
HAL Id: tel-04611765
https://theses.hal.science/tel-04611765v1

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for explicit modelling of domain knowledge
in state-based formal methods : the case of interactive

critical systems
Ismail Mendil

To cite this version:
Ismail Mendil. A framework for explicit modelling of domain knowledge in state-based formal meth-
ods : the case of interactive critical systems. Computer science. Institut National Polytechnique de
Toulouse - INPT, 2023. English. �NNT : 2023INPT0074�. �tel-04611765�

https://theses.hal.science/tel-04611765v1
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Unité de recherche :

Ecole doctorale :

Directeur(s) de Thèse :

Rapporteurs :

Membre(s) du jury :
MME KATHIA MARCAL DE OLIVEIRA, UNIVERSITE DE VALENCIENNES, Président

M. DOMINIQUE MERY, UNIVERSITÉ LORRAINE, Membre
M. FUYUKI ISHIKAWA, NATIONAL INSTITUTE OF INFORMATICS TOKYO, Invité(e)

M. NEERAJ SINGH, TOULOUSE INP, Membre
M. PHILIPPE PALANQUE, UNIVERSITE TOULOUSE 3, Membre

M. YAMINE AIT AMEUR, TOULOUSE INP, Membre

M. ISMAIL MENDIL

Informatique et Télécommunication

Un cadre formel pour la modélisation explicite des connaissances de
domaine dans les méthodes formelles basées états : le cas des systèmes

critiques interactifs.

le jeudi 5 octobre 2023

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

 Institut de Recherche en Informatique de Toulouse (IRIT)

M. YAMINE AIT AMEUR
M. PHILIPPE PALANQUE

M. JEAN VANDERDONCKT, UNIVERSITE CATHOLIQUE DE LOUVAIN
M. MARC FRAPPIER, UNIVERSITE DE SHERBROOKE

MME OLGA KOUCHNARENKO, UNIVERSITE DE FRANCHE COMTE

iii

to my parents and my brothers,

iv

Abstract

System engineering advocates an explicit modelling of domain knowledge at
early stages of the development cycle. Moreover, integrating contextual in-
formation and certification standard requirements into formal models enhances
their quality and reliability. On the one hand formal methods provide primitives
for modelling components and views of these systems but they are not endowed
with built-in primitives for explicit modelling contextual constraints, and more
broadly, domain knowledge associated with these formal models. Consequently
relevant domain knowledge is implicitly hardcoded in the system formal speci-
fication or is, in the worse case, overlooked. On the other hand ontologies have
demonstrated their efficiency in modelling domain-specific features but they are
not available as built-in primitives in formal methods.

The goal of this thesis is to propose a framework and associated methodology
for modelling explicitly domain knowledge in formal modelling. As a byproduct,
consequences of the explicit modelling of domain knowledge are investigated in-
cluding formal standard-based conformance checking of interactive critical sys-
tems and domain-specific behavioural analyses of formal models. In our research
effort, we defined an integrated framework for addressing the explicit modelling
of domain knowledge problem in formal modelling. The framework specified
three main steps: formalising domain knowledge, annotating formal models and
transferring domain knowledge constraints. The formalisation is achieved by
proposing an ontology modelling language in the form of a generic Event-B the-
ory, the annotation consists in typing elements of the model with the concepts of
an ontology and the transferring of predefined domain properties is supported by
the description of a methodological rule of using exclusively the data types and
operators of the Event-B theory (closure). Furthermore, several cases studies
from the interactive critical systems realm have been addressed to showcase the
generality, effectiveness and advantages of the framework. First, conformance
checking is a prominent consequence of explicit modelling of domain knowl-
edge; standard conformance to ARINC 661 certification standard of a cockpit
application user interface is addressed as a special case of explicit modelling of
domain knowledge. A second consequence of the framework is the definition of a
method and formal Event-B theories for specifying domain-specific behavioural
analyses.

v

vi

Résumé

L’ingénierie système préconise une modélisation explicite des connaissances de
domaine aux premières étapes du cycle de développement. De plus, L’intégration
d’informations contextuelles et d’exigences provenant de normes de certification
dans des modèles formels améliore leur qualité et leur fiabilité. D’une part, les
méthodes formelles fournissent des primitives d’abstraction pour modéliser la
structure et les comportements de ces systèmes, mais elles ne sont pas équipées
pas de primitives spécifiquement dédiées pour modéliser explicitement les con-
traintes contextuelles, et plus largement, les connaissances de domaine associées
à ces modèles formels. Par conséquent, les connaissances de domaine sont im-
plicitement codées en dur dans la spécification formelle du système où sont,
dans le pire des cas, ignorées. D’autre part, les ontologies ont démontré leur
efficacité dans la modélisation des connaissances, mais elles ne sont pas fournies
en tant que primitives dans les méthodes formelles.

L’objectif de cette thèse est de proposer un cadre et une méthodologie as-
sociée pour modéliser explicitement les connaissances de domaine dans le con-
texte la modélisation formelle. Par ailleurs, les conséquences de la modélisation
explicite des connaissances de domaine sont étudiées, y compris la vérification
formelle de la conformité par rapport aux normes des systèmes critiques interac-
tifs ainsi que les analyses comportementales spécifiques au domaine appliquées
à des modèles formels. Dans notre effort de recherche, nous avons défini un
cadre intégré pour résoudre le problème de la modélisation explicite des con-
naissances de domaine dans la modélisation formelle. Le cadre a spécifié trois
étapes principales, à savoir formaliser les connaissances de domaine, annoter
les modèles formels et enfin transférer les propriétés des connaissances de do-
maine. La formalisation est réalisée en proposant un langage de modélisation à
base d’ontologies sous forme de théorie Event-B générique, l’annotation consiste
à typer les éléments du modèle avec les concepts d’une ontologie de domaine
et le transfert de propriétés de domaine prédéfinies est régi par la description
d’une règle méthodologique stipulant l’utilisation exclusive des types de données
et des opérateurs de la théorie Event-B formalisant une ontologie de domaine.
En outre, plusieurs études de cas fournies dans le domaine des systèmes cri-
tiques interactifs sont abordées pour montrer la généralité, l’efficacité et les
avantages du cadre. Premièrement, la vérification de conformité est une con-
séquence importante de la modélisation explicite des connaissances de domaine
dans la modélisation formelle ; la conformité à la norme de certification ARINC

vii

viii

661 d’un système interactif d’une application de cockpit est utilisée pour démon-
trer l’efficacité du cadre. Une deuxième conséquence du cadre est la définition
d’une méthode et de théories d’Event-B pour spécifier des analyses comporte-
mentales spécifiques à un domaine. En outre, une étude de cas concrète est
décrite et analysée pour illustrer la méthode conçue.

Acknowledgements

This research endeavor and outcome would not have been possible without
Yamine Ait Ameur, professor at Toulouse INP-ENSSEIHT/IRIT, Neeraj Ku-
mar Singh, associate professor at Toulouse INP-ENSSEIHT/IRIT, Dominique
Méry, professor at Université de Lorraine-Telecom Nancy/LORIA and Philippe
Palanque, professor at Université Toulouse III - Paul Sabatier/IRIT. I would
like to express my deepest gratitude to them for their trust, scientific advice,
their support in the hard times, and kindness in the good times.

I’m extremely grateful to Kathia Oliveira, professor at Université Polytech-
nique Hauts-de-France, who presided over my defense. I am deeply indebted
to Olga Kouchnarenko, professor at Université de Franche-Comté, Jean Van-
derdonckt, professor at Université Catholique de Louvain and Marc Frappier,
professor at Université de Sherbrooke who took the time to review this thesis,
provided me with invaluable feedback and positive suggestions. I would like
to express my gratitude to Fuyuki Ishikawa, associate professor at the national
institute of informatics, who accepted to be part of my thesis defense committee.

I express my acknowledgement to Toulouse INP-ENSEEIHT and IRIT for
the support and the funding which allowed me to pursue my scientific research
in Toulouse. Furthermore, I am grateful to them for organising the opportunity
of going abroad and of pursuing a doctoral internship at National Institute of
Informatics (NII) at Tokyo. Alongside, I would like to thank Fuyuki Ishikawa
and Tsutomu Kobayashi, researcher at Japan Aerospace Exploration Agency
(JAXA), Yamine Ait Ameur and Neeraj Kumar Singh for their trust, priceless
supervision, and kindness during my internship at NII. My two-month-long
internship was funded by the NII.

This thesis was funded by the FORMEDICIS (FORmal MEthods for the De-
velopment and the engineering of Critical Interactive Systems) ANR-16-CE25-
0007 and EBRP (EventB-Rodin-Plus) ANR-19-CE25-0010.

I thank the people at Toulouse INP-ENSEEIHT, IRIT and ACADIE team
with whom I enjoyed 4 years of learning, sharing and kindness: Yamine, Neeraj,
Peter, Nassima, Mohamed, Guillaume, Marc, Xavier, Sarah, Yannis, Benoît,
Jonathan, , Nesrine, Aurélie, Philippe Q. and Philippe M.. Moreover, I would
like to thank Annabelle, Sylvie, Vanessa, Léna and Sandrine for their wonderful
support in my administrative paperwork and for their kindness.

Last and not the least, my sincere thanks go to my family and friends for their
support: Amine, Dalila, Hamid, Lotfi, Meriem, Mohamed, Naim and Said.

ix

x

Contents

Introduction 1

I Background 9

1 Event-B: a Correct-by-Construction Method 11
1.1 State-Based Formal Modelling . 12
1.2 Proof-Based Verification . 14
1.3 Event-B Theories Extension . 15

1.3.1 Extending Event-B Language with Theories 15
1.3.2 Event-B Theories Structure 16
1.3.3 Well-Definedness . 18
1.3.4 Importing Theories . 19

1.4 IDE: Rodin Platform and Plug-ins 19

2 Domain Knowledge in Formal Modelling 21
2.1 Modelling Domain Knowledge . 22

2.1.1 On the Importance of Domain Knowledge 22
2.1.2 On the Lack of a Generic Approach 23
2.1.3 Ontologies as Domain Knowledge Model 24

2.2 The Ontology Formalism . 25
2.2.1 Fundamental Characteristics 27
2.2.2 Semantic Annotation Using Ontologies 28
2.2.3 Ontologies for Engineering Contexts 28

2.3 Standards as Domain Knowledge 29
2.4 Synthesis and Conclusion . 31

3 Interactive Critical Systems 33
3.1 Formal Methods for Interactive Systems 34

3.1.1 Interactive Systems Characteristics 34
3.1.2 Formal Design of Interactive Critical Systems 36

3.2 Interactive Systems Development 39
3.3 The Context of The FORMEDICIS project 42
3.4 Synthesis and Conclusion . 42

xi

xii CONTENTS

4 Case studies 45
4.1 Traffic Collision Avoidance System 45

4.1.1 Overview of Operation . 46
4.1.2 Definitions and Requirements 46

4.2 Multi-Purpose Interactive Application 48
4.2.1 Requirements of WXR User Interface 49

4.3 Automatic Teller Machine . 50
4.4 Conclusion . 51

II Contributions 53

The Road Map of the Contributions 55
Explicit Modelling of Domain Knowledge 57
Transferring of Safety Properties . 57
Analysis of Behavioural Properties . 58
Formal Conformance Checking . 58

5 Explicit Modelling of Domain Knowledge Using Ontologies 61
5.1 Temperature Aggregator Example 62

5.1.1 Temperature Aggregator Requirements 62
5.1.2 Modelling without the Theory Operators 63
5.1.3 Modelling with the Theory Operators 64
5.1.4 Synthesis . 67

5.2 An Ontology Modelling Language (OML) 68
5.2.1 OML as a Generic Event-B Theory 69
5.2.2 OntologiesTheory - Data type 69
5.2.3 OntologiesTheory - Operators 69
5.2.4 OntologiesTheory - Theorems 73

5.3 Conclusion . 73

6 Annotation-Based Transfer of Safety Properties 75
6.1 Our Approach . 76

6.1.1 Generic Part: the definition of the Domain Theory 77
6.1.2 Specific Part: Annotating the System 77

6.2 TCAS Case Study . 77
6.2.1 An Ontology of Interactive Objects 78
6.2.2 Instantiation of the Displayability Theory 84
6.2.3 Modelling without the Theory Operators 85
6.2.4 Modelling with the Theory Operators 87
6.2.5 Proof Statistics . 89

6.3 Conclusion . 90

CONTENTS xiii

7 Annotation-Based Analysis of Behavioural Properties 91
7.1 Our Approach . 92
7.2 The Event-B Meta-Theory . 93

7.2.1 Event-B Machine Structure as a Data Type 93
7.2.2 Event-B Machine Proof Obligations as Predicates 95
7.2.3 Modelling with Event-B Meta-Theory 96

7.3 A Framework for Behavioural Analyses 96
7.3.1 The Architecture of the Framework 97
7.3.2 How does the Framework Work? 98

7.4 The Framework at Work . 100
7.4.1 Defining a Domain-Specific Behavioural Analysis 100
7.4.2 Applying a Domain-Specific Behavioural Analysis 106

7.5 Advantages of the Framework . 111
7.5.1 Principled Approach and Reusability 111
7.5.2 Non-intrusiveness . 111
7.5.3 Verification Based on Theorem Proving 111
7.5.4 Proof and Modelling Effort Reduction 112
7.5.5 Generalisation . 113

7.6 Conclusion . 113

8 Formal Conformance Checking 115
8.1 Introduction . 116
8.2 Our approach . 116

8.2.1 A Standard Formal Specification —(2) on Figure 8.1 . . . 117
8.2.2 Standard Theory Instantiation —(3) on Figure 8.1 118
8.2.3 Model Annotation —(4) on Figure 8.1 119

8.3 Formalisation of ARINC 661 Standard 119
8.3.1 ARINC661Theory - Concepts Declaration 120
8.3.2 ARINC661Theory - Operators Declaration 121
8.3.3 ARINC661Theory - Primitives Definitions 122
8.3.4 ARINC661Theory - Theorems 124

8.4 Weather Radar Application Case Study 124
8.4.1 WXRTheory - Instances Declaration 125
8.4.2 WXRTheory - Instances Definition 125
8.4.3 WXRTheory - Operators Declaration and Definition 126
8.4.4 WXRTheory - Theorems . 127
8.4.5 Annotated Model of WXR —(4) on Figure 8.1 128

8.5 Advantages of The Framework 130
8.5.1 Achieving Standard Conformance Formally 130
8.5.2 Qualitatively Enhanced System Models 131
8.5.3 Reduction of Modelling and Proving Effort 131
8.5.4 Enabling Evolution of Standard 132

8.6 Conclusion . 132

Conclusion and Perspectives 132

xiv CONTENTS

Bibliography 137

Appendices 159

A Meta-Modelling Theories 161
A.1 OntologiesTheory - Ontology Modelling Language 162
A.2 EvtBTheo - Event-B Meta-Theory 163

B Domain Theories 165
B.1 DisplayabilityTheory - Displayability Domain Theory 166
B.2 ARINC661Theory - ARINC 661 Standard Domain theory 167
B.3 Domain-Specific Behaviour Analysis 168

B.3.1 BehaviouralPropertiesTheory - Analysis Operator . . . 168
B.3.2 Theo4Reachability - Analysis Low-Level Terms 168
B.3.3 EvtBManip - Auxiliary Operators 168

C Case Studies 169
C.1 Temperature Aggregator Case Study Modelling 170

C.1.1 C_TemperatureContext - Event-B Context for Units . . . 170
C.1.2 C_TemperatureMachine - Machine without Operators . . 170
C.1.3 ThermalUnits - Event-B Theory for Units 170
C.1.4 T_TemperatureMachine - Event-B Machine with Operators170

C.2 TCAS Case Study Modelling . 171
C.2.1 InstantiationContext - Event-B Context for Instantiation171
C.2.2 SetTheoriticOperationsBasedModel 171
C.2.3 TheoryOperatorsBasedModel 171

C.3 ATM Case Study Modelling . 172
C.3.1 ATMEnvironment - Event-B Context for Constants 172
C.3.2 ATMUserInterface - Event-B Machine for ATM Model . 172
C.3.3 ATMmEBModel - ATM Model Exported to EB4EB 172
C.3.4 AnnotatedModel - Annotation and Analysis 172

C.4 WXR Case Study Modelling . 173
C.4.1 WXRModel - Event-B Machine for WXR Model 173

List of Figures

3.1 MVC architecture model [104] 40

4.1 TCAS Protection Volume . 46
4.2 Standardized Symbology for Use on the Traffic Display 47
4.3 Snapshots of MPIA . 49
4.4 A map of the contributions of the thesis 56

6.1 The framework for modelling with explicit domain knowledge . . 76

7.1 A framework for domain-specific behavioural analyses 93
7.2 Fine-grain view of the behavioural analysis framework 98
7.3 A tree representation of an ontology of events 101
7.4 Simplified depiction of the necessary reachability analysis 104

8.1 The framework for standard conformance-by-construction 118
8.2 WXR system annotated with ARINC 661 concepts 129
8.3 A map of thesis contributions and perspective 135

xv

xvi LIST OF FIGURES

List of Tables

1.1 Event-B machine proof obligations 14
1.2 Event-B refinement proof obligations 15

6.1 Proof statistics of OML and TCAS case study 89

7.1 Proof statistics of behavioural analysis and ATM case study . . . 112

8.1 Mapping between ARINC 661 concepts and Event-B formalisation120
8.2 Proof statistics of conformance checking and MPIA case study . 131

1

2 LIST OF TABLES

Introduction

The development of critical systems needs to address safety requirements to
guarantee that the system does not fall in unsafe, undesirable or dangerous
states. This verification is critical when such errors may jeopardise human lives,
the environment, or have negative economic or societal effects. In the life cy-
cle of such critical system, formal methods have demonstrated their significant
effectiveness in preventing bad design decisions from affecting the specification
and implementation of systems at different development and deployment stages.
In this context, environment assumptions and domain-specific requirements are
essential to improve confidence in the models of these critical systems. Further-
more, domain-specific requirements contribute more to enhancing the quality of
system models when taken into account at the design and specification stages of
the system engineering life cycle. Indeed, formal system modelling with explicit
modelling of domain knowledge and evolving contexts and system environment
is at the centre of the work presented in this thesis.

Problem Statement
THe FORMEDICIS 1 ANR projet aimed at designing domain-specific formal
modelling language called FLUID, dedicated to formal modelling and verifica-
tion of interactive critical systems. In this context, several domain properties
related to interactive critical systems have been identified such as every input
shall be followed by a confirmation. Indeed, interactive critical systems represent
a starting point as the source of domain knowledge properties and case studies
for supporting the definition of a framework of explicit modelling of domain
knowledge.

The seminal work of [171] and [29, 32] advocates the separation of so called
Domain Knowledge from the system specification, and proposes the well-known
triptych K, S ⊢ R, where K represents the domain-specific knowledge made
of concepts and properties; S represents a system model; and R represents
the expressed system requirements. This separation is motivated by two main
arguments: first, domain knowledge is usually stable and reusable, and second,
its formalisation is made explicit through K. Last, the relationship between

1https://anr.fr/Projet-ANR-16-CE25-0007

3

4 LIST OF TABLES

these three features, symbolised by ⊢, states that the domain knowledge and
system description entail the systems desired properties.

However, on the one hand, domain knowledge is essential to prove system
safety but it is often implicitly modelled, i.e. the domain-specific requirements
are usually hard encoded in the system formal model, or overlooked, remaining
informal in the system’s documentation or in the mind of the designers[14, 152].
This way of formal modelling is at best inefficient and at worst may lead to
unverifiable critical properties of these systems. First, it is inefficient because
common domain-specific requirements are formalised for each system in an ad
hoc way, yielding a poor methodology of specification in terms of reuse and shar-
ing. Second, it may lead to incomplete formal specification if the domain-specific
requirements are implicitly assumed. On the other hand, system engineering ap-
proaches, particularly formal methods do not offer specific stable and consensual
constructs for explicit modelling of domain knowledge, although many notations
and modelling languages have been proposed therefore leading to various and
heterogeneous domain knowledge expression. Nevertheless, there exist formal
modelling languages and/or meta-models, sometimes standardised [40] support-
ing the formalisation of domain knowledge. Transformations are often required
to reuse domain knowledge formalisations in the setup of formal methods. As a
result, heterogeneous formalisations are produced, compromising sharing, and
reuse.

In order to address above mentioned issues, there is a need for resources and
frameworks to systematically support explicit modelling of domain knowledge in
formal modelling where domain-specific safety and behavioural properties may
be systematically formalised and used by system formal models.

Objectives of this thesis
In the context of this thesis, the purpose of our work was to provide a frame-
work and resources for explicit modelling of domain knowledge in the formal
modelling of systems. In particular, we have considered explicit modelling of
domain knowledge in the formal modelling of interactive critical systems. Why?
Addressing this difficulty would undoubtedly enable the construction of higher-
quality formal specifications and significantly reduces verification effort on the
system-specific modeling front. The separation of concerns between domain-
specific shared requirements and system-specific special requirements shall be
allowed by the framework to enhance understandability and traceability of the
formal specification of systems. Additionally, the verification process becomes
more efficient because the common properties are established only once to be
theorems of the domain-specific part. Therefore, the framework will foster the
reuse and the sharing of formal specifications of requirements and their ver-
ification. Interactive critical systems fed and supported the definition of the
framework. This choice has been motivated by the domain-specific proper-
ties and case studies featuring a neat distinction between domain-specific and
system-specific properties.

LIST OF TABLES 5

The formal methods addressed in this thesis are state-based and refinement-
based. In particular, Event-B formal method has been preferred to implement
the framework. Why? Event-B is an excellent choice for systems formal spec-
ification and verification because (1) it supports refinement-based correct-by-
construction development, (2) its specification language relies on the expressive
set theory and first-order logic, (3) the theorem proving is supported for veri-
fication thus it does not suffer from the limitations inherent to model checking
techniques. A decisive factor determining the selection of Event-B is the Event-
B extensions mechanism supported by the Theory Plug-in; these extensions are
called Event-B theories. Indeed, Event-B theories support the definition of
generic specifications allowing contract-based modelling relying on the assume-
guarantee paradigm.

Contributions
In the endeavour to meet the objective stated previously, our research resulted
in various contributions. Our contributions are summarised below.

Explicit Modelling of Domain Knowledge Using Ontologies A framework for
explicit modelling of domain knowledge was proposed and illustrated through
several case studies. Indeed, the motivation why explicit modelling of domain
knowledge is discussed, additionally an illustrative and didactic model is de-
veloped to explain the differences of explicit modelling of domain knowledge
in contrast with its implicit modelling. Next, an important building block of
the framework, our ontology modelling language as generic Event-B theory, is
developed and the reasons of the necessity of such language are explained.

Annotation-Based Transferring of Properties The framework for explicit mod-
elling of domain knowledge has been used to demonstrate a methodology for
transferring domain-specific properties to system models. Two kinds of anno-
tations were defined and handled: (1) annotation of state variables and (2)
annotation of events. (1) the typing of the system state variables with do-
main ontology concepts is devised as annotation mechanism. This annotation
mechanism allows the reuse and transfer of domain safety properties to system
models. In particular, the TCAS case study has been refactored to illustrate
the methodology. (2) A annotation-based methodology for defining and apply-
ing domain-specific behavioural analyses to system models is proposed. This
methodology is based on the formalisation of domain-specific behavioural anal-
yses using the ontology modelling language and the reflexive Event-B framework
(EB4EB) [143]. The annotation we defined links the domain concepts to the
model’s events allowing the application of a behavioural analysis. In particular,
the methodology has been exemplified using the ATM case study.

Formal Conformance Checking We demonstrated that conformance checking
to standards may be regarded as a special case of explicit modelling of domain

6 LIST OF TABLES

knowledge and safety property transferring. For this purpose, a methodology
for formalising standards specifications has been defined, and a sufficient rule of
construction has been explained to guarantee the checking of the conformance
to the standard. Therefore, this approach to conformance checking is coined
conformance by construction. To showcase the methodology, the ARINC 661
standard is formalised as an Event-B theory using the ontology modelling lan-
guage and the WXR case study has been modelled to illustrate the methodology.

Structure of this thesis

The manuscript is composed of two parts: Part I - Background and Part II -
Contributions. The first part is composed of 4 chapters. First, chapter 1 gives
an overview on Event-B method. Next, chapter 2 reviews the work related to
domain knowledge modelling in formal methods where the lack of framework for
explicit modelling of domain knowledge is highlighted. Then, the importance
of ontology formalism for knowledge representation is explained., and chapter
3 studies the field of formal modelling of interactive critical systems which fed
and supported the definition of the framework of explicit modelling of domain
knowledge. Last, chapter 4 describes the case studies used throughout this thesis
to demonstrate the effectiveness and efficiency of the proposed framework.

The second part discusses the contributions of this thesis. It contains a
roadmap and 4 chapters. The raodmap chapter draws an overview of the work
carried out during the thesis, depicts a graphical representation of the inter-
connections of the contributions for tackling the challenge of explicit modelling
of domain knowledge, and links the different contributions to the observations
formulated in the part I - Background. Chapter 5 explains the importance of
explicit modelling of domain knowledge and presents the ontology modelling
language. The contribution Annotation-Based Transferring of Properties is dis-
cussed in two chapters. First, chapter 6 discusses the methodology to transfer
safety properties specified in a domain ontology to system models. Chapter 7
presents the methodology to define and apply annotation-based domain-specific
behavioural analyses to system models. Last, chapter 8 demonstrates that
conformance checking may be achieved as a special case of explicit modelling of
domain knowledge and domain-specific property transferring.

Last, a conclusion and perspectives chapter ends this manuscript.

Associated Projects

This thesis was undertaken as part of the FORMEDICIS (FORmal MEthods
for the Development and the engineering of Critical Interactive Systems) ANR-
16-CE25-0007 and EBRP (EventB-Rodin-Plus) ANR-19-CE25-0010.

LIST OF TABLES 7

Related Publications

Journal Articles
[115] Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh, Guillaume
Dupont, Dominique Méry and Philippe A. Palanque. Formal domain-driven
system development in Event-B: Application to interactive critical systems.
Journal of Systems Architecture: Embedded Software Design (JSA), 135:102798,
2023. doi:10.1016/j.sysarc.2022.102798

[151] Neeraj Kumar Singh, Yamine Aït-Ameur, Ismail Mendil, Dominique
Méry, David Navarre, Philippe A. Palanque, and Marc Pantel. F3FLUID: A
formal framework for developing safety- critical interactive systems in FLUID.
Journal of Software: Evolution and Process, page e2439, 2022. doi:10.1002/smr
.2439

Conference Articles
[118] Ismail Mendil, Peter Rivière, Yamine Aït-Ameur, Neeraj Kumar Singh,
Dominique Méry and Philippe A. Palanque. Non-Intrusive Annotation-Based
Domain-Specific Analysis to Certify Event-B Models Behaviours. In 29th Asia-
Pacific Software Engineering Conference, APSEC 2022, Virtual Event, Japan,
December 6-9, 2022, pages 129–138. IEEE, 2022. doi:10.1109/APSEC57359.20
22.00025.

[13] Yamine Aït-Ameur, Guillaume Dupont, Ismail Mendil, Dominique Méry,
Marc Pantel, Peter Rivière and Neeraj Kumar Singh. mpowering the Event-B
Method Using External Theories. In M. H. ter Beek and R. Monahan, edi-
tors, Integrated Formal Methods - 17th International Conference, IFM 2022,
Lugano,Switzerland, June 7-10, 2022, Proceedings, volume 13274 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2022. doi:10.1007/978-
3-031-07727-2_2.

[116] Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh, Dominique
Méry and Philippe A. Palanque. Leveraging Event-B Theories for Handling
Domain Knowledge in Design Models. In S. Qin, J. Woodcock, and W. Zhang,
editors, Dependable Software Engineering. Theories, Tools, and Applications -
7th International Symposium, SETTA 2021, Beijing, China, November 25-27,
2021, Proceedings, volume 13071 of Lecture Notes in Computer Science, pages
40–58. Springer, 2021. doi:10.1007/978-3-030-91265-9_3

[117] Ismail Mendil, Yamine Aït-Ameur, Neeraj Kumar Singh, Dominique
Méry and Philippe A. Palanque. Standard Conformance-by-Construction with
Event-B. In A. Lluch-Lafuente and A. Mavridou, editors, Formal Methods for
Industrial Critical Systems - 26th International Conference, FMICS 2021, Paris,

https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1002/smr.2439
https://doi.org/10.1002/smr.2439
https://doi.org/10.1109/APSEC57359.2022.00025
https://doi.org/10.1109/APSEC57359.2022.00025
https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1007/978-3-030-91265-9_3

8 LIST OF TABLES

France, August 24-26, 2021, Proceedings, volume 12863 of Lecture Notes in
Computer Science, pages 126–146. Springer, 2021. doi:10.1007/978-3-030-
85248-1_8.

[119] Ismail Mendil, Neeraj Kumar Singh, Yamine Aït-Ameur, Dominique
Méry and Philippe A. Palanque. An Integrated Framework for the Formal Anal-
ysis of Critical Interactive Systems. In 27th Asia-Pacific Software Engineer-
ing Conference, APSEC 2020, Singapore, December 1-4, 2020, pages 139–148.
IEEE, 2020. doi:10.1109/APSEC51365.2020.00022.

[114] Ismail Mendil. A framework for critical interactive system formal mod-
elling and analysis (A. Raschke, D. Méry, & F. Houdek, Eds.). In: Rigorous
state-based methods - 7th international conference, ABZ 2020, ulm, germany,
may 27- 29, 2020, proceedings (A. Raschke, D. Méry, & F. Houdek, Eds.). Ed.
by Raschke, A., Méry, D., & Houdek, F. 12071. Lecture Notes in Computer
Science. Springer, 2020, 423–426. doi:10.1007/978-3-030-48077-6_36

https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1109/APSEC51365.2020.00022.
https://doi.org/10.1007/978-3-030-48077-6_36

Part I

Background

9

Chapter 1

Event-B: a
Correct-by-Construction
Method

This Chapter contains:

1.1 State-Based Formal Modelling . 12
1.2 Proof-Based Verification . 14
1.3 Event-B Theories Extension . 15

1.3.1 Extending Event-B Language with Theories 15
1.3.2 Event-B Theories Structure 16
1.3.3 Well-Definedness . 18
1.3.4 Importing Theories . 19

1.4 IDE: Rodin Platform and Plug-ins 19

This chapter presents Event-B method since it is used to support the frame-
work for explicit modelling of domain knowledge in formal modelling presented
in PartII. Moreover, Event-B theories are extremely important since they al-
low to define generic formal specifications composed essentially of data types
and operators that can be imported into the formal specification of systems
composed essentially of contexts and machines. Therefore they enable a higher
degree of reuse and sharing. However, for an advanced treatise of the Event-B
formal method and further technical detail, the reader may use the reference
book [3] as well as the website dedicated to Event-B method and its toolset 1.

1http://www.event-b.org/

11

http://www.event-b.org/

12CHAPTER 1. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

CONTEXT MACHINE machine_id
ctxt_id SEES ctxt_id

SETS VARIABLES
s x

CONSTANTS INVARIANTS
c I(x)

AXIOMS Tmach(x)
A

THEOREMS VARIANT
Tctx V (x)

END EVENTS
EVENT evt

ANY α
WHERE G(x, α)
THEN
x :| BAP(x, α, x

′
)

END
· · ·
END

Listings 1.1: Event-B model’s structure: context & machine

1.1 State-Based Formal Modelling
Event-B is a formal method for modelling and verifying systems at early stages
of the development life cycle. Therefore, it is useful for eliminating design
errors, which are hard to find and expensive to correct in the implementations.
Furthermore, Event-B is a state-based method whose language relies on typed
set theory and first-order predicate logic.

Modelling in Event-B consists in formalising informal requirements of a sys-
tem under design as a series of refinements of an initial abstract model (spec-
ification) leading to a final concrete model (implementation). This approach
adopted by Event-B is accompanied with discharging proof-obligations to en-
sure the correctness of refinement of the initial specification. Therefore, the
correctness of the implementation is ensured by construction thanks to the re-
finement.

A classical Event-B model contains mainly two kinds of components (see
Listing 1.1): contexts and machines. First, the CONTEXT component describes
the static part of a Event-B model. It contains the definitions, axioms and
theorems needed to formalise the environment of the system and information
that does not change when the system evolves. The main elements of a context
are carrier sets s, constants c, axioms A and theorems Tctx.

Second, the MACHINE component describes the dynamic part of a model as a
transition system. It has a set of events modifying a set of variables (the state of
the machine) whose semantics is transition systems. A key operation allowing

1.1. STATE-BASED FORMAL MODELLING 13

modifying of a state is called BAP (before-after predicate). This predicate trans-
former specifies a substitution for a current state as well as for all the possible
next states. Mathematically, the BAP is defined as

x :| BAP(x, α, x′) (1.1)

where BAP(x, α, x’) is a first-order formula linking the current state x
and next state x’ with parameters α. Besides, the events have guards G(x,α)
conditioning the observation of the events.

Event-B machines may reference several contexts by enumerating these con-
texts in the SEE clause. Consequently, all sets, constants, axioms and the theo-
rems are available for the machine.

Safety properties of the system may be specified as invariants or theorems
of the machine. The clause INVARIANTS may contain I(x) and Tmach(x) which
shall be proved to ensure that the machine establishes and preserves the specified
properties. The difference between invariants and theorems lies in the proving
status; invariants are proved inductively for each event of the machine, and the
theorems are proved deductively using only the invariants and the context’s
axioms and theorems. The VARIANT clause appears in a machine containing
some convergent events. This clause allows to describe reachability properties.

MACHINE machine_id_2
REFINES machine_id_1
VARIABLES

xC

INVARIANTS
J(xA, xC) · · ·

EVENTS
EVENT evtC REFINES evtA

ANY αC

WHERE GC(xC , αC)
WITH

xA′, αA: W (αA, αC , xA, xA′, xC , xC′)
THEN

vC :| BAPC(xC , αC , xC′)
END

· · ·

Listings 1.2: Machine refinement structure

A Machine may be refined by several concrete machines where the machine
refined is specified in the REFINES clause. The concrete machine introduces a
set of variables. However, variables of the refined machine (if any) can occur in
an invariant. When it is the case, this invariant is said to be a gluing invariant;
as this indicates, it ”glues” the state space of the concrete machine to that of

14CHAPTER 1. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

the refined machine. Additionally, several events of a concrete machine may
refine a single event of the refined machine. The refinement process may entail
the generation of a number of proof obligations to ensure its correctness. The
verification of the correctness of refinement process is discussed in Section 1.2.

Listing 1.2 shows an extract of a concrete machine with concrete variables,
xC , a gluing invariant J(xA, xC) relating abstract and concrete variables and a
refined event evtC . Event guards (GC) may be strengthened in order to model
concrete system behaviour. Witnesses (WITH clause) for the parameter αA of
the abstract event evtA and for abstract variables xA may be given (predicate
W). They are used for proving refinement correctness.

Notation. The superscripts A and C refer to abstract and concrete machines
respectively.

1.2 Proof-Based Verification
Formal verification of Event-B models is achieved by discharging proof obliga-
tions that are automatically generated. For instance, consistency checking of
an Event-B model with respect to formalised safety property is carried out by
proving invariants preservation proof obligation (INV) for the Even-B machine.

(1) Theorems A ⇒ Tctx

A ∧ I(x) ⇒ Tmac(x)
(2) Invariant preservation (INV) A ∧ I(x) ∧ G(x, α)

∧BAP(x, α, x
′) ⇒ I(x′)

(3) Event feasibility (FIS) A ∧ I(x) ∧ G(x, α)
⇒ ∃x

′ · BAP(x, α, x′)
(4) Variant progress A ∧ I(x) ∧ G(x, α)

∧BAP(x, α, x′) ⇒ V (x′) < V (x)

Table 1.1: Event-B machine proof obligations

The proof obligations (PO) in Event-B are generated automatically for estab-
lishing the safety properties, reachability properties, the feasibility of transitions
and the validity of a refinement. The main PO are listed in Listing 1.1. The
prime notation, allowing us to define Before-After Predicates (BAP), denotes
the next value of a variable after an event is observed. PO of Listing 1.1 require
to demonstrate that theorems hold (1), each event preserves invariants (Induc-
tion (2)), each event can be observed (feasibility (3)) and variant decreasing
(convergence (4)).

The proof obligations define what is to be proved for an Event-B model.
They are automatically generated by a Rodin Platform tool called the proof
obligations generator. This tool analyses contexts and machines. It decides then
what is to be proved in these components with respect to the predefined list of
proof-obligations (see Listings 1.1 and 1.2). The proof obligations generator

1.3. EVENT-B THEORIES EXTENSION 15

(5) Event Simulation (SIM) A ∧ IA(xA) ∧ J(xA, xC)
∧GC(xC , αC)
∧W (αA, αC , xA, xA′, xC , xC′)
∧BAPC(xC , αC , xC′) ⇒ BAPA(xA, αA, xA′)

(6) Guard Strengthening (GS) A ∧ IA(xA) ∧ J(xA, xC)
∧W (αA, αC , xA, xA′, xC , xC′)
∧GC(xC , αC) ⇒ GA(xA, αA)

(7) Invariant preservation (INV) A ∧ IA(xA)
∧GC(xC , αC)
∧W (αA, αC , xA, xA′, xC , xC′)
∧BAPC(xC , αC , xC′)
∧J(xA, xC) ⇒ J(xA′, xC′)

Table 1.2: Event-B refinement proof obligations

produces a number of logical sequents, which are transmitted to the provers for
automatic or interactive proof.

Refinements preserve the relation between the refining model and the re-
fined model. Abstract and concrete state variables are linked by introducing
gluing invariants. Mathematically, the refinement PO formalise the condition
of proving the simulation relation between abstract and concrete machines.

The PO generated for proving the correctness of a refinement are described
in Listing 1.2. Two additional relevant PO need to be discharged. First, as
refinement in Event-B is defined as a simulation relationship, the simulation PO
(SIM) (5) is defined to assert that the refined (concrete) event evtC simulates
the corresponding abstract event. Second PO, guard strengthening (GS) (6),
expresses that the refined events may strengthen the abstract guards GA with
another guard GC to allow and specify more concrete conditions that shall be
stronger than abstract ones. In addition, the invariant preservation PO (INV)(7)
shall hold in the refined machine as well. More details on proof obligations can
be found in [3].

1.3 Event-B Theories Extension
1.3.1 Extending Event-B Language with Theories
Event-B language may be qualified as low-level modelling language since it pro-
vides basically set theoretical concepts for modelling like sets, constants, mem-
bership predicate and operations like union and intersection among others. In
addition, the modelling language provides the before-after predicate transformer
(substitution operator). This language is as expressive as typed set theory pro-
viding a framework for modelling systems. However to handle more elaborate
and high-level concepts, mathematical extensions may be defined to support
Event-B basic notation and semantics. The extensions are Event-B theories pro-
viding primitives for defining and using advanced mathematical objects [7, 39].

16CHAPTER 1. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

Close to other formal languages module constructs like Coq modules [26], Is-
abelle/HOL theories [131] or PVS [134], this capability is suitable for high-level
modelling as it provides more structured Event-B specification and open the
possibilities for reusability and sharability.

Event-B theories are extensions allowing the definition of new data types and
operators manipulating these data types. Moreover, they permit the definition
of proof rules enhancing the automatic proving process.

An important feature of Event-B theories is genericity. Indeed, the the-
ory mechanism allows us to define type-parametric modules reusable in several
Event-B models. For example an Event-B generic theory of inductive lists may
be defined such that it provides operator returning the length of a list and an-
other operator for concatenating two lists. Such theory may be used by several
Event-B models by instantiating differently the operators, for example a Event-
B model may instantiate the theory with the integers Z and another model with
booleans BOOL.

Additionally, the soundness [39] of theories is achieved through the defini-
tion of soundness proof obligations generated following the standard approach of
Event-B and their proofs are discharged using Rodin provers. Only the sound-
ness of the rewrite rules is handled; the soundness of the theory axioms shall be
ensured externally [7, 39].

The Event-B standard library 2 includes BasicTheory project comprising
theories of BinaryTree, BoolOps, List, PEANO, SUMandPRODUCT and Seq. Sec-
ond RelationOrderTheory project provides theories of Connectivity, FixPoint,
Relation, Well_Fondation, complement and galois. Also it defines the reals
in RealTheory project. Additionally the library provides three simple Event-B
models that use some of the theories: Data, Queue and SimpleNetwork projects.

1.3.2 Event-B Theories Structure

Listing 1.3 presents the skeleton of Event-B theory. It clearly recalls an alge-
braic specification involving data types and operators. The first clause of an
Event-B theory is the IMPORT clause which provides a mechanism to reference
other theories elements. Next, the second clause is TYPE PARAMETERS which is
intended to contain a list of placeholders dedicated to contain concrete types at
instantiation in Event-B contexts or machines.

Event-B theories have an algebraic structure where data types are defined
and operators manipulating these data types are declared and specified.

• DATATYPES clause: data types are defined in DATATYPES clause. They are
associated with constructors, which are operators to build inhabitants
of the defined type. Event-B theories allow us to define inductive data
types as list data structure or trees. The DATATYPES clause may equally
used to define records and enumeration data structures.

2https://wiki.event-b.org/index.php/Theory_Plug-in

https://wiki.event-b.org/index.php/Theory_Plug-in

1.3. EVENT-B THEORIES EXTENSION 17

THEORY TheoryName
IMPORT Theory1, ...
TYPE PARAMETERS T1, T2, ...
DATATYPES

Datatype1(T1, ...)
CONSTRUCTORS

cstr1(p: T1, ...)
OPERATORS
operator1 < nature > (p1 : T1)

well-definednessW D(p1, ...)
direct definitionD
...

AXIOMATIC DEFINITIONS
AxiomaticDefinitionsName1

Types AT1
Operators

operator1 <nature> (p1 : T1)
well-definedness W D(p1, ...)

Axioms Axm1, ...
THEOREMST hm1, ...
END

Listings 1.3: Event-B theories structure

• OPERATORS: the clause OPERATORS allows us to define a collection of two
sorts of operators: expression and predicate operators. Expression op-
erators must return an element of valid type and predicate operator are
defined using first-order logic formulas. Event-B theories provide a second
option to define operators: axiomatically defined operators.

• AXIOMATIC DEFINITIONS clause: this clause provides the ability to define
abstract types and operators. Roughly speaking, AXIOMATIC DEFINITIONS
may be compared to classical Event-B contexts where types, constants,
functional and predicate operators may be defined in an axiomatic man-
ner. Axiomatic definitions allows to define mathematically objects that
are not easily constructible from set theory primitives, or when the inter-
nal structure of such object is irrelevant and only the abstract properties
are important. A good example is the theory of real numbers, indeed an
axiomatisation relying on the axiom of the least upper bound is provided
in the standard library which is useful for specifications not requiring con-
structive definitions like Cauchy’s sequences or Dedekind’s cuts. 3. Other
axiomatic theories may be defined as well.

• THEOREMS clause: Theorems are important part of an Event-B theories,
they assert true statements about operators or a special combination of

3https://wiki.event-b.org/index.php/Theory_Plug-in

https://wiki.event-b.org/index.php/Theory_Plug-in

18CHAPTER 1. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

operators. The theorems are generic if the domain of the quantified vari-
ables are the type parameters. The THEOREMS clause generates a number
of PO to ensure that the formulas are well-defined (WD) and provable
(S-THM) in the theory.

Another feature of Event-B theories is the ability to extend the proof ca-
pability of Event-B by specifying generic rewrite rules associated with some
theory. This rules may be integrated in the prover tactics and run on PO that
contain symbols of the theories like variables typed with the theory data types
or expressions involving occurrences of the theory operators.

1.3.3 Well-Definedness
Event-B theories has an important notion: the well-definedness associated
with operators. It is a generalisation of the well-definedness concept4 attached
to a number of classical Event-B operators like arithmetic division and the
cardinality operator. For example, whenever a division is applied, Event-B
requires according to mathematical basic rules that the divisor not to be equal
to zero. A second example is the card operator, indeed this operator is defined
exclusively for finite sets therefore whenever is applied to some set a PO is
generated asking to prove that the single argument is finite.

According to [6], well-definedness describes the circumstances under which
it is possible to introduce new term symbols by means of conditional definitions
in a formal theory as if the definitions in question were unconditional, thus
recovering completely the right to subsequently eliminate these symbols without
bothering about the validity of such an elimination. It avoids describing ill-
defined operators, formulas, axioms, theorems, and invariants. In Event-B,
each formula is associated to generated well-definedness POs [107]. These POs
ensure that the formula is well-defined and that two-valued logic can be used.

A WD predicate WD(f) is associated with each formula f . This predicate
is defined inductively on the structure of f . For example, if we consider a and b
being two integers, P and Q two predicates, f of type P (D × R), the following
WD definitions can be written as WD(a ÷ b) ≡ WD(a) ∧ WD(b) ∧ b ̸= 0,
WD(P ∧Q) ≡ WD(P)∧(P ⇒ WD(Q)), WD(P ∪Q) ≡ WD(P)∧(P ∪WD(Q))
or WD(f(a) ≡ WD(f) ∧ WD(a) ∧ a ∈ dom(f) ∧ f ∈ D 7→ R where 7→ denotes a
partial function. In the proofs of other POs, WDs are added as hypotheses [3].

The Event-B theories enable to define well-definedness conditions to user-
defined operators. Event-B theories syntax offer a field to express a logical
predicate associated as well-definedness condition to some operators. The well-
definedness condition may involve the operators arguments by restricting their
domain, also other operators may be used to build the well-definedness condi-
tion. The use of the operator in expressions generates WD PO. This PO must
be discharged to ensure that the operator is used correctly; it means that the
expression where the operator is used leads to defined results.

4https://www3.hhu.de/stups/handbook/rodin/current/html/mathematical_notation_
introduction.html

https://www3.hhu.de/stups/handbook/rodin/current/html/mathematical_notation_introduction.html
https://www3.hhu.de/stups/handbook/rodin/current/html/mathematical_notation_introduction.html

1.4. IDE: RODIN PLATFORM AND PLUG-INS 19

Handling WD conditions and partial functions (7→) definitions in proofs and
proof systems is not new. The paper of C.B. Jones [95] clearly highlights the
importance of dealing with such definitions. In formal proof systems, it has
been addressed in different manners using two-valued and three-valued logic
(with weak and strong equality), subset types, denotational approaches, type-
correct conditions of total functions, etc. [23, 154, 107, 6, 131, 134]

This mechanism of associating well-definedness conditions to operators is
essential to the contributions presented in Part II of this manuscript. It allows
to represent dependent types that are not natively supported by Event-B.

1.3.4 Importing Theories
The original goal of Event-B theories is to allow for mathematical extensions of
the Event-B language [7, 39]. As a consequence, libraries of structured formal
specifications that can be reused across models are available as Event-B theo-
ries. This is possible thanks to the importing capability provided in the theory
component. Indeed, theory hierarchies may be defined to reduce the complexity
of a specification.

Event-B theories may be imported into models composed of contexts and
machines. The models are said to instantiate the theory since they provide
concrete types to the type parameters of the theory. Additionally, the models
may import all the primitives of the theory: data types, operators, axioms.
From the proof point of view, the proof rules and the rewrite rules can equally
be applied when discharging some POs.

This manuscript includes the usage of a hierarchy of theories to define be-
havioural domain-specific analyses (see Chapter 7). It illustrates the interest
and the benefits of building upon specified and proved theories.

1.4 IDE: Rodin Platform and Plug-ins
The thesis relied intensively on Rodin platform and the Theory Plug-in to carry
out the modelling and proving experiments. However, there exist other plug-ins
dedicated to various tasks 5.

Indeed, modelling in Event-B, investigating and verifying models is allowed
by the Rodin Platform[4] which is an open source IDE based on Eclipse for
dedicated to Event-B formal method. It offers resources for model edition, auto-
matic PO generation, project management, refinement and proof, model check-
ing, model animation and code generation. Several provers like SMT solvers are
available in Rodin.

Designing Event-B theories is supported by Theory Plug-in which is available
for Rodin platform. It provides an editor to create, modify Event-B theories
and it relies on the Rodin theorem provers to prove the theorems and the proof
obligations previously mentioned.

5https://wiki.event-b.org/index.php/Rodin_Plug-ins

20CHAPTER 1. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

Chapter 2

Domain Knowledge in
Formal Modelling

This Chapter contains:

2.1 Modelling Domain Knowledge . 22
2.1.1 On the Importance of Domain Knowledge 22
2.1.2 On the Lack of a Generic Approach 23
2.1.3 Ontologies as Domain Knowledge Model 24

2.2 The Ontology Formalism . 25
2.2.1 Fundamental Characteristics 27
2.2.2 Semantic Annotation Using Ontologies 28
2.2.3 Ontologies for Engineering Contexts 28

2.3 Standards as Domain Knowledge 29
2.4 Synthesis and Conclusion . 31

This chapter reviews the work involving modelling of domain knowledge in
formal methods. Several articles addressed the issue of systematically mod-
elling and referencing domain knowledge in formal models [15]. Handling do-
main knowledge system engineering activities, such as modelling and verification
phases, is essential to ensure reliable and secure systems. This chapter is di-
vided into four sections. Section 2.1 is dedicated to review the work on formal
methods addressing the issue of taking into account the domain knowledge asso-
ciated with a system. Section 2.2 is dedicated to the study of the work achieved
on ontology-based modelling and its role in formalising engineering domains.
Section 2.3 enumerates a number of approaches that addressed the challenge
of formally checking conformance since it is a direct application of the explicit
modelling of domain knowledge as discussed in Chapter 8. Last, Section 2.4
concludes this section by presenting a list of features required for a framework
to allow explicit modelling of domain knowledge in formal specification.

21

22 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

2.1 Modelling Domain Knowledge

2.1.1 On the Importance of Domain Knowledge
To motivate this section, let us consider this simple example that illustrates the
risks of missing information implicitly assumed when modelling. Let us con-
sider, two state variables: float variable measuring the altitude of an aircraft in
miles whilst another one denoting the value of the speed of the aircraft displayed
on the cockpit in knots. When the knowledge about units is omitted or it is
hard encoded in the designed formal model, then it is not explicitly described;
it remains tacit in the mind of the model designer. This situation suffers from
several downsides: (1) the operations on the variables may produce meaningless
results. For example, adding these two floats (altitude plus speed) is nonsense.
(2) the second disadvantage is the inability of reuse and sharing of the specifi-
cation. Therefore, the definition of the arithmetic operators on these variables
is necessary every time since they are not available as reusable primitives.

The issue of systematically separating domain knowledge and contextual
constraints from system-specific requirements has been an essential challenge in
system engineering in general and software engineering in particular. Indeed,
taking into account the domain knowledge requirements and assumptions in
the software engineering process has been considered an important challenge in
the area of software systems modelling and analysis. The triptych described in
[90], [171], [31] identifies three main parts of the software development process:
domain description, requirements prescription and software design. D, S ⊢ R
expresses a formal deduction, where D represents the domain concepts in form
of properties, axioms, relations, functions and theories; S represents a system
model; and R represents the intended system requirements. This entailment
states that the given domain description (D) and the system model (S) yields
logically the given requirements (R). In similar vein, the article introduces this
notations [90] E, S ⊢ R where E is the given environment, S is the specifica-
tion that is description of designed system; and R represents the requirements
the system should enjoy. The proposed structure must respect the distinction
between system and the physical environment, and the environment properties
must be achieved by the modelled system [90].

The first common knowledge to be explicitly formalised is mathematics.
Indeed, several research projects and approaches [27, 28, 29] aimed at formalising
mathematical theories that are applicable in the formal developments of systems.
These theories are helpful for building complex formalisations, expressing and
reusing proof of properties. The need for handling domain knowledge other than
mathematics has been identified so far by the software engineering community
[91, 171, 170] following the triptych paradigm promoted by D. Bjørner and
A. Eir [33]. Moreover, a number of works [14, 30] advocated that it is highly
desirable to define the domain knowledge associated with a system in an explicit
way to improve the quality of the development process and to accommodate the
new changes in the system requirements by restructuring the formal model.

In [120], the authors highlighted the need for separating and integrating

2.1. MODELLING DOMAIN KNOWLEDGE 23

explicit semantics of application domain (domain knowledge) into the formal
development process. Traditionally, in Event-B developments, domain descrip-
tions are implicit and usually shared half way between the requirements model
and the system model. In the work [100, 101], contextual knowledge and en-
vironment constraints integration in formal models is fostered and illustrated.
Indeed, they proposed a methodology for integrating contextual knowledge in
Event-B formal modelling process where domain knowledge is classified into
constraints, hypotheses, and dependencies.

Observation (1) Explicit formal modelling of domain knowledge is an impor-
tant challenge in the formal methods research and practice. Additionally, the
textbook [85] identifies the issue of formalising domain knowledge and integrat-
ing this domain knowledge into design models. More recently this objective is
advocated in [14] where the authors argues the advantages of handling domain
knowledge explicitly in formal design models. In conclusion, there is a need to
define a framework for explicit modelling of domain knowledge.

2.1.2 On the Lack of a Generic Approach

The book [15] compiled several works and reflections of 30 researchers issued
from both academia and industry from America, Asia, Australia and Europe
related to the challenge of making explicit domain knowledge in the formal
developments related to several application domains. A methodology for a
refinement-based development of control systems facilitating the identification
of security requirements that should be fulfilled to satisfy safety goals has been
proposed and illustrated in [162]. The author adopted the four-variable model
defined in [136] and defined a approach with three refinements. The first step is
to set the abstract specification describing the overall behaviour of the system;
second this specification is translated to a general Event-B machine. Last the
three refinements are defined for introducing data, specifying controller logic
and attack modelling. Moreover, explicit modelling of domain knowledge was
addressed in the medical devices engineering area; an annotation mechanism has
been proposed for explicit modelling of domain-specific knowledge integration
in formal system modelling

Observation (2) Despite of the abundance of approaches to address the chal-
lenge of explicit modelling of domain knowledge and the multiplicity of cases
studies for various experiments, the approaches aforementioned lacked system-
atic and generic method for formalising and transferring domain knowledge to
design models. Indeed, all the approaches aforementioned don’t provide a lan-
guage for describing the domain knowledge instead they provide methodological
guidelines to define domain knowledge using ontologies and axioms, and where
theorems are used to validate domain-specific properties.

24 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

2.1.3 Ontologies as Domain Knowledge Model
Different projects have aimed at providing principles, techniques and tools to
streamline the integration of domain knowledge in formal modelling. For exam-
ple, the French ANR IMPEX research project 1 set the objective of making ex-
plicit domain knowledge in design models. Many research and technical articles
have been produced 2. The project focused on ontologies which are formalised
as theories with sets, axioms, theorems and reasoning rules. They are integrated
to design models through an annotation mechanism [9].

The Event-B method community has been noticeably active in addressing
the issue of explicit modelling of domain knowledge. Indeed, a great effort has
been invested into systematically exploring methodologies for handling domain
knowledge in formal modelling. In [7, 39], Event-B is extended by introducing
Event-B theories in the form of the Theory Plug-in. This extension enables
the specification of domain-specific theories, such as theories for hybrid systems
developed in [60, 59, 58]. Indeed, the article [111] advocates the adequacy of
Event-B for modelling the domains except in some areas, temporal properties
mainly. Yet, the authors defined, in the article [86], a set of proof rules to
reason about important classes of liveness properties. Moreover, mathematical
theories (groups, reals, differential equations) for the Event-B method were de-
veloped and used in formal system developments in [59, 58]. Additionally, a
methodology with the supporting tool OntoML was proposed [123, 16] for gen-
erating Event-B models from OWL-described ontologies. Furthermore, [76, 77]
proposed an ontology description language that was used in the development
of case studies. Event-B contexts were used to describe the ontology structure,
and the context extension operation allows the definition of a particular on-
tology. Important properties that must be proved are manually annotated as
theorems. Theorems are also used for formalising the compliance of the design
model to the domain ontology. The articles [124] presented a plug-in integrated
into the Rodin platform implementing two approaches to formalise ontologies
described by ontology description languages (OWL, PLIB, ...) using set theory
and first-order logic supported by Event-B. The interest of this formalisation is
to enrich the specification and verification process using the Event-B method,
by integrating data and knowledge models described in ontologies.

Besides, many formal languages addressed the challenge of making explicit
domain knowledge methodologies and approaches for dealing with domain knowl-
edge. Indeed, formal techniques like Coq [26], Isabelle/HOL [131], PVS [134],
Event-B [3] CASL [125] and RAISE [29, 31, 32] witnessed several works deal-
ing with this issue. Other modelling frameworks, such as DOL, CASL [125]
and RAISE [29, 31, 32], addressed the railway systems, shipping and logistics
domains to describe domain knowledge. The issue of addressing complex struc-
tured specifications by combining and extending simpler ones is addressed in
[146]. Indeed, the authors advocated that an understanding of a large spec-

1https://anr.fr/Project-ANR-13-INSE-0001
2https://hal-anr.archives-ouvertes.fr/search/index/?q=*&anrProjectReference_s=ANR-

13-INSE-0001

2.2. THE ONTOLOGY FORMALISM 25

ification might be achieved via an understanding of its components, and the
components of large specifications may be reused. Moreover, the structure of a
specification conveys intangible but important aspects of the conceptual struc-
ture of the problem domain, such as the degree to which entities and concepts
described in the specification are interrelated. In [50], the authors discussed
a two-layered language for expressing and specifying contexts that are based
on higher-order logic of the Coq formal system as a lower layer and ontology
language as an upper layer. Indeed, the higher-order KDTL language [21, 49]
supports the definition of new contextual categories and facts based on low-
order context. The language provides support for the comparability of diverse
and non-countable information, as well as numeric data.

Engineering domain ontologies as defined in [138, 94, 11] proved to be ef-
ficient in capturing engineering domain features and to model the associated
domain knowledge. Indeed, engineering domains require other modelling capa-
bilities like arithmetic operations or context-dependent properties and associ-
ated proof rules (see [94, 14] for more details). To handle engineering knowledge,
first-order logic with arithmetic may be used as ontology modelling language.
However, this richer expressive power leads to semi-automatic proofs requiring
interactive proof effort3.

Observation (3) A generic ontology modelling language for formalising do-
main knowledge would provide flexibility and interoperability for the exchange
of domain knowledge. However the ontology modelling language must provide
primitives for expressing a special feature of domain knowledge related to engi-
neering contexts like arithmetic.

2.2 The Ontology Formalism
The term Ontology comes from the discipline of philosophy that is concerned
with the study of being or existence. In philosophy, one can talk about an
ontology as a theory of the nature of existence. In computer and information
science, ontology denotes an artefact that is designed for a purpose, which is to
enable the modelling of knowledge about some domain, real or imagined [73].

In the context of computer and information sciences, an ontology
defines a set of representational primitives with which to model a
domain of knowledge or discourse. The representational primitives
are typically classes (or sets), attributes (or properties), and rela-
tionships (or relations among class members). The definitions of the
representational primitives include information about their meaning
and constraints on their logically consistent application ... 4

3 Automatic reasoners (decidable logics) like Pellet [153] or Racer [75] apply to less rich
OML than the one offered by Event-B theories

4https://tomgruber.org/writing/definition-of-ontology

26 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

Different domain knowledge description and modelling paradigms which are
at the core of the knowledge representation area were proposed. Indeed, rep-
resenting knowledge as ontologies has been extensively studied in the litera-
ture and other application areas, such as semantic web, artificial intelligence,
information systems, system engineering and so on exist. Therefore, several
modelling languages are available like DAML+OIL[48], RDF[37], OWL[163]
and ISO 13584[139]. Moreover, many tools are available for creating repos-
itories like JENA-SDB [168] SW-Store [2], trpileSotre [80], OntoDB [54, 11]
or OntoHub [47]. Furthermore, tools like Protégé 5 [102] or PlibEditor 6 pro-
vide browsing capabilities in knowledge management and also query languages
like RQL [98], SPARQL [140], OntoQL [93, 11]. In addition, reasoners like
Pellet [153], RACER [75] or KAON [126], annotators like CREAM [79], Termi-
nae [56] or SAWSDL [103] and translators [38, 157] have been proposed. Domain
ontologies have been described for domains such as encyclopedia [87], logistics,
rivers, canals [29], transportation systems [29, 172], geology [12], electronic
components [88] and bio-informatics [22] etc.

In the context of database systems, an ontology can be viewed as a level
of abstraction of data models, analogous to hierarchical and relational models,
but intended for modelling knowledge about individuals, their attributes, and
their relationships with other individuals[127]. In fact, ontologies are typically
specified in languages that allow abstraction away from data structures and im-
plementation strategies; in practice, the languages of ontologies are closer in ex-
pressive power to first-order logic than languages used to model databases. For
this reason, ontologies are said to be at the "semantic" level, whereas database
schema are models of data at the logical or physical level. Due to their inde-
pendence from lower-level data models, ontologies are used for integrating het-
erogeneous databases, enabling interoperability among disparate systems, and
specifying interfaces to independent, knowledge-based services. In the technol-
ogy stack of the Semantic Web standards, ontologies are called as an explicit
layer. There are now standard languages and a variety of commercial and open-
source tools for creating and working with ontologies.

In the context of requirement engineering, the new requirements elicitation
method ORE (Ontology-based Requirements Elicitation) was proposed in the
article [96], where a domain ontology can be used as domain knowledge. The
authors advised a domain ontology to play a role in the semantic domain which
gives meaning to requirement statements by using a semantic function. Indeed,
by using inference rules on the ontology and quality metrics on the semantic
function, an analyst can be decide which requirements should be added for
improving the completeness of the current version of the requirements and/or
which requirements should be deleted from the current version for keeping con-
sistency. Additionally, the authors [97] proposed a method and a tool to en-
hance an ontology of domain knowledge for requirements elicitation by using
Web mining.

5http://protege.stanford.edu/
6https://www.iso.org/standard/43423.html

http://protege.stanford.edu/
https://www.iso.org/standard/43423.html

2.2. THE ONTOLOGY FORMALISM 27

Ontologies enable an explicit representation of a domain of application of
the system under design. Explicit means fully revealed or expressed without
ambiguity, whilst implicit means implied or expressed indirectly or tacit [14].
However, the meaning of these two words may be used in an inconsistent way,
within the computer science and software engineering communities. For exam-
ple, in logic and belief models [108] a sentence is explicitly believed when it is
actively held to be true by an agent, and it is implicitly believed when it follows
from what is believed. In contrast, semantic web [159] or system engineering
assign a slightly different meaning, i. e. semantics can be implicit, existing only
in the minds of the humans [...]. They can also be explicit and informal, or they
can be formal. For example, the Explicit Semantic Analysis (ESA) [67] inter-
prets semantics of unrestricted natural language texts and represents meaning
in a high-dimensional space of concepts derived from Wikipedia, the largest en-
cyclopedia in existence. The meaning of any text is explicitly represented in
terms of Wikipedia-based concepts. The requirements engineering community
uses the terms to distinguish between declarative (descriptive) and operational
(prescriptive) requirements [161], where they acknowledge the need for a for-
mal method for generating explicit, declarative, type-level requirements from
operational, instance-level scenarios in which such requirements are implicit.

The last definition from the requirement engineering community will be
used as a reference definition of explicit and implicit terms throughout this
manuscript. Indeed, the Event-B theories feature declarative type-level aspects
thanks to generic algebraic structure (data types, operators, axioms and the-
orems) and the Event-B models feature operational and instance-level aspects
thanks to its operational semantics (trace-based semantics).

2.2.1 Fundamental Characteristics
Ontology definitions meet three fundamental criteria [94]:

Formality. An ontology is a conceptualisation expressed in a modelling lan-
guage. It has an underlying formal semantics and it supports reasoning. As for
modelling languages, the semantics of ontology modelling languages is expressed
using satisfaction and entailment relations.

Automatic or semi-automatic reasoning techniques are associated with an
ontology modelling language. They allow the verification of instances through
the syntactical entailment (⊨O) and reasoning thanks to the semantic entail-
ment (⊢O). Consequently, the verification of properties expressed on concepts
and individuals defined by the ontology becomes possible, thanks to the use of
automatic reasoning techniques.

Consensuality. An agreement on the conceptualisation defined by an ontol-
ogy must be reached for a large community of users. This community is not
limited to the users or developers of a specific application: it includes all po-
tential users and developers of other applications related to the conceptualised

28 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

domain. Therefore, an ontology will be shared by several applications and design
patterns. For example, product ontologies compliant with ISO 13584 (PLIB)
[139] are defined through a formal standardisation process. They are published
as ISO and/or IEC international standards. This criterion excludes conceptual
models defined for a specific application.

Ability to be referenced. Each concept defined in an ontology is associated
with an identifier provided to allow applications to reference that concept from
any environment. Moreover, this concept can be referenced regardless of the
ontology model implemented to describe that concept. In this manuscript, the
reference ability will correspond to the ability of formal models to reference
concepts of ontologies.

2.2.2 Semantic Annotation Using Ontologies
Labelling in the semantic web offers two advantages over these systems: im-
proved information retrieval and improved interoperability [158]. Consider a set
of entities that exist in a given corpus. These entities can be words or sen-
tences in a document, images or videos, entities in a design model, etc. By
annotation we mean the connection that can exist between a concept of the
ontology (class, instance, property, etc.) and an entity of the corpus under con-
sideration. The annotation process consists in defining and applying a set of
rules that lead to the creation of annotations. This process can be fully au-
tomated, semi-automated with user validation, or fully interactive. Automatic
annotation has proven to be powerful in the semantic web and natural language
processing domain, since the entities of the corpus are words that appear in
texts. Several tools (or annotators) have been developed for different ontologies
and natural languages[79, 84, 17, 36]. Other approaches aiming at annotating
images and multimedia documents have also been developed [45]. In the area of
system design, the goal of model annotation is to increase the interoperability
of models. Consensus domain ontologies are used by different system models
that correspond to different technical views. The annotations enable the de-
signer to link different entities from different system models to the concepts
of the ontology. The inferences at the ontology level allow to verify some do-
main properties. Model annotations are created using semi-automatic and/or
interactive approaches. Automatic annotation is not recommended in these ap-
plication domains. For example, model annotations are created for Product Life
cycle Management (PLM) models in [109], for petroleum engineering models in
[112, 25], or for aerospace systems modelling in [79]. All of these examples use
controlled annotation techniques, either semi-automatic or interactive.

2.2.3 Ontologies for Engineering Contexts
Ontologies addressed in this thesis pertain to the engineering realm. The PLIB
[139, 92, 137] ontology model advocates the use of strong typing with a rich type

2.3. STANDARDS AS DOMAIN KNOWLEDGE 29

system, property derivation with algebraic operators corresponding to the de-
fined types, first-order logic and set theory as a constraint language, CWA and
context-dependent properties. Like in usual engineering practices and unlike
OWL, additional models may be added to a technical object description. In-
deed, a set of different functional models, each one representing a particular view
or discipline-specific representation (e.g., safety, real-time, energy consumption,
geometry procurement, simulation, etc.) can be associated with a given techni-
cal object described within the PLIB ontology model.

Finally, several domain ontologies based on this model already exist. Ex-
amples are ISO 13584 and ISO 15926 (e.g. mechanical fasteners, measure in-
struments, cutting tools) and IEC 61360 (e.g. electronic components, process
instruments) series of ontologies developed within international standardization
organizations (e.g. ISO, IEC) or national ones (e.g. JEMIMA 7 CNIS 8) that
cover progressively all the technical domains.

Benefits of Ontologies Benefits of adopting ontology formalism is enumer-
ated as follows [133]:

• sharing common understanding among people or software agents

• enabling reuse of domain knowledge

• making explicit domain assumptions

• separating the domain knowledge from the operational knowledge

• analysing domain knowledge

2.3 Standards as Domain Knowledge
According to ISO, a standard is defined as Standards are documented agreements
containing technical specifications or other precise criteria to be used consistently
as rules, guidelines or definitions of characteristics, to ensure that materials,
products, processes and services are fit for their purpose [89].

The use of standards has several potential advantages. It plays an important
role in the development of any complex system, which includes both product-
based and process-based development. The compliance checking of product with
respect to standards documents is both time-consuming and difficult. Some
work focuses on integrating standards into process development. In [61], the
authors gave a brief account of the notations and method they have developed
to support the use of the model and to describe a support environment. The
contributions of the article are the identification of the issue of standards compli-
ance; the development of a model of standards and support for compliance man-
agement; the development of a formal model of product state with associated

7Japan Electric Measuring Instruments Manufacturers Association,
8Chinese Institute for Standardization

30 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

notation; a policy scheme that triggers checks; and a compliance management
view. The article [24] introduced a framework that, using Natural Language
Semantics techniques, helps to process legal documents and standards to build
a knowledge base to store their logic representations, and the correlations be-
tween them. The knowledge base allows legal experts assess what requirements
of the law are met by the standard and, therefore, recognize what requirements
still need to be implemented to fill the remaining gaps. An application of the
framework is exemplified by comparing a provision of the European General
Data Protection Regulation against the ISO/IEC 27001:2013 standard. In [43],
the authors gave a general overview of the compliance checking field. First, they
highlighted the benefits that compliance checking can bring to several digital
transformation initiatives. Second, they defined the compliance control frame-
work, which includes process modelling and execution. Finally, some areas in
which compliance checking is relevant are highlighted. Similarly, [110] showed
how to implement the compliance relationship on transition systems. The com-
putability of this relation relies on the composition of two operators : the re-
duction relation, and the fusion function of the acceptance graphs associated
with the compared transition systems. It is formally demonstrated and illus-
trated by a case study. Nair et al. [128] presented the results of a questionnaire
survey examining the state of practice in safety evidence management. The
results are based on 52 valid responses from 11 different sectors and 15 coun-
tries. The survey explored industry perspectives and practices on (1) the types
of safety data used, (2) the processes and means for managing data changes,
(3) the data structuring and assessment techniques used, and (4) the challenges
faced by practitioners. The paper showed that V&V artefacts such as the V&V
plan, test results, and test case specifications are among the most commonly
used as security evidence, demonstrating the importance of V&V for security
evidence. However, some verification techniques such as model checking and
theorem proving are used in low numbers in the industry.

In recent years, assurance cases have been used in critical domains to estab-
lish system safety by presenting appropriate arguments and evidences [99, 145].
In [70], eliminative induction-based framework was presented, the principle (pro-
posed by Francis Bacon) that confidence in the truth of a hypothesis (or claim)
increases as reasons for doubting its truth are identified and eliminated. Pos-
sible reasons for doubting the truth of a proposition (defeaters) arise from the
analysis of a reliability case using the concepts of doubt-inducing reasoning.
Finally, Bacon’s concept of probability provides a measure of confidence based
on how many defeaters are identified and eliminated. Furthermore, the article
[74] explored the main current approaches, and proposes a new model for quan-
titative confidence estimation based on Belief Theory for its definition, and on
Bayesian Belief Networks for its propagation in safety case networks. Addition-
ally, the article [72] proposed a formal argument evaluation of the the concept
of an assurance case argument originally introduced by Toulmin[156]. The ap-
proach provide a mean of measuring how much justifiable conclusions are with
respect to the arguments. Wassyng et al. [165, 164] proposed a product domain
assurance case template as a standard for the development and licensing of med-

2.4. SYNTHESIS AND CONCLUSION 31

ical devices within that product domain. The authors developed an assurance
case template, where sub-claims and details of generated evidence need to be
plugged in appropriate placeholders. The article [173] presented an Event-B
formalisation and verification for the ARINC 653 standard, which provided a
standardised interface between safety-critical real-time operating systems and
application software, as well as a set of functionalities aimed to improve the
safety and certification process of such safety-critical systems.

Intuition (4) Standard conformance may be addressed and formalised as
explicit domain knowledge. Indeed, the standard is regarded and modelled
as domain knowledge which is referenced from the design models. Therefore,
the properties and requirements described in the standard documents may be
transferred to the model hence it allows to ensure its conformance.

2.4 Synthesis and Conclusion
This chapter reviewed works on domain knowledge in formal modelling, and
established that ontology formalism is a good candidate for describing domain
knowledge. Last, several works on conformance checking have been studied.

This survey reveals that integrating domain knowledge requirements in the
early stages of the system development is of utter importance (observation
(1)) to ensure high-quality modelling and verification. On the one hand, such
knowledge is provided implicitly during the system development by making some
assumptions about an environment and some past experiences. Commonly, such
implicit domain knowledge often shows some contradictory results, which may
lead to a system failure state. On the other hand, formal methods do not pro-
vide primitives for describing explicitly domain knowledge (observation (2)).
Another observation is that several research projects and approaches aimed at
formalising mathematical theories applicable to the formal development of sys-
tems. These theories help building complex formalisation and expressing and
reusing proof of properties. Usually, these theories are defined within contexts,
imported and/or instantiated. They usually represent the implicit semantics of
the systems, by types, logics, algebras, and so on. Additionally, observation
(3) emphasises the adequacy of ontology formalisms to express and describe
domain knowledge requirements.

From the observations (1), (2) and (3), it is clear that there is a need
for a generic framework and systematic approach addressing the formal and
explicit description of domain knowledge and allowing the requirements to be
transferred to the models. Likewise, the framework shall provide these features:

• Feature-1: Primitives for modelling domain knowledge concepts and as-
sociations, preferably generic ones.

• Feature-2: Primitives for expressing constraints of a domain of knowl-
edge,

32 CHAPTER 2. DOMAIN KNOWLEDGE IN FORMAL MODELLING

• Feature-3: A mechanism for referencing domain knowledge primitives
from design models,

• Feature-4: A mechanism for transferring safety properties (static prop-
erties) and behavioural properties (dynamic properties) required by the
domain knowledge to the formal models.

Intuition (4) asserting that standard specification may be viewed as do-
main knowledge is the basis for the contribution concerning the methodology of
checking conformance to standard specification (see chapter 8).

Chapter 3

Interactive Critical Systems

This Chapter contains:

3.1 Formal Methods for Interactive Systems 34

3.1.1 Interactive Systems Characteristics 34

3.1.2 Formal Design of Interactive Critical Systems 36

3.2 Interactive Systems Development 39

3.3 The Context of The FORMEDICIS project 42

3.4 Synthesis and Conclusion . 42

This chapter reviews the work related to formal methods tailored to the
design and verification of interactive critical systems. In this thesis, interactive
critical systems engineering is used as a pool of case studies for experimenting
and exemplifying the methodologies and the frameworks of explicitly modelling
of domain knowledge in formal modelling which is our central focus. Therefore,
the methodology for modelling domain knowledge requirements in the process
of system formal modelling may be used in other areas such as railway systems
or autonomous vehicles.

In this chapter, section 3.1 reviews techniques and tools dedicated to formal
modelling of interactive critical systems. Then, section 3.2 summarises two
important architectures established in interactive critical systems design, which
are relevant to the work of domain knowledge explicit representation. Next,
section 3.3 discuses the FORMEDICIS project context which was the context of
this PhD thesis. Moreover, FORMEDICIS project was dedicated to designing
and verifying interactive critical systems. Finally, section 3.4 concludes the
chapter.

33

34 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

3.1 Formal Methods for Interactive Systems
3.1.1 Interactive Systems Characteristics
Critical Interactive Systems Design. Development processes of critical
interactive systems in disciplines such as aeronautics, space and transports are
inspired by traditional software development processes. In addition, interna-
tional, widely adopted standards that take into account the safety and security
requirements of the systems under construction are required by certification
authorities. In particular, DO178C standard [66], in aeronautics, defines very
strict rules and instructions that must be followed to produce airborne software
products, embedded systems and their equipment. For instance, they need to
show that high-level requirements are in conformance with low-level descrip-
tions of software behaviour. Unfortunately, they do not explicitly mention how
users’ needs are identified and represented, making them partly not adequate for
interactive systems development. For this reason as well as inherently different
nature of interactive systems[147], other documents deal with the part of the
interactive system (such as [8], in aeronautics and [62] in space domains). In
aeronautics, some standards are dedicated to the description of interactive appli-
cations. For instance, [18] makes explicit the properties and abstract behaviour
of all the interactive components deployed in interactive cockpits. Beyond, it
also defines the communication protocol between the user interface server and
the interactive applications that are exploited by the flying crew [20]. Note that
some tools recently appeared to enhance the specification, coding and certifi-
cation stages of these interactive systems offering WIMP interfaces [160]. But
these tools, for instance, Scade Display1, deal mainly with information displays
and do not represent explicitly the states, events and behavioural evolution of
the components of the interactive systems (servers, widgets and user applica-
tions) as argued in [20]. The paper proposes to merge the elements of these
three types of approaches: development processes highlighting the importance
of requirements and formal description techniques (e.g. [142]), user- and usage-
related requirements and needs (e.g. [66]) as well as WIMP user interfaces
standards (e.g. [18]). Indeed, all these elements contribute to the production of
usable, dependable and certifiable interactive systems [129]

Furthermore, classical software development methodologies recommend be-
ginning with requirement elicitation which becomes the basis for the production
of software artefacts. Waterfall [144] or V cycle [113] methodologies are typical
examples of these safety-critical system development methodologies. These pro-
cesses were recommending iteration-based development processes, as advocated
by Winston W. Royce’s 1987 article[144]:

If the computer program in question is being developed for the first
time, arrange matters so that the version finally delivered to the
customer for operational deployment is the second version insofar
as critical design/operations areas are concerned.

1https://www.ansys.com/products/embedded-software/ansys-scade-display

3.1. FORMAL METHODS FOR INTERACTIVE SYSTEMS 35

Indeed, interactive software development processes adoption dates as far as
back the mid-1950s. Prominent software-engineering thought leaders from each
succeeding decade supported interactive and incremental practices, and many
large projects used them successfully [105]. The seminal work [132] advocated
the essential importance of usability goals, user characteristics, environment,
tasks and workflow of a product, service or process are given extensive atten-
tion at each stage of the design process; it stated central interactive system
issues, questions, and complex trade-offs facing designers, creators, and users
of interactive systems. Moreover, the article [142] presented the notation of
optimisation cycles and discussed techniques for user-participation integrated
into a general concept of participatory software development optimisation of
cycles in software development. (End-)user requirements, global and detailed
task analysis and formal specification are identified as intermediate products.

Human in The Loop Human factors and ergonomics [166] are key element
in developing interactive critical systems. Within the NASA, the following def-
inition of human factors is used2.

Human factors is an umbrella term for several areas of research
that include human performance, technology design, and human-
computer interaction. The study of human factors in the Human
Factors Research and Technology Division at NASA Ames Research
Center focuses on the need for safe, efficient and cost-effective oper-
ations, maintenance and training, both in flight and on the ground.

Indeed, human factors are widely investigated [34, 167] while designing such
systems, where important topics are established as training for advanced au-
tomation, cockpit errors and error reduction, management of cockpit work-
load, and general attitudes toward cockpit automation. Different methodologies
are proposed for addressing both the criticality aspects and the user aspects.
The formal syntax and semantics of the EOFM (Enhanced Operator Function
Model) and an automated process for translating an instantiated EOFM into the
model checking language Symbolic Analysis Laboratory. In [35], EOFM, an Ex-
tensible Markup Language-based, platform- and analysis-independent language
for describing task analytic models, is introduced. An automobile cruise control
example to illustrate how an instantiated EOFM can be integrated into a larger
system model that includes environmental features and the human operator’s
mission. The system model is verified using model checking in order to analyse
a potentially hazardous situation related to the human–automation interaction.
In [55], the authors presented an approach to detect and cure conflicts in air-
crafts pilots activities. The approach relies on three steps, the first step is to
track the pilot’s activities to reconstruct her/his behaviour using parameters
and reference models of the mission and the procedures. The second step is to
detect conflict in the pilot activity and this is linked to what is involved in the

2https://www.hfes.org/About-HFES/What-is-Human-Factors-and-Ergonomics

36 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

achievement of the mission. The third step is to design accurate countermea-
sures. Experimental results obtained from private and professional pilot have
been conducted to validate the approach.

Opportunities & Challenges. Opportunities and challenges have been iden-
tified by the use of formal verification in the analysis of critical interactive com-
puting systems in the article [42]. Three main challenges are discussed: (1) the
accessibility of the modelling stage; (2) support for expressing relevant proper-
ties; (3) the need to provide analysis results that are comprehensible to a broad
range of expertise including software, safety and human factors. A deep reflec-
tion on tools used and the problem hindering their accessibility was presented
in the article [82]. It commented on tool developments that could lead to wider
use of these techniques. It explored the role that existing methods and tools can
play in analysing interactive systems and concrete examples involving the use
of the PVS theorem proving assistant and the IVY toolset are given. The focus
was put on the formulation and validation of models of interactive systems; the
expression of user-related requirements, especially in the context of usability
engineering and safety analysis; the generation of proofs that requirements hold
and make sense when proof fails. Examples include standalone medical devices
including examples from part of a safety analysis of a device leading to the
product.

The state of affairs of formal methods dedicated to interactive critical sys-
tems fostered several lines of works by different teams across the world. Indeed, a
number of tooled approaches using formal methods to address issues of designing
and verifying interactive critical systems emerged and are still in development
are reviewed hereafter.

Observation (1) Modelling the environment of the system under design is
of utter importance to ensure its usability and high-quality. This requirement
may be formalised as common domain knowledge and then transferred when
constructing the system model.

3.1.2 Formal Design of Interactive Critical Systems
Significant work has been carried out to create tools that combine user-centred
design and formal verification technologies for the modelling and analysis of
interactive systems [81, 135, 57], and it is now agreed that it is the only way
to integrate interactive systems in critical systems [71]. For examples, formal
methods have been used to check functional requirements and safety require-
ments by developing models for interactive systems [83].

Event-B Formal Method. Event-B and ProB have been successfully ap-
plied to modelling interactive systems and validation of user tasks. In [10], the
authors proposed a tooled approach based on Atelier B tool and the SUIDT
model-based tool to address the cooperation between formal and experimental

3.1. FORMAL METHODS FOR INTERACTIVE SYSTEMS 37

HCI properties validation and verification. In [44], an approach to address the
problem of user interface evolution because of the introduction of new interac-
tion devices and/or new interaction modes is proposed. The authors considered
that interface behaviours are modelled as labelled transition systems, a com-
parison between user interfaces is achieved by an extended definition of the bi-
simulation relationship to compare user interface behaviours when interaction
modes are replaced by others. Moreover, [69, 150] defined a methodology based
on Event-B for developing an interactive system using a correct-by-construction
approach. It supports a development of the model-view-controller (MVC) ar-
chitecture. The whole approach has been illustrated on an industrial case study
that illustrates the effectiveness of our proposed approach for developing an
HMI. The EB2All [121, 149, 148] tool is used for code generation when the
suitable refinement level is reached. In the previous works, scalability issues are
addressed by proof-based techniques where refinement plays an important role
in handling the complexity by developing models incrementally [5].

CIRCUS. A tooled suite for modelling and validation of interactive critical
systems is provided by CIRCUS aka Computer-aided-design of Interactive, Re-
silient, Critical and Usable Systems 3. It supports the development of two types
of models. First, system models allows us to cover functional core, interaction
and dialogue technologies. Second, hierarchical task models allowing us to de-
scribe user behaviour, user knowledge, strategies, information and equipment
required to reach goals. The CIRCUS environment is intended to support mul-
tidisciplinary teams of software engineers, system designers and human factors
experts and it enables the editing and simulation of task models. The tool can
be exploited to ensure consistency, coherence and conformity between an envis-
aged or prescribed user task and the sequence of actions required to operate an
interactive system. The notation used in the tool allows user goals and sub-goals
to be structured into a hierarchical task tree. Mathematical operators can also
be used, such as for modelling temporal relationships between tasks and spe-
cial task types, for explicit representation of data and knowledge, for describing
devices, and for representing errors, genotypes and phenotypes of co-operative
tasks, etc.

PVSio-web. PVSio-web is an open source toolkit for model-based develop-
ment of user interfaces. The purpose of the toolkit is to support multidisci-
plinary teams of user interface engineers, domain experts and software analysts.
This support is achieved by integrating special components designed for dif-
ferent target users. (1) The Prototype Builder allows developers to create the
visual aspects and logic of operation of a prototyped device. The visual aspect
of the prototype corresponds to an interactive image of the device realised by
web technology. The operating logic is developed in the language of the Pro-
totype Verification System (PVS). (2) A simulator renders the appearance of

3https://www.irit.fr/recherches/ICS/documentation/

38 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

the prototype in a web browser. The behavioural logic of the prototype is ex-
ecuted in PVSio, a native component of the PVS system for animating PVS
models. User actions on input widgets (e.g. button presses) are converted by
the simulator into PVS representations that can be evaluated in PVSio then
the results are displayed in a web browser using the prototype’s output widget.
This ensures that the appearance of the prototype is close to the appearance of
the real system in the corresponding state. (3) Storyboard Editor facilitates the
development of mock-up prototypes based on storyboards (storyboards). It can
load various screen mock-ups, defines input widgets on them and associates the
screen transitions with the user actions associated with the input widgets. It
provides (1) a way to validate a model and to show that it faithfully represents
the device, (2) a way to formalise requirements given in natural language and
to demonstrate the benefits of the formalisation process, and (3) a way to prove
the requirements of the model using readily available formal validation tools.

IVY. It is a tool for model-based analysis of interactive systems designs4. The
tool consists of a set of plug-ins that serve as a front end to the NuSMV model
checker [46]. The toolkit supports a notation, Modal Action Logic (MAL),
that enables the specification of interactive systems and provides a set of prop-
erty templates designed to aid the development of appropriate properties for
analysing the model. The results, which include traces provided by the model
checking analysis when a property fails to be satisfied, are depicted. The goal
of IVY is to produce user-friendly representations and analysis tools for user
interface developers. Moreover, the results could be communicated effectively
within an interdisciplinary team of formal methods experts and software en-
gineers. The IVY toolkit architecture is organised into an extensible set of
interoperable components: MAL editor, property editor, trace visualiser and
trace simulator.

Data Flow Languages. A synchronous data flow language, Lustre [78], is
used for describing and analysing interaction mechanisms of user interfaces. In
[52], a set of possible interactions is derived from an informal description of
user interfaces, and the derived interactions requirements are further used for
developing a formal model of user interfaces to analyse system interactions [53],
and then for generating the test cases [51]. Furthermore, LIDL Interaction De-
scription Language (LIDL) [106] is proposed for describing a formal description
of user interfaces. In LIDL, the static description of user interfaces is defined by
interfaces while the dynamic description of user interfaces is represented through
interactions. The semantics of this language is also based on synchronous data
flows similar to Lustre that makes the process easy for formal verification and
code generation. Ge et al. [68] presented a formal development process for de-
signing interactive applications for safety critical systems. In this development
process, the LIDL language is used for describing user interfaces and S3 solver
for analysing the described model.

4http://ivy.di.uminho.pt/

3.2. INTERACTIVE SYSTEMS DEVELOPMENT 39

F3FLUID. The Formal Framework For FLUID (F3FLUID) was intended for
the development of interactive safety-critical systems. In [119], the authors
gave a detailed presentation of F3FLUID. This framework is based on FLUID
aka Formal Language of User Interface Design which is a pivot modelling lan-
guage defined in the FORMEDICIS project 5 enabling high-level system re-
quirements for interactive systems to be specified in the FLUID language. This
modelling language is specifically designed for handling concepts of interactive
safety-critical systems, including domain knowledge through annotations called
tags. Furthermore, FLUID defined an extension mechanism relying on the re-
finement of Event-B which allows an incremental design of interactive systems.
Formal verification, validation and animation of the designed models are sup-
ported through different transformations of FLUID models into target formal
verification techniques: Event-B for formal verification, ProB model checker for
animation and Interactive Cooperative Objects for user validation. The Event-
B models are generated from FLUID, while ICO and ProB models are produced
from Event-B. The TCAS (Traffic Alert and Collision Avoidance System) case
study was used as an example of the framework. Additionally, Multi-Purpose
Interactive Applications (MPIA), was developed to illustrate the effectiveness
of F3FLUID framework for the development of interactive safety-critical sys-
tems [151]. The ICO/PetShop framework [130, 19, 65] is used for animation of
the presentation. Indeed, Petri nets-based verification procedures can connect
interactive objects of the user interface to ICO models through Petri nets. By
using the visual animation of the user interface, it is possible to run the mod-
elled interactive application. These formal techniques and dedicated tools play
a complementary role in the modelling process, and they provide support and
feedback contributing to the enrichment of the FLUID models. Furthermore,
these techniques offer different services of verification, validation and animation.

3.2 Interactive Systems Development
Model View Controller (MVC). The MVC architecture model [104] is the
standard architecture defining the implementation of HMIs introduced in the
SmallTalk environment, and it has been adopted by many programming lan-
guages afterwards. The Model-View-Controller metaphor is a way to design
and implement interactive application software that takes advantage of modu-
larity, in order to help the design of interactive systems, and to allow available
pieces already developed for one interactive system to be reused in a new inter-
active system. The metaphor requires a separation of behaviour between the
actual model of the application domain, the views used for rendering the state
of the model, and the editing or control of the model and views. The MVC
metaphor, illustrated in Figure 3.1, breaks down interactive systems into three
components:

• The model. The model of an application is the domain-specific software
5https://anr.fr/Projet-ANR-16-CE25-0007

40 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

Figure 3.1: MVC architecture model [104]

simulation or implementation of the application’s central structure. This
can be as simple as an integer (as the model of a counter) or string (as
the model of a text editor), or it can be a complex object.

• The view. The views provide representation of the model (graphic ren-
dering, sound, ...) ; they request data from their model, and render the
data.

• The controller. The controllers contain the interface between their asso-
ciated models and views and the input devices (keyboard, pointing device,
time). Controllers also deal with scheduling interactions with other view-
controller pairs: they track mouse movement between application views,
and implement messages for mouse button activity and input from the
input sensor.

The MVC model is a generic architecture model. Different architecture
models derived from the standard MVC architecture exist, such as Modified
MVC, MVP, and MVVM.

ARINC 661 Standard. ARINC 661 standard [18] defines a standard Cock-
pit Display System (CDS) interface intended for all types of aircraft installa-
tions. The primary objective is to minimise the cost to the airlines, directly or
indirectly, by accomplishing the following:

• Minimise the cost of acquiring new avionic systems to the extent it is
driven by the cost of CDS development.

• Minimise the cost of adding a new display function to the cockpit during
the life of an aircraft.

3.2. INTERACTIVE SYSTEMS DEVELOPMENT 41

• Minimise the cost of managing hardware obsolescence in an area of rapidly
evolving technology.

• Introduce interactivity to the cockpit, thus providing a basis for airframe
manufacturers to standardise the Human Machine Interface (HMI) in the
cockpit.

The specification document [18] defines two external interfaces between the
CDS and the aircraft systems. The first is the interface between the avionics
equipment (user systems) and the display system graphics generators. The
second is a means by which symbology and its related behaviour are defined. A
User Application is defined as a system that transmits data to the CDS, which
in turn can be displayed as visual graphical information to the flight deck crew.
A User Application can also include software or hardware that receives input
from interactive graphics managed by the CDS.

The CDS provides graphical and interactive services to User Applications
within the flight deck environment. When combined with data from User Ap-
plications, it should display graphical images to the flight deck crew. This doc-
ument defines an interface between the CDS and User Applications (UA). The
application that controls the interface is defined to be within the CDS. However,
this document does not specify the look and feel of any graphical information.

In this thesis, specifically in chapter 8, the main emphasis was shed on
the widget library specified by ARINC 661 and described in section 3 of the
specification standard document. In this section, for each widget the definition
is divided into five parts as follows:

• Definition section : states the categories of the widget, functional descrip-
tion of the widget and any restrictions to ARINC 661 principles.

• Widget parameters table : describes all parameters of the object. These
parameters are divided into two categories: ”Commonly used parameters”
with a reduced description and ”Specific parameters” with a complete
description.

(3) Creation structure table, (4) Event Structure table(s) and (5) Run-time
modifiable parameter table give respectively the content and format of the ex-
changes between UA and CDS, the definition-time exchanges and the run-time
exchanges.

Observation (2) The structure and the common requirements of interactive
systems are documented and standardised for reuse and sharing. This systems
engineering approach proved to be valuable in conventional (not formal) devel-
opment processes [122, 64]. As a consequence, providing means (ontology mod-
elling language) for formally describing and integrating this domain knowledge
or common requirements is beneficial for improving the quality and confidence
in the systems formal models.

42 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

3.3 The Context of The FORMEDICIS project
This thesis has been achieved in the context of the FORMEDICIS6 ANR projet
which fed the research contributions. Indeed, this thesis addressed the challenge
of explicit modelling of domain knowledge which has been identified for inter-
active critical systems in the context of this project. Nevertheless, this thesis
set up the purpose of developing a general framework where domain knowledge
may be modelled and the domain-specific requirements may be transferred to
systems models independently of the field of application. Indeed, there is on-
going work on explicit modelling of domain knowledge related to autonomous
vehicles and railways systems relying on the contributions of the this thesis.

Observation (3). Relying on FORMEDICIS context [119, 151] and the re-
view of formal methods dedicated to interactive critical systems presented in
section 3.1, it follows that the major formal methods dedicated to modelling and
verifying interactive critical systems lack integrated and systematic framework
for explicit modelling of domain knowledge, instead different methodological
guidelines and tools are provided to address interactive critical systems mod-
elling and task description and analysis. As a consequence, interactive critical
systems represent an adequate source of domain knowledge properties and case
studies for supporting the definition of a framework for explicit modelling of
domain knowledge.

3.4 Synthesis and Conclusion
The goal of studying works targeting the formal design and verification of inter-
active critical systems is to identify case studies and relevant domain properties
to illustrate the importance of explicit modelling of domain knowledge in the
design and verification of such systems. Yet, the framework presented in part
II aims at generic application in systems engineering context. Moreover, vari-
ous formalisms, developed by the community of interactive critical systems, are
used to model systems and several relevant properties where many case studies
have shown that each formalism has advantages. The criteria for choosing one
formalism over another depend to a greater extent on the knowledge and expe-
rience of developers in using these formalisms[41]. Different formal techniques
of verification are used for achieving verification and validation, such as model
checking, equivalence checking, and proof.

On the one hand, the review of major formal methods dedicated to inter-
active critical systems revealed the relevance of addressing case studies and
domain properties pertaining to this category of systems. On the other hand,
observation (1), observation (2) and observation(3) reveals that the issue
of explicit modelling of domain knowledge in formal modelling of interactive
critical systems will improve the quality and dependability of such systems.
Therefore, the chapter provided motivation for

6https://anr.fr/Projet-ANR-16-CE25-0007

3.4. SYNTHESIS AND CONCLUSION 43

• the explicit modelling of domain knowledge then transferring the common
domain properties to formal models. Examples of such properties are:
checking whether a given critical object is always displayed on a specific
output device, and checking whether a presentation is redundant (e.g.
image and voice in the case of an alarm) in the case of a multi-modal user
interface.

• definition of a library of widgets (like ARINC 661 widget library) for reuse
and shararability benefits

• addressing behavioural domain properties as input event leads to triggering
a confirmation event which are required in certification standards.

These challenges are addressed in Part II.

44 CHAPTER 3. INTERACTIVE CRITICAL SYSTEMS

Chapter 4

Case studies

This Chapter contains:

4.1 Traffic Collision Avoidance System 45
4.1.1 Overview of Operation . 46
4.1.2 Definitions and Requirements 46

4.2 Multi-Purpose Interactive Application 48
4.2.1 Requirements of WXR User Interface 49

4.3 Automatic Teller Machine . 50
4.4 Conclusion . 51

This chapter describes case studies borrowed from the field of interactive
critical systems. These systems are used throughout the contribution part II
to illustrate the framework for explicit modelling of domain knowledge in for-
mal system modelling and the associated methodology. The selection of these
case studies was motivated by the adequacy between the properties required for
these systems and the demonstration of advantages of the framework: confor-
mance checking, static properties transfer and domain-based behavioural anal-
yses. Another reason for development of multiple case studies is to demonstrate
the generality of the framework and its flexibility.

4.1 Traffic Collision Avoidance System
Traffic Collision Avoidance System, or TCAS for short, is used as a case study
for comparison between explicit and implicit modelling of domain knowledge in
state-based formal methods. It is used in chapter 5 for demonstrating the bene-
fits of explicit modelling of domain knowledge compared to implicit modelling of
domain knowledge. Besides, a didactic example manipulating temperatures is
used to illustrate the main challenge of explicit modelling of domain knowledge
(see section 5.1).

45

46 CHAPTER 4. CASE STUDIES

Figure 4.1: TCAS Protection Volume

4.1.1 Overview of Operation
Traffic alert and Collision Avoidance System (TCAS) is an airborne avionics sys-
tem which operates independently of the ground-based air traffic control (ATC)
as a last resort safety net to mitigate the risk of midair collisions. TCAS tracks
aircraft in the surrounding airspace through replies from their ATC transpon-
ders. If the system diagnoses a risk of an impending collision, it issues and
presents a Resolution Advisory (RA) to the flight crew which guides the pilots
to control their vertical rate to avoid a collision [155, 63].

Each TCAS-equipped aircraft is surrounded by a protected volume of airspace.
Figure 4.1 shows the horizontal boundaries of the protected volume described
using tau and DMOD (Distance MODification) criteria. The vertical tau and
the fixed altitude thresholds shall determine the vertical dimensions of the pro-
tected volume.

The horizontal dimension of the protected airspace is based on the tau and
the approximation of the protected horizontal distance. So, the scale of pro-
tected volume depends on the aircraft’s speed and trajectory. The horizontal
miss distance filter seeks to constrain the protected volume for obtaining suffi-
cient lateral separation using range and bearing information by excluding RAs
for aircraft.

Figure 4.2 displays the different symbols used in the traffic display. Shape
and colours are used to assist the pilot in understanding the displayed infor-
mation. Own aircraft is depicted in cyan or white colour and other aircraft
are depicted using different geometric symbols and colours as per their level of
threat.

4.1.2 Definitions and Requirements
The complete development of the TCAS not necessary to demonstrate the ad-
vantages of the framework. Therefore, the main requirements considered in the
section chapter 6 are the properties related to the computer-human interface

4.1. TRAFFIC COLLISION AVOIDANCE SYSTEM 47

Figure 4.2: Standardized Symbology for Use on the Traffic Display

of the TCAS: the property stating that critical interactive aircraft detected in
the protected volume are always visible, which is the safety property of interest.
The selection of this case study and this particular property is motivated by its
relevance to demonstrate that general domain-specific safety properties (static
properties) may be formalised as explicit domain knowledge transferable to a
particular system by annotation.

Hereafter, the main definitions and requirements related to the TCAS sys-
tem informally described in associated standard documents [155, 63, 169] are
identified and enumerated. They are structured in three categories: relevant
definitions, functional and safety requirements.

Definitions

• DEF1-Protected Volume: it is the zone surrounding the protected
volume. This volume is subdivided into three layers, from outer to inner:
Caution Area (CA_A), Warning Area (WA), and Collision Area (CO_A).
In addition, the protected volume is encased in Surveillance Area (SA).

• DEF2-Critical aircraft: they are a set of aircraft detected in the zones
CA_A, WA or CO_A. Otherwise, the aircraft being out of these zones
are considered as not critical.

• DEF3-Display Grid: It represents aircraft displayed within the current
range (zoom).

• DEF4-Display Edge: It represents critical aircraft that are currently
out of range and are only partially displayed (half of the symbol).

• DEF5-Hidden aircraft: A set of aircraft detected by the TCAS but not
displayed.

48 CHAPTER 4. CASE STUDIES

Functional requirements

The functional requirements associated with the TCAS system are:

• REQ1-Aircraft Detection: The primary role of the TCAS is to detect
TCAS-equipped aircraft flying in the neighbourhood of own aircraft.

• REQ2-TCAS zones: The TCAS zone divides the protected volume
into three areas, each corresponding to a different level of criticality for
the aircraft.

• REQ3-Aircraft Displaying: The second role of the TCAS is to display
TCAS-equipped aircraft based on the current range.

• REQ4-Changing range: On the display, the TCAS allows to zoom in
and zoom out.

• REQ5-Displaying Range: Aircraft within the current range are dis-
played on the TCAS display’s grid.

• REQ6-Symbols Displaying. Each aircraft is represented using stan-
dard symbols and colours.

Safety requirements

The safety requirements associated with the TCAS system are:

• REQ7-Unambiguous and complete: Every detected aircraft must be
either within or outside of the range, but never both.

• REQ8-Display: Every detected aircraft must either be displayed or hid-
den, but not both.

• REQ9-Critical aircraft on screen edge. When critical aircraft are
out of range, they must be displayed on the Screen Edge.

• REQ10-Visible critical aircraft: Whatever the range level, critical
aircraft must always be visible.

4.2 Multi-Purpose Interactive Application
The Multi-Purpose Interactive Application (MPIA) is an airborne application
that meets the ARINC 661 requirements [18]. Fig. 4.3 depicts MPIA, a real
User Application (UA) to handle many parameters of the flight. This system
provides a tabbed panel with three buttons, WXR for controlling Weather Radar
information, GCAS for Ground Collision Avoidance System parameters and
AIRCOND for handling air conditioning settings. The crew member can toggle
to either application (see Fig. 4.3) by pressing on the corresponding tab. These
tabs control three separate programs that can be operated by the pilot and the
co-pilot using input system.

The MPIA window in each tab consists of three major parts:

4.2. MULTI-PURPOSE INTERACTIVE APPLICATION 49

• information area is the top bar of every tab that splits into two sections
to show the current status of the task on the left-hand side and the error
notices, activities in progress or incorrect modification as appropriate on
the right.

• workspace area depicts adjustments to the selected control panel. For ex-
ample, the WXR workspace displays all the modifiable parameters of the
weather radar system, the GCAS workspace displays some of the operat-
ing modes of the GCAS. The AIRCOND workspace displays the selected
temperature within the aircraft.

• menu bar includes three sections for accessing the WXR, GCAS and AIR-
COND digital control panels.

(a) WXR (b) GCAS (c) AIRCOND

Figure 4.3: Snapshots of MPIA

The selection of this case study is motivated by its adequacy to demonstrate
conformance checking with respect to a standard. Furthermore, the formal
development of the MPIA case study was limited to the computer-human inter-
face associated with the WXR application allowing to control the weather radar
information. Indeed, chapter 6 demonstrates the framework for formal confor-
mance checking to prove the conformance of the WXR user interface model with
respect to the ARINC 661 standard domain-specific requirements on widgets.

4.2.1 Requirements of WXR User Interface
Hereafter, the requirements of WXR user interface are described, allowing pilots
to select different modes from the workspace area and to adjust the orientation
(tilt angle) of the weather radar system when necessary. Note that other re-
quirements about GCAS and AIRCOND are omitted.

• REQ1 There are five working modes:

– OFF for switching off the weather radar,

50 CHAPTER 4. CASE STUDIES

– STDBY for switching on the weather radar but does not activate the
detection,

– TST for displaying graphical test patterns on the radar screen,
– WXON for switching on the weather radar,
– WXA for switching on the radar display and displaying alerts when

required.

Only one mode must be selected at a time.

• REQ2 The tilt selection mode: AUTO or MANUAL. A CTRL push-
button must be allowed to switch between two modes.

• REQ3 The stabilisation mode: ON or OFF. A CTRL push-button must
be allowed to switch between two modes.

• REQ4 When the tilt selection is in AUTO, the access of CTRL push-
button must be forbidden.

• REQ5 The tilt angle shall be entered within the range [-15: 15] in the
edit box.

• REQ6 When the tilt selection is in AUTO mode then the tilt angle must
be unchangeable.

4.3 Automatic Teller Machine
The user interface of an automatic teller machine (ATM) is described hereafter,
where the primary requirement is that an authenticated client withdraws ban-
knotes. This case study is used in chapter 7 for demonstrating the a framework
for defining and applying domain-based behavioural analyses of formal models.

• REQ1 A user can exclusively use a keyboard or a screen.

• REQ2 To withdraw banknotes, a user must be authenticated.

• REQ3 A user can adjust the brightness a finite number of times.

• REQ4 Any entered passcode must be followed by a confirmation or an
abortion.

• REQ5 The entered passcode must never be displayed.

• REQ6 The user may try a new passcode a fixed number of attempts

A user inserts a credit card and chooses an input device to enter a passcode.
Upon entering a passcode, the user may confirm it. Before performing this
operation, the user may adjust the brightness of the screen. When the user
confirms the input, validation starts. It may result in the acceptance or refusal

4.4. CONCLUSION 51

of the passcode. If the passcode is correct, the ATM delivers banknotes and
ejects the card. Otherwise, the user may try again to enter the correct passcode.
A user is allowed new attempts a limited and fixed number of times only. A
user shall be able to abort the operation of withdrawing banknotes at any time.

4.4 Conclusion
This chapter introduces three case studies that are modelled to demonstrate
the effectiveness, flexibility and other advantages of the explicit modelling of
domain knowledge in formal methods as presented in the contributions part
II. First, the TCAS case study is used to demonstrate that safety properties
(static properties) may be defined and proved once and for all and then trans-
ferred through annotation to formal models of systems (see chapter 6). Second,
the ATM case study is important since it exemplifies the framework for defining
and applying domain-specific behavioural analyses on formal models 7. Fi-
nally, the MPIA case study is modelled to demonstrate that the framework may
be used to achieve conformance checking of formal models regarding general
domain-specific requirement predefined in certification standards (see chapter
8). The multiplicity of case studies provides evidence for the utter importance
of explicit modelling of domain knowledge in formal modelling and establishes
the flexibility of the proposed framework.

52 CHAPTER 4. CASE STUDIES

Part II

Contributions

53

The Roadmap of the
Contributions

This chapter presents a roadmap for the work carried out during the doctoral
thesis for tackling the problem of explicit modelling of domain knowledge in
formal modelling. This shows the research trajectory and results achieved since
the beginning of the thesis. The doctoral project is related to three scientific
disciplines and research areas: knowledge representation, formal methods, and
interactive systems. The last one is used as a domain of application for selecting
case study requirements and domain properties. Throughout the research, sev-
eral methodological and technical contributions were proposed to address the
main challenges of explicit modelling of domain knowledge in formal modelling.
The contributions are presented in the following 4 chapters. The chapters are
highlighted and linked to Figure 4.4 with different colours to visualise the in-
terconnections of the contributions.

Figure 4.4 shows the four main contributions to address the challenge of ex-
plicit modelling domain knowledge in formal modelling, which are distinguished
by three different colours. The relationships between various contributions are
also depicted with labelled arrows.

My doctoral research aimed at developing a framework having features iden-
tified in the synthesis of section 2.4. They are recalled below:

• Feature-1 required primitives for modelling domain knowledge concepts
and associations preferably generic. This has been addressed by defining a
generic data type Ontology representing an ontology and its essential com-
ponents such as concepts, properties, instances and associations. There-
fore, representing concepts and associations of some domain knowledge
amounts to instantiating this data type.

• Feature-2 required primitives for expressing constraints of a domain of
knowledge. This has been addressed by defining a set of operators entailing
these constraints used for modifying or accessing a given ontology.

• Feature-3 required a mechanism for referencing domain knowledge prim-
itives from design models. This has been addressed simply thanks to the
importing mechanism of Event-B theories where the models can use the

55

56

is annotated by

Behavioural
Domain Knowledge

<<Event-B Theory>>

uses

selects

Properties
<<predicate operator>>

instantiates

is annotated
 by typing

Static
Domain Knowledge

<<Event-B Theory>>

uses

selects

Properties
<<theorems>>

uses

instantiate

Event-B meta-theory
Instance

<<Event-B Context>>

Verification
<<theorem proving>>

Ontology modelling
Language

<<Event-B Theory>>

uses

Event-B Model
<<Event-B Machine>>

Verification
<<theorem proving>>

Event-B meta-theory
<<Event-B Theory>>

Temperature aggregator

Property Transferring + TCAS Case Study

CIS Behavioural Property + ATM Analysis Case StudyARINC 661 + WXR Conformance Checking Case Study

Figure 4.4: A map of the contributions of the thesis

data types and operators of the imported theory. The three first features
have been incorporated in the ontology modelling language developed as
an generic Event-B theory which is presented in chapter 5.

• Feature-4 required a mechanism for transferring safety properties (static
properties) and behavioural properties (dynamic properties) defined in
the domain knowledge to the formal models. This has been addressed
for the case of safety properties using typing and one methodological rule
requiring from the model to exclusively use the theory primitives. For
the case of the behavioural properties analysis, annotation of the events
with ontology concepts has been defined and illustrated. The former is
presented in chapter 6 and the latter is discussed in chapter 7.

The Intuition (4) asserting that standard specification may be viewed as
a special case of domain knowledge has been the basis for the development of
the contribution presented in the chapter 8.

The Event-B generic theories are an essential and underlying component
of explicit modelling of domain knowledge framework. Several theories have
been defined to support the formal development of explicit domain knowledge.
The first step was to define an ontology modelling language as generic Event-B
theories for specifying domain knowledge concepts and constraints. It allows
the formal description of domain knowledge as Event-B theories. The Event-
B models may reference the domain knowledge concepts by using the Event-B
theory data types and operators.

57

The well-definedness feature of the operators of Event-B theories is lever-
aged for transferring the formalised constraints of domain knowledge. From a
type-theoretic point of view, it corresponds to defining dependent types and en-
suring that the variables remain well-typed through the evolution of the system.
Indeed, the well-definedness condition delimits a part of the sub-domain param-
eterised by the operator arguments, which is a total function on this sub-domain.
A technical presentation of the general approach permitting the simulation of
dependent types is discussed and argued in this article [13].

Explicit Modelling of Domain Knowledge

Chapter 5 introduces and presents the work carried out to demonstrate the
qualitative leap of explicitly modelling domain knowledge in formal modelling.
To this purpose we rely on the paradigm of the triptych, identifying three main
parts of the software development process: domain description, requirements
prescription and software design. D, S ⊢ R expresses a formal deduction,
where D represents the domain concepts in the form of properties, axioms,
relations, functions and theories; S represents a system model; and R repre-
sents the intended system requirements. This entailment states that the given
domain description (D) and the system model (S) yields logically the given re-
quirements (R). This advocated paradigm is showcased through a didactic case
study (temperature aggregator). An important observation which emerges im-
mediately from this formal modelling methodology is the need for a modelling
language to describe domain knowledge. The definition of an ontology modelling
language as generic Event-B theory for explicit domain knowledge modelling is
discussed in great detail in this chapter. Moreover, this contribution has been
published in article [116] where the ontology language is introduced, and its
advantages are discussed.

A foundational step towards explicit modelling of domain knowledge is for-
malising it. Then, formal models refer to domain knowledge concepts, allowing
constraints and rules to be transferred. Event-B provides a useful infrastruc-
ture for defining such a language by using generic theories. A formal generic
theory acting as a meta-model is proposed, and each ontology is described as
an Event-B theory that is not necessarily generic but must be an instance of
this meta-model. Typically, domain knowledge is formalised as collections of
classes, properties and instances.

In Figure 4.4, the yellow component represents the contribution discussed in
chapter 5. This part is composed of two boxes, the small box denotes the didactic
case study used to demonstrate the benefits of the explicit modelling of domain
knowledge, and the large box represents the formal ontology modelling language
devised to describe domains of knowledge as ontologies. It is noteworthy that
the ontology modelling language serves as the basis for the other contributions.

58

Transferring Safety Properties

The ontology modelling language defined as a generic Event-B theory in chap-
ter 5 has been used to demonstrate how to transfer safety properties formalised
as theorems of a domain theory to formal models of systems. The ontology
modelling language which is formalised as an Event-B theory is instantiated to
model a domain of knowledge. The domain theory is used in the specification of
systems as formal models. A methodology is defined in chapter 6 allowing the
transfer of general safety properties mined from domain knowledge to formal
models. This methodology is illustrated in a case study borrowed from the field
of interactive systems; namely the Traffic Collision Avoidance System (TCAS).
Furthermore, the articles [116, 115] presented the benefits of transferring do-
main properties from domain theories over ad hoc specification of such domain
properties at the same level as system-specific requirements.

In Figure 4.4, the red part represents the methodology designed for trans-
ferring of general domain constraints from domain theories to formal models. It
is a common part between the contributions presented in chapter 6 and chapter
8. The difference between the two is highlighted in distinct colours. The main
difference is that chapter 8 presents the framework and associated methodol-
ogy intended for achieving formal conformance checking. The contribution of
static annotation for transferring safety properties is highlighted in violet. It is
composed of the methodology (red part) and the TCAS model for case study
development (violet part)

Analysis of Behavioural Properties

In the figure 4.4, the green colour highlights the contribution presented in chap-
ter 7, where a systematic methodology for specifying behavioural analysis with
domain-specific constraints is discussed. This generic framework allows the
description and reference of domain knowledge. Indeed, a formal method for
describing and setting up domain-specific behavioural analyses is defined and
applied to a real-world case study in [118]. The framework supports the defini-
tion formal verification technique for dynamic properties entailed by engineering
domain knowledge, where Event-B formal models are annotated and analysed in
a non-intrusive way. This method is based on the formalisation of behavioural
analyses relying on domain knowledge as an ontology on the one hand, and
a meta-theory for Event-B on the other hand, introduced in the article [143].
The proposed method is illustrated by analysing the ATM critical interactive
system. Chapter 7 describes this contribution, and illustrates it with a useful
analysis: investigating that input events are always followed up by confirma-
tion; an important behavioural property commonly raised in the domain of the
interactive systems.

59

Formal Conformance Checking
In Figure 4.4, the blue colour is used to depict the contribution of achieving
conformance checking formally. Indeed, the framework for transferring safety
properties from domain theories to formal models was leveraged to define a
methodology for standard conformance checking. This methodology allows es-
tablishing formal conformance accordingly to a standard specification. There-
fore, it contributes to enhancing the quality of formal models and increasing
the confidence associated with the system under study [117]. In this article,
a formal framework based on the Event-B method and its theories is defined
for allowing the formalisation of standard concepts and rules as an ontology,
especially the formalisation of engineering domains. The description takes the
form of an Event-B theory consisting of data types and a collection of operators
and theorems. Formal conformance checking is accomplished by annotating the
system model with typing conditions. Chapter 8 is dedicated to presenting the
formal conformance process and formal models and theories developed for this
task. An industrial case study borrowed from the aircraft cockpit engineering
domain is used to demonstrate the feasibility and strengths of the approach. The
ARINC 661 standard document is formalised using an Event-B theory using the
ontology modelling language. This theory formally models, and annotates the
safety-critical real-world application of a Weather Radar System for certification
purposes.

60

Chapter 5

Explicit Modelling of
Domain Knowledge Using
Ontologies

This Chapter contains:
5.1 Temperature Aggregator Example 62

5.1.1 Temperature Aggregator Requirements 62
5.1.2 Modelling without the Theory Operators 63
5.1.3 Modelling with the Theory Operators 64
5.1.4 Synthesis . 67

5.2 An Ontology Modelling Language (OML) 68
5.2.1 OML as a Generic Event-B Theory 69
5.2.2 OntologiesTheory - Data type 69
5.2.3 OntologiesTheory - Operators 69
5.2.4 OntologiesTheory - Theorems 73

5.3 Conclusion . 73

This chapter is dedicated to demonstrate how explicit modelling of domain
knowledge may improve the quality of the formal modelling of systems. Classical
modelling refers to all the approaches merging in the same formal specification
domain requirements and system requirements. Therefore they are approaches
characterised by implicit modelling of domain knowledge. In Event-B, these
approaches rely generally on the two original components of Event-B method:
the context and the machine components. In contrast, explicit modelling of
domain knowledge, as advocated in this thesis, are characterised by a neat
separation of the specification of the domain knowledge and the specification of
the system. Consequently, these approaches allow for higher-quality modelling,
reuse and sharing. Generic Event-B theories are used for separating common
requirements related to some domain of knowledge from specific requirements

61

62CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

of the system under design. Event-B generic theories, providing data types
and operators with well-definedness, are used with profit to achieve the goal of
explicit modelling of domain knowledge in formal modelling.

This chapter is organised as follows. Section 5.1 illustrates the motivation
behind the explicit modelling of domain knowledge through two Event-B mod-
els of the same system (temperature aggregator): implicit modelling of domain
knowledge and explicit modelling domain knowledge cases. Section 5.2 presents
the ontology modelling language tailored to explicit modelling domain knowl-
edge, thus providing a uniform framework for expressing and referencing domain
concepts and transferring common domain properties. The ontology modelling
language opened the path the the contributions presented in chapters 6, 7 and
8. Last, Section 5.3 concludes this chapter.

5.1 Temperature Aggregator Example
This section1 is dedicated to the demonstration of the advantages of the avail-
ability of reusable formal models providing domain knowledge primitives in con-
trast with a classical modelling approach. The two different approaches are il-
lustrated on an Event-B model of a didactic system: a temperature aggregator.
The Event-B method is used to demonstrate the methodology advocated in this
thesis. In addition, the approach relies on Event-B theories for formalising and
providing domain knowledge models leveraging data types and operators.

The two ways of modelling are illustrated respectively in subsections 5.1.2
and 5.1.3 where domain knowledge on units of temperature is modelled implic-
itly and explicitly. The interest of double modelling is to pinpoint the differences
between the two approaches and highlight the limitations of implicitly embed-
ding domain knowledge in the design models. Finally, a synthesis of explicit
and implicit paradigms is presented in Subsection 5.1.4.

5.1.1 Temperature Aggregator Requirements
The case study corresponds to a simple system that computes an average of
collected temperature samples. Initially, the average and counter are set to 0.
Whenever a new temperature is sensed, the counter is incremented by 1 and
the average temperature is updated. The average should be calculated in the
same temperature unit as a safety measure. Hereafter, the requirements are
enumerated.

• REQ1 The system should start at 0° Celsius

• REQ2 The system should compute the average of temperature samples.

• REQ3 The average should be expressed in Celsius degrees.
1The full Event-B modelling of the temperature aggregator example is in appendix C.1

5.1. TEMPERATURE AGGREGATOR EXAMPLE 63

5.1.2 Modelling without the Theory Operators
In this first attempt, the system computing an average of a set of temperatures
is modelled using two Event-B components: a context C_TemperatureContext
in Listing 5.1 and a machine C_TemperatureMachine in Listing 5.2. These two
components describe domain knowledge and system model respectively. An
enumerated set C_ThermalUnits defines possible units in axm1: C_Celsius,
C_Fahrenheit and C_Kelvin. A constant C_TemperatureT is defined as a col-
lection of temperature values and units in axm2. The constant is a set containing
ordered pairs composed of an integer and a unit of the enumerated set. The
axiom axm3 is a necessary constraint on C_TemperatureT asserting that the
temperatures associated with Kelvin must be non-negative.
CONTEXT C_T emperatureContext
SETS C_T hermalUnits
CONSTANTS

C_Celsius,
C_F ahrenheit,
C_Kelvin,
C_T emperatureT

AXIOMS
axm1 : partition(C_ThermalUnits, {C_Celsius}, {C_Fahrenheit}, {C_Kelvin})
axm2 : C_TemperatureT = Z × C_ThermalUnits
axm3 : C_TemperatureT−1[{C_Kelvin}] = N

END

Listings 5.1: Temperature aggregator - Event-B context

The machine model is shown in Listing 5.2. Two new variables, average
and counter, are declared (typing1 and typing2). A new safety property is
added in (safetyInv) to ensure that the unit of average is C_Celsius. The
INITIALISATION event is used to set the initial values of the counter and
average; the two first variables are initialised with 0 and average is set to
C_Celcius (REQ1).
MACHINE C_T emperatureMachine
SEES C_T emperatureContext
VARIABLES average , counter
INVARIANTS

typing1 : average ∈ C_TemperatureT
typing2 : counter ∈ N
safetyInv : prj2(average) = C_Celsius

EVENTS
INITIALISATION
THEN

act1 : average := 0 7→ C_Celsius
act2 : counter := 0

END
compute
ANY newTemperture
WHERE

grd1 : newTemperture ∈ C_TemperatureT
grd2 : prj2(newTemperture) = C_Celsius

THEN
act1 : average := (prj1(average) × counter + prj1(newTemperture)) ÷ (counter + 1)

7→ C_Celsius
act2 : counter := counter + 1

END
END

Listings 5.2: Temperature aggregator - Event-B machine

64CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

An event compute is added to update the average and counter whenever a
new temperature is recorded (REQ2). The guard (grd2) of this event states
that the new sensed temperature is measured in Celsius , and the actions updates
counter and computes the new average (REQ3).

Observation. The first attempt exemplifies a common practice in formal
modelling, namely, placing domain knowledge together with system require-
ments, where a developer must encode domain knowledge as axioms and in-
variants during the system modelling. For example, thermal units are added
to axioms, and a safety invariant is added to ensure that the thermal unit is
correct for average computation. Therefore the designer has to embed these do-
main knowledge concepts in the design model and express the safety properties
guaranteeing that it is correctly evaluated as an invariant of the model. In this
way of modelling, domain knowledge constraints have to be described for every
system model (no reuse).

5.1.3 Modelling with the Theory Operators
The first attempt highlights that the designer must write invariants properties
enforcing the model to entail domain knowledge constraints. An approach to
address domain-specific knowledge in system modelling by introducing more
structure and separation of concern is presented in this subsection. For this
purpose, (1) Event-B generic theories are used to model domain knowledge
as a collection of data types, constructors and operators defined by specific
axioms. Each operator is accompanied with WD (Well-Definedness) properties
defining conditions for correct use of each operator. When an operator is used
(i.e. applied), a WD proof obligation, corresponding to this condition, needs
to be proved (discharged). A remarkable property ensured by the theory is
persevering the same unit between the operands and the result. Next, (2) a
model of the aggregator system by using the primitives of the domain theory of
temperatures is described.

Theory of Thermal Units

THEORY T emperatureT heory
DATA TYPES

T hermalUnits
CONSTRUCTORS

Celsius()
F ahrenheit()
Kelvin()

T emperatureT
CONSTRUCTORS

newT emperatureT (value : Z, unit : T hermalUnits)

Listings 5.3: Event-B theory of temperatures - data type

5.1. TEMPERATURE AGGREGATOR EXAMPLE 65

Listing 5.3 presents an extract from the domain theory for temperatures.
Two data types are defined: ThermalUnits for enumerating thermal units and
TempertureT to represent the temperature type made of a value and a unit.

In addition, several operators, such as tempPlus, multByVal, divByVal and
so on, are introduced to access and manipulate temperatures (see Listing 5.4).
An important predicate operator, isWDTemperatures, is defined to ensure that
the operands for each manipulated temperature are well-defined meaning that
if the unit is Kelvin then only positive values are allowed otherwise if the
unit is Celsius or Fahrenheit all values are admitted. Another predicate,
HaveTheSameUnit, states that a set of temperatures passed in as an argument
all have the same unit.

All the defined operators are associated with required well-definednes con-
ditions to guarantee their correctness. For example, adding two temperatures
(tempPlus) requires that the two temperature parameters are well-defined and
have the same unit. Such well-definednes condition is provided in the tempPlusWD
predicate which is represented by an operator. Similarly, the other operators,
multByVal and divByVal are expressed with their well-definedness conditions,
multByValWD and divByValWD, respectively.
OPERATORS

isW DT emperatures < predicate > (ts : P(T emperatureT))
well−definedness

ts ̸= ∅
direct def init ion

∀t · t ∈ ts ⇒ ((isKelvin(t) ∧ value(t) ≥ 0)
∨((isCelsius(t) ∨ isF ahrenheit(t)) ∧ value(t) ∈ Z))

haveT heSameUnit < predicate > (ts : P(T emperatureT))
well−definedness

ts ̸= ∅ ∧ isW DT emperatures(ts)
direct def init ion

∃u · (∀t · t ∈ ts ⇒ (unit(t) = u))
initT emperatures < expression > ()

direct def init ion
{ts | isW DT emperatures(ts)}

tempP lusW D < predicate > (t1 : T emperatureT, t2 : T emperatureT)
direct def init ion

isW DT emperatures(t1, t2) ∧ haveT heSameUnit(t1, t2)
tempP lus < expression > (t1 : T emperatureT, t2 : T emperatureT)

well−definedness
tempP lusW D(t1, t2)

direct def init ion
newT emperatureT (value(t1) + value(t2), unit(t1))

multByV alW D < predicate > (t1 : T emperatureT, val : Z)
direct def init ion

isW DT emperatures(t1) ∧ val ≥ 0
multByV al < expression > (t1 : T emperatureT, val : Z)

well−definedness
multByV alW D(t1, val)

direct def init ion
newT emperatureT (value(t1) × val, unit(t1))

divByV alW D < predicate > (t1 : T emperatureT, val : Z)
direct def init ion

isW DT emperatures(t1) ∧ val > 0
divByV al < expression > (t1 : T emperatureT, val : Z)

well−definedness
divByV alW D(t1, val)

direct def init ion
newT emperatureT (value(t1) ÷ val, unit(t1))

Listings 5.4: Event-B theory of temperatures - operators

66CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

THEOREMS
RwSameUnit :

∀ts · ts ̸= ∅∧ isW DT emperatures(ts) ∧ haveT heSameUnit(ts)
⇒ (∃t1 · t1 ∈ ts ∧ ∀t · t ∈ ts ⇒ (unit(t) = unit(t1)))

UnionCom :
∀ts1, ts2, ts3 · (ts1 ̸= ∅ ∧ ts2 ̸= ∅ ∧ ts3 ̸= ∅ ∧ isW DT emperatures(ts1)

∧isW DT emperatures(ts2) ∧ isW DT emperatures(ts3) ⇒
(haveT heSameUnit(ts1 ∪ ts2) ∧ haveT heSameUnit(ts2 ∪ ts3)

⇒ haveT heSameUnit(ts1 ∪ ts3)))
W DT empP lusT hm :

∀t1, t2, t · tempP lusW D(t1, t2) ∧ t1 tempP lus t2 = t ⇒
isW DT emperatures(t) ∧ haveT heSameUnit(t1, t2, t)

W DT empMultT hm :
∀t1, v, t · multByV alW D(t1, v) ∧ t1 multByV al v = t ⇒

isW DT emperatures(t) ∧ haveT heSameUnit(t1, t)
W DT empDivT hm :

∀t1, v, t · divByV alW D(t1, v) ∧ t1 divByV al v = t ⇒
isW DT emperatures(t) ∧ haveT heSameUnit(t1, t)

Listings 5.5: Event-B theory of temperatures - theorems

In addition, two important theorems have been defined (see THEOREMS clause
presented in Listing 5.5 to express properties associated with the defined opera-
tors. Here, the property formalised is that applying the operators on well-defined
temperatures also yields well-defined temperatures. The theorems WDTemp-
PlusThm, WDTempMultThm and WDTempDivThm assert that the op-
erators tempPlus, multByVal and divByVal respectively entail the property
that their results are a well-defined temperature. Other data types and op-
erators can be defined to model additional knowledge related to temperature
manipulation.

A Model for Computing the Average Temperature

Temperature theory (TemperatureTheory) is used to develop the temperature
aggregator model. Listing 5.6 shows an Event-B machine that models the tem-
perature aggregator system using the defined types and operators.

Two state variables are declared in this machine, average and counter, which
are of type TemperatureT and N, respectively. Moreover, we introduce an addi-
tional typing invariant and a theorem (SafetyThm) to ensure that the required
safety properties and WD conditions associated with the defined operators. The
theorem asserts that the average variable is always a well-formed temperature.
We set initial values for each declared variable in INITIALISATION event. A
new event, computeAvg, is defined to calculate the average temperature using
our defined theory operators. The event’s guard states that any sensed tem-
perature is typed as TemperatureT and is well-defined (grd1-grd2). The last
guard checks that the average and newTemperature have the same unit. The
actions of the event are used to update average and counter variables. Note
that the average calculation only employs theory-defined operators.

In this development, a set of proof obligations related to well-definedness
conditions associated with theory operators (e.g. tempPlus and multByVal)
representing safety properties is generated. In particular safety properties re-
quiring that the temperatures remain well-defined and have the same unit need

5.1. TEMPERATURE AGGREGATOR EXAMPLE 67

to be discharged. However, the proof is straightforward thanks to the more gen-
eral and universally quantified theorem in TemperatureTheory and the working
hypothesis requiring that only the data types and operators shall be used in the
system modelling.
MACHINE

T _T emperatureMachine
VARIABLES average,

counter
INVARIANTS

T yping1 : average ∈ T emperatureT
T yping2 : counter ∈ N
UsedOP : average ∈ initT emperatures)∨

(∃avg, nt · tempP lusW D(avg, nt) ∧ average = avgtempP lus nt)∨
(∃avg, c · multByV alW D(avg, c) ∧ average = avg multByV al c)∨
(∃avg, c · divByV alW D(avg, c) ∧ average = avg divByV al c)

THEOREMS
SafetyT hm : isW DT emperatures(average)

EVENTS
INITIALISATION

THEN
act1 : average := newT emperatureT (0, Celsius)
act2 : counter := 0

END

computeAvg
ANY newT emperature
WHERE

grd1 : newT emperature ∈ T emperatureT
grd2 : isW DT emperatures({newT emperature})
grd3 : haveT heSameUnit(average, newT emperature)

THEN
act1 : average := ((average multByV al counter)

tempP lus newT emperature) divByV al (counter + 1)
act2 : counter := counter + 1

END
END

Listings 5.6: Theory-based temperature aggregator - Event-B machine

5.1.4 Synthesis
Previously, two models of the same system were presented. The first model can
be qualified as monolithic and the second model may be described as modular.
The first model includes the requirements of the system and the common domain
knowledge in a single specification. Therefore constraints related to the domain
of temperatures like the homogeneity of the operations (the temperatures must
have the same unit for coherent computation) are specified as specifics of the
system. As a consequence, this approach has several limitations in several ways:
reusability and sharability, and validation by expertise

The second model overcomes the limitations of the previous one. First,
the domain knowledge is formalised once and for all in a single reusable and
shareable theory, and second, the system modelling is simplified since it is no
longer necessary to write invariants or properties related to domain knowledge to
guarantee correct computation of average temperatures. Additionally, Event-B
theories enable the design of models to comply with theories. Indeed, theorems
of the used theory are equally theorems of the models provided that the models

68CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

use only the operators associated with the data type or a composition of these
operators.

UsedOP invariant (see Listing 5.6) expressing the condition that the only op-
erators allowed by the method are those provided by the theory. More precisely
the invariant embeds the fact that the reachable states are only those obtainable
by the theory operators or their combination. It is a prerequisite to transfer the
properties established for the domain theory to the models.

Induction is used for establishing that the state variable typed by the theory
data type (average in our example) belongs to the safety domain. Note that
the proof of UsedOP requires induction, especially the hypothesis stating that
the state variable is located in the safety zone which is ensured by the use of the
operators provided by the theory (tempPlus, multByVal and divByVal for the
theory of temperatures). An essential point of applying this methodology is that
the domain properties are transferrable from the theory to the models. Indeed,
the proof process is simplified since the theorem SafetyThm is discharged
straightforwardly using the theorems of the theory.

Note. Event-B theories support the description of other operators like
tempPlus and multByVal which use arithmetic. Therefore, depending on the
chosen Ontology Modelling Language (OML), Event-B theories permit the
modelling of complex domain knowledge. However, such theories may require
interactive proof reasoning instead of fully automatic. The choice of the OML
is driven by the needs and complexity of the domain knowledge of interest, in
our case system engineering. This is discussed more thoroughly in chapter 2.

5.2 An Ontology Modelling Language (OML)

Subsection 5.1.4 concluded by emphasising the importance of the explicit rep-
resentation of the domain knowledge in order to make modelling more reusable
and sharable. However, the classical modelling style of integrating the domain
knowledge may lead to heterogeneous descriptions which may jeopardise or at
least limiting these two goals. Therefore a common language for describing do-
main knowledge is necessary. In other words, an ontology modelling language
(OML) (see section 2.2) is an important step toward the goal of providing a
framework for describing domain knowledge that can be used in formal system
modelling with reusability and sharability. Indeed, it needs to be a high-level
language capable of encapsulating domain knowledge as well as domain-specific
properties for complex systems. On the one hand, it must be expressive enough,
while on the other hand, it needs to provide high-level modelling constructs for
an easy description of domains. First, the expressiveness aspect is guaranteed by
the fact that Event-B is based on typed set theory and first-order logic. Second,
Event-B theories are an effective way for allowing the definition of high-level
constructs by using algebraic specification composed of data types, operators
and theorems, and proof rules.

5.2. AN ONTOLOGY MODELLING LANGUAGE (OML) 69

5.2.1 OML as a Generic Event-B Theory
An ontology modelling language is proposed based on a study of two ontology
description languages: OWL and PLib (see subsection 2.2.3). This subsection
2 is dedicated to the presentation of a novel ontology modelling language which
is formalised as generic Event-B theory OntologiesTheory. In the following,
different subsections discusses the structure of this ontology modelling language:
data type (see subsection 5.2.2), operators (see subsection 5.2.3), and theorems
(subsection 5.2.4).

5.2.2 OntologiesTheory - Data type
Formalising domain knowledge requires first to provide concepts, properties, and
instances. In OntologiesTheory, three parameters are defined: C, P, and I for
classes, properties, and instances, respectively. The data type Ontology(C,P,I)
has one generic constructor consOntology which requires 7 arguments. classes,
properties, instances describe classes, properties and instances respectively
of the ontology being constructed. Then, classAssociations contains the re-
lation between classes and classProperties assigns properties to classes.
THEORY OntologiesT heory
TYPE PARAMETERS C, P, I
DATA TYPES
Ontology(C, P, I)
CONSTRUCTORS

consOntology(classes : P(C), properties : P(P), instances : P(I),
classP roperties : P(C × P),
classInstances : P(C × I),
classAssociations : P(C × P × C),
instanceAssociations : P(I × P × I))

Listings 5.7: OntologiesTheory - data type

Next, ClassInstances is a function that gives every class the set of its in-
stances. Finally, InstanceAssociations is an essential component defining the
relationships between the instances of the ontology. classAssociations and
InstanceAssociations are closely related since the former dictates the struc-
ture of the latter. InstanceAssociations defines that an ontology instance
is related to another instance via some property only if the class of the first
instance is also related to the class of the last instance via the same property
(see definition of isWDInstancesAssociations in Listing 5.8).

5.2.3 OntologiesTheory - Operators
The definition of the ontology structure via the data type Ontology(C,P,I),
the OntologiesTheory provides a collection of operators to safely manipulate
the data type instances. These operators are defined by providing direct def-
initions and WD conditions to express desired properties and functionalities.
WD conditions associated with each operator ensures the correct use and the

2The full listing of OntologiesTheory is in appendix A.1

70CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

preservation of a valid ontology structure during instantiation. For example,
getInstanceAssociations is an operator that returns the association between
instances if it complies with the relation between classes. To use this oper-
ator correctly we need to ensure that the isWDInstanceAssociations pred-
icate holds. It states that the relation between instances is compatible with
the relation between classes as defined in classAssociations (see definition of
isWDInstancesAssociations in Listing 5.8). i. e. two instances are related by
a property only if their classes are related with the same property.
OPERATORS

getClasses < expression > (o : Ontology(C, P, I))
direct def init ion

classes(o)
getP roperties < expression > (o : Ontology(C, P, I))

direct def init ion
properties(o)

getInstances < expression > (o : Ontology(C, P, I))
direct def init ion

instances(o)
isW DClassP roperites < predicate > (o : Ontology(C, P, I))

direct def init ion
classP roperties(o) ∈ getClasses(o) ↔ getP roperties(o)

getClassP roperties < expression > (o : Ontology(C, P, I))
well−definedness isW DClassP roperites(o)
direct def init ion

classP roperties(o)
isW DClassInstances < predicate > (o : Ontology(C, P, I))

direct def init ion
classInstances(o) ∈ getClasses(o) ↔ getInstances(o)

getClassInstances < expression > (o : Ontology(C, P, I))
well−definedness isW DClassInstances(o)
direct def init ion

classInstances(o)
isW DClassAssociations < predicate > (o : Ontology(C, P, I))

well−definedness isW DClassP roperites(o)
direct def init ion

classAssociations(o) ∈ getClassP roperties(o) → classes(o)
getClassAssociations < expression > (o : Ontology(C, P, I))

well−definedness isW DClassAssociations(o)
direct def init ion

classAssociations(o)
isW DInstancesAssociations < predicate > (o : Ontology(C, P, I))

well−definedness
isW DClassP roperites(o) ∧ isW DClassInstances(o) ∧ isW DClassAssociations(o)

direct def init ion
instanceAssociations(o) ⊆ instances(o) × properties(o) × instances(o)∧
instanceAssociations(o) ⊆ {i1 7→ p 7→ i2 |

i1 ∈ I ∧ p ∈ P ∧ i2 ∈ I∧
i1 7→ p 7→ i2 ∈ instances(o) × properties(o) × instances(o)∧
(∃c1, c2 · c1 ∈ C ∧ c2 ∈ C ∧ {c1, c2} ⊆ getClasses(o) ⇒

(c1 7→ p 7→ c2 ∈ getClassAssociations(o)∧
p ∈ getClassP roperties(o)[{c1}]∧
i1 ∈ getClassInstances(o)[{c1}]∧
i2 ∈ getClassInstances(o)[{c2}]))}

getInstanceAssociations < expression > (o : Ontology(C, P, I))
well−definedness isW DInstancesAssociations(o)
direct def init ion

instanceAssociations(o)
isW DOntology < predicate > (o : Ontology(C, P, I))

direct def init ion
isW DClassP roperites(o) ∧ isW DClassInstances(o)∧
isW DClassAssociations(o) ∧ isW DInstancesAssociations(o)

Listings 5.8: OntologiesTheory - basic accessor operators

5.2. AN ONTOLOGY MODELLING LANGUAGE (OML) 71

In the same vein, the operators for accessing the ontology are associated with
predicated operators formalising the well-definedness conditions. For example,
isWDClassAssociations describes the WD condition of getClassAssociations
stating that the associations are valid when they relate classes (source and tar-
get) already provided via valid properties of the source classes. To improve
readability, a good practice is well-definedness conditions of a given operator
are defined as a single predicate whose name is prefixed with isWD.

ontologyContainsClasses < predicate > (o : Ontology(C, P, I), cc : P(C))
well−definedness isW DOntology(o) ∧ cc ̸= ∅
direct def init ion

cc ⊆ getClasses(o)
ontologyContainsP roperties < predicate > (o : Ontology(C, P, I), pp : P(P))

well−definedness isW DOntology(o) ∧ pp ̸= ∅
direct def init ion

pp ⊆ getP roperties(o)
ontologyContainsInstances < predicate > (o : Ontology(C, P, I), ii : P(I))

well−definedness isW DOntology(o), ii ̸= ∅
direct def init ion

ii ⊆ getInstances(o)
ontologyContainsIpv < predicate > (o : Ontology(C, P, I), ipvs : P(I × P × I))

well−definedness isW DOntology(o)
direct def init ion

ipvs ⊆ getInstanceAssociations(o)

Listings 5.9: OntologiesTheory - basic tester operators

isWDOntology is a key operator that serves as a prerequisite for all other
operators; it is part of the WD of any operator manipulating an ontology.
All operators must be applied to a valid ontology to produce meaningful re-
sults (valid ontology). The defined predicate operator ensures the validity of
an ontology. It is a conjunction of 4 main terms ensuring that all the ontol-
ogy’s components are well-built: isWDClassProperties, isWDClassInstances,
isWDClassAssociations and isInstancesAssociations. The two last predi-
cates have previously been explained. isWDClassProperties and isWDClassIn
stances signify that properties and instances assigned to the classes in a given
ontology have already been specified in the properties and instances respec-
tively.

getInstancesOfaClass < expression > (o : Ontology(C, P, I), c : C)
well−definedness isW DOntology(o) ∧ ontologyContainsClasses(o, {c})
direct def init ion

getClassInstances(o)[{c}]
getV alueOfAInstanceP roperty < expression > (o : Ontology(C, P, I), i : I, p : P)

well−definedness isW DOntology(o) ∧ ontologyContainsP roperties(o, {p})
∧ontologyContainsInstances(o, {i})

direct def init ion
getInstanceAssociations(o)[{i 7→ p}]

getClassesOfInstance < expression > (o : Ontology(C, P, I), i : I)
well−definedness isW DOntology(o) ∧ ontologyContainsInstances(o, {i})
direct def init ion

getClassInstances(o)−1[{i}]

Listings 5.10: OntologiesTheory - other accessor operators

Additionally, the ontology theory provides a set of predicate operators for
testing that ontologies contain elements such as classes, properties or instances.

72CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

For example, OntologyContainsClasses allows one to check if a given class
is part of the ontology. The Listing 5.9 enumerates several testing predicate
operators for testing the composition of a given ontology.

Listing 5.10 shows several expression operators for requesting computed at-
tributes of a given ontology. For example, getInstancesOfaClass returns all
the instances of a given class. Another example, getPropertyRangeClasses
operator returns all the target classes that are involved in class associations for
a given property. They are important for defining test predicate operators (see
Listing 5.10).

The ontology theory provides other operators for checking the content of an
ontology like verifying whether a given instance is related to another instance via
a given property. This special test is provided by instanceHasPropertyValuei
operator. CkeckOfSubsetOntologyInstances is a key operator it allows check-
ing whether a schema of instances meaning a collection of triple instance, prop-
erty and instance is a subset of the allowed combination in the sense of isWDInst
ancesAssociations. In Listing 5.11, different operators serving to check this
kind of composition properties are enumerated.
classContainsInstances < predicate > (o : Ontology(C, P, I), c : C, ii : P(I))

well−definedness isW DOntology(o) ∧ ontologyContainsClasses(o, {c})∧
ontologyContainsInstances(o, ii)
direct def init ion

ii ⊆ getInstancesOfaClass(o, c)
instanceHasP ropertyV alue < predicate > (o : Ontology(C, P, I), i : I, p : P, v : I)

well−definedness isW DOntology(o) ∧ ontologyContainsInstances(o, i, v)
ontologyContainsP roperties(o, p)

direct def init ion
v ∈ getV alueOfAInstanceP roperty(o, i, p)

CkeckOfSubsetOntologyInstances
< predicate > (o : Ontology(C, P, I), ipvs : P(I × P × I))

well−definedness isW DOntology(o)
direct def init ion

ipvs ⊆ getInstanceAssociations(o)
isW DInstanceHasP ropertyV aluei < predicate > (o : Ontology(C, P, I),

ipvs : P(I × P × I), i : I, p : P, v : I)
direct def init ion

isW DOntology(o) ∧ CkeckOfSubsetOntologyInstances(o, ipvs)
∧ontologyContainsInstances(o, {i, v}) ∧ ontologyContainsP roperties(o, {p})

instanceHasP ropertyV aluei < predicate > (o : Ontology(C, P, I),
ipvs : P(I × P × I), i : I, p : P, v : I)

well−definedness isW DInstanceHasP ropertyV aluei(o, ipvs, i, p, v)
direct def init ion

v ∈ ipvs[{i 7→ p}]

Listings 5.11: OntologiesTheory - other tester operators

isA < predicate > (o : Ontology(C, P, I), c1 : C, c2 : C)
well−definedness isW DOntology(o) ∧ ontologyContainsClasses(o, {c1, c2})
direct def init ion

getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)

Listings 5.12: OntologiesTheory - isA operator

Moreover, OntologiesTheory provides the isA operator, that formalises the
subsumption relationship between classes. It allows testing whether a class is
a subclass of a given class. Formally, it is defined in terms of instances where

5.3. CONCLUSION 73

a class c1 is said to subsume a class c2 if and only if the instances of c2 are
included in the instances of c1.

5.2.4 OntologiesTheory - Theorems
In this theory, we also introduce new theorems based on the defined operators
that may aid in the development and proof of system models.
THEOREMS

isAT rans :
∀o, c1, c2, c3 · o ∈ Ontology(C, P, I) ∧ isW DOntology(o) ∧ c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧

ontologyContainsClasses(o, {c1, c2, c3})
⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

unionCompt :
∀o, cs1, cs2 · o ∈ Ontology(C, P, I) ∧ isW DOntology(o)∧

cs1 ⊆ C ∧ cs2 ⊆ C ∧ cs1 ̸= ∅∧
cs2 ̸= ∅ ∧ ontologyContainsClasses(o, cs1) ∧ ontologyContainsClasses(o, cs2)

⇒ (ontologyContainsClasses(o, cs1 ∪ cs2))

Listings 5.13: OntologiesTheory - theorems

Listing 5.13 contains two important theorems, isATrans and unionCompt,
the first asserts that the isA is transitive, and the second states that ontologyCo
ntainsClasses is compatible with the set union. Note that these properties
are valid as long as the ontology is well-defined; isWDOntology is a hypothesis
of the theorems.

5.3 Conclusion
This chapter addressed the challenge of explicit modelling of domain knowledge
and constraints associated to systems. The chapter presented the motivation be-
hind the advocacy of explicit modelling of domain knowledge and illustrated the
differences regarding the implicit modelling alternative. For this purpose, a di-
dactic case study of temperature aggregator has been used to illustrate this two
modelling approaches. First, the explicit modelling allows formalising the envi-
ronment and domain requirements related to systems, therefore safeguarding the
system development from false or incomplete domain requirements. Then, the
availability of a general formal specification of domain requirements fosters the
reuse and the share of common requirements across models of different systems.
Next, referencing primitives of formal specification of a domain enables the
transfer of predefined domain requirements like those specified in various stan-
dards documents usually in natural language. After that, the neat separation
of concerns arising when specifying domain-specific requirement and system-
specific requirements facilitates the inspection of different parts and validation
by experts. Finally, the proof and modelling efforts are greatly mitigated since
theorems specification and proof of common domain-requirements is carried out
once and for all.

The second section of this chapter was dedicated to the discussion of the im-
portance of a common formal language for describing domain-specific concepts
and constraints. Consequently, an ontology modelling language was presented

74CHAPTER 5. EXPLICIT MODELLING OF DOMAIN KNOWLEDGE USING ONTOLOGIES

as a generic Event-B theory where a generic data type was defined, and a collec-
tion of operators and theorems are described. This language plays an essential
role in the definition of different domain ontologies, useful for achieving the
contributions presented in chapters 6, 7 and 8.

Chapter 6

Annotation-Based Transfer
of Safety Properties

This Chapter contains:
6.1 Our Approach . 76

6.1.1 Generic Part: the definition of the Domain Theory 77
6.1.2 Specific Part: Annotating the System 77

6.2 TCAS Case Study . 77
6.2.1 An Ontology of Interactive Objects 78
6.2.2 Instantiation of the Displayability Theory 84
6.2.3 Modelling without the Theory Operators 85
6.2.4 Modelling with the Theory Operators 87
6.2.5 Proof Statistics . 89

6.3 Conclusion . 90

This chapter is dedicated to the presentation of the formal framework that
enables system modelling to refer to domain knowledge models, permitting the
domain knowledge safety properties to be transferred to these system models.
The behavioural properties are not considered in this chapter; they are inves-
tigated in chapter 7. The approach is based on an annotation of the design
models: the variables are typed with the domain knowledge concepts and ma-
nipulated with custom operators yielding the properties to be enforced on the
models. The ontology modelling language allows defining the domain knowledge
concepts and constraints which are then enforced on the design model through
the annotation mechanism.

The chapter is organised as follows. Section 6.1 presents the framework
for annotation enabling safety properties transfer from domain theories to for-
mal models using the ontology modelling language. Section 6.2 illustrates the
framework and the methodology presented in this chapter using a real-world
system: the Traffic Collision Avoidance System (TCAS). Section 6.3 concludes
this chapter.

75

76CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

Model 1

refines

Model 2

refines

sees
Model k

refines

Model n

Ontology
Modelling
Language

imports

Domain
Theory

instantiates Instantiation
Context

generic components specific components

Figure 6.1: The framework for modelling with explicit domain knowledge

6.1 Our Approach

In this section, the framework allowing the definition of domain knowledge con-
cepts and properties is presented and a mechanism of annotation for safety
property transfer is discussed. The structure of the framework is shown in Fig-
ure 6.1; it has two main parts: Generic and Specific. The goal of developing
generic components is to define them once and for all, while specific components
can be defined for the specific system by instantiating the generic components.
When developing generic components, the ontology modelling language defined
in Chapter 5 is used. Indeed, the ontology modelling language offers primitives
for expressing the domain knowledge concepts and associations (see Section
5.2). It is the basis for all domain knowledge theories, like interactive objects
(see section 6.2.1) , ARINC 661 (see section 8.3) or events (see section 7.4.1)
domain ontologies. Domain theories can be described using this ontology mod-
elling language. In practice, operators need to be defined to convey the desired
properties of domain knowledge which are formalised and proved explicitly as
theorems.

6.2. TCAS CASE STUDY 77

6.1.1 Generic Part: the definition of the Domain Theory
The first step, in transferring safety properties from domain theories to formal
models, is to define the relevant domain theories. The definition of domain
theories is achieved using the ontology modelling language presented in section
5.2. This fact is illustrated, in Figure 6.1, by the domain theory importing
the ontology modelling language theory. The description of the domain theory
comprises the definition of domain safety properties as theorems. The defini-
tion of theorems has at least two benefits. First, it is a way to express clearly
and unambiguously the important safety properties intended for some domain
of interest. Secondly, if a system model is described methodically using a com-
bination of these operators then it may straightforwardly be proven that the
model complies with the domain knowledge rules formalised as theorems in a
theory. Indeed, the conformance of a system model to a corpus of knowledge is
a decisive requirement in system engineering. This process is commonly called
system certification according to standards.

6.1.2 Specific Part: Annotating the System
Once the domain theory is defined, it may be used in formal modelling. The
domain theory is instantiated and referenced by the system models. The main
objective of developing specific components of our framework is to formalise the
system’s special features and behaviour. A formal model of a system can be
described using the elements of the domain theory, namely the data types and
operators. The specific part of the proposed methodology allows for incremental
modelling of the system, with the domain theory data types and operators
referenced in the formal description. It is composed of a model refinement chain
consisting of Event-B contexts and Event-B machines. Another component that
must be provided at each system development is the instantiation of the domain
theory for specifying the information specific to the system because this is where
the components of the ontology data type related to instances are defined.

6.2 TCAS Case Study
In this section1, the real-world system is modelled in accordance with the frame-
work previously defined. It demonstrates how domain properties are transferred
from the domain theory to the system model. The informal description of the
Traffic Collision Avoidance System (TCAS) is provided in section 4.1.

The case study is developed in two versions to showcase the importance of
the framework related to annotation for safety properties transfer compared to
hard-coding these safety properties within the formal models. Subsection 6.2.3
presents the ad hoc modelling used to specify the safety properties in the formal
model, and subsection 6.2.4 shows an improved version of the formal model

1The full Event-B development of TCAS case study is in appendix C.2

78CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

where the domain safety properties are formalised explicitly and are referenced
from the domain theory.

The domain of interest for the development of the TCAS is interactive ob-
jects. This domain is described as an ontology by instantiating the ontology
modelling language OntologiesTheory where the key concepts are visibility
and criticality. The visibility of an object represents the status of this object
whether displayed or not, and the criticality of an object represents the level of
threat with respect to the system of interest. Subsection 6.2.1 presents impor-
tant parts of the Event-B theory of interactive objects DisplayabilityTheory
formalised as an ontology.

6.2.1 An Ontology of Interactive Objects
DisplayabilityTheory2 is formalised as an ontology therefore it instantiates
the ontology theory. The concepts and the properties of the ontology of inter-
active objects are defined in an axiomatic way. This subsection discusses the
three main clauses of DisplayabilityTheory

Constants and Operators Declaration

The ontology of interactive objects needs to provide concepts, properties and
instances to instantiate the OntologiesTheory.
AXIOMATIC DEFINITIONS IOOntologyAxiomatisation :
TYPES

IOClasses,
IOP roperties,
IOInstances

OPERATORS
criticality < expression > () : IOClasses
visibility < expression > () : IOClasses
hasV isibility < expression > () : IOP roperties
hasCriticality < expression > () : IOP roperties
visible < expression > () : IOInstances
hidden < expression > () : IOInstances
critical < expression > () : IOInstances
safe < expression > () : IOInstances

Listings 6.1: DisplayabilityTheory - constants

Listing 6.1 declares the concepts and properties involved in the descrip-
tion of interactive objects. Note that these declarations are written in the
OPERATORS clause of the Event-B theory but they are constants which are used
to populate the three main abstract types needed to instantiate the ontol-
ogy theory. Indeed, the instantiation requires providing three abstract types
IOClasses, IOProperties, and IOInstances: they represent the set of classes,
properties and instances of the ontology respectively. The theory then defines
many constants, typed with theory’s abstract types. It includes criticality,
visibility as elements of IOClasses which represent the main concepts of
the ontology of interactive objects, and critical, safe, visible, hidden as

2The full listing of DisplayabilityTheory is in appendix B.1

6.2. TCAS CASE STUDY 79

elements of IOInstances representing instances of the ontology of the interac-
tive object. The attributes of interactive objects are defined as well, and they
are typed with IOProperties; we defined hasVisibility and hasCriticality
properties. The definition of the types IOClasses, IOProperties, and IOInstances
as defined with axioms in the AXIOMS clause (see Listings 6.4, 6.5 and 6.6).
isIOOntologyW D < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances)) :
isV isibleiW D < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances) :
isV isiblei < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances), ipvs :

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances) :
well−definedness isV isibleW Di(o, ipvs, i)
isHiddeniW D < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
isHiddeni < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
well−definedness isHiddenW D(o, ipvs, i)
isCriticaliW D < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
isCriticali < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
well−definedness isCriticalW D(o, ipvs, i)
isSafeiW D < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
isSafei < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
well−definedness isSafeW D(o, ipvs, i)
isW DSetV isiblei < predicate >

(o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)

Listings 6.2: DisplayabilityTheory - tester operators

In addition, the ontology of interactive objects must provide several oper-
ators to manipulate the ontology to ensure that the manipulation preserves
the domain safety properties. Therefore, many operators are defined to up-
date and check properties on an instance variable. A key predicate operator
is isIOOntologyWD predicate that holds when the ontology passed as an argu-
ment is well-defined in a sense that is defined in the AXIOM clause. Moreover,
operators for verifying particular facts on an ontology of interactive objects
are defined. isVisiblei, isHiddeni, isCriticali, and isSafei are predicate
checking that a given instance is visible, hidden, critical, and safe respectively
with respect to the ontology passed in as an argument. Note that these op-
erators are associated with well-definedness conditions formalised as predicates
operators. For example, the well-definedness conditions of isCriticali are
grouped under the operator isCriticaliWD. The definitions of these opera-
tors are equally formalised as axioms in the AXIOM clause. All these operators
take three parameters: an instance of Ontology(IOClasses, IOProperties,
IOInstances, a collection of triples ipv which represent generally the single
state variable representing the interactive critical system, the last parameter
represent the interactive object to be checked.

Additionally, expression operators updating a part of the ontology specif-
ically the instances associations are provided, as well, in accordance with the
encapsulation principle. Event-B doesn’t provide any built-in encapsulation
principle as in other modelling languages like UML or object-oriented program-

80CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

ming languages like Java or C++ classes, and Ada packages, etc. This principle
is embodied in the methodology of using the theory, i.e., the models are re-
quired to use exclusively the operators provided by the theory to benefit from
the domain safety properties they entail.
isW DSetV isiblei < predicate >

(o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)

setV isiblei < expression > (o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances),
i : IOInstances) :
P(IOInstances × IOP roperties × IOInstances)

well−definedness isW DSetV isiblei(o, ipvs, i)
isW DSetHiddeni < predicate >

(o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)

setHiddeni < expression > (o : Ontology(IOClasses, IOP roperties, IOInstances),
ipvs : P(IOInstances × IOP roperties × IOInstances),
i : IOInstances) :
P(IOInstances × IOP roperties × IOInstances)

well−definedness isW DSetHiddeni(o, ipvs, i)
isW DSetSafei < predicate > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances), i : IOInstances)
setSafei < expression > (o : Ontology(IOClasses, IOP roperties, IOInstances),

ipvs : P(IOInstances × IOP roperties × IOInstances),
i : IOInstances) :
P(IOInstances × IOP roperties × IOInstances)

well−definedness isW DSetSafei(o, ipvs, i)

Listings 6.3: DisplayabilityTheory - accessor operators

Listing 6.3 presents an extract of a collection of expression operators pro-
vided by the ontology of interactive object theory. As stated previously, the op-
erators are associated with well-definedness conditions which are formalised, and
grouped under a single predicate operator. For example, the well-definedness
conditions of setHiddeni are formalised in isWDSetHiddeni. The axioms state
that the classes of this ontology include visibility and criticality. The
types IOProperties, IOInstances are populated as well.

Axioms Definition

The definitions of different abstract types and operators are given in the axioms
clause. Listings 6.4, 6.5 and 6.6 present the definitions of the types, predicates
and expression operators respectively, which are declared and commented previ-
ously. The first axioms (see Listing 6.4) populate the abstract types IOClasses,
IOProperties, IOInstances which define the building blocks of the ontology
of interactive objects.
AXIOMS

IOClasses : {visibility, criticality} ⊆ IOClasses
IOP roperties : partition(IOP roperties, {hasV isibility}, {hasCriticality})
IOInstances : {visible, hidden, critical, safe} ⊆ IOInstances

Listings 6.4: DisplayabilityTheory - axioms for types

The definition of the predicate operators and well-definedness conditions are
presented in Listing 6.5. The isIOOntologyWD predicate is built based on the

6.2. TCAS CASE STUDY 81

predicate operator isWDOntology specifying that an ontology is well-defined
(see Listing 5.8). Other conditions enrich the definition of this operator; specifi-
cally, a well-defined interactive ontology shall include the instances, classes and
properties formalising the displayability domain.
isIOOntologyW D :

(isIOOntologyWD(o) ⇔
isW DOntology(o) ∧ {visible, hidden, critical, safe} ⊆ instances(o)∧
{hasV isibility, hasCriticality} = properties(o)
{visibility, criticality} ⊆ classes(o))

isV isibleW D :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧

ipvs ∈ P(IOInstances × IOP roperties × IOInstances) ∧ i ∈ IOInstances∧
isIOOntologyW D(o) ⇒ (isVisibleWDi(o, ipvs, i) ⇔

CkeckOfSubsetOntologyInstances(o, ipvs) ∧ i ∈ dom(dom(ipvs)))
isV isiblei :

∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isV isibleW Di(o, ipvs, i) ⇒

(isVisiblei(o, ipvs, i) ⇔
instanceHasP ropertyV aluei(o, ipvs, i, hasV isibility, visible)∧
¬instanceHasP ropertyV aluei(o, ipvs, i, hasV isibility, hidden))

isHiddenW D :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ⇒

(isHiddenWD(o, ipvs, i) ⇔
CkeckOfSubsetOntologyInstances(o, ipvs) ∧ i ∈ dom(dom(ipvs)))

isHidden :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isHiddenW D(o, ipvs, i) ⇒

(isHidden(o, ipvs, i) ⇔
instanceHasP ropertyV aluei(o, ipvs, i, hasV isibility, hidden)∧
¬instanceHasP ropertyV aluei(o, ipvs, i, hasV isibility, visible))

isSafeW D :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ⇒

(isSafeWD(o, ipvs, i) ⇔
CkeckOfSubsetOntologyInstances(o, ipvs) ∧ i ∈ dom(dom(ipvs)))

isW DCriticali :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isCriticalW D(o, ipvs, i) ⇒

(isCritical(o, ipvs, i) ⇔
instanceHasP ropertyV aluei(o, ipvs, i, hasCriticality, critical)∧
¬instanceHasP ropertyV aluei(o, ipvs, i, hasCriticality, safe))

isCriticali :
∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isCriticalW D(o, ipvs, i) ⇒
(isCritical(o, ipvs, i) ⇔

instanceHasP ropertyV aluei(o, ipvs, i, hasCriticality, critical)∧
¬instanceHasP ropertyV aluei(o, ipvs, i, hasCriticality, safe))

Listings 6.5: DisplayabilityTheory - axioms for tester operators

In addition, the predicate operators checking the content of an ontology
and relationships between instances are axiomatised as well. For example,
isVisiblei checks whether the interactive object is visible according to the
ontology, i.e. if it is related to visible via the property hasVisibility. The
predicate checks as well that the interactive object is not related to hidden
for provability reasons. In the same vein, the other operators are axioma-

82CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

tised; see isHiddeni, isSafei, isCriticali in Listing 6.5. The operator
instanceHasPropertyValuei of OntologiesTheory (see Listing 5.10) is al-
ways used in DisplayabilityTheory to check safety if an instance is associ-
ated with a specific value via a given property accordingly to the encapsulation
principle. Similarly, all other operators are formalised and are associated with
well-definedness conditions accordingly to the methodological rule previously
stated. It is noteworthy that there exist shared terms in the well-definedness
conditions of the predicate operators. They are those requiring that the ontol-
ogy shall be a well-defined interactive object ontology (isWDIOOntology), the
system state variable (ipvs) shall be a part of the ontology instance associa-
tions (ckeckOfSubsetOntologyInstances), and another common condition of
all the well-definedness operators state that the interactive object i must belong
to the model variable which is formalised as i ∈ dom(dom(ipvs)).
isW DSetHiddeni :

∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ⇒

(isWDSetHiddeni(o, ipvs, i) ⇔
CkeckOfSubsetOntologyInstances(o, ipvs) ∧ i ∈ dom(dom(ipvs))∧
isV isiblei(o, ipvs, i) ∧ (∀j · j 7→ hasCriticality 7→ critical ∈ ipvs∧
j 7→ hasV isibility 7→ visible ∈ ipvs))

setHiddeni :
∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
(ipvs2 = setHiddeni(o, ipvs1, i) ⇔

ipvs2 = (ipvs1 ∪ i 7→ hasV isibility 7→ hidden) \ i 7→ hasV isibility 7→ visible)
isW DSetCriticali :

∀o, ipvs, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ⇒

(isWDSetCriticali(o, ipvs, i) ⇔
CkeckOfSubsetOntologyInstances(o, ipvs) ∧ isSafe(o, ipvs, i) ∧ i ∈ dom(dom(ipvs))∧
¬isHidden(o, ipvs, i) ∧ isV isiblei(o, ipvs, i)∧
(∀j · j 7→ hasCriticality 7→ critical ∈ ipvs ⇒

j 7→ hasV isibility 7→ visible ∈ ipvs))
setCriticali :

∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isW DSetCriticali(o, ipvs1, i) ⇒
(ipvs2 = setCriticali(o, ipvs1, i) ⇔

ipvs2 = (ipvs1 ∪ i 7→ hasCriticality 7→ critical) \ i 7→ hasCriticality 7→ safe)

Listings 6.6: DisplayabilityTheory - axioms for accessor operators

The second class of operators provided by the displayability ontology are
expression operators. They allow us to modify the ontology; specifically the
instance associations representing the model state variable. In Listing 6.6, the
setCriticali operator allows setting the hasCriticality property of an inter-
active object instance to critical value in a correct way. The definition of this
operator states that when used within the scope of its well-definedness, it ad-
dresses one important domain safety property: critical interactive objects must
always be visible. Thus, when the hasCriticality property of an interactive
object is set to critical, its hasVisibility property is set to visible in accor-

6.2. TCAS CASE STUDY 83

dance with the domain safety properties. The well-definedness condition of the
operator setCriticali is invoked by another defined operator isCriticalWD
to ensure the correct use of the operator. In the same vein, the setHiddeni re-
quires that the interactive object to be hidden shall not be critical; this domain
safety rule is included in its well-definedness condition isWDSetHiddeni.

Theorems Definition

The last clause of the Displayability theory is THEOREMS; it is a key section of the
theory since it contains safety domain-specific properties formulated and proved
for all the operators intended to be used by the models. Listing 6.7 shows a set of
theorems asserting that the operators must entail the required domain-specific
safety properties, such as critical objects must always be visible which will be
referred to as the displayability property. Therefore each operator, provided that
it is well-defined, necessarily preserves this safety property. For example, the
theorem setCriticalThm states that under the hypotheses that the arguments
are well-typed and the well-definedness conditions of each operator hold, all
objects with the property critical also have the property visible in the given
ontology. In the same vein, setVisibleThm, setHiddenThm, and setSafeThm
assert this displayability property is preserved by setVisible, setHidden, and
setSafe.

setCriticaliT hm :
∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧

ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isW DSetCriticali(o, ipvs1, i) ⇒
(ipvs2 = setCriticali(o, ipvs1, i) ⇒

(∀j · j 7→ hasCriticality 7→ critical ∈ ipvs2 ⇒ j 7→ hasV isibility 7→ visible ∈ ipvs2))
setSafeiT hm :

∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isW DSetSafei(o, ipvs1, i) ⇒
(ipvs2 = setSafei(o, ipvs1, i) ⇒

(∀j · j 7→ hasCriticality 7→ critical ∈ ipvs2 ⇒ j 7→ hasV isibility 7→ visible ∈ ipvs2))
setHiddeniT hm :

∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isW DSetHiddeni(o, ipvs1, i) ⇒
(ipvs2 = setHiddeni(o, ipvs1, i) ⇒

(∀j · j 7→ hasCriticality 7→ critical ∈ ipvs2 ⇒ j 7→ hasV isibility 7→ visible ∈ ipvs2))
setV isibleiT hm :

∀o, ipvs1, ipvs2, i · o ∈ Ontology(IOClasses, IOP roperties, IOInstances)∧
ipvs1 ∈ P(IOInstances × IOP roperties × IOInstances)∧
ipvs2 ∈ P(IOInstances × IOP roperties × IOInstances)∧
i ∈ IOInstances ∧ isIOOntologyW D(o) ∧ isW DSetV isiblei(o, ipvs1, i) ⇒
(ipvs2 = setVisiblei(o, ipvs1, i) ⇒

(∀j · j 7→ hasCriticality 7→ critical ∈ ipvs2 ⇒ j 7→ hasV isibility 7→ visible ∈ ipvs2))

Listings 6.7: DisplayabilityTheory - theorems

84CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

6.2.2 Instantiation of the Displayability Theory
The ontology of interactive objects, described in subsection 6.2.1, is instantiated
to specifically formalise concepts and safety properties related to the interac-
tive critical system of interest, namely the Traffic Collision Avoidance System
(see subsection 4.1). The interactive objects of the TCAS are the graphical
representation of aircraft.
CONTEXT

InstantiationContext
CONSTANTS

aircraftClass
aircraftInstances
aircraftOntology
ClassP roperties
ClassInstances
ClassAssociations
instanceAssociation
instanceAssociation0
thingClass
thingInstances

AXIOMS
axm1 : partition(IOClasses, {thingClass}, {aircraftClass}, {visibility}, {criticality})
axm2 : partition(IOInstances, aircraftInstances, {visible}, {hidden}, {safe}, {critical})
axm3 : thingInstances = IOInstances
axm4 : ClassProperties ∈ P(IOClasses × IOProperties)
axm5 : ClassProperties = {aircraftClass} × {hasVisibility, hasCriticality}
axm6 : ClassInstances = ({aircraftClass} × aircraftInstances)∪

({visibility} × {visible, hidden})∪
({criticality} × {critical, safe})∪
({thingClass} × thingInstances)

axm7 : ClassAssociations ∈ P(IOClasses × IOProperties × IOClasses)
axm8 : ClassAssociations = ({aircraftClass} × {hasVisibility} × {visibility})∪

({aircraftClass} × {hasCriticality} × {criticality})
axm9 : instanceAssociation ∈ P(IOInstances × IOProperties × IOInstances)
axm10 : instanceAssociation = (aircraftInstances × {hasVisibility} × {hidden, visible})∪

(aircraftInstances × {hasCriticality} × {safe, critical})
axm11 : instanceAssociation0 ∈ P(IOInstances × IOProperties × IOInstances)
axm12 : instanceAssociation0 = (aircraftInstances × {hasVisibility} × {hidden})∪

(aircraftInstances × {hasCriticality} × {safe})
instAssoc0T hm : instanceAssociation0 ⊆ instanceAssociation
arcrftOntoDef : aircraftOntology = consOntology(IOClasses, IOProperties, IOInstances,

ClassProperties, ClassInstances, ClassAssociations, instanceAssociation)
ConformT hm : isIOOntologyW D(aircraftOntology)
isAT hm : isA(aircraftOntology, aircraftClass, thingClass)

END

Listings 6.8: Context for displayability theory instatiation

Listing 6.8 presents the Event-B context obtained by instantiating the do-
main theory DisplayabilityTheory. In this Event-B context, the axioms
(axm1-axm14) define or extend the seven components required for the complete
instantiation of the ontology data type (see subsection 5.2.2). IOClasses and
IOInstances are instantiated as enumerated sets in axm1 and axm2, respectively.
aicraftClass and aircraftInstances (containing all the classes and instances
of the aircraft interactive object ontology, respectively) are introduced as con-
stants. Also, a set of axioms (axm3-axm10) are used to extend the definition of
the ontology components by providing the necessary class properties and class
associations information. In particular, thingClass and thingInstances are
defined which represent the root of all ontology classes and the set of all ontol-

6.2. TCAS CASE STUDY 85

ogy’s instances, respectively. ClassProperties is extended by the properties of
the class aircraftClass. classInstances is also defined where aircrafClass,
Visibility and Criticality classes are associated with their instances. Also,
instanceAssociations is defined to contain the set of triples (instance, prop-
erty and value) which represent the assertional part of the domain knowledge.

Finally, the ontology aircraftOntology is built in aircraftOntologyDef
axiom using the components previously defined using the ontology construc-
tor consOntology by setting the seven parameters IOClasses, IOProperties,
IOInstances, ClassProperties, ClassInstances, instanceAssociation and
ClassAssociations.

An important verification, which shall always be performed at the instan-
tiation phase, is verifying that the ontology is well-defined. In Listing 6.8,
ConformThm fills this requirement, that is the ontology components are cor-
rectly defined in the sense formalised by the isWDIOOntology predicate op-
erator (see Listing 6.5). It is defined using isWDOntology predicate opera-
tor which checks four conditions: (1) that the classes have authorised proper-
ties and (2) instances, (3) that classes associations are correct meaning that
classes are related to classes using properties associated with the source class
(isWDClassAssociation), and (4) that instance associations are valid accord-
ing to class associations (isWDClassInstances). Additionally, isWDIOOntology
checks more conditions which are related to interactive objects domain as the
ontology contains visible, critical instances, and properties as hasVisible.
Last, the theorem isAThm states that aircrafClass is a subclass of thingClass
which is proved straightforwardly since the definition of this operator relies on
the inclusion of instances. This theorem is defined to showcase other statement
that may be checked on ontologies.

In the following, subsection 6.2.3 illustrates the classical modelling way where
the properties of the systems are specified and proved as invariants of the model.
Then, subsection 6.2.4 demonstrates the advocated way of modelling (i.e. with
an explicit representation of the domain) where the properties are transferred
from the domain theory to the model. Indeed, the visibility properties, stating
that critical aircraft are always visible (see REQ10 in section 4.1), is specified
and proved as a theorem of the model.

6.2.3 Modelling without the Theory Operators
This subsection is dedicated to the first development of the TCAS model with-
out using the annotation mechanism provided by the domain knowledge theory
(displayability ontology) as well as the operators and their well-definedness pred-
icates. This modelling paradigm is close to the classical paradigm in Event-B
showcased in subsection 5.1.2 where modifications on the state variable are re-
alised with the built-in Event-B operations in contrast to using domain-specific
predefined primitives.

The TCAS user interface model is formalised as an Event-B machine (see
Listing 6.9), where the state of the model is represented by a single Event-B
variable: system which is part of the ontology of displayability. It represents

86CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

the visibility state of an aircraft close to the host aircraft (visible or hidden),
and their level of criticality (safe or critical). In Listing 6.9, the typing in-
variant gives the Event-B type of the system state variable. It is a subset of
instanceAssociation(of type P(IOInstances×IOProperties×IOInstances)).
In this model, safety property safetyInv of the TCAS, stating thatcritical air-
craft shall be visible is defined.
MACHINE

SetT heoriticOperationsBasedModel
SEES

InstantiationContext
VARIABLES system
INVARIANTS

typing : system ⊆ instanceAssociation
safetyInv : ∀io · io ∈ dom(dom(system))

⇒ (io 7→ hasCriticality 7→ critical ∈ system ⇒
io 7→ hasVisibility 7→ visible ∈ system)

Listings 6.9: TCAS model based on set operations - invariants

EVENTS
INITIALISATION
THEN

act1 : system := instanceAssociation0
END
makeAircraftCritical
ANY i , safeEntry , crticalEntry , hiddenEntry , visibleEntry
WHERE

grd1 : i ∈ dom(dom(system))
grd2 : safeEntry = {i 7→ hasCriticality 7→ safe}
grd3 : safeEntry ⊆ system
grd4 : crticalEntry = {i 7→ hasCriticality 7→ critical}
grd5 : crticalEntry ̸⊆ system
grd6 : hiddenEntry = {i 7→ hasVisibility 7→ hidden}
grd7 : visibleEntry = {i 7→ hasVisibility 7→ visible}

THEN
act1 : system := (((system \ safeEntry) ∪ crticalEntry) \ hiddenEntry) ∪ visibleEntry

END
makeAircraftV isible . . .
makeAircraftSafe . . .
makeAAircraftHidden
ANY i , safeEntry , crticalEntry , hiddenEntry , visibleEntry
WHERE

grd1 : i ∈ dom(dom(system))
grd2 : safeEntry ∈ P(IOInstances × IOProperties × IOInstances)
grd3 : safeEntry = {i 7→ hasCriticality 7→ safe}
grd4 : crticalEntry ∈ P(IOInstances × IOProperties × IOInstances)
grd5 : crticalEntry = {i 7→ hasCriticality 7→ critical}
grd6 : hiddenEntry ∈ P(IOInstances × IOProperties × IOInstances)
grd7 : hiddenEntry = {i 7→ hasVisibility 7→ hidden}
grd8 : hiddenEntry ̸⊆ system
grd9 : visibleEntry ∈ P(IOInstances × IOProperties × IOInstances)
grd10 : visibleEntry = {i 7→ hasVisibility 7→ visible}
notCritical : crticalEntry ̸⊆ system ∧ safeEntry ⊆ system

THEN
act1 : system := (system \ visibleEntry) ∪ hiddenEntry

END
END

Listings 6.10: TCAS model based on set operations - events

In addition, a collection of events is defined to model the progress of the
model. In Listings 6.10, an event makeAircraftCritical formalises the up-

6.2. TCAS CASE STUDY 87

dating of system variable where some aircraft becomes critical, making it vis-
ible to preserve the invariant safetyInv. Note that the definition of event’s
action is deduced from the understanding of the requirements of the TCAS
(see section 4.1), and so does the formalisation of the guards. For example,
in MakeAircraftHidden, notCritical guard stipulates that the aircraft being
hidden must not be critical. Again this information is derived from the under-
standing of the TCAS requirements. Besides, two other events are defined for
updating some aircraft states: makeAircraftVisible and makeAircraftSafe.
INITIALISATION event uses a constant defined in InstantiationContext (see
Listing 6.8). At the beginning, all aircraft are considered hidden and safe. The
invariants are proven inductively where every event shall preserve the safety
property. Furthermore, the correct guards of each event are designed from
scratch instead of being derived systematically from the definition of the ac-
tions.

Observation. The developer needs to formalise all the domain properties
since the operators are not used. Indeed, the actions and the guards of the
events are derived from the requirements so every model may interpret it dif-
ferently. Moreover, the proof must be performed inductively. Such a process is
error-prone and has to be repeated for every model.

The goal of the improved modelling (see the next section) is to remedy these
downsides. Specifically, the definitions of the events shall be built on theory
primitives so they may benefit from the safety properties they entail.

6.2.4 Modelling with the Theory Operators
This second version of the modelling of the TCAS uses the framework presented
in section 6.1. The modelling paradigm is the same as that showcased in the
temperature aggregator didactic example in subsection 5.1.3.
MACHINE T heoryOperatorsBasedModel
SEES InstantiationContext
VARIABLES system
INVARIANTS

typing : CkeckOfSubsetOntologyInstances(aircraftOntology, system)
UsedOps : ∃ipvs, i·

(isWDSetSafei(aircraftOntology, ipvs, i)∧
system = setSafei(aircraftOntology, ipvs, i))∨

(isWDSetCriticali(aircraftOntology, ipvs, i)∧
system = setCriticali(aircraftOntology, ipvs, i))∨

(isWDSetVisiblei(aircraftOntology, ipvs, i)∧
system = setVisiblei(aircraftOntology, ipvs, i))∨

(isWDSetHiddeni(aircraftOntology, ipvs, i)∧
system = setHiddeni(aircraftOntology, ipvs, i))

safetyT hm : ∀i · i 7→ hasCriticality 7→ critical ∈ system ⇒
i 7→ hasCriticality 7→ safe ∈ system

Listings 6.11: TCAS model based on theory operators - invariants

The domain knowledge constraints and concepts are transferred by annotat-
ing the system state variable. In Listing 6.11, annotation is achieved by the
predicate operator CkeckOfSubsetOntologyInstances which checks that the

88CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

state variable remains in the allowed instance associations of the specified ontol-
ogy aircraftOntology. The model has one variable system which is a subset of
instanceAssociation typed as P(IOInstances×IOProperties×IOInstances).

Invariant usedOps is introduced to formalise the methodological rule of using
only the operators provided by the ontology of interactive objects. The main
consequence of complying with this guideline is to inherit the theorems proved
in the theory once and for all. In particular, the safety property states that
critical aircraft shall be visible (REQ10 safety requirement; see section 4.1).
This safety property is formalised as a theorem safetyThm of the model instead
of being proved inductively.

A key difference compared to the first version of the TCAS modelling is
the use of operators and well-definedness conditions. In this model, the events
are defined using the operators of the displayability ontology theory. Event
makeAircraftCritical uses the operator setCriticali to correctly update
the status of an aircraft becoming close enough to own aircraft to be considered
critical. Furthermore, the well-definedness condition of this operator must be
fulfilled to be applied safely. Therefore, isWDSetCriticali is added as a guard
to the event. It is noteworthy that the process of determining the conditions
of the correct application of the operators is straightforward since the well-
definedness condition are already available in the theory of displayability.
EVENTS

INITIALISATION
THEN

act1 : system := instanceAssociation0
END
makeAircraftV isible . . .
makeAircraftSafe . . .
makeAircraftCritical
ANY i
WHERE

grd1 : i ∈ dom(dom(system))
grd2 : ontologyContainsInstances(aircraftOntology, {i})
grd3 : isVisibleWDi(aircraftOntology, system, i)
grd4 : isVisiblei(aircraftOntology, system, i)
grd5 : isSafeWD(aircraftOntology, system, i)
grd6 : isSafe(aircraftOntology, system, i)
grd7 : isWDSetCriticali(aircraftOntology, system, i)

THEN
act1 : system := setCriticali(aircraftOntology, system, i)

END
makeAAircraftHidden
ANY i
WHERE

grd1 : i ∈ dom(dom(system))
grd2 : ontologyContainsInstances(aircraftOntology, {i})
grd3 : isWDSetHiddeni(aircraftOntology, system, i)

THEN
act1 : system := setHiddeni(aircraftOntology, system, i)

END
END

Listings 6.12: TCAS model based on theory operators - events

Since this second version modelling of TCAS follows the explicit domain
knowledge modelling, domain safety properties are not proved inductively, mean-
ing that there is no need to perform proof for each event that the safety prop-

6.2. TCAS CASE STUDY 89

erties are preserved: they are specified as theorems and proved deductively and
straightforwardly, i.e., these safety properties follow logically from the theory
operators, their well-definedness and the theorems of the displayability theory.
Additionally, trivial typing invariant and the unique working hypothesis, which
requires that only the theory operators allowed to be used, need to be discharged
inductively, and their proofs are direct since each event only uses the operators
provided by the theory. For example, event makeAAircraftHidden uses, in its
action clause, operator setHiddeni whose well-definedness isWDSetHidde ni
predicate is included in the guards. In addition, theorems formalising domain
properties are discharged using the modus ponens inference rule. The theorems
defined in the theory and the working hypothesis are sufficient to deduce the
domain properties.

6.2.5 Proof Statistics

Event-B Component Automatic Interactive Total POs
Temperature aggregator example (chapter 5)

TemperatureTheory 4 (29%) 10 (71%) 14 (100%)
C_TemperatureContext 0 0 0
C_TempertureMachine 1 (20%) 4 (80%) 5 (100%)
T_TempertureMachine 6 (60%) 4 (40%) 10 (100%)

TCAS case study
OntologiesTheory 0 (0%) 21 (100%) 21 (100%)
DisplayabilityTheory 0 (0%) 16 (100%) 16 (100%)
InstantiationContext 1 (25%) 3 (75%) 4 (100%)
SetTheoriticOperationsModel 2 (100%) 8 (80%) 10 (100%)
TheoryOperatorsModel 10 (45%) 12 (55%) 22 (100%)

Table 6.1: Proof statistics of OML and TCAS case study

The development of two versions of each case study (temperature aggrega-
tor in chapter 5 and TCAS study in this chapter 6) demonstrates reduction in
proof effort (see Table 6.1). Indeed, proving time decreases on the long run
since the theories are developed and proved once and for all, and proof of the-
orems of the theory needed in the model development is straightforward. The
proofs are significantly streamlined and become repetitive therefore amenable
to automation by writing inference and rewrite rule in the Event-B theory. In
practice, the totality of the proof obligations is divided into three categories.
The first category contains the POs generated for ensuring the well-definedness
of the actions of the events using the operators, and they are discharged triv-
ially during the development as the well-definedness operators are included in
the guards. The second category represents the condition of exclusively using
the theory operators, they are also discharged trivially when the working hy-
pothesis, requiring that only the data types and operators of the theory are
used in system modelling, is followed. The last category is related to theorems
formalising the safety properties, and they are also discharged straightforwardly

90CHAPTER 6. ANNOTATION-BASED TRANSFER OF SAFETY PROPERTIES

thanks to the universally quantified theorems of the theory —using the modus
ponens inference rule.

Table 6.1 sums up the numbers of POs generated for each development.
The first observation is that the number of POs is greater when using theory
data types and operators. The second observation is that a bigger part of the
POs are not discharged automatically in the case when the models are built on
theory primitives. The first issue is fundamentally intrinsic to the methodology
and, is grouped in the second category of POs. The second inconvenient is
technical and, may be overcome with the help of providing a collection of proof
rules. Fortunately, the Rodin proving infrastructure provides mechanisms to
write and integrate such rules: inference and rewrite rules.

In conclusion, the models developed using the methodology of section 6.1 re-
quire less proving effort than those using the OntologiesTheory Event-B theory
and DisplayabilityTheory Event-B theory . In addition, the investment of
developing the generic theory is more profitable on the long run. Indeed, the
developed theory, including operators and theorems, is reusable by other models
instead of having to be defined everything from scratch.

6.3 Conclusion
This chapter proposed a framework for the annotation of variables of a system’s
formal model entailing the transfer of the predefined domain-specific safety prop-
erties. The TCAS case study (see section 4.1) has been addressed following the
two ways of modelling. First, classical modelling of the TCAS where safety
property as an invariant had been developed. In this case, the safety property
had to be proved inductively for every event. Second, the annotation-based
modelling of the TCAS had been achieved using an Event-B theory of displaya-
bility. In this second case, the operators of the domain theory have been used
so that the safety property were specified as a theorem of the model.

The approach advocated, based on an explicit modelling of the domain
knowledge and annotation of the model, has the benefit of reducing the mod-
elling effort since it exempts the designer from formalising domain properties in
the model. Moreover, these common domain-specific properties are described
once and for all, and they are transferred from the theory thanks to the method-
ological rule stipulating the exclusive use of the operators. Furthermore, the
necessary condition for applying the operators are automatically determined
since they are available in the well-definedness condition clause of each oper-
ator. Moreover, the framework has an important structural advantage; the
models are described at a higher level of abstraction since it relies on domain
theory primitives rather than on boilerplate set-theoretic code. From a property
specification point of view, the framework ensures that if the system model is
built using the domain ontology, it necessarily implies all the theorems formal-
ising the domain rules. Therefore, the framework allowed for a reduction of the
proving effort on the long run.

Chapter 7

Annotation-Based Analysis
of Behavioural Properties

This Chapter contains:
7.1 Our Approach . 92
7.2 The Event-B Meta-Theory . 93

7.2.1 Event-B Machine Structure as a Data Type 93
7.2.2 Event-B Machine Proof Obligations as Predicates 95
7.2.3 Modelling with Event-B Meta-Theory 96

7.3 A Framework for Behavioural Analyses 96
7.3.1 The Architecture of the Framework 97
7.3.2 How does the Framework Work? 98

7.4 The Framework at Work . 100
7.4.1 Defining a Domain-Specific Behavioural Analysis 100
7.4.2 Applying a Domain-Specific Behavioural Analysis 106

7.5 Advantages of the Framework . 111
7.5.1 Principled Approach and Reusability 111
7.5.2 Non-intrusiveness . 111
7.5.3 Verification Based on Theorem Proving 111
7.5.4 Proof and Modelling Effort Reduction 112
7.5.5 Generalisation . 113

7.6 Conclusion . 113

This chapter presents the formal framework designed to allow behavioural
analyses to refer to domain knowledge models, thereby checking the domain
knowledge liveness properties when designing formal models. Moreover, the
proposed approach is investigated and illustrated in the real-world example of
an Automatic Machine Teller (ATM) user interface. The approach is based
on annotation of design models: the events are typed with domain knowledge
concepts and manipulated with custom operators yielding the properties to be
enforced on the models. The ontology modelling language allows the definition

91

92CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

of domain knowledge concepts and constraints which are then checked on the
design model through the annotation mechanism.

The chapter is organised as follows. Section 7.1 provides an overview of the
framework for expressing domain-specific behavioural analyses and introduces
its key elements and building blocks. Section 7.2 presents an essential building
block of the framework: reflexive Event-B. It is a formalisation of Event-B con-
cepts using Event-B in the form of a generic Event-B theory. The framework
relies on the work presented in [143] which describes the reflexive Event-B frame-
work to manipulate and annotate Event-B components. Section 7.3 discusses
the framework for defining non-intrusive domain-specific behavioural analyses
in Event-B. Section 7.4 showcases the framework on a real-world case study:
automatic teller machine. Last, section 7.5 enumerates a number of benefits
of using the framework for defining and applying domain-specific behavioural
analyses.

7.1 Our Approach

The behavioural analysis of state-based models may be enhanced by considering
domain knowledge constraints when investigating the models. To enable this
kind of analysis, a solution lies in describing domain knowledge constraints,
especially domain knowledge related to behaviours. This domain knowledge is
often specified in domain requirements or standards documents. This formal
ontology of behaviours may then be used to annotate actions and events of
formal models in a non-intrusive manner in the sense that the analysis may
be applied at any level of the refinement chain of system modelling. Next,
behavioural analyses using domain constraints may be defined and applied to
formal models.

Figure 7.1 depicts the general view of the framework proposed for addressing
the problem of defining and applying domain-specific behavioural analyses. It
is composed of two basic blocks: ontology modelling language (see Section 5.2)
and reflexive Event-B framework (see Section 7.2). The first component pro-
vides primitives to write domain concepts and constraints as ontologies, while
the second component allows for the abstraction of a system as an instance of
the Event-B meta-theory language. The meta-level paves the way to reason-
ing extension specifically providing a language for expressing user-defined proof
obligations. Moreover, all the behavioural analyses encoded in first-order logic
can be expressed and validated on models in this framework. In addition to
temporal properties, the framework allows the expression of enriched analyses,
like checking that a class of events is eventually followed by another class of
events, that take domain knowledge into account. A mechanism for referencing
domain knowledge in design models is also defined through annotation.

7.2. THE EVENT-B META-THEORY 93

refines

sees Model k
<<Event-B machine>>

refines

Model 2
<<Event-B machine>>

Model 1
<<Event-B machine>>

refines

Model n
<<Event-B machine>>

Ontology
Modelling Language
<<Event-B theory>>

imports

Domain Ontology
<<Event-B theory>> imports Instantiation

<<Event-B context>>

generic components generic components

Figure 7.1: A framework for domain-specific behavioural analyses

7.2 The Event-B Meta-Theory
In [143], a reflexive framework has been defined for enabling the extension of the
reasoning capabilities of Event-B. This EB4EB framework is an Event-B-based
modelling framework allowing to manipulate Event-B features explicitly based
on meta-modelling concepts. This framework relies on a set of Event-B theories
defining data types, operators with well-definedness conditions, theorems and
proof rules. It preserves the core logical foundation, and semantics, of classical
Event-B. It is a core block of the framework highlighted in Figure 7.1 where it
allows us to express analyses applicable to Event-B models since the concepts
of Event-B language are available as first-class elements. Therefore, this section
overviews the structure of Event-B meta-theory1.

7.2.1 Event-B Machine Structure as a Data Type
The first section of the theory formalising Even-B concepts consists of data
types. Listing 7.1 shows the data type representing the machine’s elements,
which are parameterised by two types: Ev (i.e. transitions) and St (i.e. states).
A constructor is defined (Cons_machine) where each argument corresponds to a
machine component. The machine denotes a state transition system constrained
by the invariant (Inv).

1The full listing of EvtBTheo is in appendix A.2

94CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

Events are triggered by the initialisation event (Init) and then by progress
events (Progress). State changes are provoked by the After predicate (AP)
for Init, and the Before After Predicate (BAP) for progress events if their cor-
responding guards (Grd) are true. A numeric variant (Variant) is defined,
and it is used for liveness properties. Moreover, Ordinary, Anticipated, and
Convergent define a partition of events for the instantiated machine.
THEORY EvtBT heo

TYPE PARAMETERS ST AT E ,EV ENT
DATA TYPES Machine(ST AT E ,EV ENT)

CONSTRUCTORS
Cons_machine (

Event : P(EV ENT) ,
State : P(ST AT E) ,
Init : EV ENT ,
P rogress : P(EV ENT) ,
V ariant : P(ST AT E × Z) ,
Convergent : P(EV ENT) ,
Anticipated : P(EV ENT) ,
Ordinary : P(EV ENT) ,
AP : P(ST AT E) ,
BAP : P(EV ENT × (ST AT E × ST AT E)) ,
Grd : P(EV ENT × ST AT E) ,
Inv : P(ST AT E) ,
T hm : P(ST AT E))

Listings 7.1: EvtBTheo - data type

Well-Constructed machines. The data type requires formalising the con-
straints on the constructor’s arguments specified in the Event-B book [3].
BAP_WellCons <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
dom(BAP (m)) = P rogress(m)

Grd_WellCons <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
direct def init ion

dom(Grd(m)) = P rogress(m)
Event_WellCons <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
partition(Event(m), {Init(m)}, P rogress(m))

Variant_WellCons <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
direct def init ion

Inv(m) ◁ V ariant(m) ∈ Inv(m) → Z
Tag_Event_WellCons <p r e d i c a t e > (m : Machine(EV ENT, ST AT E))

direct def init ion
partition(Event(m), Ordinary(m), Convergent(m), Anticipated(m))∧
Init(m) ∈ Ordinary(m)

Machine_WellCons <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
direct def init ion

BAP _W ellCons(m)∧
Grd_W ellCons(m)∧
Event_W ellCons(m)∧
T ag_Event_W ellCons(m)∧
V ariant_W ellCons(m)

Listings 7.2: EvtBTheo - operators Event-B machine well-definedness

For example, Event_WellCons (see Listing 7.2) encodes the property stat-
ing that events are partitioned as initialisation event and progress events and
Machine_WellCons defines well-constructed machines. This predicates opera-
tor checks five conditions on the data type attributes (1) BAP_WellCons checks

7.2. THE EVENT-B META-THEORY 95

that only the progress events are associated with Before After Predicate ex-
cluding the initialisation event; (2) in the same vein, Grd_WellCons verifies
that only progress events are associated with guards since, by definition, the
initialisation event is not; (3) Event_WellCons checks that instantiation pro-
vides one initialisation event and all the other events belong to progress; (4)
Tag_EventWellCons is a predicate operator that checks that the events are
partitioned into ordinary, convergent, and anticipated accordingly to the speci-
fication in the Event-B book; (5) Variant_WellCons verifies the well-definition
of the variant stipulating that the variant is a value associated with every state
in the invariant state domain (i.e. it is a total function whose domain is the set
of states representing the invariant).

7.2.2 Event-B Machine Proof Obligations as Predicates

Mch_THM <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
direct def init ion

Inv(m) ⊆ T hm(m)
Mch_INV_Init <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
AP (m) ⊆ Inv(m)

Mch_INV_One_Ev <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,e : EV ENT)
well−definedness e ∈ P rogress(m)
direct def init ion

BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)
Mch_INV <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
Mch_INV _Init(m)∧
(∀e · e ∈ P rogress(m) ⇒ Mch_INV _One_Ev(m, e))

Mch_FIS_Init <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
direct def init ion

Inv(m) ∩ AP (m) ̸= ∅
Mch_FIS_One_Ev <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,e : EV ENT)

well−definedness e ∈ P rogress(m)
direct def init ion

Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}])
Mch_FIS <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
Mch_F IS_Init(m)∧
(∀e · e ∈ P rogress(m) ⇒ Mch_F IS_One_Ev(m, e))

Mch_VARIANT_One_Ev <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,e : EV ENT ,
s : ST AT E)

well−definedness V ariant_W ellCons(m) ,Mch_INV _One_Ev(m, e) ,e ∈ P rogress(m)
,e ∈ Convergent(m) ,s ∈ Inv(m) ,s ∈ Grd(m)[{e}]

direct def init ion
∀sp · sp ∈ BAP (m)[{e}][{s}] ⇒ (Inv(m) ◁ V ariant(m))(s) > (Inv(m) ◁ V ariant(m))(sp)

Mch_VARIANT <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))
well−definedness V ariant_W ellCons(m) ,Mch_INV (m) ,BAP _W ellCons(m) ,

T ag_Event_W ellCons(m) ,Event_W ellCons(m)
direct def init ion

∀e, s · e ∈ Event(m) ∧ e ∈ Convergent(m) ∧ s ∈ State(m) ∧ s ∈ Inv(m)∧
s ∈ Grd(m)[{e}] ⇒ Mch_V ARIANT _One_Ev(m, e, s)

Mch_NAT_One_Ev <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,e : EV ENT)
well−definedness e ∈ Convergent(m)
direct def init ion

V ariant(m)[Inv(m) ∩ Grd(m)[{e}]] ⊆ N
Mch_NAT <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

direct def init ion
V ariant(m)[Inv(m) ∩ Grd(m)[Convergent(m)]] ⊆ N

END

Listings 7.3: EvtBTheo - operators for checking Event-B proof obligations

96CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

The proof obligations are formalised as follows. Each proof obligation is
formalised using set theory. Predicates over state variables are modelled as
sets of states satisfying the predicate and logical connectives are formalised by
operations on sets (see Listing 7.3).

Listing 7.3 describes the induction principle for verifying the invariant PO
where Mch_INV_Init predicate states that the initialisation event must es-
tablish the invariant (AP (m) ⊆ Inv(m)) and Mch_INV_One_Ev states that a
given progress event e must preserve the invariant (BAP (m)[{e}] [Inv(m) ∩
Grd(m)[{e}]] ⊆ Inv(m)). Last, the Inv PO is formalised by the Mch_INV op-
erator as the conjunction of the two previous predicate operators. Likewise, all
Event-B proof obligations are formalised using this translation from predicate
logic to set theory: Mch_FIS, Mch_VARIANT and Mch_NAT.

Last, the operator check_Machine_Consistency (see Listing 7.4) is the key
predicate for checking that a machine instance is correct in the sense of Event-B
(all associated proof obligations are discharged). It is the conjunction of all the
predicates formalising Event-B proof obligations.
check_Machine_Consistency <p r e d i c a t e > (m : Machine(ST AT E, EV ENT))

well−definedness Machine_W ellCons(m)
direct def init ion

Mch_T HM(m)∧
Mch_INV (m)∧
Mch_F IS(m)∧
Mch_NAT (m)∧
Mch_V ARIANT (m)

Listings 7.4: EvtBTheo - operator for Event-B machine consistency

When this predicate is used as a theorem in an Event-B system development
then the core PO as well as the well-definedness PO are automatically gener-
ated by the Rodin platform. Discharging all the generated PO along with this
theorem ensures the consistency of the machine.

7.2.3 Modelling with Event-B Meta-Theory
Event-B meta-theory is instantiated to define specific Event-B machines. Instan-
tiation consists in defining an Event-B context with instances for the type pa-
rameters St and Ev and providing instances for the attributes of Cons_machine.
Event-B meta-theory is instantiated to model a particular system or to trans-
form the existing Event-B model from classical Event-B to its meta-model. The
instantiation consists in defining an Event-B context providing concrete carrier
sets for the type parameters St and Ev of the EvtBTheo theory – which repre-
sents the packed Cartesian product of the types of machine variables and the
set of the names of its events, respectively.

7.3 A Framework for Behavioural Analyses
The framework for defining and applying domain-specific behavioural analyses
relies on two theories presented previously OntologiesTheories and EvtBTheo.

7.3. A FRAMEWORK FOR BEHAVIOURAL ANALYSES 97

It allows the description of domain-specific behavioural properties as generic
predicate operators expressed in terms of Event-B machine concepts.

Figure 7.2 illustrates the general architecture of the framework devised for
defining and applying domain-specific behavioural analyses. It highlights the
three distinct building blocks: domain-specific components (coloured in red),
behavioural-related components (coloured in green) and the component defining
and applying the analyses (coloured in purple).

7.3.1 The Architecture of the Framework
The framework is composed of three main parts: Event-B refinement-based
development chain labelled with the letter (A) in Figure 7.2, Event-B theories
representing the generic and reusable blocks of the framework which is labelled
with a letter (B) in Figure 7.2 and instances representing the blocks which
are specific to the system under study and therefore they need to be defined
specifically for the system under study; they are described as Event-B contexts.
This last part is labelled with the letter (C) in Figure 7.2.

Nota bene: The definition of domain-specific behavioural analysis requires
two basic theories: (1) a theory formalising a language capable of expressing
domain concepts and constraints, and (2) a theory formalising the meta-level of
the modelling language. It is noteworthy that this framework could be replicated
on other formal modelling languages (other than Event-B). However, this is true
provided that the language supports state-based semantics and provides generic
modules supporting algebraic specification (data types and operators with well-
definedness predicates).

(A) Event-B Development

This part covers the Event-B refinement-based development of the system under
study. Figure 7.2 highlights the fact the analysis is not intrusive in the sense
that it does not alter the process of the modelling. Moreover, this framework
may be used to analyse existing models as well thanks to the exporting step.

(B) Theories

This part is composed of three Event-B theories: OntologiesTheory, EvtBTheo,
BehaviouralPropertiesTheory. The first and second theories are used by the
third to integrate domain-specific constraints in behavioural analysis.

• OntologiesTheory (see section 5.2) provides the ontology modelling lan-
guage for formalising the domain of action and events.

• EvtBTheory (see section 7.2) whose role is to provide a way of manipulat-
ing the Event-B concepts allowing the definition of custom proof obliga-
tions.

98CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

Ontology Modelling
Language

OntologiesTheory

Event-B Meta-Theory

EvtBTheory

instantiates

Domain Ontology

OntoContext

instantiates

Machine as Context

MiContext

importsimports

Domain Behavioural Analyses

BehaviouralPropertiesTheory

instantiates
(operator use)

extendsextends
Annotated Machine

Analysis Theorem

(B)
Theories

(C)
Instances

(Event-B Contexts)

(1)

(2)

(3)

(4)

M0

refines

M1

refines

exports
Mi

refines

Mn

(A)
Event-B

Development

Figure 7.2: Fine-grain view of the behavioural analysis framework

• BehaviouralPropertiesTheory importing both theories for specifying
new proof obligations as predicate operators expressing specific behavioural
domain properties and used as theorems on specific Event-B models ex-
pressed as instances. The analysis is defined as a predicate operator pa-
rameterised by the domain and applied to the Event-B machine.

(C) Instances (Event-B Contexts)

The third part is composed of the contexts instantiating the theories of Part (B).
Context (4) describes the annotated model, which extends the ontology context,
and the Event-B model context, and defines theorems corresponding to the
behavioural properties to be checked. The proof of these theorems, Analysis
Theorem represented in step (4) on the Figure 7.2, guarantees that the properties
hold on the analysed machine Mi of part (A).

7.3.2 How does the Framework Work?
The framework may be used by following numbered steps on Figure 7.2. These
steps may be grouped into two main activities: the definition of the analysis
and the application of the analysis. Steps (1) and (2) compose the definition
of the analysis which is engineered once and then may be applied to analyse
numerous systems. Steps (3) and (4) form the activity of applying the analysis
to a specific system.

7.3. A FRAMEWORK FOR BEHAVIOURAL ANALYSES 99

Step 1: Define an Ontology of Events

The first step of the framework consists in formalising the domain of events to
handle the behaviours of systems. Typically, it involves specifying the domain
requirements for actions and events as an ontology. Event-B contexts are used
to contain this ontology, which is an instance of the theory of ontology modelling
language presented in Section 5.2.

Step 2: Specify Domain-Specific Behavioural Analysis

Afterwards, the analysis is defined by specifying the behavioural analysis as
parameterised by the event ontology. It consists in defining a predicate opera-
tor formalising the behavioural analysis. The analysis definition resembles the
definition of custom proof obligations integrating domain-specific constraints.
Functionally, the analysis is a parametric predicate operator requiring at least
two key arguments: an ontology and an instance of the Event-B meta-theory to
be analysed. This predicate operator may require other pieces of information
on the system being investigated to efficiently achieve the analysis.

Step 3: Export The Event-B Machine

The second phase of using the framework consists in applying domain-specific
behavioural analyses. The immediate step consists in exporting the Event-B
model meaning converting it to an instance of Event-B meta-theory. The pro-
duced instance allows the explicit manipulation of the machine elements using
operators of the theory (see Section 7.2). The translation is straightforward
thanks to the one-to-one correspondence between the data type attributes de-
clared in EvtBTheo and an Event-B machine parts.

Step 4: Annotate The Event-B meta-theory Instance

The last step of the application of the analysis is checking the analysis on a
particular machine. The checking of the analysis is achieved by the predicate
formalising the analysis as a theorem. This step requires annotating the Event-
B meta-theory instance, resulting from the exporting, with the ontology con-
cepts defined in Step 1. Machine concepts (variables and events) are linked
to ontology concepts (i.e. being the tags in the annotation step). Finally, the
annotated machine is analysed by operators of the domain behavioural theory
(BehaviouralPropertiesTheory). Checking the analysis means proving the
theorem stating that the analysis predicate operator may be deduced from the
definitions and axioms of the Event-B model and domain ontology.

100CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

7.4 The Framework at Work
This section illustrates how the framework is used. For this purpose, a domain-
specific behavioural analysis2 is defined, and a case study 3 is specified and
analysed. First, the generic analysis for checking whether the domain-specific
behavioural property asserting that when an event annotated with some tag is
triggered, an event of some other tag must be triggerable in the future is specified
as a parameterised predicate operator. Second, a case study of the Automatic
Teller Machine (ATM) (specified in section ??) is modelled. The generic anal-
ysis is instantiated into a concrete analysis formalising the requirement REQ4
(see Section 4.3), requiring that the entered passcode must be followed by a con-
firmation or an abortion. This section is organised as follows: the subsection
7.4.1 is dedicated to the definition of the domain-specific behavioural analysis
including the definition of a domain ontology of events and the definition of a
parameterised behavioural analysis. Subsection 7.4.2 is intended to specify the
ATM case study and to check the behavioural analysis by applying a concrete
version of the generic analysis predicate operator defined in subsection 7.4.1.

7.4.1 Defining a Domain-Specific Behavioural Analysis
Event Ontology Definition – (1) on Figure 7.2

The ontology modelling language (see section 5.2) is used to describe event tags
which can be regarded as event classes. input, confirmation, and finite are
important to the ATM case study since they will be involved in the formalisation
of REQ4. The first two tags are used to denote respectively interaction events
that provide user input information and formalise a user response. Finally,
finite designates events that do not occur indefinitely.
CONTEXT EventT agOntology
EXTENDS AT MmEBModel
SETS T ags , P s
CONSTANTS

eventOntology, tag, internal, preEmptive, nonP reEmptive, bounded, interaction, abortion,
input, inputByV oice, inputByKeyboard, inputByScreen, confirmation,
visualConfirmation, hapticConfirmation, auralConfirmation, textualConfirmation

AXIOMS
T ags :

partition(Tags, {tag}, {internal}, {preEmptive}, {nonPreEmptive}, {bounded}, {interaction},
{input}, {inputByVoice}, {inputByKeyboard}, {inputByScreen}, {abortion}, {confirmation},
{visualConfirmation}, {hapticConfirmation}, {auralConfirmation}, {textualConfirmation})

eventOntology : eventOntology ∈ Ontology(Tags, Ps, Ev)
classes : classes(eventOntology) = Tags
properties : properties(eventOntology) = ∅
classP roperties : classProperties(eventOntology) = ∅
instances : instances(eventOntology) = Ev
classAssociations : classAssociations(eventOntology) = ∅
instanceAssociations : instanceAssociations(eventOntology) = ∅
EoIsW D : isWDOntology(eventOntology)

END

Listings 7.5: Context for event ontology instantiation

2The full Event-B theories are listed in appendix B.3
3The full Event-B models are listed in appendix C.3

7.4. THE FRAMEWORK AT WORK 101

EvTag

Internal

output

Interaction

Input confirmation

inputByKeyboard InputByScreenInputByVoice bounded

Figure 7.3: A tree representation of an ontology of events

Figure 7.3 depicts the graphical representation of the events classes and the
inheritance relationships between them making up the ontology formally speci-
fied in Listing 7.5. This relation may be leveraged for the definition of analyses.
Listing 7.5 (corresponding to ontoContext of Figure 7.2.(1)) contains the in-
stantiation of the ontology modelling theory. It provides 3 type parameters:
Tags for ontology classes, Ps for tag properties, and Ev for instances which are
the model events (imported from ATMmEBModel context). The other ontology
data type attributes are set to empty set here as they are not relevant to our
development.

Behavioural Analysis Definition – (2) on Figure 7.2

The definition of the domain-specific behavioural analysis predicate is made of
two abstraction layers. First, the predicate terms defining the analysis are spec-
ified and then these terms are used to build the predicate operator formalising
the analysis. Higher-level predicate operators may be formed by the conjunction
of these terms representing partial conditions of the analysis, and it shall be pa-
rameterised by the domain ontology. This subsection presents these two layers
beginning with the higher-level which is used to achieve the actual analysis, and
then detailed terms used for building the analysis are discussed.

The Presentation of The Higher-Level Analysis Predicate The domain-
specific behavioural analysis defined for addressing requirement REQ4 is for-
malised by the isNecessarilyFollowedBy predicate operator (see Listing 7.6).

The theory for expressing behavioural properties is presented in Listing 7.6.
It corresponds to predicate operator in Figure 7.2.(2). The Event-B theory
Theo4Reachability is where the lower-level terms composing the analysis are
specified. The EVENTT is a special type parameter since it is used for instan-
tiating the two theories; it plays both the role of events of the machine being
analysed and the role of instances of ontology classes or tags. As previously

102CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

recommended for all operators, REQ4 is formalised using two predicate opera-
tors: the well-definedness predicate operator isNecessarilyFollowedByWD and
a predicate formalising the direct definition of the analysis. Indeed, the predi-
cate isNecessarilyFollowedBy verifies whether all events annotated by tags
in srcTg are always followed by some event annotated by tags in trgTg while
passing through intermediate events exclusively annotated with internalTg.
It relies on the predicate Evt_Is_Always_Reachable_From_Definition which
formalises this reachability property on individual events.
THEORY BehaviouralP ropertiesT heory

IMPORT THEORY T heo4Reachability (importing EvtBT heo) , OntologiesT heory
TYPE PARAMETERS ST AT EE, EV ENT T , T ags, P s
OPERATORS

isNecessarilyF ollowedByW D < predicate > (m : Machine(ST AT EE, EV ENT T) ,
eo : Ontology(T ags, P s, EV ENT T) ,startT ags : P(T ags) ,transitT ags : P(T ags) ,
endT ags : P(T ags) ,variants : P(EV ENT T × P(ST AT EE × Z)))

direct def init ion
isW DOntology(eo)∧
startT ags ∪ transitT ags ∪ endT ags ⊆ getClasses(eo)∧
startT ags ∩ transitT ags = ∅ ∧ endT ags ∩ transitT ags = ∅∧
startT ags ̸= ∅ ∧ endT ags ̸= ∅ ∧ transitT ags ̸= ∅∧
(∀ti · ti ∈ startT ags ∪ transitT ags ∪ endT ags

⇒ getInstancesOfClasses(eo, {ti}) ̸= ∅)∧
variants ∈ getInstancesOfClasses(eo, startT ags) → P(ST AT EE × Z)∧
(∀i · i ∈ getInstancesOfClasses(eo, startT ags)

⇒ W D_reach(m, i,
getInstancesOfClasses(eo, endT ags),
getInstancesOfClasses(eo, transitT ags), variants(i)))

isNecessarilyF ollowedBy < predicate > (m : Machine(ST AT EE, EV ENT T) ,
eo : Ontology(T ags, P s, EV ENT T) ,startT ags : P(T ags) ,transitT ags : P(T ags) ,
endT ags : P(T ags) ,variants : P(EV ENT T × P(ST AT EE × Z)))

well−definedness
isNecessarilyF ollowedByW D(m, eo, startT ags, transitT ags, endT ags, variants)

direct def init ion
∀i · i ∈ getInstancesOfClasses(eo, startT ags)

⇒ Evt_Is_Always_Reachable_F rom_Definition(
m, i,
getInstancesOfClasses(eo, endT ags),
getInstancesOfClasses(eo, transitT ags), variants(i))

END

Listings 7.6: BehaviouralPropertiesTheory - isNecessarilyFollowedBy

isNecessarilyFollowedByWD formalises the conditions for applying cor-
rectly the analysis. On the one hand, it checks that the ontology passed in
as an argument is well-defined, that the classes of events make a partition, and
that they are not empty. On the other hand, it checks that the instance of the
Event-B meta-theory is well-built (see WD_reach), the target and intermediate
events are progress events, and finally that the variant is well-defined for every
source event. These conditions are important to ensure a meaningful interpre-
tation of the analysis’ outcomes. These two operators have six arguments:

• m a machine to be analysed,

• eo ontology to represent the domain concepts and constraints,

• srcTg a set of tags annotating the source events,

• internalTg a set of tags annotating the transit events,

7.4. THE FRAMEWORK AT WORK 103

• trgTg a set of tags annotating the target events, and

• v a list of variants associated with source events.

isP ossiblyF ollowedByW D < predicate > (m : Machine(ST AT EE, EV ENT T) ,
eo : Ontology(T ags, P s, EV ENT T) ,startT ags : P(T ags) ,transitT ags : P(T ags) ,
endT ags : P(T ags) ,variants : P(EV ENT T × P(ST AT EE × Z)))

direct def init ion
isW DOntology(eo)∧
startT ags ∪ transitT ags ∪ endT ags ⊆ getClasses(eo)∧
startT ags ∩ transitT ags = ∅ ∧ endT ags ∩ transitT ags = ∅∧
startT ags ̸= ∅ ∧ endT ags ̸= ∅ ∧ transitT ags ̸= ∅∧
(∀ti · ti ∈ startT ags ∪ transitT ags ∪ endT ags

⇒ getInstancesOfClasses(eo, {ti}) ̸= ∅)∧
variants ∈ getInstancesOfClasses(eo, startT ags) → P(ST AT EE × Z)∧
(∀i · i ∈ getInstancesOfClasses(eo, startT ags)

⇒ W D_reach(m,
i,
getInstancesOfClasses(eo, endT ags),
getInstancesOfClasses(eo, transitT ags),
variants(i)))

isP ossiblyF ollowedBy < predicate > (m : Machine(ST AT EE, EV ENT T) ,
eo : Ontology(T ags, P s, EV ENT T),
startT ags : P(T ags), transitT ags : P(T ags), endT ags : P(T ags),
variants : P(EV ENT T × P(ST AT EE × Z)))

well−definedness
isP ossiblyF ollowedByW D(m, eo, startT ags, transitT ags, endT ags, variants)

direct def init ion
∀i · i ∈ getInstancesOfClasses(eo, startT ags)

⇒ Evt_Is_Sometimes_Reachable_F rom_Definition(
m,
i,
getInstancesOfClasses(eo, endT ags),
getInstancesOfClasses(eo, transitT ags),
variants(i))

Listings 7.7: BehaviouralPropertiesTheory - isPossiblyFollowedBy

It is noteworthy that getInstancesOfClasses returns a set of events anno-
tated by a given set of tags (see Section 5.2, the Listing 5.2.3).
THEOREMS
W DNisW DP :

∀m, eo, startT ags, transitT ags, endT ags, variants·
(m ∈ Machine(ST AT EE, EV ENT T)∧
eo ∈ Ontology(T ags, P s, EV ENT T)∧
startT ags ∪ transitT ags ∪ endT ags ∈ P(T ags)∧
variants ∈ P(EV ENT T × P(ST AT EE × Z)))

⇒ (isNecessarilyF ollowedByW D(
m, eo, startT ags, transitT ags, endT ags, variants)

⇒ isP ossiblyF ollowedByW D(
m, eo, startT ags, transitT ags, endT ags, variants))

NisP :
∀m, eo, startT ags, transitT ags, endT ags, variants·

(m ∈ Machine(ST AT EE, EV ENT T)∧
eo ∈ Ontology(T ags, P s, EV ENT T)∧
startT ags ∪ transitT ags ∪ endT ags ∈ P(T ags)∧
variants ∈ P(EV ENT T × P(ST AT EE × Z)))

⇒ (isNecessarilyF ollowedByW D(
m, eo, startT ags, transitT ags, endT ags, variants)∧

isNecessarilyF ollowedBy(
m, eo, startT ags, transitT ags, endT ags, variants)

⇒ isP ossiblyF ollowedBy(
m, eo, startT ags, transitT ags, endT ags, variants))

Listings 7.8: BehaviouralPropertiesTheory - theorems

104CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

Listing 7.7 presents a weakened version of the analysis: given events possibly
follow from other given events. This predicate relies on the operator imported
from Theo4Reachability: Evt_Is_Sometimes_Reachable_From_Definition.
The interest of this operator is to illustrate how different analyses may be organ-
ised through logical relationships. Indeed, as proved in Listing 7.8, if a model
passes the necessary reachability analysis case then it will pass the possible
reachability case. This may open the way to defining hierarchies of analyses.

The Presentation of The Detailed Analysis Terms The Event-B the-
ory Theo4Reachability provides lower-level primitives for defining reachability
analysis predicates in general, and they are particularly used for defining the
domain-specific predicate operators previously discussed. It is noteworthy that
this theory does not deal with domain-specific aspects; it is intended to define
only temporal and reachability predicates.
THEORY T heo4Reachability

TYPE PARAMETERS ST AT E, EV ENT
OPERATORS

Evt_Is_Always_Reachable_From_Definition <p r e d i c a t e > (
m : Machine(ST AT E, EV ENT) ,src : EV ENT ,trg : P(EV ENT) ,
SubSetEvt : P(EV ENT) ,variant : P(ST AT E × Z))

well−definedness W D_reach(m, src, trg, SubSetEvt, variant)
direct def init ion

NaturalV ariant(m, variant, SubSetEvt)∧
V ariantDecrease(m, variant, SubSetEvt)∧
Init_Local_Inv(m, src, Grd(m)[trg])∧
Local_Inv_P reserved(m, src, SubSetEvt, Grd(m)[trg])∧
Never_Exit_T ransit_Zone(m, SubSetEvt,

P rogress(m) \ (SubSetEvt ∪ ({src} ∪ trg)), trg, variant)
Evt_Is_Sometimes_Reachable_From_Definition <p r e d i c a t e > (

m : Machine(ST AT E, EV ENT) ,src : EV ENT ,trg : P(EV ENT) ,
SubSetEvt : P(EV ENT) ,variant : P(ST AT E × Z))

well−definedness W D_reach(m, src, trg, SubSetEvt, variant)
direct def init ion

NaturalV ariant(m, variant, SubSetEvt)∧
V ariantDecrease(m, variant, SubSetEvt)∧
Init_Local_Inv(m, src, Grd(m)[trg])∧
Local_Inv_P reserved(m, src, SubSetEvt, Grd(m)[trg])

END

Listings 7.9: Theo4Reachability - reachability predicates

src

trg

Figure 7.4: Simplified depiction of the necessary reachability analysis

7.4. THE FRAMEWORK AT WORK 105

Init_Local_Inv <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,src : EV ENT ,
lInv : P(ST AT E))

well−definednessMachine_W ellCons(m) ,src ∈ Event(m)
direct def init ion

Get_next_act_state(m)(src) ⊆ lInv

Local_Inv_Preserved <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,
InitEvent : EV ENT ,SubSetEvt : P(EV ENT) ,LInv : P(ST AT E))

well−definedness InitEvent ∈ Event(m) ∧ SubSetEvt ⊆ P rogress(m)
direct def init ion

∀e · e ∈ SubSetEvt ⇒ BAP (m)[{e}][LInv ∩ Grd(m)[{e}]] ⊆ LInv

VariantDecrease <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,variant : P(ST AT E × Z)
,SubSetEvt : P(EV ENT))

well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,Mch_INV (m) ,
BAP _W ellCons(m) ,SubSetEvt ⊆ P rogress(m)

direct def init ion
∀e, s · e ∈ Event(m) ∧ e ∈ SubSetEvt ∧ s ∈ State(m) ∧ s ∈ Inv(m)∧

s ∈ Grd(m)[{e}] ⇒ (∀sp · sp ∈ BAP (m)[{e}][{s}]
⇒ (Inv(m) ◁ variant)(s) > (Inv(m) ◁ variant)(sp))

NaturalVariant <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,variant : P(ST AT E × Z) ,
SubSetEvt : P(EV ENT))

well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,BAP _W ellCons(m) ,
SubSetEvt ⊆ P rogress(m)

direct def init ion
variant[Inv(m) ∩ Grd(m)[SubSetEvt]] ⊆ N

Never_Exit_Transit_Zone <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,
loopEvents : P(EV ENT) ,prohibtedEvents : P(EV ENT) ,trgEvent : P(EV ENT) ,
variant : P(ST AT E × Z))

direct def init ion
Get_next_states_of_evts(m)[loopEvents]∩
Grd(m)[trgEvent] ∩ Grd(m)[prohibtedEvents]∩
variant−1[N] = ∅

Listings 7.10: Theo4Reachability - low-level terms

In particular, the Evt_Is_Always_Reachable_From_Definition operator is
specified as a conjunction of primitives predicates covering three important con-
ditions. Figure 7.4 depicts the three conditions (1) the green region indicates
that a given invariant is preserved denoting states attainable by the allowed in-
termediate events, (2) the red region depicts the states which are not reachable
by the allowed intermediate events, and finally (3) the blue arrows in the green
region indicate that the allowed events need to decrease a given variant. Indeed,
as shown in Listing 7.10 (Init_Local_Inv) and Local_Inv_Preserved predi-
cates formalise the condition (1) where the local invariant is taken for simplicity
as the state set represented by the guard of the target events Grd(m)[{trg}].
This ensures that the target events are always triggerable. The VariantNatural
and VariantDecrease predicates ensure that the system will not be caught in
a loop of the allowed intermediate events; this amounts to condition (3).

The condition (2) is formalised by the predicate Never_Exit_Transit_Zone
which checks that no transition exists to the states not contained in the given
invariant. These three conditions completely formalise the requirement that a
specified target event is always reachable from a given source event by triggering
only a given set of events.

The analysis is strict in the sense that it requires that the events imply

106CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

the guards of the target events; this means that all attainable states of the
intermediate events shall imply the guard of the target events.

Without a loss of generality, we can apply this analysis to systems not satis-
fying this condition with the help of refinement. Indeed by refinement, we can
address systems that reach the wanted states after many steps; the refinement
of the intermediary events does not break the analysis.
One_Next_Evt_Is_Triggerable <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,

variant : P(ST AT E × Z) ,SubSetEvt : P(EV ENT))
well−definedness Inv(m) ◁ variant ∈ Inv(m) → Z ,BAP _W ellCons(m) ,

SubSetEvt ⊆ P rogress(m) ∧ Mch_INV (m)
direct def init ion

∀e, s · e ∈ SubSetEvt ∧ s ∈ BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]]∧
(Inv(m) ◁ variant)(s) ∈ N ⇒ s ∈ Grd(m)[SubSetEvt]

Is_Src_Next_Trg <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,src : EV ENT ,
trg : EV ENT)

well−definedness BAP _W ellCons(m) ,{src, trg} ⊆ P rogress(m)
direct def init ion

BAP (m)[{src}][Inv(m) ∩ Grd(m)[{src}]] ⊆ Grd(m)[{trg}]

WD_reach <p r e d i c a t e > (m : Machine(ST AT E, EV ENT) ,src : EV ENT ,
trg : P(EV ENT) ,SubSetEvt : P(EV ENT) ,variant : P(ST AT E × Z))

direct def init ion
Machine_W ellCons(m) ∧ trg ⊆ P rogress(m) ∧ src ∈ Event(m)∧
Inv(m) ◁ variant ∈ Inv(m) → Z∧
Mch_INV (m) ∧ SubSetEvt ⊆ P rogress(m)

Listings 7.11: Theo4Reachability - auxiliary predicates

Evt_Is_Sometimes_Reachable_From_Definition is quite similar to the other
operator except that it does not require the exit condition (Never_Exit_Tr
ansit_Zone). Several auxiliary operators are defined to support the definition
of reachability predicate analysis. Listing 7.11 presents an extract of such a
collection of utility operators that are used in the definition of primitive con-
dition operators. In particular, WD_reach groups different important condi-
tions of well-definedness about machines and variants. Two other operators
Is_Src_Next_Trg and One_Next_Evt_Is_Triggerable are defined where the
first operator states that a trg event is always triggerable when src is activated.
The second predicate operator ensures that when the variant is still positive and
non-zero there is always at least one allowed intermediate event that is activable.

7.4.2 Applying a Domain-Specific Behavioural Analysis
This subsection illustrates how previously formalised analysis may be used to
investigate a formal model of the ATM’s user interface, whose informal descrip-
tion is presented in section 4.3.

Exporting Models to Event-B meta-theory – (3) on Figure 7.2

The Event-B model of the user interface is first presented. Next, the translation
of this model to obtain an instance of the Event-B meta-theory is given. The
Event-B modelling of the ATM case study is composed of a context and a

7.4. THE FRAMEWORK AT WORK 107

machine. The context ATMEnvironment introduces carrier sets, constants and
states basic facts as axioms for modelling static parts of the system.

Specifically, Listing 7.12 presents numerous enumerations and axioms. In-
deed, INSERTION_STATUS represents the state of the card: whether it is inserted
or not. INPUT_MODE contains two constants for indicating which input device
is used: keyboard or screen. It allows addressing REQ1. Several constants
are introduced to address the brightness feature of the system, in particular,
BRIGHTNESS_MIN and BRIGHTNESS_MAX specify the minimum and maximum lev-
els of brightness allowed. Axiom axm1 allows to address REQ6 by introducing
a maximum number of attempts MAX_ATTEMPTS. Also, constants are defined for
handling the strings of entered passcodes. All possible passcodes are formalised
by the carrier set STRINGS. In addition, CORRECT_PASSCODE and EMPTY_STRING
represent specifically the correct passcode and a default value for initialising the
buffers containing the strings. Finally, AMOUNTS represents a set of all possible
deliverable cash by the ATM, and NO_MONEY defines a default value meaning
that no cash will be delivered.
CONTEXT

AT MEnvironment
SETS INP UT _MODE,

INSERT ION_ST AT US,
ST RINGS,
AMOUNT S

CONSTANTS
MAX_AT T EMP T S,
CORRECT _P ASSCODE,
KEY BOARD,
SCREEN,
IN,
OUT
BRIGHT NESS_LEV ELS,
BRIGHT NESS_MIN,
BRIGHT NESS_MAX,
EMP T Y _ST RING,
MAX_BRIGHT NESS_UP DAT E,
NO_MONEY

AXIOMS
axm1 : MAX_ATTEMPTS ∈ N1
axm2 : CORRECT_PASSCODE ∈ STRINGS ∧ EMPTY _STRING ∈ STRINGS
axm3 : CORRECT_PASSCODE ̸= EMPTY _STRING
axm4 : partition(INPUT_MODE, {KEYBOARD}, {SCREEN})
axm5 : partition(INSERTION_STATUS, {IN}, {OUT})
axm6 : BRIGHTNESS_MIN ∈ N
axm7 : BRIGHTNESS_MAX ∈ N
axm8 : BRIGHTNESS_MAX > BRIGHTNESS_MIN
axm9 : BRIGHTNESS_LEVELS = BRIGHTNESS_MIN ..BRIGHTNESS_MAX
axm10 : MAX_BRIGHTNESS_UPDATE ∈ N
axm11 : NO_MONEY ∈ AMOUNTS
axm12 : AMOUNTS \ {NO_MONEY } ̸= ∅

END

Listings 7.12: ATM case study - contextual information

The second part of the model is the Event-B machine presented in List-
ing 7.13. Invariant inv11 formalising REQ5 (see section 4.3) specifying that
the entered passcode is never displayed. The events styled in italic font are high-
lighted since they are involved in the verification of the requirement REQ4. The
goal of the analysis is to prove in particular that KBDString will be necessar-

108CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

ily followed by ConfirmKBDString while allowing a fixed number of activation
of event changeBrithness. The property shall be verified for SCRString and
confirmSRC. The analysis will be carried out on an exported version of this
model after annotation.
MACHINE AT MUserInterface
SEES AT MEnvironment
VARIABLES string , virtualNumpadRegister , keyboardRegister , attempts ,

confirmationStatus , validationStatus , deliveryStatus , isStringVisible ,
inputMode , cardStatus , brightness , brightnessUpdates , newString , sum

INVARIANTS
...
inv11 : string = virtualNumpadRegister ∨ string = keyboardRegister
inv12 : isStringVisible = FALSE
inv13 : brightness ∈ BRIGHTNESS_LEVELS
inv14 : brightnessUpdates ∈ Z
...

EVENTS
INITIALISATION...

insertCard...

KBDString
WHERE

grd1 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS
grd2 : inputMode = KEYBOARD
...

THEN
act1 : string, keyboardRegister :| keyboardRegister′ ∈ STRINGS ∧ string′ = keyboardRegister′

act2 : brightnessUpdates := 0
...

END

SCRString...

changeBrightness...
WHERE

grd1 : brightnessUpdates < MAX_BRIGHTNESS_UPDATE
...

THEN
act1 : brightness :∈ BRIGHTNESS_LEVELS
act2 : brightnessUpdates := brightnessUpdates + 1

END

confirmKBDString
WHERE

grd1 : 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS
grd2 : inputMode = KEYBOARD
...

THEN
act1 : attempts := attempts + 1
act2 : confirmationStatus := TRUE

END
confirmSRCtring
...

END

Listings 7.13: ATM case study - Event-B model

The export operation is straightforward ; it consists in instantiating the
data type Machine(St, Ev): Event-B machine can be formalised as an in-
stance of the Event-B meta-theory (Machine Mi on Figure 7.2.(A)). To define
an Event-B machine as an instance, it is enough to instantiate (give values)
to the Machine(St, Ev) attributes at instantiation (see Listing 7.1). The

7.4. THE FRAMEWORK AT WORK 109

St type parameter is substituted by a Cartesian product of the set types of
ATMUserInterface machine state variables (14 in total) and Ev by the set of
the events of this machine.
CONTEXT

AT MmEBModel
EXTENDS

AT MEnvironment
SETS

Ev
CONSTANTS

AT M
init, insertCard, KBDString, SCRString, changeBrightness, confirmKBDString
confirmSCRString, checkStringCorrect, checkStringW rong, deliverBankNotes

AXIOMS
Ev : partition(Ev, {init}, {KBDString}, {changeBrightness}, {confirmKBDString}, ...,

{checkStringWrong}, {deliverBankNotes})
AT M : ATM ∈ Machine(STRINGS × STRINGS × STRINGS × Z × BOOL × BOOL×

BOOL × BOOL × INPUT_MODE × INSERTION_STATUS×
Z × Z × BOOL × AMOUNTS, Ev)

Event : Event(ATM) = Ev
T hm : Thm(ATM) = State(ATM)
Grd : Grd(ATM) = {e 7→ (string 7→ virtualNumpadRegister 7→ keyboardRegister 7→

attempts 7→ confirmationStatus 7→ validationStatus 7→ deliveryStatus 7→
isStringVisible 7→ inputMode 7→ cardStatus 7→ brightness 7→
brightnessUpdates 7→ newString 7→ sum) |

(e = KBDString ∧ 0 ≤ attempts ∧ attempts < MAX_ATTEMPTS∧
inputMode = KEYBOARD ∧ cardStatus = IN ∧ newString = FALSE)∨
(e = changeBrightness ∧ brightnessUpdates ≤ MAX_BRIGHTNESS_UPDATE∧
cardStatus = IN)∨
(e = confirmKBDString ∧ 0 ≤ attempts∧

attempts < MAX_ATTEMPTS ∧ inputMode = KEYBOARD ∧ cardStatus = IN∧
confirmationStatus = FALSE ∧ validationStatus = FALSE ∧ newString = TRUE)∨
. . .

BAP : BAP(ATM) = {e 7→ ((string 7→ ... 7→ sum) 7→ (stringp 7→ ... 7→ sump)) |
(e = KBDString ∧ keyboardRegisterp ∈ STRINGS∧

stringp = keyboardRegisterp ∧ brightnessUpdatesp = 0 ∧ newStringp = TRUE∧
confirmationStatusp = FALSE ∧ validationStatusp = FALSE ∧ ...)∨

(e = confirmKBDString ∧ attemptsp = attempts + 1∧
confirmationStatusp = TRUE ∧ ...∨
(e = changeBrightness ∧ brightnessp ∈ BRIGHTNESS_LEVELS∧

brightnessUpdatesp = brightnessUpdates + 1 ∧ ...)∨
. . .

check_Machine_Consistency :
check_Machine_Consistency(ATM)

END

Listings 7.14: ATM case study - Event-B meta-theory instance

Listing 7.14, corresponding to MiContext in Figure 7.2.(3), shows an extract
of the ATMUserInterface machine exported as an instance of the Event-B meta-
theory. Guards and actions of the events are formalised, as instances, in the
Grd(ATM) and BAP(ATM) sets (axioms axm4 and axm5).

Annotation & analysis – (4) on Figure 7.2

The final step before checking the behavioural property of necessary prece-
dence is annotation. The annotation allows linking the domain knowledge
concepts and constraints to the design model. This is achieved by assign-
ing events to corresponding tags. For example, the KBDString is assigned
to textualConfirmation, confirmation and Tag – see annotateDef in List-

110CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

ing 7.15. The assignment shall respect the subclass relationship between tags.
Therefore an event shall be assigned to all super-classes of its real class.
CONTEXT

AnnotatedModel
EXTENDS

EventT agOntology
CONSTANTS

annotate
variants

AXIOMS
annotateDef : annotate =

({bounded} × {changeBrightness})∪
({inputByKeyboard} × {KBDString})∪
({inputByScreen} × {SCRString})∪
({inputByVoice} × ∅)∪
({input} × {KBDString, SCRString})∪
({textualConfirmation} × {confirmKBDString}) ∪ ...

classInstances : classInstances(eventOntology) = annotate
isWDOntologyThm : isWDOntology(eventOntology)
variantDef : variants =

{KBDString 7→
{p 7→ bright 7→ ck 7→ cs 7→ v |

p ∈ STRINGS × STRINGS × STRINGS × Z×
BOOL × BOOL × BOOL × BOOL×
INPUT_MODE × INSERTION_STATUS × Z ∧ bright ∈ Z∧

ck 7→ cs ∈ BOOL × AMOUNTS∧
v = MAX_BRIGHTNESS_UPDATE − bright}}∪

{SCRString 7→ ...}
vThm : variants ∈ annotate[{input}] → P(State(ATM) × Z)
isNecessarilyFollowedByThm :

isNecessarilyFollowedBy(ATM, eventOntology, {input}, {bounded}, {confirmation}, variants)
END

Listings 7.15: ATM case study - annotation and analysis context

The correct verification of the analysis isNecessarilyFollowedBy requires
theses following conditions as illustrated in Listing 7.15:

1. The model events are annotated using the annotate relation as stated by
the axiom annotateDef,

2. They are related to the eventOntology via classInstances,

3. The ontology shall be verified by proving isWDOntologyThm,

4. Variants shall be associated with every source event: KBDString and
SRCString as asserted by variantDef, furthermore vThm ensures that
it is well-defined.

The last theorem isNecessarilyFollowedByThm represents the analysis ver-
ification on the ATMUserInterface model, it states that the requirement REQ4
is satisfied. It is noteworthy that the preparatory step is guided by the well-
definedness condition of the analysis operator. Indeed, the WD is structured
so that this individual conditions may be identified. For example, theorems
isWDOntologyThm stating that the ontology is well-defined, and vThm stating
that the variant is well-defined are identified based on the well-definedness con-
ditions of isNecessarilyFollowedBy predicate operator.

7.5. ADVANTAGES OF THE FRAMEWORK 111

7.5 Advantages of the Framework
This section discusses the advantages of the framework described in Section 7.3
corroborated by the observations of Section 7.4. Numerous benefits may be
stated for the framework, as presented below.

7.5.1 Principled Approach and Reusability
The primary objective of the framework was to define an approach that can
be used for describing and applying domain-specific behavioural analyses. This
goal is successfully achieved, and it was illustrated by a critical case study. The
approach relies on two theories presented respectively in [116] and [143]: (1)
the ontology modelling language which allows defining domain knowledge as an
ontology, and (2) the Event-B meta-theory modelling language which provides
a way to reason on Event-B concepts. This approach overcomes the drawbacks
of the shallow approaches consisting of incorporating the analysis requirements
into the model at the same level as the system requirements. Furthermore, the
framework allows the reusability of analyses and facilitates their sharing. There
are two levels of reusability: (1) the ability to apply the analysis on several
system models, and (2) the ability to reuse the same analysis parameterised with
different domain knowledge models. The two kinds of reusability are supported
thanks to the fact that the analysis is formalised as a generic predicate operator
parameterised with (1) the system model as an instance of Event-B meta-theory,
and (2) the domain model as an instance of the Ontology Modelling Language
Event-B Theory. The framework was successfully used to describe a particular
domain-specific behavioural analysis (verifying that input events are necessarily
followed by confirmation events). Moreover, this particular analysis has been
used to verify that a specified requirement (REQ4) is fulfilled.

7.5.2 Non-intrusiveness
The application of the analyses defined using the framework is not intrusive since
they rely on the annotation of the model (exported as an instance of Event-B)
as depicted by step (3) on Figure 7.2. This feature of the framework has been
demonstrated in the case study where the original Event-B model shown in
Listing 7.13 has been translated to an instance of the Event-B meta-theory (the
result is illustrated by Listing 7.14).

7.5.3 Verification Based on Theorem Proving
The approach uses proof-based verification to check that a domain-specific be-
havioural analysis applies successfully to models. Indeed, the analysis is es-
tablished by a theorem proving where the predicate operator formalising the
analysis is discharged. The proof paradigm has a number of advantages, in
particular, it does not suffer from the state exposition problem inherent to
model-checking techniques. This has been illustrated in Listing 7.15 where the

112CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

theorem isNecessarilyFollowedByThm is discharged to establish the require-
ment REQ4 for the ATM model.

In contrast with this approach, consider another approach consisting of boil-
ing down the domain knowledge behaviour properties into temporal properties
and then using model checking to verify the resulting set of temporal properties.
The model is passed as an argument to the analysis procedure alongside the do-
main knowledge model. This approach meets quickly its limitation when the
systems are large and complex due to the classical problem of state explosion.
Furthermore, the manual translation of domain knowledge to temporal formulas
is tedious.

7.5.4 Proof and Modelling Effort Reduction
The proposed approach reduces proof and modelling effort. Indeed, using
the framework allows for a significant reduction in proving effort in the long
run. This is true because redundant proofs such as the proof of the well-
definedness of an analysis are done once and for all. Moreover, all the proofs
related to generic components are discharged only once. Specifically, theorems
of OntologiesTheory, EvtBTheo and BehaviouralPropertiesTheory do not
require to be reproved for every analysis application since they are proved at
the definition time. Additionally, the architecture of the framework (based
on generic Event-B theories) permits the definition of a collection of lemmas
useful for establishing the analysis of the models. Similarly, the generic com-
ponents of the framework are modelled once and for all. This is the case for
OntologiesTheory and EBTheory, but also for the theory formalising the anal-
ysis BehaviouralPropertiesTheory; it corresponds to part (B) Theories on
Figure 7.2. Only the components (Event-B contexts) in the part (C) Instance
on Figure 7.2 need to be modelled and proved.

Event-B Models and Theories Number of proof obligations
OntologiesTheories 21
EvtBTheory + EvtBManip 10
Theo4Reachability 16
BehaviouralPropertiesTheory 7
ATMEnvironment 0
EventTagOntology 1
ATMUserInterface 16
ATMmEBModel 7
AnnotatedModel 4

Table 7.1: Proof statistics of behavioural analysis and ATM case study

Table 7.1 shows a summary of the proof obligations generated and dis-
charged for different theories and models, which are developed for our approach
and the illustrative case study. Proof obligations of theories created at defi-
nition time are proved only once. This is the case for OntologiesTheories,

7.6. CONCLUSION 113

EvtBTheory, EvtBManip and Theo4Reachability: they were imported and
reused from existing projects, so re-proving was not necessary. However, the the-
ory BehaviouralPropertie sTheory providing the domain-specific behavioural
analysis predicates required to prove several well-definedness conditions related
to the two analyses: the necessary case predicate isNecessarilyFollowedBy
and the possible case predicate isPossiblyFollowedBy. The EventTagOntology
context requires to prove at least one theorem ensuring that the created ontol-
ogy is well-defined. Finally, all the proof effort concentrates on the modelling
of the system corresponding to ATMUserInterface machine and the application
of the analysis corresponding to ATMmEBModel Event-B meta-theory instance
(context) and AnnotatedModel context. Indeed, the most difficult proof relies
in verifying the theorem of the analysis. Interestingly, the proof of the analysis
may reveal errors in the model or less probably in the analysis itself. Therefore,
proving the analysis predicate operator may help correct errors in the model.

7.5.5 Generalisation
The approach has been successfully applied to systems belonging to the do-
main of interactive critical systems where an ontology for annotating interac-
tion events is defined. Indeed, this ontology has been taken into account in the
definition of behavioural analysis. It is noteworthy that this approach is general
in the sense that it may be used to analyse different systems such as railway,
medical or other systems provided that the underlying domain is formalised as
an ontology.

7.6 Conclusion
This chapter addressed the issue of analysing domain-specific behavioural prop-
erties of systems. An integrated framework centred around the Event-B method
was proposed for investigating non-intrusively behavioural properties mined
from domain knowledge. It was based on the ontology modelling language in-
troduced in section 5.2, and the Event-B meta-theory presented in section 7.2.
The proposed approach has 4 steps (see section 7.3):

1. formalising domain knowledge as an ontology,

2. defining domain-specific behavioural analyses,

3. exporting the model to the reflexive Event-B framework EB4EB to ma-
nipulate the Event-B concepts such as events and their components,

4. annotating and analysing Event-B models through theorem proving.

The approach is illustrated, in section 7.4, through a concrete analysis check-
ing that a given class of events are necessary followed by another class of events
meanwhile only third class of events are transitioned. This analysis was used to
check a behavioural requirement (REQ4) of the ATM case study (see section
4.3 for more details on the ATM case study).

114CHAPTER 7. ANNOTATION-BASED ANALYSIS OF BEHAVIOURAL PROPERTIES

Chapter 8

Formal Conformance
Checking

This Chapter contains:
8.1 Introduction . 116
8.2 Our approach . 116

8.2.1 A Standard Formal Specification —(2) on Figure 8.1 . . . 117
8.2.2 Standard Theory Instantiation —(3) on Figure 8.1 118
8.2.3 Model Annotation —(4) on Figure 8.1 119

8.3 Formalisation of ARINC 661 Standard 119
8.3.1 ARINC661Theory - Concepts Declaration 120
8.3.2 ARINC661Theory - Operators Declaration 121
8.3.3 ARINC661Theory - Primitives Definitions 122
8.3.4 ARINC661Theory - Theorems 124

8.4 Weather Radar Application Case Study 124
8.4.1 WXRTheory - Instances Declaration 125
8.4.2 WXRTheory - Instances Definition 125
8.4.3 WXRTheory - Operators Declaration and Definition 126
8.4.4 WXRTheory - Theorems . 127
8.4.5 Annotated Model of WXR —(4) on Figure 8.1 128

8.5 Advantages of The Framework 130
8.5.1 Achieving Standard Conformance Formally 130
8.5.2 Qualitatively Enhanced System Models 131
8.5.3 Reduction of Modelling and Proving Effort 131
8.5.4 Enabling Evolution of Standard 132

8.6 Conclusion . 132

Verifying the standard conformance of a system design is a necessary task in
the system engineering life cycle, in particular when the said system is deemed
critical. Standard compliance verification means ensuring that a system or a
model of a system faithfully meets the requirements of a standard, in particular

115

116 CHAPTER 8. FORMAL CONFORMANCE CHECKING

domain and certification standards. It aims to improve the robustness and
trustworthiness of the system model.

In this chapter, an approach for achieving formal conformance to stan-
dards is presented. The conformance-checking process allows the establishing
of safety properties required by the specification document of certification stan-
dard. The framework presented in chapter 6 is considered the bedrock upon
which the definition of the conformance-checking approach relies. It is qualified
as conformance-by-construction, since the system model uses the primitives of
the formalised standard, and it inherits the properties required by the standard.
The fine-grained details are discussed in Section 8.1. This framework facilitates
the formalisation of standard concepts and rules as an ontology, as well as the
formalisation of an engineering domain. Conformance checking is accomplished
by annotating the system model with typing conditions. An industrial case
study is proposed, borrowed from the aircraft cockpit engineering domain to
demonstrate the feasibility and strengths of the approach. First, the ARINC
661 certification standard is used; it is formalised as an Event-B theory. Sec-
ondly, the weather radar system (WXR) user interface is used as a case study; it
was checked against the requirements specified by the ARINC 661 certification
standard. Sections 8.3 and 8.4 present the formal modelling in Event-B of the
ARINC 661 standard and the WXR application respectively.

8.1 Introduction
Checking the conformance of system design models and/or implementation to a
standard is often achieved by informal or semi-formal processes like argument-
based reports produced through model reviews, testing and simulation, exper-
imentation, and so on [1]. Conventionally, these qualification methods have
proven to be valuable for system engineering in areas like transportation sys-
tems, medical devices, power plants, etc. Yet, formal checking of conformance,
as advocated by the DO178-C, allows for higher trustworthiness and reliability.
Among them, extensive case coverage and availability of automatic verification
capabilities such as theorem proving and model-checking. In this chapter, the
properties specified by standards known to be safety properties, are targeted.

8.2 Our approach
The framework for achieving formal conformance of models to standards is de-
picted in Figure 8.1. It is composed of three phases: Conceptualisation, Instan-
tiation, and Annotation. These phases are different, and they are not repeated
for each development. In particular, the conceptualisation is done only once
for every standard. For modelling a system, the phases are carried out in the
following order:

• Conceptualisation: a standard specification is formalised such that the
concepts and constraints interpreted from the standard specification doc-

8.2. OUR APPROACH 117

ument are expressed as theories (2) in terms of data types and operators.
It is noteworthy that using the plain Event-B theories would result in
heterogeneous formalisation, the ontology modelling language is used as
modelling language —OntologiesTheory is represented by (1) on the
Figure 8.1, and it is discussed in section 5.2.

• Instantiation: the requirements of the system being designed are handled
by instantiating the theories developed for formalising the standard (3),

• Annotation: system model is annotated through typing (4) and asso-
ciated operator are exclusively used. This annotation allows transferring
the constraints and rules, expressed as theorems, to the design model es-
tablishing standard conformance.

Note that OntologiesTheory (1) is defined once and for all. The theory
formalising the standard concepts, rules and properties (2) are formalised in
stable theories which may evolve as the standard gets updated in new releases.
This evolution of standards may or may not affect the validity of the theorems
of the theory —if the updated theory still entails the theorems then the models
depending on this theory remain valid from the verification point of view. In
Figure 8.1, Instantiates and Imports links correspond to Event-B built-in
constructs (generic type parameters instantiation is automatically achieved by
type synthesis), and Annotation is implemented by typing model concepts with
theories data types using the Sees Event-B construct.

A key requirement to set up our approach is the exclusive use of data types
and operators provided by the Event-B theory formalising the standard specifi-
cation. This condition is necessary to ensure that theorems entailed by operators
are transferred and therefore provable in the Event-B model. A comprehensive
study of these techniques is presented in [13].

In the following subsections, the emphasis is put on formal specification of
standards and the formal verification of standard conformance, which corre-
spond to phases (2), (3) and (4) on Figure 8.1. These phases are described
below.

8.2.1 A Standard Formal Specification —(2) on Figure 8.1
The first phase of the approach consists in specifying formally the standard using
the ontology modelling language OntologiesTheory (see section 5.2). Type
parameters C, P and I are instantiated with the standard’s objects and object’s
attributes respectively. Furthermore, the standard’s rules and constraints are
formalised as a set of axioms and/or embedded in the definition of the operators.

Conformance criteria and the properties of the standard that are required
for the objects are formalised and proved as a set of theorems. Indeed, the
operators must entail these required properties. One important benefit is that
these proofs are carried out once and for all, and may then be transferred to
models constructed using the standard data types and operators.

118 CHAPTER 8. FORMAL CONFORMANCE CHECKING

Ontology	Modeling	
Language
(EB	Theory)

Domain	Standard	
Ontology	Concepts

(EB	Theory)

Domain	Standard	
Operators
(EB	Theory)

System	Specific	
Concepts

(EB	Context)

System	Model
(EB	Machine)

Ge
ne

ric
	&
	R
eu

sa
bl
e

Th
eo

ry
Fo
rm

al
	st
an

da
rd

System	specific	
features

System	design	
model

(2)

(1) (3) (4)

InstanAates

AnnotaAon
(Sees)

In
st
an
Aa

te
s

AnnotaAon
(Sees)

ConceptualisaCon InstanCaCon Model	AnnotaCon

Imports

Figure 8.1: The framework for standard conformance-by-construction

8.2.2 Standard Theory Instantiation —(3) on Figure 8.1

At this phase, the elements specific to the system being modelled are defined;
the Event-B theories formalising the standards are used.

The classes are associated with their instances and the associations between
instances are specified taking into account the well-definedness conditions re-
quired by ontology instantiation, i.e. isWDgetInstancePropertyValues. Three
attributes of the ontology are completed by theory instantiation: instances,
classInstances and instancePropertyValues.

The definitions of these components are system-dependent and represent the
elements of the system as instances of the standard classes and class associations.
The component of the ontology depending on the instances type parameter is
defined at this point.

The CheckOfSubsetOntologyInstances operator is used to ensure that
system-specific concepts comply with defined standard ontology. The valid-
ity of the instantiation is checked using the predicate operator isWDOntology
which verifies whether the instantiation of the three remaining attributes of
the ontology keeps the ontology definition correct. In particular the predicate
isWDInstanceAssociations, which is a clause of the isWDOntology predicate,
must be verified to ensure that the set of triples (instance, properties and value)
do comply with the classes schema specified in isWDClassAssociations. The
role of these operators is explained in more detail in Section 5.2.

8.3. FORMALISATION OF ARINC 661 STANDARD 119

8.2.3 Model Annotation —(4) on Figure 8.1
After the formal specification and definition of standards, the next phase is
model annotation. It consists of typing model variables with instance-related
ontology components, generally instancePropertyValues, to comply with data
types provided by the formalised standard.

A key methodological requirement in the description of the formal model is
to use operators provided by the theory formalising the standard exclusively. It
is therefore valid to state that the theorem of the theory formalising the standard
is also the theorems of the models, i.e. they are invariants of the model.

In Event-B, this means that the formalised standard requirements and safety
properties are expressed as theorems and the proof obligations are discharged
deductively using the theory theorems and the working hypothesis of exclusively
using the theory operators. Indeed, this assertion necessitates that the model
transitions are realised, exclusively, with the operators provided by the theory
describing the domain standard.

Furthermore, operators’ application produces well-definedness proof obliga-
tions requiring to prove the correctness of the application, such properties are
discharged, by ensuring that the guards are strong enough to imply the well-
definedness of the operators or their combination. In Section 8.4, a model of the
user interface of a critical system is used to illustrate how the property transfer
is achieved.

8.3 Formalisation of ARINC 661 Standard
ARINC 661 [18] is the Cockpit Display System (CDS) standard for communica-
tion protocols between interface objects and aircraft systems. It has been used
for the development of interactive applications in, for instance, the Airbus A380
and the Boeing B787 1.

In ARINC 661 specification standard, an interactive application is called a
User Application (UA), that receives input from the CDS and triggers actions
in aircraft systems. Such inputs are produced by the flying crew manipulating
specific input devices such as a KCCU (Keyboard Cursor Control Unit). UAs
also receive information flow from aircraft systems that are presented to the
flying crew using interactive objects whose behaviour and parameters are de-
scribed in the standard. The current version of the standard (called supplement
7 for part 1) describes, in about 800 pages, a set of definitions and requirements
for the CDS and its graphical objects (called widgets).

A key task in addressing formal conformance is to formally express the base
standard which is the reference in the conformance-checking process. Here-
after, phase (2) of the approach presented in Section 8.2 is showcased through
the formalisation of a part of ARINC 661. ARINC661Theory2 is an Event-B
theory that embodies the formal definition of a part of the ARINC 661 stan-

1https://www.presagis.com/en/product/arinc-661/
2The full listing of ARINC661Theory is in appendix B.2

120 CHAPTER 8. FORMAL CONFORMANCE CHECKING

ARINC 661 element Reference (page) Event-B formal element
Label 3.3.20 (p114) Label
RadioBox 3.3.34 (p184) RadioBox
CheckButton 3.3.5 (p80) CheckButton
SELECTED, UNSELECTED 3.3.5-1 (p81) SELECTED, UNSELECTED
CheckButtonState 3.3.5-1 (p81) hasCheckButtonState
LabelString 3.3.5-1(p81) hasLabelStringForCheckButton
Textual paragraph 3.3.34 (p185) isWDRadioBox
· · · · · · · · ·

Table 8.1: Mapping between ARINC 661 concepts and Event-B formalisation

dard as defined in the specification document (see [18] for a complete descrip-
tion). ARINC661Theory is expressed using the ontology modelling languages
OntologiesTheory. The definition of the ARINC 661 Event-B theory is com-
posed of four main parts: the concept declaration part, the operator declaration,
the axiomatisation part which gives the definitions of the concepts and the op-
erators, and finally, the part enumerating the theorems formalising the required
properties the standard is intended to enforce.

8.3.1 ARINC661Theory - Concepts Declaration
An in-depth analysis of the ARINC 661 standard specification document [18],
especially the part describing the library of widgets allows us to identify the
hierarchical organisation of the widget. They are straightforwardly amenable to
ontological structure formalised using OntologiesTheory. The widget may be
seen as a concept with a collection of attributes. The concepts may also share
a set of associations.

First, the ARINC 661 widgets are directly formalised as classes of the on-
tology and their attributes are formalised as properties of the classes. For
example, Label and check button states are respectively formalised as Label
class and hasCheckButtonState property. Second, the rules and constraints
are expressed as axioms, for example, the isWDRadioBox is a predicate opera-
tor axiomatising the constraint that the button children of a radio box may be
selected exclusively. Table 8.1 shows identified correspondences between AR-
INC 661 concepts and their formal counterparts with an exact location of the
description in the standard specification document.

The formalisation is guided by the structure of the ARINC 661 widget li-
brary and is expressed in the ontology modelling language formalised in Event-B
theory OntologiesTheories. C, P and I of OntologiesTheories are instan-
tiated by three abstract types: ARINC661Classes, ARINC661Properties and
ARINC661Instances. ARINC661Classes contains the classes formalising the
widget types specified by ARINC 661 standard like labels, check buttons and
radio boxes, etc.

The Listing 8.1 enumerates the constants (constant theory operators) playing
the role of classes, properties and instances of the ontology.

• Label, RadioBox and CheckButton are classes of the ontology.

8.3. FORMALISATION OF ARINC 661 STANDARD 121

• ARINC661_BOOL is a class that represents the boolean type and has only
two instances A611_TRUE and A661_FALSE.

• hasCheckButtonState is an ontology property that represents the at-
tribute of the ARINC 661 widget type check button.

The attributes of the ARINC 661 widget types are defined as ontology prop-
erties and are associated with their respective widgets through the ontology
component classProperties.
THEORY ARINC661T heory

IMPORT THEORIES OntologiesT heory
AXIOMATIC DEFINITIONS ARINC661Axiomatisation :

TYPES ARINC661Classes, ARINC66P roperties, ARINC661Instances
OPERATORS

ARINC661_BOOL < expression > () : ARINC661Classes
ARINC661_BOOL_EXTENDED < expression > () : ARINC661Classes
A661_TRUE < expression > () : ARINC661Instances
A661_FALSE < expression > () : ARINC661Instances
RadioBox < expression > () : ARINC661Classes
CheckButton < expression > () : ARINC661Classes
hasChildrenForRadioBox < expression > () : ARINC66P roperties
hasCheckButtonState < expression > () : ARINC66P roperties
SELECTED < expression > () : ARINC661Instances
UNSELECTED < expression > () : ARINC661Instances
. . .

Listings 8.1: ARINC661Theory - constants

8.3.2 ARINC661Theory - Operators Declaration
Furthermore, predicate operators are defined for formalising the constraints and
rules of the ARINC 661 standard. The Listing 8.2 shows only the declarations
of such operators. For example, isWDRadioBox operator formalises a key safety
constraint stating that only one child widget can be selected in a given radio box
at any time 3.
isWDRadioBox < predicate >

(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)) :
well−definedness isW DOntology(o)

isWDEditBoxNumeric < predicate >
(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)) :
well−definedness isW DOntology(o)

isWDARINC661Ontology < predicate >
(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)) :
. . .

Listings 8.2: ARINC661Theory - basic tester operators

ARINC661Theory provides a collection of operators for the construction of
a well-defined ARINC 661 ontology, querying and validly modifying the ontol-
ogy. The list of operators is complete enough to perform basic operations. The
consARINC661Ontology operator returns an ontology formalising the ARINC
661 widgets: Ontology(ARINC661Classes, ARINC661Properties, ARINC661-
Instances). This operator builds a well-defined ontology provided that the

3More details are available in Section 3.3.34 page 184 of ARINC 661 standard [18].

122 CHAPTER 8. FORMAL CONFORMANCE CHECKING

arguments passed in satisfy the well-definedness conditions. There is one well-
definedness condition, which states that the components related to instances
keep the ontology consistent: isWDOntology is valid. Particularly, the condition
states that the instances are linked according to the class schema: isWDInstanceAss-
ociations (see section 5.2).

In Listing 8.3, CkeckOfSubsetA661OntologyInstances is a predicate oper-
ator verifying that machine variables are compliant with the supplied ontology.
This means that the variable is included in the valid set of triples instance,
properties and values. The operator guarantees a valid verification provided
that the ontology passed in is well-defined.
consARINC661Ontology < expression >

(ii : P(ARINC661Instances), cii : P(ARINC661Classes × ARINC661Instances),
ipvs : P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)) :
Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)
well−definedness
isW DARINC661Ontology(consOntology(ARINC661Classes, ARINC66P roperties,
ii, wellBuiltClassP roperties,
wellbuiltT ypesElements ∪ cii, wellBuiltClassAssociations, ipvs))

CkeckOfSubsetA661OntologyInstances < predicate >
(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances),
ui : P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)) :
well−definedness isW DARINC661Ontology(o)

Listings 8.3: ARINC661Theory - constructor operator

8.3.3 ARINC661Theory - Primitives Definitions
The ARINC 661 operators and constants are defined in an axiomatic way. The
AXIOM section contains the definitions of the several elements declared in List-
ings 8.1, 8.2, and 8.3.
AXIOMS

ARINC661ClassesDef :
partition(ARINC661Classes, {Label}, {RadioBox}, {CheckButton}, {P ushButton},
{EditBoxNumeric}, {CheckButtonStateClass}, ...)

ARINC661PropertiesDef
partition(ARINC661P roperties, {hasV isible}, {hasEnable}, {hasChildrenF orRadioBox},

{hasCheckButtonState}, {hasLabelStringF orLabel}, {hasChildrenF orRadioBox},
{hasCheckButtonState}, {hasV alue}, ...)

ARINC661InstancesDef
partition(ARINC661Instances, {A661_T RUE}, {A661_F ALSE}, ..., {SELECT ED},
{UNSELECT ED})
. . .

consARINC661Ontology :
∀ii, cii, ipvs · ii ∈ P(ARINC661Instances)∧
cii ∈ P(ARINC661Classes × ARINC661Instances)
∧ipvs ∈ P(ARINC661Instances × ARINC661P roperties × ARINC661Instances)
∧wellbuiltT ypesElements ∩ cii = ∅ ∧ ii ⊆ W idgetsInstances
⇒

consARINC661Ontology(ii, cii, ipvs) =
consOntology(ARINC661Classes, ARINC661P roperties, ii,

wellBuiltClassP roperties,
wellbuiltT ypesElements ∪ cii,
wellBuiltClassAssociations,
ipvs)

Listings 8.4: ARINC661Theory - axioms for constants and constructor operator

8.3. FORMALISATION OF ARINC 661 STANDARD 123

The ARINC661ClassesDef axiom defines all the elements of ARINC661Classes
which is the set of all the widget types and basic type captured from the AR-
INC 661 standard. For example, Label is a widget and CheckButtonState is
a basic type containing SELECTED and UNSELECTED values corresponding to the
selected and unselected states. In the same vein, ARINC 661 widget attributes
are formalised as properties which are grouped in ARINC661Properties —see
the ARINC661PropertiesDef axiom. THe ARINC661InstanceDef axiom popu-
lates ARINC661Instaces abstract type with instances of all the different widgets
like RadioBoxInstances and values like SELECTED.

In Listing 8.4, the construction axiom consARINC661Ontology defines the
building of the ARINC 661 ontology using the general construction operator
of ontologies imported from OntologiesTheory. Note that only components
related to instances are required to build the ontology since the classes and
properties are extracted once and for all from the ARINC 661 standard specifi-
cation document.
isWDRadioBox

∀o · o ∈ Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)
⇒ (isW DRadioBox(o) ⇔

(
∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ CheckButtonInstances∧
b2 ∈ CheckButtonInstances∧

rb 7→ hasChildrenF orRadioBox 7→ b1 ∈ getInstanceAssociations(o)∧
rb 7→ hasChildrenF orRadioBox 7→ b2 ∈ getInstanceAssociations(o)

⇒ (b1 7→ hasCheckButtonState 7→ SELECT ED ∈ getInstanceAssociations(o)∧
b2 7→ hasCheckButtonState 7→ SELECT ED ∈ getInstanceAssociations(o)

⇒ b1 = b2)
)
∧...

isWDEditBoxNumeric :
∀o · o ∈ Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances) ⇒

(isW DEditBoxNumeric(o) ⇔
(∀ed, v · ed 7→ hasV alue 7→ v ∈ getInstanceAssociations(o) ⇒

v ∈ A661_EDIT _BOX_NUMERIC_ADMISSIBLE_V ALUES))
isWDARINC661Ontology :

∀o · o ∈ Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances) ⇒
(isW DOntology(o) ∧ isW DRadioBox(o) ∧ isW DEditBoxNumeric(o) ⇒

isW DARINC661Ontology(o))
CkeckOfSubsetA661OntologyInstance :

∀o, ipvs · o ∈ Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances)∧
ipvs ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances) ⇒
(isW DARINC661Ontology(consOntology(getClasses(o), getP roperties(o), getInstances(o),

getClassP roperties(o), getClassInstances(o), getClassAssociations(o),
getInstanceAssociations(o)))

⇒ CkeckOfSubsetA661OntologyInstance(o, ipvs))

Listings 8.5: ARINC661Theory - tester operators

Finally, the predicate operator definitions are specified for formalising ver-
ification conditions in an axiomatic way. A significant predicate is that as-
serting that a well-defined ARINC 661 domain ontology is, first of all, a well-
defined ontology in the sense of isWDOntology, and then other conditions are
appended like that formalised in isWDRadioBox predicate holds —see the axiom
consARINC661OntologyDef in Listing 8.5. Indeed, a key condition underlying
all the operators is formalised in the predicate isWDARINC661Ontology, which
requires that the ontology passed in must be a well-defined ontology, formalises
all the constraints of the ARINC 661 standard. Indeed it gathers all the con-

124 CHAPTER 8. FORMAL CONFORMANCE CHECKING

ditions of the widgets like isWDARadioBox and isWDEditBoxNumeric. The last
predicate states that the entered value must be within a specified interval. Last,
an important axiom is ckeckOfSubsetA661OntologyInstance which axioma-
tises the verification that a collection of triples (instance, property, value) rep-
resented by the argument ipvs are coherent with the constraints of the given
ontology o.

8.3.4 ARINC661Theory - Theorems
The THEOREM section in Listing 8.6 contains important facts deduced from the
axiomatisation of the constants and operators. The well-definedness of the on-
tology produced by the construction operator consARINC661Ontology is en-
sured by theorems isWDClassProperitesThm and isWDClassAssociationsThm.
They describe two important facts: classes are related to properties which do
exist in the ontology (isWDClassProperitesThm) and class associations connect
classes and properties which are in the classes and properties components
of the ontology (isWDClassAssociationsThm) —see section 5.2 for their formal
definitions.

The proof relied on the well-definedness conditions of the construction oper-
ator and its direct definition which, when combined, entail the well-definedness
of the two components of the constructed ontology. Specifically, the component
involved in the definition of consARINC661Ontology (see Listing 8.4), namely
wellBuiltClassProperties and wellBuiltClassAssociations are defined so
that the well-definedness conditions are entailed.
THEOREMS
isWDClassProperitesThm

∀ii, cii, ipvs · ii ∈ P(ARINC661Instances)
∧cii ∈ P(ARINC661Classes × ARINC661Instances)
∧ipvs ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)
∧wellbuiltT ypesElements ∩ cii = ∅ ∧ ii ⊆ W idgetsInstances

⇒
isW DClassP roperites(consARINC661Ontology(ii, cii, ipvs))

isWDClassAssociationsThm
∀ii, cii, ipvs · ii ∈ P(ARINC661Instances)
∧cii ∈ P(ARINC661Classes × ARINC661Instances)
∧ipvs ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)
∧wellbuiltT ypesElements ∩ cii = ∅ ∧ ii ⊆ W idgetsInstances ⇒

isW DClassAssociations(consARINC661Ontology(ii, cii, ipvs))
END

Listings 8.6: ARINC661Theory - theorems

8.4 Weather Radar Application Case Study
This section 4 is dedicated to modelling the user interface of the Weather Radar
System (WXR) of the Multi-Purpose Interactive Application. The description
of the case study is given in Section 4.2. This section corresponds to phase (3)
on Figure 8.1. The theory is composed of two axiomatic blocks; the first block

4The full Event-B development of WXR case study is in appendix in C.4

8.4. WEATHER RADAR APPLICATION CASE STUDY 125

WXRUIDescriptoinAxiomatisaiton defines widgets of the user interface and
the second block EventsAffectingWidgetsAxiomatisation defines operators
for formalising the interaction with the user interface. Subsection 8.4.2 is related
to the instantiation of the ARINC661Theory where the instances specific to the
user interface of the WXR application are defined and provided to correctly
complete the ontology. Subsection 8.4.3 presents the operator used for updating
the user interface of the WXR application. Last, subsection 8.4.4 discusses
key theorems formalising important facts about the formal model of the user
interface.

8.4.1 WXRTheory - Instances Declaration

THEORY
WXRTheory

IMPORT THEORY
ARINC661Theory

AXIOMATIC DEFINITIONS
WXRUIDescriptoinAxiomatisaiton :
OPERATORS

A661WXROntology < expression > () :
Ontology(ARINC661Classes, ARINC661P roperties, ARINC661Instances)

Instances < expression > () : P(ARINC661Instances)
ClassInstances < expression > () : P(ARINC661Classes × ARINC661Instances)
MODESELECTIONLabel < expression > () : ARINC661Instances
OFF1Label < expression > () : ARINC661Instances
OFF1CheckButton < expression > () : ARINC661Instances
. . .
WXRFeatures < expression >

(o : Ontology(ARINC661Classes, ARINC661P roperties, ARINC661Instances)) :
P(ARINC661Instances × ARINC661P roperties × ARINC661Instances)

well−definedness
isW DARINC661Ontology(o)

Listings 8.7: WXRTheory - constants

WXRTheory includes constants and operators dealing with instance infor-
mation, which is not defined in ARINC661Theory. This theory provides el-
ements to formally describe WXR the user interface. WXRFeature contains
the instances association used by the WXR model —a set of triples (instance,
property, value) of type P(ARINC661Instances × ARINC661Properties ×
ARINC661Instances). In Listing 8.7, several constants are declared such as
OFF1Label which represents the label OFF in the model selection radio box (see
Figure 8.2). In the same manner, OFF1CheckButton represent the OFF check
box. In the same vein, other widgets are declared in this part of WXRTheory.

8.4.2 WXRTheory - Instances Definition
In Listing 8.8, instances of the ARINC 661 ontology theory are defined as con-
stants of the type P (ARINC661). For example, WXRinstances is a set of all
possible widgets of the user interface: WXRLabels, WXRCheckButtons, etc. The
WXRFeatures operator restricts the ARINC661 ontology to the instances needed
to design the WXR user interface, i.e. none of these instances is outside of the
ARINC 661 ontology. Instances is composed of several blocks: WXRLabels,

126 CHAPTER 8. FORMAL CONFORMANCE CHECKING

WXRcheckButtons, WXREditNumericBoxes, ... etc. Then, the instances are
affected by relevant classes in ClassInstancesDef axiom. The instance asso-
ciations are also defined in WXRInstancePropertyValuesDef. Last, these com-
ponents are used for defining the construction of ontology as shown in axiom
A661WXROntology.
AXIOMS

WXRLabelsDef :
partition(W XRLabels, {MODESELECT IONLabel}, {OF F 1Label}, ...)

WXRcheckButtons :
partition(W XRcheckButtons, {OF F 1CheckButton}, {ST DBY CheckButton},
{T ST CheckButton}, {W XONCheckButton}, {W XACheckButton})

WXRradioBoxesDef :
partition(W XRradioBoxes, {W XRradioBoxModeSelection},
{W XRradioBoxT iltSelection}, {W XRradioBoxStabilization})

WXREditNumericBoxesDef :
W XREditNumericBoxes = {T IT LANGLEEditNumericBox}

WXRInstancesDef :
partition(Instances, W XRLabels, W XRcheckButtons, W XRStrings,

W XRT oggleButtons, W XREditNumericBoxes,
W XRradioBoxes, W XRW idgetIdents)

WXRClassInstancesDef :
ClassInstances = ({Label} × W XRLabels)∪

({ARINC661_ST RING_CLASS} × W XRStrings)∪
({CheckButton} × W XRcheckButtons)∪
({T oggleButton} × W XRT oggleButtons)∪
({RadioBox} × W XRradioBoxes)∪
({W idgetIdentClass} × W XRW idgetIdents)

. . .
WXRInstancePropertyValuesDef :

InstanceAssociation = iaLabels ∪ iaCheckBttons∪
iaT oggleButtons ∪ ioRadioBoxes

A661WXROntologyDef :
A661W XROntology = consARINC661Ontology(Instances,

ClassInstances, InstanceAssociation)
WXRFeaturesDef :

∀o · o ∈ Ontology(ARINC661Classes,
ARINC66P roperties,
ARINC661Instances)∧

isW DARINC661Ontology(o) ⇒
W XRF eatures(o) = InstanceAssociation

Listings 8.8: WXRTheory - axioms for constants

8.4.3 WXRTheory - Operators Declaration and Definition

AXIOMATIC DEFINITIONS EventsAffectingWidgetsAxiomatisation :
OPERATORS

isWDChangeModeSelection < predicate >
(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances),
ui : P(ARINC661Instances × ARINC66P roperties × ARINC661Instances),
mode : ARINC661Instances) :

changeModeSelection < expression >
(o : Ontology(ARINC661Classes, ARINC66P roperties, ARINC661Instances),
ui : P(ARINC661Instances × ARINC66P roperties × ARINC661Instances),
mode : ARINC661Instances)
: P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)

well−definedness isW DChangeModeSelection(o, ui, mode)
. . .

Listings 8.9: WXRTheory - operators declarations

8.4. WEATHER RADAR APPLICATION CASE STUDY 127

The user interface provides user interaction operators: choosing a mode
selection, switching between the two states of the stabilization and tilt section
feature and finally input a new tilt angle value. Each interaction is modelled
by two operators: a WD predicate and an interactions modelling operator.
For example, isWDChangeModeSelection and changeModeSelection pair of
operators deal with mode selection change (see Listing 8.9). Other operators are
defined and associated with well-definedness conditions to allow for interaction
with a user interface which is depicted in Figure 8.2.

In the AXIOMS clause, several operators are defined (see Listing 8.10). For
example, changeModeSelection is associated with a well-definedness condition
formalised by the predicate operator isWDChangeModeSelection. This operator
states that crew members may select only specified modes in WXRcheckButtons
and CkeckOfSubsetA661OntologyInstances (see Listing 8.5) ensures that the
ui parameter complies with ontology rules and constraints. changeModeSelect
ion operator allows to interact with the interface passed in as an argument,
and it permits to update to the mode of functioning of the radar. When the
conditions including that related to the ontology o (isWDOntology) formalised
by isWDChangeModeSelection hold, the changeModeSelection updates the ui
argument specifying the user interface by deleting the triple (instance, property,
value) mode 7→ hasCheckButtonState 7→ UNSELECTED and by adding the
triple mode 7→ hasCheckButtonState 7→ SELECTED.
AXIOMS
isWDChangeModeSelectionDef :

∀o, ui, mode · o ∈ Ontology(ARINC661Classes, ARINC66P roperties,
ARINC661Instances)∧
ui ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)∧
mode ∈ ARINC661Instances ⇒
(isW DChangeModeSelection(o, ui, mode) ⇔
CkeckOfSubsetA661OntologyInstances(o, ui)∧
mode ∈ W XRcheckButtons)

changeModeSelectionDef :
∀o, ui, mode · o ∈ Ontology(ARINC661Classes, ARINC66P roperties,
ARINC661Instances)∧
ui ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)∧
mode ∈ ARINC661Instances ⇒
(changeModeSelection(o, ui, mode) =
(ui \ {i 7→ hasCheckButtonState 7→ UNSELECT ED |
i 7→ hasCheckButtonState 7→ SELECT ED ∈ ui∧
i ∈ (W XRcheckButtons \ mode)})∪
mode 7→ hasCheckButtonState 7→ SELECT ED)

. . .

Listings 8.10: WXRTheory - operator definitions

8.4.4 WXRTheory - Theorems
In WXRTheory, important safety properties are stated and proved in the form of
theorems. Two key facts are formalised and proved for all operators; the suf-
fixes CkeckOfSubsetA661OntologyInstancesInst and Safely is used to de-
note each of them.

First, Safely-suffixed theorems assert that the operators guarantee that the
exclusive section of the check button is preserved in all radio boxes of the user

128 CHAPTER 8. FORMAL CONFORMANCE CHECKING

interface and that the values of the edit boxes never overflow. The second class
of theorems ensures that the instances of modelling the user interface always
comply with the ontology constraints.
THEOREMS
isWDARINC661Ontology :

isW DARINC661Ontology(A661W XROntology)
WXRFeaturesSafely :

∀o, ipvs · isV ariableOfARINC661Ontology(o, ipvs)∧
(ipvs = W XRF eatures(o))

⇒ ...
WXRFeaturesCkeckOfSubsetA661OntologyInstances :

∀o, ipvs · isW DARINC661Ontology(o)∧
ipvs ∈ P(ARINC661Instances × ARINC66P roperties × ARINC661Instances)∧
(ipvs = W XRF eatures(o)) ⇒ CkeckOfSubsetA661OntologyInstances(o, ipvs)

changeModeSelectionSafety :
∀o, ipvs · CkeckOfSubsetA661OntologyInstances(o, ipvs)∧

(∃uiArg·
(∃m · isW DChangeModeSelection(A661W XROntology, uiArg, m)∧
ipvs = changeModeSelection(A661W XROntology, uiArg, m)))

⇒ (
∀rb, b1, b2 · rb ∈ RadioBoxInstances ∧ b1 ∈ CheckButtonInstances∧
b2 ∈ CheckButtonInstances∧
rb 7→ hasChildrenF orRadioBox 7→ b1 ∈ ipvs∧
rb 7→ hasChildrenF orRadioBox 7→ b2 ∈ ipvs ⇒
(b1 7→ hasCheckButtonState 7→ SELECT ED ∈ ipvs∧
b2 7→ hasCheckButtonState 7→ SELECT ED ∈ ipvs ⇒ b1 = b2)) ∧ ...

changeModeSelectionIsCkeckOfSubsetA661OntologyInstances :
∀o, ipvs · isW DARINC661Ontology(o)∧
(∃uiArg · (∃m· isW DChangeModeSelection(A661W XROntology, uiArg, m) ∧ ipvs =
hangeModeSelection(A661W XROntology, uiArg, m)))

⇒ CkeckOfSubsetA661OntologyInstances(o, ipvs)
. . .

END

Listings 8.11: WXRTheory - theorems

changeModeSelectionIsCkeckOfSubsetA661OntologyInstances is a the-
orem stating that the operator changeModeSelection preserves the compliance
between the user interface model (ui argument) and the ontology of ARINC
661 (the argument o). changeModeSelectionSafety states that the operator
preserves the properties of exclusive selection in a radio box and that the input
values in edit boxes always belong to the allowed values. In Listing 8.11, the
two facts are illustrated for the initialisation operator WXRFeatures.

8.4.5 Annotated Model of WXR —(4) on Figure 8.1
Figure 8.2 depicts the composition, in terms of widgets, of the user interface of
the WXR application. The formal elements in rectangles are beside the widgets
to illustrate the correspondence between widgets and their formal counterparts.

The Weather Radar Application user interface is modelled as an Event-B
machine which uses elements defined in WXRTheory. In Listing 8.12, the state of
the user interface is modelled by uiStateVar variable representing the state of
this user interface, it may evolve when the events formalising the interactions of
the user are triggered. The event changeModeSelectionEvt models the interac-
tion on the mode selection radio box where only one check box shall be selected
at once. Similarly, other events are defined to represent other interactions.

8.4. WEATHER RADAR APPLICATION CASE STUDY 129

Figure 8.2: WXR system annotated with ARINC 661 concepts

MACHINE WXRModel
VARIABLES uiStateVar
INVARIANTS

T ypingAndClosedness :
∃uiArg · ((uiStateVar = initiator(A661WXROntology))∨

∃m· isWDChangeModeSelection(A661WXROntology, uiArg, m)∧
uiStateVar = changeModeSelection(A661WXROntology, uiArg, m))∨

(∃v· isWDChangeTitlAngle(A661WXROntology, uiArg, v)
∧uiStateVar = changeTitlAngle(A661WXROntology, uiArg, v))∨

(isWDSetTiltSelectionCTRL(A661WXROntology, uiArg)∧
uiStateVar = setTiltSelectionCTRL(A661WXROntology, uiArg))∨

(isWDSetTiltSelectionAUTO(A661WXROntology, uiArg)∧
uiStateVar = setTiltSelectionAUTO(A661WXROntology, uiArg))∨

(isWDSetStabilizationCTRL(A661WXROntology, uiArg)∧
uiStateVar = setStabilizationCTRL(A661WXROntology, uiArg))∨

(isWDSetStabilizationOFF(A661WXROntology, uiArg)∧
uiStateVar = setStabilizationOFF(A661WXROntology, uiArg))

OntologyComplianceT hm :
CkeckOfSubsetA661OntologyInstancesIns(A661WXROntology, uiStateVar)

ARINC661SafetyT hm :
(∀rb, b1 , b2 · rb ∈ RadioBoxInstances∧
b1 ∈ CheckButtonInstances ∧ b2 ∈ CheckButtonInstances∧
rb 7→ hasChildrenForRadioBox 7→ b1 ∈ uiStateVar∧
rb 7→ hasChildrenForRadioBox 7→ b2 ∈ uiStateVar

⇒ (b1 7→ hasCheckButtonState 7→ SELECTED ∈ uiStateVar∧
b2 7→ hasCheckButtonState 7→ SELECTED ∈ uiStateVar ⇒ b1 = b2)) ∧ ...

EVENTS
INITIALISATION
THEN

act1 : uiStateVar := WXRFeatures(A661WXROntology)
END
changeModeSelectionEvt
ANY mode
WHERE

grd1 : mode ∈ WXRcheckButtons
grd2 : isWDChangeModeSelection(A661WXROntology, uiStateVar, mode)

THEN
act1 : uiStateVar := changeModeSelection(A661WXROntology, uiStateVar, mode)

END
END

Listings 8.12: Event-B machine for modelling WXR user interface

130 CHAPTER 8. FORMAL CONFORMANCE CHECKING

The domain-related properties are proved deductively and the theorems of
the ARINC 661 theory are transferred to the model. This is true provided,
as prescribed by the framework, only the operators supplied by the theory are
used to define the events. In Listing 8.12, the invariant TypingAndClosedness
formalises this methodological requirement, stipulating that only the operator
provided by the theory is allowed to manipulate the variables. Moreover, it
permits the annotation of the uiStateVar through typing (Event-B theories
support type inference)

Indeed, the desired safety properties of the systems are expressed as theo-
rems, OntologyComplianceThm and ARINC661SafetyThm. The first establishes
that the instances associations comply with the definition of the ARINC 661
ontology. The second ensures that the safety properties of ARINC 661 widgets
such as the selection of check buttons of the same radio box are exclusive, and
the values of an edit box never overflow.

Furthermore, the changeModeSelectionEvt event uses the changeModeSelection
operator to select a mode from the mode selection radio box, such as STDBY
(see Figure 8.2). Note that this event is guarded with the isWDChangeModeSelection
operator which corresponds to its well-definedness condition imported from
WXRTheory.

8.5 Advantages of The Framework

This section discusses the advantages of our approach for standard conformance-
by-construction. This assessment is drawn from the formalisation of the indus-
trial standard ARINC 661 and the modelling of the case study presented in
sections 8.1 and 8.3. The framework has four main benefits compared to ad
hoc and implicit integration of the standards rules and criteria directly in the
formal model. These advantages are discussed below.

8.5.1 Achieving Standard Conformance Formally

The functional goal of the framework has been achieved. The framework demon-
strated that standard conformance may be checked formally. Indeed, domain-
related requirements specified by an industrial standard like ARINC 661 may
be transferred and enforced properly on formal design models. Specifically, the
requirement of selecting exclusively one radio box at once has been proved to
hold on the Weather Radar System user interface by formally deducing it. In
contrast, conventionally requirement would be formalised as an invariant there-
fore it would necessitate proving the property as safety property inductively,
i.e. each event preserves the property and the initialisation event starts the
induction.

8.5. ADVANTAGES OF THE FRAMEWORK 131

8.5.2 Qualitatively Enhanced System Models
The WXR model has been greatly improved as a result of extensive outsourcing
of safety properties to the theory level and the use of the ontology description
theory. The use of a theory validated by experts led to trustworthy models,
which may be considered as the clean organisation of formal specification. In
addition, this approach enabled domain-specific (standards) models to be val-
idated, once and for all, independently of the systems design models. The
resulting models realised a qualitative leap compared to the ad hoc and implicit
integration of this domain knowledge inside the formal models. The framework
features the separation of concerns and permits the extension and reusability of
the generic formal theories.

8.5.3 Reduction of Modelling and Proving Effort
Although the description of the domain-specific theory, ARINC661Theory, re-
quires a significant amount of modelling effort, the specification of the models
is simplified as a result of the existence of such theory. Indeed, it provides op-
erators which are used as high-level abstraction building blocks. The models
are composed of these operators, thus, transferring the desired safety properties
provided that well-definedness conditions are supplied. The transferring process
is valid since properties have been proved once and for all on the theory side,
and the model is built exclusively using the theory primitives. In this way, the
modelling effort is better reused and shared leading to a capitalised modelling
effort in the long run.

The proving process is streamlined. Indeed, the well-definedness proof obli-
gations are discharged semi-automatically thanks to well-definedness predicates
which are, by principle, provided in the domain theory. Moreover, INV proof
obligations are discharged automatically because the working hypothesis re-
quires that the model shall be built using only the primitives of the theory,
including the operators. In addition, the theorems in the machine (see List-
ing 8.12) are proved through a single modus ponens inference rule using the
theorems of the theory.

Event-B Models and Theories Number of proof obligations
OntologiesTheories 21
ARINC661Theory 10
WXRTheory 39
WXRModel 18

Table 8.2: Proof statistics of conformance checking and MPIA case study

Table 8.2 shows 88 automatically generated proof obligations for the theories
and WXRModel Event-B machine. Only 18 out of the 88 proof obligations in
total are generated for the Event-B system model (machine) and automatically
discharged. In particular, the next models of intercative critical systems using

132 CHAPTER 8. FORMAL CONFORMANCE CHECKING

the framework and the Event-B theory ARINC661Theory will only need to prove
the proof obligations of the system model; without the need to prove again the
proof obligations of the theory.

8.5.4 Enabling Evolution of Standard
Last but not least, the approach enables the evolution of the standard. Indeed,
the neat separation of the common domain knowledge from system specifics
fosters the separation of concerns principle and orthogonality of the evolu-
tion principle. Both domain models and system design models may evolve
asynchronously or independently with limited impact on each other. From a
proof perspective, only proof obligations caused by the evolution need to be
discharged.

8.6 Conclusion
This section concludes the chapter dedicated to formal conformance. This chap-
ter presented the application of the general methodology of integrating domain
knowledge in formal models discussed in Chapter 5 and Chapter 6 to checking
conformance of systems to standards. For this purpose, section 8.1 addressed
the issue of standard formal conformance where a formal framework for achiev-
ing formal conformance regarding a standard is presented. The ARINC 661
standard and user interface of the Weather Radar System critical system were
used for demonstrating the effectiveness of the framework. Section 8.3 discussed
the formalisation of the ARINC 661 standard specification dedicated to aircraft
Cockpit Display System (CDS) and section 8.4 was dedicated to the description
of the WXR user interface case study.

From the standardisation point of view, industry consortia and standardis-
ation bodies may define, through consensual agreement, public formal theories
modelling domain standards which may significantly increase the reliability of
the certification process.

Conclusion and
Perspectives

Conclusion
Formal methods demonstrated their effectiveness in improving confidence in
critical system modelling by revealing unsafe design decisions, therefore pre-
venting them from reaching the system implementation. This thesis is part of a
series of works intended to further enhance formal modelling by making explicit
modelling of domain knowledge in formal modelling and verification. Although
mathematical knowledge such as algebraic structures, real numbers, differential
equations and so on have been largely addressed across several formal methods,
the challenge of systematically handling explicit modelling of domain knowledge
remains a challenge. In this thesis, we, first, addressed the challenge of explicit
modelling of domain knowledge, and identified potential improvements of ex-
plicit modelling of domain knowledge over classical modelling which adopts an
ad hoc and implicit modelling of domain requirements. This ad hoc modelling
of domain yields to monolithic specification of domain-specific along system-
specific requirements. Next, we emphasised the relevance of domain modelling
for interactive critical systems to illustrate our framework on concrete systems.
Then, we stated desired features for the framework supporting explicit modelling
of domain knowledge and domain-specific properties transferring to system mod-
els. Among these features, the ontology formalism was preferred for representing
domain knowledge for uniformity and consensuality reasons. Consequently, do-
main requirements such as safety properties and behavioural analyses have been
considered, and conformance checking of system model regarding standards has
been addressed. Last, the framework has been implemented in Event-B method
by leveraging the use of generic Event-B theories. The work carried out during
this has resulted in the following contributions:

Ontology-Based Explicit Modelling of Domain Knowledge. We developed a
framework for explicit modelling of domain knowledge in formal modelling and
properties transferring to such system models. A contrasting comparison is un-
rolled through the parallel development of two versions of a didactic model of
temperature aggregator and TCAS case study. The first versions has been de-

133

134 CHAPTER 8. FORMAL CONFORMANCE CHECKING

veloped following an ad hoc handling of the domain knowledge, and the second
version has been developed using our framework by modelling explicitly domain
knowledge requirements. As a result, the improvement of the quality of mod-
els has been demonstrated in terms of modular design, separation of concerns,
enhanced understandability, and the reductions of modelling and proof effort
as well as the reuse and sharing of domain theories. Furthermore, structur-
ing formal models such that they reference explicitly domain knowledge offers
an orthogonal and independent evolution of domain and system specifications.
Next, we formalised an ontology modelling language for describing engineering
domains allowing to design a uniform and homogeneous collection of domain on-
tologies. This ontology modelling language has been implemented as a generic
Event-B theory composed of a unique data type representing concepts, proper-
ties, instances and associations of the intended ontology, and a set of operators,
axioms and theorems. Last, several ontologies have been defined to represent
various domains using this ontology modelling language.

Annotation-Based Domain Safety Properties Transferring. Starting from anal-
ysis of requirements on interactive systems case studies, provided that the do-
main knowledge is explicitly modelled as a separate specification, we showed
that it is possible to transfer the safety requirements entailed by the domain
specification to system models. Formally, it means that the theorems of the
domain theory are also theorems of the system model. Then, we emphasised
the role of working hypothesis of our framework requiring that the system model
shall be specified using the primitives of the domain theories exclusively in order
to transfer correctly the domain properties. Our framework has been illustrated
on the TCAS case study through the safety property requiring that critical air-
craft should be always visible.

Annotation-Based Domain-Specific Behavioural Analysis. We designed a
methodology to define domain-specific behavioural analyses based on annota-
tion. Then, these analyses may be applied to investigate the behaviours of
state-based Event-B models, and check behavioural requirements specified in en-
gineering domain knowledge. The methodology relies on our ontology modelling
language for describing ontologies of events and EB4EB [143] reflexive Event-B
framework to define the behavioural analyses. An annotation-based mechanism
has been specified to link domain concepts and requirements to system model.
Therefore, it enables to check not only the plain temporal behavioural of the
model but also to verify behaviours of the models given an ontology (i.e. hier-
archy) of the model events. This methodology is non-intrusive in the sense that
it may be used at any stage of the refinement chain of the development. Last,
this approach was illustrated on a model of an ATM that has been investigated
to verify that input passcodes are always followed by confirmation or abortion.
Moreover, the last analysis is an instantiation of the analysis allowing to check
whether an event annotated by a source ontology concepts (i.e. input tag) is
eventually followed by events annotated by target ontology concepts meanwhile
a specific category of events are exclusively allowed to be triggered.

8.6. CONCLUSION 135

Conformance Checking With Respect to Standard Requirements. The idea
of conformance checking to a standard started with the observation that stan-
dard specification may be regarded as a special domain knowledge requirements.
Our framework has been used to show that standard specification and confor-
mance checking may be regarded as a special case of explicit modelling of do-
main knowledge. Indeed, we proposed a methodology for formalising a standard
specification as a knowledge model with an ontology, and check that a system
model is compliant with the requirements specified by the standard by trans-
ferring the properties entailed by the standard specification. Our proposal has
been exemplified by (1) specifying the part of the section of the ARINC 661
standard dedicated to widgets as a domain ontology, (2) modelling the WXR
user interface by referring to the widget primitives of the ARINC 661 Event-B
theory. As a consequence, the formalised ARINC 661 standard properties of the
widgets (such as the selection of buttons of a radio box shall be exclusive) are
transferred to the system model; they are proved to be theorems of the model.
The conformance is achieved thanks to the transfer of the properties from the
formalisation of the standards requirements to the system models.

Perspectives
A number of extension directions have been identified to improve the current
state of the framework. They are discussed below.

is annotated by

Behavioural
Domain Knowledge

<<Event-B theory>>

Usees

selects

Properties
<<predicate operator>>

instantiates

is annotated by

is annotated by

Static
Domain Knowledge

<<Event-B theory>>

Uses

selects

Properties
<<theorems>>

instantiates

is annoated by

Architectural Domain
Knowledge

MVC, MIODMIT, etc
<<Event-B theory>>

uses

instantiates
Event-B Meta-Theory

Instance
<<Event-B context>>

Verification
<<theorem proving>>

Ontology modelling
Language

<<Event-B theory>>

uses

Event-B Model
<<Event-B machine>>

Verification
<<theorem proving>>

Event-B Meta-Theory
Instance

<<Event-B context>>

Usesuses

Verification
<<theorem proving>>

Event-B Meta-Theory
<<Event-B theory>>

Temperature aggregator

Property Transferring + TCAS Case Study

CIS Behavioural Property + ATM Analysis Case StudyARINC 661 + MPIA Conformance Checking Case Study

Perspective Contributions Third-party

Figure 8.3: A map of thesis contributions and perspective

In Figure 8.3, that the part coloured in aqua shows a possible extension
to the map of contributions to include architectural domain knowledge (i.e.
Perspectives box). Besides the figure contains the contributions related to static

136 CHAPTER 8. FORMAL CONFORMANCE CHECKING

domain knowledge (safety requirements) and behavioural domain knowledge
(domain-specific analyses) encircled in the Contributions box. The Third party
box represents the Event-B meta-theory.

Design Pattern as Domain-Specific Structural Analysis. In this thesis, we pro-
posed a framework for explicit modelling of domain knowledge, and we for-
malised it using the Event-B method. A different type of domain knowledge is
the architectural requirements to which a system model need to comply with
[141]. An annotation-based approach may be effective, where the architectural
requirements should be formalised as a domain theory, and the Event-B sys-
tem model should be exported to the EB4EB framework. Last, we can use the
Event-B proving mechanism to establish the compliance.

Extended Formalisation of Standards. The methodology devised for confor-
mance checking of system model regarding standard specifications may be used
to address the required safety assurances to meet certification standards. The
formally proved properties and the formal data types and operators can be used
as an evidence in assurance cases, helping the certification process by guiding
both the development and regulatory evaluation of interactive critical systems.
Last, from the standardisation point of view, industry consortia and standardi-
sation bodies may define formal processes addressing consensual agreement on
the definition and consistence of the formal theories modelling domain standards
i.e. the process consisting in analysing text-based standards in order to derive
domain standard theories and in validating these derived theories.

In addition, this work can be completed by the study of other type of domain
standards related to temporal properties, real-time scheduling, common criteria
for security etc. and application domains like avionics, transportation systems
and so on. In the same vein, we believe that the approach of defining domain-
specific behavioural analyses can be exploited for certification purposes. Indeed,
a non-intrusive analysis may be carried out for such purposes if certification
standards are formalised as theories formalising certification properties.

Richer Ontology of Events. In the methodology for defining domain-specific
behavioural analyses, we illustrated a domain composed of a hierarchy of con-
cepts. As future work, we plan to apply the framework to other case studies
and generalise the ontology of events to include associations between ontology
concepts.

Ontology Hierarchical Behavioural Operators. In this thesis, domain theories
presented a flat collection of operators. However, collections of operators hier-
archically organised should allow to describe a domain model at different levels
of abstraction. Therefore, special behavioural system models may be derived
from a general domain enjoying a desired safety property entailed by the domain
theory. The refinement provided by Even-B may be useful to ensure that the
latter model using the special operators preserves the properties of the former
model described using the general operators. This extension of the framework

8.6. CONCLUSION 137

would permit to prove only once the preservation of the safety property by
(1) proving that the general operators preserves the property, and (2) that the
special operators are derived from the general operators.

A Library of Domain Ontologies. The framework proposed in this thesis may
be used to develop domain theories pertaining to different engineering contexts
such as autonomous vehicles, railways systems, etc. In general any domain
knowledge that can be formalised as an ontology may be addressed by our
framework. As a result, when the number of domain theories is large enough, it
makes sense to create a library where domain theories can be contributed and
reused rather than reinventing current ones. Such a library would enable more
complete descriptions of domains provided that a larger number of developers
and experts contribute to common projects.

Modularisation of Domain Theories. This perspective is a sequel to the avail-
ability of domain theory repository. Indeed, it would be interesting to inves-
tigate Modularisation mechanisms of domain theories to study their effects on
the preservation of safety properties entailed by the individual domain theories.
Examples of modularisation operations are hierarchy, abstraction and composi-
tion.

Systematic Assessment of Orthogonal Evolution of Domain and System Spec-
ifications. In this thesis, specifically in the contributions related to formal
conformance checking, we identified the advantage of orthogonal evolution of
domain and system specifications. Indeed, it is clear that if a theory is modi-
fied such that the operators keep the extended theory’s theorems provable, the
system models built using the data types and operators of the extending the-
ory always entail the safety properties of the theory. Formally, the theorems of
the extended theory are equally theorems of the extending theory. Therefore,
since the models exclusively use the primitives of the extending theory (working
hypothesis), then the systems models preserve the safety properties. A system-
atic investigation and evaluation of both the evolution of theories and systems
models on sufficient number of theories and systems models may reveal useful
patterns and general conditions where this preservation is always ensured. For
the Event-B method, this means that in case of evolution of system models
and/or domain knowledge, it will be helpful for the designer to check the only
PO’s that result from this evolution. Formalising the evolution mechanism so
that such PO’s are automatically generated, which save development time.

138 CHAPTER 8. FORMAL CONFORMANCE CHECKING

Bibliography

[1] I. 9646. ISO/IEC 9646-1:1994 - Information technology — Open Systems
Interconnection — Conformance testing methodology and framework —
Part 1: General concepts, 1994. URL: https://www.iso.org/standard/
17473.html.

[2] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach. SW-Store: a
vertically partitioned DBMS for Semantic Web data management. VLDB
J., 18(2):385–406, 2009. doi:10.1007/s00778-008-0125-y.

[3] J. Abrial. Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010. doi:10.1017/CBO9781139195881.

[4] J. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin. Rodin: an open toolset for modelling and reasoning in event-
b. Int. J. Softw. Tools Technol. Transf., 12(6):447–466, 2010. doi:
10.1007/s10009-010-0145-y.

[5] J. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantia-
tion of Discrete Models: Application to Event-B. Fundam. Informaticae,
77(1-2):1–28, 2007. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi77-1-2-02.

[6] J. Abrial and L. Mussat. On Using Conditional Definitions in Formal
Theories. In D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson,
editors, ZB 2002: Formal Specification and Development in Z and B, 2nd
International Conference of B and Z Users, Grenoble, France, January 23-
25, 2002, Proceedings, volume 2272 of Lecture Notes in Computer Science,
pages 242–269. Springer, 2002. doi:10.1007/3-540-45648-1_13.

[7] J.-R. Abrial, M. Butler, S. Hallerstede, M. Leuschel, M. Schmalz, and
L. Voisin. Proposals for Mathematical Extensions for Event-B. Tech-
nical report, 2009. URL: https://web-archive.southampton.ac.uk/
deploy-eprints.ecs.soton.ac.uk/216/.

[8] E. A. S. Agency. Certification Specifications and Acceptable
Means of Compliance for Large Aeroplanes CS-25. Standard,
2015. URL: https://www.easa.europa.eu/en/document-library/
certification-specifications/cs-25-amendment-25.

139

https://www.iso.org/standard/17473.html
https://www.iso.org/standard/17473.html
https://doi.org/10.1007/s00778-008-0125-y
https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
http://content.iospress.com/articles/fundamenta-informaticae/fi77-1-2-02
http://content.iospress.com/articles/fundamenta-informaticae/fi77-1-2-02
https://doi.org/10.1007/3-540-45648-1_13
https://web-archive.southampton.ac.uk/deploy-eprints.ecs.soton.ac.uk/216/
https://web-archive.southampton.ac.uk/deploy-eprints.ecs.soton.ac.uk/216/
https://www.easa.europa.eu/en/document-library/certification-specifications/cs-25-amendment-25
https://www.easa.europa.eu/en/document-library/certification-specifications/cs-25-amendment-25

140 BIBLIOGRAPHY

[9] Y. Ait Ameur, I. Ait Sadoune, K. Hacid, and L. Mohand Oussaid. For-
mal Modelling of Ontologies : An Event-B based Approach Using the
Rodin Platform. In R. Laleau, D. Méry, S. Nakajima, and E. Troubit-
syna, editors, Proceedings Joint Workshop on Handling IMPlicit and
EXplicit knowledge in formal system development (IMPEX) and For-
mal and Model-Driven Techniques for Developing Trustworthy Systems
(FM&MDD), IMPEX/FM&MDD 2017, Xi’an, China, 16th November
2017, volume 271 of EPTCS, pages 24–33, 2017. doi:10.4204/EPTCS.
271.2.

[10] Y. Ait Ameur and M. Baron. Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model. Int.
J. Softw. Tools Technol. Transf., 8(6):547–563, 2006. doi:10.1007/
s10009-006-0008-8.

[11] Y. Ait Ameur, M. Baron, L. Bellatreche, S. Jean, and E. Sardet. On-
tologies in engineering: the OntoDB/OntoQL platform. Soft Comput.,
21(2):369–389, 2017. doi:10.1007/s00500-015-1633-5.

[12] Y. Ait Ameur, N. Belaid, M. Bennis, O. Corby, R. Dieng-Kuntz, J. Doucy,
P. Durville, C. Fankam, F. Gandon, A. Giboin, P. Giroux, S. Grataloup,
B. Grilhères, F. Husson, S. Jean, J. Langlois, P. Luong, L. S. Mastella,
O. Morel, M. Perrin, G. Pierra, J. Rainaud, I. Ait Sadoune, E. Sardet,
F. Tertre, and J. F. Valiati. Semantic Hubs for Geological Projects. In
K. Belhajjame, M. d’Aquin, P. Haase, and P. Missier, editors, First Inter-
national Workshop on Semantic Metadata Management and Applications,
SeMMA 2008, Located at the Fifth European Semantic Web Conference
(ESWC 2008), Tenerife, Spain, June 2nd, 2008. Proceedings, volume 346
of CEUR Workshop Proceedings, pages 3–17. CEUR-WS.org, 2008. URL:
https://ceur-ws.org/Vol-346/1.pdf.

[13] Y. Ait Ameur, G. Dupont, I. Mendil, D. Méry, M. Pantel, P. Rivière, and
N. K. Singh. Empowering the Event-B Method Using External Theories.
In M. H. ter Beek and R. Monahan, editors, Integrated Formal Methods
- 17th International Conference, IFM 2022, Lugano, Switzerland, June
7-10, 2022, Proceedings, volume 13274 of Lecture Notes in Computer Sci-
ence, pages 18–35. Springer, 2022. doi:10.1007/978-3-031-07727-2\
_2.

[14] Y. Ait Ameur and D. Méry. Making explicit domain knowledge in formal
system development. Sci. Comput. Program., 121:100–127, 2016. doi:
10.1016/j.scico.2015.12.004.

[15] Y. Ait-Ameur, S. Nakajima, and D. Méry. Implicit and Explicit Semantics
Integration in Proof-Based Developments of Discrete Systems. Springer
Singapore, 2021. URL: https://hal.inria.fr/hal-02910199, doi:10.
1007/978-981-15-5054-6.

https://doi.org/10.4204/EPTCS.271.2
https://doi.org/10.4204/EPTCS.271.2
https://doi.org/10.1007/s10009-006-0008-8
https://doi.org/10.1007/s10009-006-0008-8
https://doi.org/10.1007/s00500-015-1633-5
https://ceur-ws.org/Vol-346/1.pdf
https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1016/j.scico.2015.12.004
https://hal.inria.fr/hal-02910199
https://doi.org/10.1007/978-981-15-5054-6
https://doi.org/10.1007/978-981-15-5054-6

BIBLIOGRAPHY 141

[16] I. Ait Sadoune and L. Mohand Oussaid. Building Formal Semantic Do-
main Model: An Event-B Based Approach. In K. Schewe and N. K.
Singh, editors, Model and Data Engineering - 9th International Con-
ference, MEDI 2019, Toulouse, France, October 28-31, 2019, Proceed-
ings, volume 11815 of Lecture Notes in Computer Science, pages 140–155.
Springer, 2019. doi:10.1007/978-3-030-32065-2_10.

[17] S. Albukhitan, T. Helmy, and M. Al-Mulhem. Semantic Annotation Tool
for Annotating Arabic Web Documents. In E. M. Shakshuki and A. Yasar,
editors, Proceedings of the 5th International Conference on Ambient Sys-
tems, Networks and Technologies (ANT 2014), the 4th International Con-
ference on Sustainable Energy Information Technology (SEIT-2014), Has-
selt, Belgium, June 2-5, 2014, volume 32 of Procedia Computer Science,
pages 429–436. Elsevier, 2014. doi:10.1016/j.procs.2014.05.444.

[18] ARINC. ARINC 661 specification: Cockpit Display System Inter-
faces to User Systems, Prepared by AEEC, Published by SAE, Melford
Blvd., Bowie, Maryland, USA, 06 2019. URL: https://www.sae.org/
standards/content/arinc661p1-7/.

[19] H. Arnaud, P. A. Palanque, J. L. Silva, Y. Deleris, and E. Barboni. Formal
description of multi-touch interactions. In P. Forbrig, P. Dewan, M. Har-
rison, and K. Luyten, editors, ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems, EICS’13, London, United Kingdom -
June 24 - 27, 2013, pages 207–216. ACM, 2013. doi:10.1145/2494603.
2480311.

[20] E. Barboni, S. Conversy, D. Navarre, and P. A. Palanque. Model-Based
Engineering of Widgets, User Applications and Servers Compliant with
ARINC 661 Specification. In G. J. Doherty and A. Blandford, editors,
Interactive Systems. Design, Specification, and Verification, 13th Interna-
tional Workshop, DSVIS 2006, Dublin, Ireland, July 26-28, 2006. Revised
Papers, volume 4323 of Lecture Notes in Computer Science, pages 25–38.
Springer, 2006. doi:10.1007/978-3-540-69554-7_3.

[21] P. Barlatier and R. Dapoigny. A type-theoretical approach for ontologies:
The case of roles. Appl. Ontology, 7(3):311–356, 2012. doi:10.3233/
AO-2012-0113.

[22] D. Barrell, E. Dimmer, R. P. Huntley, D. Binns, C. O’Donovan, and R. Ap-
weiler. The GOA database in 2009 - an integrated gene ontology anno-
tation resource. Nucleic Acids Res., 37(Database-Issue):396–403, 2009.
doi:10.1093/nar/gkn803.

[23] H. Barringer, J. H. Cheng, and C. B. Jones. A Logic Covering Un-
definedness in Program Proofs. Acta Informatica, 21:251–269, 1984.
doi:10.1007/BF00264250.

https://doi.org/10.1007/978-3-030-32065-2_10
https://doi.org/10.1016/j.procs.2014.05.444
https://www.sae.org/standards/content/arinc661p1-7/
https://www.sae.org/standards/content/arinc661p1-7/
https://doi.org/10.1145/2494603.2480311
https://doi.org/10.1145/2494603.2480311
https://doi.org/10.1007/978-3-540-69554-7_3
https://doi.org/10.3233/AO-2012-0113
https://doi.org/10.3233/AO-2012-0113
https://doi.org/10.1093/nar/gkn803
https://doi.org/10.1007/BF00264250

142 BIBLIOGRAPHY

[24] C. Bartolini, A. Giurgiu, G. Lenzini, and L. Robaldo. A Framework to
Reason about the Legal Compliance of Security Standards. In In Pro-
ceedings of the Tenth International Workshop on Juris-informatics (JU-
RISIN), 2016. URL: https://tinyurl.com/4mutvd72.

[25] N. Belaid, S. Jean, Y. Ait Ameur, and J. Rainaud. An Ontology and
Indexation based Management of Services and Workflows Application
to Geological Modeling. Int. J. Electron. Bus. Manag., 9(4):296–309,
2011. URL: http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/
Paper-V9_N4/A02.pdf.

[26] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2004. doi:
10.1007/978-3-662-07964-5.

[27] D. Bjørner. Software Engineering 1 - Abstraction and Modelling. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006. doi:
10.1007/3-540-31288-9.

[28] D. Bjørner. Software Engineering 2 - Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006. doi:10.1007/978-3-540-33193-3.

[29] D. Bjørner. Software Engineering 3 - Domains, Requirements, and Soft-
ware Design. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006. doi:10.1007/3-540-33653-2.

[30] D. Bjørner. Domain Analysis & Description - The Implicit and Ex-
plicit Semantics Problem. In R. Laleau, D. Méry, S. Nakajima, and
E. Troubitsyna, editors, Proceedings Joint Workshop on Handling IMPlicit
and EXplicit knowledge in formal system development (IMPEX) and For-
mal and Model-Driven Techniques for Developing Trustworthy Systems
(FM&MDD), IMPEX/FM&MDD 2017, Xi’an, China, 16th November
2017, volume 271 of EPTCS, pages 1–23, 2017. doi:10.4204/EPTCS.
271.1.

[31] D. Bjørner. Manifest domains: analysis and description. Formal Aspects
Comput., 29(2):175–225, 2017. doi:10.1007/s00165-016-0385-z.

[32] D. Bjørner. Domain Analysis and Description Principles, Techniques, and
Modelling Languages. ACM Trans. Softw. Eng. Methodol., 28(2):8:1–8:67,
2019. doi:10.1145/3295738.

[33] D. Bjørner and A. Eir. Compositionality: Ontology and Mereology of Do-
mains. In D. Dams, U. Hannemann, and M. Steffen, editors, Concurrency,
Compositionality, and Correctness, Essays in Honor of Willem-Paul de
Roever, volume 5930 of Lecture Notes in Computer Science, pages 22–59.
Springer, 2010. doi:10.1007/978-3-642-11512-7_3.

https://tinyurl.com/4mutvd72
http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/Paper-V9_N4/A02.pdf
http://ijebm.ie.nthu.edu.tw/IJEBM_Web/IJEBM_static/Paper-V9_N4/A02.pdf
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/3-540-31288-9
https://doi.org/10.1007/978-3-540-33193-3
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.4204/EPTCS.271.1
https://doi.org/10.4204/EPTCS.271.1
https://doi.org/10.1007/s00165-016-0385-z
https://doi.org/10.1145/3295738
https://doi.org/10.1007/978-3-642-11512-7_3

BIBLIOGRAPHY 143

[34] D. A. Boehm-Davis, R. E. Curry, E. L. Wiener, and R. L. Harri-
son. Human factors of flight-deck automation: Report on a NASA-
industry workshop. Ergonomics, 26(10):953–961, 1983. doi:10.1080/
00140138308963424.

[35] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass. A Systematic Approach
to Model Checking Human-Automation Interaction Using Task Analytic
Models. IEEE Trans. Syst. Man Cybern. Part A, 41(5):961–976, 2011.
doi:10.1109/TSMCA.2011.2109709.

[36] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving
GATE to meet new challenges in language engineering. Nat. Lang. Eng.,
10(3-4):349–373, 2004. doi:10.1017/S1351324904003468.

[37] D. Brickley and R. V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C recommendation, W3C, February 2004. URL:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[38] J. Broekstra and A. Kampman. An RDF Query and Transformation
Language. In S. Staab and H. Stuckenschmidt, editors, Semantic Web and
Peer-to-Peer - Decentralized Management and Exchange of Knowledge and
Information, pages 23–39. Springer, 2006. doi:10.1007/3-540-28347-1\
_2.

[39] M. J. Butler and I. Maamria. Practical Theory Extension in Event-B. In
Z. Liu, J. Woodcock, and H. Zhu, editors, Theories of Programming and
Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His
70th Birthday, volume 8051 of Lecture Notes in Computer Science, pages
67–81. Springer, 2013. doi:10.1007/978-3-642-39698-4_5.

[40] D. Calegari, T. Mossakowski, and N. Szasz. Heterogeneous verification in
the context of model driven engineering. Sci. Comput. Program., 126:3–30,
2016. doi:10.1016/j.scico.2016.02.003.

[41] J. C. Campos, C. Fayollas, M. D. Harrison, C. Martinie, P. Masci, and
P. A. Palanque. Supporting the Analysis of Safety Critical User Interfaces:
An Exploration of Three Formal Tools. ACM Trans. Comput. Hum. In-
teract., 27(5):35:1–35:48, 2020. doi:10.1145/3404199.

[42] J. C. Campos and M. D. Harrison. Formal Verification of Interactive Com-
puting Systems: Opportunities, Challenges. In B. Weyers and J. Bowen,
editors, Joint Proceedings HCI Engineering 2019 - Methods and Tools
for Advanced Interactive Systems and Integration of Multiple Stakeholder
Viewpoints co-located with 11th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2019), Valencia, Spain, June 18,
2019, volume 2503 of CEUR Workshop Proceedings, pages 69–75. CEUR-
WS.org, 2019. URL: https://ceur-ws.org/Vol-2503/paper1_11.pdf.

https://doi.org/10.1080/00140138308963424
https://doi.org/10.1080/00140138308963424
https://doi.org/10.1109/TSMCA.2011.2109709
https://doi.org/10.1017/S1351324904003468
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
https://doi.org/10.1007/3-540-28347-1_2
https://doi.org/10.1007/3-540-28347-1_2
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1016/j.scico.2016.02.003
https://doi.org/10.1145/3404199
https://ceur-ws.org/Vol-2503/paper1_11.pdf

144 BIBLIOGRAPHY

[43] J. Carmona, B. F. van Dongen, and M. Weidlich. Conformance Checking:
Foundations, Milestones and Challenges. In W. M. P. van der Aalst and
J. Carmona, editors, Process Mining Handbook, volume 448 of Lecture
Notes in Business Information Processing, pages 155–190. Springer, 2022.
doi:10.1007/978-3-031-08848-3_5.

[44] A. Chebieb and Y. Ait Ameur. A formal model for plastic human computer
interfaces. Frontiers Comput. Sci., 12(2):351–375, 2018. doi:10.1007/
s11704-016-5460-3.

[45] A. Chebotko, Y. Deng, S. Lu, F. Fotouhi, and A. Aristar. An ontology-
based multimedia annotator for the semantic web of language engineering.
Int. J. Semantic Web Inf. Syst., 1(1):50–67, 2005. doi:10.4018/jswis.
2005010104.

[46] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In E. Brinksma and K. G. Larsen, ed-
itors, Computer Aided Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume 2404
of Lecture Notes in Computer Science, pages 359–364. Springer, 2002.
doi:10.1007/3-540-45657-0_29.

[47] M. Codescu, E. Kuksa, O. Kutz, T. Mossakowski, and F. Neuhaus.
Ontohub: A semantic repository for heterogeneous ontologies. CoRR,
abs/1612.05028, 2016. URL: http://arxiv.org/abs/1612.05028,
arXiv:1612.05028.

[48] D. Connolly, I. Horrocks, D. McGuinness, F. Patel-Schneider, and
A. Stein. DAML+OIL Reference Description. World Wide Web
Consortium, 2001. URL: https://www.w3.org/TR/2001/NOTE-daml+
oil-reference-20011218.

[49] R. Dapoigny and P. Barlatier. Modeling Ontological Structures with
Type Classes in Coq. In H. D. Pfeiffer, D. I. Ignatov, J. Poelmans, and
N. Gadiraju, editors, Conceptual Structures for STEM Research and Ed-
ucation, 20th International Conference on Conceptual Structures, ICCS
2013, Mumbai, India, January 10-12, 2013. Proceedings, volume 7735
of Lecture Notes in Computer Science, pages 135–152. Springer, 2013.
doi:10.1007/978-3-642-35786-2_11.

[50] R. Dapoigny and P. Barlatier. Formalizing context for domain ontologies
in coq. In P. Brézillon and A. J. Gonzalez, editors, Context in Computing
- A Cross-Disciplinary Approach for Modeling the Real World, pages 437–
454. Springer, 2014. doi:10.1007/978-1-4939-1887-4_27.

[51] B. d’Ausbourg. Using Model Checking for the Automatic Validation of
User Interface Systems. In P. Markopoulos and P. Johnson, editors, De-
sign, Specification and Verification of Interactive Systems’98, Proceedings

https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/s11704-016-5460-3
https://doi.org/10.1007/s11704-016-5460-3
https://doi.org/10.4018/jswis.2005010104
https://doi.org/10.4018/jswis.2005010104
https://doi.org/10.1007/3-540-45657-0_29
http://arxiv.org/abs/1612.05028
https://arxiv.org/abs/1612.05028
https://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
https://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218
https://doi.org/10.1007/978-3-642-35786-2_11
https://doi.org/10.1007/978-1-4939-1887-4_27

BIBLIOGRAPHY 145

of the Fifth International Eurographics Workshop, June 3-5, 1998, Abing-
don, United Kingdom, Volume 1, Eurographics, pages 242–260. Springer,
1998. doi:10.1007/978-3-7091-3693-5_16.

[52] B. d’Ausbourg, G. Durrieu, and P. Roché. Deriving a Formal Model
of an Interactive System from its UIL Descriptionin order to Verify and
Test its Behaviour. In F. Bodart and J. Vanderdonckt, editors, Design,
Specification and Verification of Interactive Systems’96, Proceedings of
the Third International Eurographics Workshop, June 5-7, 1996, Namur,
Belgium, Eurographics, pages 105–122. Springer, 1996. doi:10.1007/
978-3-7091-7491-3_6.

[53] B. d’Ausbourg, C. Seguin, G. Durrieu, and P. Roché. Helping the Auto-
mated Validation Process of User Interfaces Systems. In K. Torii, K. Fu-
tatsugi, and R. A. Kemmerer, editors, Forging New Links, Proceedings
of the 1998 International Conference on Software Engineering, ICSE 98,
Kyoto, Japan, April 19-25, 1998, pages 219–228. IEEE Computer Society,
1998. doi:10.1109/ICSE.1998.671121.

[54] H. Dehainsala, G. Pierra, and L. Bellatreche. OntoDB: An Ontology-
Based Database for Data Intensive Applications. In K. Ramamohanarao,
P. R. Krishna, M. K. Mohania, and E. Nantajeewarawat, editors, Ad-
vances in Databases: Concepts, Systems and Applications, 12th Interna-
tional Conference on Database Systems for Advanced Applications, DAS-
FAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings, volume
4443 of Lecture Notes in Computer Science, pages 497–508. Springer, 2007.
doi:10.1007/978-3-540-71703-4_43.

[55] F. Dehais, C. Tessier, and L. Chaudron. GHOST: Experimenting Con-
flicts Countermeasures in the Pilot’s Activity. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, IJCAI’03, page
163–168, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers
Inc. URL: https://dl.acm.org/doi/10.5555/1630659.1630682.

[56] S. Desprès and S. Szulman. Terminae Method and Integration Process for
Legal Ontology Building. In M. Ali and R. Dapoigny, editors, Advances
in Applied Artificial Intelligence, 19th International Conference on Indus-
trial, Engineering and Other Applications of Applied Intelligent Systems,
IEA/AIE 2006, Annecy, France, June 27-30, 2006, Proceedings, volume
4031 of Lecture Notes in Computer Science, pages 1014–1023. Springer,
2006. doi:10.1007/11779568_108.

[57] D. Distante, M. Winckler, R. Bernhaupt, J. Bowen, J. C. Campos,
F. Müller, P. A. Palanque, J. V. den Bergh, B. Weyers, and A. Voit.
Trends on engineering interactive systems: an overview of works presented
in workshops at EICS 2019. In J. I. Panach, J. Vanderdonckt, and O. Pas-
tor, editors, Proceedings of the ACM SIGCHI Symposium on Engineering

https://doi.org/10.1007/978-3-7091-3693-5_16
https://doi.org/10.1007/978-3-7091-7491-3_6
https://doi.org/10.1007/978-3-7091-7491-3_6
https://doi.org/10.1109/ICSE.1998.671121
https://doi.org/10.1007/978-3-540-71703-4_43
https://dl.acm.org/doi/10.5555/1630659.1630682
https://doi.org/10.1007/11779568_108

146 BIBLIOGRAPHY

Interactive Computing Systems, EICS 2019, Valencia, Spain, June 18-21,
2019, pages 22:1–22:6. ACM, 2019. doi:10.1145/3319499.3335655.

[58] G. Dupont, Y. Ait Ameur, M. Pantel, and N. K. Singh. Handling Refine-
ment of Continuous Behaviors: A Proof Based Approach with Event-B.
In D. Méry and S. Qin, editors, 2019 International Symposium on Theo-
retical Aspects of Software Engineering, TASE 2019, Guilin, China, July
29-31, 2019, pages 9–16. IEEE, 2019. doi:10.1109/TASE.2019.00-25.

[59] G. Dupont, Y. Ait Ameur, M. Pantel, and N. K. Singh. Formally Verified
Architecture Patterns of Hybrid Systems Using Proof and Refinement
with Event-B. In A. Raschke, D. Méry, and F. Houdek, editors, Rig-
orous State-Based Methods - 7th International Conference, ABZ 2020,
Ulm, Germany, May 27-29, 2020, Proceedings, volume 12071 of Lec-
ture Notes in Computer Science, pages 169–185. Springer, 2020. doi:
10.1007/978-3-030-48077-6_12.

[60] G. Dupont, Y. Ait Ameur, N. K. Singh, and M. Pantel. Event-B Hy-
bridation: A Proof and Refinement-based Framework for Modelling Hy-
brid Systems. ACM Trans. Embed. Comput. Syst., 20(4):35:1–35:37, 2021.
doi:10.1145/3448270.

[61] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, S. Armitage,
and R. Stevens. Managing Standards Compliance. IEEE Trans. Software
Eng., 25(6):826–851, 1999. doi:10.1109/32.824413.

[62] ESA. ECSS-Q-HB-30-03A – Human dependability handbook, 2015. URL:
https://tinyurl.com/y2k4jy7m.

[63] EUROCONTROL. Airborne Collision Avoidance System (ACAS)
guide, 12 2017. URL: https://www.eurocontrol.int/publication/
airborne-collision-avoidance-system-acas-guide.

[64] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004. URL: https://tinyurl.com/8nutw63c.

[65] C. Fayollas, C. Martinie, P. A. Palanque, E. Barboni, R. Fahssi, and
A. Hamon. Exploiting Action Theory as a Framework for Analysis and
Design of Formal Methods Approaches: Application to the CIRCUS In-
tegrated Development Environment. In B. Weyers, J. Bowen, A. J. Dix,
and P. A. Palanque, editors, The Handbook of Formal Methods in Human-
Computer Interaction, pages 465–504. Springer International Publishing,
2017. doi:10.1007/978-3-319-51838-1_17.

[66] R. T. C. for Aeronautics. Software Considerations in Airborne Sys-
tems and Equipment Certification, 2012. URL: https://tinyurl.com/
4h7k6vnz.

https://doi.org/10.1145/3319499.3335655
https://doi.org/10.1109/TASE.2019.00-25
https://doi.org/10.1007/978-3-030-48077-6_12
https://doi.org/10.1007/978-3-030-48077-6_12
https://doi.org/10.1145/3448270
https://doi.org/10.1109/32.824413
https://tinyurl.com/y2k4jy7m
https://www.eurocontrol.int/publication/airborne-collision-avoidance-system-acas-guide
https://www.eurocontrol.int/publication/airborne-collision-avoidance-system-acas-guide
https://tinyurl.com/8nutw63c
https://doi.org/10.1007/978-3-319-51838-1_17
https://tinyurl.com/4h7k6vnz
https://tinyurl.com/4h7k6vnz

BIBLIOGRAPHY 147

[67] E. Gabrilovich and S. Markovitch. Wikipedia-based Semantic Interpreta-
tion for Natural Language Processing. J. Artif. Intell. Res., 34:443–498,
2009. doi:10.1613/jair.2669.

[68] N. Ge, A. Dieumegard, E. Jenn, B. d’Ausbourg, and Y. Ait Ameur. Formal
development process of safety-critical embedded human machine interface
systems. In F. Mallet, M. Zhang, and E. Madelaine, editors, 11th Interna-
tional Symposium on Theoretical Aspects of Software Engineering, TASE
2017, Sophia Antipolis, France, September 13-15, 2017, pages 1–8. IEEE
Computer Society, 2017. doi:10.1109/TASE.2017.8285636.

[69] R. Geniet and N. K. Singh. Refinement Based Formal Development of
Human-Machine Interface. In M. Mazzara, I. Ober, and G. Salaün, edi-
tors, Software Technologies: Applications and Foundations - STAF 2018
Collocated Workshops, Toulouse, France, June 25-29, 2018, Revised Se-
lected Papers, volume 11176 of Lecture Notes in Computer Science, pages
240–256. Springer, 2018. doi:10.1007/978-3-030-04771-9_19.

[70] J. Goodenough, C. Weinstock, and A. Klein. Toward a Theory of Assur-
ance Case Confidence. Technical Report CMU/SEI-2012-TR-002, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
2012. URL: http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=28067.

[71] W. D. Gray, P. A. Palanque, and F. Paternò. Introduction to the special
issue on interface issues and designs for safety-critical interactive systems:
when there is no room for user error. ACM Trans. Comput. Hum. Interact.,
6(4):309–310, 1999. doi:10.1145/331490.332826.

[72] S. Grigorova and T. S. E. Maibaum. Argument Evaluation in the Con-
text of Assurance Case Confidence Modeling. In 25th IEEE International
Symposium on Software Reliability Engineering Workshops, ISSRE Work-
shops, Naples, Italy, November 3-6, 2014, pages 485–490. IEEE Computer
Society, 2014. doi:10.1109/ISSREW.2014.87.

[73] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993. URL: https://doi.org/10.
1006/knac.1993.1008.

[74] J. Guiochet, Q. A. D. Hoang, and M. Kaâniche. A Model for Safety
Case Confidence Assessment. In F. Koornneef and C. van Gulijk, editors,
Computer Safety, Reliability, and Security - 34th International Confer-
ence, SAFECOMP 2015 Delft, The Netherlands, September 23-25, 2015.
Proceedings, volume 9337 of Lecture Notes in Computer Science, pages
313–327. Springer, 2015. doi:10.1007/978-3-319-24255-2_23.

[75] V. Haarslev and R. Möller. Description of the RACER System and its
Applications. In C. A. Goble, D. L. McGuinness, R. Möller, and P. F.

https://doi.org/10.1613/jair.2669
https://doi.org/10.1109/TASE.2017.8285636
https://doi.org/10.1007/978-3-030-04771-9_19
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28067
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28067
https://doi.org/10.1145/331490.332826
https://doi.org/10.1109/ISSREW.2014.87
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1007/978-3-319-24255-2_23

148 BIBLIOGRAPHY

Patel-Schneider, editors, Working Notes of the 2001 International De-
scription Logics Workshop (DL-2001), Stanford, CA, USA, August 1-3,
2001, volume 49 of CEUR Workshop Proceedings. CEUR-WS.org, 2001.
URL: https://ceur-ws.org/Vol-49/HaarslevMoeller-132start.ps.

[76] K. Hacid and Y. Ait Ameur. Strengthening MDE and Formal De-
sign Models by References to Domain Ontologies. A Model Annota-
tion Based Approach. In T. Margaria and B. Steffen, editors, Leverag-
ing Applications of Formal Methods, Verification and Validation: Foun-
dational Techniques - 7th International Symposium, ISoLA 2016, Im-
perial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I, vol-
ume 9952 of Lecture Notes in Computer Science, pages 340–357, 2016.
doi:10.1007/978-3-319-47166-2_24.

[77] K. Hacid and Y. Ait Ameur. Handling Domain Knowledge in Design and
Analysis of Engineering Models. Electron. Commun. Eur. Assoc. Softw.
Sci. Technol., 74, 2017. doi:10.14279/tuj.eceasst.74.1045.

[78] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proc. IEEE, 79(9):1305–1320,
1991. doi:10.1109/5.97300.

[79] S. Handschuh and S. Staab. CREAM: CREAting Metadata for the Se-
mantic Web. Comput. Networks, 42(5):579–598, 2003. doi:10.1016/
S1389-1286(03)00226-3.

[80] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage. In R. Volz,
S. Decker, and I. F. Cruz, editors, PSSS1 - Practical and Scalable Semantic
Systems, Proceedings of the First International Workshop on Practical and
Scalable Semantic Systems, Sanibel Island, Florida, USA, October 20,
2003, volume 89 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.
URL: https://ceur-ws.org/Vol-89/harris-et-al.pdf.

[81] M. Harrison and H. Thimbleby, editors. Formal Methods in Human-
Computer Interaction. Cambridge University Press, USA, 1990. URL:
https://dl.acm.org/doi/10.5555/94033.

[82] M. D. Harrison. Examples of the Application of Formal Methods to In-
teractive Systems. In E. Sekerinski, N. Moreira, J. N. Oliveira, D. Ratiu,
R. Guidotti, M. Farrell, M. Luckcuck, D. Marmsoler, J. C. Campos, T. As-
tarte, L. Gonnord, A. Cerone, L. Couto, B. Dongol, M. Kutrib, P. Mon-
teiro, and D. Delmas, editors, Formal Methods. FM 2019 International
Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Pa-
pers, Part I, volume 12232 of Lecture Notes in Computer Science, pages
409–423. Springer, 2019. doi:10.1007/978-3-030-54994-7_31.

[83] M. D. Harrison, P. Masci, and J. C. Campos. Verification Templates for
the Analysis of User Interface Software Design. IEEE Trans. Software
Eng., 45(8):802–822, 2019. doi:10.1109/TSE.2018.2804939.

https://ceur-ws.org/Vol-49/HaarslevMoeller-132start.ps
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.14279/tuj.eceasst.74.1045
https://doi.org/10.1109/5.97300
https://doi.org/10.1016/S1389-1286(03)00226-3
https://doi.org/10.1016/S1389-1286(03)00226-3
https://ceur-ws.org/Vol-89/harris-et-al.pdf
https://dl.acm.org/doi/10.5555/94033
https://doi.org/10.1007/978-3-030-54994-7_31
https://doi.org/10.1109/TSE.2018.2804939

BIBLIOGRAPHY 149

[84] I. Harrow, R. Balakrishnan, E. Jimenez-Ruiz, S. Jupp, J. Lomax,
J. Reed, M. Romacker, C. Senger, A. Splendiani, J. Wilson, and
P. Woollard. Ontology mapping for semantically enabled applications.
Drug Discovery Today, 24(10):2068–2075, 2019. URL: https://www.
sciencedirect.com/science/article/pii/S1359644618304215, doi:
10.1016/j.drudis.2019.05.020.

[85] B. Henderson-Sellers. On the Mathematics of Modelling, Metamodelling,
Ontologies and Modelling Languages. Springer Briefs in Computer Science.
Springer, 2012. doi:10.1007/978-3-642-29825-7.

[86] T. S. Hoang and J. Abrial. Reasoning about Liveness Properties in Event-
B. In S. Qin and Z. Qiu, editors, Formal Methods and Software Engi-
neering - 13th International Conference on Formal Engineering Methods,
ICFEM 2011, Durham, UK, October 26-28, 2011. Proceedings, volume
6991 of Lecture Notes in Computer Science, pages 456–471. Springer, 2011.
doi:10.1007/978-3-642-24559-6_31.

[87] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from Wikipedia. Artif.
Intell., 194:28–61, 2013. doi:10.1016/j.artint.2012.06.001.

[88] IEC-61360-4. Standard data element types with associated classification
scheme for electric components - part 4 : Iec reference collection of stan-
dard data element types, component classes and terms (withdrawn). Tech-
nical report, 1999.

[89] IEC 62304. IEC 62304:2006 - Medical Device Software - Software Life
Cycle Processes, 5 2006.

[90] M. Jackson and P. Zave. Domain descriptions. In Proceedings of IEEE
International Symposium on Requirements Engineering, RE 1993, San
Diego, California, USA, January 4-6, 1993, pages 56–64. IEEE Computer
Society, 1993. doi:10.1109/ISRE.1993.324836.

[91] M. Jackson and P. Zave. Deriving Specifications from Requirements:
An Example. In D. E. Perry, R. Jeffery, and D. Notkin, editors, 17th
International Conference on Software Engineering, Seattle, Washington,
USA, April 23-30, 1995, Proceedings, pages 15–24. ACM, 1995. doi:
10.1145/225014.225016.

[92] R. Jacquart, editor. Building the Information Society, IFIP 18th World
Computer Congress, Topical Sessions, 22-27 August 2004, Toulouse,
France, volume 156 of IFIP. Kluwer/Springer, 2004.

[93] S. Jean, Y. Ait Ameur, and G. Pierra. Querying Ontology Based Database
Using OntoQL (An Ontology Query Language). In R. Meersman and
Z. Tari, editors, On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, OTM Confederated International

https://www.sciencedirect.com/science/article/pii/S1359644618304215
https://www.sciencedirect.com/science/article/pii/S1359644618304215
https://doi.org/10.1016/j.drudis.2019.05.020
https://doi.org/10.1016/j.drudis.2019.05.020
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-3-642-24559-6_31
https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/10.1109/ISRE.1993.324836
https://doi.org/10.1145/225014.225016
https://doi.org/10.1145/225014.225016

150 BIBLIOGRAPHY

Conferences, CoopIS, DOA, GADA, and ODBASE 2006, Montpellier,
France, October 29 - November 3, 2006. Proceedings, Part I, volume 4275
of Lecture Notes in Computer Science, pages 704–721. Springer, 2006.
doi:10.1007/11914853_43.

[94] S. Jean, G. Pierra, and Y. Ait Ameur. Domain Ontologies: A Database-
Oriented Analysis. In J. Filipe, J. Cordeiro, and V. Pedrosa, editors, Web
Information Systems and Technologies, International Conferences, WE-
BIST 2005 and WEBIST 2006. Revised Selected Papers, volume 1 of Lec-
ture Notes in Business Information Processing, pages 238–254. Springer,
2006. doi:10.1007/978-3-540-74063-6_19.

[95] C. B. Jones. Partial Functions and Logics: A Warning. Inf. Process. Lett.,
54(2):65–67, 1995. doi:10.1016/0020-0190(95)00042-B.

[96] H. Kaiya and M. Saeki. Using Domain Ontology as Domain Knowl-
edge for Requirements Elicitation. In 14th IEEE International Confer-
ence on Requirements Engineering (RE 2006), 11-15 September 2006,
Minneapolis/St.Paul, Minnesota, USA, pages 186–195. IEEE Computer
Society, 2006. doi:10.1109/RE.2006.72.

[97] H. Kaiya, Y. Shimizu, H. Yasui, K. Kaijiri, and M. Saeki. Enhancing
Domain Knowledge for Requirements Elicitation with Web Mining. In
J. Han and T. D. Thu, editors, 17th Asia Pacific Software Engineering
Conference, APSEC 2010, Sydney, Australia, November 30 - December 3,
2010, pages 3–12. IEEE Computer Society, 2010. doi:10.1109/APSEC.
2010.11.

[98] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl. RQL: a declarative query language for RDF. In D. Lassner,
D. D. Roure, and A. Iyengar, editors, Proceedings of the Eleventh Interna-
tional World Wide Web Conference, WWW 2002, May 7-11, 2002, Hon-
olulu, Hawaii, USA, pages 592–603. ACM, 2002. doi:10.1145/511446.
511524.

[99] T. Kelly. Arguing Safety – A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, 09 1998. URL: https://ethos.
bl.uk/OrderDetails.do?uin=uk.bl.ethos.285977.

[100] S. Kherroubi and D. Méry. Contextualization and Dependency in State-
Based Modelling - Application to Event-B. In Y. Ouhammou, M. Ivanovic,
A. Abelló, and L. Bellatreche, editors, Model and Data Engineering - 7th
International Conference, MEDI 2017, Barcelona, Spain, October 4-6,
2017, Proceedings, volume 10563 of Lecture Notes in Computer Science,
pages 137–152. Springer, 2017. doi:10.1007/978-3-319-66854-3_11.

[101] S. Kherroubi and D. Méry. Contextualization and Dependency in State-
Based Modelling - Application to Event-B. In Y. Ouhammou, M. Ivanovic,
A. Abelló, and L. Bellatreche, editors, Model and Data Engineering - 7th

https://doi.org/10.1007/11914853_43
https://doi.org/10.1007/978-3-540-74063-6_19
https://doi.org/10.1016/0020-0190(95)00042-B
https://doi.org/10.1109/RE.2006.72
https://doi.org/10.1109/APSEC.2010.11
https://doi.org/10.1109/APSEC.2010.11
https://doi.org/10.1145/511446.511524
https://doi.org/10.1145/511446.511524
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285977
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285977
https://doi.org/10.1007/978-3-319-66854-3_11

BIBLIOGRAPHY 151

International Conference, MEDI 2017, Barcelona, Spain, October 4-6,
2017, Proceedings, volume 10563 of Lecture Notes in Computer Science,
pages 137–152. Springer, 2017. doi:10.1007/978-3-319-66854-3_11.

[102] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Pro-
tégé OWL Plugin: An Open Development Environment for Semantic Web
Applications. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, ed-
itors, The Semantic Web - ISWC 2004: Third International Semantic Web
Conference,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume
3298 of Lecture Notes in Computer Science, pages 229–243. Springer, 2004.
doi:10.1007/978-3-540-30475-3_17.

[103] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL: seman-
tic annotations for WSDL and XML schema. IEEE Internet Comput.,
11(6):60–67, 2007. doi:10.1109/MIC.2007.134.

[104] G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View
Controller User Interface Paradigm in Smalltalk-80. J. Object Oriented
Program., 1(3):26–49, aug 1988. URL: https://dl.acm.org/doi/10.
5555/50757.50759.

[105] C. Larman and V. R. Basili. Iterative and Incremental Development:
A Brief History. Computer, 36(6):47–56, 2003. doi:10.1109/MC.2003.
1204375.

[106] V. Lecrubier. Un langage formel pour la conception, la spécification et la
vérification d’interfaces homme-machine embarquées critiques. (A formal
language for designing, specifying and verifying critical embedded human
machine interfaces). PhD thesis, Institut supérieur de l’aéronautique et
de l’espace, France, 2016. URL: https://tel.archives-ouvertes.fr/
tel-01455466.

[107] M. Leuschel. Fast and Effective Well-Definedness Checking. In B. Don-
gol and E. Troubitsyna, editors, Integrated Formal Methods - 16th Inter-
national Conference, IFM 2020, Lugano, Switzerland, November 16-20,
2020, Proceedings, volume 12546 of Lecture Notes in Computer Science,
pages 63–81. Springer, 2020. doi:10.1007/978-3-030-63461-2_4.

[108] H. J. Levesque. A Logic of Implicit and Explicit Belief. In R. J. Brachman,
editor, Proceedings of the National Conference on Artificial Intelligence.
Austin, TX, USA, August 6-10, 1984, pages 198–202. AAAI Press, 1984.
URL: http://www.aaai.org/Library/AAAI/1984/aaai84-038.php.

[109] Y. Lu, H. Panetto, Y. Ni, and X. Gu. Ontology alignment for net-
worked enterprise information system interoperability in supply chain
environment. Int. J. Comput. Integr. Manuf., 26(1-2):140–151, 2013.
doi:10.1080/0951192X.2012.681917.

https://doi.org/10.1007/978-3-319-66854-3_11
https://doi.org/10.1007/978-3-540-30475-3_17
https://doi.org/10.1109/MIC.2007.134
https://dl.acm.org/doi/10.5555/50757.50759
https://dl.acm.org/doi/10.5555/50757.50759
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1109/MC.2003.1204375
https://tel.archives-ouvertes.fr/tel-01455466
https://tel.archives-ouvertes.fr/tel-01455466
https://doi.org/10.1007/978-3-030-63461-2_4
http://www.aaai.org/Library/AAAI/1984/aaai84-038.php
https://doi.org/10.1080/0951192X.2012.681917

152 BIBLIOGRAPHY

[110] H. Luong, T. Lambolais, and A. Courbis. Implementation of the Confor-
mance Relation for Incremental Development of Behavioural Models. In
K. Czarnecki, I. Ober, J. Bruel, A. Uhl, and M. Völter, editors, Model
Driven Engineering Languages and Systems, 11th International Confer-
ence, MoDELS 2008, Toulouse, France, September 28 - October 3, 2008.
Proceedings, volume 5301 of Lecture Notes in Computer Science, pages
356–370. Springer, 2008. doi:10.1007/978-3-540-87875-9_26.

[111] A. Mashkoor and J. Jacquot. Utilizing Event-B for domain engineering:
a critical analysis. Requir. Eng., 16(3):191–207, 2011. doi:10.1007/
s00766-011-0120-5.

[112] L. S. Mastella, Y. Ait Ameur, S. Jean, M. Perrin, and J. Rainaud. Seman-
tic Exploitation of Engineering Models: An Application to Oilfield Models.
In A. P. Sexton, editor, Dataspace: The Final Frontier, 26th British Na-
tional Conference on Databases, BNCOD 26, Birmingham, UK, July 7-9,
2009. Proceedings, volume 5588 of Lecture Notes in Computer Science,
pages 203–207. Springer, 2009. doi:10.1007/978-3-642-02843-4_22.

[113] J. McDermid and K. Ripken. Life Cycle Support in the Ada Environment.
Ada Lett., III(1):57–62, jul 1983. doi:10.1145/998373.998379.

[114] I. Mendil. A framework for critical interactive system formal modelling
and analysis. In A. Raschke, D. Méry, and F. Houdek, editors, Rigorous
State-Based Methods, pages 423–426, Cham, 2020. Springer International
Publishing.

[115] I. Mendil, Y. Ait Ameur, N. K. Singh, G. Dupont, D. Méry, and P. A.
Palanque. Formal domain-driven system development in Event-B: Appli-
cation to interactive critical systems. Journal of Systems Architecture:
Embedded Software Design (JSA), 135:102798, 2023. doi:10.1016/j.
sysarc.2022.102798.

[116] I. Mendil, Y. Ait Ameur, N. K. Singh, D. Méry, and P. A. Palanque.
Leveraging Event-B Theories for Handling Domain Knowledge in Design
Models. In S. Qin, J. Woodcock, and W. Zhang, editors, Dependable
Software Engineering. Theories, Tools, and Applications - 7th Interna-
tional Symposium, SETTA 2021, Beijing, China, November 25-27, 2021,
Proceedings, volume 13071 of Lecture Notes in Computer Science, pages
40–58. Springer, 2021. doi:10.1007/978-3-030-91265-9_3.

[117] I. Mendil, Y. Ait Ameur, N. K. Singh, D. Méry, and P. A. Palanque. Stan-
dard Conformance-by-Construction with Event-B. In A. Lluch-Lafuente
and A. Mavridou, editors, Formal Methods for Industrial Critical Systems
- 26th International Conference, FMICS 2021, Paris, France, August 24-
26, 2021, Proceedings, volume 12863 of Lecture Notes in Computer Sci-
ence, pages 126–146. Springer, 2021. doi:10.1007/978-3-030-85248-1\
_8.

https://doi.org/10.1007/978-3-540-87875-9_26
https://doi.org/10.1007/s00766-011-0120-5
https://doi.org/10.1007/s00766-011-0120-5
https://doi.org/10.1007/978-3-642-02843-4_22
https://doi.org/10.1145/998373.998379
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1007/978-3-030-91265-9_3
https://doi.org/10.1007/978-3-030-85248-1_8
https://doi.org/10.1007/978-3-030-85248-1_8

BIBLIOGRAPHY 153

[118] I. Mendil, P. Rivière, Y. Ait Ameur, N. K. Singh, D. Méry, and P. A.
Palanque. Non-Intrusive Annotation-Based Domain-Specific Analysis to
Certify Event-B Models Behaviours. In 29th Asia-Pacific Software En-
gineering Conference, APSEC 2022, Virtual Event, Japan, December 6-
9, 2022, pages 129–138. IEEE, 2022. doi:10.1109/APSEC57359.2022.
00025.

[119] I. Mendil, N. K. Singh, Y. Ait Ameur, D. Méry, and P. A. Palanque.
An Integrated Framework for the Formal Analysis of Critical Interactive
Systems. In 27th Asia-Pacific Software Engineering Conference, APSEC
2020, Singapore, December 1-4, 2020, pages 139–148. IEEE, 2020. doi:
10.1109/APSEC51365.2020.00022.

[120] D. Méry, R. Sawant, and A. Tarasyuk. Integrating domain-based fea-
tures into event-b: A nose gear velocity case study. In L. Bellatreche and
Y. Manolopoulos, editors, Model and Data Engineering - 5th Interna-
tional Conference, MEDI 2015, Rhodes, Greece, September 26-28, 2015,
Proceedings, volume 9344 of Lecture Notes in Computer Science, pages
89–102. Springer, 2015. doi:10.1007/978-3-319-23781-7_8.

[121] D. Méry and N. K. Singh. Automatic code generation from Event-B
models. In H. Q. Thang and D. K. Tran, editors, Proceedings of the
2011 Symposium on Information and Communication Technology, SoICT
2011, Hanoi, Viet Nam, October 13-14, 2011, pages 179–188. ACM, 2011.
doi:10.1145/2069216.2069252.

[122] S. Millett and N. Tune. Patterns, principles, and practices of domain-
driven design. John Wiley & Sons, 2015. URL: https://tinyurl.com/
5znd7edw.

[123] L. Mohand-Oussaïd and I. Ait Sadoune. Formal Modelling of Domain
Constraints in Event-B. In Y. Ouhammou, M. Ivanovic, A. Abelló, and
L. Bellatreche, editors, Model and Data Engineering - 7th International
Conference, MEDI 2017, Barcelona, Spain, October 4-6, 2017, Proceed-
ings, volume 10563 of Lecture Notes in Computer Science, pages 153–166.
Springer, 2017. doi:10.1007/978-3-319-66854-3_12.

[124] L. Mohand Oussaid and I. Ait Sadoune. OntoEventB : Un outil pour
la modélisation des ontologies dans B Événementiel. In AFADL 2017,
pages 117–121, Montpellier, France, June 2017. URL: https://hal.
archives-ouvertes.fr/hal-01546065.

[125] T. Mossakowski. The Distributed Ontology, Model and Specification Lan-
guage - DOL. In P. James and M. Roggenbach, editors, Recent Trends
in Algebraic Development Techniques - 23rd IFIP WG 1.3 International
Workshop, WADT 2016, Gregynog, UK, September 21-24, 2016, Revised
Selected Papers, volume 10644 of Lecture Notes in Computer Science,
pages 5–10. Springer, 2016. doi:10.1007/978-3-319-72044-9_2.

https://doi.org/10.1109/APSEC57359.2022.00025
https://doi.org/10.1109/APSEC57359.2022.00025
https://doi.org/10.1109/APSEC51365.2020.00022
https://doi.org/10.1109/APSEC51365.2020.00022
https://doi.org/10.1007/978-3-319-23781-7_8
https://doi.org/10.1145/2069216.2069252
https://tinyurl.com/5znd7edw
https://tinyurl.com/5znd7edw
https://doi.org/10.1007/978-3-319-66854-3_12
https://hal.archives-ouvertes.fr/hal-01546065
https://hal.archives-ouvertes.fr/hal-01546065
https://doi.org/10.1007/978-3-319-72044-9_2

154 BIBLIOGRAPHY

[126] B. Motik. KAON2 - scalable reasoning over ontologies with large data sets.
ERCIM News, 2008(72), 2008. URL: http://ercim-news.ercim.eu/
kaon2-scalable-reasoning-over-ontologies-with-large-data-sets.

[127] K. Munir and M. Sheraz Anjum. The use of ontologies for effective knowl-
edge modelling and information retrieval. Applied Computing and Infor-
matics, 14(2):116–126, 2018. doi:10.1016/j.aci.2017.07.003.

[128] S. Nair, J. L. de la Vara, M. Sabetzadeh, and D. Falessi. Evidence
management for compliance of critical systems with safety standards:
A survey on the state of practice. Inf. Softw. Technol., 60:1–15, 2015.
doi:10.1016/j.infsof.2014.12.002.

[129] D. Navarre and P. A. Palanque. The future of design specification and
verification of safety critical interactive systems.: can our systems be sure
(safe, usable, reliable and evolvable)? In T. C. N. Graham, G. Calvary,
and P. D. Gray, editors, Proceedings of the 1st ACM SIGCHI symposium
on Engineering Interactive Computing System , EICS 2009, Pittsburgh,
PA, USA, July 15-17, 2009, pages 155–156. ACM, 2009. doi:10.1145/
1570433.1570463.

[130] D. Navarre, P. A. Palanque, R. Bastide, and O. Sy. A Model-Based Tool
for Interactive Prototyping of Highly Interactive Applications. In 12th
IEEE International Workshop on Rapid System Prototyping (RSP 2001),
25-27 June 2001, Monterey, CA, USA, pages 136–141. IEEE Computer
Society, 2001. doi:10.1109/IWRSP.2001.933851.

[131] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. URL:
https://doi.org/10.1007/3-540-45949-9.

[132] D. A. Norman and S. W. Draper. User Centered System Design; New Per-
spectives on Human-Computer Interaction. L. Erlbaum Associates Inc.,
USA, 1986. URL: https://dl.acm.org/doi/10.5555/576915.

[133] N. F. Noy and D. L. McGuinness. Ontology development 101:
A guide to creating your first ontology. Technical report, march
2001. URL: http://www.ksl.stanford.edu/people/dlm/papers/
ontology-tutorial-noy-mcguinness-abstract.html.

[134] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verifi-
cation System. In D. Kapur, editor, Automated Deduction - CADE-
11, 11th International Conference on Automated Deduction, Saratoga
Springs, NY, USA, June 15-18, 1992, Proceedings, volume 607 of Lec-
ture Notes in Computer Science, pages 748–752. Springer, 1992. doi:
10.1007/3-540-55602-8_217.

[135] P. Palanque and F. Paterno. Formal Methods in Human-Computer In-
teraction. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1997. URL:
https://dl.acm.org/doi/book/10.5555/550442.

http://ercim-news.ercim.eu/kaon2-scalable-reasoning-over-ontologies-with-large-data-sets
http://ercim-news.ercim.eu/kaon2-scalable-reasoning-over-ontologies-with-large-data-sets
https://doi.org/10.1016/j.aci.2017.07.003
https://doi.org/10.1016/j.infsof.2014.12.002
https://doi.org/10.1145/1570433.1570463
https://doi.org/10.1145/1570433.1570463
https://doi.org/10.1109/IWRSP.2001.933851
https://doi.org/10.1007/3-540-45949-9
https://dl.acm.org/doi/10.5555/576915
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://dl.acm.org/doi/book/10.5555/550442

BIBLIOGRAPHY 155

[136] D. L. Parnas and J. Madey. Functional Documents for Computer Systems.
Sci. Comput. Program., 25(1):41–61, 1995. doi:10.1016/0167-6423(95)
96871-J.

[137] G. Pierra. The PLIB ontology-based approach to data integration. In
R. Jacquart, editor, Building the Information Society, IFIP 18th World
Computer Congress, Topical Sessions, 22-27 August 2004, Toulouse,
France, volume 156 of IFIP, pages 13–18. Kluwer/Springer, 2004. doi:
10.1007/978-1-4020-8157-6_2.

[138] G. Pierra. Context Representation in Domain Ontologies and Its Use
for Semantic Integration of Data. J. Data Semant., 10:174–211, 2008.
doi:10.1007/978-3-540-77688-8_6.

[139] G. Pierra and E. Sardet. ISO 13584-32:2010 – Industrial automation
systems and integration – Parts library – Part 32: Implementation re-
sources: OntoML: Product ontology markup language. ISO, 2010. URL:
https://hal.archives-ouvertes.fr/hal-03368894.

[140] E. Prud’hommeaux. SPARQL query language for RDF, W3C recommen-
dation. 2008. URL: http://www.w3.org/TR/rdf-sparql-query/.

[141] S. Ranville and F. Bachmann. How to Meet Compliance to Software
Architecture Design Principles. SAE Technical Paper Series, 2019. doi:
10.4271/2019-01-1040.

[142] M. Rauterberg. An Iterative-Cyclic Software Process Model. In SEKE’92,
The 4th International Conference on Software Engineering and Knowledge
Engineering, June, 15-20 1992, Capri, Italy, pages 600–607. IEEE Com-
puter Society, 1992. doi:10.1109/SEKE.1992.227899.

[143] P. Rivière, N. K. Singh, and Y. Ait Ameur. EB4EB: A Framework for
Reflexive Event-B. In 26th International Conference on Engineering of
Complex Computer Systems, ICECCS 2022, Hiroshima, Japan, March
26-30, 2022, pages 71–80. IEEE, 2022. doi:10.1109/ICECCS54210.2022.
00017.

[144] W. W. Royce. Managing the Development of Large Software Systems:
Concepts and Techniques. In Proceedings of the 9th International Confer-
ence on Software Engineering, ICSE ’87, page 328–338, Washington, DC,
USA, 1987. IEEE Computer Society Press. URL: https://dl.acm.org/
doi/10.5555/41765.41801.

[145] J. Rushby. The Interpretation and Evaluation of Assurance Cases. Tech-
nical Report SRI-CSL-15-01, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, July 2015. Available at http://www.csl.sri.
com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf.

https://doi.org/10.1016/0167-6423(95)96871-J
https://doi.org/10.1016/0167-6423(95)96871-J
https://doi.org/10.1007/978-1-4020-8157-6_2
https://doi.org/10.1007/978-1-4020-8157-6_2
https://doi.org/10.1007/978-3-540-77688-8_6
https://hal.archives-ouvertes.fr/hal-03368894
http://www. w3. org/TR/rdf-sparql-query/
https://doi.org/10.4271/2019-01-1040
https://doi.org/10.4271/2019-01-1040
https://doi.org/10.1109/SEKE.1992.227899
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/ICECCS54210.2022.00017
https://dl.acm.org/doi/10.5555/41765.41801
https://dl.acm.org/doi/10.5555/41765.41801
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf

156 BIBLIOGRAPHY

[146] D. Sannella and A. Tarlecki. Structured specifications, pages 229–258.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/
978-3-642-17336-3_5.

[147] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs, and
N. Elmqvist. Designing the User Interface - Strategies for
Effective Human-Computer Interaction, 6th Edition. Pearson,
2016. URL: http://vig.pearsoned.com/store/product/1,1207,
store-12521_isbn-013438038X,00.html.

[148] N. K. Singh. EB2ALL: An Automatic Code Generation Tool,
pages 105–141. Springer London, London, 2013. doi:10.1007/
978-1-4471-5260-6_7.

[149] N. K. Singh. Using Event-B for Critical Device Software Systems.
Springer, 2013. doi:10.1007/978-1-4471-5260-6.

[150] N. K. Singh, Y. Ait Ameur, R. Geniet, D. Méry, and P. A. Palanque. On
the Benefits of Using MVC Pattern for Structuring Event-B Models of
WIMP Interactive Applications. Interact. Comput., 33(1):92–114, 2021.
doi:10.1093/iwcomp/iwab016.

[151] N. K. Singh, Y. Ait Ameur, I. Mendil, D. Méry, D. Navarre, P. Palanque,
and M. Pantel. F3FLUID: A formal framework for developing safety-
critical interactive systems in FLUID. Journal of Software: Evolution
and Process, page e2439, 2022. doi:10.1002/smr.2439.

[152] N. K. Singh, Y. Ait Ameur, and D. Méry. Formal Ontological Analy-
sis for Medical Protocols. In Y. Ait Ameur, S. Nakajima, and D. Méry,
editors, Implicit and Explicit Semantics Integration in Proof-Based De-
velopments of Discrete Systems: Communications of NII Shonan Meet-
ings, pages 83–107, Singapore, 2021. Springer Singapore. doi:10.1007/
978-981-15-5054-6_5.

[153] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. J. Web Semant., 5(2):51–53, 2007. doi:
10.1016/j.websem.2007.03.004.

[154] B. Stoddart, S. Dunne, and A. Galloway. Undefined Expressions and
Logic in Z and B. Formal Methods Syst. Des., 15(3):201–215, 1999. doi:
10.1023/A:1008797018928.

[155] ED 143 - Minimum Operational Performance Standards for Traffic Alert
and Collision Avoidance System II (TCAS II), 2013. URL: https://
standards.globalspec.com/std/1609213/EUROCAEED143.

[156] S. E. Toulmin. The Uses of Argument. Cambridge University Press, 2
edition, 2003. doi:10.1017/CBO9780511840005.

https://doi.org/10.1007/978-3-642-17336-3_5
https://doi.org/10.1007/978-3-642-17336-3_5
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-013438038X,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-013438038X,00.html
https://doi.org/10.1007/978-1-4471-5260-6_7
https://doi.org/10.1007/978-1-4471-5260-6_7
https://doi.org/10.1007/978-1-4471-5260-6
https://doi.org/10.1093/iwcomp/iwab016
https://doi.org/10.1002/smr.2439
https://doi.org/10.1007/978-981-15-5054-6_5
https://doi.org/10.1007/978-981-15-5054-6_5
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1023/A:1008797018928
https://doi.org/10.1023/A:1008797018928
https://standards.globalspec.com/std/1609213/EUROCAE ED 143
https://standards.globalspec.com/std/1609213/EUROCAE ED 143
https://doi.org/10.1017/CBO9780511840005

BIBLIOGRAPHY 157

[157] J. Trinkunas. A graph oriented model for ontology transformation into
conceptual data model. Information technology and control, 36, 01 2007.
URL: https://etalpykla.vilniustech.lt/handle/123456789/63386.

[158] V. S. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta,
and F. Ciravegna. Semantic annotation for knowledge management: Re-
quirements and a survey of the state of the art. J. Web Semant., 4(1):14–
28, 2006. doi:10.1016/j.websem.2005.10.002.

[159] M. Uschold. Where Are the Semantics in the Semantic Web? AI Mag.,
24(3):25–36, 2003. doi:10.1609/aimag.v24i3.1716.

[160] A. van Dam. Post-WIMP User Interfaces. Commun. ACM, 40(2):63–67,
1997. doi:10.1145/253671.253708.

[161] A. van Lamsweerde and L. Willemet. Inferring Declarative Requirements
Specifications from Operational Scenarios. IEEE Trans. Software Eng.,
24(12):1089–1114, 1998. doi:10.1109/32.738341.

[162] I. Vistbakka and E. Troubitsyna. Deriving Implicit Security Requirements
in Safety-Explicit Formal Development of Control Systems. In Y. Ait
Ameur, S. Nakajima, and D. Méry, editors, Implicit and Explicit Seman-
tics Integration in Proof-Based Developments of Discrete Systems: Com-
munications of NII Shonan Meetings, pages 109–130, Singapore, 2021.
Springer Singapore. doi:10.1007/978-981-15-5054-6_6.

[163] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009. URL: http://www.
w3.org/TR/owl2-overview/.

[164] A. Wassyng, P. Joannou, M. Lawford, T. Maibaum, and N. K. Singh.
New standards for trustworthy cyber-physical systems. Trustworthy
Cyber-Physical Systems Engineering, pages 337–368, 2016. URL: https:
//tinyurl.com/39xfkx8x.

[165] A. Wassyng, N. K. Singh, M. Geven, N. Proscia, H. Wang, M. Lawford,
and T. Maibaum. Can Product-Specific Assurance Case Templates Be
Used as Medical Device Standards? IEEE Des. Test, 32(5):45–55, 2015.
doi:10.1109/MDAT.2015.2462720.

[166] C. D. Wickens, J. Lee, Y. D. Liu, and S. Gordon-Becker. Introduction
to Human Factors Engineering (2nd Edition). Prentice-Hall, Inc., USA,
2013. URL: https://tinyurl.com/4yuw9xc6.

[167] L. Wiener. Human Factors of Advanced Technology (glass Cockpit)
Transport Aircraft. NASA contractor report. National Aeronautics and
Space Administration, 1989. URL: https://ntrs.nasa.gov/citations/
19890016609.

https://etalpykla.vilniustech.lt/handle/123456789/63386
https://doi.org/10.1016/j.websem.2005.10.002
https://doi.org/10.1609/aimag.v24i3.1716
https://doi.org/10.1145/253671.253708
https://doi.org/10.1109/32.738341
https://doi.org/10.1007/978-981-15-5054-6_6
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
https://tinyurl.com/39xfkx8x
https://tinyurl.com/39xfkx8x
https://doi.org/10.1109/MDAT.2015.2462720
https://tinyurl.com/4yuw9xc6
https://ntrs.nasa.gov/citations/19890016609
https://ntrs.nasa.gov/citations/19890016609

158 BIBLIOGRAPHY

[168] K. Wilkinson. Jena property table implementation. In Proceedings of the
2nd International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS’06), pages 35–46, 2006.

[169] E. Williams. Airborne Collision Avoidance System. In T. Cant, ed-
itor, Ninth Australian Workshop on Safety-Related Programmable Sys-
tems (SCS 2004), volume 47 of CRPIT, pages 97–110, Brisbane, Aus-
tralia, 2004. ACS. URL: https://crpit.scem.westernsydney.edu.au/
confpapers/CRPITV47Williams.pdf.

[170] P. Zave. Classification of Research Efforts in Requirements Engineering.
ACM Comput. Surv., 29(4):315–321, 1997. doi:10.1145/267580.267581.

[171] P. Zave and M. Jackson. Four Dark Corners of Requirements Engi-
neering. ACM Trans. Softw. Eng. Methodol., 6(1):1–30, 1997. doi:
10.1145/237432.237434.

[172] D. S. Zayas, A. Monceaux, and Y. Ait Ameur. Knowledge Models to
Reduce the Gap between Heterogeneous Models: Application to Air-
craft Systems Engineering. In R. Calinescu, R. F. Paige, and M. Z.
Kwiatkowska, editors, 15th IEEE International Conference on Engineer-
ing of Complex Computer Systems, ICECCS 2010, Oxford, United King-
dom, 22-26 March 2010, pages 355–360. IEEE Computer Society, 2010.
doi:10.1109/ICECCS.2010.35.

[173] Y. Zhao, Z. Yang, D. Sanán, and Y. Liu. Event-based formalization
of safety-critical operating system standards: An experience report on
ARINC 653 using Event-B. In 26th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2015, Gaithersbury, MD,
USA, November 2-5, 2015, pages 281–292. IEEE Computer Society, 2015.
doi:10.1109/ISSRE.2015.7381821.

https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV47Williams.pdf
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV47Williams.pdf
https://doi.org/10.1145/267580.267581
https://doi.org/10.1145/237432.237434
https://doi.org/10.1145/237432.237434
https://doi.org/10.1109/ICECCS.2010.35
https://doi.org/10.1109/ISSRE.2015.7381821

Appendices

159

Appendix A

Meta-Modelling Theories

This appendix contains:

A.1 OntologiesTheory - Ontology Modelling Language 162
A.2 EvtBTheo - Event-B Meta-Theory . 163

161

162 APPENDIX A. META-MODELLING THEORIES

A.1 OntologiesTheory - Ontology Modelling Language

Intentionally removed the Event-B code

A.2. EVTBTHEO - EVENT-B META-THEORY 163

A.2 EvtBTheo - Event-B Meta-Theory

Intentionally removed the Event-B code

164 APPENDIX A. META-MODELLING THEORIES

Appendix B

Domain Theories

This appendix contains:

B.1 DisplayabilityTheory - Displayability Domain Theory 166
B.2 ARINC661Theory - ARINC 661 Standard Domain theory 167
B.3 Domain-Specific Behaviour Analysis 168

B.3.1 BehaviouralPropertiesTheory - Analysis Operator 168
B.3.2 Theo4Reachability - Analysis Low-Level Terms 168
B.3.3 EvtBManip - Auxiliary Operators 168

165

166 APPENDIX B. DOMAIN THEORIES

B.1 DisplayabilityTheory - Displayability Domain Theory

Intentionally removed the Event-B code

B.2. ARINC661THEORY - ARINC 661 STANDARD DOMAIN THEORY 167

B.2 ARINC661Theory - ARINC 661 Standard Domain theory

Intentionally removed the Event-B code

168 APPENDIX B. DOMAIN THEORIES

B.3 Domain-Specific Behaviour Analysis

B.3.1 BehaviouralPropertiesTheory - Analysis Operator

Intentionally removed the Event-B code

B.3.2 Theo4Reachability - Analysis Low-Level Terms

Intentionally removed the Event-B code

B.3.3 EvtBManip - Auxiliary Operators

Intentionally removed the Event-B code

Appendix C

Case Studies

This appendix contains:

C.1 Temperature Aggregator Case Study Modelling 170
C.1.1 C_TemperatureContext - Event-B Context for Units 170
C.1.2 C_TemperatureMachine - Machine without Operators 170
C.1.3 ThermalUnits - Event-B Theory for Units 170
C.1.4 T_TemperatureMachine - Event-B Machine with Operators . . 170

C.2 TCAS Case Study Modelling . 171
C.2.1 InstantiationContext - Event-B Context for Instantiation . 171
C.2.2 SetTheoriticOperationsBasedModel 171
C.2.3 TheoryOperatorsBasedModel 171

C.3 ATM Case Study Modelling . 172
C.3.1 ATMEnvironment - Event-B Context for Constants 172
C.3.2 ATMUserInterface - Event-B Machine for ATM Model 172
C.3.3 ATMmEBModel - ATM Model Exported to EB4EB 172
C.3.4 AnnotatedModel - Annotation and Analysis 172

C.4 WXR Case Study Modelling . 173
C.4.1 WXRModel - Event-B Machine for WXR Model 173

169

170 APPENDIX C. CASE STUDIES

C.1 Temperature Aggregator Case Study Modelling

C.1.1 C_TemperatureContext - Event-B Context for Units

Intentionally removed the Event-B code

C.1.2 C_TemperatureMachine - Machine without Operators

Intentionally removed the Event-B code

C.1.3 ThermalUnits - Event-B Theory for Units

Intentionally removed the Event-B code

C.1.4 T_TemperatureMachine - Event-B Machine with Operators

Intentionally removed the Event-B code

C.2. TCAS CASE STUDY MODELLING 171

C.2 TCAS Case Study Modelling

C.2.1 InstantiationContext - Event-B Context for Instantiation

Intentionally removed the Event-B code

C.2.2 SetTheoriticOperationsBasedModel

Intentionally removed the Event-B code

C.2.3 TheoryOperatorsBasedModel

Intentionally removed the Event-B code

172 APPENDIX C. CASE STUDIES

C.3 ATM Case Study Modelling

C.3.1 ATMEnvironment - Event-B Context for Constants

Intentionally removed the Event-B code

C.3.2 ATMUserInterface - Event-B Machine for ATM Model

Intentionally removed the Event-B code

C.3.3 ATMmEBModel - ATM Model Exported to EB4EB

Intentionally removed the Event-B code

C.3.4 AnnotatedModel - Annotation and Analysis

Intentionally removed the Event-B code

C.4. WXR CASE STUDY MODELLING 173

C.4 WXR Case Study Modelling

Intentionally removed the Event-B code

C.4.1 WXRModel - Event-B Machine for WXR Model

Intentionally removed the Event-B code

174 APPENDIX C. CASE STUDIES

A Framework for Explicit Modelling of Domain Knowledge in State-Based Formal Methods:
The Case of Interactive Critical Systems

System engineering advocates an explicit modelling of domain knowledge at early stages of the development cycle. More-
over, integrating contextual information and certification standard requirements into formal models enhances their quality
and reliability. On the one hand formal methods provide primitives for modelling components and views of these systems
but they are not endowed with built-in primitives for explicit modelling contextual constraints, and more broadly, domain
knowledge associated with these formal models. Consequently relevant domain knowledge is implicitly hardcoded in the sys-
tem formal specification or is, in the worse case, overlooked. On the other hand ontologies have demonstrated their efficiency
in modelling domain-specific features but they are not available as built-in primitives in formal methods.

The goal of this thesis is to propose a framework and associated methodology for modelling explicitly domain knowledge
in formal modelling. As a byproduct, consequences of the explicit modelling of domain knowledge are investigated including
formal standard-based conformance checking of interactive critical systems and domain-specific behavioural analyses of formal
models. In our research effort, we defined an integrated framework for addressing the explicit modelling of domain knowledge
problem in formal modelling. The framework specified three main steps: formalising domain knowledge, annotating formal
models and transferring domain knowledge constraints. The formalisation is achieved by proposing an ontology modelling
language in the form of a generic Event-B theory, the annotation consists in typing elements of the model with the concepts
of an ontology and the transferring of predefined domain properties is supported by the description of a methodological rule
of using exclusively the data types and operators of the Event-B theory (closure). Furthermore, several cases studies from
the interactive critical systems realm have been addressed to showcase the generality, effectiveness and advantages of the
framework. First, conformance checking is a prominent consequence of explicit modelling of domain knowledge; standard
conformance to ARINC 661 certification standard of a cockpit application user interface is addressed as a special case of
explicit modelling of domain knowledge. A second consequence of the framework is the definition of a method and formal
Event-B theories for specifying domain-specific behavioural analyses.
Keywords: Formal Methods, Interactive Critical Systems, Event-B, Domain Knowledge and Ontologies

Un cadre pour la modélisation explicite des connaissances de domaine dans les méthodes formelles
orientées états: le cas des systèmes critiques interactifs

L’ingénierie système préconise une modélisation explicite des connaissances de domaine aux premières étapes du cycle
de développement. De plus, L’intégration d’informations contextuelles et d’exigences provenant de normes de certification
dans des modèles formels améliore leur qualité et leur fiabilité. D’une part, les méthodes formelles fournissent des primitives
d’abstraction pour modéliser la structure et les comportements de ces systèmes, mais elles ne sont pas équipées pas de prim-
itives spécifiquement dédiées pour modéliser explicitement les contraintes contextuelles, et plus largement, les connaissances
de domaine associées à ces modèles formels. Par conséquent, les connaissances de domaine sont implicitement codées en dur
dans la spécification formelle du système où sont, dans le pire des cas, ignorées. D’autre part, les ontologies ont démontré
leur efficacité dans la modélisation des connaissances, mais elles ne sont pas fournies en tant que primitives dans les méthodes
formelles.

L’objectif de cette thèse est de proposer un cadre et une méthodologie associée pour modéliser explicitement les connais-
sances de domaine dans le contexte la modélisation formelle. Par ailleurs, les conséquences de la modélisation explicite des
connaissances de domaine sont étudiées, y compris la vérification formelle de la conformité par rapport aux normes des sys-
tèmes critiques interactifs ainsi que les analyses comportementales spécifiques au domaine appliquées à des modèles formels.
Dans notre effort de recherchen, nous avons défini un cadre intégré pour résoudre le problème de la modélisation explicite
des connaissances de domaine dans la modélisation formelle. Le cadre a spécifié trois étapes principales, à savoir formaliser
les connaissances de domaine, annoter les modèles formels et enfin transférer les propriétés des connaissances de domaine.
La formalisation est réalisée en proposant un langage de modélisation à base d’ontologies sous forme de théorie Event-B
générique, l’annotation consiste à typer les éléments du modèle avec les concepts d’une ontologie de domaine et le transfert
de propriétés de domaine prédéfinies est régi par la description d’une règle méthodologique stipulant l’utilisation exclusive des
types de données et des opérateurs de la théorie Event-B formalisant une ontologie de domaine. En outre, plusieurs études
de cas fournies dans le domaine des systèmes critiques interactifs sont abordées pour montrer la généralité, l’efficacité et les
avantages du cadre. Premièrement, la vérification de conformité est une conséquence importante de la modélisation explicite
des connaissances de domaine dans la modélisation formelle ; la conformité à la norme de certification ARINC 661 d’un
système interactif d’une application de cockpit est utilisée pour démontrer l’efficacité du cadre. Une deuxième conséquence
du cadre est la définition d’une méthode et de théories d’Event-B pour spécifier des analyses comportementales spécifiques
à un domaine. En outre, une étude de cas concrète est décrite et analysée pour illustrer la méthode conçue.
Mots-clés: Méthodes Formelles, Systèmes Critiques Interactifs, Event-B, Connaissances de Domaine

et Ontologies

	Abstract
	Contents
	Introduction
	I Background
	1. Event-B: a Correct-by-Construction Method
	State-Based Formal Modelling
	Proof-Based Verification
	Event-B Theories Extension
	Extending Event-B Language with Theories
	Event-B Theories Structure
	Well-Definedness
	Importing Theories

	IDE: Rodin Platform and Plug-ins

	2. Domain Knowledge in Formal Modelling
	Modelling Domain Knowledge
	On the Importance of Domain Knowledge
	On the Lack of a Generic Approach
	Ontologies as Domain Knowledge Model

	The Ontology Formalism
	Fundamental Characteristics
	Semantic Annotation Using Ontologies
	Ontologies for Engineering Contexts

	Standards as Domain Knowledge
	Synthesis and Conclusion

	3. Interactive Critical Systems
	Formal Methods for Interactive Systems
	Interactive Systems Characteristics
	Formal Design of Interactive Critical Systems

	Interactive Systems Development
	The Context of The FORMEDICIS project
	Synthesis and Conclusion

	4. Case studies
	Traffic Collision Avoidance System
	Overview of Operation
	Definitions and Requirements

	Multi-Purpose Interactive Application
	Requirements of WXR User Interface

	Automatic Teller Machine
	Conclusion

	II Contributions
	The Road Map of the Contributions
	Explicit Modelling of Domain Knowledge
	Transferring of Safety Properties
	Analysis of Behavioural Properties
	Formal Conformance Checking

	5. Explicit Modelling of Domain Knowledge Using Ontologies
	Temperature Aggregator Example
	Temperature Aggregator Requirements
	Modelling without the Theory Operators
	Modelling with the Theory Operators
	Synthesis

	An Ontology Modelling Language (OML)
	OML as a Generic Event-B Theory
	OntologiesTheory - Data type
	OntologiesTheory - Operators
	OntologiesTheory - Theorems

	Conclusion

	6. Annotation-Based Transfer of Safety Properties
	Our Approach
	Generic Part: the definition of the Domain Theory
	Specific Part: Annotating the System

	TCAS Case Study
	An Ontology of Interactive Objects
	Instantiation of the Displayability Theory
	Modelling without the Theory Operators
	Modelling with the Theory Operators
	Proof Statistics

	Conclusion

	7. Annotation-Based Analysis of Behavioural Properties
	Our Approach
	The Event-B Meta-Theory
	Event-B Machine Structure as a Data Type
	Event-B Machine Proof Obligations as Predicates
	Modelling with Event-B Meta-Theory

	A Framework for Behavioural Analyses
	The Architecture of the Framework
	How does the Framework Work?

	The Framework at Work
	Defining a Domain-Specific Behavioural Analysis
	Applying a Domain-Specific Behavioural Analysis

	Advantages of the Framework
	Principled Approach and Reusability
	Non-intrusiveness
	Verification Based on Theorem Proving
	Proof and Modelling Effort Reduction
	Generalisation

	Conclusion

	8. Formal Conformance Checking
	Introduction
	Our approach
	A Standard Formal Specification —(2) on Figure 8.1
	Standard Theory Instantiation —(3) on Figure 8.1
	Model Annotation —(4) on Figure 8.1

	Formalisation of ARINC 661 Standard
	ARINC661Theory - Concepts Declaration
	ARINC661Theory - Operators Declaration
	ARINC661Theory - Primitives Definitions
	ARINC661Theory - Theorems

	Weather Radar Application Case Study
	WXRTheory - Instances Declaration
	WXRTheory - Instances Definition
	WXRTheory - Operators Declaration and Definition
	WXRTheory - Theorems
	Annotated Model of WXR —(4) on Figure 8.1

	Advantages of The Framework
	Achieving Standard Conformance Formally
	Qualitatively Enhanced System Models
	Reduction of Modelling and Proving Effort
	Enabling Evolution of Standard

	Conclusion

	Conclusion and perspectives
	Bibliography
	Appendices
	Appendix A. Meta-Modelling Theories
	Appendix B. Domain Theories
	Appendix C. Case Studies

