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Titre: Abstractions basées sur les données pour l'apprentissage sécurisé de systèmes non linéaires
Mots clés: À BASE DE DONNÉES, CONTRÔLE SYMBOLIQUE, SYSTÈMES NON LINÉAIRE

Résumé: Les méthodes de contrôle traditionnelles
pour les systèmes non linéaires reposent forte-
ment sur des modèles mathématiques précis, qui
peuvent être di�ciles, voire impossibles à obtenir
dans certaines applications réelles. Pour résoudre
ce problème, des techniques de contrôle basées
sur les données ont émergé comme des alterna-
tives prometteuses, utilisant des données d'entrée-
sortie pour apprendre des politiques de contrôle
directement à partir du comportement du sys-
tème. Cependant, la sûreté reste une préoccu-
pation essentielle dans le contrôle basé sur les
données, car des modèles erronés peuvent avoir
des conséquences catastrophiques. Ce travail pro-
pose une nouvelle approche basée sur les données
pour contrôler les systèmes non linéaires, en met-
tant l'accent sur la sûreté pendant le processus
d'apprentissage.

L'approche proposée utilise des sur-
approximations de la dynamique du système, qui
fournissent des représentations conservatives mais
sûres du comportement du système. Ces sur-
approximations sont apprises à partir de données
d'entrée-sortie et sont ensuite utilisées pour con-
struire des abstractions à états �nis, qui capturent
la dynamique essentielle du système sous une
forme compacte et analysable. Cette abstraction
est ensuite utilisée pour la synthèse du contrôleur,
garantissant que le contrôleur maintient les pro-
priétés et spéci�cations désirées tout au long du

fonctionnement du système.
Une approche à deux modèles est introduite,

où des modèles distincts sont construits pour la
véri�cation de la sûreté et l'optimisation des per-
formances. Le modèle de véri�cation de la sûreté
est utilisé pour garantir que le contrôleur appris
adhère aux contraintes de sûreté, tandis que le
modèle d'optimisation des performances se con-
centre sur l'obtention des mesures de performance
souhaitées. Cette séparation des préoccupations
garantit que la sécurité est priorisée sans compro-
mettre les performances.

L'approche proposée est rigoureusement
analysée pour une large classe de systèmes non
linéaires, y compris les systèmes monotones et
les systèmes avec des fonctions dérivées bornées.
Ces analyses fournissent des garanties théoriques
pour la sûreté des contrôleurs appris et établissent
la robustesse de la méthodologie de conception
proposée.

L'e�cacité des méthodes proposées est dé-
montrée par une validation expérimentale appro-
fondie sur divers systèmes non linéaires réels, no-
tamment le contrôle de vitesse, la plani�cation de
trajectoires et les systèmes chaotiques (système
de Lorenz). Ces expériences démontrent systé-
matiquement la capacité de l'approche proposée à
atteindre des performances satisfaisantes tout en
maintenant une stricte adhésion aux contraintes
de sûreté.
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Abstract: Traditional control methods for nonlin-
ear systems rely heavily on accurate mathematical
models, which can be challenging or even impos-
sible to obtain in some real-world applications. To
address this issue, data-driven control techniques
have emerged as promising alternatives, utilizing
input-output data to learn control policies directly
from system behavior. However, safety remains
a critical concern in data-driven control, as er-
roneous models can lead to catastrophic conse-
quences. This work proposes a novel data-driven
approach to controlling nonlinear systems, with
some emphasis on safety during the learning pro-
cess.

The proposed approach utilizes over-
approximations of system dynamics, which pro-
vide conservative yet safe representations of the
system's behavior. These over-approximations are
learned from input-output data and subsequently
employed to construct �nite-state abstractions,
which capture the essential dynamics of the sys-
tem in a compact and analyzable form. This
abstraction is then utilized for controller synthesis,
ensuring that the controller maintains the desired
properties and speci�cations throughout the sys-
tem's operation.

A two-model approach is introduced, where
separate models are constructed for safety veri�-
cation and performance optimization. The safety
veri�cation model is employed to guarantee that
the learned controller adheres to safety constraints,
while the performance optimization model focuses
on achieving desired performance metrics. This
separation of concerns ensures that safety is prior-
itized without compromising performance.

The proposed approach is rigorously analyzed
for a broad class of nonlinear systems, includ-
ing monotonic systems and systems with bounded
derivative functions. These analyses provide the-
oretical guarantees for the safety of the learned
controllers and establish the soundness of the pro-
posed design methodology.

The e�ectiveness of the proposed methods is
demonstrated through extensive experimental val-
idation on various real-world nonlinear systems,
including cruise control, trajectory planning, and
chaotic systems (Lorenz system). These experi-
ments consistently demonstrate the ability of the
proposed approach to achieve satisfactory perfor-
mance while maintaining strict adherence to safety
constraints.
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1 - Introduction

1.1 . Literature review

1.1.1 . Safe learning

The integration of control theory and machine learning has ushered in an era
of remarkable advances in autonomous systems. These systems are no longer
con�ned to static rules or prede�ned behaviors but can adapt and learn from their
experiences, thereby achieving unprecedented levels of autonomy and �exibility.
Whether it's autonomous vehicles navigating complex road networks [12], industrial
robots optimizing their tasks [47], or even humanoid robots learning to walk [68],
learning-based control strategies have proven their mettle.

This was fueled by the recent advancements in data acquisition tools coupled
with the ability to e�ciently deal with the ever-increasing amount of data harnessed
by those tools, which in turn gave rise to many new data-driven approaches and
techniques in control theory. Those approaches have the bene�t of being able to
tackle unknown or hard-to-model systems, which justi�es the increasing interest in
them.

While some methods rely on �nding the controller directly from the data [35,
and references therein], others depend on �nding data-driven models, which then
can be used to �nd the controllers. A survey of both methods can be found in
[15]. Learning the dynamics to �nd systems' models leverages the ability to use
well-established, well-studied approaches to �nd controllers enforcing the desired
behaviors. Moreover, data-driven models can sometimes come with formal guaran-
tees regarding the approximation of the real system. Such guaranteed models can
be categorized as stochastic or robust [34, and references therein]. The present
work follows the latter approach, where the aim is to �nd bounds on the function
representing the system (non-parametric approach) or bounds on some unknown
parameters of the function representing the system (parametric approach).

With the rise of learning-based control strategies, a new set of challenges has
emerged, particularly in the context of safety-critical applications [27, 5]. The
reliability, predictability, and safety of autonomous systems are paramount in �elds
such as healthcare, aerospace, and autonomous driving, where human lives and
valuable assets are at stake.

The ever-growing �eld of safe learning in control theory has emerged as a
response to these concerns and challenges. Safe learning seeks to establish a prin-
cipled framework for deploying learning algorithms while ensuring that the system's
behavior remains within safe bounds, even when confronted with uncertainties and
unforeseen conditions. The �eld of safe learning is still in its infancy, but it has
captured the attention of many researchers, with many trying to tackle the chal-
lenges of safe learning in various ways [14, 24, 50, 61, 39, 73] from barrier functions
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to reinforcement learning. The previous list is by no means exhaustive, and the
literature on safe learning is growing rapidly. In what follows, we will try to ex-
plain the particular tools and methods used in this thesis to better understand the
contribution of this work to the �eld of safe learning.

1.1.2 . Symbolic control

Symbolic control is a controller synthesis approach that uses abstraction to
design provably correct controllers for complex systems. It is particularly well-
suited for safety-critical systems, where it is important to be able to guarantee the
correctness of the controller.

Abstraction is a process of simplifying a complex system by focusing on the
aspects that are relevant to a particular task [71, 9]. In symbolic control, we use
abstraction to construct a �nite-state representation of the original system. This
�nite-state abstraction is characterized by a �nite number of states and inputs.
The transitions between states are determined by the inputs and the dynamics of
the original system.

Once we have constructed a �nite-state abstraction of the system, we can syn-
thesize a controller for the abstraction using automata-theoretic techniques, such
as game theory or model checking. The controller synthesized for the abstraction
can then be re�ned to obtain a controller for the original system.

Symbolic control has been used to design controllers for a variety of safety-
critical systems, including medical devices [13], aircraft [49], and nuclear power
plants [16]. It has also been used to design controllers for systems with complex
dynamics, such as robotic systems and hybrid systems.

Consider a simple example of a self-driving car. The car needs to be controlled
to stay within a lane and avoid obstacles. The car can be modeled as a dynamical
system with a continuous state space. The state of the system includes the car's
position, velocity, and acceleration. The inputs to the system are the car's steering
wheel angle and throttle.

Designing a controller for this system is a challenging task. The controller needs
to be able to handle a variety of di�erent scenarios, such as curves, obstacles, and
other vehicles. It is also important to ensure that the controller is safe, i.e., that
it will not cause the car to crash.

Symbolic control can be used to design a provably correct controller for the
self-driving car. The �rst step is to construct a �nite-state abstraction of the car.
This can be done by discretizing the car's state space and inputs. For example, we
could divide the car's position into three regions: left, center, and right. We could
also discretize the car's velocity and acceleration into a few di�erent levels.

Once we have constructed a �nite-state abstraction of the car, we can syn-
thesize a controller for the abstraction using automata-theoretic techniques. The
controller will specify which inputs to apply to the car in each state in order to
achieve the desired goal, such as staying within the lane and avoiding obstacles.

Finally, we can re�ne the controller for the �nite-state abstraction to obtain a
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controller for the original car. This re�nement step is necessary to account for the
error introduced by the abstraction.

The resulting controller will be provably correct, meaning that it will guarantee
that the car stays within the lane and avoids obstacles, regardless of the initial
conditions and the disturbances that the car encounters.

The range of systems that can be modeled using symbolic control is very
broad. It includes linear systems such as [74, 65], piecewise a�ne systems [76],
and nonlinear systems [71, 64, 77],

The range of speci�cations that can be handled by symbolic control is also very
broad. It includes reach-avoid speci�cations [71, 29, 64, 77], safety speci�cations
[71, 29], and full LTL [72].

Symbolic control, typically regarded as a model-driven technique, has recently
witnessed the emergence of data-driven approaches. These innovative strategies
present alternative avenues for addressing control challenges. For instance, Meyer
and Girard introduced methods in [56, 32] that rely on system dynamics sampling
on a predetermined grid. Similarly, the work in [77] aligns with this paradigm.
Furthermore, the integration of data-driven abstractions into the probably ap-
proximately correct (PAC) statistical framework is explored in [25], highlighting
the adaptability of symbolic control to modern statistical principles. PAC guar-
antees are also leveraged in [22] to facilitate data-driven abstractions using the
scenario approach. This approach is further examined in [46] and [41], where it
provides probabilistic guarantees for data-driven abstractions. A distinct focus on
data-driven control design with regular language speci�cations is evident in [63],
particularly for plants described as abstract systems. Additionally, for handling
unknown aspects of nonlinear systems, Gaussian processes are harnessed as model-
ing tools. Subsequently, these models play a pivotal role in constructing symbolic
abstractions, as demonstrated in [33].

These emerging data-driven approaches within the realm of symbolic control
introduce an exciting dimension to the �eld, o�ering new perspectives and strate-
gies for addressing complex control challenges.

1.1.3 . Over-approximation and reachability analysis

Reachability analysis is a technique for analyzing the behavior of a dynamical
system. It is used to determine whether a system can reach a given set of states
from a given set of initial states. Reachability analysis is used in a variety of
applications, including control theory, robotics, and computer science [3]. This
is vital for the calculation of the �nite-state abstraction of a system in symbolic
control. As we saw, to �nd the �nite-state abstraction of a system, we discretize
the state space and inputs of the system. Then, we use reachability analysis to
determine which states can be reached from the initial states under the given
inputs. Finding the reachable set of a system is a challenging task, especially
for nonlinear systems. Instead, we can try to �nd an over-approximation of the
reachable set. An over-approximation is a conservative approximation of a system's
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behavior. In Chapter 2 we give a formal de�nition of over-approximation in the
context of maps that describe the dynamics of a system. To review the literature
on over-approximation, we can mention the following works. To over-approximate
the reachable set of a linear system, we can use polytopes [21], ellipsoids [45],
zonotopes [28], or support functions [31]. To over-approximate the reachable set
of a nonlinear system, we can use Hamilton-Jacobi-Isaacs equations [58], Taylor
models [20], or interval arithmetics [37]. A comprehensive overview of interval-
based reachability analysis techniques can be found in [54].

In recent years, there has been a growing interest in using data-driven ap-
proaches to �nd over-approximations of the reachable set of a system. In [1],
algorithms for computing over-approximated reachable sets based on matrix zono-
topes are proposed. Data-driven reachability and support estimation with Christof-
fel functions is studied in [26]. Finally, we mention Set Membership Estimation
(SME) [60], which is a data-driven approach to �nd over-approximations of the
reachable set of a system. This method in particular is discussed in more detail
in Chapter 3. Basically, in the set membership approach, we rely on the Libshitz
constant of the system to �nd the least conservative over-approximation of the
reachable set of the system from data.

1.2 . Motivation and Contribution

A major question of this thesis is: How can we learn models of a system from
data that is suitable for controller synthesis and safe to implement? To answer
this question, the main contribution of this thesis can be summarized as follows:

• Learning tight over-approximations of monotone systems from data.

• Learning over-approximations of bounded derivative systems from data.

• Using the learned over-approximations to build �nite-state abstractions of
the systems, which can be used to synthesize controllers.

• Introduce a two-model approach to safe learning. The �rst model is a
discrete model that is used to synthesize a safety controller. Thus, ensuring
that the learned system is safe. The second model is a compatible estimation
of the dynamics, which is used to achieve desired performance.

We presented a method to learn data-driven over-approximation of monotone
maps from input-output data. We showed that the resulting piecewise interval-
valued monotone map is the tightest map that is consistent with the data (the
notion of tightness and consistency will be properly de�ned later) [51]. We pre-
sented a method to e�ciently learn an over-approximation map on a prede�ned
grid of the input space [52], and showed that the resulting map is the tightest
interval-valued map on this prede�ned grid. Then, we presented a method to
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learn data-driven over-approximation of maps described as the sum of a bounded
derivative function and a disturbance term sampled from a bounded set [53]. In
the case of bounded derivative functions, we presented several techniques to com-
pute such an over-approximation such as transforming the data into a monotone
case or �nding growth cones that over-approximate the map, and using them to
learn the over-approximating map. We also discussed how to update the over-
approximation locally when new data points are added. We show how to use the
learned maps to build �nite-state abstractions of the systems, which can be used
to synthesize controllers. By introducing the concept of compatible estimation
with data-driven over-approximation, we presented a two-model approach to safe
learning. The �rst model is the discrete model that is used to synthesize a safety
controller. Thus, ensuring that the learned system is safe. The second model is
a compatible estimation of the dynamics, which is used to achieve desired perfor-
mance. We presented a method to learn a compatible estimation of the dynamics
of the system from data. We showed that the resulting estimation is a piecewise
multi-a�ne estimation of the dynamics of the system. We presented a method to
update the estimation locally when new data points are added. We presented a
method to update the over-approximation locally when new data points are added.
We showed how to use the methods of updating the over-approximation and the
compatible estimation locally to update the models of the system online when new
data points are added. We showed the e�ectiveness of the proposed methods by
studying several examples relating to path planning and obstacle avoidance.

In the case of bounded derivative functions, we presented various techniques to
compute an over-approximation. These techniques include transforming the data
into a monotone case, or �nding growth cones that over-approximate the map,
and using them to learn a uni�ed over-approximating map. We also discussed how
to update the over-approximation locally when new data points are added.

To build �nite-state abstractions of the systems and synthesize controllers,
we utilized the learned maps. We introduced the concept of compatible estima-
tion with data-driven over-approximation, which enabled a two-model approach to
safe learning. The �rst model, a discrete model, was used to synthesize a safety
controller, ensuring the learned system's safety. The second model, a compatible
estimation of the dynamics, was employed to achieve desired performance.

We presented a method to learn a compatible estimation of the system dynam-
ics from data. The resulting estimation was shown to be a piecewise multi-a�ne
estimation. Additionally, we demonstrated how to update the estimation and over-
approximation locally when new data points are added. These methods allowed
for online model updates as new data points became available.

The e�ectiveness of the proposed methods was validated through the study of
various examples related to path planning and obstacle avoidance.

Our research contributes to the �eld of data-driven control by providing a
novel and rigorous approach to learning discrete models of monotone systems
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from data. Our method can handle uncertainty and disturbances in the data
and preserve the monotonicity property of the system. Our method can also be
applied to systems with bounded derivative functions, which are common in many
engineering applications. Our method enables controller synthesis for systems that
are otherwise di�cult or impossible to model analytically.

1.3 . Thesis outline

1.3.1 . Data-driven over-approximation of monotone systems

In this chapter, we present a data-driven over-approximation method for mono-
tone systems. We �rst introduce a de�nition of monotone maps used to study
monotone systems. We focus on studying how to learn monotone maps in general.
The application of learning monotone maps to monotone dynamical systems is
presented in Chapter 4.

We formulate the problem of learning a monotone map F : Z ⇒ Rm
of the

form

∀z ∈ Z, F (z) = f(z) +D, (1.1)
where Z ⊆ Rn

, f : Z → Rm
is a monotone function and D = [d,d], D ⊆ Rm

is a bounded interval of disturbances. The map F is learned from a �nite set of
input-output data generated by the map F .

D = {(zk,yk) | yk ∈ F (zk), k ∈ K},

where K is a �nite set of indices. We call any map of the form (1.1) capable of
generating the data, consistent with the D, and we call any map containing or
over-approximating all the consistent maps with the data, a simulating map. We
de�ne the problem of learning a monotone map by �nding the tightest simulating
map. We give a de�nition of the tightness of a simulating map (De�nition 7)
and provide a method to learn such a map in Theorem 1. The resulting map is
piecewise interval-valued and monotone. Due to the high computational cost of
calculating such a map and storing it, we propose a method to learn a map that
is not necessarily tight but is still a simulating map on a prede�ned grid of the
input space (Equation (2.14)). Moreover, we show that the resulting map is the
tightest map on this prede�ned grid in Theorem 2. Finally, we present a method
to learn this tight map on the grid e�ciently (Proposition 5 and 6). We show
the e�ectiveness of the proposed method by studying the learning of a monotone
map and the e�ects of the number of data points and the size of partitions on the
tightness of the resulting map, and on the computational cost of learning the map.

1.3.2 . Data-driven over-approximation of systems with bounded

derivative functions

In this chapter, we study the problem of learning a map of the form 1.1 but
instead of assuming that the function f is monotone, we assume that it is an un-
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known bounded derivative function. The bounds of the derivatives of the function
f and the interval D are known.

In this case, �nding the tightest over-approximation of the map F is compu-
tationally intractable. Such a tight over-approximation can be found using the
method developed in the set membership approach [60], we present this method
(Theorem 8) and its limitations in calculating an over-approximation of the map
F e�ciently, especially with a large number of data points. Instead, we pro-
pose several methods to learn a map that is not necessarily tight but is still
over-approximating the map F . The �rst method depends on transforming the
data points using the bounds of the derivative function f such that the resulting
data points can be seen as generated by a monotone map. Then, we use the
method presented in Chapter 2 to learn a monotone map that is consistent with
the transformed data points. Several such transformations can be carried out,
and the resulting maps can be combined and transformed back to form a map
that is over-approximating the map F (Proposition 9). The second method de-
pends on calculating growth cones that have apexes at the data points and are
bounded by the derivatives of the function f . Those growth cones are de�ned in
De�nition 8 and in Proposition 7 we show that each of these growth cones over-
approximates the map F . Finding the values of the growth cones on the vertices
of the partition grid allows us to learn a map that is over-approximating the map
F (Proposition 10). Similar to the way we present an e�cient method to learn a
monotone map in Chapter 2, we present an e�cient method to calculate the value
of the growth cones on the vertices of the partition grid (Proposition 11 and 12).
Then we present a method to update the over-approximation locally when new
data points are added (Proposition 13). In the �nal section, we investigate how
to �nd the bounds on the derivatives of the function f and the interval D from
the data points. The presented approach is based on the scenario approach [18]
for robust convex optimization. Using the scenario approach allows us to provide
probabilistic guarantees on the found bounds. In the presented two-step approach,
we sample a subset of pairs from the data and write a convex optimization problem
that �nds the bounds on the derivatives of the function f and the interval D. In
the second step, we only update the bounds on the disturbance interval D using
a larger subset of the data points. The reason for this is that, while the convex
optimization problem can be solved for a moderately large data set, �nding the
bounds on the disturbance interval D can be done e�ciently using a very large
number of data points. Hence, better probabilistic guarantees can be achieved.
Finally, similar to the previous chapter, we show the e�ectiveness of the proposed
method by studying the learning of a map with bounded derivative functions and
the e�ects of the number of data points and the size of partitions on the tightness
of the resulting map, and on the computational cost of learning the map.

1.3.3 . Data-driven abstraction
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In this chapter, we present how to use the learned maps in the previous chapters
to synthesize a controller for a dynamical system. We �rst present a de�nition of
transition systems, the framework we use to model and study systems (de�nition
9). Then, we talk about the concept of system relations and how to use them
to model the behavior of a system with a simpler system. If we want to use a
simpler model to synthesize a controller for the original system, we need to ensure
that a relation between the two systems exists. This relation is called alternating

simulation (De�nition 11), which implies that any controller synthesized for the
simpler system can be re�ned to control the original system. After that, we present
a de�nition of the abstraction of a transition system which is the simpler system
that we use to synthesize a controller for the original system. It is possible to
abstract a continuous-state system into a discrete-state one using a partition of
the state and input spaces. opening the door for using discrete controller synthesis
to �nd controllers for a variety of complex speci�cations like safety and reachability
speci�cations, or speci�cations given by temporal logic. We explain in particular
how to �nd safety and reachability controllers for a discrete-state system. Finally,
after de�ning all the required concepts, we show how we can use the learned
maps in the previous chapters to �nd an abstraction of the interval-valued over-
approximation of unknown systems using a set of transitions data generated by
the system (Theorem 3). We study a general case where part of the system is
known and part is unknown. We describe how to �nd over-approximations of the
system and how to use those over-approximations to �nd an abstraction of the
system. we prove that the resulting over-approximation is alternatingly simulating
the original system. Also, we show that the resulting abstraction is alternatingly
simulating the over-approximation and hence the original system. In the case
where the system is completely unknown, we show that the resulting abstraction is
alternatingly bisimulating the over-approximation. This means that working with
the resulting abstraction is equivalent to working with the over-approximation and
provides no more conservatism. Finally, we show the e�ectiveness of the proposed
method by studying several examples. The �rst example is a simple example of a
system with a known part and an unknown monotone part, which is a cruise control
system. We want to �nd a controller that ensures that the velocity of a follower
car remains within a safe interval of velocity and distance from the leader car. The
second example is a path-planning problem for a car-like robot (unicycle model).
We want to �nd a controller that ensures that the robot reaches a goal region while
avoiding obstacles. In this chapter, we focus on the obstacle avoidance part of the
problem (safety controller). The problem of choosing the best control action to
reach the goal region is studied in Chapter 5. The third example is the chaotic
Lorenz system. We start by implementing the approach presented in the previous
chapters to �nd the bounds on the derivatives of the system and the disturbance
interval. Then, we use the learned map to �nd an abstraction of the system and
synthesize a safety controller for the system.
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1.3.4 . Safe learning

The �nal chapter discusses the problem of safe learning, which is how to learn
a model of a system from data while ensuring safety and performance. The chapter
proposes a method that uses two models to achieve this goal. The �rst model is a
discrete model that is used to synthesize a safety controller. Thus, ensuring that
the learned system is safe. The second model is a compatible estimation of the
dynamics, which is used to achieve desired performance. In previous chapters, we
showed how to learn a discrete model of a system from data and how to use this
model to synthesize a safety controller for the system. In this chapter, we start
by presenting the framework that uses the two models to achieve safe learning.
Theorem 4 presents the learning-based MPC scheme based on the two models.
Then, we present a method to learn a compatible estimation of the dynamics of
the system from data. This estimation is a piecewise multi-a�ne estimation of the
dynamics of the system. In Section 5.2, we present what is a (piecewise) multi-
a�ne function, its properties on interval domains, and how to learn such a function
from data. Then, we use this class of functions to learn a compatible estimation
of the dynamics of the system (Proposition 5.7). We then move to study how to
update the estimation when new data points are added. In order to do that, we
present a method to update the estimation locally (Proposition 19). Section 5.4
deals with how to use the methods of updating the over-approximation and the
compatible estimation locally to update the models of the system online when new
data points are added. Finally, we show the e�ectiveness of the proposed method
by studying several examples relating to path planning and obstacle avoidance.

1.3.5 . Conclusion

The �nal chapter of the thesis provides a summary of the �ndings and suggests
potential avenues for future research.
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2 - Data-Driven Over-approximation of Mono-

tone Systems

In this chapter, we study the problem of learning models of monotone systems.
Using a set of data generated by the system, we aim to learn a model that is
an over-approximation of the unknown system that generated the data. An over-
approximation is a set-valued map that contains the unknown system. This over-
approximation will be then used to synthesize a controller for the system in later
chapters. The quality of the controller depends on the tightness of the over-
approximation. Therefore, we aim to learn the tightest over-approximation of the
unknown system. We introduce the notion of minimal simulating maps, which are
the tightest over-approximations of the unknown system. We provide a constructive
proof of the existence of minimal simulating maps. Then, we propose a method
for learning a minimal simulating map from data e�ciently.

The class of monotone systems is the class of systems whose trajectories pre-
serve a partial order on the state and input spaces. Among the classical references
about monotone systems are the textbook by Smith [70] and the work in [6]. This
class of systems is very rich and includes many systems of interest in practice,
such as adaptive cruise control [36], temperature regulation systems [55] or power
networks [79]. In [57], models that enforce a notion of monotonicity are learned
following the argument that, for many machine learning problems, some inputs
relate to the output monotonically, such as house pricing. Data-driven approaches
are used in [40] for monotone systems reduction. In this chapter, we are interested
in how to use the monotonicity property to learn over-approximations of mono-
tone systems from data. Existing approaches for data-driven over-approximation
require assumptions similar to those considered in Chapter 3, namely that the
system is Libschitz continuous or has bounded derivatives. The discussion about
those approaches is postponed to Section 3.1.

The chapter is organized as follows. In Section 2.1, we introduce the notion of
monotone systems. In Section 2.2, we introduce the notion of minimal simulating
maps and provide proof of the existence of minimal simulating maps. In Section 2.3,
we propose a method for learning a minimal simulating map from data e�ciently.
In Section 2.5, we illustrate the proposed method on a numerical example. Finally,
in Section 2.6, we conclude the chapter and discuss future work.

2.1 . Monotone maps/systems

In this section, we introduce the notion of monotone maps and systems. We
start by introducing the notion of partial order, which is the mathematical structure
used to de�ne monotonicity. Then, we introduce the notion of monotone maps
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and systems.

2.1.1 . Partial Order

A binary relation ⪯L⊆ L×L is a partial order if and only if for all l1, l2, l3 ∈ L
we have:

• l1 ⪯L l1 (re�exivity);

• If l1 ⪯L l2 and l2 ⪯L l1 then l1 = l2 (antisymmetry);

• If l1 ⪯L l2 and l2 ⪯L l3 then l1 ⪯L l3 (transitivity).

We denote by ⪯L the partial order on L. If neither l1 ⪯L l2 nor l2 ⪯L l1 then we
write l1 ⪯̸L l2, and we say that l1 and l2 are incomparable.

We say that l1 ≺L l2 if l1 ⪯L l2 and l1 ̸= l2. We de�ne ⪰L and ≻L similarly.
Given a partially ordered set L, for l1, l2 ∈ L, we de�ne the interval [l1, l2] as the
set {l ∈ L | l1 ⪯L l ⪯L l2}. For a ∈ L, we de�ne the lower and upper closure of a
as ↓ a = {l ∈ L | l ⪯L a} and ↑ a = {l ∈ L | a ⪯L l} respectively. For A ⊆ L, we
de�ne the lower and upper closure of A as ↓ A =

⋃
a∈A ↓ a and ↑ A =

⋃
a∈A ↑ a

respectively. A subset A ⊆ L is said to be lower-closed (respectively upper-closed)
if ↓ A = A (respectively ↑ A = A).
In this chapter, we will be interested in the case where L = Rn

is the n-dimensional
extended real space. With some abuse of notation, we will use the symbol ⪯ and
drop the subscript L. Given two vectors z1, z2 ∈ Rn

, we de�ne the partial order ⪯
on Rn

to be z1 ⪯ z2 if and only if zi1 ≤ zi2 for all i = 1, . . . , n. We use indi�erently
z1 ⪯ z2 and z2 ⪰ z1. We de�ne max(z1, z2), or min(z1, z2), to be the vector z
whose components are zi = max(zi1, z

i
2), or z

i = min(zi1, z
i
2) respectively. inf Z

and supZ denote the in�mum and the supremum of Z, i.e. the greatest lower
and least upper bounds of Z relative to partial order ⪯ on Rn

.

2.1.2 . Monotone systems de�nition

Continuous time

We consider a continuous-time system of the form

ẋ = f(x,u), (2.1)
where x ∈ Rnx is the state ( R = [−∞,+∞] is the set of extended real numbers),
u ∈ Rnu is the input, and f : Rnx × Rnu → Rnx . We denote a control policy by
ũ : R+

0 → Rnu . We write ũ ⪯ ũ′ if and only if ũ(t) ⪯ ũ′(t) for all t ∈ R+
0 .

Definition 1. System (2.1) ismonotone if for all x,x′ ∈ Rnx , for all t ∈ R+
0 ,

x ⪯ x′, ũ ⪯ ũ′ ⇒ ϕ(x, ũ) ⪯ ϕ(x′, ũ′),

where ϕ(x, ũ) is the solution of (2.1) with initial condition x and input ũ.
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Figure 2.1: Example of a scalar monotone system.
Discrete time

Now let us consider the case of discrete-time systems of the form

xk+1 = f(xk,uk), (2.2)
where xk ∈ Rnx is the state, uk ∈ Rnu is the input, and f : Rnx × Rnu → Rnx .
In this case, the monotonicity of the system is de�ned using the vector �eld f .

Definition 2. System (2.1) is monotone if for all xk,x
′
k ∈ Rnx , for all uk,u

′
k ∈

Rnu ,

xk ⪯ x′
k,uk ⪯ u′

k ⇒ f(xk,uk) ⪯ f(x′
k,u

′
k).

Therefore, for discrete-time systems, the study of the monotonicity of the
vector �eld f is su�cient to determine the monotonicity of the system.
As all the systems studied in this work are written as discrete-time systems, we will
�rst shift the study to monotone vector �elds. Also, we are interested in studying
systems more general than (2.2), where disturbances are taken into account. We
consider the following system

xk+1 ∈ f(xk,uk) +D, (2.3)
where D ⊆ Rnx is a set describing the disturbance. Signaling the need to de�ne
the monotonicity of set-valued maps, which will be done in the next section.

2.1.3 . Monotone maps

To study systems of the form (2.3), we need to de�ne the monotonicity of
set-valued maps.

Definition 3. The map F : Z ⇒ Y , with Z ⊆ Rn and Y ⊆ Rm, is monotone if
for all z, z′ ∈ Z with z ⪯ z′,

∀y ∈ F (z), ∃y′ ∈ F (z′), y ⪯ y′, and
∀y′ ∈ F (z′), ∃y ∈ F (z), y ⪯ y′.

25



Figure 2.2: Example of a set-valued monotone map F : Z ⇒ Y .

An illustration of the notion of monotone maps is shown in Figure 2.2. Let us
remark that in the case of a function f : Z → Y , De�nition 3 coincides with the
usual de�nition of monotone functions, that is

∀z, z′ ∈ Z, z ⪯ z′ =⇒ f(z) ⪯ f(z′).

We will focus on a class of maps given by monotone functions with additive bounded
disturbances. Formally, let us consider a map F : Z ⇒ Rm

where Z ⊆ Rn
and

such that

∀z ∈ Z, F (z) = f(z) +D, (2.4)
where f : Z → Rm

is a monotone function and D = [d,d], D ⊆ Rm is a
bounded interval of disturbances. The following property of F is a straightforward
consequence of (2.4) and of De�nition 3 and is therefore stated without proof.

Claim 1. The map F given by (2.4), where f is a monotone function andD ⊆ Rm,
is a monotone map.

Example 1
Let us consider the map F : R+

⇒ R given for all z ∈ R+
by

F (z) =
{
y ∈ R | y ∈ z2 + [−0.5, 0.5]

}
,

where [−0.5, 0.5] can represent the interval of disturbances. Then, F is a mono-
tone map.

For the rest of the chapter, we will focus on monotone maps of the form (2.4).
hi
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2.2 . Minimal simulating maps

In this section, We study how to learn models of monotone maps from data.
The learned model is an over-approximation of the unknown map that generated
the data. We search for the tightest over-approximations, which we call minimal
simulating maps. We introduce those maps and provide constructive proof of their
existence. First, let us formally de�ne the notion of over-approximation.

Definition 4. An over-approximation of a map F : Z ⇒ Rm is a map S : Z ⇒
Rm such that for all z ∈ Z , F (z) ⊆ S(z).

Let us consider a map F : Z ⇒ Rm
of the form (2.4) where the monotone

function f : Z → Rm
is unknown and the disturbances lower and upper bounds

d, d ∈ Rm are known. A set of data D ⊆ Z × Rm
generated using the map F :

D = {(zk,yk) | yk ∈ F (zk), k ∈ K}, (2.5)
where K is a �nite set of indices.
Given the data D, the bounds d, d, and under the sole assumption that f is
monotone, we aim at computing an over-approximation of the map F that is as
�tight� as possible.

To formalize the notion of tightness, we introduce the following several notions.
A map will be said to be consistent if it is of the form (2.4) and is capable of
generating the data D.

Definition 5. A map F̃ : Z ⇒ Rm is consistent with the data D if the following
hold:

1. There exists a monotone function f̃ : Z → Rm such that, for all z ∈ Z ,
F̃ (z) = f̃(z) +D;

2. For all (z,y) ∈ D, y ∈ F̃ (z).

We denote the set of maps consistent with the data D by CD.

Obviously, there is at least one map that is consistent with D, which is the
map F that generated D. In general, there could be more.

Example 2
Let us consider the same map F : R+

⇒ R introduced in Example 2.1.3. Let
us consider the data D = {(1, 1.2), (2, 4.3), (3, 8.6)} generated using the map
F . Then, all the following maps are consistent with D: For all z ∈ R+

• The true map F (z) =
{
y ∈ R | y ∈ z2 + [−0.5, 0.5]

}
,
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Figure 2.3: Map F in red. Map F̃1 in yellow. Map F̃2 in green.
• The piecewise-de�ned map built according to the data D:

F̃1(z) =

y ∈ R | y ∈


1.2 + [−0.5, 0.5] if z ∈ [0, 2),

4.3 + [−0.5, 0.5] if z ∈ [2, 3),

8.6 + [−0.5, 0.5] if z ∈ [3,+∞).


• The map built using linear regression

F̃2(z) =
{
y ∈ R | y ∈ 3.7z − 2.7 + [−0.5, 0.5]

}
A map over-approximating all the consistent maps is called a simulating map.

Definition 6. A map S : Z ⇒ Rm is a simulating map of the data D if for all
F̃ ∈ CD, for all z ∈ Z , F̃ (z) ⊆ S(z). We denote the set of all simulating maps of
D by SD.

Example 3
Let us consider the same data D as in Example 2.2. Then, the following maps
are simulating maps of D:

• A trivial and useless example of a simulating map is the map given for all
z ∈ R+

by S1(z) = R.

• The map

S2(z) =

y ∈ R | y ∈


[−∞, 2.2] if z ∈ [0, 1),

[0.2, 5.3] if z ∈ [1, 2),

[3.3, 9.6] if z ∈ [2, 3),

[7.6,∞] if z ∈ [3,+∞).

 ,
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The maps F̃1 and F̃2 introduced in Example 2.2 are not simulating maps of D,
because F̃1 and F̃2 are not an over-approximation of F (Do not include F ).
Also the true map F is not a simulating map of D because it does not over-
approximate all the consistent maps (Example: there exists z ∈ R+

, such that
F̃1(z) ⊈ F (z)). The map S2 is the tightest simulating map of D, which will be
apparent why shortly.

Out of the maybe in�nite number of simulating maps, we are interested in the
tightest one, which we call a minimal simulating map. Those maps are the least
conservative over-approximations of the unknown map F that generated the data
D. Formally, they are de�ned as follows:

Definition 7. A map Sm : Z ⇒ Rm is a minimal simulating map of the data D if
the following hold:

1. Sm ∈ SD (Simulation);

2. For almost all z ∈ Z , for all S ∈ SD, Sm(z) ⊆ S(z) (Minimality).

Remark 1. Although minimality holds only almost everywhere, it is required that
the simulation property holds for all z ∈ Z. Therefore, a minimal simulating map
is always an over-approximation of the unknown map F that generated the data
D. We require minimality only almost everywhere to make it possible to give a
simple construction of the minimal simulating map as shown in subsection 2.2.

In subsection 2.2, we will provide a constructive proof of the existence of
minimal simulating maps. The following proposition describes the relation between
minimal simulating maps.

Proposition 1. Given two maps Sm, S′
m : Z ⇒ Rm, the following properties hold:

• If Sm and S′
m are minimal simulating maps of D, then Sm = S′

m a.e.;

• If Sm is a minimal simulating map of D, S′
m ∈ SD and Sm = S′

m a.e., then
S′
m is a minimal simulating map of D.

Proof. We prove the first part of the proposition. According to Definition 7,
there exists a setZ0 ⊆ Z ofmeasure zero such that, for all z ∈ Z \Z0, Sm(z) ⊆
S′
m(z), and there exists a set Z ′

0 ⊆ Z of measure zero such that, for all z ∈
Z \ Z ′

0, S′
m(z) ⊆ Sm(z). Hence, for all z ∈ Z \ (Z0 ∪ Z ′

0), S′
m(z) = Sm(z). The

set Z0 ∪ Z ′
0 being of measure zero, it follows that Sm = S′

m a.e..
Now, let us show the second part of the proposition. For S′

m to be a min-
imal simulating map, S′

m should meet the two requirements of Definition 7.
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The first one is satisfied by assumption. The second one can be shown as fol-
lows. There exists a set Z0 ⊆ Z of measure zero such that, for all z ∈ Z \ Z0,for all S ∈ SD, Sm(z) ⊆ S(z). Also, there exists a set Z ′

0 ⊆ Z of measure zero
such that, for all z ∈ Z \ Z ′

0, S′
m(z) = Sm(z). Hence, for all z ∈ Z \ (Z0 ∪ Z ′

0),for all S ∈ SD, S′
m(z) ⊆ S(z). Because Z0 ∪ Z ′

0 is of measure zero, the sec-
ond requirement of Definition 7 is satisfied, and S′

m is a minimal simulating
map.

Proposition 1 essentially states that minimal simulating maps are uniquely
determined up to a set of measure zero. We can now formally state the problem
under consideration in this section:

The following problem is the one we aim to solve in this section:

Problem 1. Given the data D and the disturbance bounds d, d ∈ Rm, compute
Sm : Z ⇒ Rm, a minimal simulating map of D.

Characterization and properties

In the following, we describe a solution to Problem 1. We �rst establish a charac-
terization of a minimal simulating map and prove some of its properties. Then, a
practical approach is provided for computing a minimal simulating map.

The following theorem provides an e�ective characterization of a minimal sim-
ulating map:

Theorem 1. Let Sm : Z ⇒ Rm be the map given for all z ∈ Z by:

Sm(z) =

 ⋂
k∈K−(z)

{
y ∈ Rm ∣∣ yk + d− d ⪯ y

}
∩

 ⋂
k∈K+(z)

{
y ∈ Rm ∣∣ y ⪯ yk + d− d

} ,

(2.6)

where
K−(z) = {k ∈ K | zk ⪯ z}, K+(z) = {k ∈ K | z ⪯ zk}. (2.7)

Then, Sm is a minimal simulating map of D.

Figure 2.4 shows the construction of the map Sm. The map S2 in Example
2.2 o�ers an example of such a map in the scalar case. Let us remark that
Theorem 1 also provides a constructive proof of the existence of minimal simulating
maps. It follows from (2.6) that the minimal simulating map Sm is interval-valued.
Indeed, for all z ∈ Z, Sm(z) = [Sm(z), Sm(z)] with upper and lower bounds
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Figure 2.4: Construction of a minimal simulating map. Left: data pointsin the input space zk ∈ Z , k ∈ K, points larger than (k ∈ K+(z)) / lesserthan (k ∈ K−(z)) / incomparable to a given z ∈ Z are represented withsquares /circles /triangles, respectively. Right: data points in the outputspace yk ∈ Rm, k ∈ K are surrounded by red intervals representing thebounded disturbance, and the green interval represents the minimalsimulating map Sm(z) ⊆ Rm given by (2.6). The light green area repre-sents the approximation of the function f as mentioned in Remark 2.
Sm(z), Sm(z) given by

Sm(z) = inf
{
yk + d− d | k ∈ K+(z)

}
, (2.8)

Sm(z) = sup
{
yk + d− d | k ∈ K−(z)

}
. (2.9)

We now prove Theorem 1.

Proof. Let us first show that Sm ∈ SD. We should prove that the map Smcontains any consistent map, so let us consider F̃ ∈ CD, then there exists a
monotone function f̃ : Z → Rm such that, F̃ (z) = f̃(z) +D. Let z ∈ Z , y ∈
F̃ (z), then, y ⪯ f̃(z) + d. From the monotonicity of f̃ , we have f̃(z) ⪯ f̃(zk)for all k ∈ K+(z). Therefore,

y ⪯ f̃(zk) + d, ∀k ∈ K+(z).

Moreover, F̃ ∈ CD implies yk ∈ F̃ (zk), for all k ∈ K. Therefore, we have
f̃(zk) + d ⪯ yk, ∀k ∈ K.

Hence, we get from the inequalities above that
y ⪯ yk + d− d, ∀k ∈ K+(z).

Then, from (2.8), y ⪯ Sm(z). Similarly, it can be shown that y ⪰ Sm(z). There-
fore, we have y ∈ Sm(z); hence, Sm is a simulating map of D.
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Now, we prove minimality. For any arbitrary point included in Sm, we willbuild a consistent map containing this point, and show that this map is a sub-
set of Sm. We will partition the input space Z into three regions, the first
region contains all the data points smaller than the point of interest, the sec-
ond region contains all the data points larger than the point of interest, the
final region contains only the point of interest. Then, wewill build a consistent
map, which on the first region is the smallest possible, on the second region
is the largest possible, and on the third region contains the point of interest,
all while being included in Sm. But first, we remove the grid built by the data
points, which is a set of measure zero. Consider the set Z0 of measure zero,
defined as

Z0 = {z ∈ Z | ∃i ∈ {1, . . . , n}, k ∈ K, zi = zik}. (2.10)
This set consists of the union of finitely many hyperplanes. Each of those hy-
perplanes is defined by one of the components of a data point. Let z⋆ ∈ Z \Z0and y⋆ ∈ Sm(z⋆). This is allowed under our definition of minimal simulating
maps. Let us define a partition of Z in 3 regions defined by

Z1 = Z+(z⋆) \ Z−(z⋆), Z2 = Z+(z⋆) ∩ Z−(z⋆),

Z3 = Z \ (Z1 ∪ Z2),

where
Z−(z⋆) =

n⋂
i=1

{
z ∈ Z | zi > sup{zik | zik ≤ z⋆i, k ∈ K}

}
,

Z+(z⋆) =
n⋂

i=1

{
z ∈ Z | zi < inf{zik| zik ≥ z⋆i, k ∈ K}

}
.

A representation of the regions can be found in Figure 2.5. Let us remark
that by construction zk ∈ Z1 ∪ Z3 for all k ∈ K and that z⋆ ∈ Z2 because
z⋆ ∈ Z \ Z0.Then, let us consider the map F ⋆ : Z ⇒ Rm given for all z ∈ Z by F ⋆(z) =

f⋆(z) +W where f⋆ : Z → Rm is defined as follows

f⋆(z) =


Sm(z)− d if z ∈ Z1,

max(min(y⋆, Sm(z⋆)− d), Sm(z⋆)− d) if z ∈ Z2,

Sm(z)− d if z ∈ Z3.

(2.11)

In Figure 2.6, a representation, in the one-dimensional case, of themapsF, F ⋆,
andSm canbe found. Since z⋆ ∈ Z2 and sincey⋆ ∈ Sm(z⋆) = [Sm(z⋆), Sm(z⋆)],
it follows from (2.11) that y⋆ ∈ F ⋆(z⋆). We will now prove that F ⋆ ∈ CD.We first prove that function f⋆ is monotone. Let z, z′ ∈ Z such that z ⪯
z′. There are several possibilities for the position of z and z′: i) z, z′ ∈ Z1,
ii) z, z′ ∈ Z2, iii) z, z′ ∈ Z3, iv) z ∈ Z1, z

′ ∈ Z2, v) z ∈ Z2, z
′ ∈ Z3, vi) z ∈

Z1, z
′ ∈ Z3. We want to verify that f⋆(z) ⪯ f⋆(z′) in all those cases.
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Figure 2.5: Partition of Z used to define the function f ⋆ in (2.11). Thearea bounded from above by the yellow line represents the set Z+(z⋆).The area bounded from below by the orange line represents the set
Z−(z⋆). The area Z1 in blue contains all the data points smaller than
z⋆. The area Z3 in red contains all the data points larger than z⋆ orincomparable with z⋆. The area Z2 is colored in green.

Disturbance

Figure 2.6: Construction of the map F ⋆ according to (2.11).
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• Case (i): Since z ⪯ z′, we have K−(z) ⊆ K−(z′), which implies from
(2.9), Sm(z) ⪯ Sm(z′). Then, from (2.11), f⋆(z) ⪯ f⋆(z′).

• Case (ii): From (2.11), we have f⋆(z) = f⋆(z′).
• Case (iii): Similar to case (i).
• Case (iv): It follows from the definition of Z2 that K−(z′) = K−(z⋆).
Then, since z ⪯ z′, we have K−(z) ⊆ K−(z′) and thus K−(z) ⊆ K−(z⋆).
Hence, from (2.9), we get Sm(z) ⪯ Sm(z⋆). Since z ∈ Z1 and z′ ∈ Z2 weget from (2.11),

f⋆(z) = Sm(z)− d ⪯ Sm(z⋆)− d ⪯ f⋆(z′).

• Case (v): Similar to case (iv).
• Case (vi): Since Sm ∈ SD and F ∈ CD, we get that Sm(z)−d ⪯ f(z) and
f(z′) ⪯ Sm(z′)−d. Since f is monotone and z ⪯ z′, we get f(z) ⪯ f(z′).
Finally, since z ∈ Z1 and z′ ∈ Z3, we get from (2.11),

f⋆(z) = Sm(z)− d ⪯ Sm(z′)− d = f⋆(z′).

Hence, we established the monotonicity of function f⋆.
We now prove that the second requirement of Definition 5 is satisfied. Let

us consider k ∈ K; we already know that zk ∈ Z1 ∪ Z3. In the case where
zk ∈ Z1, we have from (2.9) and (2.11),

yk ⪯ Sm(zk)− d+ d = f⋆(zk) + d.

Moreover, since Sm ∈ SD, we have
yk ⪰ Sm(zk) = f⋆(zk) + d.

Therefore, yk ∈ F ⋆(xk). A similar statement can be shown when zk ∈ Z3. Itfollows that F ⋆ ∈ CD.Hence, we have proved that for all z⋆ ∈ Z \ Z0 and for all y⋆ ∈ Sm(z⋆),
there exists a map F ⋆ ∈ CD such that y⋆ ∈ F ⋆(z⋆). Hence, for all map S ∈ SD,we have y⋆ ∈ S(z⋆). Hence, Sm is a minimal simulating map.

We present some useful properties of minimal simulating maps. The �rst
property establishes the monotonicity of the minimal simulating map de�ned in
Equation (2.6)
Proposition 2. The minimal simulating map Sm, as defined in Equation (2.6),
exhibits the monotonicity property.

34



Proof. Consider z and z′ ∈ Z such that z ⪯ z′. This implies that K+(z′) ⊆
K+(z) and K−(z) ⊆ K−(z′), which, in turn, leads to Sm(z) ⪯ Sm(z′) and
Sm(z) ⪯ Sm(z′), following Equations (2.8) and (2.9) respectively. Consequently,
for any y ∈ Sm(z), we have y ⪯ Sm(z) ⪯ y′, where y′ = Sm(z′) ∈ Sm(z′).
Similarly, for any y′ ∈ Sm(z′), we have y′ ⪰ Sm(z′) ⪰ y, where y = Sm(z) ∈
Sm(z). According to Definition 1, this confirms that Sm is monotonic.

Next, we investigate the properties of the minimal simulating map obtained
from combining two datasets.

Proposition 3. Consider two datasets D′ and D′′, and define the dataset D =
D′ ∪ D′′. Let Sm, S′

m, and S′′
m be the minimal simulating maps of D, D′, and D′′,

respectively, as given by Equation (2.6). Then, for any z ∈ Z , we have:

Sm(z) = S′
m(z) ∩ S′′

m(z).

Proof. The data set D can be expressed as:
D = {(zk,yk) | yk ∈ F (zk), k ∈ KD},

with KD = KD′ ∪ KD′′ where KD′ and KD′′ are the sets of indices of D′ and
D′′ respectively. Then, for all z ∈ Z , we have

K−
D(z) = K−

D′(z) ∪K−
D′′(z), K+

D(z) = K+
D′(z) ∪K+

D′′(z).

Substituting into Equation (2.6), we can readily establish that for all z ∈ Z ,
Sm(z) = S′

m(z) ∩ S′′
m(z).

Proposition 3 has several implications. First, it means that the computation
of a minimal simulating map can be easily parallelized. This is because the map
can be computed for each data set independently, and then the results can be
combined. This makes it possible to speed up the computation for large data sets.
Second, Proposition 3 implies that pre-computed minimal simulating maps can be
easily re�ned when new data becomes available. This is because the new data can
be used to compute a new minimal simulating map, which can then be intersected
with the pre-computed map. This will result in a new, more accurate, minimal
simulating map.

Remark 2. In this section, we provided a solution for computing a minimal sim-
ulating map of D, which provides a tight over-approximation of the map F . Note
that similar results can be obtained if we seek an over-approximation of the func-
tion f as it can be shown that

∀z ∈ Z, f(z) ∈ [Sm(z)− d, Sm(z)− d],
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which can be seen in Figure 2.4. If we want to calculate a single-valued approx-
imation of the function f , we can use a similar approach to the one used in the
set membership technique [60] and build an estimation of f using the calculated
bounds on the minimal simulating map

f(z) = Sm(z)−w + Sm(z)− d

2
.

It will be apparent fromwhat follows that this estimation is piecewise constant and
not continuous. Continuous estimation of f , included in the over-approximation
map Sm, is derived in chapter 5 using the class of multi-affine functions.

Computation

Having characterized minimal simulating maps, let us now delve into the practical
computation of these maps. Our approach and the used notations are illustrated
in Figure 2.7, where a six data points case is demonstrated.

Figure 2.7: The figure shows the rectangular partition of the input set
Z based on the collected data points and an example of one of thediscrete variables q. All the points in yellow, aggregated in q, have thesame output.

For that purpose, we introduce a rectangular partition of the input set Z,
induced by the data D. For simplicity, let us assume that Z is a closed interval of
Rn

, i.e. Z = [α,α]. This is without loss of generality since it is always possible to
embed Z in such a set. For each i ∈ {1, . . . , n}, we sort the ith components of all
the data points in the input space (i.e., zik, for k ∈ K), so we have zi

k1i
≤ · · · ≤ zi

k
|K|
i

.

The sorted values are then used to de�ne the �nite partitions (Zi
qi
)qi∈Qi of [αi, αi]

where Qi = {0, . . . , |K|} and
Zi
0 = [αi, zi

k1i
),

Zi
qi

= [zi
kq

i

i

, zi
ki

qi+1
), qi = 1, . . . , |K| − 1,

Zi
|K| = [zi

k
|K|
i

, αi].
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Then, let us de�ne Q = Q1 × · · · × Qn, and let the �nite rectangular partition
(Zq)q∈Q of Z be given for q = (q1, . . . , qn) by Zq = Z1

q1 × · · · × Zn
qn .

Lemma 1. Let Sm be the minimal simulating map of D given by (2.6). Then, for
all q ∈ Q, for all z, z′ ∈ intZq, Sm(z) = Sm(z′).

Proof. Because the partition is defined using the components of data points,
we have, for all q ∈ Q, for all z, z′ ∈ intZq, K−(z) = K−(z′) and K+(z) =

K+(z′). Subsequently, we obtain by (2.6), Sm(z) = Sm(z′).
Building on the property presented in Lemma 1, we can introduce the new map

σm : Q ⇒ Rm
de�ned as follows

∀q ∈ Q, σm(q) = Sm(z), for z ∈ intZq. (2.12)
We also de�ne a quantization function ϕm : Z → Q associated to the �nite
data-induced partition (Zq)q∈Q as follows

∀z ∈ Z, ∀q ∈ Q, ϕm(z) = q ⇐⇒ z ∈ Zq. (2.13)
Proposition 4. Let σm and ϕm be given by (2.12) and (2.13), then σm ◦ ϕm is a
minimal simulating map of D.

Proof. It follows directly from Lemma 1 and from the definition of σm and ϕmthat σm ◦ ϕm = Sm a.e.. Then, let us show that σm ◦ ϕm is a simulation map.
From the construction of the partition (Zq)q∈Q, it follows that for all q ∈ Q,
for all z ∈ Zq, for all z′ ∈ intZq, K−(z′) ⊆ K−(z) and K+(z′) ⊆ K+(z). Hence,
from (2.6), Sm(z) ⊆ Sm(z′). Then, it results that Sm(z) ⊆ σm ◦ ϕm(z), for all
z ∈ Z. Since Sm ∈ SD, we have that σm ◦ ϕm ∈ SD. Therefore, according toProposition 1, σm ◦ ϕm is a minimal simulating map of D.

Hence, computing the �nite partition (Zq)q∈Q and the map σm o�ers an
e�ective way to compute a minimal simulating map and store it. Let us remark
that the number of elements in Q is (|K|+1)n. Hence, it grows polynomially with
the number of data points |K|, and exponentially with the dimension n of the input
space Z. Therefore, it is computationally prohibitive to use this approach for large
data sets, particularly with high-dimensional input spaces. In the following, we
tackle this problem by �xing a partition a priori and by �nding the best simulating
map on this partition.

2.2.1 . Simulating maps on �xed partitions

Instead of relying on the data set D to partition Z, which makes calculating
the simulating map computationally expensive, we will assume that a rectangular
partition of Z is given a priori. In the following, we characterize the tightest
interval-valued simulating map on this partition. Our approach is illustrated in
Figure 2.8
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Figure 2.8: The figure shows the predefined partition of the input setZ.The function ϕmaps all the points inside a cell (e.g., square in yellow) toa discrete variable. Themap σ is theminimal interval-valued simulatingmap.
Construction

For each coordinate i ∈ {1, . . . , n}, let be given �nite partitions (Ri
qi
)qi∈Qi of

[αi, αi] where Qi = {0, . . . ,Ki} and
Ri

0 = [αi, αi
1),

Ri
qi

= [αi
qi
, αi

qi+1
), qi = 1, . . . ,Ki − 1,

Ri
Ki = [αi

Ki , α
i],

where αi < αi
1 < · · · < αi

Ki < αi. Note that the number of partition elements
Ki + 1 can be di�erent from one coordinate to another. Then, let us de�ne
Q = Q1×· · ·×Qn, and let the �nite rectangular partition (Rq)q∈Q of Z be given
for q = (q1, . . . , qn) by Rq = R1

q1 × · · · ×Rn
qn .

Let us de�ne the map σ : Q ⇒ Rm
given for all q ∈ Q by

σ(q) =

 ⋂
k∈K−(zq)

{y ∈ Rm| yk + d− d ⪯ y}


∩

 ⋂
k∈K+(zq)

{y ∈ Rm| y ⪯ yk + d− d}

 (2.14)

where zq = inf Rq, zq = supRq, and K−, K+ are de�ned as in (2.7). From
(2.8), (2.9) and (2.14), we get that σ is an interval-valued map: for all q ∈ Q,
σ(q) = [σ(q), σ(q)] with σ(q) = Sm(zq) and σ(q) = Sm(zq).

We also consider a quantization function ϕ : Z → Q associated to the �nite
partition (Rq)q∈Q and de�ned as

∀z ∈ Z, ∀q ∈ Q, ϕ(z) = q ⇐⇒ z ∈ Rq. (2.15)
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Theorem 2. Let σ and ϕ be given by (2.14) and (2.15), then the following properties
hold:

1. σ ◦ ϕ ∈ SD (Simulation);

2. For any interval-valued map σ′ : Q ⇒ Rm, such that σ′ ◦ ϕ ∈ SD, it holds
for all q ∈ Q, σ(q) ⊆ σ′(q) (Minimality).

Proof. Let Sm be the minimal simulating map in (2.6). Let us prove the simu-
lation property. Let z ∈ Z , then zϕ(z) ⪯ z ⪯ zϕ(z), which yields

K−(zϕ(z)) ⊆ K−(z) and K+(zϕ(z)) ⊆ K+(z).

Hence, by (2.6) and (2.14), Sm(z) ⊆ σ ◦ ϕ(z). Since Sm ∈ SD, we get σ ◦ ϕ ∈ SD.Next, let us prove the minimality property. Let us consider an interval-
valued map σ′ : Q ⇒ Rm such that σ′ ◦ ϕ ∈ SD, and let q ∈ Q. From (2.7), it
can be seen that there exists a neighborhoodNq of zq such that for all z ∈ Nqwith z ⪯ zq it holds K+(z) = K+(zq), which yields by (2.6) Sm(z) = Sm(zq).Then, let z⋆ ∈ (Nq ∩ Rq) \ Z0 with Z0 the set of measure zero defined as
in (2.10). Let us remark that z⋆ ⪯ zq and hence Sm(z⋆) = Sm(zq). From
the proof of Theorem 1, we get that there exists F ⋆ ∈ CD such that Sm(zq) =

Sm(z⋆) ∈ F ⋆(z⋆). Then, σ′◦ϕ ∈ SD gives us thatSm(zq) ∈ σ′◦ϕ(z⋆). Moreover,
z⋆ ∈ Rq, gives us that σ′ ◦ ϕ(z⋆) = σ′(q). Hence, Sm(zq) ∈ σ′(q). Similarly,
we can show that Sm(zq) ∈ σ′(q). Then since σ′ is interval-valued, we get that
[Sm(zq), Sm(zq)] ⊆ σ′(q). Then, σ(q) = [Sm(zq), Sm(zq)] gives us σ(q) ⊆
σ′(q).

It follows from Theorem 2 that it is possible to de�ne a notion of minimal
simulating map of D relative to a given partition (Rq)q∈Q of Z. It should be
noticed that similar results to Propositions 2 and 3 hold for the simulating map
σ ◦ϕ. Finally, one can check that if the partition (Rq)q∈Q of Z coincides with the
data-induced partition de�ned in the previous section, σ ◦ ϕ is minimal simulating
map of D. The di�erence between the maps σ ◦ ϕ and σm ◦ ϕ can be examined
by comparing Figure 2.7 and Figure 2.8.

Remark 3. For a given number of cells, typically smaller than data-induced par-
tition, choosing an optimal partition (Dq)q∈Q is a complicated problem. How-
ever, it can be easily shown that the optimal partition (achieving the minimal over-
approximation volume) is aligned with some of the data points components. This
makes it possible to rely on heuristics to choose good yet sub-optimal partitions.
For instance, a possible approach would be to aggregate cells of the data-induced
partition where a lot of data is available.
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2.3 . E�cent calculation of the minimal simulating map

Given the partition (Rq)q∈Q of Z, computing the simulating map de�ned in
the previous section amounts to computing the map σ : Q ⇒ Rm

given by (2.14).
A straightforward algorithm to compute σ is as follows. For each q ∈ Q, we go
through all the data points in D and determine K−(zq) and K+(zq). Then, one
gets σ(q) by (2.14). That makes the overall complexity O(|K| × |Q|), i.e., bilinear
with respect to the number of data points and to the number of partition elements.
In this section, we present a more e�cient approach to calculating σ.

For simplicity, we assume in the following that for all k ∈ K, zk ∈ int Z, i.e.,
that no data point lies on the boundary of the input set. Then, since σ(q) =

Sm(zq), it follows from (2.8) that for all q ∈ Q such that qi = Ki (recall that Ki

is number of partitions on the ith dimension), for some i ∈ {1, . . . , n}, σ(q) =

(+∞, . . . ,+∞). Similarly, since σ(q) = Sm(zq), it follows from (2.9) that for all
for all q ∈ Q such that qi = 0, for some i ∈ {1, . . . , n}, σ(q) = (−∞, . . . ,−∞).

Then, let us consider the following subsets of Q:

Q = {0, . . . ,K1 − 1} × · · · × {0, . . . ,Kn − 1},
Q = {1, . . . ,K1} × · · · × {1, . . . ,Kn}.

One needs to compute σ(q) and σ(q) for q ∈ Q and q ∈ Q, respectively. For
that purpose, let us �rst de�ne the functions σ0 : Q→ Rm

and σ0 : Q→ Rm
as

follows:

σ0(q) = inf
{
yk + d− d | zk ∈ cl Rup(q)

}
, (2.16)

σ0(q) = sup
{
yk + d−w | zk ∈ cl Rlo(q)

}
, (2.17)

where up(q) = q+1n, lo(q) = q−1n, and 1n = (1, . . . , 1). An illustration of the
elements up(q) and lo(q) can be seen in Figure 2.9. To compute σ0, σ0, we start by
initializing σ0(q) = (+∞, . . . ,+∞) for all q ∈ Q, and σ0(q) = (−∞, . . . ,−∞)

for all q ∈ Q. Then, we go through all the points in the set D; for each entry
(zk,yk), we �nd all q such that zk ∈ cl Dq. Then, we update the value of
σ0(up(q)) and σ0(lo(q)) using (2.16) and (2.17). The partition is stored and sorted
component-wise, so to �nd q, we can do a binary search for each component of
zk. Therefore, computing σ0, σ0 is done with a complexity O(|K| ×

∑
i log(K

i))

or equivalently O(|K| × log(|Q|)).

We now present a result that will allow us to compute the map σ sequentially.
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Figure 2.9: A representation of the sets up(q), u_ad(q), lo(q), l_ad(q)and the order in which we calculate σ and σ.
Proposition 5. Let σ be the interval-valued map given by (2.14), its upper and
lower bounds σ, σ satisfy:

∀q ∈ Q, σ(q) = min
(
inf

{
σ(q′)| q′ ∈ u_ad(q)

}
, σ0(q)

)
, (2.18)

∀q ∈ Q, σ(q) = max
(
sup

{
σ(q′)| q′ ∈ l_ad(q)

}
, σ0(q)

)
, (2.19)

where
u_ad(q) = {q′ ∈ Q| ∃k ∈ {1, . . . , n},q′ − q = ek},

l_ad(q) = {q′ ∈ Q| ∃k ∈ {1, . . . , n},q− q′ = ek},

and ek ∈ Rn whose kth component is 1 and all others are 0.

An illustration of the sets u_ad(q) and l_ad(q) can be seen in Figure 2.9.

Proof. We prove the property for the upper bound σ, and the proof for the
lower bound σ follows similarly. Let q ∈ Q, it can be seen that

K+(zq) =
( ⋃

q′∈u_ad(q)

K+(zq′)
)
∪ {k ∈ K| zk ∈ Dup(q)} .

Then, since σ(q) = Sm(zq), (2.18) follows directly from (2.8) and the equality
above.

From Proposition 5, we can see that to compute σ we go through all q ∈ Q

sequentially in a decreasing order, starting from q = (K1, . . . ,Kn) as represented
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by Figure 2.9. For σ we start from q = (1, . . . , 1) and though all q ∈ Q in an
increasing order.

Proposition 6. The map σ can be computed with complexityO(|K| × log(|Q|) +
|Q|).

Proof. We already showed the complexity of computing σ0 and σ0 is O(|K| ×
log(|Q|)). To compute σ we should go through all the elements q ∈ Q twice,
one in decreasing order to compute σ and one in increasing order to compute
σ. Therefore, the complexity of computing σ is O(|K| × log(|Q|) + |Q|).
Remark 4. In the special case where the partition (Rq)q∈Q of Z is uniform, and
all the cells Rq have the same dimension, the binary search step is not needed
and finding q can be done in constant time. Then, the complexity of computing σ
is O(|K|+ |Q|).

2.4 . Over-approximating unknown linear functions

In the case where the unknown function f is linear, we can apply a transfor-
mation to the data D to make it as if the data is generated by a monotone map.
Let the unknown function f be Linear

f(z) = A · z+ b,

Where A ∈ Rm×n and b ∈ Rm are unknown. Let Ai be the i-th row of A.

A =


...
Ai
...


We have that the i-th component of f is:

f i(z) = Ai · z+ bi.

Let us de�ne the variable z′ ∈ Rn
as follows:

z′j =

{
zj if Ai,j ≥ 0

−zj if Ai,j < 0

Then we have that f i(z) = Ai · z′ + bi is monotone because

∂f i

∂z′j
(z′) =

{
Ai,j if Ai,j ≥ 0

−Ai,j if Ai,j < 0
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Therefore, we can apply the method presented in Section 2.1.2 to the data D to
�nd an over-approximation of the map F , after applying the transformation to the
data D:

D′ = {(z′k,yk) | (zk,yk) ∈ D, k ∈ K}.

The sign of the components of the matrix A can be inferred from the physics
of the system. For example, in the case of a mass-spring-damper system, the signs
of the components of the matrix A are dictated by its physics, as the tension in
the spring is always trying to pull the mass toward the equilibrium position and the
damping force is always trying to slow down the mass. In section 3.3, we will present
a method to verify the monotonicity of unknown functions from data. This method
can be used to verify the monotonicity of the transformed data D′. Therefore, given
that the function is linear, we can test all the possible transformations of the data D
and �nd the one that makes the data as if it is generated by a monotone function.
Then we can apply the method presented in Chapter 2 to the transformed data D′

to �nd the least conservative over-approximation of the unknown map F .

Finally, in this section, we discussed how to learn linear functions from undis-
turbed data. Extending the approach to the case where there is an added bounded
disturbance, is straightforward.

2.5 . Numerical examples

In this section, we present a numerical example to test the performance of the
introduced over-approximation. We use interval domain, Z = [α,α], α,α ∈ Rn

for the maps, we are trying to over-approximate. For i ∈ {1, . . . , n}, we de�ne the
�nite partition (Di

qi
)qi∈Qi as follows, Qi = {0, . . . ,Ki} and


Di

0 = [αi, αi
1)

Di
qi

= [ q
i−1

Ki−1
(αi

Ki − αi
1) + αi

1,
qi

Ki−1
(αi

Ki − αi
1) + αi

1),

qi = 1, . . . ,Ki − 1

Di
Ki = [αi

Ki , α
i]

(2.20)

We choose αi
1 = αi + c (αi − αi), αi

Ki = αi − c (αi − αi), and c is a constant
speci�c to each example. This scheme of discretizing will be adopted throughout
the thesis.
We present a set of experiments envisioned to test and visualize the algorithms,
introduced in this chapter, for the over-approximation of set-valued maps.
To quantitatively measure the performance of the over-approximation, we can
check the execution time and the conservatism in the resulting over-approximation.
We calculate the conservatism of the over-approximation using the following per-
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formance criterion

µ(D, Q) =

∑
q∈Q′

(vol(Zq)× σ(q))∑
q∈Q′

(vol(Zq)× vol(D))
(2.21)

where

Q′ =
{
q ∈ Q

∣∣ −∞ < σi(q), σi(q) <∞, ∀i ∈ {1, . . . , n}
}
.

The denominator of µ represents the volume of the graph of the unknown map for
the part of space where we can �nd an over-approximation, whereas the numerator
represents the volume of our over-approximation. µ can take its value in the interval
[1,∞), and the smaller its value is, the less conservative the over-approximation
is.

In this example, we consider a monotone set-valued map F : [−π, π] ×
[−π, π] ⇒ R given by

F (z) = {2 (sin z1 + sin z2 + z1 + z2) + d | d ∈ [−0.1, 0.1]} (2.22)
We use F to generate the sets of data D used in the subsequent experiments. First,
we visualized the over-approximation. We sampled |K| = 106 data points. The
parameters of the partition are chosen as follows K1 = 30, K2 = 30, c = 0.01.
Figure 2.10 shows the undisturbed function in solid and the over-approximation
calculated from data. We see how the undisturbed function is included in the
over-approximation.

2.5.1 . The e�ect of changing the number of data points

To study the e�ect of changing the number of data points, we chose and �xed
a partition, K1 = 100, K2 = 100, c = 0.01. Then, for an increasing number of
data points, we calculated the over-approximation of the map F and measured the
execution time and the performance criterion. For each number of data points,
we redo the experiment a hundred times using di�erent randomly generated data
sets. The results of this statistical study of changing the number of data points are
shown in Figure 2.11. We can see from the �gure the linear relation between the
number of data points and the execution time as predicted in Proposition 6. We
also see how the conservatism in the calculated over-approximation decreases with
the increase in the number of data points. Note that even if the number of points
increases toward in�nity, the performance criterion µ will not reach one, because
we are using a �xed partition. For µ to reach one, both the number of data points
and the number of partition elements should go to in�nity.
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Figure 2.10: Map F (z) with w = 0 everywhere is represented in solid.The upper and lower bounds of the over-approximation are repre-sented in transparency
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Figure 2.11: Line in blue represents the average time of execution withrespect to the number of data points, with bars representing the stan-dard deviation. The line in orange shows the relation between thenumber of points and the performance criterion µ(D, Q).

2.5.2 . The e�ect of changing the size of the partition
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Figure 2.12: Line in blue represents the average time of execution withrespect to the number of cells in the partitions, with bars representingthe standard deviation. The line in orange represents the performancecriterion µ(D, Q) with respect to the number of cells in the partitions.
In the second experiment, we �xed the number of data points |K| = 106, and

changed the size of the partition. For each size considered, the partition is chosen
such that K1 = K2, and c = 0.01. We also redo the calculation for each size a
hundred times using di�erent randomly sampled data sets. Although we are using
a uniform partition, we do not make use of this fact in the calculation of the over-
approximation, and we still use binary search to �nd the partition element that
contains the data point. Figure 2.12 shows the results of the experiment. Time
of execution increases logarithmically when |Q| the number of partition elements
is small. Then, the relation becomes linear for big values of |Q|. This behavior
can be justi�ed by the complexity relation introduced in Proposition 6. Similar to
the �rst experiment, the performance criterion decreases with the increase in the
number of partition elements.

2.6 . Conclusion

In this chapter, we de�ned the class of monotone systems and showed that
the monotonicity property can be used to over-approximate the set-valued map,
representing the system and disturbance from a set of data generated by the system.
We introduced the data-driven approach to over-approximate set-valued maps.
The approach is based on the idea of partitioning the input space and then �nding
a minimal simulating map for each partition element. We have shown that the
minimal simulating map can be computed e�ciently. We have also shown that
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the minimal simulating map is the least conservative over-approximation of the
set-valued map. Finally, we have presented a numerical example to illustrate the
approach and to show its e�ciency.
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3 - Data-Driven Over-approximation of Sys-

tems with Bounded Derivative Functions

We will now shift focus to the case where the unknown function f is not
necessarily monotone but has bounded derivatives with known upper and lower
bounds.

Let us consider a map F : Z ⇒ Rm
, where Z ⊆ Rn

and such that

∀z ∈ Z, F (z) = f(z) +D, (3.1)
where f : Z → Rm

is a function with bounded derivatives and D ⊆ Rm
is a

bounded set. Let for all z ∈ Z:

∂f i

∂zj
(z) ∈ [γ

ij
, γij ], i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

where the bounds γ
ij
, γij ∈ R are known. Making the derivative of f bounded,

Similar to (2.5), a dataset D is generated using the map F .

D = {(zk,yk) | yk ∈ f(zk) +D, k ∈ K} (3.2)
where K is a �nite index set. In this chapter, we will present a method to compute

maps that over-approximate the unknown map F which generated the data D.
When it comes to �nding data-driven over-approximations of unknown func-

tions that have bounded derivatives or are Lipschitz continuous, the literature
contains several methods. We present the ones that �nd deterministic over-
approximations, similar to our approach. The set membership approach o�ers
an example of how we can �nd those deterministic over-approximations. In [60],
the set membership approach is used for the identi�cation of nonlinear systems. Set
membership approaches are used in [19] to synthesize nonlinear model predictive
controllers. In contrast to [19], our introduced approaches do not assume anything
about the stability of the unknown systems. Also, the number of points that can
be handled is greater than the number addressed in the set membership approach.
The way set membership approaches over-approximate the unknown map F is a
special case of the approach called kinky inferences, studied extensively [17]. The
work in [17] aims to �nd a machine learning algorithm that de�nes an inference
for unknown Holder continuous functions. The inference should exhibit the follow-
ing properties: i) Conservatism: in the meaning that the inference should de�ne
uncertainty hyperrectangles guaranteed to contain the true value of the function,
similar to our assumption that the resulting over-approximation should contain the
true value of the unknown map F . ii) Monotonicity: Adding more data should not
increase the size of the uncertainty hyperrectangles. iii) Convergence: The uncer-
tainty hyperrectangles should converge to the true disturbance set D if we sample
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Figure 3.1: Set membership approach.

the domain densely. iv) Minimality (optimality): The uncertainty hyperrectan-
gles should be as small as possible. The main di�erence between our approach
and the approach in [17] is that we relax the demands regarding convergence and
minimality (optimality) in favor of speed of computation. Instead of an inference
that converges to the true map F , but found using an algorithm that needs to be
repeated for each query point, we �nd an over-approximation that is calculated, on
a prede�ned partition of the domain Z, once and can be used to over-approximate
the unknown map F at any point in the domain Z in constant time. This means
that for the over-approximation to converge to the true map F , we need to sample
the domain densely and the size of the cells in the partition should go to zero.
Regarding minimality (optimality), we were able to guarantee the minimality of
the over-approximation on the prede�ned partition of the domain Z in the case of
monotone maps (studied in Chapter 2). In the case of maps with bounded deriva-
tives, �nding optimal over-approximations is rather trickier, and requires costly
optimization algorithms. Instead, we focused on �nding over-approximations that
are easy to compute while also being useful in practice.

Another example of robust over-approximation can be found in [42], where
interval observers for partially unknown mixed-monotone nonlinear systems are
found, assuming the unknown part is Lipschitz continuous. Lipschitz dynamical
systems with known bounds on the Lipschitz constants are also studied in [66] to
reach piecewise a�ne set-valued models. Zonotopes were used in [1] to compute
reachable sets directly from noisy data generated by Lipschitz continuous systems.

The chapter is organized as follows. In Section 3.1, we will present a method
to compute data-driven over-approximations of maps with bounded derivatives. In
Section 3.2, we will present a method to compute online over-approximations of
maps with bounded derivatives. We introduced a method to �nd the bounds on the
derivatives of the unknown map f in Section 3.3. In Section 3.4, we will present the
results of the experiments we conducted to test the introduced methods. Finally,
we will conclude the chapter in Section 3.5.

3.1 . Over-approximating bounded derivative functions
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Given only the bounds on the derivatives of the unknown function, the set
membership approach o�ers the least conservative over-approximation of the un-
known function [60]. The over-approximation is calculated out of a noise-corrupted
dataset D. A representation of such over-approximation is shown in Figure 3.1.
The resulting set-valued over-approximation F : Z ⇒ Rm

is de�ned, component-
wise, by its lower and upper bounds as follows 1 [60]:

F i
(z) =min

k∈K

(
yik + d

i − di +mi
T · (zk − z)

)
,

F i(z) =max
k∈K

(
yik + di − d

i
+mi

T · (zk − z)
)
,

(3.3)
where F i

(z) and F i(z) are the i-th components of the upper and lower bounds of
the set-valued map F , respectively. The vectors mi and mi are function of z and
zk and are de�ned for all i ∈ {1, . . . ,m} by:

mj
i (zk, z) =

{
γ
ij

if zjk < zj ,

γij if zjk > zj .
mj

i (zk, z) =

{
γij if zjk < zj ,

γ
ij

if zjk > zj .
(3.4)

With abuse of notation, where there is no ambiguity, we will write mi and mi

instead of mi(zk, z) and mi(zk, z), respectively.
One can understand Equation (3.3) as follows: To �nd the over-approximation

of the unknown map F at a given point z, we iterate over all the data points zk.
From each point, we calculate the upper and lower bounds of the growth cone of
the unknown map F originated at the point zk, and de�ned using the bounds on
the derivatives of the unknown map F .

Definition 8. Let z, z′ ∈ Z , y ∈ Rm, and d,d ∈ Rm, such that y ∈ f(z) +

[d,d]. The function f defined in Equation (3.1) is differentiable on Z. For all i ∈
{1, . . . ,m}, letmi(z, z

′),mi(z, z
′) ∈ Rn be defined as in Equation (3.4). A growth

cone of the unknownmapF with an apex at the point z′ is defined componentwise
by its lower and upper bounds as follows:

Ciz,y(z′) =yi + d
i − di +mi

T · (z− z′),

Ciz,y(z′) =yi + di − d
i
+mi

T · (z− z′).
(3.5)

Those growth cones are constructed in such a way as to contain the unknown
map F . In other words, it over-approximates the unknown map.

Proposition 7. Let k ∈ K such that (zk,yk) ∈ D, The cone Czk,yk
: Z ⇒ Rm

defined in Equation (3.5) over-approximates the unknown map F .

1The original set membership approach uses Lipschitz constants but it is straight-forward to extend the approach to the case of bounded derivative functions.
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Proof. Let us consider a point z ∈ Z , and y ∈ F (z), For all i ∈ {1, . . . ,m}, we
have that yi ∈ f i(z) + [di, d

i
]. We also have that yik ∈ f i(zk) + [di, d

i
]. Due to

the fact that f is differentiable on Z , and has bounded derivatives, we have
that for all i ∈ {1, . . . ,m},

f i(z)− f i(zk) ∈ [mT
i · (z− zk),m

T
i · (z− zk)],

which implies that for all i ∈ {1, . . . ,m},
f i(z) ≤ f i(zk) +mT

i · (z− zk),

hence, for all i ∈ {1, . . . ,m},
yi ≤ f i(z) + d

i ≤ f i(zk) +mT
i · (z− zk) + d

i

≤ yik + d
i − di +mi

T · (z− zk)

≤ Cizk,yk
(z).

Similarly, we can show that for all i ∈ {1, . . . ,m},
Cizk,yk

(z) ≤ yi.

Therefore, the cone Czk,yk
: Z ⇒ Rm defined in Equation (3.5) over-approximates

the unknown map F .

The next step in calculating the over-approximation, according to the set mem-
bership approach, is to take the minimum of the upper bounds and the maximum of
the lower bounds of all the growth cones. As each growth cone over-approximates
the unknown map F , the resulting set-valued map F over-approximates the un-
known map F . Moreover, the resulting set-valued map F is the least conservative
over-approximation of the unknown map F .

Proposition 8 (Theorem 2 [60]). LetF be the set-valuedmap defined in Equation(3.3). Let F ′ be an over-approximation of the map F , such that for all z ∈ Z ,

• F ′(z) = f̃(z)+D, where f̃ is differentiable onZ and has the same bounded
derivatives as f ,

• For all k ∈ K, yk ∈ F ′(zk).

Then for all z ∈ Z , F(z) ⊆ F ′(z).

Finding this least conservative over-approximation is computationally expen-
sive. It requires visiting all the data points zk to �nd the value of the map,
meaning the complexity of calculating the over-approximation at a given point is
O(|K|). Instead, we will focus on �nding over-approximations that are easy to
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Figure 3.2: The set membership approach over-approximation. Thecolored regions are the growth cones.
compute and store. For that reason, we will consider interval-valued piecewise
over-approximations on a �xed partition of the domain Z. Similar to the case of
monotone maps, we will use the same �xed partition (Rq)q∈Q of the domain Z

de�ned in Section 2.2.1, and the associated quantization function ϕ will be used.
These over-approximations can be computed o�ine. Once calculated, they can be
used to over-approximate the unknown map F at any point in the domain Z in
constant time. Also, there is no need to store the data set D while online, and it
is safe to assume that the number of data points will vastly exceed the number
of partitions in practice. This means that the over-approximation will require less
memory than storing the data set D. The trade-o� is that the over-approximation
will be more conservative than the one calculated using the set membership ap-
proach.

3.1.1 . Over-approximating by transforming the data into a mono-

tone case

We now show how the approach described in the previous chapter can be
adapted to compute data-driven over-approximations for systems where the un-
known dynamics f is not necessarily monotone but has bounded derivatives with
known upper and lower bounds. Our construction is inspired by the approach
presented in [75] for computing decomposition functions of mixed-monotone func-
tions.

The following example illustrates the proposed approach.

Example 4
Let us consider the sinusoidal function f : R→ R de�ned for all z ∈ R by:

f(z) = sin(z).

We have that γ = −1 ≤ ∂f
∂z ≤ 1 = γ. The two functions h, g : R→ R de�ned
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Figure 3.3: The four figures show the over-approximation of the func-tion f(z) = sin(z) on the interval [0, 2π]. The function f is sampled at 30points z1, . . . , z30. Using the upper and lower bounds on the derivativeof f , auxiliary data setsDh andDg are generated. The two auxiliary datasets Dh and Dg can be seen as generated by the monotone functions
h and g, respectively. After finding the over-approximation of h and g,we can compute the over-approximation of f on the interval [0, 2π].
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for all z ∈ R by:

h(z) = f(z)− γ · z = sin(z) + z,

g(z) = γ · z − f(z) = z − sin(z),

are monotonically increasing.
Now let us consider that a data set D is generated by sampling f at 30 points
z1, . . . , z30 in the domain Z = [0, 2π]. If we computed the two auxiliary data
sets Dh and Dg as follows:

Dh = {(zk, y−k ) | y
−
k = yk + zk, k ∈ {1, . . . , 30}},

Dg = {(zk, y+k ) | y
+
k = zk − yk, k ∈ {1, . . . , 30}}.

The two auxiliary data sets Dh and Dg can be seen as generated by the functions
h and g, respectively. Because h and g are monotone, we can use the approach
presented in chapter 2 to compute the two simulating maps Sg and Sh of the
data Dg and Dh, respectively. This is shown in Figures 3.3b and 3.3c. In this
example, the interval [0, 2π] is partitioned into 13 cells R1, . . . , R13. Then, we
can compute the over-approximation of f on a given cell Ri = [zRi

, zRi ], i ∈
{2, . . . , 12} as follows: For all z ∈ Ri, we have:

f(z) ∈ [γ zRi + hRi
, γ zRi

+ hRi ],

f(z) ∈ [γ zRi
− gRi

, γ zRi − g
Ri
].

Where hRi
, hRi , gRi

, gRi
are the lower and upper bounds of the functions h and

g on the cell Ri, respectively. Therefore, we can compute the over-approximation
of f on the cell Ri as follows:

f(z) ∈ [γ zRi + hRi
, γ zRi

+ hRi ] ∩ [γ zRi
− gRi

, γ zRi − g
Ri
]

= [max(γ zRi + hRi
, γ zRi

− gRi
),min(γ zRi

+ hRi , γ zRi − g
Ri
)].

This is shown in Figure 3.3d.

Now, let us show how we �nd the over-approximation in the more general n-
dimensional case. We start by introducing the auxiliary matrices A−, A+ ∈ Rm×n,
where for all i ∈ {1, . . . ,m}, for all j ∈ {1, . . . , n}

A−
ij =

{
γ
ij

if γ
ij
< 0,

0 otherwise,
A+

ij =

{
γij if γij > 0,

0 otherwise.

Then, let the functions f−, f+ : Z → Rm
be de�ned for all z ∈ Z by:

f−(z) = f(z)−A−z,

f+(z) = A+z− f(z).
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Let us remark that f−, f+ are unknown but monotone since it can be readily
checked that all their partial derivatives are nonnegative. Given the data set D
introduced in (3.2), we can de�ne two auxiliary data sets:

D− = {(zk,y−
k )| y

−
k = yk −A−zk, k ∈ K},

D+ = {(zk,y+
k )| y

+
k = A+zk − yk, k ∈ K}.

We then use the approach presented in Chapter 2 to compute simulating maps
σ−, σ+ : Q ⇒ Rm

of the data D− and D+, respectively.

Proposition 9. Let σ− ◦ ϕ ∈ SD− and σ+ ◦ ϕ ∈ SD+ , then let S : Z ⇒ Rm be
given for all z ∈ Z by:

S(z) =
(
A−z+ σ− ◦ ϕ(z)

)
∩
(
A+z− σ+ ◦ ϕ(z)

)
.

Then, it holds:
∀z ∈ Z, f(z) +D ⊆ S(z).

Proof. Let z ∈ Z , from σ− ◦ ϕ ∈ SD− , we have
f−(z) +D ⊆ σ− ◦ ϕ(z).

Since f(z) = f−(z) +A−z, we get
f(z) +D ⊆ A−z+ σ− ◦ ϕ(z).

Similarly, we can show that
f(z) +D ⊆ A+z− σ+ ◦ ϕ(z),

which leads to the result of the proposition.
To �nd the interval hall of S, we can solve the following optimization problem

for each cell Rq of the partition: to reach the upper bound of S on Rq,

σi(q) =


max

z∈Rq,c∈R
c

s.t. c ≤ A−
i z+ σi

− ◦ ϕ(z)
c ≤ A+

i z− σi
+ ◦ ϕ(z)

(3.6)

where A−
i and A+

i are the i-th rows of A− and A+, respectively. Finding the lower
bound of S on Ri can be done similarly.
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σi(q) =


min

z∈Rq,c∈R
c

s.t. c ≥ A−
i z+ σi

− ◦ ϕ(z)
c ≥ A+

i z− σi
+ ◦ ϕ(z)

(3.7)

Program (3.7) and (3.6) are linear programs and can be solved e�ciently. Other
option can be to compute the following interval-valued map instead:

σi(q) = min(A− zq + σ−(q), A
+ zq − σ+(q)) (3.8)

σi(q) = max(A− zq + σ−(q), A
+ zq − σ+(q)). (3.9)

This is what was used in Example 3.1.1.
Now, let us give some remarks on the calculated over-approximation. Propo-

sition 9 shows that the map S is an over-approximation of the data D. This is
done using only two auxiliary matrices A− and A+, where only the lower bounds
are used to build A− and only the upper bounds are used to build A+. But that
is not only two options to build A; there are 2m×n options. For example, in the
case of a function f : R2 → R, we can de�ne the following matrices:

A1 =
(
min(γ

1
, 0) min(γ

2
, 0)

)
, A2 =

(
min(γ

1
, 0) max(γ2, 0)

)
,

A3 =
(
max(γ2, 0) min(γ

1
, 0)

)
, A4 =

(
max(γ2, 0) max(γ2, 0)

)
.

All can be used to �nd auxiliary data sets that can be seen as generated from
a monotone function. Let us denote by A the set of all the matrices Al, l ∈
{1, . . . , n×m} that can be built using the bounds on the derivatives of f .

A =

{
Al ∈ Rm×n

∣∣∣∣∣ ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , n},Al
ij ∈ {min(γ

ij
, 0),max(γij , 0)}

}

Then, we can de�ne the set of all the simulating maps Sl of the data Dl for all
Al ∈ A, to �nd a less conservative over-approximation than the one calculated in
Proposition 9.

Remark 5. When using matrices Al ∈ A, other than A− and A+ (the ones built
using only the lower and upper bounds on the derivatives of f , respectively), A
transformation of the data D is needed to find the auxiliary data sets Dl. The
transformation is similar to the transformation used in Section 2.4, for all i ∈
{1, . . . ,m}:

z′j =

{
zj if Al

i,j ≥ 0

−zj if Al
i,j < 0
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Figure 3.4: The figure shows the over-approximation of the map F onthe cells Rq. The over-approximation is done by finding the value ofthe growth cone at the vertices of the cells. Line 1 has the equation
y = γz + y⋆ − γz⋆ + d. Line 2 has the equation y = γz + y⋆ − γz⋆ + d.Line 3 has the equation y = γz + y⋆ − γz⋆ + d. Line 4 has the equation
y = γz + y⋆ − γz⋆ + d.

3.1.2 . Over-approximation by �nding the value of growth cones at

the vertices of the cells

In this section, we present the second approach to �nd an over-approximation
of the map (3.1). The approach depends on the fact that for any k ∈ K, one of
the values of the growth cone Cxk,yk

at the vertices of the cells in the partition will
always be greater than or equal to the value of the growth cone at any other point
in the cell. Also, there will always be a value of the growth cone at the vertices of
the cells in the partition that is less than or equal to the value of the growth cone
at any other point in the cell.

Let us formally de�ne the over-approximation. We denote the set of vertices
of the cell Rq = [zq, zq) by Vq.

Vq =
n∏

i=1

{ziq, ziq}.

Let σ : Q ⇒ Rm
be an interval-valued map σ(q) = [σ(q), σ(q)]. The upper and

lower values are de�ned by their components σi, σi, i ∈ {1, . . . ,m} as follows:

σi(q) = min
k∈K

(
max
v∈Vq

(
Cizk,yk

(v)
)) (3.10)

σi(q) = max
k∈K

(
min
v∈Vq

(
Cizk,yk

(v)
)) (3.11)

The following proposition shows that the piecewise map σ over-approximates
the unknown map F .

Proposition 10. The map S = σ ◦ ϕ : Z ⇒ Rm over-approximates the the map
F .

58



Proof. To prove Proposition 10, let us assume it is wrong and try to find a
contradiction. Let z† ∈ Z , be a point, such that, there exists y† ∈ f(z†) + D

but y† /∈ σ ◦ ϕ(z†). Because σ is interval-valued we have, y† ⪯̸ σ(ϕ(z†)) or
y† ⪰̸ σ(ϕ(z†)). We will study the case of y† ⪯̸ σ(ϕ(z†)), the second case can
be dealt with similarly. Let q = ϕ(z†), and

σi(q) = min
k∈K

(
max
v∈Vq

(
yik + d

i − di +mi
T (zk,v) · (zk − v)

))
= yik⋆ + d

i − di +mi
T (zk⋆ ,v

⋆) · (zk⋆ − v⋆)

where, v⋆ ∈ Vϕ(z†) is the maximizer of the expression (3.10) and k⋆ ∈ K is the
minimizer. If y† ⪯̸ σ(ϕ(z†)) then, there exists i ∈ {1, . . . ,m} such that

y†
i
> yik⋆ + d

i − di +mi
T (zk⋆ ,v

⋆) · (zk⋆ − v⋆) (3.12)
On the other hand, we have y† ∈ f(z†) +D, which implies,

y†
i ≤ yik⋆ + d

i − di +mi
T (zk⋆ , z

†) · (zk⋆ − z†) (3.13)
Due to the conditions on the derivatives of f , from (3.12) and (3.13) we have

mi
T (zk⋆ , z

†) · (zk⋆ − z†) > mi
T (zk⋆ ,v

⋆) · (zk⋆ − v⋆) (3.14)
Let v◦ ∈ Vϕ(z†) be such that, for all j ∈ {1, . . . , n},

v◦j =

{
zjq if mj

i (zk⋆ , z
†) < 0,

zjq if mj
i (zk⋆ , z

†) ≥ 0.

By construction, we have that
mi

T (zk⋆ , z
†) · (zk⋆ − v◦) ≥mi

T (zk⋆ , z
†) · (zk⋆ − z†) (3.15)

But, we also have that
mi

T (zk⋆ , z
†) · (zk⋆ − v◦) ≤mi

T (zk⋆ ,v
◦) · (zk⋆ − v◦) (3.16)

To see why the inequality 3.16 is true, let us recall the componentwise defini-
tion ofmi:

mj
i (zk, z) =

{
γ
ij

if zjk < zj ,

γij if zjk > zj .

Which implies, for all j ∈ {1, . . . , n}, we have
mj

i (zk⋆ , z
†) · (zk⋆,j − v◦,j) ≤ mj

i (zk⋆ ,v
⋆) · (zk⋆,j − v◦,j)

Hence we have (3.16). By comparing (3.15) and (3.16) we have
mi

T (zk⋆ ,v
◦) · (zk⋆ − v◦) ≥mi

T (zk⋆ , z
†) · (zk⋆ − z†) (3.17)

From (3.14) and (3.17) we reach a contradiction because v⋆ should be themax-
imizer of the expression (3.10). Therefore, themap S◦ϕ over-approximate the
unknown map.
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Remark 6. Given the partition (Dq)q∈Q of Z. The straightforward algorithm to
computeσ is as follows: For each data points inD, we go through all theq ∈ Q and
determine σ and σ. Being able to update the map for each data point separately
comes from the fact that min (max) behaves like

min
k∈K
S(k) = min( min

k∈K\{k′}
S(k),S(k′))

That makes the overall complexity O(|K| × |Q|), i.e. bilinear with respect to the
number of data points and to the number of the partition elements.

Efficent calculation of the over-approximation

Similar to the way we calculated the over-approximation in Section 2.3 e�ciently,
this section is concerned with the e�cient calculation of the over-approximation in
the case of functions with bounded derivatives. In particular, for the third intro-
duced approach in Section 3.1.2. In the case of monotone maps, it was su�cient
to use each data point to update the lower bound of the over-approximation of one
cell, and the upper bound of the over-approximation of another cell. Then, we can
spread the information of this point to the other cells by only comparing it with
neighboring cells. In an increasing fashion for the lower bound, and in a decreasing
fashion for the upper bound. Using the same concept of spreading the informa-
tion, we can envision an e�cient algorithm to calculate the over-approximation
in the case of functions with bounded derivatives. First, we go through all the
data points and for each point, we �nd the cell that contains the data point.
Then, we update the values of over-approximation on the vertices of only this
cell, namely, the maximum and minimum allowed values. After updating the val-
ues of the over-approximation on the vertices using all the data points, We start a
�xed-point iteration to update the values of the over-approximation on the vertices
of the cells using the values of the over-approximation on the adjacent vertices.
At each iteration, when the value of the over-approximation on a vertex is up-
dated, the information about the maximum and minimum allowed values is spread
to the adjacent vertices. The �xed-point iteration stops when the values of the
over-approximation on the vertices of the cells do not change. In the worst case,
the number of iterations is the time (number of iterations) for the information to
spread from a vertex on the boundary of the partition to the opposite vertex on
the other side of the partition.

As we are concerned with calculating the over-approximation on the vertices
of the cells, and to simplify the description, let us give a distinct notation to those
vertices. We will use the notation V to denote the set of indices of vertices of the
cells in the partition.

V = {v ∈ Vq | q ∈ Q},
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Let us denote the set of cells containing the vertex v ∈ V by Qv, and let us
denote the set of vertices of the set of cells Qv by VQv , which resembles the set
of neighboring vertices of the vertex v.

Qv = {q ∈ Q | v ∈ Vq},
VQv = {v ∈ Vq | q ∈ Qv},

Now, let us �rst de�ne the functions σ0 : V → Rm
and σ0 : V → Rm

, for all
i ∈ {1, . . . ,m} as follows:

σi
0(v) = min

{
Czk,yk

(v) | zk ∈ cl Rq,q ∈ Qv

}
, (3.18)

σi
0(v) = max

{
Czk,yk

(v) | zk ∈ cl Rq,q ∈ Qv

}
. (3.19)

With an abuse of notation, we write zk ∈ RQV
to denote that zk ∈ cl Rq for

q ∈ Qv. Using a similar approach to the one used in Section 2.3, we can compute
the values of σ0 and σ0 with a complexity O(|K| × log(|V |)).

Let us de�ne σ1 : V → Rm
and σ1 : V → Rm

, that o�er the optimal
over-approximation of the unknown map F on the vertices of the cells.

∀v ∈ V, σ1(v) = F(v), (3.20)
∀v ∈ V, σ1(v) = F(v). (3.21)

Where F and F are de�ned in (3.3).
Proposition 11. The map σ1 defined in (3.20) and (3.21) satisfies

σi
1(v) = min

{
σi
0(v), min

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}
, (3.22)

σi
1(v) = max

{
σi
0(v), max

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}
, (3.23)

and it can be computed according to Algorithm 1.

Proof. Let us prove (3.22). The proof for (3.23) is similar.
1. It is straightforward to see that σi

1(v) ≤ σi
0(v). Also, we have for all

v† ∈ VQv ,
yik + d

i − di+mi
T (zk,v) · (zk − v) ≤ yik + d

i − di+

mi
T (zk,v

†) · (zk − v†) +mi
T (v†,v) · (v† − v)

Which implies,
σi
1(v) ≤ σi

1(v
†) +mi

T (v†,v) · (v† − v).
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Hence,
σi
1(v) ≤ min

v†∈VQv

(
σi
1(v

†) +mi
T (v†,v) · (v† − v)

)
.

Therefore,
σi
1(v) ≤ min

{
σi
0(v), min

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}
.

2. Now we want to that the right-hand side of the inequality is less than or
equal to σi

1(v). Let k⋆ ∈ K be such that
σi
1(v) = yik⋆ + d

i − di +mi
T (zk⋆ ,v) · (zk⋆ − v).

Let us consider two cases:
(a) If zk⋆ ∈ RQv , then σi

1(v) ≥ σi
0(v).

(b) If zk⋆ /∈ RQv , then there exists v† ∈ VQv such that mi(zk,v) =

mi(v
†
k,v). This is possible because for all zk ∈ Z \ RQv , thereexists v†

k ∈ VQv such that sign(zjk − vj) = sign(v†jk − vj) for all
j ∈ {1, . . . , n}. Then,

mi
T (zk,v) · (zk − v) =mi

T (zk,v
†
k) · (zk − v†

k)+

mi
T (v†

k,v) · (v
†
k − v).

Which implies,
σi
1(v) = yik⋆ + d

i − di +mi
T (zk⋆ ,v) · (zk⋆ − v)

= yik⋆ + d
i − di +mi

T (zk⋆ ,v
†
k) · (zk⋆ − v†

k)+

mi
T (v†

k,v) · (v
†
k − v)

≥ σi
1(v

†
k) +mi

T (v†
k,v) · (v

†
k − v)

Therefore,
σi
1(v) ≥ min

{
σi
0(v), min

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}
.

From the above two inequalities, we have that
σi
1(v) = min

{
σi
0(v), min

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}
.
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Algorithm 1 Compute σ1

1: σ1 ← σ02: σ1 ← σ03: change← true
4: while change do
5: change← false
6: for v ∈ V do
7: σi

old(v)← σi
1(v)8: σi

old(v)← σi
1(v)9: σi

1(v)← maxv†∈VQv
(σi

1(v
†) +mi

T (v†,v) · (v† − v))

10: σi
1(q

⋆)← maxv†∈VQv
(σi

1(v
†) +mi

T (v†,v) · (v† − v))

11: if σi
old(q

⋆) ̸= σi
1(q

⋆) or σi
old(q

⋆) ̸= σi
1(q

⋆) then
12: change← true
13: end if
14: end for
15: end while

The next proposition addresses the complexity of the algorithm to compute σ1

and σ1.

Proposition 12. The functions σ1 and σ1 can be computed using a fixed-point
algorithm with a complexity O(|V | × (max

i
Ki + 1)). We recall that Ki is the

number of cells of the partition on the ith dimension.

Proof. Let v ∈ V . We have
σi
1(v) = min

{
σi
0(v), min

v†∈VQv

(σi
1(v

†) +mi
T (v†,v) · (v† − v))

}

For all v† ∈ VQv , we have the same expression for σi
1(v

†).
σi
1(v

†) = min

{
σi
0(v

†), min
v‡∈VQ

v†

(σi
1(v

‡) +mi
T (v‡,v†) · (v‡ − v†))

}

We can see that the recursion stops when we reach a vertex on the boundary
of the partition. The longest path from a vertex on the boundary of the par-
tition to the opposite vertex on the other side of the partition is maxiK

i + 1.
Thus, the complexity of the algorithm isO(|V |× (max

i
Ki+1)) because we do

the update for all the vertices in V . The proof for σ1 is similar.
The map σ1 de�ned in (3.20) and (3.21) o�ers the optimal over-approximation

of the unknown map F on the vertices of the cells, but we are interested in the
over-approximation of the unknown map F on the entire points of the cells. Let

63



us recall that for all the vertices v ∈ V , we have that F (v) ⊆ σ1(v), meaning
that for each cell q ∈ Q, for all z ∈ Rq we have that

F (z) ⊆
⋂

v∈Vq

 ⋃
y∈σ1(v)

Cv,y(z)


. To �nd the upper bound on the right-hand side of the previous inclusion, we can
use the following linear optimization problems:

σi(q) =

 max
z∈Rq,c∈R

c

s.t. c ≤ σi
1(v) +mi

T (v, z) · (v − z) ∀v ∈ Vq

(3.24)

Similarly, the lower bound can be found using the following linear optimization
problems:

σi(q) =

 min
z∈Rq,c∈R

c

s.t. c ≥ σi
1(v) +mi

T (v, z) · (v − z) ∀v ∈ Vq

(3.25)

Another way to �nd the over-approximation of the unknown map F on the entire
points of the cells is to �nd the bounds on the value of those growth cones at the
vertices of the cells.

σi(q) = min
v∈Vq

max
v⋆∈Vq

(
σi
1(v) +mi

T (v,v⋆) · (v − v⋆)
) (3.26)

for the upper bound, and

σi(q) = max
v∈Vq

min
v⋆∈Vq

(
σi
1(v) +mi

T (v,v⋆) · (v − v⋆)
) (3.27)

for the lower bound. In both cases of �nding the over-approximation, we should
visite all the cells in the partition, Making the overall complexity of the algorithm
O(|K| × log(|V |) + |V | × (max

i
Ki + 1)). Calculating the over-approximation

according to (3.26) and (3.27) does not require implementing a linear optimization
problem, hence, it is faster than calculating the over-approximation according to
(3.24) and (3.25). However, the over-approximation calculated according to (3.24)
and (3.25) is tighter than the one calculated according to (3.26) and (3.27).

3.2 . Updating the over-approximation locally

In the previous section, we introduced algorithms to build an over-approximation
of an unknown function. The algorithm described in Section 3.1.2 can be com-
puted online (in light of remark 6), i.e., we can build the over-approximation point
by point. But for each data point, we need to update the over-approximation on
all the cells of the partition. Making the algorithm computationally prohibitive
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if we want to run the system online and collect new data to update the over-
approximation, especially if the partition contains a large number of cells. In this
section, we propose another interval-valued over-approximation, which we update
locally. When dealing with a data point, we �nd to which cell the point belongs,
and then we update only the neighboring cells inside a prede�ned window the same
way we would have done when calculating σ in the second approach. The new
over-approximation will introduce more conservatism, but it will be faster to com-
pute.

Let Qw(q) = {q† ∈ Q | max(q− q
w
,0n) ⪯ q† ⪯ min(q+ qw,K), q

w
,qw ∈

Q} de�ne the window where we want to update the over-approximation.
We de�ne the locally-computed over-approximation Fw : Z ⇒ Rnx as follows:

For all i ∈ {1, . . . , nx}

σi
w(q) = min

k∈K(r)

(
max
vl∈Vr

(
yjk + wj − wj +mi · (zk − vl)

)) (3.28)

σi
w(q) = max

k∈K(r)

(
max
vl∈Vr

(
yjk + wj − wj +mi · (zk − vl)

)) (3.29)
K(q) = {k ∈ K | zk ∈ Zq⋆ ,q

⋆ ∈ Qw(q)}

Proposition 13. The map Sw = σw ◦ϕ : Z ⇒ Rnx over-approximate the map F .

Proof. We have for all q ∈ Q, K(q) ⊆ K. Hence, for all q ∈ Q the map σ

defined in (3.10) and (3.11) is σ(q) ⊆ σw(q).Map S is an over-approximation of the map F according to Proposition 10.
Therefore, Sw is also an over-approximation

The map σw can be computed online. For each data point, we �nd the cell that
contains the data point. Then, we update the values of the over-approximation on
the vertices of all the cells in the window. The complexity of updating the map
σw given a new data point is O(|Qw(q)|).

3.3 . Finding the derivative bounds from data

In the previous sections, we made several assumptions on the unknown map F :
bounds on the disturbances and bounds on the partial derivatives of the function
f . It is sometimes possible to derive such bounds a priori. For instance, in some
cases, the monotonicity of a function can be inferred from principles of physics.
However, there are many situations where these bounds also need to be inferred
from data. In this section, we brie�y present an approach to compute bounds on
the disturbances and on the partial derivatives of the function f , directly from data,
with probabilistic guarantees. Our approach is based on the scenario approach [18],
a data-driven approach to robust convex optimization.
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Let us consider a map F : Z ⇒ Rm
where Z ⊆ Rn

and such that for all z ∈ Z,
F (z) = f(z) + D where f : Z → Rm

is a di�erentiable function with unknown
lower and upper bounds aij , aij on its partial derivatives ∂f i

∂zj
and D, D ⊆ Rm is a

bounded interval of disturbances with unknown lower and upper bounds d,d. Let
us remark that without loss of generality, it is always possible to choose d = −d.

For all i ∈ {1, . . . ,m}, let ai = (ai1, . . . , ain) and ai = (ai1, . . . , ain). Some
bounds are consistent with our assumptions if and only if they satisfy:

∀z,z′ ∈ Z, ∀y ∈ F (z),∀y′ ∈ F (z′),

yi − y′i ≤ ai · [z− z′]+ + ai · [z− z′]− + 2d
i (3.30)

where [z]+ = max(z, 0) and [z]− = min(z, 0).
Let us assume that we are given a set of random data generated by the map

F :
D̃ = {(zk,yk, z

′
k,y

′
k) | yk ∈ F (zk),y

′
k ∈ F (z′k), k ∈ K̃}

where K̃ is a �nite set of indices. We assume that the samples in D̃ are independent
and identically distributed. We aim at computing bounds such that (3.30) holds
with probabilistic guarantees. This can be done using the scenario approach [18],
which essentially consists of computing bounds such that the inequality in (3.30)
holds at all points in D̃. However, to obtain high con�dence bounds, one needs to
consider large data sets, resulting in large linear programs that can be complicated
to solve in practice. For that reason, we present, in the following, a two-step
approach that allows us to deal with very large data sets in practice. Let us
partition the set of D̃ in two subsets D̃′ and D̃′′ indexed by K̃′ and K̃′′ such that
K̃ = K̃′ ∪ K̃′′. In the �rst step, D̃′ will be used to estimate the bounds aij , aij . In

the second step, D̃′′ will be used to estimate the bound d
i
. Typically, the number

of samples in D̃′′ will be much larger than that in D̃′.
We �rst consider the following linear program:

min
ai,ai,d

i
ai ·

∑
k∈K̃′ [zk − z′k]

+ + ai ·
∑

k∈K̃′ [zk − z′k]
− + 2|K̃′|di

s.t. yik − y′ik ≤ ai · [zk − z′k]
+

+ai · [zk − z′k]
− + 2d

i
, ∀k ∈ K̃′

ai ⪯ ai.

(3.31)

The constraints of (3.31) are chosen such that (3.30) holds at all points in D̃′, while
the cost is chosen so as to minimize the average value of the right-hand side of
(3.30). Let a⋆i ,a⋆i denote the optimal values of ai,ai in (3.31). The optimal value

of d
i
is disregarded and estimated again in the second step.

Indeed, let us de�ne

d
⋆i
=

1

2
max

{
yik − y′ik − a⋆i · [zk − z′k]

+

−a⋆i · [zk − z′k]
−

∣∣∣∣ k ∈ K̃′′
}
. (3.32)
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Let us remark that while (3.31) can be solved using a moderately large data set D̃′,
(3.32) can easily be estimated on very large data sets. Moreover, we can provide
probabilistic guarantees on the estimated bounds:

Proposition 14. Let β ∈ (0, 1) be a confidence parameter and let i ∈ {1, . . . ,m},
let a⋆i ,a⋆i and d

⋆i be estimated bounds using (3.31) and (3.32), respectively. Then,
with probability at least 1− β, it holds that

P(yi − y′i ≤ a⋆i · [z− z′]+ + a⋆i · [z− z′]− + 2d
⋆i
) ≥ β

1
|K̃′′| . (3.33)

Proof. Consider the following robust linear program
min
d
i

d
i

s.t. yi − y′i ≤ a⋆i · [z− z′]+ + a⋆i · [z− z′]− + 2d
i
,

∀z, z′ ∈ Z, ∀y ∈ F (z),∀y′ ∈ F (z′).

(3.34)

Following the scenario approach, we consider the following associated sce-
nario linear program:

min
d
i

d
i

s.t. yik − y′ik ≤ a⋆i · [zk − z′k]
+

+a⋆i · [zk − z′k]
− + 2d

i
, ∀k ∈ K̃′′.

(3.35)

It is easy to see that (3.32) provides the unique solution to (3.35). Moreover,
from the results in [18], we get that (3.33) holds for the solution of (3.35).

Hence, we have provided a method to estimate bounds on the disturbances
and bounds on the partial derivatives. By using a two-step approach, our method
can be used with very large data sets and can thus estimate the bounds with very
high con�dence. Let us remark that the method can be used to check if the system
is monotone by checking if a⋆i ⪰ 0, for all i ∈ {1, . . . ,m}.

3.4 . Numerical examples

Similarly to the previous chapters, we will test the performance of the proposed
approaches. We will partition the input space similarly to the previous chapters's
example de�ned in (2.20). To test the performance of the proposed approaches,
we will consider the CPU time of executing the algorithms and the tightness of the
over-approximation measured using the performance criterion de�ned in (2.21). In
this example, we will consider the following set-valued map F : [−π, π]×[−π, π] ⇒
R de�ned as follows:

F (z) = {cos(z1) + 0.5 · cos(z2) + d | d ∈ [−0.1, 0.1]} (3.36)
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We use F to generate the sets of data D used in the subsequent experiments.
We will compare the performance of the two approaches introduced in Section
3.1.1 and Section 3.1.2.

We implemented the following approaches:

1. The approach of transforming the data set to the monotone case using only
the matrix A+ and A−, and then using Equations 3.8 and 3.9 for the �nal
step.

2. The approach of transforming the data set to the monotone case using all
the possible matrices, and then using Equations 3.8 and 3.9 for the �nal
step.

3. The approach of transforming the data set to the monotone case using all
the possible matrices, and then using Equations 3.6 and 3.7 for the �nal
step (The linear programming step.)

4. The growth cones approach with 3.27 and 3.26 as �nal step.

5. The growth cones approach with 3.25 and 3.24 as �nal step (The linear
programming step.)

Approaches 1, 2, and 4 are carried out using compiled C++ code, while approaches
3 and 5 are carried out using the script language Matlab. Thus, for execution time
we compare them in two groups. The �rst group contains approaches 1, 2, and 4.
The second group contains approaches 3 and 5.

First, we visualized the over-approximation. We sampled |K| = 107 data
points. The parameters of the partition are chosen as follows K1 = 50, K2 =

50, c = 0.01. Figure 3.5 shows the undisturbed function in solid and the over-
approximation calculated from data. We see how the undisturbed function is
included in the over-approximation.

3.4.1 . The e�ect of changing the number of data points

To study the e�ect of changing the number of data points, we chose and
�xed a partition, K1 = 50, K2 = 50. Then, for an increasing number of data
points, we calculated the over-approximation of the map F and measured the
execution time and the performance criterion. For each number of data points,
we redo the experiment �ve times using di�erent randomly generated data sets.
The results of this statistical study of changing the number of data points to the
conservatism measure µ are shown in Figure 3.6. We can see from the �gure that
the performance criterion decreases with the increase in the number of data points
for all the approaches. We observe that approaches 1, 2, and 4 converge to a value
of µ higher than approaches 3 and 5. This is due to the fact that approaches 3
and 5 use a linear programming step to tighten the over-approximation. Approach
5 is the best in terms of the performance criterion. The execution time of the

68



Figure 3.5: MapF (z)with d = 0 everywhere is represented in solid. Theupper and lower bounds of the over-approximation are represented intransparency
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Figure 3.6: The relation between the (log) number of data pointsand the conservatism measure µ for different methods of over-approximation. The line in blue represents approach 1. The line in redrepresents approach 2. The line in yellow represents approach 3. Theline in purple represents approach 4. The line in green represents ap-proach 5.
approaches is shown in Figure 3.7 and Figure 3.8. We see that approaches 1, 2,
and 4 scale linearly with the number of data points, which is expected and this is
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Figure 3.7: The figure shows the average time of executionwith respectto the number of data points, with bars representing the standard de-viation. The line in yellow represents approach 1. The line in red repre-sents approach 2. The line in bleu represents approach 4.
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Figure 3.8: The figure shows the average time of executionwith respectto the number of data points, with bars representing the standard de-viation. The line in red represents approach 3. The line in bleu repre-sents approach 5.
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why we only show the relation using only the last ten possible values of the number
of data points. For approaches 3 and 5, we observe that the execution time when
the number of data points is smaller than 106 is predominantly due to the linear
programming step. Thus, it is almost constant. Then, the execution time starts
to increase when the number of data points increases more than 106.

3.4.2 . The e�ect of changing the size of the partition

In the second experiment, we �xed the number of data points |K| = 104, and
changed the size of the partition. For each size considered, the partition is chosen
such that K1 = K2,. We also redo the calculation for each size �ve times using
di�erent randomly sampled data sets. Although we are using a uniform partition,
we do not make use of this fact in the calculation of the over-approximation, and
we still use binary search to �nd the partition element that contains the data
point. Figure 3.9 shows the results of the experiment. All the approaches show
the same behavior. The conservatism measure µ decreases with the increase in
the number of partition elements. We observe that the conservatism measure µ of
the approaches converges to the same value.

The time of execution for approaches 1, 2, and 4 was less than 70 milliseconds
for all the sizes of the partition. For approaches 3 and 5, the execution time was
less than 30 seconds for all the sizes of the partition. There were big �uctuations
in the execution time of all the approaches to make the experiment meaningful.

3.4.3 . Comparison with the state-of-the-art robust models

We have already shown both theoretically in Proposition 6 and experimentally,
the computational complexity of calculating the introduced data-driven model.
Let us compare with the set membership approaches in [60] and [19] where an
optimization problem is used to �nd the model. The complexity of this approach
grows polynomically with the number of data points. In contrast, our approach
scales linearly. The maximum reported number of data points used in [60] is in
the tens of thousands. The number of points used is less in [19]. As can be
seen, the introduced approach in this paper can handle orders of magnitude more
data points. The same can be said about [66], where a Mixed Integer Linear
Programming (MILP) problem is used to �nd the model, and the reported number
of data points used in the case study is 400.

3.5 . Conclusion

In this chapter, we studied the over-approximation of maps de�ned by func-
tions with bounded derivatives and added bounded disturbances. We proposed
several approaches to compute such over-approximations. Although the calculated
over-approximations are generally not as tight as the ones computed in previous
chapters for monotone maps, they can be computed e�ciently. We make the
trade-o� between the tightness of the over-approximation and the computational
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Figure 3.9: The relation between the number of cells in the parti-tion and the conservatism measure µ for different methods of over-approximation. The line in blue represents approach 1. The line in redrepresents approach 2. The line in yellow represents approach 3. Theline in purple represents approach 4. The line in green represents ap-proach 5.
complexity. The introduced approaches rely on one of two ideas: The �rst one is to
transfer the problem to the case we studied in the previous chapters by performing
a transformation on the data. The second one depends on computing the value
of growth cones on the vertices of the cells of the partition. Those growth cones,
with apexes at the data points, are de�ned using bounds on the partial derivatives
of the function. Finally, we presented an approach to compute bounds on the
partial derivatives of the function and on the disturbances directly from data. The
proposed approach is based on the scenario approach and allows us to deal with
very large data sets in practice.
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4 - Data-Driven Abstraction

In previous chapters, we studied the problem of over-approximating unknown
dynamical systems using data generated from the system. In particular, we consider
the case of unknown but monotone systems and the case of unknown but with
bounded derivatives systems. In this chapter, we will use the results of the previous
chapters to �nd �nite state representations of the unknown systems. The concept
of �nding a �nite state representation of a given system is called abstraction.
In general, the idea behind abstraction is to �nd a simpler model of the system
that can be used to reason about the original system. The simpler model can be
used, for instance, to �nd a controller for the original system. For this scheme to
work, we need to ensure that the simpler model is a good representation of the
original system. In other words, we need to ensure that the behavior of the original
system can be reproduced by the simpler model. This is done by �nding a relation
between the states of the original system and the states of the simpler model.
[71] In a special case, studied in symbolic control, the simpler model is a �nite
state model, meaning that the in�nite number of states of the original system are
mapped to a �nite set of states. Being able to work with �nite state representations
opens the door to the possibility of using formal veri�cation and discrete controller
synthesis techniques, implementing automated procedures to �nd correct-by-design
controllers satisfying a variety of complex speci�cations [9]. Those controllers are
capable of ensuring complex speci�cations (safety and reachability [29], behaviors
described by automata [62], or temporal logic formulas [9]). Previously, we studied
interval-valued over-approximation from data on interval partitions. In this chapter,
we will consider the problem of computing abstractions for those learned interval-
valued models. In the case of a purely unknown system, we show that working
with the �nite-state symbolic models does not add any conservatism compared to
working with the data-driven over-approximation models.

Although symbolic control is usually presented as a model-driven technique,
some data-driven approaches have emerged recently. For instance, approaches that
only require the ability to sample the system dynamics on a given grid of states
and inputs are introduced in [56, 32], or [77]. In [25], data-driven abstractions
are found within the PAC (probably approximately correct) statistical framework.
PAC guarantees are also used in [22] to build data-driven abstraction through the
use of the scenario approach. The scenario approach is also used in [46] and [41]
to o�er probabilistic guarantees on the data-driven built abstractions. The main
di�erence between all the previously mentioned work and the approach introduced
here is that, in contrast to our approach, they all give probabilistic guarantees.
Data-driven control design with regular language speci�cations is studied in [63]
for plants described as abstract systems. In comparison to [63], our approach
can handle bounded disturbances and is able to satisfy the speci�cations robustly
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not to a prede�ned desired accuracy. Unknown parts of nonlinear systems are
modeled using Gaussian processes; then, those models are used in building symbolic
abstractions in [33].

This chapter is organized as follows. In Section 4.1, we introduce the transition
system representation that will be used throughout the chapter. In Section 4.2,
we introduce the notion of systems relations and abstractions. In Section 4.4, we
introduce the notion of data-driven abstraction and show how to build it using the
results of the previous chapters. Finally, we illustrate the results of this chapter on
numerical examples in Section 4.5.

4.1 . System de�nition

In this section, we introduce the transition system representation that will be
used throughout the chapter. transition systems representation is a powerful tool
to represent dynamical systems. It is capable of representing both continuous and
discrete state systems. It is also capable of representing systems combining both
continuous and discrete state systems, like hybrid systems.

Definition 9. A transition system T is a tuple T = (X,U,∆, Y,H), where:

• X is a set of states,

• U is a set of inputs,

• ∆ : X × U ⇒ X is a transition relation,

• Y is a set of outputs, and

• H : X → Y is an output map.

An input u ∈ U is called enabled at x ∈ X if ∆(x,u) ̸= ∅. The set of
all inputs enabled at x is denoted enab∆(x). A transition system T is said to
be deterministic if for all x ∈ X, for all u ∈ U ∆(x,u) contains at most one
element. A system is said to be non-blocking if for all x ∈ X, enab∆(x) ̸= ∅. If
X and U are �nite sets, then T is called a �nite transition system. Otherwise, T
is called an in�nite transition system. Given that x′ ∈ ∆(x,u), we say that x′ is a
successor of x under input u, or a u-successor. The next example illustrates the
notion of transition Systems and shows how it can be used to represent continuous
and discrete state systems.

Example 5
Consider the following dynamical system:

x(τ + 1) = x(τ) + u(τ). (4.1)
where x(τ) ∈ [x, x] ⊆ R and u(τ) ∈ [u, u] ⊆ R denote the state and the control
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input, respectively. Then the transition system T1 = (X,U,∆, Y,H) associated
to (4.1) is de�ned as follows:

• X = [x, x],

• U = [u, u],

• ∆(x, u) = {x+ u},

• Y = [x, x],

• H(x) = x.

Example 6
Let us consider the discrete system represented in Figure 4.1. The associated
transition system T2 = (X,U,∆, Y,H) is de�ned as follows:

• X = {q1, q2, q3, q4},

• U = {p1, p2},

• ∆(q1, p1) = {q3}, ∆(q1, p2) = {q3, q4}, ∆(q2, p1) = {q2}, ∆(q3, p2) =

{q2},

• Y = {q1, q2, q3, q4},

• H(q1) = q1, H(q2) = q2, H(q3) = q3, H(q4) = q4.

System T2 is nondeterministic because ∆(q1, p2) = {q3, q4} contains more than
one element. The system is blocking because enab∆(q4) = ∅.

q1

q2q3

q4

p1
p2

p2

p1

p1

p2

Figure 4.1: Example of a transition system.
4.2 . Systems relations and Abstractions

When modeling any system in nature, there is always the assumption or at
least the hope that the output of the model will be similar to the output of the
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real system. How to de�ne this similarity is the question that we will try to answer
in this section. Moreover, in the case of feedback control, if I �nd a controller that
works for the model, will it work for the real system?

The �rst tool that we will use to de�ne this similarity is simulation.

Definition 10. Consider two transition systems T1 = (X1, U1,∆1, Y1, H1) and
T2 = (X2, U2,∆2, Y2, H2). A relation R ⊆ X1 ×X2 is a simulation relation from
T1 to T2 if the following conditions are satisfied:

1. for all x1 ∈ X1, there exists x2 ∈ X2 such that (x1,x2) ∈ R,

2. for all (x1,x2) ∈ R,H1(x1) = H2(x2),

3. for all (x1,x2) ∈ R, for all u1 ∈ enab∆1(x1), for all x′
1 ∈ ∆1(x1,u1), there

exists u2 ∈ enab∆2(x2) such that there exists x′
2 ∈ ∆2(x2,u2) satisfying

(x′
1,x

′
2) ∈ R.

Then, we say that:

• T1 is simulated by T2, denoted T1 ⪯S T2, if there exists a simulation relation
R from T1 to T2,

• T1 is bisimilar to T2, denoted T1
∼=S T2, if there exists a relationR such that

R is a simulation relation from T1 to T2 and R−1 is a simulation relation
from T2 to T1.

We only mention simulation here to describe its limitations and motivate the
need for alternating simulation. Intuitively, a simulation relation R from T1 to T2

means that for every state x1 in T1, there exists a state x2 in T2 such that x1

and x2 are related by R. Moreover, for every input u1 enabled at x1, there exists
an input u2 enabled at x2 such that for every successor x′

1 of x1 under u1, there
exists a successor x′

2 of x2 under u2 such that x′
1 and x′

2 are related by R. In
other words, T1 is simulated by T2 if the behavior of T1 can be reproduced by T2.

This relation allows us to model a system with a simpler one, and then use
the simpler model to reason about the original system. In control theory, we aim
to design a controller for a simpler model and then use it to control the original
system. But the simulating model can be non-deterministic, and allowed to have
reacher behavior than the real system; in some cases, we can synthesize a feedback
controller for the simulation model and choose an input for the simulation model
that has no corresponding input in the real system. The following de�nition is a
solution to this problem.

Definition 11. Let us consider two transition systems Ti = (Xi, Ui,∆i, Yi, Hi)

i = 1, 2, sharing the same sets of outputs (Y1 = Y2 = Y ). A relationR ⊆ X1×X2

is an alternating simulation relation from T1 to T2 if the following conditions are
satisfied:
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1. for all x1 ∈ X1, there exists x2 ∈ X2 such that (x1,x2) ∈ R;

2. for all (x1,x2) ∈ R,H1(x1) = H2(x2);

3. for all (x1,x2) ∈ R, for all u1 ∈ enab∆1(x1), there exists u2 ∈ enab∆2(x2)

such that for all x′
2 ∈ ∆2(x2,u2), there exists x′

1 ∈ ∆1(x1,u1) satisfying
(x′

1,x
′
2) ∈ R.

Then, we say that:

• T1 is alternatingly simulated by T2, denoted T1 ⪯AS T2, if there exists an
alternating simulation relation R from T1 to T2;

• T1 is alternatingly bisimilar to T2, denoted T1
∼=AS T2, if there exists a

relation R such that R is an alternating simulation relation from T1 to T2

and R−1 is an alternating simulation relation from T2 to T1.

An alternating simulation relation R from T1 to T2 means that for every state
x1 in T1, there exists a state x2 in T2 such that x1 and x2 are related by R.
Moreover, if I choose an input u1 enabled at x1 (the model), there exists an input
u2 enabled at x2 (the original system) such that for every successor x′

2 of x2 under
u2 there exists a successor x′

1 of x1 under u1 such that x′
1 and x′

2 are related by
R. Meaning that the behavior of the original system can be reproduced by the
model. There will be no input in the model that has no corresponding input in the
original system.

In the case of bisimulation, working with the original system or the model is
equivalent. There is no added conservatism in the model. This will imply that
if I cannot �nd a controller for the model, then I cannot �nd a controller for the
original system.

4.2.1 . Abstraction

We saw previously that we can use (alternating)simulation to model a system
with a simpler one, and then use the simpler model to reason about the original
system. If the model alternatingly simulates the original system, then we can
build a feedback controller for the model and use it to control the original system.
We call this process abstraction-based control, and the simpler model is called an
abstraction of the original system.

In symbolic control, we use �nite state abstractions, which are �nite transition
systems that simulate the original system. To �nd a �nite state abstraction, we
can discretize the state space of the original system. Each state of the abstraction
represents (aggregate) a set of states of the original system. Similarly, we can
discretize the input space of the original system. Then, we can use the computed
sets of successors of each state under each input to de�ne a �nite transition system
that simulates the original system. This is called a discrete abstraction of the
original system. The successor of each state under each input is the set of states
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Figure 4.2: A representation of the abstraction process.
that can be reached from this state under this input. Calculating the successors,
depicted in Figure 4.2, requires knowledge of the dynamics of the original system
to �nd the one-step reachable set (the over-approximation of the dynamics) of
each state under each input. To solidify the idea of abstraction, we will use the
following example.

Example 7
Consider the system described in Example 4.1. Let us assume that we want to
�nd a �nite state abstraction of this system Tabst = (Xabst, Uabst,∆abst, Yabst,

Habst). First, we discretize the state space [x, x] into n states Q = {q1, . . . , qn},
where for all i ∈ {1, . . . , n}, qi = [x+ i−1

n (x− x), x+ i
n(x− x)] = [q

i
, qi]. We

also discretize the input space [u, u] into m inputs P = {p1, . . . , pm}. Similarly,
for all i ∈ {1, . . . ,m}, pi = [u+ i−1

m (u− u), u+ i
m(u− u)] = [p

i
, pi]. The set

of states of the abstraction is Xabst = Q and the set of inputs is Uabst = P .
Then, we can compute the set of successors of each state under each input. For
example, for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,m},

∆abst(qi, pj) = {q⋆i | q⋆i ∈ [q
i
+ p

j
, qi + pj ]}.

If we chose the same set of outputs for the original system and the abstract one
Y = Yabst = Xabst and the same output map Habst(q) = q, H(x) = q such
that x ∈ q, then the abstraction Tabst is a discrete abstraction of the original
system and it is straightforward to check that Tabst ⪯AS T .

In previous chapters, we saw that we can use data to learn this one-step reach-
able set, which opens the door to the possibility of �nding a �nite state abstraction
of a system without knowing its dynamics. This is the backbone of the introduced
data-driven control scheme.

The �nal piece of the puzzle is to choose the control action to be applied to
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the original system based on the control action applied to the abstraction, which
is called re�nement. Usually, many control actions in the original system can be
mapped to the same control action in the abstraction. This is done using an
interface I : X1×X2×U1 → U2 that maps the control actions of the abstraction
to the control actions of the original system. An example of such an interface for
the system in Example 4.2.1 is given by

I(qi, x, pj) =
p
j
+ pj

2

for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,m}, and for all x ∈ qi. This chosen
interface does not depend on the state of the original system or the state of the
abstraction.

4.3 . Discrete controller synthesis

We talked previously about discrete abstraction and how we can use it to �nd
a �nite state representation of continuous (in�nite) state systems. Dealing with
�nite state systems allows us to use the tools of formal veri�cation to reason about
the system, and to synthesize controllers that satisfy certain speci�cations. In this
section, we describe some of the famous speci�cations used in formal veri�cation
and control synthesis, and how to synthesize controllers that satisfy these speci�-
cations.

4.3.1 . Safety

Safety is one of the most common speci�cations used in formal veri�cation and
control synthesis. It is used to ensure that the system will never enter an unsafe
state.

Definition 12. Consider a transition system T = (X,U,∆, Y,H). A safety con-
troller Csafe for the safe setXs and is a set-valued map Csafe : X ⇒ U satisfying

• dom(Csafe) ⊆ Xs,

• ∀x ∈ dom(Csafe), ∀u ∈ Csafe(x),∆(x,u) ⊆ dom(Csafe),

where dom(Csafe) = {x ∈ X | Csafe(x) ̸= ∅} is the domain of CF .

In other words, a safety controller is a controller that ensures that the system
will never enter an unsafe state. In the case where the system T is �nite-state, to
�nd the set that contains the maximum number of safe states what we call the
maximum control invariant setXinv, we can use the �xed point algorithm presented
in Algorithm 2.

Finding a controller for the safety game can be done by removing, from the set
of enabled actions, all the actions that lead to a state outside of the (maximum)
control invariant set.
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Algorithm 2 Fixed point algorithm for safety
Input The unsafe states Xunsafe ⊆ X
Output The maximum control invariant set Xinv ⊆ X

1: Xsafe ← X \Xunsafe2: while Xsafe changes do3: Xsafe ← Xsafe\{x ∈ Xsafe | ∀u ∈ enab∆(x),∆(x,u)∩Xunsafe ̸= ∅}4: Xunsafe ← X \Xsafe5: end while
6: return Xinv = Xsafe

Example 8
Consider the transition system T1 in Example 4.1. Let Xunsafe = {q4}. For the
system to be safe, we need to remove the actions that lead to q4 from the set
of enabled actions at q1. Namely, we need to remove p2 from enab∆(q1). The
resulting transition system is safe.

q₁

q₂q₃

q₄

p₁
p₂

p₂

p₁

p₁

p₂

Figure 4.3: Unsafe state in T2.

4.3.2 . Reachability

Reachability is another common speci�cation used in formal veri�cation and
control synthesis. It is used to ensure that the system will eventually reach a set
of desirable states.

Definition 13. Consider a transition system T = (X,U,∆, Y,H) and a set of de-
sirable statesXdesirable ⊆ X . Then, the controller Creach : X → U is a reachability
controller if all the trajectories of the closed-loop system TCreach reach a state in
Xdesirable.
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In other words, a reachability controller is a controller that ensures that the
system will eventually reach a state in Xdesirable.

In the case where the system T is �nite-state, to �nd the set that contains
the maximum number of states from which the desirable states are reachable,
we can use the �xed point algorithm presented in Algorithm 3. Let us de�ne

Algorithm 3 Fixed point algorithm for reachability
Input The desirable states Xdesirable ⊆ X
Output The sets of states from which the desirable states arereachable Xreach(i) in at most i steps for all i ∈ {0, . . . , k}.

1: Xreach(0)← Xdesirable2: while Xreach changes do3: Xreach(k + 1)← Xreach(k) ∪ {x ∈ X | ∃ u ∈ enab∆(x),∆(x,u) ⊆
Xreach}4: k ← k + 1

5: end while
6: return Xreach(0), . . . , Xreach(k)

the controller Creach : X ⇒ U as follows. For all i ∈ {0, . . . , k}, for all x ∈
Xreach(i) \Xreach(i− 1)

Creach(x) = {u | u ∈ enab∆(x),∆(x,u) ⊆ Xreach(i− 1)}. (4.2)
where Xreach(i) is the i-th output of Algorithm 3.

Example 9
Consider the transition system T2 in Example 4.1. Let Xdesirable = {q4}. The
desirable states are reachable from q1 and q3. The reachability controller is
de�ned as follows:

Creach(q1) = {p1}, Creach(q2) = ∅, Creach(q3) = {p2}, Creach(q4) = ∅.

4.4 . Data-Driven Abstraction

In this section, we show that our approach presented can be used for data-
driven modeling of discrete-time dynamical systems. We show that simulating
maps computed from data can be used to de�ne sound �nite state abstractions
for unknown dynamical systems. The unknown dynamics can be either monotone,
making them suitable for the approach presented in Section 2, or with bounded
derivatives, making them suitable for the approach presented in Section 3.

We consider a discrete-time dynamical system:

x(τ + 1) ∈ f(x(τ),u(τ)) + g(x(τ),u(τ)) +D (4.3)
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where x(τ) ∈ X ⊆ Rnx and u(τ) ∈ U ⊆ Rnu denote the state and the control
input, g : X × U → Rnx is a known function whereas f : X × U → Rnx

is an unknown function which is either monotone or has bounded derivatives.
D = [d,d] ⊆ Rnx is a bounded interval of disturbances with known bounds.

Let be given a set of data D ⊆ X ×U ×Rnx consisting of transitions sampled
from the system (4.3):

D =

{
(xk,uk,x

′
k)

∣∣∣∣ x′
k ∈ f(xk,uk) + g(xk,uk) +D,

k ∈ K

}
(4.4)

where K is a �nite set of indices. Because g is known, we can construct an auxiliary
data set D′ as follows:

D′ = {(xk,uk,yk)| yk = x′
k − g(xk,uk), k ∈ K}.

The new auxiliary data set can be seen as a set of data generated by a monotone
map of the form (2.4) or by a map of the form (3.1).

Therefore, we can use the approach presented in the previous sections to com-
pute a simulating map S : X × U ⇒ Rnx of data D′. Then, a data-driven model
of system (4.3) can be de�ned as follows

x(τ + 1) ∈ S(x(τ),u(τ)) + g(x(τ),u(τ)). (4.5)
In the following, we formally relate the behaviors of (4.3) and (4.5). We de�ne
transition systems Tsys = (X,U,∆sys, Y,H) and Tdata = (X,U,∆sys, Y,H) as-
sociated to (4.3) and (4.5) where the set of states X and inputs U are the same as
in (4.3) and (4.5). The transition relation ∆sys is de�ned as follows, for all x ∈ X:

u ∈ enab∆sys(x) ⇐⇒ f(x,u) + g(x,u) +D ⊆ X, (4.6)
and

∀u ∈ enab∆sys(x), ∆sys(x,u) = f(x,u) + g(x,u) +D. (4.7)
Similarly, the transition relation ∆data is de�ned as follows, for all x ∈ X:

u ∈ enab∆data
(x) ⇐⇒ S(x,u) + g(x,u) ⊆ X, (4.8)

and
∀u ∈ enab∆data

(x), ∆data(x,u) = S(x,u) + g(x,u). (4.9)
Let us remark that (4.6) and (4.8) ensure that an input u is enabled at state x

only if it is guaranteed that the next state of (4.3) and (4.5) belongs to the set of
states X. The set of outputs Y and the output map H are left unspeci�ed. They
can be chosen arbitrarily but are assumed to be the same for Tsys and Tdata. One
can, for instance, choose Y = X and H to be the identity map.

Proposition 15. Let S ∈ SD′ , then for any choice of set of outputs Y and of output
mapH : X → Y , Tdata ⪯AS Tsys.
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Proof. Let us show that
R = {(xdata,xsys) ∈ X ×X | xdata = xsys}

is an alternating simulation relation from Tdata to Tsys. The first two conditionsof alternating simulation follow directly from the form of R and from the fact
that Tsys and Tdata have the same sets of states X and of outputs Y , and the
same output mapsH .

Since S ∈ SD′ , it follows from Definition 6 that
∀x ∈ X,u ∈ U, f(x,u) +D ⊆ S(x,u).

Hence, S(x,u) + g(x,u) ⊆ X implies f(x,u) + g(x,u) + D ⊆ X . There-
fore, from (4.6) and (4.8), we have for all x ∈ X , enab∆data

(x) ⊆ enab∆sys(x).Moreover, from (4.7) and (4.9), for all u ∈ enab∆data
(x), it holds ∆sys(x,u) ⊆

∆data(x,u).Let us now show the third condition of alternating simulation. Let us con-
sider (xsys,xdata) ∈ R , then xsys = xdata. Let udata ∈ enab∆data

(xdata), thenfor usys = udata, we have usys ∈ enab∆sys(xsys). Moreover,∆sys(xsys,usys) ⊆
∆data(xdata,udata). Therefore, for allx′

sys ∈ ∆sys(xsys,usys), there existsx′
data ∈

∆data(xdata,udata) satisfying x′
sys = x′

data, and hence (x′
sys,x

′
data) ∈ R.

From the previous result, it follows that the data-driven model Tdata can be
used to synthesize controllers that can be re�ned into controllers for the partially
unknown system Tsys, with formal guarantees of correctness.

4.4.1 . Symbolic abstraction

We now go one step further by computing symbolic abstractions of Tdata.
This will allow us to use discrete controller synthesis techniques to control the
system with formal guarantees on the closed-loop behavior. Let us assume that
the sets of states and inputs X and U are closed intervals of Rnx and Rnu and let
(Xq)q∈Q, (Up)p∈P be given rectangular partitions of X and U as de�ned for Z in
Section 2.2.1. We de�ne a quantization function ϕ : X × U → Q× P associated
to these �nite partitions as follows,

∀(x,u) ∈ X × U, ∀(q,p) ∈ Q× P,

ϕ(x,u) = (q,p) ⇐⇒ x ∈ Xq, u ∈ Up. (4.10)
Then, we can use the approach presented in Section 2.2.1 to compute a map
σ : Q× P ⇒ Rnx such that σ ◦ ϕ is a simulating map of D′.

Let us assume that for all (q,p) ∈ Q×P , we can compute subsets G(q,p) ⊆
Rnx such that

∀x ∈ Xq, ∀ u ∈ Up, g(x,u) ∈ G(q,p). (4.11)
Such sets can be computed for instance using interval analysis [37] or using ap-
proaches based on mixed monotonicity or on growth bounds [54].

83



We de�ne a symbolic transition system Tsymb = (Q,P,∆symb, Y,Hsymb)

where the set of states and inputs are given by the partitions index sets Q and P ,
and the transition relation ∆symb is de�ned as follows, for all q ∈ Q:

p ∈ enab∆symb
(q) ⇐⇒ σ(q,p) +G(q,p) ⊆ X, (4.12)

and

∀p ∈ enab∆symb
(q),

∆symb(q,p) =
{
q′ ∈ Q| (σ(q,p) +G(q,p)) ∩X ′

q ̸= ∅
}
. (4.13)

We de�ne the set of outputs to be Y = Q and the output map Hsymb to be the
identity map.

Theorem 3. Let S = σ ◦ ϕ ∈ SD′ , let Tsys and Tdata be defined for the set of
outputs Y = Q and the output mapH : X → Q, given by

∀x ∈ X, ∀q ∈ Q, H(x) = q ⇐⇒ x ∈ Xq. (4.14)
Then, the following relation holds:

1. Tsymb ⪯AS Tdata ⪯AS Tsys.

2. If g = 0, then Tsymb
∼=AS Tdata.

Proof. The fact that Tdata ⪯AS Tsys follows directly from Proposition 15. Then,
let us show that

R = {(q,x) ∈ Q×X | x ∈ Xq}

is an alternating simulation relation from Tsymb to Tdata. Let q ∈ Q and let x ∈
Xq, then (q,x) ∈ R and the first condition of alternating simulation holds. Let
(q,x) ∈ R, then x ∈ Xq, which by (4.14) gives H(x) = q. Since Hsymb(q) = q,
the second condition of alternating simulation holds.

Let us now show the third condition of alternating simulation. Let (q,x) ∈
R and p ∈ enab∆symb

(q), then choose u ∈ Up. Since S = σ ◦ ϕ, we have
S(x,u) = σ(q,p), and by (4.11) we have g(x,u) ∈ G(q,p). Hence,

S(x,u) + g(x,u) ⊆ σ(q,p) +G(q,p). (4.15)
Then, it follows from (4.8) and (4.12) thatu ∈ enab∆data

(x). Letx′ ∈ ∆data(x,u),from (4.9) and (4.15), we get x′ ∈ σ(q,p) + G(q,p). Let q′ ∈ Q such that
x′ ∈ Xq′ , from (4.13), we get that q′ ∈ ∆symb(q,p). Moreover, since x′ ∈ Xq′ ,
(q′,x′) ∈ R. Hence, we proved that Tsymb ⪯AS Tdata.Now, let us assume that for all x ∈ X , and u ∈ U , g(x,u) = 0. Then, (4.11)
holds with G(q,p) = {0}, for all q ∈ Q and p ∈ P . Let us show that in that
case, R−1 is an alternating simulation relation from Tdata to Tsymb. Let x ∈ X ,
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since (Xq)q∈Q is a partition ofX , there exists q ∈ Q such that x ∈ Xq. Hence,
(x,q) ∈ R−1 and the first condition of alternating simulation holds. The proof
that the second condition holds for R−1 is the same as for R.

Then, let us show the third condition of alternating simulation. Let (x,q) ∈
R−1 and u ∈ enab∆data

(x), then there exists p such that u ∈ Up. Since S = σ◦
ϕ, we have S(x,u) = σ(q,p). Moreover, since g(x,u) = 0 and G(q,p) = {0},
we get from (4.8) and (4.12) that p ∈ enab∆symb

(q). Let q′ ∈ ∆symb(q,p), from(4.13) we get that σ(q,p) ∩ Xq′ ̸= ∅. Hence, S(x,u) ∩ Xq′ ̸= ∅. Then, let
x′ ∈ S(x,u) ∩ Xq′ . From (4.9), x′ ∈ ∆data(x,u). Moreover (x′,q′) ∈ R−1.
Hence, we proved that Tdata

∼=AS Tsymb.
Theorem 3 shows that the symbolic abstraction Tsymb can be used to synthesize

controllers for the data-driven system Tdata and hence also for the partially unknown
system Tsys. Note that the fact that Tsymb has only a �nite number of state and
input values allows us to use algorithmic techniques to synthesize controllers for
various speci�cations such as safety, reachability, or attractivity [30] or even more
complex speci�cations expressed e.g. in linear temporal logic [9] or using hybrid
automata [69]. Due to the fact that there is an alternating simulation relation
between Tsys and Tsymb the correct-by-design synthesized controller will guarantee
the desired closed-loop behavior [71]. Moreover, when Tsys is fully unknown and
monotone (i.e. when g = 0), then Theorem 3 shows that working with the symbolic
abstraction Tsymb does not bring any conservatism compared to working with the
data-driven model Tdata.

4.5 . Numerical examples

In this section, we present several examples to illustrate the use of the proposed
approach. We �rst show how to use the approach to �nd an abstraction of a
system with unknown monotone dynamics. We use the abstraction to �nd the
maximum controllable set of the system. The second example shows how to use the
approach to �nd an abstraction of a system with unknown dynamics with bounded
derivatives. This example also shows how to use abstraction to synthesize a safety
controller for a system with unknown dynamics, and it will have a continuation
in the next chapter where we introduce an estimation algorithm for the unknown
dynamics. In the third example, we study the chaotic Lorenz system. We use
the algorithm introduced in Section 3.3 to �nd the bounds on the derivatives of
the system. Then, we use the algorithm introduced in Section 4.4 to �nd an
abstraction of the system.

4.5.1 . Cruise control problem

The �rst example showcases a system that can be seen as a sum of a known
function and an unknown monotone function. We �nd the abstraction representing
the system. Then, we use this abstraction to synthesize a safety controller.
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Let us consider two vehicles moving in one lane on an in�nite straight road.
The leader is uncontrollable (vehicle 2) whereas the follower is controllable (vehicle
1). A discrete-time model of this setup is given by equations:

d(k + 1) = d(k) + (vf (k)− vl(l))T0

vf (k + 1) = vf (k) + γ(u(k), vf (k))T0

vl(k + 1) = vl(k) + d(k)T0

(4.16)

Here u is the control input, and d is the signed distance between the vehicles.
vl, vf are the velocities of the leader and follower, respectively. The function γ

represents the follower vehicle acceleration caused by the control input and the
friction forces acting upon it. The term d(k) ∈ [d, d] accounts for uncertainty in
the leader velocity and is considered a disturbance. Model (4.16) can be seen as
the sum of a known part which can be inferred from the physics of the system,
and an unknown or hard-to-model part, namely the function γ(u(k), vf (k))T0. We
are also able to study the monotonicity of the function γ(u(k), vf (k))T0 starting
from the physics of the system. The acceleration of the car will increase with the
increase of the input, and the friction forces will increase with the increase of the
velocity. Therefore, by making the change of variable v′f = −vf we can apply the
algorithm introduced in this work to �nd an abstraction of the system.

Function γ is given as follows

γ(u, v) = u−M−1
C (f0 + f1v + f2v

2).

The vector of parameters f = (f0, f1, f2) ∈ R3
+ describes road friction and vehi-

cle aerodynamics whose numerical values are taken from [59]: f0 = 51 N, f1 =

1.2567 Ns/m, f2 = 0.4342Ns2/m2. For the car mass, we chose MC = 1370 kg.
Other numerical values related to the model are X = [−50,−5] × [0, 30] ×
[5, 25], U = [−3, 3], T0 = 0.7 s, d = −d = 2 m/s2. To build the abstrac-
tion we �xed a partition K1

x = 50, K2
x = 50, K3

x = 50, K1
u = 50, and sampled

a set containing |K| = 106 data points. Finding the over-approximation of the
unknown monotone part was done in 0.633s.

To show the usefulness of the calculated abstraction, we use it to synthesize a
safety controller. In this example, the leader's vehicle is uncontrollable. Therefore,
we considered a speci�cation given as an assume-guarantee contract:

∀k ∈ N vl(k) ∈ [vl, vl] =⇒ (4.17)
∀k ∈ N, vf (k) ∈ [vf , vf ] ∧ d(k) ∈ [d, d].

If the velocity of the leader remains within the bounds [vl, vl], then the velocity
of the follower and the distance between the two vehicles should remain within
the bounds [vf , vf ] and [d, d], respectively. The synthesis of symbolic controllers
enforcing assume-guarantee contracts such as (4.17) has been considered in [67].
For this example, we chose d = α1

1, d = α1
K1 , vf = α2

1, vf = α2
K2 , vl = α3

1,
vf = α3

K3 . The controllable set of the resulting symbolic controller is shown in
Figure 4.4.
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Figure 4.4: Controllable set of the symbolic controller enforcing theassume-guarantee contract (4.17) for system (4.16)
4.5.2 . Path planning

In this path-planning example, we consider a vehicle moving in a two-dimensional
environment. We learn the dynamics of a unicycle model by sampling data transi-
tions from it. Then, we use the learned model to drive the vehicle in an environment
containing obstacles. To complete this task, we will use tools that will be intro-
duced in the next chapter. Thus, this example will be continued in the next chapter
where we introduce an estimation algorithm for the unknown dynamics.

For now, we use the approach introduced in this work to �nd an abstraction of
the learned model. Then, we use the abstraction to synthesize a safety controller
for the vehicle.

We consider the unicycle models de�ned by the following equations

ẋ = v · cos(θ) + d1

ẏ = v · sin(θ) + d2

θ̇ =
v

L
tan(δ) + d3

(4.18)

where x, y are the coordinates of the vehicle, θ is the heading angle, as can be
seen in Figure 4.5, L is the length of the vehicle, and we chose the value L = 0.1

m. The velocity v and the steering angle δ are considered the input. The goal of
this experiment is to drive the vehicle from a starting position to a target position
in an environment, as shown in Figure 4.6. The vehicle should maneuver around
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an obstacle to reach its target. We consider a 2× 5 m area, a 1× 0.5 m obstacle
positioned at 2.5 m away from the left side of the room.

To build the over-approximation of the dynamics in (4.18), we sampled |K| =
106 data points using a black box simulator of (4.18). We chose for the states,
inputs, and disturbance intervals the following θ ∈ [−π

2 ,
π
2 ], δ ∈ [−1, 1], v ∈

[0.025, 0.5],d ∈ [−0.05, 0.05]×[−0.05, 0.05]×[−0.05, 0.05], and partitioned those
intervals uniformly into 30 cells each. We only use θ, δ, and v to study the dy-
namics of the unicycle model as the function representing this model clearly does
not depend on the states x and y. The resulting over-approximation can be seen
in Figure 4.7. The execution time to �nd the over-approximation is tov = 2.78 s.

Then, we use the over-approximation model to build a symbolic abstraction
of the behavior of the vehicle in the environment as follows: We partitioned the
x-axis into 100 sections and the y-axis into 40 sections uniformly. Then, we found
the reachable set of the vehicle starting from each cell in the partition using the
calculated over-approximation. We use the Euler method for discretizing. The
symbolic abstraction is then used to �nd the maximal control invariant inside the
safe region and the set of safe actions at each cell. The speed is chosen to be

L

Figure 4.5: The unicycle model. The reference point is at the center ofthe rear axle.

Start
Goal

2 m

5 m

1 m

0.5 m

Figure 4.6: The environment where the vehicle should maneuver anobstacle to reach a target position
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(a) The over-approximation of thedynamics of ẋ (b) The over-approximation of thedynamics of ẏ

(c) The over-approximation of the dy-namics of θ̇
Figure 4.7: Over-approximation of the bicycle dynamics

strictly positive, and hence the vehicle cannot stop. All the walls of the area are
considered obstacles except the right wall because the vehicle cannot stop. Figure
4.8 shows the regions where we can �nd a safety controller for certain values of θ.
The execution time to �nd the maximal controlled invariant is tinv = 871.88 s.

4.5.3 . Lorenz system

In the last example, we study the Lorenz system, a system with bounded
derivatives. We �rst compute the bounds on the disturbance and on the derivatives
of the function representing the system from the data. Then, we �nd a data-driven
abstraction that we use to synthesize a controller for the system. The controlled
Lorenz system has three states and one input. We built the abstraction using a
large number of points and a partition with a large number of elements, and we
showed that we could do it e�ciently.
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Figure 4.8: The maximal controlled invariant for three values of θ.

The controlled discrete-time Lorenz system is described by the following model

x(k + 1) = x(k) + σ(x(k)− y(k) + d1(k))T0

y(k + 1) = y(k) + (ρ x(k)− x(k)z(k)−
y(k) + u(k) + d2(k))T0

z(k + 1) = z(k) + (x(k)y(k)− β z(k) + d3(k))T0

(4.19)

For the particular parameter values of σ = 10, β = 8
3 , ρ = 28 the system behaves

chaotically [48]. We studied the system on the sets X = [−10, 10]× [−10, 10]×
[−10, 10], U = [−200, 200], d = [0.5, 0.5, 0.5]. The discretization time was chosen
to be T0 = 0.01s. First, we used the algorithm described in Section 3.3 to calculate
the bounds on the disturbance and the derivatives. In the �rst step, we used 5∗104
data points sampled randomly. In the second step, we sampled 106 data points.
The results of the calculated bounds on Jacobian matrices and the disturbance
are shown below. Subscript D refers to matrices calculated from data, while their
unsubscripted counterparts are the actual matrices we are estimating. The results
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are rounded to the third signi�cant digit.

J
x
=

[
0.9 0.1 0
0.38 0.99 0.1
0.1 0.1 0.973

]
, J

x
D =

[
0.9 0.1 1.64∗10−6

0.377 0.99 9.46∗10−2

9.09∗10−2 9.31∗10−2 0.975

]
Jx =

[
0.9 0.1 0
0.18 0.99 −0.1
−0.1 −0.1 0.973

]
,

Jx
D =

[
0.9 0.1 −2.1∗10−7

0.185 0.989 −9.27∗10−2

−9.3∗10−2 −9.2∗10−2 0.97

]
J
u
=

[
0

0.01
0

]
, J

u
D =

[
−1.9∗10−7

9.95∗10−3

2.88∗10−6

]
Ju =

[
0

0.01
0

]
, Ju

D =

[
−1.9∗10−7

9.95∗10−3

4.58∗10−5

]
d∗T0 =

[
0.005
0.005
0.005

]
,dD ∗ T0 =

[ 0.005
5.85∗10−2

5.76∗10−2

]
The execution time of the �rst step is 12.4s, whereas the execution time for the
second step is 0.5s. From the results, we can see that all values but the disturbances
added to the second and third states are similar to the actual values. The second
and third values of the disturbance are more conservative. If we choose β = 10−6,
then according to Proposition 14, with a probability at least 1 − β, it holds that
the probability of �nding two points violating the calculated bounds is less than
2 ∗ 10−5.

We used these values to build the data-driven abstraction. We sampled 108

data points. We choose the parameters of the partition as followsK1
x = 100, K2

x =

100, K3
x = 100, K1

u = 100, c = 0.05. The execution time to reach the abstrac-
tion was 929.2 s. To test the validity of the calculated abstraction, we used it to
�nd the maximal safe controlled invariant of the system. Given a safe set Xs ⊆ X,
a safe controlled invariant Is is a set included in the safe set Is ⊆ Xs, and that can
be rendered invariant using a suitable controller. Using the �nite-state abstraction
we calculated earlier; we can apply an iterative algorithm to �nd the maximal safe
controlled invariant [71]. We chose the safe set to be Xs = X. The resulting
maximal control invariant is represented in Figure 4.9.

4.6 . Conclusion

In this chapter, we introduced transition systems; the representation used to
model the dynamics of a variety of systems. We then introduced the notion of
alternating simulation, which is a relation between two transition systems. We
showed that if there exists an alternating simulation relation between two transi-
tion systems, then we can use the controller of one system to control the other
system. We then introduced the notion of symbolic abstraction, which is a �nite-
state transition system that over-approximates the behavior of a system. If the
symbolic abstraction is an alternating simulation of the system, then we can use
the controller of the symbolic abstraction to control the system. We described
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Figure 4.9: The maximal controlled invariant of (4.19) calculated usingthe data-driven abstraction
the type of discrete controller synthesis problems that can be solved using sym-
bolic abstractions. Examples of such problems are safety and reachability. We
then introduced the notion of data-driven abstraction, which is calculated using
the data-driven interval-valued over-approximation introduced in Chapter 2 and
Chapter 3. Several examples were presented to show the validity of the approach.
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5 - Safe Learning

Ensuring safety is a crucial requirement for any control system, and it is still
an open problem for many data-driven control approaches. One can �nd in the
literature many approaches to ensure safety, such as using barrier functions [4], or
using reachability analysis [2]. Also, in the �eld of learning-based control, one can
�nd many approaches to ensure safety, such as using safe exploration [11], or using
safe reinforcement learning [27].

In the previous sections, we studied how we can learn over-approximation of
unknown dynamical systems. Those over-approximations are then used to �nd
data-driven �nite-state abstractions, and thus to build controllers. As each discrete
input of the controller, and we focus here on safety controllers, is mapped to a set
of continuous inputs, Each one of those input sets can be applied to the system
to ensure safety. And thus, the question of which input to choose arises.

In this chapter, we introduce a safe learning-based MPC scheme. We use the
data set sampled from a given system to build two models of this system. The �rst
model is the �nite-state abstraction of the system, and it is used to ensure strong
safety requirements, whereas the second is used to �nd a controller that minimizes
a cost function and thus ful�lls some performance requirements. To �nd the second
model, we use the piecewise multi-a�ne estimation of the system's dynamics. The
idea of decoupling safety and performance by using two models is introduced in [7],
where one model is used to ensure safety using tube MPC, and the other model,
updated online, is used to minimize a cost function. By contrast, we do not impose
any linear structure on the studied system.

Model Predictive Control (MPC) has established its position as a vital tool for
many control problems, research to incorporate data-driven methods into MPC has
been surging recently [34, and references therein], with topics such as safety and
robustness still remaining largely open topics [78, 43]. While some use input-output
data to �nd optimal control policies directly, eliminating the need for building a
model [23, 10], others use the data to �nd data-driven models and then apply the
MPC scheme [7, 38]. A comparison between these direct and indirect approaches
is provided in [44].

This chapter is organized as follows. In Section 5.1, we introduce a safe
learning-based MPC scheme and prove its safety and well-posedness. In Section
5.2, we introduce the piecewise multi-a�ne compatible estimation of the system's
dynamics. This estimation is used to build the safe learning-based MPC scheme.
Section 5.3 deals with the problem of updating the estimation of the system's
dynamics locally. Whereas Section 5.4 deals with the problem of updating the
model of the system's dynamics and the safe controller online while operating the
system. In Section 5.5, we illustrate the proposed scheme on a numerical example.
Finally, in Section 5.6, we conclude the chapter.
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5.1 . MPC with safety guarantees

In this section, we introduce the safe learning-based MPC scheme. We �rst
introduce the problem formulation and the assumptions we make on the system.
Then, we introduce the over-approximation of the system's dynamics and the safety
controller. Finally, we introduce the safe learning-based MPC scheme and prove
its safety and well-posedness.

We consider a discrete-time system of the form.

x(t+ 1) = f(x(t),u(t)) + d(t) (5.1)
where x(t) ∈ X ⊆ Rnx is the state of the system, u(t) ∈ U ⊆ Rnu is the input,
d(t) ∈ D ⊆ Rnx is the disturbance, and f : X×U → X is the unknown nonlinear
function representing the dynamics of the system. Similar to previous chapters, we
assume the following assumptions on the system.

Assumption 1. The unknown function f has bounded derivatives i.e. for all x ∈
X , u ∈ U :

∂f i

∂xj
(x,u) ∈ [αij , αij ], i, j ∈ {1, . . . , nx},

∂f i

∂uj
(x,u) ∈ [β

ij
, βij ], i ∈ {1, . . . , nx}, j ∈ {1, . . . , nu},

where the bounds αij , αij , βij
, βij ∈ R are assumed to be known. The set of

disturbances D = [d,d], is a bounded interval with known bounds d,d ∈ Rnx

and such that 0 ∈ D.

Assumption 2. We are given a set of data generated from the dynamic system
(5.1):

D = {(xk,uk,x
′
k) | x′

k ∈ f(xk,uk) +D, k ∈ K}

where K is a finite set of indices.

Collecting the data set D can be done in various fashion. One can for instance
sample the dynamics of the system randomly using independent samples. This can
be done easily if one can use a black box model of (5.1) to generate independent
simulations. However, our approach does not require the use of independent sam-
ples. Actually, they can be collected by recording the evolution of the true system
over a given period of time. In that case, we would have x′

k = xk+1.
We recall that an over-approximation map F of the true function f is a set-

valued map S : X × U ⇒ X satisfying

f(x,u) +D ⊆ F (x,u),∀x ∈ X,∀u ∈ U,

Let us also recall that safety controllers, calculated using the over-approximation,
can attribute to each state x ∈ dom(Csafe) a set of allowed inputs. To �nd the one
input (out of several safe ones) that minimizes a receding horizon cost function,
we build a single-valued estimation of the true function
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Definition 14. An estimation f̂ : X ×U → X of the true function f is said to be
compatible with the over-approximation F if

f̂(x,u) +D ⊆ F (x,u),∀x ∈ X,∀u ∈ U. (5.2)
Section 5.2 deals with �nding this compatible estimation. Now, we have ev-

erything we need to introduce the safe learning-based MPC scheme. First, we �nd
the data-driven over-approximation F . Then, we use it to �nd the safe controller
Csafe. After that, we build an estimation of the dynamics f̂ compatible with the
over-approximation. The following theorem shows how to use those models to
implement a learning-based MPC program to meet the strict safety requirements
while enforcing a soft performance optimization by minimizing the estimation of a
cost function J using an estimate f̂ .

Theorem 4. Given a stage costs Jk : X × U → R, k ∈ {1, . . . , N − 1} and a
terminal cost JN : X → R, starting from x(0) ∈ dom(CF ), consider the trajectory
of (5.1) with u(t) = u(0|t) where u(0|t) is obtained by solving the optimization
problem below:

min
u(0|t),...u(N−1|t)

N−1∑
i=0

Ji(x(i|t),u(i|t)) + JN (x(N |t))

subject to x(i+ 1|t) = f̂(x(i|t),u(i|t)),
∀i ∈ {0, . . . , N − 1}

x(i|t) ∈ Xs, ∀i ∈ {0, . . . , N}
u(0|t) ∈ Csafe(x(t))

x(0|t) = x(t)

(5.3)

Then, for all t ∈ N, x(t) ∈ Xs and (5.3) admits a feasible solution, i.e. the closed-
loop system is safe and well-posed.

Proof. Let t ∈ N, and let us assume that x(t) ∈ dom(Csafe).Let us first show that the optimization problem (5.3) has a feasible so-
lution. At each prediction stage i ∈ {0, . . . , N − 1}, let us choose an input
u(i|t) ∈ Csafe(x(i|t)) then from (5.2),

x(i+ 1|t) = f̂(x(i|t),u(i|t)) ∈ F (x(i|t),u(i|t)).

Since x(0|t) = x(t) ∈ dom(Csafe), we have, according to the second item of
Definition 12, that for all i ∈ {0, . . . , N − 1}, x(i + 1|t) ∈ dom(Csafe). Then, itfollows from the first item of Definition 12, that for all i ∈ {0, . . . , N}, x(i|t) ∈
Xs and the optimization problem is feasible.

Then, by (5.3), we have that u(t) = u(0|t) ∈ Csafe(x(t)). From (4.15), we
get that

x(t+ 1) = f(x(t),u(t)) +w(t) ∈ F (x(t),u(t)).
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From the second item of Definition 12, it follows that x(t + 1) ∈ dom(Csafe).Then, starting from x(0) ∈ dom(CF ), we have by induction that for all t ∈ N,
x(t) ∈ dom(CF ) and (5.3) admits a feasible solution. Moreover, from the first
item of Definition 12, we get that for all t ∈ N, x(t) ∈ Xs.

5.2 . Piecewise multi-a�ne estimation

In this section, we demonstrate how to build a single-valued piecewise compat-
ible estimation of the system's dynamics using the class of multi-a�ne functions.
This class of functions was studied on n-dimensional intervals in [8]. We make
use of this study to build a piecewise multi-a�ne estimation compatible with the
over-approximation introduced in the previous section. The piecewise estimation
is de�ned on the same partition used to build the over-approximation.

5.2.1 . Piecewise multi-a�ne functions

Now, we introduce the class of piecewise multi-a�ne functions that we will use
to estimate the unknown function. In this section and to simplify the notations,
we will note Z = X × U and z = (x,u).

Definition 15. A multi-affine function g : Z → Rm, Z ⊆ Rn is a function of the
form

g(z1, . . . , zn) =
∑

i1,...,in∈{0,1}

ci1,...,in(z
1)i1 . . . (zn)in (5.4)

where ci1,...,in ∈ Rm for all i1, . . . , in ∈ {0, 1}

In the case where Z is an interval; Z = [z, z], z, z ∈ Rn, we denote the set of
vertices of this interval by V

Let ξi : {zi, zi} → {0, 1} for all i ∈ {1, . . . , n} denote the indicator function

ξi(z
i) = 0 ξi(z

i) = 1 ∀i ∈ {1, . . . , n}.

The following proposition states that any multi-a�ne function de�ned on an in-
terval can be written as a linear combination of the values of the function on the
vertices of this interval.

Proposition 16 (see [8, Proposition 1]). Let Z be an n-dimensional interval, g :
Z → Rm a multi-affine function such that, for all v = (v1, . . . , vn) ∈ V we have
g(v1, . . . , vn) = yv. Then, for all z = (z1, . . . , zn) ∈ Z the function g is uniquely
given by

g(z) =
∑
v∈V

n∏
i=1

(
zi − zi

zi − zi

)ξi(v
i)(

zi − zi

zi − zi

)1−ξi(v
i)

yv. (5.5)

As a consequence of Proposition 16, we can estimate a multi-a�ne function on
a given interval by estimating the function's values on the vertices of the interval.
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Lemma 2 (see [8, Lemma 2]). Let s ∈ Rm and d ∈ R. Then, sT g(z) ▷◁ d for
all z ∈ Z if and only if sT g(v) ▷◁ d, for all v ∈ V , where ▷◁ stands for any of
<,≤,=,≥, > .

Given a partition (Rq)q∈Q of the interval Z ⊆ Rn, we denote the vertices of
an interval Rq by Vq. A function g : Z → Rm is piecewise multi-a�ne if for all
q ∈ Q the function is multi-a�ne on Rq.

The following proposition establishes that if a piecewise multi-a�ne function
is continuous on the grid points of the partition, then it is continuous everywhere

Proposition 17. If a piecewise multi-affine function g : Z → Rm is continuous on
the grid points of the partition (Rq)q∈Q:

lim
z→v

g(z) = g(v) ∀q ∈ Q,v ∈ Vq

then g is continuous for all z ∈ Z.

Proof. To establish the continuity of piecewise multi-affine functions, it is suf-
ficient to study them on the shared facets of neighboring cells in the partition
because they are defined as multi-affine functions on the interior of those
cells; and multi-affine functions are continuous. The facets of an interval
Rq = [zq, zq], zq, zq ∈ Rn are given by

ERq,wj = Rq ∩ {z ∈ Rn | zj = wj}

for all wj ∈ {zj , zj}, j ∈ {1, . . . , n} which implies according to (5.4) that g(z1,
. . . , wj , . . . , zn) is also a multi-affine function.

We also have that the facets of the n-dimensional interval are (n − 1)-
dimensional intervals, which implies that the expression of the function g on
a given facet is of the form (5.5). Therefore, as the shared facets of two neigh-
boring intervals in the partition have the same vertices, then the limit of the
function g from the two neighboring intervals on the shared facet will be the
same.

Based on this result, we can see that to estimate a continuous piecewise multi-
a�ne function on a given partition, we only need to estimate its values on the
vertices of the partition.

5.2.2 . Compatible estimation

Now we will describe how to build a piecewise multi-a�ne estimation function
f̂ of the system's dynamics compatible with the over-approximation calculated in
the previous section.

Starting from the given �nite rectangular partitions (Xq)q∈Q, (Up)p∈P of X
and U , and Assumption 2, each transition triple (xk,uk,x

′
k), k ∈ K allows us to

write the following equation

x′
k = f̂q,p(xk,uk) + e(xk,uk)

97



where (q,p) = ϕ(xk,uk). The function f̂q,p : Xq × Up → X is the multi-a�ne
estimation of the true function on the interval Xq×Up, and the vector e(xk,uk)

represents the residuals of the estimation.
According to (5.5), we can rewrite f̂ as a linear combination of the estimated

function on the vertices of the interval ŷv1 , . . . , ŷv2nx+nu
, where v1, . . . ,v2nx+nu ∈

Vq,p are the vertices of the interval Xq × Up

f̂q,p(xk,uk) =
∑

v∈Vq,p

γv(xk,uk)ŷv.

where γv represent the coe�cients of the linear combination given by (5.5). There-
fore, we can write the estimation problem to calculate the piecewise multi-a�ne
estimation function f̂ from the data set in a matrix form.

We �rst denote the set of all vertices of the partition

V =
⋃

q∈Q,p∈P
Vq,p.

The set V is �nite and thus can be numbered V = {v1, . . . ,v|V|}. For every
j ∈ {1, . . . , nx}, We aggregate all variables representing the values of f̂ j on the
grid's points of the partition ( ŷjv, for all v ∈ V) in a single vector Φj ∈ RK , Then,
the regression problem for every component f̂ j is

χj = A · Φj +Ej (5.6)
where χj ∈ R|K| is a vector aggregating the j components of the data points'
transitions χj = (x′1

j , . . . , x′j|K|), Ej ∈ R|K| the vector of residuals, and A ∈
R|K|×|V| is the sparse coe�cients matrix. Each row of this matrix is built using
a data point and contains 2nx+nu entries which is the number of vertices of the
interval Xq × Up to which the data point belongs. The values of the entries at
each row of the matrix are the coe�cients of the multi-a�ne function de�ned on
this interval as seen in (5.5).

We use the least squares estimator to �nd the values of Φj . The cost function,
which is the sum of the squares of residuals, can be written as

S(Φj) = ET
j Ej = (χj −A · Φj)

T (χj −A · Φj)

= χT
j χj − 2 ΦT

j A
Tχj +ΦT

j A
TAΦj

Hence, the estimation problem can be expressed as a sparse quadratic optimization
problem.

Finally, let us de�ne the two vectors Φj ,Φj ∈ R|V|
. For all the component

i ∈ {1, . . . ,K}, we de�ne Φi
j ,Φ

i
j

Φi
j = max

q′,p′
{σj(q′,p′) | vi ∈ Vq′,p′} − dj

Φ
i
j = min

q′,p′
{σj(q′,p′) | vi ∈ Vq′,p′} − d

j
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where σj(q′,p′) and σj(q′,p′) are the lower and upper bounds of the over-
approximation of the true function on the interval Xq′ × Up′ respectively. The
two vectors Φj ,Φj resemble the minimum of over-approximation's upper bound
and the maximum of over-approximation's lower bound for all the cells that vi is
a vertex of.

The following proposition gives a su�cient condition so that the estimated
piecewise multi-a�ne function is compatible with the over-approximation built
using the same partition and assumptions.

Proposition 18. Given the finite rectangular partitions (Xq)q∈Q, (Up)p∈P of X
and U , and under Assumption 2, the piecewise multi-affine estimation function f̂
whose components are calculated using the following optimization problem, for
every j ∈ {1, . . . , nx},

min
Φj

ΦT
j A

TAΦj − 2 ΦT
j A

Tχj

subject to Φj ⪯ Φj ⪯ Φj

(5.7)

is compatible with the over-approximation F , i.e. f̂(x,u) + D ⊆ F (x,u), for all
x ∈ X , for all u ∈ U .

Proof. First, let us show that the optimization problem (5.7) has a feasible
solution. According to the results in Chapter 3 we have that ∀x ∈ X,u ∈
U, f(x,u) + D ⊆ F (x,u). Therefore, for every j ∈ {1, . . . , nx} the values ofthe f j on the grid’s points yjv = f j(v) , for all v ∈ Vq,p for all q ∈ Q,p ∈ P are
a feasible solution for the optimization problem (5.7).

From (5.7), we have that for a given cell Xq × Up, all the resulting val-
ues of the estimation are included in the over-approximation map, i.e. y⋆jv ≤
σj(q,p)− d

j and y⋆jv ≥ σj(q,p)− dj for all v ∈ Vq,p for all q ∈ Q,p ∈ P . This
implies according to Lemma2 (by choosing s = ej ) that f̂ j(x,u) ≤ σj(q,p)−dj

and f̂ j(x,u) ≥ σj(q,p) − dj for all x ∈ [xq,xq] for all u ∈ [up,up]. Hence,
f̂(x,u) +W ⊆ F (x,u), for all x ∈ X , for all u ∈ U .

Let us remark that ATA ∈ R|V|×|V| and ATχj ∈ R|V|, which makes the size
of the quadratic program (5.7) independent of the number of data points. These
products of matrices can be computed in linear time with respect to the number
of data points. Moreover, due to the sparsity of A ∈ R|K|×|V|, these computations
can be done e�ciently. It follows that large data sets can be handled in practice.

Remark 7. The estimated function f̂ is continuous and differentiable almost ev-
erywhere, making the MPC optimization problem in (5.3) solvable using subgradi-
ent descent methods.
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5.3 . Updating the estimation locally

In section 3.2, we discussed how to update the estimation locally point by point.
We introduce a stochastic gradient descent-like method to update the estimation
function. Similar to the over-approximation case we de�ne a window around the
data point where we update the estimation function. Let

Qw(q) = {q† ∈ Q | max(q− q
w
,0n) ⪯ q† ⪯ min(q+ qw,K

x), q
w
,qw ∈ Q},

Pw(p) = {p† ∈ P | max(p− p
w
,0n) ⪯ p† ⪯ min(p+ pw,K

u), p
w
,pw ∈ P},

de�ne the window where we want to update the over-approximation. Given a
data transition (xk,uk,x

′
k) ∈ D, such that (q,p)× = ϕ(xk,uk). We will update

the estimation function on the vertices of all the cells in the neighborhood that
contain the data point, q′ × p′ ∈ Qw(q)× Pw(p). We saw that for all q′ × p′ ∈
Qw(q)× Pw(p) we have

x′
k = f̂q′,p′(xk,uk) + e(xk,uk) (5.8)

Let us denote the set of all vertices of all the cells q′ × p′ ∈ Qw(q)× Pw(p)

by
V(k) =

⋃
q′×p′∈Qw(q)×Pw(p)

Vq′ .

For every j ∈ {1, . . . , nx}, We aggregate all the components of the function's
estimation on the vertices of the window in a single vector Ψj(k) ∈ RK , Then,
the set of equations in (5.8) can be written in the matrix form as follows

χj(k) = A(k) ·Ψj(k) +Ej(k)

where χj(k) ∈ Rnw is a vector containing nw replications of xk
′j , nw is the

number of cells in the window nw = |Qw(q)× Pw(p)| which we �x for all k ∈ K,
A(k) ∈ R|V|×nw is coe�cients matrix, and Ej(k) ∈ Rnw the vector of residuals.
Given the diagonal weights' matrix H. We want to minimize the sum of the
weighted square of errors

S(Ψj(k)) = ET
j (k) ·H ·Ej(k) = (χj(k)−A(k) ·Ψj(k))

T ·
H · (χj(k)−A(k) ·Ψj(k))

= χT
j (k) ·H · χj(k)− 2 (AT (k) ·H · χj(k))

T ·Ψj(k)+

ΨT
j (k) ·AT (k) ·H ·A(k) ·Ψj(k)

We will minimize S by implementing a stochastic gradient descent-like method

Ψj(k + 1) := Ψj(k)− η(k)∇S(Ψj(k))

Where

∇S(Φj(k)) = 2AT (k) ·H ·A(k) ·Ψj(k)− 2 AT (k) ·H · χj(k)
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To ensure that the estimation f̂ is compatible with the over-approximation, a
�nal step is carried out to project the estimation onto the over-approximation. For
all i ∈ {1, . . . , |V|}

Ψi
j(k + 1) := Pσ(q†,p†)⊖D (Ψj(k)) , for all q† × p† ∈ Qvi (5.9)

WhereQvi is the set of cells that contain vi, and σ(q†,p†) is the over-approximation
of the true function on the interval Xq† × Up† . The operator ⊖ is the Minkowski
di�erence, and D is the set of disturbances.

Proposition 19. Given the partitions (Xq)q∈Q, (Up)p∈P of X and U , the piece-
wise multi-affine estimation function f̂ updated locally as in (5.9) is compatible
with the over-approximation σ

Proof. Lemma 2 states that the value of multi-affine functions inside an in-
terval is a convex combination of their values on the vertices of that inter-
val. Therefore, according to (5.9) we have that for all q ∈ Q, p ∈ P , for all
(x,u) ∈ Xq × Up, f̂q,p(x,u) ∈ σ(q,p)⊖D or f̂q,p(x,u) +D ⊆ σ(q,p)

5.4 . Online update of model and safety controller

In this section, we will discuss how to update the safe set and the safety con-
troller using data points online. let us consider that we sampled a set of data D
from the system's dynamics. Then, we calculated, o�ine, the over-approximation
of the system's dynamics and a compatible estimation function as discussed previ-
ously. Using the over-approximation, we built a �nite-sate model and implemented
a discrete controller synthesis algorithm to �nd a safety controller Csafe and a
maximal control invariant set Xinv. According to Theorem 4, we can implement
an MPC scheme to achieve some control objectives while ensuring safety. Now,
while the system is running, we can collect data points and use them to update
the over-approximation and the estimation function. The update process should
be done in a way that ensures that

• The updated over-approximation is still a valid over-approximation of the
true function.

• The updated over-approximation should be used to update the maximal
control invariant set and the safety controller.

• The updated estimation is still compatible with the over-approximation.

• The process of updating the over-approximation, the estimation function
and the safety controller should be done online. Meaning that the entire
update process should be done between two consecutive sampling times,
while also leaving enough time to solve the MPC optimization problem.
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In previous sections, we discussed how to update the over-approximation and
the estimation function locally using the collected data points. Now we will discuss
how to use the updated over-approximation and estimation function to update the
maximal control invariant set and the safety controller. First, one can ask if and
when can we update the control invariant set and the safety controller. The answer
to this question lies in the idea that knowing the bounds of the derivatives of the
function allows us to calculate growth bounds for the function, and learn more
about the system's dynamics in the neighborhood of the data points. Therefore,
even if we are operating the system in the safe region found after the o�ine
phase, we can still learn more about the system's dynamics and update the control
invariant set and the safety controller by sampling data points on the boundary of
the safe set. Therefore, when sampling data points on the boundary of the safe set,
we can update the over-approximation in the neighborhood of the data point, which
will result in less conservative over-approximation and the possibility of �nding a
larger maximal control invariant set. Algorithm 4 shows how to update the control

Algorithm 4 Update the control invariant set and the safety controller
1: Input: σnew, f̂ , Xinv, Csafe2: Output: Xinv, Csafe3: for q ∈ Qw do
4: for p ∈ Pw do
5: if σnew(q,p) ⊆ Xinv then6: Xinv ← Xinv ∪ q
7: Csafe(q)← Csafe(q) ∪ p
8: end if
9: end for
10: end for

invariant set and the safety controller using the updated over-approximation σnew.
The resulting control invariant set is not necessarily maximal, but it is a superset
of the previous control invariant set, i.e. Xinv ⊇ Xold

inv. It is not maximal because
we only updated the control invariant set in the neighborhood of the data points,
and to �nd the maximal control invariant set, we need to go through all the cells
in the partition and check if any other cells became safe after the update. The
reason why we only update the control invariant set in the neighborhood of the
data points is that we want to update the control invariant set online, and going
through all the cells in the partition is computationally expensive.

5.5 . Numerical examples

In this section, we will show some numerical examples to demonstrate the ef-
fectiveness of the proposed method. We �rst continue with the example introduced
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(a) The single-valued estima-tion of the dynamics of ẋ (ˆ̇x)
(b) The difference between thetrue function and the estima-tion on the grid’s points

Figure 5.1: Estimation with piecewise multi-affine functions
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Figure 5.2: Trajectory of the vehicle

in Chapter 3 where we found the maximal control invariant set and the safety con-
troller for a bicycle model. Now, we will show how to use the proposed method
to �nd a feasible trajectory for a bicycle model to reach a target position while
avoiding an obstacle. In the second example, we consider also a path-planning
problem for a bicycle model. However, the vehicle is capable of rotating in all
directions, and we want to update the safety controller online.

5.5.1 . Path planning o�ine - Continued

In 4.5.2 we build the over-approximation of the system's dynamics of a bicycle
model and found the maximum safe control input for each state. Now we will use
this information to build a path planner for the bicycle model. We will �nd an
optimal path from a given initial state to a given goal state by applying the safe
MPC scheme introduced in this chapter.

that, we calculated the piecewise multi-a�ne estimation of the dynamics ac-
cording to the algorithm introduced in Section 5.2. Figure 5.1 shows the result
of estimation for the �rst component of the dynamical model and the di�erence
between the true function and the estimation on the grid's points. The execution
time to �nd the piecewise multi-a�ne estimation is test = 31.48 s.

Finally, the calculated estimation and safety controller are used to �nd a feasible
trajectory to reach the target position while avoiding the obstacle. We chose a
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starting position x0 = (0.3, 0.3) and the target xf = (4.5, 0.5). The cost function

J =
N∑
i=1

||x(i|t)− xf || (5.10)
was chosen to drive the vehicle to the target. The trajectory is shown in Figure 5.2,
where it can be seen that the vehicle reached the target position while avoiding
the obstacle.
Although we chose a simple sum-of-distances cost function (5.10), we were able to
reach the goal while avoiding the obstacle.

5.5.2 . Path planning online

In this example, we present a path-planning problem where a mobile robot (a
vehicle) needs to navigate a given environment and reach four distinct regions while
avoiding obstacles in its way. We sampled a set of data from the vehicle dynamics
at low speed. We found the set of safe controllers and the estimation of dynamics.
We then ran the system at those settings and collected new data points online.
We chose a cost function that favors moving as fast as possible in order to learn
the dynamics of the robot at high speed. We do all of that while always ensuring
safety. We consider the same unicycle model de�ned in the previous example.

We chose for the states, inputs, and disturbance intervals the following θ ∈
[−π, π], δ ∈ [−π

4 ,
π
4 ], v ∈ (0, 2],w ∈ [−0.05, 0.05]× [−0.05, 0.05]× [−0.05, 0.05],

and partitioned those intervals uniformly into 40 cells each.
To �nd the over-approximation, we sampled |K| = 104 data transition. Only low
speeds from the interval v ∈ (0, 1] were chosen. We chose a window of size
11× 11. The average time to update the over-approximation of each component
was t = 1.7 ms. The learned over-approximation of the dynamics can be seen in
Figure 5.3. Although we sampled data points with speeds v ≤ 1, the proposed
technique allows for �nding over-approximation for speeds v > 1, albeit more
conservative, as it can be seen in Figure 5.3. The environment where the robot
operates, which can be seen in Figure 5.6, is a 5×5 m area. It was partitioned into
50 × 50 cells. The calculated over-approximation was used to �nd the maximal
control invariant, which can be seen in Figure 5.4, and the set of safe controllers
at each cell. We use the Euler method for discretizing with a discretization time
dT = 0.2 s. The time it took to �nd the �nite-state model and calculate the safety
controller was t = 424 s. Also, compatible estimations were calculated using the
data collected o�ine, as can be seen from Figure 5.5a. The average time to update
the estimation of each component was t = 80 ms.
Everything till now was done o�ine. We then ran the experiment, which consisted
of making the robot visit the four colored areas in the order (red, yellow, green,
blue) as fast as possible. This was done using the cost function J =

∑N
i=1 ||x(i|t)−

xf ||+ 1
v(i|t) , where xf is the center of the colored areas, and it is changed to next

destination the moment the robot touches a given area. We collected the data
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(a) The over-approximation ofthe dynamics of ẋ (b) The over-approximation ofthe dynamics of ẏ

(c) The over-approximation ofthe dynamics of θ̇
Figure 5.3: Over-approximation of the bicycle dynamics. The true un-known functions are shown in solid
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Figure 5.4: Caption
online and updated the models, as can be seen in Figure 5.5. We were able to
learn the dynamics of the system for higher speed that we did not sample for the
o�ine stage. Most importantly, we did all of that while always ensuring safety.

5.6 . Conclusion

In this chapter, we proposed an approach to learning-based MPC for safety-
critical systems. The approach is based on �nding two models of the system's
dynamics, an over-approximation, and a compatible estimation function. The over-
approximation is used to �nd a maximal control invariant set and a safety controller.
The estimation function is used to solve the MPC optimization problem and enforce
performance objectives. The proposed estimation is piecewise multi-a�ne. We
chose this type of estimation because it is compatible with the over-approximation.
Moreover, it is continuous and di�erentiable almost everywhere, which makes the
MPC optimization problem solvable using subgradient descent methods. We also
presented a method to update the estimation function locally using the collected
data points. Finally, we showed how to update the control invariant set and the
safety controller using the updated over-approximation and estimation function.
We demonstrated the e�ectiveness of the proposed method using two numerical
examples.
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(a) The single-valued estima-
tion of the dynamics of θ̇ ( ˆ̇θ)from the data collected offline

(b) The single-valued estima-
tion of the dynamics of θ̇ ( ˆ̇θ) Af-ter it was updated using datapoints collected online

Figure 5.5: Estimation with piecewise multi-affine functions
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Figure 5.6: The trajectory of the mobile robot visiting all four areas tentimes
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6 - Conclusion and Future Work

Conclusions

In this thesis, we have addressed the problem of learning models of nonlinear
dynamical systems from data that are suitable for controller synthesis and safe to
implement. We have proposed novel data-driven methods for over-approximating
the behavior of monotone systems and systems with bounded derivative functions.
We have also shown how to use these over-approximations to construct �nite-
state abstractions of the systems, which can be used to synthesize controllers that
satisfy safety and reachability speci�cations. Furthermore, we have introduced a
two-model approach to safe learning, where we use a discrete model to synthesize
a safety controller and a compatible estimation of the dynamics to achieve the
desired performance.

A method to learn data-driven over-approximations of monotone maps from
input-output data was introduced in Chapter 2. We have shown that the resulting
map is the tightest map that is consistent with the data. The resulting map is
piecewise interval-valued and monotone. We also introduced a piecewise interval-
valued map on a prede�ned partition of the input space. This map is the tightest
map that is consistent with the data on the prede�ned partition. This map o�ers
a trade-o� between tightness from one side and easiness of calculation and storage
size from the other side. We have also shown how to calculate this map e�ciently.

In Chapter 3 we have extended the method of Chapter 2 to learn data-driven
over-approximations of maps described with bounded derivative functions plus an
interval of disturbances from input-output data. We have presented several tech-
niques to compute such an over-approximation, such as transforming the data
into a monotone case or �nding growth cones that over-approximate the unknown
map. The calculated over-approximations are also piecewise interval-valued. We
demonstrated how to obtain those over-approximations e�ciently. We have also
discussed how to update the over-approximation locally when new data points are
added. An algorithm to calculate the bounds of the derivative of the unknown
function was also discussed.

Using the over-approximations of the unknown maps, we have shown in Chapter
4 how to construct �nite-state abstractions of the systems, which can be then used
to synthesize controllers that can satisfy complex speci�cations. In this chapter,
we introduced the needed background on systems relations, abstraction, symbolic
models, and discrete controller synthesis. Theorem 3 was introduced to show
how to construct a data-driven symbolic model out of the interval-valued over-
approximation of the unknown map. Moreover, we showed that in the case where
the studied system is completely unknown, working with the data-driven symbolic
model is equivalent to working with the data-driven over-approximation of the
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unknown map.
In Chapter 5, we introduced a two-model approach to safe learning. The �rst

model is a discrete model that is used to synthesize a safety controller. Thus, en-
suring that the learned system is safe. The second model is a compatible estimation
of the dynamics, which is used to achieve desired performance. The method relies
on implementing a learning-based MPC scheme where the safety controller synthe-
sized from the discrete model is used as a constraint on the optimization problem,
and the compatible estimation of the dynamics is used to predict the future behav-
ior of the system, and subsequently to calculate and minimize the cost function.
We show how to learn a compatible estimation of the dynamics of the system from
data, which is a piecewise multi-a�ne estimation of the dynamics of the system.
We have also presented a method to update the estimation locally when new data
points are added. Finally, we have shown how to use the methods of updating the
over-approximation and the compatible estimation locally to update the models
of the system online when the system is running. The updated models can in-
crease the set of states where we can guarantee the safety of the system, broaden
the set of safe actions, and improve the performance of the Learning-based MPC
controller.

Future Work

Our research opens up several directions for future work, such as:

• We have shown how to learn data-driven over-approximations of monotone
systems and systems with bounded derivative functions on a prede�ned par-
tition of the space. More work is needed to study how to choose the partition
of the space in order to obtain the best over-approximation.

• Exploring other types of speci�cations and objectives for controller synthesis,
such as temporal logic, robustness, or optimality. Also, we should try to
apply our methods to real-world problems and scenarios, such as autonomous
driving, robotics, or smart grids.

• Study more thoroughly the e�ects of hyperparameters on the performance
of the algorithms. Like the size of the window when we update the models
locally, the learning rate of the gradient descent algorithm, etc.

• Investigate how to explore the state space of the system in order to obtain
the best data points to learn the models of the system. How can we visit all
the state space and sample the space densely? We know that all introduced
methods improve with the increase in the number of data points. Finally,
we should �nd a way to balance between exploring the state space and
exploiting the data that we already have (the trade-o� between exploration
and exploitation).
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• Adapt the learned model to the given speci�cations and objectives. For
example, the case of monotone systems with lower(upper)-closed speci�ca-
tions, or any other scenario where we may only need to learn a sparse model
of the system.

• Investigate the possibility of learning data-driven over-approximations and
compatible estimations of systems with more general dynamics, such as
hybrid systems, or systems with more general nonlinear dynamics.

Finally, we hope that our work will inspire further research on data-driven
control and safe learning, and will provide useful tools and techniques for designing
reliable and e�cient controllers for complex systems.
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Synthèse

Dans le domaine du contrôle des systèmes, les méthodes traditionnelles de
contrôle des systèmes non linéaires reposent principalement sur l'utilisation de
modèles mathématiques précis. Ces modèles servent de colonne vertébrale au
processus de contrôle, fournissant le cadre nécessaire pour comprendre et prédire
le comportement du système. Cependant, l'obtention de ces modèles peut être
un dé� de taille, en particulier dans les applications réelles où la complexité et
l'imprévisibilité du système peuvent rendre extrêmement di�cile, voire impossible,
la dérivation d'un modèle précis.

Pour contourner ce problème, l'avènement des techniques de contrôle basées
sur les données est apparu comme une alternative prometteuse aux méthodologies
de contrôle traditionnelles. Ces techniques innovantes exploitent la puissance des
données d'entrée-sortie pour apprendre directement les politiques de contrôle à
partir du comportement du système. Cette approche contourne le besoin d'un
modèle mathématique précis, en tirant plutôt des informations directement des
réponses du système à diverses entrées.

Cependant, bien que les techniques de contrôle basées sur les données o�rent
des avantages signi�catifs, elles introduisent également de nouveaux dé�s. L'une
des préoccupations les plus critiques dans le contrôle basé sur les données est la
sûreté. Des modèles erronés, dérivés de données défectueuses ou incomplètes, peu-
vent entraîner des conséquences catastrophiques, ce qui rend impératif de garantir
l'exactitude et la �abilité des modèles appris.

En réponse à ces dé�s, ce travail propose une nouvelle approche basée sur les
données pour contrôler les systèmes non linéaires. Cette approche met un accent
particulier sur la sûreté pendant le processus d'apprentissage, garantissant que les
politiques de contrôle dérivées ne compromettent pas la stabilité ou l'intégrité du
système.

L'approche proposée emploie des sur-approximations de la dynamique du sys-
tème pour fournir des représentations conservatrices mais sûres du comportement
du système. Ces sur-approximations sont apprises à partir des données d'entrée-
sortie, capturant les réponses du système à diverses entrées sous une forme qui
peut être facilement analysée et utilisée. Ces représentations apprises sont ensuite
utilisées pour construire des abstractions à états �nis, qui distillent la dynamique
essentielle du système sous une forme compacte et analysable.

Cette abstraction est ensuite utilisée pour la synthèse du contrôleur. Le con-
trôleur synthétisé est conçu pour maintenir les propriétés et spéci�cations souhaitées
tout au long du fonctionnement du système, garantissant que le système se com-
porte comme prévu dans un large éventail de conditions.

Un aspect unique de l'approche proposée est l'introduction d'une stratégie à
deux modèles. Dans cette stratégie, des modèles distincts sont construits pour la
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véri�cation de la sûreté et l'optimisation des performances. Le modèle de véri�-
cation de la sûreté est utilisé pour garantir que le contrôleur appris respecte les
contraintes de sûreté, tandis que le modèle d'optimisation des performances se
concentre sur l'atteinte des mesures de performance souhaitées. Cette sépara-
tion des préoccupations garantit que la sûreté est priorisée sans compromettre les
performances.

L'approche proposée est rigoureusement analysée pour une large classe de sys-
tèmes non linéaires, y compris les systèmes monotones et les systèmes avec des
fonctions dérivées bornées. Ces analyses fournissent des garanties théoriques pour
la sûreté des contrôleurs appris et établissent la solidité de la méthodologie de
conception proposée.

L'e�cacité des méthodes proposées est démontrée par une validation expéri-
mentale approfondie sur divers systèmes non linéaires réels, notamment le contrôle
de vitesse, la plani�cation de trajectoires et les systèmes chaotiques (système de
Lorenz). Ces expériences démontrent systématiquement la capacité de l'approche
proposée à atteindre des performances satisfaisantes tout en maintenant une stricte
adhésion aux contraintes de sûreté.
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