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Abstract

The objective of this thesis work is to explore new deep generative model architec-

tures for diverse human interaction data generation tasks. The applications for such

systems are various: social robotics, animation or entertainment, but always pertain

to building more natural interactive systems between humans and machines. Owing

to their astonishing performances on a wide range of applications, deep generative

models offer an ideal framework to address this task. In return, one can learn how to

improve the training of such models by adjusting them to tackle the challenges and

constraints posed by human interaction data generation. In this thesis, we consider

three generation tasks, corresponding to as many target modalities or conditioning

signals. Interactions are first modeled as sequences of discrete, high-level actions

simultaneously achieved by a free number of participants. Then, we consider the

continuous facial dynamics of a conversing individual and attempt to produce re-

alistic animations from a single reference frame in the facial landmark domain.

Finally, we address the task of co-speech talking face generation, where the aim is

to correlate the output head and lips motion with an input speech signal. Interest-

ingly, similar deep generative models based on autoregressive adversarial networks

provide state-of-the-art results on these otherwise slightly related tasks. Training

such models can however be long or unstable, in particular when the conditioning

signal is weak (e.g. when only an initial state is provided). In light of this, we first

devise an autoregressive generative adversarial network (GAN) for the generation

of discrete interaction sequences, where we introduce a window-based discrimi-

nator network that accelerates the training and improves the output quality. We

then scale this approach to the generation of continuous facial landmark coordi-

nates, and exploit the inductive bias of autoregressive models for cumulative sums

via residual predictions. In this unconditional setting, jointly generating and dis-

criminating pairs of samples proved essential to allow long-term consistency and

reduce mode collapse. In the third and last chapter, we introduce a multi-scale loss

function and a multi-scale generator network to allow our autoregressive GAN to

produce, for the first time, speech-correlated head and lips motion over multiple

timescales. Experiments conducted on benchmark datasets featuring multiple in-

teraction data modalities illustrate the efficiency of the proposed methods.
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Résumé

L’objectif de cette thèse est d’explorer de nouvelles architectures de modèles

génératifs profonds pour la génération de données d’interaction humaine. Les ap-

plications de tels modèles sont multiples, robots sociaux, animation ou encore di-

vertissement, mais ont pour point commun de tendre à rendre plus naturelles les in-

teractions entre l’humain et la machine. De par le réalisme de leurs résultats et leurs

nombreuses applications, les modèles génératifs profonds offrent un cadre de tra-

vail idéal pour cette tâche. En retour, l’adaptation de ces modèles aux spécificités et

aux contraintes liées aux données d’interaction humaine permet d’apprendre com-

ment améliorer leur entraı̂nement. Dans cette thèse sont considérées trois tâches

de génération, pour autant de modalités de données ou de méthodes de condi-

tionnement. Premièrement, les interactions sont traitées comme des séquences

discrètes d’actions réalisées simultanément par un nombre indéterminé de partic-

ipants. Puis on modélisera les dynamiques de la tête et des expressions du vis-

age d’une personne en train de dialoguer à partir d’une seule pose initiale. On

s’intéressera enfin à la génération des ces mêmes dynamiques à partir d’un signal

audio de conditionnement, en veillant à synchroniser les mouvements de la tête et

des lèvres avec le signal de parole. De manière remarquable, des modèles génératifs

adverses autorégressifs assez proches obtiennent des performances de tout pre-

mier ordre sur ces tâches par ailleurs relativement hétérogènes. L’entraı̂nement

de ces modèles peut cependant se révéler instable, en particulier lorsque le signal

de conditionnement est faible ou absent. La première contribution de cette thèse

consiste donc en l’élaboration d’un modèle adverse génératif (GAN) autorégressif

pour la génération d’interactions discrètes, assorti d’un discriminateur centré sur de

courtes fenêtres temporelles permettant d’accélérer l’entraı̂nement et d’améliorer la

qualité des résultats. Cette approche est ensuite étendue à la génération continue

de la dynamique du visage, pour laquelle est exploitée la capacité des modèles au-

torégressifs à représenter des sommes grâce à des connexions résiduelles. Pour

cette tâche de génération sans conditionnement, générer et discriminer conjointe-

ment des paires d’échantillons s’avère essentiel pour fiabiliser les résultats sur de

longues séquences et réduire le ”mode collapse” lié aux GAN. Dans un troisième et

dernier chapitre est proposée une approche multi-échelle à la fois dans l’objectif et

l’architecture d’un modèle adverse autorégressif pour générer, pour la première

fois, des mouvements de la tête et des lèvres corrélés avec le signal de parole

à de multiples échelles temporelles. Des expériences conduites sur des jeux de

données standards et pour différentes modalités d’interaction illustrent l’efficacité

des méthodes proposées.
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1.1 GENERATIVE MODELS FOR HUMAN INTERACTION DATA GENER-

ATION

This thesis deals with the challenging problem of generating human interaction data, for

which we propose several innovative methods based on deep generative learning. It lies

at the crossroads of two lines of research. One, the generation of human interaction data,

is driven by applications: generating interaction data means empowering a system with

the ability to understand social signals and respond accordingly, which is a prerequisite in

many computer or robotic systems that need to fuse in human environments. The second

line is a methodological one and relates to the recent and astonishing development of deep

generative models on a variety of tasks, that however have not found a definitive answer

to all problems arising in the context of human interactions.

Interactions between human beings may take a myriad of forms [119], and the focus

will be put here on conversations in a broad definition that includes free-form [15] and

more constrained scenarios (namely interviews and debates) [35, 24]. Even so, when it

comes to computer science, data that represent such interactions can appear under mul-

tiple modalities. This includes head or body position and orientation represented as the

coordinates of a center of mass and normal vectors, speaking turns or other discrete ac-

tion cues constituents of conversations, but also raw speech or video signal. Likewise, the

foreseen applications for the generation of interaction data directly stem from the modal-

ity: in social robotics, an important application that drove our initial research efforts and

where a robot should navigate a human environment and interact with humans, inferring

human actions to adjust the response accordingly can be as critical as anticipating people’s

trajectory. When it comes to generating continuous signals such as in co-speech motion

generation, which is the focus of Chapter 5, applications will be found in animation, video

editing, or other entertainment-oriented goals. Whatever the considered modality, inter-

action data generation still faces numerous challenges and this is where this thesis aims

to contribute. It is noteworthy that in this thesis work, two situations will be encountered

where the focus is put on either one or all of the interaction participants. Finally, beyond
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its applications, interaction data generation can be a remedy to the data scarcity problem

by augmenting existing data collections with synthetic data. This is especially important

in a field where privacy and confidentiality concerns are real and the costs associated with

the acquisition and labelling of new datasets may be significant.

Deep generative models offer an attractive framework to address the task of interaction

data generation. Their strong performances and flexibility have long surpassed those of

classical methods on as diverse use cases as image and video synthesis [94, 73], text gen-

eration [13] or sound generation [26], with compelling recent results quality. They have

also been successfully employed on several tasks pertaining to interaction data generation

in the definition given above [25, 108, 91]. These models are optimized to allow sampling

from the original data distribution, which gives a practical way of producing diverse out-

puts from the same initial condition, e.g. an observed interaction sequence (Chapter 3) or

an initial pose (Chapter 4). It is also straightforward to generate new samples thus coun-

teracting data scarcity and fostering downstream applications (see for instance Chen et

al. [23] for a review on the use of generative models for data augmentation in medical

research).

Once the general objective of generating interaction data using deep generative mod-

els has been posed, several challenges arise regarding the actual implementation of these

models, owing to the specificity of this task. Interactions when understood as conversa-

tions imply a coherent sequence of verbal and non-verbal signals from a possibly arbitrary

number of participants, and the generative model must account for this complexity. At the

time we started our research work, how to achieve this remained an open question. When

we shift focus from multi-person action sequences (Chapter 3) to single-person talking

head motion (Chapters 4 and 5), the temporal consistency requirement remains, but new

challenges arise such as how to produce natural head motion or correlate output motion

with the speech input. Therefore our main, transverse research problematic can be stated

as follows: how to build generative models able to produce temporally coherent sequences

of diverse interaction modalities? And, as a second objective, can these sequences be of

arbitrarily long duration, possibly exceeding training sequence length, with minimal error
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accumulation?

As we answer these questions, we learn how to improve the training of generative

models, and in particular of Generative Adversarial Networks (GANs [36], see also 2.1),

on a diversity of sequence generation tasks. To address both issues of temporal consis-

tency and arbitrary sequence length, we devise our generative models as autoregressive

functions and build a novel window-based multi-scale discriminator architecture able to

enforce multi-scale realism and accelerate training (Chapter 3). Although initially only

intended to deal with people participating in interactions, we find that generating and dis-

criminating even unrelated sample pairs altogether improves the overall realism of output

sequences and reduces mode collapse (Chapter 4). Finally, we can scale the previous

findings to obtain sharp results of a duration of several times that of training sequences

by a careful use of the conditioning signal in a co-speech facial landmark generation

task (Chapter 5).

1.2 THESIS OVERVIEW

Here we describe the structure of this manuscript, along with the different problems tack-

led in the following chapters.

In Chapter 3, we focus on how to embed the ability to process surrounding persons’

actions in a deep generative model and introduce a GAN-based architecture and train-

ing process to do so. Interactions are represented as concomitant sequences of discrete

actions sampled at high frequency (25 hz in our setting), and data come from the frame-

by-frame annotated actions of the MatchNMingle dataset [15] (a raw image sample of

which is provided in Figure 1.1 (a)). The main challenge is to enable the observation of

each surrounding participant’s social cues at all times during the generative process. This

requires adequate pooling of these cues in a unified representation. A second challenge

lies in the choice of the functional form of the sequential generative model, and of the

loss function. We turn to an autoregressive formulation, where outputs are produced one

at a time, and thus the generated sequence length is only limited by the point where error
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Figure 1.1: Raw data samples from three datasets used in this thesis: (a) MatchNMin-
gle [15]; (b) CONFER [35] and (c) VoxCeleb2 [24]. In practice we use the frame by
frame discrete action annotations from MatchNMingle, and for CONFER and VoxCeleb2
we extract and work with facial landmark coordinates.
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starts accumulating. As for the loss function, we use an adversarial loss to enhance the

output diversity compared to maximum likelihood estimation methods. This implies out-

putting sequences autoregressively during training, which, in addition to being possibly

inefficient, poses the issue of finding a differentiable surrogate to the sampling of discrete

actions from a categorical distribution. We address the training inefficiency issue by in-

troducing a window-based discriminator network and cast the problem as a continuous

prediction problem to circumvent the differentiability issue (see Chapter 3 for details).

Chapter 4 explores scaling the approach devised in the previous chapter to higher di-

mensional spaces. In particular, the discrete interaction generation task becomes a single-

person continuous head dynamics generation problem in the facial landmark domain,

where the other interaction participants are no longer modeled but simply implied. Facial

landmarks (see Figure 1.2) are a set of salient points, typically extracted using a pre-

trained model from faces in RGB images. This is a useful representation to work with

dynamics alone, as it discards visual information such as texture, color or lighting alto-

gether. As for the choice of modeling single persons, the main reason behind this is the

scarcity of adequate multi-person audio-visual datasets. The few that exist are of relatively

small scale and do not come with separate speech signals for the different speakers, which

makes the problem of multi-person talking head generation particularly challenging (see

Figure 1.1 (b) for illustrative samples from one such dataset). A possible alternative is to

produce head motion for several interacting people without conditioning signal, yet one

still faces the difficulty of evaluating the degree of interaction of the output sequences.

Owing to the existing applications and open research questions associated with this task,

we focus in that chapter on single-person unconditional head motion generation. We

show that a continuous-domain extrapolation from the previous approach is well-suited

to produce long sequences of natural head dynamics, which is an often overlooked issue

in the related literature. Interestingly, several components originally designed to handle

interactions provide benefits in a single-person setting, as the joint generation and dis-

crimination of sample pairs which at the same time improves result quality and mitigates

the well-known mode collapse problem of GANs.
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Figure 1.2: Facial landmarks, extracted using FaceAlignment [14], are at the core of
several of this thesis contributions.

In Chapter 5, we investigate speech-conditioned head motion generation, taking the

autoregressive GAN introduced in Chapter 4 as a baseline model. This task, also known

as talking head generation, is well studied but current treatments fail to account for natural

head motion, focusing instead on lip synchronization and photorealistic rendering at the

cost of static or unrealistic head dynamics. We show however in this chapter that our

autoregressive model produces smooth facial landmark dynamics, and devise an original

way to correlate these dynamics with the input speech signal over multiple time scales.

We thus introduce a novel multi-scale audio-visual contrastive loss function evaluated on

multimodal input pyramids, along with a multi-scale generative neural network able to

produce complex audio-synchronized dynamics.
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This chapter reviews transverse topics regarding our research work, such as generative

models or talking head generation. More detailed and contextual literature reviews can be

found in the relevant sections of the following chapters.

2.1 DEEP GENERATIVE MODELS

Given a training set of observations X , generative models aim to approximate the under-

lying distribution p(x) to produce new samples, contrary to discriminative models where

one needs to estimate p(y|x) given a new observation x, where the random variable y can

be for instance the object class of x. A common approach consists in maximizing the

log-likelihood log pθ(X ), where the parameters θ of the approximate distribution pθ are

computed by a neural network. This objective typically boils down to minimizing a mean

squared error loss when X spans a continuous domain and a Gaussian form is assumed

for p, or to a cross-entropy loss when the x is a discrete variable and p is a categorical

distribution. Such generative models comprise autoregressive models that can be used

for image or speech generation [113, 84, 21], natural language processing [29, 13], and

play an important role in many human-related sequence generation tasks, such as talking

head generation [141, 38, 32] or human motion prediction [77, 75]. Latent variable mod-

els are another class of generative models that rely on latent variables to model complex

data distributions, and that are trained using a lower bound of the expected log-likelihood.

Variational autoencoders (VAE) [58, 45] and more recently VQ-VAEs [114], where the

latent variables are sampled from a finite codebook, have been used as an alternative to

GANs thanks to their ability to exploit the full data distribution [71, 92, 31, 101]. Dif-

fusion models [102, 46, 94] have become the de-facto standard for image generation and

beyond, with promising applications in talking head generation [30, 104]. Their much

longer inference time however still limits their applications. In this thesis, we focus on

GANs that are especially useful for autoregressive continuous data generation and provide

a good trade-off between output quality and inference time.
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2.2 GENERATIVE ADVERSARIAL NETWORKS

GANs have been one of the dominant recent deep generative models. Introduced by

Goodfellow et al. [36], these models comprise a generator network G and a discriminator

network D that are jointly trained with the following minimax objective:

min
G

max
D

Ex∼pdata log(D(x)) + Ez∼pz log(1−D(G(z)) (2.1)

where pdata is the training dataset and pz is a noise distribution. D is a two-class classifier

network providing the probability that a sample comes from the original data, while G is

trained to produce data that will be classified as actual samples from the discriminator.

It was shown that optimizing this objective amounts to minimizing the Jensen-Shannon

divergence between the ground truth and generated data distributions [36]. Several varia-

tions of the original objective were further proposed, mainly attempting to overcome the

training instabilities often encountered with the original GAN formulation [5, 39, 76, 66].

GANs have shown formidable performances on a wide range of unconditional [11, 56, 12]

and conditional generation tasks [83, 51, 125] and for representation learning [89, 133].

Closer to the topic of this thesis, GANs have played an important role in a variety of

continuous sequence generation problems [69, 8, 62, 82] for their ability to produce more

diverse outputs than maximum likelihood estimation methods. Although a less common

use case, they have also been used to generate discrete sequential data (see Section 3.2.2

for an in-depth review). In this thesis, we use GANs on various social interaction genera-

tion tasks, both in discrete and continuous domains.

2.3 SOCIAL CUES PREDICTION IN HUMAN INTERACTION

Leveraging social cues from an interaction situation to estimate or predict human be-

havior is the focus of several works, both anterior and concurrent to this thesis. Joo et

al. [53] and Tan et al. [108] propose discriminative models which exploit the state of

surrounding persons to estimate respectively the speaking status, body motion and orien-
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tation, and the head orientation of an individual in an interaction. Greenwood et al. [37]

and Raman et al. [91] explore the prediction of the same social cues within a sequence

generation framework, while Sangvhi et al. [97] use an imitation learning approach to

predict conversational action sequences from position, gaze direction and action history

of multiple persons. Finally, there is an extensive bibliography on pedestrian trajectory

prediction which relies on similar mechanisms to process contextual cues coming from

surrounding moving agents and fixed obstacles to adjust a target agent’s behavior [2, 42]

(see also Section 3.2.1 for a thorough review on the subject).

2.4 TALKING HEAD GENERATION

The task of animating a human face with a neural network can be either guided when

the head motion comes from a driving sequence or unguided, in which case the head and

lip motion must be inferred by the generative model from a speech input signal. Com-

pelling results have been achieved over the years to improve the photorealistic rendering

of guided methods [132, 99, 41, 93]. Among these, several works rely on low dimensional

representations, e.g. facial landmarks [137, 79, 131], learned keypoints [99, 126], or mor-

phable models [136] to handle the dynamics, which are later used to warp or normalize

the style of the source identity image.

On the other hand, the primary focus of audio-driven talking head synthesis has been

on syncing output lip movements and input speech signal, either leaving visual reen-

actment as a separate task or limiting it to static pose scenarios [109, 55, 105, 38, 103,

142, 139, 121, 32]. For this reason, there have been comparatively few endeavors to

generate realistic head motion [18, 141]. As a noticeable improvement over previous

research, recent works showed very promising results producing rich head motion in a

low-dimensional keypoint space in combination with proficient visual reenactment sys-

tems [123, 124]. However, there remains a margin for improvement in particular in the

diversity of output head motion and in the time alignment between speech, lips, and head

motion over different time scales, which has never been addressed before.
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2.5 LANGUAGE MODELS FOR INTERACTION GENERATION

Large language models (LLM) [29, 90, 13, 111] occupy an ever-increasing place in the

artificial intelligence literature, owing to their success in exploiting huge textual corpora

and scale beyond natural language processing. This has been made possible via fine-

tuning [48, 49] and prompt-tuning methods [64], that allow to leverage the power of pre-

trained language models on various sequence generation tasks [54, 135]. Because of the

novelty of the subject, the use of LLMs for the tasks addressed in this thesis, especially

that of discrete action generation, is yet to be explored, but will definitely impact greatly

the literature.
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Prediction of human actions in social interactions has important applications in the

design of social robots or artificial avatars. In this chapter, we focus on a unimodal repre-

sentation of interactions and propose a novel data-driven approach for interaction gener-

ation. In particular, we model human interaction generation as a discrete multi-sequence

generation problem and present an adversarial architecture for conditional interaction

generation. This model builds on a recurrent encoder-decoder generator network and a

dual-stream discriminator, that jointly evaluates the realism of interactions and individual

action sequences and operates at different time scales. Crucially, contextual information

on interacting participants is shared among agents and reinjected in both the generation

and the discriminator evaluation processes. Experiments show that albeit dealing with

low dimensional data, our approach succeeds in producing high realism action sequences

of interacting people, comparing favorably to a diversity of recurrent and convolutional

discriminator baselines, and we hypothesize that it will constitute a first stone towards

higher dimensional and multimodal interaction generation. Evaluations are conducted by

adapting classical GAN metrics to discrete sequential data. The proposed model is shown

to properly learn the dynamics of interaction sequences, while exploiting the full range of

available actions.

3.1 INTRODUCTION

Interactions between humans are the basis of social relationships, incorporating a large

number of implicit and explicit multimodal signals expressed by the interaction part-

ners [119]. As the number of interacting people increases, so does the complexity of

the underlying interpersonal synchrony patterns. For humans, the interaction capability

is at the same time innate and acquired through thousands of interaction experiences. For

interactive systems, predicting and generating human actions within social interactions is

still far from the human-level performance. However, this task is central when it comes to

devising, for instance, artificial avatars displaying realistic behavior or a social robot able

to anticipate human intentions and adjust its response accordingly. One possible explana-

tion lies in the difficulty to collect and annotate human social behavioral data, illustrated
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Observed interac on
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Plausible interac on

follow-up

Person i
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Ac on performed by

person i at me t

Figure 3.1: Illustration of the task of interaction generation, where an agent performs one
action at each time step. Typically, the sampling frequency is chosen such that an action
occurs over several time steps. Given an observed interaction sequence, a model should
be able to generate realistic follow-ups for every participant.

by the scarcity of corpora available to the community. A second source of difficulty is

the intrinsically multimodal nature of human interactions. Ideally, when generating in-

teraction data, a system should deal with social signals as diverse as gaze, pose, facial

expression or gestures. In this chapter, we choose to relieve much of this complexity and

treat interactions as synchronized sequences of high level discrete actions, and propose to

solve the task of generating a realistic continuation to an observed interaction sequence

(Figure 3.1). The chosen representation has the advantage of easing the generation task

while carrying enough meaningful information to study diverse interpersonal synchrony

patterns. This approach has several other benefits. First, it is reasonable to think that parts

of the devised architecture will generalize to other modalities such as, for instance, the

mechanisms of integration of surrounding social cues that are not particularly linked to

the considered data modality. Second, the generated interaction sequences will add up to

the original dataset, representing as many fresh, synthetic samples. Provided a dataset that

associates these simple actions with richer representations is available, one may use them
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as conditioning data for the generation of more complex interaction sequences. Finally,

representing the instantaneous state of a person in an interaction as a discrete action is

consistent with the annotations provided in current human interaction datasets [15, 3].

The generation of discrete social action sequences of several people considering the

interpersonal synchrony shares many ties with text generation in NLP and trajectory pre-

diction in crowded environments. As in text generation, we seek to produce sequences of

discrete data, or tokens, although the size of the token dictionary will typically be orders

of magnitude smaller than that of any language. Discrete sequence generation in an ad-

versarial setting comes with well identified limitations: non-differentiability that prevents

backpropagating gradients from the discriminator, and lack of information on the under-

lying structure of the sequence [40], due to the too restrictive nature of the binary signal

of the discriminator. To overcome the first issue, the generator can be thought of as a

stochastic policy trained with policy gradient [130]. However, as noted in Guo et al. [40],

sequences produced via vanilla policy gradient methods see their quality decrease as their

length grows, and therefore do not usually exceed 20 tokens. Another drawback of these

methods is that they rely on several rounds of Monte Carlo search to estimate a policy

reward, noticeably slowing down training.

As recent works in trajectory prediction exploit path information from surrounding

persons to predict pedestrian trajectories that avoid collisions [2, 42, 63], one can think

of interaction generation as the prediction of trajectories in a discrete action space where

people constantly adapt their behaviour to other persons’ reactions. Because the action

space is discrete, action generation is yet better modelled by sampling from a categori-

cal distribution, which requires substantial changes from the previous works. Moreover,

and very differently from trajectories that are sequences of smoothly-changing continu-

ous positions, discrete sequences of social actions cannot be considered as smooth. Ac-

counting for other persons’ behavior in social interactions therefore requires constant re-

evaluations, because one must consider the recent actions performed by all the individuals

within the same social interaction. On the other hand, it should be possible to exploit the

relative steadiness of action sequences: for a sampling rate of 25 fps, an action will typi-
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cally extend for several tens of time steps. This fine grained resolution also allows to deal

with actions of different duration.

Last, this research faces a new challenge regarding the proper evaluation of the gen-

erated sequences of multi-person interactions. The Inception Score (IS) and the Fréchet

Inception Distance (FID), two metrics commonly associated with adversarial generation,

are primarily intended to assess image quality [96, 44]. The IS consists of two entropy

calculations based on how generated images span over object classes, and it is relatively

straightforward to adapt it to action sequences. The FID, on the other hand, requires the

use of a third party model trained on an independent image classification task. The ab-

sence of such an off-the-shelf inception model for discrete sequential data thus requires to

devise a new independent task and to train the associated model that will serve to compute

the FID.

In this chapter, we present a conditional adversarial network for the generation of dis-

crete action sequences of human interactions, able to produce high quality sequences of

extended length. We follow Alahi et al. [2] and Gupta et al. [42] and perform integra-

tion of contextual cues by means of a pooling module. We use a discriminator with two

distinct streams, one guiding the network into producing realistic action sequences, the

other operating at the interaction level, assessing the realism of the participants’ actions

relative to one another. Noticeably, we build our model on a classical GAN framework

as it demonstrated promising performances without the need of policy gradient. We pro-

pose however an essential window-based multi-scale (also referred as “local”) projection

discriminator inspired from Miyato & Koyama [81] and Isola et al. [51] to provide the

generator with localized assessments of sequence realism, therefore allowing the signal

from the discriminator to be more informative. The result is an adversarially trained net-

work able to predict plausible future action sequences for a group of interacting people,

conditioned on the observed beginning of the interaction. Finally, we introduce two new

metrics based on the principles of the IS and FID so as to assess the quality and the di-

versity of generated sequences. In particular, we propose a general procedure to train an

independent inception model on discrete sequences, whose intermediate activations can
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be used to compute a sequential FID (or SFID).

The contributions of the work presented in this chapter are:

• A general framework for the generation of multi-person discrete interaction se-

quences;

• A novel dual-stream local recurrent discriminator architecture, that allows to effi-

ciently assess the realism of the generated interaction sequences;

• Two variants of the popular Inception Score and Fréchet Inception Distance metrics,

suited to assess the quality of discrete sequences.

The rest of the chapter is structured as follows. First, we review related works in

trajectory prediction and text generation in section 3.2. We then describe our architecture

in section 3.3. In section 3.4, we introduce novel variants of the Inception Score [96]

and Fréchet Inception Distance [44], widely used to assess the visual quality of GAN

outputs, suited to our discrete sequence generation task. Experiments conducted on the

MatchNMingle dataset [15] show the superiority of our dual-stream local discriminator

architecture over a variety of baseline models in section 3.5. Finally, we conclude in

section 3.6.

3.2 RELATED WORK

Following the above discussion we review related papers on trajectory prediction and

generation of discrete sequential data that both share ties with discrete interaction data

generation.

3.2.1 TRAJECTORY PREDICTION

Most recent works in trajectory prediction make use of contextual information of sur-

rounding moving agents or static scene elements to infer a trajectory [2, 33, 9, 42, 63,

138, 95, 115]. In Lee et al. [63], a conditional VAE is used to generate a set of possible
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trajectories, which are then iteratively refined by the adjunction of cues from the scene

and surrounding pedestrians. Sadeghian et al. [95] propose a GAN and two attention

mechanisms to select the most relevant information among spatial and human contex-

tual cues for the considered agent path. As in previous works, Zhao et al. [138] use an

encoder-decoder architecture, but propose to jointly exploit pedestrian and static scene

context vectors using a convolutional network. The resulting vectors are then spatially

added to the output of the encoder before the decoding process. In the preceding works,

pooling strategies are usually employed to enforce invariance to the number of partici-

pants in the scene. Such strategies include local sum pooling [2], average pooling [63], or

more sophisticated procedures involving non-linear transformations [42]. In our setting,

we posit an equal prior influence of all interacting individuals on the decision to perform

an action and leave the exploration of different conditions to future work. This alleviates

the need for a pooling strategy aware of the spatial position. However, it is important that

the contextual information provided to the decoder should follow the course of the inter-

action, and thus be recomputed at every time step. This is similar to Fernando et al. [33]

and Sadeghian et al. [95] who rely on a time-varying attention context vector.

In most previous works the models are either trained to minimize the mean square dis-

tance from a ground truth trajectory or to maximize the realism of single-person trajec-

tories thanks to an adversarial loss, but few consider trajectories interplay in the training

objective. This is the case of SocialGAN [42], where the discriminator outputs a single

score for the entire scene, while the adequacy of individual trajectories is ensured by an

L2 reconstruction loss and by the prediction of residual displacements over time steps.

On the contrary, we would like our adversarial loss to cover both the realism of individual

sequences and of the interaction as a whole, and we achieve this by using a discriminator

with two streams. This way we are able to investigate the effects of lessening the weight

of the L2 loss or to simply train the model without it. Note that we could follow a similar

strategy to Zhao et al. [138] and sum individual hidden states with contextual information

into a single vector serving as input to the discriminator classifier. We want however to

avoid any possible leakage of information between interaction and individual sequence
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evaluations and therefore stick to two separate networks.

3.2.2 GENERATION OF DISCRETE SEQUENTIAL DATA

GANs have recently been proposed to complement the traditional Maximum Likelihood

Estimation training for text generation to mitigate the so-called exposure bias issue, with

pretty good results on short word sequences [65, 130, 67]. The use of an adversarial loss

for a discrete sequence generation network yet comes with two well-identified caveats.

First, workarounds must be found to allow the architecture to be fully differentiable. Sec-

ond, the binary signal from the discriminator is scarce and may lack information as to

what makes a sentence realistic or not [40]. Yu et al. [130] and Li et al. [65] interpret

text generation as a Markov Decision Process where an agent selects a word at each state,

constituted of all previously generated words. The generator is trained via stochastic pol-

icy gradient descent, while the reward is provided by the discriminator. These ideas are

extended in Lin et al. [67], where the discriminator is modeled as a ranker rather than a

binary classifier to avoid vanishing gradient issues. In Guo et al. [40], the generator is im-

plemented as a hierarchical agent, following the architecture proposed by Vezhnevets et

al. [117], so as to produce text sequences of increased length. Action sequences however

differ from text by the limited size of action space compared to a language dictionary. We

also hypothesize a shorter “memory” of action sequences: it is likely that one can judge

the overall quality of an action sequence by looking only at small chunks of it, provided

their length is chosen adequately. Therefore we propose a window-based discriminator

operating on short-range receptive fields to allow its signal to be more informative, which

can be seen as a recurrent equivalent of PatchGAN [51]. Plus, we found that using a

classical adversarial loss was sufficient to achieve high-quality results, which relieved us

of the burden of keeping an estimate of the expected reward.
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Figure 3.2: Architecture of SocialInteractionGAN. Our model is composed of (a) an
encoder-decoder generator and (b) a recurrent dual-stream discriminator that assesses se-
quences individually and interaction as a whole. Hidden states from all participants in the
interaction are pooled and re-injected at each step in the decoder.

3.3 MULTI-PERSON INTERACTION SEQUENCE GENERATION WITH SO-

CIALINTERACTIONGAN

This section presents the SocialInteractionGAN model, a conditional GAN for multi-

person interaction sequence generation. The model takes as input an interaction X of

duration tobs, which is constituted of N synchronized action sequences, one for each

participant. We denote the observed action sequence of person n as xn1:tobs = {xnt , 1 ≤

t ≤ tobs} (in practice we will drop time index to simplify notations and only use xn for

person n input as it is always taken between t = 1 and t = tobs). Our goal is to predict

socially plausible future actions for all interacting agents. We write the newly generated

interaction as Ŷ = (ŷ1
1:T , . . . , ŷ

N
1:T ), where similarly ŷn1:T = {ŷnt , tobs+1 ≤ t ≤ tobs+T}

is the generated action sequence for person n. Again ŷn will be employed when referring

to the whole generated sequence. Using similar notations, the ground truth sequence is

denoted Y.
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3.3.1 SOCIALINTERACTIONGAN ARCHITECTURE OVERVIEW

Our model is illustrated in Figure 3.2. It is composed of a recurrent encoder-decoder

generator network (see section 3.3.2) and a dual-stream local recurrent discriminator (see

section 3.3.3). The generator encodes the observed part of the interaction and sequentially

generates future actions for all participants. We use a pooling module to merge all partic-

ipants’ hidden states into a single vector that is fed to the decoder at each time step. This

way, the decoded actions depend on the previous actions of all surrounding persons. The

pooling operation is invariant to the number of interacting people, and so is our model that

can therefore virtually handle interacting groups of any size. The generated interaction Ŷ

is concatenated to the conditioning tensor X and input to the discriminator, alternatively

with the real interaction [X;Y]. The dual-stream discriminator then assesses the realism

of both individual action sequences and interaction as a whole. The following sections

detail the various modules that compose the overall architecture.

3.3.2 GENERATOR

Encoder Network The encoder is based on a recurrent network that operates on a dense

embedding space of the discrete actions. The input sequences are processed by a LSTM

recurrent encoder fe [47], independently for each person n:

cn = fe(x
n). (3.1)

A random noise vector zn of the same dimension as cn is then added to the encoding

of the observed sequence. This is to allow the GAN model to generate diverse output

sequences, as the problem of future action generation is by essence non-deterministic:

hn0 = cn + zn. (3.2)

The resulting vector hn0 is then used to initialize the decoder’s hidden state.
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Decoder Network The decoder is also a recurrent network that accounts for the actions

of all persons involved in the interaction thanks to a pooling module. This pooling mod-

ule, which is essentially a max operator, is responsible for injecting contextual cues in

the decoding process, so that the generator selects the next action based on the interaction

history. Such a pooling is essential to let the number of interacting people vary freely.

Concretely, at each time step t the decoder takes as input the preceding hidden state hnt−1

and decoded action ŷnt−1, and a vector ht−1 output by the pooling module (which is person-

independent). A deep output transformation g, implemented as a multi-layer perceptron,

is then applied on the resulting hidden state hnt . One ends up with action probabilities

p(ynt ), in a very classical sequence transduction procedure, see e.g. Bahdanau et al. [7].

Formally, we have:

hnt = fd(h
n
t−1; ŷ

n
t−1, ht−1) (3.3)

p(ynt ) = g(hnt , ŷ
n
t−1, ht−1), (3.4)

where fd is the decoder recurrent network, also implemented as a LSTM.

The j-th coordinate of the output of the pooling writes:

ht,j = max
n

hnt,j (3.5)

where hnt,j designates the j-th coordinate of person n hidden state at time t.

The resulting action ŷnt then needs to be sampled from p(ynt ). As we want our discrim-

inator to operate in the discrete action space, we use a softmax function with temperature

P as a differentiable proxy when sampling for the discriminator, i.e. the t-th entry of

discriminator input sequence for person n writes:

ŷnt = softmax(p(ynt )/P ) (3.6)

where P is typically equal to 0.1, i.e. small enough so that softmax output is close to a

one-hot vector.
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3.3.3 DISCRIMINATOR

The discriminator can be implemented in many ways, but it usually relies on recurrent

(RNN) or convolutional (CNN) networks, depending on the application. Trajectory pre-

diction applications usually rely on recurrent networks [42, 95, 138], whereas convolu-

tional networks are preferred for text generation [130, 67, 40], as CNN performances were

shown to surpass that of recurrent networks on many NLP tasks [134, 34]. Convolutional

networks also have the advantage to be inherently suitable to parallel computing, dras-

tically reducing their computation time. Borrowing from both paradigms, we turn to a

recurrent architecture that lends itself to batch computing, while preserving the sequential

inductive bias of RNNs.

Dual-stream discriminator Two streams coexist within our discriminator such that the

realism of both action sequences and participants interactions can be explicitly enforced.

The individual stream (see Figure 3.2), labelled as Dindiv, is composed of a recurrent

network followed by a two-class classifier, respectively implemented as a LSTM and

a shallow feed-forward neural network, whose architecture is detailed in the following

section. It operates on single-person action sequences, assessing their intrinsic realism

disregarding any contextual information. The interaction stream, Dinter, follows the same

architectural lines, but a pooling module similar to the one used in the generator is added

right after the recurrent network such that the classifier takes a single input for the whole

interaction. A factor λinter controls the relative importance of the interaction stream, such

that the full discriminator writes:

Dtot = Dindiv + λinterDinter. (3.7)

Local projection discriminator Implementing (any of) the two discriminators as a re-

current network and letting them assess the quality of the entire generated sequences poses

several issues. First the contributions from different sequence time steps to weight updates

is likely to be unbalanced due to possible vanishing or exploding gradients. Second, some
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of those gradients may be uninformative especially at the onset of training when errors

are propagated forward in the generation process, degrading the quality of the whole se-

quence, or when the overall realism depends on localized patterns in the data. On the

contrary we seek for a discriminator architecture that is better able to guide the genera-

tion with gradients corresponding to local evaluations, so as to entail an even contribution

from each location in the generated sequence. To that end, previous works mainly used

CNN discriminators [130, 67, 69, 61]. We explore recurrent architectures that conform

with that objective. Along the same lines as PatchGAN [51] where photorealism is com-

puted locally at different resolutions, we propose a multi-scale local (or window-based)

discriminator, applying on overlapping sequence chunks of increasing width. Another

intuition drove us to this choice: it seems reasonable to assume that the realism of an

action sequence can be assessed locally, while it would not be the case for text sequences

where verb tense or topic consistency would rather be assessed over the whole sentence.

To that aim, the generated action sequence ŷn is split into K overlapping sub-sequences,

or windows, temporally indexed by t1, . . . , tK , with K uniquely defined by the chunk

length τ and the interval ∆t = tk+1 − tk between successive chunks (see section 3.5 for

a detailed discussion on how to select τ and ∆t). Each sub-sequence is then processed

independently through the recurrent module f of the discriminator:

hntk = f(ŷntk:tk+τ ), (3.8)

ŷntk:tk+τ being the k-th action sub-sequence of person n (hence comprised between time

steps tk and tk + τ , plus the offset tobs). Next, to account for the conditioning sequence

xn and its resulting code hn = f(xn), we implement a projection discriminator [81] and

dampen the conditioning effect as we move away from the initial sequence thanks to a

trainable attenuation coefficient. Discriminator output can finally be written as follows:

D(xn, ŷn) =
1

K

∑
k

Dproj(h
n, hntk), (3.9)
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with

Dproj(h
n, hntk) = A(t

−1/β
k (hn)⊤V ϕ(hntk)1dψ + ψ(ϕ(hntk))), (3.10)

where 1dψ is the vector of ones of size dψ, ϕ and ψ are fully-connected layers, A and V

real-value matrices whose weights are learned along other discriminator parameters, and

β a trainable parameter that controls the conditioning attenuation. In our case, given hn,

hntk ∈ Rdh , ϕ(·) ∈ Rdϕ , ψ(·) ∈ Rdψ , then V ∈ Rdh×dϕ and A ∈ R1×dψ .

We repeat the same procedure over different window sizes τ to account for larger or

smaller scale patterns, and average the scores to give the final output from the individual

stream Dindiv. Slight differences arise for the computation of Dinter. Summation terms in

(3.9) are no longer evaluated independently for each participant of the interaction. Instead,

the N vectors h1tk , . . . , hNtk output by the encoder for all N participants at time tk are first

processed through the pooling module, yielding the pooled vector htk . We do the same

for individual conditioning vectors hn, that are pooled to give a single conditioning vector

h for the whole interaction. Dproj is then evaluated on h and htk in (3.9), and its output

indicates how much the interaction chunk starting at tk is realistic given the observed

interaction X.

3.3.4 SOCIALINTERACTIONGAN TRAINING LOSSES

We use an adversarial hinge loss [66] to train our model, i.e. for the discriminator the loss

writes:

LD = EXEŶ[max(0, 1 +Dtot(X, Ŷ)) + max(0, 1−Dtot(X,Y))], (3.11)

as for the generator, the adversarial loss writes:

LadvG = −EXEŶ[Dtot(X, Ŷ)] (3.12)

where the expectation is taken over dataset interactions X and the random matrix of model

outputs Ŷ, with Y the ground truth sequence.
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We also add the following reconstruction loss to the generator:

LrecoG = EXEŶ

[
∥Ŷ −Y∥22

]
(3.13)

(where Ŷ and Y dependency on X is implicit) and weight it with a factor λreco. This last

factor must be carefully chosen such that training mainly relies on the adversarial loss.

This is important because, as showed in the experiments, the mean squared error fails

to explore the diversity of action sequences. However, a small values of λreco can have

an interesting stabilizing effect on training (see section 3.5). The overall generator loss

writes:

LG = LadvG + λrecoLrecoG . (3.14)

3.4 EVALUATION OF GENERATED SEQUENCES QUALITY

The Inception Score (IS) and Fréchet Inception Distance (FID) are two metrics designed

to assess the quality and diversity of GAN-generated images and compare the distributions

of synthetic and real data [96, 44]. In the absence of sequence class labels for computing

the IS and of an auxiliary inception model for the FID, neither of these two metrics can

however directly apply to discrete sequences. We begin by re-writing the calculation of

the IS. The same original formula is used:

IS = exp(HM −HC) (3.15)

with HM and HC respectively the marginal and conditional entropies, but we rely on

action labels to estimate the sequential equivalents of those two variables. The marginal

entropy is computed over the entire set of predicted sequences and measures how well the

GAN learned to generate diverse actions. It is therefore expected to be high. As for the

conditional entropy, it needs to be low in a model that learned to grasp key features of a

class, and thus we define it as the average entropy of individual sequences. Formally, we
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write:

HM = −
∑
a∈A

f(a) log(f(a)) (3.16)

HC = − 1

|S|
∑

a∈A,s∈S

fs(a) log(fs(a)) (3.17)

where A is the set of actions, f(a) the frequency of action a ∈ A over all generated

sequences, and fs(a) the frequency of action a in sequence s of the dataset S of size |S|.

This new definition of HC suffers from a limitation. Indeed, the conditional entropy

decreases as the model learns to generate steadier and consistent sequences. However,

very low values of HC means that the same action is repeated over the whole sequence.

Rather that aiming for the lowest possible values of IS, we therefore compute HM and

HC from the data and use them as oracle values. In addition, we complement these scores

with a sequential equivalent of the FID so as to compare the distributions of real and

generated sequences.

The FID measures the distance between two image distributions by comparing the

expectations and covariance matrices of intermediate activations of an Inception v3 net-

work [106] trained on image classification [44]. However Iv3 is irrelevant for our discrete

sequential data. Therefore we build a recurrent “inception” network that we train on an

auxiliary task. The network is implemented as a bidirectional LSTM encoder, followed

by five feed-forward layers, and is trained to regress the proportion of each action in input

action sequences. The main principle that led to the choice of this task is that its output

could be used to characterize the input sequences: it seems plausible for instance to as-

sume that the realism of an action sequence can be partly assessed simply by knowing

the proportion of each action. This way we expect the model trained on this task to learn

meaningful sequence representations, making it suitable for FID calculations. In particu-

lar, the last activations before the regression head are used to compute the FID, which is

referred to as SFID for Sequential Fréchet Inception Distance.
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3.5 EXPERIMENTS

We conduct our experiments on the MatchNMingle dataset [15], that contains action-

annotated multi-person interaction data that are particularly suited to our task. Although

other datasets featuring human interaction data exist (e.g. [78, 3, 60, 59]), they do not fit in

the framework described here, either because the discrete annotations are not exhaustive,

or because they rely on transcripts that are not readily usable or on continuous quantities

like body pose or raw video that are out of the scope of the present study. On the contrary,

the MatchNMingle dataset contains annotated actions that fully define the state of all

participants at each time step.

We carry out pre-processing on the original data, that we detail in section 3.5.2. In

the absence of concurrent work, we challenge our architectural choices versus alternative

recurrent and convolutional discriminator baselines (sections 3.5.4 and 3.5.4) and con-

duct an ablation study (section 3.5.4), highlighting the relevance of our dual-stream local

discriminator.

3.5.1 MATCHNMINGLE DATASET

The MatchNMingle dataset contains annotated video recordings of social interactions of

two kinds: face-to-face speed dating (“Match”) and cocktail party (“Mingle”), out of

which we exclusively focused on the latter. Mingle data contains frame-by-frame action

annotated data for a duration of 10 minutes on three consecutive days, each of them gath-

ering approximately 30 different people. Each frame is decomposed into small groups of

chatting people that constitute our independent data samples. Mingle data comprises for

instance 33 interactions of three people that amount to a total of 51 minutes of record-

ing, annotated at a rate of 20 frames per second. We focused our experiments on three-

people interactions as it offers a good trade-off between a sufficient complexity of action

synchrony patterns and generalization capability that is dependent of the quantity of avail-

able data. Interactions are composed of eight different labelled actions: walking, stepping,

drinking, hand & head gesture, hair touching, speaking and laughing, plus an indicator
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of occlusion that can be total or partial.

3.5.2 DATA PRE-PROCESSING

The training dataset is built by processed Mingle data as follows. First, we consider each

group of interacting people independently and split the interactions into non-overlapping

segments of three seconds (60 frames). These 3-second segments constitute the condition-

ing data X. Then we consider each segment’s following actions as the target sequences Y.

Out of this dataset, we remove all training samples in which total occlusion accounts for

more than ten percent of the sample actions, so as to limit the impact of the occlusions in

the dataset. Our dataset finally comprises 600 three-people interaction samples. Finally,

in order to ease data manipulation, the action space is restricted to the most common ac-

tions or combinations of actions (as some actions can occur together), and we replace the

8-dimensional binary action vectors of the data by one-hot vectors with the dimension of

the resulting action space. We let the cumulative occurrences of possible actions amount

to 90% of all actions to prevent the model from struggling with rare action combinations,

and gathered all remaining actions under an additional extra label. Experiments with

actions accumulating up to 99% of total occurrences are reported in section 3.5.4. The

resulting action space contains the 14 following actions: no action, speaking + hand ges-

ture, speaking, stepping, head gesture, hand gesture, drinking, speaking + hand gesture +

head gesture, hand gesture + head gesture, speaking + head gesture, stepping + speaking

+ hand gesture + head gesture, stepping + hand gesture + head gesture, stepping + hand

gesture, laughing.

3.5.3 EXPERIMENTAL DETAILS

In all our experiments we use layer normalization [6] in all recurrent networks, includ-

ing that of SFID-inception network, for its stabilization effect on the gradients, along

with spectral normalization [80] after each linear layer and batch normalization [50] in

decoder deep output. All recurrent cells are implemented as LSTMs [47] with a hidden

state dimension dh = 64, and we choose the same dimension for the embedding space.
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Figure 3.3: Evolution of marginal entropy for different recurrent discriminator architec-
tures and training configurations: (a) sequences of 40 time steps with λreco = 10−3;
(b) sequences of 40 time steps with λreco = 0; (c) sequences of 80 time steps with
λreco = 10−3; (d) sequences of 80 time steps with λreco = 0. Gray dotted line repre-
sents the marginal entropy of the data (equal to 2.18). LocalRNN converges in all cases to
ground truth marginal entropy values, even for long sequences and unsupervised training
(i.e. λreco = 0), which is not the case for the two other baselines.

The dimensions of projection discriminator dense layers are dϕ = dψ = 128. For the de-

fault configuration of our local discriminator, we use four different window sizes τ . Three

of them depend on the output sequence length T : T , T/2, T/4 and we fix the smallest

window size to 5. We set ∆t = τ/2, thus ensuring 50% overlap (rounded down) be-

tween consecutive chunks for all four resolutions. Different configurations are explored

in section 3.5.4. For comparison purpose we build the CNN baselines in a similar fashion,

with parallel streams operating at different resolutions and kernels of the same sizes as

the chunk widths defined above. In all experiments, we use Adam optimizer [57] and set

learning to 2.10−5 for the generator and 1.10−5 for the discriminator.

3.5.4 EXPERIMENTAL RESULTS

We articulate our experiments as follows: a comparison of recurrent model baselines,

a comparison of recurrent and convolutional discriminators and an ablation study, that

support the different architectural choices of our model.

Alternative recurrent discriminator baselines We start by comparing several recur-

rent architecture baselines for the discriminator, under different supervision conditions

(i.e. varying the strength of the reconstruction loss) and for 40 and 80 frame-long se-
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Table 3.1: Comparison of recurrent discriminator baselines for sequences of 40 time
steps, with weak supervision (λreco = 10−3) and no supervision (λreco = 0). Marginal
entropy (HM), conditional entropy (HC) and SFID correspond to the training epoch that
yields the best results. Best models are those that achieve the closest HM and HC values
to the real data and the lowest SFID.

Model λreco HM(→ real) HC(→ real) SFID(↓)

Real Data 2.18 0.30 –

SimpleRNN 10−3 2.07± 0.06 0.04± 0.03 0.72± 0.22
DenseRNN 10−3 2.15± 0.05 0.04± 0.02 0.84± 0.21
LocalRNN 10−3 2.18 ± 0.04 0.26 ± 0.06 0.41 ± 0.09
SimpleRNN 0 1.94± 0.05 0.38± 0.07 1.10± 0.25
DenseRNN 0 2.20± 0.07 0.22± 0.05 0.44± 0.09
LocalRNN 0 2.18 ± 0.03 0.26 ± 0.03 0.24 ± 0.04

quences (respectively 2 and 4 seconds). In section 3.3.3, we motivated our architectural

choices on the hypothesis that a generator would benefit preferentially from multiple local

evaluations rather that fewer ones carried on longer time scales. To support this assump-

tion, we evaluate our local discriminator (hereafter LocalRNN) against two baselines: the

first one, labelled as SimpleRNN, only processes the whole sequence at once and outputs

a single realism score. The second one, referred to as DenseRNN, also processes the se-

quence at once, but in this case all intermediate hidden vectors are conserved and used as

input for the classifier. This way, the discriminator output contains also localized infor-

mation about actions, although the contributions to the score and the gradients of different

time steps remain unbalanced. Results are gathered in Tables 3.1 and 3.2 for sequences

of 40 and 80 time steps respectively, and correspond to the epoch that yields the best re-

sults for each model in terms of marginal entropy and SFID (longer training sometimes

results in degraded performance, hence the early stopping). Corresponding marginal en-

tropy evolutions are displayed in Figure 3.3. LocalRNN consistently produces the most

realistic sequences in terms of marginal and conditional entropies, regardless of sequence

length or supervision strength, and achieves the lowest SFID scores. Interestingly, we

notice that if SimpleRNN seems to benefit from a weak reconstruction loss as is sug-
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Table 3.2: Comparison of recurrent discriminator baselines for sequences of 80 time
steps, with weak supervision (λreco = 10−3) and no supervision (λreco = 0). Best models
are those that achieve the closest HM and HC values to the real data and the lowest SFID.

Model λreco HM(→ real) HC(→ real) SFID(↓)

Real Data 2.18 0.51 –

SimpleRNN 10−3 1.98± 0.06 0.26± 0.13 1.41± 0.36
DenseRNN 10−3 2.12± 0.03 0.05± 0.04 0.82± 0.06
LocalRNN 10−3 2.16 ± 0.05 0.34 ± 0.09 0.74 ± 0.27
SimpleRNN 0 1.96± 0.03 0.26± 0.08 1.87± 0.36
DenseRNN 0 2.13± 0.13 0.29± 0.15 1.40± 0.53
LocalRNN 0 2.15 ± 0.06 0.45 ± 0.10 0.73 ± 0.26

gested by a lower SFID, it is not the case for the two other models. The reconstruction

loss has a squishing effect on the conditional entropy that is particularly detrimental for

DenseRNN, yielding a model that does not properly generate action transitions. Finally,

as one can see from the training dynamics (Figure 3.3), all LocalRNN models converge

within three thousands training epochs, a much shorter time than any of the other recur-

rent discriminator baselines. Last but not least, the long-range recurrent evaluations of

Simple and DenseRNN discriminators (on sequences of length tobs + T ) are replaced in

LocalRNN by many short-range evaluations that can be efficiently batched, resulting in a

much shorter inference time. This fast and efficient training advocates for our multi-scale

window-based discriminator over recurrent architectures with larger focal length.

Local recurrent vs. convolutional discriminators Convolutional architectures are usu-

ally preferred for discriminator networks in adversarial text generation as it was shown to

surpass performances of RNN on a diversity of NLP tasks while being naturally suited to

parallel computing [134, 34]. We therefore compare SocialInteractionGAN (interchange-

ably referred to as LocalRNN) with several convolutional baselines, and illustrate the

results in Figure 3.4. CNN discriminator baselines are built in a similar fashion to Local-

RNN, with outputs averaged from several convolutional pipelines operating at different

resolutions. Those are taken similar to section 3.5.3, with kernel width playing the role of
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Figure 3.4: Evolution of marginal entropy and SFID of SocialInteractionGAN (Local-
RNN) and various CNN discriminator baselines, for the following training configura-
tions: (a) sequences of 40 time steps with λreco = 10−3; (b) sequences of 40 time steps
with λreco = 0; (c) sequences of 80 time steps with λreco = 10−3; (d) sequences of 80
time steps with λreco = 0.

chunk length τ . Several variations around this standard configuration were investigated,

such as increasing the number of channels or mirror padding in the dimension of actions

to improve the expressive capability of the network. Models that gave the best results

within the limits of the given GPU memory resources are plotted in Figure 3.4. Notice-

ably, all CNN architectures exhibit final marginal entropies close to the dataset values.

In fact action sequences produced by most converged models, including LocalRNN, are

hard to distinguish from real data and it is probable that the proposed task does not allow

to notice differences in final performances. Nevertheless, SocialInteractionGAN consis-

tently learns faster than the CNN baselines and exhibits a much smoother behaviour, as

is particularly clear in charts (e)-(h) of Figure 3.4. Differences in training speed are even

stronger when λreco is set to zero ((b), (d), (f) and (h)). Finally, we investigate the effects

of processing action sequences at additional resolutions. We add two other pipelines to

our standard configuration (i.e. two additional values of τ ), and increase the depth of con-

volutional blocks to the limits of our GPU capability. The resulting model is labelled as
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Figure 3.5: Effects of increasing model complexity on marginal entropy (a) and SFID
(b), for sequences of 40 time steps and λreco = 0. The large CNN architecture remains
slightly behind RNN-based discriminators.

Table 3.3: Effects of removing interaction stream (Indiv-stream), individual stream (Inter-
stream), or adversarial losses altogether (No-GAN) versus the original model (Dual-
stream) for sequences of 40 actions. Models are trained for 6000 epochs. Best models are
those that achieve the closest HM and HC values to the real data and the lowest SFID.

Model HM(→ real) HC(→ real) SFID(↓)

Real Data 2.18 0.30 –

Dual-stream (Full) 2.18 ± 0.03 0.26± 0.03 0.24 ± 0.04
Indiv-stream 2.15± 0.05 0.27 ± 0.09 0.42± 0.10
Inter-stream 2.23± 0.03 0.35± 0.04 0.77± 0.14
No-GAN 2.06± 0.01 0.14± 0.01 0.29± 0.01

48ChanCNN-Large. We build LocalRNN-Large in a similar fashion, augmenting

the standard configuration with two additional time scales. Results are shown in Fig-

ure 3.5. Although the gap between the two architectures has been partly filled, large

LocalRNN still converges faster than its large convolutional counterpart. These exper-

iments show that for the generation of discrete sequences chosen from a finite set of

human actions, it is possible to devise very efficient recurrent discriminator architectures

that display more advantageous training dynamics compared to CNN discriminators, with

noticeably lighter memory footprints.
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Dual-stream discriminator ablation study We conduct an ablation study to explore

the roles of the two streams of the discriminator. To that end, we run additional experi-

ments on sequences of 40 time steps with λreco = 0, cutting off at turns the interaction

and individual streams of the discriminator (respectively naming the resulting models

Indiv-stream and Inter-stream). Additionally, we also compare with an archi-

tecture that has none of the two streams and that is trained only with the L2 reconstruction

loss (i.e. without adversarial losses), that we call No-GAN. The results are reported in

Table 3.3, together with the full model (Dual-stream). Training without adversarial

loss leads to much poorer scores in terms of marginal and conditional entropies, advocat-

ing in favor of the use of the adversarial loss. We hypothesize that the adversarial loss

allows for a larger exploration of the action space, thus the higher marginal entropy score,

and a better learning of the action sequence dynamics, as suggests the higher conditional

entropy. Besides, disabling any of the two discriminator streams leads to degraded per-

formances, which is especially clear in terms of SFID. In particular, we see from the high

SFID that only relying on the interaction stream (Inter-stream) to produce realistic indi-

vidual sequences would perform poorly. This supports our dual-stream architecture: an

interaction stream alone does not guarantee sufficient individual sequence quality, but is

still necessary to guide the generator into how to leverage information coming from every

conversing participant. In the following chapter, we give another view of the dual-stream

approach (coupled with the joint generation of multiple sequences) as a mean to reduce

mode collapse, which provides additional insight on its effectiveness.

Pushing the limits of SocialInteractionGAN This section illustrates the effects of en-

riching and diversifying the original training dataset. Namely, we explore two variants

from the initial setting: the addition of four-person interactions, and the use of a larger

set of actions. The first experiment aims at assessing the capacity of the network to

generalize its interaction sequence predictions to larger groups of people and learn more

complex action patterns; we call it SIG(3&4P). In a second experiment, we add more

rarely seen actions to the pool of achievable actions, such that its cumulative occurrence in

the original dataset raises from 90% to 99%. This results in a set of 35 actions, more than
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Figure 3.6: Effects of increasing the dimension of action space (SIG(35A)) and adding
four-people interactions to the original three-people interaction dataset (SIG(3&4P)) on
marginal entropy (a) and SFID (b). Nominal SocialInteractionGAN (SIG) is shown for
comparison. All models are trained on sequences of 40 actions with λreco = 0. Gray
dashed, dash-dotted and dotted lines represent respectively real data marginal entropy for
large action space, three- and four-people interactions and original SocialInteractionGAN
experiments.

doubling the original size. We label the resulting model SIG(35A). The evolution of

marginal entropy and SFID of these models over training steps are reported in Figure 3.6,

together with that of the reference model (SIG). Models were trained on sequences of

40 time steps with λreco = 0. Although SIG(3&4P) uses an additional 50% training

samples (from 600 sequences to 953), this has very limited effects on the training dynam-

ics. Noticeably, the model learns to match the slight increment in data marginal entropy

produced by the richer interaction samples. As it could be expected from the resulting

increase in network complexity, expanding the action set of SIG(35A) leads to delayed

convergence. However the model smoothly converges to the marginal entropy of the real

data and also scores low SFID, meaning that SocialInteractionGAN is able to handle a

large number of actions given a sufficient amount of training data.
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3.6 CONCLUSION

Understanding action patterns in human interactions is key to design systems that can be

embedded in e.g. social robotic systems. For generative models of human interactions,

the main challenge resides in the necessity to preserve action consistency across indi-

viduals and time. In this chapter we presented a novel conditional GAN model for the

generation of discrete action sequences of people involved in an interaction. Although

interactions are modelled in a low dimensional manifold, we believe that the principles

devised here, namely the necessity to share the state between participants at every time

step, and to focus the loss function on local evaluations, will apply on richer representa-

tions. In the following of this manuscript, we show that these principles indeed scale to

higher-dimensional data.
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From this chapter on, we investigate scaling the previous architecture to higher di-

mensional data, namely videos of talking people. This is of particular interest because

video understanding and generation are active topics in computer vision that have many

practical applications. When it comes to human interaction, these applications comprise

for instance face reenactment, talking head generation or co-speech gesture generation. A

major difference from the previous chapter is that mainly due to data scarcity issues, we no

longer attempt to generate the behavior of several interaction participants but rather that

of a single person involved in an interaction. This new setting intersects the well-studied

task of talking head generation, which nevertheless still faces a number of open research

questions. These concern the improvement of the generated head motion quality and the

yet unexplored multi-scale audio-visual syncing that form the core of the two following

chapters. Importantly, we will also show that the approach devised in Chapter 3 for dis-

crete interaction data generation remains largely relevant in the following of this thesis.

One major challenge however resides in the complexity of video data generation, due to

the high dimension of the data and the necessity to maintain the temporal coherence of

visual and dynamics cues across multiple frames. In the following chapters, we alleviate

this issue by working in a low-dimensional representation of the face known as landmarks

(see e.g. Figure 4.2). This allows to focus on the dynamics of the head, while leaving the

visual reenactment process as a separate task, not treated in this manuscript (see however

Sections 4.1 and 5.1 for a review of existing reenactment methods from 2D landmarks).

The following two chapters therefore deal with yet unsolved issues associated with head

motion generation, that we address in the landmark domain by building on several ideas

previously introduced.

In the present chapter, we address the task of unconditional head motion generation

which aims to animate still human faces from a single reference pose. Different from

traditional audio-conditioned talking head generation that seldom puts emphasis on re-

alistic head motions, the GAN-based architecture devised here learns to synthesize rich

head motion sequences over long duration while mitigating error accumulation. In partic-

ular, the autoregressive generation of residual outputs ensures smooth trajectories, while
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a multi-scale discriminator on input pairs drives the generation toward better handling of

high- and low-frequency signals and less mode collapse. We experimentally demonstrate

the relevance of the proposed method and show its superiority compared to models that

attained state-of-the-art performances on similar tasks.

4.1 INTRODUCTION

Talking head generation refers to the task of animating a human face generally using a

single reference image, an audio clip, and possible additional conditioning signals such as

emotional state or exemplar pose dynamics [109, 105, 55, 128, 140]. Different from face

reenactment where a driving video clip is provided, in talking head generation the head

pose, facial animation, and lip synchronization need to be inferred from other modalities.

To tackle the difficulty of handling both facial dynamics and photorealism directly in the

image space, a predominant line of research generates dynamics in a lower dimensional

space [118]. Those representations comprise supervised facial landmarks [20, 141], 3D

mesh [32] or unsupervised keypoints [123, 124], and following the designation of high

level semantics used in Villegas et al. [118], we refer to this space as the semantic space.

Although several works achieved compelling results in lip-syncing and realistic ren-

dering, generating natural head motions has, until recently, consistently received less at-

tention. In the lack of a driving audio signal, it is yet crucial for the synthesis model to

produce natural and diverse head motions. This is relevant in applications where no audio

signal is available, e.g. when animating background characters in a scene or a video game.

In this unconditional generation setting, the focus shifts from audio-visual synchrony to-

ward long-term consistency throughout the sequence in the absence of conditioning sig-

nal, which is known to be particularly challenging [120]. Tackling this problem will

also be beneficial for audio-conditioned talking head synthesis (see Chapter 5), as it lays

the architectural foundations for a fine handling of head dynamics. The present chapter

addresses the task of unconditional head motion sequence generation, i.e. synthesizing

head pose and facial expression given a single reference pose and no audio driving signal.
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Importantly we work in the 2D facial landmarks semantic space, which facilitates the ma-

nipulation of head dynamics. Several models were notably proposed to map landmarks to

real world images, making this representation relevant in practice [132, 131, 137, 79].

A major difference from the previous discrete action setting is that landmark positions

{xt}t indexed by time t now span a continuous manifold. It is therefore convenient to rep-

resent position xt as the cumulative sum of incremental displacements, or instantaneous

velocities, starting from the observed initial position x0:

xt = xt−1 + vt = x0 +
∑
τ≤t

vτ . (4.1)

This approach has been followed successfully, for instance, by Lin & Amer [69] or

Kundu et al. [62] for human pose generation and by Gupta et al. [42] for trajectory pre-

diction. As shown by Martinez et al. [77], this formulation allows to use shallower neural

network architectures. Another feature of such cumulative sum is that they can be prop-

erly described by autoregressive models (see Morrison et al. [82] for an experimental

validation of this assertion). In a most general definition, an autoregressive function G

produces coordinates xt one by one given the input position x0 and all previously gener-

ated positions:

xt = G(x0, x1:t−1) (4.2)

In practice, conditional independence property assumptions can be made to reduce the

necessity to model all previous time steps and allow for the use of a large diversity of net-

work architectures on a fixed history length. Although they can produce sequences of ar-

bitrary length, autoregressive models may however accumulate error, or alternatively end

up generating average values over time when trained with a mean squared error loss [77].

This advocates for the use of other loss functions. We hereby introduce an adversar-

ial framework to tackle head motion generation as an autoregressive velocity prediction

problem, which to the best of our knowledge has never been done before for head motion

prediction. To that end, we leverage ideas outlined in Chapter 3 for the design of the dis-

criminator network, that prove equally relevant to handle head motion sequences. Head
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motion dynamics are composed of temporal patterns that evolve over varied timescales.

Previous works have addressed the generation of such data with discriminator networks

operating on receptive fields of different sizes [125, 61] or on local windows, enabling a

better representation of high-frequency components [51]. The discriminator network em-

ployed here, directly inspired from the one introduced in the previous chapter, implements

a multi-scale window-based architecture in a single network, which allows it to operate

at any temporal resolution. Last, in the light of Lin et al. [70], we revisit the interaction

stream of SocialInteractionGAN where pairs of samples are processed by the generator

and the discriminator networks as a mode collapse mitigation technique. As we show, this

approach does not change the optimization objective but brings a significant performance

boost for a limited additional overhead. The proposed GAN architecture, labeled Seman-

tic Unconditional Head Motion or SUHMo, allows for long-term head motion synthesis,

and experiments confirm its proficiency against a diversity of models and baselines.1

The contributions of this research work are:

• An autoregressive GAN framework for unconditional head motion generation in the

2D-landmarks domain, able to mitigate error accumulation over long sequences that

even extend the duration of training sequences,

• A training methodology that can be generalized over diverse architectures, for which

we detail two implementations based on LSTM and Transformers,

• Extensive experiments showing that the proposed SUHMo method surpasses com-

petitive methods from closely related tasks on two benchmark datasets.

1Source code and animated examples can be found at:
https://github.com/LouisBearing/UnconditionalHeadMotion.

https://github.com/LouisBearing/UnconditionalHeadMotion
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4.2 RELATED WORK

4.2.1 DEEP CONTINUOUS AUTOREGRESSIVE MODELS

Autoregressive models are ubiquitous in sequence modeling, as they enable strong tem-

poral consistency thanks to the explicit relation between consecutive outputs. In the con-

text of deep continuous sequence prediction, autoregressive models proved powerful in

as diverse domains as waveform synthesis [61], image generation [110], human trajec-

tory prediction in a crowd [42] or human motion prediction [77, 69, 62, 4]. Surprisingly,

the talking face generation literature is much sparser on this subject, Fan et al. [32] pre-

senting one of the few autoregressive talking head generation architectures, but they do

not attempt to generate head motions. Different from previous works, we leverage the

potential of autoregressive models to produce smooth and realistic head motions.

4.2.2 MULTI-SCALE DATA PROCESSING

Learning on representations of the input data over multiple scales has become the standard

in computer vision tasks such as object detection or semantic segmentation where objects

of the same class can have different sizes [68, 107]. Uncovering multiple patterns with

GANs was first addressed in Isola et al. [51] where the authors introduced a discriminator

network taking image patches as input to enhance high spatial frequency components. In

Wang et al. [125], an output image pyramid is processed by several discriminators that op-

erate on decreased resolutions and larger receptive fields, driving the generator network to

produce realistic patterns at different scales. The multi-scale discriminator has then been

extended to sequence generation tasks [69, 61]. An interesting aspect of the latter dis-

criminator architectures is that they combine multi-scale with window-based evaluations

in 1D equivalents of PatchGAN [51], and benefit from the advantages of processing short

windows, such as a lighter discriminator architecture. One limitation however is that dif-

ferent networks are trained for each resolution, restricting in practice the number of scales

considered. We propose to use functional forms that are invariant to the input sequence
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Figure 4.1: One and two-dimension multi-scale & window-based discriminator archi-
tectures. (a) The purely window-based PatchGAN discriminator [51]. (b) Extension to
a 3-scale architecture in Wang et al. [125]. (c) The 1D multi-scale PatchGAN structure
used in DVGANs [69] and MelGAN [61] discriminators. (d) The proposed multi-scale
window-based discriminator has a unique set of parameters and takes sequences of any
size as input, giving a free hand to select the scales.

length, such as recurrent networks. This way, it is possible to define discriminator net-

works that operate at arbitrary scales with a unique set of parameters. See Figure 4.1 for a

visual comparison of the different discriminator architectures. Finally, implementing the

generative model itself as a multi-scale network has also proved useful in improving the

fidelity of generated images at multiple spatial scales [28, 56].

4.2.3 MODE COLLAPSE MITIGATION

Mode collapse reduction methods in GANs comprise efforts towards better optimization

procedures [5], generation space regularization [17], or forcing the network to account for

the noise vector [22], among a rich body of literature. Lin et al. [70] proposed an intu-

itive way of driving the generator to produce diverse outputs by feeding the discriminator

with several input samples. We extend this framework by generating two inputs together,

which produced better results while leaving the optimization objective unchanged.
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Figure 4.2: (a) Overview of SUHMo training process. The autoregressive generator
produces pairs of outputs, that are evaluated by three discriminator networks. (b) At
test time, the second sample is replaced by a transformed version of the reference pose.

4.3 AUTOREGRESSIVE UNCONDITIONAL HEAD MOTION GENERATION

In this section, we formally define the unconditional head motion generation task and the

key components of our learning framework. Given a set of facial landmarks x0 repre-

senting a face in an initial pose, we seek to generate a sequence x1:T = (x1, . . . , xT ) of

arbitrary length T such that the probability distributions of the generated and the ground

truth data, pG and pdata, match:

pG(x0:T ) = pdata(x0:T ), ∀x0:T (4.3)

We hereafter describe our adversarial architecture to address this problem, an overview
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of which can be found in Figure 4.2. Its main components include the autoregressive gen-

erator, described in Section 4.3.1, and the multi-scale sequence discriminator, presented

in Section 4.3.2. As an attempt to mitigate the potential negative impact of mode col-

lapse, we design our architecture to learn to generate and discriminate joint probability

distributions, as explained in Section 4.3.3. The overall loss function is presented in Sec-

tion 4.3.4. Finally, in Section 4.3.5 we propose two implementations of our method to

stress its generalizibility.

4.3.1 AUTOREGRESSIVE VELOCITY GENERATION

We implement our generator network G as an autoregressive function of past landmark

positions, that at each time steps provides the instantaneous velocity:

xt = xt−1 +G(x0:t−1) (4.4)

Working with velocities ensures smooth transitions between subsequent time steps but

also enables simpler model architectures [77] and provides a convenient way to take ad-

vantage of the inherent potential of autoregressive models to represent cumulative sums [82].

On the other hand, autoregressive models tend to accumulate errors over time and spe-

cial care must be taken in the training process to mitigate it, thus allowing for practical

applications. The following sections detail the architecture of our discriminator and the

learning strategy that enable long sequence generation. Note several differences from

the setting of Chapter 3: first of all, the quantity of interest is now continuous, second,

only one observed initial pose is provided in the present use case. This pleads for the

use of a single network rather than the previous encoder-decoder architecture, which has

the advantage to prevent any discontinuity between the last observed frame and the first

decoded frame frequently encountered with recurrent networks. Last, we show in the

following that several components previously designed for the generation of interactions

have interesting mode collapse reduction properties in a single person setting.
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4.3.2 WINDOW-BASED MULTI-SCALE DISCRIMINATOR

We use a multi-scale, window-based discriminator network architecture to train the model

to generate temporal patterns unfolding over different timescales. To relieve the burden

of training one network per input scale, we follow the ideas of Chapter 3, which al-

lows to considerably simplify the discriminator architecture. Here we extend the previous

window-based, multi-scale discriminator beyond RNNs only.

First, let DM : (xt:t+τ , θ) ∈ Rτ×d × Rdθ 7→ DM(xt:t+τ ; θ) ∈ R be a discriminator

function parameterized by θ that operates on sequences of d-dimension vectors of arbi-

trary length τ . This definition includes RNNs, Transformers [116], and more generally

any function enabling pooling in the time axis or which processes time steps separately.

We then define the window-based multi-scale discriminator DS on sequences x0:T as an

expectation over evaluations of DM on temporal slices of x0:T :

DS(x0:T ; θ) = Eτ,t[DM(xt:t+τ ; θ)], t ≥ 0, t+ τ ≤ T (4.5)

where τ and t are respectively the duration, i.e. the scale, and starting index of the window.

In practice both t and τ are sampled from discrete uniform distributions. The advantage

of this framework is that it gives a flexible way to adjust the scales by choosing various

distributions on τ .

4.3.3 LEARNING TO GENERATE AND DISCRIMINATE JOINT PROBABILITY DISTRI-

BUTIONS

In the light of the results presented in Lin et al. [70], we give here another interpretation of

the interaction stream introduced in the preceding chapter. Although originally designed

to process outputs from multiple agents, we found that it can have a beneficial effect on

mode collapse reduction even when generating interactions is not the current objective.

We thus consider the generation and discrimination of joint sample distributions. Let the

objective, with generic data points x1 and x2, write (superscript J for joint ground truth /
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generated distributions):

Ex1,x2∼pJ
data
[logD(x1, x2)] + Ex1,x2∼pJ

G
[log(1−D(x1, x2))] (4.6)

This has to be minimized (resp. maximized) w.r.t. the parameters of the generator G

(resp. the discriminator D). In the case of independent and identically distributed data

and enough network capacity, the joint generated distribution converges to the product of

the marginal data distributions [36]:

pJ
G(x

1, x2) = pJ
data(x

1, x2) = pdata(x
1)pdata(x

2) (4.7)

If G produces samples independently, then pJ
G readily factorizes. This is the setting

of Lin et al. [70], which proved useful to reduce mode collapse. However, if x and y

are produced together, then G simply learns to factorize. Both cases lead to the equality

of marginal distributions pG = pdata, hence the optimization objective of Goodfellow et

al. [36] is unaffected. In the real case scenario of limited network capacity, pJ
G does not

factorize, and hence we argue that if the generation is prone to mode collapse then the

overall optimization can benefit from this joint generation process. In such cases, it is an

easy task for D to identify generated pairs by comparing the two samples, hence driving

G to leverage its two inputs to increase the generation diversity.

At test time, a single initial pose is typically provided. Since the model expects a

pair of samples, one strategy consists in providing a transformed version of the reference

pose as a second input. To that end we use random flip, rescaling and translation. This

approach gives a practical way of injecting stochasticity in the generation process (see

Section 4.4.3).

4.3.4 TRAINING SUMHO

Following the discussion in 4.3.2 and 4.3.3, we propose to use two window-based multi-

scale discriminators on the generated sequences. The joint discriminator DJ
S operates on

sample pairs, while a second network, DS, takes single sequences as input and explicitly
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Figure 4.3: The two architecture variants of the proposed SUHMo method.

enforces the convergence of the marginal distributions pG and pdata. Finally, to comple-

ment the sequential losses, we employ a frame discriminator DF to measure the realism

of each time step of the produced sequences (see Figure 4.2). The generator adversarial

losses writes:

LJ
S = −Ex10:T∼pG,x20:T∼pG

[
DJ

S(x
1
0:T , x

2
0:T )

]
, (4.8)

LS = −Ex0:T∼pG [DS(x0:T )] , (4.9)

LF = −Ex0:T∼pG

[
1

T

∑
t≥1

DF(xt)

]
. (4.10)

The overall loss function is the sum of these three losses plus a mean squared error term

Lreco2 that we scale to remain negligible after the first training epochs:

L = (LJ
S + LS + LF)︸ ︷︷ ︸
Adversarial loss

+λLreco2 (4.11)

Following Chapter 3, the geometric GAN formulation of Lim & Ye [66] is used for the

discriminator loss functions.
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4.3.5 IMPLEMENTATION

So far the discussion has not assumed any precise functional form for either the genera-

tor or the discriminator network. Here we propose two implementations of the SUHMo

method, based on LSTM and Transformers. The motivation is to highlight that the pro-

vided methodological tools can be relevant beyond a single architecture, as we further

discuss in Section 4.4. An overview of both proposed variants can be found in Figure 4.3.

To account for pairs of inputs, we define a batch-pool (BP) operator that acts as a max

pooling layer of kernel size 2 along the batch dimension; with the difference that the result

is then repeated to preserve the input batch size:

xo = BP(xi), (4.12)

xo2n−1,c,d = xo2n,c,d = max(xi2n−1,c,d, x
i
2n,c,d), (4.13)

where the subscripts represent the batch, channel and dimension indices. In the LSTM-

based generator, the hidden state ht goes through a BP layer, yielding a pooled vector pt

that is concatenated with the next input to the LSTM. A multi-layer perceptron is used on

ht to output the landmark positions. The joint discriminatorDJ
S is composed of a LSTM, a

BP layer and a feed forward network; the marginal discriminatorDS is similar but without

the BP layer (see Figure 4.3, left).

In the Transformer generator (Figure 4.3, right), pair mixing is done in a multi-head

attention (MHA) layer by inverting the batch indices of paired samples in the key and

value vectors. This way, each sample in a pair can attend to the history of the other

sample. This layer is labelled batch-cross attention (BXA):

BXA(q, k, v) = MHA(q, kr, vr), (4.14)

kr2n = k2n−1, kr2n−1 = k2n ∀ 1 ≤ n ≤ N/2, (4.15)

vr2n = v2n−1, vr2n−1 = v2n ∀ 1 ≤ n ≤ N/2, (4.16)

with N the batch size, and q = k = v in all experiments, i.e. query, key and value
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Figure 4.4: Sample sequences from CONFER and VoxCeleb2 datasets and the associ-
ated motion maps. Samples featuring little movement produce a very sharp motion map
(example c). The other samples give a good illustration of the differences in dataset
preprocessing: head translation is suppressed in VoxCeleb2 sequences that only contain
rotations, hence the quasi-static position of noise-tip landmarks in d, e and f. On the con-
trary, both translation and rotation movements are visible in the motion maps of samples
a and b.

tokens originate from the same sequences. We do not use positional encoding as we

observed no change in performance, while omitting it allows the generation of longer test

sequences. As for the discriminator networks, a batch-pool layer replaces the batch-cross

attention in DJ
S as it only needs to provide a single score per pair. A learnable class token,

prepended to the input sequence, is used to give the final score, as it has been customary

for Transformers [29].

4.4 EXPERIMENTS

4.4.1 EXPERIMENTAL DETAILS

All networks in the RNN variant of our method are implemented as 1-layer LSTM with

hidden size 1024, while Transformer networks are implemented as a single self-attention

block with one head. In the latter architecture, embedding layers produce 1024 dimen-
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sional vectors for the generator and 128 dimensional vectors for the discriminators, i.e.

the balance between G and D is mainly controlled by the embedding dimension. Models

were trained on sequences of 40 time steps, and up to 5 observed frames were given as

input seeds to the LSTM to stabilize training. At inference time a single reference frame

is provided, and we explore predicting sequences of two different durations, namely 40

and 80 time steps, or respectively 1.6s and 3.2s.

We set λ in equation 4.11 to 10−2. Networks were trained with Adam optimizers with

β1 and β2 parameters set to 0.5 and 0.999, and with generator and discriminator learning

rates set to 2× 10−5 and 1× 10−5 respectively. Importantly, a step learning rate decay of

a factor 10 was applied once performance started to stall, corresponding to roughly 60k

iterations for a batch size of 120 (∼ 3000 epochs for CONFER and 1000 epochs for our

VoxCeleb2 subset). Training took on average two days on a single Titan RTX GPU.

We investigated concatenating velocities or instantaneous accelerations to landmark

positions as input to the generator or the discriminators, expecting that it might help pe-

nalizing static sequences produced by G. In practice, we use positions and velocities as

inputs to the generator and all three quantities in the discriminator networks.

Experiments were conducted on two talking-head datasets. CONFER [35] contains

72 video clips of TV debates between two persons, each about 1 minute long. We pre-

processed the data preserving head translations and selected 5 clips as test data featuring

persons unseen at training. Second, we trained on a randomly selected subset from Vox-

Celeb2 [24], leaving 674 video clips corresponding to 10 unseen identities as test set. In

both datasets the video frame rate is 25 fps.

In order to draw robust conclusions despite the inherent variability associated with

GAN training, each GAN model was trained three times, such that the results reported in

all tables contain both mean values and standard deviations.
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Table 4.1: Model comparison on the head motion generation task from a single reference
frame on CONFER and VoxCeleb2. The FVD and t-FID are sequential metrics computed
on fixed sequence lengths reported as subscript. Here all metrics are computed over the
40 last predicted time steps.

Sequence length (frames) 40 80

Method FVD40 ↓ FID ↓ t-FID40 ↓ FVD40 ↓ FID ↓ t-FID40 ↓
CONFER [35]

HiT-DVAE [10] 368±19 6±0.4 130±7 764±35 50±2 157±12
ACTOR [87] 480±12 8±0.3 147±3 667±20 9±0.8 163±5
∆-based 318±115 21±3 67±10 357±104 24±3 77±18
MLE 480±42 10±3 133±2 777±54 21±3 159±6

SUHMo - RNN 162±31 3±0.2 61±8 147±45 8±2 48±11
SUHMo - Trans. 175±46 4±0.7 67±12 169±33 7±1 52±4

VoxCeleb2 [24]

HiT-DVAE [10] 686±37 1±0.1 167±4 644±27 2±0.1 164±6
ACTOR [87] 357±55 4±0.5 78±9 431±26 5±2 145±21
∆-based 386±32 48±6 89±4 518±48 60±30 112±31
MLE 530±20 2±0.2 158±6 684±23 8±0.8 172±9

SUHMo - RNN 76±8 3±0.7 21±3 135±33 9±5 31±7
SUHMo - Trans. 134±33 3±0.8 42±10 141±31 9±3 55±16

4.4.2 METRICS

The Fréchet Inception Distance (FID) [44] and Fréchet Video Distance (FVD) [112] are

used to measure the distance of the generated samples to the ground truth data distribu-

tion. While the FID gives a score of static face realism, the FVD measures the smoothness

of the dynamics. A preliminary rasterization step is applied on landmarks to cast them

in the image domain for the inceptionV3 [106] and I3D [16] networks. We also com-

plement the FVD with a second dynamical metric based on a FID measure on motion

maps, that we use to represent sequences on a single image. To do so, we compute an

exponential moving average centered on the last time frame, thus enforcing a visual cor-

relation between pixel intensity and time step index. The resulting metric, that is relevant

in particular to discriminate sequences with little movement, is coined t-FID (t standing
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Figure 4.5: Qualitative evaluation of results from different models on in-the-wild images,
and for sequence generation of one hundred frames. Models are trained on the CONFER
dataset.

for time). Examples of data samples and their corresponding motion maps are illustrated

in Figure 4.4.

4.4.3 MODELS COMPARISON

Quantitative comparison The performances of SUHMo were compared with two state-

of-the-art architectures for human pose prediction, HiT-DVAE [10] and ACTOR [87].

This task consists in predicting future positions of body joints given a short observed

sequence or an action label and is therefore comparable to unconditional head motion

generation. In our attempt to build the most capable unconditional head motion synthesis

model, we thus train these two systems on our talking head datasets and compare their

results. One notable difference though arises from the fact that human pose prediction

datasets are usually composed of several modes corresponding to a predefined set of ac-

tions, and synthesis models typically account for this by conditioning the generation on

an action label. A minimal amount of changes is therefore necessary to adapt the previ-

ous models to our setting: we replace in particular the action conditioning in ACTOR by
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the observed initial frame. We also seek to compare with audio-conditioned talking head

generation models. Although it is not possible to evaluate them directly in the absence

of audio signal, we take inspiration from common practices in talking head generation

to build two additional baselines. The ∆-based model reproduces the SUHMo-RNN

method, but similarly to Zhou et al. [141] and Das et al. [27] it produces displacements

from a fixed set of reference points, in this case the initial landmark positions. MLE, for

maximum likelihood estimation, follows a common trend in head motion prediction and

relies on a single mean squared error loss. We evaluate the above models and our two ar-

chitecture variants on both CONFER and VoxCeleb2, on sequences of duration 40 and 80

frames. Note that this corresponds to one time and twice the training sequence duration.

Results are reported in table 4.1. SUHMo consistently outperforms all other architectures

in terms of dynamics quality. HiT-DVAE and ACTOR attain lower FID values on Vox-

Celeb2, suggesting slightly sharper faces, but this is at the cost of producing quasi-static

sequences, hence the poor FVD and t-FID scores (see also next paragraph and Figure 4.5).

The same is true for models trained with a L2 reconstruction loss (the likelihood-based

method), advocating for the use of an adversarial loss to ensure realistic dynamics. The

∆-based variant produces dynamics of uneven quality, as per the high standard devia-

tions, and the realism of produced faces falls significantly behind, as suggests the higher

FID values. Interestingly, SUHMo exhibits very little drift as time stretches and dynamics

metrics remain very low, contrary for instance to HiT-DVAE. We note however that this is

an extreme setting for the use of HiT-DVAE in terms of generation over observed length

ratio which is typically of the order of 3 to 5 in Bie et al. [10], whereas here it exceeds 40.

Qualitative evaluation An illustration of the results of different models on two in-the-

wild images is represented in Figure 4.5, along with the associated motion maps. It is clear

from the observation of motion maps that ACTOR produces very little movement. HiT-

DVAE sequences are likewise almost static, and start drifting after 40 time steps. SUHMo

sequences remain sharp after 100 time steps, suggesting a very limited error accumulation.

These results suggest that despite many similarities in the addressed problems, current

human pose prediction models cannot be readily trained on head motion data without
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Table 4.2: FVD scores over different sub-sequence lengths, with and without multi-scale
window-based discriminator (CONFER). Subscripts indicate the length associated with
the metric.

Method FVD10 FVD20 FVD40

SUHMo-RNN 28±8 35±4 162±31
w/o multi-scale discriminator 35±8 42±8 157±21

SUHMo-Transformer 34±9 40±12 175±46
w/o multi-scale discriminator 57±6 60±12 236±58

suffering a degradation in performance.

An interesting feature of SUHMo is that the joint generation allows to produce diverse

outputs given the same reference pose. We illustrate this in Figure 4.6. This is important

for many applications that require the ability to generate different outcomes. These results

also show that our training strategy is effective to prevent mode collapse.

4.4.4 ABLATION STUDY

Multi-scale discriminator To assess the ability of SUHMo to produce realistic patterns

over diverse time scales we measure the FVD on motion chunks of 10, 20, and 40 frames,

and compare it with a model trained without the window-based multi-scale discriminator

(Table 4.2). Both models were trained to generate sequences of 40 frames and therefore

perform on par on this duration. The benefit of the window-based multi-scale approach

however clearly appears on shorter timescales, indicating a finer modeling of high fre-

quency patterns.

Joint generation and discrimination We tried removing the pair mixing in the gener-

ator and the discriminator at turns (Table 4.3). Models trained with a standard marginal

discriminator (”One-sample D”) fall behind in terms of FVD and FID, respectively for the

RNN and the Transformer model. Surprisingly, suppressing the joint generation (”One-

sample G”) has an even more detrimental effect, visible on the FVD and FID for both

models. In addition to its previously known benefits in mode collapse reduction, we ob-
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Table 4.3: Two-samples strategy ablation results on CONFER.
SUHMo variant RNN Transformer

Ablation FVD40 FID t-FID40 FVD40 FID t-FID40

Full 162±31 3±0.2 61±8 175±46 4±0.7 67±12
One-sample D 226±76 3±1 71±16 162±36 7±1 65±11
One-sample G 222±23 5±0.7 58±7 237±58 8±2 74±10
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Figure 4.6: Illustrative examples of diverse results given the same reference pose, for
both variants of SUHMo. Models are trained on the VoxCeleb2 dataset.

serve that working with pairs of samples also helps improving the overall quality of the

generated motion sequences in the unconditional generation setting.

4.5 CONCLUSION

In this chapter we presented an unconditional head motion generation method able to an-

imate a human face over long sequences from a single initial frame in a semantic space.

This method is based on the autoregressive generation of residual displacements, or in-

stantaneous velocities, of pairs of samples, and it is trained using a window-based multi-

scale discriminator. We showed that our methodological contributions can accommodate

several implementations, consistently outperforming state-of-the-art human pose genera-

tion methods and head motion prediction baselines in terms of dynamics quality and pose

realism. In the following chapter we extend this method to audio-conditioned talking
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head generation, showing that it can improve the realism of head motion together with the

audio-visual synchrony over multiple time scales.
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Animating still face images given a speech input signal has many practical applications

and is therefore an active research topic. However, much of the effort has been put into

lip syncing and rendering quality while the generation of natural head motion, let alone

the audio-visual correlation between head motion and speech, has often been neglected.

In this chapter, we present a multi-scale audio-visual synchrony loss and a multi-scale

autoregressive GAN to better handle short- and long-term correlation between speech

and the dynamics of the head and lips. In particular, we train a stack of syncer models on

multimodal input pyramids and use these models as guidance in a multi-scale generator

network to produce audio-aligned motion unfolding over diverse time scales. Following

the same approach as before in this thesis, our generator operates in the facial landmark

domain, which is a standard low-dimensional head representation. The experiments show

significant improvements over the state of the art in head motion dynamics quality and in

multi-scale audio-visual synchrony both in the landmark domain and in the image domain.

Our code, models and demo are available on the project’s GitHub page.1

5.1 INTRODUCTION

The task of talking face generation, which aims to animate still images from a condi-

tioning audio signal, has seen considerable recent progress. The advent of potent reen-

actment systems, as that of Siarohin et al. [99] or Wang et al. [126], and powerful loss

functions allowing for a finer correlation between the generated lip motion and the au-

dio input [25] have paved the way for a new state of the art. In both tasks of talking

head generation and face reenactment, where lip and head motion are given as a driv-

ing video sequence, it is customary to represent face dynamics in a low dimensional

space [38, 20, 141, 136, 131, 43, 126, 137, 79]. For this reason recent breakthrough in

face reenactment has also benefited the talking head synthesis task. The above approach

assumes that image texture and face dynamics can be processed independently, and that

all necessary cues to handle the dynamics fit on a low dimensional manifold. It is then

a reliable strategy to treat audio-conditioned talking face synthesis as a two-step proce-
1https://github.com/LouisBearing/HMo-audio.

https://github.com/LouisBearing/HMo-audio
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dure, where the audio-correlated dynamics are first generated in the intermediate space of

an off-the-shelf face reenactment model, which is later used to reconstruct photorealistic

video samples [123, 124, 52]. This allows to focus on improving the audio-visual (AV)

correlation between the input speech signal and the produced face and lips movements in

a much sparser space than that of real-world images.

Nevertheless, synthesising natural-looking head and lip motion sequences adequately

correlated with an input audio signal remains a challenging task. In particular, although

it has long been known that speech and head motion are tightly associated [127], only re-

cently has this relation attracted the attention of the computer vision community. A likely

reason for the difficulty of producing realistic head motion is the lack of an adequate

loss function. So far, the most successful strategy to produce synchronized lip move-

ments has relied on the maximization of the cross-modal correlation between short audio

and output motion clips, measured by a pre-trained model [25, 142, 88, 86, 129]. This

fails, however, to account for lower frequency motion as that of the head which remains

quasi-static over the short duration considered, typically of the order of a few hundreds of

milliseconds. Surprisingly, there was no attempt to generalize this approach beyond lip

synchronization. Neither has possible multi-scale audio-visual correlation been explored

in the talking face generation literature. Head motion is often produced through the use of

a separate sub-network trained to match the dynamics of a ground truth sequence, which

in practice decouples the animation of head and lips.

We argue that to account for motion that unfolds over longer duration such as the head

rhythm, a dedicated loss enforcing the synchrony of AV segments of various lengths is

needed. We propose to implement this loss using a pyramid of syncers, replacing the lip-

sync expert of Prajwal et al. [88] with a stack of syncer models evaluating the correlation

between the audio input and the dynamics of the whole face over different time scales.

One advantage of this syncer-pyramid loss function is that it allows to produce head and

lip movements together; here one may train a single network end-to-end on the dynam-

ics of both head and lips, resulting in overall lighter architecture and training procedure.

A natural way to exploit the gradients from the multi-scale AV correlation loss is then
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to construct a similar hierarchical structure in the generative model itself. The proposed

method, hereafter labelled MS-Sync, is implemented in the landmark domain [14]: for the

reasons previously mentioned it is sufficient to parameterize the speech-correlated facial

dynamics, which is the focus of the present work. Our generative model, loss functions

and most of the metrics used to measure the quality and synchrony of the produced motion

therefore apply in this domain. Although, as before, we do not seek to reconstruct face

images, several landmark-based reconstruction methods exist [132, 43, 137, 79]. Last,

in contrast with the current trend in talking face synthesis, we rely one more time on an

autoregressive generative network for its inherent ability to model sequential dependen-

cies, and its flexibility to handle sequences of arbitrary length. To do so, we build on the

autoregressive GAN baseline of Chapter 4, and show that the conditioning speech signal

has a stabilizing effect that hinders error accumulation on a much longer term than in the

unconditional setting. In particular, we demonstrate experimentally that the error drift can

be mitigated on test sequences more than five times the length of the training sequences.

More importantly, we show that the proposed model, coupled with the multi-scale dis-

criminator of the previous chapter, largely outperforms the state of the art in terms of

multi-scale audio-visual correlation and head dynamics quality.

The contributions of this chapter’s work are:

• A multi-scale audio-visual correlation loss based on a pyramid of syncer networks,

• A multi-scale autoregressive GAN for the generation of co-speech head and lip mo-

tion in the 2D-landmarks domain with minimal error accumulation,

• Extensive experiments on three datasets that show that our architecture outperforms

previous works in terms of both quality of head dynamics and multi-scale AV corre-

lation.
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5.2 RELATED WORK

Talking head generation is deeply tied to the work presented in this chapter, and we refer

the reader to the Transverse literature review chapter for a discussion of this task. The

other closely-related topic of multi-scale data processing in computer vision has been

covered in the literature review of Chapter 4. Here we review the background literature

on co-speech facial animation.

5.2.1 LEARNING TO ALIGN SPEECH AND HEAD DYNAMICS

Two trends coexist regarding the synchronization of audio and face dynamics. Originally,

learning audio-correlated lip movements was only done with a mean squared error loss

to the ground truth sequence [20, 27, 141, 128, 52, 100]. In parallel, following Sync-

NET [25], the use of contrastive loss variants turned out to be a strong alternative for

its effectiveness on cross-modal training tasks [140, 122]. In particular, in Prajwal et

al. [88] the authors proposed to train a lip-sync expert network to regress the cross-

modal alignment between short audio and video segments. The expert would later be

frozen during the generative model training phase and used as a loss function to enhance

output audio-visual alignment. This strategy was later employed successfully in several

works [129, 124, 86]. We argue however that the commonly used segment length of 200

ms is insufficient to properly align lower-frequency movements like that of the head, for

which several such syncer networks operating on various segment lengths are required.

These different syncers should be used on multi-scale feature hierarchies that can be read-

ily computed to align speech and dynamics of various motion frequencies: this approach,

which is at the heart of the contributions of this chapter, was never explored in talking

head generation so far.
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Figure 5.1: (a) A stack of syncer networks Si are trained on multi-scale positive and
negative multimodal pairs using contrastive losses. (b) The syncer models are frozen and
used to compute the multi-scale audio visual synchrony loss of the generative model.
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5.3 METHOD

Given a set of initial landmark coordinates x0 ∈ R2L (the 2D coordinates of the L = 68

landmarks) and a conditioning audio signal a0:T = (a0, . . . , aT ) ∈ Rd×T (here d = 26)

over T time steps, we aim to produce a sequence of landmark positions x1:T such that the

joint distributions over generated and data samples match:

pg(x0:T , a0:T ) = pdata(x0:T , a0:T ), ∀x0:T , a0:T . (5.1)

In this section we describe our procedure to tackle this problem as follows. We start

by introducing in 5.3.1 the multi-scale AV synchrony loss which is the major contribution

of the present chapter. Then in 5.3.2 we propose a multi-scale generator architecture able

to exploit appropriately the devised multi-scale AV loss. Finally section 5.3.3 details our

overall training procedure.

5.3.1 MULTI-SCALE AUDIO-VISUAL SYNCHRONY LOSS

The most prominent procedure to align dynamics with speech input relies on the opti-

mization of a correlation score computed on short audio-visual segments of the generated

sequence using a pre-trained AV syncer network [88]. Several contrastive loss formula-

tions are possible to train the syncer network, that suppose the maximization of the agree-

ment between in-sync AV segments or positive pairs (at, xt) versus that of out-of-sync or

negative pairs. One particularly interesting formulation is the Info Noise Contrastive Esti-

mation loss, that maximizes the mutual information between its two input modalities [85].

Given a set X = (at, xt, x
neg
1 , . . . , xnegN ) containing a positive pair and N negative land-

mark position segments, this loss writes:

LInfoNCE = −EX
eS(at,xt)

eS(at,xt) +
∑N

n=1 e
S(at,x

neg
n )

, (5.2)

with S the syncer model score function, which is hereafter implemented as the cosine

similarity of the outputs from the audio and position embeddings ea and ex of the syncer
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network:

S(at, xt) =
ea(at)

⊤ex(xt)

||ea(at)||.||ex(xt)||
. (5.3)

Following the usual practice, we take at and xt respectively as the MFCC spectrogram

and position segment of a 200 ms window centered on time step t. Negative pairs can be

indifferently misaligned audio and position segments from the same sequence sample, or

segments from different samples, and N is hereafter fixed to 48.

Once trained, the weights of ea and ex are frozen and the following term is added to

the loss function of the generative model:

LAV = −Eat,xtS(at, xt), (5.4)

where at is now part of the conditioning signal and xt is output by the model.

The above procedure is insufficient when one needs to discover AV correlations over

different time scales. One solution consists in building multi-scale representations of the

audio-visual inputs and training one syncer network Si for each level i in the resulting

pyramid. The training process of the pyramid of syncers is represented in Figure 5.1 (a).

Specifically, the audio and landmark position hierarchies {ai0:T/2i−1}i and {xi0:T/2i−1}i
are constructed by successive passes through an average pooling operator that blurs and

downscales its input by a factor 2, e.g. for positions:

xit =
1

2k + 1

k∑
τ=−k

xi−1
2t+τ (5.5)

where we choose k = 3. The objective is to progressively blur out the highest frequency

motion when moving upward in the pyramid, forcing the top level syncers to exploit better

the rhythm of the head motion. A total of four syncer networks are trained on the input

pyramid following (5.2), input segment duration ranging from the standard 200 ms on the

bottom level to 1600 ms at the coarsest scale.

After the training of the pyramid of syncers, all networks S1 to S4 are frozen and used

to compute the multi-scale audio-visual synchrony loss. The principle of this loss is pre-



79

Figure 5.2: Left. Our network is composed of a temporal module, typically a single layer
LSTM, and a multi-scale module. Right. Details of the multi-scale module.

sented in Figure 5.1 (b). Similar to the input pyramids used to train the syncer networks,

we construct a multi-scale representation of the input speech a0:T and the generated land-

mark positions x0:T . Then for each hierarchy level i one loss term LiAV is computed

according to (5.4) using pre-trained syncer Si. Those terms are then averaged to give the

overall multi-scale AV synchrony loss LMS
AV . To better exploit the effects of this loss, we

propose a multi-scale autoregressive generator network that we describe in the following

section.

5.3.2 MULTI-SCALE AUTOREGRESSIVE GENERATOR

Through the multi-scale synchrony loss, the generator receives gradients that push it to

produce audio-synced landmark positions over multiple time scales. In this section, we

describe the architecture of our generator network, which is itself implemented with a

multi-scale structure to better exploit the loss gradients. The overall architecture is de-

scribed in Figure 5.2.

The proposed generative model is inspired from SUHMo (Chapter 4) which imple-

ments an autoregressive model to generate facial landmark velocities. This however re-

quires substantial adaptations to deal with the present multimodal data. Very generally,

given landmark positions x0:t until time step t and next frame audio input at+1, the gener-
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ator G produces instantaneous velocities vt+1:

vt+1 = G(x0:t, at+1), (5.6)

xt+1 = xt + vt+1. (5.7)

As depicted in Figure 5.2, G is constituted of a temporal module operating on a se-

quence of landmark positions, and of a multi-scale module that takes the output of the

temporal module ht, the positions xt and audio at+1 as input to produce vt+1. We imple-

ment the multi-scale module as the bottom-up path of a Feature Pyramid Network [68].

Namely, the input spectrogram is processed by several downsampling convolutional lay-

ers, producing feature maps a10:T to a40:T/23 of the same resolution as those used to compute

the AV loss pyramid. Feature maps 2 to 4 are later interpolated back to the length T of

the finest map, such that one vector ait+1 can be extracted from each pyramid level i to

produce the next step velocity. Concretely, each vector ait+1 is concatenated with xt and

ht and is processed by an independent fully connected branch, the rationale being that

processing each input resolution separately would allow the model to produce different

motion frequencies.

The outputs of the four branches of the multi-scale generator are merged using a learn-

able soft spatial mask. Each branch i outputs a velocity vector vi ∈ R2L (note that

time index is omitted for the sake of clarity) and a mask vector wi ∈ R2L such that

wi2k−1 = wi2k, ∀k ≤ L, responsible for enhancing or weakening the contribution of each

landmark on the given branch. This is because we expect facial regions to play different

roles depending on the scale: the finest resolution branch might emphasize lip landmarks,

while at the coarsest scale, more weight may be put on head contour. The output of the

multi-scale module finally writes:

vt+1 =
4∑
i=1

( ew
i∑

j e
wj

)
vi (5.8)
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5.3.3 OVERALL ARCHITECTURE AND TRAINING

In addition to the AV synchrony loss LMS
AV , we make use of the discriminator networks

introduced in Chapter 4, that proved effective to train an autoregressive generator on

landmark sequences. These consist in one frame discriminator Df which computes the

realism of static landmarks, and two window-based multi-scale networks Ds and Dj
s on

sequences. The difference between those is that Dj
s processes pairs of samples to help

reducing mode collapse [70]. Although in our audio-conditioned setting mode collapse

is at most a minor issue, we found that using this additional loss slightly improves the

dynamics quality. Adversarial losses are again implemented with the geometric GAN for-

mulation of Lim & Ye [66]. They are identical to those of the previous chapter, since we

found preferable not to condition the discriminators on audio. Nevertheless, we re-write

them here for completeness. Given the generated and ground truth landmark position

distributions pg and pdata, the generator losses write:

LGf = −Ex0:T∼pg

[
1

T

∑
t≥1

Df (xt)

]
, (5.9)

LGs = −Ex0:T∼pg [Ds(x0:T )] , (5.10)

LGjs = −Ex0:T∼pg ,x′0:T∼pg
[
Dj
s(x0:T , x

′
0:T )

]
, (5.11)

as for the generic discriminator loss:

LD∗ = Ex∼pg [max(0, 1 +D∗(x))] + Ex∼pdata [max(0, 1−D∗(x))] , (5.12)

whereD∗ is replaced respectively byDf ,Ds andDj
s and sequences are sampled according

to equations 5.9 to 5.11. Additionally, we trained with the weak L2 reconstruction loss of

Chapter 4 but found no significant improvement. Overall, training consists in minimizing

alternatively the two following terms:

LD = LDf + LDs + LDjs , (5.13)

L = λLMS
AV + LGf + LGs + LGjs , (5.14)
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Table 5.1: Training dataset and head motion preprocessing and generation for the con-
sidered methods. The preservation of head translation typically implies re-creating the
datasets from the original sources following the strategy in Siarohin et al. [99].

Method Train Dataset Head transl.
in prepro.

Predicted
head motion

Wav2Lip [88] LRS2
PC-AVS [140] VoxCeleb2 (I)

MakeItTalk [141] VoxCeleb2 (I) ✓
Audio2Head [123] VoxCeleb2 (II) ✓ ✓

OSTF [124] Obama Weekly
Address ✓ ✓

MS-Sync (ours) VoxCeleb2 (II) ✓ ✓

Table 5.2: Dynamics quality of rasterized landmarks on VoxCeleb2 (II) test set. All
metrics need to be minimized. Bold indicates best score, underline second best. We
additionally report the static face Wav2Lip results as reference scores for the reader.

Duration (frames) 40 80 200

Method FVD40 FID t-FID40 FVD40 FID t-FID40 FVD80 t-FID80 FVD40 FID t-FID40

Methods that predict head motion
MakeItTalk [141] 236 4.0 107 234 3.2 101 476 133 224 4.2 114
Audio2Head [123] 406 66.4 109 593 82.5 133 682 149 649 92.5 141
OSTF [124] 113 12.4 36 164 25.4 50 249 33 225 30.5 65
MS-Sync-short 105 3.3 52 126 5.5 47 239 41 279 25.2 68
MS-Sync-long 134 6.6 42 104 6.8 39 257 28 144 8.3 47
Methods with fixed head pose
Wav2Lip [88] 263 0.9 167 261 1.0 167 557 188 265 3.2 182

with λ = 8 in all experiments.

5.4 EXPERIMENTS

We conducted three benchmark evaluations to measure the proficiency of our model, as-

sessing respectively head dynamics quality, multi-scale AV synchrony in the landmark

domain, and AV synchrony in the image domain.
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5.4.1 EXPERIMENTAL PROTOCOL

Datasets. Experiments are conducted on two versions of the VoxCeleb2 dataset [24]

with different preprocessing. The first version, labelled VoxCeleb2 (I), follows the stan-

dard preprocessing that centers the face in every frame. Second, we use the preprocessing

strategy in Siarohin et al. [99] to re-generate subsets of respectively ∼18k and 500 short

video clips from the original VoxCeleb2 train and test sets. The interest of this prepro-

cessing method is that it keeps the reference frames fixed, thus preserving head motion.

We refer to this second version as VoxCeleb2 (II). HDTF dataset [136] contains ∼400

long duration frontal-view videos from political addresses, which despite limited dynam-

ics diversity makes it suitable for AV correlation measurements. Last, we use LRS2 [1],

which is preprocessed similarly to VoxCeleb2 (I), to measure the AV synchrony in the

image space.

Benchmark models. We compare our method, MS-Sync, with the following prominent

speech-driven talking head generation models. Wav2Lip [88] uses a pre-trained lip syncer

to learn the AV synchrony, and achieved state-of-the-art performances on the visual dub-

bing task. However, it only reenacts the lip region and therefore does not produce any head

motion. Similarly, PC-AVS [140] produces co-speech talking head videos using a driving

head motion sequence, mapping the results directly in image space without any explicit

intermediate representation. MakeItTalk [141] was one of the first successful attempts to

produce speech-correlated head motion. Its dynamics are learned in the landmark domain

on VoxCeleb2 (I), i.e. no head translation was seen at training. Audio2Head [123] and its

follow-up model OSTF [124] propose methods to generate vivid dynamics, learning head

motion and AV synchrony in a sparse keypoint space using a two-step training proce-

dure. Audio2Head dynamics module is trained on VoxCeleb2 (II), while OSTF is trained

on a single identity, namely using Obama Weekly Address dataset. As a noticeable im-

provement over Audio2Head, in OSTF AV synchrony is controlled with the contrastive

loss of Prajwal et al. [88]. Information on the different models and training corpora is

summarized in Table 5.1.
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Figure 5.3: Distributions of confidence (AV-Conf1) and offset (AV-Off1, without absolute
value) scores measured on VoxCeleb2 (II) test dataset by our metric syncer (equivalent to
landmark-domain SyncNET [25]) at the finest time scale.

Training details. The temporal module introduced in Section 5.3 is implemented as a

1-layer LSTM with hidden size 256. All convolutions and fully connected layers are

implemented as 1D ConvNeXt blocks (with kernel size 1 for dense layers) [72]. We

trained two versions of our model, varying only the training sequence length from 40 to

80 frames, resulting in MS-Sync-short and MS-Sync-long: the aim is to see how this

affects the quality of the produced sequences on various output lengths. Models were

trained on VoxCeleb2 (II) for 70k iterations (about 500 epochs) using Adam optimizers

with β1 = 0 and β2 = 0.999 and learning rates 2 × 10−5 and 1 × 10−5 respectively for

the generator and the discriminator, after which a decay factor of 0.1 was applied on the

learning rates for 5k additional iterations. All audio inputs are sampled at 16 kHz, and

to generate the 26-dimensional MFCC spectrogram we used a window size of 400 points

and hop size of 160 points.

5.4.2 DYNAMICS QUALITY

Protocol. The quality of the produced dynamics is evaluated on the 500 videos of Vox-

Celeb2 (II) test set, which preserve head motion. The Fréchet Inception Distance (FID)

is used to measure static face realism, while the Fréchet Video Distance (FVD) and tem-

poral FID (see Chapter 4) metrics measure the distance between the distributions of data

and generated motion. The two latter metrics require a fixed sequence length that we set
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Table 5.3: Landmark domain multi-scale AV synchrony on VoxCeleb2 (II) test set. A
separate syncer model inspired from SyncNet is trained in the landmark domain for each
corresponding time scale and used to compute the correlation scores.

Time scale 200 ms (1) 400 ms (2)

Method |AV-Off1| ↓ AV-Conf1 ↑ |AV-Off2| ↓ AV-Conf2 ↑
Static 9.45±4.49 0.63±0.23 10.22±4.17 1.07±0.34

Wav2Lip [88] 0.47±0.50 2.42±0.43 0.03±0.51 2.75±0.62
MakeItTalk [141] 1.55±2.75 1.36±0.59 2.48±4.74 1.71±0.70
Audio2Head [123] 2.58±0.51 1.67±0.48 2.41±3.34 1.88±0.64
OSTF [124] 2.13±2.26 1.38±0.50 3.15±4.53 1.62±0.64
MS-Sync-short 0.0±0.0 3.37±0.41 0.01±0.08 3.62±0.52
MS-Sync-long 0.01± 0.08 3.26± 0.41 0.01±0.08 3.56± 0.51

Ground truth 0.87±0.93 2.41±0.46 0.52±1.40 2.50±0.62

Time scale 800 ms (3) 1600 ms (4)

Method |AV-Off3| ↓ AV-Conf3 ↑ |AV-Off4| ↓ AV-Conf4 ↑
Static 9.01±4.21 1.06±0.35 5.72±4.26 0.99±1.11

Wav2Lip [88] 1.47±3.82 1.76±0.71 3.67±4.22 1.48±1.61
MakeItTalk [141] 4.63±5.81 1.47±0.68 4.02±4.26 1.27±1.42
Audio2Head [123] 3.74±4.89 1.45±0.63 3.43±4.10 1.39±1.43
OSTF [124] 5.47±5.42 1.24±0.50 3.62±4.07 1.40±1.45
MS-Sync-short 0.07±0.67 2.48± 0.74 2.60± 3.92 2.18± 1.85
MS-Sync-long 0.10± 0.82 2.49±0.71 1.84 ± 3.38 2.20±1.74
Ground truth 2.39±4.31 1.57±0.67 2.97±3.83 1.69±1.64

to either 40 or 80 frames (equivalent to 1.6 s and 3.2 s at 25 fps), and we refer to the

resulting metrics as FVD40 (t-FID40) and FVD80 (t-FID80), respectively. When gener-

ating longer sequences, we measure the FVD40, t-FID40 and FID on the last 40 frames.

Image-rasterized landmarks are used to compute the metrics (see Figure 5.4).

Results. The results of the dynamics quality evaluations are reported in Table 5.2. MS-

Sync-short shows similar FVD and t-FID scores to OSTF but significantly better FID,

especially on 40 and 80 frame sequences. Since the faces produced by OSTF are also

very sharp, we interpret this result as a hint that this model lacks diversity. Audio2Head

suffers from the same limitation to an even greater extent: although visually compelling,

the movements it produces are stereotypical and therefore penalized by their too small
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Table 5.4: Landmark domain multi-scale AV synchrony on HDTF test set. As above,
separate syncer models inspired from SyncNet are trained on each time scale on HDTF
dataset and used to compute the correlation scores.

Time scale 200 ms (1) 400 ms (2)

Method |AV-Off1| ↓ AV-Conf1 ↑ |AV-Off2| ↓ AV-Conf2 ↑
Static 9.77±4.41 0.63±0.24 9.92±4.22 1.10±0.36

Wav2Lip [88] 0.29±0.57 1.84±0.50 0.98±2.62 2.00±0.62
MakeItTalk [141] 1.42±2.51 1.15±0.43 1.53±3.20 1.86±0.59
Audio2Head [123] 1.34±0.80 1.90±0.53 0.45±2.09 2.24±0.68
OSTF [124] 0.78±1.89 1.54±0.58 1.71±3.58 1.99±0.73
MS-Sync-short 0.76±0.62 2.68±0.48 0.93±0.27 2.80±0.58
MS-Sync-long 0.72± 0.62 2.58± 0.48 0.87± 0.34 2.63± 0.61

Ground truth 1.03±0.98 1.95±0.52 1.14±2.21 2.25±0.70

Time scale 800 ms (3) 1600 ms (4)

Method |AV-Off3| ↓ AV-Conf3 ↑ |AV-Off4| ↓ AV-Conf4 ↑
Static 9.29±4.14 1.00±0.32 3.75±2.92 0.58±0.48

Wav2Lip [88] 2.32±4.59 1.37±0.52 1.26±2.45 1.07±0.67
MakeItTalk [141] 2.22±4.03 1.57±0.59 1.46±2.28 1.21±0.80
Audio2Head [123] 1.82±3.61 1.59±0.60 1.19±2.05 1.22±0.74
OSTF [124] 3.77±5.15 1.45±0.61 1.78±2.44 1.14±0.82
MS-Sync-short 0.48±2.12 2.03±0.67 0.86±1.93 1.42±0.85
MS-Sync-long 0.48±2.07 2.01± 0.67 0.96± 2.07 1.38± 0.85

Ground truth 1.90±3.84 1.58±0.64 1.22±2.06 1.17±0.76

variance in the Fréchet distance calculations. On the other hand, MiT performs well in

FID but its dynamics are of noticeable lower quality. Finally, the MS-Sync-long results

show that a mere change in training strategy allows to greatly reduce error accumulation

over 200 time steps, although it is here at the cost of a slightly lower quality on shorter

sequences.

5.4.3 LANDMARK-DOMAIN MULTI-SCALE AV SYNCHRONY

Protocol. Ideal multi-scale AV synchrony scores should convey how much a model suc-

ceeds in exploiting the audio signal to produce motion over diverse time scales. To that

end, we resort to audio-visual datasets which preserve motion dynamics, namely Vox-

Celeb2 (II) and HDTF [136], and carry our evaluations in the landmark domain. We split
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Table 5.5: Image domain AV synchrony. † We rescaled the extracted landmarks from PC-
AVS that are cropped differently by a factor 0.75 to make it comparable with the original
data scale.

Dataset VoxCeleb2 (I)

Method |AV-Off| ↓ AV-Conf ↑ LMD ↓ LMDfront ↓
Ground truth 1.89±1.92 6.29±1.66 0.0 0.0
GT landmarks + MiT 3.52±4.50 3.55±1.52 1.60±0.30 1.53±0.29

Methods with fixed head pose
Wav2Lip [88] 2.86±0.34 8.07±1.33 2.90±1.09 2.66±0.95
PC-AVS† [140] 5.18±3.31 3.85±1.55 3.19±1.60 3.00±1.44
Methods that predict head motion
MakeItTalk [141] 5.23±4.29 3.50±1.49 3.33±1.41 3.07±1.33
Audio2Head [123] 6.83±6.66 2.66±1.38 3.90±1.33 3.61±1.23
OSTF [124] 2.59±4.29 4.12±1.72 3.44±1.45 3.18±1.27
MS-Sync-short + MiT 2.00±2.56 4.53± 1.51 3.15±1.20 2.85±1.11
MS-Sync-long + MiT 2.20± 2.61 4.35±1.49 3.06± 1.17 2.80± 1.10

Dataset LRS2

Method |AV-Off| ↓ AV-Conf ↑ LMD ↓ LMDfront ↓
Ground truth 0.08±0.4 8.36±1.62 0.0 0.0
GT landmarks + MiT 1.72±3.91 4.61±1.70 1.60±0.31 1.54±0.30

Methods with fixed head pose
Wav2Lip [88] 2.76±0.55 8.53±1.37 2.99±1.05 2.80± 0.89
PC-AVS† [140] 5.48±3.65 4.42±1.65 3.16±1.28 2.96±1.03
Methods that predict head motion
MakeItTalk [141] 8.43±6.16 2.56±0.96 3.31±1.45 3.08±1.28
Audio2Head [123] 6.78±6.72 3.18±1.43 3.80±1.30 3.60±1.18
OSTF [124] 2.59±4.23 4.56±1.67 3.45±1.46 3.25±1.37
MS-Sync-short + MiT 1.60±2.39 5.09± 1.47 3.07±1.11 2.83±0.83
MS-Sync-long + MiT 2.05± 3.09 4.83±1.51 3.00± 1.18 2.76±1.02

HDTF into 291 and 51 train and test identities, and further split the test videos into 1058

80-frame clips. Likewise, measurements on VoxCeleb2 (II) are made on sequences of 80

frames. Pyramids of AV syncers dedicated to metrics calculation, equivalent to landmark-

domain SyncNETs [25] on full faces, are trained beforehand on both datasets. Note that

contrary to Section 5.3, we train the syncers with the triplet loss used in Chung & Zis-

serman [25]. The AV synchrony is evaluated using the absolute value of the audio-visual

offset (|AV-Off|) and the confidence score (AV-Conf) introduced in the same paper, and

detailed hereafter. Given an input audio sequence a = a0:T and an output landmark se-

quence x = x0:T , cross-modal distances dτ (x, a) are computed for certain values of the
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Figure 5.4: Qualitative comparison of the results produced by different methods on three
VoxCeleb2 (II) test sequences.

offset τ , thanks to the audio and landmark encoders ea and ex of the syncer:

dτ (x, a) =
1

T + 1

∑
t

||ex(xt)− ea(at+τ )||2, (5.15)

AV-Off(x, a) = argmin
τ∈[−Vshift,Vshift]

dτ (x, a), (5.16)

AV-Conf(x, a) = m({dτ (x, a)}τ )− min
τ∈[−Vshift,Vshift]

dτ (x, a), (5.17)

where m is the median of dτ values, and Vshift is typically equal to 15. Contrary to

the standard fashion we then take the absolute value of AV-Off(x, a) before averaging

over the whole dataset as we deem it more informative than averaging over quantities

with possible opposite sign, which may falsely provide low offsets. Finally, AV-Conf is

also computed as the average over all test sequences. Absolute offset and confidence are

measured at four different scales with the different syncers on successively downsampled

audio-visual chunks of duration 200 ms, 400 ms, 800 ms, and 1600 ms. Hence an offset of
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1 at the finest resolution, sampled at 25 fps, amounts to a misalignment of 40 ms between

modalities, whereas at the coarsest scale, this rises to 320 ms. We report in Figure 5.3

the performances of the first level syncer on VoxCeleb2 (II) test set. The distributions of

ground truth synchrony scores are closer to Gaussian than perfect Dirac. This is partly

because the same audio signal may correspond to more than one facial configuration, and

the syncers may not fully grasp this diversity. The synchrony scores reported here should

therefore be viewed in light of this assumption: rather than an actual finer AV alignment,

results that appear “better” than the ground truth instead correspond to a closer match to

the modes of the AV distribution discovered by the syncers.

Results. The AV synchrony scores are reported in Table 5.3 and 5.4 for VoxCeleb2 (II)

and HDTF, respectively. We did not include PC-AVS in this section because of distinct

cropping strategies producing inconsistent results. Although the loss functions are dif-

ferent, the syncer pyramid used to train the model and the one which serves to compute

the metrics were both trained on VoxCeleb2 (II): our model almost perfectly learned to

optimize this loss, hence the very strong AV correlation scores. The HDTF results ex-

pose the generalization abilities of the different methods. Although Wav2Lip presents the

best |AV-Off1| at the first scale and Audio2Head the best |AV-Off2| at the second scale,

MS-Sync possesses the second best scores and largely outperforms all models in terms

of AV confidence. What is more, the gap in favor of our model increases at the two

coarsest scales, highlighting the effectiveness of the proposed approach to correlate input

speech and generated motion on multiple time scales. Last it is noteworthy that although

it produces no head motion, Wav2Lip results remain way above the static, uncorrelated

boundary even at the coarsest resolution. This means that the mouth region is still partly

informative at the top pyramid level, possibly pleading for a stronger blurring strategy.

5.4.4 IMAGE-DOMAIN AV SYNCHRONY

Protocol. In a third batch of experiments, the synchrony is calculated in the image do-

main, similar to the classical evaluation protocol. To do so, we first map the landmarks
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output by our model in the image space using the reenactment system from MakeItTalk

(hereafter MiT [141]). Although this leads to blurry results when the pose changes from

the initial orientation, we found it sufficient for the sake of AV synchrony measurements.

We use two datasets for these experiments: a subset of 2141 videos from the original

test set of VoxCeleb2 (I), and LRS2. To cope with the imbalanced duration of Vox-

Celeb2 videos and keep computation time manageable, we work with the first 40 frames

in each clip, while we use the whole LRS2 test set, which contains shorter videos. In

addition to the absolute AV offset and confidence score given by SyncNET, we compute

the Landmark Distance (LMD [19]), together with a frontalized version LMDfront that

better accounts for face rotation. For a fair comparison, we do not directly use the land-

marks produced by MS-Sync to measure the LMD but extract it back from the reenacted

video clips; the same procedure is applied to the ground truth landmarks to help assess

the effects of each of the previous steps on the metrics.

Results. Although not the primary scope of our study, the landmarks produced by MS-

Sync and reenacted with MiT behave surprisingly well in the image domain (Table 5.5).

MS-Sync outperforms all other models in terms of AV offset on both VoxCeleb2 (I) and

LRS2, simply falling short of Wav2Lip in terms of AV confidence on the two datasets,

and of LMD on VoxCeleb2. In particular, MS-Sync performs better than all other models

with head motion (and notably MakeItTalk) on all considered metrics. Notice also how

the fact that Wav2Lip leaves the whole input face beyond the lips intact seems to bias the

calculation of AV confidence in its favor, especially when considering the MiT-reenacted

ground truth landmarks. This suggests that SyncNET is sensitive to the image sharpness:

the shortcomings of the image reenactment systems probably set limits on the achievable

offset and confidence values.

5.4.5 QUALITATIVE RESULTS

In Figure 5.4 we present several sequences output by different models and the correspond-

ing ground truth sequences over 120 frames. An examination of these examples shows
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Figure 5.5: Evolution of multi-scale audio-visual confidence over training, measured on
VoxCeleb2 (II) validation set. Top is the finest scale, bottom the coarsest.

that mouth closing and opening produced by MS-Sync look correctly aligned with the

original, but interestingly this also seems to be the case for head motion although the loss

only enforces convergence of distributions. Although the motion produced by OSTF is

qualitatively good, it is slightly less diverse and tends to frontalize the face disregarding

the original orientation. Wav2Lip, on the other hand, only synchronizes the lips.

5.4.6 ABLATION STUDY

In this section, we explore the roles of the multi-scale AV synchrony loss and of the

multi-scale generator on the output results, in particular in AV confidence at different

resolutions. As can be seen in Figure 5.5 for the evolution of the validation AV confidence

along training, almost no difference is visible at the finest resolution between the full

MS-Sync model and its single-scale loss, single-scale generator equivalent. However, as

expected the confidence of the latter model falls significantly below as one moves upward

in the feature pyramid as the loss does not explicitly enforce multi-scale synchrony. It is
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possible to circumvent this effect by enabling the multi-scale AV synchrony loss, however,

it is clear that if the generator is not itself a multi-scale network, it lacks the capacity to

fully exploit the loss, resulting in average performances on every scale.

5.5 CONCLUSION

The approach presented in this chapter is the first attempt to learn and model audio-visual

correlations at multiple scales for talking head generation. This is enabled thanks to a

pyramid of syncer models that are trained on hierarchical representations of input audio

and landmark position sequences, and then used to compute the loss for the training of

the generative model. Importantly, we showed that this model should also be built on a

multi-scale backbone, implemented here as a feature pyramid network together with indi-

vidual branches for each pyramid level that are merged using a soft learnable mask. The

very encouraging results of MS-Sync let us foresee numerous applications of similar ap-

proaches on other audio-visual generation tasks. One research direction could thus consist

in replacing the facial landmarks with other quantities, be it low dimensional keypoints

or body joints, or real-world images. Another orthogonal direction may lead to extending

the focus to additional cross-modal relationships, such as audio-visual emotions.



CHAPTER 6

CONCLUSION

93



94 Chapter 6: Conclusion

6.1 CONTRIBUTIONS OF THE THESIS

In this thesis, we devised original ways of training autoregressive generative adversarial

networks on three social interaction generation tasks. Autoregressive GANs are an effi-

cient tool to complement or replace the usual maximum likelihood estimation in sequence

generation tasks, especially in cases where the latter fails as when data is limited (Chap-

ter 3) or when the action space is continuous (Chapters 4 and 5). The autoregressive

formulation is particularly interesting since it allows to produce sequences of arbitrary

length at inference, irrespective of the maximum training sequence length. It is also spe-

cially adapted to predict residual quantities in continuous sequence generation settings.

This approach supposes however to use the own model’s predictions at training, which

albeit suppressing the exposure bias issue, may considerably extend the training duration.

In Chapter 3 we explore a novel approach to discrete interaction generation with an

autoregressive GAN and address the previous issue with an original window-based multi-

scale discriminator. We show that this implementation of the discriminator alone strongly

accelerates training and achieves better end results. We also alleviate the issue of how to

differentially sample from a categorical distribution by using a softmax activation with a

low-temperature coefficient, effectively turning the discrete action space into a continuous

manifold.

In Chapter 4, the focus switches from the action generation in a 14-dimensional dis-

crete action space to the prediction of facial landmark coordinates in a continuous space.

This is an especially difficult task as no conditioning is provided other than the initial

pose. However, we show that a similar autoregressive GAN model to the one previously

proposed, modified to generate residual quantities, performs remarkably well on this prob-

lem. We also revisit the roles of the joint generation and discrimination from a theoretical

point of view as a mean of mode collapse reduction. These findings result in a general

framework that can be implemented indifferently with a Transformer or RNN backbone.

Finally, in Chapter 5 we propose a solution to the problem of syncing both head pose

and lip motion with the speech input in talking head generation with a comprehensive
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multi-scale autoregressive GAN approach inspired by the work of the previous chapters.

This approach combines a multi-scale audio-visual synchrony loss made of a pyramid of

audio-visual syncer networks, with a multi-scale generative model built around an audio-

input feature pyramid network. The results, in the 2D landmarks domain, outperform all

previous talking head generation models in terms of multi-scale audio-visual correlation

and head motion quality.

6.2 PROSPECTIVE RESEARCH DIRECTIONS

6.2.1 EXTENSIONS OF PRESENTED WORKS

In this section we highlight possible short-term research directions consisting of follow-

up extensions of the works presented in this thesis, by means of novel architectures or

more global scopes.

Architectures. In light of recent advances in the field, Large Language Models appear

as a natural candidate for the task of discrete interaction generation of Chapter 3. The

possibility to use prompt-tuning techniques to leverage the representation power of LLMs

pre-trained on huge datasets could probably help overcome the limitations posed by cur-

rent interaction dataset sizes and set a new state-of-the-art. For that, one needs to solve

the open problem of how to account for an arbitrary number of interaction participants

in the Transformer decoder of LLMs. It is however not clear if LLMs, which are trained

to predict discrete tokens with an MLE objective, would benefit the continuous sequence

generation tasks considered in Chapters 4 and 5 to the same extent. Other possibilities

include diffusion models, some of which have shown promising results in talking head

generation. Several strategies emerge where the diffusion process is either used to gener-

ate a latent code sequence [98] or to reconstruct the face images via an audio-conditioned

U-Net [30, 104]. These existing methods still suffer from several limitations, being either

limited to a single identity [30], requiring strong conditioning impairing real-world appli-

cations [98] or lacking any treatment of head pose [104], and further research is needed
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to overcome these limitations.

Bridging the gap between landmarks and images. A natural follow-up of the results

presented in Chapters 4 and 5 consists in enabling the reconstruction of real video images

from the output landmark sequences. Although several landmark-to-image methods have

been proposed (see for instance Section 4.1), as of the writing of this manuscript those

still require additional fine-tuning for unseen identities or do not come with released code

and models. This is one limitation of our work, hence the interest of providing additional

solutions for image reconstruction. The easiest one would be to extend the generation

of landmarks to different latent representations and take advantage of other reenactment

models [99]. It is then possible to complement the dynamics loss function with additional

reconstruction terms in the image domain to further improve the final rendering [123,

124].

6.2.2 LONGER-TERM CHALLENGES

Several methodological challenges remain that need to be addressed to improve the per-

formances of talking head generation models, with possible beneficial implications for

other continuous sequence generation tasks.

Improving the quality of unguided talking head generation methods. Despite im-

pressive recent advances, a margin of improvement remains regarding the synthesized

video quality and the audio-visual alignment for subject-free (i.e. with inference on per-

sons not seen during training) audio-driven talking head generation methods. To lever-

age the promising capacity of diffusion models to produce high-quality video sequences

without sacrificing alignment between head and lip movements and input speech signal,

one needs to abide by a number of previous findings that will probably be part of any

final framework. In particular, the generation of the head and lips dynamics must be in-

dependent of the visual reconstruction. This makes sense from a computation point of

view since dynamics and visual information such as subject identity, colors, texture, or
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background are largely independent. Most importantly, the generation of dynamics is

a stochastic process following the one-to-many mapping between speech and facial ex-

pression, while the visual reconstruction of a target subject given a driving expression is

deterministic and has a unique solution. This therefore necessitates a two-stage training

which is yet to be proposed within a diffusion framework. It is likely that this approach

will also benefit the unconditional head motion generation task described in Chapter 4.

Long sequence generation. A second prospective research direction with perhaps larger

implications concerns the generation of long continuous sequences. In this thesis, we

presented several methods for the autoregressive generation of motion dynamics over a

long duration, however at some point error accumulates which limits the output sequence

length. This could be avoided by producing all time steps at once, trading the advantages

of autoregressive generation for a guaranteed quality over the entire sequence. However

the maximum length will remain limited, this time by the duration of the longest training

sample, while the amount of compute will scale with the output length. Therefore it might

be preferable to follow an autoregressive VQ-VAE strategy, casting the problem into a

discrete sequence generation task by quantizing the facial configuration space into a finite

set of adequate dimensions. This approach was previously followed for human motion

prediction [101, 135] but also for talking head generation [74]. It is however still unclear

what would be the ideal trade-off codebook dimension that would allow to simplify the

problem while retaining most of the high complexity of head poses, facial expressions,

and lips configuration.

Multi-scale approaches for multimodal social signal generation Finally, we expect

multi-scale approaches to be useful in interaction contexts akin to the initial setting of

Chapter 3, and particularly for the generation of multimodal social signals. Indeed there

is no reason to assume that speaking status and body orientation, to mention only the cues

found in the recent literature [53, 91], evolve over the same timescale. And this is certainly

not the case for other signals such as the emotional or affective state that one might also

want to model. Is is therefore likely that these diverse patterns would be better handled
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by either a hierarchical generative model, a multi-scale loss function or a combination of

both.
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Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C Courville.

Melgan: Generative adversarial networks for conditional waveform synthesis. Ad-

vances in neural information processing systems, 32, 2019.

[62] Jogendra Nath Kundu, Maharshi Gor, and R Venkatesh Babu. Bihmp-gan: Bidi-

rectional 3d human motion prediction gan. In Proceedings of the AAAI conference

on artificial intelligence, volume 33, pages 8553–8560, 2019.

[63] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr,

and Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes

with interacting agents. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 336–345, 2017.



107

[64] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-

efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.
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