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1. Chapter 1: Introduction 

1.1. Context 

In the context of increasingly changing climate conditions, understanding the role of 

terrestrial ecosystems in terms of exchanges of carbon, water, and energy is paramount in order 

to fill in the knowledge gap on climatic interactions between the biosphere and the atmosphere. 

The terrestrial ecosystems are one of the main carbon pools (among others pools: the ocean, the 

lithosphere, and the atmosphere carbon pools). It is complex and can store between 25% and 

30% of the global anthropogenic carbon emissions (Wang et al., 2017). In addition, terrestrial 

ecosystems drive several ecosystem functions such as photosynthesis, evapotranspiration, 

respiration, and soil processes (He et al. 2013; Ryu et al., 2019; Wang et al., 2021; Hall et al., 

2012). The Gross Primary Production (GPP) is the total amount of carbon dioxide (CO2) taken 

up by the vegetation through photosynthesis per unit area and time. GPP represents the largest 

global CO2 flux between the atmosphere and the terrestrial ecosystems and plays a crucial role 

in intra-annual and inter-annual variations of atmospheric CO2 concentration (Friedlingstein et 

al., 2019; Cai and Prentice, 2020). It has also been considered as a key indicator in sustaining 

the global food and energy supplies (He et al., 2013). Therefore, an accurate quantification of 

GPP and its spatial and temporal variations is not only a crucial prerequisite for understanding 

atmosphere-biosphere interactions and ecosystem functioning and services, but also for 

assessing ecosystem responses and adaptations to climate change (Ryu et al. 2019; Xiao et al. 

2019). 

To date, the study of the terrestrial ecosystem’s role as sink or source of atmospheric 

CO2 remains difficult because obtaining direct measurements of GPP at a large scale is 

impossible (Baldocchi, 2014). The Net Ecosystem Exchange (NEE) of CO2 between the 

terrestrial ecosystems and the atmosphere directly measured by the Eddy Covariance (EC) flux 

sites can be used to indirectly quantify GPP at the canopy scale, but also for calibrating and 

validating GPP models (Falge et al., 2002; Baldocchi, 2014; Baldocchi et al., 2018 ; Ryu et al., 

2019 ; Jung et al., 2020; Burba, 2013). However, the EC techniques are applicable only within 

limited spatial range due to their restricted spatial coverage and distribution across ecosystems, 

notably in key areas such as Africa and South America, where GPP estimations are needed 

(Mengistu et al., 2021). GPP can also be estimated using process-based models and data-driven 

methods (Pei et al. 2022; Liao et al., 2023). Process-based models fully simulate ecological and 
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physiological processes of ecosystems (Beer et al. 2010). They are heavily based on 

assumptions and require large amounts of data, which are difficult to get at the ecosystem scale 

for their calibration and validation. For instance, remote sensing coupled with process-based 

models have been widely used for estimating GPP (Running et al., 2004; Pei et al. 2022). Data-

driven models instead depend on statistical relations between in-situ carbon flux observations 

and remote sensing, pedological and meteorological data to quantify GPP. Statistical models 

usually reach high spatial and temporal predictability of GPP, but they lack a rigorous 

theoretical assumption on the underlying processes (Pierrat et al., 2022; Balde et al., 2023). The 

representativeness of these models depends on the data used for training and they are unadapted 

for future predictions. For instance, FLUXCOM (Jung et al. 2019) is a data-driven GPP 

estimation upscaled from tower observation sites to global scale.  

Optical Remote Sensing (RS) of vegetation is  based on the measurement of reflected or 

emitted radiance by plants canopies, which are affected by their biochemical, structural , and 

physiological properties (Ustin and Middleton, 2021). The fraction of reflected, transmitted, 

absorbed, and emitted radiation by canopies are optical signals that are directly related to plant 

structural, biochemical, and physiological activities. The main applications of RS in agriculture 

and terrestrial ecology include crop phenotyping (Wen et al., 2023), agricultural land use 

mapping and monitoring (Leroux et al., 2018), crop health and growth monitoring (Tunca et al., 

2018; Weiss et al., 2020), crop yield forecasting (Tunca et al., 2018; Elders et al., 2022; Sarr 

and Sultan, 2023), evaluating ecosystem services related to soil and water resources or 

biodiversity loss (Bonannella et al., 2022 ; Farella et al., 2022), and notably monitoring 

vegetation photosynthesis (Zhao et al., 2022; Xiao et al., 2021). For monitoring vegetation 

photosynthesis and its spatial and temporal dynamics at the ecosystem scale, optical vegetation 

indices (VIs) derived from a combination of vegetation spectral signals at different wavelengths 

have been used (Ustin and Middleton, 2021). These VIs include the Normalized Difference 

Vegetation Index (NDVI) (Tucker, 1979), the Enhanced Vegetation Index (EVI) (Huete et al., 

2002), more recently the near-infrared reflectance of vegetation index (NIRv) (Badgley et al., 

2017), and the modified red-edge Normalized Difference Index (mNDI) (Hmimina et al., 2014), 

which have been broadly and successfully used to estimate biophysical, phenological, and 

biochemical variables, including Leaf Area Index (LAI), fraction of Absorbed 

Photosynthetically Active Radiation (fAPAR), leaf chlorophyll content, etc., (Campbell et al., 

2019; Zeng et al., 2022). The LAI and fAPAR mainly characterize canopy structure and 

vegetation biochemical properties, which are important for understanding energy and matter 
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allocations within the terrestrial ecosystems (Xiao et al., 2019; Lee et al., 2023). Therefore, VIs 

have been widely used in modelling crop yield and estimating canopy biophysical, 

phenological, and biochemical variables and GPP at the ecosystem scale (Zhang et al., 2006; 

Zhang et al., 2016; Wang et al., 2021). However, GPP estimates based on VIs as inputs are 

limited in dense canopies because VIs saturate. They are also less sensitive to variations in 

photosynthetic status resulting from physiological responses induced by rapid changes in 

abiotic conditions (Pabon-Moreno et al., 2022; Rhoul, 2018). Remote sensing also provides 

access to variables which are potentially related to canopy functioning such as the 

Photochemical Reflectance Index (PRI) and Sun-Induced chlorophyll Fluorescence (SIF). 

PRI is a reflectance-based vegetation index dependent on changes in reflectance in the 

green part of the spectrum (Gamon et al., 1992). PRI is defined as the relative variation of 

reflectance at 531 nm compared to reflectance at 570 nm. The change in reflectance at 531 nm 

has been linked with two mechanisms involved in the energy heat dissipation of the light 

absorbed by the photosynthetic apparatus. First, an increase of the pH gradient across the 

thylakoid membrane directly induces rapid changes in the aggregation state of the chlorophyll 

protein complexes of the antennae that causes changes in absorbance centred around 531-535 

nm range (Louis et al., 2005). Second, the change in the state of epoxidation of xanthophylls 

and their accumulation is accompanied by changes in absorbance centred around the 505-515 

nm range (Ruban 2016). These absorbance variations induce a variation in reflectance in a wide 

band around 531 nm (Hmimina et al., 2014). Further, PRI has been used as a good indicator of 

stomatal conductance, excess heat dissipation or  Non-Photochemical Quenching (NPQ) 

(Hmimina et al. 2015; Gitelson et al., 2017; Yang et al., 2020), and more recently as a tool for 

improving GPP prediction across vegetation types (Soudani et al. 2014;Wang et al., 2020).  

However, PRI  diurnal and seasonal variations and its spatial and temporal dynamics are 

sensitive to canopy structure, sun-canopy geometry, and chlorophyll content changes (Hmimina 

et al., 2014; Merlier et al., 2017). These factors can lead to misinterpretation of PRI changes as 

being due to vegetation functioning (Gamon and Berry, 2012). Therefore, the foremost 

challenge to date is to find a remote sensing signal that can provide direct monitoring of 

physiological vegetation responses at the ecosystem scale. 

Since the 1980s, vegetation Chlorophyll Fluorescence (ChlF) has been widely used to 

provide an effective, non-destructive, and direct proxy to monitor the changes in vegetation 

physiological state at leaf scale (Maxwell and Johnson, 2000; Porcar-Castell et al., 2014). 
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Indeed, the light energy absorbed by the vegetation chlorophyll pigments has three possible 

fates: photosynthesis, heat dissipation, or chlorophyll fluorescence emission. These three 

pathways compete with each other and their relations depend on the light intensity and other 

environmental conditions. For instance, Pulse Amplitude Modulation (PAM) and MoniPAM 

instruments allow the measurements of the steady-state fluorescence (Fs), the dark-adapted 

fluorescence (Fo) and the maximal fluorescence (dark-adapted: Fm, light-adapted: Fm’). The 

combination of these fluorescence parameters have been used to evaluate vegetation 

photochemistry quantum yield, non-photochemical quantum yield, and  fluorescence quantum 

yield at the leaf scale (Baker, 2008; Yang et al., 2021). Therefore, variations in vegetation 

functioning with regard to environmental conditions can be detected through chlorophyll 

fluorescence changes because of the tight relations that exist between photosynthetic electron 

transport rate and chlorophyll fluorescence, and thus to carbon assimilation. However, the 

deployment of such measurements at the ecosystem scale are not fully feasible yet for technical 

limitations (Ounis et al., 2001).  

RS of Sun-Induced chlorophyll Fluorescence (SIF) is a fast and growing field in 

terrestrial ecosystem science studies. SIF has emerged as a strong proxy for monitoring global 

vegetation photosynthesis activity (Frankenberg et al. 2011; Joiner et al., 2011; Guanter et al., 

2014), spanning its structural and functional activities from canopy to ecosystem scales 

(Dechant et al., 2020; Mohammed et al., 2019; Sun et al., 2023). Measurements and predictions 

of SIF across different vegetation types, spatial and temporal scales, and from diverse RS 

platforms have considerably improved our understanding of what drives SIF and have opened 

up new opportunities to quantify, monitor, and model vegetation photosynthesis activities at the 

canopy level and beyond (Sun et al. 2017; Mohammed et al., 2019; Sun et al. 2023). However, 

previous studies showed that the link between GPP and SIF considerably depend on:  the spatial 

and temporal scales (Mohammed et al., 2019; Wood et al., 2017;  Yang et al. 2020),  the 

vegetation types (Wang et al. 2020; Zhang et al., 2018;  Kim et al., 2021; Balde et al., 2023) the 

photosynthetic pathways (Verma et al., 2017; Liu et al., 2017; He et al., 2020; Wu et al., 2022), 

the canopy structure and phenology (Yang et al., 2019; Dechant et al., 2020; Tagliabue et al., 

2019), and also on the environmental conditions (Paul-Limoges et al., 2018 ; Magney et al., 

2019; Hornero et al., 2021). Thus, it can be seen that at infra-daily timescales, which are 

necessary to characterize rapid changes in GPP due to changes in abiotic conditions, the 

relationship between GPP and SIF is not  linear (Marrs et al., 2020; Kim et al., 2021). For 

instance, some studies report that the correlation between GPP and SIF is curvilinear or 
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hyperbolic at the infra-daily timescales (Damm et al., 2015; Paul-Limoges et al., 2018; Chen et 

al., 2020; Kim et al., 2021). This non-linearity is difficult to detect on broad timescales because 

of spatial and temporal aggregation that smooth out the effects of variations in canopy structure 

(LAI, angular leaf distribution, etc.), in canopy optical properties, and environmental conditions 

(Li et al., 2018; Dannenberg et al., 2020; Li et al., 2020; Jonard et al., 2020). Therefore, the 

mechanisms underlying the relation between GPP and SIF are not yet fully understood. 

1.2. Research gaps and objectives 

As previously mentioned, the inconclusive findings about GPP-SIF relations (linear and 

non-linear correlations) raise concerns to better understand the relationships between GPP, SIF, 

and the vegetation physiological state under changing environmental conditions and across 

different vegetation types. Therefore, we are still wondering about, on one hand, what are the 

links between SIF and GPP across vegetation types and what are the factors and the 

mechanisms underlying the temporal and spatial variations of SIF signal, and on the other 

hand, how can we decouple physiological and structural information contained in SIF 

signal measured at canopy scale. Over short periods (seconds, infra-daily), the factors 

affecting the canopy SIF signal are more dynamic. As a result, variations in chlorophyll 

fluorescence yield can be largely attributed to variations in Photochemical Quenching (PQ) or 

Non-Photochemical Quenching (NPQ). At low light, most of the photons absorbed are used for 

photosynthesis, thus increasing its efficiency. However, at high light intensity, biochemical 

carbon assimilation reactions and electron transport chain can saturate, leading to a reallocation 

of the excess energy into SIF emission and heat dissipation through NPQ (Porcar-Castell et al., 

2014; Porcar-Castell et al., 2021). This behavior can modify the links between SIF and GPP, 

especially during abiotic stress conditions (droughts, heatwaves, etc.) (Martini et al., 2022). 

Over long periods (several days or months), structural components, canopy biochemical 

properties, sun-canopy-sensor geometry, and abiotic conditions are changing. These changes 

may affect the relations between GPP and SIF, leading to misunderstandings of their 

relationships. Therefore, to better understand these relationships at different spatial and 

temporal scales and the effects of the multiple factors on SIF signals, it is important to have 

reliable ChlF measurements at canopy scale using both passive techniques and active 

measurements, as the latter are currently the only onnes capable of providing the basis to study 

the relationships between fluorescence yield and photosynthetic functioning.  
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Active chlorophyll fluorescence measurements provide direct access to the vegetation 

physiological status at leaf and canopy scales. However, in-situ measurements of SIF at canopy 

scale are not only essential to understand the variations in fluorescence at infra-daily timescales 

and to study the effects of canopy structure and sun-canopy geometry on SIF signal, but are 

also essential to constraint the dynamics of SIF with GPP. In addition, these measurements can 

also serve as a "bridge" between EC, airborne, and satellite data (integration and validation of 

SIF signals in time and space) (Zhang et al., 2021). However, while the combination of active 

and passive in-situ measurements can allow us to study the relationship between chlorophyll 

fluorescence and photosynthesis at different timescales (from seconds to season), they do not 

allow to quantify the spatial variability of the link between SIF and GPP. Therefore, the use of 

readily accessible satellite timeseries data such as TROPOMI SIF and MODIS Aqua and Terra 

spectral reflectance, constitutes a complement to explore the synergistic use of chlorophyll 

fluorescence and reflectance to predict the spatial and temporal dynamics of GPP across 

different vegetation types and abiotic conditions. These different approaches are crucial for 

characterizing and understanding the radiative transfer of chlorophyll fluorescence, the 

relationship between chlorophyll fluorescence and photosynthesis from leaf-to-canopy scale 

and beyond. 

The main objectives of this thesis are to understand what are the links between GPP and 

SIF across different vegetation types, how chlorophyll fluorescence yield is correlated to active 

chlorophyll fluorescence yield, and how canopy structure and sun-canopy geometry properties 

affect SIF signal and to provide a method to correct these structural effects on SIF signal using 

active chlorophyll fluorescence measurements. In order to do that a large variety of observations 

were used, including satellite TROPOMI SIF, MODIS Terra and Aqua reflectance, ground-

based Integrated Carbon Observation System (ICOS) CO2 flux sites, in-situ chlorophyll 

fluorescence measurements using both active and passive methods, and data-driven modelling 

methods. Specifically, the following questions are risen: 

1. What is the strength and the nature of the links between SIF and GPP 

across diverse vegetation types and can we predict GPP using synergistic uses of 

chlorophyll fluorescence and reflectance (Chapter 3)? 

2. How do canopy structure and sun-canopy-sensor geometry affect SIF and 

how to correct them and what is the relationship between SIF yield and active 

chlorophyll fluorescence observations (Chapter 4)? 



17 

BALDE Hamadou – Thèse de doctorat – 2023 

                                                                                                                Chapter 1. Introduction 

3. How do abiotic variables influence the SIF and GPP dynamics and their 

relationships (Chapter 5)? 

1.3. Thesis outlines 

Spatial and temporal variations in SIF and its relationship to GPP as a function of 

functional vegetation types still remain a poorly documented area of research. To make our 

contribution to this scientific question, we first presented in Chapter 2 an introduction to remote 

sensing of vegetation functioning and in Chapter 3 the strength of the links between the spatial 

measurements of SIF (product TROPOMI SIF) and the GPP resulting from ground-based 

measurements at forty ICOS flux sites spanning different Plant Functional Types (PFTs). In this 

chapter, we also highlighted the synergy between SIF, spectral reflectance (MODIS Aqua and 

Terra) and Vegetation Indices (VIs), including PRI, NDVI and NIRv for GPP predictions using 

a data-driven Random Forest (FR) method.  

The conclusions of Chapter 3 allowed us to show that it is difficult to determine the most 

important factors and mechanisms explaining the wide variability in the relationship between 

GPP and SIF at the spatial and temporal scale of TROPOMI SIF (Sentinel-5P mission, daily 5-

7 km / 3.5-14 km pixel size). In order to understand changes in the relationships between GPP 

and SIF regarding the timescale, we examined these relations at infra-daily and seasonal 

timescales. To achieve this, it was essential to simultaneously measure the temporal dynamics 

of environmental conditions (total solar radiation, diffuse/direct radiation, temperature, soil 

water content, vapor pressure deficit), biochemical and canopy structure properties (canopy 

temperature, chlorophyll content, and leaf area index), and canopy photosynthesis (GPP) at the 

timescales mentioned above. We have carried out continuous and simultaneous measurements 

at canopy scale of ChlF based on two techniques, one passive (SIF) and the other active (FyieldLIF, 

using modulated excitation), GPP, and environmental variables in Fontainebleau-Barbeau in 

2022. These data allow us to directly analyse SIF and GPP relationships at different timescales 

and under different environmental conditions. 

In Chapter 4, based on top-of-canopy measurements above a mature deciduous forest in 

Fontainebleau-Barbeau, including, reflectance (R), SIF, SIF normalized by incoming 

Photosynthetically Active Radiation (PAR) (SIFy), FyieldLIF, and the ratio between SIFy and 

FyieldLIF (named Φk), we studied the effects of canopy structure and shadows on the diurnal and 
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seasonal dynamics of SIF and proposed a method to predict FyieldLIF and Φk. In this chapter, we 

mainly highlighted the complexity of interpreting diurnal and seasonal dynamics of SIF in forest 

canopies because SIF measurements are highly dependent on the complex interactions between 

the structure and biochemical properties of the canopy, the illumination (SZA and SAA) and 

the light conditions (ratio of diffuse to direct solar radiation).  

Far-red SIF is increasingly used as a remote and proximal-sensing tool, as it is able to 

track vegetation GPP across different ecosystems. However, the use of SIF to probe variations 

in GPP in forests is challenged by confounding factors such as canopy physiological, canopy 

structural and canopy biochemical properties, along with environmental conditions. In Chapter 

5, we examined SIF and GPP seasonal variations and how canopy structure and environmental 

conditions affected GPP-SIF relationship in the Fontainebleau-Barbeau deciduous forest. To do 

so, we combined canopy scale SIF measurements, reflectance and VIs, environmental variables 

measurements, and GPP. In summary, this study provides insights into understanding the 

complex drivers of the relationship between GPP and SIF at different temporal resolutions and 

under different environmental conditions in a deciduous stand. Lastly, in Chapter 6, we 

synthesized and discussed our findings and proposed some outlooks for future research.
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2. Chapter 2: Introduction to optical remote sensing 

of vegetation functioning 

2.1. Spectral reflectance features and vegetation indices 

RS has a high potential for vegetation characterization because it allows to characterize 

the properties and features of the earth surface using: 1) passive sensors based on solar radiation 

as light source (within 0.4-2.5 µm) with the emission mainly in thermal infrared bands, and 2) 

active systems such as SAR (Synthetic Aperture Radars, specifically in the microwave domain) 

or Light Detection and Ranging (LIDAR) (Ustin and Middleton, 2021; Zeng et al., 2022). The 

earth observation in the optical domain from passive satellite sensors such as multispectral and 

hyperspectral sensors, have a good potential for monitoring and mapping canopy structure and 

vegetation biochemical properties (Zeng et al., 2022; Grotti et al., 2020; Song et al., 2021). 

These sensors measure the fraction of the solar radiation that is reflected from the canopies. The 

measured radiance is normalized to reflectance using concomitant measurements of solar 

irradiance. The potential of optical remote sensing for applications on vegetation functioning is 

based on: firstly, satellite-based optical sensors that can track the optical reflectance of the 

vegetation with a high spatial and temporal resolutions, which enable a spatially continuous 

monitoring of vegetation canopies through time and space; secondly, the reflectance of 

vegetation canopies is directly linked to structural and biochemical variables (important for 

understanding ecosystem functions) (Ustin and Middleton, 2021). Optical data for vegetation 

monitoring is restricted to 0.4-2.5 µm (Figure 2.1). Below 0.4 µm solar irradiance (ultraviolet 

radiation) is strongly absorbed by ozone, whereas above 2.5 µm reflected radiance is hardly 

detectable (very low reflected radiation of natural surfaces above 2.5 µm). Vegetation presents 

specific reflectance patterns from 0.4 to 2.5 µm, which is shaped by the biochemical and 

structural constituents of the leaves. In the visible region (VIS, 0.4-0.7 µm) low reflectance is 

caused by pigments absorption (chlorophyll, carotenoids and anthocyanins), mainly in the blue 

and red bands, used for photosynthesis. However, in the near-infrared region (NIR, 0.7-1.3 µm) 

absorption by leaf components is low and thus a large part of the incident radiation is reflected 

by the canopies. In the shortwave infrared region (SWIR, 1.4-2.5 µm) light is absorbed by leaf 

dry matter components (proteins, lignin, carbohydrates and waxes) and leaf water. Leaf water 

absorption is strongest around 1.4-1.6 µm and 1.8-2.1 µm, making these regions less  
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exploitable for vegetation studies based on optical data, because the atmosphere is sensitive to 

short-term changes in water content (Zeng et al. 2022).  

 

Figure 2.1. Typical reflectance curve for a leaf or plant canopy containing chlorophyll (credit: 

Eric Brown De Colstoun, NASA SCIENCE SHARE THE SCIENCE). 

The characteristics of the canopy reflectance have been used to define vegetation indices 

(VIs). VIs are mathematical combinations of reflectance values acquired in different spectral 

bands, which are intended to describe vegetation structural and biochemical properties. The 

most used spectral bands in the optical domain for remote sensing of the vegetation are in the 

red, red-edge, near-infrared, and shortwave infrared bands. The most widely used VIs for 

characterizing vegetation greenness are currently NDVI, EVI, NIRv, PRI, and various other VIs 

designed to estimate leaf chlorophyll content such as mNDI (Campbell et al., 2019; Hmimina 

et al., 2014; Zeng et al., 2022).   

NDVI is based on the large difference in vegetation reflectance between the VIS and the 

NIR bands and is defined as the ratio of the difference to the sum of reflectance in the NIR and 

in red bands. In remote sensing, NDVI is specifically used for mapping vegetation cover and as 

a proxy of the green biomass. The value of NDVI varies between -1 and 1. For instance, for 

dense vegetation canopies, the values of NDVI are high (about 0.8 or even higher), while for 

bare soil values of NDVI will be close to zero, and negative over water bodies and dark shaded 
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areas. Note that when vegetation is in the active expansion and growth phases, the contribution 

of the soil to the measured global reflectance decreases in favour of the contribution of 

vegetation. During this phase, the measured spectral reflectance diminishes in the VIS and mid-

infrared regions, while it increases in the near-infrared range. Therefore, NDVI reflects 

vegetation density, health, and cover. Indeed, it is worth noting that the saturation of spectral 

reflectance  above a certain level of LAI observed in tropical forests or other vegetation types 

hinders the use of NDVI for monitoring and estimating vegetation carbon assimilation at 

canopy, regional, and global scales (Zhang et al. 2021). 

Yet, NDVI is often used as an indicator of green biomass, Absorbed Photosynthetically 

Active Radiation (APAR) or photosynthetic capacity of the canopy depending on the 

interpretation that is made. However, this spectral vegetation index does not allow access to 

vegetation physiological responses (photosynthesis, transpiration, stomatal conductance, etc.) 

due to rapid changes of abiotic factors. This is why other spectral indices such as PRI and NIRv, 

which are sensitive to short-term variations in photosynthetic activity and sun-canopy 

geometry, were introduced. NIRv is the product of the reflectance in the NIR and NDVI 

(Badgley et al., 2017). This index has been recently used as a proxy of temporal changes in 

photosynthesis based on ground measurements and has also been used for correcting SIF from 

canopy structure and sun-canopy geometry effects (Wong et al. 2020; Hao et al. 2021). 

SIF is a faint radiation re-emitted by the vegetation chlorophyll pigments, mainly 

chlorophyll a, upon sun exposure and absorption. Note that the chlorophyll fluorescence (and 

SIF) refers to chlorophyll a fluorescence within this manuscript as chlorophyll b and 

carotenoids also emit fluorescence, but their emissions are low and strongly re-absorbed by the 

canopy. SIF is one of the three possible fates of the absorbed energy by vegetation’s 

photosystems, the other two being photochemistry and heat dissipation (NPQ) (Porcar-Castell 

et al. 2014) (see Figure 2.2). These three dissipation pathways compete with each other. SIF 

emission spectrum spans the spectral range from 650 to 800 nm. Therefore, SIF contains both 

visible radiation (red SIF, with its emission peak at 685 nm) and far-red radiation (far-red SIF, 

with its emission peak at 740 nm) (Figure 2.2).  

SIF emission arises from both photosystem II (PSII) and photosystem I (PSI). PSII 

contributes to both red and far-red SIF emissions, and PSI notably to the far-red region 

(Mohammed et al. 2019). Compared to the vegetation reflected radiance, SIF is a small signal  
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(typically representing less than 3% of the absorbed solar radiation) (Krause, 1991) and is 

usually retrieved by exploiting telluric atmospheric oxygen absorption features or sun 

absorption bands (Meroni et al. 2009; Frankenberg and Berry 2018). Note that in healthy green 

vegetation the red peak is lower than the far-red one (Figure 2.2), because of the strong 

reabsorption of red fluorescence by chlorophyll pigments. SIF retrievals within atmospheric 

oxygen absorption features are determined with Fraunhofer Line Depth (FLD) methods 

(Plascyk, 1975) or through Spectral Fitting Method (SFM) (Cogliati et al. 2015). With these 

approaches, SIF retrievals require measurements of incoming irradiance and vegetation 

radiance using high resolution spectrometers (Cendrero-Mateo et al. 2019). 

 

Figure 1.2. Repartition of leaves absorbed radiation and illustration of the spectral dependency 

of sun-induced fluorescence (F) under steady-state conditions (source: Mohammed et al. 2019). 
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2.2. Photochemistry, chlorophyll fluorescence, and non-photochemical 

quenching at photosystem scale 

The main reason why chlorophyll fluorescence is used as a direct proxy of 

photosynthesis is that both mechanisms are triggered by absorption of light by chlorophyll 

pigments. The absorption of energy by PSII causes chlorophyll molecules in the antennae of 

PSII to reach an excited state. This energy can be partitioned into three main pathways: first, it 

can be used to drive photochemistry through Linear Electron Transport chain (LET); second, it 

can be dissipated as heat, a mechanism known as Non-Photochemical Quenching (NPQ); and 

third, it can be re-emitted as fluorescence in the red and far-red spectral regions (Porcar-Castell 

et al. 2014). 

The LET chain transports electrons from PSII to PSI and injects protons into the lumen 

for producing Adenosine Triphosphate (ATP) and Nicotinamide Adenine Dinucleotide 

Phosphate (NADPH) to be used in the carbon fixation reactions of photosynthesis for 

synthetizing sugars. Through the LET chain, the excited reaction centre (P680, a chlorophyll 

dimer) (Figure 2.3) from PSII rapidly gives an electron to the quinone A (QA), which in turn 

donates it to an electron carrier, the plastoquinone (PQ) (Porcar-Castell et al. 2014). P680
+ in 

PSII, which has just lost one electron, is positively charged and is reduced by the oxygen-

evolving complex (OEC). The OEC divides a water molecule (H2O) in the thylakoid lumen and 

releases protons (H+) and oxygen (O2). The protonated quinone (PQH2) reduces the 

plastocyanin (PC), which passes an electron to PSI and additionally transfers protons in the 

thylakoid lumen. The cytochrome b6f has a double function: transferring protons from the 

chloroplast stroma to the thylakoid lumen and transporting electrons from the plastoquinone to 

the plastocyanin (PC) molecule. Simultaneously, energy absorbed in PSI by P700 is used to 

reduce the electron acceptor ferredoxin (Fd), which donates the electron to NADP+ to release 

NADPH. The oxidized molecule (P700
+) in PSI is reduced back to P700 by taking an electron 

from the PC. This series of reactions conclude the LET. Indeed, the proton gradient in the 

thylakoid lumen is used by ATP synthase to release ATP, ending the light reactions of 

photosynthesis. 
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Figure 2.2. Illustration of linear electron transport and fluorescence emission (source: Porcar-

castell et al., 2014). 

When light intensity increases, the carbon fixation and electron transport chain can 

gradually become light saturated due to protons accumulation. This situation might lead to the 

formation of singlet oxygen, which is a reactive oxygen species that can harmfully affect the 

photosystem. Consequently, for their survival, plants have developed a number of 

photoprotection mechanisms that permit them to dissipate the excess absorbed energy as heat, 

which is mostly known as NPQ and that can induce a reduction in both the fraction of photon 

used in photosynthesis and in fluorescence emission. When the pH in the lumen decreases as a 

result of proton accumulation, it can act as a signal for NPQ mechanisms. Indeed, this drives 

the de-epoxidation of violaxanthin into zeaxanthin. The latter has a crucial role in triggering the 

NPQ mechanisms (Jahns and Holzwarth 2012).  

The opening and functioning of the reaction’s centres drive photochemistry, meaning 

that they are tightly paired with the oxidized QA. When a reaction centre is closed and a 

chlorophyll molecule is in an excited state, excess photons are mainly re-emitted as 

fluorescence. As a result, the fraction of open reaction centres (triggering photochemistry) is 

inversely correlated to the quantum yield of fluorescence (Kitajima and Butler, 1975). Plants 

control quenching mechanisms (i.e.  Photochemical Quenching, PQ, and NPQ). Therefore, as 

PQ, NPQ, and fluorescence compete for the same excitation energy, each energy dissipation 

pathway can be quantitatively considered. Accordingly, the sum of all quantum yields is equal 

to unity (van der Tol et al. 2014).  
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Φ𝑃 + Φ𝐹 + Φ𝐷 + Φ𝑁 = 1                                                                                                          (2.1) 

where ΦP is the quantum yield of photochemistry, which is the efficiency with which absorbed 

photons are used by the photochemistry process; ΦF is the quantum yield of fluorescence 

emission, representing the total amount of absorbed light re-emitted as fluorescence; ΦN is the 

quantum yield of NPQ, and ΦD is the quantum yield of constitutive heat dissipation, which is 

the one observed upon dark adaptation and is assumed to be constant.  

  At low light conditions, NPQ is merely zero, PQ is the main energy dissipation pathway 

and ΦP and ΦF are negatively related because each reduction in ΦP drives a further increase of 

the population of the excited states and consequently an increase in ΦF. In contrast, at high light 

conditions, the NPQ mechanism can become the dominant process, leading directly to 

concomitant reduction in both ΦP and ΦF (Porcar-Castell et al. 2014). Therefore, NPQ controls 

directly the relationship between fluorescence and photosynthesis. It is worth noting that plants 

can use other mechanisms that can decouple the correlation between fluorescence and 

photosynthesis that operate at different temporal scales, including chloroplast movements 

(Sarvikas et al. 2010), photorespiration (Genty et al.,1990), and changes in the concentration in 

anthocyanins (Merzlyak et al. 2008). 

2.3. Effect of leaf and canopy biochemical and structure properties on SIF 

Leaf and canopy structure have a substantial effect on top-of-canopy SIF emission. At 

leaf scale, the chlorophyll pigment content not only significantly affects the amount of absorbed 

photosynthetically active radiation (APAR), and thus the magnitude of emitted SIF, but also the 

fraction of SIF that escapes the leaf. SIF is directly emitted from the chlorophyll molecules. 

However, SIF might also be scattered and re-absorbed by the same chlorophyll molecule in the 

red region, because SIF emission spectrum overlaps chlorophyll absorption (Porcar-Castell et 

al. 2014; Jonard et al. 2020). In addition, note that changes in leaf structure such as leaf 

pubescence and thickness and chloroplast movements, as well as wavelength-dependent light 

penetration can significantly influence SIF.  

At the canopy scale, observed SIF is heavily affected by leaf area index, canopy 

chlorophyll content, leaf movements, distribution of leaf angle, clumping,  roughness of upper 

canopy layers, and spatial and temporal distributions of sunlit and shaded leaves (Gao et al., 
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2022; Morozumi et al., 2023), which in turn strongly influence the fraction of SIF that escapes 

from the canopy (fesc) (Migliavacca et al. 2017; Yang and van der Tol,  2018). Further, ratio 

between diffuse and total light and sun-canopy-sensor geometry such as the sun zenith (SZA) 

and azimuth (SAA) angles all have also a substantial effect on canopy light distribution, 

interception, scattering and transmission (Zhang and Zhang, 2023). Therefore, these factors 

considerably influence SIF emission measured at the sensor level, and also  the ability to retrieve 

SIF signal (Zhang et al., 2023). Because of these leaf and canopy effects, interpreting observed 

SIF data should be cautiously carried out and how we can derive vegetation physiological status 

from SIF is still challenging and an area of active research that we addressed in this thesis. 

2.4. Light emitted diode (LED) chlorophyll fluorescence 

Chlorophyll fluorescence can be measured using active or artificial light induction 

methods that allow direct evaluation of vegetation physiological state at the leaf and canopy 

scales (Porcar-Castell et al., 2014; Moya et al., 2019; Loayza et al., 2023). In active techniques, 

a modulated and spectrally designed source of light is used to excite chlorophyll that fluoresces 

in the spectral range between 650 and 800 nm. For instance, the development of pulse amplitude 

modulation (PAM) fluorimetry techniques, which use a weak and pulsed measuring light to 

induce fluorescence emission, has been widely and successfully used at the leaf scale to provide 

direct fluorescence yield measurements, allowing the evaluation of photosynthesis and 

vegetation responses to abiotic factors for decades (Baker, 2008; Magney et al., 2017). The 

theoretical bases linking fluorescence measured by active methods to photosynthesis at the leaf 

scale are well formulated and discussed in numerous publications (Schreiber, 2004). But, its 

applicability at canopy scale is hindered by technical limitations (Ounis et al., 2001). In the last 

decades, this gap was partially filled based on the use of a pulsed light, either lasers, laser diodes, 

and light emitting diode (LEDs) modulated with pulses of short duration (microsecond to 

picosecond) with a synchronized detection source for measuring fluorescence under daylight 

conditions at the canopy scale using ground-based or airborne remote sensing instruments 

(Moya et al., 2019; Ounis et al., 2016; Loayza et al., 2023). For instance, Moya et al, (2019) 

used fluorescence acquired by a micro-lidar instrument equipped with blue LEDs light 

excitation (LEDFLEX) to show that water stress can be detected in pea (Pinus Sativum), mint 

(Mentha Spicata), and sweet potatoes (Ipomoea Batata) crops at the canopy scale. Therefore, 

this breakthrough may be useful to gain a better understanding of terrestrial vegetation 
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functioning because active chlorophyll fluorescence measurements operate at constant 

excitation light intensity and direction. As a result, it is less affected by the temporal and spatial 

(horizontal and vertical) distribution of sunlit and shaded leaves on the upper surface and within 

the canopy compared to SIF.
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3. Chapter 3: Synergy between TROPOMI sun-

induced chlorophyll fluorescence and MODIS 

spectral reflectance for understanding the 

dynamics of gross primary productivity at 

Integrated Carbon Observatory System (ICOS) 

ecosystem flux sites 
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Abstract. An accurate estimation of vegetation Gross Primary Productivity (GPP), 

which is the amount of carbon taken up by vegetation through photosynthesis for a given time 

and area, is critical for understanding terrestrial atmosphere CO2 exchange processes and 

ecosystem functioning, as well as ecosystem responses and adaptations to climate change. Prior 

studies, based on ground, airborne, and satellite Sun-Induced chlorophyll Fluorescence (SIF) 

observations, have recently revealed close relationships with GPP at different spatial and 

temporal scales and across different Plant Functional Types (PFTs). However, questions remain 

regarding whether there is a unique relationship between SIF and GPP across different sites and 

PFTs and how we can improve GPP estimates using solely remotely sensed data. Using 

concurrent measurements of daily TROPOspheric Monitoring Instrument (TROPOMI) SIF 

(daily SIFd); daily MODIS Terra and Aqua spectral reflectance; Vegetation Indices (VIs, 

notably Normalized Difference Vegetation Index (NDVI), Near-Infrared Reflectance of 

vegetation (NIRv), and Photochemical Reflectance Index (PRI)); and daily tower-based GPP 

across eight major different PFTs, including mixed forests, deciduous broadleaf forests, 

croplands, evergreen broadleaf forests, evergreen needleleaf forests, grasslands, open 

shrubland, and wetlands, the strength of the relationships between tower-based GPP and SIFd 

at 40 Integrated Carbon Observation System (ICOS) flux sites was investigated. The synergy 

between SIFd and MODIS-based reflectance (R) and VIs to improve GPP estimates using a 

data-driven modeling approach was also evaluated. The results revealed that the strength of the 

hyperbolic relationship between GPP and SIFd was strongly site-specific and PFT-dependent. 

Furthermore, the Generalized Linear Model (GLM), fitted between SIFd, GPP, and site and 

vegetation type as categorical variables, further supported this site- and PFT-dependent 

relationship between GPP and SIFd. Using random forest (RF) regression models with GPP as 

output and the aforementioned variables as predictors (R, SIFd, and VIs), this study also showed 

that the spectral reflectance bands (RF-R) and SIFd plus spectral reflectance (RF-SIF-R) models 

explained over 80 % of the seasonal and interannual variations in GPP, whereas the SIFd plus 

VI (RF-SIF-VI) model reproduced only 75 % of the tower-based GPP variance. In addition, the 

relative variable importance of predictors of GPP demonstrated that the spectral reflectance 

bands in the near-infrared, red, and SIFd appeared as the most influential and dominant factors 

determining GPP predictions, indicating the importance of canopy structure, biochemical 

properties, and vegetation functioning on GPP estimates. Overall, this study provides insights 

into understanding the strength of the relationships between GPP and SIF and the use of spectral 

reflectance and SIFd to improve estimates of GPP across sites and PFTs. 
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3.1. Introduction 

In the context of climate change, understanding the role of terrestrial ecosystems in 

terms of exchanges of carbon, water, and energy is crucial in order to fill in the knowledge gap 

on climatic interactions between the biosphere and the atmosphere. Terrestrial ecosystems are 

one of the main components of the carbon cycle and are highly sensitive to abiotic stresses. 

Therefore, an accurate estimation of vegetation Gross Primary Productivity (GPP), which is the 

carbon flux taken up by vegetation through photosynthesis, is critical for understanding 

terrestrial–atmosphere CO2 exchange processes and ecosystem functioning, as well as 

ecosystem responses and adaptations to climate change (Gamon et al., 2019). Eddy covariance 

(EC) techniques allow for the estimation of GPP locally (Falge et al., 2002; Moureaux et al., 

2008;  Chu et al., 2021). However, they have limitations when it comes to upscaling carbon flux 

estimates at larger scales due to their restricted spatial coverage, temporal dynamics of flux 

footprints, and limited distribution across different vegetation types, notably in key areas such 

as Africa and South America (Xiao, 2004; Gamon, 2015; Xiao et al., 2019). GPP can also be 

estimated based on physical and ecophysiological modeling approaches. However, for 

estimating GPP at larger scales, those methods are hampered by the lack of understanding of 

the underlying physiological processes (Jiang & Ryu, 2016; Zhang et al., 2017; Madani et al., 

2020). 

Remote sensing is widely used to upscale daily GPP to landscape, regional, and global 

scales using reflected sunlight measured by satellite sensors (Running et al., 2004; Baldocchi et 

al., 2020 ; Wu et al., 2020 ; Kong et al., 2022; Wang et al., 2022). These approaches are mainly 

based on reflectance-based Vegetation Indices (VIs) such as the Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and more recently Near-Infrared 

Reflectance of vegetation (NIRv) (Badgley et al., 2017; Baldocchi et al., 2020). VIs are mostly 

sensitive to spatial and temporal variability in structural Leaf Area Index (LAI) and biochemical 

canopy attributes (Dechant et al., 2020; Pabon-Moreno et al., 2022), but they suffer from 

saturation in canopy-dense ecosystems and are less sensitive to diurnal and daily variations in 

photosynthetic status resulting from physiological responses induced by rapid changes in 

abiotic stresses (Daumard et al., 2012; Guanter et al., 2014; Wieneke et al., 2016; Zhang, et al., 

2021a). Remote sensing also provides access to variables which are related to canopy 

functioning such as the Photochemical Reflectance Index (PRI) (Gamon et al., 1992; Wang et 



BALDE Hamadou – Thèse de doctorat – 2023 

32 
 

                                                Chapter 3. Synergy between SIF and reflectance to predict GPP 

al., 2020) and Sun-Induced chlorophyll Fluorescence (SIF) (Porcar-Castell et al., 2014; Goulas 

et al., 2017; Yang et al., 2020; Zhang et al., 2022;  Li & Xiao, 2022). 

PRI is a reflectance-based vegetation index that has been shown to detect vegetation 

functioning activities under abiotic stress conditions that the abovementioned VIs cannot 

capture (Meroni et al., 2008). It is due to changes in the absorptance of leaves of around 510 

nm or reflectance at 531 nm that are related to the interconversion of the xanthophyll pigment 

cycles, which represents an important photoprotection mechanism (Gamon et al., 1992; Meroni 

et al., 2008). Moreover, previous studies have pointed out that PRI can be used to improve 

canopy GPP estimates at the ecosystem level at daily timescales (Wang et al., 2020;  Hmimina 

et al., 2015; Soudani et al., 2014), but how variations in PRI at long timescales with spatial 

variations in vegetation types affect the relationship between PRI and GPP remains unresolved 

and is an area of active research (Porcar-Castell et al., 2014; Chou et al., 2017; Gitelson et al., 

2017). 

In recent years, SIF has emerged as a promising remotely sensed tool for monitoring 

canopy GPP, which is functionally and fundamentally different from the aforementioned VIs 

(Damm et al., 2010; Yang et al., 2015; Köhler et al., 2018; Wang et al., 2021; Guanter et al., 

2021). In fact, SIF does not rely on vegetation reflectance; instead it is a faint signal directly 

emitted by chlorophyll from the absorbed sunlight just before the occurrence of a photochemical 

reaction (Porcar-Castell et al., 2014; Gu et al., 2019b; Zhang et al., 2021a). SIF has a physical 

and physiological meaning, and hence SIF offers new opportunities for the global assessment 

of canopy GPP (Mohammed et al., 2019; Wieneke et al., 2018; Zhang et al., 2020; Kimm et al., 

2021; Dechant et al., 2022). Earlier studies relying on ground-, airborne-, and satellite-based 

SIF data measurements at different temporal and spatial scales have indicated a strong linear 

site-specific and vegetation-type-dependent relationship between GPP and SIF (Frankenberg et 

al., 2011; Guanter et al., 2014; Yang et al., 2017; Wood et al., 2017; Li et al., 2018b; Paul-

Limoges et al., 2018; Zhang et al., 2021b; Zhang et al., 2022). In contrast, at finer temporal 

scales such as diurnal and hourly, the relationship between GPP and SIF is not as strong as at 

longer timescales. Instead, it appears to be non-linear due to rapid changes in instantaneous 

variations in photosynthetically active radiation (PAR) and environmental conditions (Damm 

et al., 2015; Marrs et al., 2020; Kim et al., 2021). How and to what extent driving factors such 

as canopy structure, spatial heterogeneity, and abiotic stress conditions mediate the GPP and 
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SIF relationship remains a challenge and needs to be investigated (Smith et al., 2018; Wang et 

al., 2021; Li & Xiao, 2022). The main drawback, which relates to the use of SIF to predict GPP 

at regional and global scales, lies in the weak SIF signal retrieval that requires averaging over 

large timescales and spatial scales and thus hampers detecting fine-scale dynamics needed to 

explain underlying processes (Gamon et al., 2019; Köhler et al., 2021).Yet, the TROPOspheric 

Monitoring Instrument (TROPOMI) sensor, which is on board the Sentinel-5 Precursor (S-5P), 

represents a novel tool for understanding SIF variations as well as an opportunity to fully 

evaluate the potential of SIF to improve GPP estimates at the ecosystem scale, as it provides a 

high temporal resolution at a daily scale (Köhler et al., 2018). In addition, the future satellite 

mission Fluorescence Explorer (FLEX) will provide on a single platform SIF at an 

unprecedented spatial resolution (300 m) together with visible reflectance in the green, red, and 

far-red spectral windows (Drusch et al., 2017). 

The surface spectral reflectance (R), VIs, and SIF can be used altogether to better 

characterize highly spatiotemporal dynamics in vegetation canopy structure, canopy 

biochemical properties, and vegetation functioning as a response to frequent changes in abiotic 

conditions at site and ecosystem scales. However, to the best of our knowledge, an attempt to 

study the synergy between those variables has not been comprehensively addressed due to the 

fact that the relationships between structural and functional components are not linear and have 

complex interactions over time and space (Hilker et al., 2007; Sippel et al., 2018; Yazbeck et 

al., 2021; Pabon-Moreno et al., 2022; Kong et al., 2022).Therefore, a series of observations of 

SIF, R, and VIs at site and ecosystem scales could give insights into how SIF is related to GPP 

and whether SIF, R, and VIs could provide additional information on understanding the 

dynamics of GPP at the ecosystem scale and beyond. 

The overarching objective of this work is to study the potential of SIF, R, and VIs 

(namely NDVI, NIRv, and PRI) to estimate canopy GPP and the synergy between these 

predictive variables. Specifically, this study primarily intends to evaluate at a daily timescale 

the strength of the relationships between SIF and GPP at 40 Integrated Carbon Observation 

System (ICOS) flux sites, including several vegetation functional types (mixed forests (MFs), 

deciduous broadleaf forests (DBFs), croplands (CROs), evergreen broadleaf forests (EBFs), 

evergreen needleleaf forests (ENFs), grasslands (GRAs), open shrubland (OSH), and wetlands 
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(WETs)), and ultimately to examine the synergy between SIF, R, and VIs to improve canopy 

GPP estimates based on a data-driven modelling approach. 

3.2.  Materials and methods 

In this current section, the site characteristics and eddy covariance (EC) flux data are 

presented. Then, the remote sensing data (TROPOMI, MODIS Aqua and Terra, and Copernicus 

Land Cover classification) used in the study are described. Lastly, data analysis methods used 

in this study are presented. Study sites and flux tower in-situ EC flux data were obtained 

through the ICOS Data Portal release in 2018 and 2021 (https://www.icos-cp.eu/data-services, 

last access: 21 December 2021). We screened over 70 ecosystem ICOS sites, relying on the 

availability of GPP data for each site with simultaneous TROPOMI SIF observations in the 

period from February 2018 to December 2020, and maintained 40 sites for analyses. The study 

sites encompass a latitude from 5.27◦ N to 67.75◦ N, including a diversity of plant functional 

types (PFTs) based on the IGBP vegetation-type classification given by ICOS PI sites: mixed 

forests (MFs, 2 sites), croplands (CROs, 9 sites), deciduous broadleaf forests (DBFs, 6 sites), 

evergreen broadleaf forests (EBFs, 2 sites), evergreen needleleaf forests (ENFs, 13 sites), 

grasslands (GRAs, 3 sites), open shrubland (OSH, 1 site, which is actually a young vineyard 

plantation), and wetlands (WETs, 4 sites). The PFT at each site was confirmed by 

photointerpretation of pictures found in the ICOS Data Portal database and Google Earth. 

Detailed information and references of these sites are provided in Table S3.1 in the 

Supplementary materials. Figure 3.1 presents the location of these study sites, except for the 

GF-Guy site, located in French Guiana. In the analyses, we used daily GPP values computed as 

the sum of the half-hourly values estimated from each site. GPP data previously gap-filled by 

ICOS PI, representing for a full year, which was the case for instance at CH-Dav, FR-Bil, IT-

SR2, and SE-Deg, were filtered out and were not used in the analyses. 

https://www.icos-cp.eu/data-services
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Figure 3.1. The study area and location of the EC ICOS flux sites, except for the GF-Guy site, 

located in French Guiana. The base map is the 100 m spatial resolution of the Copernicus Global 

Land Cover classification map. The triangles represent the locations of the flux sites used for 

investigating the relationships between tower-based GPP and TROPOMI SIF 

3.2.1. Remote sensing data 

3.2.1.1. MODIS Terra and Aqua data 

Time series of daily MODIS Terra and Aqua surface reflectance products (MOD09GA, 

MODOCGA, MYD09GA, and MYDOCGA), centered at the location of each site, were 

downloaded from the Google Earth Engine database. The quality assurance (QA) flag (ideal 

quality, QA = 0) and the cloud mask (clear state) criteria were used. Both MODIS Terra and 

Aqua, used in this study, contain 16 spectral bands of which the spatial resolution from band 1 

to band 7 is 500 m and 1 km for the remaining bands (8–16) (Vermote et al., 2015). Detailed 

information about the MODIS data products is given in Table S3.2. We used daily MODIS 

surface reflectance, NDVI, NIRv, and PRI. These VIs are computed according to the equation 

given in Table 1. For the PRI computation, we used B13 as a reference band following Hilker et 

al. (2009). 

Table 3.1. MODIS Terra and Aqua vegetation index computations. B2 (841–876 nm) denotes 

the surface spectral reflectance at band 2, B1 (620–670 nm) denotes the surface spectral 

reflectance at band 1, B11 (526–536 nm) represents the surface spectral reflectance at band 13. 
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Acron

ym 

Full name Formulation Spatial 

resolution 

References 

NDVI Normalized difference vegetation 

index 

(B2 − B1)/(B2 + B1) 500 m Tucker (1979) 

PRI Photochemical reflectance index (B11 − B13)/(B11 + 

B13) 

1 km Drolet et al. 

(2008) 

Hilker et al. 

(2009) 

NIRv Near-infrared reflectance of 

vegetation 

B2 × NDVI 500 m Badgley et al. 

(2017) 

3.2.1.2. TROPOMI SIF and Copernicus Global Land Cover data 

TROPOMI, as a single payload of the Sentinel-5 Precursor (S-5P) satellite, was 

launched on 13 October 2017. TROPOMI has a near-sun-synchronous orbit with a repeat cycle 

of 16 days and an equatorial crossing time at around 13:30 local time (Köhler et al., 2018), 

which is comparable to those of Orbiting Carbon Observatory-2 (OCO-2) and the Greenhouse 

Gases Observing Satellite (GOSAT). However, the wide swath of TROPOMI (2600 km) is larger 

than that of OCO-2 (10 km), which enables TROPOMI to provide almost daily spatially 

continuous global coverage (Köhler et al., 2018). TROPOMI has a spatial resolution of 7 km 

along track (5 km since August 2019 owing to diminished integration time) and 3.5 to 14 km 

across track (based on the viewing angle) and covers the spectral range between 675–775 nm 

in the near-infrared with a spectral resolution of 0.5 nm, which allows for the retrieval of far-

red SIF (Köhler et al., 2018). To decouple SIF emissions from the reflected incident sunlight, a 

statistical and data-driven approach is used; see Köhler et al. (2018), for more details. We used 

instantaneous and daily ungridded soundings of TROPOMI far-red SIF at 740 nm obtained from 

the Caltech dataset between February 2018 and December 2020 

(https://data.caltech.edu/records/1347, last access: 14 June 2021). Instantaneous SIF data were 

reported in mW m−2 sr−1 nm−1. Daily SIF (hereafter referred to as SIFd) is computed by timing 

instantaneous SIF with a day-length correction factor included in the dataset. 

The TROPOMI SIF observations corresponding to each site were determined by relying 

on the following criteria. Firstly, we extracted all pixels whose center locations are less than 5 

km away from the flux tower sites for analyses. The latter choice was motivated by the fact that 

the relationship between TROPOMI SIF and tower-based GPP gradually weakened as the 

distance from site to the center of the pixel increased (data not shown). Secondly, to reduce the 

cloud effects on SIF data, SIFd observations with a cloud fraction over 15 % were excluded, 

even though some findings reveal that TROPOMI SIF is less sensitive to cloud than surface 

https://data.caltech.edu/records/1347
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reflectance values (Guanter et al., 2012; Doughty et al., 2021). The 100 m spatial resolution of 

the Copernicus Global Land Cover classification map for the year 2019 (Buchhorn et al., 2020) 

was used as a base map of the study sites. This land cover classification map was obtained from 

the Coper- nicus Global Land Service website (https://lcviewer.vito.be/ download, last access: 

25 May 2021). 

3.3. Data analysis 

In this study, the GPP and SIFd relationship was evaluated at a daily timescale at different 

spatial scales. Before investigating the link between GPP and SIFd, it was necessary to figure out 

a way to process outliers which were mostly associated with negative SIFd values. It has been 

shown that excluding directly negative SIF values could have effects on studying the 

relationships between satellite SIF data and GPP (Köhler et al., 2018; Köhler et al., 2021). Thus, 

to handle the outliers, an exponential model was used to account for the structural relationship 

between the instantaneous SIF and the SIF error included in the dataset. A threshold of ±0.15 

mW m−2 sr−1 nm−1 was then applied to the residual random error of the exponential model.  

We used a hyperbolic model to relate GPP to SIFd following (Damm et al., 2015; Kim 

et al., 2021) 𝐺𝑃𝑃 = a ×
𝑆𝐼𝐹𝑑

𝑆𝐼𝐹𝑑+b
 , where a and b are fitted parameters. It is worth noting that a 

linear model between GPP and SIFd was also investigated, and the results are provided in the 

Supplementary materials. Before relating GPP to SIFd using this hyperbolic model at each site, 

SIF values equal to or less than zero were discarded. Afterward, the same model was fitted on a 

PFT scale by pooling all data across all sites for the same PFT. To explore the generalizability 

of the relationship between GPP and SIFd, first the hyperbolic model was adjusted on data pooled 

across all sites. Second, to further test how the year, site, and PFT, as categorical variables, and 

their interactions (year · GPP, site · GPP, and PFT · GPP) influence the GPP and SIFd 

relationship, a Generalized Linear Model (GLM) was used. Within the GLM, SIFd is considered 

a response variable, whereas site, PFT, year, and GPP are the explanatory variables. These 

aforementioned variables and their interaction effects may affect the changes or variations either 

in SIFd or GPP and may consequently influence the slope and intercept of their relation- ships. 

In order to study the synergy between SIFd, R, and VIs to improve GPP estimates, a 

Random Forest (RF) regression model was used (Breiman, 2001). Briefly, an RF is a machine 

https://lcviewer.vito.be/download
https://lcviewer.vito.be/download
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learning algorithm which combines the results of several random ensemble decision trees to 

reach a final accurate output. Before setting up the RF model, the correlation matrix between all 

variables was computed. It has been shown that important features can be affected by the high 

correlation between feature predictors (Toloşi and Lengauer, 2011), suggesting that a decrease 

in importance values is observed when the level of correlation and the number of correlated 

variables increase. In practice, a strongly predictive variable belonging to a group of correlated 

variables can be considered less important than an independent and less informative variable. 

Based on remotely sensed data inputs and one categorical explanatory variable (PFT), the 

variables that are the most relevant for estimating GPP on daily data pooled altogether across 

all sites were evaluated. Four RF models were established by relying on the combination 

of the predictive variables to estimate GPP: (1) only surface spectral reflectance (RF-R), (2) 

surface spectral reflectance plus SIFd (RF-SIF-R), (3) surface spectral reflectance plus SIFd and 

the PFT as a categorical variable (RF-SIF-R-PFT), and (4) SIFd plus VIs (RF-SIF-VI) (namely 

NDVI, NIRv, and PRI). A total of 80 % of the data were used for training and the remaining for 

testing the model. It is worth mentioning that a RandomizedSearchCV technique was used 

(scikit- learn library for Python) to tune the model, and it took the best parameters for each 

model to predict GPP and applied a 10-fold cross-validation and 20 iterations on the training 

set to avoid splitting the dataset into training, validating, and testing sets, which could affect the 

number of data allocated to the training and could easily lead to model overfitting. The ensemble 

of decision tree models includes 200 trees for all models, but the number of splits per tree and 

the maximum depth varied. The relative importance of each variable, based on the mean 

decrease in the impurity method, was used to evaluate the part of the contribution of each input 

variable in predicting the canopy GPP variability. For TROPOMI data extraction, MATLAB 

R2021a (MathWorks, Inc., USA) was used, and Python version 3.9.1 was used for data analysis 

and visualization (sklearn, SciPy, seaborn, matplotlib, pan- das, and NumPy libraries for 

Python). 

Ultimately, the strength of the relationships between SIFd and GPP was compared based 

on the coefficient of determination (R2), root mean square error (RMSE), and the p-value metrics. 

The random forest models were evaluated and compared based on out-of-bag adjusted R2 and 

RMSE. Last but not least, a paired t test was used to compare the performance of the RF models 

based on the method proposed by Nadeau and Bengio (2003). A 5 % significance level was used 

for all statistical inferences. 
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3.4. Results 

3.4.1. GPP vs. SIFd relationships  

Site-specific relationships 

The first aim was to evaluate the strength of the relationships between tower-based GPP 

and SIFd encompassing different vegetation types at site level. To do so, a hyperbolic model 

was used to relate GPP to SIFd at each site. Figure 3.2 shows the relationships between GPP 

and SIFd at each site. Overall, the results revealed a hyperbolic relationship with relatively 

saturating GPP in the presence of moderate to high SIFd. However, the relationships between 

GPP and SIFd are site-dependent, suggesting that the difference in plant functional types and 

spatial heterogeneity across sites may significantly affect the relationships between GPP and 

SIFd. The strongest relationships were found at DK-Sor, FR-Fon, DE-Tha, SE-Nor, and BE-

Bra, which are the DBF, ENF, and MF vegetation-type sites, with R2 values being between 0.64 

and 0.87 (p < 0.0001). The weakest relationships were recorded at the FI-Var, FR-EM2, and 

DE-RuW sites, and no significant relationship was found at GF-Guy, IT-Cp2, and FR-Mej. For 

each fit, the number of data points was between 160 and 1510, depending on the data availability 

at each site. Detailed information and statistics on the relationships between GPP and SIFd at 

each site are given in Table S3.3. Note that the independent assessment considering the linear 

model to relate SIFd to GPP at each site and each PFT and data pooled across all sites revealed a 

relatively consistent lower goodness of fit, justifying the use of a hyperbolic model (see Tables 

S3.4 and S3.5 and Figs. S3.1, S3.2, and S3.3 in the Supplementary materials). 
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Figure 3.2. Site-specific tower-based GPP and SIFd relationships at daily timescales. R2 

represents the coefficient of determination of the relationship between GPP and SIFd for each 

site. The color code represents the eight different plant functional types encountered at the study 

sites: red stands for croplands (CROs), green for deciduous broadleaf forests (DBFs), yellow 

for evergreen broadleaf forests (EBFs), magenta for evergreen needleleaf forests (ENFs), blue 

for grasslands (GRAs), cyan for mixed forests (MFs), lime for open shrubland (OSH), and dim-

grey for wetland (WET). The dotted black line represents the hyperbolic fit between GPP and 

SIFd. Plant-functional-type-specific and overall site relationships.  

To test the effects of the PFT on the relationship between GPP and SIFd at the daily 

timescale, data were pooled across sites of the same PFT (MF, CRO, ENF, DBF, EBF, GRA, 

OSH, and WET), and the hyperbolic model was applied on each PFT. Figure 3.3 depicts the 

scatterplots of the relationships between GPP and SIFd. The relationship between GPP and SIFd 

was statistically significant for all PFTs (R2 = 0.06–0.61, p < 0.0001), taken individually. 

Furthermore, the hyperbolic relationship between GPP and SIFd was the strongest for OSH, DBF, 

and MF, with an R2 of 0.61, 0.59, and 0.52, respectively, and the lowest for EBF with an R2 of 

0.06. This result suggests that the relationships between GPP and SIFd were clearly PFT-

specific, as shown in Table 3.2. 
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Figure 3.3. Relationships between tower-based GPP and SIFd in eight plant functional types: 

MF, CRO, ENF, DBF, EBF, GRA, OSH, and WET at daily timescales. R2 represents the 

coefficient of determination of the relationship between GPP and SIFd. All pairwise 

relationships between GPP vs. SIFd were statistically significant with p < 0.0001. The dotted 

black line represents the hyperbolic fit between GPP and SIFd. 

Table 3.2. Summary statistics of the plant-functional-type-specific GPP and SIFd relationship 

in eight major PFTs. All pairwise relationships between GPP and SIFd were statistically 

significant with p < 0.0001. a and b denote the fitted parameters from the hyperbolic model. 

The unit of RMSE is in gC m-2 d-1. 

PFT Site R2 a b RMSE N 

CRO 9 0.20 15.74 0.52 5.29 5538 

DBF 6 0.59 26.59 1.09 3.61 3566 

EBF 2 0.06 12.31 0.03 2.66 956 

ENF 13 0.32 9.30 0.10 2.94 6440 

GRA 3 0.39 12.21 0.27 3.32 1658 

MF 2 0.52 16.46 0.33 2.79 620 

OSH 1 0.61 13.44 0.50 2.10 1510 

WET 4 0.31 12.35 0.75 2.50 2710 

ALL 40 0.36 15.33 0.45 3.93 22998 

Moreover, the generalizability of the relationship between GPP and SIFd was first tested 

on data pooled together across all sites (Figure 3.4). A significant but weak relationship between 

GPP and SIFd was found across all sites with an R2 of 0.36 (p < 0.0001) and RMSE of 3.93 gC 

m−2 d−1. However, when the variations between the year, site, and PFT as input variables were 

included in a GLM, along with GPP, the results showed a strong significant relationship 

between SIFd, year, site, PFT, and GPP (p < 0.001). Furthermore, the interactions between the 
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year and GPP and PFT and GPP were found to have a statistically substantial effect on the SIFd 

and GPP relationship, while the interaction between the site and GPP was not significant (see 

Table S3.5). These findings support that the GPP and SIFd relationship is considerably 

influenced by the site PFT and the interannual variations in SIFd. 

 

Figure 3.4. Scatterplots of the relationships between tower-based GPP and SIFd in eight PFTs 

pooled together across all sites. The dotted black line represents the hyperbolic fit between the 

GPP and SIFd. The color code represents the plant functional types encountered in the study 

sites: red stands for croplands (CROs), green for deciduous broadleaf forests (DBFs), yellow 

for evergreen broadleaf forests (EBFs), magenta for evergreen needleleaf forests (ENFs), blue 

for grasslands (GRAs), cyan for mixed forests (MFs), lime for open shrubland (OSH), and 

dimgrey for wetland (WET). 

3.4.2. Synergy between SIFd, R, and VIs to quantify GPP 

In order to optimize the inputs for the Random Forest (RF) regression and to avoid the 

effects of highly correlated explanatory variables on the model performance, the correlation 

matrix was computed. The correlation matrix (supplied in Supplementary materials Figure 

S3.4) revealed a strong dependency between predictive variables (notably B9 vs B10, B11 vs B12, 

and B13 vs B14), indicating that using an RF model built in these variables could be affected by 

those high correlations. Based on these observations, the R of B10, B12, and B14 was excluded 

from the explanatory variables of RF regression models. 
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3.4.3. Performance of GPP estimates using random forest regression 

In Figure 3.5, tower-based GPP is represented against the four RF GPP models across 

all sites. Overall, all the RF-model-predicted GPP shows a high agreement with tower-based 

GPP. Yet, the RF-R model has the strongest relationship with tower-based GPP with an adjusted 

R2 of 0.86 and RMSE of 1.72 gC m-2 d-1, while the RF-SIF-VI model presents the lowest 

predictions of GPP, as the adjusted R2 and RMSE were 0.75 and 2.29 gC m-2 d-1, respectively. 

Furthermore, the RF-SIF-R and RF-SIF-R-PFT model performed similarly well at estimating 

GPP, as they could explain 82% and 83% of the variations in GPP across all sites, respectively. 

A paired t-test realized between the four models based on the adjusted R2 performance revealed 

that the difference in adjusted R² between RF-R and RF-SIF-R, RF-R and RF-SIF-R-PFT, and 

RF-SIF-R and RF-SIF-R-PFT models was not statistically significant. In other words, these 

three RF models have statistically the same performance. 

 

Figure 3.5. Scatterplots of the observed GPP against the RF-predicted GPP across all sites. N 

denotes the number of data points used for the RF model’s testing, adj. R2 represents the 
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adjusted coefficient of determination of the relationship between observed GPP and predicted 

GPP, and the RMSE is the root mean squared error between the observed GPP and RF-model-

predicted GPP. The dashed diagonal line depicts the 1:1 line. RF-R denotes prediction using 

only surface spectral reflectance; RF-SIF-R includes R and SIFd as inputs to predict GPP; RF-

SIF-VI integrates SIFd and VIs to estimate GPP; and RF-SIF-R-PFT includes R, SIFd, and plant 

functional type as categorical variables to predict GPP. 

The RF regression model’s GPP estimates and the observed GPP representing different 

vegetation types at the site level are depicted in Figures 3.6 and 3.7 for the RF-SIF-R model 

predictions as an example. The estimates for each site from the other models are presented in 

the Supplementary materials (Figures S3.6-a RF-R, S3.6-b RF-R, S3.7-a RF-SIF-VI, S3.7-b 

RF-SIF-VI, S3.8-a RF-SIF-R-PFT, and S3.8-b RF-SIF-R-PFT) and the summary statistic 

results in Tab S3.7 for all RF models. At the site level, the RF-SIF-R model predicted tower-

based GPP with high accuracy (adj. R2 = 0.54-0.95), except for three sites such as IT-BCi (adj. 

R2 = 0.21), IT-Cp2 (adj. R2 = 0.25), and SE-Deg (adj. R2 = 0.41), where the RF-SIF-R model 

had difficulties in reproducing GPP, even if R2 remained statistically significant at 5% 

probability level. It is worth noting that all other RF models have poor GPP predictions for these 

aforementioned sites. However, on data pooled across all sites of the same PFT, the RF-SIF-R 

model shows high performance in estimating GPP for all eight major PFTs with an adj. R2 being 

between 0.68 and 0.90. The lowest predictions are encountered in the CRO and EBF sites, 

whereas the best tower-based GPP estimates were found in the DBF and OSH sites. 

 

Figure 3.6. Site-specific scatterplots between observed GPP and RF-SIF-R-predicted GPP at 

daily timescales. The adj. R2 represents the adjusted coefficient of determination of the 
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relationships between observed GPP and predicted GPP. All pairwise relationships between 

observed GPP vs. Predicted GPP were statistically significant at all sites (with p < 0.0001). The 

color code represents the eight different vegetation types encountered in the study sites: red 

stands for CRO, green for DBF, yellow for EBF, magenta for ENF, blue for GRA, can for MF, 

lime for OSH, and dim-grey for WET. 

 

Figure 3.7. Scatterplots of observed GPP against RF-SIF-R-predicted GPP in eight PFTs at 

daily timescales. The adj. R2 represents the adjusted coefficient of determination of the 

relationship between observed GPP and predicted GPP. p denotes the probability value of the 

relationships. 

In Figure 3.8 and Table 3.3, the observed and estimated GPP representing different PFTs 

for all four RF models is depicted. The estimation for each site is given in Supplementary 

materials Figure S3.5.  Overall, all RF models’ GPP predictions capture the seasonal and 

interannual dynamics of the tower-based GPP very well. However, there are sites, years and 

vegetation types where observed GPP cannot be estimated with high accuracy. For instance, the 

RF models tend to underestimate GPP maxima in GRA, WET, and EBF vegetation types. These 

underestimates are mostly marked by the slope of the relationships between the observed GPP 

and predicted GPP in Table 3.3.  
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Figure 3.8. Comparison between observed GPP and RF-regression-model-estimated GPP at 

selected ICOS flux sites representing different PFTs: DBF, EBF, ENF, MF, CRO, GRA, OSH, 

and WET. The color code represents the different RF GPP predictions and the observed GPP: 

red stands for RF-SIF-R, green for RF-SIF-R-PFT, blue for RF-R, cyan for RF-SIF-VI, and 

black for observed GPP. 

Table 3.3. Summary statistics of plant-functional-type-specific observed GPP against RF-

model-predicted GPP relationships in eight major PFTs: MF, CRO, ENF, DBF, EBF, GRA, 

OSH, and WET. All pairwise relationships between observed GPP and predicted GPP were 

statistically significant with p < 0.0001. The sign ± denotes the 95 % confidence interval on the 

slope and intercept of the relationships between observed GPP and predicted GPP.  
 

 RF-R RF-SIF-R 

PFT Site N Adj. 

R2 

Slope Intercept RMSE Adj. 

R2 

Slope Intercept RMSE 

CRO 9 1171 0.78 1.03±0.03 0.00±0.24 2.67 0.75 1.01±0.03 0.08±0.26 2.89 

DBF 6 748 0.92 1.02±0.02 -0.23±0.18 1.41 0.90 1.05±0.02 -0.52±0.21 1.61 

EBF 2 188 0.77 0.93±0.07 1.01±0.83 1.23 0.68 0.90±0.09 1.58±0.99 1.45 

ENF 13 1385 0.85 1.01±0.02 -0.01±15 1.29 0.78 1.06±0.03 -0.23±0.19 1.54 

GRA 3 364 0.81 1.02±0.05 -0.02±32 1.64 0.76 1.07±0.06 -0.17±0.38 1.87 

MF 2 117 0.84 1.05±0.08 -0.15±0.76 1.49 0.82 1.12±0.10 -0.62±0.83 1.56 

OSH 1 317 0.91 1.02±0.04 -0.09±0.22 0.99 0.88 1.01±0.04 0.01±0.24 1.10 

WET 4 599 0.92 0.98±0.02 -0.15±0.10 0.85 0.84 0.98±0.03 -0.37±0.15 1.17 

All 40 4889 0.86 1.02±0.01 -0.09±0.08 1.72 0.82 1.04±0.01 -0.19±0.10 1.94 
 

 RF-SIF-VI RF-SIF-R-PFT 

PFT Site N Adj. 

R2 

Slope Intercept RMSE Adj. 

R2 

Slope Intercept RMSE 

CRO 9 1171 0.70 1.03±0.04 0.01±0.29 3.14 0.75 1.00±0.03 0.12±0.26 2.87 

DBF 6 748 0.84 1.05±0.03 -0.58±0.28 2.06 0.91 1.04±0.02 -0.40±0.21 1.56 

EBF 2 188 0.51 0.77±0.11 3.42±1.14 1.80 0.72 0.96±0.09 0.74±0.98 1.37 



BALDE Hamadou – Thèse de doctorat – 2023 

47 
 

                                                Chapter 3. Synergy between SIF and reflectance to predict GPP 

ENF 13 1385 0.66 1.02±0.04 0.10±0.24 1.92 0.79 1.08±0.03 -0.39±0.19 1.5 

GRA 3 364 0.69 0.98±0.07 0.02±0.43 2.11 0.77 1.07±0.06 -0.29±0.38 1.84 

MF 2 117 0.71 1.04±0.12 0.04±1.07 2.00 0.82 1.12±0.09 -0.73±0.84 1.56 

OSH 1 317 0.83 0.98±0.05 0.21±0.29 1.33 0.89 1.02±0.04 -0.06±0.24 1.08 

WET 4 599 0.72 0.88±0.04 -0.39±0.21 1.54 0.88 1.05±0.03 -0.29±0.12 0.99 

All 40 4889 0.75 1.03±0.02 -0.18±0.12 2.28 0.83 1.03±0.01 -0.15±0.09 1.89 

3.4.4. Relative importance of the predictive variables for predicting GPP 

Figure 3.9 shows the relative importance (or mean decrease in impurity) of the predictive 

variables of the RF models for predicting GPP across all sites pooled together. Figure 3.9 

indicates that for the RF-R model, R in the near-infrared (NIR) band (B2 :841-876 nm) and R 

in the red band (B1: 620-670 nm) were found as the most important input variables for GPP 

estimates. Moreover, it can be seen that the contribution of the far-red R (B13) in predicting GPP 

is also important, whereas the contribution of the other R bands was on a similar level.  For the 

RF-SIF-R model, SIFd (>23%), R in the NIR (B2 = 17%), and the R in the red band (B1= 9%) 

are by far the most relevant variables for GPP prediction, while the other variables contribute 

less to GPP estimates. The RF-SIF-R-PFT model differs from the previous model (RF-SIF-R) 

only on the plant functional-type categorical variable and its results underline that the plant 

functional-type variable is still important for predicting GPP.  Ultimately, reflectance-based 

vegetation indices are widely used for predicting GPP at larger scales. Hence, it is worthwhile 

investigating what the contributions of these interesting variables jointly with SIFd in predicting 

canopy GPP are. The relative importance derived from the RF-SIF-VI model reveals that SIFd 

(36%) is substantially the most relevant variable for predicting GPP. The contributions of NIRv 

and NDVI to the model are comparable, whereas PRI has a lower contribution in estimating 

GPP. 
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Figure 3.9. Relative importance of predictive variables of the RF models based only on remote 

sensing data for estimating GPP, except for the RF-SIF-R-PFT model. The RF-R model is based 

only on MODIS surface spectral reflectance; the RF-SIF-R model uses SIFd and surface 

reflectance as input variables; the RF-SIF-R-PFT model integrates SIFd, surface reflectance, 

and PFT as explanatory variables; and the RF-SIF-VI model combines SIFd and reflectance-

based indices, notably NDVI, NIRv, and PRI, as input variables for predicting GPP across all 

sites. The wavelengths depicted on the spectral bands denote the central wavelength. 
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3.5. Discussion 

3.5.1. Strength of the relationship between GPP and SIFd at site and PFT levels 

In this study, the first aim was to evaluate the strength of the relationship between tower-

based GPP and SIFd at daily timescales and at different spatial scales (at site and plant functional 

type levels).  

At the site level, the results demonstrate that there were strong and statistically 

significant relationships between GPP and SIFd. However, the hyperbolic fit between tower-

based GPP and SIFd varies significantly across sites, which suggests a site-specific relationship. 

In other words, at these scales the differential variations in plant physiology and vegetation 

structure across sites and years and the spatiotemporal dynamics of the flux tower footprints 

(depending mainly on the height of the tower and wind direction), along with spatial 

heterogeneity and environmental conditions across sites may strongly affect first of all the SIF 

emissions, scattering and reabsorption across sites, and consequently the relationship between 

GPP and SIFd (Fournier et al., 2012; Paul-Limoges et al., 2018; Tagliabue et al., 2019; Li et al., 

2020; Chu et al., 2021; Zhang, et al., 2021b). These results are consistent with previous studies 

based on ground-based and satellite measurements which found evidence that canopy structure, 

as well as PFT, have substantial effects on the relationships between GPP and SIF across 

multiple sites  (Dechant et al., 2020; Lu et al., 2020;  Li et al., 2018b; Sun et al., 2018; Wang et 

al., 2020; Hao et al., 2021;  Wang et al., 2022). For instance, Wang et al. (2020) found that the 

relationship between OCO-2 SIF observed at 757 nm and 771 nm and at tower-based GPP 

across eight vegetation types at 61 flux sites all over the world relies on canopy structure, and 

Lu et al. (2020) reported a better relationship between canopy GPP and SIF corrected from 

reabsorption and scattering effects than top-of-canopy SIF based on ground-based 

measurements, underlying the importance of canopy structure on SIF and GPP relationships.  

Furthermore, these results are also in good agreement with several studies carried out 

with instantaneous ground-based measurements at different vegetation types, sites, and 

locations (Kim et al., 2021, Damm et al., 2015; He et al., 2020, Gu et al., 2019). For instance, 

Kim et al. (2021) pointed out that a hyperbolic model could better explain the relationships 

between GPP and SIF in an evergreen needle forest, and Damm et al. (2015) showed similar 

results in cropland, mixed temperate forest and grassland vegetation types. One of the most 
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plausible explanations is that GPP might reach saturation in high sunlight, while SIF tends to 

keep increasing with PAR. It is also paramount to mention that the saturation of optical signals 

is a common issue in remote sensing, which can explain part of the weaker relationships found 

in the EBF sites. 

The relationship between tower-based GPP and SIFd considering the PFT was also 

examined. The results revealed a significant PFT-specific GPP and SIFd relationships across all 

eight major vegetation types. Yet, the hyperbolic relationship between GPP and SIFd varies 

considerably across PFTs, suggesting a PFT-specific relationship. The relationship between 

GPP and SIFd is driven by the ratio between canopy photosynthesis light use efficiency and 

fluorescence yield, along with the canopy escape probability fraction of SIF photons from the 

canopy to sensor (Porcar-Castell et al., 2014;  Zhang et al., 2018; Zeng et al., 2019). The major 

drivers affecting the canopy photosynthesis and SIF yield include among others leaf 

morphology and orientation, plant physiology, canopy structure (leaf area index, chlorophyll 

contents, etc.), rapid changes in incident radiation and illuminated canopy surface, different 

contributions from photosystem I and II, as well as rapid abiotic responses (Porcar-Castell et 

al., 2014; Mohammed et al., 2019; Gamon et al., 2019; Yang et al., 2021; Chu et al., 2021; 

Wang et al., 2022). These explanations altogether sustained the PFT-specific GPP vs SIF 

relationship, as those factors can differ considerably across PFTs. Additionally, the results 

showed that the MF, DBF and OSH sites have the strongest GPP and SIFd relationship, which 

indicates that SIF may easily capture the seasonal, interannual, and phenological variations in 

GPP within this vegetation type. In other words, in the MF, DBF and OSH (one sample of 

vineyard plantation) biomes, there are explicitly marked seasonal and phenological changes 

compared to the EBF or ENF forest where there is greenness all the time. Thus, in the DBF, 

MF and OSH biomes the SIF signal may easily capture the variations in LAI and absorbed PAR 

and consequently display a high correlation between GPP and SIFd. On the other hand, the 

lower observed relations between GPP and SIFd in the EBF (GF-Guy and IT-Cp2) sites could 

be partly explained by a lower spatiotemporal variability in SIF emissions in tropical forests 

coupled to dispersed and lower GPP values observed on the datasets, as well as challenges in 

detecting or decoupling the understory vegetation effects from all vegetation canopy 

contributions to SIF emissions and uncertainties related to GPP estimates in tropical forests,  

while in CRO (FR-Mej) the difference in photosynthetic pathways (C3, C4 or a mix of both)  

and different management practices may be the reasons why SIFd could not capture the 



BALDE Hamadou – Thèse de doctorat – 2023 

51 
 

                                                Chapter 3. Synergy between SIF and reflectance to predict GPP 

variations in GPP, as reported in earlier studies (Li et al., 2018; Hayek et al., 2018; Mengistu et 

al., 2021; He et al., 2020; Hornero et al., 2021;  Li & Xiao, 2022). Previous studies have also 

reported weak relationships between GPP and SIF in the EBF vegetation-type (Li et al., 2018b; 

Wang et al., 2020). Moreover, it is worth mentioning that the biases related to cloudless and 

cloudy skies in space-based SIF retrieval, complicate the use of SIF to estimate GPP at the PFT 

scale because cloudless-sky SIF and cloudless-sky GPP are completely different from cloudy-

sky SIF and cloudy-sky GPP, and consequently, their relationship may also differ (Miao et al., 

2018). Investigating GPP and SIF relationships based only on clear-sky data and only on 

cloudy-sky data, without the mix of both, is justified to better understand their links. Ultimately, 

the PFT-dependent relationships between GPP and SIFd in this study was confirmed by the 

weak and statistically significant relationship reported for all biomes on data pooled together 

across all sites. This hypothesis was further supported by significant effects of the year, site, 

and PFT on the relationship between SIFd and GPP reported in the GLM. Exploring the newly 

launched satellite instruments such as OCO-3 and ECOSTRESS and the upcoming FLEX and 

GeoCarb satellite missions, which are planned to have diurnal sampling or fine-spatial 

resolution (for instance 300 m for FLEX), along with ongoing ground-based, and airborne-

based SIF and GPP data altogether will improve the ability not only to better understand the 

GPP and SIF relationship, but also to completely decouple  the effects of driving factors such 

as vegetation physiology, canopy structure, and abiotic stress conditions that mediate their 

relationships at the ecosystem scale. 

3.5.2. Synergy between SIFd, R, and VIs for estimating GPP using random forest  

The second main goal in this paper was to explore the synergy between SIFd from the 

TROPOMI instrument and MODIS R and VIs namely NDVI, NIRv, and PRI for predicting GPP 

on data pooled across all sites. To achieve this purpose, four RF regression models were 

established: RF-R, RF-SIF-R, RF-SIF-R-PFT, and RF-SIF-VI. Except for the RF-SIF-R-PFT 

model, the main advantage of using solely remotely sensed data for  estimating GPP is that we 

do not need to rely on land cover type, land cover change, and meteorological data (Xiao et al., 

2019). 

The current results show that the RF-R (surface spectral reflectance alone), RF-SIF-R 

(SIFd plus surface spectral reflectance) and RF-SIF-R-PFT (SIFd plus surface spectral 

reflectance plus PFT) models, statistically explain the same variance of GPP at the daily 
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timescale (82~86%), whereas the RF-SIF-VI (SIFd plus reflectance-based indices) explains the 

lowest part, about 75% of GPP across all sites. It is well known that at the seasonal scale spectral 

reflectance captures the variations in canopy structure. The seasonal variations in canopy 

structure, especially LAI, are strongly correlated with variations in GPP (Dechant et al., 2022). 

This could justify the strong relationship found between tower-based GPP and the predicted 

GPP by the RF-R model. On the other hand, SIF is an integrative variable at the seasonal and 

interannual scales as shown in Figure 3.9 and the correlation matrix results (a strong 

contribution of SIF to GPP estimates and a high correlation between GPP and SIFd compared 

to each R band taken alone). However, SIF, while exhibiting the highest relative importance, 

fails to improve the GPP estimate. Hence, while being limited by its spatial resolution (7 km x 

3.5 km), at which SIF may lose its physiological information and most likely may reflect 

phenological, structural, and illumination information (Jonard et al., 2020; Kimm et al., 2021), 

SIF remains a better predictor of GPP than each reflectance band individually. These results 

also revealed that the RF-SIF-VI has the poorest performance in predicting GPP. This lower 

performance could be partly due to the well-known saturation of VIs over dense canopies. In 

addition, the paired t-test did not show any statistically significant difference between RF-R and 

RF-SIF-R models, which confirms the above hypothesis, which suggests that SIF represents the 

variations in absorbed PAR at these scales. Recently, Pabon-Moreno et al. (2022) used solely 

Sentinel-2 satellite-derived red-edge-based and near-infrared-based vegetation indices and all 

spectral bands to predict GPP at daily time scale across 54 EC flux sites using a data-driven 

approach (random forest). The authors reported that spectral bands jointly with VIs can inform 

only 66% of the variance in GPP, which is far less than the here worse-performing model (i.e., 

RF-SIF-VI) in predicting GPP. The daily scale and solely remotely-sensed-driven RF-R and 

RF-SIF-R models outperform previous GPP products derived based on data-driven methods  

(Wolanin et al., 2019; Tramontana et al., 2016; Jung et al., 2019) and process-based models 

(Jiang & Ryu, 2016; Zhang et al., 2017; Lin et al., 2019), which included even more inputs as 

predictive variables such as meteorological data, land-cover-type data, and land-cover-change 

data and were conducted mostly at longer timescales (8-day or monthly timescale) compared to 

this study. Furthermore, these results are in strong agreement to two recent studies (Cho et al., 

2021; Li et al., 2021). More specifically, Cho et al. (2021) found that remotely sensed data alone 

can explain 81%  of GPP variability across four vegetation types, including ENF, EBF, DBF, 

and MF, in South Korea at 8-day timescales, and Li et al. (2021) pointed out that instantaneous 

GPP estimates across 56 flux tower sites could be achieved with an R2 of 0.88 and RMSE of  
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2.42 µmol CO2  m
-2 s-1 using ECOSTRESS land surface temperature, daily MODIS satellite 

data, and meteorological data from ERA5 reanalysis. This study also revealed that GPP 

prediction can be achieved with high accuracy based on solely remotely sensed data that are 

widely and publicly available for all. 

The RF models could clearly capture the GPP variations at each site, encompassing 

different vegetation types as shown in Figures 3.6 and 3.8. Indeed, there are sites, years, and 

vegetation types where tower-based GPP was underestimated, which were the cases for WET 

and EBF vegetation types. Furthermore, all RF models struggle to accurately estimate tower-

based GPP at the IT-BCi, IT-Cp2 and SE-Deg sites, owing most likely to SIF pixel 

heterogeneities and lower GPP values observed in these sites, along with previously explained 

issues associated with estimating GPP in crops and tropical stands. Similar results were reported 

recently in Pabon-Moreno et al. (2022), including eight vegetation types (ENF, CRO, DBF, 

GRA, WET, MF, savannah (SAV), and OSH). The reason behind these poor performances may 

also be related to difficulties in detecting abiotic stress conditions (Bodesheim et al., 2018), 

underscoring need for more research on predicting GPP during extreme abiotic conditions. 

Furthermore, in this study, it is determined what the main variables contributing to GPP 

prediction are using the four RF models based on the relative importance metric of each model. 

Yet, it is found that SIFd, the R in the NIR band (B2), the red band (B1), and the far-red band 

(B13), as well as the vegetation type, NDVI, and NIRv, seem to provide useful information for 

the predictions of GPP as shown in Figure 3.9. B2 and B1 are well-known spectral bands for 

characterizing vegetation canopy structure, seasonal phenology, canopy scattering, and 

reabsorption due to chlorophyll content within leaves, and consequently have a dominant role 

in estimating GPP across all sites. The high contribution of SIFd is presumably due to its 

integrative role at the seasonal and interannual scales as explained previously (Maguire et al., 

2020; Dechant et al., 2022). PRI is known to be involved in the xanthophyll cycle, which is an 

important photoprotection mechanism and as driver of GPP (Wang et al., 2020;  Hmimina et 

al., 2015; Soudani et al., 2014). However, in this study, the findings evidenced that the 

contribution of PRI in predicting GPP was weak, which could be explained by the spatial and 

temporal aggregation of the rapid responses in plant physiological and functional activities, 

observable at the finer scales (diurnal). Ultimately, the findings in this study suggest that using 
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R bands and SIF for estimating GPP is an important approach for improving GPP predictions 

compared to GPP products that include meteorological and land-cover-type information. 

3.6. Conclusion 

In this study, the strength of the relationships between tower-based GPP and SIFd 

encompassing eight major plant functional types (PFTs) at the site and interannual scales was 

evaluated, and the synergy between SIFd, surface spectral reflectance, and reflectance-based 

indices namely NDVI, NIRv, and PRI to improve GPP estimates using a data-driven modeling 

approach was examined. 

 At the site scale, the results showed a strong and statistically significant hyperbolic 

relationship between GPP and SIFd (p<0.0001). However, these relationships were site-

dependent, indicating that canopy structure and environmental conditions affect the relationship 

between GPP and SIFd. The GPP and SIFd relationships across all sites of the same PFT were 

considerably significant and were PFT-specific. Furthermore, it was also found that the 

relationships between GPP and SIFd on data pooled across all sites were moderately weak but 

statistically significant, confirming the PFT dependence of the relationship between GPP and 

SIFd. The GLM results supported this PFT-dependent relationship between GPP and SIFd as 

the site, year, and PFT have meaningful effects on the slope of the relationship between GPP 

and SIFd. 

This study also demonstrated that the spectral reflectance bands and SIFd plus 

reflectance explained over 80% of the tower-based GPP variance. The RF models were able to 

represent the GPP seasonal and interannual variabilities across all sites. In addition, from the 

mean decrease in impurity results obtained from the RF models, it is inferred that the spectral 

reflectance bands in the near-infrared, red, and SIFd appeared as the most influential and 

dominant factors determining GPP predictions. In summary, this study provides insights into 

understanding the strength of the relationships between GPP and SIF across different ICOS flux 

sites and the use of daily MODIS R and SIFd TROPOMI in predicting GPP across different 

vegetation types.
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4. Chapter 4: Data-based investigation of the effects 

of canopy structure and shadows on chlorophyll 

fluorescence in a deciduous oak forest 
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Soudani, K.: Data-based investigation of the effects of canopy structure and shadows on 

chlorophyll fluorescence in a deciduous oak forest, Biogeosciences, 21, 1259–1276, 

https://doi.org/10.5194/bg-21-1259-2024, 2024. 

 

 

 

 

NB: Supplementary materials are all in annexes (Annexe Chapter 4) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BALDE Hamadou – Thèse de doctorat – 2023 

57 

                     Chapter 4. Effects of canopy structure on SIF and links between SIFy and FyieldLIF 

Abstract. Data from satellite, aircraft, drone, and ground-based measurements have already 

shown that canopy scale sun-induced chlorophyll fluorescence (SIF) is tightly related to 

photosynthesis, which is linked to vegetation carbon assimilation. However, our ability to 

effectively use those findings are hindered by confounding factors, including canopy structure, 

fluctuations in solar radiation and in sun-canopy-geometry that highly affect the SIF signal. 

Thus, disentangling these factors has become paramount in order to use SIF for monitoring 

vegetation functioning at canopy scale and beyond. Active chlorophyll fluorescence 

measurements (FyieldLIF), which directly measures the apparent fluorescence yield, have been 

widely used to detect physiological variation of the vegetation at leaf scale. Recently, the 

measurement of FyieldLIF has become feasible at the canopy scale, opening up new opportunities 

to decouple structural, biophysical, and physiological components of SIF at the canopy scale.  

In this study, based on top-of-canopy measurements above a mature deciduous forest, 

reflectance (R), SIF, SIF normalized by incoming photosynthetically active radiation (SIFy), 

FyieldLIF, and the ratio between SIFy and FyieldLIF (named Φk) were used to investigate the effects 

of canopy structure and shadows on the diurnal and seasonal dynamics of SIF. Further, random 

forest (RF) models were also used to not only predict FyieldLIF and Φk, but also provide an 

interpretation framework by considering additional variables, including the R in the blue, red, 

green, red-edge, and near-infrared bands, SIF, SIFy, and sun zenith (SZA) and azimuth (SAA) 

angles. Results revealed that the SIF signal is highly affected by the canopy structure and sun-

canopy geometry effects compared to FyieldLIF. This was evidenced by the weak correlations 

obtained between SIFy and FyieldLIF at the diurnal timescale. Furthermore, the daily mean 

𝑆𝐼𝐹𝑦 captured the seasonal dynamics of daily mean 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 and explained 58% of its 

variability. The findings also revealed that reflectance in the near-infrared (R-NIR) and the NIRv 

(the product of NIR by the normalized difference vegetation index) are good proxies of Φk at 

the diurnal timescale, while their correlations with Φk decrease at the seasonal timescale. With 

FyieldLIF and Φk as outputs and the abovementioned variables as predictors, this study also 

showed that the RF models can explain between 86% and 90% of FyieldLIF, and 60% and 70% 

of Φk variations under clear sky conditions. In addition, the predictor importance estimates for 

FyieldLIF RF models revealed that R at 410, 665, 740, and 830 nm, SIF, SIFy, SZA, and SAA 

emerged as the most useful and influential factors for predicting FyieldLIF, while R at 410, 665, 

705, and 740 nm, SZA, and SAA are crucial for predicting Φk. This study highlighted the 

complexity of interpreting diurnal and seasonal dynamics of SIF in forest canopies. These 
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dynamics are highly dependent on the complex interactions between the structure of the canopy, 

the vegetation biochemical properties, the illumination angles (SZA and SAA) and the light 

conditions (ratio of diffuse to direct solar radiation). However, such measurements are 

necessary to better separate the variability in SIF attributable to radiation and measurement 

conditions from the subtler variability attributable to plant physiological processes. 

4.1. Introduction 

Spatial and temporal information on vegetation status are crucial to gain a better 

understanding of vegetation functioning and productivity. Remotely sensed data mostly from 

satellite and airborne platforms have provided such information for decades now (Ustin and 

Middleton, 2021). However, most of the remote sensing methods used for detecting and 

monitoring the dynamics of vegetation properties were exclusively based on vegetation 

greenness derived from optical vegetation indices (VIs) such as the Normalized Difference 

Vegetation Index (NDVI), and more recently the Near-Infrared Reflectance of vegetation index 

(NIRv), which have been broadly and successfully used to estimate some biophysical and 

biochemical attributes, including leaf area index (LAI), fraction of Absorbed Photosynthetically 

Active Radiation (fAPAR), and leaf chlorophyll content (Campbell et al., 2019; Zeng et al., 

2022b).  

Sun-Induced chlorophyll Fluorescence (SIF) is a direct indicator of the vegetation 

photosynthetic activity that responds to abiotic stresses such as heatwaves and droughts, earlier 

than VIs (Frankenberg et al., 2011; Guanter et al., 2014; Rascher et al., 2015; Jonard et al., 

2020). Further, SIF is not directly impacted by soil background as green vegetation is the only 

source of chlorophyll fluorescence in the red and far-red. The potential carried by SIF is 

currently used for estimating and monitoring terrestrial Gross Primary Productivity (GPP) 

across different vegetation types, including, crops, deciduous forests, evergreen forests, tropical 

forests, wetlands, etc. (Li and Xiao, 2022; Verma et al., 2017; Wood et al., 2017; Balde et al., 

2023), for assessing vegetation structural changes, and estimating crop productivity (He et al., 

2020; Liu et al., 2022).  

However, because of the coarse spatial scale of the satellite products used in these above 

mentioned studies, the results are inconclusive and it is still questioned whether SIF can provide 

reliable estimates of GPP at different spatial scales and temporal resolutions across different 
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vegetation types, and more particularly under various abiotic stress conditions (Paul-Limoges 

et al., 2018; Yazbeck et al., 2021; Lin et al., 2022; Balde et al., 2023; Sun et al., 2023b). Further, 

satellite SIF signals are also subject to the effects of the interactions between the roughness of 

upper canopy layers (tree forms, gaps), and the Solar Zenith (SZA) and Azimuth (SAA) Angles. 

These interactions modulate the spatial and temporal distributions of sunlit and shaded leaves, 

the light distribution within the canopy and the main physiological processes such as 

photosynthesis, evapotranspiration, and stomatal conductance (Gao et al., 2022; Morozumi et 

al., 2023). 

The recent increased availability of diurnal and seasonal time series of SIF data from 

airborne, drone, and ground-based measurements was crucial for gaining a better understanding 

of what drives SIF at various spatial and temporal scales and across biomes (Damm et al., 2015; 

Rascher et al., 2015; Yang et al., 2017; Goulas et al., 2017; Wang et al., 2021; Zhang et al., 

2021; Wang et al., 2022; Xu et al., 2021; De Cannière et al., 2022). However, interpretation of 

locally measured SIF data should be cautiously carried out. In fact, rapid variations in 

fluorescence may be due to local effects linked to the conditions of illumination and to the light 

absorption by the canopy. These effects may lead to significant variations in SIF without 

substantial variations in photosynthesis of the entire canopy. Therefore, distinguishing the 

effects of endogenous factors related to canopy structure from the effects of photosynthesis 

changes on SIF signal is warranted. 

At the top-of-canopy, the radiative transfer of SIF can be resumed within Equation. 

(4.1): 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × Φ𝐹 × 𝑓𝑒𝑠𝑐                                                                                       (4.1)                                                                                                                               

where PAR is the incoming Photosynthetically Active Radiation (400-700 nm), which is the 

first driver of canopy SIF signal (Miao et al., 2020). fAPAR is the fraction of Absorbed PAR by 

the vegetation, and fesc is the fraction of all chlorophyll fluorescence photons emitted from all 

leaves and escaped from the canopy, also known as fluorescence escape probability fraction, 

which is dependent on the biophysical and biochemical properties of the canopy and on the sun 

and view geometry. ΦF is the chlorophyll fluorescence quantum yield (the ratio of the total 

amount of photons emitted to the total amount of photons absorbed by the chlorophyll pigments) 

and hence it is a direct indicator of the photosynthetic efficiency. From Equation (1), it is 

explicit that in order to interpret top-of-canopy SIF and use it as a proxy of ΦF and 
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photosynthesis, it is necessary to understand and disentangle ΦF from the SIF canopy structure 

dependent variations (due to the spatiotemporal effect’s variations in sunlit and shaded leaves 

and to the light distribution and attenuation within the canopy) that are contained in fAPAR and 

fesc.  

Disentangling the photosynthetically dependent variations from the canopy dependent 

ones in SIF signal is critical to use SIF as a proxy of vegetation response to changing 

environmental conditions and to abiotic stresses at large scales. It is especially needed for the 

upcoming Fluorescence Explorer (FLEX) satellite mission that aims at providing measurements 

of SIF at its full spectral emission (670-780 nm) and with unprecedented spatial resolution (300 

m) and repeated global coverage (Drusch et al., 2017). Therefore, the top-of-canopy SIF 

measured together with GPP at the carbon flux sites can play a substantial role for calibrating 

and validating FLEX products and airborne campaigns measurements.  

Recent studies have developed novel approaches based on theoretical insights to correct 

SIF signal for multiple scattering and reabsorption effects (Zeng et al., 2019; Yang and van der 

Tol, 2018; Yang et al., 2020) by determining the fesc and allowing the downscaling of SIF 

emission from canopy to fluorescence emission yield (Lu et al., 2020). This assumes that the 

entire canopy acts like a big leaf, with unique absorption, fluorescence, and photosynthetic 

properties. In this situation, fesc is the ratio of top-of-canopy SIF  to SIF total and it is closely 

related to canopy structural variations, including LAI, leaf angle distribution, reabsorption, and 

sun-canopy geometry, and varies across time and space (Zeng et al., 2019). Recently, fesc has 

been estimated using NIRv or the Fluorescence Correction Vegetation Index (FCVI). The 

former considers soil background effects and is the product of NDVI and the reflectance in the 

near-infrared (NIR) (Badgley et al., 2017) and it has successfully been used to assess 

photosynthesis productivity (Mengistu et al., 2021). The latter, FCVI, is framed as the 

difference between the NIR and the broadband visible reflectance (400-700 nm), considering 

that the reflectance is measured in the same direction as the SIF observations (Yang et al., 2020). 

Both approaches have shortcomings, as they cannot be universally applied, because some steps 

in the estimation of fesc using NIRv are inconsistent with the radiative transfer theory (Yang et 

al., 2020) and their effectiveness might be greatly compromised for SIF at the red band where 

the scattering is much weaker than in the near-infrared. The use of FCVI is also limited as it is 
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not suitable in sparse vegetation canopies and its computation requires hyperspectral data in the 

visible spectral range. 

If one would like to disentangle the radiation and vegetation structure dependent SIF 

variations from the physiological information in the SIF signal, determining ΦF is required. ΦF 

can be defined at the leaf scale, or even at lower scales (chloroplasts) where the absorbed light 

energy is dissipated following three pathways: photosynthesis, fluorescence, and heat 

dissipation. Estimating leaf-scale ΦF from canopy SIF measurements is an ongoing work that 

is under exploration. In addition, the computation of total absorbed photosynthetically active 

radiation (APAR) requires measurements of the incident, transmitted, and reflected PAR, which 

cannot be measured at satellite and airborne platforms, and are not always available for all 

ground sites even those belonging to major carbon flux observation networks such as the 

Integrated Carbon Observation System (ICOS). This is the reason why for decades the apparent 

ΦF was estimated by normalizing the top-of-canopy SIF signal converted in quanta energy by 

the incident PAR (Daumard et al., 2012; Goulas et al., 2017). Recently, two promising 

approaches have been used by Zeng et al. (2022a) and Loayza et al. (2023) to estimate ΦF. To 

determine ΦF over cropped fields, including, rapeseed, barley, corn, wheat, and sugar beet,  

Zeng et al. (2022a) normalized canopy SIF by the near-infrared radiance of vegetation index 

(rNIRv, the product of NDVI and the reflected vegetation radiance in the near-infrared), while 

Loayza et al. (2023) used the integrated vegetation reflected radiance between 500 and 700 nm 

on potato crop. These approaches have advantages because the effects of canopy structure and 

sun-canopy geometry on ΦF estimates may be fully cancelled out, the PAR is not needed as an 

input, and their applicability at the satellite scale is highly feasible. However, how much these 

methods are reliable and effective on estimating ΦF under varying environmental conditions 

and across diverse spatiotemporal scales and vegetation types is not well explored yet.  

Luckily, chlorophyll fluorescence can be measured using active methods that allow 

direct evaluation of the physiological status of the vegetation at the leaf and canopy scales 

(Porcar-Castell et al., 2014; Moya et al., 2019; Loayza et al., 2023). In active techniques, a 

modulated source of light is used to excite the chlorophyll that fluoresces in the spectral range 

between 650 and 800 nm. For instance, the pulse amplitude-modulated techniques, which use 

a measuring pulsed light and an actinic continuous light, has been widely used at the leaf scale 

to provide direct chlorophyll fluorescence yield measurements, allowing the evaluation of 
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photosynthesis and vegetation responses to abiotic factors for decades (Baker, 2008; Magney 

et al., 2017). But, its applicability at canopy and ecosystem scales were hindered by the 

techniques limitations (Ounis et al., 2001). In the last decades, this gap was filled based on the 

use of either lasers (or laser diodes), or Light Emitting Diodes (LED) providing short pulses of 

light (microsecond to even picosecond), together with a synchronized detection to measure 

chlorophyll fluorescence under daylight conditions at the canopy scale with in-situ or airborne 

remote sensing instruments (Moya et al., 2019; Ounis et al., 2016; Loayza et al., 2023). 

Therefore, the fluorescence efficiency can be directly observed at the canopy and landscape 

scales, which is useful to gain a better understanding of terrestrial vegetation functioning. 

Indeed, LED induced chlorophyll fluorescence (FyieldLIF) is less affected by the temporal and 

spatial (horizontal and vertical) distribution of sunlit and shaded leaves on the upper surface 

and within the canopy compared to SIF, but it may be highly sensitive to environmental 

conditions such as heavy wind speeds (Lopez Gonzalez, 2015). 

In forest stands such as temperate deciduous forests, when the vegetation green-up and 

senescence phases are excluded, LAI is merely constant. However, the spatial dynamics in LAI 

may be large from one plot to another. Thus, the canopy structural effect correction on SIF 

signal is all the more crucial from a spatial view point. Further, SIF signal is subject to diurnal 

variations due to the complex interactions between lighting conditions (diffuse/total radiation, 

solar and viewing angles) and canopy structure (Aasen et al., 2019; Xu et al., 2021). Therefore, 

correcting SIF from these effects, which are very local, is warranted for (i) interpreting and 

upscaling SIF signal spatially and temporally across diverse vegetation types, (ii) disentangling 

the physiological response from variations due to exogenous effects on SIF, (iii) assessing how 

SIF responds to extreme environmental conditions (heatwaves, drought, etc.), and ultimately 

(iv) gaining a better understanding of the relationships between SIF and GPP. Nevertheless, to 

the best of our knowledge, an attempt to use active fluorescence measurements at the canopy 

scale to correct SIF from canopy structure, incident sunlight, and sun-canopy geometry effects 

has not been addressed yet. 

The main objective of this work is to use active chlorophyll fluorescence (FyieldLIF) as a 

reference measurement and to compare it to SIF yield (SIFy = SIF/PAR) in order to analyse and 

correct the effects of canopy structure and sun-canopy geometry on top-of-canopy SIF at diurnal 

and seasonal timescales in a temperate deciduous forest, considering diverse environmental 
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conditions. More specifically, this study intended to (i) evaluate the relationship between 

FyieldLIF and SIFy and evidence the effects of canopy structure and sun-canopy geometry on top-

of-canopy SIF through their influence over this relationship; (ii) examine these effects with the 

aim of developing a correction method based on reflectance measurements and lightning 

conditions (solar angles, ratio of diffuse to total radiation, etc.). 

4.2. Materials and Methods 

4.2.1. Study site description 

This study was conducted at the Fontainebleau-Barbeau forest site (FR-Fon), which is 

an Eddy Covariance (EC) flux observation site belonging to the ICOS network (Delpierre et al., 

2016). The site is located 53 km southeast of Paris, France. It is occupied by a temperate 

deciduous broad-leaf forest type. The dominant forest overstory consisted of mature sessile oak 

trees (Quercus petraea (Matt.) Liebl), accounting for 79% of the basal area (Maysonnave et al., 

2022), with an understory of hornbeam (Carpinus betulus L.) (for more details: 

http://www.barbeau.universite-paris-saclay.fr/). The stand height is around 25 m. The soil is an 

endostagnic luvisol, covered by an oligo-mull humus (Maysonnave et al., 2022). The climate is 

temperate and characterized by an annual average rainfall of approximately 680 mm and an 

average air temperature of approximately 11°C (Soudani et al., 2014). The LAI is 

approximately 5.8 m2.m-2 using the litter collection method over the 2012-2018 period (Soudani 

et al., 2021). At the Fontainebleau-Barbeau site, carbon and water fluxes have been 

continuously monitored at 35 m height using the EC method. The main micrometeorological 

variables, including incident and reflected radiations, are measured at high frequency (1 min), 

while vapor pressure deficit, precipitation, air and soil temperature, water table depth, soil 

moisture, and wind speed are either recorded or estimated at a half-hourly timescale. 

4.2.2. Sun-induced and light-emitting diode induced chlorophyll fluorescence, and 

reflectance measurements 

4.2.2.1. Sun-induced chlorophyll fluorescence measurement system 

In the framework of the ECOFLUO project, a passive in-situ spectral measurement 

automated instrument (named SIF3) was developed based on a collaboration between the 

http://www.barbeau.universite-paris-saclay.fr/
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“Laboratoire de Météorologie Dynamique (LMD), École Polytechnique, France et Laboratoire 

Écologie, Systématique et Évolution (ESE), Université Paris-Saclay, France”. SIF3 acquires 

continuous measurements of incident and reflected radiation above the canopy. It was installed 

at the top of the 35 m height tower of Fontainebleau-Barbeau site above the canopy in July 2021 

(Supplementary materials Figure S4.1).  To avoid artificial shading of the measured area, SIF3 

was set to the southern part of the tower. 

The SIF3 measurement system includes a control computer (LattePanda V1, LattePanda 

Shanghai, China and two Arduino microcontrollers), two spectrometers with coolers, shutter 

controllers, a general cooler with temperature controller inside the box, two optical fibers, a 

reference panel, a servo motor, a PAR sensor, a GPS, temperature and relative humidity sensors, 

and a camera. The two spectrometers are a high-resolution spectrometer (ASEQ instruments, 

Vancouver, Canada, HR1-T model with thermoelectric cooling) and a broad band spectrometer 

(ASEQ, LR1-T model with thermoelectric cooling). The high-resolution spectrometer (HR1-T) 

has a spectral range between 650 and 800 nm, a high spectral resolution with full width at half 

maximum (FWHM) of approximately 0.3 nm. The HR1-T was used to determine sun-induced 

chlorophyll fluorescence. The broad band spectrometer (LR1-T) has a spectral range between 

400 and 1000 nm and a FWHM of approximately 1.5 nm. It was used to measure canopy 

reflectance and the optical vegetation indices (VIs). 

In order to reduce the noise and dark current, both spectrometers were contained within 

a dry and thermoregulated box system that maintained the temperature at 19 ± 0.61 °C. SIF3 

performs sequential vegetation reflected radiance measurements and irradiance measurements 

on a polytetrafluoroethylene (PTFE) reference panel (PMR10P1, Thorlabs, Maisons-Laffitte, 

France). The sequential measurements of SIF3 were: first to measure the reference PTFE with 

LR1-T and HR1-T spectrometers, and second to measure vegetation reflected radiance with 

both spectrometers. Within one measurement of the target canopy or the reference, each 

spectrometer performed the following steps: (i) optimizing the integration time (IT) for 

measurement, (ii) measurement, and (iii) measurement of the dark current. The date and time 

at the start and end of each measurement were recorded. Two 15 m long optical fibers 

(FT1000EMT and FT1000UMT, Thorlabs, Maison-Laffitte, France, for HR1-T and LR1-T 

spectrometers, respectively) with a 1000 µm core diameter and a numerical aperture of 0.39 

NA were used to measure the irradiance of the reference and the radiance of the canopy, at the 
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nadir position. The field-of-view (FOV) of each measuring channel is adjusted to 25° with the 

use of a Gershun tube to ensure a flatter spatial response and covers approximately 6 m2 of the 

canopy area. Long-pass optical filters (5CGA-550, cut-off wavelength 550 nm and 5CGA-375, 

cut-off wavelength 375 nm, Newport, Irvine, CA, USA, for the HR1-T and LR1-T channels, 

respectively) were placed in front of each tube to avoid second order detection and to protect 

fiber ends. The dark current measurements were subtracted from the reference and canopy 

measurements before SIF retrieval. The IT of each spectra was automatically optimized to 

achieve values that are as high as possible, but unsaturated to improve as much as possible the 

signal-to-noise ratio (SNR). Note that SIF3 integrates a quantum sensor to measure the PAR at 

high frequency and a camera that allows taking RGB images of the canopy in the FOV. Before 

the installation of SIF3 in the field, we performed lens alignment, radiometric and spectral 

calibrations of the instrument using a calibrated light source (4P-GPS-060-SF and EHLS-100-

075R, Labsphere, North Sutton, NH, USA). 

4.2.2.2. Light-emitting diode chlorophyll fluorescence measurement system 

FyieldLIF measurements were acquired with an active fluorometer instrument, named LIF, 

developed in the LMD laboratory, which was installed at the top of the 35 m height tower next 

to SIF3 above the canopy. This instrument is very similar to the one described by Moya et al. 

(2019). It uses a blue LED array (ENFIS Ltd, Swansea, UK; peak wavelength 455 nm, FWHM 

21 nm, radiant power 6 W) as an excitation source. To separate the chlorophyll fluorescence 

emission induced by the LED from that induced by daylight and from the reflected sunlight in 

the filter bandwidth, the LED light is pulsed at a variable frequency with a pulse duration of 

about 5 µs. Note that the instrument uses a bimodal excitation conditioned by the PAR: for PAR 

< 90 µmol m-2 s-1 (night time), the frequency is set at 30 Hz, while it is set at 200 Hz (daytime) 

for PAR > 100 µmol m-2 s-1. This bimodal excitation scheme helps to avoid variable 

fluorescence induction during night and to increase SNR during daytime. The instrument optical 

head consisted of two main parts: (i) the source module that includes the blue LED array, its 

electronic driver, a heat dissipation module and a Fresnel lens (diameter 180 mm) to collimate 

the excitation light, and (ii) a detection module that includes a second Fresnel lens of the same 

diameter, a set of optical filters, a large area PIN photodiode (10x10 mm2, S3590, Hamamatsu 

Photonic, Japan) and a laboratory designed amplifier that selects the LED induced fluorescence 

signal (FyieldLIF) from the reflected sunlight in the same wavelengths band (LNIR). This 
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amplifier uses a sample and hold circuit (AD585, Analog Devices, Wilmington, MA, USA) to 

deliver the peak value of the fluorescence signal to the digital analog (AD) conversion card 

(USB 6212, NI, Austin, Texas, USA) and a lowpass electronic filter to deliver LNIR to the 

same card. The set of optical filters includes a highpass interferential filter with a cut-off 

wavelength at 400 nm to reject UV light, a second highpass interferential filter with a cut-off 

wavelength at 650 nm to reject the excitation light and a 3 mm thick RG9 filter (Schott, 

Germany) to select the far-red fluorescence emission over 725 nm. The FOV can be controlled 

thanks to an onboard camera (RLC-520A, Reolink, Hong-Kong). We selected a top of the 

canopy area in the FOV of the SIF instrument, resulting in a 9 m measuring distance with a 

viewing zenith angle of 30°. However, as the FOV of the instrument is about 100 mrad, the 

measured area was about 0.4 m2, which is much smaller than the FOV of SIF3 (approximately 

6 m2). Power supplies as well as synchronisation and acquisition electronics are enclosed in a 

separate box, connected to the optical head by a 5 meters long cable. FyieldLIF and LNIR are 

stored on disk with an acquisition and control program written in LabVIEW (NI, Austin, Texas, 

USA) that runs on a LattePanda V1 microcomputer. Other variables such as PAR and LED, 

photodiode and box temperatures are also continuously monitored. 

4.2.2.3. Canopy sun-induced chlorophyll fluorescence retrieval 

As spectral measurements are recorded in digital counts, they were converted into 

radiometric units before SIF retrieval. SIF was retrieved at the far-red oxygen observation band 

(O2-A) from the HR1-T canopy reflectance measurements. Data quality control is performed 

prior to SIF retrieval following the protocol proposed by Cogliati et al. (2015) to put aside 

abnormal data caused by abrupt changes in incident radiation. SIF retrieval was performed using 

the classical three-band Fraunhofer Line Discrimination (3FLD) method at O2-A band (Meroni 

et al., 2009; Daumard et al., 2012).  

The 3FLD approach is rooted in the FLD principle, which requires measurements in two 

channels, one inside and one outside a Fraunhofer or absorption line (Meroni et al., 2009). The 

FLD hypothesis is based on the consistency of reflectance and SIF at both bands. However, 

studies have found evidence that the two variables are not constant (Meroni et al. 2009). The 

3FLD method rather assumes that reflectance and SIF vary linearly around the absorption band 

considered, which solves the limitation given by the FLD hypothesis, and uses three spectral 
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bands per absorption line to retrieve SIF (Zhang et al., 2021). The 3FLD SIF retrieval at 760 

nm (O2-A band) can be derived as follows: 

𝑆𝐼𝐹760 =
(𝐸𝑙× 𝑤𝑙+ 𝐸𝑟×𝑤𝑟)×𝐿𝑖𝑛−(𝐿𝑙×𝑤𝑙+ 𝐿𝑟×𝐸𝑟)×𝐸𝑖𝑛

(𝐸𝑙×𝑤𝑙+ 𝐸𝑟×𝑤𝑟)−𝐸𝑖𝑛
                                                                         (4.2)                                                                                                               

𝑤𝑙 =
𝜆𝑟−𝜆𝑖𝑛

𝜆𝑟−𝜆𝑙
,  𝑤𝑟 =

𝜆𝑖𝑛−𝜆𝑙

𝜆𝑟−𝜆𝑙
 

where L is the upwelling radiance. E is the downwelling irradiance measured on the reference 

panel. Indices ‘r’, ‘l’ and ‘in’ represent the reference bands at the left, right, and inside the 

absorption band, respectively. wl and wr denote the weighting factors depending on the 

wavelength λ on the left, inside, and on the right of the absorption band. Within this study, the 

left, inside and right bands were set at 757.86, 760.51, and 770.46 nm, respectively. 

4.2.3. Theoretical derivations of Φk, vegetation indices, and SIF yield 

NIRv has been used to isolate vegetation signal properties from soil background and to 

correct canopy-scale far-red SIF for scattering effects (Badgley et al., 2017). NIRv can be 

computed according to (Badgley et al., 2017) and (Zeng et al., 2019) using the following 

equations:  

𝑁𝐷𝑉𝐼 =
𝑅[780−800]−𝑅[670−680]

𝑅[780−800]+𝑅[670−680]
                                                                                                       (4.3)                                                                                                                           

𝑁𝐼𝑅𝑣 = 𝑅 − 𝑁𝐼𝑅850 × 𝑁𝐷𝑉𝐼                                                                                                               (4.4)                                                                                                                

where R represents the spectral reflectance and the index number denotes the wavelength range 

or wavelength at which the reflectance was derived. In equation (4), NIRv is largely dependent 

on the LAI, the leaf angle distribution, and the geometry of the sun-canopy, as well as on the 

influence of fluctuations in incident radiation at the diurnal and seasonal timescale.  

 FyieldLIF is an active measurement and is not directly dependent on the ambient light 

conditions. Thus, it is not impacted by ambient radiation changes, because the measured LED 

induced chlorophyll fluorescence is directly and only emitted by the leaves targeted by the LED. 

Variations in FyieldLIF are then presumably only induced by changes in the photosynthetic 

pigment concentrations, in the leaf area inside the FOV, and in the vegetation functioning that 



 

BALDE Hamadou – Thèse de doctorat – 2023 

68 

                     Chapter 4. Effects of canopy structure on SIF and links between SIFy and FyieldLIF 

modulates the chlorophyll fluorescence quantum yield. As no significant phenological changes 

occurred during the study period, we assumed that the FyieldLIF is free from the vegetation 

structure and sun-canopy geometry effects and can be used as a reference measurement in this 

respect. The blue LED light can be considered as constant and therefore, from Equation (4.1) 

we can assume that ΦF is equal to FyieldLIF and then Equation (4.1) becomes: 

 𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 × 𝑓𝑒𝑠𝑐                                                                                  (4.5)                                                                                                                          

𝑆𝐼𝐹

(𝑃𝐴𝑅×F𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹)
= 𝑓𝐴𝑃𝐴𝑅 × 𝑓𝑒𝑠𝑐                                                                                                 (4.6)                                                                                                             

From equation (6), we defined Φk as following: 

 Φ𝑘 =
𝑆𝐼𝐹

(𝑃𝐴𝑅×𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹)
=

𝑆𝐼𝐹𝑦

𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹
                                                                                              (4.7)                                                                                                              

Note that this is a simplification of the complex relation that does exist between SIFy and 

FyieldLIF, as SIF yield and FyieldLIF respond differently to canopy structure effects. At the diurnal 

timescale, Φk is subjective to variations in leaf angle distribution, incident sunlight or 

atmosphere conditions (clear or cloudy sky conditions), and to the effects of sun-canopy 

geometry (including SZA and SAA). 

In remote sensing, the total amount of light absorbed by the canopy cannot be directly 

measured. This quantity is highly dependent on the solar angle and canopy structure 

(distribution of light and shaded areas at the top and inside the canopy). Hence, by normalizing 

the canopy emitted SIF by the incident PAR, it is possible, as a first approximation and 

empirically, to partially disentangle the SIF signal from its dependence to incident radiation and 

thus to detect some changes in the vegetation properties or the plant physiological responses to 

abiotic factors. Therefore, the SIFy was calculated using the PAR measured at the top of the EC 

tower site. Note that the SIF fluxes were converted into quanta units following (Daumard et al., 

2012) prior to SIFy calculation. 

𝑆𝐼𝐹𝑦 =  𝑆𝐼𝐹 𝑃𝐴𝑅⁄                                                                                                                      (4.8)                                                                                                                                                                       
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4.3. Data analysis 

In this study, we used data measurements from June to August 2022. As radiation-

limited photosynthesis is expected in early morning and late afternoon, due to lower incoming 

irradiance, only the data recorded between 9:00 am and 16:00 pm (UTC) were considered in 

this study. The negative SIF values, the SIFy values higher than mean ± 3 standard deviation, 

and the PAR data less than 200 µmol m-2 s-1 were excluded in the analysis. First, we applied a 

linear model to analyse at the daily and seasonal timescales the strength of the relationships: i) 

between SIFy and FyieldLIF, and ii) between NIRv and Φk. Note that daily means of SIFy, FyieldLIF, 

NIRv, and Φk are hereafter noted  𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹, 𝑁𝐼𝑅𝑣 and 𝛷𝑘. The coefficient of 

determination (R2) and the p-value are used to assess the strength of the correlations. These 

relations are examined at instantaneous (seconds to minutes) and daily (averaged data from 9 

am to 16 pm) timescales. Second, we used random forest (RF) models as a tool to understand 

FyieldLIF and Φk dynamics by comparing their predictions based on a combination of remote 

sensing metrics. We chose RF models because they are non-parametric models and are well 

adapted for predicting nonlinear and multi-parameters relationships in complex situations and 

foremostly highly interpretable by using metrics such as the importance of predictor variables 

and partial dependence (Breiman, 2001). Several types of RF models were designed for 

estimating FyieldLIF and Φk. The expression of each model and its purpose are given in Table 1. 

We used the clear sky condition (the fraction of diffuse PAR over total PAR < 0.3) data to train 

the models. It is worth noting that for FyieldLIF predictions using all data (clear sky and cloudy 

conditions) or clear sky condition data alone yielded the same results (data not shown), while 

for Φk, which was defined to represent the effects of canopy structure and sun-canopy geometry, 

only clear sky conditions were used with respect to satellite conditions of data acquisition. To 

avoid the impact of correlations of predictors on the RF models’ predictions, the correlations 

matrix between predictors was computed (Supplementary materials Figure S4.2 and S4.3) and 

then the least correlated predictors were selected to train our models. All RF models were 

established using 200 trees and sampled with replacement based on bag fraction of 80% (80% 

of the data for training and 20% for testing). The out-of-bag (OOB) predictor importance 

estimates were determined to evaluate the contribution of each predictor. Model performance 

was evaluated using the OOB coefficient of determination (OOB R2) score and the adjusted 

coefficient of determination (adj. R2) of the correlations between the test dataset and the 
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predictions, as well as the Root Mean Squared Error (RMSE). The closest the OOB R2 and adj. 

R2 are, the better the model is able to be generalized. All RF models were run using 

instantaneous measurements. For SIF and reflectance data extraction, MATLAB R2021a 

(MathWorks, Inc., USA) was used, and Python version 3.9.1 was used for data analysis and 

visualization (Sklearn, Scipy, Seaborn, Matplotlib, Pandas, and Numpy libraries). 

Table 4.1. Random forest models for FyieldLIF and Φk predictions. R denotes spectral reflectance 

in blue (410 nm), red (530 nm and 560 nm), green (665 nm), red-edge (705 and  740 nm), and 

near-infrared (830 nm). SIF is the far-red sun-induced chlorophyll fluorescence at 760 nm, SIFy 

is the ratio of SIF over PAR, SA stands for  solar angles, including solar zenith (SZA) and 

azimuth (SAA) angles. FyieldLIF is the LED induced chlorophyll fluorescence, and Φk is the ratio 

between SIFy and FyieldLIF.  

Model 

name Inputs Outputs Purpose 

FY-R 

R410, R530, R560, 

R665, R705, R740, 

R830 FyieldLIF 

To test the ability of reflectances 

to predict FyieldLIF. 

FY-R-SIF 

R410, R530, R560, 

R665, R705, R740, 

R830, SIF FyieldLIF 

To test the ability of reflectances 

and SIF to predict FyieldLIF. 

FY-R-

SIFy 

R410, R530, R560, 

R665, R705, R740, 

R830, SIFy FyieldLIF 

To test the effect of apparent SIF 

yield (SIF normalized by PAR) to 

predict FyieldLIF. 

FY-R-SA 

R410, R530, R560, 

R665, R705, R740, 

R830, SZA, SAA FyieldLIF 

To test the ability of reflectances 

and solar angles to predict 

FyieldLIF. 

FY-R-

SIFy-SA 

R410, R530, R560, 

R665, R705, R740, 

R830, SIFy, SZA, 

SAA FyieldLIF 

To test the ability of reflectances, 

SIF yield, and solar angles to 

predict FyieldLIF. 

Φk-R 

R410, R530, R560, 

R665, R705, R740, 

R830. Φk 

To test the ability of reflectances 

to predict Φk. 
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Φk-R-SA 

R410, R530, R560, 

R665, R705, R740, 

R830, SZA, SAA Φk 

To test the synergy between 

reflectances and solar angles to 

predict Φk. 

4.4. Results 

4.4.1. Relationships between canopy SIFy and FyieldLIF and their seasonal variations  

The results, in Figure 4.1a, show that the coefficients of determination of the 

relationships between SIFy and FyieldLIF were low and varied highly across the season and that 

the ratio between diffuse PAR and total PAR cannot entirely explain this inter-daily variability. 

This indicates that at the diurnal scale SIFy was weakly correlated to FyieldLIF. Note that relations 

between SIFy and FyieldLIF analysed at hourly timescale (hourly averages) relatively improved 

their correlation (Supplementary materials Figure S4.4). At the seasonal scale (daily averages), 

in Figure 4.1b, the results show that the R2 between  𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹  was 0.58, indicating 

that 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 were better correlated at the seasonal timescale. The fraction of diffuse 

to total PAR cannot explain this correlation. Similarly, the seasonal dynamics in  𝑆𝐼𝐹𝑦 and 

𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹, in Figure 4.1c, shows a good correspondence. Although, their agreements tend to 

diverge at some period of the season. Additionally, note that, overall, the magnitude of both 

variables has considerably decreased from the starting to the end of the given period.  
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Figure 4.1. Figure 4.1a shows the inter-daily variations in the coefficient of determination (R2) 

of the relationship between SIFy and FyieldLIF and Figure 4.1b the relationship between daily 

mean 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 . In Figures 4.1a and 4.1b the colour of the points shows the fraction 

of diffuse and total PAR with the colour scale on the left of Figure 4.1b. While Figure 4.1c 

depicts seasonal dynamics of 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹. The shading around the lines indicates the 95% 

confidence interval. The asterisks stand for the statistical significance level (*** = P≤0.001). 

4.4.2. Diurnal variations in PAR, NIRv, Reflectance NIR, Φk, SIF, SIFy, and FyieldLIF 

Figure 4.2 shows the diurnal cycles (from 9 am to 16 pm) of PAR, NIRv, R-NIR, Φk, 

SIF, SIFy, and FyieldLIF. It shows three sunny and steady weather days and so the PAR constantly 

increased in the morning to a maximum around noon and decreased in the afternoon for all 

days. Its values were between 1000 and almost 2000 µmol m-2 s-1. 

The diurnal variations in NIRv and R-NIR exhibited similar patterns, with the lowest 

values recorded at noon. The depression observed in NIRv and R-NIR patterns from 10 am to 

around 12 pm is attributed to shadows observed within the FOV of the SIF3 instrument as has 

shown by the sunlit leaves fraction determined from RGB images (Supplementary materials 

Figure S4.5 and S4.6). 
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Φk surged in the early morning hours (not shown) and then declined from 10 am up to 

around 12 pm, afterwards, it increased in the afternoon for all days. The depression observed in 

Φk between 10 am and 12 pm is simultaneous to the decline in NIRv and in R-NIR. This implies 

that diurnal dynamics in Φk may be due to the intra-daily pattern in the distribution of sunlit and 

shaded leaf fraction caused by the geometric relationships between canopy structure and sun’s 

geometry. 

It is well-known that diurnal SIF cycles are tightly linked with dynamics in PAR. 

Conversely, on Figure 4.2 SIF exhibited different diurnal dynamics for all days than the incident 

PAR ones. The pattern in SIF declined from 10 am to around 12 pm and was afterwards 

dominated by dynamics in PAR. It can also be observed that the magnitude of SIF markedly 

decreased from July, 10th to August, 6th, being from 2.06 to 1.33 mWm-2 sr-1nm-1 (approximately 

35% relative decrease in SIF emission). 

The diurnal variations in SIFy surged in the early morning (not shown) and then 

decreased from 10 am to noon and afterwards increased in the afternoon for the three considered 

days. Similarly, to SIF, the magnitude of SIFy also shows an overall decreased from July, 10th 

to August, 6th. In contrast, the diurnal pattern in FyieldLIF shows a continuous and significant 

decrease during the day, with a 10% loss. Note that the range of FyieldLIF have also decreased 

over the given period. FyieldLIF appears insensitive to the canopy structure and sun-canopy 

geometry changes, compared to the dynamics in SIF and SIFy, which showed a significant 

decline in the morning. Besides, it is worth noting that FyieldLIF measurements are continuously 

recorded (day and night), the full diurnal cycles are presented in Supplementary materials 

Figure S4.7. 
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Figure 4.2. Presents the diurnal patterns acquired during three clear sky days of: the 

photosynthetically active radiation (PAR, in black), the near infrared reflectance of vegetation 

index (NIRv, in blue), the reflectance in the near infrared (R-NIR, in cyan), the ratio between 

SIFy and FyieldLIF (Φk, in yellow), the SIF (SIF-760, in red), the ratio of SIF over PAR (SIFy, in 

green), and the active chlorophyll fluorescence (FyieldLIF, in magenta), respectively. The data 

correspond to June 17th, July 10th, and August 6th, 2022. The noisy signals observed on July 10th 

and August 6th, 2022 are due to high wind speed with an average value of 2.39 and 3.27 m s-1, 

respectively. 

4.4.3. Relationships between Φk and NIRv and its seasonal variations 

Figure 4.3a shows the R2 of the relationship between NIRv and Φk at instantaneous scale 

(acquisition time-step) as a function of the fraction between diffuse and total PAR, while Figure 
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4.3b depicts the relationships between Φk and NIRv at seasonal scale, and Figure 4.3c underlines 

their seasonal dynamics. 

Conversely, to the weak correlation found between SIFy and FyieldLIF seen in Figure 1a, 

the results in Figure 4.3a show that there are relatively moderate and substantially good 

relationships between NIRv and Φk over the season. Thus, for most of the clear sky conditions 

(ratio diffuse PAR to total PAR < 0.3), NIRv may explain more than 50% of the instantaneous 

variations in Φk at the diurnal scale, but the strength of the relationship between these two 

variables under clear skies remains variable. The lowest values of R2 are mostly related to 

diffuse sky conditions. 

The results in Figure 4.3b show a weak, but statistically significant relationship between 

the daily mean 𝑁𝐼𝑅𝑣 and 𝛷𝑘 with an R2 of 0.16 at the seasonal scale. This indicates that 𝑁𝐼𝑅𝑣 

is a weak proxy of 𝛷𝑘 at the seasonal scale. Furthermore, we can also infer that the fraction of 

diffuse to total PAR explains this correlation, as lower correlation values of  𝑁𝐼𝑅𝑣 and 𝛷𝑘 are 

closely related to clear sky conditions and high correlation values to diffuse sky conditions. In 

addition, the seasonal dynamics in 𝑁𝐼𝑅𝑣 and 𝛷𝑘 (Figure 4.3c) exhibited a good match for some 

days at the seasonal scale. The magnitude of 𝑁𝐼𝑅𝑣 and 𝛷𝑘 also varied significantly over the 

season, which can be caused by rapid changes in ambient environmental conditions and in leaf 

and canopy biochemical and structural properties. Note that an independent analysis, identical 

to the one presented here on the relationship between NIRv and Φk, was realised on the 

relationships between R-NIR and Φk. The results shown in Supplementary materials Figure 

S4.8 suggest that the NIR reflectance alone can also be a good proxy of Φk at diurnal timescale. 

This is paramount for implementing this approach at the satellite scale. 
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Figure 4.3. Figure 4.3a exhibits the inter-daily variations of the coefficient of determination 

(R2) of the relationships between the near-infrared reflectance of vegetation index (NIRv) and 

the canopy Φk at instantaneous scale, as a function of the fraction between diffuse and total 

PAR. Figure 4.3b presents the seasonal relationship between the daily means 𝑁𝐼𝑅𝑣 and 𝛷𝑘 , as 

a function of the fraction between diffuse and total PAR.  And Figure 4.3c shows the seasonal 

dynamics in 𝑁𝐼𝑅𝑣 and 𝛷𝑘. The shaded area indicates the 95% confidence interval. The asterisks 

stand for the statistical significance level (** = P ≤ 0.01). 

4.4.4. Random forest models for predicting FyieldLIF and Φk in temperate deciduous forest 

We tested the potential of RF modelling approach to predict FyieldLIF and Φk based on 

remotely sensed products. We intended to show FY-R-SIFy-SA and FY-R-SA models’ results 

for FyieldLIF, and Φk-R and Φk-R-SA for Φk estimates. The other RF models’ results for FyieldLIF 

are given in Supplementary materials Figure S4.9. 

The results show that all random forest models had a strong performance on the 

prediction of FyieldLIF (Table 4.2), with OOB R2 varying between 0.86 and 0.90 and adj. R2 

between 0.87 and 0.90. In figure 4.4, the RF models’ residuals between observed and predicted 

FyieldLIF are randomly distributed and FyieldLIF is not over-or under-estimated. Note that adding 

SIF (FY-R-SIF, OOB R2 = 0.87 and adj. R2 = 0.88) or SIFy (FY-R-SIFy, OOB R2 = 0.88 and 

adj. R2 = 0.89) relatively increases the model performance compared to the FY-R model (FY-
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R, OOB R2 = 0.86 and adj. R2 = 0.87), but the difference between R2 is not statistically 

significant. Thus, the use of reflectance bands only allows to predict FyieldLIF and SIF or SIFy 

did not provide an additional improvement for predicting FyieldLIF at the acquisition-time step. 

Substituting SIF for SZA and SAA also showed good model performance (FY-R-SA, OOB R2 

= 0.90 and adj. R2 = 0.90). The FY-R-SIFy-SA model revealed a performance similar to the FY-

R-SA model’s one (FY-R-SIFy-SA, OOB R2 = 0.90 and adj. R2 = 0.90). The predictor 

importance estimates for FY-R-SA model showed that SZA, SAA, and R410 contribute the 

most in determining FyieldLIF (Figure 4.4d), while for FY-R-SIFy-SA model, SZA, R830, SAA, 

R410, and R740 (Figure 4.4b) provide the most useful information for FyieldLIF predictions. 

Table 4.2. Random forest (RF) model’s statistical results for predicting FyieldLIF. N denotes the 

number of data points used for the RF model’s testing, adj. R2 represents the adjusted coefficient 

of determination of the relationship between the test dataset FyieldLIF and the predicted FyieldLIF, 

OOB R2 is the model accuracy on the validation data set (1/3 of the training set), and the RMSE 

is the root mean square error between observed FyieldLIF and RF model predicted FyieldLIF. 

Model OOB R2 adj. R2 RMSE N 

FY-R 0.86 0.87 0.016 1802 

FY-R-SIF 0.87 0.88 0.016 1802 

FY-R-SIFy 0.88 0.89 0.015 1802 

FY-R-SA 0.90 0.90 0.014 1802 

FY-R-SA-

SIFY 

0.90 0.90 0.014 1802 
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Figure 4.4. Random forest (RF) model outputs: Figure 4.4a depicts the FY-R-SIFy-SA model 

performance between observed and predicted FyieldLIF, Figure 4.4b represents the predictor 

importance estimates for FY-R-SIFy-SA model, Figure 4.4c represents the FY-R-SA model 

performance between observed and predicted FyieldLIF, and Figure 4.4d represents the predictor 

importance estimates for FY-R-SA model. N denotes the number of data points used for the RF 

model’s testing, adj. R2 represents the adjusted coefficient of determination of the relationship 

between the test dataset FyieldLIF and the predicted FyieldLIF, OOB R2 is the model accuracy on 

the validation data set (1/3 of the training set), and the RMSE is the root mean square error 

between observed FyieldLIF and RF model predicted FyieldLIF. The dashed diagonal line depicts 

the 1:1 line. FY-R-SIFy-SA denotes FyieldLIF prediction using R, SIFy and solar angles as inputs; 

and FY-R-SA includes R, SZA, and SAA to predict FyieldLIF. 

The results reveal that RF models had good performance in predicting Φk (Figure 4.5). 

The best performing model was achieved using R and sun angles as inputs (Φk-R-SA, OOB R2 

= 0.69 and adj. R2 = 0.70), while R alone explained 58% of Φk on the validation dataset and 

62% on the test dataset (Φk-R, OOB R2 = 0.58 and adj. R2 = 0.62). The predictor importance 

estimates (Figures 4.5b & 4.5d) show that R410, R740, R665, R705, SZA, and SAA are the 

main predictors for estimating Φk, underlining the dependency of Φk to shadow effects. 
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Figure 4.5. Random forest (RF) model outputs: Figure 4.5a depicts the Φk-R model 

performance between observed and predicted Φk, Figure 4.5b presents the predictor importance 

estimates for Φk-R model, Figure 4.5c represents the Φk-R-SA model performance between 

observed and predicted Φk, and Figure 4.5d presents the predictor importance estimates for Φk-

R-SA model. N denotes the number of data points used for the RF model’s testing, adj. R2 

represents the adjusted coefficient of determination of the relationship between observed and 

predicted Φk, OOB R2 is the model accuracy on the validation dataset (1/3 of the training set), 

and the RMSE is the root mean square error between observed and RF model predicted Φk. The 

dashed diagonal line depicts the 1:1 line.  Φk-R denotes Φk prediction using only R; and Φk-R-

SA integrates R, SZA, and SAA to estimate Φk. 

4.5. Discussion 

4.5.1.  Relationships between SIFy and FyieldLIF at instantaneous and daily timescales 

The first objective of this study was to show the effects of canopy structure on SIF 

signal. The relationship between SIFy and FyieldLIF was investigated at the daily and seasonal 

timescales during the growing season from June to August. The results demonstrated that SIFy 

and FyieldLIF were more correlated at the seasonal timescale than at the diurnal timescale. Passive 

SIF is highly dependent on both the structural and physiological properties of the leaf and 

canopy (Biriukova et al., 2021; Dechant et al., 2022). At the diurnal timescale, far-red SIF is 

strongly affected by canopy scattering and by the distribution of sunlit and shaded areas at the 

top and within the canopy (Dechant et al., 2020; Zhang and Zhang, 2023). This study showed 

that those factors strongly affected SIFy (SIF normalized by PAR). Further, as SIFy was 

estimated using PAR, but not absorbed radiations, SIFy estimation did not consider the 

conditions of radiation extinction within the canopy. Therefore, the canopy structural effects 

can strongly blur the information on the physiological functioning of the vegetation provided 

by SIFy, and hence lead to low correlations between SIFy and FyieldLIF. Thus, interpreting SIFy 

signal for inferring vegetation physiology at the diurnal scale should be carried out with great 

care, considering the effects of canopy structure and the complex interactions between structure 

and illumination geometry. The development of new methods and models are warranted to 

better explore the possibility to use SIF as a proxy for vegetation functioning at high frequency 

(seconds to minutes), especially when the vegetation structure is complex and heterogeneous 

such as in forest stands. On the other hand, the better correlation found at the seasonal timescale 

can be explained by a potential removal of short-term changes in illumination conditions, 

canopy structure, and sun-canopy geometry. Note that the seasonal variability of  𝑆𝐼𝐹𝑦 is also 



 

BALDE Hamadou – Thèse de doctorat – 2023 

80 

                     Chapter 4. Effects of canopy structure on SIF and links between SIFy and FyieldLIF 

driven by the seasonal changes in leaf biochemical properties and solar zenith and azimuth 

angles. These factors can also drive the seasonal dynamics in 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹, leading to a better 

correlation. This may explain why the fraction of the diffuse to total PAR could not entirely 

explain the relation between 𝑆𝐼𝐹𝑦 and 𝐹𝑦𝑖𝑒𝑙𝑑𝐿𝐼𝐹 (Figure 4.1b). In summary, our results 

underlined that it is difficult to decouple vegetation structural and physiological effects in SIF, 

owing to fluctuations of sun-canopy geometry throughout the day at the diurnal timescale and 

the difficulties link to the accurate estimation of total SIF and the fraction of absorbed PAR at 

the canopy scale (Chang et al., 2021).  

4.5.2. Effects of canopy structure and sun-canopy geometry on diurnal dynamics in 

SIF, NIRv, R-NIR, Φk, SIFy, and FyieldLIF 

The fraction of absorbed radiation by the canopy (fAPAR) and the fraction of emitted 

chlorophyll fluorescence that reach the sensor heavily impact SIF. The results obtained during 

clear sky days revealed that NIRv, R-NIR, and Φk exhibited similar diurnal patterns. This 

suggests that the diurnal variations in NIRv that is the product of NDVI and R-NIR,  and Φk that 

represents the product of fAPAR and fesc, were dominated by the bidirectional NIR reflectance 

effect as it has been shown in (Chang et al., 2021). These authors pointed out that the diurnal 

dynamics in NIRv was determined by the diurnal pattern of the reflectance in the NIR within 

maize crop rows that were under shadow conditions at midday. Sun et al. (Sun et al., 2023a) 

clearly stated that the dynamics of the fluorescence escape fraction (fesc) in homogeneous C3 

crop canopy appears to exhibit a diurnal pattern similar to directional reflectance. Further, at 

intra-daily timescale, Φk is likely to be driven by canopy structure (shadow, leaf angle 

distribution, etc.) and sun-canopy geometry (SZA and SAA) effects, in particular the 

distribution of fractions of sunlit and shaded leaves. This situation can lead to large variability 

of the diurnal patterns in NIRv and Φk as has been shown in Figure 4.2. 

The results also highlighted that, at diurnal timescale, the peaks in SIF and PAR do not 

match (Figure 4.2), which is probably due to the effects of sun-canopy geometry. Indeed, 

directionality effects can induce variations in the fraction of sunlit and shaded leaves within the 

FOV, modulating the actual amount of radiation reaching the leaves (different from the incident 

radiation measured at the sensor, unaffected by shading) and therefore affecting canopy total 

SIF emission. This finding is in contradiction with several studies that showed that the diurnal 
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patterns in SIF is mainly dominated by PAR  (Campbell et al., 2019; Wang et al., 2021), but in 

agreement with (Nichol et al., 2019), who showed that the peaks of PAR and SIF did not match 

in a Boreal Scots pine canopy. Further, note that at high incident PAR, the light energy might 

exceed the capacity of photosynthesis. In this case, the plant photoprotective mechanism known 

as non-photochemical heat dissipation is activated, leading first to stomatal closure, and hence 

to SIF emission reduction (Jonard et al., 2020; De Cannière et al., 2022). 

The results also showed that the diurnal dynamics in SIFy and FyieldLIF did not match 

(Figure 4.2). This is probably due to both physiological and canopy structure effects. The early 

decline of SIFy before noon could be likely due not only to shadow effects, but also to the fact 

that the PAR was high.  These findings corroborate with previous studies (Loayza et al., 2023; 

Li et al., 2020; Moya et al., 2019). For instance, Loayza et al. (2023) found that under clear sky 

conditions, at the diurnal timescale, within potato plants, firstly the chlorophyll fluorescence 

yield declined drastically when the PAR reached values higher than 1000 µmol m-2 s-1, and 

secondly FyieldLIF continuously decreased for PAR > 600 µmol m-2 s-1. Thus, the continuous 

decline of FyieldLIF observed here (Figure 4.2) is likely caused by the fact that the PAR was 

higher than 1250 µmol photon m-2 s-1 for the chosen days. Within this situation, the vegetation 

photosynthetic capacity could be overwhelmed and the energy-dependent and non-energy-

dependent non-photochemical heat dissipation can be triggered. Note that energy-dependent 

heat dissipation can last from a few seconds to a few minutes, while non-energy-dependent heat 

dissipation can lead to photoinhibition or photobleaching and can last longer (hours to weeks) 

(Porcar-Castell et al., 2014). Both mechanisms can induce a decrease in SIFy and FyieldLIF at the 

diurnal timescale. 

4.5.3. Relationships between NIRv and Φk at daily and seasonal timescales 

Strong correlations were found between NIRv and Φk at the diurnal timescale. However, 

their correlations varied largely depending on the ratio of diffuse to total PAR, with high 

correlation corresponding to clear sky conditions and low correlation to diffuse sky conditions. 

This result suggests that under clear sky conditions NIRv is relatively a good proxy of Φk and 

hence can be used to take canopy structure and sun-canopy geometry (i.e. crown shadow, 

reabsorption, and scattering within leaves and canopies) effects on SIF at the diurnal timescale 

into account. Indeed, with diffuse sky conditions, canopy structure, shadows and sun-canopy 

geometry play a minor role in the variations in NIRv and Φk, even though there are still strong 
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fluctuations in incident light; justifying the low correlations observed between NIRv and Φk 

during diffuse sky conditions. On the other hand, the positive weak but statistically significant 

correlation found between daily mean 𝑁𝐼𝑅𝑣 and daily mean 𝛷𝑘 at the seasonal timescale 

indicates that 𝑁𝐼𝑅𝑣 and 𝛷𝑘 relations were driven by the fraction between diffuse and total PAR. 

Indeed, this underlined well NIRv usage because it was meant to correct reabsorption and 

scattering effects on SIF at daily and seasonal timescales (Badgley et al., 2017). 

4.5.4. Random forest models for FyieldLIF and Φk predictions 

How we can determine and properly disentangle the confounding factors, including 

structural, biophysical, and physiological canopy components that all contribute to remotely 

sensed SIF remains a challenging task. SIF has emerged as a promising tool for determining 

and characterizing structural and physiological vegetation traits. However, the relationships 

between these confounding factors and SIF are often complex and site-specific and thus require 

a model with a set of parameters incorporating these complexities. Therefore, in this study, we 

examined the potential of RF modelling approaches to predict FyieldLIF and Φk based on different 

remotely sensed input variables under clear sky conditions. 

For FyieldLIF, the RF models can explain between 86 and 90% of the variability in FyieldLIF 

(see Table 4.2 and Figure 4.4), sustaining that directional reflectance, chlorophyll fluorescence, 

and sun-canopy geometry (SZA and SAA) can effectively capture relevant variations in FyieldLIF. 

For instance, FY-R-SA and FY-R-SIFy-SA models’ predictor importance estimates showed that 

SZA, SAA, R410, R740, and R830 provide the most useful information for FyieldLIF predictions 

(Figure 4.4). The reflectance in the blue spectral band (R410) is largely affected by the strong 

blue light absorption by the chlorophyll pigments and it is highly subjective to leaves or canopy 

shadow conditions, while reflectance in the red-edge (R740) and near-infrared bands 

characterize the leaf area index and the chlorophyll content of the entire forest (Zeng et al., 

2022b). The red-edge region is mainly used to determine leaf and canopy chlorophyll contents. 

Because of these abovementioned characteristics of R, it is not surprising that the combination 

of reflectance at specific spectral bands can be used to infer effective and relevant information 

that allow capturing FyieldLIF variations. The data also revealed that adding SIF or SIFy as 

predictors did not significantly improve the model performance estimates as it has been shown 

in (Balde et al., 2023). This result indicates that even at high temporal resolution the 
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contribution of SIF or SIFy is important compared to each reflectance band individually, but the 

combined effect of reflectance bands could mitigate or hide the use of SIF as vegetation 

physiological proxy. The results showed that SZA and SAA significantly improved the model 

prediction for FyieldLIF (FY-R-SA). First, the contribution of SZA can be attributed to the 

illumination conditions because incoming radiations are tightly related to SZA. Second, the 

effect of SAA is attributable to the anisotropy in reflectance and canopy structure in the 

azimuthal plane. 

For Φk, results indicate that RF models can explain between 60 and 70% of the 

variability in Φk (Figure 4.5a and 4.5b). The unexplained 30 or 40% in Φk variance evidenced 

that the ratio SIFy over FyieldLIF strongly varies and depends on several factors, including canopy 

structure, sun geometry, and illumination conditions. Therefore, this suggests that mechanistic 

models that used NIRv to approximate the product of fAPAR and fesc are simplistic and do no 

fully account for the complex interactions between incident radiation and canopy structure, 

notably due to the distribution of light and shaded leaves at the top and inside of the forest 

canopy. 

4.6.  Conclusion 

In this work, the simultaneous and continuous active and passive measurements of 

chlorophyll fluorescence at the canopy scale in a sessile oak mature forest allowed to analyse 

the diurnal cycles of key variables, including SIF, SIFy, NIRv, and FyieldLIF. A novel remote 

sensing indicator, Φk, the ratio between SIFy and FyieldLIF, which is also theoretically the product 

of fAPAR and fesc, was introduced. On one hand, the relationship between SIFy and FyieldLIF was 

evaluated, and on the other hand, the relation between NIRv and Φk was examined at daily and 

seasonal scales. Further, several random forest models with reflectances, SIF, and sun angles 

as inputs were also used to not only predict FyieldLIF and Φk, but also to provide sensitivity 

analysis and interpretation of the model outputs. 

The results showed that SIF signal is highly impacted by the canopy structure and the 

sun-canopy geometry effects, as evidenced by the weak correlations found between SIFy and 

FyieldLIF at diurnal timescale using instantaneous measurements. However, SIFy captured the 

seasonal dynamics of FyieldLIF by explaining 58% of the variations in FyieldLIF. The results also 
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revealed that NIRv and reflectance at near-infrared (R-NIR) are good proxies of Φk at the diurnal 

timescale, while their correlations diverged at the seasonal scale. 

 Based on random forest models, the combination of reflectance, chlorophyll 

fluorescence, and sun geometry (SZA and SAA) allow to predict FyieldLIF and Φk at the diurnal 

timescale under clear sky conditions. For instance, the RF models were able to explain 86-90% 

of FyieldLIF variability, and 60-70% of Φk variations were explained. Furthermore, the data also 

revealed that adding SIF or SIFy as predictors did not improve much the model performance 

compared to the reflectance-based model. But the predictor importance estimates showed that 

SIF and SIFy provide useful and impactful information in determining FyieldLIF. This result 

indicates that even at high temporal resolution the contribution of SIF or SIFy is important 

compared to each reflectance band individually, but the combined effect of reflectance bands 

could mitigate or hide the use of SIF as vegetation functioning proxy. 

 Overall, this study provides insights into understanding the complex and difficult 

relationship that exists between passive SIF and active chlorophyll fluorescence, and into the 

use of remote sensing data that are readily accessible at satellite scale (spectral reflectance at 

10 nm resolution, sun geometry, and chlorophyll fluorescence) to predict FyieldLIF and Φk at 

canopy scale. 
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5. Chapter 5: Investigating the responses of sun-

induced chlorophyll fluorescence, gross primary 

production and their inter-relationship to abiotic 

factors changes in a temperate deciduous forest 

 

This chapter is based on: Balde, H., Hmimina, G., Goulas, Y., Latouche, G., Ounis, A., 

Berveiller D., and Soudani, K.: Investigating the responses of sun-induced chlorophyll 

fluorescence, gross primary production and their inter-relationship to abiotic factors changes in 

a temperate deciduous forest, preprint [https://doi.org/10.5194/egusphere-2024-657] 
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Abstract. Far-red Sun-Induced chlorophyll Fluorescence (SIF) is increasingly used as 

a proxy of vegetation Gross Primary Production (GPP) across different ecosystems and at 

spatiotemporal resolutions going from proximal and continuous to satellite-based remote 

sensing measurements. However, the use of SIF to probe variations in GPP in forests is 

challenged by confounding factors such as leaf physiological and biochemical properties and 

canopy structure along with abiotic factors (light intensity, temperature, soil water content, 

atmospheric vapour pressure deficit, etc.). To provide insights into understanding the complex 

drivers of GPP and SIF variations and their relationships, we examined SIF and GPP seasonal 

and diurnal changes and how canopy structure and environmental conditions affected SIF and 

GPP relationships in an oak deciduous forest. To do so, we combined canopy scale SIF 

measurements, spectral vegetation indices, environmental variables measurements including 

diffuse and direct radiation in the spectral range of the photosynthetically active radiation 

(PAR), air and canopy temperature, soil water content (SWC), atmospheric vapour pressure 

deficit (VPD), and GPP estimated from measurements of an eddy covariance flux tower. 

Further, Random Forest (RF) models were used to predict SIF and GPP and to analyse the 

responses of SIF and GPP to environmental drivers. The results show that both SIF and GPP 

variations and their relationships were dependent on the temporal scale considered. At the 

seasonal scale, the data show that leaves phenological and canopy biochemical properties 

variations, seasonal cycle of solar radiation, and other abiotic factors such as atmospheric Vapor 

Pressure Deficit (VPD) and Soil Water Content (SWC) control not only SIF and GPP variations, 

but also the relationship between GPP and SIF. Further, during the extreme weather conditions 

(heatwaves observed in 2022 in: mid-June (DOY: 166-169), mid-July (DOY: 196-199), and 

early August (DOY: 218-224), we observed that SIF and reflectance-based Vegetation Indices 

(VIs) such as Normalizd Difference Vegetation Index (NDVI) and near-infrared reflectance of 

vegetation index (NIRv), and SIF and PAR are uncorrelated, while GPP, SIF, passive SIF yield 

(SIFy) and active fluorescence yield (FyieldLIF) strongly decreased. This indicates that SIF can 

capture GPP activity and VIs cannot be used to track changes in vegetation physiology during 

severe abiotic conditions. This specific response of SIF compared to VIs underlined the interest 

of SIF to track GPP under severe abiotic conditions. At the diurnal timescale, the also revealed 

that the light saturation of the relationship between GPP and SIF was not only dependent on 

PAR, but also relied upon the fraction of diffuse to total PAR, as well as upon VPD, SWC, and 
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air and canopy temperature. The other key finding was that sun zenith and azimuth angles had 

strong and inverse effects on GPP and SIF variations. This result highlights that using passive 

in-situ SIF measurements to validate satellite measurements at coarse spatial and temporal 

resolutions can therefore be very difficult because obtained results will not be reproducible from 

one site to another, specifically in forest stands.  

5.1. Introduction 

Uncertainty related to future climate forecasts are highly dependent on the terrestrial 

ecosystem feedback on the global carbon cycle. Vegetation carbon sequestration through 

photosynthesis is a main contributor to terrestrial ecosystem feedbacks (IPCC, 2022) and hence 

its monitoring can play a key role in global climate changes estimations. Gross primary 

production (GPP) is an indicator of vegetation carbon sequestration. GPP can be determined 

locally from measurements or from models (Xiao et al. 2019). However, Remote Sensing (RS) 

has been widely and successfully used as an unprecedented tool for upscaling, monitoring, and 

understanding vegetation carbon exchange across space and time (Xiao et al., 2021; Pierrat et 

al. 2022a).  

The main success of RS observations can be attributed to their capacity in capturing 

valuable information on vegetation characteristics (leaf area index, chlorophyll content, fraction 

of absorbed radiation, surface temperature, etc.) that significantly affect or are linked to GPP. 

However, the relationships between RS observations and GPP are often site-, and vegetation 

type-specific and can considerably be affected by local abiotic factors, thereby hindering the 

potential of this technique. Improvements in how we associate RS observations to GPP are 

warranted to better understand and monitor global carbon dynamics, specifically in forest 

ecosystems. 

GPP can be described using the light-use efficiency model at canopy scale (Monteith, 

1972) 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸                                                                                                (5.1) 
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where PAR is the flux of photosynthetically active radiation (400-700 nm), fAPAR is the 

fraction of absorbed PAR by the canopies, and LUE is the efficiency of the absorbed light used 

in photosynthesis (the fraction of absorbed light energy converted into chemical energy).  

Sun-Induced chlorophyll Fluorescence (SIF) is a remotely sensed optical signal emitted 

during the light reaction of photosynthesis, which is tightly related to photosynthesis and 

vegetation carbon assimilations. SIF has emerged as an unprecedented tool for monitoring and 

understanding GPP over a wide variety of terrestrial ecosystems (Frankenberg et al., 2011; 

Balde et al. 2023; Wang et al. 2020) and across diverse spatial and temporal scales (Goulas et 

al. 2017; Zhang et al. 2022;  Pierrat et al. 2022b; Xu et al. 2021; Sun et al. 2023a) because of 

its links with both the structural (i.e. fAPAR and PAR) and physiological components of GPP 

(i.e. LUE). So, SIF can also analogously be written as: 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝛷𝐹 × 𝑓𝑒𝑠𝑐                                                                                     (5.2) 

where ΦF is the quantum fluorescence yield (ratio of photons emitted to photons absorbed) and 

fesc is the fraction of emitted SIF photons, which escape the canopy. Equations (5.1) and (5.2) 

showed that GPP and SIF share the same driver (i.e. absorbed photosynthetically active 

radiation, APAR = incident PAR x fAPAR), which have been found to explain the relationship 

between GPP and SIF in  maize (Miao et al. 2020) and in an evergreen needleleaf forest (Kim 

et al. 2021). From the combination of equations (5.1) and (5.2), we obtain: 

𝐺𝑃𝑃 = 𝑆𝐼𝐹 ×
𝐿𝑈𝐸

𝛷𝐹×𝑓𝑒𝑠𝑐
                                                                                                             (5.3) 

This is the main evidence of using SIF as a proxy of GPP, notably when observations 

are averaged over large spatial and temporal scales (Sun et al. 2023b). However, these 

conditions are not always met (Damm et al. 2015; Marrs et al. 2020; Kim et al. 2021), typically 

at high temporal resolutions (diurnal level: half-hourly, hourly, etc.) and under water and light 

limited conditions (heatwaves, drought, etc.) (Berger et al. 2022; Martini et al. 2022; Pierrat et 

al. 2022a). Therefore, considering a more complex relationship between SIF and GPP as 

discrepancies between variations in ΦF, LUE, fesc, and the fraction between diffuse sky and clear 

sky conditions may further improve the usefulness of SIF as a proxy of GPP. Besides, 

reflectance-based remotely sensed metrics (i.e. vegetation indices) such as the Normalized 

Difference Vegetation Index (NDVI), the near-infrared reflectance of vegetation index (NIRv), 
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and the Photochemical Reflectance Index (PRI), can provide information on both structural and 

functional processes affecting GPP. 

Both SIF and GPP are physically affected by canopy structure (i.e. vertical distribution 

of LAI, canopy roughness, leaf angle distribution, etc.) and radiation conditions that mediate in 

time and space fAPAR and fesc. At a given constant LAI, both GPP and SIF can increase under 

cloudy conditions as a result of increasing fAPAR because diffuse light can penetrate deeper 

into the canopy (Durand et al. 2021). If changes of GPP under diffuse sky conditions have been 

studied, it is not always considered when estimating GPP with remote sensing metrics such as 

SIF, and reflectance-based vegetation indices (VIs). 

VIs are sensitive to canopy traits such as LAI, leaf chlorophyll content, leaf angles, and 

clumping. They are also good proxies of fAPAR and hence they have been successfully used 

to describe canopy structure. For instance, NDVI and NIRv provide crucial information on the 

structural determinants of GPP and SIF (Zeng et al. 2022). However, how sensitive these 

variables are to changes in SIF and GPP, which are heavily affected by PAR, fAPAR, changes 

in ratio between LUE and ΦF, and abiotic conditions is still unclear and need to be investigated. 

The non-photochemical quenching (NPQ), a photoprotection mechanism that plants 

activate to avoid damage from excess light, regulates the efficiency with which fluorescence 

and photosynthesis use APAR. The extent to which plants can avoid photodamage from excess 

light depends heavily on the abiotic conditions and on plant photosynthetic capacity and types 

(Cannière et al. 2022). This is particularly important in respect to vegetation sensitivity to 

extreme weather conditions such as heatwaves and drought. For instance, heatwaves can create 

stress conditions which will affect photosynthesis and fluorescence efficiencies (Wang et al. 

2022; Zanotelli et al. 2023). Thus, determining and monitoring NPQ can be useful to provide 

insight into photosynthesis efficiency, and presumably also into fluorescence efficiency, even 

though such a relation has not been established yet. The reversible heat dissipation is the most 

common NPQ. It happens under short-term extreme light stress conditions and can be detected 

using the Photochemical Reflectance Index (PRI), which was found to track changes in 

photosynthesis efficiency over diurnal scales (Sukhova et al. 2022). 

For instance, including information on SIF and heat dissipation using PRI as a proxy 

was shown to improve GPP predictions across different vegetation types  at daily scale (Wang 
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et al. 2020). Further, Lu et al. (2020) have revealed that correcting SIF for canopy structural 

effects using fesc derived from NIRv and fAPAR can also improve the relationship between SIF 

and GPP, underlining the relevance of disentangling structural and physiological components 

of SIF. It is well documented and mechanistically explained why spectral reflectance and VIs 

are related to changes in canopy structure at broad scales, but there is no clear evidence that 

there are robust relationships among them at high temporal resolutions. To establish such 

relationships, the effects from canopy architecture, leaf physiology, sun-canopy geometry, and 

sky conditions (i.e. cloudy and sunny) have to be accounted for. Thus, the ability for VIs or 

reflectance-based metrics to inform SIF and GPP will be limited to quantitative correlations at 

site- and vegetation type-specific, unless we are able to accurately incorporate the 

aforementioned effects in mechanistic models.  

Recently, advances in machine learning have provided opportunities for predictive 

modelling, data analysis, and foremostly for model output interpretation. In this context, 

random forest (RF) models are of particular interest. RF models are non-parametric models and 

are well adapted for predicting nonlinear and multi-parameters relationships in complex 

situations (Breiman, 2001). RF models have already been successfully used to understand how 

canopy structure and functions affect the dynamics of GPP and SIF either with satellite (Balde 

et al. 2023) or ground-based observations (Pierrat et al. 2022a). We hypothesized that using RF 

models can help to understand SIF and GPP dynamics and improve their predictions based on 

a combination of RS metrics, sun-canopy geometry, and abiotic variables. 

Therefore, the main concerns of this study are: 1) to understand dynamics of GPP and 

SIF and their responses to abiotic factors and 2) to predict GPP and SIF by using RF models as 

a quantitative and interpretative tool that can associate structural and physiological information 

provided by VIs, SIF, and abiotic variables. To do so, we studied one full growing season of 

ground-based remote sensing data acquired in a temperate deciduous oak forest. We first 

assessed the seasonal dynamics of abiotic variables, VIs, fluorescence, and GPP. Secondly, we 

examined how abiotic factors affect the relations between GPP and SIF considering different 

temporal resolutions. Thirdly, we combined RS metrics and abiotic variables to predict GPP 

and SIF, and to quantify and interpret their contributions to GPP and SIF estimates. 
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5.2. Materials and Methods 

5.2.1. Study site description 

We collected data at the Fontainebleau-Barbeau forest site, an Eddy Covariance (EC) 

observation site belonging to the ICOS Ecosystem network (FR-Fon) (Delpierre et al. 2016). 

The site is located 53 km southeast of Paris, France. It is a mixed temperate deciduous broadleaf 

forest stand with stem density predominantly (79%)  of mature sessile oak trees (Quercus 

petraea (Matt.) Liebl) (Maysonnave et al., 2022) with an understory of hornbeam (Carpinus 

betulus L.) (for more details see: http://www.barbeau.universite-paris-saclay.fr/). The climate 

is temperate and characterized by an annual average rainfall of approximately 680 mm and an 

average air temperature of approximately 11°C (Soudani et al., 2014). The LAI is 

approximately 5.8 m2.m-2 using the litter collection method over the 2012-2018 period (Soudani 

et al., 2021). At the Fontainebleau-Barbeau site, carbon and water fluxes have been 

continuously monitored at 35 m height using the EC method. 

5.2.2. Data collection: ground-based remote sensing, GPP, and environmental variables 

Ground-based remotely sensed observations (far-red SIF, NDVI, NIRv, PRI, mNDI, and 

spectral reflectance) were collected using an automated SIF3 instrument developed at the 

Laboratory of the Meteorology Dynamic (LMD), Ecole Polytechnique and the Laboratory of 

Ecology, Systematic and Evolution (ESE). The automated SIF3 instrument was installed at the 

top of a 35 m height tower of Fontainebleau-Barbeau site, above the canopy. To avoid artificial 

shading from the tower on the measured area, SIF3 was set to the southern part of the tower. It 

has 25° field of view (FOV) and measures alternatively sun irradiance and vegetation radiance 

at a high spectral resolution to deduce SIF, spectral reflectance, and VIs. In this study, 

observations run from April 2022 to mid-September 2022. Remotely sensed observations were 

averaged over a 30 min window and synchronized with GPP and abiotic variables. Far-red SIF 

(i.e. at 760 nm) was retrieved using a Fraunhofer-line based retrieval method (Daumard et al. 

2012). Note that daily mean SIF data were used to understand the seasonal dynamics. The 

Fraunhofer-line based method has been widely used for SIF retrieval because of its less 

insensitivity to atmospheric scattering and reliability even under cloudy sky conditions 

(Mohammed et al. 2019; Cendrero-Mateo et al. 2019). Low quality retrieval and retrieval with 

unstable illumination conditions were filtered out from SIF observations. The VIs, including 

http://www.barbeau.universite-paris-saclay.fr/


 

BALDE Hamadou – Thèse de doctorat – 2023 

93 

                                              Chapter 5. Abiotic variables effects on GPP and SIF relationships 

the Normalized Difference Vegetation Index (NDVI) (Tucker 1979) and near-infrared 

reflectance of vegetation index (NIRv) (Badgley et al., 2017) as indicators of vegetation 

structure, modified red-edge Normalized Difference Index (mNDI) (Hmimina et al., 2014) as 

an indicator of leaf chlorophyll content, and Photochemical Reflectance Index (PRI) (Gamon 

et al., 1997) as indicator of extreme heat dissipation, were calculated as follows: 

𝑁𝐷𝑉𝐼 =
𝑅[780−800]−𝑅[670−680]

𝑅[780−800]+𝑅[670−680]
                                                                                                 (5.4) 

𝑁𝐼𝑅𝑣 = 𝑅[780−800] × 𝑁𝐷𝑉𝐼                                                                                                  (5.5) 

𝑚𝑁𝐷𝐼705 =
𝑅750−𝑅705

𝑅750+𝑅705−2×𝑅445
                                                                                                 (5.6) 

𝑃𝑅𝐼 =
𝑅[569−571]−𝑅[520−532]

𝑅[569−571]+𝑅[520−532]
                                                                                                     (5.7) 

with R being the reflectance at a given wavelength or the average across a wavelength range in 

nm. 

To consider the functional component of SIF, an apparent fluorescence yield was 

calculated by normalizing SIF by PAR. We used half-hourly GPP data estimated from net 

ecosystem exchanges measurements. GPP and SIF data were also aggregated at daily timescale 

and used to study the seasonal dynamics. The main micrometeorological variables, including 

incident, reflected, direct, and diffuse radiations in the PAR spectral range, are measured at high 

frequency (1 min) and were aggregated at the half-hourly and the daily temporal resolutions. 

Atmospheric vapor pressure deficit (VPD), precipitation, air, canopy and soil temperature, soil 

water content, relative humidity, and wind speed are recorded half-hourly and were averaged at 

daily scale. Note that the soil water contents are averaged values in cm3 water per cm3 soil. The 

averaged values are calculated between 0 and 150 cm depth. 

To consider the effects of sky, the fraction of diffuse radiation over the total incoming 

radiation was determined. This fraction varies with respect to variations in sun zenith angle and 

with the sky conditions. It is worth noting that values of the fraction <0.3 are considered as 

sunny days, while values of the fraction >0.70 are cloudy days. 
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5.3. Data analysis: seasonal dynamics, relationships, and random forest 

models 

The influence of environmental variables on the links between GPP and SIF was 

examined at half-hourly and daily timescales using a non-linear curve fitting of GPP vs SIF 

(Kim et al. 2021). The coefficient of determination (R2) is used to assess the strength of the 

correlations.  

We examined the significance of remote sensing metrics (reflectance and VIs), sun-

canopy geometry, and abiotic variables as predictors for SIF and GPP at diurnal scale using 

random forest regression models. Various types of RF models were established for estimating 

SIF and GP (Table 5.1). All RF models were created using 200 trees and sampled with 

replacement based on bag fraction of 80% (80% of the data for training and 20% for testing). 

All RF models were run with only sunny days data at a half-hourly temporal resolution. The 

out-of-bag (OOB) predictor importance estimates were determined to evaluate the contribution 

of each predictor to the predicted output. Note that, we also used the partial dependence plot to 

study the relationship between inputs and estimated variables (i.e. GPP and SIF). Model 

performance was evaluated using the OOB R2 score and the adjusted R2 between the testing 

dataset and the predictions, as well as the RMSE. The closest the OOB R2 and adjusted R2 are, 

the better the model is able to be generalized. 

Table 5.1. Random forest models set up for SIF and GPP predictions using environmental and 

remote sensing variables as inputs and only sunny days data: vapor pressure deficit (VPD), 

volumetric soil water content (SWC), sun zenith (SZA) and azimuth (SAA) angles, far-red sun-

induced chlorophyll fluorescence (SIF) at 760 nm, photochemical reflectance index (PRI), near-

infrared reflectance of vegetation index (NIRv), normalized difference vegetation index 

(NDVI), and modified red-edge normalized difference index (mNDI). 

Model 

 name Inputs Outputs Purpose 

GPP-ENV-SA VPD, SWC, SZA, SAA GPP 

To test the synergy between environmental variables and sun 

angles to predict GPP. 

GPP-ENV-RS 

SIF, PRI, NIRv, NDVI, mNDI, 

VPD, SWC, SZA, SAA  GPP 

To test the synergy between remote sensing and environmental 

variables and sung angles to predict GPP. 

SIF-ENV-SA VPD, SWC, SZA, SAA SIF 

To test the synergy between environmental variables and sun 

angles to predict far-red SIF. 

SIF-ENV-RS 

 PRI, NIRv, NDVI, mNDI, VPD, 

SWC, SZA, SAA SIF 

To test the synergy between remote sensing and environmental 

variables and sun angles to predict far-red SIF. 
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5.4. Results 

5.4.1. Seasonal variations in GPP, SIF, VIs and environmental variables 

The variations in GPP, SIF, FyieldLIF, SIFy, vegetation indices (VIs), and abiotic variables 

at Fontainebleau-Barbeau forest site during the period of measurements (growing season 2022) 

are illustrated in Figure 5.1.  

The GPP of the deciduous oak trees started to raise gradually in April and until the end 

of May following the development of the leaves (Figure 5.1A). Seasonal variations in GPP were 

characterized by sharp fluctuations across the season reflecting PAR, air temperature (Ta), and 

atmospheric Vapour Pressure Deficit (VPD) changes. The dynamics in Ta and VPD showed 

contrasted and marked weather conditions, i.e. in 2022 in Barbeau, heat waves in: mid-June 

(DOY: 166-169), mid-July (DOY: 196-199), and early August (DOY: 218-224), coinciding to 

the peak values of Ta and VPD. Note that during these heatwaves’ periods, GPP substantially 

decreased and the values of Ta and VPD showed obvious air drought conditions. The seasonal 

variations in SWC revealed an overall steady decline, meaning that the soil was constantly 

drying from an SWC > 0.4 cm3 cm-3 at the beginning of the season to an SWC < 0.27 cm3 cm-

3 in the end. 

The seasonal variations in NDVI and mNDI exhibited similar patterns, which represent 

the seasonality changes of canopy attributes in deciduous forests (E and G). PRI values showed 

a rapid increase during the budburst and the leaf expansion phases until it reached its maximum 

in early June. Afterwards, PRI is stable and slightly decreased during the leaf maturation phase. 

This PRI temporal pattern was consistent with the temporal pattern of NDVI and mNDI 

throughout the season. The within-day PRI changes are attributable to the activity of the 

xanthophyll cycle and to fluctuations in the PAR intensity, while the seasonal dynamic of NIRv 

was due to day-to-day changes in light intensity and sun-canopy geometry, and also to changes 

in canopy attributes throughout the season.   

 Far-red SIF followed the same temporal pattern as the other variables, reflecting the 

phenological dynamics of the canopy. Like GPP, far-red SIF reached its maximal values soon 

after the new leaves were fully developed in early June.  SIF then gradually declined following 

the decrease in GPP. FyieldLIF showed a steady decrease over the season, while variations in SIFy 
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were driven by the changes in light intensity and indicated the onset of the growing season. The 

dynamics in SIFy also showed a similar trend of decrease across the season like GPP and SIF. 

Note that both FyieldLIF and SIFy significantly declined during the heat waves periods, as it has 

been observed in GPP and SIF dynamics. 

 

Figure 5.1. Variations in Gross Primary Production (GPP) (Figure 5.1A), far-red Sun-Induced 

chlorophyll Fluorescence (SIF) of the whole canopy (Figure 5.1B), active chlorophyll 

fluorescence yield (FyieldLIF) (Figure 5.1C), apparent SIF yield (SIFy) (Figure 5.1D), Normalized 

Difference Vegetation Index (NDVI) (Figure 5.1E), near-infrared reflectance of vegetation 

index (NIRv) (Figure 5.1F), modified red-edge Normalized Vegetation Index (mNDI) (Figure 

5.1G), Photochemical Reflectance Vegetation Index (PRI) (Figure 5.1H), Photosynthetically 

Active Radiation (PAR) (Figure 5.1I), air temperature (Ta) (Figure 5.1J), Vapor Pressure 

Deficit (VPD) (Figure 5.1K), and  volumetric Soil Water Content (SWC) (Figure 5.1L) under 

all sky conditions during the 2022 growing season. Gray points indicate the data at half-hourly 

timescale and the black line represents daily mean values. 

5.4.2. Influence of abiotic variables on the daily and seasonal variations of the 

relationship between GPP and SIF  

The relationship between GPP and SIF was non-linear (Figure 5.2). The hyperbolic 

regression shows that GPP saturated with increasing SIF values (i.e. SIF> 1 mW m-2 sr-1 nm-1) 

and yields a significantly higher R2 = 0.53 than a linear regression (data not shown) at half-

hourly time resolution. The results also reveal that the relation between GPP and SIF is 
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significantly stronger for cloudy days than for sunny days, with R2 of 0.66 and 0.59, 

respectively.  

The relationship between SIF and GPP exhibits gradual changes with the day of year 

(DOY), the Photosynthetically Active Radiation (PAR), the fraction of diffuse to total PAR, the 

atmospheric Vapour Pressure Deficit (VPD), the leaf canopy temperature (Tc), and the Soil 

Water Content (SWC). It can be seen that the saturation of GPP with increasing SIF happened 

for high PAR, and that for high VPD and very high Tc the GPP stayed low, when far-red SIF 

kept increasing. In other words, the ratio GPP over SIF decreases with increasing PAR, VPD, 

and Tc. The temporal dynamic (DOY) has strong impact on the relationship between SIF and 

GPP, with both GPP and SIF increasing linearly from the start of the season until around DOY 

140, and afterward GPP starts saturating until around DOY 215 and then both GPP and SIF 

linearly decrease, underlining the fact that seasonal variations in leaves and canopy have a large 

influence on the relationship between SIF and GPP. The gradual changes in the fraction of 

diffuse to total PAR reveals that SIF and GPP linearly increased during cloudy days. However, 

on sunny days, GPP shows saturation, when SIF continues to increase. Finally, the soil water 

content has also a strong influence on the relationship between GPP and SIF, with drier 

conditions corresponding to the lowest GPP values and the highest GPP values observed when 

water availability was not a limiting factor. 
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Figure 5.2. The hyperbolic relationship between gross primary production (GPP) and far-red 

sun-induced chlorophyll fluorescence (SIF) at half-hourly timescale seen with color scaled dots 

for: day of year (DOY, Figure 5.2A), photosynthetically active radiation (PAR, Figure 5.2B), 

ratio of diffuse to total PAR (Figure 5.2C), vapor pressure deficit (VPD, Figure 5.2C), leaf 

canopy temperature (Tcanopy, Figure 5.2D), and mean soil water content at 150 cm depth 

(SWC, Figure 5.2E), except triangles and stars points.  

In Figure 5.3 the coefficient of determination (R2) of the relation between daily GPP and 

daily SIF shows strong inter-daily variability. R2 significantly decreases when VPD (Figure 

5.3C) and PAR (Figure 5.3A) are high. The highest correlations were obtained for relatively 

low VPD and moderate PAR, and during cloudy days (Figure 5.3B). Note that also the 

correlation between GPP and SIF substantially declines during the drier period of the season, 

corresponding exactly to the peaks of VPD. This suggests that inter-daily variations in GPP and 

SIF relations were significantly affected by the abiotic conditions, as well as by the 

intermittence between cloudy and sunny days. 
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Figure 5.3. Inter-daily variations of the coefficient of determination between GPP vs far-red 

SIF seen with color scaled dots for: photosynthetically active radiation (PAR, Figure 5.3A), 

ratio of diffuse to total PAR (Figure 5.3B), vapour pressure deficit (VPD, Figure 5.3C), and 

mean soil water content at 150 cm depth (SWC, Figure 5.5D). The grey line represents the 

seasonal dynamic of the normalized difference vegetation index (NDVI). The number of data 

points per day varied between 20 and 23, representing more than 87% of the total data points. 

How GPP is related to SIF at satellite overpass times is a crucial question. Hence, we 

investigated the relationship between GPP and SIF at satellite overpass times using only data 

acquired at 10H30 am and 13H30 pm under on sunny days (Figure 5.4). A substantial 

hyperbolic relation was found between GPP and far-red SIF at satellite overpass times. The 

results presented in Figure 5.4 showed that the non-linear correlation was stronger in the 

afternoon (13h30 pm) than in the morning (10h30 am) with R2 of 0.79 and 0.57, respectively. 

This suggests that the GPP-SIF relation depends strongly on the vegetation physiological state 

and on the conditions of illumination. 



 

BALDE Hamadou – Thèse de doctorat – 2023 

100 

                                              Chapter 5. Abiotic variables effects on GPP and SIF relationships 

 

Figure 5.4. Relationship between daily GPP and canopy far-red SIF (SIF-760) at satellite 

overpass times on sunny days. R2 represents the coefficient of determination, and the hyperbolic 

regression line is the black dotted line. 

5.4.3. Main drivers of SIF and GPP variations and predictions for sunny days 

To predict GPP and SIF using environmental and remote sensing variables and assess 

the contribution of these variables to their variations, several RF regression analyses were 

performed and the main results are presented in Figures 5.5, 5.6, and 5.7 (the other model results 

are given in Supplementary materials Figure S5.1, S5.2 and S5.3). The predictor importance 

estimates for SIF-ENV-RS model is exhibited in Figure 5.5B. This model explains 

approximately 94% of the total variance of far-red SIF (Figure 5.5A). SWC appears to be the 

most important variable, followed by SZA and SAA, and the contribution of mNDI, PRI, and 

VPD play lesser roles for SIF prediction (Figure 5.5B). For GPP, the RF model represented in 

Figure 5.5D captures between 70% and 72% of the variability in GPP (Figure 5.5C). VPD and 

SZA appear to be the most determinant variables, followed by SWC and far-red SIF, and the 

contribution of all other variables was relatively minor for GPP prediction. 
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Figure 5.5. Figure 5.5A presents SIF-ENV-RS model performance between observed and 

predicted SIF (SIF-760), Figure 5.5B shows predictor importance estimates for SIF-ENV-RS 

model, Figure 5.5C presents GPP-ENV-RS model performance between observed and 

predicted GPP, Figure 5.5D shows predictor importance estimates for GPP-ENV-RS model. N 

denotes the number of observations used for the RF model evaluation, adj. R2 represents the 

adjusted coefficient of determination of the relationship between test data and predicted SIF or 

GPP, OOB R2 is the model accuracy on the validation data, and the RMSE is the root mean 

square error between observed SIF or GPP and RF model predicted SIF or GPP. The dashed 

diagonal line depicts the 1:1 line. Data at half-hourly timescale on only sunny days were used. 

The results in Figure 5.6 reveal a monotonic positive relationship between SIF and low 

values of SWC (SWC < 0.3 cm3 cm-3) and a saturation pattern at high SWC values (SWC > 0.3 

cm3 cm-3). The relationship between SIF and SAA is also positive for values of SAA < 200 

degrees. For values of SAA between 200 and 250 degrees, the relation SIF-SAA slightly 

saturates, and afterward it becomes negative. SZA and VPD are negatively related to SIF, but 

note that SIF saturates for VPD > 2 kPa and for SZA > 60 degrees. The relationships between 
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SIF and PRI and between SIF and mNDI are first positive, but remain constant and afterward 

become negative at high values of PRI (PRI> -0.05) and mNDI (mNDI > 0.70); the response of 

mNDI is faster than the PRI one. The other variables (NDVI and NIRv) have insignificant 

effects on the SIF variations. 

 

Figure 5.6. Partial dependence describing the marginal effect of each variable on far-red SIF 

variations under clear sky days at half-hourly timescale. 

The results in Figure 5.7 show that NDVI, mNDI, PRI, SIF, and SWC have a positive 

relationship with GPP, but with a saturation pattern at high values, typically for NDVI > 0.915, 

mNDI > 0.72, PRI > -0.042, SIF > 1 mW m-2 sr-1 nm-1, and SWC > 0.33 cm3 cm-3. The relations 

between GPP and NIRv are positive and present high variabilities. The relationships between 

GPP and VPD, between GPP and SZA and between GPP and SAA are strongly negative. 

However, these correlations show strong variability for VPD > 2.5 kPa and SZA >50 degrees. 

The wide range of the partial dependence values for VPD >2.5 kPa suggests that VPD 

significantly impacts GPP variations.  
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Figure 5.7. Partial dependence describing the marginal effect of each variable on GPP 

variations under only sunny days at half-hourly timescale. 

5.5. Discussion 

The results highlight that the seasonal patterns of SIF and GPP are similar (Figure 5.1), 

indicating that the temporal changes of both SIF and GPP are primarily driven by the seasonal 

changes in canopy structure and radiation conditions. Variations in vertical distribution of LAI, 

leaf angle distribution and clumping, and light intensity strongly determine the amount of 

absorbed photosynthetically active radiation (APAR). The seasonal changes also affect leaf 

biochemical properties and the distribution of sunlit and shaded leaves from which SIF and GPP 

depend on (Lu et al., 2020; Zhang et al., 2023). Besides, leaf physiology and abiotic factors 

(mainly leaf canopy temperature, VPD, and SWC) considerably affected the seasonal dynamics 

in FyieldLIF and SIFy, and consequently the dynamics of SIF and GPP. These results are consistent 

with previous studies at both leaf and canopy scales (Lu et al. 2020; Kováč et al. 2022; Hu et 

al. 2023).  The analyses in Figure 5.1 also demonstrated that seasonal changes in PRI and NIRv 

were consistent with the dynamics of NDVI and mNDI throughout the season, indicating their 

dependence on leaf phenological, structural, and biochemical properties. Note that short-terms 

variations in PRI and NIRv were greater than those in NDVI and mNDI, suggesting that these 
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indices are relatively independent. In fact, day-to-day variations in PRI may be related to the 

activity of xanthophyll cycle and to fluctuations in light intensity and leaf chlorophyll content 

as it has been shown in previous studies (Hmimina et al. 2014; Soudani et al. 2014; Sukhova et 

al. 2022). However, the seasonal dynamic in NIRv is substantially affected by canopy structure 

and sun-canopy geometry changes that determine the fraction of sunlit and shaded leaves 

(Zhang et al. 2022; Zeng et al. 2022). Finally, during the extreme weather conditions (heatwaves 

in 2022 in: mid-June (DOY: 166-169), mid-July (DOY: 196-199), and early August (DOY: 

218-224), we observed that SIF and VIs (NDVI, NIRv, mNDI, and PRI) and SIF and PAR are 

uncorrelated, while both GPP and SIF strongly decreased. This indicates that SIF can capture 

the vegetation functioning activity and VIs cannot be used to track changes in vegetation 

physiology during severe abiotic conditions. This specific response of SIF compared to VIs 

underlined the interest of SIF to track GPP under severe abiotic conditions. Note that FyieldLIF 

and SIFy also significantly dropped during the heatwaves periods, underlining the ability of 

FyieldLIF and SIF to reflect variations in vegetation physiology functioning under extreme 

weather conditions. 

At the half-hourly temporal resolution, when SIF and GPP were considerably affected 

by variations in PAR (Figure 5.2), the relationship between GPP and SIF was strongly non-

linear. This result suggests that the chlorophyll fluorescence does not linearly co-vary with 

photosynthesis because GPP saturates at a high PAR, while fluorescence continues to increase 

with PAR, which is consistent with several previous studies (Helm et al. 2020; Cheng et al. 

2022; Sun et al. 2023b). This study also underlines that the hyperbolic relations between GPP 

and SIF was better on cloudy days (R2 = 0.66) than on sunny days (R2 = 0.59), indicating that 

light intermittence within and over the canopy and sun-canopy geometry significantly affected 

the link between GPP and SIF. These findings are in good agreement with previous studies in 

cork oak forest (Cheng et al. 2022). Clouds may reduce the total sun radiation received over the 

canopy and increase the diffuse radiations. Canopy SIF is mainly affected by direct radiation 

and is less impacted by diffuse radiation than GPP.  Further, diffuse radiations can penetrate 

deeper in the canopy, presumably inducing more SIF emission due to exciting shaded leaves 

emission’s and greatly reducing sun-canopy geometry effects. However, under high light 

intensity, which is clearly more frequent on sunny days, the excess absorbed light is dissipated 

as heat inducing both a decrease in the photosynthetic activity and the SIF emission. This is 

because when light intensity increases, the carbon assimilation and the electron transport chain 
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gradually become light saturated (Porcar-Castell et al. 2014). This explains why the link 

between GPP and SIF at satellite overpass times evidenced that GPP and SIF were 

hyperbolically more related in the afternoon (13H30 pm) than in the morning (10H30 am) 

(Figure 5.4). Further, under changing high radiation conditions, GPP is substantially sensitive 

to circadian rhythms, meaning that photosynthesis light saturation is more important in the 

afternoon than in the morning (Li et al., 2023).  

If the light saturation of GPP is the primary widely known driver in the discrepancy 

between GPP and SIF, there are other ecosystems and abiotic stressors that vary intra-daily, 

daily, and seasonally. These stressors may have significant effects on fluorescence efficiency 

and vegetation photosynthesis activity and consequently they can affect the relationship 

between GPP and SIF. Thus, the results presented here (Figures 5.2, 5.3 and 5.5) evidenced that 

canopy temperature (Tc), soil water content, vapor pressure deficit, and sun-canopy geometry 

(SZA and SAA) are all influencing GPP and SIF and therefore may be responsible for intra-

daily and seasonal divergence in the GPP and SIF relation. More specifically, strong 

discrepancies between GPP and SIF were associated with high PAR, Tc, and VPD (Figures 5.2 

and 5.3). Those variables are regulated by the light intensity and the environmental conditions. 

Previous studies have also identified PAR and VPD as other potential causes for the non-

linearity between GPP and SIF (Kim et al. 2021; Hu et al. 2023). In addition, abiotic stressors 

can impact SIF and GPP at several levels. First, the amount of light energy absorbed by the 

leaves can be strongly altered by high light intensity. The latter can affect the amount of SIF 

emitted and hence the relations between GPP and SIF. Second, the abiotic stressors can also 

affect the light partitioning in the chlorophyll molecules, leading to NPQ activation. VPD as a 

proxy of air temperature and relative humidity is associated with the variations in fAPAR and 

in the fraction of chlorophyll fluorescence that escaped (Li et al. 2023). Further, VPD is an 

indicator of atmospheric water demand and in this study VPD reached values that corresponded 

to severe air drought. VPD can affect stomatal closure. Stomatal closure can lead to decrease in 

plant water use efficiency and can prevent carbon assimilation by inhibiting the electron 

transport chain activity (Jonard et al. 2020; Magney et al., 2020), affecting hence photosynthesis 

and fluorescence emission and consequently the relationship between GPP and SIF (Figures 5.3 

and 5.5). This behavior was observed in our results (Figures 5.2, 5.3 and 5.5). Previous research 

has also demonstrated that the influence of the VPD on the SIF-GPP relationship had a critical 

effect (Cheng et al. 2022). More specifically, we observed that a high VPD had a negative effect 
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on GPP and SIF (Figures 5.6 and 5.7). The same was also observed with high SZA. SZA can 

change the fraction of sunlit and shaded leaves, thus varying the canopy optical properties, 

which subsequently affect GPP and SIF. We also observed that both GPP and SIF saturate or 

decrease at high SWC, SAA, PRI and mNDI (Figures 5.6 and 5.7). One possible explanation is 

that both SIF and GPP are controlled by leaf physiology, leaf chlorophyll content, and the 

vegetation status under changing light conditions. The SWC is an indicator of plant water stress 

that also affects stomatal closure and hence the light reaction of photosynthesis and the 

fluorescence. The SWC was shown to have fluctuating responses to SIF and GPP in cork oak 

and poplar trees (Cheng et al. 2022), suggesting the response of GPP and SIF to SWC may be 

vegetation type-specific. The slight decrease of SIF at a high value of PRI and mNDI can be a 

consequence of NPQ and of the leaf chlorophyll fluorescence reabsorption, indicating that PRI 

could reflect the role of NPQ on sunny days. Whereas, the saturation of GPP with increasing 

PRI and mNDI is associated with the saturation of carbon assimilation in leaves under high light 

intensity. Therefore, this study supports that field measurements of remote sensing metrics, 

ecosystems and abiotic variables are needed to better understand the dynamics of GPP and SIF 

and their relationship. 

5.6. Conclusion 

In this study, the concomitant and continuous measurements of Sun-Induced chlorophyll 

Fluorescence (SIF), Gross Primary Production (GPP), reflectance-based vegetation indices 

(VIs), and abiotic variables of a sessile oak canopy allowed to analyse the main drivers of SIF 

and GPP variations. On one hand, the seasonal variations in SIF, GPP, VIs, and some abiotic 

variables (including PAR, air and canopy temperature, soil water content and vapor pressure 

deficit) were examined, and on the other hand, the relationship between GPP and SIF was 

evaluated considering different temporal resolutions.  Further, random forest (RF) models were 

also used to not only predict SIF and GPP, but also to analyse the responses of SIF and GPP to 

abiotic drivers. 

The results showed that both SIF and GPP had similar seasonal patterns, which were 

primarily controlled by the vegetation phenology that drives canopy structure and leaf 

biochemical and physiological attributes and diurnal and seasonal changes of incoming solar 

radiation. The analyses also demonstrated that the light saturation of the relationship between 
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GPP and SIF was not only dependent on PAR, but also on the fraction of diffuse to total PAR 

and on other abiotic variables such as VPD, SWC, and canopy temperature. The other key 

finding was that sun zenith and azimuth angles had strong and inverse effects on GPP and SIF, 

suggesting that sun-canopy geometry effects impact heavily the relationship between GPP and 

SIF. This last result may be specific to our study site consisting of a mature forest with an 

understorey, but it clearly highlights that the use of passive SIF measurements acquired at the 

canopy scale with a narrow field of view must be conducted with great care, as the 

measurements are strongly impacted by the distribution of sunlit and shaded leaves at the top 

of the canopy. Using passive in situ SIF measurements to validate satellite measurements at 

coarse spatial and temporal resolutions can therefore be very difficult, since obtained results 

will not be reproducible from one site to another, particularly in forest canopies where the 

structure is highly heterogeneous. Alternative solutions based on active measurements of SIF 

at canopy scale, or airborne measurements that take account of canopy heterogeneity, need to 

be considered.  
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6. Chapter 6: General conclusions, discussion, and 

perspectives 

6.1. Synergy between TROPOMI SIF, R MODIS, and tower-based GPP 

SIF is a faint radiation re-emitted by the vegetation chlorophyll pigments and its 

detection has emerged as a promising tool for monitoring vegetation carbon uptake via 

photosynthesis (Frankenberg and Berry, 2018; Porcar-Castell et al., 2021). Over coarse spatial 

and temporal scales, the emitted chlorophyll fluorescence and photosynthesis co-vary, leading 

to a strong correlation between GPP and SIF, as the absorbed PAR becomes the main driver of 

GPP and SIF (Guanter et al., 2012; Li and Xiao, 2022; Sun et al., 2023). Yet, earlier studies on 

GPP and SIF made at broad spatial and temporal scales evidenced that the relations between 

tower-based GPP and satellite SIF data depend on vegetation types (Damm et al., 2015; Balde 

et al., 2023), photosynthetic pathways (He et al., 2020), as well as on abiotic conditions (Verma 

et al., 2017; Li et al., 2018; Paul-Limoges et al., 2018).  

Therefore, spatial and temporal variations in SIF and its relationship to GPP as functions 

of plant functional types (PFTs) and spatial and temporal scales still remain a poorly 

documented area of research. To make our contribution to this scientific question, we first 

investigated in Chapter 3 the strength and the nature of the links between SIF at coarse spatial 

resolution based on sentinel-5P (TROPOMI mission) and GPP from ground-based 

measurements at forty ICOS flux sites spanning different PFTs. We also highlighted the synergy 

between SIF, spectral reflectance (MODIS Aqua and Terra), and vegetation indices (VIs) such 

as PRI, NDVI and NIRv for GPP predictions using data-driven Random Forest (RF) methods. 

The results evidenced that the strength and the nature of the relationships between GPP and SIF 

depend on site and vegetation type, which is consistent with the previous studies. The 

parameters of SIF and GPP regressions appear to be site-dependent, most likely reflecting the 

spatial and temporal heterogeneity of the vegetation cover and environmental conditions of the 

TROPOMI pixel, as well as differences in vegetation types. This also highlights the strong 

influence of the seasonal cycle of structural and biochemical properties of the canopy and the 

seasonal cycle of solar radiation, which all vary across different vegetation types (Tagliabue et 

al., 2019; Cho et al., 2021; Zhang et al., 2023a).  
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Further, the RF models established using remote sensing observations as inputs 

explained more than 80% of tower-based GPP inter-daily variations. However, we observed 

that daily surface spectral reflectance at different bands of MODIS sensor when taken as a 

whole outperformed daily TROPOMI SIF in predicting GPP. These reflectances include the 

reflectance in the red, the far-red and the NIR bands. Reflectance in the red, the far-red and the 

NIR bands are widely used for characterizing variations in canopy structure and in vegetation 

biochemical properties such as leaf area index and chlorophyll pigments content (Noda et al., 

2021). These vegetation attributes, as well as the solar radiation, follow a seasonal cycle and 

explain to a large extent the observed correlation between reflectance and GPP at the seasonal 

scale. In addition, the strong contribution of the spectral reflectance in the inter-daily variations 

in GPP highlights that at these temporal and spatial scales, the interest of SIF as a proxy of GPP 

remains limited, compared to the reflectance. However, analysis of the relative importance of 

variables in the RF model using SIF and VIs (NDVI, PRI and NIRv) as inputs to predict GPP 

shows that SIF is the most important variable for predicting GPP. It can be noted that this RF 

model using SIF combined with VIs (without adding reflectances as explanatory variables) 

resulted in good GPP prediction (R2 = 0.75). This suggests that SIF is an integrating variable 

that can include the effects of the factors contained in the reflectances in the different bands. 

Remotely-sensed SIF observations alone are therefore capable of reproducing phenological 

cycle of the absorbed radiation (resulting from the seasonal cycle of “green” canopy and solar 

radiation) and presumably physiological responses (Zhang et al., 2023; Zhang et al., 2023), but 

the latter are difficult to evidence at broad spatial and temporal scales (Magney et al., 2020). 

This result also indicates that at a broad spatial scale, surface spectral reflectances could be used 

for estimating GPP and the use of SIF as a proxy of GPP raises question of whether the 

physiological information directly related to photosynthetic activity contained in SIF could be 

detected at this scale. With the upcoming satellite Fluorescence Explorer mission (FLEX), 

which will be launched in 2025 by ESA (Drusch et al., 2017) and which aims to measure 

fluorescence at a spatial resolution of 300 m, this result  also raises the question about the “added 

value” of FLEX for GPP estimation compared with the current satellites such as TROPOMI. 

However, this result should not be misinterpreted because the spatial mismatch between the 

tower-based GPP footprints (around 300 m) and the TROPOMI SIF pixel size (7 km x 3.5 km) 

could limit the ability of TROPOMI SIF to capture any subtle variations in GPP linked to very 

local abiotic constraints such as water stress, which depends on local soil conditions. It should 

be noted that soil properties can vary greatly even at the scale of a few hundred m2, particularly 
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in forests. The strong GPP and SIF relationship observed despite this mismatch implies that at 

a broad spatial scale: i) these relationships are explained by canopy phenological changes, as 

well as by the seasonal cycle of solar radiation and ii) the physiological information linked to 

abiotic conditions contained on the SIF signal is very subtle, and may be masked by temporal 

changes in canopy properties and rapid changes in abiotic factors such as solar irradiance and 

air temperature (Zhang et al., 2023; Wang et al., 2023). However, at fine spatial and temporal 

scales, the GPP and SIF link is not easy to establish because at these scales other factors can 

intervene and can cause high signal changes and consequently can lead to divergence between 

GPP and SIF (Kim et al., 2021). This high variability raises other questions about the 

exploitation of SIF signal as a proxy of the ecophysiological functioning of the vegetation cover 

in response to variations in abiotic conditions (Paul-Limoges et al., 2018; Magney et al., 2019; 

Sun et al., 2023a). 

6.2. Effects of canopy structure on SIF and links between SIFy and FyieldLIF 

The conclusions based on Chapter 3 allowed us to show that it is difficult to determine 

the most important factors and mechanisms explaining the wide variability in the relationship 

between GPP and SIF at the spatial and temporal scale of TROPOMI SIF (Sentinel-5P mission, 

daily 5-7 km / 3.5-14 km pixel size). In order to understand changes in the relationships between 

GPP and SIF regarding the temporal timescale, we have carried out continuous and 

simultaneous measurements of chlorophyll fluorescence at the canopy scale based on two 

techniques, one passive (SIF) and the other active (FyieldLIF, using modulated excitation which 

allows the measurements of the chlorophyll fluorescence yield), GPP, and environmental 

variables in Fontainebleau-Barbeau in 2022.  

How to disentangle the confounding factors, including canopy structure, fluctuations in 

solar radiation and canopy physiology information contained in the SIF signal is an important 

research question that hinders the use of SIF to probe photosynthetic activity and detect water 

stress/drought at the canopy scale and beyond (Wang et al., 2023; Kimm et al., 2021; Berger et 

al., 2022). Active chlorophyll fluorescence measurements (FyieldLIF), which directly measures 

the apparent fluorescence yield, have been widely used to detect physiological variation of the 

vegetation at leaf scale (Porcar-Castell et al., 2021; Yang et al., 2021). Recently, the 

measurement of FyieldLIF has become feasible at the canopy scale (Loayza et al., 2023; Moya et 
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al., 2019), opening up new opportunities to decouple structural, biochemical, and physiological 

components of SIF at the canopy scale.   

In Chapter 4, based on top-of-canopy measurements above a mature deciduous forest in 

Fontainebleau-Barbeau of reflectance (R), SIF, SIF normalized by incoming photosynthetically 

active radiation (SIFy), FyieldLIF, and the ratio between SIFy and FyieldLIF (named Φk), we studied 

the effects of canopy structure and shadows on the diurnal and seasonal dynamics of SIF and 

proposed a method to predict FyieldLIF and Φk using RF models. Our analyses show that active 

FyieldLIF was not correlated with passive SIFy at the diurnal timescale due to sun-canopy 

geometry effects. We also observed that the diurnal patterns in SIF and PAR did not match 

under clear sky conditions, underlining the effects of shadows on the measured canopy SIF 

signal in the Fontainebleau-Barbeau forest. The dynamics of the sunlit and shaded areas were 

characterized using continuous RGB images measurements in the field-of-view (FOV) of SIF 

measurements. This may explain the absence of correlation observed between SIF or SIFy and 

FyieldLIF. Further, as SIFy was estimated from normalization by incident PAR, and not from 

normalization by the radiation absorbed by green vegetation elements, SIFy does not consider 

the conditions of radiation extinction by the canopy. Indeed, the incident PAR measured above 

the canopy does not reflect what is happening locally at the upper layers of the canopies (cast 

shadows caused by high roughness of the top of the canopy) and within the canopy (distribution 

of gaps and clumping effects). Therefore, the high complexity of interactions between canopy 

structure and solar radiation can strongly blur the information on the physiological functioning 

of the canopy provided by SIFy. For this reason, the development of new methods and models 

are warranted to better explore the possibility to use SIF as a proxy for vegetation functioning 

at high temporal frequency (intra-daily), especially when the vegetation structure is complex 

and heterogeneous such as in forest stands.  

 A novel remote sensing indicator, Φk, which is the ratio between SIFy and FyieldLIF, was 

introduced to characterize the effects of canopy structure and sun-canopy geometry interactions. 

SIFy and FyieldLIF correspond to the chlorophyll fluorescence yield from passive and active 

measurements, respectively (the active measurement being considered as the “true” measure of 

canopy fluorescence yield). Therefore, changes in Φk used here reflect the effects of exogenous 

confounding factors that cause variations of the “apparent” fluorescence yield (SIFy), while the 

“true” fluorescence yield related to photosynthetic functioning remains unchanged. 

 Φk diurnal pattern follows the pattern of the distribution of light and shadow spots. The 

latters were assessed from the RGB images of the FOV of SIF3, through the temporal variations 
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of reflectance in the near-infrared bands and of NIRv, and from statistical analysis of the 

importance of the variable used in the random forest model (RF, Φk-R-SA). The results 

underlined that Φk was sensitive to the sun-canopy geometry and to the distribution of sunlit 

and shaded leaves on the upper canopy layers. RF regressions show that in addition to the 

significant effects of solar angle, Φk is also an indicator of local illumination conditions in the 

FOV, since Φk is strongly correlated to surface reflectance in different bands used as 

explanatory variables in the RF model (Φk-R). The spectral reflectances used are not corrected 

for Bidirectional Reflectance Distribution Function (BRDF) effects, therefore they contain 

useful information to improve the predictive power of SIF. This result, even if not for the same 

reasons, confirms the importance of using SIF and reflectance synergy in GPP prediction 

models.  

FyieldLIF was more sensitive to surface reflectance and radiation than SIF and SIFy, 

corroborating our previous conclusions based on TROPOMI and MODIS satellite 

measurements across the ICOS carbon flux sites. However, note that the contribution of SIF or 

SIFy is important compared to each reflectance band taken individually, but the combined effect 

of reflectance bands could mitigate or hide the use of SIF as a vegetation physiological proxy. 

Therefore, in order to disentangle the structural and physiological information contained in SIF 

and to use SIF as a proxy of photosynthetic carbon uptake at the ecosystem scale, the synergy 

between SIF and reflectance at the canopy scale needs to be studied in other vegetation types 

and with different canopy structures.  

In this chapter, we mainly highlighted the complexity of interpreting diurnal variations 

of SIF in forest canopies because in this type of ecosystems, SIF measurements are highly 

dependent on the complex interactions between the canopy properties (structure and 

biochemical properties), solar illumination geometry (SZA and SAA) and light (ratio of diffuse 

to direct solar radiation) conditions. However, how abiotic conditions and canopy structure at 

the seasonal scale, and specifically under various stress conditions affect SIF and GPP and their 

relationships is an active area of research that we addressed in the next chapter. 
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6.3. Abiotic variables effects on SIF and GPP variations and on their 

relationships  

Airborne, drone and tower-based SIF data have shed light on what drives SIF at the 

canopy scale and illuminated the mechanisms affecting the relationship between GPP and SIF. 

Previous studies showed that SIF is able to track GPP across both diurnal and seasonal 

timescales (Yang et al., 2015; Goulas et al., 2017 ; Rossini et al., 2015 ; Lu et al., 2020 ; 

Campbell et al., 2019 ; Rascher et al., 2015). SIF has also been used to detect early stress due 

to its link with the photosynthetic activity (Ač et al., 2015; Jonard et al., 2020; Berger et al., 

2022). SIF has been used to understand the correlations between vegetation carbon assimilation 

and energy dissipation variations under light stress (Miao et al., 2018; Kim et al., 2021), cold-

stress (Magney et al., 2019; Pierrat et al., 2022), and between vegetation carbon assimilation 

and induced stomatal closure (Marrs et al., 2020). SIF was able to identify divergence between 

SIF and GPP during periods of heat-stress (Wieneke et al., 2018; Wohlfahrt et al., 2018; Martini 

et al., 2022), and during periods of drought or water-stress (De Cannière et al., 2022; Pinto et 

al., 2020). Because of its sensitivity to the light reactions of photosynthesis, SIF has the potential 

to be used in estimating and modeling transpiration (Damm et al., 2021; Maes et al., 2020; Lu 

et al., 2018) and as an alternative to partition Net Ecosystem Exchange (NEE) into GPP and 

Ecosystem Respiration (Kira et al., 2021;(Zhan et al., 2022).  

Therefore, the use of SIF to probe variations in GPP in forests is challenged by 

confounding factors such as canopy physiological, canopy structural and canopy biochemical 

properties, along with abiotic conditions. The results presented in Chapter 5 also showed that 

the tower-based SIF data measured in Fontainebleau-Barbeau during the 2022 growing season 

tracked the variations in GPP. The strength and the nature of the relations between GPP and 

SIF were dependent on the temporal scale considered.  

At the seasonal scale, we observed that the trees’ phenological dynamics, solar radiation, 

and other abiotic factors such as atmospheric vapor pressure deficit (VPD) and soil water 

content (SWC) control the relationship between GPP and SIF. More, specifically, we observed 

that the seasonal dynamics in GPP, SIF, FyieldLIF and SIFy responded to the leaf physiology and 

to the fluctuation in abiotic conditions, specifically during the heatwaves in the summer 2022. 

During the extreme weather conditions (heatwaves in 2022 in Barbeau in: mid-June (DOY: 

166-169), mid-July (DOY: 196-199), and early August (DOY: 218-224), we observed that SIF 

and VIs (NDVI, NIRv, mNDI, and PRI) and SIF and PAR are uncorrelated, while GPP, SIF 
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and FyieldLIF strongly decreased. This indicates that SIF can capture the vegetation functioning 

activity, while VIs cannot be used to track changes in vegetation physiology during such severe 

abiotic conditions. This specific response of SIF and FyieldLIF compared to VIs underlined the 

interest of SIF to track GPP under severe abiotic conditions. Both VPD as an indicator of 

atmospheric water demand, and SWC as an indicator of plant water stress, can indicate stomatal 

closure. Stomatal closure can affect plant water use efficiency and prevent carbon uptake by 

blocking the electron transport chain and therefore affect the photosynthetic activity and 

chlorophyll fluorescence emission and hence affect the relations between GPP and SIF (Wu et 

al., 2022; Pierrat et al., 2022). However, further studies are warranted to better understand GPP, 

SIF and reflectance variations and correlations under severe abiotic conditions such as 

heatwaves. This is an ongoing work that we are currently performing. 

In our studies, at the diurnal timescale, the interactions between the canopy structure 

and the sun-canopy geometry (solar zenith and azimuth angles) control the distribution of light 

and shadow spots. The SIF response at the infra-daily timescale suggests that SIF heavily 

depends on what is happening at the top of the canopy (Gu et al., 2019; Pierrat et al., 2022). 

Therefore, in forest canopies which can be highly heterogeneous the relations between GPP and 

SIF may be controlled by the canopy structure and the sun-canopy geometry effects at the 

diurnal timescale. Note that the estimated fluorescence yield (SIFy) based on incident radiation 

measured above the canopy could not alleviate this issue because the radiation actually 

intercepted and absorbed by the canopy must be considered (Wang et al., 2023; Ač et al., 2015). 

This technical aspect should be taken into consideration when discussing the relevance of local 

measurements of SIF for calibrating/validating satellite measurements. This result also 

highlights that the use of passive SIF measurements acquired at the canopy scale with a narrow 

FOV must be conducted with great care, as the measurements are strongly impacted by the 

distribution of sunlit and shaded leaves at the top of the canopy. Using passive in-situ SIF 

measurements to validate satellite measurements at coarse spatial and temporal resolutions can 

therefore be very difficult, since obtained results will not be reproducible from one site to 

another, particularly in forest canopies. Therefore, alternative technical solutions based on 

active measurements of SIF at canopy scale or airborne measurements that take into account 

the canopy heterogeneity need to be considered in order to obtain reliable data to 

calibrate/validate satellite-based SIF products such as the future FLEX products. 

Further, to better interpret SIF data, there is a critical need to gather detailed ancillary 

data. Top-of-canopy SIF variations cannot be directly interpreted as physiological changes 
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because of the confounding effects, which could be better disentangled by measuring visible 

and near-infrared hyperspectral reflectance data. Therefore, the analysis of the SIF and 

reflectance synergy to study the photosynthetic functioning of ecosystems requires further 

study, particularly at fine spatial and temporal scales under various environmental conditions 

and specifically in plant canopies characterized by complex structures. 

Hyperspectral reflectance sensors detect the light reflected from the canopies within 

narrow wavelengths (Zeng et al., 2022). This information can be used to derive estimates of the 

escape ratio of canopy SIF (Yang et al., 2019; Zeng et al., 2019), of canopy pigment 

concentrations (Feng et al., 2008;  Zeng et al., 2022), and other  variables critical in regulating 

ecosystem functioning (including LAI, fAPAR and canopy water content) (Pasqualotto et al., 

2018;  le Maire et al., 2008). Further, active Light Detection and Ranging (LIDAR) data instead 

can be useful by providing an accurate representation of the spatial arrangement of canopy 

elements. This can be useful for assessing the horizontal and vertical distribution of sunlit and 

shaded leaves, as well as the leaf aggregation, which appear to play an important role in SIF 

variations and SIF and GPP relationships (Grotti et al., 2020; Song et al., 2021; Man et al., 

2014). In addition, as the incident radiation is the primary driver of SIF, characterizing the light 

environment by precise measurements of incident, reflected and transmitted PAR (the 

prerequisite for an accurate estimate of the absorbed PAR) and using in-situ RGB camera 

images taken within the FOV of the canopy sensor (necessary to track temporal changes of the 

proportion of sunlit and shaded leaves) could give insight to better interpret the retrieved SIF at 

the canopy scale (Chen et al., 2020; Wu et al., 2020; Yang et al., 2021). The development and 

use of radiative transfer models where the 3D architecture of the vegetation is explicitly taken 

into account such as the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-

Etchegorry et al., 2004; Regaieg et al., 2020), must inevitably be exploited to better understand 

the radiative transfer of chlorophyll fluorescence in plant canopies and for a better 

characterization of the fluorescence escape probability factor (fesc) used in some equations of 

the SIF and GPP relationship as a first approximation of fluorescence attenuation in the canopy-

sensor direction (Lu et al., 2020).  

 Co-located continuous active and passive measurements of canopy chlorophyll 

fluorescence could also provide additional insight into the physiological component of SIF 

(Chang et al., 2021; Helm et al., 2020; Martini et al., 2022; De Cannière et al., 2022). These 

data can be used to gather variables needed to establish SIF-driven mechanistic models of 
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photosynthesis at the ecosystem scale (Gu et al., 2019; Liu et al., 2022). Further, co-located 

continuous measurements of canopy SIF and canopy temperatures are more likely to improve 

evapotranspiration estimates at the ecosystem scale (Damm et al., 2021; Maes et al., 2020; 

Jonard et al., 2020) and hence to contribute to assess ecosystem water use and water stress. 

Therefore, future studies should look toward this direction. Finally, due to the multitude of 

confounding factors, the potential of SIF as a proxy for photosynthesis at the canopy scale and 

particularly under stress conditions in complex structures such as forests remains to be 

evaluated. Due to different sources of variations in the SIF signal and in GPP and SIF 

relationships (vegetation properties, biotic and abiotic conditions, spatial and temporal scales 

considered, instrumentation, SIF retrieval algorithms, etc.), there is an urgent need to develop 

a SIF and LIF measurement network according to standardized protocols and taking advantage 

of the carbon and water fluxes and ancillary data measurement networks where measurements 

are taken according to standardized protocols such as the ICOS ecosystem network. 
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Annexes 

Annexe Chapter 3. Synergy between TROPOMI sun-

induced chlorophyll fluorescence and MODIS spectral 

reflectance for understanding the dynamics of gross 

primary productivity at Integrated Carbon Observatory 

System (ICOS) ecosystem flux sites 

Tab S3.1. Information on the sites used in this study from the ICOS release 2018 and 2021. 

The PFT represents the plant functional type corresponding to each site: MF (mixed forests), 

CRO (croplands), DBF (deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF 

(evergreen needleleaf forests), GRA (grasslands), OSH (open shrublands), and WET 

(wetlands). Years denote the year of data flux available for each site. 

Site ID Site name Latitude (°) Longitude (°) PFT Years 

BE-Bra 

Brasschaat 

51.307617 4.519844 MF 2018 

BE-Lcr 
Lochristi 

51.112184 3.850433 CRO 2019, 2020 

BE-Lon 
Lonzee 

50.551586 4.7461305 CRO 2019, 2020 

BE-Vie 
Vielsalm 

50.305068 5.998052 ENF 2018 

CH-Dav 
Davos 

46.815283 9.855009 ENF 2018, 2019, 2020 

CZ-BK1 Bily Kriz 

forest 

49.50213 18.53685 ENF 2018 

CZ-Lnz 
Lanzhot 

48.681611 16.946416 MF 2018 

CZ-Wet 
Trebon 

49.024657 14.7703419 WET 2018 

DE-Geb 
Gebesee 

51.099714 10.914629 CRO 2018 

DE-Gri 
Grillenburg 

50.950046 13.512681 GRA 2018, 2019, 2020 

DE-Hai 
Hainich 

51.079189 10.452336 DBF 2018, 2019, 2020 

DE_HoH 
Hohes Holz 

52.086484 11.222468 DBF 2018, 2019, 2020 

DE-Hzd 
Hetzdorf 

50.963566 13.490172 DBF 2018 

DE-Kli 
Klingenberg 

50.892881 13.5225056 CRO 2018, 2019, 2020 

DE-RuR 
Rollesbroich 

50.621914 6.3041256 GRA 2018 

DE-RuS Selhausen 

Juelich 

50.865912 6.4471689 CRO 2018, 2019, 2020 

DE-RuW 
Wustebach 

50.504907 6.33101886 ENF 2018 

DE-Tha 
Tharandt 

50.962631 13.565225 ENF 2018 

DK-Sor 
Soroe 

55.485869 11.644644 DBF 2018 
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FI-Hyy 
Hyytiala 

61.84741 24.29477 ENF 2018, 2020 

FI-Sii 
Siikaneva 

61.832683 24.19278333 WET 2018, 2019, 2020 

FI-Var 
Varrio 

67.7549 29.61 ENF 2018, 2019, 2020 

FR-Aur 
Aurade 

43.54965 1.10615 CRO 2019, 2020 

FR-Bil 
Bilos - Salles 

44.49389 -0.95592 ENF 2018, 2019, 2020 

FR-EM2 Estrees-

Mons A28 

49.872108 3.02065 CRO 2018, 2019, 2020 

FR-Fon Fontaineblea

u-Barbeau 

48.476339 2.780136 DBF 2018, 2019, 2020 

FR-Hes 
Hesse 

48.84415 1.951910019 DBF 2018 

FR-LGt 
La Guette 

48.67416 7.06461667 WET 2018, 2019, 2020 

FR-Mej Mejusseaum

e 

48.117707 -1.798283 CRO 2019, 2020 

GF-Guy 
Guyaflux 

5.2787 -52.9248 EBF 2018, 2019, 2020 

IT-BCi 
Borgo Cioffi 

40.52375 14.957444 CRO 2018 

IT-Cp2 Castelporzia

no2 

41.704267 12.357293 EBF 2018 

IT-Lsn 
Lison 

45.740481 12.750297 OSH 2018, 2019, 2020 

IT-SR2 San Rossore 

2 

43.73203 10.29095 ENF 2018, 2019, 2020 

IT-Tor 
Torgnon 

45.844444 7.578055556 GRA 2018, 2019, 2020 

NL-Loo 
Loobos 

52.16648 5.74355 ENF 2018 

SE-Deg 
Degero 

64.182 19.556694 WET 2018, 2020 

SE-Htm 
Hyltemossa 

56.09763 13.41897 ENF 2018, 2019, 2020 

SE-Nor 
Norunda 

60.086441 17.479455 ENF 2018, 2019, 2020 

SE-Svb 
Svartberget 

64.256097 19.77451111 ENF 2018, 2019, 2020 

Tab S3.2. MODIS Terra and Aqua surface spectral reflectance bands. NIR denotes near-

infrared, SWNIR for shortwave near-infrared, SWIR shortwave infrared, and VNIR visible 

near-infrared. 

Acronym Full Name Wavelengths (nm) Band name Spatial 

Resolution 

B1 Surface Reflectance for B1 620-670 Red 500 m 

 

 

 

 

 

 

B2 Surface Reflectance for B2 841-876 NIR 

B3 Surface Reflectance for B3 459-479 Blue 

B4 Surface Reflectance for B4 545-565 Green 

B5 Surface Reflectance for B5 1230-1250 SWNIR 

B6 Surface Reflectance for B6 1628-1652 SWIR 

B7 Surface Reflectance for B7 2105-2155 SWIR 

B8 Surface Reflectance for B8 405-420 Blue 1 km 

 

 

 

 

B9 Surface Reflectance for B9 438-448 Blue 

B10 Surface Reflectance for 

B10 

483-493 Blue 

B11 Surface Reflectance for 

B11 

526-536 Green 
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B12 Surface Reflectance for 

B12 

546-556 Green 

B13 Surface Reflectance for 

B13 

662-672 Red  

 

 

 
B14 Surface Reflectance for 

B14 

673-683 VNIR 

B15 Surface Reflectance for 

B15 

743-753 VNIR 

B16 Surface Reflectance for 

B16 

862-877 NIR 

Tab S3.3. Detailed results and statistics of the site-specific hyperbolic relationships between 

GPP and SIFd. R
2 denotes the coefficient of determination. The unit of RMSE (Root Mean 

Squared Error) is in (gC m-2 d-1). PFT represents the plant functional type of each site: MF 

(mixed forests), CRO (croplands), DBF (deciduous broadleaf forests), EBF (evergreen 

broadleaf forests), ENF (evergreen needleleaf forests), GRA (grasslands), OSH (open 

shrublands), and WET (wetlands). All pairwise hyperbolic relationships between GPP and SIFd 

were statistically significant with p<0.0001, except for IT-Cp2, Guy and FR-Mej sites. a and b 

denote the fitted parameters from the hyperbolic model.  

Site ID R2 a b RMSE N PFT 

BE-Bra 0.64 16.15 0.37 1.92 288 MF 

BE-Lcr 0.24 14.12 0.28 4.03 618 CRO 

BE-Lon 0.37 79.75 4.36 6.16 572 CRO 

BE-Vie 0.28 8.60 0.07 2.42 220 ENF 

CH-Dav 0.21 4.87 0.05 1.76 350 ENF 

CZ-BK1 0.34 12.23 0.04 3.62 160 ENF 

CZ-Lnz 0.46 16.31 0.28 3.28 332 MF 

CZ-Wet 0.28 13.11 0.31 3.66 292 WET 

DE-Geb 0.56 19.49 0.63 3.44 236 CRO 

DE-Gri 0.34 12.66 0.33 3.34 818 GRA 

DE-Hai 0.57 21.80 1.12 2.94 802 DBF 

DE-HoH 0.43 19.63 0.67 4.36 944 DBF 

DE-Hzd 0.50 16.20 0.63 2.87 248 DBF 

DE-Kli 0.35 28.94 1.90 3.88 850 CRO 

DE-RuR 0.22 11.02 0.15 3.88 274 GRA 

DE-RuS 0.28 31.74 0.97 6.30 678 CRO 

DE-RuW 0.10 8.94 0.02 2.62 216 ENF 

DE-Tha 0.74 10.40 0.21 1.79 268 ENF 

DK-Sor 0.87 74.20 3.51 2.71 298 DBF 

FI-Hyy 0.36 9.14 0.13 2.54 498 ENF 

FI-Sii 0.37 4.36 0.23 1.10 766 WET 

FI-Var 0.12 4.83 0.02 2.08 560 ENF 

FR-Aur 0.22 16.48 1.05 3.74 854 CRO 

FR-Bil 0.19 8.02 0.07 3.32 836 ENF 

FR-EM2 0.13 9.22 0.25 4.99 762 CRO 

FR-Fon 0.75 23.71 0.77 2.72 932 DBF 

FR-Hes 0.56 27.10 0.94 3.80 342 DBF 

FR-LGt 0.44 11.10 0.40 2.22 1050 WET 
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FR-Mej 0.07 9.75 0.18 5.17 668 CRO 

GF-Guy 0.012 12.36 0.02 2.65 774 EBF 

IT-BCi 0.19 18.71 0.27 6.18 300 CRO 

IT-Cp2 0.002 9.56 0.00 2.01 182 EBF 

IT-Lsn 0.61 13.44 0.50 2.10 1510 OSH 

IT-SR2 0.30 10.43 0.07 2.99 750 ENF 

IT-Tor 0.50 11.99 0.25 2.91 566 GRA 

NL-Loo 0.40 9.67 0.05 1.98 234 ENF 

SE-Deg 0.42 2.16 0.18 0.55 602 WET 

SE-Htm 0.35 9.91 0.10 2.91 808 ENF 

SE-Nor 0.68 12.16 0.23 2.12 640 ENF 

SE-Svb 0.18 7.00 0.03 2.70 900 ENF 

Tab S3.4. Detailed results and statistics of the site-specific linear relationships between GPP 

and SIFd. The sign ± denotes the 95% confidence interval on the slope and on the intercept for 

each relationship. R2 denotes the coefficient of determination. The units are for the slope in (gC 

m-2 d-1/(mW m-2 sr-1 nm-1)), intercept in (gC m-2 d-1), and RMSE (Root Mean Squared Error) in 

(gC m-2 d-1). PFT represents the plant functional type of each site: MF (mixed forests), CRO 

(croplands), DBF (deciduous broadleaf forests), EBF (evergreen broadleaf forests), ENF 

(evergreen needleleaf forests), GRA (grasslands), OSH (open shrublands), and WET 

(wetlands). All pairwise linear relationships between GPP and SIFd were statistically significant 

with p<0.0001, except the IT-Cp2 site (p<0.604). 

Relatively moderate and strong relationships were found at DK-Sor, FR-Fon, BE-Bra, DE-Hai, 

DE-Tha, and IT-Lsn, which are DBF, MF, ENF and OSH vegetation type sites, with R2 values 

being between 0.54 and 0.81 (p<0.0001). The weakest relationships were recorded at FI-Var, 

FR-EM2 and FR-Mej sites, and no significant relationship was found at GF-Guy and IT-Cp2. 

Site ID R2 Slope Intercept RMSE N PFT 

BE-Bra 0.59 11.27±1.07 3.33±0.45 2.00 300 MF 

BE-Lcr 0.20 9.02±1.39 4.06±0.66 4.06 630 CRO 

BE-Lon 0.27 12.33±1.64 2.1±0.89 6.05 582 CRO 

BE-Vie 0.20 4.75±1.24 4.84±0.60 2.44 228 ENF 

CH-Dav 0.15 4.17±0.96 2.67±0.26 1.74 406 ENF 

CZ-BK1 0.35 18±3.62 5.92±0.79 3.38 178 ENF 

CZ-Lnz 0.42 9.98±1.25 4.76±0.60 3.18 346 MF 

CZ-Wet 0.20 9.46±2.16 3.12±0.71 3.68 306 WET 

DE-Geb 0.53 10.04±1.18 2.12±0.68 3.80 254 CRO 

DE-Gri 0.28 8.58±0.94 2.89±0.38 3.26 842 GRA 

DE-Hai 0.57 9.23±0.54 1.40±0.32 2.91 852 DBF 

DE-HoH 0.35 9.29±0.79 3.04±0.41 4.14 1002 DBF 

DE-Hzd 0.41 8.56±1.25 2.40±0.57 2.73 260 DBF 

DE-Kli 0.31 9.05±0.89 1.18±0.40 3.85 886 CRO 

DE-RuR 0.17 6.87±1.76 4.59±0.87 3.80 280 GRA 

DE-RuS 0.29 17.04±1.97 1.81±0.80 6.22 708 CRO 

DE-RuW 0.16 5.02±1.51 6.42±0.57 2.61 230 ENF 

DE-Tha 0.56 6.43±0.68 3.54±0.31 1.61 280 ENF 
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DK-Sor 0.81 14.06±0.77 2.09±0.56 2.73 310 DBF 

FI-Hyy 0.27 8.05±1.10 3.33±0.34 2.68 554 ENF 

FI-Sii 0.32 4.01±0.40 1.06±0.12 1.10 850 WET 

FI-Var 0.13 4.73±0.92 3.23±0.20 2.00 690 ENF 

FR-Aur 0.23 7.98±0.97 1.08±0.41 3.65 908 CRO 

FR-Bil 0.17 6.47±0.95 3.98±0.32 3.13 884 ENF 

FR-EM2 0.11 5.10±1.02 2.99±0.59 4.85 780 CRO 

FR-Fon 0.66 11.91±0.53 2.48±0.27 2.71 986 DBF 

FR-Hes 0.50 12.12±1.28 2.55±0.66 3.78 352 DBF 

FR-LGt 0.43 8.02±0.55 1.76±0.22 2.29 1114 WET 

FR-Mej 0.04 4.72±1.65 4.40±0.84 5.22 672 CRO 

GF-Guy 0.02 1.86±0.91 10.79±0.57 2.63 774 EBF 

IT-BCi 0.16 13.43±3.5 5.10±1.39 6.11 306 CRO 

IT-Cp2 0.001 0.36±1.37 9.37±0.54 2.01 190 EBF 

IT-Lsn 0.54 8±0.36 2.17±0.17 2.10 1594 OSH 

IT-SR2 0.21 6.78±0.94 5.78±0.36 2.95 774 ENF 

IT-Tor 0.42 11.31±1.02 2.30±0.30 2.83 646 GRA 

NL-Loo 0.24 5.36±1.22 5.96±0.48 2.19 242 ENF 

SE-Deg 0.35 2.04±0.21 0.61±0.06 0.54 680 WET 

SE-Htm 0.29 6.34±0.66 4.70±0.30 2.72 860 ENF 

SE-Nor 0.51 8.35±0.62 3.53±0.25 2.14 684 ENF 

SE-Svb 0.20 7.61±0.93 3.88±0.24 2.75 1056 ENF 

Tab S3.5. Summary statistics of plant functional type-specific linear relationship between GPP 

and SIFd in eight major PFT. All pairwise linear relationships between GPP and SIFd were 

statistically significant with p<0.0001. The units are for the slope in (gC m-2 d-1/ (mW m-2 sr-1 

nm-1)), intercept in (gC m-2 d-1), and RMSE in (gC m-2 d-1). The sign ± denotes the 95% 

confidence interval on the slope and intercept of the relationships between SIFd and GPP. 

Relatively moderate and goodness of fit were found in MF, DBF and OSH biomes, and the 

lowest in EBF and CRO vegetation types. 

PFT Sites R2 Slope Intercept RMSE N 

CRO 9 0.18 8.93±0.49 2.61±0.24 5.24 5726 

DBF 6 0.52 10.75±0.33 2.32±0.18 3.50 3762 

EBF 2 0.07 3.08±0.72 9.76±0.42 2.62 964 

ENF 13 0.26 7.28±0.28 4.07±0.10 2.85 7066 

GRA 3 0.33 9.39±0.62 2.79±0.24 3.24 1768 

MF 2 0.47 10.53±0.87 4.10±0.39 2.74 646 

OSH 1 0.54 8.00±0.36 2.17±0.17 2.10 1594 

WET 4 0.29 7.14±0.40 1.15±0.14 2.44 2950 

ALL 40 0.30 9.12±0.17 2.87±0.08 3.82 24476 

Tab S3.6. The Generalized Linear Model (GLM) results statistics. The following equation was fitted to investigate 

the effects of the site, year, and PFT and their interactions on the seasonal and interannual variations of SIFd and 

its relationship with GPP. SIFd = 1 + Year + Site + PFT + GPP + Year ×GPP + Site×GPP + PFT×GPP. All pairwise 

relationships between GPP and SIFd were statistically significant with p<0.001, except for Site×GPP interaction 

(p<0.896). 

Parameters Estimate Std. Error p-value 
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Intercept -3.01E+01 5.79E+00 2.00E-07 

Year 1.50E-02 2.87E-03 1.66E-07 

Site -1.06E-03 2.49E-04 2.13E-05 

PFT -1.31E-02 1.02E-03 < 2e-16 

GPP 3.09E+00 7.60E-01 4.83E-05 

Year×GPP -1.52E-03 3.76E-04 5.70E-05 

Site×GPP -4.17E-06 3.19E-05 0.896 

PFT×GPP 1.88E-03 1.59E-04 < 2e-16 

Tab S3.7. Detailed results and statistics of the site-specific comparison between tower-based 

observed GPP against the RF predicted GPP. PFT denotes plant functional type of each site, 

including MF (mixed forests), CRO (croplands), DBF (deciduous broadleaf forests), EBF 

(evergreen broadleaf forests), ENF (evergreen needleleaf forests), GRA (grasslands), OSH 

(open shrublands), and WET (wetlands). The adj. R2 denotes the adjusted coefficient of 

determination. The units are for the slope in (gC m-2 d-1/(mW m-2 sr-1 nm-1)), intercept in 

(gC m-2 d-1), and RMSE (Root Mean Squared Error) in (gC m-2 d-1). The sign ± denotes the 

confidence interval at 95% probability level on the slope and on the intercept for each 

relationship. RF-R model includes only surface spectral reflectance as explanatory variables, 

RF-SIF-R uses SIFd and spectral bands inputs to predict GPP, RF-SIF-VI explores SIFd and 

VIs as inputs, and RF-SIF-PFT establishes based on SIFd, spectral bands and vegetation type 

as categorial variable to estimate GPP. 
 

  RF-R RF-SIF-R 

Site ID PFT N adj. 

R2 

Slope Intercept RMSE adj. 

R2 

Slope Intercept RMSE 

BE-Bra MF 55 0.62 
0.84±0.18 1.29±1.43 1.70 

0.71 
0.98±0.17 0.15±1.37 1.49 

BE-Lcr CRO 124 0.92 
1.03±0.05 -0.14±0.47 1.26 

0.9 
1.06±0.06 -0.39±0.54 1.40 

BE-Lon CRO 111 0.91 1.03±0.06 -0.24±0.55 1.93 0.88 1.09±0.07 -0.45±0.65 2.22 

BE-Vie ENF 41 0.81 1.02±0.16 -0.07±1.04 1.08 0.70 1 .00±0.21 -0.20±1.43 1.37 

CH-Dav ENF 95 0.84 
0.95±0.09 -0.01±0.34 0.79 

0.75 
0.87±0.10 0.04±0.43 0.98 

CZ-BK1 ENF 23 0.63 
0.96±0.32 0.86±3.03 2.28 

0.70 
1.31±0.37 -1.22±3.16 2.04 

CZ-Lnz MF 62 0.93 
1.13±0.08 -0.81±0.78 1.12 

0.87 
1.15±0.12 -0.67±1.08 1.53 

CZ-Wet WET 54 0.88 
0.98±0.10 -0.02±0.74 1.48 

0.79 
1.09±0.16 -0.52±1.09 1.97 

DE-Geb CRO 48 0.83 1.06±0.14 -0.14±1.11 2.23 0.87 1.05±0.12 0.11±0.93 1.95 

DE-Gri GRA 169 0.81 1.09±0.08 -0.49±0.52 1.58 0.77 1.12±0.09 -0.61±0.60 1.74 

DE-Hai DBF 161 0.90 
1.01±0.05 -0.26±0.38 1.46 

0.87 
1.01±0.06 -0.57±0.46 1.66 

DE-HoH DBF 183 0.94 
1.00±0.04 -0.06±0.33 1.28 

0.90 
1.04±0.05 -0.29±0.43 1.61 

DE-Hzd DBF 61 0.84 
1.03±0.12 0.02±0.74 1.43 

0.84 
1.14±0.13 -0.83±0.83 1.44 

DE-Kli CRO 177 0.88 
1.02±0.06 -0.58±0.35 1.59 

0.83 
1.08±0.07 -1.12±0.47 1.93 

DE-RuR GRA 61 0.75 
0.95±0.14 0.66±1.14 1.82 

0.59 
1.05±0.23 0.19±1.71 2.33 

DE-RuS CRO 148 0.79 0.98±0.08 0.68±0.77 3.13 0.74 0.98±0.09 0.82±0.87 3.50 

DE-RuW ENF 46 0.81 
0.96±0.14 0.38±1.13 1.14 

0.54 
0.94±0.26 0.78±2.03 1.78 

DE-Tha ENF 52 0.77 
0.93±0.14 0.61±0.90 1.14 

0.67 
0.85±0.17 0.85±1.10 1.38 

DK-Sor DBF 59 0.94 
1.05±0.07 0.15±0.88 1.56 

0.93 
1.04±0.08 0.39±0.96 1.73 

FI-Hyy ENF 104 0.92 
1.02±0.06 -0.15±0.37 0.91 

0.81 
1.05±0.10 -0.23±0.61 1.41 

FI-Sii WET 163 0.86 0.91±0.06 0.01±0.15 0.49 0.69 0.68±0.08 0.30±0.21 0.72 

FI-Var ENF 139 0.79 0.97±0.08 0.13±0.38 1.05 0.74 0.96±0.10 0.12±0.43 1.16 

FR-Aur CRO 205 0.86 
1.00±0.06 -0.14±0.28 1.45 

0.83 
1 .00±0.06 -0.10±0.32 1.61 

FR-Bil ENF 168 0.89 
1.05±0.06 -0.13±0.35 1.15 

0.82 
1.09±0.08 -0.35±0.48 1.48 
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FR-EM2 CRO 169 0.62 
0.94±0.11 0.62±0.75 2.97 

0.59 
0.86±0.11 1.03±0.74 3.08 

FR-Fon DBF 210 0.95 
1.01±0.03 -0.20±0.25 0.97 

0.95 
1.02±0.03 -0.34±0.28 1.06 

FR-Hes DBF 74 0.83 
1.00±0.10 -0.70±0.98 2.07 

0.80 
1.08±0.12 -1.43±1.14 2.24 

FR-LGt WET 239 0.93 
1.03±0.04 -0.34±0.19 0.82 

0.85 
1.01±0.05 -0.45±0.28 1.15 

FR-Mej CRO 120 0.81 
0.98±0.09 0.21±0.74 2.44 

0.74 
1.09±0.12 -0.34±0.95 2.89 

GF-Guy EBF 146 0.80 0.99±0.53 0.21±0.96 1.18 0.71 1.00±0.10 0.35±1.20 1.42 

IT-BCi CRO 69 0.21 1.16±0.53 0.94±5.08 5.98 0.21 0.61±0.28 5.31±3.23 5.98 

IT-Cp2 EBF 42 0.36 
0.65±0.27 3.89±2.51 1.25 

0.25 
0.58±0.31 4.85±2.73 1.36 

IT-Lsn OSH 317 0.91 
1.02±0.04 -0.09±0.22 0.99 

0.88 
1.01±0.04 0.01±0.24 1.10 

IT-SR2 ENF 160 
0.60 0.96±0.12 0.55±1.02 2.04 

0.56 
1.08±0.15 -0.08±1.18 2.12 

IT-Tor GRA 134 
0.79 0.97±0.09 0.19±0.43 1.60 

0.75 
1.00±0.10 0.13±0.49 1.74 

NL-Loo ENF 47 0.77 1.11±0.18 -0.46±1.32 1.30 0.66 1.19±0.25 -0.55±1.73 1.58 

SE-Deg WET 143 0.38 0.37±0.08 0.56±0.13 0.53 0.41 0.34±0.07 0.49±0.14 0.52 

SE-Htm ENF 167 
0.78 1.02±0.08 -0.03±0.63 1.52 

0.70 
1.04±0.10 -0.17±0.78 1.77 

SE-Nor ENF 144 
0.87 0.97±0.06 0.15±0.41 1.05 

0.79 
0.99±0.09 0.16±0.55 1.33 

SE-Svb ENF 199 
0.92 1.01±0.04 0.00±0.02 0.91 

0.86 
1.05±0.06 -0.21±0.34 1.15  

  RF-SIF-VI RF-SIF-R-PFT 

Site ID PFT N adj. 

R2 

Slope Intercept RMSE adj. 

R2 

Slope Intercept RMSE 

BE-Bra MF 55 0.59 0.85±0.19 1.18±1.53 1.76 0.72 0.97±0.16 0.14±1.34 1.47 

BE-Lcr CRO 124 0.85 
1.08±0.08 -0.13±0.68 1.77 

0.91 
1.05±0.06 -0.33±0.53 1.39 

BE-Lon CRO 111 0.83 
1.12±0.10 -0.54±0.82 2.72 

0.88 
1.08±0.07 -0.36±0.65 2.22 

BE-Vie ENF 41 0.67 
0.95±0.21 0.13±1.45 1.42 

0.75 
1.05±0.19 -0.61±1.32 1.23 

CH-Dav ENF 95 0.71 0.85±0.11 0.16±0.46 1.05 0.76 0.88±0.10 0.02±0.42 0.96 

CZ-BK1 ENF 23 0.40 1.04±0.55 1.68±4.24 2.90 0.67 1.30±0.40 -1.21±3.40 2.15 

CZ-Lnz MF 62 0.75 1.11±0.16 -0.34±1.54 2.11 0.86 1.16±0.12 -0.90±1.12 1.55 

CZ-Wet WET 54 0.68 
1.13±0.21 -0.59±1.42 2.42 

0.82 
1.11±0.14 -0.34±0.96 1.81 

DE-Geb CRO 48 0.8 
0.99±0.14 0.31±1.15 2.40 

0.87 
1.05±0.12 0.15±0.92 1.92 

DE-Gri GRA 169 0.65 
1.03±0.12 -0.37±0.77 2.16 

0.78 
1.13±0.09 -0.84±0.59 1.69 

DE-Hai DBF 161 0.82 0.99±0.07 -0.72±0.54 1.91 0.88 1.02±0.06 -0.48±0.43 1.58 

DE-HoH DBF 183 0.87 1.09±0.06 -0.52±0.52 1.88 0.90 1.03±0.05 -0.17±0.43 1.61 

DE-Hzd DBF 61 0.74 1.07±0.16 -0.67±1.06 1.81 0.86 1.09±0.11 -0.34±0.71 1.34 

DE-Kli CRO 177 0.71 
1.03±0.10 -1.15±0.63 2.49 

0.84 
1.07±0.07 -1.07±0.44 1.84 

DE-RuR GRA 61 0.57 
0.97±0.22 -0.01±1.81 2.37 

0.60 
1.07±0.22 0.02±1.69 2.28 

DE-RuS CRO 148 0.72 
1.05±0.11 0.77±0.91 3.62 

0.75 
0.98±0.09 0.84±0.85 3.45 

DE-RuW ENF 46 0.35 0.74±0.30 2.53±2.24 2.12 0.56 0.97±0.26 0.54±2.00 1.74 

DE-Tha ENF 52 0.54 0.74±0.19 1.32±1.31 1.63 0.69 0.93±0.18 0.34±1.16 1.35 

DK-Sor DBF 59 0.90 1.06±0.09 0.58±1.10 1.98 0.93 1.04±0.08 0.34±0.95 1.71 

FI-Hyy ENF 104 0.74 
1.06±0.12 -0.17±0.73 1.65 

0.81 
1.06±0.10 -0.35±0.62 1.41 

FI-Sii WET 163 0.68 
0.64±0.07 0.27±0.21 0.73 

0.78 
0.89±0.07 0.10±0.18 0.60 

FI-Var ENF 139 0.66 
0.90±0.11 0.28±0.50 1.32 

0.73 
0.94±0.10 0.14±0.44 1.18 

FR-Aur CRO 205 0.79 0.99±0.07 -0.18±0.36 1.80 0.83 0.99±0.06 -0.06±0.32 1.62 

FR-Bil ENF 168 0.71 1.05±0.10 -0.05±0.62 1.87 0.82 1.10±0.08 -0.57±0.49 1.47 

FR-EM2 CRO 169 0.55 0.85±0.12 1.09±0.80 3.25 0.60 0.86±0.11 1.05±0.74 3.07 

FR-Fon DBF 210 0.87 
1.00±0.05 -0.22±0.44 1.63 

0.95 
1.02±0.03 -0.29±0.27 1.03 

FR-Hes DBF 74 0.60 
1.01±0.19 -0.87±1.72 3.18 

0.81 
1.07±0.12 -1.24±1.12 2.22 

FR-LGt WET 239 0.74 
0.90±0.07 -0.38±0.40 1.53 

0.88 
1.06±0.05 -0.39±0.25 1.05 
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FR-Mej CRO 120 0.68 
1.07±0.13 -0.37±1.09 3.20 

0.75 
1.08±0.11 -0.28±0.92 2.81 

GF-Guy EBF 146 0.53 
0.89±0.14 2.07±1.51 1.81 

0.75 
1.05±0.10 -0.36±1.17 1.33 

IT-BCi CRO 69 0.21 
0.63±0.29 5.16±3.33 6.00 

0.20 
0.60±0.28 5.46±3.24 6.02 

IT-Cp2 EBF 42 0.10 
0.35±0.29 7.13±2.42 1.49 

0.3 
0.65±0.31 3.95±2.84 1.31 

IT-Lsn OSH 317 0.83 
0.98±0.05 0.21±0.29 1.33 

0.89 
1.02±0.04 -0.06±0.24 1.08 

IT-SR2 ENF 160 0.38 1.02±0.20 0.80±1.51 2.52 0.58 1.11±0.15 -0.34±1.16 2.07 

IT-Tor GRA 134 0.71 0.98±0.11 0.19±0.53 1.88 0.75 0.99±0.10 0.08±0.49 1.74 

NL-Loo ENF 47 0.47 
1.05±0.33 0.61±2.14 1.96 

0.69 
1.22±0.24 -0.98±1.70 1.51 

SE-Deg WET 143 0.38 
0.22±0.05 0.54±0.14 0.53 

0.55 
0.50±0.07 0.34±0.13 0.45 

SE-Htm ENF 167 0.56 
0.98±0.13 0.27±0.99 2.15 

0.72 
1.08±0.10 -0.44±0.77 1.71 

SE-Nor ENF 144 0.70 
0.94±0.10 0.61±0.63 1.57 

0.81 
1.02±0.08 -0.14±0.52 1.24 

SE-Svb ENF 199 0.68 0.99±0.09 0.16±0.55 1.76 0.87 1.04±0.06 -0.26±0.35 1.15 

Figure S3.1. Site-specific linear relationships tower-based GPP and SIFd at daily timescale. The 

R2 represents the coefficient of determination of the relationship between GPP and SIFd for 

each site. The color code represents the eight different plant functional types encountered in the 

study sites: Red color stands for CRO (croplands), green for DBF (deciduous broadleaf forests), 

yellow for EBF (evergreen broadleaf forests), magenta for ENF (evergreen needleleaf forests), 

blue for GRA (grasslands), Cyan for MF (mixed forests), lime for OSH (open shrubland), and 

dimgrey for WET (wetland). The shaded area depicted in each line is the 95% confidence 

interval of the linear relationship between GPP and SIFd. 

 

Figure S3.2. Linear relationships between tower-based GPP and SIFd in eight plant functional 

types: MF, CRO, ENF, DBF, EBF, GRA, OSH, and WET at daily timescale. The R2 represents 

the coefficient of determination of the relationship between GPP and SIFd. p is the probability 

value of the linear model. The shaded area depicted in each line is the 95% confidence interval 

of the linear relationships between GPP and SIFd. 
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Figure S3.3. Scatterplots of the linear relationships between tower-based GPP and SIFd in eight 

PFT pooled together across all sites. The shaded area depicted in each line is the 95% 

confidence interval of the linear relationships between GPP and SIFd. 

 

Figure S3.4. Correlation matrix between variables. B1 to B16 denote the spectral reflectance of 

MODIS bands, SIFd is the daily TROPOMI sun-induced chlorophyll fluorescence, GPP is the 

tower-based daily gross primary production, NDVI (normalized difference vegetation index), 

NIRv (near infrared reflectance of vegetation index), and PRI (photochemical reflectance 

index). The correlation matrix shows strong relations between variables. Based on these 

observations B10, B12 and B14 were excluded from the explanatory variables for establishing the 

RF regression models. Furthermore, B15 and B16 were excluded from the analyses due to many 

missing values that they contained. 
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Figure S3.5. Comparison between RF models estimated GPP and observed tower-based GPP across all ICOS flux tower sites. Overall, our RF models show a high   explanation 

of GPP variability across different vegetation types. However, the RF-SIF-VI shows some limits in some sites in predicting tower-based GPP as it overestimates (for instance 

at SE-Deg) and underestimates (for instance at IT-Cp2) tower-based GPP. The color code represents the different RF GPP predictions and the observed GPP: Red color stands 

for RF-SIF-R, green for RF-SIF-R-PFT, blue for RF-R, Cyan for RF-SIF-VI, and black for the observed tower-based GPP. 
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Figure S3.6a RF-R. Scatterplots between tower-based GPP and RF-R predicted GPP of each 

site. The adj. R2 represents the adjusted coefficient of determination of the relationships 

between observed GPP and predicted GPP. The color code represents the eight different plant 

functional types encountered in the study sites: Red color stands for CRO (croplands), green 

for DBF (deciduous broadleaf forests), yellow for EBF (evergreen broadleaf forests), magenta 

for ENF (evergreen needleleaf forests), blue for GRA (grasslands), Cyan for MF (mixed 

forests), lime for OSH (open shrubland), and dimgrey for WET (wetland). The shaded area 

depicted in each line is the 95% confidence interval of the relationships between predicted GPP 

and observed GPP. 

 

Figure S3.6b RF-R. Scatterplots of the tower-based GPP against RF-R predicted GPP based 

on each PFT: mixed forests (MF), croplands (CRO), evergreen needleleaf forests (ENF), 

deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), grasslands (GRA), open 

shrublands (OSH), and wetlands (WET) at daily timescale. The adj. R2 represents the adjusted 

coefficient of determination of the relationship between observed GPP and predicted GPP. p 

denotes the statistically significant level of the relationships. The shaded area depicted in each 

line is the 95% confidence interval of the relationships between predicted GPP and observed 

GPP. 
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Figure S3.7a RF-SIF-VI. Scatterplots between tower-based GPP and RF-SIF-VI predicted 

GPP for each site. The adj. R2 represents the adjusted coefficient of determination of the 

relationships between observed GPP and predicted GPP. The color code represents the eight 

different vegetation types encountered in the study sites: Red color stands for CRO (croplands), 

green for DBF (deciduous broadleaf forests), yellow for EBF (evergreen broadleaf forests), 

magenta for ENF (evergreen needleleaf forests), blue for GRA (grasslands), Cyan for MF 

(mixed forests), lime for OSH (open shrubland), and dimgrey for WET (wetland). The shaded 

area depicted in each line is the 95% confidence interval of the relationships between predicted 

GPP and observed GPP. 

 

Figure S3.7b RF-SIF-VI. Scatterplots of the tower-based GPP against RF-SIF-VI predicted 

GPP for each plant functional types: mixed forests (MF), croplands (CRO), evergreen 

needleleaf forests (ENF), deciduous broadleaf forests (DBF), evergreen broadleaf forests 

(EBF), grasslands (GRA), open shrublands (OSH), and wetlands (WET) at daily timescale. The 

adj. R2 represents the adjusted coefficient of determination of the relationship between observed 

GPP and predicted GPP. p denotes the statistically significant level of the relationships. The 

shaded area depicted in each line is the 95% confidence interval of the relationships between 

predicted GPP and observed GPP. The strongest correlations between observed and predicted 

GPP are observed in DBF and OSH vegetation types, while the lowest are recorded in EBF and 

ENF. 
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Figure S3.8a RF-SIF-R-PFT. Scatterplots between tower-based GPP and RF-SIF-R-PFT 

predicted GPP for each site. The adj. R2 represents the adjusted coefficient of determination of 

the agreement between predicted GPP and observed GPP. The color code represents the eight 

different vegetation types encountered in the study sites: Red color stands for CRO (croplands), 

green for DBF (deciduous broadleaf forests), yellow for EBF (evergreen broadleaf forests), 

magenta for ENF (evergreen needleleaf forests), blue for GRA (grasslands), Cyan for MF 

(mixed forests), lime for OSH (open shrubland), and dimgrey for WET (wetland). The shaded 

area depicted in each line is the 95% confidence interval of relationships between predicted 

GPP and observed GPP. 

 

Figure S3.8b RF-SIF-R-PFT: Scatterplots of the ICOS tower-based GPP against RF-SIF-R-

PFT predicted GPP for each plant functional type: mixed forests (MF), croplands (CRO), 

evergreen needleleaf forests (ENF), deciduous broadleaf forests (DBF), evergreen broadleaf 

forests (EBF), grasslands (GRA), open shrublands (OSH), and wetlands (WET) at daily 

timescale. The adj. R2 represents the adjusted coefficient of determination of the relationship 

between observed GPP and predicted GPP. p denotes the statistically significant level of the 

relationships. The shaded area depicted in each line is the 95% confidence interval of the 

relationships between GPP predicted and GPP observed. 
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Annexe Chapter 4. Data-based investigation of the effects of 

canopy structure and shadows on sun-induced chlorophyll 

fluorescence in a deciduous oak forest 

 

 

Figure S4.1. The SIF3 and the active fluorometer instrument (LIF) setups at the top of the tower 

of the Fontainebleau-Barbeau forest ICOS site with a dominant stand of sessile oak (height of 

about 25 m) and a hornbeam understory. SIF3 and LIF instruments were set above the canopy. 
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Figure S4.2. Correlation matrix between spectral reflectance bands of the canopy measured by 

SIF3. The data show strong relations between variables reflectance in the blue and the 

reflectance in the red, perhaps due to their strong light absorption, and between reflectance in 

the red-edge and reflectance in the near-infrared. Based on these observations all reflectance 

bands were not used for establishing the random forest models, but specific and low correlated 

bands were chosen in the blue, red, red-edge, and near-infrared regions as mentioned in Table 

1. 
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Figure S4.3. Correlation matrix between variables used for establishing the random forest 

models to predict FyieldLIF and Φk. The data show low correlations between variables than 

previously in Figure S4.2. 
 

 

Figure S4.4. shows the coefficient of determination (R2) of the relationship between SIFy and 

FyieldLIF at hourly timescale. The results show improved correlations between SIFy and FyieldLIF 

compared to the same analysis at the daily timescale (Figure 4.1).  
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Figure S4.5. depicts, during the clear sky day, the sun fraction of the field of view (FOV) of 

SIF3 and the sun elevation angle as observed in the temperate deciduous forest of Barbeau. The 

sun fraction was estimated from randomly taken RGB images of the FOV of SIF3 from July to 

September 2022. The sun elevation angle showed a well-known trend, with its peaks at noon 

and low values recorded in the morning and late afternoon hours. As expected, the sun fraction 

revealed its lowest values in the morning and late afternoon and peak values at noon. However, 

the decline observed in the sun fraction between 9 and around 12 am shows the impact of the 

vegetation structure and sun-canopy geometry. 

 

 

Figure S4.6. depicts the shadows on the FOV of SIF3 observed on an RGB image captured on 

August, 6th, 2022, at 10:15 am (UTC). The cycle inside the left pink image showed the FOV of 

SIF3, which showed a shadowed canopy with only a small portion in the sun. The black and 

white image on the right showed the sun fraction (white), and the value of the sun fraction in 

the FOV of SIF3: 22.91%. This result indicates that more than 75% of the FOV of SIF3 was in 

the shade at this time of the day. 
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Figure S4.7. show the full diurnal cycles of FyieldLIF and photosynthetically active radiation 

(PAR) measured in June 17th, and 18th, 2022 in the deciduous oak temperate forest of Barbeau. 

The diurnal cycles of PAR showed that the two days were totally clear and sunny. It can be 

seen that when the first light beams hit the canopy a peak of FyieldLIF appeared, followed by a 

rapid decrease. It was the case for all recorded diurnal cycles. Further, FyieldLIF showed different 

diurnal patterns and responded to the incident PAR.  For clear sunny days, like here, FyieldLIF 

significantly increased after sunrise and reached a maximum value when the PAR reached 

around 600 μmol photons m−2 s−1. Afterwards, FyieldLIF drastically declined while PAR 

continued to increase until FyieldLIF reached a minimum value in the afternoon, from where 

FyieldLIF slightly increased during the night. This suggests that the decrease of FyieldLIF can be 

attributed to the activation of the non-photochemical quenching for the dissipation of the excess 

light energy induced by the high level of incoming radiation and hence avoiding the 

photodamage of the plant. 
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Figure S4.8. Figure S4.8a exhibits the inter-daily variations of the coefficient of determination 

(R2) of the relationships between the reflectance at near-infrared band (R-NIR) and the Φk at 

instantaneous scale, as a function of the ratio between diffuse and total PAR. Figure S4.8b 

presents the seasonal relationships between daily means   𝑅 − 𝑁𝐼𝑅 and 𝛷𝑘  as a function of the 

ratio between diffuse and total PAR. And Figure S4.8c shows the seasonal dynamics in  

𝑅 − 𝑁𝐼𝑅 and 𝛷𝑘 . The shaded area indicates the 95% confidence interval. The asterisks stand 

for the statistical significance level (** = P≤0.01). The data show some strong correlations 

between R-NIR and Φk-760 at the daily timescale, while this relation was weak at the seasonal 

scale. These results are similar to the ones we obtained by studying the relationship between 

NIRv and Φk, suggesting that spectral reflectance at the near-infrared had the same relation with 

Φk, and hence may be also relevant in capturing changes in fAPAR and fesc at canopy scale. 

 

 

Figure S4.9. Random forest (RF) model outputs: Figure S4.9a presents FY-R model 

performance between observed and predicted FyieldLIF, Figure S4.9b shows predictor importance 

estimates for FY-R model, Figure S4.9c represents FY-R-SIF model performance between 

observed and predicted FyieldLIF, Figure S4.9d shows predictor importance estimates for FY-R-

SIF model, and Figure S9e depicts FY-R-SIFy model performance between observed and 

predicted FyieldLIF, Figure S9f shows predictor importance estimates for FY-R-SIFy model. N 

denotes the number of data points used for the RF model’s testing, adj. R2 represents the 

adjusted coefficient of determination of the relationship between the test dataset FyieldLIF and 

predicted FyieldLIF, OOB R2 is the model accuracy on the validation dataset (1/3 of the training 

set), and the RMSE is the root mean square error between observed FyieldLIF and RF model 

predicted FyieldLIF. The dashed diagonal line depicts the 1:1 line. FY-R denotes FyieldLIF 
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prediction using R, as inputs to predict FyieldLIF; and FY-R-SIF includes R and SIF to predict 

FyieldLIF, and FY-R-SIFy uses R and SIFy to estimate FyieldLIF. The data revealed that adding SIF 

or SIFy as predictors did not improve the model performance compared to FY-R model. But the 

predictor importance estimates showed that SIF and SIFy provide useful and impactful 

information in determining FyieldLIF. This result indicates that even at high temporal resolution 

the contribution of SIF or SIFy is important compared to each R band individually, but the 

combined effect of R bands could mitigate or hide the use of SIF as a vegetation physiological 

trait. 
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Annexe Chapter 5. Investigating the responses of sun-

induced chlorophyll fluorescence, gross primary 

production and of the relation between the two to abiotic 

factors in a temperate deciduous forest 

Figure S5.1. Figure S5.1a depicts SIF-ENV-SA model performance between observed and 

predicted SIF-760, Figure S5.1b represents predictor importance estimates for SIF-ENV-SA 

model, Figure S5.1c depicts GPP-ENV-SA model performance between observed and 

predicted GPP, Figure S5.1d represents predictor importance estimates for GPP-ENV-SA 

model. N denotes the number of data points used for the RF model evaluation, adj. R2 represents 

the adjusted coefficient of determination of the relationship between data test and predicted SIF 

or GPP, OOB R2 is the model accuracy on the validation data, and the RMSE is the root mean 

square error between observed SIF or GPP and RF model predicted SIF or GPP. The dashed 

diagonal line depicts the 1:1 line. Data under only sunny days at half-hourly timescale were 

used. 

The RF regression of SIF on variables exhibited in Figure S5.1b explains approximately 94% 

of the total variance of far-red SIF (Figure S5.1a). SWC appears to be the most important 

variable, followed by SZA and SAA, and the contribution of VPD plays an insignificant role 

for SIF prediction (Figure S5.1b). For GPP, the RF model on variables represented in Figure 

S5.1d captures 70% of the variability in GPP (Figure S5.1c). VPD and SZA appear to be the 

most determinant variables, followed by SWC and the contribution of SAA was insignificant 

for GPP prediction. 
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Figure S5.2. Partial dependence describing the marginal effect of each variable on far-red SIF 

variations under clear sky days at half-hourly timescale for the SIF-ENV-SA model. 

The results in Figure S5.2 reveal a monotonic positive relationship between SIF and lower 

values of SWC (SWC < 3 cm3 cm-3) and a saturation pattern is observed at high SWC values 

(SWC > 3 cm3 cm-3). The relationship between SIF and SAA is also positive for values of SAA 

< 200 degrees, however, for values of SAA between 200 and 250 degrees, their relations 

become negative. SZA and VPD are negatively related to SIF.  
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Figure S5.3. Partial dependence describing the marginal effect of each variable on GPP 

variations under clear sky days at half-hourly timescale for the GPP-ENV-SA model. 

The results in Figure S5.3 show that SWC has a positive relationship with GPP, but their 

correlations stayed almost constant before becoming positive again. The relationship between 

GPP and VPD, between GPP and SZA, and between GPP and SAA are strongly negative.  
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Télédétection de la fluorescence induite par laser et 

par le soleil pour l’étude du fonctionnement 

hydrique et carboné des écosystèmes terrestres 

Résumé. 

La fluorescence chlorophyllienne induite par le soleil (SIF) est désormais utilisée comme outil 

pour suivre la production primaire brute (GPP) du couvert végétal de différents écosystèmes. 

La SIF est importante pour comprendre le cycle global du carbone dans un contexte de 

changements climatiques. Cependant, l’usage de la SIF pour suivre les variations de la GPP est 

entravée par des facteurs confondants (propriétés biochimiques des feuilles, facteurs abiotiques, 

etc.). Dans cette thèse, on propose d’utiliser des observations à plusieurs échelles 

[satellitaires (TROPOMI et MODIS) et au sol] de la SIF, de réflectance, de la GPP et du 

rendement de la fluorescence chlorophyllienne par mesure active (FyieldLIF), utile pour observer 

les variations physiologiques de la végétation, afin d’abord 1) d’évaluer la force des liens GPP-

SIF et de prédire la GPP à l’aide de mesures spatiales ; ensuite, 2) d’examiner les liens FyieldLIF-

SIFy (SIF normalisé par le rayonnement photosynthétiquement actif, PAR) et les effets de 

structure du couvert végétal  sur la SIF; et enfin 3) d’explorer l’influence de la structure de la 

canopée et des facteurs abiotiques sur les variations de la SIF et de la GPP et sur leurs liens. On 

constate que la force et la nature des liens GPP-TROPOMI SIF sur 40 sites de tours à flux 

dépendent du site et du type de végétation, reflétant l’hétérogénéité spatiale et temporelle de la 

couverture végétale du pixel TROPOMI. En outre, les mesures satellitaires de la SIF et de la 

réflectance prédisent plus de 80 % des variations de la GPP. Toutefois, on remarque que les 

réflectances à différentes bandes prises ensemble prédisent mieux la GPP que TROPOMI SIF, 

mais l’importance relative montre que la SIF est la variable la plus importante pour prédire la 

GPP (SIF plus les indices de végétation (VIs) comme variables explicatives). Ce résultat 

soutient qu’à des échelles spatiales larges la réflectance pourrait être utilisée pour estimer la 

GPP et que l’usage de la SIF comme proxy de la GPP soulève la question de savoir si 

l’information physiologique liée à la photosynthèse issue de la SIF pourrait être détectée à cette 

échelle. Par ailleurs, à partir de mesures au sol effectuées à Fontainebleau-Barbeau, on montre 

que FyieldLIF n’est pas corrélé avec SIFy à l’échelle diurne à cause des effets de géométrie 

d’éclairement. On constate aussi que les dynamiques diurnes de la SIF et du PAR décorrèlent 

lors des jours de ciel clair, montrant les effets de l’ombre sur la SIF. On montre aussi que la SIF 

et la réflectance peuvent être utilisées pour prédire FyieldLIF, tandis Φk (SIFy/FyieldLIF) (indicateur 

de l’interaction structure-éclairement) est corrélé à la réflectance et à la géométrie de la 

canopée. On souligne que les liens GPP-SIF et leurs variations dépendent de l’échelle 

temporelle considérée. Particulièrement, à l’échelle saisonnière, on observe que les variations 

de GPP, SIF, SIFy et FyieldLIF répondent au développement structurel et biochimique des 

canopées, ainsi qu’aux facteurs abiotiques. Lors des vaques de chaleurs, on constate que la SIF 

et les VIs (NDVI, NIRv et mNDI) d’une part et la SIF et le PAR d’autre part ne sont pas 

corrélés, tandis que GPP, SIF et FyieldLIF diminuent fortement. Ceci indique que SIF et FyieldLIF 

peuvent être utilisés pour suivre la photosynthèse du couvert en conditions de stress alors que 

les VIs ne peuvent pas. Cette réponse spécifique de la SIF et FyieldLIF comparée aux VIs souligne 

l’intérêt croissant de l’usage de la SIF comme proxy de la GPP dans des conditions climatiques 
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changeantes. Toutefois, à l’échelle diurne, les interactions entre structure de la canopée et 

géometrie d’éclairement contrôlent les variations de la SIF, de la GPP et de la relation GPP-

SIF. On recommande l’usage de la synergie réflectance-SIF et des mesures actives pour mieux 

comprendre les variations de la SIF et son lien avec la GPP sur d’autres types de couverts 

végétaux. 

Mots clés: fluorescence chlorophyllienne induite par le soleil, mesure active de la fluorescence 

chlorophyllienne, productivité primaire brute, structure de la canopée, et facteurs abiotiques. 

Remote sensing of laser- and sun-induced 

chlorophyll fluorescence for studying water and 

carbon functioning in terrestrial ecosystems 

Abstract. 

Sun-Induced chlorophyll Fluorescence (SIF) is used as a tool to monitor Gross Primary 

Production (GPP) across different ecosystems. SIF is important to understand the global carbon 

cycle under changing climate conditions. However, the use of SIF to probe variations in GPP 

is challenged by confounding factors (canopy biochemical properties, abiotic factors, etc.). In 

this thesis, we proposed to use multiple scale measurements (spaceborne with the TROPOMI 

and MODIS sensors, and ground-based) of SIF, reflectance, GPP, and active chlorophyll 

fluorescence yield (FyieldLIF), useful to observe the physiological variations of the vegetation. In 

order, first, to evaluate the strength and the nature of the relationship between GP-SIF and to 

predict GPP using remote sensing metrics; second, to examine the relationship between FyieldLIF 

and SIFy (SIF normalized by the photosynthetically active radiation, PAR) and the effects of 

canopy structure and sun-canopy geometry on SIF signal, and third, to explore the influence of 

canopy structure, light intensity and abiotic factors on SIF and GPP variations and on their 

links. We found that the strength and the nature of the links between GPP and TROPOMI SIF, 

across forty flux sites, depend on sites and vegetation types. Further, combined use of SIF and 

reflectance from satellite observations predicted over 80% of GPP variations. However, we 

observed that daily surface reflectance at different bands when taken as a whole outperformed 

daily TROPOMI SIF in predicting GPP, but the relative importance of variables in the random 

forest model using SIF and VIs (NDVI, PRI and NIRv) as inputs to predict GPP shows that SIF 

is the most important variable for predicting GPP. This result indicates that at a broad spatial 

scale, reflectances could be used to predict GPP and the use of SIF as a proxy of GPP raises the 

question of whether the physiological information related to photosynthesis contained in SIF 

could be detected at this scale. Based on top-of-canopy measurements in Fontainebleau-

Barbeau, we show that active FyieldLIF was not correlated with passive SIFy at the diurnal 

timescale due to sun-canopy geometry effects. We also observed that the diurnal patterns in SIF 

and PAR did not match under clear sky conditions, underlining the effects of shadows on the 

measured canopy SIF. We also showed that the SIF and the reflectance can be used to predict 

FyieldLIF, while Φk =SIFy/FyieldLIF (an indicator of the interaction between canopy structure and 

irradiance geometry) is strongly correlated with reflectance and sun-canopy geometry. The 

analyses show that the links between GPP and SIF and their variations, resulting from ground-

based measurements, depend on the temporal scale considered. More specifically, at the 
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seasonal scale, we observed that variations in GPP, SIF, SIFy and FyieldLIF respond to the 

structural and biochemical development of canopies and to variations in abiotic factors, 

especially during the heatwaves in 2022. During these extreme weather conditions, we observed 

that, on one hand, SIF and VIs (NDVI, NIRv and mNDI), and on the other hand, SIF and PAR 

are not correlated, while GPP, SIF and FyieldLIF strongly decreased. This indicates that SIF and 

FyieldLIF can be used to monitor impact on photosynthetic activity under stress conditions, while 

VIs cannot. This specific response of SIF and FyieldLIF compared to VIs highlights the growing 

interest in the use of SIF as a proxy of GPP under changing climate conditions. However, at the 

diurnal scale, the interactions between canopy structure and sun geometry, as well as the light 

intensity control the variations in SIF and GPP and their links. We strongly recommend the use 

of the synergy between reflectance, SIF and active fluorescence measurements to better 

understand the dynamics of SIF and its link to GPP in other vegetation types at the canopy 

scale. 

Keywords: sun-induced chlorophyll fluorescence, active chlorophyll fluorescence, gross 

primary production, canopy structure, and abiotic factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BALDE Hamadou – Thèse de doctorat – 2023 

191 

 

Conferences and Workshops 

Poster Presentations 

 
✓ Journées des jeunes chercheur(es) de CNES; Oct. 2022, Toulouse, France; Synergy 

between sun-induced chlorophyll fluorescence (SIF), surface spectral reflectance 

and reflectance-based indices on quantifying gross primary productivity (GPP). 

Oral Presentations 

 
✓ IWGGMS-19: International Workshop on Greenhouse Gas Measurement from Space; 

Jul. 2023; Paris, France; Synergy between sun-induced chlorophyll fluorescence 

(SIF), surface spectral reflectance and reflectance-based indices on quantifying 

gross primary productivity (GPP). 

✓ Jounée Scientifique et Technique de Barbeau ; March 2023 ; IDEEV, Gif-sur-Yvette, 

France ; Les déterminants de la fluorescence de la chlorophylle à l’échelle du 

couvert végétal. 

✓ Workshop on SIF/Hyperspectral measurements; Sept. 2022; CESBIO/Toulouse, 

France; Synergy between Sun-Induced chlorophyll Fluorescence (SIF), surface 

spectral reflectance and reflectance-based indices on quantifying Gross Primary 

Productivity (GPP); Tower-based laser- and sun-induced chlorophyll fluorescence 

in oak deciduous forest stands: shadow, reabsorption and scattering effects 

corrections at diurnal timescale. 

✓ SENSECO Final conference and MC5 meeting; Sept. 2022; Izmir, Turkiye; Synergy 

between sun-induced chlorophyll fluorescence (SIF), surface spectral reflectance 

and reflectance-based indices on quantifying gross primary productivity (GPP) 

✓ SENSECO MC5 meeting; Feb. 2023; Barcelona, Spain; Writing Guideline on “crop 

stress detection from UAVs: best practices and lessons learned for exploiting 

sensor synergies” paper submitted on: Precision Agriculture (PRAG) journal; 

Sept. 2023; Participated to the SENSECO spatial scaling challenge (paper writing 

in progress). 

✓ Journée thématique du PNTS May 2023 ; Réalisation d’une vidéo pour Ma thèse 

depuis l’Espace en 180 seconds. 

 

 


