.
This advancement would enable the analysis to transcend the binary framework
of activation by introducing a factor f(mk) into the intensity function, where mk

represents the mark – i.e., the amplitude value – associated with each activation
tk. Such an enhancement is particularly beneficial in contexts like electrocardio-
gram (ECG) analysis, where it could facilitate the extraction of critical metrics,
such as cardiac frequency and variability, essential during surgical procedures.
Furthermore, applying these models to EEG data recorded during surgeries with
global anesthesia presents an opportunity to identify patterns associated with un-
desirable neural responses linked to post-operation complications. Detecting these
early warning signs would empower surgeons to adjust anesthetic drug levels in
real-time, enhancing patient safety and surgical outcomes.



Conclusion and perspectives

Computational scalability and robustness in M/EEG data The second
axis was aimed at processing large M/EEG data sets, by making CDL faster and
extending its results to population analyses. The proposed Stochastic Robust
Windowing CDL (WinCDL) algorithm addressed challenges with artifact-laden
signals and the needs of population-level studies. This novel implementation of
CDL tailored for large-scale M/EEG data improved the efficiency of data process-
ing, enabling the handling of large datasets, eventually corrupted with artifacts,
more effectively. In addition, a new aggregation method for multiple single-subject
CDL outputs was proposed, allowing the discovery of age-related insights at a pop-
ulation level.

Looking towards future work, there are promising avenues to explore. For
instance, enhancing robustness with inline outlier detection could involve develop-
ing methods to adjust quantile estimation during the learning process. Techniques
such as the Randomized Update-based Multiplicative Incremental Quantile Es-
timator (RUMIQE), introduced by Yazidi and Hammer [2017], offer a potential
pathway. Another key area of future research is the direct application of WinCDL
to a group of subjects to derive a common dictionary of recurrent patterns. This
approach, however, must address the challenge posed by the variability in brain
morphology across individuals, which implies that only the temporal patterns,
not the spatial components, can be consistently shared across a population. Such
advancements could significantly refine the CDL process, making it even more
adaptable and effective for broader neuroscientific investigations.
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Appendix

A Pioneers of modern neuroscience

Even though neuroscience emerged in the Hellenistic world following the first ex-
perimental discoveries of the nerves connecting the brain with the body [Chvátal
and Verkhratsky, 2018], the roots of modern neuroscience can be traced back to
the late 19th and early 20th century, during which scientists sought to understand
the intricate workings of the human brain. The pioneering work of Camillo Golgi
and Santiago Ramón y Cajal has dramatically shaped the field.

Camillo Golgi (1843-1926) In 1873, the Italian physician Camillo Golgi intro-
duced the silver-chromate staining technique, revolutionizing microscopic visual-
ization of neural cells [Golgi, 1903]. Golgi’s black reaction allowed him to capture
the intricate structures of intact neurons using ink and paper. By staining nerve
tissue with silver nitrate, Golgi achieved the groundbreaking feat of rendering neu-
rons black, making them distinguishable from the surrounding transparent cells.
In 1875, Camillo Golgi published his first scientific drawing, made possible by
his chemical reaction. This illustration depicted the neural fibers, gray matter,
and other components of a dog’s olfactory bulb, showcasing the remarkable detail
afforded by Golgi’s staining technique (cf. fig. A.1).

Santiago Ramón y Cajal (1852-1934) The Spanish neuroscientist, pathol-
ogist, and artist Santiago Ramón y Cajal made significant contributions to the
field of neuroscience through his intricate and accurate illustrations of the inner
workings of the brain6. In 1913, Cajal refined the silver staining technique of Golgi
by using a gold stain to map the central nervous system. His meticulous draw-
ings depicted the complex structures within the brain, including neurons, with
remarkable precision. Cajal’s work was based on the assumption, later scientif-
ically proven in the 1950s, that neurons were cellular entities separated by fine

6The UNESCO Courier, January-March 2022, p. 12, unesdoc.unesco.org

https://unesdoc.unesco.org/ark:/48223/pf0000380264_eng
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spaces – a discontinuity that Charles Scott Sherrington coined “synapse” in 1897 –
and not the fibers of an uninterrupted network, which challenged Golgi’s reticular
theory. This groundbreaking insight, known as the neuron doctrine, revolutionized
our understanding of the nervous system. Cajal and Golgi were jointly awarded
the Nobel Prize in Physiology or Medicine in 1906 “in recognition of their work
on the structure of the nervous system”7. Cajal is considered one of the founders
of neuroscience, and his drawings continue to be used in the field to illustrate the
neural architecture underlying memory and human cognition.

Figure A.1: Golgi’s illustration of a dog’s olfactory bulb. [Golgi, 1903]

7The Nobel Prize in Physiology or Medicine 1906. nobelprize.org.
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B Adaptation of FISTA for CDL’s inner problem

We here adapt the FISTA procedure described in algorithm 1 for the current
optimization problem expressed in eq. (6.4.1), to obtain algorithm 6.

Algorithm 6: Adapted FISTA for multivariate CDL’s inner problem
1 Input X ∈ RP×T , D ∈ RK×P×L, λ > 0 and L;
2 Set Z(1) = 0RK×T̃ , W (1) = 0RK×T̃ , β(1) = 1;
3 for m = 1, . . . ,M do
4 Z(m+1) = ST λ

L

(
W (m) − 1

LD
⊤ (D ∗W (m) −X

))
;

5 β(t+1) =
1+

√
1+4(β(m))

2

2
;

6 W (m+1) = Z(m+1) + β(m)−1
β(m+1)

(
Z(m+1) − Z(m)

)
;

7 end
8 return Z(M+1)

To do so, one needs to compute the gradient of the following function:

L(Z) =
1

2

∥∥∥∥∥X −
K∑
k=1

zk ∗Dk

∥∥∥∥∥
2

F

. (B.1)

First, let us focus on the univariate case with one single atom. We have the
following result.

Proposition B.1. For x ∈ RT , z ∈ RT−L+1 and d ∈ RL, the gradient of the loss
function L(z) = 1

2
∥x− z ∗ d∥22 is:

∇L(z) = (z ∗ d− x) ∗ d↰ ∈ RT−L+1 , (B.2)

where d↰ is obtained by reversal of the temporal dimension, i.e., d↰[t] = d[L−1−t].

Proof B.1
The loss function can be rewritten as:

L(z) =
1

2

T−1∑
t=0

(
x[t]−

L−1∑
τ=0

z[t− τ ]d[τ ]
)2

. (B.3)
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Taking the derivative with respect to z[t], t ∈ J0 , T − LK, we have:

∂L(z)

∂z[t]
= −

L−1∑
l=0

∂(z ∗ d)[t+ l]

∂z[t]

(
x[t+ l]−

L−1∑
τ=0

z[t+ l − τ ]d[τ ]
)

(B.4)

=
L−1∑
l=0

(z ∗ d− x) [t+ l]d[l] (B.5)

=
L−1∑
l=0

(z ∗ d− x) [t+ l]d↰[L− 1− l] (B.6)

=
L−1∑
τ=0

(z ∗ d− x) [t+ L− 1− τ ]d↰[τ ], τ := L− 1− l (B.7)

=
(
(z ∗ d− x) ∗ d↰

)
[t+ L− 1] (B.8)

(B.9)

as ∂(z∗d)[t+l]
∂z[t]

= d[l] using the definition of the convolution expressed in eq. (2.3.1).
Thus, we retrieve the result in eq. (B.2).

We can then extend this result to the multi-atoms case.

Proposition B.2. For x ∈ RT , Z ∈ RK×(T−L+1) and D ∈ RK×L, the gradient of

the loss function L(Z) = 1
2

∥∥∥x−∑K
k=1 zk ∗ dk

∥∥∥2
2

is:

∇L(Z) =
(

K∑
k′=1

zk′ ∗ dk′ − x

)
∗D↰ ∈ RK×(T−L+1) , (B.10)

where ∀t ∈ J0 , L− 1K ,d↰[t] = d[L− 1− t] ∈ R.

Proof B.2
We have, by definition of the gradient, that

∇L(Z) =
(
∂L(Z)

∂zk

)
k=1,...,K

∈ RK×(T−L+1) . (B.11)

The loss function can be rewritten as:

L(Z) =
1

2

T−1∑
t=0

(
x[t]−

K∑
k′=1

L−1∑
τ=0

zk′ [t− τ ]dk′ [τ ]

)2

. (B.12)
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Taking the derivative with respect to zk[t], t ∈ J0 , T − LK, we have, similarly
as the proof of Proposition B.1:

∂L(Z)

∂zk[t]
=

((
K∑

k′=1

zk′ ∗ dk′ − x

)
∗ d↰

k

)
[t+ L− 1] (B.13)

Hence,

∇L(Z) =


((∑K

k′=1 zk′ ∗ dk′ − x
)
∗ d↰

1

)⊤
...((∑K

k′=1 zk′ ∗ dk′ − x
)
∗ d↰

K

)⊤
 ∈ RK×(T−L+1) . (B.14)

Finally, using the definition of convolution between a vector and a matrix in
eq. (2.4.1), we obtained the desired result.

Finally, we have the following result for the multivariate general case.

Proposition B.3. For X ∈ RP×T , Z ∈ RK×(T−L+1) and D ∈ RK×P×L, the

gradient of the loss function L(Z) = 1
2

∥∥∥X −∑K
k=1 zk ∗Dk

∥∥∥2
F

is:

∇L(Z) = (Z ∗D−X) ∗D↰ ∈ RK×(T−L+1) , (B.15)

where Z ∗D :=
∑K

k=1 zk ∗Dk

Proof B.3
We have, by definition of the gradient, that

∇L(Z) =
(
∂L(Z)

∂zk

)
k=1,...,K

∈ RK×(T−L+1) . (B.16)

The loss function can be rewritten as:

L(Z) =
1

2

T−1∑
t=0

P−1∑
p=0

(
Xp[t]−

K∑
k′=1

L−1∑
τ=0

zk′ [t− τ ]Dk′,p[τ ]

)2

. (B.17)
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Taking the derivative with respect to zk[t], t ∈ J0 , T − LK, we have:

∂L(Z)

∂zk[t]
= −

L−1∑
l=0

P∑
p=0

∂(zk ∗Dk,p)[t+ l]

∂zk[t]

(
Xp[t+ l]−

K∑
k′=1

L−1∑
τ=0

zk′ [t+ l − τ ]Dk′,p[τ ]

)
(B.18)

=
L−1∑
l=0

P∑
p=0

(
K∑

k′=1

zk′ ∗Dk′,p −Xp

)
[t+ l]Dk,p[l] (B.19)

=
L−1∑
l=0

〈(
K∑

k′=1

zk′ ∗Dk′ −X
)
[t+ l], Dk[l]

〉
(B.20)

=
L−1∑
τ=0

〈(
K∑

k′=1

zk′ ∗Dk′ −X
)
[t+ L− 1− τ ], D↰

k[τ ]

〉
, τ := L− 1− l

(B.21)

=

((
K∑

k′=1

zk′ ∗Dk′ −X
)
∗D↰

k

)
[t+ L− 1] (B.22)

Hence,

∇L(Z) =


((∑K

k′=1 zk′ ∗Dk′ −X
)
∗D↰

1

)⊤
...((∑K

k′=1 zk′ ∗Dk′ −X
)
∗D↰

K

)⊤
 ∈ RK×(T−L+1) . (B.23)

Finally, with a slight abuse of notation, we have that:

∇L(Z) =
(

K∑
k=1

zk ∗Dk −X
)
∗D↰ (B.24)

We can now exhibit the pseudo-code of the adapted FISTA that will output
the different (Zn)(M) (D) presented in algorithm 6, where L denotes the Lipschitz
constant of D⊤ ∗D. Note that this algorithm is performed independently for every
recording n = 1, . . . , N . In practice, we observed that choosing between 20 and 30
iterations is enough to get accurate results on MEG data.
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C FaDIn – Additional experiments

This section presents additional experimental results supporting the claims of chap-
ter 5. We first compare the ℓ2 loss involved in FaDIn with the popular negative log-
likelihood, then additional comparisons with popular non-parametric approaches
are presented.

C.1 Comparison of FaDIn with the negative log-likelihood
loss

We compare both approaches’ statistical and computational efficiency to highlight
the benefit of using the ℓ2 loss in FaDIn over the log-likelihood (LL). Precisely, we
compare the accuracy of the obtained parameter estimators from FaDIn and the
minimization of the negative log-likelihood in the same setting as our approach
(discretization and finite-support kernels). We conduct the experiment as follows.
We place ourselves in the univariate setting for computational simplicity. We sam-
ple a set of events in continuous time through the tick library. Three sets are
sampled from the kernel shapes: Raised Cosine, Truncated Gaussian, and Trun-
cated Exponential. The parameters are set as µ = 0.3, α = 0.8, (u, σ) = (0.2, 0.3)
for the Raised Cosine, (m,σ) = (0.5, 0.3) for the Truncated Gaussian and γ = 5
for the Truncated Exponential. We set the kernel length W to 1 for each setting.
Further, we estimate the parameters of the intensity of sampled events using both
FaDIn and LL approaches. The experiment is repeated ten times. The median
and 25-75% quantiles of the statistical accuracy and the computation time are re-
ported in Figure C.1 for the three different kernels. We can observe an equivalent
accuracy of the parameter estimation for both methods along the different kernels,
stepsize and number of events. In contrast, the computational performance of
FaDIn outperforms the LL approach. Indeed, the computational time is divided
by ≈ 5 in a low data regime with T = 102 and by ≈ 1000 when ∆ = 0.01 and
T = 105. This experiment clearly shows the advantages of using the ℓ2 loss in
FaDIn rather than the log-likelihood.

C.2 Qualitative Comparison with a non-parametric approach

We compare FaDIn with the use of a non-parametric kernel by assessing the statis-
tical and computational efficiency of both approaches. To learn the non-parametric
kernel, we select the EM algorithm, provided in Zhou et al. [2013a] and imple-
mented in the tick library [Bacry et al., 2017a]. The kernel is set with one basis
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Figure C.1: Comparison of the statistical and computational efficiency of FaDIn with
the Log-Likelihood loss. The averaged (over ten runs) statistical error on the intensity
function (left) and the computational time (right) are computed regarding the time
T for the Raised Cosine (top), the Truncated Gaussian (middle) and the Truncated
Exponential (bottom).

function. In addition, we display the running time when computing gradients using
PyTorch and automatic differentiation applied to the LG discretized loss (5.1.4).

The experiment is conducted as follows. We fix p = 1 for simplicity, set µ = 1.1
and choose a Raised Cosine kernel defined by eq. (5.2.1), setting parameters α =
0.8, u = 0.2 and σ = 0.3. We simulate events in a continuous time using the tick
library [Bacry et al., 2017a]. FaDIn and the non-parametric kernel are optimized
over 800 iterations (with an early stopping for the EM algorithm). The RMSprop
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algorithm is used in FaDIn. The discretization size of the non-parametric kernel
is settled as in FaDIn. This experiment is done varying T ∈ {103, 105, 106}.

On the one hand, in a relatively small data regime where T = 103, we eval-
uate the statistical accuracy of the estimated kernel of both methods with the
discretization parameter ∆ = 0.01. As we can see in Figure C.2 (top left), the
non-parametric approach fails to recover the structure of the kernel. The non-
parametric approach results in noisy kernel estimates, with probability mass where
the kernel is zero. In contrast, FaDIn can recover the kernel parameters used to
simulate data even with a small number of events. On the other hand, we evaluate
the computational times varying the discretization steps in a large data regime
where T = 105 and T = 106 with the same simulation parameters. Figure C.2
(bottom left) reports the average computational times (over 10 runs) regarding the
discretization stepsize ∆ and the dimension p. Although both approaches can re-
cover the kernel under which we simulate data (see Figure C.2, top right), FaDIn
is a great deal more computationally efficient than the non-parametric and the
automatic differentiation implementations, improving the computational speed by
≈ 100 when ∆ ∈ [0.1, 0.01] and by ≈ 10 when ∆ ≈ 0.001. The computation speed
regarding the dimension of the MHP is improved by ≈ 10. It is worth noting
that the ℓ2-Autodiff explodes in memory when ∆ > 0.01 or when the dimension
grows. Additional shapes of kernels are displayed in Figure C.3 for the Truncated
Gaussian and in Figure C.4 for the Truncated Exponential kernels.
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Appendix
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Figure C.2: Comparison between our approach FaDIn and non-parametric approach.
Estimated kernels with ∆ = 0.01 in a relatively small data setting with T = 103 (top
left), in a large data setting with T = 106 (top right), and computation time in a large
data setting with T ∈ {105, 106} w.r.t. the stepsize ∆ (bottom left) and the dimension
p (bottom right). In contrast to non-parametric kernels, FaDIn estimates well the true
kernel in a small regime while it is computationally faster than non-parametric kernels
in a large regime.
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Figure C.3: Comparison between our approach FaDIn and non-parametric approach
for a Truncated Gaussian kernel. Estimated kernels with ∆ = 0.01 and T ∈
{103, 104, 105, 106}. The true kernel, FaDIn and the non-parametric approach are de-
picted in black, orange and blue, respectively.

T = 103 T = 104

0.0 0.2 0.4 0.6 0.8 1.0
Kernel support

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Kernel support

0.0

0.5

1.0

T = 105 T = 106

0.0 0.2 0.4 0.6 0.8 1.0
Kernel support

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Kernel support

0.0

0.5

1.0

Figure C.4: Comparison between our approach FaDIn and non-parametric approach
for a Truncated Exponential kernel. Estimated kernels with ∆ = 0.01 and T ∈
{103, 104, 105, 106}. The true kernel, FaDIn and the non-parametric approach are de-
picted in black, orange and blue, respectively.

233


	Remerciements
	Résumé en français des travaux de thèse
	Publications
	List of Figures
	List of Tables
	Notations
	Introduction
	I General Background
	Background on Neuroscience and Neurophysiological Signals
	Biology of neuroscience
	The brain, the central organ of the neural system
	Origin of the neurophysiological signals

	Pre-processing and classical analysis in neurosciences
	Filtering and time-frequency analysis
	Independent Component Analysis
	Segmentation and epoching


	Background on Dictionary Learning
	Motivation and sparse representation
	Sparsity and the Lasso
	Lasso and its optimization

	Dictionary Learning: mathematical formulation and optimization problem
	Convolutional Dictionary Learning
	Convolutional Dictionary Learning in neuroscience
	Rank-1 constraint


	Background on Temporal Point Processes
	Definitions
	Temporal point processes
	Poisson process and likelihood function

	Hawkes processes
	Goodness of fit


	II Temporal Modeling and Inference in M/EEG Signals: A Point Process Approach
	DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG Signals
	Mathematical formulation
	Parameters inference with an EM-based algorithm
	Experiments
	Evaluation of the EM convergence on synthetic data
	Evoked and induced effects characterization in MEG data
	Impact of model hyperparameter
	Experiments on Cam-CAN dataset
	Usual M/EEG data analysis

	Transcending limits with discretised parametric kernels

	FaDIn: Fast Discretized Inference for Hawkes Processes with General Parametric Kernels
	Mathematical formulation
	FaDIn
	Impact of the discretization

	Numerical experiments
	Consistency of Discretization
	Statistical and computational efficiency of FaDIn
	Sensitivity analysis regarding the parameter W

	Application to MEG data
	Discussion


	III Advancements in Convolutional Dictionary Learning for Large-Scale M/EEG Data Analysis: Stochastic Approaches and Population Studies
	Stochastic Windowing and Robust Convolutional Dictionary Learning for M/EEG Data
	Introduction
	Contextualizing the current work
	Inline outlier detection
	Stochastic windowing CDL
	Approximate sparse coding
	Stochastic sub-windowing
	Stochastic line search

	Experiments
	Data simulation
	Dictionary evaluation
	Experimental paradigm
	Results

	Conclusion

	Using Population CDL to Detect Task-Related Neuromagnetic Transients and Ageing Trends in a Large Open-Access Dataset
	Methods
	Participants and experimental paradigm
	Data acquisition and processing
	Convolutional Dictionary Learning (CDL)
	Atom clustering
	Selection of task-related clusters
	Representative Atom Generation
	Demographic analysis
	Supplementary analysis

	Results
	Conclusion
	Conclusion and perspectives
	Bibliography


	Appendix
	Pioneers of modern neuroscience
	Adaptation of FISTA for CDL’s inner problem
	FaDIn – Additional experiments
	Comparison of FaDIn with the negative log-likelihood loss
	Qualitative Comparison with a non-parametric approach





