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Abstract

The first part of this thesis is on the subject of coloring tournaments, from an
algorithmic, complexity and structural perspective. A k-coloring of a directed graph,
and in particular a tournament, is a partition of its vertices into k acyclic sets. The
chromatic number of a directed graph or a tournament is then the minimum k such
that it is k-colorable. Deciding if a tournament is 2-colorable is already NP-hard.
A natural problem, akin to that of coloring a 3-colorable graph with few colors, is
to color a 2-colorable tournament with few colors. This problem does not seem to
have been addressed before, although it is a special case of coloring a 2-colorable
3-uniform hypergraph with few colors, which is a well-studied problem with super-
constant lower bounds.

We present an efficient decomposition lemma for tournaments and show that it
can be used to design polynomial-time algorithms to color various classes of tour-
naments with few colors, including an algorithm to color a 2-colorable tournament
with ten colors. For the classes of tournaments considered, we complement our up-
per bounds with strengthened lower bounds, painting a comprehensive picture of the
algorithmic and complexity aspects of coloring tournaments. We then extend our
results to different classes of tournaments and digraphs.

The neighborhood of an arc uv in a tournament T is the set of vertices that form
a directed triangle with arc uv. By using our decomposition lemma, we show that
if the neighborhood of every arc in a tournament has bounded chromatic number,
then the whole tournament has bounded chromatic number. This holds more gen-
erally for oriented graphs with bounded independence number, and we extend our
proof from tournaments to this class of dense digraphs. As an application, we prove
the equivalence of a conjecture of El-Zahar and Erdős and a recent conjecture of
Nguyen, Scott and Seymour relating the structure of graphs and tournaments with
high chromatic number.

In the second part of this thesis, we focus on the problem of finding maxi-
mum stable sets in the class of Cycle-plus-Triangles graphs. A Cycle-plus-
Triangles graph is the disjoint union of t triangles and a Hamilton cycle on the
3t vertices. It is 3-colorable, and we give an overview of the different proofs of its
3-colorability. There is, however, no known efficient algorithm to find a 3-coloring or
even to find a maximum stable set (i.e., a stable set of size t).



We present a simple randomized algorithm that outputs a maximum stable set
upon termination. We conjecture that for any Cycle-plus-Triangles instance,
our algorithm terminates in expected polynomial time. In an (unsuccessful) effort to
find hard instances for our algorithm, we discuss structure and properties of Cycle-
plus-Triangles instances and methods for generating them. Finally we examine
the behavior of these algorithms on related problems, such as 3-coloring, or finding
maximum independent sets in a more general class of graphs.
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Résumé

La première partie de cette thèse porte sur le sujet de la coloration de tournois,
sous l’angle de l’algorithmie, de la complexité et de la structure. Une k-coloration
d’un graphe orienté, et en particulier d’un tournoi, est une partition de ses sommets
en k ensembles acycliques. Le nombre chromatique d’un graphe orienté ou d’un
tournoi est alors le plus petit k tel que le graphe puisse être k-coloré. Décider si
un tournoi peut être 2-coloré est déjà NP-difficile. Un problème naturel, similaire à
celui de la coloration d’un graphe 3-colorable avec peu de couleurs, est de colorer un
tournoi 2-colorable avec peu de couleurs. Ce problème ne semble pas avoir été abordé
auparavant, bien qu’il s’agisse d’un cas particulier de la coloration d’un hypergraphe
3-uniforme 2-colorable avec peu de couleurs, problème bien étudié avec des bornes
inférieures super-constantes.

Nous présentons un lemme de décomposition efficace pour les tournois et mon-
trons qu’il peut être utilisé pour concevoir des algorithmes en temps polynomial pour
colorer différentes classes de tournois avec peu de couleurs, notamment un algorithme
pour colorer un tournoi 2-colorable avec dix couleurs. Pour les classes de tournois
considérées, nous complétons nos bornes supérieures par des bornes inférieures ren-
forcées, offrant ainsi une vision complète des aspects algorithmiques et de complexité
de la coloration des tournois. Nous étendons ensuite nos résultats à différentes classes
de tournois et de graphes orientés.

Le voisinage d’un arc uv dans un tournoi T est l’ensemble de sommets qui for-
ment un triangle orienté avec l’arc uv. En utilisant notre lemme de décomposition,
nous montrons que si le voisinage de chaque arc dans un tournoi a un nombre chro-
matique borné, alors tout le tournoi a un nombre chromatique borné. Ceci est
également vrai de manière plus générale pour les graphes orientés avec un nombre
d’indépendance borné, et nous étendons notre preuve pour les tournois à cette classe
de graphes orientés denses. En tant qu’application, nous démontrons l’équivalence
d’une conjecture d’El-Zahar et Erdős et d’une conjecture récente de Nguyen, Scott et
Seymour concernant la structure des graphes et des tournois avec un grand nombre
chromatique.

Dans la deuxième partie de cette thèse, nous nous concentrons sur le problème de
la recherche de stables maximums dans la classe des graphes Cycle-plus-Triangles. Un



graphe Cycle-plus-Triangles est l’union disjointe de t triangles et d’un cycle Hamil-
tonien sur les 3t sommets. Il est 3-colorable, et nous présentons un aperçu des
différentes preuves de sa 3-colorabilité. Cependant, il n’existe pas d’algorithme effi-
cace connu pour trouver une 3-coloration ou même pour trouver un ensemble stable
maximum (c’est-à-dire un stable de taille t).

Nous présentons un algorithme aléatoire simple qui produit un ensemble stable
maximum lorsqu’il termine. Nous émettons l’hypothèse que pour toute instance
de Cycle-plus-Triangles, notre algorithme s’achève en temps polynomial attendu.
Dans une démarche (non fructueuse) visant à trouver des instances difficiles pour
notre algorithme, nous discutons de la structure et des propriétés des instances de
Cycle-plus-Triangles et des méthodes pour les générer. Enfin, nous examinons le
comportement de ces algorithmes sur des problèmes connexes, tels que la 3-coloration
ou la recherche d’ensembles indépendants maximums dans une classe plus générale
de graphes.
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Main Introduction

A graph G = (V,E) is a mathematical object defined by a set of vertices V and a set
of edges E, that may be oriented or not. Vertices can be thought of as representing
objects (e.g., countries), whereas edges model the relationship between these objects
(e.g., two countries sharing a border). More precisely, E is a set of pairs of vertices,
and we say there is an edge between a pair of vertices u and v if and only if (u, v) ∈ E.
Graphs where every edge is oriented are called directed graphs. Complete directed
graphs (where there is an edge between every pair of vertices) are referred to as
tournaments, and will be our main focus in the first part of this thesis.

There are many algorithmic questions on graphs, for example finding a set of
vertices S such that no pair of vertices of S has an edge between them. Such a
set S is often referred to as an independent or stable set. The maximum size of
such a set in a graph G is called the independence number, represented by α(G).
The complement of an independent set, called a clique, is a set of vertices S where
each pair of vertices in S has an edge between them. The size of the largest clique
in a graph G is called the clique number, represented by ω(G). The problems of
determining whether there exists a stable set or a clique of a given size are classical
NP-complete problems [Kar72]. NP is a complexity class that contains all decision
problems (i.e., problems whose answer is either YES or NO), which can be solved
in non-deterministic polynomial time [Coo71]. An alternative definition of NP is
that it contains all the decision problems whose YES instances have a certificate
of polynomial size. The class of problems whose NO instances have a certificate of
polynomial size is coNP. A problem is said to be complete for a complexity class if
an algorithm that could solve it within the prescribed constraints of the respective
complexity class could then be used to solve all other problems in this complexity
class. In the example of determining whether there exists a stable set of a given size,
a certificate can be a stable set of the required size, since it is easy to check whether
a given set of vertices is actually a stable set, and to compute its size.
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In this thesis, we focus on problems related to coloring graphs. A coloring of a
graph is a partition of its vertex set into stable sets. It can also be defined as assigning
a color to each vertex such that each edge has different colors on its endpoints. The
minimum number of colors needed to color a graph G this way is defined to be the
chromatic number, represented by χ(G). Deciding whether a graph has chromatic
number at most k is also an NP-complete problem [Kar72], even when k is fixed for
k ≥ 3. Graphs that are 2-colorable, also called bipartite, can be colored in polynomial
time simply by coloring a vertex with one color, then all its neighbors with the other,
and continuing until the entire (connected) graph is colored. Bipartite graphs can
also be characterized as the class of graphs that do not contain a cycle of odd length.

In theoretical computer science, we are often interested in two types of problems:
decision problems that always have YES or NO as an answer, and search problems,
where the solution is a certificate for a related decision problem. Such problems have
their own complexity classes; the analogue of NP for search problems is FNP, which
stands for Functional Non-deterministic Polynomial-time solvable. For example, the
problem of determining whether a graph has chromatic number at most k is a decision
problem, whereas the problem of coloring a graph with a given number of colors
is a search problem. Every search problem similarly has a corresponding decision
problem, which is “easier” in the sense that solving the search problem always solves
the associated decision problem. The converse may or may not be true, depending on
the specific problem. For instance, an algorithm that can solve the stable set decision
problem can be used to find a maximum stable set. To see this, consider the following
algorithm that uses an oracle to solve the stable set decision problem. Given a graph
G with α(G) ≥ k, take any vertex v, and let G′ be the graph obtained from G by
removing v and all its neighbors. Use the oracle to determine if α(G′) ≥ k − 1: if it
is the case, add v to a set S and continue the algorithm on G′, and if not go back to
G and take a different vertex. Doing this will iteratively build a stable set of size k.

This argument can be generalized to show that all search problems derived from
NP-complete decision problems can be reduced to their decision version [AB09], but
some problems that are not known to be NP-complete, such as integer factorization,
are not known to have this property. It is then natural to ask whether knowing if a
solution exists actually helps in finding one. Search problems for which the existence
of a solution is guaranteed are called total search problems. They also have their
own complexity classes; for example, TFNP is the complexity class of total search
problems that can be solved in non-deterministic polynomial time. While TFNP
is often considered to contain intractable problems, showing NP-hardness for any
of them would lead to a complexity class collapse, NP = coNP [GP18]. This is
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generally conjectured to be false, but is still a major open problem in the field of
complexity. TFNP contains subclasses that use the same argument to prove the
totality of the search problem [Pap94]. For example, given n positive integers with
sum less than 2n−1, the pigeonhole principle guarantees the existence of two distinct
subsets with the same sum. The problem of finding these two subsets, the equal sums
problem, therefore lies in the PPP class, which stands for Polynomial-time Pigeonhole
Principle. Another famous complexity subclass of TFNP is PPA, for Polynomial-time
Parity Argument, which contains problems whose proof of totality relies on a parity
argument (e.g., a graph with a vertex of odd degree must contain another vertex of
odd degree).

The guarantee of a solution can also stem from a promise rather than as innate
property of the inputs. Promise problems are a means of restricting the input space
(e.g., to the set of YES instances of the associated decision problem) and thus a way
to study “easier” instances. Promises often guarantee the existence of a solution,
but might not always be useful. For example, if the problem is to find a stable set of
size n/3 in a graph on n vertices, then the promise of being 3-colorable guarantees
the existence of the desired solution. If the problem is to find a 3-coloring of a graph
with independence number at least n/3, then the promise does not guarantee the
existence of the desired solution. In the case of graph coloring problems, one of the
most widely-studied promise problem is that of coloring 3-colorable graphs. Such
graphs are still NP-hard to color with three colors. Depending on the promise, it can
be possible to efficiently determine whether a given instance belongs to the promise
class or not. For example, given the promise of having no clique of size at least 3,
it is easy to check whether a graph belongs to the promised input space by looking
at each group of three vertices and checking whether it forms a clique. On the other
hand, if the promise is that a graph is 3-colorable, it is NP-hard to decide if a given
graph actually belongs to the promised input space.

In the area of graph theory, we are usually concerned with proving that some class
of graphs has a specific property, rather than with designing algorithms for deciding
if a given graph has this property. In that sense, the focus is not on search problems,
though algorithms may come as a side-product. Proofs of existence are said to be
constructive when they explicitly build a certificate for the associated problem. An
example of a constructive proof that a graph has chromatic number three is one that
produces a 3-coloring. In contrast, a non-constructive proof of existence does not
build the desired object, but simply proves that one must exist. These proofs are
often based on counting or parity arguments. For example proving that the number
of 3-colorings of a graph is odd immediately implies that the graph has chromatic

7



number at most 3, but does not yield 3-coloring.

An algorithmic paradigm, which we follow in this thesis, is to study hard search
problems by considering promises that guarantee the existence of a solution in order
to consider instances where solutions can be found more easily. In the first part of
this thesis, we have explicit promises that are crucially used in the design of the
algorithms to color tournaments, a notion that we define shortly. As a byproduct of
our efficient algorithms, we also develop new tools that we can in turn use to prove
existential results for a problem in graph theory. In the second part of this thesis,
we study a total search problem which is finding a stable set of size n/3 in a graph
class that is promised to be 3-colorable. This promise of 3-colorability stems from
proofs that are both non-constructive and non-obvious. The challenge in this case is
to find a constructive proof leading to an efficient algorithm.

8



Part I

Coloring Tournaments
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Chapter 1

Introduction

1.1 Coloring digraphs and tournaments

A digraph D = (V,A) is a graph defined by a set of vertices V and a set of arcs A,
each of which has an orientation. For each pair of vertices u and v, there can be an
arc from u to v, an arc from v to u, no arc between u and v, or arcs in both directions.
The subgraph consisting of the arcs uv ∈ A and vu ∈ A is referred to as a digon.
Digon-free digraphs are called oriented graphs. An oriented graph can equivalently
be defined as an orientation of a simple undirected graph, where an orientation of a
graph is obtained by assigning an orientation to each one of its edges.

A subset of vertices S ⊆ V induces the subdigraph D[S]. If this subdigraph
contains no directed cycles, then it is said to be acyclic. The problem of coloring a
digraph D is that of partitioning the vertices into the minimum number of acyclic
sets, sometimes referred to as the dichromatic number of a digraph, ~χ(D). This
notion was introduced by Neumann-Lara [Neu82].

This is a generalization of the problem of coloring graphs, since an instance of
graph coloring can easily be reduced to an instance of digraph coloring by replacing
each edge with a digon. The dichromatic number of an undirected graph G, ~χ(G),
is defined as the maximum dichromatic number of a digraph over all orientations of
G [Erd79, Neu82]. The relationship between the chromatic number and the dichro-
matic number is an interesting open problem. A famous conjecture states that the
chromatic number of an undirected graph is upper bounded by a function of its
dichromatic number [Erd79]. While it is easy to prove that any graph with dichro-
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Figure 1.1: A 2-colored tournament.

matic number 1 has chromatic number at most 2 because it cannot have any cycles,
this conjecture is open even for dichromatic number 2.

Conjecture 1.1.1. There exists a function f such that for any undirected graph G,
χ(G) ≤ f(~χ(G)).

[Erd79] proved that the complete graph on n vertices (i.e., a simple graph with an
edge between every pair of vertices) has dichromatic number Ω(n/ log n). Complete
graphs have chromatic number equal to their number of vertices. Thus, we can see
that Conjecture 1.1.1 holds for complete graphs; in other words, there is always an
orientation of a complete graph with dichromatic number Ω(n/ log n).

An orientation of a complete graph is also referred to as a tournament. In a
tournament T = (V,A), for each pair of vertices i, j ∈ V , there is either an arc
from i to j or an arc from j to i (but not both). Since tournaments are a subclass
of digraphs, the problem of coloring tournaments is defined the same way as the
problem of coloring digraphs. A tournament contains a directed cycle if and only
if it contains a directed triangle. Therefore the problem of coloring a tournament
is equivalent to partitioning the vertices into the minimum number of sets so that
each set does not contain a directed triangle. Each set will then be acyclic since it
cannot contain a directed cycle, but it is also transitive since there is an arc between
any pair of vertices. An example of a colored tournament is shown in Figure 1.1.
A digraph, and in particular a tournament, is said to be strongly connected if and
only if there is a directed path between any two pairs of vertices in each direction.
When a digraph is not strongly connected, we can color each strong component (i.e.,
strongly connected subdigraph) separately, and the resulting coloring will be proper
even if we use the same color palette on each strong component. Therefore, when we
consider algorithms to color a digraph or tournament, we usually assume that they
are strongly connected.
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We will also study digraphs that are close to tournaments, in the sense that there
must be arcs between many pairs of vertices (i.e., they are dense). We will measure
this by the independence number of a digraph, which is the maximum size of a set of
vertices I such that there is no arc in A between any two vertices of I. In particular
we will study digraphs whose independence number is bounded by some constant.

1.2 Relationship between tournaments and graphs

Digraphs are more general objects than graphs since, as noted previously, any graph
can be represented as a digraph by replacing every edge with a digon. As dis-
cussed with respect to Conjecture 1.1.1, the relationship between chromatic number
of graphs and orientations of simple undirected graphs, when we forbid digons, is far
from clear. Since tournaments are a very specific class of oriented graphs, it would
seem reasonable to assume that they might not be capture the complexity of the class
of simple undirected graphs with respect to problems such as coloring. So a natural
question is how graphs relate to tournaments, or more specifically, how do problems
regarding chromatic number on graphs relate to those on tournaments? Does any
problem involving the chromatic number of a graph have an equivalent formulation
in terms of tournaments?

This question has been investigated and some tools have been developed to relate
chromatic number of graphs and tournaments. A standard technique is to assign an
ordering to the vertices of a tournament, and look at the graph on the same vertex
set, where uv is an edge of the graph iff its orientation is decreasing with respect to
the chosen ordering [BCC+13, CSSS24]. Such a graph is called the backedge graph of
a tournament for a given ordering. Interestingly, this allows many coloring problems
on graphs to be stated equivalently as problems on tournaments. As is standard, we
use χ(G) and ~χ(T ) to denote the chromatic number of a graphG and a tournament T ,
respectively. We use ω(G) to denote the size of a maximum clique of G. Specifically,
the chromatic number of a tournament T and its backedge graph G can be related
as follows:

~χ(T ) ≤ χ(G) ≤ ω(G)~χ(T ).

This will be a useful tool in Part I and its proof is provided later on in the thesis.
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1.2.1 Tournaments and the Erdős-Hajnal conjecture

A good example of the relationship between graphs and tournaments is a famous
conjecture by Erdős and Hajnal [EH89], which has an equivalent statement in terms
of tournaments. This conjecture is about graphs in which we forbid a specific graph
H as a subgraph, which are called H-free graphs.

Conjecture 1.2.1. For every graph H, there exists a positive constant ε(H) such
that every H-free graph on n vertices contains a clique or an independent set of size
Ω(nε(H)).

We will refer to this conjecture as the EH conjecture, and say that a graph H
verifying this conjecture has the EH property. This conjecture has been verified
on some classes of graphs, notably all graphs obtained by replacement [APS01]. A
replacement in a graph G consists of replacing a vertex v by a different graph G′, such
that all vertices in V (G′) have the same adjacencies as v with vertices of V (G)\{v}.
This operation is sometimes referred to as substitution [Chu14]. Then if a graph G is
obtained by taking a graph with the EH property, and substituting one of its vertices
with another graph that has the EH property, G will also have the EH property.

[APS01] proved that the EH conjecture is equivalent to the following statement
on tournaments.

Conjecture 1.2.2. For every tournament T , there exists a positive constant ε(H)
such that every H-free tournament on n vertices contains a transitive set of size
Ω(nε(H)).

This reformulation of the EH conjecture motivated the study of the existence
of large transitive sets, and also coloring, in tournaments. [BCC+13] completely
characterized the class of tournaments H such that every H-free tournament has a
transitive set of size Ω(n/k) for some constant k. They call such a tournament H a
celebrity and prove that the class of celebrities is the same as the class of heroes, which
are the tournaments H such that every H-free tournament has bounded dichromatic
number. The main theorem of their paper is a recursive characterization of heroes.
Ti is defined to be the transitive tournament on i vertices, and if X, Y and Z are
tournaments, ∆(X, Y, Z) is the tournament obtained by the union of X, Y and Z
where all arcs from vertices of X go towards vertices of Y , from Y to Z and from Z
to X
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Theorem 1.2.1. A tournament is a hero iff all its strongly connected components
are heroes. A strongly connected tournament is a hero iff it equals ∆(H,Tk, T1) or
∆(H,T1, Tk) where H is another hero, and k ≥ 1 is a constant.

The main idea behind the proof of this theorem for a strongly connected hero is a
decomposition of a hero-free tournaments into a jewel chain, where a jewel is a subset
of fixed size such that any partition contains two fixed tournaments, one in each
partition. The authors then establish a number of structural results on the chains,
notably the absence of long backward arcs between different jewels, which is then
used to bound the dichromatic number of the tournament. Though not explicitly
algorithmic, this type of decomposition can be made into an efficient algorithm for
coloring some types of tournaments, which we discuss later on in this thesis.

To prove that a tournament is a hero only if all its strong components are heroes,
the authors argue that every subtournament of a hero is a hero. The other direction
is equivalent to saying that if A and B are heroes, then the tournament H obtained
by the union of A and B where all arcs go from vertices of A to those of B must
also be a hero. The proof of this relies on a family of tournaments they call r-
mountains, which have a specific structure which gives them high chromatic number
and bounded size. The proof then relies on an induction on the existence of an r-
mountain in the H-free tournament, bounding the chromatic number of the H-free
tournament in both cases.

1.2.2 Forbidden structures in tournaments and graphs

After looking at classes of graphs or tournaments in which a specific graph or tour-
nament is forbidden, it is natural to consider forbidding not a single graph or tourna-
ment, but a set of them. This will be the object of the following subsection, though
we will start by presenting a forbidden class of subtournaments under the light of
neighborhoods of vertices.

The local dichromatic number of a tournament is defined to be the maximum
dichromatic number over the outneighborhoods of the vertices. The class of tourna-
ments with bounded local dichromatic number were conjectured to also have bounded
dichromatic number [BCC+13]. This was proven by Haratyunyan et al. [HLTW19]
resulting in the following theorem.

Theorem 1.2.2. There is a function f , such that every tournament with local dichro-
matic number c has dichromatic number at most f(c).
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The proof of this theorem relies on structural analysis of tournaments in order to
prove that for every constant k, either a tournament has a dominating set of bounded
size, or it has a subset of bounded size with dichromatic number at least k. This
lemma can then be used for tournaments with local dichromatic number bounded by
a constant c, to show that they must have a dominating set of bounded size. Indeed,
if k > c, a subset with dichromatic number at least k must also be a dominating
set (else it would be a subset of some outneighborhood, and the local dichromatic
number would be at least k). The upper bound they obtain on the function f is
however a tower function, and the best known lower bound is 2 (for example by
taking a directed triangle), which lead to the following conjecture [NSS23b].

Conjecture 1.2.3. Every tournament with local dichromatic number c has dichro-
matic number at most 2c.

While the authors state that this conjecture is likely to be false, finding a better
(linear?) upper bound on the function f is an interesting open problem.

Another way of seeing this result is that forbidding the class of tournaments
formed by a vertex that is complete to a tournament with high dichromatic number
as subtournaments bounds the dichromatic number of a tournament. Thus, in a
sense the class of tournaments formed by a vertex that is complete to a tournament
with high dichromatic number acts as a sort of “hero”. In fact, [NSS23b] prove a
stronger theorem.

Theorem 1.2.3. Let k, ` ≥ 1, and Ck,` be the class of tournaments that can be
decomposed as ∆(B, Tk, T1), where B is a tournament such that ~χc(B) ≥ `. There
is a function f , such that every tournament that has no subtournament in Ck,` has
dichromatic number at most f(k, `).

This shows that the family of tournaments with high dichromatic number seems
to act in a similar way to heroes (see Theorem 1.2.1), so the following conjecture,
from [NSS23a] seems natural, as it holds by replacing heros with tournaments with
high dichromatic number.

Conjecture 1.2.4 ([NSS23a]). For all c ≥ 0, there exists d ≥ 0 such that if
T is a tournament with ~χ(T ) ≥ d, there are two sets A,B ⊆ V (T ) such that
~χ(T [A]), ~χ(T [B]) ≥ c and all arcs between A and B go from vertices of A to vertices
of B.

The authors also show that this implies a prior conjecture on undirected graphs
that was posed by El-Zahar and Erdős [EE85].
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Conjecture 1.2.5 ([EE85]). For all integers t, c ≥ 1, there exists d ≥ 1, such that
if a graph G satisfies χ(G) ≥ d, and has no clique with t vertices (i.e., ω(G) < t),
then there are subsets A,B ⊆ V (G) with χ(G[A]), χ(G[B]) ≥ c, such that there are
no edges between A and B.

This conjecture on graphs can be seen as part of a larger body of work that looks
at statements of the form:

“Every graph with sufficiently large chromatic number contains either a
complete subgraph on t vertices or an induced ***.”

We can look at what can be put in place of the asterisks [Sco22]. Here, replacing
the asterisks with “two anticomplete sets with high chromatic number” yields the
conjecture of El-Zahar and Erdős. This is also related to the Erdős-Hajnal conjecture,
as any single graph G that could be placed in the asterisks would then have the EH
property, since every graph that does not contain G must either have low chromatic
number, and thus a large independent set, or a large clique.

1.3 Complexity of coloring promise problems

The algorithmic problem of coloring tournaments can also be compared to the prob-
lem of coloring undirected graphs. For the latter, deciding if a graph is 2-colorable
(i.e., bipartite) is easy, but it is NP-hard to decide if a graph is 3-colorable. A well-
studied promise problem is that we are given a graph promised to be 3-colorable
and the goal is to color it (in polynomial time) with few colors [Wig83, Blu94,
KMS98, KT17]. For tournaments, it is easy to decide whether or not a tournament
is 1-colorable (i.e., transitive), since this is exactly when the tournament is acyclic.
However, deciding if a tournament is 2-colorable is already NP-hard [CHZ07].

This suggests the following promise problem: Given a tournament promised to
be 2-colorable, what is the fewest number of colors with which it can be colored
in polynomial time? This question is the starting point for this part of the thesis
and naturally leads to related problems of determining upper and lower bounds for
coloring various classes of tournaments. For comparison, the complexity landscape
of graph coloring is well studied and we have a general understanding of what it
looks like. We present an overview of the state-of-the-art for these problems in Table
1.1, where the lower bound should be read as, “It is hard to color a 3-colorable graph
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Graph Type Lower Bound Upper Bound

3-Colorable graphs 5 [BKO19], O(1)∗ [GS20b] Õ(n0.19996)[KT17]

k-Colorable graphs, k ≥ 3 2k − 1 [BKO19], O(1)∗[GS20b] O(n1−
3
k+1 ) [KMS98]

General graphs n1−ε [Has99, Zuc06] O(n(log log n)2(log n)−3) [Hal93]

3-Uniform 2-colorable hypergraphs O(1) [DRS05] Õ(n
1
5 ) [KNS01]

Table 1.1: Best known lower and upper bounds for various graph coloring problems.
All inapproximability results are under the assumption P 6= NP except those denoted
by ∗, which are under the d-To-1 Conjecture [Kho02].

with 5 colors,” and the upper bound as, “A 3-colorable graph can be (efficiently)
colored with Õ(n.19996) colors.” In contrast, the problem of coloring tournaments
has been studied very little from the algorithmic or complexity perspective. In this
thesis, we make an effort to address this disparity.

The problem of coloring a 2-colorable tournament with few colors is a special
case of coloring a 2-colorable 3-uniform hypergraph with few colors. Deciding if a
3-uniform hypergraph is 2-colorable is NP-hard [Lov73] and more recently it was
proved to be NP-hard to color with any constant number of colors [DRS05]. On the
positive side, a 2-colorable 3-uniform hypergraph can be colored in polynomial time
with Õ(n1/5) colors [AKMR96, CF96, KNS01], a result which uses tools from and is
analogous to that of [KMS98] for 3-colorable graphs. Thus, Õ(n1/5) is the best-known
upper bound on the number of colors needed to efficiently color a 2-colorable tourna-
ment. Deciding if a tournament is 2-colorable is NP-hard [CHZ07] and furthermore,
deciding if a tournament is k-colorable for any k ≥ 2 is NP-hard [FGSY19]. It is con-
sistent with these results that we can, say, efficiently color a 2-colorable tournament
with three colors.

1.4 Organization and main results of Part I

In Chapters 2 and 3 of Part I, we consider some basic algorithmic and computational
complexity questions on the subject of coloring tournaments. Our main algorithmic
tool, presented in Section 2.1, is a decomposition lemma which can be used to obtain
efficient algorithms for coloring tournaments in various cases when certain conditions
are met. On a high level, it bears some resemblance to decompositions previously
used to prove bounded dichromatic number in tournaments and in dense digraphs
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Tournament Type Lower Bound Upper Bound

2-Colorable tournaments 2[CHZ07], 3 10

3-Colorable tournaments 5, O(1) ∗ Õ(n0.19996)

k-Colorable tournaments, k ≥ 2 2k − 1, O(1) ∗ 5 · f(k − 1) · g(k)

2-Colorable light tournaments in P? 5

Light tournaments in P? 8

General tournaments n
1
2
−ε † n/ log n[EM64]

Table 1.2: Best known polynomial time inapproximability results and approximation
algorithms for various tournament coloring problems. Lower bounds are under the
assumption P 6= NP except those marked with a ∗, which hold under the d-To-
1 Conjecture [Kho02]. The function g(k) denotes the number of colors needed to
efficiently color a k-colorable graph, while f(k) is the number of colors needed to
efficiently color a k-colorable tournament. The entry indicated by † is a hardness of
approximation result.

with forbidden subgraphs [BCC+13, HLNT19]. To apply our decomposition lemma
to 2-colorable tournaments, we use an observation used by [AKMR96, CF96, KNS01]
which states that there is an efficient algorithm to partition a 2-colorable tournament
into two tournaments that are each light. A light tournament is one in which for each
arc uv, the set of vertices N(uv) = {w | uvw forms a directed triangle} is transitive.
(Let C3 denote a directed triangle. A light tournament is H-free where H is the hero
∆(C3, T1, T1).)

In fact, due to this observation and the fact that [BCC+13] showed that light
tournaments have constant dichromatic number, it cannot be NP-hard (unless NP=
co-NP) to color a 2-colorable tournament with O(1) colors. This does not however
immediately imply that there is an efficient algorithm, since there are many search
problems that are believed to be intractable even though their decision variant is
easy (e.g., those in the class TFNP).

Like some other lemmas which show that the dichromatic number of a tourna-
ment is bounded (i.e., constant) if the out-neighborhoods of vertices have bounded
dichromatic number [HLTW19], our decomposition lemma also has a local-to-global
flavor: If the sets N(uv) can be efficiently colored with few colors for all arcs uv
and if there are two vertices s and t such that the out-neighborhood of s and the in-
neighborhood of t can be efficiently colored with few colors, then our decomposition
lemma yields an efficient algorithm to color the whole tournament with few colors.
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We present and give applications of our algorithmic decomposition lemma in
Chapter 2. Specifically, we show that 2-colorable tournaments can be efficiently
colored with ten colors. We then use our toolbox to study 3-colorable tournaments.
Here we show that the problem of coloring a 3-colorable tournament has a constant-
factor reduction to the problem of coloring 3-colorable graphs.

Next, we strengthen the lower bounds by showing in Chapter 3 that it is NP-
hard to color a 2-colorable tournament with three colors. We then give a reduction
from coloring graphs to coloring tournaments, which implies, for example, that it is
hard to color 3-colorable tournaments with O(1) colors under the d-To-1 Conjecture
of Khot [Kho02]. Then we show that it is NP-hard to approximate the number of
colors required for a general tournament to within a factor of O(n1/2−ε) for any ε > 0.

Thereafter, we extend our algorithm to different classes of tournaments and di-
graphs in Chapter 4. We start by proving that light tournaments can be efficiently
colored with eight colors, and then extend this result to a class of tournaments that
generalizes light tournaments. These are the H-free tournaments where H belongs
to a class recursively constructed as ∆(B, T1, T1) where B is a tournament in the
class, starting from a single vertex tournament. We also show that our algorithm
can be adapted to efficiently color 2-colorable digraphs with bounded independence
number, and triangle-free digraphs with independence number 2.

We provide a summary of the best algorithmic and complexity bounds we find
for different classes of tournaments in Table 1.2. All the results are established in
this Thesis, except for those indicated by a citation.

Finally, in Chapter 5, we use the decomposition lemma to derive structural results
about tournaments and digraphs with bounded independence number. We show that
if the sets N(uv) can be efficiently colored with a constant number of colors for all
arcs uv, then the entire tournament or digraph can be colored with a bounded number
of colors. This result then allows us to prove the equivalence between Conjecture
1.2.4, and Conjecture 1.2.5. Specifically, we prove that Conjecture 1.2.5 implies
Conjecture 1.2.4, and for completeness provide the proof of the other direction by
[NSS23b]. The equivalence between these conjectures relates the structure of graphs
and tournaments with high chromatic number.

This part is joint work with Alantha Newman. The work in Chapters 2 and 3
is from a paper published in the proceedings of the 2023 edition of the European
Symposium on Algorithms (ESA) [KN23b]. The work in Chapter 5 is a paper under
submission [KN23a].
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1.5 Notation

Let T = (V,A) be a tournament with vertex set V and arc set A. Sometimes, we
use V (T ) to denote its vertex set and A(T ) to denote its arc set. For S ⊂ V , we use
T [S] to denote the subtournament induced on vertex set S, although we sometimes
abuse notation and refer to the subtournament itself as S. We define uv ∈ A to be
an arc directed from u to v. We define N+(v) to be all w ∈ V such that arc vw ∈ A
and N−(v) to be all w ∈ V such that arc wv ∈ A. We let N+[v] = N+(v) ∪ {v}
and N−[v] = N−(v) ∪ {v}. For S ⊂ V , we define N+(S) =

⋃
v∈S N

+(v), and we
define N−(S), N+[S], N−[S] analogously. N±(S) will be used to refer to the mixed
neighborhood of S, which is the set of vertices that have at least one in-neighbor and
one out-neighbor in S. We use N o(S) to denote vertices in V \ S that have at least
one in-neighbor and at least one out-neighbor in S. Sometimes we refer to N o(S) of
a set as its non-neighborhood.

For S, U ⊂ V such that S ∩ U = ∅, we use S ⇒ U to indicate that all arcs
between S and U are directed from S to U . We say S ↔ U if there exists at least
one arc from S to U and at least one arc from U to S (i.e., it is neither the case that
S ⇒ U nor the case that U ⇒ S). Let C3 denote a directed triangle; usually, we refer
to this simply as a triangle. Define N(uv) ⊂ V to contain all vertices w such that
uvw forms the directed triangle consisting of arcs uv, vw and wu. In other words,
N(uv) = N−(u)∩N+(v). For three tournaments T1, T2 and T3, we use ∆(T1, T2, T3)
to denote the tournament resulting from adding all arcs from T1 to T2, all arcs from
T2 to T3 and all arcs from T3 to T1.

A tournament T = (V,A) is k-colorable if there is a partition of V into k vertex-
disjoint sets, V1, V2, . . . , Vk, such that T [Vi] is transitive for all i ∈ {1, . . . , k}. We use
~χ(T ) to denote the dichromatic number of T (i.e., the minimum number of transitive
subtournaments into which V (T ) can be partitioned). Computing the value ~χ(T ) is
in general NP-hard [CHZ07]. We therefore use ~χc(T ) to denote the number of colors
by which T can be efficiently colored. Our goal is to find upper and lower bounds
on ~χc(T ).

We remark that we will always assume that a tournament T which we want to
color is strongly connected; if this were not the case, we can color each strongly
connected component separately. Therefore, each vertex has an out-neighborhood
containing at least one vertex.
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Chapter 2

Algorithms for coloring
tournaments

In this chapter, we will present efficient approximation algorithms for coloring 2 and
3-colorable tournaments (and extend them to k-colorable tournaments). They both
rely on the same tournament decomposition, which we present separately in the
following section.

2.1 Efficient decomposition for coloring

We present a decomposition for a tournament that can be computed in polynomial
time in certain cases and yields efficient methods to color tournaments with few
colors in such cases.

Definition 2.1.1. We define a c-vertex chain (vi)0≤i≤k of a tournament T the fol-
lowing way: Let v0 and vk be a pair of vertices such that ~χc(N

+(v0) ∪N−(vk)) ≤ c,
and let (vi)0≤i≤k be the vertices in the shortest directed path from v0 to vk.

Additionally, we define an arc chain (ei)1≤i≤k corresponding to a vertex chain,
where ei is the arc from vi−1 to vi. The main idea behind this decomposition is to
build zones that can be efficiently colored, and such that all arcs between zones at
distance more than four (i.e., long arcs) go backwards.

Definition 2.1.2. Given a c-vertex chain, a path decomposition of a tournament T
is defined as:
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• D0 = N+(v0).

• For 1 ≤ i ≤ k, Di = N(ei) \ (∪0≤j≤i−1Dj).

• Dk+1 = N−(vk) \ (∪0≤j≤kDj).

First we prove that this is indeed a decomposition of T .

Claim 2.1.1. Let T = (V,A) be a tournament, and D be a path decomposition of T .
Then V = ∪0≤i≤kDi.

Proof. We will prove this claim by contradiction: Suppose there is a vertex w ∈ V
that does not belong to any Di. Assume that w does not belong to the vertex chain.
Since w is neither in D0 nor in Dk+1, then w ∈ N−(v0) and w ∈ N+(vk). Take
the smallest integer i such that w ∈ N+(vi). There must be one since w ∈ N+(vk).
Notice that i ≥ 1 since w /∈ N+(v0), so ei belongs to the arc chain and w ∈ N(ei).
Therefore, w ∈ Di, which is a contradiction.

Now consider the case in which w is in the vertex chain. An arc with both
endpoints in the vertex chain that is not in the arc chain is backwards. Thus,
vi ∈ N(ei+2) for all 0 ≤ i ≤ k − 2. Notice that vk−1 can belong to Dk+1 (if it does
not belong to Dj for some j < k + 1). Finally, vk ∈ N(ek−1).

We remark that, for the sake of simplicity and to more easily visualize the de-
composition, it might be easier to not include the vertices in the vertex chain in
the path decomposition. In this case, these vertices can be colored with two extra
colors: Since all arcs not in the arc chain with both endpoints in the vertex chain go
backwards (with respect to the arc chain), we can use two colors so that all forwards
arcs (those in the arc chain) are bicolored.

Claim 2.1.2. Let 0 ≤ i, j ≤ k + 1 and let j ≥ i + 5. For u ∈ Di and w ∈ Dj, we
have u ∈ N+(w).

Proof. We will prove this by contradiction. Suppose j ≥ i + 5 and u ∈ N−(w).
Then there is a path of three arcs from vi to vj−1, namely (vi, u, w, vj−1). (By
definition of the decomposition, u ∈ Di implies u ∈ N+(vi) and w ∈ Dj implies
w ∈ N−(vj−1).) This is not possible since by the definition of the vertex chain as the
shortest path, there can be no path between vi and vj−1 with fewer than four arcs
(since (j − 1)− i ≥ (i+ 5− 1)− i = 4).

22



Lemma 2.1.3. If T has a c-vertex chain that can be found in polynomial time and
if ~χc(N(e)) ≤ c for each arc e, then ~χc(T ) ≤ 5c.

Proof. Given a c-vertex chain, we construct a path decomposition. We make five
palettes of c colors each with labels from 0 to 4. We color each Di using the color
palette with label i mod 5. Let us show that we can do this in polynomial time.
First, note that the set of colors used is of size c for every Di. Then, let us consider
D0: N

+(v0) can be colored efficiently with c colors by definition of a vertex chain.
Similarly, Dk+1 is a subset of N−(vk) and can thus also be efficiently colored with c
colors. Finally, for every 1 ≤ i ≤ k, Di is a subset of N(ei), which can be colored
efficiently with c colors by the condition of the lemma.

Our goal is now to prove that this is a proper coloring of T . We will do this by
showing that all forward arcs between different Di are bicolored. By Claim 2.1.2,
there are no forwards arcs between Di and Dj when j ≥ i + 5. Furthermore, by
the definition of the coloring, no vertex in Di and Dj can share a color for i + 1 ≤
j ≤ i + 4. Thus all forward arcs from Di to Dj will be bicolored. Since every Di

is properly colored, and all forward arcs between different Di are bicolored, T is
properly colored.

The next lemma has essentially the same proof as Lemma 2.1.3.

Lemma 2.1.4. If T has a c-vertex chain that can be found in polynomial time and
if ~χc(N(e)) ≤ d for each arc e and if c > d, then ~χc(T ) ≤ c+ 4d.

Proof. We find the path decomposition using the c-vertex chain. We can color the
set S = D0∪Dk+1 with c colors and the remaining sets Di for 1 ≤ i ≤ k with d colors
each. For the last c−d of the colors used for S, we can remove these vertices from S
since these colors will not be used again and call the remaining vertices in S (colored
with the first d colors) S ′. For the remaining vertices in S, we decompose them into
D0 := D0∩S ′ and Dk+1 := Dk+1∩S ′ Now we have sets D0, D1, . . . , Dk+1 each colored
with d colors. We color these sets using five color palettes of d colors each and use the
palette i mod 5 for set Di. By Claim 2.1.2, this does not create any monochromatic
forward arcs. Thus, the total number of colors used is (c− d) + 5d = c+ 4d.
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v0 v1 v2 v3 v4 v5 v6

D0 D1 D2 D3 D4 D5 D6 D7

e0 e1 e2 e3 e4 e5

Figure 2.1: Path decomposition of T . The red arcs (ei) form a shortest path from v0
to vk, thus all the arcs not depicted between the vi’s go backward. All the vertices in
a given Di are colored from the color palette indicated by the color of the Di. Notice
that because there are no long forward arcs between the Di’s, all arcs between Di’s
that share a color palette are backwards.

2.2 2-colorable tournaments

A tournament T = (V,A) is 2-colorable if ~χ(T ) = 2, and a 2-coloring of tournament
T is a partition of V into two vertex sets, V1 and V2, such that T [V1] and T [V2] are
each transitive. In this section, our goal is to prove Theorem 2.2.1.

Theorem 2.2.1. Let T be a 2-colorable tournament. Then ~χc(T ) ≤ 10.

We say an arc uv in A is heavy if there exist three vertices a, b, c ∈ N(uv) which
form a triangle abc. If a tournament contains no heavy arcs, then it is light. We will
use the following observation.

Observation 2.2.2. Let T be a 2-colorable tournament. Then T can be partitioned
into two light subtournaments T1 and T2 such that ~χc(T ) ≤ ~χc(T1) + ~χc(T2).

This observation appears in [AKMR96, CF96, KNS01] where it is stated more
generally for 2-colorable 3-uniform hypergraphs. We include a proof here for com-
pleteness.

Claim 2.2.3. In a 2-coloring of a tournament T , each heavy arc must be 2-colored.
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Proof. If u and v are both, say, blue, then each vertex in N(uv) would be red, forcing
a triangle in N(uv) to be all red (i.e., monochromatic), which is not possible in a
2-coloring.

Corollary 2.2.4. In a 2-colorable tournament, the heavy arcs form a bipartite graph.

Now we can prove Observation 2.2.2.

Proof of Observation 2.2.2. All heavy arcs can be easily detected. By Corollary
2.2.4, the set of heavy arcs forms a bipartite graph. The vertex set of this bipartite
graph can be colored with two colors (red and blue), such that the tournament in-
duced by each color does not contain a heavy arc. Then we partition the vertices
into two sets one containing all the blue vertices and the other containing all the
red vertices. The uncolored vertices can go in either set. Since neither of these sets
contains any heavy arcs, we can partition the vertices of a 2-colorable tournament
into two light subtournaments.

Theorem 2.2.1 will follow from Observation 2.2.2 and the following theorem.

Theorem 2.2.5. Let T be a 2-colorable light tournament. Then ~χc(T ) ≤ 5.

Our goal it to use Lemma 2.1.3 to prove Theorem 2.2.5. In other words, we want
to show that a 2-colorable light tournament has a 1-vertex chain. We first prove a
useful claim.

Claim 2.2.6. Let T be a k-colorable tournament. Then there exist vertices u and w
such that N+(u) ∪N−(w) is (k − 1)-colorable.

Proof. Since T = (V,A) is k-colorable, there exist k transitive sets X1, . . . , Xk such
that V = ∪ki=1Xi. Then take u to be the vertex in X1 that has only incoming arcs
from other vertices in X1 (i.e., the sink vertex for X1). Similarly, take w to be the
vertex in X1 that has only outgoing arcs to other vertices in X1 (i.e., the source
vertex for X1). The out-neighborhood of u and the in-neighborhood of w are both
subsets of V \X1, and thus so is their union, which is therefore (k−1)-colorable.

Now we are ready to prove that we can find a 1-vertex chain.

Claim 2.2.7. Let T be a 2-colorable, light tournament. Then T contains a 1-vertex
chain that can be found in polynomial time.
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Proof. By Claim 2.2.6, there exist u and w such that N+(u) ∪N−(w) is transitive.
To find them, we can test the transitivity of N+(u)∪N−(w) for every pair of vertices
in T . Then we simply need to find a shortest path from u to w, which can be done
in polynomial time. Let k denote the length of the path, and define v0 = u, vk = w,
and (vi)1≤i≤k−1 the rest of the vertices in the path.

The proof of Theorem 2.2.5 follows from Claim 2.2.7, Lemma 2.1.3 and the fact
that ~χc(N(e)) ≤ 1 for every arc e in a light tournament.

2.3 3-colorable tournaments

Coloring 3-colorable tournaments turns out to be closely related to coloring 3-colorable
graphs. This seems surprising since the techniques for 3-colorable graphs were ap-
plied to coloring 2-colorable 3-uniform hypergraphs, which are a generalization of
2-colorable tournaments.

We will first show that we can adapt ideas of [Wig83] and [Blu94] to the problem
of coloring 3-colorable tournaments by using our algorithm for coloring 2-colorable
tournaments with ten colors as a subroutine.

Lemma 2.3.1. A 3-colorable tournament can be colored with O(
√
n) colors in poly-

nomial time.

Proof. Let T = (V,A) be a 3-colorable tournament. Notice that T has at least
three vertices each of whose out-neighborhoods is 2-colorable. To see this, consider
any proper 3-coloring of T . Each color spans a transitive subtournament and each
transitive subtournament has a sink vertex that has outgoing arcs only towards the
other two colors.

For any vertex, if its out-neighborhood is 2-colorable, we can color its out-
neighborhood with 10 colors by Theorem 2.2.1. So we can try to run the algorithm
for the out-neighborhood of every vertex, and the algorithm will successfully produce
a 10-coloring of the out-neighborhood of at least three vertices.

Therefore, if the minimum outdegree is at least
√
n, we find a transitive set of

size at least
√
n/10. On the other hand, if the minimum outdegree is smaller than√

n, we will make progress another way. In this case, let u be a vertex with outdegree
smaller than

√
n. Then, we add u to a set S, and continue the algorithm on the

subtournament of T induced on V \N+[u]. We continue this until we find a transitive
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subtournament of size at least
√
n/20 or until we have removed half the vertices. In

the first case, we will have found a transitive set of size Ω(
√
n), and in the second

case, the set S will be transitive, and also of size Ω(
√
n).

In conclusion, since we can find a transitive set of size Ω(
√
n) in polynomial size,

we can repeat the procedure recursively to find a coloring with O(
√
n) colors in

polynomial time (see [Blu94] for example).

We can also use the decomposition of Section 2.1 to get a coloring with fewer
colors based on a reduction to coloring 3-colorable graphs.

Theorem 2.3.2. If we can efficiently color a 3-colorable graph G with k colors, then
we can efficiently color a 3-colorable tournament with 50k colors.

Proof. Let T = (V,A) be a 3-colorable tournament. For every arc e ∈ A, try
coloring N(e) with 10 colors using Theorem 2.2.1. If the algorithm fails, the neigh-
borhood of the edge is not 2-colorable, and thus the edge is not monochromatic in
any 3-coloring. Let F ⊂ E denote the set of arcs whose neighborhoods cannot be
colored with 10 colors using our algorithm. Ignore the direction of the arcs in F and
consider the graph G = (V, F ). This graph must be 3-colorable, since no arc in F is
monochromatic in any 3-coloring of T .

Now let us show that from a coloring of G with k colors, we can obtain a coloring
of T with 50k colors. Consider a coloring of the graph G = (V, F ) and let Vi be the
vertices colored with color i in this coloring. Consider the induced subtournament
T ′ = T [Vi]; it has no arc in F and thus the neighborhood of every arc in this
tournament can be colored efficiently with 10 colors. Furthermore, by Claim 2.2.6
and Theorem 2.2.1, there are vertices u and v in T ′ such that N+

T ′(u) ∪ N−T ′(v)
is efficiently 10-colorable. So by Lemma 2.1.3, we can efficiently color T ′ with 50
colors. We can do this for the subtournament T [Vi] for each of the i colors used to
color G.

Combining this Lemma with approximation algorithm [KT17], which colors a

3-colorable graph with fewer than n
1
5 colors, we obtain the same asymptotic bound

for 3-colorable tournaments.

Corollary 2.3.3. Let T be a 3-colorable tournament on n vertices. Then, ~χc(T ) ≤
O(n.19996).
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We can extend Theorem 2.3.2 to a more general case.

Lemma 2.3.4. Let f and g be functions such that we can efficiently color k-colorable
graphs (respectively, k-colorable tournaments) with g(k) (respectively, f(k)) colors.
Then f(k) ≤ 5 · f(k − 1) · g(k).

Proof. We use the same reduction as in the proof of Theorem 2.3.2, but now F is the
set of arcs whose neighborhoods cannot be efficiently f(k − 1)-colored. Then each
Vi in G is colored with 5 · f(k − 1) colors. So we need a total of 5 · f(k − 1) · g(k)
colors.

2.4 Certificates of non-2-colorability

In Section 2.2, we presented an algorithm to color a 2-colorable tournament with ten
colors. Suppose we run this algorithm on a tournament T that is not 2-colorable.
Then it will either color T with ten colors or it will produce at least one certificate
that T is not 2-colorable. A certificate will have the following form: either a) there
is an odd cycle of heavy arcs in T , or b) for every ordered pair of vertices (u, v), the
subtournament T [N+(u) ∪ N−(v)] is not transitive. In particular, an 11-chromatic
tournament must contain such a certificate.
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Chapter 3

Complexity of coloring
tournaments

In this chapter, we examine the hardness of approximate coloring of tournaments.
[CHZ07] showed that deciding if a tournament can be 2-colored is NP-hard. For
completeness, we provide a simplified (though similar) proof of this result in 3.1.
Later, [FGSY19] proved that for any k, it is NP-hard to decide if a tournament is
k-colorable.

3.1 NP-hardness of deciding 2-colorability

For completeness, we start by providind a proof of the NP-hardness of coloring 2-
colorable tournaments with two colors. This proof is strongly inspired by the proof
of [CHZ07].

Lemma 3.1.1. It is NP-hard to decide if a tournament has chromatic number two.

Proof. We will reduce this problem to the problem of deciding 2-colorability of 3-
uniform hypergraphs, which is known to be NP-hard [DRS05].

Let H = (VH , EH) be a 3-uniform hypergraph. We now build a tournament
T = (V,A) such that T is 2-colorable iff H is 2-colorable.

We will start by defining a subtournament T1 = (V1, A1) of T . Given an enumer-
ation of the hyperedges of H, ei = (va, vb, vc), we will add three vertices va,i, vb,i and
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v′1 v′2 v′3 v′4 v′5

Figure 3.1: Construction of T from a 3-uniform hypergraph H. There is a downward
arc between v′b and all vertices vb,i for every b, i. These are the colored arcs in the
figure. All remaining arcs all go from the vertices va,i towards the vertices v′b for
a 6= b (they go up).

vc,i to V1, and add to A1 the arcs (va,i, vb,i), (vb,i, vc,i) and (vc,i, va,i) such that these
three vertices form a directed triangle. We then add the arcs from all the vertices
va,i towards all the vertices vb,j for any a, b, i, j with i < j. We now define a new
subtournament T2 = (V2, A2) made up of three vertices that form a directed triangle.
Finally, we define a last subtournament T3 = (V3, A3): V3 := VH , and T3 forms a
transitive set on its vertex set.

Then add T1, T2 and T3 to T . Orient all arcs from vertices in V1 towards vertices
of V2 and all arcs from vertices of V2 towards vertices of V3. The only arcs we still
need to orient are those between V1 and V3. For this, we look at the vertices of H
from which the vertices of V1 and V3 are derived; for va,i ∈ V1 and v′b ∈ V3, we add an
arc from v′b to va,i iff a = b (i.e., if they are derived from the same vertex of H), and
we add an arc from va,i to v′b otherwise. This completes the definition of T . Figure
3.1 gives an example of this construction for a hypergraph with five vertices and four
hyperedges.

We will now establish that if H is 2-colorable, so is T . Given a 2-coloring of H,
give all the vertices of V1 the same color as the vertex of H they are derived from,
and those in V3 the opposite color of the vertex of H they are derived from. Finally
color T2 properly with the same 2 colors. Then, any arc that goes from V3 to V1 will
be 2-colored, and since all arcs are oriented from V1 towards V2 and from V2 towards
V3, there can only be monochromatic triangles inside V1, V2 or V3. However, V2 is a
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bicolored triangle, and, every triangle in V1 and V3 represents a hyperedge of H and
must therefore contain two vertices of different colors.

It remains to show that if T has a proper 2-coloring C, then we can construct a
proper 2-coloring of H.

We define a coloring CH of H by assigning to every vertex va ∈ VH the same
color as its corresponding vertex v′a ∈ V3 has in C. Let us show that CH is a
proper 2-coloring of H. Notice that in a proper 2-coloring of H, va,i ∈ V1 must have
the opposite color of v′a ∈ V3, for any a, i. If it were not the case they would form a
directed triangle with the vertex in V2 of the same color, since T2 is a directed triangle
and must therefore be bicolored. Now suppose some hyperedge ei = (va, vb, vc) is
monochromatic under CH . Then v′a, v

′
b, v
′
c ∈ V3 all have the same color. Then, there

is a triangle (va,i, vb,i, vc,i) in T1 by definition, and all its vertices must have the
same color (the opposite of that used for v′a, v

′
b, v
′
c). This is a contradiction, thus all

hyperedges of H are bicolored, and CH is proper.

3.2 NP-Hardness of approximate coloring of k-colorable

tournaments

We will first improve upon these NP-hardness results and then show hardness of
coloring k-colorable tournaments for k ≥ 3 with O(1) colors under the d-To-1 con-
jecture. The d-To-1 conjecture was first introduced by Khot alongside the famous
Unique Games conjecture [Kho02], and has since been used to show hardness of
coloring 3-colorable graphs with O(1) colors [GS20b].

First notice that the search problem must be at least as hard as its decision
version.

Observation 3.2.1. Let k < ` be any two constants. If we can color k-colorable
tournaments with ` colors, then we can distinguish k-colorable tournaments from
tournaments with chromatic number at least `+ 1.

This comes immediately from the fact that if we could `-color all k-colorable
tournaments, then we could see that they do not have chromatic number ` + 1 or
greater. The hardness of distinguishing between chromatic number k and greater or
equal to ` + 1 is therefore commonly established as a way of implying the hardness
of coloring k-colorable graphs with ` colors (see for example [BKO19]).
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Figure 3.2: Construction of T from a 3-uniform hypergraph H. The edges in red
(going down) were represented only for vertex v1, but there is an arc from any vertex
v′a,i towards all vertices va,j for any j. The remaining arcs all go from the vertices
va,i towards the vertices vb,j for a 6= b (they go up).

We now prove that it is NP-hard to 3-color a 2-colorable tournament.

Theorem 3.2.2. For a tournament T , it is NP-hard to distinguish between the case
in which ~χ(T ) = 2 and the case in which ~χ(T ) ≥ 4.

Proof. Let H be a 3-uniform hypergraph. In [FGSY19] and [CHZ07], they show
how to construct a tournament G such that G is 2-colorable iff H is 2-colorable.
We will build a new tournament T = (V,A) such that if H is 2-colorable, T is also
2-colorable, and if H has chromatic number at least 7, then T has chromatic number
at least 4. (Notice that it is NP-hard to color a 3-uniform 2-colorable hypergraph
with c colors for any constant c [DRS05].)

We will start by defining a subtournament T1 = (V1, A1) of T . Given an enumer-
ation of the hyperedges of H, ei = (va, vb, vc), we will add three vertices va,i, vb,i and
vc,i to V1, and add to A1 the arcs (va,i, vb,i), (vb,i, vc,i) and (vc,i, va,i) such that these
three vertices form a directed triangle. We then add the arcs from all the vertices
va,i towards all the vertices vb,j for any a, b, i, j with i < j. We make a copy of T1,
that we call T2 = (V2, A2), and add both to T . We then add the tournament G, and
orient all arcs from vertices in V1 towards vertices of G, and all arcs from vertices
of G towards vertices in V2. The only arcs we still need to orient are those between
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V1 and V2. For this, we look at the vertices of H from which the vertices of V2 are
derived; for va,i ∈ V1 and v′b,j ∈ V2, we add an arc from v′b,j to va,i iff a = b (i.e.,
if they are derived from the same vertex of H), and we add an arc from va,i to v′b,j
otherwise. This completes the definition of T .

We will now establish that if H is 2-colorable, so is T . Given a 2-coloring of H,
give all the vertices of V1 the same color as the vertex of H they are derived from, and
those in V2 the opposite color of the vertex of H they are derived from. Finally color
G with the same 2 colors. Then, any arc that goes from V2 to V1 will be 2-colored,
and since all arcs are oriented from V1 towards G and from G towards V2, there can
only be monochromatic triangles inside V1, V2 or G. However, G is properly 2-colored
and thus does not have any monochromatic triangles. Furthermore, every triangle
in V1 and V2 represents a hyperedge of H and must therefore contain two vertices of
different colors.

It remains to show that if H has chromatic number at least 7, T has chromatic
number at least 4. We will establish this by contradiction: We show that if T has a
proper 3-coloring C, then we can construct a proper 6-coloring of H.

For every vertex va of H, consider the set of vertices Sa = {va,i | ∀i, va,i ∈ V1}
and Qa = {va,i | ∀i, va,i ∈ V2}. A key property of our construction is that if H is not
2-colorable, then in any proper 3-coloring of T , either the set Sa or the set Qa must
be monochromatic. To see this, notice that if any vertex of Sa has the same color as
any vertex of Qa, then they will form a monochromatic triangle with a third vertex
from G that has the same color (since G is colored with at least 3 colors). So if Sa
and Qa each use at least 2 out of 3 colors, then at least one color appears in both Sa
and Qa resulting in a monochromatic triangle.

Next we define a coloring CH of H as follows, by relating each color to an integer.
If Sa is monochromatic, then set CH(va) = C(Sa). Otherwise, if Qa is monochro-
matic, then set CH(va) = C(Qa) + 3. Now take any hyperedge (va, vb, vc) of H; if the
three sets Sa, Sb and Sc are monochromatic, then since there is a directed triangle
(va,j, vb,j, vc,j) in T1 for some j, the three vertices cannot have the same color in C,
so they also do not all have the same color in CH . If none of the three sets Sa, Sb
and Sc are monochromatic, then the sets Qa, Qb and Qc are each monochromatic, so
the same argument applies. Finally, without loss of generality we can suppose Sa is
monochromatic but not Sb. Then va and vb do not have the same color in CH by
definition. Therefore, by case analysis, no hyperedge of H can be monochromatic,
and thus CH is a proper 6-coloring of H.
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Our goal is now to extend this hardness result to k-colorable tournaments. To
do this, we will use an iterative construction presented in the following claims.

Claim 3.2.3. Let a, b, c, d, e, ` be positive integers such that e < c + d. Let H be
a 3-uniform hypergraph, and let R1, R2 and R3 be three tournaments such that if
χ(H) = 2, then ~χ(R1) = a, ~χ(R2) = b and ~χ(R3) = a + b, and if χ(H) ≥ `, then
~χ(R1) ≥ c, ~χ(R2) ≥ d and ~χ(R3) ≥ e.

Then we can construct a tournament R′ with chromatic number ~χ(R′) = a+ b if
χ(H) = 2, and ~χ(R′) ≥ e+ 1 if χ(H) ≥ `.

Proof. Let H be a hypergraph and let R1, R2 and R3 be three tournaments that
satisfy the conditions. Let R′ = ∆(R1, R2, R3). Now we want to show that if
χ(H) = 2, ~χ(R′) = a + b. Simply color R1 with a colors, R2 with a new set of b
colors, and R3 with the same set of a + b colors. These dicolorings will be proper
since χ(H) = 2. The dicoloring of R′ is proper since there is no monochromatic
triangle inside R1, R2 or R3, and any triangle containing vertices from R1 and R2

will have at least two different colors.

Next we want to show that if χ(H) ≥ `, ~χ(R′) ≥ e + 1. Suppose R′ has a
coloring with e colors. Then, since c + d > e, R1 and R2 must share at least one
color. Furthermore, all e colors are used in R3 by assumption. So there must be a
monochromatic triangle since every triplet (u, v, w) with u ∈ R1, v ∈ R2, w ∈ R3

forms a directed triangle. Thus, ~χ(R′) ≥ e+ 1.

Claim 3.2.4. Let a, b, c, d, ` be positive integers. Let H be a 3-uniform hypergraph,
and let R1 and R2 be two tournaments such that if χ(H) = 2, then ~χ(R1) = a and
~χ(R2) = b, and if χ(H) ≥ `, then ~χ(R1) ≥ c, ~χ(R2) ≥ d.

Then there exists a tournament R′ with ~χ(R′) = a + b if χ(H) = 2 and ~χ(R′) ≥
c+ d if χ(H) ≥ `.

Proof. We will prove by induction on k with a + b ≤ k ≤ c + d, that there exists a
tournament R′k with ~χ(R′k) = a+ b if χ(H) = 2, and ~χ(R′k) ≥ k if χ(H) ≥ `.

Initialization: For k = a+ b, define R′a+b to be any tournament with chromatic
number a+ b.

Induction: Suppose that for a fixed k < c+d, there is a tournament R′k verifiying
the conditions, then let us show that there is a tournament R′k+1 that verifies these
same conditions for k+ 1. We apply Claim 3.2.3 where R1 and R2 from both claims
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are the same, and R3 is R′k. This proves the existence of a tournament R′k+1 such
that ~χ(R′k+1) = a+ b if χ(H) = 2, and ~χ(R′k) ≥ k + 1 if χ(H) ≥ `.

Now we simply define R′ = R′c+d.

We remark that as every iteration of the construction can be done in polynomial
time, and there are at most c + d iterations, R′ can be constructed in polynomial
time and has size |V (R′)| ≤ (c+ d) · (|V (R1)|+ |V (R2)|) + |V (Ra+b)|.

This gadget R′ will allow us to prove that it is NP-hard to color a k-colorable
tournament with 2k − 1 colors.

Theorem 3.2.5. For a tournament T , it is NP-hard to distinguish between the case
in which ~χ(T ) = k and the case in which ~χ(T ) ≥ 2k.

Proof. Given a 3-uniform hypergraph H, we will prove by strong induction on k that
for every k, there exists a tournament Tk of size polynomial in |V (H)| such that if
χ(H) = 2 then ~χ(Tk) = k, and if χ(H) ≥ 7 then ~χ(Tk) ≥ 2k.

Initialization: For k = 2, we refer to the tournament constructed in the proof
of Theorem 3.2.2.

For k = 3, let T3 = ∆(T2, T2, T2). If χ(H) = 2, coloring the first copy with colors
1, 2, the second with colors 2 and 3, and the third with colors 3 and 1 yields a 3-
coloring. This tournament is also not 2-colorable since in any 2-coloring, all copies of
T2 must use the same two colors, and thus there would be a monochromatic directed
triangle.

If χ(H) ≥ 7, T2 has chromatic number at least 4. Therefore, in any 5-coloring,
two colors must be used in every copy of T2, which would lead to a monochromatic
directed triangle. Therefore, ~χ(T3) ≥ 6.

Induction hypothesis: For every m ≤ k, there exists a tournament Tm of
size polynomial in |V (H)| such that if χ(H) = 2, ~χ(Tm) = m, and if χ(H) ≥ 7,
χ(Tm) ≥ 2m.

Induction: Let us show that there exists a tournament Tk+1 of size polynomial
in |V (H)| such that if χ(H) = 2, ~χ(T ) = k + 1, and if χ(H) ≥ 7, ~χ(G) ≥ 2(k + 1).

Take the two tournaments Tb k+1
2
c, Td k+1

2
e obtained from the 3-uniform hypergraph

H. These obey the conditions of Claim 3.2.4, thus there exists a tournament, that
we call Tk+1, such that if χ(H) = 2, ~χ(Tk+1) = k + 1, and if χ(H) ≥ 7, ~χ(Tk+1) ≥
2(dk+1

2
e+ bk+1

2
c) = 2(k + 1).
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This concludes the induction. It immediately follows that it is NP-hard to distin-
guish between tournaments with chromatic number k and tournaments with chro-
matic number 2k, as being able to do so would allow us to distinguish between
3-uniform hypergraphs with chromatic number 2, and 3-uniform hypergraphs with
chromatic number at least 7, which is NP-hard [DRS05, Bha18].

3.3 Reduction from coloring graphs to coloring

tournaments

In Section 2.3, we showed that if we can color a 3-colorable graph with k colors, then
we can color a 3-colorable tournament with 50k colors. In this section, we give a
reduction in the other direction, we show that the problem of coloring a k-colorable
graph with ` colors is reducible to the problem of coloring a k-colorable tournament
with ` colors. A corollary of this reduction is hardness of coloring tournaments under
the d-To-1 Conjecture of Khot [Kho02]; [GS20b] showed that assuming the d-To-1
Conjecture, it is hard to color 3-colorable graphs with O(1) colors, and using our
reduction, we can extend this hardness to tournaments.

Theorem 3.3.1. Given any two constants k, ` ≥ 3, if we can efficiently distinguish
k-colorable tournaments and tournaments with chromatic number at least `, then we
can efficiently distinguish k-colorable graphs and graphs with chromatic number at
least `.

We start by proving the following lemma that presents the building block of the
reduction.

Lemma 3.3.2. Let c be a positive integer, G = (VG, EG) a graph and T = (VT , AT )
a tournament such that ~χ(T ) = k when χ(G) = k, and ~χ(T ) ≥ min(χ(G), c) when
χ(G) > k. We can build a new tournament U = (VU , AU) such that ~χ(U) = k when
χ(G) = k, and ~χ(U) ≥ min(χ(G), c+ 1) otherwise.

Proof. Let nG = |VG| and let (Ti)1≤i≤nG−1 be copies of T . Let Ti = (Vi, Ai). Then
VU := (∪1≤i≤nG−1Vi) ∪ VG. Fix an arbitrary ordering of the vertices in VG. To build
AU , add the arc from vj to vi if (vi, vj) ∈ EG, and the arc from vi to vj otherwise
(i.e., if (vi, vj) /∈ EG). The resulting tournament induced on the vertices of VG is said
to have G as a backedge graph. Next we add all the arcs from vi to all vertices of Tj
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v1 v2 v3 v4 v5

T1 T2 T3 T4

Figure 3.3: Construction of the tournament U from a graph G on five vertices. The
dashed red edges are those present in G and all go backwards, whereas the remaining
edges are blue and go forwards.
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for every i ≤ j, and the arcs from every vertex of Ti to vj for all i < j. Finally, we
add the arcs from any vertex of Ti to any vertex of Tj for every i < j. This concludes
the construction of U , which is depicted in Figure 3.3.

Suppose χ(G) = k. Then let us show that ~χ(U) = k. In this case, ~χ(T ) = k by
assumption. We take a k-coloring of G and a k-coloring of T and color the vertices
in U (i.e., in VG and in Vi for all 1 ≤ i ≤ nG−1) according to these colorings. Notice
that all arcs that are backwards with respect to the order v1 → T1 → v2 → ... →
vi → Ti → ...→ T|VG|−1 → v|VG| are bicolored. To see this, observe that arcs from vj
to vi for j > i belong to EG and are therefore bicolored, and by construction, there
are no arcs from vj to Ti nor from Tj to Ti for j > i. Thus, there can only possibly be
monochromatic triangles within Ti, but these sets are properly colored. Therefore,
this is a proper dicoloring of the tournament U and ~χ(U) = k.

Let us now prove that when χ(G) > k, we have ~χ(U) ≥ min{χ(G), c + 1}. By
assumption, we have ~χ(T ) ≥ min{χ(G), c} in this case. Thus, if c = χ(G), then
the claim is true, since T is a subtournament of U . So let us consider the case
in which c < χ(G). Then given a coloring of U with c colors, there must be a
monochromatic edge (vi, vj) in G. Assuming without loss of generality that i < j,
there is a monochromatic arc from vj to vi in U . Furthermore, since ~χ(T ) ≥ c, there
must be some vertex of Ti that has the same color as vi and vj. Since all vertices in
Ti form a directed triangle with vi and vj, this means that there is a monochromatic
triangle in U , which is a contradiction.

We can then prove Theorem 3.3.1 by a simple induction.

Proof of Theorem 3.3.1. Let G = (VG, EG) be a graph and let ` ≥ 3 be a constant.
For all c ≥ k, let us build a tournament Tc = (VTc , ATc) by induction such that if
χ(G) = k, then ~χ(Tc) = k, and otherwise if χ(G) ≥ `, then ~χ(Tc) ≥ min{χ(G), c}.

Initialization: For c = k, any k-colorable tournament satisfies the conditions.

Induction: Suppose there is a tournament Tc satisfying the conditions for a
constant c. Let us show that there is a tournament Tc+1 that satisfies these same
conditions for c+ 1. This follows from Lemma 3.3.2 where Tc is T , and Tc+1 is U .

Consider the tournament T`; it is of size |VT`| = O(|VG|2
`
), which is polynomial

for fixed `. Furthermore, if χ(G) = k then ~χ(T`) = k, and otherwise ~χ(T`) ≥
min{χ(G), `}, thus if we can efficiently decide if T` has chromatic number k or at
least `, we can also efficiently decide if G has chromatic number k or at least `.
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Using the hardness of coloring 3-colorable graphs with a constant number of
colors under the d-To-1 conjecture [GS20b], we get equivalent hardness for coloring
3-colorable tournaments, and thus k-colorable tournaments for k ≥ 3 (since any
3-colorable tournament is also k-colorable when k ≥ 3).

Corollary 3.3.3. Let 3 ≤ k < ` be any two constants. Then if the d-To-1 conjecture
is true, we cannot distinguish between tournaments with chromatic number k and
tournaments with chromatic number at least `.

Notice that if stronger hardness (for example constant hardness under the P 6= NP
assumption) were established for approximate coloring of 3-colorable graphs, then
this reduction would provide stronger hardness results for 3-colorable tournaments
(and thereby also for k-colorable tournaments). This would hold up to constant
hardness, after which the blowup of the size of the tournament in the construction
would be more then polynomial.

3.4 Hardness of approximation for general tour-

naments

In this section, our goal is to prove hardness of approximation for tournaments with
no promise on the chromatic number. Our proof parallels the proof of hardness of
approximate coloring of digon-free digraphs of [FHS19]; we extend their approach to
tournaments and show that it can be used to obtain hardness of approximation.

Lemma 3.4.1. Let ε be a constant such that 0 < ε < 1. There exists a tournament
T = (V,A) where V = X + Y with |X| = |Y | = n such that with probability going
to 1 as n goes to infinity, for every two subsets SX ⊆ X, SY ⊆ Y having |SX | ≥ nε,
|SY | ≥ nε, the tournament induced by SX ∪ SY contains a triangle.

Proof. Define T = (V,A) with V = X ∪ Y such that X and Y each form transitive
tournaments on n vertices. Then orient all the remaining arcs randomly; so for
u ∈ X, v ∈ Y , the arc goes from u to v with probability 1/2.

Given 0 < ε < 1, take any SX ⊆ X, SY ⊆ Y with |SX | ≥ nε and |SY | ≥ nε.
Take u, v ∈ SX , and w ∈ SY . Then the probability of (u,v,w) forming a directed
triangle in T is 1/4, thus the probability of u and v forming no triangle with any
vertex in SY is at most (3/4)n

ε
since the arcs between u and w and between v and
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w are oriented independently for every w ∈ SY . This probability tends to zero as n
goes to infinity.

The previous lemma can be derandomized using an explicit construction for bi-
partite Ramsey graphs [BRSW12].

Lemma 3.4.2. Let ε be a constant such that 0 < ε < 1. There exists a tournament
T = (V,E) where V = X + Y with |X| = |Y | = n such that for sufficiently large n,
for every two subsets SX ⊆ X, SY ⊆ Y having |SX | ≥ nε, |SY | ≥ nε, the tournament
induced by SX ∪ SY contains a triangle.

Proof. Take a sufficiently large n. Then, from Theorem 1.3 in [BRSW12] there
exists an explicit construction of a bipartite o(n)-Ramsey graph over n vertices. Let
B1 = (X1, Y1, E1) be such a graph. Then, define the tournament T = (V,E) with
V = X + Y in the following way:

• X = X1 and Y = Y1

• Orient the arcs inside X and Y such that they both induce transitive tourna-
ments.

• For every u ∈ X, v ∈ Y , orient the arc from u to v if (u, v) ∈ E1 and from v
to u otherwise.

Given 0 < ε < 1, take any SX ⊆ X, SY ⊆ Y with |SX | ≥ nε and |SY | ≥ nε. Let
x ∈ SX and y ∈ SY be the middle vertices of SX and SY (i.e. x has roughly equal
in and out-degree in SX , and y in SY ). Without loss of generality, suppose that the
arc between u and v is oriented from u to v. Then, the graph induced on B1 by
SX [N−(u)] and SY [N+(v)] is of size at least nε − 2, thus it is neither complete nor
empty for sufficiently large n (since B1 is a o(n)-Ramsey graph). This implies that
there is an arc from a vertex y ∈ SY [N+(v)] to a vertex x ∈ SX [N−(u)]. Thus, there
is a directed cycle (u, v, y, x) in SX ∪ SY , and since it is a tournament, there is some
directed triangle.

Theorem 3.4.3. It is NP-hard to find an acyclic induced subgraph of size greater
than n1/2+ε in an nε-colorable tournament, for every 0 < ε < 1

4
.

Proof. For any ε > 0, let G = (V,E) be a graph on nG vertices, colorable with nεG
colors. Feige and Kilian [FK96] proved that it is NP-hard to find an independent set
of size greater than nεG in such graphs.
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For each vertex vi ∈ V , define a new transitive tournament Ti on nG vertices. For
each edge (vi, vj) ∈ E, join Ti and Tj such that they form the tournament of Lemma
3.4.2, with Ti being X and Tj being Y . For all remaining vi, vj ∈ V with i < j (such
that (vi, vj) /∈ E), orient all arcs from each vertex of Ti to each vertex of Tj. This
defines a new tournament T on n = n2

G vertices. T has an acyclic k-coloring with
k ≤ nε/2 by coloring each Ti with the color of vi in a nεG = nε/2-coloring of G. Indeed,
the only arcs that are not bicolored are inside a Ti for some i, or from a vertex of
Ti to a vertex of Tj for i < j, and can thus never form a triangle. Let S be an
acyclic induced subtournament of T . Notice that from Lemma 3.4.2, if S intersects
every (Ti)i∈I on more than nε vertices, then (vi)i∈I forms an independent set of G.

Therefore, if |S| > 2n
1+ε
2 , there must be at least nε tournaments that intersect S

on at least nε vertices, which then leads to an independent set of size at least nε in
G.

The hardness of approximating a coloring in tournaments then comes as a corol-
lary, as it immediately follows that it is NP-hard to distinguish a nε-colorable tour-
nament from a k-colorable tournament with k ≥ n1/2−ε, for every 0 < ε < 1

4
.

Corollary 3.4.4. Given any arbitrarily small constant ε > 0, it is NP-hard to ap-
proximate the chromatic number of tournaments within a factor of n1/2−ε.
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Chapter 4

Extensions

In the following chapter, we will start by showing bounds for our algorithm on light
tournaments. For completeness we also present an algorithmic version of the decom-
positions of [BCC+13], which gives weaker results for the class of light tournaments.
Thereafter, we extend our algorithm to the setting of 2-colorable dense digraphs, and
triangle-free digraphs with independence number 2.

4.1 Light tournaments

Light tournaments are exactly those which do not contain the hero ∆(1, 1, C3).
[BCC+13] proved that light tournaments have constant chromatic number, but they
did not state a precise constant, and their proof is not algorithmic. A careful modifi-
cation of their approach can be used to give an algorithmic proof that this constant
is around 35. Details are provided in Section 4.2, since they could be useful in finding
algorithms for tournaments with other forbidden heroes.

In this section, our goal is to prove the following theorem.

Theorem 4.1.1. Let T be a light tournament. Then ~χc(T ) ≤ 8.

Lemma 4.1.2. Let T be a light tournament. Then we can find u, v such that:

(i) ~χc(N
+(u)) ≤ 3,

(ii) ~χc(N
−(v)) ≤ 3, and
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(iii) ~χc(N
−(v) ∪N+(u)) ≤ 5.

Assuming Lemma 4.1.2, we can prove Theorem 4.1.1.

Proof of Theorem 4.1.1. If the shortest path from u to v has length at least four,
then notice that all arcs between N+(u) and N−(v) go from N−(v) to N+(u). Then
by items (i) and (ii) from Lemma 4.1.2, we have ~χc(N

−(v) ∪ N+(u)) ≤ 3, so T has
a 3-vertex chain. By Lemma 2.1.4, we can color T with seven colors.

Next, we consider the case in which the shortest path from u to v has length at
most three. Then by item (iii) from Lemma 4.1.2, we have ~χc(N

−(v) ∪N+(u)) ≤ 5.
Moreover each remaining vertex is in N(e) for some edge e on the shortest path. So
in total, we use at most eight colors.

Now it remains to prove Lemma 4.1.2. We will start by establishing some struc-
tural claims about light tournaments which are adapted from [BCC+13]. For the
rest of this section, T = (V,A) will denote a light tournament. Note that we do not
assume that T is necessarily 2-colorable. Recall that a C3 is a directed triangle.

Definition 4.1.1. Define a C3-chain of length ` in T to be a set of ` vertex disjoint
C3’s, X = (X1, X2, X3, . . . , X`), such that for each i ∈ {1, . . . , `− 1}, Xi ⇒ Xi+1.

A backwards arc in a C3-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

Lemma 4.1.3. A C3-chain has no backwards arcs.

This follows from the following claim.

Claim 4.1.4. If X = (X1, X2, . . . , X`) is a C3-chain of length `, then Xi ⇒ Xj for
i < j, where 1 ≤ i < j ≤ `.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a C3-
chain, we have all arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2 to
Xi since otherwise triangle Xi+1 would appear in the neighborhood N(uv), meaning
that uv is heavy, which is a contradiction. This implies that all arcs go from Xi to
Xi+2 (since T is a tournament). Now suppose j > i + 2. If there is a back arc uv
from u ∈ Xj to v ∈ Xi, then uv is a heavy arc, because Xj−1 would be in N(uv)
since by induction we have all arcs from Xi to Xj−1 and from Xj−1 to Xj. 3

Let us fix X = (X1, X2, . . . , X`) to be a C3-chain in T , and let W = V (T )\V (X).
Initially, X can be of any length ` ≥ 1.
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Claim 4.1.5. For w ∈ W :

1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.

2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.

Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is a
heavy arc. Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for j < i,
then wu is a heavy arc. 3

We partition the vertices in W into zones (Z0, Z1, . . . , Z`) using the following
criteria. For w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned
to zone Zi. If there is no such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in X. Let C ⊆ W
be the set of clear vertices.

Claim 4.1.6. If C is not transitive, we can extend X.

Proof. If the set Zi ∩ C contains a triangle, then we can extend X by adding a new
triangle to the chain between Xi and Xi+1.

If there is no i such that Zi ∩ C contains a triangle, then we claim that C is
transitive. This follows from the observation that there are no backwards arcs from
Zj ∩ C to Zi ∩ C for i < j. Indeed, should such an arc uv from Zj ∩ C to Zi ∩ C
exist, then Xi+1 ⊂ N(uv), so uv would be heavy. 3

We say that X is a maximal C3-chain if C is transitive. Let us also now define
the unclear vertices U , where U = W \C. In a maximal C3-chain X = (X1, . . . , X`),
notice that for a vertex a ∈ X1, we have N−(a) ∩ U ⊆ N±(X1). (This is because if
a vertex u ∈ N−(a) has u⇒ Xi then u would be a clear vertex.)

Claim 4.1.7. We can efficiently find two directed triangles X1 = abc and X` = xyz
such that the set S = {v | v ⇒ X1 or X` ⇒ v} is transitive.

Proof. Find a maximal C3-chain X and let ` be the length of this chain. Let abc = X1

and xyz = X`. The set of vertices {v | v ⇒ X1 or X` ⇒ v} is a subset of C and is
therefore transitive. 3

Claim 4.1.8. Let xyz be a directed triangle. Then ~χc(N
±({x, y, z})) ≤ 3.
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Figure 4.1: 3-chromatic light tournament.

Proof. Each vertex v ∈ N±({x, y, z}) belongs to N(xy), N(yz) or N(zx). Since each
of these sets is transitive, we conclude that N±({x, y, z}) can be colored with three
colors. 3

We can now prove Lemma 4.1.2.

Proof of Lemma 4.1.2. Recall that for a vertex a ∈ X1, we have N−(a) ∩ U ⊆
N±(X1). If X1 = abc, notice that for v ∈ N−(a)∩U , v /∈ N(ca). Thus, N−(a)∩U ⊆
N(ab) ∪ N(bc), which is efficiently 2-colorable. Making an analogous argument for
X` = xyz and N+(z) ∩ U , we conclude that (N+(z) ∪ N−(a)) ∩ U is efficiently 4-
colorable. The rest of the vertices in N+(z) ∪N−(a) belong to the set S defined in
Claim 4.1.7 and can be colored with one color. Therefore ~χc(N

+(z) ∪ N−(a)) ≤ 5.
Moreover, we have ~χc(N

+(z)) ≤ 3 and ~χc(N
−(a)) ≤ 3.

The approach in this section can be extended to bound the chromatic number of
a more general subclass of heroes. See Section 4.3 for details.

It is a natural question to determine upper and lower bounds on the chromatic
number of light tournaments (e.g., see Problem 1 in [MW11]). Theorem 4.1.1 gives
an upper bound on the chromatic number of a light tournament. On the other hand,
there exist light tournaments that are not 2-colorable. An example is the Paley tour-
nament P7, one of the four 3-chromatic tournaments on seven vertices [NL94]. This
tournament is represented in Figure 4.1. We have not found any light tournament
with chromatic number at least four. The Paley tournament P11 is the unique 4-
chromatic tournament on 11 vertices [NL94]. A light 4-chromatic tournament would
have to have at least 13 vertices as [BBKP23] proved that any 4-chromatic tourna-
ment on 12 vertices must contain an induced copy of P11 and P11 is not light.

Regarding the complexity of coloring a light tournament, notice that if we could
show that it is hard to color a 2-colorable tournament with four colors (rather than
three as per Theorem 3.2.2), this would imply hardness of coloring a 2-colorable
light tournament with two colors by Observation 2.2.2. Indeed, we have no hardness
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results for coloring light tournaments. Any upper bound of c on their chromatic
number would imply that it cannot be NP-hard to color them with c colors, because
the property of being light is checkable in polynomial time (unlike the property of
being, say, 2-colorable).

4.2 Other decompositions for light tournaments

For the sake of completeness, we show that two other approaches from the literature
can be adapted to obtain efficient algorithms for coloring light tournaments. We
prove the following lemma, which is weaker than what we proved in Section 4.1.

Lemma 4.2.1. Let T be a light tournament. Then ~χc(T ) ≤ 35.

Algorithm I for Coloring Light Tournaments

Since a light tournament forbids a heavy edge, and a heavy edge is a hero (i.e., it is
∆(C3, 1, 1)), we show that the decomposition approach of [BCC+13] for bounding the
dichromatic number of tournaments without a fixed hero can turned into an efficient
algorithm to color a light tournament with approximately 35 colors. Throughout
this section T = (V,A) will denote a light tournament.

In Section 4.1, we already presented many of the necessary definitions. We con-
sider a C3-chain (Definition 4.1.1). Since there are no backwards arcs in a C3-chain,
we have the following corollary.

Corollary 4.2.2. A C3-chain can be efficiently 2-colored.

Let us fix X = (X1, X2, . . . , X`) to be a maximal C3-chain in T , and let W =
V (T ) \V (X). Recall that W is further partitioned into clear and unclear vertex sets
denoted by C and U , respectively. A vertex v belongs to C if for every Xi, we have
either v ⇒ Xi or Xi ⇒ v. If C is transitive, then X is defined to be maximal. Notice
that such a maximal C3-chain can be found in polynomial time, while in the proof
of [BCC+13], they used a maximum length C3-chain (or more generally jewel-chain);
it is not clear that a C3-chain of maximum length can be found efficiently.

Now let us consider the unclear vertices U . Notice that if a vertex u ∈ U belongs
to zone Zi for i ∈ {1, . . . , `− 1}, then there is at least one arc from u to a vertex in
Xi+1.

46



Claim 4.2.3. ~χc(Zi ∩ U) ≤ 3.

Proof. If z ∈ Zi ∩ U , then Xi ⇒ z. However, we have z ↔ Xi+1. This means that
z belongs to N(uv) for some arc uv ∈ Xi+1. In other words, we can partition the
vertices in Zi ∩ U into three sets according to the three arcs in Xi+1. Since there
are no heavy arcs, each of these three sets is transitive and we can color Zi ∩U with
three colors.

Claim 4.2.4. ~χc(Xi ∪ (Zi ∩ U)) ≤ 5.

Proof. We use two colors for Xi (which is a triangle) and three colors for Zi∩U .

For simplicity, let us now assume that every vertex in V (T ) belongs to X or to
U . Thus, we assume that Zi = Zi∩U . (We only need one extra color for C since it is
transitive.) Let Y0 = Z0 and for i ∈ {1, . . . , `}, let Yi = Xi∪Zi. Define Y L

i =
⋃i−1
j=0 Yj

and Y R
i =

⋃`
i+1 Yj.

Claim 4.2.5. Let v ∈ Yi. Then:

(i) ~χc(N
+(v) ∩ Y L

i ) ≤ 3, and

(ii) ~χc(N
−(v) ∩ Y R

i ) ≤ 3.

Proof. We consider several cases. The first case is v ∈ Xi. Notice thatN+(v)∩Xj = ∅
for j < i, and N−(v)∩Xj = ∅ for j > i. We also note that N−(v)∩(Zi+1∪ . . .∪Z`) =
∅. Now observe ~χc(N

+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)) ≤ 3. This is because each
u ∈ N+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1) belongs to N(xy) for some arc xy ∈ Xi.

Now consider the case where v ∈ Zi. There are four subcases to consider.

1. N+(v) ∩ (X1 ∪ . . . ∪Xi−1) = ∅.

2. N+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪ Zi−1)
Consider u ∈ N+(v) ∩ (Z0 ∪ Z1 . . . ∪ Zi−1). If u ⇒ Xi, then vu is a heavy arc
(since Xi ⊆ N(vu)). If Xi ⇒ u, then u would be in Zi (at least). Thus, u
belongs to N(xy) for some arc xy ∈ Xi. Hence, ~χc(N

+(v) ∩ (Z0 ∪ Z1 ∪ . . . ∪
Zi−1)) ≤ 3.

3. N−(v) ∩ (Xi+1 ∪ . . . ∪X`).

Since ~χc(X) ≤ 2, we have ~χc(N
−(v) ∩ (Xi+1 ∪ . . . ∪X`)) ≤ 2.
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4. N−(v) ∩ (Zi+1 ∪ . . . ∪ Z`).
Consider x ∈ Xi+1 such that arc vx is an arc. (Such an x exists, because it is
not the case that Xi+1 ⇒ v.) Now consider u ∈ N−(v) ∩ (Zi+1 ∪ . . . ∪ Z`). We
claim that u ∈ N(vx). We conclude that ~χc(N

−(v) ∩ (Zi+1 ∪ . . . ∪ Z`)) ≤ 1.

1. and 2. together imply (i) in the statement of the claim, and 3. and 4. imply
(ii).

Lemma 4.2.6. Let (Y0, Y1, . . . , Y`) be a partition of V (T ) such that ~χc(Yi) ≤ c1 and
for each v ∈ Yi:

• ~χc(N
+(v) ∩ (Y0 ∪ Y1 ∪ . . . ∪ Yi−1)) ≤ c2, and

• ~χc(N
−(v) ∩ (Yi+1 ∪ . . . ∪ Y`)) ≤ c2.

Then ~χc(T ) ≤ 2(2c1 + 2c2 + 1).

Proof. Let B ⊂ A(T ) be the set of backwards arcs (uv ∈ B if u ∈ Yi and v ∈ Yj for
j < i). If there are no backwards arcs, then ~χc(T ) ≤ maxi∈{0,1,...,`}{~χc(Yi)} ≤ c1. Now
we consider only a subset of backwards arcs chosen as follows: Choose the longest
backwards arc u1v1 where u1 ∈ Y`. Suppose v1 ∈ Yj for j < `. Let T1 =

⋃`
i=j Yi.

Then choose the next backwards arc u2v2 with u2 ∈ V (T1) and v2 in Yk for the
smallest value of k possible, etc. Let T2 =

⋃j−1
i=k Yi, etc. Notice that if we consider

the union of all Ti with odd i, there are no backwards arcs between them, and the
same for Ti with even i. Suppose there are h such Ti’s.

Then, ~χc(T ) ≤ 2 · maxi∈{1,...,h} ~χc(Ti). Now we claim that ~χc(Ti) ≤ 2c1 + 2c2 +
1. Consider the backwards arc uv, where u ∈ Yk and v ∈ Yj for j < k. We
can color N−(v) ∩ (Ti \ Yj) and N+(u) ∩ (Ti \ Yk) each with c2 colors. We can
color Yj and Yk each with c1 colors. Finally, we consider all vertices in P = Ti \
{Yj ∪ Yk ∪N+(u) ∪N−(v)}. All vertices in P belong to N(uv) and thus form a
transitive tournament requiring one more color.

So the algorithm to color a light tournament T is to find a maximal C3-chain
X. Next, color the clear vertices C with one color and remove C from T . Now con-
sider the induced tournament on the remaining vertices and construct the partition
(Y0, Y1, . . . , Y`) based on X. Now follow the procedure in Lemma 4.2.6.

Notice that c1 = 5 and c2 = 3. So Lemma 4.2.6 uses 34 colors, and we add one
more color to color C.
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Algorithm II for Coloring Light Tournaments

[HLNT19] gave an algorithm to color a triangle-free dense digraph (with bounded
independence number). We show how this approach can be adapted to give another
algorithm to color a light tournament with at most 29 colors.

In this section, T is always a light tournament unless otherwise noted.

Definition 4.2.1. A set of vertices B ⊆ V is a bag of T if for every triangle xyz in
V \B, there is some vertex b ∈ B such that {x, y, z} ⇒ b or b⇒ {x, y, z}. Moreover,
a bag must contain a directed triangle (i.e., it cannot be transitive).

Observe that if B is not a bag of T , then we can color B with three colors. If B
is a bag of T , then any S such that B ⊂ S ⊂ V is also a bag of T . Also, note that
V itself is a bag of T .

Claim 4.2.7. If B ⊂ V is not a bag of T , then ~χc(T [B]) ≤ 3.

Proof. If B is not a bag of T because it does not contain a triangle, then it is
transitive. If it contains a triangle and is not a bag of T , then there is some triangle
xyz such that {x, y, z} ⊂ V \ B and for every b ∈ B, b ∈ N o({x, y, z}). Thus, we
can apply Claim 4.1.8.

We say a bag B is poor if there is some triangle xyz ∈ B such that N+({x, y, z})
or N−({x, y, z}) is not a bag. We want to show that poor bags can also be colored
with a constant number of colors.

Claim 4.2.8. If B ⊆ V is a poor bag, then ~χc(T [B]) ≤ 18.

Proof. Consider a poor bag B. Consider all triangles in B. For each triangle, either
its in-neighborhood or its out-neighborhood is not a bag of T . If there is a triangle
xyz in B such that both its in-neighborhood and its out-neighborhood are not bags
of T , then we can color B with at most 11 colors: three for in-neighborhood, three
for the out-neighborhood, two for the triangle and three for N o({x, y, z}).

So suppose for each triangle in B, its in-neighborhood is not a bag and its out-
neighborhood is a bag, or vice-versa. According to these two possibilities, partition
these triangles into L and R and consider the respective vertex sets (which can
overlap). Consider R. These are triangles whose out-neighborhood is not a bag.
Since there are no backwards arcs in a chain of C3’s, there must be some triangle
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xyz in R such that N−({x, y, z})∩R does not contain a triangle. Thus, we can color
its in-neighborhood with one color, its out-neighborhood with three colors, it’s non-
neighborhood with three colors, and the triangle itself with two colors, for a total
of nine colors. We repeat the argument for L, so the maximum number of colors
required is 18.

Following [HLNT19], our plan is to find a chain of poor bags, put the remaining
vertices into zones and show that there are no long backwards arcs between the zones.

We define B = (B1, B2, . . . , B`) to be a bag chain of length ` if each Bi is a bag of
T and Bi ⇒ Bi+1 for all i ∈ {1, 2, . . . , `− 1}. Let W = V (T ) \ V (B). Assign w ∈ W
to zone Zi if i is the highest index such that Bi ⇒ w.

Claim 4.2.9. Let B = (B1, B2, . . . , B`) be a bag chain for a light tournament T . Let
(Z0, Z1, . . . , Z`) be a partition of V (T ) \ V (B) zones. The following properties hold:

1. Bi ⇒ Bi+r for every r ≥ 1,

2. Bi ⇒ Zi+r for every r ≥ 0,

3. Zi ⇒ Bi+r for every r ≥ 3,

4. Zi ⇒ Zi+r for every r ≥ 2.

Proof. The first property holds for r = 1 by definition of a chain of bags. Now let
r ≥ 2. Suppose there is a backwards arc uv with u ∈ Bi+r and v ∈ Bi. Since Bi+1

contains a triangle, the arc uv is heavy, which is a contradiction.

By the partitioning criteria of vertices in V (T )\V (B) into zones, we haveBi ⇒ Zi.
If there is some arc uv with u ∈ Zi and v ∈ Bj for j < i, then arc uv is heavy. Thus,
Bj ⇒ Zi for all j < i.

To prove the third property, suppose there is an arc uv with u ∈ Bi+3 and v ∈ Zi.
Then there is some arc vx for x ∈ Bi+1 (otherwise, v would be in Zi+1). Then
uvx is a triangle. Since Bi+2 is a bag of T , there is some vertex y ∈ Bi+2 such that
y ⇒ {u, v, x} or {u, v, x} ⇒ y. But this is not possible since x⇒ Bi+2 and Bi+2 ⇒ u.
Thus, there is no such arc uv and we have Zi ⇒ Bi+3. Now replace 3 with r.

For the last property, suppose that there is an arc uv with u ∈ Zi+2 and v ∈ Zi.
Consider some x ∈ Bi+1 such that uxv is a triangle. Now since Bi+2 is a bag of
T , there is some y ∈ Bi+2 such that y ⇒ {u, x, v} or {u, x, v} ⇒ y, which is a
contradiction since Bi+1 ⇒ Bi+2 and Bi+2 ⇒ Zi+2. Now replace 2 with r ≥ 2.
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Now we need to show that we can color Bi∪Zi efficiently with a constant number
of colors. For this, we need the following observations.

Claim 4.2.10. A zone Zi does not contain a bag chain of length at least five.

Proof. If so, we can extend the principal bag chain B.

Claim 4.2.11. A tournament without a bag chain of length five can be colored with
c colors.

Proof. Let S ⊂ V be a set of vertices such that S does not contain a bag chain of
length five for T . Either S itself is not a bag of T or S is a poor bag of T , in which
case, we are done. Otherwise, we find a triangle in S and partition the remaining
vertices according to the in- and out-neighborhoods of this triangle, and perhaps
repeat this procedure to produce a bag chain of length at most four. Each vertex
that is not in this bag chain is in the non-neighborhood of some triangle. There are
at most three “pivot” triangles used. So in the end, the vertices of S are decomposed
into a bag chain of at most four poor bags, a chain of C3’s, and five zones, each of
which can be colored with three colors. So the number of colors required is at most
18 + 2 + 3 · 3 = 29.

4.3 Hk-free tournaments

Definition 4.3.1. Let (Hk)0≤k be the family of tournaments defined recursively with
H0 being a single vertex, and ∀k ≥ 1, Hk+1 = ∆(Hk, 1, 1).

Notice that H1 = C3, and in general Hk is a hero. Define f to be the function such
that for any k ≥ 1, f(k) = ~χc(T ) where T is an Hk-free tournament. (In particular,
f(1) = 1 and f(2) ≤ 8, as shown in Section 4.1.)

Lemma 4.3.1. For an integer k ≥ 0, the number of colors needed to color an Hk-free
tournament is f(k) ≤

∏k−1
i=1 (4i+ 5).

The proof of this Lemma will follow the proof of Theorem 4.1.1: we will build
a chain of Hk’s in order to bound the in-neighborhood of some vertex v and the
out-neighborhood of another vertex u, which we will then use as the endpoints of a
vertex chain.

We start by extending the notion of heavy arcs to this setting.
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Definition 4.3.2. We say an arc is k-heavy if its neighborhood contains an Hk.

Notice that T is Hk+1-free iff it does not contain a k-heavy arc.

For the rest of the section, let T be an Hk+1-free tournament. Our goal will
be to partition T into Hk-free sets, which will then allow us to color this type of
tournament by induction.

Definition 4.3.3. Define a Hk-chain of length ` in T to be a set of ` vertex disjoint
Hk’s, X = (X1, X2, X3, . . . , X`), such that for each i ∈ {1, . . . , `− 1}, Xi ⇒ Xi+1.

A backwards arc in a Hk-chain is an arc uv with u ∈ Xi and v ∈ Xj for j < i.

Lemma 4.3.2. A Hk-chain has no backwards arcs.

This follows from the following claim.

Claim 4.3.3. Let T be a Hk+1-free tournament. If X = (X1, X2, . . . , X`) is a Hk-
chain of length `, then Xi ⇒ Xj for i < j, where 1 ≤ i < j ≤ `.

Proof. Notice that there are no arcs from Xi+1 to Xi, since by definition of a Hk-
chain, we have all arcs from Xi to Xi+1. Moreover, there is no arc uv from Xi+2

to Xi since otherwise Xi+1 would appear in the neighborhood N(uv), meaning that
{u} ∪ {v} ∪Xi+1 forms an Hk+1, which is a contradiction. This implies that all arcs
go from Xi to Xi+2 (since T is a tournament). Now suppose j > i + 2. If there is a
back arc uv from u ∈ Xj to v ∈ Xi, then uv is a k-heavy arc, because Xj−1 would
be in N(uv) since by induction we have all arcs from Xi to Xj−1 and from Xj−1 to
Xj.

Let us fixX = (X1, X2, . . . , X`) to be anHk-chain in T , and letW = V (T )\V (X).
Initially, X can be of any length ` ≥ 1.

Claim 4.3.4. For w ∈ W :

1. If w ⇒ Xi, then w ⇒ Xj for all j ≥ i.

2. If Xi ⇒ w, then Xj ⇒ w for all j ≤ i.

Proof. Suppose w ⇒ Xi and there is an arc uw with u ∈ Xj for j > i. Then uw is
a k-heavy arc. Similarly, suppose Xi ⇒ w and there is an arc wu with u ∈ Xj for
j < i, then wu is a k-heavy arc.
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We partition the vertices in W into zones (Z0, Z1, . . . , Z`) using the following
criteria. For w ∈ W , if i is the highest index such that Xi ⇒ w, then w is assigned
to zone Zi. If there is no such Xi, then w is assigned to zone Z0.

Say a vertex w ∈ W is clear if w ⇒ Xi or Xi ⇒ w for all Xi in H. Let C ⊆ W
be the set of clear vertices.

Claim 4.3.5. If C is not Hk-free, we can extend X.

Proof. If the set Zi ∩C contains an Hk, then we can extend X by adding a new Hk

to the chain between Xi and Xi+1.

If there is no i such that Zi ∩C contains an Hk, then we claim that C is Hk-free.
This follows from the observation that there are no backwards arcs from Zj ∩ C to
Zi ∩ C for i < j. Indeed, should such an arc uv from Zj ∩ C to Zi ∩ C exist, then
Xi+1 ⊂ N(uv), so uv would be k-heavy.

We say that X is a maximal Hk-chain if C is Hk-free. Let us also now define the
unclear vertices U , where U = W \ C. In a maximal Hk-chain X = (X1, . . . , X`),
notice that for a vertex a ∈ X1, we have N−(a) ∩ U ⊆ N o(X1).

Claim 4.3.6. We can efficiently find two Hk’s X1 and X` such that the set S =
{v | v ⇒ X1 or X` ⇒ v} is Hk-free.

Proof. Find a maximal Hk-chain X and let ` be the length of this chain. The set of
vertices {v | v ⇒ X1 or X` ⇒ v} is a subset of C and is therefore Hk-free.

Claim 4.3.7. Let Y be an Hk. Then ~χc(N
o(Y )) ≤ (2k + 1) · f(k).

Proof. Take a Hamilton cycle (ei)1≤i≤2k+1 of Y . Each vertex v ∈ N o(Y ) belongs to
N(ei), for some i. Since each of these sets is Hk-free, we conclude that N o(Y ) can
be colored with (2k + 1) · f(k) colors.

We can now easily prove that Hk+1-free tournaments have bounded chromatic
number by finding a (4k + 1) · f(k)-vertex chain.

Theorem 4.3.8. Let T be an Hk+1-free tournament. Then ~χc(T ) ≤ (4k + 5) · f(k).

Proof. We just need to show that we can find a (4k + 1) · f(k)-vertex chain. Recall
that for a vertex a ∈ X1, we have N−(a)∩U ⊆ N o(X1). If a ∈ X1, and (ei)1 ≤i≤2k+1

is a Hamilton cycle of X1 with e1 = ua and e2 = av for some vertices u and v, then

53



notice that for w ∈ N−(a) ∩ U , w /∈ N(e1). Thus, N−(a) ∩ U ⊆ ∪2≤i≤2k+1N
o(ei),

which is efficiently colorable with 2k · f(k) colors, since it can be decomposed into
2k sets which are Hk-free and thus efficiently colorable with f(k) colors. Making
an analogous argument for N+(z) ∩ U , we conclude that (N+(z) ∪ N−(a)) ∩ U is
efficiently 4k · f(k)-colorable. The rest of the vertices in N+(z) ∪ N−(a) belong to
the set S defined in Claim 4.3.6 and can be colored with f(k) colors. Therefore
~χc(N

+(z) ∪ N−(a)) ≤ (4k + 1) · f(k), so we can use z and a as the endpoints of a
(4k + 1) · f(k)-vertex chain. Finally, it is clear that the neighborhood of an edge
in an Hk+1-free tournament is Hk-free, and can thus be colored efficiently with f(k)
colors. Then we can apply Lemma 2.1.3 to prove that ~χc(T ) ≤ (4k + 5) · f(k).

As an immediate corollary, we can bound the function f .

Corollary 4.3.9. For all integers k, the number of colors needed to color an Hk-free
tournament f(k) ≤

∏k−1
i=1 (4i+ 5).

4.4 Extensions to dense digraphs

In this section, we extend our tools from tournaments to digraphs with bounded
independence number. In this section, a digraph will always be an oriented graph
(with no directed 2-cycles) unless indicated otherwise. Most of our notation extends
easily from tournaments to digraphs.

We refer to the set of vertices that have no arc from or towards v as its non-
neighborhood N o(v) = V \ {N+(v) ∪ N−(v)}. We say there is a non-edge between
u and v if there is no arc in A from u to v or from v to u. If we are referring to
an non-edge with a fixed direction (i.e., a non-edge e = uv), then we refer to it as a
non-arc. For a non-arc e = uv, we use N(e) to denote the vertices in N+(v)∩N−(u).

A digraph D = (V,A) is k-colorable if there is a partition of V into k vertex-
disjoint sets, V1, V2, . . . , Vk, such that T [Vi] is acyclic for all i ∈ {1, . . . , k}. In this
case, we say that T is k-colorable and we use ~χ(D) to denote the dichromatic num-
ber of D (which we often refer to as chromatic number when the context is clear).
Computing the value ~χ(D) is in general NP-hard [BFJ+04]. We therefore use ~χc(D)
to denote the number of colors by which D can be efficiently colored. Our goal is to
find upper and lower bounds on ~χc(D).
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4.4.1 Decomposition for digraphs

The goal of this section is to extend our techniques from tournaments to digraphs with
bounded independence number. We adapt the decomposition given for tournaments
in Section 2.1 by taking a shortest path—not just of arcs—but of arcs and non-arcs
(in other words, non-edges can be included in the shortest path to be traversed in
either direction).

Definition 4.4.1. We define a vertex chain (vi)0≤i≤k of a digraph D as follows: Let
v0 and vk be a pair of vertices and let (vi)0≤i≤k be the vertices in the shortest path
from v0 to vk, where the path may consist of both forward arcs and non-arcs (but no
backward arcs). If in addition, ~χc(N

+(v0)) ≤ b and ~χc(N
−(vk)) ≤ b, then we call it

a b-vertex chain.

Additionally, we define an edge chain (ei)1≤i≤k corresponding to a vertex chain,
where ei is the arc or non-arc from vi−1 to vi. We build zones that can be efficiently
colored, and such that arcs between zones at distance more than four (i.e., long arcs)
go backwards.

Definition 4.4.2. Given a vertex chain, a path decomposition of a digraph D is
defined as:

• D0 = N+(v0).

• For 1 ≤ i ≤ k, Di = N(ei) \ (∪0≤j≤i−1Dj).

• Dk+1 = N−(vk) \ (∪0≤j≤kDj).

• For 0 ≤ i ≤ k, Ni = N o(vi).

First we prove that this is indeed a decomposition of D.

Claim 4.4.1. Let D = (V,A) be a digraph, and (D0, . . . , Dk+1, N0, . . . , Nk) be a path
decomposition of D. Then V = ∪0≤i≤k+1Di ∪0≤i≤k Ni.

Proof. We will prove this claim by contradiction. Suppose there is a vertex w ∈ V
that does not belong to any Di or Ni. Since w does not belong to D0, Dk+1 (nor
to N0 or Nk), then w ∈ N−(v0) and w ∈ N+(vk). Take the smallest integer i such
that w ∈ N+(vi). There must be one since w ∈ N+(vk). Notice that i ≥ 1 since
w ∈ N−(v0). Since w /∈ N o(vi−1), then w ∈ N(ei). Therefore, w ∈ Di, which is a
contradiction.
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We now show that long arcs between Nis or between Dis go backwards. Since
the Nis and Dis will be colored with different color palettes, we don’t need to worry
about arcs between an Ni and Dj.

Claim 4.4.2. Let 0 ≤ i, j ≤ k + 1 and let j ≥ i + 5. For u ∈ Di and w ∈ Dj, we
have u ∈ N+(w). Furthermore, if u ∈ Ni and w ∈ Nj−1, we have u ∈ N+(w).

Proof. We will prove this by contradiction. Suppose j ≥ i + 5 and u ∈ N−(w).
Then there is a path of three arcs from vi to vj−1, namely (vi, u, w, vj−1). (By
definition of the decomposition, u ∈ Di implies u ∈ N+(vi) and w ∈ Dj implies
w ∈ N−(vj−1).) This is not possible since by the definition of the vertex chain as
the shortest path, there can be no path between vi and vj−1 with fewer than four
arcs (since (j − 1) − i ≥ (i + 5 − 1) − i = 4). Finally, if u ∈ Ni and w ∈ Nj−1,
(vi, u, w, vj−1) is also a path (of forward arcs and non-arcs) of length three from vi
to vj−1, which as previously is a contradiction.

Lemma 4.4.3. If D has a b-vertex chain that can be found in polynomial time and
if ~χc(N(e)) ≤ c for each arc and non-arc e, and ~χc(N

o(v)) ≤ d for every vertex v,
then ~χc(D) ≤ 5c+ 4d+ 2(b− c) if b > c and ~χc(D) ≤ 5c+ 4d if b ≤ c. Furthermore,
if the shortest path from v0 to vk in the vertex chain has length at least four, then
~χc(D) ≤ 4c+ 4d+ b.

Proof. Given a b-vertex chain, we construct a path decomposition as per Definition
4.4.1. We make five palettes of c colors each with labels from 0 to 4. We color each
Di using the color palette with label i mod 5. By the assumptions of the lemma,
we know that each Di can be efficiently colored with c colors. Moreover, for every
1 ≤ i ≤ k, Di is a subset of N(ei), which can be colored efficiently with c colors by
the condition of the lemma.

Next, we make four different palettes of d colors each with labels from 5 to 8. We
color each Ni using the color palette with label 5 + (i mod 4). The set of colors used
is of size d for every Ni, thus we can efficiently color each set by the assumption of
the lemma.

Our goal is now to prove that this is a proper coloring of the digraph D. We will
do this by showing that all forward arcs between different Di or Ni are bicolored.
By Claim 4.4.2, there are no forwards arcs between Di and Dj when j ≥ i + 5, or
Ni and Nj with j ≥ i + 4. Furthermore, by the definition of the coloring, no vertex
in Di and Dj can share a color for i+ 1 ≤ j ≤ i+ 4, and the same goes for vertices
in Ni and Nj with i + 1 ≤ j ≤ i + 3. Thus all forward arcs from Di to Dj or Ni
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to Nj will be bicolored. Since every Di and Ni is properly colored, and all forward
arcs between different Di are bicolored, the unions of Di’s and the union of Ni’s are
both properly colored. Finally, since these two unions use disjoint color palettes, and
because every vertex is in some Di or Ni (by Claim 4.4.1), the whole digraph D is
properly colored.

If the shortest path from v0 to vk has length at least four, then we can save b− c
colors since we have all arcs from N−(vk) to V +(v0).

4.4.2 Algorithm for 2-colorable digraphs

In this section, our goal is to prove Theorem 4.4.4.

Theorem 4.4.4. Let D be a 2-colorable digraph with independence number α. Then
~χc(D) ≤ 10

3
(4α − 1).

In order to prove this theorem, we will define f(α) to be a function such that
f(α) ≥ ~χc(D) for every 2-colorable digraph D with independence number α. Our
goal is to find an upper bound on f(α).

We say an arc e in D is heavy if N(e) contains a directed cycle. Moreover, we say
a non-edge between u and v is heavy if N+(u)∩N−(v) or if N+(v)∩N−(u) contains
a directed cycle. If a digraph contains no heavy arcs and no heavy non-edges, then
it is light. In the case of 2-colorable tournaments, we can partition the vertex set
into two digraphs such that no arc is heavy, but in the case of 2-colorable digraphs
we still need to account for the non-arcs. To do this, we will add a step before this
partition.

Claim 4.4.5. A 2-colorable digraph D can be transformed into a 2-colorable digraph
D′ with no heavy non-arc by adding arcs.

Proof. Let e be a heavy non-arc between u and v. Without loss of generality, suppose
that there is a directed cycle in N+(u) ∩ N−(v). This cycle must be colored with
two colors, thus u, v and any z ∈ N−(u) ∩ N+(v) cannot all be colored the same
color, else there would be a monochromatic 4-cycle. Therefore, we can add the arc
from u to v, since it will not lead to any monochromatic cycle in a 2-coloring of D.
So we can construct D′ by starting from D, and while there are still heavy non-arcs,
we add an arc between two vertices in way we just described.
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After applying Claim 4.4.5, we obtain a digraph in which every non-arc is light.
(Of course, we have not increased the independence number, since we have not
removed any arcs.) Now we can observe that the set of heavy arcs forms a bipartite
graph and we can therefore partition the set of vertices in order to split all heavy
arcs. This results in the following corollary.

Corollary 4.4.6. Let D be a 2-colorable digraph. Then D can be partitioned into
two light 2-colorable digraphs D1 and D2 such that ~χc(D) ≤ ~χc(D1) + ~χc(D2).

The next claim is similar to the case of tournaments.

Claim 4.4.7. Let D be a k-colorable digraph. Then there exist vertices u and w such
that N+(u) ∪N−(w) is (k − 1)-colorable.

Proof. Since D = (V,A) is k-colorable, there exist k transitive sets X1, . . . , Xk such
that V = ∪ki=1Xi. Then take u to be the vertex in X1 that has only incoming
arcs (or non-arcs) from other vertices in X1 (i.e., the sink vertex for X1). Similarly,
take w to be the vertex in X1 that has only outgoing arcs (or non-arcs) to other
vertices in X1 (i.e., the source vertex for X1). The out-neighborhood of u and the
in-neighborhood of w are both subsets of V \X1, and thus so is their union, which
is therefore (k − 1)-colorable.

We can then find a (k−1)-vertex chain in any k-colorable digraph (by guessing all
pairs of endpoints). With the following observation, we can prove the main theorem
by applying Lemma 4.4.3.

Observation 4.4.8. Let D = (V,A) be a digraph with independence number α. Then
for any vertex v ∈ V , N o(v) has independence number α− 1.

This gives us fl(α) = 5 + 4 · fl(α− 1). We now define fl(α) to be a function such
that fl(α) ≥ ~χc(D) for every 2-colorable light tournament. By Corollary, 4.4.6 we
have f(α) ≤ 2 · fl(α), and thus f(α) ≤ 2(5 + 4 · fl(α− 1)).

A simple calculation then leads to the statement of Theorem 4.4.4.

4.4.3 C3-free digraph with α = 2.

In this section, D = (V,A) is a C3-free oriented graph with independence number
α(D) = 2. Let Ck denote a cyclicly oriented k-cycle. We will assume that D is
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maximally triangle-free, which means that for any pair of vertices u, v in V with no
arc between them, both arcs uv and vu would each create a C3 in D. In other words,
if there is no arc between u and v, then there is a C4 in D containing u and v. Let
g(α) denote the dichromatic number of a C3-free digraph with independence number
at most α.

The goal of this section is to prove the following lemma.

Lemma 4.4.9. Let D be a C3-free digraph with α(D) = 2. Then χ(D) ≤ 16.

In [HLNT19], a bound for around 25 colors was claimed, so our bound here is an
improvement, although the best lower bound is 2 (for a directed 4- or 5-cycle).

Claim 4.4.10. If e is a non-edge between u and v in D, then χ(N(uv)) ≤ g(α− 1).

Proof. Let a be a vertex in N(uv). Since there is no arc between u and v, it must
be the case that adding arc vu causes a C3, say with w. So then N(uv) ⊆ N o(w).
If this were not the case, then we would have either triangle wva or wau, which is a
contradiction.

Claim 4.4.11. If D is Ck-free for k ≤ 5 and α(D) = 2, then D is acyclic.

Proof. Assume that D contains some directed cycle and let C be the shortest such
cycle on k vertices. Then k ≥ 6. However, since α(D) = 2, then C must contain a
chord, implying that D contains a shorter cycle, which is a contradiction.

Let X = (X1, X2, . . . , X`) be a chain of C4’s and C5’s of maximum length.

Claim 4.4.12. Let us fix some Xi in X. Let S ⊆ V \Xi be a subset of vertices. For
every s ∈ S, there is some x ∈ Xi such that there is an arc between s and x.

Proof. If there is no such arc, then s is independent of every vertex in Xi resulting
in a stable set of size three.

Claim 4.4.13. All arcs in X are forward.

Proof. We want to show that all arcs between Xi and Xj for i 6= j go from Xi to Xj.
We prove this by induction. By definition all arcs exist between Xi and Xi+1 and
go forwards. Now consider x ∈ Xi+2 and y ∈ Xi. By Claim 4.4.12, for each vertex
in Xi, there is an arc to some vertex in Xi+2. This arc must be forwards, otherwise
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there is a triangle. Now we assume that all arcs of length k are forwards and we
can prove it for all arcs of length k + 1. Suppose we have an arc from x ∈ Xi to
y ∈ Xi+k+1. By Claim 4.4.12, we have an arc from x to some vertex z ∈ Xi+k. Since
we have all arcs from Xi+k to Xi+k+1, we would have a triangle if x is not going to
y.

Claim 4.4.14. D has two vertices u, v ∈ V such that χ(N+(u)) ≤ 5 and χ(N−(v)) ≤
5.

Proof. Fix a vertex v ∈ X1. We want to analyze χ(N−(v)). A vertex in N−(v) is
either in N−(X1) or N±(X1). The set of vertices that have arcs to all the vertices in
X1 is acyclic by Claim 4.4.11. The remaining vertices are either in N±(X1) or are in
the non-neighborhood of at least one vertex in X1. Since each vertex in N±(X1) is
also in the non-neighborhood of at least one vertex in X1, we can conclude that the
χ(N−(X1)) ≤ 6. However, we have χ(N−(v)) ≤ 5 since we can ignore N o(v). The
same argument can be made for the out-neighborhood of some vertex u ∈ X`.

Combining Claim 4.4.14 and Lemma 4.4.3, we conclude that we can color D
with 16 colors. In the case where the shortest path from v0 to vk has length more
than three, we get 13 colors. If the shortest path from v0 to vk has length at most
three, then we get 3 colors for the edge neighborhoods and 4 colors for the vertex
neighborhoods. To color N−(v0) and N+(vk), let A denote the set of vertices with
complete arcs to X1 (i.e. a vertex in A has arcs to each vertex in X1) and let B
denote the set of vertices with complete arcs from X`. Then we can color (N−(v0)∪
N+(vk)) \ (A ∪B) with 8 colors. Then we claim that we can color A ∪ B with a
single color. By some repeated applications of Claim 4.4.12, we can show that any
arc between A and B must be from A to B. Thus, we can use at most 16 colors.
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Chapter 5

Arc local-to-global

5.1 Overview of our results

We would like to thank the anonymous referees for helpful comments on the work in
the following section.

The chromatic number of a graph is the minimum integer k required to partition
its vertex set into k independent sets. The chromatic number of a tournament (and
more generally, a directed graph) is the minimum integer k required to partition its
vertex set into k acyclic sets. Exploring the similarities and differences between the
two notions is a well-studied area [EH89, APS01].

For example, if a graph has a large clique, it must have high chromatic number.
However, the converse is far from true. In fact, a graph can be triangle-free, implying
that the neighborhood of each vertex is an independent set, and yet still have high
chromatic number [Des54]. In [BCC+13], it was conjectured that this phenomenon
does not occur in tournaments. Specifically, [BCC+13] conjectured that in a tour-
nament T , if each vertex v ∈ V (T ) has an out-neighborhood N+(v) that induces
a subtournament T [N+(v)] with bounded chromatic number, then T itself should
have bounded chromatic number. This was proved by [HLTW19] with the following
theorem.

Theorem 5.1.1 ([HLTW19]). There is a function f such that if for all v ∈ V (T ),
~χ(T [N+(v)]) ≤ t, then ~χ(T ) ≤ f(t).

We say a tournament T has vertex set V (T ) and arc set A(T ). For an arc e =
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uv ∈ A(T ), we define the neighborhood of arc e to contain all vertices w in V (T ) such
that w forms a directed triangle with uv. Formally, we define N(e) = N+(v)∩N−(u).
A stronger theorem, analogous to Theorem 5.1.1, but with vertex out-neighborhoods
replaced by arc neighborhoods, is the following.

Theorem 5.1.2. There is a function f such that for any tournament T , if for all
e ∈ A(T ), ~χ(T [N(e)]) ≤ t, then ~χ(T ) ≤ f(t).

This theorem is a special case of 13.3 in [NSS23b]. We give a different proof,
obtained independently, which we subsequently extend to prove our main theorem.
Notice that the assumption that ~χ(T [N+(v)]) ≤ t for every vertex v ∈ V (T ) is
stronger than the assumption that ~χ(T [N(e)]) ≤ t for every arc e ∈ A(T ). However,
our proof of Theorem 5.1.2 uses a theorem from [HLTW19], which they used to
prove Theorem 5.1.1. Thus, we do not give a new proof of Theorem 5.1.1. We say
a tournament T is t-arc-bounded if for every arc e ∈ A(T ), ~χ(T [N(e)]) ≤ t. We can
now restate Theorem 5.1.2 as follows.

Theorem 5.1.3. There is a function f such that for every t-arc-bounded tournament
T , we have ~χ(T ) ≤ f(t).

We prove Theorem 5.1.3 in Section 5.2, where in addition to the aforementioned
theorem of [HLTW19], we use ideas from Chapter 2. In Section 5.3, we extend
our proof of Theorem 5.1.3 to oriented graphs with bounded independence number
and prove our main theorem. For the sake of simplicity, we often refer to oriented
graphs as digraphs, but in this Chapter, a digraph never contains a directed 2-cycle
or “digon”. Recall that the independence number of a digraph is the maximum size
of a vertex set that contains no arcs. We say a digraph D has vertex set V (D) and
arc set A(D). As we did for tournaments, for an arc e = uv, we define N(e) =
N+(v) ∩N−(u).

Theorem 5.1.4. There is a function h such that for any digraph D with indepen-
dence number α, if ~χ(D[N(e)]) ≤ t for every arc e ∈ A(D), then ~χ(D) ≤ h(t, α).

As an application of Theorem 5.1.4, we prove the equivalence of two conjectures,
one on graphs with high chromatic number and one on tournaments with high chro-
matic number. The first one, concerning graphs, was originally posed by [EE85] in
the form of an open problem, which asks if the following conjecture is true.

Conjecture 5.1.1 ([EE85]). For all integers t, c ≥ 1, there exists d ≥ 1, such that
if a graph G satisfies χ(G) ≥ d, and has no clique with t vertices (i.e., ω(G) < t),
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then there are subsets A,B ⊆ V (G) with χ(G[A]), χ(G[B]) ≥ c, such that there are
no edges between A and B.

The second conjecture, concerning tournaments, was recently stated by [NSS23a].

Conjecture 5.1.2 ([NSS23a]). For all c ≥ 0, there exists d ≥ 0 such that if
T is a tournament with ~χ(T ) ≥ d, there are two sets A,B ⊆ V (T ) such that
~χ(T [A]), ~χ(T [B]) ≥ c and all arcs between A and B go from vertices of A to vertices
of B.

[NSS23b] show that Conjecture 5.1.2 implies Conjecture 5.1.1. They explore
the possibility of the converse being true, but they do not prove it and write that
Conjecture 5.1.2 seems to be strictly stronger than Conjecture 5.1.1. In Section 5.4,
we prove that Conjecture 5.1.1 does in fact imply Conjecture 5.1.2, showing that the
two conjectures are equivalent.

5.2 Arc local-to-global for tournaments

In this section, we prove Theorem 5.1.3. Since our goal is to color a tournament T ,
we can assume that T is strongly connected; otherwise T can be partitioned into
strongly connected parts, and each one can be colored separately. A dominating
set (respectively, absorbing set) in T is a set of vertices S ⊂ V such that for every
v ∈ V \ S, there is a u ∈ S such that uv (respectively, vu) is an arc in T . By
domination number, we mean the minimum size of a dominating set. We will use
the following theorem from [HLTW19].

Theorem 5.2.1 ([HLTW19]). For every constant k, there exist constants K and `
such that every tournament T with domination number at least K has a subset of
size ` that induces a tournament with chromatic number at least k.

Following the notation in [AAC22], we define a (k, `)-cluster to be a set of vertices
S such that ~χ(T [S]) ≥ k, |S| ≤ ` and T [S] is strongly connected. This notion is
directly related to the previous theorem, which can be restated for our purposes as
follows.

Corollary 5.2.2. There exist functions K and ` such that for every integer t ≥ 1,
every tournament T contains either i) a dominating set and an absorbing set, each
of size at most K(t), or ii) a (t, `(t))-cluster.
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Proof. Let t be a constant. By Theorem 5.2.1, there exist constants K(t) and `(t)
such that one can find either a dominating set of size at most K(t), or a subset of
size `(t) with chromatic number t. If this subset is not strongly connected, we can
find a strongly connected subset with chromatic number t. Then take the tourna-
ment obtained by reversing all the arcs in T and repeat the previous argument. A
dominating set in this tournament is an absorbing set in T , while a subset with high
chromatic number would also have high chromatic number in T , as reversing all the
arcs preserves the chromatic number.

Now let us fix a constant t. Using the function ` from Corollary 5.2.2, we define
a jewel to be a (t+ 1, `(t+ 1))-cluster. We will use the fact that in a t-arc-bounded
tournament, for any arc e, the vertex set N(e) does not contain a jewel.1 We now
present some useful tools for coloring t-arc-bounded tournaments.

5.2.1 Jewels and other tools for coloring t-arc-bounded tour-
naments

We begin with a decomposition lemma for tournaments.

Lemma 5.2.3. Let T be a tournament, and let P = (v0, v1, . . . , vk) be a shortest
path in T from v0 to vk with arcs ei = vi−1vi for i : 1 ≤ i ≤ k. Then we have the
following properties.

1. Each vertex in N−(v0) ∩N+(vk) belongs to N(ei) for some i : 1 ≤ i ≤ k.

2. If k ≥ 3, then each vertex in V (P ) belongs to N(ei) for some i : 1 ≤ i ≤ k.

3. If k = 2, then v0 belongs to N(e2) and v2 belongs to N(e1).

Proof. First consider a vertex v in N−(v0)∩N+(vk) and let i be the maximum index
such that v ∈ N−(vi). Some vi must exist, since v ∈ N−(v0). Then v ∈ N(ei+1).
Next, consider a vertex v ∈ V (P ). Notice that all arcs between vertices V (P ) that are
not adjacent in P must go backward. It follows that vi ∈ N(ei+2) and vi ∈ N(ei−1).
When k ≥ 3, we can conclude that each vi belongs to N(ej) for some j such that
1 ≤ j ≤ k. When k = 2, the same argument applies, except now v1 belongs neither
to N(e1) nor to N(e2).

1We will redefine a jewel in Section 5.3, but it will have the same purpose.
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Lemma 5.2.4. Let T be a t-arc-bounded tournament. Suppose that P = (v0, v1, . . . , vk)
is a shortest path from v0 to vk, and let S = (N−(v0) ∩N+(vk)) ∪ V (P ). Then T [S]
can be colored with at most 5t colors.

Proof. If k ≥ 3, then each vertex in S belongs to N(ei) for some i : 1 ≤ i ≤ k. There
are no arcs from N(ei) to N(ei+5), since this would give a shorter path from v0 to
vk. Thus, we can color all the vertices in S using five color palettes of t colors each,
using one color palette for each N(ei) assigned modulo 5. Since all forward arcs have
length at most four, each cycle with vertices belonging to different N(ei)’s has at
least two different colors. Finally, if k = 2, then T [S] can be colored with 2t + 1
colors, and if k = 1, then T [S] can be colored with t+ 2 colors.

Lemma 5.2.4 can be used to prove the following two lemmas, which we will apply
shortly to prove Theorem 5.1.3.

Lemma 5.2.5. Let T be a t-arc-bounded tournament, containing two vertices u and
v such that ~χ(T [N+(u)]) ≤ g(t) and ~χ(T [N−(v)]) ≤ g(t) for some function g. Then
~χ(T ) ≤ 2 · g(t) + 5t.

Proof. Since T is strongly connected, we can set v0 = u and vk = v, find a shortest
path from v0 to vk, and apply Lemma 5.2.4 to color the subtournament T [S]. Any
remaining vertex belongs to at least one of the sets N+(v0) and N−(vk), which can
each be colored with g(t) colors.

If T has small dominating and absorbing sets, then the following lemma provides
a bound on ~χ(T ).

Lemma 5.2.6. Let T be a t-arc-bounded tournament. Suppose T has a dominating
set γ+(T ) and an absorbing set γ−(T ). Then ~χ(T ) ≤ 5t · |γ−(T )| · |γ+(T )|.

Proof. We may assume that T is strongly connected. Let q = |γ−(T )| · |γ+(T )|. Let
P = {P1, P2, . . . , Pq} be a set of |γ−(T )| · |γ+(T )| shortest paths from each u ∈ γ−(T )
to each w ∈ γ+(T ). Then for each v ∈ V , there is some path Pj ∈ P from some u
to some w such that v ∈ (N−(u) ∩N+(w)) ∪ V (Pj). So we can apply Lemma 5.2.4,
which implies the lemma.

To prove Theorem 5.1.3, we need one more lemma. First, we give some notation
and a definition. For two disjoint vertex sets, X, Y ⊂ V , we say X ⇒ Y if all arcs
between X and Y go from X to Y . For a set S ⊂ V , we define the set N±(S) to be
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all vertices v in V \ S such that there exist vertices u,w ∈ S and arcs uv and vw in
T .

Definition 5.2.1. We define a jewel-chain of length p in a tournament to be an
ordered set X = (Xi)1≤i≤p such that each Xi induces a jewel, all Xi’s are disjoint,
and Xi ⇒ Xi+1 for all i such that 1 ≤ i ≤ p− 1.

For a jewel-chain X, we say that an arc uv is forward if u ∈ Xi and v ∈ Xj and
i < j. If j < i, then uv is backward. Jewel-chains are useful because they contain no
backward arcs.

Observation 5.2.7. A jewel-chain X contains no backward arcs.

Proof. Consider a backward arc e = uv, with u ∈ Xj and v ∈ Xi for j > i. It
must be the case that j > i + 1, since all arcs between Xi and Xi+1 are forward by
definition. Then Xi+1 ⊆ N(e), and since Xi+1 has chromatic number at least t + 1,
we have ~χ(T [N(e)]) ≥ t+1, which contradicts T being t-arc-bounded. Thus, all arcs
with endpoints in distinct Xi’s must be forward.

Lemma 5.2.8. Let T be a t-arc-bounded tournament that contains a jewel. Then
there exists a function g such that there are two vertices u, v such that ~χ(T [N+(u)]) ≤
g(t), and ~χ(T [N−(v)]) ≤ g(t).

Proof. Let X be a jewel-chain in T of maximum length, say p. Consider X1. Let
Y be the set of vertices such that Y ⇒ X1. Then Y does not contain a jewel
(otherwise X would not have maximum length). By Corollary 5.2.2, Y must have a
small dominating set and a small absorbing set, each of size at most K(t + 1). So
we can apply Lemma 5.2.6 to bound the chromatic number of Y by 5t · (K(t+ 1))2.
Moreover, the set N±(X1) has chromatic number at most `(t+1)·t, since X1 contains
a Hamilton cycle with at most `(t + 1) arcs and each vertex in N±(X1) belongs to
N(e) for some e in the Hamilton cycle. Finally, a vertex v in X1 can have in-neighbors
in X1 itself, but this set has chromatic number at most |X1| ≤ `(t+ 1).

Set g(t) = 2`(t+1)·t+5t·(K(t+1))2. Then each vertex u ∈ X1 has ~χ(T [N−(u)]) ≤
g(t). By the same argument, each vertex v ∈ Xp has ~χ(T [N+(v)]) ≤ g(t). This proves
Lemma 5.2.8.

5.2.2 Proof of Theorem 5.1.3

We are now ready to prove Theorem 5.1.3.
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Theorem 5.1.3. There is a function f such that for every t-arc-bounded tournament
T , we have ~χ(T ) ≤ f(t).

Proof. Let f(t) = 2 ·g(t)+5t, where g is defined as in the end of the Proof of Lemma
5.2.8. If T does not contain a jewel, then by Corollary 5.2.2, it contains a dominating
and an absorbing set each of size at most K(t+1). In this case, we can apply Lemma
5.2.6 to show that T can be colored with at most 5t · (K(t+1))2 colors. If T contains
a jewel, then we can apply Lemma 5.2.8 and Lemma 5.2.5 to prove the theorem.

5.3 Arc local-to-global for dense digraphs

In this section, we extend Theorem 5.1.3 from tournaments to oriented graphs with
bounded independence number. Since our goal is to color a digraph D, we can
assume that D is strongly connected; otherwise D can be partitioned into strongly
connected parts, and each one can be colored separately. An important tool for the
proof is Theorem 5.3.1, which extends Theorem 5.2.1 from tournaments to digraphs
with bounded independence number.2 A (k, `)-cluster in a digraph D is a set of
vertices S in V (D) such that ~χ(D[S]) ≥ k, |S| ≤ ` and D[S] is strongly connected.

Let D be a digraph with independence number α, and let X, Y ⊆ V (D). Then
the following inequalities are straightforward.

γ(D[N+[X]]) ≤ |X|,
γ(D[Y ]) ≤ γ(D[X]) + γ(D[Y \X]). (5.3.1)

We now provide a proof of Theorem 5.3.1 that is very similar to the proof of
Theorem 5.2.1 from [HLTW19].

Theorem 5.3.1. There exist functions K and ` such that for every pair of integers
k, α ≥ 1, every digraph D with independence number α and dominating number at
least K(α, k) contains a (k, `(α, k))-cluster.

Proof. Let P (α, k) denote the statement of the theorem for α and k. Our goal is
to prove P (α, k) for all integers α, k ≥ 1. Let us assume that P (α − 1, k) holds for
all k ≥ 1. The base case for this is P (1, k), which is proved in [HLTW19]. Now we

2Theorem 5.1.1 was extended to digraphs with bounded independence number by [HLNT19],
but they did not provide an extension of Theorem 5.2.1.
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fix α and we want to prove P (α, k), which we will do by induction on k. The base
case for this is P (α, 1), which is true since any digraph with independence number
α and domination number at least 1 contains at least one vertex, which serves as a
(1, 1)-cluster. To build intuition, we can also consider the next case, which is P (α, 2).
This is true since any digraph with independence number α and domination number
at least α + 1 contains a directed cycle of length at most `(α, 2) ≤ 2α + 1, and this
cycle requires two colors.3 Now we assume P (α, k − 1) (as well as P (α − 1, k)) and
we want to prove P (α, k).

We will follow the proof of Theorem 5 from [HLTW19]. Let us first prove a useful
claim. Recall that N o(v) is the set of vertices that form non-edges with v.

Claim 5.3.2. If D does not contain a (k, `(α − 1, k))-cluster, then for any vertex
v ∈ V (D),

γ(D[N o(v)]) ≤ K(α− 1, k).

Proof. The digraph D′ = D[N o(v)] has independence number α−1. By the inductive
hypothesis on α, either D′ has a (k, `(α−1, k))-cluster or D′ has domination number
at most K(α− 1, k). Thus, γ(D[N o(v)]) ≤ K(α− 1, k). 3

Let D = (V,E) be a digraph with independence number α such that γ(D) ≥
K(α, k), and let B be a minimum dominating set of D. We will assume that D does
not contain a (k, `(α− 1, k))-cluster, since otherwise, we would be done. Fix

K(α, k) = k(K(α−1, k)+1)(K(α, k−1)+`(α, k−1)·(K(α−1, k)+1)+1)+K(α, k−1).

Consider a subset W of B, where

|W | = k(K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1) + 1).

From (5.3.1) and Claim 5.3.2, we have

γ(D[V \ (N+[W ] ∪N o(W ))]) ≥ γ(D)− γ(D[N+[W ]])− γ(D[N o(W )])

≥ γ(D)− |W | − |W |(K(α− 1, k)

≥ K(α, k)− |W |(K(α− 1, k) + 1)

≥ K(α, k − 1).

3This follows from the well-known classical theorem that an acyclic digraph has an independent
dominating set. See [Bon03].
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By applying the induction hypothesis, the digraph D[V \(N+[W ] ∪N o(W ))] con-
tains a (k− 1, `(α, k− 1))-cluster. Call this vertex set A. Note that by construction,
A ∩W = ∅ and A is complete towards W . Now consider a subset S of W where

|S| = K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1) + 1.

We claim that

γ(D[N+(S)]) ≥ K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1). (5.3.2)

If not, we can choose a dominating set S ′ of N+(S), where

|S ′| ≤ K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1)− 1.

Note that x dominates S for any x ∈ A, and so S ′ ∪ {x} dominates N+[S]. Hence
(B\S)∪S ′∪{x} would be a dominating set of D of size less than |B| which contradicts
the minimality of B. We therefore conclude that Inequality (5.3.2) holds.

Let N ′ = N+(S) \ (N+(A) ∪N o(A)). From Claims 5.3.1 and 5.3.2 we have

γ(D[N ′]) ≥ γ(D[N+(S)])− γ(D[N+(A)])− γ(D[N o(A)])

≥ K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1)− |A|(K(α− 1, k) + 1)

= K(α, k − 1).

Thus, by the induction hypothesis on k, there is a subset As ⊆ N ′ that forms a
(k− 1, `(α, k− 1))-cluster. By construction, AS ∩A = ∅ and AS is complete towards
A.

We now construct our subdigraph of D with chromatic number at least k. We
consider the set of vertices A∪W to which we add the collection AS, for all subsets
S ⊆ W of size K(α, k − 1) + `(α, k − 1) · (K(α − 1, k) + 1) + 1. Call A′ this new
vertex set and observe that its size is at most

|A′| ≤ |A|+ |W |+ |AS|
(
|W |
|S|

)
.

So we have

`(α, k) = `(α, k − 1) + k(K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1) + 1)

+ `(α, k − 1)

(
k(K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1) + 1)

K(α, k − 1) + `(α, k − 1) · (K(α− 1, k) + 1) + 1

)
.
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To conclude, it is sufficient to show that χ(A′) ≥ k. Suppose not, and for contradic-
tion, take a (k− 1)-coloring of A′. Since |W | = k(K(α, k− 1) + `(α, k− 1) · (K(α−
1, k) + 1) + 1) there is a monochromatic set S in W of size K(α, k − 1) + `(α, k −
1) · (K(α− 1, k) + 1) + 1 (say, colored 1). Recall that AS is complete to A, and A is
complete to S, and note that since χ(A) ≥ k− 1 and χ(AS) ≥ k− 1, both A and AS
have a vertex of each of the k− 1 colors. Hence there are u ∈ A and w ∈ AS colored
1. Since AS ⊆ N+(S), there is v ∈ S such that (v, w) is an arc of D. We then obtain
the monochromatic triangle (u, v, w) of color 1, a contradiction. Thus, ~χ(D[A′]) ≥ k
implying that A′ is a (k, `(α, k))-cluster in D completing the induction on k.

Since this induction proves the statement P (α, k) holds for any k, it proves the
inductive hypothesis for α. Then, by induction on α we have proven that the theorem
is true for any pair of integers α, k.

Corollary 5.3.3. There exist functions K and ` such that for every pair of integers
k, α ≥ 1, every digraph D with independence number α contains either i) a dominat-
ing and an absorbing set, each of size at most K(α, k), or ii) a (k, `(α, k))-cluster.

Proof. Let k and α be constants, and D a digraph with independence number α. By
Theorem 5.3.1, there exist constants K(α, k) and `(α, k) such that one can find either
a dominating set of size at most K(α, k), or a subset of size `(α, k) with chromatic
number at least k. Take the digraph obtained by reversing all the arcs in D and
repeat the previous argument. A dominating set in this digraph is an absorbing set
in D, while a subset with high chromatic number would also have high chromatic
number in D, as reversing all the arcs preserves the chromatic number.

In a digraph D = (V,A), there are some pairs of vertices that do not have arcs
between them. A pair u, v is a non-edge in D if neither arc uv nor arc vu belongs to
A. The proof of the next theorem involves adding arcs to a digraph D to obtain a
tournament. Since there are two sets of arcs, A and B, we use, for example, N+

A (u)
(rather than the more standard N+

D (u)) and N+
B (u) to denote the set of vertices

adjacent from u via arcs in A or arcs in B, respectively. We define N o
A(u) to be all

vertices in V that form non-edges with u in D. The goal in this section is to prove
our main theorem.

Theorem 5.1.4. There is a function h such that for any digraph D with indepen-
dence number α, if ~χ(D[N(e)]) ≤ t for every arc e ∈ A(D), then ~χ(D) ≤ h(t, α).

Proof. We prove this theorem by induction on α. For the base case, Theorem 5.1.2
proves the statement for α = 1, by setting h(t, 1) = f(t). For the induction hy-
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pothesis, we assume that for any digraph D = (V,A) with independence number
α− 1, if for all e ∈ A, ~χ(D[N(e)]) ≤ t, then ~χ(D) ≤ h(t, α− 1). Now our goal is to
prove that for any digraph D = (V,A) with independence number α, if for all e ∈ A,
~χ(D[N(e)]) ≤ t, then ~χ(D) ≤ h(t, α).

Consider a digraph D = (V,A) with independence number α. We construct a
tournament T = (V,A ∪ B) where each arc in B is a non-edge in D. Recall that
we use N+

A (u) to denote the set of vertices adjacent from u via arcs from A. Now
we assign directions as follows. For each non-edge u, v in D, if N+

A (v) ∩N−A (u) and
N+
A (u)∩N−A (v) are both empty (i.e., contain no vertices) or are both non-empty, we

direct the arc arbitrarily. Otherwise either N+
A (u) ∩ N−A (v) = ∅, and we direct the

arc from v to u, or N+
A (v) ∩N−A (u) = ∅ and we direct the arc from u to v. Thus, we

have the following property for each arc uv in B: Either N+
A (v)∩N−A (u) contains no

vertices or N+
A (v) ∩N−A (u) and N+

A (u) ∩N−A (v) both contain at least one vertex.

Now our goal is to color the tournament T such that each color class induces an
acyclic set of arcs from A. This will in turn bound the chromatic number of D. We
use the notation D[NT (e)] to denote the subgraph of D (i.e., arcs from A) in the
neighborhood of arc e in T .

Claim 5.3.4. ∀e ∈ A ∪B, ~χ(D[NT (e)]) ≤ 3 · h(t, α− 1) + 2t.

Proof. Consider an arc e = uv ∈ A. We partition NT (e) into three subsets of vertices.

(i) S1 = N−A (u)∩N+
A (v). By the condition of the theorem, ~χ(D[S1]) = ~χ(D[NA(e)]) ≤

t.

(ii) S2 = N−B (u). Then D[S2] has independence number at most α − 1. Thus, by
the induction hypothesis, ~χ(D[S2]) ≤ h(t, α− 1).

(iii) S3 = N+
B (v). Then D[S3] has independence number at most α − 1. Thus, by

the induction hypothesis ~χ(D[S3]) ≤ h(t, α− 1).

Therefore, for an arc e ∈ A, we have ~χ(D[NT (e)]) ≤ 2 · h(t, α− 1) + t. Next, we
consider an arc e = uv ∈ B. We partition NT (e) into three subsets of vertices.

(i) S1 = N−A (u) ∩ N+
A (v). Then either S1 is empty, in which case ~χ(D[S1]) = 0,

or S1 is non-empty. In this case, take any vertex w ∈ N+
A (u) ∩N−A (v). Notice

that S1 ⊆ NA(uw) ∪ NA(wv) ∪ N o
A(w). By the condition of the theorem,

~χ(D[NA(uw)]) ≤ t and ~χ(D[NA(wv)]) ≤ t. Finally, N o
A(w) has independence

71



number at most α − 1. Thus by the induction hypothesis, ~χ(D[N o
A(w)]) ≤

h(t, α− 1). Therefore, ~χ(D[S1]) ≤ 2t+ h(t, α− 1).

(ii) S2 = N−B (u). Then D[S2] has independence number at most α − 1. Thus, by
the induction hypothesis ~χ(D[S2]) ≤ h(t, α− 1).

(iii) S3 = N+
B (v). Then D[S3] has independence number at most α − 1. Thus, by

the induction hypothesis ~χ(D[S3]) ≤ h(t, α− 1).

Therefore, ~χ(D[NT (e)]) ≤ 3 · h(t, α− 1) + 2t. 3

Claim 5.3.5. For any pair of vertices u, v in V , ~χ(D[N−T (u)∩N+
T (v)]) ≤ 15 ·h(t, α−

1) + 10t.

Proof. Recall that D, and therefore T , is strongly connected. For any pair of vertices
u, v, take the shortest path (ei)1≤i≤k from u to v in T . Any vertex in N−T (u)∩N+

T (v)
must be in the neighborhood NT (ei) of some arc ei of the shortest path. An arc from a
vertex in NT (ei) to a vertex in NT (ej) is forward if i < j and backward if j < i. There
can be no arc in A from a vertex in NT (ei) to a vertex in NT (ej) for j ≥ i+ 5, or else
there would be a shorter path from u to v. Thus, we can use five color palettes of 3 ·
h(t, α−1)+2t colors each, and color NT (ei) with the color palette i mod 5. By Claim
5.3.4, each neighborhood NT (ei) does not contain a monochromatic directed cycle
of arcs from A. Because all forward arcs from A between different neighborhoods
are bicolored, this results in a coloring with no monochromatic directed cycle of arcs
from A. In total, this coloring uses 15 · h(t, α− 1) + 10t colors. 3

If we can find a pair of vertices u, v such that ~χ(D[N+
T (u)∪N−T (v)]) is small (i.e.,

bounded by a function of t and α), then we can use Claim 5.3.5 to bound ~χ(D) and
prove the theorem. To do this, we need a few more tools.

Claim 5.3.6. If the tournament T = (V,A∪B) has a dominating set γ+(T ) and an
absorbing set γ−(T ), then ~χ(D) ≤ |γ+(T )| · |γ−(T )| · (15 · h(t, α− 1) + 10t+ 2).

Proof. We now define a coloring C of D. For each pair of vertices u ∈ γ−(T ), v ∈
γ+(T ), we can color the set N−T (u) ∩N+

T (v) using a different palette of 15 · h(t, α−
1) + 10t colors by Claim 5.3.5. Each vertex w of V \ (γ−(T ) ∪ γ+(T )) can be colored
this way; indeed for each such vertex w, there is some pair of vertices u ∈ γ−(T ), v ∈
γ+(T ) such that w ∈ N−T (u) ∩N+

T (v). Moreover, each vertex in γ+(T ) ∪ γ−(T ) can
be colored with its own color. If a vertex is assigned more than one color, simply use
the first color it is given. This coloring uses a total of at most |γ+(T )| · |γ−(T )| · (15 ·
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h(t, α− 1) + 10t) + |γ+(T )|+ |γ−(T )| ≤ |γ+(T )| · |γ−(T )| · (15 · h(t, α− 1) + 10t+ 2)
colors. 3

Set d = 3 · h(t, α − 1) + 2t. Notice that T = (V,A ∪ B) is not necessarily d-arc-
bounded, since ~χ(T [NT (e)) ≥ ~χ(D[NT (e)]). We now modify the definition of a jewel
(defined in the previous section) for our current setting: A jewel is a subset J ⊂ V
such that J is a (d+ 1, `(α, d+ 1))-cluster in D, so ~χ(D[J ]) ≥ d+ 1.

Definition 5.3.1. We define a jewel-chain in T of length p to be an ordered set
X = (Xi)1≤i≤p such that each Xi induces a jewel in D (i.e., D[Xi] is a jewel), all
Xi’s are disjoint, and Xi ⇒ Xi+1 for all 1 ≤ i ≤ p− 1 (i.e., Xi is complete to Xi+1

in T ).

As in the previous section, we say that for a jewel chain X, an arc uv is forward
if u ∈ Xi and v ∈ Xj and i < j. If j < i, then arc uv is backward. The next claim
is similar, but not identical, to Observation 5.2.7. The subtle difference stems from
the fact that we care about the chromatic number of jewel with respect to D rather
than T .

Claim 5.3.7. A jewel-chain X contains no backward arcs in T .

Proof. Consider a backward arc e = uv, with u ∈ Xj and v ∈ Xi for j > i. It
must be the case that j > i + 1, since all arcs between Xi and Xi+1 are forward
by definition. Then Xi+1 ⊆ NT (e), and since ~χ(D[NT (e)]) ≥ d + 1, this contradicts
Claim 5.3.4. Thus, all arcs with endpoints in distinct Xi’s must be forward. 3

Let X be a jewel-chain in T of maximum length, say p. Define Y to be the vertex
set such that Y ⇒ X1 in T . Then D[Y ] does not contain a jewel by assumption
(otherwise, we could make the jewel-chain longer). By Corollary 5.3.3, since D[Y ]
does not contain a (d+ 1, `(α, d+ 1))-cluster, D[Y ] contains a dominating set and an
absorbing set, each of size at most K(d+1, α). Notice that a dominating (absorbing)
set in D[Y ] is also a dominating (absorbing) set in T [Y ]. So we can apply Claim 5.3.6
to bound the chromatic number of D[Y ] by (K(d+1, α))2 · (15 ·h(t, α−1)+10t+2).

Moreover, the set N±T (X1) has chromatic number at most ~χ(D[N±T (X1)]) ≤ `(d+
1, α) · d. Finally, v ∈ X1 can have in-neighbors in X1 itself, but these can have
chromatic number at most |X1| ≤ `(d+ 1, α).

So for each vertex v ∈ X1, we have

~χ(D[N−T (v)]) ≤ (K(d+ 1, α))2 · (15 · h(t, α− 1) + 10t+ 2) + `(d+ 1, α) · (d+ 1).
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By the same argument, each vertex u ∈ Xp has the same bound on ~χ(D[N+
T (u))).

So we have

~χ(D[N+
T (u)∪N−T (v)]) ≤ 2((K(d+1, α))2 ·(15·h(t, α−1)+10t+2)+`(d+1, α)·(d+1)).

By Claim 5.3.5, we have

~χ[D] ≤ 2((1 + (K(d+ 1, α))2) · (15 · h(t, α− 1) + 10t+ 2) + `(d+ 1, α) · (d+ 1)).

Since d = 3 · h(t, α− 1) + 2t, we can define the function h as follows.

h(t, α) = 2((1 + (K(3 · h(t, α− 1) + 2t+ 1, α))2) · (15 · h(t, α− 1) + 10t+ 2)

+ `(3 · h(t, α− 1) + 2t+ 1, α) · (3 · h(t, α− 1) + 2t+ 1).

So we have ~χ[D] ≤ h(t, α), concluding the proof of the theorem.

5.4 Equivalence of Conjectures 5.1.1 and 5.1.2

[NSS23b] show that Conjecture 5.1.2 implies Conjecture 5.1.1. In this section, we
prove that Conjecture 5.1.1 implies Conjecture 5.1.2, showing they are equivalent.
Our main tool is Theorem 5.1.4.

Let s be a function such that s(x) ≥ x2 · s(x− 1) + x and let T be a tournament.
Recall that a (t, s(t))-cluster is a subset S of V of size s(t) such that ~χ(T [S]) ≥ t.
For brevity, we use t-cluster to denote a (t, s(t))-cluster in this section.

Definition 5.4.1. Define a t-heavy arc e ∈ A(T ) to be an arc such that T [N(e)]
contains a (t− 1)-cluster, and a t-light arc to be an arc that is not t-heavy.

We start by including a proof from [NSS23b] of a standard inequality that relates
the chromatic number of a tournament T to the chromatic number of its backedge
graph G. We say G is the backedge graph of T under a given ordering of its vertex
set V (T ) = {v1, ..., vn} when for every i < j, vivj ∈ E(G) iff vi is adjacent from vj
in T .

Claim 5.4.1. Let T be a tournament, and G its backedge graph under a given or-
dering. Then ~χ(T ) ≤ χ(G) ≤ ~χ(T )ω(G), where ω(G) is the size of the largest clique
in G.
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Proof. The first part of the inequality results from every stable set in G being a
transitive set in T . Now take a transitive set X in T , and let <p be the partial
order on the elements of X where for vi, vj ∈ X, vi <p vj iff i < j and vjvi ∈ E(T ).
This is a partially ordered set, since vi <p vj and vj <p vk implies i < j < k,
vi, vj, vk ∈ X and vjvi, vk, vj ∈ E(T ), therefore vkvi ∈ E(T ) since X is transitive,
and thus vi <p vk. Then, every totally ordered subset of X is a clique of G, and
is therefore of size at most ω(G). By the dual of Dilworth’s theorem, X can be
partitioned into ω(G) subsets, each an antichain of the poset and hence a stable
set of G. Thus χ(G[X]) ≤ ω(G). It follows by using the same argument for every
transitive set of T that χ(G) ≤ χ(T )ω(G).

Let us now prove a lemma that will allow us to restate Conjecture 5.1.2. The
proof is reminiscent of the proof of 3.7 in [BCC+13] and essentially the same as
the proof of Lemma 3.4 in [AAC22]. Let clust be a function such that clust(x) =
x · 2s(2x) + s(2x) + 1.

Lemma 5.4.2. For all c ≥ 0, in any tournament T with ~χ(T ) ≥ clust(c) that has
a 2c-cluster, there are two sets A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c and all
arcs between A and B go from vertices of A to vertices of B.

Proof. Let C ⊂ V (T ) be a 2c-cluster. By the definition of a cluster, |C| ≤ s(2c). So
there are at most 2s(2c) ways of partitioning C. Consider any vertex v ∈ V (T ) \ C.
Then (N+(v)∩C,N−(v)∩C) forms a partition of C. Thus, we can partition V (T )\C
into at most 2s(2c) subsets (Si)1≤i≤2s(2c) such that all vertices in a subset Si have the
same in-neighborhood and out-neighborhood in C (i.e., each vertex in Si partitions
C in the same way). If every Si can be colored with at most c colors, T can be
colored with at most c · 2s(2c) + s(2c) colors. Therefore, since ~χ(T ) ≥ clust(c) =
c · 2s(2c) + s(2c) + 1 by the condition of the lemma, there must exist some subset Si
with ~χ(T [Si]) ≥ c. Consider the partition (N+(v) ∩C,N−(v) ∩C) of C for a vertex
v ∈ Si. Either ~χ(T [N+(v) ∩ C]) ≥ c or ~χ(T [N−(v) ∩ C]) ≥ c, since χ(C) ≥ 2c.
By definition, Si is complete to N+(v) ∩ C and complete from N−(v) ∩ C. Thus
by setting A = N−(v) ∩ C and B = Si if ~χ(T [N−(v) ∩ C]) ≥ c, and A = Si,
B = N+(v) ∩ C if ~χ(T [N+(v) ∩ C]) ≥ c, we have found A and B with A complete
to B and ~χ(T [A]), ~χ(T [B]) ≥ c.

Let us restate Conjectures 5.1.1 and 5.1.2.

Conjecture 5.4.2 (Restatement of Conjecture 5.1.1). There exists a function ee
such that for every pair of integers t, c ≥ 1, if a graph G satisfies χ(G) ≥ ee(t, c) and
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ω(G) < t, then there are subsets A,B ⊆ V (G) with χ(G[A]), χ(G[B]) ≥ c, such that
there are no edges between A and B.

Conjecture 5.4.3. There exists a function nss such that for every pair of integers
t, c ≥ 1, if a tournament T satisfies ~χ(T ) ≥ nss(t, c) and T contains no t-cluster,
then there are subsets A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c and all arcs
between A and B go from vertices in A to vertices in B.

Conjecture 5.4.3 may seem weaker than Conjecture 5.1.2, but is in fact equivalent.
This is a direct consequence of Lemma 5.4.2. Indeed, for any c, if a tournament T
has no sets A and B with A complete to B and ~χ(T [A]), ~χ(T [B]) ≥ c, then by the
contrapositive of Lemma 5.4.2 it has no 2c-cluster or it has chromatic number less
than clust(c). Therefore, Conjecture 5.4.3 will imply that T has chromatic number
strictly less than d = max(nss(2c, c), clust(c)), which is some constant since c is
fixed. This is exactly the contrapositive of Conjecture 5.1.2. We now state the
contrapositive of Conjecture 5.4.3, which is also equivalent to Conjecture 5.1.2.

Conjecture 5.4.4 (Restatement of Conjecture 5.4.3). There exists a function nss
such that for every pair of integers t, c ≥ 1, if a tournament T contains no t-cluster
and T does not contain subsets A,B ⊆ V (T ) such that ~χ(T [A]), ~χ(T [B]) ≥ c with all
arcs between A and B going from vertices in A to vertices in B, then ~χ(T ) ≤ nss(t, c).

5.4.1 Proof of Conjecture 5.1.2, assuming Conjecture 5.1.1

Proof of Conjecture 5.4.4, assuming Conjecture 5.4.2. For t = 2, a tournament T
with no 2-cluster does not contain a directed triangle and therefore has ~χ(T ) = 1.
Thus, we have nss(2, c) = 1. Now we assume that nss(t− 1, c) exists. We will prove
that nss(t, c) exists.

We consider a tournament T , which by assumption does not contain a t-cluster.
Since t is now fixed for the rest of this proof, we simply use heavy and light in
place of t-heavy and t-light. Let L be the set of light arcs and H the set of heavy
arcs. Notice that every arc in T must be either in L or in H. Let DH = (V,H)
and DL = (V, L) be digraphs containing the heavy and light arcs, respectively. Let
GH = (V,H) denote the undirected graph of heavy edges and let GL = (V, L) denote
the undirected graph of light edges. (Notice that we are abusing notation by using
H and L to refer to both directed and undirected edge sets.)

Our first claim is that the graph GH has no large clique, and consequently, the
graph GL has bounded independence number.
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Claim 5.4.3. ω(GH) ≤ t− 1.

Proof. Suppose that GH contains a Kt (i.e., a clique on t vertices) and let S be the
set obtained by including the t vertices of the clique in addition to the vertices in
the (t − 1)-cluster in the neighborhood of each arc corresponding to an edge in the
clique. Then S has at most t+ t2 ·s(t−1) vertices. Moreover, T [S] cannot be colored
with t − 1 colors since every arc is heavy and the endpoints of a heavy arc cannot
have the same color in any coloring using only t−1 colors. Since S contains a clique,
we have that χ(S) ≥ t. Thus, T contains a t-cluster, which is a contradiction. 3

Claim 5.4.4. α(GL) ≤ t− 1.

Proof. L and H are complementary edge sets (i.e., every edge not in L belongs to H
and vice versa). If GL has an independent set of size t, then GH would have a clique
on those same t vertices, which would contradict Claim 5.4.3. 3

Claim 5.4.5. For every arc e ∈ L, ~χ(T [N(e)]) ≤ nss(t− 1, c).

Proof. By definition, the neighborhood of any light arc contains no (t − 1)-cluster.
Thus by the induction hypothesis it can be colored with nss(t− 1, c) colors. 3

It follows immediately that the neighborhood of every arc in DL has chromatic
number at most nss(t− 1, c). We can then use Theorem 5.1.4 to show that DL can
be colored with h(nss(t− 1, c)) of colors.

Fix such a coloring of DL. Each color induces a tournament that has a vertex
ordering in which each backward arc belongs to H (since all monochromatic arcs
with the same color from L form an acyclic digraph). Consider the subtournament
Ti induced on vertices with the ith color, let n denote the number of vertices in
this subtournament and fix a vertex ordering {v1, . . . , vn} in which all arcs in DL

are forward. Let Gi be the undirected graph on this vertex set whose edge set
corresponds to the backward arcs of Ti with respect to the fixed vertex ordering.
Notice that Gi is a subgraph of GH , which is Kt-free by Claim 5.4.3.

Now let us apply Conjecture 5.4.2 to the graph Gi. Let c2 = 2tc. Either each Gi

has chromatic number at most d = ee(t, c2) or Gi contains two sets S1 and S2 with
χ(G[S1]), χ(G[S2]) ≥ c2 and with no edges in Gi between S1 and S2. In the latter
case, let a be the smallest index such that χ(G[{v1, . . . , va} ∩ S1]) ≥ tc, and let b be
the smallest index such that χ(G[{v1, . . . , vb}∩S2]) ≥ tc. Without loss of generality,
assume that a < b. Now let A′ = {v1, . . . , va} ∩ S1 and B′ = {vb+1, . . . , vn} ∩ S2.
Observe that since S1 and S2 have no arcs between them in Gi, which corresponds
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to the backedge graph of Ti, then all arcs between A′ and B′ in Ti must go from
A′ to B′. Moreover, we have ~χ(Ti[A

′]) ≤ χ(Gi[A
′]) ≤ ω(Gi[A

′])~χ(Ti[A
′]) from Claim

5.4.1. Since χ(Gi[A
′]) ≥ tc and ω(Gi[A

′]) ≤ ω(Gi) ≤ t, we have ~χ(Ti[A
′]) ≥ c. Using

the same argument, we also have ~χ(Ti[B
′]) ≥ c. However, by assumption, such sets

A′ and B′ do not exist in T . So we conclude that we are in the first case, in which
~χ(Ti) ≤ χ(Gi) ≤ ee(t, c2).

Thus, we can color the subtournament induced by each color class of DL with
ee(t, 2tc) colors, resulting in a coloring of T with nss(t, c) = ee(t, 2tc) ·h(nss(t−1, c))
colors.

5.4.2 Proof of Conjecture 5.1.1, assuming Conjecture 5.1.2

For the sake of completeness, we include the proof from [NSS23b] that Conjecture
5.1.2 implies Conjecture 5.1.1. Combined with our proof that Conjecture 5.1.1 im-
plies Conjecture 5.1.2, this shows the equivalence of both conjectures.

Proof of Conjecture 5.1.1, assuming Conjecture 5.1.2. We will prove the statement
by induction on t. The statement is trivial for t = 2, since a graph with no clique of
size 2 has chromatic number 1, so we can simply choose d = 2 for any c.

Then suppose for any graph G with ω(G) < t− 1, and χ(G) ≥ d, there exist two
anticomplete subsets A and B of V (G), both with chromatic number at least c. Let
cT = max(2d, 2c), and let dT be the constant obtained from the assumed truth of
Conjecture 5.1.2 such that any tournament T with chromatic number at least dT has
a complete pair two subsets A and B with A complete to B, and χ(A), χ(B) ≥ cT .

Let d′ = t ·dT , and let G be a graph with χ(G) ≥ d′ and ω(G) < t. Our goal is to
show that there are two anticomplete subsets A and B of V (G) both with chromatic
number at least c.

Let V (G) = {v1, ..., vn} and let T be the tournament such that G is its backedge
graph under the numbering v1, ..., vn. From Claim 5.4.1, we get χ(T ) ≥ d′/t = dT .
By the assumed Conjecture 5.1.2, there are two disjoint subtournaments AT , BT of T
with AT complete to BT , and χ(AT ), χ(BT ) ≥ cT . Then choose the smallest integer
i such that either {v1, ..., vi} ∩ AT or {v1, ..., vi} ∩ BT induces a tournament with
chromatic number at least cT/2.

If {v1, ..., vi} ∩ AT induces a tournament with chromatic number at least cT/2,
define A = {v1, ..., vi} ∩ AT and B = {vi+1, ..., vn} ∩ BT . By the minimality of i,
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χ(T [B]) ≥ cT − χ(T \ B) ≥ cT/2 ≥ c. Since A is complete to B, and all arcs from
A to B are increasing in the ordering {v1, ..., vn}, A and B are anticomplete in G.
Moreover, from Claim 5.4.1, χ(G[A]) ≥ χ(T [A]) ≥ c and χ(G[B]) ≥ χ(T [B]) ≥ c,
thus A and B are the two desired subsets of G.

Else, {v1, ..., vi}∩BT induces a tournament with chromatic number at least cT/2.
Then define A = {vi+1, ..., vn} ∩ AT and B = {v1, ..., vi} ∩ BT . Since A is complete
to B, and all arcs from A to B are decreasing in the ordering {v1, ..., vn}, A and B
are complete in G. By the minimality of i, χ(T [B]) ≥ cT −χ(T \B) ≥ cT/2 ≥ d. As
previously, Claim 5.4.1 implies χ(G[B]) ≥ χ(T [B]) ≥ d and since B is contained in
the outneighborhood of any vertex in A (which cannot be empty since i is minimal),
ω(G[B]) ≤ t− 1. Then by the induction hypothesis, there are anticomplete subsets
A′ and B′ of B such that χ(G[A′]), χ(G[B′]) ≥ c.
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Chapter 6

Conclusion of Part I

As we have seen in Chapter 2 coloring tournaments is strongly related to coloring
graphs, in the sense that if k-colorable graphs could be colored with a constant
number of colors, so could k-colorable tournaments. 3-colorable tournaments have
an even stronger relation to 3-colorable graphs: they can be colored with at most
50 times the number of colors needed for 3-colorable graphs. While these results
may be improved, the case of 2-coloring is interesting since for graphs, it is easy to
efficiently color 2-colorable graphs in polynomial time, while it is NP-hard to color
2-colorable tournaments with 2 colors [CHZ07]. This implies that there can be no
general reduction from coloring tournaments to coloring graphs that preserves the
chromatic number of the instance.

Another observation is the relation of coloring tournaments and the feedback ver-
tex set (FVS) problem on tournaments. There is an elegant 2-approximation for this
problem [LMM+21]. Notice that Theorem 2.2.1 implies that in a 2-colorable tourna-
ment, we can efficiently find a FVS of size at most 9n/10. In contrast, the algorithm
in [LMM+21] could just return the whole vertex set if the two transitive sets were of
roughly equal size. Finally, we mention that, analogous to a well-studied question for
general graphs [DKPS10, KS14], one can ask what is the largest transitive induced
subtournament that one can efficiently find in a 2-colorable tournament? Is it larger
than n/10?

We also remark that an implication of Theorem 2.3.2 is that proving any hard-
ness of coloring 3-colorable tournaments would then provide hardness of coloring
3-colorable graphs with 50 times fewer colors. Since it has taken around 20 years to
go from proving NP-hardness of coloring a 3-colorable graph with four colors [KLS00,
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GK00, GK04] to NP-hardness of coloring a 3-colorable graph with five colors [BKO19],
it would be interesting to see if we can prove hardness of coloring 3-colorable tour-
naments for a constant larger than five (at least five is shown in Theorem 3.2.5), or
perhaps show that the two problems are actually equivalent.

Our work proving the equivalence of Conjectures 5.1.2 and 5.1.1 leaves open the
question of whether these conjectures are true. Proving or disproving one of them
would be very interesting as it would also provide results for the other setting. In
fact, a weaker formulation of the conjecture on graphs, replacing cliques with clusters
is also equivalent to them.

Finally, the graph theoretic results we obtained in Chapter 5 are based on the
algorithmic tools developed in the previous chapters. This is interesting, as structural
results are often the basis for algorithms, and in this case the reverse was also true,
highlighting the strong link between the fields of graph theory and algorithmics.
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Part II

Cycle-plus-Triangles Graphs

82



Chapter 7

Introduction

Many modern combinatorial techniques supply existence proofs but do not yield
efficient algorithms for the respective problems [Alo90, Alo93]. This is the case for the
3-colorability of a Cycle-plus-Triangles graph [Alo02, Alo22]. A Cycle-plus-
Triangles graph is the disjoint union of t vertex disjoint triangles and a Hamilton
cycle on the n = 3t vertices. (Notice that a Cycle-plus-Triangles graph can
be a multigraph since an edge can belong to both a triangle and to the Hamilton
cycle.) Such a graph can be recognized in polynomial time, as shown by [BK17], who
also gave an efficient algorithm for finding a decomposition into a Hamilton cycle
and a set of vertex disjoint triangles. It was conjectured by Du, Hsu and Hwang
that a Cycle-plus-Triangles graph has a stable set 1 of size n/3 [DHH93]. This
was extended by Erdős who conjectured that a Cycle-plus-Triangles graph is
3-colorable, 2 which was proved by Fleischner and Stiebitz [FS92]. Interestingly,
Fellows observed that the conjecture of Erdős is equivalent to a conjecture of Schur
which states that for any partition of the integers into triples, there is a 3-coloring of
the integers such that each color class contains a member of each triple but no pair
of consecutive integers [Fel90].

The proof of Fleischner and Stiebitz is based on an application of an algebraic
tool of Alon and Tarsi and is nonconstructive [AT92]. Subsequently, Sachs gave
an “elementary” proof of this theorem [Sac94], which yields an algorithm, but the
algorithm is not guaranteed to run in polynomial time. In fact, currently, we do not
even know how to find a stable set of size n/3 in polynomial time, although due to

1A stable set is a subset of vertices that induce a subgraph with no edges.
2A graph is 3-colorable if its vertex set can be partitioned into three stable sets.
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previously cited results, it is guaranteed to exist. (Notice that a maximum stable set
in a Cycle-plus-Triangles graph has size n/3.) Alon et al. gave another (also
nonconstructive) proof based on topological methods for proving that a Cycle-
plus-Triangles graph contains two disjoint stable sets each of size n/3 [AAB+17].
Topological tools were also used to study the case in which the Hamilton cycle is
replaced with a disjoint union of cycles, in which case a stable set of size n/3 is
known to exist if at most two of the cycles have length equal to 1 mod 3 [AHHS15].

In this thesis, we present a new randomized algorithm for finding a maximum
stable set in a Cycle-plus-Triangles graph. Our algorithm is simple and easy to
implement, and our approach is not based on any of the previously mentioned (non-
constructive) methods. Rather, it is loosely inspired by constructive algorithms for
the Lovász Local Lemma (LLL) [MT10]. The general framework of these algorithms
are to find a “flaw” and resample the relevant set of variables. If certain conditions
are met, then it can be shown that such an algorithm terminates quickly. It is not
known how to use the LLL to prove the existence of a stable set of size n/3 in a
Cycle-plus-Triangles graph, and therefore this line of research has not led to ef-
ficient algorithms for this problem. Nevertheless, our algorithm, which can be viewed
as resampling flaws, runs quickly in practice and outputs a maximum stable set upon
termination. The study of what parameters are actually required to guarantee the ef-
ficiency of resampling-based algorithms is an area of ongoing study [CCS+17, HLS23].
In any case, we have not been able to find instances on which our algorithm fails (i.e.,
on which it does not terminate after a number of steps that is roughly linear in the
instance size). While we are not able to prove that it is efficient, we conjecture that
it runs in expected polynomial time. We also implemented a deterministic version of
our algorithm based on the rotor-router model, which seems to run faster than the
randomized algorithm most of the time. However, we found instances in which this
derandomized version does not terminate.

To understand the limitations of our framework, we considered the problem of
finding two or three maximum stable sets in a Cycle-plus-Triangles graph. Ad-
ditionally, we considered other generalizations such as Fair-Representation. In
the latter problem, we are given a Hamilton cycle H = (V,E) and a partition of the
vertex set V = {V1, V2, . . . , V`}. The goal is to find a stable set of the cycle I ⊂ V
such that |I ∩Vi| ≥ |Vi|/2− 1 for all i ∈ {1, . . . , `}. This problem has a nonconstruc-
tive proof [AAB+17] and was shown to be PPA-complete [Hav21], which suggests
that finding an efficient algorithm for it is unlikely. Our algorithm easily extends to
these problems, but does not perform well. This leads us to believe that finding a
maximum stable set in a Cycle-plus-Triangles graph is an easier problem than
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any of these generalizations.

7.1 Organization of Part II

In the rest of this chapter, we start by presenting basic notation in Section 7.2.
We then give an overview of the different proofs of 3-colorability and the proof of
existence of a stable set of size n/3. We present in detail the “elementary” proof of
3-colorability by Sachs [Sac94], and give a brief synopsis of the proof of 3-colorability
of Fleischner and Stiebitz [FS92], and the proof of independence number n/3 by
[AAB+17].

In Chapter 8, we first discuss the relation between instances of the Cycle-plus-
Triangles problem and random permutations in Section 8.1. We then present our
algorithms, both randomized and deterministic, for finding a maximum stable set
in a Cycle-plus-Triangles graph in Section 8.2. In Section 8.3, we give some
intuition as to why our algorithm seems to always terminate in a polynomial number
of steps, and prove efficient termination on some families of instances in Section 8.4.

Chapter 9 focuses on an empirical evaluation of the algorithms. In Section 9.1,
we present methods to generate instances of Cycle-plus-Triangles graphs. In
Section 9.2, we present experimental results of running our algorithm on various sets
of instances, giving evidence of its efficiency. Then in Section 9.3, we discuss the
limitations of the deterministic algorithm.

Finally, Chapter 10 contains results about extensions of our algorithms, either to
problems more general than finding a maximum independent set in a Cycle-plus-
Triangles graph, or to graphs that are not Cycle-plus-Triangles graphs but
closely related. In Section 10.1, we discuss extensions of our algorithms to coloring
and fair representation. In Section 10.2 we examine the behavior of our algorithms
on Triangles-plus-Two-factor graphs, which are a superset of Cycle-plus-
Triangles graphs.

Our code can be found at: https://anonymous.4open.science/r/CT-ss-alg-7C9C.

This part of the thesis is joint work with Duc-Anh Do, Moritz Mühlenthaler,
Alantha Newman and Heiko Röglin. We also thank John Sylvester for encouraging
us to look at potential function arguments.
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(a) An instance for the Cycle-plus-
Triangles problem.

(b) A particular instance for the
Cycle-plus-Triangles prob-
lem, the chain-of-links.

Figure 7.1: Cycle-plus-Triangles graphs. The Hamilton cycle edges are in black
and the triangle edges in red.

7.2 Notation

Let G denote the class of all Cycle-plus-Triangles graphs and let Gn denote the
class of all Cycle-plus-Triangles graphs on n vertices. We say that G ∈ Gn is a
Cycle-plus-Triangles instance (or just instance) where G = (V,ET ∪ EH) and
ET denotes the edge set of the t = n/3 triangles and EH denotes the edge set of the
Hamilton cycle of length n. An edge can belong to both EH and to ET , in which
case the instance is a multigraph.

We use distH(i, j) to denote the length of the shortest path between vertices i
and j on the Hamilton cycle H. The span of a triangle in G is the length of its
shortest side, where length is computed with respect to distH(·). The span of the
graph G is the minimum span of all triangles in G. We use σ(G) to denote the span
of G. For example, in Figure 9.1b, the instance has span three, and in Figure 9.1a,
the instance has span four. If an instance has span at least two, then it is not a
multigraph.

Note that an instance is unique up to isomorphism; that is, two graphs represent
the same instance if and only if they are isomorphic. In fact, if σ(G) ≥ 3, then there
is a unique decomposition of the edges of G into EH and ET . (This is formally stated
and proved in Lemma 9.1.1.)
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7.3 Proof of 3-colorability by Fleischner and Stieb-

itz

The first proof of 3-colorability of Cycle-plus-Triangles graphs is due to Fleis-
chner and Stiebitz [FS92]. The proof is based on counting the number of arc
subsets of an orientation of the graph that induce an Eulerian subdigraph. A di-
rected graph is said to be Eulerian iff each vertex has equal in-degree and out-
degree. They introduce the parameter e(D) for a digraph D = (V,A), defined as
e(D) = |{E ⊆ A : D[E] is Eulerian}|, where D[E] denotes the digraph induced by
the arc set E on the vertex set V . They then use the following corollary of theorems
of Alon and Tarsi based on the polynomial method [AT92].

Corollary 7.3.1. If G is a 2k-regular graph on n vertices which has an Eulerian
orientation D satisfying e(D) = 2 mod 4, and if the number of edges is even, then
χ(G) ≤ k + 1.

When G is a Cycle-plus-Triangles graph, it is the case that k = 2. Thus,
proving that G has an Eulerian orientation D satisfying e(D) = 2 mod 4 implies
the 3-colorability of G. They prove this statement for the orientation obtained by
directing all arcs of the Hamilton cycle such that they form a directed Hamilton
cycle, and all arcs of each triangle in a way that they form a directed triangle. The
proof is then done by induction on the number of triangles, by showing that this
directed graph can be reduced to directed graphs with the same decomposition but
with fewer triangles. They then show that e(D) can be written as a function of the
parameter e of these smaller digraphs, on which the induction hypothesis can be
applied.

This allows them to prove their main theorem, which is the following.

Theorem 7.3.2. Let G be a Cycle-plus-Triangles graph. Then χ(G) = 3.

The authors also mention that this theorem can be obtained without using the
results of Alon and Tarsi based on the polynomial method, but rather the theory of
nowhere-zero Z3-flows and the flow polynomial.
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7.4 Sachs’ proof of 3-colorability

The following proof by Sachs of the 3-colorability of Cycle-plus-Triangles graphs
can be considered elementary because it is based solely on combinatorial arguments,
and uses no theorem established outside of this work.

The idea of the proof is to show that the number of 3-colorings of a Cycle-
plus-Triangles graph, up to permutation of the colors, is odd, and thus cannot
equal zero. To prove that, the author starts by defining the number of normalized
3-colorings of a graph, π(G).

Definition 7.4.1. Given a Cycle-plus-Triangles graph G = (V,E), we will say
a 3-coloring c : v → 1, 2, 3 is normalized if for two fixed adjacent vertices v1 and v2,
c(v1) = 1 and c(v2) = 2. It is clear that every 3-coloring can be normalized by a
permutation of the colors. Then, let π(G) be the number of normalized colorings of
G. This is also the number 3-colorings of G that are different up to a permutation
of the colors.

The main theorem that Sachs’ proves is the following:

Theorem 7.4.1. For any Cycle-plus-Triangles graph G, π(G) ≡ 1 mod 2.

The proof of this theorem relies on a double induction, first on the number of
triangles of the instance, and then on its span. Sachs shows that for a given graph G,
the parity of π(G) can be deduced from the parity of graphs with strictly lower span
(and is odd if they are all odd), and then that graphs of low span can be reduced to
graphs with fewer triangles whose number of normalized 3-colorings share the same
parity.

7.4.1 Reduction for graphs with low span

Lemma 7.4.2. Given a Cycle-plus-Triangles graph G on n triangles, with span
at most two, there exists a Cycle-plus-Triangles graph G′ on n − 1 triangles
such that every coloring of G′ can be extended to a coloring of G. Furthermore,
π(G′) ≡ π(G) mod 2.

Though this formulation of the lemma is more restrictive than Sachs’ Lemma 1,
and only the equivalence on the parity of the number of normalized 3-colorings is
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necessary to prove the 3-colorability of Cycle-plus-Triangles graphs, it follows
from the same proof, and we find it interesting to point out that instances with span
1 or 2 can in fact be reduced to smaller instances, from which every 3-coloring can
be extended.

Proof. There are three different types of reduction that need to be considered in
order to prove the lemma. They are all represented in Figure 7.2.

The first is when there exists a triangle t with span one that has two edges of
span one. In that case, G′ is obtained by removing the triangle and contracting the
Hamilton cycle such that the two vertices that had a neighbor in t, y and z, become
neighbors on the Hamilton cycle.

The second case is when there is a triangle t with span one, but only one of its
edges is of span one. G′ is similarly obtained by removing the triangle and contracting
all Hamilton cycle edges. For example, y and z the neighbors of the vertices of t that
are at distance one of each other, will become Hamilton cycle neighbors.

Finally, in the case of a triangle t of span two, call u and v the vertices of t at
distance two on the Hamilton cycle. Then, call w the third vertex in their triangle,
and x their common neighbor on the Hamilton cycle. G′ is obtained by first swapping
the positions of w and x on the Hamilton cycle, and then removing the triangle t.
As previously, y and z the two neighbors of v and u respectively, become neighbors
on the Hamilton cycle.

In all cases, the proof is done in two parts, by splitting the 3-colorings of G into
two sets: those in which y and z have the same color, and those in which they don’t.
One can then show through case analysis that the first set has an even size, and that
the second set has an odd size.

7.4.2 Transformation towards graphs of lower span

The author then proves a lemma that allows him to deduce the parity of the number
of colorings of a graph from that of graphs obtained by applying two specific types
of transformations, which can both be used to make the span smaller.

Definition 7.4.2. For a Cycle-plus-Triangles graph G, define the interchange
of u and v in G (who are adjacent on the Hamilton cycle), I(G, u, v), to be the graph
obtained from G by swapping the places of u and v on the Hamilton cycle.
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For a Cycle-plus-Triangles graph G, define the bitransplantation of u, v,
s and t in G, B(G, u, v, s, t), to be the graph obtained from G by moving the two
vertices that are between u and v on the Hamilton cycle (call them x and y) between
the vertices s and t (which are adjacent on the Hamilton cycle), such that (s, x, y, t)
becomes a path on the Hamilton cycle. By this procedure, u and v become neighbors
on the Hamilton cycle.

Lemma 7.4.3. Let G1 = (V, (ET , EH)) be a Cycle-plus-Triangles graph, and
(x, y), (s, t) a pair of edges in EH . Call u and v the respective neighbors of x and y
in EH (other than themselves).

Define G2 = I(G1, x, y), G̃1 = B(G1, u, v, s, t) and G̃2 = B(G2, u, v, s, t) =
I( ˜G1, x, y).

Then, π(G1) + π(G2) ≡ π(G̃1) + π(G̃2) mod 2.

Proof. The proof of this lemma relies on examining the colorings such that u and
v, or s and t have the same color, and when they don’t. When they do, it is
straightforward that any coloring of the graph is also a coloring of the graph where
the two vertices between them are interchanged, thus the number of such colorings
is even on both sides of the equality. When this is not the case, a case analysis shows
that any coloring of either of the first two graphs gives exactly one coloring of either
of the two latter.

7.4.3 Proof by induction

The goal is to prove by induction, first on the number of triangles, then on the span
of the instance, that for any Cycle-plus-Triangles graph G, π(G) ≡ 1 mod 2.

Induction on the number of triangles t

Initialization (size): For t = 1, there is only one Cycle-plus-Triangles graph
with a single triangle, and π(G) = 1 ≡ 1 mod 2.

Induction hypothesis (size): For any Cycle-plus-Triangles graph G on t
triangles, π(G) ≡ 1 mod 2.

Take a Cycle-plus-Triangles graph G on t+ 1 triangles. Then, we will show
by induction on the span of the instance, that π(G) ≡ 1 mod 2.

Induction on the span σ
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Initialization (span): If σ(G) ≤ 2, we can use a reduction from Lemma 7.4.2,
which yields π(G) = π(G′) with G′ having only t triangles. Thus, by the induction
hypothesis, π(G) = π(G′) ≡ 1 mod 2.

Induction hypothesis (span): For any Cycle-plus-Triangles graph G on t+ 1
triangles with span at most σ, π(G) ≡ 1 mod 2.

Take a Cycle-plus-Triangles graph G on t + 1 triangles with span σ + 1.
Notice that you can choose u, v, x, y, s and t such that G = G1, G2 = I(G, x, y)
has span σ, G̃1 = B(G1, u, v, s, t) has span 2, and G̃2 = B(G2, u, v, s, t) has span 1.
This is done by interchanging one of the endoints of the edge with span σ + 1 with
its neighbor in the direction of the other endpoint of that edge. It is clear that this
interchange will reduce the span of that edge. The bitransplantation can then move
these two vertices between the third vertex of the triangle with low span, and one
of its neighbors on the Hamilton cycle. A representation of such a configuration is
given in Figure 7.4.

Then, from lemma 7.4.3, π(G) + π(G2) ≡ π(G̃1) + π(G̃2) mod 2, or equivalently,
π(G) ≡ π(G2) + π(G̃1) + π(G̃2) mod 2, and from the induction hypothesis, π(G2) ≡
π(G̃1) ≡ π(G̃2) ≡ 1 mod 2, impliying π(G) ≡ 1 mod 2.

This concludes the induction on the span, thereby also concluding the induction
on the size of the instance.
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Figure 7.2: The three cases of reductions to lower span instances. A blue dotted line
represents a path on the Hamilton cycle. Note that in case C, the two vertices in
the same triangle as x can also both be on the same path of the Hamilton cycle (ie.
both between t and y).
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Figure 7.4: Choice of vertices to form a double pair where all other graphs have lower
span than G1. The red edge has span σ + 1.
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7.5 Alon’s proof of independence number n/3

Schrijver proves the following theorem [Sch78]:

Theorem 7.5.1. The family I(n, k) of independent sets of size k in the cycle Cn
cannot be partitioned into fewer than n− 2k + 2 intersecting families.

The general idea behind the proof is to build a Kneser graph from Cn (where
each node is an independent set of Cn, and adjacent to another iff they do not
intersect). Then, an independent set of the Kneser graph is an intersecting family
of Cn. Therefore, proving that the Kneser graph has a given chromatic number will
give as a corollary the previous theorem.

To prove the chromatic number of the Kneser graph is n− 2k + 2 when n > 2k,
Schrijver embeds the vertices with unit vectors on a k-dimensional sphere, and uses
polynomial representations in order to show that hemispheres enclose subsets of
n/2 − k vertices. Then, supposing there is a partition of the nodes into k + 1
families, he shows that some families contains two antipodal points of the sphere
using Borsuk’s theorem, which according to the embedding means they are disjoint
sets.

Then, Alon et al. prove the following [AAB+17]:

Theorem 7.5.2. For G = Cn, if {V1, ..., Vn} is a partition of the vertex set, there
exists an independent set I of G, such that for each Vi, |I ∩ Vi| = (|Vi| − 1)/2.

The proof is done by contradiction: if there is no such set I, then all independent
sets of size

∑
i(|Vi|−1)/2 < n/2 must have some i for which |I∩Vi| ≥ (|Vi|−1)/2+1.

Then he defines a family Fi to be all independent sets such that |I ∩ Vi| ≥ (|Vi| −
1)/2 + 1. Each family Fi is intersecting, and there are fewer than n−2k+ 2 of them,
which contradicts Theorem 1.
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Chapter 8

Algorithms for finding stable sets
in cycle-plus-triangles graphs

In this chapter, we start by discussing the correspondence between Cycle-plus-
Triangles instances and permutations. We then present a randomized algorithm,
and a deterministic version, to find maximum stable sets in Cycle-plus-Triangles
graphs. We then discuss some intuition behind the algorithms, and prove termination
of a version of the randomized algorithm on some families of instances.

8.1 Correspondence between instances and per-

mutations

A labeled instance has a natural correspondence to a permutation. Let [n] = {1, . . . , n}.

Definition 8.1.1. Given a permutation π : [n] → [n] (where n ≡ 0 mod 3), we
define I(π) to be a labeled Cycle-plus-Triangles graph or a labeled instance
where

• Each vertex in V has a unique label in {1, . . . , n}.

• EH = {(i, (i mod n) + 1) | i ∈ V }.

• ET = {(π(3i+ 1), π(3i+ 2))∪ (π(3i+ 2), π(3i+ 3))∪ (π(3i+ 3), π(3i+ 1)) | i ∈
{0, . . . , n/3− 1}.
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Figure 8.1: The three Cycle-plus-Triangles instances on two triangles

In other words, if π = (π(1), π(2), . . . , π(n)) is a permutation of [n], then the
first three numbers in the list (i.e., π(1), π(2), π(3)) correspond to the first triangle,
the second triple corresponds to the second triangle, etc. Thus, every permutation
on [n] corresponds to a labeled problem instance on n vertices and every (labeled
and unlabeled) problem instance corresponds to a set of permutations. However,
we note that two nonisomorphic graphs G and G′ can map to sets of permutations
with different cardinalities. In other words, if we simply generate permutations on
[n] uniformly at random, we will generate some instances more than others.

We now discuss this a bit further. We say that two permutations π, ρ on [n]
are label equivalent if they correspond to the same labeled instances (i.e., instances
whose triples are the same sets). For example, if n = 9, then consider the permutation
ρ = (1, 3, 2, 5, 4, 6, 7, 8, 9) and let π be the identity permutation. Then I(π) and I(ρ)
are the same labeled graphs. Moreover, if ρ = (4, 5, 6, 1, 3, 2, 7, 8, 9), then I(π) and
I(ρ) still correspond to the same labeled graphs. Thus, each labeled instance on t
triangles corresponds to 6t · t! permutations. If two permutations π and ρ are label
equivalent, then I(π) and I(ρ) are the same labeled graph.

An instance G of a Cycle-plus-Triangles graph is a unique (up to isomor-
phism) unlabeled graph. An instance G can correspond to multiple labeled graphs.
To quantify how many labeled graphs map to G (and thus, how many permutations
map to G), we define equiv(G) to be the set of labeled graphs that map to instance
G.

Observation 8.1.1. For instance G, the number of permutations π on [n] such that
I(π) ∈ equiv(G) is 6t · t! · |equiv(G)|.

We will illustrate this by looking at the permutations and instances on two tri-
angles.

There are three (nonisomorphic) instances on three triangles, presented in Figure

97



8.1. Let us call them G1 (on triangles (1, 2, 3) and (4, 5, 6)), G2 (on triangles (1, 2, 4)
and (3, 5, 6)) and G3 (on triangles (1, 3, 5) and (2, 4, 6)), following the left-to-right
order of the figure. There are 6! = 720 permutations of [6]. Let us fix a permutation
π of [6]. Any reordering of the first three numbers or of the last three numbers will
lead to label-equivalent instances. This is the 6t factor in the formula of Observation
3, which is 36 in this case. Moreover, any reordering of the two triangles will also
lead to label-equivalent instances. This is the factor t!, which is 2 in this case. This
means that permutation π is label equivalent to 72 other permutations.

Now we wish to compute the size of equiv(G) for each instance G on two trian-
gles. Consider the notation {{a, b, c}, {d, e, f}}, which represents a set of label-
equivalent permutations or instances. (It does not distinguish the order within
each group of three vertices, or between the two groups, so it could also be writ-
ten {{e, d, f}, {c, b, a}}). Then there will be 720/72 = 10 instances, which are not
label equivalent. However, some of these instances are isomorphic to one another,
since there are only three nonisomorphic instances on two triangles.

The sets of permutations that generate instances isomorphic to G1 are:

{{1, 2, 3}, {4, 5, 6}},
{{1, 5, 6}, {2, 3, 4}},
{{1, 2, 6}, {3, 4, 5}}.

The sets of permutations that generate instance isomorphic to G2 are:

{{1, 2, 4}, {3, 5, 6}},
{{1, 4, 6}, {2, 3, 5}},
{{1, 2, 5}, {3, 4, 6}},
{{1, 3, 6}, {2, 4, 5}},
{{1, 3, 4}, {2, 5, 6}},
{{1, 4, 5}, {2, 3, 6}}.

There is only one set of permutations that generates instances isomorphic to G3:

{{1, 3, 5}, {2, 4, 6}}.

This shows the variability of |equiv(G)|, the number of label equivalent graphs
that correspond to an instanceG (i.e., |equiv(G1)| = 3, |equiv(G2)| = 6 and |equiv(G3)| =
1). In general, |equiv(G)| is equal to 2n divided by the number of rotational sym-
metries of G, and then divided by an extra factor 2 if the instance has any axial
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symmetry. Here we can see that G3 has six rotational symmetries and an axial sym-
metry, whereasG2 only has an axial symmetry, andG1 has one rotational and an axial
symmetry. This works out since |equiv(G1)| = 12/4 = 3, |equiv(G2)| = 12/2 = 6
and |equiv(G3)| = 12/12 = 1.

We remark that although, technically, as previously mentioned, an instance G
of a Cycle-plus-Triangles graph is an unlabeled graph, it is usually necessary
when referring to G to have some labeling of the vertices. Thus, throughout this
chapter, when we consider an instance G ∈ Gn, G will always be accompanied by
a labeling, which is a function ` : V → [n]. When we refer to a vertex i ∈ V , we
will often abuse notation and use i to be the label of V . For an edge e ∈ EH , where
e = (i, (i mod n) + 1), we refer to i as its index. For a triangle {i < j < k}, we say
that j is the clockwise neighbor of i, k is the clockwise neighbor of j and i is the
clockwise neighbor of k.

Finally, we note that there is another natural way to map permutations to in-
stances. Let the labels of the triangles be fixed (i.e., (1,2,3), (4,5,6), etc.). Then
let the Hamilton cycle H be a permutation π on [n]. However, we mainly use the
previous representation in this thesis.

8.2 Algorithms for finding a maximum stable set

We begin with some terminology necessary for presenting our algorithms. For G ∈ Gn
and G = (V,EH ∪ ET ), a token configuration is an arrangement of tokens on the
vertices V , exactly one token per triangle. With respect to a token configuration,
we say edge e ∈ EH is monochromatic if both endpoints of e have tokens. We
present an algorithm that begins with an initial token configuration and outputs a
token configuration with no monochromatic edges upon termination; such a token
configuration corresponds to stable set in G of size n/3, which is thus maximum.
First, we describe the most general framework.
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Token-Sliding-Algorithm Framework

Input: A Cycle-plus-Triangles graph G = (V,ET ∪ EH).

1. (Initialization) Fix any token configuration.

2. While there is a monochromatic edge in EH :

(a) Choose any monochromatic edge e ∈ EH (i.e., e has tokens on both endpoints).

(b) Choose an endpoint of e arbitrarily, and slide the token on this vertex to
another vertex in its triangle.

It is clear that there is an implementation of this algorithm that does not termi-
nate: If the direction the token slides along the triangle is arbitrary, a token could
just continually move from one endpoint of an edge in ET to the other, and the
algorithm would not terminate. So the first choice we make is to require that in
Step 2(b), the token is always slid along the triangle in a fixed (e.g., clockwise) di-
rection. Even if we require that the token slides along the triangle in the clockwise
direction, then a worst-case choice of endpoint of the monochromatic edge e can also
clearly lead to nontermination. Thus, we use randomness or pseudorandomness in
an attempt to avoid this worst-case behavior.

Notice that there are four places in which we could use randomness: (i) in the in-
titialization step (i.e., the initial token configuration), (ii) in the choice of monochro-
matic edge e ∈ EH , (iii) in the choice of endpoint of e whose token we move, and
(iv) the choice of direction (clockwise or counterclockwise) that we slide the token in
its respective triangle.

As explained above, we choose not to use randomness in (iv). Moreover, we
will not use randomness in (i) or (ii) (since it does not seem useful). In Step (1)–
the initialization step–we will use a minimal token configuration: For each triangle
(i, j, k) with i < j < k, we will place the token at i. For (ii), we will always choose
the monochromatic edge with the smallest index. This leaves only one point of
randomness: (iii) the choice of endpoint of e whose token we move. Lemma 8.2.1
provides some intuition why this is a good place to use randomness. Now we present
our main algorithm, which only uses randomness for (iii).1

1If we choose the monochromatic edge (i.e., the “flaw”) arbitrarily and “resample” both of its
endpoints (by choosing one vertex on each of the two respective triangles uniformly at random),
this is perhaps closest to the resampling algorithms for the constructive LLL, but the experimental
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Rand-Token-Sliding-Algorithm (Rand-TS-Alg)

Input: A Cycle-plus-Triangles graph G = (V,ET ∪ EH).

1. (Initialization) Fix the minimal token configuration.

2. While there is a monochromatic edge in EH :

(a) Choose monochromatic edge e ∈ EH with lowest index.

(b) Choose endpoint j of e at random.

(c) Slide the token on j in the clockwise direction to the next vertex in its triangle.

We conjecture the following.

Conjecture 8.2.1. For any Cycle-plus-Triangles instance G, Rand-TS-Alg
terminates in expected polynomial time with respect to the size of G.

A natural question is whether the number of monochromatic edges can be de-
creased at each iteration of Rand-TS-Alg. The answer to this question is no, since
there are token configurations where no move can decrease the number of monochro-
matic edges (see Section 8.2.1 for more details). Nevertheless, as evidenced in Section
9.2, Rand-TS-Alg seems to terminate in a roughly linear number of token-sliding
iterations. In fact, for instances of span at least three, this is the case for all instances
we have encountered. One of the instances we found that exhibits the worst running
time in our experiments has span two and is shown in Figure 7.1b. More discussion
can be found in Section 8.4.

The proof of the next lemma is based on the fact that a stable set of size n/3 exists,
so it does not provide a new proof of existence. Nor does it prove the existence of an
efficient algorithm, since the proof shows the algorithm terminates taking (expected)
exponential time.

Lemma 8.2.1. Rand-TS-Alg terminates with probabilty 1.

Proof. Consider any maximum stable set S of the instance of size n/3 (which we
know exists by previous results). For a current token configuration occuring in
the algorithm, define the distance between it and S to be the minimum number of
clockwise token sliding moves necessary to get from the current token configuration

performance of this algorithm is worst than that of Rand-TS-Alg.
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to the token configuration corresponding to S. This distance can be at most 2n/3.
Then, notice that while the algorithm is still running, for every monochromatic edge
there is one token from the edge that is not on the same vertex as in the stable
set, since the stable set S has no monochromatic edge. Hence, there is at least a
1/2 probability that this vertex is moved, decreasing the distance between the next
configuration and the stable set S by 1. Therefore, from any configuration, there is at
least a probability of 1/4n that it terminates within 2n steps. (It does not necessarily
terminate by finding the stable set S, but if there is no more monochromatic edges,
it must have found some stable set.) Since we have shown that the algorithm has
a fixed probability of terminating within a fixed number of steps regardless of the
current configuration, it results that repeating this number of steps i times will give
a probability 1− (1− 1/4n)i of terminating, which goes to 1 as i goes to infinity.

We discuss the intuition behind why we believe the algorithm terminates effi-
ciently in Section 8.3.

8.2.1 Locally minimal configurations

Since all of the algorithms in our framework are based on local moves, it is a natural
question to ask whether there exist token configurations where no local move can
decrease the number of monochromatic edges (i.e., it is locally minimal). By local
move, we refer to any move that takes a token from a monochromatic edge and places
it onto a different vertex of the same triangle. The answer to this question is negative,
as illustrated in Figure 8.2. Furthermore, it is possible to construct instances where
up to a logarithmic number of local moves that increase the number of monochro-
matic edges must be made before any can decrease the number of monochromatic
edges. Such a construction can be made by making all four unoccupied (containing
no token) vertices of the two triangles of the monochromatic edge double-blocked,
then making all of their free vertices double-blocked, etc.

8.2.2 Deterministic token-sliding algorithm

There is a deterministic version of Rand-TS-Alg that works well in practice. It is
inspired by the rotor-router model [PDDK96]. We simply replace the random choice
in Step 2(b) of Rand-TS-Alg with a pseudorandom choice, which we keep track of
with a rotor-router or pointer. As discussed in Section 9.2.1, we have found instances
for which this algorithm does not terminate. However, they seem to be very rare
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Figure 8.2: Cycle-plus-Triangles graphs with locally minimal token configura-
tions represented in orange.

and difficult to find. Thus, the deterministic algorithm seems to be a good tool
for efficiently finding a maximum stable set of a Cycle-plus-Triangles graph in
practice.
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Rotor-Router-Token-Sliding-Algorithm (RR-TS-Alg)

Input: A Cycle-plus-Triangles graph G = (V,ET ∪ EH).

1. (Initialization)

(a) Fix the minimal token configuration.

(b) For each edge (a, b) = (i, (i mod n) + 1) in EH , initialize a pointer from
a to b.

2. While there is a monochromatic edge in EH :

(a) Choose monochromatic edge e ∈ EH with lowest index.

(b) Choose endpoint j as indicated by the pointer.

(c) Slide the token on j in the clockwise direction to the next vertex in its
triangle.

(d) Change the direction of the pointer on edge e.

8.3 Intuition for efficient termination

Let G = (V,ET ∪EH) be a Cycle-plus-Triangles instance and let us fix a token
configuration (defined in Section 8.2).

Definition 8.3.1. Define a free vertex to be a vertex that does not contain a token,
and is not adjacent (on the Hamilton cycle) to a vertex with a token. Let nfree denote
the number of free vertices.

A single-blocked vertex is a vertex with no token, adjacent (on the Hamilton cycle)
to exactly one vertex with a token. Let nsingle-blocked denote the number of single-
blocked vertices.

A double-blocked vertex is a vertex with no token, adjacent (on the Hamilton
cycle) to exactly two vertices with a token. Let ndouble-blocked denote the number of
double-blocked vertices.

Recall that in a token configuration, each triangle has exactly one token. We use
nmono to denote the number of monochromatic edges in EH (with respect to the fixed
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token configuration).

Observation 8.3.1.
nfree = 2nmono + ndouble-blocked.

Proof. Let S ⊂ V be the subset of vertices that have a token in the fixed token
configuration. The number of monochromatic edges in EH is equal to the number
of edges in G[S] (the subgraph of G induced by S). The number of edges in EH
crossing the cut (S, V \ S) is equal to nsingle-blocked + 2ndouble-blocked.

By definition, a vertex is free if it does not have a token and it is not single- or
double-blocked. Therefore,

nfree = 3t− |S| − nsingle-blocked − ndouble-blocked = 2t− nsingle-blocked − ndouble-blocked.

The number of edges in EH with at least one endpoint in S equals the number of
edges in G[S] plus the number of edges crossing the cut (S, V \ S). Moreover, the
number of edges in EH with at least one endpoint in S is also equal to twice the
number of vertices in S minus the number of edges in G[S], which is 2t − nmono.
Therefore,

2t− nmono = nsingle-blocked + 2ndouble-blocked + nmono

2nmono = 2t− nsingle-blocked − 2ndouble-blocked

nfree = 2nmono + ndouble-blocked,

which proves the formula.

The formula in Observation 8.3.1 implies that if the new position of a token is dis-
tributed uniformly at random, then the algorithm will “make progress”. Specifically,
notice that moving a token to a free vertex decreases the number of monochromatic
edges by at least 1, while moving it to a double-blocked vertex increases it by at
most 1. Since there are 2nmono more free vertices than double-blocked, moving a
token (from an endpoint of a monochromatic edge) to a position chosen uniformly
at random will lead to an expected decrease of size at least 2nmono

n
≥ 2

n
in the number

of monochromatic edges. Thus, if every token move were uniformly distributed, we
would expect the algorithm to terminate in a quadratic number of iterations. Of
course, as we execute the algorithm, the new positions for the tokens are not guar-
anteed to be distributed uniformly at random. Still, this is one possible explanation
for the fast runtime of our algorithm that we observe empirically.
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8.4 Efficient termination on specific instances

In this section, our goal is to prove that our algorithm terminates in polynomial time
on specific families of instances. More specifically, we will do this for two families of
instances where each triangle is adjacent to only two other triangles: chain-of-twins
and chain-of-links.

We will focus on proving termination of a slightly modified version of Rand-TS-
Alg with two points of randomness. We use all types of randomness described in
Section 8.2 except (i) and (ii). Specifically, we choose any (i.e., can be arbitrary)
initial configuration. Then we choose both the endpoint of the monochromatic edge
and the destination for the token (clockwise or counter-clockwise) at random.

Alt-Rand-Token-Sliding-Algorithm (Alternate-Rand-TS-Alg)

Input: A Cycle-plus-Triangles graph G = (V,ET ∪ EH).

1. (Initialization) Fix an arbitrary token configuration.

2. While there is a monochromatic edge in EH :

(a) Choose monochromatic edge e ∈ EH with lowest index.

(b) Choose endpoint j of e at random.

(c) Move the token on j to another vertex of the same triangle at random.

Both proofs of termination can be adapted to prove that Rand-TS-Alg termi-
nates in polynomial time on the two classes of instances we consider, but the proof
in the case of chain-of-twins is more complicated, so we choose to present the proofs
for termination of Alternate-Rand-TS-Alg.

8.4.1 Chain-of-twins

Two triangles (i, j, k) and (i+ 1, j+ 1, k+ 1) (indices computed modulo n) are twins.
Formally, the triangles in a chain-of-twins instance on t triangles are given by the
the triples {(i, i+ t, i+ 2t) | i ∈ [t]}. (See Figure 9.1a for the chain-of-twins instance
when t = 4.)

Lemma 8.4.1. For a chain-of-twin instances on t ≥ 3 triangles, Alternate-Rand-
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TS-Alg terminates with probability at least 1/2 after 4t iterations.

Proof. We will prove this lemma by showing that at each step of the algorithm, the
expected number of monochromatic edges goes down.

More formally, let S denote a token configuration and let ρ(S) denote the number
of monochromatic edges in S. Suppose that, for token configuration S, there is a
monochromatic edge e = uv, where u belongs to triangle ta and v belongs to the
(adjacent) triangle tb. Let the tc denote the other triangle adjacent to ta. Besides
u, let w and x denote the other two vertices in triangle ta. Notice that at most one
of w and x can be adjacent to another vertex in the Hamilton cycle with a token,
which would be a vertex occupied by the token from tc. Without loss of generality,
let us assume that two vertices adjacent to x on the Hamilton cycle do not contain
tokens.

Without loss of generality, suppose we move u to an adjacent vertex in triangle
ta and let S ′ denote the resulting token configuration. With probability 1/2, we will
move the token from u to x and with probability 1/2, we will move the token from
u to w. In the former case, we have ρ(S)− ρ(S ′) = 1 and in the latter case, we have
ρ(S)− ρ(S ′) ≥ 0. Thus, E[ρ(S)− ρ(S ′)] ≥ 1/2.

Let X be a random variable denoting the number of token moves before the
algorithm terminates. Then E[X] ≤ 2t, since ρ(S) ≤ t− 1. By Markov’s inequality,
we see that Pr[X ≥ 4t] ≤ 2t/(4t) = 1/2, which proves the lemma.

8.4.2 Chain-of-links

A chain-of-links instance on t triangles is a graph where the triangles are given by
the triples {(3i − 2, 3i, 3i + 2 | i ∈ [t]} (with indicies computed modulo 3t). An
example of such a graph can be seen in Figure 7.1

In order to prove efficient termination on this instance, we will state a random
process on a circular trinary string that is equivalent to Alternate-Rand-TS-Alg.
Let n ∈ Z≥2 and let S = (a1, . . . , an) ∈ {0, 1, 2}n be a circular (i.e., an+1 = a1)
trinary sequence of length n. We say that (ai, ai+1) is a decreasing pair if ai > ai+1.

Definition 8.4.1. We define the following random process:

1. While there exists a decreasing pair, do the following:

(a) Find the decreasing pair (ak, ak+1) with minimum index k.
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(b) Choose a variable of the pair with uniform probability:

x = ak or x = ak+1.

(c) Randomly change the value of the chosen variable to another value with
equal probability:

x← x+ 1 mod 3 or x← x+ 2 mod 3.

2. Return the final sequence S.

This trinary string can be thought of as representing the position of the token
on each triangle. In other words, if the ith value of the string is a 0, then the token
of the ith triangle is on the vertex with index 3i − 2. If the value is a 1, the token
is on vertex 3i, and if the value is 2, then the token is on vertex 3i + 2. Thus, a
trinary string of length t corresponds to a token configuration for a chain-of-links
instance on t triangles. It is easy to see that monochromatic edges in the token
configuration correspond to the decreasing pairs in the trinary string. The random
process corresponds exactly to the Alternate-Rand-TS-Alg on a chain-of-links
instance and it terminates if and only if Alternate-Rand-TS-Alg terminates on
this instance. Let us now define a potential function to analyze the random process
from Definition 8.4.1.

Definition 8.4.2. For n ∈ Z≥2 and S = (a1, a1, . . . , an) ∈ {0, 1, 2}n, define

n0,1 := |{(ai, ai+1) | i ∈ [n], ai = 0, ai+1 = 1}|,

n1,1 := |{(ai, ai+1) | i ∈ [n], ai = 1, ai+1 = 1}|,

n1,2 := |{(ai, ai+1) | i ∈ [n], ai = 1, ai+1 = 2}|.

Define the potential function ρ as ρ(S) := n0,1 + n1,2 + 2n1,1.

Lemma 8.4.2. Let S be a circular trinary string and let S ′ be the string obtained
after one iteration of the random process on S. Then, E[ρ(S ′)] ≥ ρ(S).

Proof. To prove this lemma, we do a case analysis in which we examine each possible
decreasing pair along with the variable before the pair and the variable after the
pair. A single iteration of the algorithm can only change the value of one variable of
a pair. Thus, the change in potential function on the four aforementioned variables
will reflect the change in potential function on the entire token configuration.
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1. Decreasing pair: (2, 0).

(a)

(0, 2, 0, 0) 7→


(0, 0, 0, 0) then ρ(S ′) = ρ(S)

(0, 2, 1, 0) then ρ(S ′) = ρ(S)

(0, 1, 0, 0) then ρ(S ′) = ρ(S) + 1

(0, 2, 2, 0) then ρ(S ′) = ρ(S)

(b)

(0, 2, 0, 1) 7→


(0, 0, 0, 1) then ρ(S ′) = ρ(S)

(0, 2, 1, 1) then ρ(S ′) = ρ(S) + 1

(0, 1, 0, 1) then ρ(S ′) = ρ(S)

(0, 2, 2, 1) then ρ(S ′) = ρ(S)− 1

(c)

(0, 2, 0, 2) 7→


(0, 0, 0, 2) then ρ(S ′) = ρ(S)

(0, 2, 1, 2) then ρ(S ′) = ρ(S) + 1

(0, 1, 0, 2) then ρ(S ′) = ρ(S) + 1

(0, 2, 2, 2) then ρ(S ′) = ρ(S)

(d)

(1, 2, 0, 0) 7→


(1, 0, 0, 0) then ρ(S ′) = ρ(S)− 1

(1, 2, 1, 0) then ρ(S ′) = ρ(S)

(1, 1, 0, 0) then ρ(S ′) = ρ(S) + 1

(1, 2, 2, 0) then ρ(S ′) = ρ(S)

(e)

(1, 2, 0, 1) 7→


(1, 0, 0, 1) then ρ(S ′) = ρ(S)− 1

(1, 2, 1, 1) then ρ(S ′) = ρ(S) + 1

(1, 1, 0, 1) then ρ(S ′) = ρ(S) + 1

(1, 2, 2, 1) then ρ(S ′) = ρ(S)− 1
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(f)

(1, 2, 0, 2) 7→


(1, 0, 0, 2) then ρ(S ′) = ρ(S)− 1

(1, 2, 1, 2) then ρ(S ′) = ρ(S) + 1

(1, 1, 0, 2) then ρ(S ′) = ρ(S) + 1

(1, 2, 2, 2) then ρ(S ′) = ρ(S)

(g)

(2, 2, 0, 0) 7→


(2, 0, 0, 0) then ρ(S ′) = ρ(S)

(2, 2, 1, 0) then ρ(S ′) = ρ(S)

(2, 1, 0, 0) then ρ(S ′) = ρ(S)

(2, 2, 2, 0) then ρ(S ′) = ρ(S)

(h)

(2, 2, 0, 1) 7→


(2, 0, 0, 1) then ρ(S ′) = ρ(S)

(2, 2, 1, 1) then ρ(S ′) = ρ(S) + 1

(2, 1, 0, 1) then ρ(S ′) = ρ(S)

(2, 2, 2, 1) then ρ(S ′) = ρ(S)− 1

(i)

(2, 2, 0, 2) 7→


(2, 0, 0, 2) then ρ(S ′) = ρ(S)

(2, 2, 1, 2) then ρ(S ′) = ρ(S) + 1

(2, 1, 0, 2) then ρ(S ′) = ρ(S)

(2, 2, 2, 2) then ρ(S ′) = ρ(S)

2. Decreasing pair: (2, 1).

(a)

(0, 2, 1, 0) 7→


(0, 0, 1, 0) then ρ(S ′) = ρ(S) + 1

(0, 2, 2, 0) then ρ(S ′) = ρ(S)

(0, 1, 1, 0) then ρ(S ′) = ρ(S) + 3

(0, 2, 0, 0) then ρ(S ′) = ρ(S)
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(b)

(0, 2, 1, 1) 7→


(0, 0, 1, 1) then ρ(S ′) = ρ(S) + 1

(0, 2, 2, 1) then ρ(S ′) = ρ(S)− 2

(0, 1, 1, 1) then ρ(S ′) = ρ(S) + 3

(0, 2, 0, 1) then ρ(S ′) = ρ(S)− 1

(c)

(0, 2, 1, 2) 7→


(0, 0, 1, 2) then ρ(S ′) = ρ(S) + 1

(0, 2, 2, 2) then ρ(S ′) = ρ(S)− 1

(0, 1, 1, 2) then ρ(S ′) = ρ(S) + 3

(0, 2, 0, 2) then ρ(S ′) = ρ(S)− 1

(d)

(1, 2, 1, 0) 7→


(1, 0, 1, 0) then ρ(S ′) = ρ(S)

(1, 2, 2, 0) then ρ(S ′) = ρ(S)

(1, 1, 1, 0) then ρ(S ′) = ρ(S) + 3

(1, 2, 0, 0) then ρ(S ′) = ρ(S)

(e)

(1, 2, 1, 1) 7→


(1, 0, 1, 1) then ρ(S ′) = ρ(S)

(1, 2, 2, 1) then ρ(S ′) = ρ(S)− 2

(1, 1, 1, 1) then ρ(S ′) = ρ(S) + 3

(1, 2, 0, 1) then ρ(S ′) = ρ(S)− 1

(f)

(1, 2, 1, 2) 7→


(1, 0, 1, 2) then ρ(S ′) = ρ(S)

(1, 2, 2, 2) then ρ(S ′) = ρ(S)− 1

(1, 1, 1, 2) then ρ(S ′) = ρ(S) + 3

(1, 2, 0, 2) then ρ(S ′) = ρ(S)− 1

(g)

(2, 2, 1, 0) 7→


(2, 0, 1, 0) then ρ(S ′) = ρ(S) + 1

(2, 2, 2, 0) then ρ(S ′) = ρ(S)

(2, 1, 1, 0) then ρ(S ′) = ρ(S) + 2

(2, 2, 0, 0) then ρ(S ′) = ρ(S)
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(h)

(2, 2, 1, 1) 7→


(2, 0, 1, 1) then ρ(S ′) = ρ(S) + 1

(2, 2, 2, 1) then ρ(S ′) = ρ(S)− 2

(2, 1, 1, 1) then ρ(S ′) = ρ(S) + 2

(2, 2, 0, 1) then ρ(S ′) = ρ(S)− 1

(i)

(2, 2, 1, 2) 7→


(2, 0, 1, 2) then ρ(S ′) = ρ(S) + 1

(2, 2, 2, 2) then ρ(S ′) = ρ(S)− 1

(2, 1, 1, 2) then ρ(S ′) = ρ(S) + 2

(2, 2, 0, 2) then ρ(S ′) = ρ(S)− 1

3. Decreasing pair: (1, 0).

(a)

(0, 1, 0, 0) 7→


(0, 2, 0, 0) then ρ(S ′) = ρ(S)− 1

(0, 1, 1, 0) then ρ(S ′) = ρ(S) + 1

(0, 0, 0, 0) then ρ(S ′) = ρ(S)− 1

(0, 1, 2, 0) then ρ(S ′) = ρ(S) + 1

(b)

(0, 1, 0, 1) 7→


(0, 2, 0, 1) then ρ(S ′) = ρ(S)− 1

(0, 1, 1, 1) then ρ(S ′) = ρ(S) + 2

(0, 0, 0, 1) then ρ(S ′) = ρ(S)− 1

(0, 1, 2, 1) then ρ(S ′) = ρ(S)

(c)

(0, 1, 0, 2) 7→


(0, 2, 0, 2) then ρ(S ′) = ρ(S)− 1

(0, 1, 1, 2) then ρ(S ′) = ρ(S) + 3

(0, 0, 0, 2) then ρ(S ′) = ρ(S)− 1

(0, 1, 2, 2) then ρ(S ′) = ρ(S) + 1
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(d)

(1, 1, 0, 0) 7→


(1, 2, 0, 0) then ρ(S ′) = ρ(S)− 1

(1, 1, 1, 0) then ρ(S ′) = ρ(S) + 2

(1, 0, 0, 0) then ρ(S ′) = ρ(S)− 2

(1, 1, 2, 0) then ρ(S ′) = ρ(S) + 1

(e)

(1, 1, 0, 1) 7→


(1, 2, 0, 1) then ρ(S ′) = ρ(S)− 1

(1, 1, 1, 1) then ρ(S ′) = ρ(S) + 3

(1, 0, 0, 1) then ρ(S ′) = ρ(S)− 2

(1, 1, 2, 1) then ρ(S ′) = ρ(S)

(f)

(1, 1, 0, 2) 7→


(1, 2, 0, 2) then ρ(S ′) = ρ(S)− 1

(1, 1, 1, 2) then ρ(S ′) = ρ(S) + 3

(1, 0, 0, 2) then ρ(S ′) = ρ(S)− 2

(1, 1, 2, 2) then ρ(S ′) = ρ(S) + 1

(g)

(2, 1, 0, 0) 7→


(2, 2, 0, 0) then ρ(S ′) = ρ(S)

(2, 1, 1, 0) then ρ(S ′) = ρ(S) + 2

(2, 0, 0, 0) then ρ(S ′) = ρ(S)

(2, 1, 2, 0) then ρ(S ′) = ρ(S) + 1

(h)

(2, 1, 0, 1) 7→


(2, 2, 0, 1) then ρ(S ′) = ρ(S)

(2, 1, 1, 1) then ρ(S ′) = ρ(S) + 3

(2, 0, 0, 1) then ρ(S ′) = ρ(S)

(2, 1, 2, 1) then ρ(S ′) = ρ(S)

(i)

(2, 1, 0, 2) 7→


(2, 2, 0, 2) then ρ(S ′) = ρ(S)

(2, 1, 1, 2) then ρ(S ′) = ρ(S) + 3

(2, 0, 0, 2) then ρ(S ′) = ρ(S)

(2, 1, 2, 2) then ρ(S ′) = ρ(S) + 1
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We can see that in each case, since every one of the four outcomes is equally
likely, ρ will increase or stay the same on average.

Let Si be the string obtained after i iterations of the random process starting on
the circular trinary string S0. We say that the ith step is silent if ρ(Si−1) = ρ(Si).
Otherwise, the step is active. If the ith step considers the decreasing pair (b, c), then
we say that Si−1 focuses on configuration (a, b, c, d), where a and d are the neighbors
of b and c. Notice that if Si−1 focuses on configuration (a, b, c, d), then the only
changes in Si with respect to Si−1 will take place among the variables (b, c) and the
next decreasing pair will either involve variables (a, b), (b, c) or (c, d).

Lemma 8.4.3. If the random process runs for k steps, then with probability at least
1/2, we have at least k/16 active steps.

Proof. Notice that a step has probability at least 1/4 of being active, unless the
string Si focuses on the configuration (2, 2, 0, 0) (where the decreasing pair is (2, 0)
and the neighboring variables have values 2 and 0). In this case, there is at least
a 1/2 probability that the next step leads to a string Si+1 which does not focus on
the configuration (2, 2, 0, 0). Thus, with probability at least 1/4, the next step is
active. So in expectation, after k steps of the random process, at least k/8 of them
are active. By Markov’s inquality, we conclude that with probability at least 1/2,
the set of active steps is at least k/16.

Lemma 8.4.4. Let S be a circular trinary string on n variables. Then the random
process applied to S will terminate in expected O(n2) number of iterations.

Proof. We will follow Section 21.3 of [Sin22], which proves a more general lemma.
Let us consider only the active steps, and let Ai denote the string after the ith active
step. Let A0 = S. Define Xi = ρ(Ai) and Di = Xi − Xi−1. Notice that Xi is a
submartingale, since by Lemma 8.4.2, E(Xi) ≥ E(Xi−1). Thus, we have

E(Di | X1, . . . , Xi−1) ≥ 0.

Furthermore, the value of D2
i is bounded below.

E(D2
i | X1, . . . , Xi−1) ≥ 1.

Then Yi = X2
i − i is also a submartingale with respect to X1, ..., Xi−1, because

E(Yi | X1, . . . , Xi−1) ≥ Yi−1.
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Define T to be the time step when the process terminates. Since the process only
terminates when Xi = 2n, it follows that E(XT ) = 2n, and E(X2

T ) = 4n2. Then
we can apply the Optional Stopping Theorem [GS20a] to YT in order to bound the
expected length of the process E(T ).

E(YT ) ≥ E(Y0)

E(X2
T )−E(T ) ≥ 0

4n2 −E(T ) ≥ 0

E(T ) ≤ 4n2.

It then follows immediately from Lemma 8.4.3, that the expected number of steps
for the algorithm to terminate is at most 64n2, which concludes the poof.

To prove termination of Rand-TS-Alg on this family of instances (no matter
the initial configuration), one can take as a potential function the sum of the number
of 11 pairs and the number of 01 pairs.
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Chapter 9

Empirical evaluation of the
algorithms

In this chapter, our goal is to present empirical evidence that our algorithm termi-
nates in an expected linear number of iterations. To do so, we start by discussing
the structure of Cycle-plus-Triangles instances and describing our generation
methods. Then, we present experimental results for the different algorithms and gen-
eration methods, before discussing some instances we found where the deterministic
algorithm never terminates.

9.1 Structure and generation of problem instances

In order to experimentally evaluate Rand-TS-Alg, we attempt to generate a com-
prehensive set of problem instances. The most natural set of instances to consider are
those generated uniformly at random. We show how to generate instances according
to the uniform distribution and we use this as our first generation method. Be-
yond uniform generation, we want to consider different parameters of Cycle-plus-
Triangles graphs in order to generate a diverse set of instances. One parameter,
defined in Section 7.2, is the span.

The maximum possible span of an instance on t triangles is t, which is attained
uniquely by a set of t “equilateral” triangles, which we call a chain-of-twins. 1 (See

1Two triangles (i, j, k) and (i+ 1, j+ 1, k+ 1) (indices computed modulo n) are twins. Formally,
the triangles in a chain-of-twins instance on t triangles are given by the the triples {(i, i+ t, i+ 2t) |
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Figure 9.1a for t = 4.) By Lemma 7.4.2, it is sufficient to consider instances with
span at least three. We show that for sufficiently large n, the number of instances
of span at least k decays exponentially as k grows. Hence, when sampling instances
uniformly at random, instances of high span occur very rarely. This motivates other
methods to efficiently generate instances of at least a given span at the expense
of uniformity. We are not aware of any efficient method to uniformly at random
generate instances with a given span.
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(a) Chain-of-twins on four triangles.
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(b) Cycle-plus-Triangles graph with six
triangles.

Figure 9.1: Two examples of Cycle-plus-Triangles graphs. In the graphs, one
and three stable sets of size t are shown, respectively, where t is the number of
triangles.

9.1.1 Generating instances uniformly at random

Our method to generate a graph G ∈ Gn with σ(G) ≥ 3 uniformly at random begins
with generating a permutation on [n] uniformly at random. As discussed in Section
7.2, each labeled graph corresponds to 6t · t! permutations, where t = n/3. Moreover,
each instance G ∈ Gn corresponds to |equiv(G)| labeled graphs. In order to generate
an instance G ∈ Gn uniformly at random, we generate a permutation π uniformly at
random, let G = I(π), check if σ(G) ≥ 3 and, if so, compute equiv(G) and output
G with probability 1/|equiv(G)|.

i ∈ [t]}.
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Thus, we need to compute the cardinality of equiv(G), which means determining
how many labeled graphs correspond to the same instance G. To do this, we need
to understand the automorphism structure of G; if two labeled graphs (that are
not label equivalent) correspond to the same instance G, then the labelings yield
an automorphism of G. We show that the possible automorphisms of G are highly
restricted.

Lemma 9.1.1. Let G = (V,ET ∪EH) and G′ = (V ′, E ′T ∪E ′H) be two Cycle-plus-
Triangles graphs such that σ(G), σ(G′) ≥ 3. If G and G′ are isomorphic with
mapping f : V → V ′, then f maps edges in ET to E ′T and edges in EH to E ′H .

Proof. For the sake of contradiction, suppose that f maps an edge in EH to an edge
not in E ′H . Then there is at least one triangle T ⊂ ET of G, say on the vertex set
{u, v, w}, such that an edge in E(T ) is mapped to an edge in E ′H . Since σ(G) ≥ 3,
then G has at least three triangles. We distinguish three cases.

Case 1 |E ′H ∩E(T )| = 1. Suppose that E ′H ∩E(T ) = uv. Then the two other edges
in E(T ), uw and vw, belong to the same triangle, say T ′, of G′. But then
uv ∈ T ′ so there must be two parallel edges between u and v, one in T ′ and
one in E ′H . Thus, G′ must have span one, which is a contradiction.

Case 2 |E ′H ∩ E(T )| = 2. Suppose that E ′H ∩ E(T ) = {uv, vw}. Then the edge uw
belongs to some triangle T ′ of G′. Therefore u and w have common neighbor z
in T ′, which is also a common neighbor in the Hamilton cycle H. This implies
that G has span two, a contradiction.

Case 3 |E ′H∩E(T )| = 3. Then E ′H = E(T ), which is a contradiction, since |E ′H | ≥ 9.

By Lemma 9.1.1, when σ(G) ≥ 3, any automorphism of G = (V,EH ∪ ET ) can
only be obtained from a mapping of V to V that maps edges in EH to edges in EH .
Such a mapping corresponds to either i) a labeling of V along the Hamilton cycle in
the clockwise order (i.e., a rotation) or ii) a labeling of V along the Hamilton cycle
in the counterclockwise order (i.e., a reflection-rotation).

The exact size of the equivalence class of G can then be computed in polynomial
time, by generating the 2n labeled graphs obtained from a sequence of rotations and
reflection-rotations, and counting the number of label-equivalent sets (i.e., each set
contains a maximal subset of the 2n permutations that are label equivalent). Notice
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that in order to check if two labeled instances are label equivalent, we just need to
check if their adjacency matrices are exactly the same (without any relabeling of ei-
ther graph). The pseudocode for the method to generate a Cycle-plus-Triangles
instance G uniformly at random from among all instances on t triangles and span
at least k is shown below. Notice that as k increases, Generation 1 takes exponen-
tially more time to output a graph, as shown in Lemma 9.1.3. We have not found
an efficient method to generate Cycle-plus-Triangles instances of a given span
uniformly at random. This motivates the generation methods presented in the next
section.

Computation of equiv(G)

Input: A Cycle-plus-Triangles graph G with labeling ` and σ(G) ≥ 3.
Output: The set of labeled instances in equiv(G).

1. equiv(G) = {}.

2. For s = 0 to 1 do:

(a) For i = 0 to n do:

i. For v in G do:

`′(v) = s · ((`(v) + i) mod n) + (1− s) · ((−`(v)− i) mod n).

ii. If (G, `′) /∈ equiv(G) do:

equiv(G) = equiv(G) ∪ (G, `′).

3. Return equiv(G).

Generation 1

Input: A number of triangles t and minimum span k ≥ 3.
Output: A Cycle-plus-Triangles graph G with σ(G) ≥ k.

1. Generate a permutation π on [3t] uniformly at random and let G = I(π).

2. If σ(G) < k, then restart from 1.

3. Compute |equiv(G)|.

4. Output G with probability 1
|equiv(G)| ; otherwise restart from 1.
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We remark that since the size of equiv(G) varies by a factor of at most 2n, the
probability of a given instance with span greater or equal to 3 of being generated
by Generation 1 is at least 1/2n times the probability of it being generated from a
random permutation.

9.1.2 Generating instances with high span

We first observe that Cycle-plus-Triangles instances of high span are exponen-
tially rare. Thus, the rejection sampling approach used in Generation 1 is inefficient
for generating instances of large span. Table 9.1, shows the number of nonisomorphic
Cycle-plus-Triangles graphs on t triangles and span exactly k for 1 ≤ k ≤ t ≤ 4.
(These numbers were obtained using a simple backtracking algorithm followed by iso-
morphism testing.) If we generate an instance via a random permutation, then for
sufficiently large n, there is a large probability (> .99) of generating an instance with
span 1. The proof of the next lemma follows from a formula derived by Kaplansky
in [Kap44] for a problem introduced by Netto.

Lemma 9.1.2. Let π be a permutation of [n] chosen uniformly at random. Then

lim
n→∞

Pr[σ(I(π)) = 1] ≥ 1− e−6 .

Proof. This proof follows from a formula derived by Kaplansky in Section 6 of [Kap44]
for a problem introduced by Netto. The setting is that we split the set [n] into n/a
subsets of size a each (in our case we have a = 3). The problem of Netto asks for the
probability that a random permutation of [n] has no two consecutive elements from
a same subset. We consider the inverse permutation from the one we use to build our
instance, that is, the triangles are numbered {1, 2, 3}, {4, 5, 6}, . . . , {n− 2, n− 1, n}
and the permutation gives the Hamilton cycle. Whenever two consecutive elements in
the permutation are from the same subset, i.e., the same triangle, the corresponding
instance has span one. Observe that for a permutation π of [n], we have that π(n) and
π(1) are consecutive on the Hamilton cycle, so if π maps 1 and n to the same triangle
then the corresponding instance has span span. However, in the problem of Netto,
the numbers n and 1 are not considered to be consecutive, so the asymptotic bound
obtained for this problem is a lower bound on the probability that a Cycle-plus-
Triangles instance generated from a random permutation has span one. Finally,
to obtain the claimed bound it remains to compute the value of [F (3, 2)]n/3φ0, where
[F (a, a− 1)]n/aφ0 is defined in Eq. (5) of [Kap44].
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More generally, if we generate an instance via a random permutation, then for
sufficiently large n, the probability of generating an instance with span at least k is
exponentially small in k, as shown in the next lemma.

Notice that the span distribution of instances generated from Generation 1 would
be similar to that of instances generated by random permutations. Indeed, as we
stated earlier, the probability for generating a given instance via Generation 1 with
parameter k and via a random permutation with span at least k differ by at most a
factor of 2n.

Lemma 9.1.3. Let π be a permutation of [n] chosen uniformly at random. Then

lim
n→∞

Pr[σ(I(π)) ≤ k] ≥ 1− e−k/4 .

Proof. In order to lower bound the probability of an instance of having span at
most k, we will consider the probability that a given triangle has span at most
k. This probability can be lower bounded by the probability of the last vertex
of the triangle being at distance k or less on the Hamilton cycle to either of the
other two vertices, assuming that they are at distance at least k + 1 from each
other (or the triangle would already be span k). For a given triangle T we have
Pr[σ(T ) ≤ k] ≥ 3k/n, since there are at least 3k positions for the last vertex (from
the n total) that are at distance k or less from the two first vertices. The obstacle now
is that the probability of each triangle having span at least k is not independent.
Therefore, consider the following lower bound: For the first triangle, we use the
bound we just obtained. Then, we remove the three vertices in that triangle and
consider the resulting permutation. There are now 3 places in the permutation
already occupied, whose position is random compared to the positions of the vertices
of the next triangle we consider. Therefore, using the same lower bound we get
for the second triangle Pr[σ(T ) ≤ k] ≥ (1 − 3

n
) 3k
n−3 . We repeat this reasoning and

after having fixed a triangles, there will be 3a fixed positions in the permutation so
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n
span

1 2 3 4

1 1
2 2 1
3 21 3 1
4 629 76 6 1

Table 9.1: Number of small nonisomorphic Cycle-plus-Triangles instances by
span.

Pr[σ(T ) ≤ k] ≥ (1− 3a
n

) 3k
n−3a . We obtain the following formula.

Pr[σ(G) ≤ k] ≥ 1−
n/3−1∏
a=0

(
1−

(
1− 3a

n

)
3k

n− 3a

)

≥ 1−
n/6∏
a=0

(
1−

(
1− 3a

n

)
3k

n

)

≥ 1−
n/6∏
a=0

(
1−

(
1− 1

2

)
3k

n

)

≥ 1−
(

1− 3k

2n

)n/6
.

Finally, an asymptotic evaluation of this probability gives lim
n→∞

Pr[σ(I(π)) ≤ k] ≥
1− e−k/4.

We propose three efficient methods for generating instances with at least a given
span. These methods are efficient in that they efficiently produce some instance
with the specified span. However, none of the methods generate instances uniformly
at random from the set of instances with a given span. Moreover, for two of the
methods (Generation 3 and Generation 4), there are instances they will not output.
The pseudocode for these methods is presented at the end of the section.

The method Generation 2 is based on increasing the success probability of the
rejection sampling approach employed by Generation 1. This results in generating
larger instances of given span within a reasonable amount of time. This method
works as follows: it adds triangles to a cycle of length n, one at a time, such that
in each step the new triangle has span at least k. If there is no such triangle, the

122



algorithm restarts. After successfully adding n/3 triangles, the resulting instance is
returned and it is guaranteed to have span at least k. In order to add a triangle, we
choose at random a vertex u among those that are not yet in a triangle, followed by
a vertex v of distance at least k to u on the cycle and finally a vertex w of distance
at least k to u and v on the cycle.

The next method, Generation 3, begins with an instance that has the desired span
(for example, the chain of twins on k triangles). It then inserts triangles with span
at least k into the instance. This can only ever increase the span of other triangles,
so the resulting instance is guaranteed to have span at least k, and therefore never
leads to rejection. However, not all instances of span k can be generated in such
manner; if they do not have the starting graph as an induced subgraph, they will
never be generated.

Finally, in Generation 4 we start with a chain of twins on t triangles, and then
do random local swaps (adjacent vertices on the Hamilton cycle swap their triangle
membership) a given number of times. In order to preserve span at least k, we only
apply a swap if it does not decrease the span below k. This also has the drawback
of not generating all possible instances of span k, but gives a different distribution
on the high span instances than the previous methods.

Generation 2

Input: Number t of triangles and minimum span k ≥ 1

1. (Initialization) Let R = [3t] and T := ∅.

2. For i = 1 to t do:

(a) Pick a ∈ R uniformly at random and let S = {v ∈ [3t] | distH(a, v) ≥ k}.
(b) If R∩S 6= ∅: pick b ∈ R∩S uniformly at random, otherwise restart from

1.

(c) Let S ′ = {v ∈ [3t] | distH(a, v) ≥ k ∧ distH(b, v) ≥ k}.
(d) If R ∩ S ′ 6= ∅: pick c ∈ R ∩ S ′ uniformly at random, otherwise restart

from 1.

(e) Add triangle {a, b, c} to T .

3. Return the instance defined by T .
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Generation 3

Input: Number t of triangles, minimum span k ≥ 1, and set T of triangles of a
Cycle-plus-Triangles instance of span at least k.

1. For i = |T | to t do:

(a) Pick a uniformly at random in [3i].

(b) Pick (b, c) uniformly at random in the set S given by

S = {(v, w) ∈ [3i]×[3i] | distH(a, v) ≥ k∧distH(a, w) ≥ k∧distH(v, w) ≥ k}.

(c) Let G be the Cycle-plus-Triangles graph of the instance correspond-
ing to the triangles T .

(d) Subdivide the edges of G incident to the vertices a, b, c (going in clockwise
direction), respectively, and connect the midpoints to form a new triangle.
Let T be the set of triangles of the resulting instance.

2. Return the instance defined by T .

Generation 4

Input: Number t of triangles, minimum span k ≥ 1, and number p of swaps.

1. (Initialization) Let T be the triangles of a chain-of-twins on t triangles.

2. For i = 1 to p:

(a) Pick vertex v uniformly at random in [1, 3t].

(b) Pick a neighbor w of v on the Hamilton cycle uniformly at random.

(c) If after swapping v and w, we have σ((T )) ≥ k, keep the swap.

3. Return the instance defined by T .

124



9.2 Experimental results

In this section, we present some computational results that support Conjecture 8.2.1.
This is only a selection of the tests we performed, but it shows the behavior we
generally observe, which is that for any instance, the Rand-TS-Alg appears to
terminate after a roughly linear (in n) number of iterations of Step 2 of Rand-TS-
Alg (i.e., token-sliding moves).
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Figure 9.2: Results on instances with span at least three generated via methods in
Section 9.1.

In most of the computational experiments presented in this paper, we compute
the maximum over 100 instances of the average number of iterations over 100 runs
of Rand-TS-Alg on each instance. This gives us an estimate of the worst-case
expected runtime of our algorithm for the different types of instances obtained via
our various generation methods. The instances were generated independently and
in advance of running Rand-TS-Alg and saved. Hence if two experiments are run
on instances with the same set of parameters (i.e., span, generator, and number of
triangles), then they are actually run on the exact same set of instances.

The first computational results are shown in Figure 9.2. Here, we ran Rand-
TS-Alg on instances with span at least three. We increased the number of triangles
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in the instance from 5 to 100 by steps of 5 for each generation method presented
in Section 9.1. As seen in Figure 9.2a, for each generation method, we observe
an increase in the runtime of Rand-TS-Alg that is linearly proportional to the
instance size. In Figure 9.2b, we show the maximum number of iterations for one
run of the algorithm, over 100 instances generated from a random permutation, up
to 500 triangles. Since we wanted to demonstrate the performance of the algorithm
on some instances with a large number of triangles, we used random permutations
corresponding to instances with span at least three rather than method Generation 1
(i.e., uniform generation), since the latter takes too long. The results are more noisy
since we are running Rand-TS-Alg only once on each instance, but it still shows
that the number of iterations is roughly linear in the size of the instance.
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Figure 9.3: Maximum over 100 instances of the average number of iterations over
100 runs of Rand-TS-Alg. The instances have 50 triangles and were generated by
the different high-span generation methods presented in Section 9.1.

In Section 9.1, we discussed the span as a key property of an instance. We tested
whether larger span lead to a worse/slower performance for our algorithm. It seems
that, for instances with a fixed number of triangles, larger span had no deleterious
effect on the behavior of the algorithm for the instances we used. This is exhibited in
Figure 9.3, where we consider instances on 50 triangles with span ranging from three
to 20. These instances were obtained via the three high span generators (Generation
2, Generation 3 and Generation 4). In the figure, we plotted the maximum over 100
instances for each span of the average number of iterations of the algorithm over 100
runs.
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Figure 9.4: Comparison of the two stable set algorithms Rand-TS-Alg and RR-
TS-Alg.

9.2.1 Performance of deterministic algorithm

In Figure 9.4, we compare the performance of Rand-TS-Alg and its deterministic
implementation RR-TS-Alg. We ran both algorithms on instances obtained via
Generation 1. In this setting, both algorithms have similar worst-case performance,
but RR-TS-Alg shows higher variance in the number of iterations for different
instances. Notice that in Figure 9.4a, we take the number of iterations in a single
run for the deterministic algorithm, whereas for the randomized algorithm, we take
the average over 100 runs, which reduces the variance for Rand-TS-Alg. In practice,
it is usually the case that the deterministic algorithm terminates much more quickly
(see Figure 9.4b). In fact, it usually terminates in nearly two times fewer iterations.
However, there are some instances on which RR-TS-Alg does not terminate. This
is discussed in Section 9.3.

9.3 Lock-in cycles for RR-TS-Alg

The reason that we are interested in instances on which RR-TS-Alg does not ter-
minate is that, since these instances seem to be very rare, perhaps we can uncover
some property that is sufficient for efficient termination. In this case, then at least
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Figure 9.5: Cycle-plus-Triangles graphs with initial (token and rotor-router)
configurations such that RR-TS-Alg runs into a lock-in cycle. The token configu-
rations are represented by the orange vertices.

for instances with this property, we could find an alternate, constructive proof that
a subclass of Cycle-plus-Triangles graphs have stable sets of size n/3.

The simplest example of an instance and an initial token configuration for which
Rand-TS-Alg does not terminate is shown in Figure 9.5a. Notice that Rand-TS-
Alg as written uses a minimal token configuration as its initial token configuration.
Using such minimal token configurations as initializations, we ran Rand-TS-Alg on
all instances containing 6 triangles or fewer and found that Rand-TS-Alg terminates
on all but one instance shown in Figure 9.5b. Testing other rotor-router initializations
for this same instance, it turns out that 5 of them (out of 218) have minimal token
configurations that result in nontermination of the algorithm. While apparently
extremely rare, this shows that RR-TS-Alg does not always terminate for certain
combinations of initial token and rotor-router configurations.

For instances on which RR-TS-Alg does not terminate, the execution of RR-
TS-Alg necessarily repeats configurations (here a configuration refers to both token
positions and pointer positions). Such a series of repeated configurations is called
a lock-in cycle. In fact, we are able to construct instances for which the probabil-
ity of entering a lock-in cycle is arbitrarily close to 1, if we take a random initial
configuration.

128



1
2

3

4

5

6

7
89

10

11

12

13

14

15
1

2

9

13

15

(a) Graph with an initial configuration
that leads to a lock-in cycle for which
the last edge (i.e., (1, 15)) is never
critical.

G

G

G

..
.

(b) Construction for boosting the proba-
bility of running into a lock-in cycle.
Between any two copies of G there is
a triangle on three consecutive ver-
tices of the Hamilton cycle.

Figure 9.6: Construction of an instance for which RR-TS-Alg with random initial
configuration runs into a lock-in cycle with high probability. In order to obtain such
an instance, we use copies of the graph in 9.6a as graph G in 9.6b.

9.3.1 Instance with high probability of entering a lock-in
cycle

In Figure 9.5 we gave examples for which the algorithm RR-TS-Alg with a certain
initial configuration of the tokens and pointers does not terminate. In this section we
show that choosing a random initial configuration is not a cure for this behavior. To
this end we show that there is a class of instances for which the algorithm RR-TS-
Alg with a random initial configuration does not terminate with high probability.
Recall that RR-TS-Alg considers the monochromatic edge with the lowest index
on the Hamilton cycle in order to update the token configuration and the pointer.
We say that an edge of the Hamilton cycle is critical with respect to a lock-in cycle if
it is at some point a monochromatic edge with the lowest index while the algorithm
runs through the lock-in cycle.

Notice that if for some lock-in cycle all edges of an instance are critical, then the
last edge will be the first monochromatic edge at some step, which gives a stable set
of size n− 1. However, there are instances and initial configurations for which there
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is a lock-in cycle in which some edges are never critical (e.g., see Figure 9.6a). From
these instances, we can build a family for which an exponentially small fraction of
random initial configurations lead to termination for the RR-TS-Alg. This in turn
proves that randomness on the initialization does not suffice to guarantee termination
with high probability.

Lemma 9.3.1. Given an instance that has some initial configuration with a lock-in
cycle in which the last edge is never critical, we can build a family of instances for
which the probablity of a random initial configuration leading to a lock-in cycle goes
to 1 as the number of triangles goes to infinity.

Proof. Let G be a Cycle-plus-Triangles graph that has some initial configu-
ration for which RR-TS-Alg runs into a lock-in cycle, such that the last edge on
the Hamilton cycle is not critical. We now define a family Gi of Cycle-plus-
Triangles graphs, such that G1 is G, where the last edge of the Hamilton cycle
(which is not critical) is subdivided three times and a triangle is added on the three
new vertices. Let G′i be a copy of Gi from which we remove the last edge of the
Hamilton cycle. We create Gi+1 by stitching together the two graphs G′i and G′1,
identifying the last vertex of the Hamilton path of G′i and the first vertex of the
Hamilton path of G′1 as well as the last vertex of the Hamilton path of G′1 and the
first vertex of the Hamilton path of G′i. Figure 9.6b shows a schematic depiction of
this construction.

Notice that if the initial configuration on any of the copies of G is randomly
chosen to be exactly one of the configurations that leads to a lock-in cycle for which
the last edge of the Hamilton cycle of G is never critical, and both adjacent triangles
have their token on the center vertex or the one not adjacent to that copy, then the
algorithm will run into a lock-in cycle on that copy of G, if it did not run into a
lock-in cycle in any of the previous (with respect to the Hamilton cycle of Gi) copies.

Let p > 0 be the probability that RR-TS-Alg with random initial configuration
runs into a lock-in cycle on G. Then, for any i ≥ 1, the probability that RR-
TS-Alg with random initial configuration avoids a lock-in cycle on Gi is (1 − p)i.
Therefore, RR-TS-Alg with random initial configuration runs into a lock-in cycle
with probability at least 1− (1− p)i, which approaches 1 as i goes to infinity.

While these instances are built to be bad for the RR-TS-Alg (with random
initialization), Rand-TS-Alg finds a maximum stable set in linear time for them:
Indeed, once a stable set is found for one of the copies, it remains fixed because of the
triangles inserted between the copies. The number of iterations is proportional to
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the number of iterations required for the small instance times the number of copies,
which at least in this case, is linear in the size of the instance. We note that one
caveat is that this instance has span 1.
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Chapter 10

Extensions

In this chapter we will present different types of extensions of our algorithms, to
different problems and to different types of graphs, in order to show the limitations
of our approach.

10.1 Extensions to multiple stable sets and fair

representation

We extended our algorithm to several related problems that are less likely to have ef-
ficient algorithms. The first (straightforward) extension is to find two or three disjoint
maximum stable sets. The second extension is to the problem Fair-Representation,
which is known to be PPA-complete [Hav21]. If our algorithm worked well, even for
random instances of these harder problems, this could suggest that the instances
we are considering are simply too limited to get any meaningful results out of our
computational experiments. The fact that our algorithm does not perform well on
these generalizations leads us to believe that the stable set problem is actually an
easier problem.

10.1.1 Two and three maximum stable sets

We can extend the randomized algorithm Rand-TS-Alg in a natural way to find
multiple disjoint maximum stable sets. First, we consider the case in which the goal
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is to find two or three vertex disjoint maximum stable sets. In this case, we can
think of each triangle as having three tokens, one on each vertex. The red token
corresponds to the first stable set, the blue token corresponds to the second stable
set, and the green token corresponds to the third stable set. In the case where we
want to find two disjoint maximum stable sets, a monochromatic edge in EH is an
edge with either two red or two blue tokens. In the case where we want to find three
disjoint maximum stable sets, a monochromatic edge in EH is an edge with either
two red, two blue or two green tokens. A minimal token configuration is defined so
that each triangle (i, j, k) with i < j < k contains a red token on i, a blue token on
j, and a green token on k.

Multi-SS-Token-Sliding-Algorithm

Input: A Cycle-plus-Triangles graph G = (V,ET ∪ EH).

1. (Initialization) Fix the minimal token configuration.

2. While there is a monochromatic edge in EH :

(a) Choose monochromatic edge e ∈ EH with lowest index.

(b) Choose endpoint j of e at random and let k denote the clockwise neighbor
of j.

(c) Swap tokens on j and k.

Thus, upon termination, Multi-SS-Token-Sliding-Algorithm outputs one,
two or three stable sets depending on the definition of monochromatic edge. We
compared the performance of the algorithm in the cases of finding one, two or three
stable sets. This is shown in Figures 10.1a and 10.1b. It appears that the number of
iterations required to find a 3-coloring evolves in an exponential manner, while the
evolution for finding two disjoint stable sets is less clear, though evidently not linear
as for the stable set problem.

10.1.2 Fair representation

We also extend our algorithm to the Fair-Representation problem, which is
defined as follows. We are given a Hamilton cycle and a partition of the vertex set
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Figure 10.1: Comparison of the 1-, 2- and 3-stable set algorithms for instances ob-
tained via Generation 1.

V = {V1, V2, . . . , V`}. The goal is to find a stable set of the cycle I such that |I∩Gi| ≥
b|Gi − 1|/2c for all i ∈ [`]. Notice that this can be viewed as a generalization of the
problem of finding a maximum stable set in a Cycle-plus-Triangles graph, since
choosing the partitions of V to be triples yields an equivalent problem statement.
This problem was shown to be PPA-complete [Hav21], which suggests that finding
an efficient algorithm for it is unlikely.

The algorithm we implemented is for a subclass of this problem, in which the
partition is into a set of odd cycles. Each cycle C2k+1 then has k tokens, which are
moved the same way as in Rand-TS-Alg: If two are adjacent on the Hamiltonian
cycle, one is chosen at random and we slide it to the next vertex (in clockwise order)
of the C2k+1 that does not already have a token.

We ran this implementation for different lengths of cycles: five and seven, and
show the results in Figures 10.2a and 10.2b, which shows a clear degradation in
performance as the partition changes from a 3- to 5- to 7-cycles. The instances were
generated from random permutations, taking the first i elements in the first cycle,
the next i in the next cycle, etc. There was no condition on the span of the instances,
as this property has not been studied for this more general problem.
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from random permutations.

10.2 Triangles-plus-two-factors graphs

A natural extension of the Cycle-plus-Triangles problem is to look at graphs
that are the disjoint union on the same vertex set, of a set of t vertex disjoint
triangles, and a 2-regular graph (which we will refer to as a 2-factor). Notice that
Cycle-plus-Triangles graphs are a subclass of Triangles-plus-Two-factor
graphs, and correspond to the case where the 2-factor is a Hamilton cycle.

Graphs belonging to this class are not always 3-colorable, since they can contain
4-cliques. Their independence number may also be as low as n/4: an example of
such a Triangles-plus-Two-factor graph is found in [VW09], and presented in
Figure 10.3. The conditions for these graphs to have independence number n/3 were
studied in [AHHS15], where the authors prove that length mod 3 of the cycles in
the 2-factor is crucial since if there are at most two cycles of length 1 mod 3, the
graph has independence number n/3. It is interesting to note that for both extremes
of the length of the cycles making up the 2-factor, triangles on the one hand and a
Hamilton cycle on the other, the graphs are 3-colorable.
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Figure 10.3: Triangles-plus-Two-factor graph on 12 vertices with inde-
pendence number 3. The triangles are (u1, u2, u3), (v1, v2, v3), (w1, w2, w3) and
(x1, x2, x3), also represented by the color of the vertices.

10.2.1 Triangles-plus-triangles graphs

One of the extreme cases of Triangles-plus-Two-factor graphs is when the 2-
factor is also a set of vertex disjoint triangles: we will call such graphs Triangles-
plus-Triangles graphs.

Definition 10.2.1. A Triangles-plus-Triangles graph is the disjoint union, on
the same vertex set, of two sets of t vertex disjoint triangles.

In [VW09], the authors prove the 3-choosability of Triangles-plus-Triangles
graphs by using a theorem of Galvin [Gal95]. This proof uses Galvin’s theorem, so
the corresponding coloring can be found in polynomial time, as pointed out in [Sli96].
We propose an alternative proof that shows the weaker property of 3-colorability with
efficient computability using Hall’s theorem [Hal87].

Lemma 10.2.1. Let G be a Triangles-plus-Triangles graph. G is 3-colorable
in polynomial time.

Proof. Let G be a Triangles-plus-Triangles graph with T1 and T2 the two sets
of triangles. Build a new graph B by adding a vertex vi for every triangle ti of G.
Then for every vertex v of G such that v is in triangles ti and tj, add an edge to
B between vertices vi and vj (that correspond to the triangles ti and tj). Note that
this graph is bipartite, since triangles from T1 can only share vertices with triangles
from T2 and vice-versa. Also, since a triangle has three vertices, that are all shared
with other triangles, B will be 3-regular (allowing multi-edges).

Now, we can apply Hall’s marriage theorem to B in order to find a perfect match-
ing. This matching can be seen as an independent set of G by taking the vertices of
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G from which every edge in the matching of B was derived. Notice that every trian-
gle will have exactly one vertex in this set, as its vertex has one edge in the perfect
matching. This can be repeated on the graph B′ obtained from B by removing all
the edges of the first perfect matching, since B′ will be bipartite and 2-regular. This
gives us another disjoint independent set of G, that can be used as the second color,
and final one is obtained from the set of remaining edges.

Thus, we 3-colored G by using Hall’s marriage theorem, whose matchings can be
found in polynomial time.

In the following lemma we will show the reducibility of Triangles-plus-Triangles
instances with low span.

Lemma 10.2.2. Let G be a Triangles-plus-Triangles graph. If G contains any
triangle with two or more vertices from another triangle (i.e., it has span one), it
can be reduced in polynomial time to a smaller Triangles-plus-Triangles graph
where this is not the case (ie. it has span infinity).

Proof. Take a Triangles-plus-Triangles graph G on triangle sets T1 and T2.
Suppose this graph is of span 1: there is some triangle ta ∈ T1 that contains two
vertices of another triangle tb ∈ T2. We will call these two vertices v1 and v2, the last
vertex of ta is v3, and the last vertex of tb is v4. Finally, we will call tc the triangle
from T2 that contains v3.

Consider the graph G′ obtained by removing the triangle ta (ie. the vertices v1,
v2 and v3). Now add the vertex v4 to tc and remove the triangle tb. We want to show
that from any maximum stable set of G′ we can derive a maximum stable set of G in
polynomial time. Take a stable set I ′ of G′ of size n/3. If v4 ∈ I ′, let I = I ′ ∪ {v3},
and I is a stable set of G since tc has no other vertex in I ′ (or it wouldn’t be a stable
set). Otherwise, let I = I ′∪{v1} (we could also take v2), and we also get a maximum
stable set of G since v4 is not in I.

In conclusion, if G has span one it reduces to a smaller instance G′. Therefore,
we can do this successively untill reaching a graph that does not have span one (at
the latest by reaching an empty graph).

10.2.2 Hardness results

Lemma 10.2.3. Let G be a Triangles-plus-Two-factor graph. Deciding whether
its independence number is n/3 is NP-hard.
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Figure 10.4: Triangles-plus-Two-factor subgraph where w3, which can be
placed anywhere, is forced to contain a token in any stable set of size n/3. The
triangles are (u1, u2, u3), (v1, v2, v3) and (w1, w2, w3), also represented by the color of
the vertices.

Proof. We will abuse notation by refering to vertices belonging to a stable set as
having a token in a given stable set. In order to prove this lemma, we will start by
showing that it is possible to build a subgraph that forces a given vertex to contain
a token in any stable set of size n/3. Consider the subgraph in Figure 10.4 and
suppose it has a stable set of size n/3 where w3 does not contain a token. Then, w1

or w2 must contain a token, which implies that both u3 and v3 do not. However, it
is impossible for v1 or v2 and u1 or u2 to simultaneously contain tokens, hence one
of the two triangles has no tokens and the stable set is not of size n/3.

Then we can use multiple vertices with forced tokens (in stable sets of size n/3) in
order to block some vertices, and get triangles where only two vertices could contain
a token. This is simply done by making cycles of length 2 with one forced vertex
adjacent to the third vertex of some new triangle.

We now have all the tools we need in order to reduce the NP-complete problem
2P2N 3− SAT to deciding whether a Triangles-plus-Two-factor graph has a
stable set of size n/3. The 2P2N 3−SAT problem is a variant of 3−SAT in which
every variable appears as a positive literal twice and as a negative literal twice. This
was proven to be NP-complete in [BKS03].

Take an instance of 2P2N 3− SAT . For every variable, we will create a triangle
with one vertex blocked by a forced vertex, such that in any stable set of size n/3,
it has only two vertices that could contain a token. Arbitrarily designate one of
these two vertices as True and one as False for every variable. Then, for every
clause, add a triangle adjacent on the 2-factor, to the False vertex of a variable if
that variable appears as a positive literal, and to the True vertex if it appears as a
negative literal. Because the clause if from 3-sat, it contains 3 literals and can be
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Figure 10.5: Gadget for the reduction from 2P2N 3−SAT . The triangle edges are in
brown, and the triangle (T ,F ,B) represents some variable from the formula. B cannot
have a token because A is forced (like w3 in Figure 10.4), so in a stable set of size n/3
either T or F have a token: the corresponding variable is true in the equivalent truth
assignment iff the token is on T . The clauses of the 3-SAT formula are represented by
the triangles on vertices Ci. Finally, the blue vertices form triangles on consecutive
vertices (ie. (S1,S2,S3) is a triangle) used as separators where a token can be placed
on the middle vertex (here S2) without creating monochromatic edges.

represented by a triangle. Since each variable appears twice as a positive and twice
as a negative literal, every True and False vertex will be adjacent to two clause
triangles on the 2-factor, which is fine. To complete the graph into a Triangles-
plus-Two-factor graph, one can close any paths into cycles by adding a triangle
on 3 consecutive vertices between its endpoints. Figure 10.5 shows the gadget derived
from one variable of the SAT formula.

It now remains to show that the Triangles-plus-Two-factor graph we con-
structed has a stable set of size n/3 iff the 2P2N 3 − SAT formula is satisfiable.
Suppose the formula is satisfiable, then take any satisfying assignment and add to
the token set every True vertex from a triangle derived from a variable that is True
in the satisfying assignment, and do the same for the False vertices. Also add to
the token set tokens of the initial construction that force some vertices that are
compatible with a stable set of size n/3 (ie. the forced vertices will be in the token
set). Finally, there are only the triangles representing the clauses that do not have
a token yet. However, since every clause is satisfied, it contains a variable with the
satisfying truth assignment, hence its triangle has a vertex adjacent to the vertex of
that variable with no token, and some separator triangle, so this vertex can be given
a token. All separator triangles can be given a token on their middle vertex so as
not to interfere, and we now have a stable set of size n/3.
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Conversely, if we have a stable set of size n/3, every forced vertex must have a
token, so every variable triangle has a token either on its True vertex or its False
vertex. Take the truth assignment that gives to every variable the value of the
vertex with a token on it. Since every clause triangle has some vertex with a token,
its neighboring variable vertex has no token, so the clause is satisfied by that variable
in the derived truth assignment. Therefore every clause is satisfied and the 2P2N 3−
SAT formula is True.

Note that this hardness proof relies on 2-factors that contain 4-cycles, which is
consistent with the results of [AHHS15] since those are the only Triangles-plus-
Two-factor graphs whose independence number is not guaranteed to be n/3.

A nice question is wether the graphs on triangles and 4-cycles, where the 4-cycles
are restricted to have at most one vertex per triangle (ie. infinite span) always have
independence number n/3. If so, can one make an equivalent hardness proof?

10.2.3 Why intuition fails

The formula for the number of free vertices is the same for Triangles-plus-Two-
factor and Cycle-plus-Triangles graphs. Therefore, one can expect the al-
gorithm to have a higher probability to reach a free vertex than a double-blocked
vertex, at least starting from a random token configuration.

Examining the execution of the algorithm on the graph from Figure 10.3, it
appears that where the intuition fails is on the probability of reaching a free vertex:
while 2 of the 12 vertices will be free, they cannot be adjacent to a vertex from the
monochromatic edge, hence the algorithm will loop infinitely without ever reaching
either a double-blocked vertex (of which there are none) or a free vertex. This seems
to be linked to the equivalence of some vertices: for example v1 and v2 have the same
neighbors, so moving a token from v1 to v2 is actually equivalent to doing nothing.

10.2.4 Experimental results for triangles-plus-two-factors

Figures 10.6a and 10.6b compare the performance of our algorithm on graphs that
are the union of a set of triangles and a set of cycles of given length. These instances
are generated by taking a random permutation of the vertex set to determine the
triangles, and considering the first k-cycle to be on the first k vertices, then the next
on the following k, etc.
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Chapter 11

Conclusion of Part II

We conclude with some related open problems. Are there hard/easy instances for
finding a maximum stable set in a Cycle-plus-Triangles graph? Call a triangle
bad when it has all sides with length 0 mod 2 (assuming n is even). If an instance G
has no bad triangles, notice that it is easy to find a maximum stable set. Similarly,
we can (re)define a bad triangle as one that has at least one side with length 0 mod 3.
Then if instance G has no bad triangles, it is easy to 3-color G: simply assign colors
along the Hamilton cycle in the clockwise order B−G−R−B−G− . . .−B−G−R.
Since no edge has length equal to 0 mod 3, there will be no monochromatic edges.
Having many bad triangles does not necessarily make the respective problems hard,
since a random instance will have a constant fraction of (both types of) bad triangles
in expectation, and Rand-TS-Alg seems to work well on such instances. Is there
an algorithm for finding a maximum stable set or a 3-coloring whose running time is
parametrized by the number of bad triangles?

Finally, an interesting related problem is due to Petrov [Pet17]. Given a Cycle-
plus-Triangles graph, find a subset F ⊂ ET of triangle edges (exactly one per
triangle) so that each edge in F is intersected by an even number (possibly zero)
of other edges in F . That such a subset F exists was shown by Petrov via a non-
constructive proof based on parity and the polynomial method. Notice that this
problem is not equivalent to finding 2 or 3 stable sets in a Cycle-plus-Triangles
graph. Indeed, the desired subset F directly yields two maximum stable sets, but
3-colorings do not always yield a solution to Petrov’s problem.
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[Lov73] László Lovász. Coverings and colorings of hypergraphs. In Proceedings of
the 4th Southeastern Conference of Combinatorics, Graph Theory, and
Computing, pages 3–12, 1973.
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