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Abstract

Classification is a very common task in Machine Learning (ML) and the ML models created

to perform this task tend to reach human comparable accuracy, at the cost of transparency.

The surge of such AI-based systems in the public’s daily life has created a need for

explainability. Abductive explanations are one of the most popular types of explanations

that are provided for the purpose of explaining the behavior of complex ML models

sometimes considered as black-boxes. They highlight feature-values that are sufficient for

the model to make a prediction. In the literature, they are generated by exploring the

whole feature space, which is unreasonable in practice. This thesis tackles this problem by

introducing explanation functions that generate abductive explanations from a sample

of instances. It shows that such functions should be defined with great care since they

cannot satisfy two desirable properties at the same time, namely existence of explanations

for every individual decision (success) and correctness of explanations (coherence). This

thesis provides a parameterized family of argumentation-based explanation functions, each

of which satisfies one of the two properties. It studies their formal properties and their

experimental behaviour on different datasets.





Résumé

La classification est une tâche très courante dans le domaine de l’apprentissage automa-

tique et les modèles d’apprentissage automatique créés pour accomplir cette tâche tendent

à atteindre une précision comparable à celle des humains, au détriment de leur trans-

parence. L’apparition de ces systèmes intelligents dans le quotidien du public a créé un

besoin d’explicabilité. Les explications abductives sont l’un des types d’explications les

plus populaires qui sont fournies dans le but d’expliquer le comportement de modèles

d’apprentissage complexes, parfois considérés comme des bôıtes noires. Elles mettent en

évidence les caractéristiques qui sont suffisantes pour que le modèle prédise une certaine

classe. Dans la littérature, elles sont générées en explorant l’ensemble de l’espace des

caractéristiques, ce qui n’est pas raisonnable en pratique. Cette thèse aborde ce problème

en introduisant des fonctions d’explication qui génèrent des explications abductives à

partir d’un échantillon arbitraire d’instances. Elle montre que de telles fonctions doivent

être définies avec beaucoup de soin car elles ne peuvent pas satisfaire simultanément deux

propriétés souhaitables, à savoir l’existence d’explications pour chaque décision individuelle

(success) et l’exactitude des explications (coherence). Cette thèse fournit une collection

de fonctions d’explication paramétrées basées sur l’argumentation, chacune satisfaisant

l’une des ces deux propriétés. De plus, elle étudie leurs propriétés formelles ainsi que leur

comportement expérimental sur différents ensembles de données.
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Chapter 1

Introduction

“No, no! The adventures first, explanations take such a dreadful time.”

Lewis Carroll, Through the Looking-Glass

1.1 Machine Learning (ML)

The data revolution, driven by the internet, social media, and the Internet of Things

(IoT), provides artificial intelligence (AI) with vast amounts of data. This data fuels

remarkable advances in machine learning (ML), a subfield of AI, which aims to learn a

targeted object property (e.g. the class of an object) from a vast quantity of data. In

industry, AI automates processes, enhances decision-making, and improves supply chains.

In (Ransbotham et al., 2017), the authors conducted a survey to capture insights from

organizations all around the world about their interest in AI. They report that 46% of

companies try to or already incorporate AI in their processes or offerings. They also

mention an example about Ping An Insurance Co. of China Ltd. which offers loans

in a few minutes thanks to an AI based customer scoring tool. They also launched an

intelligent Investment Risk advisor “KYZ Risk” to help customers in their investment

decisions. Airbus is also another example of company that uses AI as it leverages AI

in the A350 program to find flaws in the production line. Thanks to AI methods, they

are able to identify patterns in production problems. Manufacturers can also rely on

AI-powered robots for sorting tasks thanks to classification methods and thus improve

in precision and efficiency. The entertainment industry leverages AI for content, product

recommendation or ad personalization. Large companies such as Google or Amazon are

able to collect data on their users to optimize their profits. Recommender systems increase

the time spent on streaming content like Youtube and Netflix, they make precise product

suggestions for Amazon buyers and allow to propose personalized ads on the internet

and social media. (Zhang et al., 2021) propose a wide overview on the main methods for

recommender and the technical challenges. In the healthcare sector, AI related research is
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very active, in particular for assisting with the complex problem of medical diagnosis since

it is able to analyze complex medical data. (Bhavsar et al., 2021) made a survey of the

most recent methods that use ML techniques for medical diagnosis. They enumerate a list

of diseases studied between years 2015 and 2020. (Erickson et al., 2017) provide another

survey on the use of Computer Vision for Medical Imaging e.g. radiology. They highlight

the tremendous progress in accuracy and robustness of ML methods, especially thanks

to Deep Neural Networks which avoids bias from data choice tasks. AI is also expected

to assist nurses with paperwork and patient monitoring, and assist surgeons to perform

less intrusive operations. Companies like Metadvice or Merative are actors in clinical

decision support. AI contributes to drug discovery through predictive modeling. It helps

alleviating long drug discovery processes by preventing potential failures and by predicting

potential drugs’ properties. The finance sector employs AI for fraud detection, algorithmic

trading, and personalized financial recommendations. In Cyber Security, AI detects and

mitigates threats in real-time, safeguarding sensitive data and critical infrastructure. Early

2020’s have been very prolific years for generative AI. ChatGPT, with GPT3 and later

GPT3.5 and GPT4, was released at the end of 2022 and showed incredible performances

in text generation and already transforms some professions. GPT is a Large Language

Model (LLM) that shows great performance in information restitution and summaries and

are more relevant than search engines in some situations. Developers, for example, can

use ChatGPT to search through long and cumbersome documentation or develop simple

programs just by writing a well defined prompt to ChatGPT. Prompts are the input base

of text-to-text or text-to-image models. With a clear and precise prompt, one can improve

the quality of the output. The role of prompt engineer will soon be common in many

companies that use Large Language Models like GPT. AI-generated art like images with

DALL-E or Midjourney, music covers or videos also emerges as novel forms of creative

expression. The landscape is studied in (Gozalo-Brizuela and Garrido-Merchan, 2023).

1.2 eXplainable Artificial Intelligence (XAI)

These recent advances in machine learning rely on inductive models, depending on param-

eters that are adjusted based on a set of training instances. Such models tend to be large

for practical tasks, in the sense of having a lot of parameters, and may allow for non-linear

interactions between the input features. Consequently, they are perceived as black-boxes

whose behavior is difficult to grasp both from their designers’ and users’ point of view.

This opacity has sparked a new subfield of AI, explainable AI (XAI), whose approaches

provide ways to explain what black-box models do and why they do it (Burkart and Huber,

2021; Miller, 2018). XAI gained also interest of AI community because the European Union

requires transparency of AI models in its General Data Protection Regulation (GDPR)
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applied in 2018. One particular consequence of this law is the right for an explanation

(Goodman and Flaxman, 2017; Doshi-Velez and Kim, 2017). Indeed, when automated

decision systems use high level predictors to make predictions that can significantly impact

users, the latter can demand explanations. XAI is not only an effort for regulation. In

(Vilone and Longo, 2020), the authors listed four benefits of a better explainability of AI

systems.

• explain to justify : Explaining decisions of AI systems is a way to argue in favor of

their behavior. Explanations are necessary to make AI systems accepted as a reliable

additional source of information.

• explain to control : The role of explanations is to enhance the transparency of models

and make it easier to identify the causes and functioning of the systems, avoiding

bias and guaranteeing fair outputs.

• explain to improve: explanations should help scholars improve the accuracy and

efficiency of their models and help debugging and to identify potential flaws.

• explain to discover : explanations support the extraction of novel knowledge and the

learning of relationships and patterns inferred by the AI models.

As a consequence, of the above requirements and benefits, a plethora of studies have

been done on XAI in the last decade. Some of them focused on defining explanation

models (Ribeiro et al., 2016; Lundberg and Lee, 2017; Ribeiro et al., 2018) and others on

introducing metrics or properties for judging the quality of explanation models (Doshi-Velez

and Kim, 2017).

Existing explanation models can be classified in three different ways. The first way

distinguishes explainers that provide explanations for individual predictions (i.e. explaining

the decision of a given instance like “Why the application of Bob for a job position was

rejected?”), called local explanations (Ribeiro et al., 2016, 2018; Dhurandhar et al., 2018;

Darwiche and Hirth, 2020), from models that provide explanations for classes independently

of instances, called global explanations (Amgoud, 2021a; Ignatiev et al., 2019). The second

way is based on the information used for generating explanations. Some models, like those

studied in (Darwiche and Hirth, 2020; Ignatiev et al., 2019; Audemard et al., 2022), use

the whole set of instances, called the feature space, while others like Anchors (Ribeiro

et al., 2018) and LIME (Ribeiro et al., 2016) use only a subset of the feature space.

The third way distinguishes models which look inside the ML model from those which

consider the model as a black-box whose internal reasoning is left unspecified. The former

provide insight into the internal decision-making process (Shih et al., 2018; Ignatiev and

Marques-Silva, 2021; Ferreira et al., 2022). They are suitable for explaining interpretable

ML models like decision trees (Quinlan, 1986) and Bayesian networks (Heckerman, 2008).
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However, they may not be feasible for complex and non-interpretable ones like deep neural

networks. The second family of explanation model considers a ML model as a black-box

and provides explanations without looking inside it. It looks for correlations between

input data and the predictions made by the ML model. This approach has been largely

applied to non-interpretable models (Ribeiro et al., 2018; Dhurandhar et al., 2018; Biran

and McKeown, 2017; Luss et al., 2019; Mittelstadt et al., 2019; Wachter et al., 2017) and

also to interpretable ones (Darwiche and Hirth, 2020; Ignatiev et al., 2018; Ignatiev and

Marques-Silva, 2021).

1.3 Contributions

The aim of this thesis is to explain the outcomes of black-box classifiers. We thus look for

local explanations by checking the correlations between input data and the predictions of

classifiers. One of the most studied types of explanations in this context is the so-called

abductive explanation, which highlights the feature-values that are sufficient for making a

given prediction. For example, a client was refused a loan because he is unemployed. Such

explanations are generally generated from the whole feature-space (Darwiche and Hirth,

2020; Ignatiev et al., 2019; Audemard et al., 2022). While the approach is reasonable

when models are interpretable, it is not tractable in case of black-boxes, see (Cooper and

Marques-Silva, 2021), as it requires an exhaustive exploration of the feature space.

As a solution, the two prominent explanation functions Anchors (Ribeiro et al., 2018)

and LIME (Ribeiro et al., 2016) and the argument-based function (Amgoud, 2021b) gener-

ate abductive explanations from a sample (i.e., subset) of instances, avoiding thus exploring

the whole feature space. However, it has been shown in (Amgoud, 2021b; Narodytska

et al., 2019a) that the explanations of Anchors/LIME may be globally inconsistent and

thus incorrect. The third function ensures correct explanations but does not guarantee the

existence of explanations for every instance. Furthermore, it is very cautious as it simply

removes all conflicting explanations that may be generated from the considered sample.

This thesis investigates explanation functions that generate abductive explanations

from a subset of feature space while satisfying desirable properties. Its contributions are

fourfold:

The first consists of proving an impossibility result, which states that a function

that generates abductive explanations from a subset of instances cannot guarantee both

existence of explanations (success) and their correctness (coherence). This result sheds

light on the reason behind violation of success by the argument-based function from

(Amgoud, 2021b). It also resulted in the publication of (Amgoud et al., 2023a).

The second contribution consists of a parameterized family of argumentation-based

explanation functions, each of which satisfies one of the two incompatible properties. The
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approach starts by generating arguments in favour of classes, identifies attacks among

them, uses stable semantics (Dung, 1995) for generating sets of arguments that can be

jointly accepted, identifies accepted arguments, and uses the latter for defining the novel

types of abductive explanations. Accepted arguments are defined in our approach using

two parameters: selection function and inference rule. The former selects a subset of

stable extensions and the latter selects (accepted) arguments from the chosen extensions.

We define various instantiations of the two parameters, capturing different criteria for

solving conflicts between arguments.

The third contribution is a formal analysis and a comprehensive comparison of the new

functions. We show that the family encompasses the argument-based function, however

the new functions that ensure correctness of explanations perform better as they explain

more instances and more classes.

The fourth contribution is an experimental analysis of the functions on various datasets.

The results confirm that abductive explanations that are generated from datasets (as

done by Anchors) are generally incorrect. They show also that the new functions which

guarantee correctness perform well as they explain quite an important proportion of

instances.

All these contributions contributed to the publication of (Amgoud et al., 2023b).

1.4 Structure of the manuscript

The rest of this manuscript is divided into four chapters and a conclusion. The first one

describes the current state of the art on XAI and tries to draw out the current trends in

XAI. Along with describing popular methods, it identifies their major shortcomings. The

second chapter recalls the argumentation framework that has been proposed in (Dung,

1995). The next chapter applies argumentation techniques for generating jointly coherent

abductive explanations from samples. The following chapter presents an implementation

of the proposed explanation models. Finally, the last part is devoted to the conclusion

and perspectives.
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Chapter 2

Explainability in Artificial

Intelligence

Explainable Artificial Intelligence (XAI) is a fast growing research area. Indeed, as AI

makes its way into every aspect of the public’s daily life, it is paramount to make AI more

transparent to its users. In order to help every possible AI user to create, improve or

operate an AI system, we need to make a great effort into developing the transparency of

this powerful tool. The many and various forms that AI can take require a tremendous work

from the XAI community and at least as many solutions for regulating them. The research

towards this goal is rapidly growing and producing a large amount of techniques to interpret

or explain a wide range of AI models. Many authors have made an effort into organizing

the litterature and offering clear and structured overviews on the interpretability or

explainability techniques. However, it is still possible to find nuances in the point of

views of different authors. This is not surprising since the meaning of understanding itself

is still being discussed in the Philosophical and Psychological literature. Therefore, it is

difficult for the XAI community to form a well defined goal (Páez, 2019).

In this section, we try to draw up the state of the art of XAI. We hope to mention

all aspects of Explainability and focus on the points that will be useful in our work. The

goal is to give the reader an overview of the existing work and a feel for its vastness.

We first present the basic notions of classifiers and explanation model. Then, we try

to show the complexity of even defining the most basic notions: interpretability and

explainability. The two following sections, section 2.1 and section 2.2 depict the important

concepts of explanandum and explanation. Then, in section 2.3 we showcase a few popular

explanation methods. The following section is a review focused on desired characteristics

of explanations.
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2.0.1 Supervised Learning with Classifiers

First of all, let us present an important prerequisite for the following state of the art. In this

thesis, we will focus on a particular technique of Machine Learning: Supervised Learning.

Supervised learning is a branch of machine learning where the algorithm learns from a

labeled dataset, meaning that each input data point is associated with a corresponding

target value or label. The goal of supervised learning is to build a predictive model that

can map any input features to the correct labels, in order to make predictions on new,

unseen data. Classification is a ML task that consists in mapping an input x to a discrete

target y (i.e. a class, label or category) from a set of possible classes C. A classifier

R is the type of ML model that performs the classification task. For example, in email

classification, a classifier can determine whether an email is a spam or not, based on its

content. An image classifier can classify animals pictures into the animal’s family.

Figure 2.1 sums up the definition of a classifier:

x ∈ X R y ∈ C

Figure 2.1: The classifier R predicts class y for the input x.

• Input: An input (x in Figure 2.1), also called instance, is a representation of the

object to classify. The object is described by its characteristics. In ML, characteristics

are called features (or attributes) and for each instance, each feature takes one specific

value. These features can take various forms, for an image, a feature is usually a

pixel, for a text it could be a word. x = (x1, ..., xn) are the corresponding values

of these features. In the example of e-mail classification, the features can be the

sender’s e-mail address, the object of the e-mail and the content of the text. We call

input space the space of all possible values for x.

• Dataset: A dataset Y in supervised learning consists of a collection of data points,

each comprising input feature-values and their corresponding ground-truth class. The

ground-truth is the label usually given by human as the objective of classification.

The dataset is divided into two subsets: the training dataset and the test dataset.

The training dataset is used to train the model, while the test dataset is used to

evaluate the model’s performance.

• Model: A model is a mathematical or computational representation of the relation-

ship between input features and classes. The model is represented by the function R

in Figure 2.1. In supervised learning, the model learns from the training data and

generates predictions for the labels of new data points. Models are usually defined
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by their architecture. A model has a collection of parameters that are organised in

a specific way depending on many parameters (type of data, task, etc...). During

the training phase, the model’s parameters are tuned and optimized by a learning

algorithm to make the data x and the model’s prediction c correspond.

Overall, supervised learning with classifiers is a powerful approach for solving a wide

range of real-world problems, including image recognition, sentiment analysis, medical

diagnosis, autonomous driving, and more, by leveraging large amounts of labeled data to

build predictive models. As classifiers can be a central part of critical AI-based systems,

it is necessary to have a good grasp of their behavior. For example, in autonomous

driving, a ML model has to classify the objects detected around the car. In this context,

it is important, in addition to a very high accuracy, to be able to explain the classifier’s

behavior.

In order to study the classifiers, the XAI community creates explanation models, also

called explainers or explanators to better understand ML models. From the XAI literature,

we can count two major families of explanation methods. The first one, model-specific

explainers, focus on dissecting the models and leverage this knowledge to give explanations.

On the contrary, model-agnostic methods consider the model as a black-box and give

explanations by studying the relations between the input and the output of the black-box

classifiers. Figure 2.2 shows the basic idea behind model-agnostic methods.

x ∈ X

R

gY explanation

Figure 2.2: A model-agnostic explainer explains x

The model-agnostic explainer is free to query R on multiple inputs (including x) to

build the explanation.

2.0.2 Defining concepts: Interpretable or Explainable?

There are two popular terms around the comprehension of Artificial Intelligence: In-

terpretable and Explainable. We can often read them in articles or presentations as

“interpretable Machine Learning” (iML) or “eXplainable Artificial Intelligence” (XAI).

These words are often used interchangeably but this trend may lead to a blur in the

research goal.
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We would like to propose a clear definition to the terms Interpretability and Ex-

plainability that are often used interchangeably by XAI community. We hope this allows

the reader to have a clear understanding of our objectives in this research. We also hope

to make a step towards an alignment of the different concepts and notions in XAI.

We first list, then discuss relevant ideas in most common definitions we will conclude

each review with the definition that is the most aligned with our research.

Interpretatbility The term Interpretability is often used in the literature but no

clear definition can be extracted. Here is a list of definition attempts that were proposed

in the literature:

• “the degree to which a human can understand the cause of a decision” (Biran and

Cotton, 2017; Miller et al., 2017)

• “the degree to which a human can constantly predict the model’s results” (Kim et al.,

2016)

• ”The capacity to provide or bring out the meaning of an abstract concept” (Vilone

and Longo, 2020)

• “Users can understand the contribution of individual features in the model: quantify

the impact of each predictor” (Lou et al., 2012)

• “if their operations can be understood by a human, either through introspection or

through a produced explanation” (Biran and Cotton, 2017)

• “the ability to explain or provide the meaning in understandable terms to a human”

(Guidotti et al., 2018)

• “Provide qualitative understanding between the input variables and the response”

(Ribeiro et al., 2016)

• “an AI model’s decision can be explained globally or locally (with respect to mecha-

nistic understanding), and that the model’s purpose can be understood by a human

actor (Páez, 2019)((i.e. functional understanding)” (Schwalbe and Finzel, 2023)

The two most recurring terms are human and understand. It is clear that to have some

interpretability, the understanding of a human is necessary. However, something that is

not clear is what should be understood. Is it a decision? a cause? a meaning? a model?

its operations? The subject of interpretability is ill-defined. Two other blurry aspects of

this term we could think of are the level of understanding of the subject by the human

actor and the amount of effort required for this level of understanding.
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However, interpretability is used in many ways. For example, (Molnar, 2022) and

(Schwalbe and Finzel, 2023) agree that interpretable Machine Learning refers to the area

of research or the discipline:

• “Area of research concerned with the creation of interpreable AI systems (interpretable

models)” (Schwalbe and Finzel, 2023)

• “Extraction of relevant knowledge from a ML model concerning relationships either

contained in data or learned by the model” (Molnar, 2022)

Interpretable model is a formulation where the subject is well defined. According to

(Schwalbe and Finzel, 2023), interpretable models are “Machine Learning techniques

that learn more structured representations, or that allow for tracing causal relationships.

They are inherently interpretable, i.e., no additional methods need to be applied to explain

them, unless the structured representations or relationship are too complex to be processed

by a human actor at hand.”

In this definition, the machine learning technique is qualified as interpretable. The

interpretability describes the technique in its globality. Another important aspect is the

non need for explanations. When the subject is well defined, it seems that the definition

is clearer. Thus we will reserve the term of interpretability and interpretable to Machine

Learning models. For example, we will say that a model is interpretable (to some extent)

or not. In this definition, the interpretability of a model should be evaluated by a human

actor. The human should have a reasonable knowledge of the task and shall not make an

effort to understand the model’s behavior. If the amount of effort necessary to interpret

the model is too high and explanations become necessary to understand it, then the model

should not be considered inherently interpretable.

Explainability The word is less often defined in the literature, we want to nuance it

from interpretability. We first propose a few definitions for explainability:

• “The system either provides knowledge and explanations necessary for the user to

carry out his or her task, or alternatively, the system carries out some action and

then explains the need and reason for the action the system itself has taken to the

user.” (Johnson and Johnson, 1993)

• “models that are able to summarize the reasons for neural network behavior, gain

the trust of users, or produce insights about the causes of their decisions.” (Gilpin

et al., 2018)

• “Explainability is associated with the notion of explanation as an interface between

humans and a decision maker that is, at the same time, both an accurate proxy of

the decision maker and comprehensible to humans.” (Barredo Arrieta et al., 2020)
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In these three definitions, the idea of additional information is at issue. The term

decision (or action) of the system is also always present in these definitions. Explainability

seem to refer to the possibility for an ML model to provide information in addition to

its normal result. This extra information is associated with the notion of explanation.

It should induce transparency into the system and help the user understand the stakes

of the model’s result. The behavior of the model in a specific work is described by the

terms reasons or causes. The definitions also add information about the goals and desired

aspects of explanability: gain the trust of the users or provide an accurate proxy.

To summarize, Explainability concerns the techniques that aim at providing additional

information about a ML model’s output to the user. Obviously, this information should

be relevant to the model’s task instance.

It is difficult to establish a hierarchy between the notion of interpretability and

explainability. For example, (Gilpin et al., 2018) argues that explainability of a model

implies its interpretability. One could disagree and argue the contrary: if explanations

are needed to understand a model, then it means that it is not interpretable. One could

also argue that explainability is more directed to ML decision than the models themselves,

and the concept of global explanation should be called interpretability techniques. These

two concepts are well entangled and one could spend much more effort into defining

clear borders between the terms. In this study we will reserve the word interpretability

to models. Explainability, being the focus of this work, will be elaborated in the next

sections. The concepts of explanandum, explanation and explanator that are at the

core of explainability will be thoroughly studied in section 2.1, section 2.2 and section 2.3

respectively.

2.1 What is there to explain?

Schwalbe and Finzel (2023) refer to an explanandum as to “what is to be explained in

an explanation system. This usually designates a model (e.g., a deep neural network)”,

but there are many aspects of a model that brings opacity to the system. In this section,

we describe two dual concepts that are fundamental in XAI: scope (subsection 2.1.1) and

portability (subsection 2.1.2). The following subsection covers several other aspects of ML

models that XAI researchers tackle.

2.1.1 Scope: Explain a model or a prediction?

The scope is a dual concept in XAI: it is either local or global. On the one hand, an

explanation is considered local when the explanandum is a specific instance. This is the

case in our brief presentation of model-agnostic explainer fig. 2.2 on page 21. In this figure,

the classifier is queried by the explainer gY on multiple instances that are close to x to
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build the explanation of the prediction of input x by the classifier R. This collection of

instances is called a distribution. Usually, the user expects an explanation that provide

information on the behavior of the model around this input x by querying the model

R on similar instances taken from the distribution. The locality scope allows to focus

on predictions in specific contexts. Large models can have many features but it is not

always relevant to explain their behavior in all situations. For this reason, humans prefer

to have explanations on situations that are close to theirs. Let’s take the example of

Bob, a bank customer who wonders why his loan was rejected. Since the banker uses a

ML-based loan risk advisor he should give him a reason. In this case the customer is only

interested in his own situation and what he can do to increase his chances to get the loan.

Nevertheless, this scope raises the following question: “To what extent is this explanation

valid?”. Indeed, this notion of distribution is not always precisely defined and does not

constitute a good indication on the range of validity of each explanation. The banker

told Bob that his income was too low for the loan. Does this mean that Alice, who has a

bigger salary, could get the loan? Some notable Local explanation methods that address

this situation are SHAP (Lundberg and Lee, 2017), LIME (Ribeiro et al., 2016), Anchors

(Ribeiro et al., 2018) (that are detailed further, subsection 2.3.2) and RISE (Petsiuk et al.,

2018), Sensivity analysis (Baehrens et al., 2010) and deconvNet (Zeiler and Fergus, 2013).

On the other hand, some explanations try to describe the model globally. Their purpose

is to give a general idea of how the model works. For example, one can be interested in

locating the decision boundaries of a model. The knowledge of boundaries can be useful

to extract rules on predictions of the model: “As long as instance I remains within these

decision boundaries it will be classified as class c”. This is the case of VIA (Thrun, 1994)

and DeepRED (Zilke et al., 2016). A global explanation is usually most desired to gain

trust in a model. The more we globally understand a model, the more trust it gains. This

global understanding provides trust without searching corner-cases that we don’t need to

specifically cover. In this regard, the user can expect a coherence between all explanations.

In other words, the different global explanations given by the same explanation function

should not contradict each other, or the explainer cannot be trusted. Since ML models

are usually quite big, and decision depend on more than 3 or 4 features, it is very difficult

to identify decision borders and even impossible to make them understandable to humans.

One can also argue that with enough local explanations, it is possible to build a global

comprehension of a model. This is the case for Anchors (Ribeiro et al., 2018). However,

the global explanations are hard to evaluate since we cannot prove they cover all possible

decision boundaries. Sometimes, predictions in some part of the input space can be more

chaotic than another and may require more local analysis than other parts.

As explanations are vectors to induce trust in ML models, the choice between local and

global explanations should be carefully studied. The result of this choice should impact
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the context of use of the model. A globally safe model could be used by any user without

worrying about border cases that my not have been seen. A locally safe model would be

unsafe for unadvised users since they could use the model on corner-case inputs that have

not been tested before.

2.1.2 Portability: Explain an opaque or a transparent system?

There is a very large amount of different models in the literature and some are more

interpretable than others. When it is possible, it is useful to dive into the inner workings

of each model. It is necessary to understand that the models belong to a full spectrum

and can be more or less interpretable according to their nature, but also their size (or

depth), the task they perform, the nature of the data etc. When explaining a ML model,

some of the characteristics of the model can be meaningful information, or can allow more

faithful explanations. For example, most simple ML models such as Bayesian Network,

Decision Trees or Linear Regression models have very simple mechanics that can be easily

leveraged to compute explanations. We call Model-Specific Explanation methods, the

methods that leverage the knowledge of the structure or of the weights of the explanandum.

Model specific explanation methods are numerous and concern most ML models of the

litterature. Some explanation methods rely on the gradient of the prediction function to

build explanations such as the Sensitivity Analysis (Baehrens et al., 2010). When the

problem’s dimension is low enough, the gradient, indicating the direction of the local

optimum can be showcased as a local explanation. Other methods can rely on the analysis

of the weights for attention analysis or the backpropagation operation such as Deconvnet

(Zeiler and Fergus, 2013), Backprop (Simonyan et al., 2014) or LRP (Bach et al., 2015).

On the other side of the spectrum, Deep Neural Networks can accumulate huge amounts

of parameters. For example, the popular Large Language Model GPT4 accumulates 1.7

trillions parameters. In the case of excessively complex models, it is preferable to consider

the latter as a black-box model and make abstraction of its inner mechanisms. Moreover,

the choice of ignoring the model’s information has multiple benefits. Firstly, to make

abstraction of it and adapt the explanation method to a greater number of models.

Secondly, an explanation function that is model-agnostic does not require the users any

knowledge on the explanadum. This is the case for LIME and Anchor (Ribeiro et al.,

2016, 2018) that are very popular explanation methods. Model agnostic methods also have

drawbacks. Model agnostic explanation functions cannot leverage the inner mechanisms

of the explanandum. Hence, it is harder to prove that the explanation derives from actual

causes or only correlations. Some model-agnostic explanation functions require to build

a proxy model, also known as a surrogate or mimic model. This proxy model is usually

interpretable, is trained to behave like the explanandum and allows to extract explanations

from it. The issue is how to guarantee faithfulness between the surrogate model and the
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explained model. LIME is an example of explanator based on a surrogate model. We

explain this solution later in section 2.3.2.

2.1.3 Focus on specific models’ aspects

The XAI research community is devoted to knowing more about any aspect of any model.

While the ultimate goal would be to find a miracle explanator that is model-agnostic, global

and with strong guarantees, it is necessary to process by small specific steps. Researchers

make small improvements and build tools and methods that aim at explaining specific

aspects of the ML models. These aspects cover all parts of the creation of a ML model.

The structure and symbolic processing pipeline, the training, the uncertainty of predictions

and the data itself. Knowledge about all these aspects is useful to build a 360 degrees

representation of complex models.

Processing The study of the processing pipeline aims at providing knowledge about

the decision boundaries of the models. Solutions can be either model agnostic or model

specific. Model agnostic methods count solutions such as RISE (Petsiuk et al., 2018),

LIME (Ribeiro et al., 2016) and LRP (Bach et al., 2015). These are 3 feature attribution

methods. Their goal is to provide information on the role of each feature in the model in

the prediction. In other words, which characteristics of the input are the most responsible

for the prediction. TREPAN (Craven and Shavlik, 1995) and Concept Tree (Renard et al.,

2019) are also model agnostic methods that use decision tree extraction as proxy model to

extract knowledge from the models. This knowledge is appropriate to provide rule based

explanations such as contrastive, counterfactual or abduction based explanations. These

explanations are very well received by non expert users (Miller, 2021).

Inner Representation Complex ML models such as Convolutional Neural Networks

(CNN) for Computer Vision and transformers for Natural Language Processing (NLP)

create a new representations of the input space. This new representation is called the latent

space. This latent space may provide new information on either our own representations

or the model’s behavior. In both case it is an interesting aspect of complex models.

Researchers tend to look for links between latent representations and human known

semantic concepts. NetDissect (Bau et al., 2017) try to link internal elements of CNNs

to human concepts such as color, texture etc. We can also mention Net2Vec (Fong and

Vedaldi, 2018), TCAV (Testing Concept Activation Vectors) (Kim et al., 2018), ACE

(Automatic Concept-based Explanation) (Ghorbani et al., 2019) that are similar methods.

For these methods to be trustable, it seems important to guarantee that this information

accurately represent the explanandum’s behavior. This would be done by providing results

of the correlation between the latent representation and the semantic concept.
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Development (training) The model behavior eventually depends on two main compo-

nents: the architecture and the training. It is natural to wonder what is the impact of the

training data on the final prediction model. Firstly, evaluating the quality of the training

data is a first step, but we will discuss this task in the next paragraph. The question in the

training part is what is the effect of new samples on the final model. Influence Functions

(Koh and Liang, 2020) is a popular attempt in expliciting the influence of training samples

on the training and the decision process.

Data The training data quality is of major importance for the quality of the prediction

model. Explaining via data is a “ante-hoc” method that improves the global process of

building the prediction model as well as extracting knowledge for explanations. In order

to build a good model, it is important to have numerous data that cover well the input

space and represents well the real world distribution of the problem. This means that

models will train well and produce better results on inputs that are taken from real life

scenarios. Datasets can also be synthetically extended to induce robustness. Study of

data allows to know more about the input space representation that we built with the

dataset. If this representation is of too high dimensionality, methods such as PCA (Jolliffe,

2002) or t-SNE (Maaten and Hinton, 2008) allow to project the data into 2D or 3D spaces.

They can also be used to build simpler models with less features.

Uncertainty Knowing how certain a model is for each prediction could be a useful

information to have in mind when a decision follows the prediction. This is a common

behavior for humans to tell their degree of certainty when a decision is to be made.

The role of classifiers is to choose a class for a given input. Actually, the raw output

of the model is given by a logistic function that maps each class to a value between

0 and 1. The predicted class is the class that corresponds to the largest value. It is

surely interesting to know if all probabilities were really close to each others (the model

is unsure since all classes are equally likely) or not (one class is much more likely than

the others). Although, the uncertainty information is available for black-box models, it

is rarely laveraged for explanations. One issue about this value is that it suffers from a

lack of calibration, especially for deep models (Guo et al., 2017). In the case of safety

critical systems such as autonomous driving, the systems are lead to make decisions based

on the predictions. When the decision is uncertain, the system should be able to switch

to a safety fallback routine in order to reduce any risk. This issue is tackled by (Kumar

et al., 2019; Henne et al., 2020). In the latter, the authors benchmark several methods to

improve the estimation of uncertainty in Deep Neural Networks predictions.
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2.2 What is an explanation?

Explanations are the interface between opaque or black-box intelligent systems and the

human. Explanations showcase details and reasons on the causal relationship between the

input of the system and the predicted output. In the field of XAI, researchers have been

actively proposing ways to provide new information on AI-based systems’ behavior. There

are various solutions that apply in different circumstances.

According to the Cambridge Dictionnary, an explanation is “the details or reasons that

someone gives to make something clear or easy to understand”.

There are many ways to explain something to a person. Depending on the task, on

the context, on the data, on the interlocutor, the explanation should vary. We present in

this section four different ways to explain in the context of Machine Learning. We first

describe abduction-based explanations which is a central notion of this thesis.

Abductive explanations Abductive, or abduction-based, explanations, are answers to

the ‘Why was x classified as c1?’ question. Abduction-based often search for the sufficient

characteristic of an instance to be classified a certain way. Abduction-based explanations

are the base of rule-based explanations as they can be directly translated into them. For

example, if a sufficient characteristic to be granted a loan by an AI-based loan decision

making system is ‘not having a loan’ and ‘earning $50k per month’, then the corresponding

rule would be ‘if you do not have a loan and your salary is ≥ $50k, then the loan is granted.

Moreover, abductive explanations are constructed to have a minimal set of requirements

to imply a prediction. (Ignatiev et al., 2018) studies the construction of such explanations.

In (Ignatiev et al., 2019), the same author explores good properties of such rules and finds

relationships with contrastive explanations.

Contrastive explanations Contrastive or counterfactual explanations aim to provide

insight into why a model made a particular prediction by presenting an alternative scenario.

These type of explanation has been actively motivated by Miller (2018) who extensively

studied the literature in social sciences and philosophy to decide what is a good explanation

for a human. The main take from social science is that good explanations for humans are

contrastive. A person often wants to understand specific cases and their boundaries. The

person will often ask ‘Why was c1 predicted rather than c2?’. For instance, in credit scoring,

a counterfactual explanation may indicate the changes in income or credit history required

for an applicant to be approved. If a loan application is denied, a contrastive explanation

might suggest that the application would have been approved if the applicant’s income

were $10,000 higher. In (Wachter et al., 2017), the authors propose a counterfactual based

explanation fonction and study how the proposition aligns with the GDPR’s guidelines.
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Figure 2.3: The state diagram (graph) for a turnstile, whose nodes represent states and
edges represent transitions.

Feature importance explanations Feature importance explanations focus on iden-

tifying the most influential features or variables that contributed to a model’s decision.

These explanations are valuable for understanding which factors had the most significant

impact on a prediction. Feature importance is an interesting take in image classification

where pixels alone do not have a particular meaning but together provide meaningful

information. With feature importance, it is possible to showcase the importance of groups

of features to show what part of an image was important for the classifer. This has been

proven useful in model debugging. For example, (Ribeiro et al., 2016) found a bias in

the training data with the example of a husky classified as a wolf because of the snowy

background. Another example is in NLP, attention-based explanations show which words

of a text are most important for the task. Feature importance can be measured using

various techniques, such as permutation importance (feature’s values of an instance are

permutated to measure the difference of output), SHAP values (Lundberg and Lee, 2017)

(explained in section 2.3.2).

Graph-based explanations Graph-based explanations leverage graphical representa-

tions to illustrate relationships and dependencies within a model. These explanations

are particularly valuable when dealing with structured data or models with complex

interactions. Graph-based explanations can provide insights into how features or entities

are connected and influence each other. (Zhang et al., 2018) evaluates knowledge hierarchy

in Convolutional Neural Networks by leveraging graphs. Graph are a good tool to image

interactions between several agents. It is a good representative tool that is used in many

other domains such as engineering (e.g. state graphs Figure 2.3), social sciences, economics

etc.

2.3 Explanation functions

In this section, we present explainability techniques. We begin with two intrinsically

interpretable ML models that are relevant to our scope. They are interesting because they

are self-explainable and they can be used as proxy models to explain larger ones such as
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in LIME. The goal is to see for each model how it is interpreted and what explanations we

can extract from them. Then, we present 3 model-agnostic explanation methods: LIME,

Anchors and SHAP. For each method, we describe how the information is extracted from

the black-box model, what kind of explanation are provided and their locality and finally,

what are the guarantees for explanations.

2.3.1 Intrinsically interpretable models

Logistic regression Logistic regression is a classification model based on linear regression

model. A linear regression model linearly combines the features which are weighted.

The Mathematical formula is as follows. Let f the linear regression model, p the

number of features, x = (x0, ..., xp) an instance of the regression problem.

f(x) = ω0 +

j=1∑
p

ωjxj (2.1)

The training of this models consists in finding the weights that will minimize the

error between the prediction and the ground-truth labels. The interpretation of a linear

Regression model is very simple. Any feature xj participates to the prediction according

to its corresponding weight ωj. Moreover, the features are not dependant to each other.

The logistic regression models leverages the regression model to determine the proba-

bility for an instance to belong to the positive class. First, the linear function separating

the two classes is the same as the linear regression model. Then, the sigmoid function is

applied to determine the probability.

P (y = +1|x = x) =
1

1 + exp(−f(x))
(2.2)

The explanation resides in the hyperplane separating the data. This hyperplane is

defined by f(x) it is thus as simple to interpret than the linear regression.

Logistic regression is a good model to classify linearly separable data, but performs

poorly otherwise. In this sense, it can still be an interesting choice when the hypothesis of

the linearity of the data is reasonable. In this case, one can benefit from its efficiency and

transparency.

Decision Trees Decision trees are popular for their simplicity and interpretability and

have the advantage of capturing non-linear relationships in the data. The training of tree

models consists in separating the data into subsets according to discriminant features.

The goal at each stage is to find the cutoff value for this feature that best separates the

data according to their labels. In the tree structure, the prediction is leaves represent the

class of the instance and the intern nodes are conjunctions of features that lead to a label.
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X f1 f2 label
I1 0 0 c1
I2 0 1 c2
I3 1 0 c3
I4 1 1 c3

f1

c3f2

c2c1

f2 = 0 f2 = 1

f1 = 0 f1 = 1

Figure 2.4: The decision tree classifier for dataset X

A user can simply read the tree from the root and follow the branches corresponding to

the predicted input in order to read the prediction. The most common learning process

for decision trees is called top-down induction of decision trees (TDIDT). It is based on

appliying recursively the splitting of the learning dataset. Each set of data represents

a node and a rule is used to split the data into two subsets, constituting the successor

children. When all the instances in a set have the same label, the recursion is stopped.

Figure 2.4 shows a toy example of a decision tree classifier fit to predict the labels

of instances from X . From this tree, it is very simple to extract rule conjunctions to

explain the classification of instances. For example, we can give the following reason for

the classification of I1: IF f1 = 0 AND f2 = 0 THEN Salary <= 50K. To explain the

decision of I3 and I4, we can give this explanation: IF f1 = 1 THEN Salary <= 50K.

There also exists techniques that use multiple trees such as Boosted trees or Bootstrap

aggregated decision trees (random forests). They are called ensemble methods. Although

these methods can show great results, the size of the models can make the interpretation

more dificult.

2.3.2 Model-agnostic explainers

Model-agnostic explainers generally aim to globally mimic the behavior of a larger model

or a function that approximate more specific aspects of the large model. A model aiming

to mimic a large model while remaining interpretable is called a surrogate model or a

proxy. There are two steps for these models: the process of training the simple model as

accurately as possible with respect to the original model and then the task of explaining

its own prediction.

LIME: LIME (Local Interpretable Model-Agnostic Explanations) is a popular method

for explaining the predictions of machine learning models. It was introduced by Marco

Tulio Ribeiro, Sameer Singh, and Carlos Guestrin in (Ribeiro et al., 2016). LIME is a

model-agnostic explanation method on individual predictions.

In this analysis, we provide a detailed explanation of LIME, its explanation function,

and the guarantees it offers, as well as highlight some of its pros and cons based on other
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studies.

LIME provides explanations by approximating the model’s behavior in the local

neighborhood of a specific data point. Here’s how it works:

1. Selecting an Instance: LIME starts by selecting a data instance for which you want

an explanation. They define x ∈ Rd the original representation of an instance to be

explained. Then, an interpretable representation of x is also defined x′ ∈ {0, 1}d′

(e.g. superpixels or presence of words.)

2. The goal is to explain f , f : Rd → R. To do this, LIME creates g ∈ G, g : {0, 1}d′ →
R or [0, 1] and G is the set of potentially interpretable models (linear models, decision

trees etc.) and Ω(g) is the complexity of the interpretable model. It is arbitrarily

defined.

3. To create this set of interpretable models, LIME generates a dataset of perturbed

versions of x by making perturbations based on a proximity metricπx. πx represents

the locality around x and πx(z) is the proximity measure between z and x.

4. The perturbed dataset is used to probe the black-box classifer and records the

outputs. The recordings are transformed to the interpretable representation and

then used to fit interpretable surrogate models in the interpretable representation.

In the article, the authors chose sparse linear models as interpretable models.

5. The surrogate model and explanation ξ(x) is the solution to the optimisation problem:

ξ(x) = argming∈G L(f, g, πx) + Ω(g)

L is a measure of the fidelity of g to f in this example, the authors use the square

loss function weighted by the proximity function. We note that ξ(x) ∈ G.

6. Finally, LIME provides explanations based on the interpretable model’s coefficients.

It identifies which features had the most significant influence on the prediction and

quantifies their impact.

LIME offers several advantages but also some shortcomings. Firstly, LIME provides

local explanations to individual predictions. The methods explicitly optimizes fidelity based

on the L function and interpretability with Ω. To a certain extent, the method ensures that

the explanation is locally faithful to the black-box model’s behavior around the selected

instance. This means that the explanation should accurately reflect how the black-box

model behaves for similar data points in the neighborhood. This fidelity guarantee is

however limited by two aspects. The difference between the actual representation and

interpretable representation of inputs in the model is a first hindrance to fidelity to the
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original model. The second aspect is in the definition of the proximity measure π. (Zhang

et al., 2019) showed that LIME presents several sources of uncertainty. Moreover, since

LIME doesn’t provide confidence intervals or uncertainty estimates for its explanations, it

is difficult to measure the extent of the validity of an explanation and if similar data is

also covered by the explanation.

Finally, (Sokol and Flach, 2020) perform a complete analysis based on their own

taxonomy of desiderata. They conclude that LIME’s interpretable model, being a simple

and transparent one, ensures that the explanation itself is easy to understand and validate.

Moreover, LIME’s explanations may vary based on the choice of perturbed instances and

their distribution. Different perturbation strategies can lead to different explanations.

These observations concern two desired properties of explanation techniques, respectively,

transparency and robbustness. They are detailed later in section 2.4. The quality of LIME

explanations can depend on user-defined parameters, such as the number of perturbed

instances or the choice of the type of interpretable model.

In summary, LIME is a powerful tool for explaining individual predictions of machine

learning models, offering local fidelity and interpretability. However, its sensitivity to

perturbations and potential subjectivity in parameter choices are aspects to consider when

using LIME. Researchers and practitioners can combine LIME with other explainability

techniques to gain a better understanding of model behavior. (Cian et al., 2020) use

GradCAM and LIME to explain predictions of a Convolutional Neural Network in a

classification task. They conclude that using both methods can yield complementary

insights. Simulatability evaluates if the explanation allow humans to predict the model’s

behavior in new situations (see section 2.4). This property was evaluated in a human

centered test in (Hase and Bansal, 2020).

Anchors: Anchors short for ”High-Precision Model-Agnostic Explanations” (Ribeiro

et al., 2018) is designed to offer precise and understandable explanations for individual

predictions of machine learning models. It shares similarities with LIME but focuses on

finding a minimal set of conditions (anchors) that are both sufficient and necessary for a

particular prediction.

Suppose we want to explain the prediction of a classifier f on an instance x. Firstly,

the authors define rules. Rules are sets of conditions A = {predicate1, ..., predicaten} on

feature values that anchor the prediction. If the predicates are true for an input x, then

A(x) = 1. Secondly, D§ is distribution of perturbations from the explained instance x.

Elements of D§, z, are derived from the rule and in the vicinity of x. A rule A becomes an

anchor if all z ∈ D§(z|A) (perturbed instances that verify A have the same prediction as x.

To compute anchors, the framework introduces two important metrics: Precision and

Coverage. Precision represents the likelihood that perturbed instances z that satisfy the
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rule A are predicted as the same class as the explained instance x. Equation 2.3 is the

formal definition of the Precision metric.

prec(A) = EDx(z|A)[1f(z)=f(x)] (2.3)

Since it is intractable to compute the precision exactly, the authors chose a statistical

approach. For the rule to become an anchor, the anchor has to satisfy a precision threshold

with high probability. The coverage of an anchor A is the probability that A applies to a

sample in D§. The formal definition is given in Equation 2.4

cov(A) = EDx(z)[A(z)] (2.4)

The construction of anchors is made incrementally by starting from an empty rule and

adding predicates. When there are enough predicates to satisfy the precision constraint,

the best anchor is found. The coverage is naturally maximised since the anchor is as short

as possible. A second, less greedy approach is proposed in the paper where candidate rules

are searched using KL-LUCB, an instance of multi-armed bandit exploration problem

(Kaufmann and Kalyanakrishnan, 2013). In this version, a set of anchors that satisfy

highest precision are collected and the one with the best coverage is returned.

Anchors is a very popular explanation method. It offers sever important advantages:

• It is model agnostic: Anchors is tailored to be used on any classifier.

• Anchors offers high precision explanation by finding minimal sets of conditions that

accurately capture the decision boundaries of the black-box model.

• Anchors provides explanations that are both sufficient (guaranteeing correctness)

and necessary (minimal) for the prediction. This ensures that the explanation locally

reflects the true behavior of the model.

• The anchor conditions are interpretable and can be presented as simple rules, making

them understandable to users.

On the other hand, the authors affirm that Anchors can be used to globally explain

the model thanks to an optimized set of anchors. This statement should be taken with a

pinch of salt. In Example 1, we see that Anchors can sometimes yield incoherent results.

Example 1 (Incoherent anchor explanations) Anchors was used to explain two in-

stances x1 and x2.

• The anchor explanation A1 returned for x1 with a precision of 1 is

if Capital Loss = 2 AND Marital Status = Married-civ-spouse AND Hours per

week > 45.00 AND 28.00 < Age <= 37.00 THEN Salary <= 50K
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• The anchor explanation A2, yielded for x2, with a precision of 1 states that

textbfif Capital Loss = 2 AND Education = Bachelors AND Sex = Male AND

Race = White AND Workclass = undefined AND Occupation = Machine-op-

inspct AND Relationship = Not-in-family AND 28.00 < Age <= 37.00 THEN

Salary>50K

The A1 rule has constraints on Capital Loss, Marital Status, Hours per week and Age

features while A2 has the same constraint on Capital Loss than A1 and other constraints

on different features. The example shows two anchor explanations with opposite conclusion

that have a perfect precision but could, in theory, concern a single instance.

This issue of “Potentially conflicting anchors” was raised by the authors in (Ribeiro

et al., 2018) along with other limitations such as overly specific anchors or the limits

of perturbations. Evaluations of the Anchors method seem scarce. (Hase and Bansal,

2020) evaluated Anchors among LIME and other methods to evaluate their simulatability.

The study evaluating the limits of Anchors is missing although Ribeiro et al. themselves

acknowledge limitations of the methods such as possibly overly specific anchors when the

instance is near a decision boundary, or possibly conflicting anchors.

In summary, Anchors is a model-agnostic method that aims to provide high-precision

and interpretable explanations for individual predictions. Its guarantees of sufficiency and

necessity make it a valuable tool for understanding complex machine learning models.

However, its performance may vary depending on the specific use case and dataset, as well

as lacking in guarantees for explanations.

SHAP: The SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) explana-

tion function is a cutting-edge technique in machine learning interpretability that builds

upon previous work in the field of cooperative game theory and Shapley values. The

concept of Shapley values, initially introduced by (Shapley, 1953), was designed to allocate

the contribution of each player in a cooperative game. In the context of machine learning,

SHAP values are applied to explain individual predictions made by complex models, such

as black-box models like deep neural networks or ensemble methods.

SHAP values aim to provide a clear and intuitive understanding of how each feature

contributes to a specific prediction. They take into account all possible feature combinations

and assess the impact of each feature’s inclusion or exclusion in these combinations. This

exhaustive evaluation enables SHAP values to offer a comprehensive view of feature

importance and interactions.

The theoretical Shapley Value Estimation consists in estimating an importance value

to each feature by comparing results of models trained with and without this feature. The

differences in output of these models is computed for all feature S ⊆ F with F the set
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of all features. This process is extremely costly. In order to tackle this issue, (Lundberg

and Lee, 2017) proposes SHAP to locally approximate the Shapley values respecting

three important properties. The idea is based on the use of a surrogate model called the

explanation model g that approximates the original prediction model f .

• Local accuracy: this property requires that the explanation mode g matches the

predictions of the orignal model f .

• Missingness: If a feature’s value is equal to zero across the whole dataset, then the

attributed impact on this feature should be nil as well.

• Consistency: consistency guarantees that the feature impact value cannot decrease

if it contributes positively to inputs’ prediction

To compute SHAP values, several methods have been developed in accordance with

the Local accuracy, Missingness and Consistency propoerties.TreeSHAP (Lundberg et al.,

2020) and KernelSHAP (Lundberg and Lee, 2017) being among the most widely used.

TreeSHAP is tailored for tree-based models like decision trees and random forests, while

KernelSHAP is applicable to any model by employing a kernel approximation technique.

SHAP and LIME have been studied together to evaluate their performances. (Gramegna

and Giudici, 2021) makes a comparative study between LIME and SHAP in the context of

credit risk estimation. They report that SHAP is showed better results to assign importance

to features used by a black-box prediction model. In (Vega Garćıa and Aznarte, 2020)

SHAP is successfully used to interpret the decision of an opaque ML model in the context

of NO2 pollution forecasting.

In summary, SHAP values represent a significant advancement in machine learning

interpretability, building upon the foundation of cooperative game theory and Shapley

values. They provide a nuanced understanding of feature importance and interactions, with

well-defined guarantees of consistency, additivity, and fairness, making them a valuable

tool for model explanation and decision-making transparency.

2.4 Explanation Desiderata

Explanations are the interface between the AI systems and humans. It is the final

product of the explanation function. As any product, it should be considered with its own

certifications, ergonomy, and context of use. First of all, it is important to provide an

advised context of use. Whether the explanation is meant to provide an intuition or a very

faithful representation of the model’s behavior, if the model should be used in sensitive

environment such as autonomous driving, jurisdiction or it is made for entertainment or

business purposes. Unfortunately, explanations tend to lack clarity on the guarantees their
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results may provide. Certifications that explanation function provide should always be

clearly discussed.

When using an explanation system, users can doubt the degree of truth in the in-

formation given by the explanation. They can wonder “Does this explanation reflects

the actual behavior of the ML model?” or ”Is this information true all the time, in any

situation?”. Also, if the context is a model used by non-expert users, it is important to

provide a flexible explanation function that outputs simple explanations. On the other

hand, if the context is more precise, it would not be required to provide simple explanation,

expert would probably prefer more complex but more precise explanations. These notions

around Explainability are examples of desired properties, or desiderata. The literature

of XAI being very abundant, the definitions of each concept are numerous and not always

aligned. In this section, we present a list of these desiderata and try to gather similar

concepts under an umbrella term while expliciting the nuances between them. In a second

phase, we present applied metrics that can be used to measure and compare the quality of

explanations.

2.4.1 List of Desiderata

In this subsection, we develop a list of desiderata for the quality of explanation systems

and explanations themselves. Desiderata are desired properties or metrics that should

be expected from stakeholders for an explanation system. Nevertheless, we will see that

it is quite difficult to develop standards. Indeed, most XAI researchers have influences

of other fields of research. This has the effect of creating a very rich set of points of

view from which stems a wide variety of notions and concepts which themselves can have

multiple definitions with small variations. It is a fact that many research fields such as

social sciences, Psychology, Mathematics Philosophy and more have tackled the issue of

explanability and have developed their own desiderata. The objective here is to describe

an overview of the desired characteristics for explanation methods as well as defining them

and gathering the ones that are similar. For that, we summarize most notions presented

in the this subsection. In Table 2.1, we regroup similar concepts under a representative

concept in order to disambiguate the terms. Moreover, we mention to what object the

desiderata predicates to.

In (Doshi-Velez and Kim, 2017), the authors lay out a taxonomy of evaluation ap-

proaches for explainability and interpertability. They divide the approaches into three

categories: human-grounded, application-grounded and functionally-grounded. In this

section, we provide a description and present relevant metrics for each category and we

focus on functionally-grounded metrics.

Firstly, human-grounded evaluation is intended to qualify the degree of appreciation

of an explanation by a human user. In this category, we can find two desired characteristics
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Concept predicates to is similar to
Interpretability Models Understandability Simulatability Intelligibility Effectiveness

Decomposability Transparency Predictability
Robustness Models, Explanators Stability Consistency
Portability Explanators Transferability Translucency
Faithfulness Explanators, Explanations Soundness Causality
Simplicity Explanations Complexity Selection Conciseness
Informativeness Explanations Relevancy Interestingness Triviality

Table 2.1: Disambiguation table for XAI desiderata

for explanations. Interpretability, is a notion that we presented previously and that is one

of the most present desiderata in literature. In (Doshi-Velez and Kim, 2017; Lipton, 2017;

Hase and Bansal, 2020), it is mentioned under the name of simulatability or Predictability in

(Vilone and Longo, 2020). This concept involves the ability of the user to predict the model’s

outputs thanks to the model’s interpretability or explanations. It is an evaluation metric

used in practice in (Ribeiro et al., 2016). The concepts of Understandability (Vilone and

Longo, 2020; Barredo Arrieta et al., 2020), Intelligibility, (Vilone and Longo, 2020; Bellotti

and Edwards, 2001; Kulesza et al., 2013), comprehensibility (Fel and Vigouroux, 2020;

Barredo Arrieta et al., 2020), Effectiveness (Schwalbe and Finzel, 2023) or transparency

(Barredo Arrieta et al., 2020; Lipton, 2017) seem to be used to characterise intrinsic

interpretability of ML models. It seems simulatability is an informative tool to evaluate

a ML model. This metric’s interest depends on the quality of the experimentation and

the choices of the authors, thus, it should be defined with a strict protocol (e.g. Should

users know the model’s accuracy? Should the users predict the same amount of correct

and incorrect outputs?).

Another important concept related to human users is simplicity. Simplicity (Lombrozo,

2007; Vilone and Longo, 2020) is also referred to as complexity in (Ribeiro et al., 2016).

As this metric is based on human appreciation, the metric is usually decided arbitrarily.

For example, in the latter article, the complexity of a decision tree can be its depth, or the

number of elements in a rule. We detail these types of explanation in section 2.2. Simplicity

characterizes explanations, and more precisely, the load of information contained in them.

The knowledge advanced by an explanation should not overload the user’s mind and be

difficult to understand. Selection is a close concept proposed in (Vilone and Longo, 2020)

and add an idea of sufficiency in explanations to avoid bringing irrelevant information that

blurs the explanation.

Application-grounded evaluation focuses on explainers applied to specific tasks.

Depending on the context or task, the stakeholders can have different expectations for

explanations. This is a characteristic that depends on the task or stakes of the problem.

The metrics can evaluate the ability of explanation to identify errors cases, bias, or unknown
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relationships between features. Informativeness is a redundant notion for evaluation of

explanations. It describes the usefulness of information brought in play by the explanation

to the users (Vilone and Longo, 2020). In the same article, the author also defines a

similar concept, Interestingness which involves a degree of novelty in the explanations.

This notion falls under this category because the quality of the information raised by the

explanations should be judged by domain experts and for well defined tasks.

Functionally-grounded Evaluation is our main focus in this thesis. The desired

characteristics of this category are more abstract and can apply to most explainers.

Portability refers to the range of models that an explanator can explain. In subsec-

tion 2.0.1, we introduced this concept with model-agnostic and model-specific explainers.

If an explanator considers the ML model as a black-box, it can explain all similar models

as long as the task and the feature space remain the same. On the contrary, model-specific

models have a lower portability since they can only explain one type of model. This char-

acteristic is also called transferability (Vilone and Longo, 2020) or transluency (Schwalbe

and Finzel, 2023).

Faithfulness, according to (Schwalbe and Finzel, 2023; Jacovi and Goldberg, 2020;

Vilone and Longo, 2020), “measures how accurately the behavior of the explanator conforms

with that of the actual object of explanation.” Depending on the context, the definition

can slightly vary to adapt to the method. For example, (Ribeiro et al., 2016) considers

the accuracy only in the vicinity of a single instance, the one to explain. This notion also

comes with its similar concepts or synonyms: soundness (Sokol and Flach, 2020; Kulesza

et al., 2015; Vilone and Longo, 2020) or causality (Vilone and Longo, 2020). As models

are more complex (i.e. have a larger feature space) or deeper structure, the explanations

must concern more features implying a trade-off with simplicity.

Robustness is desired for ML models as well as their explainers. According to (Doshi-

Velez and Kim, 2017), “robustness ascertains whether algorithms reach certain levels of

performance in the face of parameter or input variation”. In AI-based systems should

predict similar outputs for the same inputs with small perturbations. This is true for

instances that are expected to be far from decision boundaries. In the literature, robustness

can be tested on classifiers by searching adversarial examples which are instances with

minimal alteration that get classified differently than the original instance. Other papers

such as (Jacovi and Goldberg, 2020; Alvarez-Melis and Jaakkola, 2018; Wolf et al., 2020)

define this concept in the same way. Other words such as Stability (Fel and Vigouroux,

2020; Molnar, 2022) and Consistency are also used to define this notion.

For a more diverse list of desiderata and notions, the reader can refer to (Vilone and

Longo, 2020; Schwalbe and Finzel, 2023). These two article make a very extensive review

of the different concepts and notions around XAI. We decided to narrow the scope of this

review to the most recurrent terms in the literature.
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2.4.2 Quality assessment: Metrics

In the previous section, we presented a list of desired characteristics for explanations.

In order to evaluate how an explanation or an explanator fulfills these desiderata, it is

important to define metrics. With a clear metric, one can evaluate a characteristics of its

explanation or explanator as well as compare it to other methods. However, it is difficult

to define general metrics to evaluate and compare different explanations. The techniques

to generate explanation are significantly different and often focus on different goals. This

explains why few comparative studies are made to assess the existing solutions. In this

section, we review a set of metrics that researchers use in their explanation functions to

provide a certain degree of guarantee on aspects of the explanation. Most explanators

aim at providing human readable explanations. These explanations can be assessed in

human-centered experiments. Nevertheless, these studies would better fit in social science

or psychological study. Thus, we focus on quantitative measures and what they represent.

We show that these metrics are related to some desiderata.

Simplicity Although simplicity is a human-grounded concept, the coverage metric is

able to quantify it to some extent. Evaluation of coverage involves assessing a quantity of

instances concerned by an explanation. It is usually used for rule-based explanations. A

good coverage implies several advantages for simplicity. Firstly, to have rules with better

coverage allow to cover a bigger part of the input space. Moreover, a rule that has less

conditions is more likely to be useful for other similar inputs. Thus, it is also a indicator

of simulatability. Since Anchors (Ribeiro et al., 2018) provides rule-based explanations,

coverage is used as an evaluation metric. Again, in this situation, the rules are local, so

the coverage is also defined locally. The exact measures are given in section 2.3.2 along

with the underlying context.

Faithfulness measures Faithfulness is an essential property of explanation models.

It guarantees that the explanation is fit to represent the underlying model and, as a

consequence, can be trusted.

In the case of surrogate models for explanation such as LIME (Ribeiro et al., 2016),

fidelity is the objective function to be optimized. In this solution, the local fidelity is

the mean square error between the explanandum and the surrogate model. This error

is computed on a local distribution function and weighted by a distance function. More

details are given in section 2.3.2.

In the case of rule-based explanations we also find an quantitative measure of Fidelity.

Precision (Ribeiro et al., 2018) is a measure of the degree of correctness of a rule-based

explanation. It is the probability that the rule correctly represent the model’s behavior

on a set of input data. A rule that never agree with the model’s prediction should have
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precision of zero. In the bank loan example, suppose a rule states that if the customer

has salary lower to 20k per year then the loan is accepted. This rule has a low precision.

Indeed, only rare cases such as high capital gain, could make the rule work.

It is important to note that the set of input has to be well defined to assess of the

fidelity is global or local. In Ribeiro et al.’s work, the fidelity measure is always local. For

LIME, the weighting distance function serves this purpose and in Anchors, the precision is

calculated on the vicinity distribution of the explained instance.

Consistency and Stability Consistency or stability are blurry terms. They are

often used interchangeably or to define different notions. According to (Molnar, 2022),

consistency means to express how explanations for the same instance change for different

models that have been trained on the same task. It can also mean how similar instances

should be explained similarly. The consensus for this definition is the notion of robustness.

A widely means used to measure this metric is the Lipschitz continuity (Definition 1).

This is the case for (Agarwal et al., 2021), an analysis of the robustness of two explanation

methods, including LIME.

Definition 1 A function h,Rd1 7→ Rd2 for d1, d2 ∈ N is L-Lipschitz if there exists a

universal constant L ∈ R>0, such that ∥h(x) − h(x′)∥2 ≤ L∥x− x′∥2,∀x, x′ ∈ Rd1.

Finally there is also another definition: how the same explanation function can deliver

different explanations on the same instance. This is the case with LIME (Ribeiro et al.,

2016) which is known to deliver different explanations for the same instance. This issue

was tackled in (Shankaranarayana and Runje, 2019) and (Zafar and Khan, 2019). In

the former study, the stability is measured with the Jaccard coefficient. This coefficient

Equation 2.5 measures the difference of two sets of data. In their case, they are sets of

explanations given by the explanator.

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(2.5)

In the latter, the authors use the standard deviation of the weights of the surrogate

model across multiple models generated by LIME.

Complexity The complexity of an explanation depends on the form of the explanation.

There is not a single metric to cover all of them. The metrics are often straightforward,

such as the length of textual explanations or the number of features included. In (Ribeiro

et al., 2016), surrogate models are used to approximate the underlying model. Thus, they

define a complexity term Ω in the objective function to be minimized. Some examples are

given for decision tree: the depth of the tree or linear models: the number of non zero

features.
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2.5 Conclusion

In this state of the art, we focused on all possible aspects of explainability that relate

to classifiers and black-box approaches. We saw that explanation methods are abundant

and study all aspects of ML models. The amount of studies is also an impediment to the

development of unified evaluation frameworks for ML models, and for the explanators

themselves. A popular approach for explaining ML models is the generation of local

explanations and considering the model as a black-box. In our research, we focus on these

assumptions to build a framework that generates abductive explanations using an arbitrary

distribution. Additionally, we observed that explanation methods can be evaluated on

simulatability and simplicity in human centered evaluations like in (Ribeiro et al., 2016;

Hase and Bansal, 2020), compared to each other (Gramegna and Giudici, 2021; Cian et al.,

2020), but that the formal explanation method evaluation studies are scarce. This is why

we put an emphasis on providing formal guarantees with our explanations.

We argue that using formal methods and deliver exact explanations is more important

than delivering simple statistical based explanations whose fidelity can be questioned. A

solution to tackle the issue of reasoning with incomplete information is Argumentation.

Argumentation provides a framework to evaluate objects called argument using a formally

defined structure between those arguments. The takeaways could be strong guarantees on

well defined explanations using incomplete information. Incomplete information is the base

problem that ML tries to solve by learning to predict unseen information. Argumentation

proposes several solution to tackle this issue that depend on the use cases, leaving room

for adaptation to different task, data, contexts etc.
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Chapter 3

Argumentation

In this chapter, we present argumentation. This presentation serves two purposes: to

establish the state of the art of argumentation and to give the reader an idea of why

argumentation can deliver interesting results in explaining AI models. In the previous

chapter, we observed that the high dimensional scale of ML models was a major issue for

building interpretable surrogate models. As our knowledge of models’ predictions on the

whole input space is incomplete, argumentation presents itself as a formal alternative to

decide which explanations to accept (Bench-Capon and Dunne, 2007).

3.1 What is argumentation?

Argumentation is a natural cognitive process we, as humans, use in our communications,

oral or written. Indeed, we use argumentation in order to support an idea, an action or a

decision. We regularly engage in argumentative practices when we react to arguments put

forward by others with the objective of influencing their point of view.

Before defining what argumentation is, let us start by presenting a short dialogue

originally proposed in (Sartor, 1994) between a journalist, John and Mary.

Example 2 (Argumentation in a dialogue between Mary and John)

Mary: Newspapers have no right to publish information I.

John: Why?

Mary: Because it is about X’s private life. (α1)

John: Information I is not private because X is a minister and any information

concerning ministers is public. (α2)

Mary: But X is no longer a minister since he resigned last month. (α3)
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John: You are right.

In this simple example showcasing a specimen of argumentation, Mary questions John’s

decision to “publish information I” by putting forward the two arguments α1 and α3 while

John justifies his disagreement with Mary by advancing the argument α2.

The example also highlights a relationship between the arguments that seem to be

attacking each others: α1 is attacked by α2 which, in turn, is attacked by α3.

In this example argumentation is presented as a reasoning process in which arguments

function is increase or decrease the acceptability of a given point of view. Mary advances

an affirmation. John asks the question why so Mary can explain her standpoint. In the

following statements, Mary and John build arguments to challenge the acceptability of

the original statement. At the end, John understands and accepts Mary’s statement.

Let us recall below a definition of argumentation given in (van Eemeren et al., 1996).

Argumentation is a verbal and social activity of reason aimed at increasing (or

decreasing) the acceptability of a controversial standpoint for the listener or reader,

by putting forward a constellation of propositions intended to justify (or refute) the

standpoint before a rational judge.

Let us analyze the above definition. Argumentation is a verbal activity, which is normally

conducted in an ordinary language (such as French). A speaker or a writer, engaged in

argumentation, uses words and sentences to state, to justify or to deny something.

Argumentation is a social activity since it is directed at other people. Of course,

the social nature of argumentation is most clearly evident in a discourse between two

or more interlocutors. All the same, even when people are conferring with themselves,

contemplating the pros and cons of their own ideas, their conduct is basically social.

Argumentation is an activity of reason since it indicates that the arguer has some

thoughts about the subject. Putting forward an argument means that the arguer attempts

at showing that a “rational” account can be given of his or her position on the matter. In

the short dialogue above, Mary has a reason behind her claim.

Argumentation always relates to a particular opinion, or standpoint, about a specific

subject. The nature of the standpoint can vary. It may be propositional standpoints, i.e.

things that are believed or known, like the case of Mary about publishing information I.

A standpoint can also be an action to try to perform, a goal to try to achieve, etc.
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The need for argumentation arises when opinions concerning the standpoint differ.

By itself, holding a standpoint is not enough to initiate argumentation. Arguing makes

sense only if there is a listener or reader who entertains doubts about an opinion or has a

diverging opinion. Argumentation starts from the presumption, right or wrong, that the

standpoint of the arguer is not immediately accepted, but controversial. In the previous

dialogue, argumentation starts when John disagrees with Mary’s claim.

The last issue in the definition of (van Eemeren et al., 1996) concerns the goal of

argumentation. Argumentation is intended to justify one’s standpoint, or to refute someone

else’s. In an argumentative justification of a standpoint one is attempting to defend the

standpoint by showing that it conveys an acceptable proposition; in an argumentative

refutation one attacks the standpoint by showing that the proposition is unacceptable

whereas the opposite, or contradictory, proposition is acceptable. Justifying or refuting a

standpoint by way of argumentation, as in advancing standpoints, proceeds by putting

forward respectively arguments pros (i.e. arguments in favor of the standpoint) and

arguments cons (i.e. arguments against the standpoint).

3.2 Argumentation process

Whatever the problem to solve is (e.g. decision making or object classification), argumen-

tation is seen as a three-steps process:

1. Constructing arguments in favor/against statements

2. Evaluating the acceptability of the arguments

3. Concluding

Generally speaking, an argument gives a reason for believing a statement, or choosing

an action. It has three main components: i) a support which is a set of premises, ii) a

conclusion, and iii) a link between the support and the conclusion.

In the dialogue between Mary and John Example 2, three arguments α1, α2 and α3

have been uttered. For instance, the support of α1 is “Information I is about X’s private

life” while its conclusion is “‘Newspapers have no right to publish information I”. It

is worth mentioning that an argument is not a proof meaning as it does not guarantee

the “validity” of its conclusion. We can make a parallel observation with model-agnostic

explanation functions. We saw that explanations given by LIME or Anchors had a limited

validity. The rules given as explanation have similarities with arguments: rule has a

set premises (or predicates) and a conclusion (the prediction). As we will show in the

subsequent section, the conclusions of α1 and α3 are valid at the end of the dialogue while
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the conclusion of α2 is not. We would like to leverage the same process to evaluate the

validity of explanations of ML models.

The second basic component of an argument framework is the notion of attack. The

idea is that arguments may be conflicting. In the above dialogue, for instance, it is clear

that argument α2 attacks α1 and that α3 attacks α1. It has been acknowledged in the

literature that an argument can be attacked by another argument for three main reasons:

Conclusion-Conclusion: The idea here is that the two arguments have contradictory

conclusions. This is exactly what happens between the two arguments β1 and β2

presented respectively by Tisias and Corax. According to the legend, Tisias was a

student of Corax. Corax would have agreed to teach his argumentation techniques to

Tisias, and to be paid according to the result of Tisias’s first lawsuit. If he won, the

deal stated that he should pay Corax for the lectures, otherwise, he would not pay

him. At the end of his studies, Tisias sued his Master Corax. The idea he supported

was he should not pay Corax. Tisias presented the following argument in favor of

not paying Corax:

β1: Tisias should not pay Corax since there are two situations: i) If Tisias

wins, then according to the judges he will not pay Corax. ii) If he loses, then

according to the deal he made with Corax, he will not pay as well.

β2: Tisias should pay Corax since: i) If Tisias wins, then according to his deal

with Corax, he should pay him. ii) If he loses, then according to the judges, he

should pay Corax as well.

The conclusion of β1 is “Tisias should not pay Corax” while the conclusion of β2 is

“Tisias should pay Corax”.

Conclusion-Support: An argument may also attack another argument if its conclusion

undermines a premise of the second argument. In the dialogue between Mary and

John, the conclusion of α2 conflicts with a premise used in the support of α1.

Conclusion-Link: An argument may challenge the link or the connection between the

premises and the conclusion of another argument. Let us consider the following

example borrowed from (Chesnevar and Simari, 2005).

δ1: Tweety flies because all the birds I have seen fly.

δ2: I have seen Opus, it is a bird and it does not fly.

The conclusion of the argument δ2 contradicts the link between the support of δ1,

i.e. “all the birds I have seen fly” and its conclusion “Tweety flies”.

48



Since arguments are conflicting, it is important to know which ones to rely on for

inferring conclusions or choosing actions. This amounts to evaluate the quality of the

different arguments. For instance, in the dialogue between Mary and John, one expects

to known at the end of the dialogue whether newspapers have or not right to publish

information I. For that purpose, the three arguments α1, α2 and α3 should be evaluated.

For that purpose, a plethora of methods, called semantics have been proposed in the

literature. They are toughly classified into three families: extension semantics, gradual

semantics and ranking semantics. Initiated in (Dung, 1995), extension semantics look for

sets of arguments (called extensions) that can be jointly accepted. Then, a dialectical status

is assigned to each argument according to their membership in the identified extensions.

Introduced in (Cayrol and Lagasquie-Schiex, 2005), gradual semantics focus on individual

arguments, and ascribe to each of them a value taken from an ordered scale representing

its strength. The third family, ranking semantics, has been proposed in (Amgoud and

Ben-Naim, 2013). Its semantics rank arguments from the strongest to the weakest ones.

In this thesis, we focus only on extension semantics.

In Dung’s argumentation framework, arguments are abstract and considered as atomic.

This setting allows the analysis to focus on the relationships of arguments with other

arguments and avoids lingering over argument quality or analysis. For XAI, it is a

good assumption to make explanations abstract and apply the framework to a wider

range of applications. For example, the abstraction of arguments fits the idea of model

agnostic explainer section 2.3 because it does not require specific formats for the arguments.

However, the reader can report to (Besnard and Hunter, 2008b) for an introduction on

logical argumentation. Logical argumentation is a sub-field of argumentation in which

arguments are defined with classical logic. It is one way to define the arguments and

identify the attacks and supports (steps 1 and 2) between them. We will see in chapter 4

how we manage to define arguments to serve our purposes.

When arguments and attack relations are defined, the structure of the arguments

themselves is no longer needed to find which arguments are the strongest or which ones

are acceptable. The rest of the process completely disregards the structure of arguments

and attacks.

The argumentation framework is at the center of the argumentation process. It is

composed of a set of arguments and a set of binary relations between these arguments.

Since the arguments are abstract objects, we do not use their structure or content to

evaluate. They are represented by nodes in the graph. The binary relations are represented

as the edges between nodes. They can be directed or not directed depending on the form

of attacks. Finally, we suppose that any graph topology can exist. Given a graph, the

analysis of the arguments is done with methods called semantics.
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3.3 Abstract argumentation framework

An argumentation framework is a set of arguments and a binary relation encoding attacks

among those arguments.

Definition 2 (Argumentation framework) An argumentation framework is a pair

AF = (A,R) where A is a set of arguments and R ⊆ A × A is an attack relation. For

α, β ∈ A, (α, β) ∈ R means that the argument α attacks the argument β.

It is worth mentioning that in (Dung, 1995), no indication is given about A and R, neither

on their origin nor on how they should be elicited. Moreover, the framework completely

abstracts from the application to which it can be applied.

Each argumentation framework can be represented by a directed graph whose nodes

are the arguments of A and arcs are the different attacks of R.

Definition 3 (Graph of an argumentation framework) The graph associated with

an argumentation framework AF = (A,R) is GAF=(A,R) = (V,X ), where V = A and X = R.

Let us consider the argumentation framework associated to the dialogue between Mary

and John.

Example 3 (Dialogue between Mary and John) The argumentation framework as-

sociated to the dialogue between Mary and John is the pair AF1 = (A,R) where A =

{α1, α2, α3} and R = {(α2, α1), (α3, α2)}. The graph associated with this framework is

depicted in the figure below.

α3 α2 α1

Figure 3.1: Graph of AF1

Let us now define the argumentation framework that captures the dialogue between Tisias

and his master Corax.

Example 4 (Dialogue between Tisias and Corax) The argumentation framework as-

sociated to the dialogue between Tisias and Corax is the pair AF2 = (A,R) where

A = {β1, β2} and R = {(β1, β2), (β2, β1)}. The graph associated with this framework

is depicted in the figure below.

Let us now recall the key notions of (indirect) attack and defence as proposed by (Dung,

1995).
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β1 β2

Figure 3.2: Graph of AF2

Definition 4 (Indirect attack - Indirect defense - Strict defense) Let AF = (A,R)

be an argumentation framework, α, β ∈ A, and B ⊆ A.

• β indirectly attacks α iff there exists a finite sequence of arguments α0, . . ., α2n+1

such that:

– α = α0 and β = α2n+1

– ∀i, 0 ≤ i ≤ 2n, (αi+1, αi) ∈ R.

• β indirectly defends α against the argument α iff there exists a finite sequence of

arguments α0, . . . , α2n such that:

– α = α0 and β = α2n

– ∀i, 0 ≤ i < 2n, (αi+1, αi) ∈ R.

In (Dung, 1995), different acceptability semantics have been proposed for evaluating

interacting arguments. The basic idea behind these semantics is the following: for a

rational agent, an argument is acceptable if he can defend this argument against all attacks

on it. All the arguments acceptable for a rational agent will be gathered in a so-called

extension. An extension must satisfy a consistency requirement and must defend all its

elements.

Definition 5 (Conflict-free, Defence) Let AF = (A,R) and B ⊆ A.

• B is conflict-free iff ∄ α, β ∈ B such that (α, β) ∈ R.

• B defends an argument α iff ∀β ∈ A, if (β, α) ∈ R, then ∃δ ∈ B such that (δ, β) ∈ R.

• B strictly defends α iff ∀β ∈ A such that (β, α) ∈ R, ∃δ ∈ B such that (δ, β) ∈ R
and (β, δ) /∈ R.

The fundamental semantics in (Dung, 1995) is the one that features admissible extensions.

The other semantics, like preferred and stable, are based on it.

Definition 6 (Acceptability semantics (Dung, 1995)) Let AF = (A,R) and B be a

conflict-free set of arguments, and let F : 2A 7→ 2A be a function such that F(B) =

{α | B defends α}.

• B is a naive extension iff it is maximal (wrt set-⊆).
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• B is an admissible extension iff B ⊆ F(B).

• B is a complete extension iff B = F(B).

• B is a grounded extension iff it is the minimal (wrt set-⊆) complete extension.

• B is a preferred extension iff it is a maximal (wrt set-⊆) complete extension.

• B is a stable extension iff it is a preferred extension that attacks any argument in

A \ B.

Let σx(AF ) be the set of all extensions of AF under the semantics x where x ∈ {a, c, g, p, s}.

Notations a, c, g, p, s respectively stand for ‘admissible’, ‘complete’, ‘grounded’, ‘preferred’

and ‘stable’.

Let us illustrate the previous definition on the two argumentation frameworks AF1 and

AF2.

Example 5 (Examples 3 and 4 cont.) The argumentation framework AF1 has three

admissible extensions: E1 = ∅, E2 = {α3} and E3 = {α1, α3}. Note that the set {α2} is

conflict-free but is not an admissible extension since it does not defend the argument α2

against α3. It can also be checked that the set E2 is not a complete extension while E3 is.

The set E3 is the only preferred extension of the framework AF1. It is also the grounded

extension and the only stable extension of that framework.

The argumentation framework AF2 has three admissible extensions: E1 = ∅, E2 = {β1}
and E3 = {β2}. The sets E2 and E3 are both preferred and stable. Note that E1 is the

grounded extension of AF2.

The following property summarizes the properties of the previous acceptability seman-

tics for a given argumentation framework.

Property 1 Dung (1995)

Let AF = (A,R) be an argumentation framework.

• Each admissible extension is included in a preferred extension.

• The grounded extension is included in each preferred extension.

• Each stable extension is a preferred one, but the reverse is not true.

• The framework AF = (A,R) has at least one preferred extension, always a unique

grounded extension, and maybe zero or several stable extensions.

• When R is finite, the grounded extension is exactly the set
⋃
F i≥1(∅).
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In (Amgoud and Cayrol, 2002b), Amgoud and Cayrol have shown that the grounded

extension of a finite argumentation framework contains all the arguments that are not

attacked, and also the arguments which are defended directly or indirectly by non-attacked

arguments. Thus when R is finite, the grounded extension is defined as follows:
⋃
F i≥1(∅)

= CR ∪ [
⋃

F i≥1(CR)] where CR = {α ∈ A|∄β ∈ A s.t. (β, α) ∈ R}. Moreover, the

grounded extension strictly defends all its elements.

Proposition 1 Amgoud and Cayrol (2002b)

Let AF = (A,R) be an argumentation framework with R being finite. Let GE be the grounded

extension of AF.

• For all α ∈ GE, GE strictly defends α.

• For all α ∈ GE, α is indirectly defended by arguments of CR against all its attackers.

Note that an argument that is indirectly defended against all its attackers by arguments

of CR is not necessarily acceptable (i.e. does not necessarily belong to the grounded

extension of the argumentation framework). Let us consider the following example:

Example 6 Let AF3 = (A,R) be an argumentation framework such that A = {α0, α1,

α2, α3, α4, α5, α6, α7}, and R is as depicted in the figure below.

α0

α1

α2

α3

α4

α5

α6α7

Figure 3.3: Graph of AF3

It can be checked that CR = {α4, α5, α7} and that the grounded extension of AF3 is

GE = {α1, α4, α5, α7}. Note that the argument α0 is attacked by two arguments α1 and α2.

It is indirectly defended by α7 against α1, and by α4 against α2. The two arguments α4

and α7 are both in CR, while α0 is not in the set GE because it is indirectly attacked by α5

which is in CR.

Stable semantics has been defined in (Dung, 1995) for capturing some results in

nonmonotonic logics literature (e.g. (Gelfond and Lifschitz, 1990; Reiter, 1980)). The idea

behind this semantics is that a set of arguments is “acceptable” if it attacks any argument
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that is outside the set. This condition makes stable semantics too demanding and the

existence of stable extensions not guaranteed for every argumentation framework. Indeed,

it may be the case that an argumentation framework has no stable extensions as shown in

the following example.

Example 7 Let AF4 = (A,R) be an argumentation framework where A = {β1, β2, β3}.

Let also the attack relation be as depicted in the figure below.

β1

β2 β3

Figure 3.4: Graph of AF4

The argumentation framework AF4 has no stable extension while it has a preferred

extension which is the empty set.

Preferred semantics has been introduced in order to palliate the limits of stable one.

As stated in Property 1, each argumentation framework has preferred extensions. The

latter are maximal sets of arguments that can defend themselves against any attack. The

following example shows that an argumentation framework may have preferred extensions

that are not stable.

Example 8 Let AF5 = (A,R) be an argumentation framework where A = {α1, α2, α3,

α4, α5, α6, α7} and the attack relation R is as depicted in the figure below.

α5

α6 α7

α1 α2 α3 α4

Figure 3.5: Graph of AF5

The framework AF5 has two preferred extensions: E1 = {α1, α3, α7} and E2 = {α2, α4}. It

can be checked that the set E1 is a stable extension while E2 is not stable since it does not

attack the arguments α5, α6 and α7.
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When the preferred and the stable extensions of an argumentation framework coincide,

that framework is said to be coherent.

Definition 7 (Argumentation Framework coherence) Let AF = (A,R),

AF is coherent iff σp(AF) = σs(AF).

The absence of stable extensions in a framework is mainly due to the existence of

odd-length cycles in the graph associated with that framework. The following result

summarizes the main properties of the different acceptability semantics depending on the

existence of cycles in the graph of an argumentation framework.

Property 2 Dung (1995); Dunne and Bench-Capon (2002)

Let GAF=(A,R) be the graph associated with the argumentation framework AF = (A,R).

• If GAF has no cycles, then AF has a unique preferred extension which is also the

grounded extension and the unique stable extension of AF.

• If GAF has no odd-length cycles, then AF is coherent.

• If GAF has no even-length cycles, then AF has a unique preferred extension.

• If AF = (A,R) has no stable extension, then GAF has at least one odd-length cycle.

• If the empty set is the unique preferred extension of AF, then GAF has at least one

odd-length cycle.

Dung’s acceptability semantics handle differently odd-length cycles and even-length ones.

Let us consider again the argumentation framework AF2 of Example 4. We have shown

that this framework has two extensions which are both preferred and stable. If that

framework is extended with a new argument, say β3 as in Example 7, the new framework

AF4 has no stable extensions. In (Baroni et al., 2005), the authors claim that both cycles

should be handled in a similar way. Consequently, six new acceptability semantics have

been proposed. Like Dung’s ones, they return conflict-free subsets of arguments, but not

necessarily maximal (for set inclusion) ones. In (Caminada, 2006) a weaker version of

stable semantics, called semi-stable, has been proposed. It has been shown that any stable

extension is a semi-stable one, and any semi-stable extension is a preferred one. The very

last acceptability semantics that has been proposed in the literature is the so-called ideal

semantics (Dung et al., 2007a). This semantics computes only one extension which is an

admissible extension that is contained in every preferred extension.

The different acceptability semantics define exactly which arguments may hold together.

The status of a given argument is defined as follows:
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Definition 8 (Argument status) Let AF = (A,R) be an argumentation framework and

σx(AS) its set of extensions under a given semantics x. Let α ∈ A.

1. α is skeptically accepted iff α ∈
⋂

Ei∈σx(AF ) Ei

2. α is credulously accepted iff α ∈
⋃

Ei∈σx(AF ) Ei.

3. α is rejected iff α /∈
⋃

Ei∈σx(AF ) Ei.

Example 9 (Examples 3 and 4 cont.) It is easy to check that the two arguments, α1

and α3, presented by Mary are both skeptically accepted under preferred, stable and grounded

semantics while the argument α2 uttered by John is rejected. Regarding the two arguments

β1 and β2 uttered by Tisias and Corax, they are both credulously accepted under preferred

and stable semantics, and are both rejected under grounded semantics.

Since the empty set is an admissible extension of any argumentation framework, it

is natural to not consider admissible semantics for computing the status of arguments.

Otherwise, all the arguments would be either rejected or credulously accepted.

An important question is whether to consider skeptical acceptance of arguments or

credulous one. The choice depends broadly on whether the argumentation framework at

hand is used for theoretical reasoning or for practical reasoning purposes. Theoretical

reasoning is concerned with deciding what to believe, while practical reasoning is concerned

with deciding what to do. In (Harman, 2004), the philosopher Gilbert Harman distinguishes

two main differences between the two kinds of reasoning: i) wishful thinking, and ii)

reasonableness of arbitrary choices. In order to better explain the two issues, Gilbert

Harman has presented the following example about Albert who thinks about which route

to take:

Albert thinks about what route to take to get to Boston. He thinks that, while the

direct western route is faster, the scenic eastern route is longer but more enjoyable

with less traffic.

It is clear that the reasoning Albert goes through in settling on what route to take is

practical since he is deciding what to do. Let us now consider the case of Albert’s friend

Betty.

Betty tries to decide what route Albert will take. She thinks about what Albert has

done before, what Albert likes in a route, and how much of a hurry Albert is in.

Betty’s reasoning is theoretical. She is trying to arrive at a belief about what Albert

will do.
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The first important difference between theoretical and practical reasoning has to do

with wishful thinking, which is acceptable in practical reasoning and not in theoretical

reasoning. Albert’s preference for the eastern route can give him a practical reason to

take the eastern route rather than the western route. But Betty’s preference for Albert

to be taking the eastern route does not in the same way give her a theoretical reason to

believe that he is taking the eastern route. In an argumentation context, this means that

in practical reasoning, one may prefer a credulously accepted argument to another while

this is not allowed in theoretical reasoning.

The second important difference between theoretical and practical reasoning has to do

with the reasonableness of arbitrary choices. Suppose Albert is trying to decide whether to

take the eastern route or the western route and he finds that nothing favors one route over

the other. This means that each option is supported by a credulously accepted argument,

and both arguments are not skeptically accepted. Then it is reasonable for him to decide

arbitrarily to take one of the two routes. If it is urgent for him to get to Boston, it would

be a mistake for him to suspend judgment in this case. On the other hand, if Betty is

trying to decide which route Albert is taking and there is no particular reason to think he

is going one way rather than the other, meaning that she has two credulously accepted

arguments and no skeptically accepted one, then it is not reasonable for her to decide

arbitrarily that he is taking one route rather than the other. In the theoretical case, Betty

should suspend judgment. In sum, skeptical acceptance is used for theoretical reasoning

purposes while credulous acceptance is required for practical reasoning.

Computational considerations

In the literature, extension semantics have been used in most argumentation-based systems

dealing with defeasible information. They provide very promising results as they cover

most non-monotonic reasoning approaches. However these semantics suffer from a serious

problem which is computational cost. Indeed, the problems of finding and enumerating

extensions are computationally challenging as summarized in Table 3.1.

In addition to this study, (Kröll et al., 2017) studies the complexity and tractability

of the problem of enumerating all extensions. They study the cases of several semantics

including naive and stable semantics. They find that there exists an enumeration algorithm

that output each extension with polynomial delay and polynomial space.

As a consequence of the above complexity results, several solvers have been developed

in the literature for enumerating extensions in an efficient way and checking the status of

arguments.

In 2015, the argumentation community organized the first competition to reward the

best solvers for argumentation tasks on big and complex datasets. The first edition took

place with the workshop Theory and Application of Formal Argument (TAFA’15) as a joint
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Problem Question Complexity
ADM(AF, S) Is S admissible? P
STAB-EXT(AF, S) Is S a stable extension? P
PREF-EXT(AF, S) Is S a preferred extension? CO-NP-complete
HAS-STAB(AF) Does AF has any stable extension? NP-complete
CA(AF, S) Is x in some preferred extension? NP-complete
IN-STAB(AF, S) Is x in some stable extension? NP-complete
ALL-STAB(AF, S) Is x in every stable extensions? CO-NP-complete

SA(AF, S) Is x in every preferred extension?
∏(p)

2 -complete

COHERENT(AF) Is the system AF coherent?
∏(p)

2 -complete

Table 3.1: Complexity of decision problems in finite argumentation systems (Dunne, 2007)

event with the 24th International Joint Conference on Artificial Intellignece (IJCAI’15).

Currently, the competition takes place every two years. In every edition, there is a list of

tasks that the competitors have to tackle. The Competition is organised into 7 tracks, one

for each semantics σ:

• Complete Semantics

• Preferred Semantics

• Stable Semantics

• Semi-stable Semantics (Caminada et al., 2012)

• Stage Semantics (Verheij, 1996)

• Grounded Semantics

• Ideal Semantics (Dung et al., 2007b)

Each track includes these four reasoning problems:

• (SE-σ) Given an abstract argumentation framework, determine some extension

• (EE-σ) Given an abstract argumentation framework, determine all extensions

• (DC-σ) Given an abstract argumentation framework and some argument, decide

whether the given argument is credulously inferred

• (DS-σ) Given an abstract argumentation framework and some argument, decide

whether the given argument is skeptically inferred

Semi-stable, stage and ideal semantics have been added in 2017. The static (main)

track remains the same every two years since 2015. However, a Dynamic Track has opened
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whose goal is to reach the new solution for a slightly changing argumentation framework

without computing the whole set of extensions model from scratch. Here is a list of notable

contenders of each edition:

• CoQuiAAS (Lagniez et al., 2015)

• ASPARTIX (Dvořák et al., 2020)

• CEGARTIX (Dvořák et al., 2014)

• ArgSemSAT (Cerutti et al., 2014)

• Pyglaf (Alviano, 2021)

CoQuiAAS, CEGARTIX and ArgSemSAT have participated in the three first edition

in all tracks and got ranked in the top 5 in almost all tracks. ASPARTIX, since 2015

and Pyglaf since 2017, have participated in all editions. ASPARTIX have shown the best

performance in the EE-Stable tracks in 2015 and 2017. They scored 2nd place in 2019.

In this thesis, we use ASPARTIX for enumerating stable extensions as we will see in

chapter 5.

3.4 Argumentation in Artificial Intelligence and XAI

Argumentation has become an Artificial Intelligence keyword for the last decades. In its

essence, argumentation can be seen as a particularly useful and intuitive paradigm for

doing non-monotonic reasoning. The advantage of argumentation is that the reasoning

process is composed of modular and quite intuitive steps, and thus avoids the monolithic

approach of many traditional logics for defeasible reasoning.

Another interesting property of the argumentation approach is that it can be given

dialectical proof procedures that are quite close to the process by which humans would

discuss an issue. The similarity with human-style discussions gives formal argumentation

an advantage that can be useful in many contexts. Argumentation techniques are used

to specify reasoning, such as belief revision (e.g. (Rotstein et al., 2008)), handling

inconsistency in knowledge bases (e.g. (Amgoud and Cayrol, 2002a; Besnard and Hunter,

2001, 2008a; Garcia and Simari, 2004; Governatori et al., 2004; Simari and Loui, 1992)),

decision making under uncertainty (e.g. (Amgoud and Prade, 2006; Bonet and Geffner,

1996; Fox and McBurney, 2002; Fox and Parsons, 1997; Gordon and Karacapilidis, 1997)),

merging information coming from different sources (e.g. (Amgoud and Kaci, 2007; Amgoud

and Parsons, 2002; Brena et al., 2005)), practical reasoning (e.g.(Amgoud, 2003; Atkinson

et al., 2004; Rahwan and Amgoud, 2006)), and goal generation (e.g. (Hulstijn and van der

Torre, 2004)). Argumentation is also gaining increasing interest in multi-agent systems
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research community, namely for modeling multi-agent interaction. Since the seminal work

by Walton and Krabbe (Walton and Krabbe, 1995) on the different categories of dialogue,

different argumentation-based systems have been proposed for persuasion dialogues (e.g.

(Amgoud et al., 2000a; Prakken, 2006)), negotiation (e.g. (Amgoud et al., 2000b; Amgoud

and Prade, 2004; Kakas and Moraitis, 2006; Kraus et al., 1998; Parsons and Jennings,

1996)), and inquiry dialogues (e.g. (Parsons et al., 2003; Black and Hunter, 2007)). More

recently, argumentation is largely used in machine learning. For instance, (Amgoud and

Serrurier, 2008; Cocarascu and Stylianou, 2020; Alcaraz, 2023) proposed novel classification

models that are based on arguments. Their explanations are defined in dialectical ways

as fictitious dialogues between a proponent (supporting an output) and an opponent

(attacking the output) following (Dung, 1995). The authors in (Čyras et al., 2019a,b;

Rago et al., 2018) followed the same approach for defining explainable multiple criteria of

decision systems, recommendation systems or scheduling systems. In the above, papers, an

argument is simply an instance and its label. In other papers including (Potyka et al., 2022;

Rago et al., 2023; Proietti and Toni, 2023), argumentation is rather used for explaining

machine learning models like random forest and neural networks.
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Chapter 4

Theoretical Approach with

argumentation

4.1 Introduction

As said in the introduction, recent advances in many AI fields rely on inductive models,

depending on parameters that are adjusted based on a set of training instances. Such

models tend to be large for practical tasks, in the sense of having a lot of parameters,

and may allow for non-linear interactions between input features. Consequently, they are

perceived as black-boxes whose behaviour is difficult to grasp both from their designers

and users’ point of view.

In this chapter, we focus on black-box classifiers and provide ways for explaining their

outcomes for instances, i.e. providing local explanations.

We investigate one of the most studied types of explanation, the so-called abductive

explanations, which highlight feature-values that are sufficient for making a given prediction.

For example, a client was refused a loan because he is unemployed. Such explanations are

generally generated from the whole feature space e.g. (Darwiche and Hirth, 2020; Ignatiev

et al., 2019; Audemard et al., 2022; Amgoud, 2021a). While the approach is reasonable

when models are interpretable, like Decision Trees or Random Forests, it is not tractable

in case of black-boxes, see (Cooper and Marques-Silva, 2021), as it requires an exhaustive

exploration of the feature space.

As a solution, the two prominent explanation functions Anchors (Ribeiro et al., 2018)

and LIME (Ribeiro et al., 2016) and the argument-based function (Amgoud, 2021b) gener-

ate abductive explanations from a sample (i.e., subset) of instances, avoiding thus exploring

the whole feature space. However, it has been shown in (Amgoud, 2021b; Narodytska

et al., 2019b) that the explanations of Anchors/LIME may be globally inconsistent and

thus incorrect. The third function ensures correct explanations but does not guarantee the

existence of explanations for every instance. Furthermore, it is very cautious as it simply
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removes all conflicting explanations that may be generated from the considered sample.

This chapter investigates explanation functions that generate abductive explanations

from a subset of feature space while satisfying desirable properties.

Firstly, we define two principles: existence of explanations, success, and coherence

between the explanations. We show that a function that generates abductive explanations

from a subset of instances cannot guarantee both principles. This result sheds light on the

reason behind violation of success by the argument-based function from (Amgoud, 2021b).

Secondly, we propose a parameterized family of argumentation-based explanation

functions, each of which satisfies one of the two incompatible properties. To create these

functions, we generate arguments in favor of classes, then identify attacks among these

arguments, we enumerate sets of arguments that can be jointly accepted using the stable

semantics (Dung, 1995). Finally, we can use the latter to identify accepted arguments and

define novel types of abductive explanations. In our approach, we choose the policy of

acceptation of arguments using two parameters: selection function and inference rule. The

former selects a subset of stable extensions and the latter selects (accepted) arguments from

the chosen extensions. We define various instantiations of the two parameters, capturing

different criteria for solving conflicts between arguments.

Finally, we propose a formal a formal analysis and a comprehensive comparison of our

collection of functions. We show that not only the family encompasses the argument-based

function and ensures correctness of explanations but also performs better as the functions

explain more instances and more classes.

4.2 Classification models

We consider a classification theory as a tuple made of a finite set of features, a function

which returns the domain of every feature and a finite set of classes. The theory represents

the model’s environment.

Definition 9 (Theory) A theory is a tuple T = ⟨F , dom, C⟩ s.t.

• F is a finite set of features,

• dom is a function on F such that, for every f ∈ F , dom(f) is countable (discrete

domains),

• C is a finite set of possible distinct classes with |C| > 1.

We introduce next the useful notion of literal, which is an assignment of value to a

feature in F .
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Definition 10 (Literal) Let T = ⟨F , dom, C⟩ be a theory. A literal is a pair (f, v) where

f ∈ F and v ∈ dom(f). Let Lit(T) denote the set of all possible literals of T.

A set of literals is consistent if it does not contain two literals having the same attribute

but distinct values.

Definition 11 (Consistency) A set L ⊆ Lit(T) is consistent iff ∄(f, v), (f ′, v′) ∈ L

such that f = f ′ and v ̸= v′. Otherwise, L is said to be inconsistent.

We call instance any assignment of values to all the features. Therefore, an instance is

always a consistent set of features.

Definition 12 (Instance) Let T = ⟨F , dom, C⟩ be a theory. An instance is a subset I of

literals such that every attribute f ∈ F appears exactly once in I. Let XT denote the set of

all instances of T, called feature space.

A classification model, or classifier, is a surjective function mapping every instance

into a single prediction.

Definition 13 (Classifier) Let T = ⟨F , dom, C⟩ be a theory. A classifier on T is a

surjective function R from XT to C, i.e. R : XT 7→ C.

To better clarify each of these five basic notions, let us consider the following example:

Example 10 Consider a theory made of two binary features f1, f2 and three classes

c1, c2, c3. The table below summarizes the predictions made by a classifier R.

X (T) f1 f2 R(Ii)

I1 0 0 c1

I2 0 1 c2

I3 1 0 c3

I4 1 1 c3

In this example,

• T = ⟨F , dom, C⟩ with

– F = {f1, f2}

– dom(f1) = dom(f2) = {0, 1}

– C = {c0, c1, c2}

• all the possible literals are {(f1, 0), (f1, 1), (f2, 0), (f2, 1)}

• the set {(f1, 0), (f1, 1)} is not consistent whereas {(f1, 0), (f2, 1)} is.

• the set {(f1, 0), (f2, 1)} of literals is an instance since it covers all features.
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4.3 Abductive Explanations

An explanation function answers questions of the form: “Why does the classifier R assign

class c to instance x?”. The answer to this type of question is called an abductive

explanation. Since they have been studied for a long time, e.g. (Dimopoulos et al., 1997;

Kakas and Riguzzi, 2000), they are a good candidate to explain classifiers. (Shih et al.,

2018; Ignatiev et al., 2018; Darwiche and Hirth, 2020) are examples of use of abductive

explanation for explainability. In these papers, an abductive explanation is defined as a

subset-minimal set of literals that is sufficient for predicting the class of an instance.

Definition 14 (Abductive Explainer) Let R be a classifier and T a theory. An abduc-

tive explainer is a function ga mapping every I ∈ XT into the set of any L verifying the

following:

a) L ⊆ I,

b) ∀I ′ ∈ XT \ {I} such that L ⊆ I ′, R(I ′) = R(I),

c) ∄L′ ⊂ L such that L′ satisfies the above conditions.

The set of literals L is called abductive explanation.

Every instance may have one or several abductive explanations as shown in the following

example.

Example 11 Consider a theory made of two binary features f1, f2 and three classes

c1, c2, c3. The table below summarizes the predictions made by a classifier R.

X (T) f1 f2 R(Ii)

I1 0 0 c1

I2 0 1 c2

I3 1 0 c3

I4 1 1 c3

The abductive explanations of I1, I2, I3, I4 are given below.

• ga(I1) = {L1} L1 = {(f1, 0), (f2, 0)}

• ga(I2) = {L2} L2 = {(f1, 0), (f2, 1)}

• ga(I3) = ga(I4) = {L3} L3 = {(f1, 1)}

It has been shown in (Cooper and Marques-Silva, 2021) that the problem of finding

one abductive explanation and testing whether a set of literals is an abductive explanation

are not tractable.
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Property 3 (Cooper and Marques-Silva (2021)) Testing whether a set  L of literals

is an abductive explanation is CO − NP − complete and the complexity of finding one

abductive explanation is FPNP .

The above high complexities are due to the conditions b) in definition 14 on the

preceding page. It states that genereating an abductive explanation for the prediction

of an instance requires testing a set inclusion on the whole input space. Note also that

when the classifier is a black-box, this condition is not reasonable due to the obligation of

querying the prediction on the huge size of the input space, and the complexity of querying

black-box classifiers like deep neural networks.

4.4 Plausible abductive explanations

We have seen previously that generating an abductive explanation requires exploring the

whole feature space, which is very costly in case of black-box classifiers. To solve this

problem, we propose to generate explanations using a sample of the input space. The idea

is to consider a subset of instances which may be chosen in different ways. It may be the

dataset on which the classifier has been trained, or the dataset on which the classifier has

shown the best performances, etc.. Whatever its source, the sample (i.e. dataset) should

satisfy a property stating that every class in the set C of the theory should be represented

in the sample. This condition ensures a quite well-balanced sample. In what follows, we

call explanations generated from samples, plausible abductive explanations.

Definition 15 (Plausible Explainer) Let R be a classifier, T a theory, Y ⊆ XT. A

plausible explainer is a function gp mapping every I ∈ Y into the set of any L verifying

the following:

a) L ⊆ I,

b) ∀I ′ ∈ Y \ {I} such that L ⊆ I ′, R(I ′) = R(I),

c) ∄L′ ⊂ L such that L′ satisfies the above conditions.

The set L is called plausible abductive explanation.

Let us illustrate the definition on an example.

Example 12 Let us consider the theory made of four binary features and three classes.

Assume a classifier R which provides the predictions below for the seven instances in Y.
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Y f0 f1 f2 f3 R(Ii)

I1 0 0 1 0 c1

I2 0 0 1 1 c1

I3 0 1 0 0 c0

I4 0 1 0 1 c2

I5 0 1 1 1 c1

I6 1 1 0 1 c2

I7 1 1 1 0 c2

The function gp returns the following explanations.

• gp(I1) = {L5, L7} L1 = {(f2, 0), (f3, 0)}

• gp(I2) = {L2, L5, L7} L2 = {(f2, 1), (f3, 1)}

• gp(I3) = {L1, L6} L3 = {(f0, 1)}

• gp(I4) = {L4} L4 = {(f2, 0), (f3, 1)}

• gp(I5) = {L2, L7} L5 = {(f1, 0)}

• gp(I6) = {L3, L4} L6 = {(f0, 0), (f1, 1), (f3, 0)}

• gp(I7) = {L3, L8} L7 = {(f0, 0), (f2, 1)}

L8 = {(f1, 1), (f2, 1), (f3, 0)}

Unlike abductive explanations (definition 14 on page 64), plausible explanations are

generated under incomplete information, that’s to say under a portion of the input space

only. This is why we refer to them as plausible since they may not hold under complete

information as shown in the example below.

Example 12 (Cont.) Assume that the prediction of the instance I8 ∈ XT below is

R(I8) = c1.

f0 f1 f2 f3 R(I8)

I8 1 1 0 0 c1

Note that L1 ∈ gp(I3) while L1 cannot be a subset of an abductive explanation (i.e.,

L1 /∈ ga(I3)).

However, we show that every abductive explanation of an instance is a superset of a

plausible explanation of the same instance. This shows that plausible explanations are

approximations of and shorter than abductive ones.
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Proposition 2 Let T be a theory and Y ⊆ XT. For every I ∈ Y, if L ∈ ga(I), then

∃L′ ⊆ L such that L′ ∈ gp(I).

Proof Let T be a theory, Y ⊆ XT and I ∈ XT. Let L ∈ ga(I). By definition, ∀I ′ ∈ XT

such that L ⊆ I ′, R(I ′) = R(I). Since Y ⊆ XT, then ∀I ′ ∈ Y such that L ⊆ I ′, R(I ′) = R(I)

(1). Thus, ∃L′ ⊆ L such that L′ is a minimal (for set inclusion) set verifying (1). So,

L′ ∈ gp(I).

As expected, reducing the exploration space when generating abductive explanations

leads to an important gain in computational complexity as shown in the following proposi-

tions.

Proposition 3 Cooper and Amgoud (2023)

• Testing whether a set of literals  L is a plausible abductive explanation can be achieved

in polynomial time,

• Finding a plausible abductive explanation can be achieved in polynomial time.

Indeed, the generation of a plausible explanation depends simply on the number of

instances in the sample and the number of features in the theory. While this gain is very

important, we show next that the plausible explainer suffers from a tricky issue.

4.5 Coherence vs Existence of explanations

In (Amgoud and Ben-Naim, 2022), the authors introduced a set of principles for explanation

functions that interpret the global behaviour of a classifier, i.e., those that explain classes

instead of instances. Every principle is seen as a desirable property that should be satisfied.

In what follows we adapt two of them to functions explaining instances from samples.

Definition 16 Let R be a classifier, T a theory and Y ⊆ XT. A refined plausible explainer

is a function g mapping every I ∈ Y into g(I) ⊆ gp(I).

The first principle, called success, states that any refined plausible explainer should

return at least one explanation to every instance. It ensures feedback for end-users.

Principle 1 (Success) A refined plausible explainer g satisfies success iff for any classifier

R, any theory T, any Y ⊆ XT, and any I ∈ Y, we have that g(I) ̸= ∅.

The second principle, called coherence, states that the explanations of instances labelled

with different classes should be inconsistent. This property prevents the following three

undesirable situations: Assume two instances I, I ′ ∈ Y such that R(I) ̸= R(I ′). Assume

also that L is an explanation for I and L′ is an explanation for I ′. We may have the

following:
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i) L = L′,

ii) L ⊂ L′,

iii) L ̸⊆ L′ and L ∪ L′ is consistent.

It is clearly not reasonable to predict different classes on the basis of the same set of

information i), ii). For the third case, assume L and L′ stand respectively for: Age ≤ 45,

salary ≤ 50K and R(I) and R(I ′) stand for accepting and rejecting a loan respectively. The

two explanations are incompatible since they both match a profile of a customer whose

age is 30 and salary is 40K. The first rule states that this customer should have the loan

while the second predicts rejection.

Principle 2 (Coherence) A refined plausible explainer g satisfies coherence iff for any

classifier R, any theory T, any I, I ′ ∈ Y, if R(I) ̸= R(I ′), then ∀L ∈ g(I), ∀L′ ∈ g(I ′),

L ∪ L′ is inconsistent.

It is well-known in the literature that the function ga provides at least one explanation

for each instance in the theory’s feature space. From Proposition 2, it follows that the

same holds for the plausible explainer gp, thus gp satisfies success.

Proposition 4 For any theory T, any Y ⊆ XT, any classifier R, and any I ∈ Y, gp(I) ̸= ∅.

Proof Let I ∈ Y. From (Amgoud, 2021a), ga(I) ̸= ∅. Thus, ∃L ∈ ga(I). From

Proposition 2, ∃L′ ⊆ L such that L′ ∈ gp(I).

The situation is different for the second principle. Indeed, the following example

shows that the plausible explainer gp violates coherence, and may provide erroneous

explanations.

Example 12 (Cont.) Consider the two instances I2 and I3. Note that R(I2) ̸= R(I3) while

L5 ∈ gp(I2), L1 ∈ gp(I3) and L1 ∪L5 is consistent. Consequently, there exists I ′ ∈ XT such

that L1 ∪ L5 ⊆ I ′. Since I ′ has a single class, then at least one of the two explanations

(L1, L5) is incorrect.

In what follows, we show that the two principles (success, coherence) are incompatible

when explanations are generated from a dataset or more generally from a subset of instances.

In other words, there is no (refined) plausible explainer that can satisfy the two principles

at the same time for every classifier, every theory, and every subset of the feature space.

Theorem 1 There is no refined plausible explainer that satisfies both coherence and

success.
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Proof The two properties of Coherence and Success are compatible iff there exists a refined

plausible explainer, say  L, which satisfies both properties. Recall also that  L satisfies

Coherence (resp. Success) iff the property holds for every theory, every dataset and every

classifier. To show that Coherence and Success are not compatible, it is sufficient to show

that such a function  L does not exist.

Assume that  L is a refined plausible explainer that satisfies both Coherence and Success.

Consider the theory below made of two binary features f1, f2, and a binary classifier R.

The table below summarizes the predictions made by the classifier for the simple dataset

Y below made of two instances.

Y f1 f2 R(Ii)

I1 0 1 0

I2 1 0 1

I3 0 0 2

The function gp returns the following plausible explanations.

• gp(I1) = {L1} L1 = {(f2, 1)}

• gp(I2) = {L2} L2 = {(f1, 1)}

• gp(I3) = {L3} L3 = {(f1, 0), (f2, 0)}

Since  L is a refined plausible explainer, then from definition 16 on page 67 it holds

that:

∀i ∈ {1, 2, 3},  L(Ii) ⊆ gp(Ii) (A1).

Since  L satisfies Success, then  L(I1) ̸= ∅ and  L(I2) ̸= ∅. Thus, ∀i ∈ {1, 2},  L(Ii) = gp(Ii).

However, L1 ∪ L2 is consistent while R(I1) ̸= R(I2), thus  L violates Coherence.

Let us now start by coherence. From coherence of  L, ∄L,L′ ∈  L(I1) ∪  L(I2) such

that L ∪ L′ is consistent, L ∈  L(Ii), L′ ∈  L(Ij), and R(Ii) ̸= R(Ij) (A2). From (A1),

 L(I1) ∪  L(I2) ⊆ gp(I1) ∪ gp(I2). But, gp(I1) ∪ gp(I2) = {L1, L2}, then from (A2) either

L1 /∈  L(I1)∪  L(I2), in which case  L(I1) = ∅, or  L3 /∈  L(I1)∪  L(I2), in which case  L(I2) = ∅.

Thus,  L violates Success.

To sum up, the previous result shows that generating abductive explanations from

a subset of feature space is a tricky issue. A refined plausible explainer can either, like

gp always guarantee explanations for every instance but they may be wrong, or provide

correct explanations for only a subset of instances. The following section defines in a

unified setting various functions for each of the two policies.

69



4.6 Parameterized Family of Explainers

Throughout this section we consider an arbitrary but fixed subset Y ⊆ XT of instances

of theory T = ⟨F , dom, C⟩. We define a novel parameterized family of refined explanation

functions. The family is based on argumentation theory and thus follows these steps: it

starts by generating arguments from Y , identifies attacks among them, uses a semantics for

generating sets of arguments that can be jointly accepted, identifies accepted arguments,

and uses the latter for defining novel types of abductive explanations.

In our approach, arguments support classes, in the sense that they provide minimal

sets of literals that determine a class. They are thus independent from instances. An

advantage of not considering instances is to reduce the number of arguments that can be

built from Y . Furthermore, explanations of an instance are explanations of its predicted

class.

Definition 17 (Argument) An argument built from Y is a pair ⟨L, c⟩ such that:

• L ⊆ Lit(T) and c ∈ C,

• ∃I ∈ Y such that L ⊆ I,

• ∀I ∈ Y such that L ⊆ I, R(I) = c,

• ∄L′ ⊂ L that verifies the above conditions.

L and c are called respectively support and conclusion of the argument. Arg(Y) denotes

the set of arguments built from Y.

The second condition of the above definition ensures that arguments are extracted

from instances of the set Y. It discards any fallacious argument whose support is not

included in any instance of Y and thus satisfies the third condition in a vacuous way. The

third condition states that the support L is correlated to the conclusion c.

Example 12 (Cont.) Eight arguments are generated from Y :

• a1 = ⟨L1, c0⟩ a2 = ⟨L6, c0⟩

• a3 = ⟨L2, c1⟩ a4 = ⟨L5, c1⟩ a5 = ⟨L7, c1⟩

• a6 = ⟨L3, c2⟩ a7 = ⟨L4, c2⟩ a8 = ⟨L8, c2⟩

Notice that the support of every argument is a plausible abductive explanation of one

or more instances in Y . Before presenting the result, let us first introduce two notations.

Notations: Let E ⊆ Arg(Y). We denote by covi(E) the set of instances covered by E , ie.,

covi(E) = {I ∈ Y | ∃⟨L, c⟩ ∈ E and L ⊆ I}, and by covc(E) the set of classes covered by

E , ie., covc(E) = {c ∈ C | ∃⟨L, c⟩ ∈ E}.
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Proposition 5 The following properties hold.

• For every ⟨L, c⟩ ∈ Arg(Y), the set L is consistent,

• L ∈
⋃
I∈Y

gp(I) iff ⟨L, c⟩ ∈ Arg(Y),

• For every I ∈ Y, ∃⟨L, R(I)⟩ ∈ Arg(Y) such that L ⊆ I,

• covi(Arg(Y)) = Y,

• covc(Arg(Y)) = C iff {R(I) | I ∈ Y} = C,

• The set Arg(Y) is finite.

Proof Let Y ⊆ X (T) and I ∈ Y . Since I is consistent, then every L ⊆ I, L is consistent,

which shows the first property. Thus, there exists L ⊆ I that verifies Def. 9,which shows

the second property. The third and the last properties follow from the second one.

Assume that covc(Arg(Y)) = C, thus {c ∈ C | ∃⟨L, c⟩ ∈ Arg(Y)} = C (1). Note that

{R(I) | I ∈ Y} ⊆ C follows from the definition of a classifier. Let c ∈ C and let’s show that

c ∈ {R(I) | I ∈ Y}. From (1), ∃⟨L, c⟩ ∈ Arg(Y). By Def. 9,∃I ∈ Y such that L ⊆ I and

R(I) = c. So, c ∈ {R(I) | I ∈ Y}. Assume now that {R(I) | I ∈ Y} = C (2), and let’s show

that covc(Arg(Y)) = C. From (2) we have ∀c ∈ C, ∃I ∈ Y such that R(I) = c. From the

second property, ∃⟨L, R(I)⟩ ∈ Arg(Y). Assume L ∈ gp(I), then ⟨L, R(I)⟩ ∈ Arg(Y) as L

satisfies all the conditions of Def.9. Let ⟨L, c⟩ ∈ Arg(Y). Hence, by definition9, ∃I ∈ Y
such that L ⊆ I, ∀I ′ ∈ Y \ {I} such that L ⊆ I ′, R(I ′) = R(I), and ∄L′ ⊂ L such that L′

satisfies the above conditions. So, L ∈ gp(I).

Arguments may be conflicting, particularly when they violate the coherence property,

i.e., their supports are consistent but their conclusions are different.

Definition 18 (Attack) Let a = ⟨L, c⟩, a′ = ⟨L′, c′⟩ ∈ Arg(Y). We say that a attacks a′

iff L ∪ L′ is consistent and c ̸= c′. We denote by Att(a) the set of all attackers of a.

Property 4 The attack relation is symmetric and irreflexive.

Proof Symmetry follows straightforwardly from the definition. Irreflexivity follows from

the fact that for every argument ⟨L, c⟩, the set L is consistent (see Property 5) and an

argument supports a single class.

Example 12 (Cont.) The attacks between the eight arguments are depicted in the figure

below.
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a6 a1a3

a4a7

a2 a5

a8

Arguments and their attack relations form an argumentation system as follows.

With a symmetric attack relation, naive extensions coincide with stable extensions

(definition 6 on page 51). A later objective is to extend the framework with new, asymmet-

rical attack relation. In this sense, we only focus on stable extensions rather than naive

extensions.

Definition 19 (Argumentation system) An argumentation system built from Y is a

pair AS = ⟨Arg(Y),R⟩ where R ⊆ Arg(Y)×Arg(Y) such that for a, b ∈ Arg(Y), (a, b) ∈ R
iff a attacks b (in the sense of Def. 18).

Since arguments are conflicting, they should be evaluated using a semantics. In this

paper, we consider the stable semantics that has been recalled in section 3.3 an extension-

based semantics introduced in (Dung, 1995), namely stable semantics. It computes sets of

arguments that can be jointly accepted. Each set is called a stable extension and represents

a set of compatible plausible explanations.

Example 12 (Cont.) The AS depicted in the above figure has nine stable extensions.

• E1 = {a1, a2, a3, a7} E2 = {a1, a3, a5, a7}

• E3 = {a1, a3, a7, a8} E4 = {a2, a3, a4}

• E5 = {a3, a4, a5} E6 = {a3, a4, a8}

• E7 = {a2, a6, a7} E8 = {a5, a6, a7} E9 = {a6, a7, a8}

An argumentation system has one stable extension if the attack relation is empty and

multiple extensions otherwise.

Proposition 6 Let Y ⊆ XT and AS = ⟨Arg(Y),R⟩.

• σ(AS) ̸= ∅,

• σ(AS) = {Arg(Y)} iff R = ∅.

Proof From Property 4, R is symmetric and irreflexive. From Coste-Marquis et al. (2005),

σ(AS) contains all subset-maximal conflict-free sets of arguments, called naive extensions.

Since R is irreflexive, then σ(AS) ̸= ∅. The second property follows from the definitions

of R and stable extension.
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Let us now turn to the evaluation of individual arguments. Accepted arguments are

defined in our approach using two parameters: selection function and inference rule. The

former selects a subset of stable extensions and the latter selects arguments from the

chosen extensions. We define various instantiations of the two parameters, capturing

different criteria for solving conflicts between arguments.

Definition 20 (Selection Functions) Let Σ = {E1, . . . , Ek} such that for any i ∈
{1, . . . , k}, Ei ⊆ Arg(Y). We define below selection functions:

• Max(Σ) = Σ

• Card(Σ) = {E ∈ Σ | ∀E ′ ∈ Σ, |E| ≥ |E ′|}

• Incli(Σ) = {E ∈ Σ | covi(E) is subset-maximal}

• Cardi(Σ) = {E ∈ Σ | ∀E ′ ∈ Σ, |covi(E)| ≥ |covi(E ′)|}

• Inclc(Σ) = {E ∈ Σ | covc(E) is subset-maximal}

• Cardc(Σ) = {E ∈ Σ | ∀E ′ ∈ Σ, |covc(E)| ≥ |covc(E ′)|}

• Mix(Σ) = Cardc(Cardi(Σ))

Applied to the set of stable extensions of an argumentation system, the function Max

returns all the extensions, Card selects the extensions that contain more arguments, the

two functions Incli, Cardi focus on the instances covered by the extensions and choose

extensions with more instances. These functions promote the Success principle, which

requires an explainer to have at least one explanation for each instance. The functions

Inclc, Cardc focus on classes being justified by arguments. As we will se later, these

principles promote explaining a large number of classes. This is useful when explanations

are provided for classifier designers as they describe classifier’s behaviour. Finally, the

function Mix combines Cardi and Cardc, indeed, it starts by selecting the extensions that

cover more instances, then it refines the result by selecting extensions that explain more

classes.

Example 12 (Cont.) Recall that σ(AS) = {E1, . . ., E9}.

• covi(E1) = {I2, I3, I4, I5, I6}

• covi(E2) = {I1, I2, I3, I4, I5, I6}

• covi(E3) = {I2, I3, I4, I5, I6, I7} with covc(E1) = covc(E2) = covc(E3) = {c0, c1, c2}

• covi(E4) = {I1, I2, I3, I5} covc(E4) = {c0, c1}
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• covi(E5) = {I1, I2, I5} covc(E5) = {c1}

• covi(E6) = {I1, I2, I5, I7} covc(E6) = {c1, c2}

• covi(E7) = {I3, I4, I6, I7} covc(E7) = {c0, c2}

• covi(E8) = {I1, I2, I4, I5, I6, I7} covc(E8) = {c1, c2}

• covi(E9) = {I4, I6, I7} covc(E9) = {c2}

The selection functions return the following extensions:

• Card(σ(AS)) = Cardc(σ(AS)) = Inclc(σ(AS)) = {E1, E2, E3}

• Incli(σ(AS)) = Cardi(σ(AS)) = {E2, E3, E8}

• Mix(σ(AS)) = {E2, E3}

We show next the links between the selection functions.

Proposition 7 Let Σ be a non-empty set of subsets of arguments of Arg(Y). The following

inclusions hold:

• Card(Σ) ⊆ Max(Σ)

• Mix(Σ) ⊆ Cardi(Σ) ⊆ Incli(Σ) ⊆ Max(Σ)

• Cardc(Σ) ⊆ Inclc(Σ) ⊆ Max(Σ)

Proof The inclusions α(Σ) ⊆ Max(Σ), with α ∈ {Card, Incli, Inclc}, are obvious from

the definitions. Let’s show that Mix(Σ) ⊆ Cardi(Σ) ⊆ Incli(Σ). The inclusion Mix(Σ)

⊆ Cardi(Σ) follows straightforwardly from the definition of Mix. Assume now that some

E ∈ Σ s.t E ∈ Cardi(Σ) and E /∈ Incli(Σ). Thus, ∀E ′ ∈ Σ, |covi(E)| ≥ |covi(E ′)| (1).

Since E /∈ Incli(Σ), then ∃E ′ ∈ Σ such that covi(E) ⊂ covi(E ′), so |covi(E)| < |covi(E ′)|,
which contradicts (1). The proof of the last property is similar.

The selection functions may still return several extensions, hence we need to identify

the strongest arguments which will yield explanations. For that purpose, we introduce

two inference rules that provide strong arguments from extensions.

Definition 21 (Inference Rules) Let Σ be a non-empty set of subsets of arguments of

Arg(Y) and a ∈ Arg(Y). We define the following inference rules:

• Universal inference: Σ |∼ ∀a iff a ∈
⋂
E∈Σ

E.

• Existential inference: Σ |∼ ∃a iff ∃E ∈ Σ s.t. a ∈ E.
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Y I1 I2 I3 I4 I5 I6 I7
gMax,∀ ∅ ∅ ∅ ∅ ∅ ∅ ∅
gCard,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gIncli,∀ ∅ ∅ ∅ {L4} ∅ {L4} ∅
gCardi,∀ ∅ ∅ ∅ {L4} ∅ {L4} ∅
gInclc,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gCardc,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅
gMix,∀ ∅ {L2} {L1} {L4} {L2} {L4} ∅

Table 4.1: The outcomes of all functions gα,∀ in Example 12.

The next result shows the links between the two rules.

Proposition 8 Let Σ be a non-empty set of subsets of arguments of Arg(Y) and a ∈
Arg(Y). The following hold:

• Σ |∼ ∀a ⇒ Σ |∼ ∃a

• If |Σ| = 1, then Σ |∼ ∀a ⇐⇒ Σ |∼ ∃a.

Proof The first part is straightforward from the inference definitions, with decreasing

constraints on a. For the second part, if there is only one extension E, then intersection is

that extension and the rest follows.

Selection functions and inference rules are combined for defining accepted arguments.

Each pair gives birth to a criterion for declaring an argument as accepted.

Definition 22 (Accepted Arguments) Let AS = ⟨Arg(Y), R⟩, α be a selection func-

tion and β an inference rule. An argument a ∈ Arg(Y) is accepted, denoted by AS |∼ α,βa,

iff α(σ(AS)) |∼ βa.

We show that accepted arguments under the function Max (which retains all extensions)

are non-attacked ones if Max is combined with the universal rule and they are all arguments

of the system when Max is combined with the existential rule.

Proposition 9 Let AS = ⟨Arg(Y),R⟩ and a ∈ Arg(Y).

• AS |∼ Max,∀a ⇐⇒ Att(a) = ∅

• {a ∈ Arg(Y) | AS |∼ Max,∃a} = Arg(Y)

Before proving these results, let us recall a property given in (Coste-Marquis et al.,

2005).
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Property 5 (Coste-Marquis et al., 2005) Let AS = ⟨Arg(Y),R⟩ and a ∈ Arg(Y). If R
is symmetric and irreflexive, then the following hold:

• ∀a ∈ Arg(Y), a ∈
⋃

E∈σ(AS)

E

• a ∈
⋂

E∈σ(AS)

E iff Att(a) = ∅

This property allows to prove Proposition 9:

Proof The first result follows from Property 5.

Assume that AS |∼ α,Aa. There are two cases: i) Att(a) = ∅, thus from the first result

we have AS |∼ Max,∀a. ii) Att(a) ̸= ∅. By definition, ∃E ∈ σ(AS) such that a ∈ E and

∀b ∈ Att(a), b /∈
⋃

E∈σ(AS)

E , which contradict Property 5.

The third result follows from Property 5, namely the fact that ∀a ∈ Arg(Y), a ∈⋃
E∈σn(AS)

E .

Below are links between accepted arguments returned using the same inference rule

but distinct selection functions.

Proposition 10 Let AS = ⟨Arg(Y),R⟩, a ∈ Arg(Y), and α, α′ be two selection functions.

If α(Σ) ⊆ α′(Σ), then:

• AS |∼ α′,∀a ⇒ AS |∼ α,∀a

• AS |∼ α,∃a ⇒ AS |∼ α′,∃a

Proof Let α, α′ be two selection functions such that α(Σ) ⊆ α′(Σ). Assume that

AS |∼ α′,∀a. Then, ∀E ∈ α′(Σ), a ∈ E . Since α(Σ) ⊆ α′(Σ), then ∀E ∈ α(Σ), a ∈ E ,

so AS |∼ α,∀a. Assume now that AS |∼ α,∃a. Then, ∃E ∈ α(Σ) such that a ∈ E . Since

E ∈ α′(Σ), then AS |∼ α′,∃a.

Below is a complete list of links between sets of accepted arguments returned by pairs

of selection principles and inference rules.

Proposition 11 The following implications hold.

• AS |∼ α,∀a ⇒ AS |∼ α,∃a, ∀α

• AS |∼ Max,∀a⇒AS |∼ Card,∀a

• AS |∼ Max,∀a⇒AS |∼ Incli,∀a⇒AS |∼ Cardi,∀a⇒AS |∼ Mix,∀a

• AS |∼ Max,∀a⇒AS |∼ Inclc,∀a⇒AS |∼ Cardc,∀a
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• AS |∼ Card,∃a⇒AS |∼ Max,∃a

• AS |∼ Mix,∃a⇒AS |∼ Cardi,∃a⇒AS |∼ Incli,∃a⇒AS |∼ Max,∃a

• AS |∼ Cardc,∃a⇒AS |∼ Inclc,∃a⇒AS |∼ Max,∃a

Proof The properties follow from Propositions 5, 6 and 8.

We are now ready to define our new parameterized family of plausible explanation

functions. For a given instance I, they return the support of any argument in favour of

R(I) inferred by following one of the principles defined above. The support of the argument

should be part of the instance I.

Definition 23 (Explanation Functions) Let T be a theory, Y ⊆ XT, R a classifier, α

a selection function and β an inference rule. An explainer is a function gα,β mapping

every instance I ∈ Y into a set of subsets of literals such that every L ∈ gα,β(I) satisfies

the following:

• AS |∼ α,β⟨L, R(I)⟩ where AS = ⟨Arg(Y),R⟩,

• L ⊆ I.

Example 12 (Cont.) Table 4.1 summarizes the explanations of the seven instances

provided by every function which uses the universal inference rule. Note that the new

functions explain more instances than the argument-based function (which is equivalent

to gMax,∀) from (Amgoud, 2021b).

We show that all the above defined explanation functions are refined plausible explainers,

i.e., they return subsets of explanations computed by the function gp (see Definition 16).

Proposition 12 Let T be a theory, Y ⊆ XT and R a classifier. For every selection function

α, every inference rule β, every I ∈ Y, it holds that gα,β(I) ⊆ gp(I).

Proof Let AS = ⟨Arg(Y),R⟩ be an argumentation system built from Y ⊆ Inst(T).

Assume that L ∈ gα,β(I). Thus, AS |∼ α,β⟨L, R(I)⟩ and L ⊆ I. So, L ∈ gp(I).

The following results show the links between the various explanation functions.

Proposition 13 Let I ∈ XT.

• gα,∀(I) ⊆ gα,∃(I) for any selection function α

• gMax,∀(I) ⊆ gCard,∀(I)
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• gMax,∀(I) ⊆ gIncli,∀(I) ⊆ gCardi,∀(I) ⊆ gMix,∀(I)

• gMax,∀(I) ⊆ gInclc,∀(I) ⊆ gCardc,∀(I)

• gCard,∃(I) ⊆ gMax,∃(I)

• gMix,∃(I) ⊆ gCardi,∃(I) ⊆ gIncli,∃(I) ⊆ gMax,∃(I)

• gCardc,∃(I) ⊆ gInclc,∃(I) ⊆ gMax,∃(I)

Proof The properties follow from Proposition 11.

It is worth mentioning that the explanation function gMax,∃ corresponds exactly to the

plausible explanation function gp.

Property 6 It holds that gMax,∃ = gp.

The function gMax,∀ coincides with the function g∗ introduced in (Amgoud, 2021b). We

show that this function is very cautious as it discards any explanation which is incoherent

with at least one other explanation.

Proposition 14 Let AS = ⟨Arg(Y),R⟩ and I ∈ Y. gMax,∀(I) = {L ∈ gp(I) | ∀L′ ∈
gp(I

′), if R(I) ̸= R(I ′) then L ∪ L′ is inconsistent}.

Proof Follows from Proposition 9 and the fact that every L ∈ gp(I) gives birth to an

argument ⟨L,R(I)⟩ ∈ Arg(Y).

We show next how the various explainers behave with respect to the two principles of

Coherence and Success.

Theorem 2 Let AS = ⟨Arg(Y),R⟩, α be a selection function and β an inference rule. If

|σ(AS)| > 1, then:

• gα,β satisfies Success iff α = Max and β = ∃ .

• gα,β satisfies Coherence iff β = ∀.

The above result shows that gMax,∃ (or gp) is the only function which satisfies success

and all the other functions that are based on the existential inference rule violate both

success and coherence. Consequently, those functions are not reasonable. Note that in

this paper, we investigated the different possibilities for the purpose of completeness and

proving formally which function is not suitable and why it is not.

Coherence is guaranteed by all the functions that are based on the universal

inference rule. Furthermore, gCard,∀, gMix,∀ and gCardc,∀ are more informative than the
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other functions that use the same inference rule. Indeed, they provide more explanations

for instances, and can thus explain more instances. However, the three functions may

return different outcomes as they follow different strategies. gCard,∀ is less interesting

than the two others. It selects the extensions that contain more arguments, but the latter

may support the same class as in our running example (the arguments in the extension E1
are all in favour of the class c0). Hence, any instance whose prediction is c1 gets an empty

set of explanations.

The function gMix,∀ maximizes the number of instances for which explanations are

provided, this is important in domains like healthcare or banking where explanations are

generally requested by end-users.

gCardc,∀ maximizes the number of explained classes. It is suitable for understanding

the global behaviour of a classifier, especially for a problem with a lot of classes.
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Chapter 5

Experimental study

In this chapter, we investigate how the proposed theoretical argument-based explanator

works in practice. Our solution is a model-agnostic explainer. In subsection 2.0.1, Figure 2.2

shows a simple representation of a model-agnostic explainer structure. The (black-box)

prediction model R is probed on the dataset Y and the predictions are the new labels for

our explainer gY .

For each step of the explanation process, we explain the theoretical base and the

practical algorithms. Then we evaluate the computational complexity of the solution.

Finally each step is evaluated experimentally. Experiments serve the purpose of giving

an intuition on the behavior of the different elements at stake for the construction of

explanations. The end goal is to propose a novel explanation function that can be used

for any classifier. The experiments also serve the purpose of observing the limitations of

our proposal.

The experiments are performed on a collection of datasets that we will use for multiple

purposes and in different shapes throughout this chapter. The collection is composed of

datasets widely used by the research communities for testing proofs of concept. They vary

in terms of size of training data, and number of features. We detail the different datasets

in section 5.1

The framework was implemented following the theoretical work. We can divide the

process into 2 main parts:

• Construction of the Argumentation System:

Two steps lead to this result: The enumeration of arguments and the enumeration of

the attacks. The result of both sets of arguments and attacks is a graph representing

the Argumentation Framework.

• Enumeration and analysis of the extensions:

First, the enumeration of the stable extensions, then the selection of extension and

finally the selection of arguments according to a chosen inference principle. The two
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final steps depend on the parameters of the chosen explanation function.

A representation of the structure is given in Figure 5.1.

Figure 5.1: Overview of the implemented process

The argument-based explanation method requires a set of instances based on which

the arguments will be enumerated. This procedure will be detailed in section 5.2. All

these arguments will define a set of vertices. It is clear that the set of instances is far from

covering the whole input space and the information e.g. arguments drawn from it will

generate incoherences. That is why we identify conflicts between them, and encode them as

a set of edges. In section 5.3 on page 91, we explain how edges in the graph are generated

from the set of arguments according to the definition of the attack relation. This graph

is called an Argumentation System (AS), the vertices are the arguments and the edges

represent attacks between arguments. The following section describes how we implement

possible techniques and the limits to finding coherent positions. A set of arguments is

coherent if it is conflict-free. Finally, in section 5.5 we show how the selection functions

and the inference rules allow the user to strategically aggregate extensions according to

their needs and requirements.

5.1 Datasets

In the following sections, we test the implemented solution on five datasets. These datasets

are well-known datasets often used to experiment ML explanation techniques (Ribeiro

et al., 2018). Because these datasets have few features and a reasonable input space size,

they are a good fit for our experiments. In this section we describe the datasets’ structure

as well as their sizes. We also give precisions on how we adapted them for our experiments.

All datasets are available on Kaggle.

5.1.1 Titanic

The titanic dataset (Cukierski, 2012) is a toy dataset largely used to test ML models.

The data describes the population of the Titanic at the time of the shipwreck in 1912
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Feature Definition Categorical Values

survival Survival Yes 2
pclass Ticket class Yes 3

sex Sex Yes 2
Age Age in years No 4
sibsp # of siblings spouses aboard the Titanic No 3
parch # of parents children aboard the Titanic Yes 7
ticket Ticket number No -
fare Passenger fare No 4

Table 5.1: Features of the titanic dataset

resulting in the death of 1502 out of 2224 passengers and crew. Although luck was involved

in surviving, the data shows that some groups of people showed better survival rates

than others, for example, 73% of women survived against 19% for men. The dataset is

composed of a training set of 819 instances and a test set of 418 instances. Table 5.1 lists

the features, their definition. We also indicate if the feature is categorical, and if not it is

discretized. The grey rows are the features not used in the experiments and the red one is

the class to predict. Here, the ticket number is a unique value for each passenger, so it is

not a useful information for the prediction. In this setting, we can calculate the size of the

input space: 2016 possible instances.

In some experiments, we use portions of the full dataset. This is done by generating

all possible instances in random order and dividing the set into 8 portions. Otherwise, we

use instances from the training set as base dataset to generate explanations.

5.1.2 Adult

The adult dataset, available in Ribeiro’s Anchors implementation (Ribeiro et al., 2018),

was first introduced in (Kohavi, 1996). The database collects 45222 clean observations in

which adults are characterized by 15 features including the prediction goal: the person’s

annual income is over or below 50 000 dollars. We detail the different features in table 5.2

on the following page. Again, the grey features are not used in experiments. The reason

for eliminating these features is to keep the size of the input space reasonably low and be

able to perform all experiments. In this setting, the input space contains 408240 possible

observations.

5.1.3 Lending

The lending dataset 1 was also used to benchmark Anchors in (Ribeiro et al., 2018). The

goal of the Lending Club loan dataset is to predict if a lended DVD will be returned

correctly. This dataset counts 115 features. In this description we will only describe the

features (table 5.3 on the next page) used in our experiments. There are 42538 instances
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Feature Definition Categorical Values

age Age No 4
workclass Occupation Yes 9

fnlwgt unknown No 7
education Highest level of education Yes 6

education-num unknown No 4
marital-status Marital status Yes 2

relationship Relationship Yes 3
race Race Yes 3
sex Gender Yes 2

capital-gain Capital gain Yes 2
capital-loss Capital loss Yes 4

hours-per-week Level of schooling No 4
native-country Native country Yes 3

income if annual income is <50K or not No 4

Table 5.2: Features of the adult dataset

Feature Definition Categorical Values

home ownership The ownership status of the applicant’s residence Yes 5
pub rec bankruptcies Number of bankruptcies listed in the public record Yes 4

loan amnt The amount of the loan the applicant received No 4
annual inc Annual Income No 4

desc - No 4
inq last 6mths Inquiries into the applicant’s credit during the last 6 months No 3

revol util - No 4
last fico range high - No 3
last fico range low - No 2

late payment Good or bad loan Yes 2

Table 5.3: Features of the lending dataset

in the dataset. With the restriction of the inputs, we lower the input space size to 960

possible observations.

5.1.4 Recidivism

The rcdv dataset was published in (Schmidt and Witte, 1989) for an attempt to predict

recidivism. The data contains the information about inmates released from North Carolina

prisons in 1980. There also exists a dataset for 1978. The set is composed of 18 features

including the prediction category. In our setting, we only use 12 features, 11 of which are

categorical. The Age feature was discretized. In total, the input space has 24576 possible

observations. Again, to keep the input space small enough, gray highlighted features are

not considered.
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Feature Definition Categorical Values

WHITE Race Yes 2
ALCHY Alcoholism Yes 2
JUNKY Sex Yes 2
SUPER Supervised Release Yes 2

MARRIED Married Yes 2
FELON Felony Yes 2

WORKREL Work Release Yes 2
PROPTY Crime against Property Yes 2
PERSON Crime against Person Yes 2

MALE Gender Yes 2
PRIORS Number of priors incarcerations Yes 4
SCHOOL Level of schooling No 4

RULE Prison violations Yes 3
AGE Age in months No 4

TSERVD Months served No 4
FOLLOW Duration of followup period No -

RECID Recidivism Yes 2
TIME months until recidivism No -

Table 5.4: Features of the rcdv dataset

Feature Definition Categorical Values

Pregnancies Number of times pregnant No 14
Glucose Plasma glucose concentration No 4

BloodPressure Diastolic blood pressure (mm Hg) No 3
SkinThickness Triceps skin fold thickness (mm) No 4

Insulin 2-Hour serum insulin (mu U/ml) No 4
BMI Body mass index No 4

DiabetesPedigreeFunction Diabetes pedigree function No 4
Age Age (years) No 4

Outcome Class variable (0 or 1) Yes 2

Table 5.5: Features of the diabetes dataset

5.1.5 Diabetes

The diabetes dataset 2, was introduced in (Smith et al., 1988) for AI-based diagnostic of

diabetes. The dataset is fairly simple, counting 768 samples characterizing females over

21 years old with 9 features table 5.5. The whole input space contains 172032 different

observations. The features colored in gray were not accounted for in experiments to keep

the input space small enough.

5.2 Arguments Enumeration

The arguments are the base of this framework. Arguments can be seen as minimal rules

to assign a class to an instance of the data. The definition of argument is given in the

theoretical framework definition 17 on page 70. Arguments are pairs ⟨L, c⟩, for which, any
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Dataset features observations input space
titanic 8 (6) 1237 2016
adult 14 (8) 45222 408240
lending 115 (5) 42538 960
rcdv 18 (12) 9549 24576
diabetes 9 (5) 768 172032

Table 5.6: Datasets summary (features used in experiments are in parthesis)

instance containing L will be predicted to class c by the black-box model. Arguments are

extracted from a database of instances Y, and each instance is predicted by a black-box

classifier R. The arguments are generated using these instances and predictions with

the aim to explain the predictions of R. This section depicts how the arguments are

enumerated according to this definition. In the first subsection, we present an overview of

the implementation and the main challenges. In the second subsection, we explain each

solution in depth.

5.2.1 Overview

Based on definition 17 on page 70, we divide the matter into 3 sub-problems:

1. Check all possible arguments ⟨L, c⟩

2. Verify consensus (Equation 5.1) for each argument (e.g. 3rd item in the definition)

∀I ∈ Y such that L ⊆ I, R(I) = c (5.1)

3. Verify minimality (Equation 5.2) for each argument (e.g. 4th item in the definition)

∄L′ ⊂ L that verifies the above conditions (5.2)

The first two items of definition 17 on page 70 (i.e. L ⊆ Lit(T) and c ∈ C, and

∃I ∈ Y such that L ⊆ I), are trivially verified with the construction of arguments whereas

the conditions of sub-problems (2) and (3) demand a more careful treatment for their

verification. The sub-problem (1) is easily resolved by enumerating all combinations of

all arguments’ support L ∈ Y. Then, for each enumerated argument, it is necessary to

do both checks: minimality and consensus. The minimality is secured by generating

arguments by increasing length. Thus, we can check for an argument of length n if it is a

superset of an argument of length inferior to n. The consensus is guaranteed by finding

all instances I ∈ Y that include L and verifying that they are all identically predicted.
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5.2.2 In-depth analysis

In this section, we explain the different steps more thoroughly. The pseudo-algorithm

is presented in algorithm 1. We will explain the choices made and the different data

structures that are necessary. The first part will cover the issue of enumerating all possible

arguments, then we explain how to guarantee minimality and finally the consensus in a

third part.

5.2.2.1 Potential arguments generation

Algorithm 1 Argument generator (length k literals)

Input: Y dataset, Argk−1 the set of arguments of length 1..k − 1
Parameter: n length of arguments, y the prediction vector
Output: Argk the set of arguments of length n

1: for I ∈ Y do
2: for L ∈ combinations(I, n) do
3: if L ∈ Argk−1 then
4: pass
5: end if
6: if is minimal(L) then
7: argsL = get instances including L(L)
8: if y(argsL) = y(L) then
9: append L to Argk

10: end if
11: end if
12: end for
13: end for
14: return Argk

A potential argument ⟨L, c⟩ is any argument which L can be found in an instance I ∈ Y .

We use the function combinations(I,n) to enumerate all combinations of literals in I of

length n. The dataset Y is encoded using One-Hot (OH) encoding. This is possible because

all features are either categorical or discretized. It allows to easily process instances of

data. For example, the instance I0 = ⟨f0, 1⟩, ⟨f1, 0⟩, ⟨f2, 2⟩ is encoded as in eq. (5.3)

I0enc = (f00 = 0, f01 = 1, f10 = 1, f11 = 0, f20 = 0, f21 = 0, f22 = 1)

= (0, 1, 1, 0, 0, 0, 1)
(5.3)

These are the solutions for the two first lines of code in algorithm 1. However, this

solution presents a minor flaw. Many potential arguments can appear several times in the

dataset. In order to avoid the costly treatment of consensus and minimality verification,

we use a set object args checked in which we add every new potential argument and verify

if it was not already treated (lines 3-4).
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5.2.2.2 Minimality Guarantee

The 4th item in definition 17 on page 70 states that ∄L′ ⊂ L that verifies other items

in the definition. In order to guarantee this point, we choose to generate arguments by

length. Starting from minimum length (e.g. one literal) and adding another literal when all

arguments of length 1 are found. Thus, by induction, we can guarantee that all arguments

are minimal.

Suppose Argk(Y) contains all arguments of length 1 to k. We now generate arguments

of length k + 1. Let L a potential argument, if ∃L′ ⊂ L ∈ Argk(Y), then L is not added

to Argk+1(Y). This verification is done in the is minimal sub-routine (algorithm 2). If

not, L is candidate for the consensus check. The downside of this method resides in the

obligation to check that every subset of L is not in the list of arguments.

Algorithm 2 is minimal
Input: argument L
Parameter: previously found arguments Argk−1

Output: True if L is minimal

1: for k ∈ 1..len(L) − 1 do
2: for subset ∈ combinations(L, k) do
3: if subset ∈ Argk−1 then
4: return False
5: end if
6: end for
7: end for
8: return True

5.2.2.3 Consensus check

Our solution to collect all instances that contain an argument works by using a hash table.

For each feature-value pair, the table keeps a set of instances including this pair, accessible

in constant time. It is called ibyfv for instance by feature-value in algorithm 3 on the

next page. This list of instances is later used in algorithm 1 on the preceding page to

collect the predictions of every instance. If all instances are predicted to the same class by

the model, the argument L is added to the set of arguments Argk.

5.2.3 Complexity

The goal is to enumerate all arguments. For this process, it is mandatory to check all

possible subsets of feature values of each instance. We try to loop only once over the

dataset Y for each length and verify the minimality and consensus properties. Let T a

theory, n the number of rows, m the number of different possible feature-value pairs.
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Algorithm 3 get instances including L
Input: argument L
Parameter: ibyfv dictionary of instances by feature-value
Output: True if argpotential is minimal

1: s = set()
2: for l ∈ L do
3: s.intersect(ibyfv(l))
4: end for
5: return s

According to algorithm 1 on page 87, the whole code is in two loops. They allow to

address every potential argument in the dataset Y . In the worst case scenario, the inside of

the loops will be repeated as many times as the maximum number of potential arguments.

We study here the worst case complexity.

|Argk(Y)| = O(

(
m

k

)
∗ n) (5.4)

Thus,

|Arg(Y)| = O(
m∑
k=1

(
m

k

)
∗ n) = O(2m ∗ n) (5.5)

Inside the main loop, there are two additional costly actions:

• Minimality check (algorithm 2 on the facing page)

• Consensus check (algorithm 3)

As described in the pseudo-code algorithm algorithm 2 on the facing page, checking

if a set of feature-value pairs e.g. the potential argument is minimal, we need to verify

if every subset of this potential argument is not already an argument. The worst case

complexity for minimality check is

O(
k−1∑
i=1

(
k − 1

i

)
) (5.6)

times the complexity of the set.in python operation which is equal to O(k) in the worst

case. Thus, the worst case complexity for minimality check:

O((2k−1) ∗ k) (5.7)

The worst case complexity for the multiple sets intersection is

(n− 1) ∗O(l) (5.8)
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where l is max(len(s1), .., len(sn)) according to the python documentation.

In conclusion, the complexity for the generation of all arguments is

O(
m∑
k=1

(

(
m

k

)
∗ 2k−1 ∗ k) ∗ n) = O(3m ∗m ∗ n) (5.9)

In practice, the experiments remain quite far from the worst case scenario. There

is a balancing effect depending on the size of the dataset. A smaller dataset observes

lesser combinations of feature values while a larger one is likely to have many redundant

potential arguments. In the next sub-section, in addition to simple experiments to give an

intuition on the number of arguments, we show the computation time for several datasets,

varying the number of feature-values or the number of instances.

5.2.4 Experiments

We display the number of arguments found for several setups. The goal is to build an

intuition on how quickly the number of arguments increases with the number of instances

in the dataset Y . We lead experiments on different number of inputs and different datasets.

5.2.4.1 Number of arguments

For the diabetes and adult datasets, we plot the number of arguments for 25, 50, 75, 100,

200, 300 and 500 first instances of the training dataset. They define our input dataset Y .

Figure 5.2 shows that the number of arguments grows with the number of instances.

We also observe that the number of arguments can easily exceed the number of instances

to explain.

5.2.4.2 Proposition validation

It is possible to probe the whole input space on short datasets. For this experiment, we

only use the features selected and listed in section 5.1. We take advantage of this to

observe how the number of arguments grows when the knowledge of the input space is

greater. We enumerate the arguments for 1/8, 2/8 ... 8/8 of the whole input space by

synthetically generating the inputs and predicting their class with the black-box classifier.

Figure 5.3 confirms this trend. We can see that the number of arguments decreases when

we get closer to the input space, and their length grows.

In order to explain this behavior, we can use proposition 15.

Proposition 15 Let T be a theory and Y ⊆ X (T). For every I ∈ Y, if L ∈ ga(I), then

∃L′ ⊆ L such that L′ ∈ gp(I).
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Figure 5.2: Arguments enumerated for portions of the training set

From the proposition, we can deduce that |Arg(F)| ≤ |Arg(S)|,∀S ⊆ F . The result

of the experiment with the whole dataset illustrates well a consequence of this property.

We can conclude that the number of rules we can extract from 1 or 2/8 of the full input

space is much higher than when we approach the full input space. This images the

difference between the plausible (definition 15 on page 65) and the absolute explanation

functions (definition 14 on page 64). We can make the hypothesis that because of the lack

of knowledge, we assume too many plausible explanations. With better knowledge, the

argument enumeration process generates less arguments because they are more constrained

by the rest of the instances. To verify this, it is interesting to study the attack relations

between arguments and how they evolve with more or less knowledge.

5.3 Argumentation System: Attack relations

After the enumeration of all arguments, it is likely to find incoherences between arguments

(example 13). This is the case when two arguments have consistent support but contrary

conclusions (definition 18 on page 71). In this section, we explain how we detect these

incoherences.

Example 13 Suppose a1 = ⟨L1, c1⟩ and a2 = ⟨L2, c2⟩ are two arguments generated.

a1 = ⟨{ Sex=Female, Workclass=State-gov }, > $50k⟩
a2 = ⟨{ Sex=Female, Relationship=Not-in-family}, < $50k⟩
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Figure 5.3: Arguments enumerated using portions of the input space

It is possible to find and instance I such that L1 ∪ L2 ⊆ I. However according to a1, I

would be predicted to c1 and according to a2, it would be predicted to c2. This is incoherent.

To build the set of attacks, we check for each possible pair of arguments of different

class if they are consistent. The consistency function is given in algorithm 4.

Algorithm 4 is consistent

Pre-condition: arg1 and arg2 have different conclusions.
Input: arguments arg1 and arg2 given as sets of literals.
Parameter: feature is a mapping corresponding each feature value to its feature
Output: True if arg1 and arg2 are consistent.

1: Let unionargs = sorted(union(arg1, arg2))
2: for k ∈ 0..len(unionargs) − 1 do
3: if features[k] == features[k + 1] then
4: return False
5: end if
6: end for
7: return True

The union steps allows to “merge” literals that are the same for both arguments. The

sort allows to order the literals by feature. Then the for loop checks if two (different)

literals have the same feature but different values. If so, the arguments are inconsistent.

The pseudo-code for the attacks enumeration from the list of arguments id given in

algorithm 5 on the next page.
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Algorithm 5 attacks enumeration

Input: arguments args0 and args1 lists of arguments for class 0 and class 1.
Output: List of attacks as pairs of arguments.

1: Ratk = []
2: for a1, a2 ∈ product(args0, args1) do
3: if is consistent(a1, a2) then
4: Ratk = Ratk ∪ (a1, a2)
5: end if
6: end for
7: return Ratk

There are two conditions for an attack. The first one is that both arguments have the

different classes. By taking elements of the cartesian product (line 2) we can select all

pairs of arguments with different conclusion c. The second condition is the consistency.

The function is consistent is in charge of this verification.

5.3.1 Complexity

There are two steps in the function. Let’s suppose the maximum length of arguments is

m. Firstly, we use a product of two sets of arguments (one for each class): for n 0, n 1

arguments, we have n0 ∗n1 calls of is consistent. Secondly, the is consistent function takes

at most 2 ∗m verifications.

In conclusion, the worst case complexity for the attacks enumeration procedure is

O(m3)

5.3.2 Experimental results

We show in the in fig. 5.4 on the following page the total number of attacks in the AS

according to the number of instances. In this case, we use data from the training set,

keeping the number of instances low. In fig. 5.5 on page 95, we repeat the experiment for

the whole input space.

These two experiments allow to view the differences in consistency between the infor-

mation extracted from a small portion and a large portion of the input space. From these

graphs, we can see that the maximum number of attacks is before 1/8 for all datasets.

After, the global number of attacks keeps decreasing until reaching 0 attacks. The AS

reached zero attack when the arguments extracted are all coherent with each other. This

is the case for the absolute abductive explanation function (definition 14 on page 64).

In fig. 5.6 on page 96 and fig. 5.7 on page 97, we showcase the number of attacks per

argument. These experiments show the inconsistency of knowledge in the dataset. An

attack between two arguments highlights a contradiction between both arguments. Instead

of showing the Argument System’s (AS) graph, we prefer to show the box plots of attacks
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Figure 5.4: Number of attacks (in millions) on arguments enumerated using portions of
the training set

per arguments in several settings. In fig. 5.6 on page 96, we study the AS for 25, 50, 75,

100, 200, 300 and 500 instances from the training dataset. Although we don’t show the

outliers for the box plots, we note that in this setting, no argument is left unattacked. For

fig. 5.7 on page 97, we repeat the experiment on the 8 portions of the full input space.

This experiment shows for each dataset, the number of times an argument can be

inconsistent with another argument. The results are similar to the global number of attacks

per instances. We can see that for small initial datasets, the number of attacks keeps

increasing. The number of attacks increases until reaching its maximum (located before

1/8 of the full-input space) and then slowly decreases to reach zero attack per argument.

5.4 Extension Enumeration

In argumentation, (Dung, 1995) introduced a means to evaluate conflicts between arguments

using an extension based semantics. This semantics is explicited in definition 6 on page 51.

From the argumentation system, it is possible to enumerate extensions. This is the

most challenging computational problem of this framework. By enumerating all extensions,

it is possible to find the most relevant sets of conflict-free sets of arguments to explain

decisions. We will first present the problem of listing all stable extension adapted to our

case, then we will present the selected solution.
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Figure 5.5: Number of attacks (in millions) on arguments enumerated using portions of
the input space

Now that the Argument System has been computed from the dataset Y our goal is

to find sets of argument that are coherent with each other. Coherence is one out of two

important guarantees for this explainer. We recall the definition of Coherence in Principle

principle 2 on page 68

Principle 3 (Coherence) A refined plausible explainer g satisfies coherence iff for any

classifier R, any theory T, any I, I ′ ∈ Y, if R(I) ̸= R(I ′), then ∀L ∈ g(I), ∀L′ ∈ g(I ′),

L ∪ L′ is inconsistent.

In other words, a coherent position is a set of arguments which is conflict-free. Thus,

an explainer would be coherent if and only if all returned explanation would belong to the

same coherent position. In argumentation, this position is also called a naive extension or

in our case, because the attack relation is symmetric, a stable extension.

The next phase of the explanation process consists in enumerating extensions of the

stable semantics. Later, from the set of all extensions, a collection of extensions is then

selected according to the selection function and aggregated according to the inference rule.

This selection function and the inference rule can be chosen according to the user’s needs.

We detail these extensions in section 5.5.

We remind the reader of the Stable Semantics is in definition 24 on the next page.
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Figure 5.6: Number of attacks per arguments enumerated using a portion of the training
set

Definition 24 (Stable Semantics) Let AS = ⟨Arg(Y),R⟩ and E ⊆ Arg(Y).

• E is conflict-free iff ∄a, b ∈ E such that (a, b) ∈ R.

• E is a stable extension iff it is conflict-free and ∀a ∈ Arg(Y) \ E, ∃b ∈ E such that

(b, a) ∈ R.

Let σ(AS) denote the set of all stable extensions of AS.

In this section we explain the problem of enumerating and processing the extension to

return a coherent set of explanations.

5.4.1 Extension Enumeration problem equivalence in graph the-

ory

The extension enumeration problem is a well-known problem in Argumentation as well

as in graph theory. The corresponding problem in Graph theory is listing all Maximal

Independant sets. Independant sets are sets of vertices in a graph, no two of which are

adjacent. The maximality, or inclusion-wise maximality, means that there are no superset

of a maximal set that is also an independant set. This problem has been studied for many

years in the scope of graph coloring, which is a well known NP-Complete problem. The

listing of all maximal independant sets is a subroutine of this algorithm. This is also the

complementary problem of listing all maximal cliques in a graph. In (Eppstein, 2000), the

authors show an upper bound for this problem. The difficulty of this problem does not

stem from the search of maximal independant sets but rather from their number. The

number of maximal independent sets in an n-vertex graph is bounded by the limit 3n/3,

found in (Moon and Moser, 1965).
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Figure 5.7: Number of attacks per arguments enumerated using a portion of the input
space

5.4.2 Implementation: Solver choice

We found 4 alternatives for the enumeration of extensions.

• NetworkX: This library implements an algorithm for listing all maximal cliques in

a graph proposed in (Zhang et al., 2005).

• NetworKit: This library implements a solution proposed in (Eppstein and Strash,

2011) for listing maximal cliques that is optimized to work with large sparse graphs.

• graph-tool: This library implements the first algorithm proposed in (Bron and

Kerbosch, 1973) for listing all maximal cliques, with a few improvements.

• Aspartix: Aspartix is a tool based on the clingo answer set solver.

NetworkX is an efficient python library for graphs. Aspartix is an implementation for

computational argumentation. It was presented several times for the ICCMA challenge

and the results are always very relevant. Since it is a older project, it is well documented

and easier to set up. In order to make our implementation versatile, we decided to let

the user able to choose between two solutions. NetworkX is an ‘easy’ solution for the
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|Y| |Arg| |R| atks/node nx nk gt aspartix |σ(AS)|

50 97 818 16.86 1.28 0.5 1.32 2.618 156022
60 91 715 15.7 1.51 0.56 1.44 2.812 178491
70 112 1006 17.96 13.6 5.6 15.4 26 1568822
80 112 949 16.98 20.2 9.16 25.98 43.696 2777435
90 116 930 16.03 51 22.9 63.7 114.47 7317620
100 121 927 15.3 106.5 ME 145 259 16174014
150 138 1050 15.2 912 1260 2076

Table 5.7: Performances comparaison (in seconds) for solvers, NetworkX (nx), NetworKit
(nk), graph-tool (gt) and Aspartix

framework. It is efficient and reliable, there is also no treatment necessary as the AS is

already encoded with this library. Using NetworkX is a good solution for testing with

reasonably small argumentation systems. However, with bigger graphs, we encounter

memory issues. Thus, the best alternative is Aspartix with clingo. This is an efficient

implementation and the extensions can be listed in a text file without memory issues.

However, it is necessary to extract the argumentation system and solve the enumeration

problem outside of the python framework. In the end, both solutions allow the user to

create an extension generator that will be available for the explanation function section 5.5.

5.4.3 Stable Extensions Enumeration solutions: Comparative

study

In order to have a better feel on how each solution handles our problem, we gave the

argumentation system from our simplest dataset: Titanic. We made each solution complete

the task on a range of Argumentation Systems generated with different number of instances.

The results are gathered in table 5.7.

NetworKit (nk) takes excessive an amount of memory (Memory Error) for only 100

instances. NetworkX is also confronted to Memory Errors but for bigger Argumentation

Systems. NetworkX seems to be the most fitting and practical option in our test setup.

However, Aspartix is more promising for bigger experiments because it does not seem to

have a memory cap. Graph-tool’s performances are roughly the same as NetworkX but a

bit slower on this task.

5.4.3.1 The pipeline’s bottleneck

The coherence is guaranteed by the analysis of all extensions. Depending on the chosen

selection function (section 4.6) we need to compute the coverage of each extension.

The coverage computation for one extension is in O(n) with n the number of arguments

in the class. But either for the coverage by instance or the coverage by class, the cost is
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multiplied by the large number of extension, making the implementation hard to use for

large ASs.

5.5 Explanation Functions

In section 4.6, we defined a collection of parameterized explanation functions. These

functions are implemented in this framework. Given the set of all extensions given by

the solver (section 5.4), the explanation function returns a set of arguments. This set

of arguments holds the arguments that will be used for explaining the instances of the

dataset. They are chosen by the user using two parameters.

• Selection function: The selection functions are defined in definition 20 on page 73.

The selection function is the policy for choosing which extensions are relevant for

explaining our dataset.

• Inference rule: The inference rules are defined in definition 21 on page 74. The

inference rule decides how to aggregate the extensions selected by the selection

function.

5.5.1 Selection Functions

The selection of extension is made by enumerating all extensions and keeping the extensions

according to the policy alpha. In the following list, we give an intuition for all selection

policies.

• The Max selection function takes all possible stable extension from the argumentation

system.

• The Card function takes the extension that has the maximum number of arguments.

If several extensions have the same, maximum, amount of arguments, they are all

returned.

• The Incli takes all extension whose set of covered instances of the dataset is maximal

(for set-inclusion).

• The Cardi function takes the extensions that have the maximum coverage over the

dataset. The coverage is the cardinal of the set of arguments covered by the extension.

If there are several extension with the same coverage cardinal, they are all selected.

• The Inclc function takes all extensions which set of covered classes is maximal (for

set-inclusion).
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• The Cardc function takes extensions that have the largest amount of classes covered

by the arguments.

• The Mix selection is given by applying the selection Cardc on the result of another

selection Cardi.

5.5.1.1 Selection functions: Implementation

We remarked that the enumeration of extension is an expensive process. As a conse-

quence, the extraction of explanation from the large collection also is a computational

challenge. There are two ways to process the extensions. The extensions are fed as a

stream to avoid memory overload. For example, it is inefficient or even impossible to

compute the intersection or union of millions of sets at the same time. In this subsec-

tion, we expose our solution to return the selection of extension for each policy α for

α ∈ {Max,Card, Cardi, Cardc, Incli, Inclc}.

In the case of Max, no treatment is necessary, we only need to apply the inference rule.

In the case Card, we simply iterate over extensions and check the length of the extensions.

For Cardi and Cardc, we use hash tables, generated during the argument enumeration,

to retrieve the covi or covc of each argument in the extension. The cardinals are the length

of the union of the all covi or covc. Thank to the hash tables, we can compute in O(1) the

coverage for each argument. The complexity comes from repeating the hash search and ag-

gregating the coverages. With |ext| the length of an extension and m the maximum size of

the arguments’ coverage, the complexity to compute Cardi for one extension is O(|ext|∗m)

For Incli and Inclc, the solution is more complex. We explain it with algorithm 6

on the next page. The coverage hash table cov designates the class coverage for Inclc

and the instance coverage for Incli. The complexity inside the first for loop depends on

the complexity of the covext construction (same complexity as for Cardi and Cardc) and

the complexity of the nested loop. The complexity of the inner loop is majored by the

number of passing through the first loops times the complexity of the two set comparisons

(O(len(s1) ∗ len(s2) in the worst case). We can write the complexity of algorithm 6 on the

facing page as in eq. (5.10) with m the maximum size of the arguments’ coverage and M

the maximum size of the extension’s coverage.

O(

|σ(AS)|∑
e=0

[|σ(AS)| ∗m ∗ e ∗M2]) = O(|σ(AS)|3 ∗m ∗M2) (5.10)

We sum up the complexities of each selection function in table 5.8 on page 102 with

σ(AS) the set of all stable extensions in the AS, m the maximum size of the arguments’
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Algorithm 6 Selection process for Incli and Inclc
Input: cov the hash table of coverage per argument.
Input: σ(AS) the set of all extensions.
Input: cap the maximum number of extension to select.
Output: List of selected extensions.

1: coveragesext = dict()
2: for ext ∈ σ(AS) do
3: if len(coveragesext) > cap then
4: return coveragesext
5: end if

coveragesarg = ∅
6: for arg ∈ ext do
7: Add cov[arg] to coveragesarg
8: end for
9: covext =

⋃
(coveragesarg)

10: remove = []
11: add ext = Bool(True)
12: for c ∈ coveragesext do
13: if c ⊂ covext then
14: Add c to remove
15: else if covext ⊂ c then
16: add ext = False
17: break
18: end if
19: end for
20: for e ∈ remove do
21: Remove e from coverageext
22: end for
23: if add ext then
24: Add covext to coveragesext
25: end if
26: end for
27: return coveragesext

coverage, M the maximum size of the extension’s coverage and E the cardinal of the

largest extension.

5.5.2 Inference Rules

Inference rules are defined in the definition 21 on page 74. The apply inference function

returns the set of arguments that are accepted as explanations. The function takes an

inference principle as input to aggregate the different extension that were previously

selected. The possible inference principles are given below.

• universal: the function returns the intersection of all selected extensions.
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Function Max / Card Cardi / Cardc Incli / Inclc
Complexity O(|σ(AS)|) O(|σ(AS)| ∗ |E| ∗m) O(|σ(AS)|3 ∗m ∗M2)

Table 5.8: Complexities of selection functions

Instance Arguments Sample explanation
0 0 None
1 5 ⟨{ Sex=Female, Relationship=Not-in-family, Workclass=State-gov }, >$50k ⟩
2 8 ⟨ Sex=Female, Age=’Age > 48.00’, Capital Loss=0, Hours per week=

’Hours per week <= 40.00’, Capital Gain=0 }, <$50k ⟩

Table 5.9: Sample results for gCardi,∀. For instance n, we found x coherent arguments.
One argument is showcased in the last column.

• existence: the parameter returns the union of all selected extension.

5.5.3 Experiments

In this section, we show a panel of explanations that we computed using our explanation

functions. Since the coherence is proven for universal inference, we detail the scores in

terms of success.

5.5.3.1 Result example: adult dataset

In this experiment, the explanation framework is used to explain a dataset of 100 instances

on the adult dataset. Once the arguments are generated and the argumentation system

defined, the solver enumerates all stable extensions. From the results file of the solver, a

generator of all extensions is created and used to make the selection of extensions. Then,

the set of selected extensions is aggregated according to the inference principle. Table 5.9

shows a sample of 3 explanations given by the gCardi,∀ explanation function for instances

0, 1 and 2 of the training set. For the first instance, no coherent explanation was found.

For the second and third instances, we found respectively 5 and 8 arguments to explain

the instance. One of the argument is proposed on the last column.

5.5.3.2 Orders of magnitude

Now that the full explanation pipeline is built, we are interested in the order of magnitude

of the different elements of the framework (instances, arguments, attacks, extensions). We

consider one experiment per dataset and only a minimum amount of features (only the

white lines of the dataset feature tables are used). In table 5.10 on the next page, we

report the number of instances |Y| in the dataset Y, the number of attacks |R| and the

number of stable extensions found by the solver |σ(AS)|.
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Dataset |Y| |Arg(Y)| |R| |σ(AS)|
adult 100 162 2639 3.2 · 106

diabetes 50 114 816 5.6 · 106

titanic 100 121 927 1.6 · 107

rcdv 50 241 5966 6.8 · 107

lending 50 111 573 3.2 · 107

Table 5.10: Orders of magnitude of the number of instances |Y|, the number of arguments
|Arg(Y)|, the number of attacks |R| and the number of extensions |σ(AS)| for each
experiment.

5.5.3.3 Success

In this subsection, we observe Success defined in principle 1 on page 67. Although success is

a binary principle, it is possible to measure how close an explanation function is to validate

it. We use the coverage (as defined in section 2.3.2) of the function over the dataset Y.

We compute explanations given by our explanation function gα,β and vary the parameters

α ∈ {Max,Card, Cardi, Cardc, Incli, Inclc,Mix} and β ∈ {∀,∃}. In table 5.11 on the

next page, we sum up the coverage values of each experiment. We also report the number

of extensions selected by the α policy (in the # columns). Note that the Mix selection

function yields the same results as Cardi since the Cardc selection function selects near

all extensions. Indeed, in a binary classification problems, extensions with a high Cardi

always cover both classes. In the case of gIncli , it is important to note that we capped the

number of selected extensions to avoid memory errors. As a consequence, the coverage

results are not exact. However, the results provide upper (for β = ∀) and lower (for β = ∃)

bounds for the real coverage values.

By observing the results, we can confirm that:

• gMax,∃ always has perfect coverage, which is a consequence of Success, confirming

theorem 2 on page 78.

• gcardi ,∀ always maximizes the coverage in the case of Coherent explanation functions.

Furthermore, we can make a few observations:

• For gMax,·, that selects all extensions, the explanation function returns no explanation

for the ∀ inference. This is due to the fact that all arguments are attacked at least

once. In opposition, for the ∃ inference, Y is fully covered. These observations can

be validated by proposition 9 on page 75.

• For selections with large amounts of extensions, like {Max,Cardc, Inclc}, the func-

tions tend to behave like gMax,·. Since almost all extensions seem to be chosen (the

number of selected extensions is very close to #gMax,·, it is very unlikely that an
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Dataset adult diabetes titanic rcdv lending

|Y| 100 50 100 50 50

∀ ∃ # ∀ ∃ # ∀ ∃ # ∀ ∃ # ∀ ∃ #

gMax,· 0 100 3208169 0 100 5598491 0 100 15854797 0 100 67683419 0 100 31884985
gCard,· 45 45 1 68 68 1 53 53 1 46 46 1 52 52 1
gCardi,· 69 91 36 84 100 5 83 85 10 74 98 170 84 88 6
gCardc,· 0 100 3208167 0 100 5598450 0 100 15854795 0 100 67683417 0 100 31884983
gIncli,· 0 100 11572 0 100 22906 0 100 116185 0 100 9216 0 100 76007
gInclc,· <22 >84 > 2 · 105 0 100 > 2 · 105 <6 >81 > 2 · 105 <6 >90 > 2 · 105 <2 >90 > 2 · 105
gMix,· 69 91 36 84 100 5 83 85 10 74 98 170 84 88 6

Table 5.11: Success: Coverage values

argument remains out of the union (for ∃ inference) or in the intersection (in the

case of ∀ inference).

• We note that covi(Incli(σ(AS))) = covi(Max(σ(AS))) in all experiments. Is it

always true? Let Incli(Σ), the set of all extensions ϵ which covi(ϵ) is subset-maximal.

Σ a set of extensions. Let ϵ∗ a new extension, if covi(ϵ
∗) is subset-maximal,

covi(
⋃

ϵ∈Incli(Σ)∪ϵ∗
) = covi(

⋃
ϵ∈Incli(Σ∪ϵ∗)

) (5.11)

On the contrary, if covi(ϵ
∗) is not subset-maximal, then ∃ϵ′ ∈ Σ, covi(ϵ

∗) ⊂ covi(ϵ
′).

Thus, because covi is distributive,

covi(
⋃

ϵ∈Incli(Σ)∪ϵ∗
) =

⋃
ϵ∈Incli(Σ)\ϵ′

covi(ϵ) ∪ covi(ϵ
′) ∪ covi(ϵ

∗) = covi(
⋃

ϵ∈Incli(Σ)

) (5.12)

By induction, with a trivial initialization, we show that it is always true.

5.6 Further experiments

Our experiments focused on analysing the behavior of the concepts introduced in chapter 4

with an arbitrary set of instances. Additionally, we saw that the size of the argumentation

system, has an important impact on the number of extensions. Firstly, further experiments

could investigate how the input set of instances impacts the creation of arguments. It

would be interesting to measure the impact of the distribution of the initial dataset. As ML

models are trained on real world data, they are probably more predictable on a real-world

distribution. The goal would be to find a dataset that presents less inconsistencies to

make the AS more sparse. We could take advantage of this sparsity to compute extensions

more efficiently. This research lacks an evaluation of the explanation themselves. The

explanations could be compared to either a state-of-the art explanation function such as

Anchors or to an intrinsically interpretable model such as a random forest classifier from

which we can easily extract rules and compare them to our explanations.
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5.7 Conclusion

The implementation of the theoretical proposition was challenging mainly because of the

complexity stakes of the problem raised. We were able to propose a framework that works

on binary classifier with categorical data. And we lead experiments on 5 well-known

dataset of the field’s literature. The experiments were able to confirm a few observations

that we raised in the theory as well as showing behavior of the argumentation system on

different datasets and input space sizes. There are still improvements to be made. For

example, like the ICCMA’s dynamic track section 3.3 shows, extensions can be computed

dynamically. With explanations are updated as new inputs are predicted and added to

the Argumentation Framework, the global process could be more adapted to real-world

use and avoid running the whole pipeline for new sets of instances.
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Chapter 6

Conclusion

In this thesis, we addressed the issue of explaining machine learning models. Firstly,

we described the landscape of explainability in AI and focused on a particular aspect:

model-agnostic explainers for classifiers. Secondly, we presented the basics of abstract

argumentation. Our goal being to use it as a tool to build explanations from a small set

of data labeled by the prediction model. Based on this abstract framework we formally

defined two essential principles that explainers should guarantee: coherence and success.

To showcase these principles, we propose a family of parameterizable explanation functions

which are tailored to guarantee one or the other property. Unfortunately, we proved

that no refined plausible explainer can satisfy both principles. Finally, an experimental

implementation confronted the theoretical framework to five real-world datasets. In

addition to empirically verifying the explanation framework, the experiments provided

interesting results. In this last chapter, we summarize the results of this thesis and try to

answer the initial research questions.

How can argumentation can be leveraged to explain black-box models?

To achieve these results, we leveraged argumentation to build a strong formal framework

and define precisely our metrics. We saw that argumentation was a powerful tool to

study decisions under inconsistent information. Thanks to the modular characteristic of

argumentation, we were able to find a policy that fit our goals. We proposed a family of

parameterizable explanation functions that could be chosen according to the goal of the

user. We showed that the framework could be applied on benchmark datasets to provide

explanations on the initial dataset. We also showed that, thanks to the framework’s

simplicity, one can use intermediate results such as the argumentation system as a baseline

for further studies.

What desirable properties of explanations can we guarantee?

In this thesis, we addressed the issue of coherence in explanations given by explanators. We

defined coherence as the impossibility that two explanation could contradict each other
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in any situation. We also proposed the success that is a guarantee to yield explanations.

These strong guarantees are valid on any classifier, theory or initial dataset. Thanks

to the experiments, we showed the importance coherence in explanation systems and

that it was improbable to propose globally coherent explanations without considering

the whole input space. By trading off the coherence guarantees, it is possible to achieve

better success. Thanks to the modularity of our framework, it is possible to adapt the

explanation function to different contexts and goals. The user can either prioritize the

explanation of individual instances, or prefer explanation for whole classes.

What are the computational stakes of providing truthful explanations?

As expected with previous knowledge and confirmed by our experimentations, the

method is not scalable. There are two steps that require a lot of resources. The first

one is the generation of arguments. This process has a complexity exponential in the

number of features. The other part of the process that is very costly is the enumeration of

all extensions. This problem is well-known in the literature and researchers are actively

working on improving techniques for this task.

As a conclusion, we proposed a novel approach to explainability on Machine Learning

models. Our approach is a model-agnostic explainer that provides strong guarantees

on the explanations. The framework provides abductive explanations on a the set of

instances defined by the user and this set defines the extent of the formal guarantees. The

user can decide which explanation function, along with what guarantees he needs for his

task. Moreover, the framework is based on argumentation. This field of research is very

promising and has a lot to offer for explaining and providing a formal setting to define

well defined guarantees on explanations.

Discussion and Perpectives: The great challenge of explaining black-box models

comes from the problem of building knowledge from the black-box model by probing it

with instances. Today, perturbation based distributions are widely used to probe the

model around the instance to explain. In our setting, we decided to use a fixed dataset

that will serve as knowledge base to our explanations. The argumentation framework

allowed us to generate explanations based on the knowledge given by the dataset. As a

consequence, this dataset represents the extent of the guarantees of our principles success

and coherence.

In chapter 4 and chapter 5 we showed that scalability is a major limitation of our

framework. We saw previously that the amount of extensions was incredibly high and the

enumeration was a costly task. The enumeration of arguments is also a task that require

a lot of resources.
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Making the framework work dynamically could be an interesting upgrade. This would

ease both problems that we mentioned previously. First, with a dynamic framework, it

would be possible to extend the initial dataset that guarantees success and coherence as

the user generates the explanations. The computational argument competition ICCMA

opened a dynamic track in 2019, allowing the solvers to generate extensions as the

argumentation system is altered. With a dynamic framework the generation of explanation

could be more efficient by using the previous rules.

Although our framework is model-agnostic, it only works on categorical classifiers.

There already exists several limitations to this type of model. Firstly, the explanations

that are generated only work with meaningful features, and secondly, data structures

with many features make explanations in the form of abductive explanations less relevant

for explaining to human stakeholders since the explanations would contain too many

conditions.

We think that the framework could be used as a wrapper to other rule-based explanation

functions. For example, using Anchors (Ribeiro et al., 2018) to generate arguments and

our framework to study the coherence and success, the framework could detect attacks of

arguments and certify coherence.

The acceptability of arguments is a binary concept. However, argumentation proposes

different semantics such as ranking or weighting semantics. We could for example combine

the uncertainty of models to weight arguments. The use of these semantics could make

the framework propose more nuanced explanations and less complex generation process,

at the cost of coherence.
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J. Ferreira, M. d. S. Ribeiro, R. Gonçalves, and J. Leite. Looking Inside the Black-

Box: Logic-based Explanations for Neural Networks. Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning, 19(1):432–442,

July 2022. ISSN 2334-1033. doi: 10.24963/kr.2022/45. URL https://proceedings.kr.

org/2022/45/. Conference Name: Proceedings of the 19th International Conference on

Principles of Knowledge Representation and Reasoning. Cited on page 15.

R. Fong and A. Vedaldi. Net2Vec: Quantifying and Explaining how Concepts are Encoded

by Filters in Deep Neural Networks, Mar. 2018. URL http://arxiv.org/abs/1801.

03454. arXiv:1801.03454 [cs, stat]. Cited on page 27.

J. Fox and P. McBurney. Decision making by intelligent agents: logical argument,

probabilistic inference and the maintenance of beliefs and acts. In Proceedings 9th

International Workshop on Non-Monotonic Reasoning (NMR’2002), 2002. Cited on page

59.

J. Fox and S. Parsons. On using arguments for reasoning about actions and values. In

Proceedings of the AAAI Spring Symposium on Qualitative Preferences in Deliberation

and Practical Reasoning, Stanford, 1997. Cited on page 59.

118

http://arxiv.org/abs/cs/0011009
http://arxiv.org/abs/1103.0318
https://pubs.rsna.org/doi/abs/10.1148/rg.2017160130
https://hal.science/hal-02930949
https://proceedings.kr.org/2022/45/
https://proceedings.kr.org/2022/45/
http://arxiv.org/abs/1801.03454
http://arxiv.org/abs/1801.03454


A. Garcia and G. Simari. Defeasible logic programming: an argumentative approach.

Theory and Practice of Logic Programming, 4(1):95–138, 2004. Cited on page 59.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. Proceedings

of ICLP’88, MIT Press, 1990. Cited on page 53.

A. Ghorbani, A. Abid, and J. Zou. Interpretation of Neural Networks Is Fragile. Proceedings

of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688, July 2019. ISSN

2374-3468, 2159-5399. doi: 10.1609/aaai.v33i01.33013681. URL https://ojs.aaai.

org/index.php/AAAI/article/view/4252. Cited on page 27.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining

Explanations: An Overview of Interpretability of Machine Learning. In 2018 IEEE 5th

International Conference on Data Science and Advanced Analytics (DSAA), pages 80–89,

Turin, Italy, Oct. 2018. IEEE. ISBN 978-1-5386-5090-5. doi: 10.1109/DSAA.2018.00018.

URL https://ieeexplore.ieee.org/document/8631448/. Cited on pages 23 and 24.

B. Goodman and S. Flaxman. European Union regulations on algorithmic decision-making

and a ”right to explanation”. AI Magazine, 38(3):50–57, Sept. 2017. ISSN 0738-4602,

2371-9621. doi: 10.1609/aimag.v38i3.2741. URL http://arxiv.org/abs/1606.08813.

arXiv:1606.08813 [cs, stat]. Cited on page 15.

T. Gordon and N. Karacapilidis. The zeno argumentation framework. In Proceedings of

the sixth international conference on Artificial intelligence and law, pages 10 – 18. ACM

Press, 1997. Cited on page 59.

G. Governatori, M. Maher, G. Antoniou, and D. Billington. Argumentation semantics for

defeasible logic. Journal of Logic and Computation, 14(5):675–702, 2004. Cited on page 59.

R. Gozalo-Brizuela and E. C. Garrido-Merchan. ChatGPT is not all you need. A State of

the Art Review of large Generative AI models, Jan. 2023. URL http://arxiv.org/

abs/2301.04655. arXiv:2301.04655 [cs]. Cited on page 14.

A. Gramegna and P. Giudici. SHAP and LIME: An Evaluation of Discriminative Power in

Credit Risk. Frontiers in Artificial Intelligence, 4, 2021. ISSN 2624-8212. URL https://

www.frontiersin.org/articles/10.3389/frai.2021.752558. Cited on pages 37 and 43.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and F. Giannotti. A Survey

Of Methods For Explaining Black Box Models, June 2018. URL http://arxiv.org/

abs/1802.01933. arXiv:1802.01933 [cs]. Cited on page 22.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural

Networks. In Proceedings of the 34th International Conference on Machine Learning,

119

https://ojs.aaai.org/index.php/AAAI/article/view/4252
https://ojs.aaai.org/index.php/AAAI/article/view/4252
https://ieeexplore.ieee.org/document/8631448/
http://arxiv.org/abs/1606.08813
http://arxiv.org/abs/2301.04655
http://arxiv.org/abs/2301.04655
https://www.frontiersin.org/articles/10.3389/frai.2021.752558
https://www.frontiersin.org/articles/10.3389/frai.2021.752558
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933


pages 1321–1330. PMLR, July 2017. URL https://proceedings.mlr.press/v70/

guo17a.html. ISSN: 2640-3498. Cited on page 28.

G. Harman. Practical aspects of theoretical rationality. The Oxford Handbook of Rationality,

Al Mele and Piers Rawling, eds. (Oxford: Oxford University Press), pages 45–56, 2004.

Cited on page 56.

P. Hase and M. Bansal. Evaluating Explainable AI: Which Algorithmic Explanations

Help Users Predict Model Behavior? In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 5540–5552, Online, 2020. Association

for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.491. URL https:

//www.aclweb.org/anthology/2020.acl-main.491. Cited on pages 34, 36, 39, and 43.

D. Heckerman. A Tutorial on Learning with Bayesian Networks. In D. E. Holmes and L. C.

Jain, editors, Innovations in Bayesian Networks: Theory and Applications, Studies in

Computational Intelligence, pages 33–82. Springer, Berlin, Heidelberg, 2008. ISBN 978-

3-540-85066-3. doi: 10.1007/978-3-540-85066-3 3. URL https://doi.org/10.1007/

978-3-540-85066-3_3. Cited on page 15.

M. Henne, A. Schwaiger, K. Roscher, and G. Weiß. Benchmarking Uncertainty Estimation

Methods for Deep Learning with Safety-Related Metrics. 2020. URL https://publica.

fraunhofer.de/handle/publica/407174. Cited on page 28.

J. Hulstijn and L. van der Torre. Combining goal generation and planning in an argumen-

tation framework. In Proceedings of the 10th Workshop on Non-Monotonic Reasoning

(NMR’04), 2004. Cited on page 59.

A. Ignatiev and J. Marques-Silva. SAT-Based Rigorous Explanations for Decision Lists.
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M. Kröll, R. Pichler, and S. Woltran. On the Complexity of Enumerating the Ex-

tensions of Abstract Argumentation Frameworks. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelligence, pages 1145–1152, Mel-

bourne, Australia, Aug. 2017. International Joint Conferences on Artificial Intelli-

gence Organization. ISBN 978-0-9992411-0-3. doi: 10.24963/ijcai.2017/159. URL

https://www.ijcai.org/proceedings/2017/159. Cited on page 57.

T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong. Too much, too

little, or just right? Ways explanations impact end users’ mental models. In 2013 IEEE

Symposium on Visual Languages and Human Centric Computing, pages 3–10, San Jose,

CA, USA, Sept. 2013. IEEE. ISBN 978-1-4799-0369-6. doi: 10.1109/VLHCC.2013.

6645235. URL https://ieeexplore.ieee.org/document/6645235. Cited on page 39.

T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf. Principles of Explanatory Debugging

to Personalize Interactive Machine Learning. In Proceedings of the 20th International

Conference on Intelligent User Interfaces, pages 126–137, Atlanta Georgia USA, Mar.

2015. ACM. ISBN 978-1-4503-3306-1. doi: 10.1145/2678025.2701399. URL https:

//dl.acm.org/doi/10.1145/2678025.2701399. Cited on page 40.

A. Kumar, P. S. Liang, and T. Ma. Verified Uncertainty Calibration. In

Advances in Neural Information Processing Systems, volume 32. Curran Asso-

ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

f8c0c968632845cd133308b1a494967f-Abstract.html. Cited on page 28.

J.-M. Lagniez, E. Lonca, and J.-G. Mailly. CoQuiAAS: A Constraint-based Quick Abstract

Argumentation Solver. Nov. 2015. doi: 10.1109/ICTAI.2015.134. Cited on page 59.

Z. C. Lipton. The Mythos of Model Interpretability, Mar. 2017. URL http://arxiv.

org/abs/1606.03490. arXiv:1606.03490 [cs, stat]. Cited on page 39.

T. Lombrozo. Simplicity and probability in causal explanation. Cognitive Psychology, 55(3):

232–257, Nov. 2007. ISSN 00100285. doi: 10.1016/j.cogpsych.2006.09.006. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0010028506000739. Cited on page 39.

122

https://www.ijcai.org/proceedings/2017/159
https://ieeexplore.ieee.org/document/6645235
https://dl.acm.org/doi/10.1145/2678025.2701399
https://dl.acm.org/doi/10.1145/2678025.2701399
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8c0c968632845cd133308b1a494967f-Abstract.html
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://linkinghub.elsevier.com/retrieve/pii/S0010028506000739
https://linkinghub.elsevier.com/retrieve/pii/S0010028506000739


Y. Lou, R. Caruana, and J. Gehrke. Intelligible models for classification and regression. In

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 150–158, Beijing China, Aug. 2012. ACM. ISBN 978-1-4503-1462-

6. doi: 10.1145/2339530.2339556. URL https://dl.acm.org/doi/10.1145/2339530.

2339556. Cited on page 22.

S. Lundberg and S.-I. Lee. A Unified Approach to Interpreting Model Predictions, Nov.

2017. URL http://arxiv.org/abs/1705.07874. arXiv:1705.07874 [cs, stat]. Cited on

pages 15, 25, 30, 36, and 37.

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,

J. Himmelfarb, N. Bansal, and S.-I. Lee. From local explanations to global understanding

with explainable AI for trees. Nature Machine Intelligence, 2(1):56–67, Jan. 2020.

ISSN 2522-5839. doi: 10.1038/s42256-019-0138-9. URL https://www.nature.com/

articles/s42256-019-0138-9. Number: 1 Publisher: Nature Publishing Group. Cited

on page 37.

R. Luss, P.-Y. Chen, A. Dhurandhar, P. Sattigeri, K. Shanmugam, and C.-

C. Tu. Generating Contrastive Explanations with Monotonic Attribute

Functions. ArXiv, May 2019. URL https://www.semanticscholar.org/

paper/Generating-Contrastive-Explanations-with-Monotonic-Luss-Chen/

712d211cc66e1ac00076bf331c9bd9e3ab59e2ad. Cited on page 16.

L. v. d. Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine

Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928. URL http://jmlr.org/

papers/v9/vandermaaten08a.html. Cited on page 28.

T. Miller. Explanation in Artificial Intelligence: Insights from the Social Sciences, Aug.

2018. URL http://arxiv.org/abs/1706.07269. arXiv:1706.07269 [cs]. Cited on pages

14 and 29.

T. Miller. Contrastive explanation: a structural-model approach. The

Knowledge Engineering Review, 36:e14, Jan. 2021. ISSN 0269-

8889, 1469-8005. doi: 10.1017/S0269888921000102. URL https:

//www.cambridge.org/core/journals/knowledge-engineering-review/

article/abs/contrastive-explanation-a-structuralmodel-approach/

69A2E32B160C2C7FB65BC88670D7AEA7#access-block. Publisher: Cambridge

University Press. Cited on page 27.

T. Miller, P. Howe, and L. Sonenberg. Explainable AI: Beware of Inmates Running the

Asylum Or: How I Learnt to Stop Worrying and Love the Social and Behavioural

Sciences. Dec. 2017. Cited on page 22.

123

https://dl.acm.org/doi/10.1145/2339530.2339556
https://dl.acm.org/doi/10.1145/2339530.2339556
http://arxiv.org/abs/1705.07874
https://www.nature.com/articles/s42256-019-0138-9
https://www.nature.com/articles/s42256-019-0138-9
https://www.semanticscholar.org/paper/Generating-Contrastive-Explanations-with-Monotonic-Luss-Chen/712d211cc66e1ac00076bf331c9bd9e3ab59e2ad
https://www.semanticscholar.org/paper/Generating-Contrastive-Explanations-with-Monotonic-Luss-Chen/712d211cc66e1ac00076bf331c9bd9e3ab59e2ad
https://www.semanticscholar.org/paper/Generating-Contrastive-Explanations-with-Monotonic-Luss-Chen/712d211cc66e1ac00076bf331c9bd9e3ab59e2ad
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.07269
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7##access-block
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7##access-block
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7##access-block
https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/contrastive-explanation-a-structuralmodel-approach/69A2E32B160C2C7FB65BC88670D7AEA7##access-block


B. Mittelstadt, C. Russell, and S. Wachter. Explaining Explanations in AI. In Proceedings

of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, pages

279–288, New York, NY, USA, Jan. 2019. Association for Computing Machinery. ISBN

978-1-4503-6125-5. doi: 10.1145/3287560.3287574. URL https://doi.org/10.1145/

3287560.3287574. Cited on page 16.

C. Molnar. Interpretable Machine Learning. 2022. URL https://christophm.github.

io/interpretable-ml-book/. Cited on pages 23, 40, and 42.

J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics, 3(1):

23–28, Mar. 1965. ISSN 1565-8511. doi: 10.1007/BF02760024. URL https://doi.org/

10.1007/BF02760024. Cited on page 96.

N. Narodytska, A. Shrotri, K. Meel, A. Ignatiev, and J. Marques-Silva. Assessing Heuristic

Machine Learning Explanations with Model Counting. pages 267–278. June 2019a.

ISBN 978-3-030-24257-2. doi: 10.1007/978-3-030-24258-9 19. Cited on page 16.

N. Narodytska, A. Shrotri, K. S. Meel, A. Ignatiev, and J. Marques-Silva. Assessing

Heuristic Machine Learning Explanations with Model Counting. In M. Janota and

I. Lynce, editors, Theory and Applications of Satisfiability Testing – SAT 2019, volume

11628, pages 267–278. Springer International Publishing, Cham, 2019b. ISBN 978-

3-030-24257-2 978-3-030-24258-9. doi: 10.1007/978-3-030-24258-9 19. URL http:

//link.springer.com/10.1007/978-3-030-24258-9_19. Series Title: Lecture Notes

in Computer Science. Cited on page 61.

S. Parsons and N. R. Jennings. Negotiation through argumentation—a preliminary report.

In Proceedings of the 2nd International Conference on Multi Agent Systems, pages

267–274, 1996. Cited on page 60.

S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of some formal

inter-agent dialogues. Journal of Logic and Computation, 13 (3):347–376, 2003. Cited on

page 60.

V. Petsiuk, A. Das, and K. Saenko. RISE: Randomized Input Sampling for Expla-

nation of Black-box Models, Sept. 2018. URL http://arxiv.org/abs/1806.07421.

arXiv:1806.07421 [cs]. Cited on pages 25 and 27.

N. Potyka, X. Yin, and F. Toni. Explaining Random Forests using Bipolar Argumentation

and Markov Networks (Technical Report), Nov. 2022. URL http://arxiv.org/abs/

2211.11699. arXiv:2211.11699 [cs]. Cited on page 60.

H. Prakken. Formal systems for persuasion dialogue. Knowledge Engineering Review, 21:

163–188, 2006. Cited on page 60.

124

https://doi.org/10.1145/3287560.3287574
https://doi.org/10.1145/3287560.3287574
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/BF02760024
https://doi.org/10.1007/BF02760024
http://link.springer.com/10.1007/978-3-030-24258-9_19
http://link.springer.com/10.1007/978-3-030-24258-9_19
http://arxiv.org/abs/1806.07421
http://arxiv.org/abs/2211.11699
http://arxiv.org/abs/2211.11699


M. Proietti and F. Toni. A Roadmap for Neuro-argumentative Learning. 2023. Cited on

page 60.
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Titre : Analyse et explication par des techniques d’argumentation de modèles d’intelligence artificielle basés sur des données
Mots clés : Explicabilité, Apprentissage, Argumentation
Résumé : La classification est une tâche très courante dans le domaine de l’apprentissage automatique et les modèles d’apprentissage automatique
créés pour accomplir cette tâche tendent à atteindre une précision comparable à celle des humains, au détriment de leur transparence. L’apparition
de ces systèmes intelligents dans le quotidien du public a créée un besoin d’explicabilité. Les explications abductives sont l’un des types d’explications
les
plus populaires qui sont fournies dans le but d’expliquer le comportement de modèles
d’apprentissage complexes, parfois considérés comme des
boîtes noires. Elles mettent en évidence les caractéristiques qui sont suffisantes pour que le modèle prédise une certaine
classe. Dans la littérature,
elles sont générées en explorant l’ensemble de l’espace des
caractéristiques, ce qui n’est pas raisonnable en pratique. Cette thèse aborde ce problème
en introduisant des fonctions d’explication qui génèrent des explications abductives `a
partir d’un échantillon arbitraire d’instances. Elle montre que
de telles fonctions doivent
être définies avec beaucoup de soin car elles ne peuvent pas satisfaire simultanément deux propriétés souhaitables, à
savoir l’existence d’explications pour chaque décision individuelle et l’existence d’explications abductives. décision individuelle (success) et
l’exactitude des explications (coherence). Cette thèse fournit une paramétrée de fonctions d’explication basées sur l’argumentation, chacune
satisfaisant l’une des ces deux propriétés. De plus, elle étudie leurs propriétés formelles ainsi que leur comportement expérimental sur différents
ensembles de données.

Title: Analyzing and explaining data-driven Artificial Intelligence Models by argumentation
Key words: Machine Learning, Argumentation, Explainability
Abstract: Classification is a very common task in Machine Learning (ML) and the ML models created
to perform this task tend to reach human
comparable accuracy, at the cost of transparency.
The surge of such AI-based systems in the public’s daily life has created a need for
explainability.
Abductive explanations are one of the most popular types of explanations
that are provided for the purpose of explaining the behavior of complex
ML models
 sometimes considered as black-boxes. They highlight feature-values that are sufficient for
 the model to make a prediction. In the
literature, they are generated by exploring the
whole feature space, which is unreasonable in practice. This thesis tackles this problem by
introducing
explanation functions that generate abductive explanations from a sample
of instances. It shows that such functions should be defined with great
care since they
cannot satisfy two desirable properties at the same time, namely existence of explanations
for every individual decision (success) and
correctness of explanations (coherence). This
thesis provides a parameterized family of argumentation-based explanation functions, each of which
satisfies one of the two properties. It studies their formal properties and their experimental behaviour on different datasets.
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