
HAL Id: tel-04612745
https://theses.hal.science/tel-04612745

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Simulations of Cavitation in Blood Vessels
Using Parallel Front Tracking Method

Ahmed Basil Kottilingal

To cite this version:
Ahmed Basil Kottilingal. Numerical Simulations of Cavitation in Blood Vessels Using Parallel Front
Tracking Method. Mechanics [physics]. Sorbonne Université, 2023. English. �NNT : 2023SORUS741�.
�tel-04612745�

https://theses.hal.science/tel-04612745
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
SORBONNE UNIVERSITE

École doctorale n◦ 391: Sciences mécaniques, acoustique, électronique et robotique
de Paris

réalisée à

Institut Jean le Rond ∂’Alembert

pour obtenir le grade de

Docteur de Sorbonne Université

présentée par

Ahmed Basil KOTTILINGAL

Sujet de thèse

Numerical Simulations of Cavitation in
Blood Vessels Using Parallel Front

Tracking Method

Soutenue le 12 Décembre 2023 devant un jury composé de

Dr. Stéphane VINCENT Rapporteur Université Gustave Eiffel,
Champs-Sur-Marne

Dr. Manolis GAVAISES Rapporteur City University, London
Dr. Stéphane POPINET Président du jury Sorbonne Université, Paris
Dr. Daniel FUSTER Invité Sorbonne Université, Paris
Dr. Ruben SCARDOVELLI Examinateur University of Bologna, Bologna
Dr. Taraneh SAYADI Examinatrice Sorbonne Université, Paris
Dr. Stéphane ZALESKI Directeur de thèse Sorbonne Université, Paris

Abstract

Targeted Drug Delivery, using acoustic cavitation of coated microbubbles (MB), is currently
a significant area of research in medicinal biology. Due to the multifaceted nature of the
phenomena involved, numerical modeling of targeted drug delivery is a complex task. This
thesis primarily focuses on the implementation of immersed boundarymethods (alongwith front
tracking methods) to capture compressible multiphase flows and fluid-structure interactions
between fluids and thin elastic capillary walls. These models are essential for simulating
drug delivery. The immersed boundary method is applied within a cell-based adaptive mesh
refinement framework.

Additionally, this thesis delves into addressing the challenges associated with scalable
models for adaptive mesh refinement (AMR)-based immersed boundary methods. Partition of
the Eulerian Mesh aiming for optimized communication among parallel processors in solvers
that use both Lagrangian SurfaceMesh andAMR-based Eulerianmesh is challenging because of
the different types of communication involved (Lagrangian to Eulerian, Eulerian to Lagrangian,
Lagrangian to Lagrangian) and also due to the adaptive nature of the Eulerian Mesh. The thesis
proposes a partition of Lagrangian mesh such a way that each processor owns the local vertices
of the mesh and maintains a ghost layer of elements and vertices, which ensures all the local
vertices have their valence vertices, edges, and elements either in the local partition or the
ghost layer. This kind of partitioning is optimal for communication but requires synchronized
algorithms for operations involving front regridding and front topology operations.

The compressible multiphase flow solver, implemented using front tracking, extends the
Volume-of-Fluid (VoF)-based All-Mach solver developed by Fuster and Popinet 2018, which
handles compressibility of both fluids and surface tension effects.

iii

iv

Résumé

Administration ciblée de médicaments, utilisant la cavitation acoustique de microbulles en-
robées , constitue actuellement un domaine de recherche important en biologie médicale.
En raison de caractère multiforme des phénomènes mis en jeu, modélisation numérique des
phénomènes ciblés l’administration de médicaments est une tâche complexe. Cette thèse se
concentre principalement sur mise en œuvre de méthodes de frontières immergées (ainsi que
de méthodes de suivi de interface) pour capturer les écoulements multiphasiques compressibles
et les interactions fluide-structure entre les fluides et les fines parois capillaires élastiques. Ces
modèles sont indispensables pour simuler l’administration de médicaments. La méthode des
limites immergées est appliquée dans un cadre de raffinement de maillage adaptatif basé sur les
cellules.

De plus, cette thèse se penche sur les défis associés avec des modèles évolutifs pour le
raffinement adaptatif du maillage (AMR) immergé méthodes de frontière. Partition du maillage
eulérien visant une communication optimisée parmi les processeurs parallèles dans les solveurs
qui utilisent à la fois le maillage de surface lagrangien et Le maillage eulérien basé sur l’AMR
est un défi en raison des différents types de communication impliquée (Lagrangien à Eulérien,
Eulérien à Lagrangien, Lagrangien à Lagrangien) et également en raison de la nature adaptative
du maillage eulérien. La thèse propose une partition du maillage lagrangien de telle sorte que
chaque processeur possède les sommets locaux du maillage et maintient une couche fantôme
d’éléments et les sommets, ce qui garantit que tous les sommets locaux ont leurs sommets
de valence, bords et éléments soit dans la partition locale, soit dans la couche fantôme. Cette
sorte du partitionnement est optimal pour la communication mais nécessite une synchronisation
algorithmes pour les opérations impliquant des opérations de remaillage frontal et de topologie
frontale.

Le solveur d’écoulement multiphasique compressible, implémenté à l’aide du suivi frontal,
étend le Solveur All-Mach basé sur le volume de fluide (VoF) développé par Fuster et Popinet,
qui gère la compressibilité des fluides et les effets de tension superficielle.

v

vi

Acknowledgement

I want to start by acknowledgingmy thesis advisor, Prof. Stephane Zaleski, to whom I am highly
indebted for his guidance, discussions, and ideas. Moreover, I thank him for his academic and
emotional support during difficult times, without which I believe I could not have made this.

I want to acknowledge Dr. Stephane Popinet for providing the open platform basilisk.fr/,
which has both fascinated and motivated me and given me an opportunity as a platform for my
PhD work. I acknowledge Dr. Daniel Fuster, Dr. Michel Versluis, Dr. Gretar Tryggvason, and
Dr. Pascal Frey for their input in this thesis.

I would like to sincerely express my acknowledgment to the European Union (EU) for
funding the MSCA-ITN (grant agreement number 813766) project Ultrasound Cavitation in
sOft Matter (UCOM) and thus allowing an excellent opportunity for my Ph.D.

I thank my colleague and friend, Dr. Mandeep Saini, for all the discussions, suggestions,
and support. I also thank Dr. Lijun T Raju and Ali Rezai for hosting me at the University of
Twente, Enschede. I am grateful to Yash and Xiangbin for all the discussions and help. I thank
all my friends for contributing cherishing moments to my life and providing emotional support.

I express my gratitude to Amalia Petrova, Simona Otarasanu, Evelyne Mignon, Olivier
Labbey, Pascal Ray and Patrick Cao for administrative and technical support.

In closing, my heartfelt gratitude extends to my family, whose unwavering support has
guided me through my good and bad days.

vii

viii

Contents

Abstract iii

Résumé v

Acknowledgement vii

List of Symbols and Abbreviations xiii
0.1 Abbreviations . xiii
0.2 Symbols . xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Numerical Modelling . 1
1.2 Literature . 2
1.3 UCOM-ITN . 4
1.4 Thesis Outline . 4

2 Moving Interface 5
2.1 Introduction . 5
2.2 Representation and Discretisation of Eulerian and Lagrangian Domains 6

2.2.1 Fluid Structure Interfaction using Immersed Fibers 6
2.2.2 Multiphase flow using Front Tracking 7

2.3 Governing Equations . 8
2.4 Cell-Based AMR Grid . 9

2.4.1 Tree: Quadtrees and Octrees . 10
2.4.2 Control Volumes in an AMR grid . 11
2.4.3 Control Surfaces in an AMR grid . 12
2.4.4 A Valid Tree . 12
2.4.5 Traverse through Tree . 12
2.4.6 Cache of Leaves . 13
2.4.7 Scalars . 13
2.4.8 Temporal Discretisation . 14
2.4.9 Governing Equation and Solution set 14

2.5 Fluid-Fluid Interface: An Oriented Surface 14
2.5.1 Front: Discretised Interface . 15
2.5.2 Set of marker points or frontpoints . 15
2.5.3 Set of frontelements . 15
2.5.4 Surface Mesh or FrontM . 16

ix

x CONTENTS

2.5.5 Patch, Mapping . 16
2.5.6 A Valid Front . 16
2.5.7 Databases forM and T . 18

2.6 Grid Modification . 18
2.6.1 Tree Modification . 18
2.6.2 Front Modification . 20

2.7 Inter Grid Communication . 20
2.7.1 Eulerian mesh to Lagrangian mesh interpolation 22
2.7.2 Lagrangian Mesh to Eulerian Mesh Interpolation 22

3 Parallel Strategies 25
3.1 Parallel Strategies . 25
3.2 Literature Review . 25
3.3 Definitions used in this chapter . 27

3.3.1 Partition of Weighted Graphs for Parallel Computing 27
3.3.2 Front/Octree as a Hypergraph . 29

3.4 Problem Statement . 29
3.4.1 Discussion on Metrics . 30

3.5 Implementation . 31
3.5.1 Partition of Tree and Front . 31
3.5.2 Partition of Tree and Parent Tree . 32
3.5.3 Partition of Front . 33

3.6 Repartition . 36
3.6.1 Adaptive Mesh Refinement . 36
3.6.2 Advection of Front . 37

3.7 Inter Grid Communication in Parallel . 38
3.7.1 Cells, Elements, and Vertices in the neighborhood 38

3.8 Surface Regridding or Remeshing in Parallel 39
3.8.1 Regridding in Parallel . 39
3.8.2 Future Plan . 40

3.9 Results . 40
3.9.1 Scalability . 40

4 Balanced Surface Tension 45
4.1 Introduction . 45
4.2 Numerical Implementation . 46

4.2.1 Interface . 46
4.2.2 One fluid formulation . 47
4.2.3 Balanced FT in 2D . 49
4.2.4 Smoothing of curve . 51

4.3 Testcases . 52
4.3.1 Static Droplet . 52
4.3.2 Capillary wave . 53
4.3.3 Oscillating Droplet . 56

CONTENTS xi

5 AllMach 59
5.1 Introduction . 59
5.2 Compressible Flow Solver . 59

5.2.1 Governing Equations . 60
5.2.2 Monolithic Approach . 61
5.2.3 Space and Time Discretization . 63
5.2.4 Interface Representation . 63

5.3 Numerical Method . 63
5.3.1 Advection . 65
5.3.2 Prediction . 70
5.3.3 Projection . 71
5.3.4 Energy Evolution . 72

5.4 Test Cases . 73
5.4.1 Weakly Non-Linear Collapse of Bubble 73

6 Cavitation of Micro-Bubbles in Blood Vessel 75
6.1 Immersed Boundary Method: Fiber Mechanics 75

6.1.1 Governing Equations . 75
6.1.2 Membrane Force (Fibers Mechanics) 76
6.1.3 Discretisation of Membrane Force Density 76

6.2 Length Scales and Time Scales . 77
6.2.1 Length Scales . 77
6.2.2 Time Scales . 78
6.2.3 Non dimensional numbers . 78

6.3 Cavitation in Blood Vessel: Axi-Symmetric Simulation 79
6.4 Non-dimensional numbers . 79

7 Conclusion 81
7.1 Conclusion . 81
7.2 Future Works . 82

A Appendix 83
A.1 Database For Front Tracking . 83

A.1.1 Linked lists Iterators and Caches . 84
A.2 Morton Curve . 87
A.3 MAC Staggered Grid . 88
A.4 Differential Geometry, Surface Derivatives and Surface Integrals 89

A.4.1 A regular surface with Local parametrization 89
A.4.2 Fundamental forms and Curvatures 89
A.4.3 Surface Gradient . 90
A.4.4 Surface of Revolution . 90

A.5 Volume fraction from the Front (Front2Vof Algorithm) 93
A.5.1 Filtering the color function . 102
A.5.2 Test case to compare Front2VOF and Poisson Solver 102

A.6 Pressure Equation . 105
A.7 Rayleigh-Plesset Equation . 107
A.8 Keller-Miksis Equation (Weekly Compressible Liquid) 108

xii CONTENTS

List of Symbols and Abbreviations

0.1 Abbreviations

Abbreviation Description
FT Front Tracking
IB Immersed Boundary
E-L Eulerian-Langrangian
N-S Navier-Stokes
CFL Courant–Friedrichs–Lewy
SFC Space Filling Curve

0.2 Symbols

Notation Description
Re Reynolds’ number.
Ma Mach Number
Ca Capillary Number
La Laplace Number
We Weber Number
P Pressure ratio used in Sec:5.4.1
E1 and E2 Non-dimensional number defined using linear and

bending elastic coefficients defined in Section:6.4

W Set of whole numbers
Nm := {0, 1, ..,m −
1}

Set of whole numbers less thanm

R Real Numbers
R≥0 Set of non-negative real numbers
D ∈ {2, 3} Dimension of Euclidian Space
RD Euclidian Space
{∪ êd} :=

{ê0, .., êD−1}
Orthonormal basis vectors Euclidian Space

d, êd Direction (a basis vector) in RD. d ∈ ND

Ω Computational Domain.
For explanation, we simplified Ω = [0, 1]D ⊂ RD

∂Ω Computational Surface

xiii

xiv CONTENTS

Ω1 Space occupied by reference fluid. Ω1 ⊆ Ω

Ω0 Space occupied by non-reference fluid. Ω0 ⊆ Ω

Γ(t) Interface or membrane RD−1 manifold immersed in Ω.
For Simplification Γ ⊂ Ω \ ∂Ω

T AMR Tree (Octree/Quadtree/Bitree)
T + Parent Tree
T Saturated Tree
T +
p Local (in a processor with rank p) parent tree in MPI computation
M Front or Surface Mesh
L Set of leaves of T
P Set of internal cells of T
C Set of all cells of T . C = L ∪P
H Set of halo cells of T +

C+ Set of all cells of T +. C+ = L ∪P ∪H
C Set of all cells of saturated tree. C ⊇ C+ ⊇ C
c0 The root cell of the tree. Can take as c0 := (0, 0, 0, 0) (in 3D)
c := (i, j, k, l) Represent a cell of the tree
h Dimension of the cell c. h = 2−l

Ωc Control volume of the cell c
∂Ωc Control surface of the cell c
Ωc Ωc excluding points on right and top (and front) faces.
xc Cell center. Centroid of the control volume Ωc

F Represents a face of the cell c
{∪F}c Set of all the faces of the cell c
∂FΩc Control surface of the face F. ∂FΩc ⊂ ∂Ωc

xF Face center. Centroid of the contral face ∂FΩc

{∪n}+
c All cells in the 5x5(x5) neighborhood of c

{∪n}c Neighbors of c. {∪n}c = {∪n}+
c \ {c}

{∪n̄}c Contact leaves of c that shares ∂Ωc

φ(x) A primary variable in the formulation for an Eulerian point x ∈ Ω

φs(xs) A variable in the formulation for an Lagrangian point x ∈ Γ(t)

{∪φ} Set of all the variables in the formulation
φh(xc) or φh Solution (from Discretised equations) of φ at cell center
{∪φh}c Solution set correponding to a leaf cell{∪
{∪φh}c

}
T Solution set for all the cells

SφT Scalar φ.
Maps each leaf, c ∈ L, to the solution SφT [c] := φh(xc)

z z-index (z ∈W)

Z(z) : N|L| 7→ L SFC Curve that maps z-index, z ∈ N|L|, to a leaf, c ∈ L
Z+(z) : N|C+| 7→
C+

SFC Curve that maps whole number to a cell in the parent tree

SZT (c) : L 7→ N|L| Inverse of Z and maps a leaf cell,c ∈ L, to its z-index, z ∈ N|L|
V Set of Vertices ofM
E Set of Elements ofM
N Set of neighbor tuples (of elements in E) ofM
{∪l} Set of (undirected) edges ofM

0.2. SYMBOLS xv

e A frontelement (Triangle in 3D or an edge in 2D). e ∈ E
l An edge (in 3D)
{∪l}e Set of (directed) edges of the elements e
v or xs Frontpoint or Vertex v,xs ∈ V .

In continuous Lagrangian representation xs ∈ Γ(t).
In IBM xs(r, s, t) : V ⊂ R2 × R≥0 7→ Γ(t) represents the mapping

o(xs) owner leaf cell of vertex xs. o(xs) = c ⇐⇒ xs ∈ Ωc

k Number of processors
{∪p} := Nk Set of (ranks of) processors
p rank or processor id. p ∈ {∪p} := Nk

ΠL :=

{L0,L1, ...Lk−1}
Balanced k-way partion of L with |Lp| ≤ d|L|/ke ∀ p ∈ Nk

ΠV :=

{V0,V1, ...Vk−1}
Partition of V

ΠE :=

{E0,E1, ...Ek−1}
Partition of E

Lp Set of leaf cells owned by a processor with rank p.
Lp ⊂ L and |Lp| > 0

Ωp Domain owned by a processor with rank p. Ωp ∩c∈L Ωc

Ωp Ωp ∩c∈L Ωc

Vp Set of vertices owned by a processor with rank p. Vp ⊆ V
Ep Set of elements owned by a processor with rank p. Ep ⊆ E
N p Set of neighbors (of elements in Ep) owned

by a processor with rank p
Cp Set of parent tree cells owned by a processor with rank p.

Lp ⊂ Cp
E+
p All local elements in (e ∈ Ep) and ghost elements.

Ghost elements. (e ∈ E+
p \ Ep) are non-local

valence elements of local cells (e ∈ Ep).
V+
p All vertices in Vp and the non-local vertices of E+

p

N+
p All neighbor tuples of elements in E+

p

C+
p Set of parent tree cells owned by a processor with rank p

with ghost cells and non-local parents that constitutes local
parent tree T +

p

{∪n}p = Communication neighbors of p.
{∪n}p := {Pc(c) ∈ Nk \ {p} | ∃c ∈ C+

p }
Pc(c) : C+ 7→ Nk Maps a cell c ∈ C+ in the set N|C+| to the (rank of its) owner processor
Pv(v) : V 7→ Nk Maps a vertex v ∈ V to the (rank of its) owner processor.

Pv(xs) = p ⇐⇒ xs ∈ Ωp

Pe(e) : E 7→ Nk Maps an element e to the (rank of its) owner processor.
Pe((vi0 , vi1 , vi2)) = p ⇐⇒ min{Pv(vi0),Pv(vi2),Pv(vi2)} = p

xvi CONTENTS

List of Figures

1.1 The capillary blood vessels that feed the target tissues are fed with target
medicine and microbubbles. The microbubbles are insonified with high-
intensity focused ultrasound (HIFU). The ultrasound cavitating bubble changes
the porosity of the one-cell thick epithelial coating, which increases the intake
of target medicine. 1

1.2 The objective of this thesis is to capture multiple physical phenomena involved
in acoustic cavitation of microbubbles inside blood vessels. 2

1.3 Weak Scalability of Eulerian grid (AMR) in basilisk [29]. 4

2.6 Morton Curve . 13
2.8 An example of non conforming point to tangent plane 17
2.11 (a): Calculation of volume average interface forces can be calculated as a

summation of the elements in the neighborhood weighted by δh. (b): Velocity
at the marker point location can be interpolated from the grid points in the
neighborhood . 21

2.12 Types of patches on the surface mesh. (a): elemental patches. (b): vertex
centered patches. 22

3.1 (a) parallel simulation of bubbly flows in a 2D structured mesh. (b) The
processorwhose domain contains the centroid of the bubble, takes the ownership
of (Lagrangian routines) the bubble. (c) All the processors whose domain
intersect with the bubble, take co-ownership of the bubble, and all the routines
are redundantly done in all the processors. 26

3.2 The challenge in parallelizing Front Tracking in an adaptive mesh refine-
ment environment: Due to the load balancing of an AMR grid after mesh
adaptation, the processor owner of cells in the local neighborhood of front
points and front elements may change dramatically. 27

3.3 Illustration of distributed front where the the domain is distributed among
four processors (colored separately): (a) The vertices are owned (Pv(v)) by
the respective processors whose domain contain the vertex coordinate. (b)
Ownership of edges and triangles are in such a way that the processor of the
least rank that owns the vertices of edges and triangles. (The owner of edges,
Pl(l), and triangles, Pe(e), are colored in accordance with rank of processors) . 27

3.4 (a) Every processor owns the local partition of vertices (Vp) and triangles (Ep).
The ghost layer contains all the non-local triangles (E+

p \Ep) and their non-local
vertices (V+

p \ Vp). (b) Edge cut of partition. 33

xvii

xviii LIST OF FIGURES

3.5 Distribution of Eulerian and Lagrangian Meshes in parallel computing. (a)
Octree leaf cells and front elements, (b) Partition of Octree (T) leaves among
five procs. (Color represents rank), (c) Partition of front (M) (d) Partition of
M such that the locality of vertices and elements are in the neighborhood of
leaf cells. 34

3.7 Regridding : (a)Split an edge when the edge size a is more than specified amax,
resulting in creation of two new triangles and a vertex. (b) Collapse an edge
which is smaller than specified amin resulting in the collapsing of two triangles
and a vertex. (c) Vertex smoothing. 42

3.8 Valence : (a) Valence of the vertex: The valence triangles of a vertex is the set
of triangles that share the vertex. (b) Valence of the edge: The valence triangles
of an edge is the set of triangles that share either of the vertices of the edge. (c)
Valence of the triangle: The valence triangles of a triangle is the set of triangles
that share at least one of the vertex of the triangle. 42

3.9 Splitting of edge operation in parallel to avoid race condition: (a) In the first
step, the edge operation (split/collapse) is carried out only on the inside edge
({∪l}p\cut(ΠV)) which completely lies inside the domain. (b) In the following
step, the edge operation is carried out on local edges, which is also a cut-edge
({∪l}p

⋂
cut(ΠV)). NOTE: The second step has to be further split into two

steps so that two processors don’t split/merge edges of the same triangle which
contains triple point (the points that are shared by t va, vb) 43

3.10 (a): A snapshot of a 2D atomization simulation implemented using parallel front
trackingmethod. In the simulation, a jet of radiusR = 1/12m is injected with a
pulsatile velocityU = 0.1+0.05 sin(2πt/T)ms−1 with time period T = 0.1 s.
TheReynold’s number isRe = 5800, surface tensionσ = 3×10−5, density ratio
is ρ1/ρ0 = 2.84, viscosities are µ1 = 2. U R/(ρ1 Re), µ0 = 2. U R/(ρ0 Re).
(b): Shows the AMR capability. The heaviside used in the simulation is simply
the volume fraction calculated from the front, which is discussed in the Ch:4
Sec:4.2.2. 43

3.11 Two snapshots of a cluster of rising bubbles in 2D. In front tracking the topology
change is not automatic, as is the case with VoF. 44

3.12 Advection Test case: (a): Four circles are stretched with a predefined velocity
field. (b): Scalability test run on a workstation, for different refinement levels. 44

4.1 (a) parameter s, arc length θ(s), tangent t, normal t (b) positive (κa < 0)and
negative curvature(κb > 0) . 46

4.2 Heaviside Hh(x) in each control volume is taken as the volume fraction in the
control volume. (a) A cubic CV and all the triangular facets that intersect them
(b) Polygons: Subset of each triangle inside the cube (c) Void Fraction: Subset
of cubic control which belongs to Ω0 . 48

4.3 Void fraction evaluated from an interface front at three different timesteps. The
interface is advected with a velocity field (given by stream function ψ(x, y) =
1
π

sin2 (πx) sin2 (πx) cos (π t
T

)). The algorithm 11 can correctly calculate even
if the interface is highly stretched such that there are cells with front elements
of opposite orientation ((b)). 48

LIST OF FIGURES xix

4.4 Finite volume integral: (a) In the MAC-staggered stencil, pressure pni,j is
evaluated at the centroid of the control volume Ωc corresponding to the cell
c := (i, j, l) (where i and j are integer index corresponding to x and y direction
and l is the refinement level of cell). The x component of the momentum
equation is integrated over the face-centered control volume Ωc and the volume
averaged x component of surface tension fσ,x is calculated at the face center.
(b) Integral of

∫
Ωcx

(
− ∂p
∂x

+ fσ,x
)
dv over the control volume Ωcx 50

4.5 Capillary pressure correction to pcap,xi,j . Two cases where the interface intersects
the right face of the control volume Ωcx, above (xi, yj) as in Case A and below
(xi, yj) as in Case B, are represented here. 51

4.6 (a)Instance of the profile of an initially perturbed damping wave compared with
the analytical solution of Prosperetti. (b) High-frequency error in the numerical
solution when solved with a front-tracking solver without smoothing. 51

4.9 Decaying spurious current study for a static droplet test case with different ratios
and Laplace numbers explained in Sec:4.3.1. The x-axis represents time, which
is non-dimensionalised with viscous time scale and the y-axis is the maximum
of the spurious velocity in the domain, which is non-dimensionalized with a
viscous velocity scale. 54

4.11 (a) Evolution of normalized amplitude of an initially perturbed wave as men-
tioned in Case-A of Sec:4.3.2. (b) The spatial convergence of L2 error 55

4.12 (a) Evolution of normalized amplitude of an initially perturbed wave as men-
tioned in testcase of Sec:4.3.2. (b) The spatial convergence of L2 error. 55

4.13 Evolution of normalized amplitude of an oscillating inviscid drop of small
amplitude . 57

5.1 flux at a face ∂ΩFc : The flux of scalar fiφi through the face ∂ΩF which is
shared by cells cl and cr (marked in dashed blue) with normal ±ej is evaluated
as a multiple of φFi and F Ffi · nF , where φFi is the interpolated value of φi at a
distance |uF |∆tn upstreamof the face (Eq:5.38). If we take the fluid component,
i is colored in grey, then |F Ffi | is the volume under the reconstructed piecewise
interface, which fluxes out (marked in dark grey) normalized with the volume
of cube h3. 65

5.2 Evolution of non-dimensional radiusR∗(t∗) = R(t∗)
R0

with non-dimensional time

t∗ = tU/R0 =
√

∆p
ρL

1
R0
t. 74

6.2 Vessel of resting radius rv which has length 2 ∗ lv. Bubble of initial radius
rb = (r(t = 0)) placed at Oc(e, 0, 0). 79

6.3 Collapse of bubble inside a vessel: Pressure contours plotted for different time.
Immersed boundary and gas-liquid interface are also plotted. Non-spherical
collapse is visible. (p∞

p∞0
= 9,We = 10, Re = 10,Ma = 0.1, µ1

µ2
= 100, ρ1

ρ2
=

1000, Rv0

R0
= 1.2, kt

(p∞−p∞0)R0
= 10000) . 80

A.2 The stack used to store integer indices of front-points and front-elements. Blue
squares are filled part of the stack and the red squares are the non-filled. 84

A.4 Grids used for Discretrising NS . 88

xx LIST OF FIGURES

A.5 The neighborhood V of (r′, s′), (V ⊂ R2) is mapped to U which is the neigh-
borhood of X(r′, s′) by a smooth function. The directional derivatives of f
should be linealy independent i.e |∂f

∂r
× ∂f

∂s
| 6= 0 89

A.6 The neighborhood V of (r′, s′), (V ⊂ R2) is mapped to U which is the neigh-
borhood of X(r′, s′) by a smooth function. The directional derivatives of f
should be linealy independent i.e |∂f

∂r
× ∂f

∂s
| 6= 0 91

A.7 (a) Surfaces of revolution. (b) Analysis in a z − r plane 91

A.8 Calculating void fraction inside a cubic cell intercepted by a front: (a)Acylinder
Γ := {(x, y, z) | F (x, y, z) = 0} where F (x, y, z) = (x− 0.5)2 + (y − z)2 −
0.32 intersects the cubic control volume Ωc := {(x, y, z) | 0 ≤ x, y, z ≤
h}. We define the fluid occupying the cylinder as fluid − 1 and the one
outside as fluid − 0. Volume fraction, f defined as f = 1

h3

∫
Ωc
H(x, y, z)dv

(where H(x, y, z) is the heaviside function defined in 4.14) is the volume
fraction in the control volume occupied by fluid1.It can be evaluated as f =
a
h2 + 1

h3

∫
Ωc∩Γ

(z n̂ · ez) dA where a is the area on the top face, ∂Ωc;z=h(=

{(x, y, z) | 0 ≤ x, y ≤ 1, z = h}). The area on the top face that is inside
the cylinder, a, is colored blue in (d). The volume

∫
Ωc∩Γ

(z n̂ · ez) dA is the
algebraic sum of the volume subtended between an infinitesimal patch dA on
Γ and its projection onto the bottom plane z = 0. It is represented in (b)
and (c). The domain on which the volume integration is done, Ωc ∩ Γ, is the
portion of the surface that lies inside the control volume.(b) shows the volume
integral with n̂ · ez > 0. (c) shows the volume integral with n̂ · ez < 0. The
integration is split for the sake of explanation. (d) shows the area that lies inside
the cylinder and is cut by the top face of the cube. The area fraction on the top
face, a

h2 = e
h

+ 1
h2

∫
Γ∩∂Ωc;z=h

(y n̂⊥ · ey) dl where e is the portion of the edge on
the top-right edge that is inside the cylinder. It is represented in the blue line
segment in (g)). The domain over which the area integral is done, Γ∩ ∂Ωc;z=h,
is the portion of the surface that intersects the top face of the control volume.
(f) shows the area integral. (g) shows the portion of the edge that lies inside the
cylinder and is cut by the top right edge of the cube. The edge fraction can be
evaluated as e

h
= 1

h

∑
Γ∩∂Ωc;z=h∩∂Ωc;y=h

x sign(n̂ · ex) 96

A.9 Clipping of triangle by a cube: Edges of polygons are successively divided to
get the polygon. Firstly cut by the faces of the cube which lie on the planes (a)
x = h

2
± h

2
if they intersect the planes, then by the faces of the cube which lie

on the planes (b) y = h
2
± h

2
and (c) z = h

2
± h

2
respectively. 97

A.10 (a) The cubic control volume and the front elements (triangles) in the neigh-
borhood which intersects with the control volume (cube). (b) The polygons
({P}) are the subsets of triangles ({Ti}) is marked in red. Volume belonging
to fluid − 1 is filled blue. (c) Volume under the polygon. (d) Area under
the edges on the top face. (e) Edge portion on the top-front edge belonging to
fluid − 1. Sets {P}, {E} and {V } are marked red in (c), (d) and (e) respec-
tively. The subset of the cube that belongs to fluid 1 is in a filled blue color. The
volume fraction calculated in (c) is corrected by the area fraction in (d), which
is also corrected by the edge fraction in (e). Volume corresponding to each is
represented in filled blue in (f), (g), and (h) respectively. 100

LIST OF FIGURES xxi

A.11 Color function in the cells calculated from the front using (a) Poisson method
of [39] (b) Direct intergation from the interface [65] [82] which uses a method
similar to the current work. 102

A.12 Test case of the oscillating bubble/droplet: initial mesh with D/∆x = 19.2. . . 103
A.13 Comparison of different filterings on the evolution of the kinetic energy over

time. Comparison of the evolution of kinetic energy calculated by front tracking
solver which uses Front2VOF algorithm (with filtering) with that [53] which
uses the Poisson solver [39] for color function evaluation. (Reproduced from
[82] with permission) . 103

A.14 Evolution of the kinetic energy over time. Comparison of the evolution of kinetic
energy calculated by front tracking solver which uses Front2VOF algorithm
(without filtering) with that [53] which uses the Poisson solver [39] for color
function evaluation. (Reproduced from [82] with permission) 104

xxii LIST OF FIGURES

List of Tables

3.1 General routines in an Eulerian-Lagrangian solvers 32

4.2 Nondimensional parameters for damping capillarywave testCase-Bof Sec:4.3.2
. 55

4.3 L2 error for different / λ
∆h

(Case-A of Sec:4.3.2). 56
4.4 L2 error for different / λ

∆h
(Case-B of Sec:4.3.2). 56

4.5 Nondimensional parameters for oscillating inviscid drop 56

5.1 Non-dimensional parameters used for the weakly collapse of a spherical bubble
collapse test case in Sec:5.4.1. 74

xxiii

xxiv LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation
The acoustic response of microbubbles is one of the most researched scientific topics, which
has found many applications in science and medicinal biology, including ultrasound diagnosis,
lithotripsy (breaking down of the kidney stones), etc. One such noteworthy application is the
Targeted drug delivery [1] (Fig:1.1) using acoustic cavitation, where the response of coated
bubbles can be used to enhance the intake of medicine near the targeted tissues of the body.
One such application, as hypothesized, is in the cancer treatment where the medicine is the
chemotherapeutic medicine and the target is the cancerous tissues. In this treatment, we use
monodisperse microbubbles, which are stabilized by lipid coating, are injected and transported
to the target site and, with the help of guided ultrasound microbubbles are notified, and their
response is used to increase the intake of medicine by the mechanism called as sonoporation
(or creating pores using ultrasound) where the porosity of the epithelial walls (of the blood
capillaries which feed the cancerous tissues) are increased.

Focused ultrasound

Epethlial cell

Target medicine

Oscillating Microbubble

Blood matrix

Tissue

Figure 1.1: The capillary blood vessels that feed the target tissues are fed with target medicine and
microbubbles. The microbubbles are insonified with high-intensity focused ultrasound (HIFU). The
ultrasound cavitating bubble changes the porosity of the one-cell thick epithelial coating, which increases
the intake of target medicine.

1.1.1 Numerical Modelling
Numerical modeling of the above-discussed problem is challenging because of the multiphysics
nature of the problem (Fig:1.2). The model requires the implementation of compressible
multiphase flow and fluid-structure interaction in the problem. Themotivation of this thesis is to
develop a general platform for the simulation of cavitation of microbubbles inside blood vessels.

1

2 CHAPTER 1. INTRODUCTION

Themodel employs anEulerian-Lagrangian framework to capture compressiblemultiphase flow
using the front tracking method [2] and interaction of the fluid with the thin microvessel using
immersed boundary method [3].

1.2 Literature
Acoustic Cavitation: Cavitation is the physical phenomena of formation (and collapse) of a
’cavity’ in a varying pressure flow, which in its broader sense includes boiling and pressure
cavitation. Acoustic cavitation is a general term involving the response of a bubble or cloud
of bubbles to an acoustic field. Rayleigh [4] gave the first mathematical analysis for cavitation,
where he considered the collapse of a spherical cavity in an infinite liquid.

Compressible Flow Fluid Structure Interaction

Multiphase flow Coated Bubble

Figure 1.2: The objective of this thesis is to capture multiple physical phenomena involved in acoustic
cavitation of microbubbles inside blood vessels.

In stable acoustic cavitation, microbubbles oscillate around an equilibrium size when a
time-varying (commonly sinusoidal) pressure perturbation is applied [5].High echo amplitude
of microbubble ultrasound contrast agentsmake them a useful agent for detecting blood vessels
using ultrasound imaging. These microbubbles which have diameter 2µm to 5µm, unlike RBC
and other blood particles have a large contrast of echogenicity (ability to reflect ultrasound)
compared to the blood plasma, and makes them a prime choice as a contrast agent [6]. Mi-
crobubble UCAs are comprised of gaseous bubbles with an outer shell for the stability of the
bubble. Their size makes them ideal for transporting through micro-sized blood capillaries[6].
Besides their use as a contrast agent, microbubbles has been investigated for its application in
drug and gene delivery [7].

The oscillation of microbubbles increases the transmural pressure through the blood vessel
and vessel wall permeability [8].Increasing the amplitude of acoustic pressure increases the
bubble’s nonlinear response and the blood vessel’s circumferential stress [8].

The study of the fragmentation of delivery vehicles (encapsulated bubbles) is important
in achieving the localization of delivery wherever intended [8].[]One mechanism is using the
violent bubble collapse that ruptures the microvessel and (obvious) permeability to the tissue
interstitial space [9]. has shown how the dispersion of RBCs and polymer microspheres
(≈ 500nm) into the target tissues can be achieved by transient acoustic cavitation [9] [10]. In
inertial cavitation of microbubbles, immediate neighbors to the vessel wall are destroyed, and
there is diffusion of medicine (some test uses fluorescent molecules -calcein) at mid-distance

1.2. LITERATURE 3

from the cavitation collapse center [11] [12]. Identified these two length scales as killing radius
(approximate radius from the collapse center in which the cells are destroyed) and blast radius
(the average radius from the collapse center upto which there is reversible permeation of calcine,
the target medicine used in the study and beyond which the cells are unaffected [13]. shown
that, ≈ 500kHz ultrasound applied to a 4.5µm microbubble at a distance of ≈ 10 − 20µm

away from a mono-layered planar membrane that separates a half-space filled with tissue and
undergoes inertial cavitation can produce sonopore of daimeter ≈ 20µm.

[14]. have shown that thrombolysis using recombinant tissue plasminogen activator (rt-PA)
is more effective for frequencies that correspond to stable cavitation compared to larger frequen-
cies that result in inertial cavitation. [15] Showed a strong correlation between subharmonic
emission during stable cavitation in microbubble-enhanced rt-PA thrombolysis

Immersed Boundary Method: The immersed boundary method (IBM) is a monolithic
approach for the formulation of fluid-structure interaction of thin elastic membranes with fluid.
Peskin [16] originally formulated IBM to simulate the flow of incompressible fluid through a
channel which is attached to elastic membranes representing the flow of blood through heart
valves. IBM uses governing equations in both Eulerian and Lagrangian frameworks which
are discretized, respectively on Eulerian and Lagrangian meshes, and the formulation involves
interpolation between the meshes using discrete delta function [3].

Multiphase flows: DNS simulation of multiphase flows is primarily classified into interface
capturing and interface tracking methods. In the interface capturing method, a discrete Eulerian
variable implicitly captures an interface. Two of the most common interface capturing methods
are volume of fluid (VoF) method and Level Set (LS) method.

The VoFmethod, introduced byHirt and Nichols [17], uses void fraction (fraction of volume
occupied by one of the fluids called as reference fluid), and the integration of conservative
transport the equation can be formulated to conserve the volume fraction as in the case of
geometric VoF ([18]). In geometric VoF, the interface is represented by a locally reconstructed
interface, and a better representation of it can be using piecewise linear interface calculation
(PLIC) [19], [20], [21]. The advection of void fraction inherently takes care of the topology
modifications. It is advantageous as it reduces the computational complexity but appears to
be the source of numerous numerical (non-physical) droplets during simulations involving
breakups and atomizations. In the level set method [22] [23], the signed distance function is
used to capture the interface. LS requires reinitialization to correct the distance function after
advection. LS doesn’t guarantee mass conservation like VoF, which gave rise to methods like
couple LS-VoF (CLSVOF) [24] designed to take advantage of both methods.

The front-tracking method, which falls under the class of interface-tracking multiphase flow
solvers explicitly track marker points on the interface. The method, first developed by Unverdi
and Tryggvasson [2], is an extension of Peskin’s immersed boundary method [3]. The interface
is comprised of discrete oriented patches called front elements whose vertices are the marker
points. The front-tracking method gives the advantage of a sharp interface representation and an
accurate evaluation of surface derivatives, and it avoids automatic topology changes. However,
additional programming design is required for the maintenance of surface mesh and routines for
front regridding (also called surface remeshing), front topology changes, and intergrid (between
Eulerian and Lagrangian grids) communication.

Parallel Front Tracking: Parallelization of Eulerian-Lagrangian methods, like the FT
method, is more challenging than an Eulerian method like VOF because of the two meshes
involved. So, the algorithm is required to parallelize the routines on the meshes simultaneously

4 CHAPTER 1. INTRODUCTION

and reduce the communication required between the meshes. Many of the earlier parallel
solvers ([25] [26]) were not developed for the scalability of Lagrangian meshes. [27] that
employs a heuristic partition algorithm for the partition of both the unstructured AMR grid and
the surface mesh achieves scalability for only a few processors. [28] uses two different schemes
to parallelize the simulation of bubbly flows in a uniform mesh.

1.3 UCOM-ITN
This thesis is fully funded by the European Union under the MSCA-ITN grant (grant agreement
number 813766). This project, named Ultrasound Cavitation in sOft Matter (UCOM), has
facilitated 15 Ph.D. theses, including this.

1.4 Thesis Outline
Apart from this introduction chapter, the thesis has chapters on

(i) general implementation of the Eulerian-Lagrangian method,
(ii) parallel strategies on implementation aimed at good scalability,
(iii) balanced implementation of front tracking method,
(iv) compressible multiphase flow solver using front tracking method,
(v) axisymmetric simulation of bubble oscillation inside the blood vessel,
(vi) conclusion of chapters, and
(vii) appendix.

The solver discussed in this thesis is implemented in the open code platform basilisk [29].
Basilisk [29], a PDE solver that uses a cell-based adaptivemesh refinement (AMR) Eulerian grid
is highly scalable in parallel computing (Fig:4.10). The code is available in https://github.
com/basilkottilingal/FT2D and http://basilisk.fr/sandbox/AhmedBasil/

Figure 1.3: Weak Scalability of Eulerian grid (AMR) in basilisk [29].

https://github.com/basilkottilingal/FT2D
https://github.com/basilkottilingal/FT2D
http://basilisk.fr/sandbox/AhmedBasil/

Chapter 2

Simulation of Fluid Flows with Moving
Interfaces and Membranes

2.1 Introduction
Immersed boundary (IB) methods are a general class of continuum solvers [3], like, immersed
boundary method (IBM) developed by Peskin to study fluid structure interaction (FSI) problems
involving flow interaction with thin membranes and front tracking method developed by [2] to
study multiphase flows, that uses a Lagrangian Mesh representing a thin elastic structure [30],
fluid-fluid interface [2], a shock interface [31], etc, which is immersed in an Eulerian grid.
These kinds of solvers aim to solve a unified set of partial differential equations for the entire
Eulerian grid with some of these equations involving source terms at the interface, for example,
surface tension in the momentum equation in the case of front tracking. They come under the
general class of Eulerian-Lagrangian methods and might be mentioned in future references.

(a) (b)

Figure 2.1: Two types of immersed interfaces: (a) fluid-fluid interface: An closed oriented surface
composed of small oriented patches that represent a fluid-fluid interface. (b) thin solid membrane: The
surface of red blood cell is considered as a membrane of zero thickness which is represented here. In
both cases, the surface mesh is immersed in an Eulerian grid.

This chapter discusses the implementation of the following computational methods
1. Multiphase flow method using front tracking method

5

6 CHAPTER 2. MOVING INTERFACE

2. Fluid Structure of thin membrane using immersed fibers.
Most of the definitions and implementations explained in this chapter are general for both the
solvers (unless specifically mentioned) and aims at the scalability of these methods in parallel
computing.

2.2 Representation and Discretisation of Eulerian and La-
grangian Domains

The governing equations of the fluid flow problem are defined in the Eulerian framework for all
the points in the computational space Ω and in the Lagrangian framework for all the points on
the interface Γ. Ω a finite subset of the Euclidian spaceRD (where dimensionD = 2 orD = 3)
and let’s represents the orthonormal vectors of RD as {∪ êd} where d ∈ ND. In this thesis, the
computational space is discretized using a cell-based adpative mesh refinement (AMR) grid
and the solution are sought a discrete set of Eulerian points which are the centroids of grid
cells (control volumes in the AMR grid) using the finite volume method. Refer section:2.4 for
further details.

A (D−1)-dimensional manifold that represents an interface or membrane inRD are defined
here.

2.2.1 Fluid Structure Interfaction using Immersed Fibers
A computational domain Ω ⊂ RD is composed of a fluid which is interacting with a thin solid
membrane of 0 thickness. The thin structure is represented by a surface, Γ(t) ⊂ Ω, which
may not be necessarily closed. The infinitesimally thick membrane Γ(t) is a regular surface (at
any time t ≥ 0) in the Euclidian space R3 with every point of Γ(t) has an open neighborhood
U ⊂ Γ(t) for which there is an open subset V of R2 and a time-dependent homomorphism
Mt(r, s) : V → U such that the mapMt is C∞ smooth and for each point (r, s) ∈ V and any
given time t ∈ [0, T], the two partial derivatives ∂Mt

∂r
and ∂Mt

∂s
are linearly independent. If we

take V ⊂ R2 as the set of global parameters (r, s), then for any time t ∈ [0, T] ⊂ R≥0, the
coordinates of each Lagrangian material point xs of the membrane can be considered as the
mapping

xs(r, s, t) : V × [0, T] 7→ Γ(t) , (2.1)

which is represented in Fig:2.2.
Membrane Energy and Force Density

The elastic energy of the membrane at any time is the functionalE[xs(·, ·, t)]which depends
on the whole set of points on the membrane and their geometric information. The membrane
elastic energy functional EΓ can be written in the form EΓ(t) = g(xsA,

∂xsA
∂r
,
∂xsA
∂s
, ..., xsB,

∂xsB
∂r
,

∂xsB
∂s
, ...,xsC , ..) where xsA := xs(rA, sA, t),

∂xsA
∂r

:= ∂xs

∂r
(rA, sA, t) (and similarly for other

derivatives) and {xsA,xsB, ..} = Γ(t) is the collection of points on the interface. EΓ depends on
the configuration of the membrane and can be written as the integral of elastic energy density
E(xs) as

E[xs(·, ·, t)] =

∫
Γ(t)

E(xs)dA =

∫
V

E(r, s, t)drds (2.2)

Even though the local energy density depends on the configuration Γ(t) usually, it is a func-
tion that depends on the local deformation (w.r.t it’s initial configuration) and independent of

2.2. REPRESENTATIONANDDISCRETISATIONOFEULERIANANDLAGRANGIANDOMAINS7

translation which gives E(xs) = E
(
∂
∂r
xs(r, s, t), ∂

∂s
xs(r, s, t), ∂2

∂s∂r
xs(r, s, t), .., ..

)

(r′, s′)

V

r
r + ∆r

r −∆r
s

s
−

∆
s

s
+

∆
s

(a) V

xs(r′, s′, 0)

Γ(0)

(b) Γ(0)

xs(r′, s′, t)

Γ(t)

(c) Γ(t)

Figure 2.2: (a) Any Lagrangian membrane point can be uniquely represented by (r′, s′) ∈ V and is
mapped to it’s coordinate (b) in the initial configuration, Γ(t = 0) xs(r′, s′, 0) and it’s (c) configuration
Γ(t) at an arbitray time t > 0. Here, the membrane is a representation of a cylinder, and every point on
it is represented by a unique parametric tuple.

If the configuration xs(·, ·, t) is perturbed by ℘xs(·, ·, t) it produces a perturbation in the
elastic energy of the membrane by ℘EΓ given by

℘E =

∫
V

−F (r, s, t) · ℘xs(r, s, t)drds =

∫
Γ

−F (xs) · ℘xsdA, (2.3)

where F (r, s, t) is the force density at (r, s) ∈ V from the virtual perturbation of the configu-
ration and F (xs) = F (r, s, t)/‖∂xs

∂r
× ∂xs

∂s
‖.

F (r, s, t)drds = −℘E[xs(., ., t)]

℘xs(r, s, t)
. (2.4)

Representation of membrane by continuous collection of fibers and energy functional are
discussed in chapter:6.

2.2.2 Multiphase flow using Front Tracking
A computational domain Ω ⊂ RD where D ∈ {2, 3} is the dimension of Eulerian space. The
computational domain is composed of two immiscible fluids that do not undergo any phase
change. The fluids, represented as fluid − 0 and fluid − 1 occupies respectively Ω1(t) and
Ω1(t) which are separated by a deforming fluid-fluid interface Γ(t). Γ(t) is an closed oriented
surface in RD−1. Γ(t), Ω0(t) and Ω1(t) satisfies

Ω0(t) ∪ Ω1(t) =Ω (2.5)
Ω1(t) ∩ Ω1(t) =Γ(t) (2.6)

Immiscibility and no phase change condition gives the condition [[u]]Γ = 0 where [[u]]Γ
represents the velocity jump difference at the interface.

Similar to the definition of membrane in section Sec:2.2.1, a fluid-fluid interface Γ(t) is as
a smooth regular surface, which is also closed and oriented. Unlike the immersed membrane
method, we do not maintain any global mapping xs(r, s, t) : V × [0, T] 7→ Γ, as any arbitrary
local parametrization M(r, s) : V 7→ U ⊂ Γ (with ∂M

∂r
and ∂M

∂s
are linearly independent) can

be used to for calculating force density F (xs).

8 CHAPTER 2. MOVING INTERFACE

Interface Representation

In front-tracking method, the interface is represented by marker points that lies on the
interface and the subdomains corresponding to the fluid components can be derived from the
interface. Given an oriented surface Γ, you can always obtain Ω0 and Ω1 that satisfies Eq:2.5
and Eq:2.6

Ω0(tn),Ω1(tn), {∪f(xc)}n FT/IBM←−−−− Γ(tn)

where {∪f(xc)}n is the set of values of void fraction (the fractional volume occupied by
reference fluid in a control volume) in each cell of the tree T (tn). There are some sections in
the thesis that also uses other multiphase flow schemes, like volume of fluid (VOF) in 5.2.4,
which unlike IB methods, uses void fraction, The interface and the fluid domains can be derived
from the void fraction

Ω0(tn),Ω1(tn),Γ(tn)
VOF←−− {∪f(xc)}n

Surface Tension

The surface energy density for a fluid-fluid interface with surface tension σ(xs) is simply
E(xs) = σ(xs) (and E(r, s) = σ(r, s)‖∂xs

∂r
× ∂xs

∂s
‖ where (r, s) is an arbitrary parametrisation

local to xs(r, s)). We can simplify the force density as

F (xs) := σκ(xs)n̂(xs) + κ(xs)∇sσ(xs), (2.7)

where the last term is zero in the case of constant surface tension. Using Eq:2.7 in momentum
conservation equation for an arbitrary control volume containing interface yields the stress jump
condition at the interface, given as,

[[−pI + τ]]Γ · n̂ = σκn̂+ κ∇sσ, (2.8)

where τ is the viscous stress. Refer [32] for the details of the derivation of Eq:2.8.
Discretization of the fluid interface is done using a oriented triangular surface mesh and

is discussed in detail in Section:2.5. Detailed implementation of the front tracking method is
discussed in chapter:4 and chapter:5.

2.3 Governing Equations

Given an interface/membrane of zero thickness immersed in a fluid [33] [3], the governing
equation that corresponds to the fluid in the Eulerian frame (∀ (x, t) ∈ Ω × [0, T]) and
membrane/interface in the Lagrangian frame (∀ xs ∈ Γ(t)) can be collectively written as

∇ · u = 0 ∀x ∈ Ω, t ≥ 0 (2.9)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u+ f ∀x ∈ Ω, t ≥ 0 (2.10)

f(x, t) =

∫
Γ

δ(x− xs)F (xs)dA ∀x ∈ Ω, t ≥ 0 (2.11)

where the membrane force is given by,

F dA = − ℘E
℘xs

∀xs ∈ Γ(t), t ≥ 0 (2.12)

2.4. CELL-BASED AMR GRID 9

and the membrane advects,
∂

∂t
xs =

∫
Ω

u(x)δ(x− xs)dV ∀xs ∈ Γ(t), t ≥ 0 (2.13)

where ρ and µ are, respectively, the fluid density and viscosity, F is the membrane/interface
force (per unit surface area), E[xs(·, ·, t)] is the elastic potential energy functional or surface
energy of the topology set Γ(t) which depends on the configuration Γ(t) and ℘E

℘xs
is the Frechet

derivative of the functional E, f(x, t) is the interface force (per unit volume) imparted by the
interface/membrane on the fluid. In the case of the front-tracking method for multiphase flows
or in the case of fluid-structure interaction of a closed membrane that separates two distinct
fluids (ex, capsule), the fluid properties are averaged properties that are found by a heaviside
or indicator functions. In the case of IBM, the force density equation in Eulerian coordinate
(Eq:2.11) can also be written as an integral over V (Eq:2.1)

f(x, t) =

∫
V

δ(x(r, s, t)− xs)F (r, s, t)drds ∀x ∈ Ω, t ≥ 0 (2.14)

2.4 Cell-Based AMR Grid
The discretization of Eulerian computational space using a tree, is called as tree-based adaptive
mesh refinement (AMR) in the literature [34] [35]. In computational fluid dynamics, or rather
computational continuum mechanics, in general, a hierarchical tree is used to discretize the
continuous computational space where we know apriori that solution of at least one of the
interested primary variables, say φ, has spatial frequencies of different order of magnitudes. A
tree-based grid allows to have control volume (associated with cells) of different dimensions
that allow to capture the above mentioned varying spatial frequencies of the solutions without
discretizing the entire computational space to the maximum refinement level. This allows us
to optimize the computational load (CPU or GPU load), memory (RAM) requirements and
thus, the computational time involved in solving discretized equations. For example, in direct
numerical simulations (DNS) and large eddy simulations (LES) of turbulence flows, we can use
AMR grids to capture eddies of length scales starting from the Kolmogorov scale to the largest
eddy involved in the problem.

Figure 2.3: Discretisation of computational domain in R3using AMR grid: The hierarchical structure
of the grid discretization of a 3D computational domain using an octree, T . The leaf-cells and internal
-cells are marked in red and blue color respectively.

10 CHAPTER 2. MOVING INTERFACE

2.4.1 Tree: Quadtrees and Octrees
A tree , quadtrees (for D = 2) or octrees (for D = 3), is a hierarchical graph used to discretize
computational domains as in Fig:2.5 and Fig:2.4 which will be mentioned as tree in general.
The nodes of the graph are called cells . Every internal node has 2D children nodes called as
children . So every internal node is the (only) parent to 22D children. A node or a cell of the tree
is represented by the index c. Every cell c has an associated control volume Ωc ⊆ Ω. Terminal
nodes or the cells with no children are called leaves (leaf in singular). The root node has the
associated control volume Ω itself, i.e if c is the root node then Ωc = Ω and for every other
nodes Ωc ⊂ Ω. The index-set {∪c} = C ⊆ C.

(a)

l = 0

l = 1

l = 2

l = 3

(b) (c) (d)

Figure 2.4: (a)A tree T in 2D (quadtree), (b)Hierarchical Structure of the T shows how an internal-cell
(in blue) is connected to 4 of its children . (c) The parent-tree , T + is comprised of leaves L () ,
internal-cells P () and halo-cellsH (); (d) Traversing through the T using the Morton curve.

Tree as a Directed Hypergraph
A tree, T , can be defined as a directed graph 1 T := (C,ET) where the index-set (or the

set of cells), C, is the set of vertices of the graph and the set ET := {∪(pc, c)} is the set of
directed edges of the graph with each edge is an ordered pair of a parent and a child cell .

The index-set comprises of the cells (or indices or nodes) of a tree which can be represented
as a tuple, (i, j, l) in 2D or (i, j, k, l) in 3D, where i, j and k are spatial index of the cell
corresponding to each dimension ofRD and l represent the refinement level of cell. Refinement
level of a cell written as level(c) is the natural number l, l ∈ Ndepth(T)+1 is an indicator of
how small the control volume of c is with respect to that of the computational domain. So, the
tuplet is used interchangeably with c to identify a cell i.e. c := (i, j, l) or c := (i, j, k, l). The
index-set of the tree (C) is a subset of the full-index-set (C) which corresponds to a saturated
tree. 2 If there is maxlevel that satisfies depth(T) ≤ maxlevel (given any moment), then
the full-index-set can be written as C := {(i, j, k, l) | i, j, k ∈ N2l ∀ 0 ≤ l ≤ maxlevel}
Internal Cells and Leaf Cells

An internal-cell is a cell which has 2D children and it’s set, internal-cells , is given by
P := {pc | (pc, c) ∈ ET }. A leaf-cell is a cell which does not have any children , and it is set

1A hypergraph ,H := (V,E), is constructed out of a set of graph vertices/nodes (vi ∈ V) and a set of connec-
tions among the vertices called as hyperedges/nets ei ⊆ E ∀ ei ∈ E. The hypergraph is a graph if |ei| = 2 ∀ ei ∈ E
and a graph is a directed graph if all the edges are directed (ordered set of two vertices) (E = {ei := (vi0 , vi1)}).

2A saturated tree, T max, is a tree with all its leaf-cells are at the maxlevel set by the user. So a tree T is
saturated if all the leaf-cells , c = (i, j, k, l) ∈ L are at the maxlevel , l = maxlevel(T).

2.4. CELL-BASED AMR GRID 11

can be defined as leaves L := {c | (pc, c) ∈ ET } \P . The sets of leaves , L, and internal-cells
, P , are mutually exclusive and collectively exhaustive partition of C.
Root cell

The root cell, c0(T) is the only cell with no parent, i.e {c0} = P \ {c | (pc, c) ∈ ET }.
Halo Cells and Parent Tree

In order to do interpolations of variables in a discretized equation, we need cells in the neigh-
borhood which may be neither a leaf-cell nor an internal-cell. For a second-order interpolation
in 3D, this neighborhood is a 5 × 5 × 5 grid of cells centered around a leaf-cell. Cells in this
neighborhood of a leaf-cell which is neither a internal-cell nor a leaf-cell is called a halo-cell and
its set is called as halo-cells ,H. So at any the time step of the simulation, the algorithm main-
tains a superset ofC called as all-cells which is defined asC+ :=H∪P∪L. The corresponding
tree is called as the parent-tree, which is the another directed graph T + := (C+,E+

T).
Subsets of ’all-cells’ (C+)
L, the set of leaf-cells ,P , the set of internal-cells andH, the set of halo-cells are mutually

exclusive and collectively exhaustive subsets of C+.
The parent of a cell, c ∈ C+ \ {c0}, is denoted by pc(c) or parent(c). The set of children

or daughters of an internal-cell is denoted by {∪d}c.

(a) c ∈ L(T) (b) {∪n}+c (c) {∪n}c (d) {∪n}c

Figure 2.5: (a) A cell c in the leaves L of a quadtree T . (b) cell-neighborhood {∪n}+c ; (c) neighbors
{∪n}c; and (d) contact neighbors {∪n}c of the cell.

For every leaf-cell ,c ∈ L, we define {∪n}+
c as the set of cells in the cell-neighborhood , we

define {∪n}c as the set of neighbors , and {∪n}c as the set of contact-neighbors (leaf-cells that
share either a vertex or an edge or a face with c). Refer Fig:2.5 for illustration of these sets.

2.4.2 Control Volumes in an AMR grid
For simplifications, let’s take the computational domain as a unit cube in 3D such that

Ω :=
{
x ∈ R3

∣∣ xi ∈ [0, 1] ∀ i ∈ {0, 1, 2}
}

(2.15)

Then the root cell c = (0, 0, 0, 0) has associated volumeΩ and for any cell (i, j, k, l) of the treewe
have the control volume Ωc with the its control surface ∂Ωc and its interior int(Ωc) = Ωc \∂Ωc.
For every cell c = (i, j, k, l) in {∪c}+ ,

Ωc
⊂RD

:=

{
(x0, x1, x2) ∈ R3

∣∣ x0 ∈
[
i

2l
,
(i+ 1)

2l

]
, x1 ∈

[
j

2l
,
(j + 1)

2l

]
, x3 ∈

[
k

2l
,
(k + 1)

2l

]}
(2.16)

xc
∈RD

:=
(i+ 1/2

2l
,
j + 1/2

2l
,
k + 1/2

2l
)

(2.17)

12 CHAPTER 2. MOVING INTERFACE

where xc is the barycenter of the control volume Ωc. The averaged are We can see the control
volume Ωc ⊆ Ω is another cube of edge dimension 1/2l smaller compared to the computational
domain. The maximum refinement level represented by lmax corresponding to the smallest
control cells is called as the depth of the tree . The smallest dimension 1/2lmax is of the order
of smallest length scale that can be captured by a tree of depth lmax.

2.4.3 Control Surfaces in an AMR grid
A face ,F, of a cell is the subset of the control surface ∂Ωc (which is a face/edge of the
cubic/square control volume) and at whose barycenter (face center), xF , we evaluate the average
integral of fluxes of conservative quantities and face normal component of velocity. For every
leaf-cell the set of control faces is given by {∪F}c (with |{∪F}c| = 6 in 3D or |{∪F}c| = 4 in
2D) and the set of control faces of the tree is given by {∪F}T := {F ∈ {∪F}c | c ∈ L(T)}.

2.4.4 A Valid Tree
The graph T of an AMR tree that represents a discretized Eulerian grid if the set of leaf cells
of the tree satisfies

1. collectively exhaustive control volume, i.e., Ω =
⋃
c∈L

Ωc

2. mutually exclusive interior of the control volume, i.e., for all c, c′ ∈ L
(
Ωc \

∂Ωc

)⋂ (
Ωc′ \ ∂Ωc′

)
= ∅ ⇐⇒ c 6= c′. The set Ωc \ ∂Ωc is the set of interior points

of the control volume Ωc. Two distinct leaves may share a face, an edge, or a vertex, or
nothing.

3. Apart from the above two general validity conditions of a tree, we also impose 1:2
refinement criteria by which all the contact-neighbors of a leaf-cell cannot be too fine (at
a depth of 2 or more than that of the leaf-cell).

∀ c, c′ ∈ L with c 6= c′, Ωc ∩ Ωc′ 6= ∅ =⇒ l − l′ ∈ {−1, 0, 1}

4. Moreover, from the point of view of computational limits, a user-defined maxlevel is
also imposed on the tree so that depth(T) ≤ maxlevel(T) at all timestep.

2.4.5 Traverse through Tree
The traversal through the tree, in general, can be achieved using any kind of space filling curve
(SFC). A SFC, in its analytical sense, is a continuous surjective map f from a compact set
I ⊂ R (for simplicity let’s take I = [0, 1] ⊂ R) to Ω and as you traverse from 0 to 1, the
mapping f cover the entirety of the computational space Ω i.e the image of mapping f(I) = Ω

[36] [37].For a smooth manifoldΩ, the mapping cannot be both continuous and bijective (Eugen
Netto 1879). In the discrete sense, we can define the SFC as a bijective map from N|L| to the
leaves of the tree , L.

Z : N|L| 7→ L (2.18)

The inverse of the SFC is a scalar Sz which maps from a leaf-cell to the z-curve index of
the leaf-cell . So as you traverse from z = 0 to z = N|L|, the SFC mapping Z(z) traverses
through all the leaf-cells in the tree (and correspondingly all points in the the control volume

2.4. CELL-BASED AMR GRID 13

is covered). The map Z can be derived from the SFC for the corresponding saturated tree, Z
which is a bijective map from N|C| to the full-index-set C 3 Hilbert curve and Peano Curve [37]
are non-overlapping SFCs while Morton curve, even though doesn’t satisfy locality preserving
condition, is the easiest to implement. Morton curve, which is implemented in Basilisk [29], is
discussed in the Appendix:A.2.

ê0

ê1

(a)

ê0ê1

ê2

(b)

Figure 2.6: Z shaped traversing among leaf siblings tree using Morton curve in (a) quadtree; and in (b)
octree.

2.4.6 Cache of Leaves
Since there are many instances of the set of leaf-cells are used in a solver, the Indices of leaf-cells
(or their memory pointers) are stored in a linear array which is the cache CL (with CL[z] = Z(z)

for all 0 ≤ z < |L|).

2.4.7 Scalars
The discrete value of scalars or vectors corresponding to each leaf-cells of a tree , T are
stored as tree-scalars which is an indexing mapping which maps the index of a leaf-cell to its
corresponding value denoted asSφT which by definition satisfiesSφT [c] := φh(xc) ∀ c ∈ L(T).
This definition can be extended to prolongation cells and restriction cells.
Inter-Level Scalar Interpolation

For the objective of (a) calculating scalar values in cell-neighbors which are not leaf-
cells (interior/halo cells) ;(b) estimating adaptive-wavelet error (Refer section:) ; and (c)
coarsening/refinement we need to interpolate scalar values from either a parent to its children
or vice-verse which is called inter-level scalar interpolation. Interpolating from a parent to it
is children is called interpolation or prolongation and interpolating from the set of siblings to
their parent is called restriction.

3The maps Z and Z satisfies

1. Z : N|C| 7→ C is a bijective mapping and there exists an inverse, which is an saturated tree-scalar SZT .

2. Every internal-cell have z-index lower than that of each of its children. For all cell c ∈ C \ {c0} (except the
root) and its parent pc, we haveSz

T [c] > SZT [pc]. The inverse of the mapZ satisfiesSz

T [c] < Sz

T [c′] =⇒
0 ≤ Sz

T [c] < Sz
T [c′] < |L| for distinct leaf-cells c and c′.

3. locality preserving: The leaf-cells Z(z) and Z(z + 1) are contact-neighbors .

14 CHAPTER 2. MOVING INTERFACE

2.4.8 Temporal Discretisation

The continuous time-space [0, T] ⊂ R0+ for which the solution of primary variables is sought,
is discretized into a sequence , (tn)0≤n≤N =

(
t0, .., tN

)
with t0 = 0, tN = T and 0 < ∆tn :=

(tn+1 − tn) ≤ ∆tnmax. The maximum time step size ∆tnmax, satisfies the CFL condition,

∆tnmax =
1

2
argmin
c∈L(T)

(
2−l

||u||

)
where u is the cell centered velocity of cell with size l. However, this value might be further
reduced by other stability criteria imposed by the schemes used for spatio-temporal discretization
of governing equations.

2.4.9 Governing Equation and Solution set

The system is governed bym number of governing partial differential equations and the solution
of them governing variables or primary variables that satisfies those equations is the real-valued
set {∪φ} ∀ x ∈ Ω (withm = |{∪φ}|) that represent the unique state of the system at any given
time. The objective of a computational solver that uses an AMR grid to find the the solution set
for all the leaf cells and for all the discretized time steps. The solution set for these variables
for each leaf-cells evaluated at their respective barycenters xc are represented as {∪φh}c

{∪φh}c := {φh(xc) | φ ∈ {
∪
φ}}

The solution set for the all the leaf-cells of the tree T is written as
{∪
{∪φh}c

}
L (whose size is

same the number of leaf-cells , |L(T n)|, of the tree at the given time step tn).
Let us say the fluid flow is defined by two set of |{∪φ}| number of equations where both

the set corresponds to fluids occupying Ω0(t) and Ω1(t) repectively. In a monolithic approach,
the discretised solution set {∪φh} is the averaged or unified solution. The average property
is usually calculated using a discrete heaviside or color function in the cell. We assume the
following information is provided

1. the jump conditions at the interface [[]]Γ(t) corresponding to each variables,
2. initial conditions

(a) the initial subdomain Ω0(0) and Ω1(0) corresponding to fluid components and the
interface Γ(t = 0)

(b) initial values of variables φh(t = 0) ∀ φ ∈ {∪φ}

3. sufficient boundary conditions on ∂Ω

2.5 Fluid-Fluid Interface: An Oriented Surface

Implementation of a surface mesh that represents a discretized fluid-fluid interface is described
in this section where a continuous smooth interface of C∞ is approximated by collection of
connected triangular patches called a Front.

2.5. FLUID-FLUID INTERFACE: AN ORIENTED SURFACE 15

2.5.1 Front: Discretised Interface
In this thesis, the oriented surface is represented by connected triangular patches called Front
(might also be mentioned as surface mesh) which is an extension of hypergraph 4 . The triangles
that constitute the surface mesh will be referred to, in the thesis, as frontelements or elements or
simply triangles (in 3D) and the marker points, which are also the vertices of the front elements,
are called frontpoints or markerpoints or vertices. The triangles are closely knit, maintaining
no gap on the surface mesh. The triangles are oriented, or in other words, the vertices are in
clockwise order concerning their outward normal for all front elements.

2.5.2 Set of marker points or frontpoints
Let us define the discrete set of front points that lie on the interface, called as vertices V

V :=
{
xsi ∈ RD

∣∣ i ∈ N|V|
}

(2.19)

2.5.3 Set of frontelements
Themarker points themselves cannot represent an oriented surface; rather need oriented patches
(frontelements or elements) which are an ordered set of marker points. The marker points are
also mentioned also as vertices of the element). The orientation (the discrete normal of the
element) of the patch is embedded in the order in which the vertices are tuples. In this thesis, the
surface mesh is comprised of front elements, which are simplices in RD (a line segment in 2D
and a triangle in 3D). So, an element can be represented by a tuple of vertices , ei := (vi0 , vi1)

in 2D and ei := (vi0 , vi1 , vi2) in 3D. Let us define the discrete set of triangles, elements , as a
set of tuplets of vertices , E ,

E :=
{
ei = (vi0 , vi1 , vi2) ∈ V3

∣∣ i ∈ N|E|
}

(2.20)

The set of directed edges of the triangle, element-edges ei = (vi0 , vi1 , vi2), is the set of ordered
tuples

{∪l}ei :=
{

(vi0 , vi1), (vi1 , vi2), (vi2 , vi0)
}

(2.21)

The set of edges of the surface mesh is the set edges given by

{∪l} :=
{
{vij , vik}

∣∣ j 6= k
∣∣ ∀ (vi0 , vi1 , vi2) ∈ E

}
(2.22)

Except for the triangles whose edge(s) lie(s) on the domain boundary, every triangle ei ∈ E
share its edges with three other distinct triangles ni0 , ni1 , ni2 ∈ E which are called the neighbors
of ei. Thus, we have a set of tuples of neighbors and their corresponding graph is defined as

N :=
{
ni = (ei0 , ei1 , ei2) ∈ E3

∣∣ i ∈ N|E|
}

(2.23)

4A surface mesh can be represented in different ways, like a hypergraph H = (V,E) where the set V is the
vertices of the hypergraph, which in the context of a surface mesh is the set of Lagrangian points on the interface and
each hyperedge/net of the hypergraph ei ∈ E constitutes an elemental surface patch. In the case of the triangular
surface mesh each net satisfies |ei| = 3. However, this definition lacks the information on the orientation of each
element. If there is some sequence which embeds the orientation, say (vi0 , vi1 , vi2)0≤j<3 ∀ ei = {vi0 , vi1 , vi2} ∈
E, then the hypergraph can sufficiently represents a discretized oriented surface.

16 CHAPTER 2. MOVING INTERFACE

2.5.4 Surface Mesh or FrontM
Once the sets and graphs corresponding to front points and front elements and are defined we
can define the graphM of the front which embeds the complete information of the surface
mesh as a tuple of linked-lists E , V andN

M := (V ,E ,N) (2.24)

Even thoughN is redundant from the definition of V and E (N can always be derived from V
and E by looking for shared edges) but we always maintain theN for computational efficiency
5.

2.5.5 Patch, Mapping
As mentioned earlier, an element e is a simplex with a set of points in the Eulerian space,
Pe ⊂ RD, and a normal ne. The patch Pe oriented patch has an associated map of a continuous
set of points in RD, which constitutes the interface Γ. Let’s define the barycenter xse of the
element e (e := (v0, vi) or e := (v0, v1, v2)) xse = 1

D

∑D
j=0 x

s
ij
then the continuous set of points

on the element with vertex coordinates (xsv0
,xsv2

,xsv2
), can be written as a function of local

parameters (r, s) ∈ U := {(r, s) | r, s ∈ [0, 1] ⊂ R≥0 with r + s ≤ 1},

Pe
⊂R3

:=

{
r (xsv0

− xse) + s (xsv1
− xse) + (1− r − s) (xsv2

− xse)
∣∣∣∣ (r, s) ∈ U

}
(2.25)

For every triangle e, we construct a local parametric mapping Me from U ∈ R2 to Ve ∈ R3

which constitutes the interface Γ of class Ck(k ≥ 1).

Γ =
⋃

e∈{∪e}

 ⋃
(r,s)∈U

Me(r, s)

 (2.26)

The corners of a front element are ordered in counter-clockwisewith respect to patch normal.
Let us define the discrete surface normal at the barycenter of e of the element e = (v0, v1, v2)

ne =
(xsv1
− xsv0

)× (xsv2
− xsv0

)∣∣∣∣(xsv1
− xsv0

)× (xsv2
− xsv0

)
∣∣∣∣

2

(2.27)

2.5.6 A Valid Front
A valid frontM that represent a closed oriented surface satisfies the following

1. Non-empty interior of the patch 6 : For every triangle e, Pe \ ∂Pe 6= ∅

5For every i-th triangle ei := (vi0 , vi1 , vi2) ∈ E and with (e,) ∈ E and (e, (n0, n1, n2)) ∈ N and for every
edge lj = (vj , vk) ∈ {∪ le}e there exits an edge lp = (vp, vq) ∈ {∪ le}nj such that vj = vq and vk = vp i.e every
neighbor nj shares an edge with e.

6UsingM = (V ,E,N), we can check for the above validity condition if the following conditions are satisfied
by all the triangles on the mesh. So ∀ (v0, v1, v2) ∈ {∪e}(M).

(a) Two vertex indices of a triangle cannot be the same: i.e vi = vj ⇐⇒ i = j
(b) Non-empty edge interior: i.e

∣∣∣∣xs
vi − xs

vj

∣∣∣∣
2
> 0 ∀ i 6= j

(c) Non-collinear vertices: i.e
∣∣∣∣(xs

v1−xs
v0)×(xs

v2
−xs

v0)
∣∣∣∣ > 0 The conditions (b) and (c) are automatically

2.5. FLUID-FLUID INTERFACE: AN ORIENTED SURFACE 17

(a) (b)

Figure 2.7: Front or Surface Mesh: An oriented surface Γ, is represented by oriented surface patces
(green colored). The discrete normal of the patch (black colored quiver) and the mapping from the points
on the patch to the surface (colored blue) is mentioned in the figure. (a) The front element is a line
segment (b) The frontelement

2. The interior of no two patches intersects: For any two triangles e, e′ ∈ {∪e}(M),(
Pe \ ∂Pe

)⋂(
Pe′ \ ∂Pe′

)
6= ∅ ⇐⇒ e = e′

3. All the edges of the triangle either lie on the computational boundary ∂Ω or is shared by
another triangle. So for every triangle ∀ e ∈ E , we have ∂Pe\∂Ω =

⋃
e′∈E\{e}

(Pe∩Pe′). We

limit our discussion to problems where the interface Γ doesn’t intersect the computational
surface ∂Ω, which means we do not consider inlet, outlet BC, contact line problems, etc.
(Γ ∩ ∂Ω = ∅

4. Smooth continuous tangent plane [38] (Refer Fig:2.8).
Isotropic Triangles

Figure 2.8: An example of non conforming point to tangent plane

Apart from the general validity conditions of a surface mesh, there are certain conditions to
beM, we impose the following conditions.

met if the isotropic mesh conditions (section:) are imposed.

18 CHAPTER 2. MOVING INTERFACE

1. isotropic conditions: Every edge l = (v0, v1) ∈ {∪l}(M) satisfies the condition

amax/2 ≤
∣∣∣∣xsv0

− xsv1

∣∣∣∣
2
≤ amax

amax/
√

2 is the ideal edge length of the triangles in the mesh, which is usually chosen as
a number close to hmin/2 where hmin is the edge length of the maximum refined control
volume in the tree .

2. quality condition: The shape quality of an element e ∈ E satisfies

Qe :=
|∂Pe|2

12
√

3|Pe|
≤ Qmax

where |∂Pe| and |Pe| are respectively the perimeter and area of the triangle.

2.5.7 Databases forM and T
As we have established in the previous sections, both the Grids involved are susceptible to
changes, thus the implementation of the graphs T andM requires the dynamic insertion and
deletion capability.

Refer to Basilisk source code [29] to see the implementation of a cell-basedAMRgrid. Refer
to Appendix (Sec:A.1.1) for the implementation of data structures which is capable of insertion
and deletion. This implementation uses integer indices for straightforward implementation in
MPI.

2.6 Grid Modification

2.6.1 Tree Modification
As the fundamental characteristic of an AMR grid, the tree can modify in time by either a cell
refinement to accommodate high spatial gradients of variables or a cell coarsening to optimize
(reduce the number of cells) in case of a low spatial gradient. During a refinement a leaf cell
of level, l, divides to create 2D children leaf cells of level l + 1, while during a coarsening
operation 2D children leaves collapses to produce a new leaf cell of level l.
Wavelet-based Adaptive Mesh Refinement

The criteria to determine whether a cell should be refined or coarsened or left untouched is
determined by error estimated in the discrete value of a variable by wavelet functions and the
tolerance allowed for the particular variable. The error calculated by the wavelet algorithm is
given

eh(φh) = φh − Ih2h

(
R2h
h

(
φh
))

(2.28)

where Rh
2h is the restriction operator that averages or downsamples a discrete value of variable

φ, φh, corresponding to a grid level l (with cell size h) to its coarser level l+1 (with cell size 2h).
The downsampled value thus produced by averaging or restriction operation,φ2h = Rh

2h

(
φh
)
,

is interpolated or upsampled back to level l using an interpolation or prolongation operator,
I2h
h . The absolute value of the difference between the original value and the interpolated value
is an estimate of the error. In a finite-volume solver, generally, the restriction operation is an

2.6. GRID MODIFICATION 19

(a) (b)

Figure 2.9: wavelet based AMR algorithm: The 1-D computaional domain ,Ω = [0, 1] ⊂ R, is discretized
by a bitree (1D extension of quad/octree). At an instance tn, the bitree, that represents the computational
domain has all its leaf cells at level 4 and a scalar φ stored at the center of each of these cells have the
discrete value φh(xh) = e−32(x−0.5)2

. The error corresponding to each of the leaf cell eh(φh(xh)) is is
determined by prolongation operation, which preceded by a restriction operation. Figure (a) shows the
discrete value at the leaf cell center φh in red, the downsampled values to the higher level φ2h = R2h

h

(
φh
)

in blue, and the re-interpolated value at the cell center of the leaves,Ih2hR2h
h

(
φh
)
, in black. The error

between the initial value and the re-interpolated value is represented in green. [Van Hooft Popinet]
[Prouvost] [Basilisk]. Figure (b) shows the the absolute value of the error calculated by the wavelet
scheme at the center of each cell in blue. When this value is above the user defined tolerance εφ = 0.6
(red line) the cells are refined, and when this value is less than 2/3εφ the cells are coarsened unless
limited by the 1 : 2 refinement criteria.

O(tn)

O(tn+1)

Figure 2.10: adapt wavelet algorithm: The grid is used to solve the governing equation in two consecutive
time steps are shown here T (tn) and T (tn+1). The cells of the grid T (t)n, are looked at whether they
are to be refined (|eh| > εφ) colored in red or to be coarsened (|eh| < 2/3εφ). All the red cells will
be refined (and their neighbors, if necessary) and all the green cells will be coarsened unless their 1 : 2
refinement criteria will be violated.

arithmetic volume averaging of values in children cells to their parent cell, and the interpolation
operation is a bilinear (or trilinear) interpolation from a cell to its children. This cannot be a
generalized example. For instance, sometimes these operators might be written to capture the
specific jump condition associated with the particular variables)

AMR Algorithm

The error was estimated using the wavelet-based algorithm is compared with the user-
defined tolerance εφ. So if there is a set of variables {∪φ}ε ⊆ {∪φ} for which the tolerance is
defined, then refine all the cells with

argmax
φ∈{∪φ}ε

|eh(φh)|
εφ

≥ 1 and l < lmax

20 CHAPTER 2. MOVING INTERFACE

Are refined. Similarly, all the cells with eh(φh) < 2
3
εφ are coarsened, provided the neighbors

are not too fine and refinement of these cells will violate the 1 : 2 refinement criteria. Similarly,
all the cells with εφ < eh(φh) < 2

3
εφ are left unattended unless the refinement of contact

neighbors demand its refinement. An example is illustrated in Fig:2.10 and Fig:2.9 where a 1D
computational space discretized using an AMR grid is modified based on the error calculated
by the adapt wavelet algorithm.

2.6.2 Front Modification
Since the surface grid represents an ever-evolving interface, the marker points that represent
advects with the local velocity. To satisfy all the validity conditions listed above, we need to
modify the surface mesh. There are two kinds of surface mesh modifications,

(a) Regridding : Because of the flow, the interface moves, which can stretch or compress
it locally, resulting in highly skewed surface mesh whose edge sizes are too small or too
big compared to Eulerian grid size or triangles with bad aspect ratios. So, to maintain
the edge sizes of the grid within a specified interval and a quality surface mesh, we regrid
the front [39] [32] .

(b) Topology changes : When there is coalescence or break up of drops or bubbles, the
topology changes, giving rise to more or lesser drops/bubbles [32] [40] [41].

Parallel implementation of the regridding algorithm is described in Section:3.8. This thesis
doesn’t discuss implementation of topology changes during advection which is left for future
work.

2.7 Inter Grid Communication
The grids (T andM) are required to communicate with each other during

1. Calculating volume average of interfacial force in a control volume

f(xc) =
1

|Ωc|

∫
Ωc

dV

∫
Γ

δ(xs − x)F(xs)dA ≈
∑

e∈E(M)

δh(x
s
e − xc) F(xse)|Pe| (2.29)

where f(xc) is the volume averaged force calculated at the centroid xc of the cell c with
control volume Ωc, F(xs)dA is the interfacial force on an infinitesimal patch dA, E(M)

is the linked-list of elements on the surface mesh, xse is the centroid of the element patch
Pe, F(xse) |Pe| is the force calculated on the patch.

2. Calculating velocity at the marker points to advect, calculating surface velocity gradient,
etc

us(xs) =

∫
u(x)δ(xs − x)dV ≈

∑
c∈L(T)

δh(x
s
e − xc) u(xc) |Ωc| (2.30)

where u(xs) is the velocity of the point xs on the interface, L(T) is the set of leaf-cells
of the Eulerian Mesh, u(x) the cell-centered velocity.

2.7. INTER GRID COMMUNICATION 21

In both the above equations |Ωc| = hD is the volume of the control volume, |Pe| is the area of
the triangular patch, and the discrete δh function satisfies∑

c∈L(T)

hD δh(x− xc) = 1 (2.31)

∑
c∈L(T)

hD (x− xc) δh(x− xc) = 0 (2.32)

for all x ∈ RD. In a uniform grid, with cell size h, a function that satisfy the above conditions
can be given by [Peskin 2003]

δh(x) =
1

hD

∏
d∈ND

φT M(
xd
h

) (2.33)

where

φT M(r) =

0 |r| ≥ 2
1
8

(
5− 2|r| −

√
−7− 12|r| − 4r2

)
1 ≤ |r| < 2

1
8

(
3− 2|r| −

√
1 + 4|r| − 4r2

)
|r| < 1

(2.34)

and the following equation is a good approximation for 2.35

φT M(r) =

{
0 |r| ≥ 2
1
4

(
1 + cosπr

2

)
|r| < 2

(2.35)

In both the interpolation (Eq:2.29 and Eq:2.30) the δh is zero outside the 5×5(×5) neighborhood
of xc and xs respectively where |r| > 2 in the Eq:2.35.

(a) (b)

Figure 2.11: (a): Calculation of volume average interface forces can be calculated as a summation of
the elements in the neighborhood weighted by δh. (b): Velocity at the marker point location can be
interpolated from the grid points in the neighborhood

22 CHAPTER 2. MOVING INTERFACE

2.7.1 Eulerian mesh to Lagrangian mesh interpolation

In order to interpolate a variable, say φ at a Lagrangian point, v := xs, on the surface mesh,
M from the Eulerian mesh using,

φs(v = xs) =
∑

c∈L(T)

φ(xc)δh(xc − xs) |Ωc| (2.36)

=
∑

c∈{∪n}+v

hDφ(xc)δh(xc − xs) (2.37)

Instead of summing over all leaves , we can limit to the cells in the vertex-neighborhood ({∪n}+
v).

2.7.2 Lagrangian Mesh to Eulerian Mesh Interpolation

(a) (b)

Figure 2.12: Types of patches on the surface mesh. (a): elemental patches. (b): vertex centered patches.

We calculate volume averaged interfacial force term by interpolating the interfacial stress
calculated on the Lagrangian meshM to the leaf cells of the Eulerian meshO. The interface
force per unit volume can be calculated by either summing over elemental patches or vertex
centered patches

f(xc) =

∑
e∈E

δh(x
s
e − xc) F(xse) |Pe|∑

v∈V
δh(x

s
v − xc) F(xsv) |Pv|

(2.38)

where F(xse) |Pe| and F(xsv) |Pv| are the interfacial forces calculated on elemental patch as
in Fig:2.12(a) and vertex centered patch as in Fig:2.12(b) respectively and the summations are
respectively carried out on all the front elements (E) and on all the frontpoints (V) of the surface
mesh,M.

As a direct inference (shown in Fig:2.11), the summation in Eq:2.29 can be reduced to the
elements in the neighborhood of the leaf cell c. Similarly, the summation in Eq:2.30 can be
reduced to the cells in the neighborhood of the vertex xs. The summation can be restricted just

2.7. INTER GRID COMMUNICATION 23

to the neighborhood as

f(xc) =

∑

c′∈{∪n}+c

∑
e∈{∪e}c′

δh(x
s
e − xc) F(xse) |Pe|∑

c′∈{∪n}+c

∑
v∈{∪v}c′

δh(x
s
v − xc) F(xsv) |Pv|

(2.39)

where {∪n}+
c is the set of cells in the neighborhood of the cell c, {∪e}c′ and {∪v}c′ are

respectively the set of elements and vertices in the cell c′.

24 CHAPTER 2. MOVING INTERFACE

Chapter 3

Parallel Strategies

3.1 Parallel Strategies
This section discusses the implementation of AMR-based immersed boundary methods in an
MPI parallel architecture. MPI parallelization is based on "single program, multiple data"
(SPMD) paradigm where we distribute the computational load among different processors,
such a way that all the parallel processors execute the same set of routines/functions but
on mutually exclusive and exhaustive partitions/blocks of the data sets which are stored in
individually allocated memory partitions (distributed memory) of the RAM. In general, a
processor operating on a local block requires the updated values in the non-local block, which
are communicated between the processors using blocking/non-blockingMPI communications.

This chapter discusses implementing a scalable development of an architecture for a mul-
tiphase flow solver using the FT method. Most parallel front-tracking solvers available are
optimized for specific multiphase flow problems like bubbly flows or do not put effort into
scalability for a more significant number of nodes.

3.2 Literature Review
Scalable Eulerian-based multiphase flow simulations, like VOF and level-set methods, are
already a well-established and deeply pondered subject of research. The parallelization of such
methods is dependent on the type of mesh used for spatial discretization. In the context of
AMR grid the parallelizability depends on computational and memory cost associated with the
AMRmesh partition/repartition (ex: SFC-based methods like theMorton curve, heuristic graph
partitioning schemes) and the communication cost. Eulerian-Lagrangian methods, like the FT
method, has further complexity associated with the surface mesh is involved, and inter-grid
communication is required. The scalability of the FT method can be simplified if we eliminate
the connectivity of the surface elements and associate a marker point with an edge of the
AMRmesh ([42], [43], [44]) These methods decrease the complexity associated with topology
modifications but imposes the condition that all marker points should be on an edge/face of
the grid, which removes the freedom associated with a marker point to be anywhere in Ω and
requires additional algorithms (or databases) to retrieve the orientation and connectivity of
surface elements.

Early schemes of parallelized computation of Front Tracking were not developed with
the intention of scalability. One such scheme used a master processor exclusively assigned

25

26 CHAPTER 3. PARALLEL STRATEGIES

(a) (b) (c)

Figure 3.1: (a) parallel simulation of bubbly flows in a 2D structured mesh. (b) The processor whose
domain contains the centroid of the bubble, takes the ownership of (Lagrangian routines) the bubble. (c)
All the processors whose domain intersect with the bubble, take co-ownership of the bubble, and all the
routines are redundantly done in all the processors.

with all the surface-related routines and so that it had to communicate with (from and to)
all the other processors ([25] [26]) . These schemes only focused on the scalability of the
Eulerian grid computation and lacks objectivity and discussions of parallelized schemes that
are generally associated with an Eulerian-Lagrangian solvers. [45] [46] uses mirror domain
technique where there is a copy of the whole of Lagrangian mesh in all the processor and
each processor operates only on a subset of the dataset which is followed by communication
between the fellow processors so that each non-local vertices and elements are up-to-date. This
scheme does not have an actual partition of the Lagrangian mesh, and there is a requirement
of broadcast communication (communicate to all the processors) from each processor which
makes it unsuitable for the large surface mesh. A partition of Lagrangian mesh can be seen in
[27], [47], [28]. [28] uses a triangulated mesh immersed in an AMR grid where both the AMR
grid and Front grid are partitioned using a heuristic graph partitioning algorithm, parMETIS.
The work is done for a small number of drops/bubbles in up to 196 processes Moreover, it
could only achieve modest scaling. [28] uses partition Lagrangian mesh for simulating a large
number of bubbles in a uniform mesh. In [28], each bubble is distributed among processors
in such a way that (i) Either the processor owns (the routines associated with) a bubble whose
centroid falls in its domain and all the processors whose domain intersect with the interface of
this bubble are updated, or (ii) all the processors whose domain intersects with the interface
of a particular bubble co-own the bubble and redundantly do all the Lagrangian routines are
associated with that particular bubble/drop, so that the communications can be avoided (Refer
to Fig:3.1). In both cases, as each bubble advects, the owner (or co-owners) and the list of
processors whose domains intersect the bubble interface has to be updated. This method is
suitable for tiny circular bubbles/drops in a uniform grid so that the number of processors whose
domain intersects the interface is limited and can be easily predicted 1.

Creating local groups of processors that co-own each bubble as in []is not suitable for AMR
grids as the domain associated with each processor changes dynamically. Morton curve-based
graph partition of AMR grid can result in a discontinuous processor domain, and sharing a
bubble among all the processors whose domain intersects with the bubble interface is non-

1locating the processor whose domain contains a point is straightforward in a uniform grid because processor
domains are fixed, and the cells are of the same dimension.

3.3. DEFINITIONS USED IN THIS CHAPTER 27

(a) (b)

Figure 3.2: The challenge in parallelizing Front Tracking in an adaptive mesh refinement environ-
ment: Due to the load balancing of an AMR grid after mesh adaptation, the processor owner of cells in
the local neighborhood of front points and front elements may change dramatically.

practical as this list can change dramatically after every advection time step or every adapt
wavelet. This kind of partition is not suitable for large interfaces per topology.

In this thesis, we partition the surface mesh in such a way that each processor owns the
marker points that lie inside the processor domain so that the marker points and leaf cells are
local to each other are in the same processor (Refer fig:) .

p = 0

p = 1

p = 2

p = 3

(a)

p = 0

p = 1

p = 2

p = 3

(b)

Figure 3.3: Illustration of distributed front where the the domain is distributed among four processors
(colored separately): (a) The vertices are owned (Pv(v)) by the respective processors whose domain
contain the vertex coordinate. (b) Ownership of edges and triangles are in such a way that the processor
of the least rank that owns the vertices of edges and triangles. (The owner of edges, Pl(l), and triangles,
Pe(e), are colored in accordance with rank of processors)

3.3 Definitions used in this chapter

3.3.1 Partition of Weighted Graphs for Parallel Computing
Definition of terms related to a weighted hypergraph in the context of parallel computing.

Graph: A graph G := (V,E) is composed wth |V | vertices (vi ∈ V) and |E| edges such
that each edge ei ∈ E (say ei = {vi0 , vi1}) is a set of two vertices vi0 , vi1 ∈ V .

Hypergraph: A hypergraph H := (V,E) is a more general graph (G) with every edge

28 CHAPTER 3. PARALLEL STRATEGIES

ei ∈ E (called as hyperedge/net) satisfies ei ⊆ V such that |ei| is not restricted to 2 as in the
case of graph.

Directed hypergraph: A directed hypergraph H := (V,E) is defined in such a way that
every edge e ∈ E (called as directed hyperedge/net) is an ordered pair of two sets of vertices
ei := (Vi0 , Vi1) that satisfies Vi0 , Vi1 ⊆ V .

Weighted Hypergraph: A weighted hypergraph H := (V,E, c, w) is a hypergraph with a
cost defined for each vertex c : V 7→ R>0 and edge w : E 7→ R>0.

k-way Partition of hypergraph: A k-way partition of the hypergraph H := (V,E, c, w)

into k subsets of vertices is ΠV := {V0, V1, ...Vk−1} (with ∪p∈NkVp = V , Vp′ ∩ Vp = ∅ ∀ 0 ≤
p′ < p < k and |Vp| > 0 ∀ 0 ≤ p < k).

Balanced Partition: The partition ΠV := {V0, V1, ...Vk−1} is ε-balanced (for a given
ε ≥ 0) if the cost of all blocks satisfies c(Vp) ≤ Lmax := (1 + ε)dc(V)/ke where the total cost
of computation and cost of computation of p-th partition are given by c(V) =

∑
v∈V c(v) and

c(Vp) =
∑

v∈Vp c(v) respectively.
k-way Partition of edges hypergraph: A k-way partition of the the edges of hypergraph

H := (V,E, c, w) into k subsets is the partition ΠE := {E0, E1, ...Ek−1} (with ∪p∈NkEp = E

and Ep′ ∩ Ep = ∅ ∀ 0 ≤ p′ < p < k and |Ep| > 0 ∀ 0 ≤ p < k).
Overload: When the tree goes adaptivemesh refinement, then the corresponding hypergraph

H = (V,E, c, w) may change toH ′ = (V ′, E ′, c′, w′) then the processors may go overload, i.e,
c(V ′p) > L′max := (1 + ε)dc(V ′)/ke for some p ∈ Nk.

Repartition: repartition is simply partitioning whenever the hypergraph modifies (also
called as rebalancing or dynamic load balancing).

Edge-cut: Given partitions ΠV , a cut-edge is any pair of vertex {v, v′} with both of them
belonging to different blocks (v ∈ Vp and v′ ∈ Vp′ with p′ 6= p) given {v, v′} ⊆ e for some
e ∈ E. The set of all cut-edges is the set edge-cut which can be defined as cut(ΠV) :={
{v, v′}

∣∣ ∃e ∈ E such that v, v′ ∈ e and v ∈ Vp, v′ ∈ Vp′ with p 6= p′
}
.

Communication neighbors: The k-way partition intended with MPI parallel processing
requires MPI communication between all the pair of processors {p, p′} (given p 6= p′) such that
there is a cut edge, which is shared among p and p′. So, for a local processor (saywith rank p), the
set of all processors with which it has to communicate (send or receive) is called communication
neighbors which can be given by {∪n}p := {PV (v′) | ∃{v, v′} ∈ cut(ΠV) with PV (v) = p}
where PV (v) is the processor rank of vertex v.

Boundary-vertices: Boundary-vertices, boundary(ΠV) :=
{
v, v′ | {v, v′} ∈ cut(ΠV)

}
,

are the endpoints of cut-edges.
MPI Computation: In MPI computation every processor with rank p possess the own-

ership (on the computation) of Vp ⊆ V and Ep ⊆ E and maintains an extended partition of
vertices (V +

p) and nets (E+
p). The portions V +

p \ Vp and E+
p \ Ep is called ghost layer which

helps to maintain the connectivity of the graph H . The sets boundary(ΠV)
⋂

(V +
p \ Vp) and

boundary(ΠV)
⋂

(Vp) corresponds to the vertices received and sent during and MPI commu-
nication.

MPI communication optimisation: The objective of MPI programmes that works on
partitionsΠV andΠE can beminimisation of the total cost associated with edge-cut or boundary
vertices. For simplifaction of discussion, if we take the cost associated with every vertex in
boundary-vertices as 1, c(v) = 1 ∀ v ∈ V ′, and every edge in edge-cut as 1, w(e) = 1 ∀ e ∈ E ′,
we can assume the objective of the MPI computation is to simultaneously minimize the size
of the (local) edge-cut,

∣∣{{vp, vp′} ∈ cut(ΠV) | vp ∈ Vp
}∣∣ or (local) boundary-vertices,

3.4. PROBLEM STATEMENT 29∣∣boundary(ΠV)
⋂
Vp
∣∣, for all p ∈ {∪p}.

3.3.2 Front/Octree as a Hypergraph
A frontM := (V ,E ,N) can also be written in the form of a hypergraph. H = (V,E) is an
equivalent toM if V represents the set of vertices V and E represents the set of (unordered)
vertices ({vi0 , vi1 , vi2}) of all edges e in E . Even though this representation lacks the orientation,
we can establish the analysis of graph partition on a front.

Similarly a tree T can be considered as a directed hypergraphH := (V,E) with V taken as
the set of cells of parent tree, C+. The set E can be considered in different ways, for example, it
can be considered as a set of directed hyperedges, e := ({c}, {∪n}+

c), where a leaf cell(c ∈ L)
is mapped to the cells in it’s neighborhood ({∪n}+

c).

3.4 Problem Statement
In the abstract sense, given a k number of processors with partitioned memory, the aim of
a parallel Eulerian-Lagrangian algorithm in the MPI paradigm is to compute the discretized
equation in the minimum time with a suitable memory partition so that none of the processor

Algorithm 1: FT-SOLVER
Data:

1. Computational domain, Ω = [0, 1]D,
2. Initial conditions in Ω (ex: φ0(x, t = 0) is given by some functions like fφ(x)),
3. boundary conditions on ∂Ω (ex: ∇φ(x ∈ ∂Ω) is given by some functions like gφ(x)),
4. Interface Γ0 := Γ(t = 0) ⊂ (Ω \ ∂Ω), (ex: implicit function like I(x) = 0 or parametric

function xs0(t1, t2)),
5. Jump conditions on Γ (ex: [[∇φ(xs)]] is given by some function like hφ(xs)),
6. End time tN := T > 0

Result:
1. Discretised domain: AMR grid T N := T (T) ,
2. Discretised Solution Set, {∪φh}(xc) ∀ c ∈ L(T N),
3. Discretised Interface: FrontMN :=M(T)

1. Discretize:
1.1 Discretise Ω by an initial AMR grid T 0

1.2 Discretise Γ0 by an initial FrontM0

2. Partition:
1.1. Distribute the cells C(T 0) into k partitions as ΠC := {C0,C1, ..,Ck−1} with
balanced leaves.
1.2. Distribute the front vertices V(M0) as ΠV := {V0,V1, ..IVk−1}
1.3. Distribute the front elements E(M0) as ΠE := {E0,E1, ..Ek−1}

3. Communication Neighbors and Ghost Subsets:
3.1. Maintain the local parent tree T +

p from Cp and ghost cells (non-local neighbor +
parents)
3.2. Maintain the expanded elements list E+

p from Ep and ghost elements (non-local
valence elements)
3.3. Maintain the expanded elements list V+

p from Vp and non-local vertices of E+
p ;

3.4. Maintain the set of communication neighbors {∪n}p of p

30 CHAPTER 3. PARALLEL STRATEGIES

4. while (MPI running) do // rank of this processor is p ∈ Nk

4.1. Initialize:
4.1.1. Initialise time step tn = t0 = 0
4.1.2. Initial condition φ0(xc) ∀ c ∈ Lp /* for all the variables using
φ0(xc, t = 0)← fφ(xc) */

4.2. while (tn < T) do // time step integration
4.2.1. Calculate ∆tn from stability criteria
4.2.2. Communication+Inter level interpolation: Update φ(xc) in all the
required cells of T +

p

4.2.3. Advection of Γn and Repartition ofMn:
4.2.3.1. Calculate Lagrangian velocity us(xs) ∀ xs ∈ Vp using T toM interpolation
of u(xc)
4.2.3.2. New interface position Γn+1 by advecting local vertices xs ∈ Vp using us(xs)
4.2.3.3. Parallel Topology change
4.2.3.4. Parallel Regrid Algorithm
4.2.3.5. Repartition V ,E and Update V+

p ,E+
p

4.2.4. One fluid formulation
4.2.4.1. Calculate heaviside or indicator function Hn+1(xc) ∀ c ∈ Lp
using T toM interpolation of u(xc)
4.2.4.2. Calculate average fluid properties ρn+1(xc), µ

n+1(xc) using Hn+1

4.2.5. Interface Forces
4.2.5.1. Calculate F n+1(xs) ∀ xs ∈ Vp on Γn+1 usingM toM surface operators
4.2.5.2. Calculate fn+1(xc) ∀ c ∈ Lp usingM to T interpolation of F n+1

4.2.6. Solve un+1, pn+1 from un, ρn+1, µn+1,fn+1 using projection algorithm
/* The projection algorithm flux calculation, advection algorithm, Poisson
solver, etc. In parallel solver, all these routines require an interprocessor
communication routines among communication neighbors, {∪n}p, inter-level
interpolations */
4.2.7. AMR + Dynamic Balancing

4.2.5.1. 1:2 Refinement of T n gives T n adapt wavelet error
4.2.5.2. Restriction/prolongation of each variables, {∪φ}, to the new leaves, Ln+1

p \Lnp
4.2.5.3. Repartition by dynamic load balancing: Update IT p and T +

p

4.2.5.3. Move the scalar data SφT to their new owner processor
4.2.5.3. Repartition V ,E and Update V+

p ,E+
p

4.2.8 Update time: n← n+ 1, tn ← tn + ∆tn

end
end

runs out of memory. The objective of a scalability is that the algorithm is optimal for achieving
the above-mentioned objective for any given number of processors. Using the detailed algorithm
of a parallel Eulerian-Lagrangian flow solver algorithm in MPI in described in Algo:1, and the
classification of mesh operators listed in the Table:3.1, we discuss the cost and metrics involved
in the scalable Eulerian-Lagrangian solvers.

3.4.1 Discussion on Metrics
The primary step in optimizing the efficiency of parallel implementation of Eulerian-Lagrangian
methods can be identifying the types of routines. The routines can be classified as Eulerian,

3.5. IMPLEMENTATION 31

Eulerian-Lagrangian and Lagrangian routines. Some of these operations modify the associated
(hyper)graphs, and the cost and frequency of the eventual repartition is a crucial element in
choosing the graph partitioning method. All these routines, which are operating on partitioned
subsets, require MPI communications. Uniformity of both the size and computational load
among each partitioned data set and minimization of communication requirements are the gen-
eral objectives of anyMPI parallel computing algorithms. In the context of Eulerian-Lagrangian
meshes where both the meshes are capable of modifying we Also, take into consideration the
memory and computational cost associatedwith repartitioning (while AMRor Front regridding)
and the the frequency at which this repartitioning occurs.

An AMR grid T of RD with a maximum depth L has number of leaf cells |L| < 2DL is
partitioned among k := |{∪p}| processors is immersed with a FrontMwith number of vertices
and elements |V | and |E| respectively. The communication cost among parts of the Eulerian
grid can be directly correlated with either of the sets: edge-cut or boundary-vertices (refer
Section:3.3.1). Edge-cut of each processor, cut(ΠC+) of an AMR grid partitioned among k
processors satisfies |edge− cut| = cN (D−1)/D [48], where N = |L|/k is the number of leaves
per processor. The constant c is optimal (least) for heuristic-based graph partition compared to
that of SFC-based graph partition algorithms, but those methods are not ideal for the reasons
(i) high repartition cost which is not suitable for solvers and requires high-frequency of load
balancing (AMR) and (ii) large memory demanded by partition/repartition algorithm. Among
SFC-based partition Hilbert curve has a lower edge-cut compared to Morton curve, as it is quite
evident from the locality-preserving nature of Hilbert curves. From a practical point of view
(availability of the free platform Basilisk [29]), the Lagrangian mesh is partitioned based on
Morton. In general, we can write the cost of communication of AMR grid is O(N (D−1)/D).

The size of the edge cut of the partition of the front (that represents an (D− 1)-dimensional
manifold in RD) can be taken as O(N (D−2)/D) where N = |L|/k. This gives the cost
of communication during Lagrangian and Eulerian-Lagrangian routines is of the order of
O(N (D−2)/D).

During AMR modification, the communication cost for dynamic load balancing based on
the SFC curve is O(N). In this thesis, the partition of the front is based on the locality of
the owner cell of vertices (Section:3.5.1) which guarantees that the communication cost of
repartition of the front is also O(N) where N can be taken as |E|/k.

3.5 Implementation
In this section, we discuss in detail the partition of grids, optimized communication strategies,
and mesh adaptation are discussed in this section.

3.5.1 Partition of Tree and Front
As mentioned in section: and section: a tree and a front can be represented as hypergraphs
(or more general combinatorial maps) or rather weighted hypergraph (refer Section:3.3.1) in
the context of parallel computing. Partition of hypergraphs for parallel computation satisfies
balanced constraint (refer section:3.3.1) with other minimization objectives like the cost of
inter-processor communication. When the tree modifies, processors may go overload (refer
section:3.3.1) and you need to do repartition (or rebalance) such that the balance constraint is
satisfied after any mesh modification.

32 CHAPTER 3. PARALLEL STRATEGIES

Eulerian Eulerian-
Lagrangian

Lagrangian

Requires repartition (i) AMR - (i) Regridding
(ii) Topology change

No repartition (i) Inter-level com-
munications (eq:
prolongation/restric-
tion)

(i) Eulerian mesh
to Lagrangian mesh
interpolation (ex:
Velocity at marker
points)

(i) Surface Interpola-
tion (ex: Curvature
calculation, surface
derivatives, etc.)

(ii) Intra-level com-
munication (eq:
scalar interpolation)

(ii) Lagrangian mesh
to Eulerian mesh in-
terpolation (ex: In-
terfacial force at leaf
cells)

Table 3.1: General routines in an Eulerian-Lagrangian solvers

When we come to the specific context of the solver that uses both Eulerian and Lagrangian
meshes simultaneously; we need to partition both tree and front . Since most of the routines
function on the set of leaf-cells , it is meaningful to distribute tree such that all the partitions
have more or less equal number of leaf-cells . Interprocessor communication can be minimized
depending on the SFC. The use of a locality-preserving SFC can reduce the inter-processor
communication load.

3.5.2 Partition of Tree and Parent Tree

This subsection explains the partition of tree , which was already implemented in [29] for the
sake of definitions required by subsequent sections.

Since most of the routines related to the AMR solvers are done on the set of leaves (L)
partition of the parent tree (T +) which is comprised of the cells C+ is partitioned in such a way
that the number of leaf-cells per processors is balanced 2 There are many ways to balance the
partition of leaves but we can make it unique if we make use of an SFC (which is Morton curve
in [29]). Set of leaves L of the tree T can be distributed among k number of procs with their
ranks in the set {∪p} = Nk using the Morton curve Z as ΠL := {L0,L1, ..,Lk−1} such that
the number of leaf-cells in each partition is given by |Lp| := d|L|/ke for all procs with rank
p < (|L| mod k) and |Lp| := b|L|/kc for all other procs.

Lp :=
{
c = Z(z) ∈ L

∣∣∣ ∑
0≤p′<p

|Lp′| ≤ z <
∑

0≤p′≤p

|Lp′ |
}

∀ p ∈ Nk, (3.1)

There is a partition of all the cells (C) of the tree T +) with every p-th partition (I+
T p

) is a
superset of Lp and also contains the ghost cells for MPI communication. Refer to [29] for the
conditions for partitioning the parent tree and the MPI ghost cells.

2Partition of tree is ε-balanced with ε = 0. If the cost of computation is 1 for leaf-cells and 0 for other cells
of the parent-tree then 0-balanced partition gives b|L|/kc or d|L|/ke number of leaf-cells per processor and the
distribution of other cells are based on some other objective functions which are out of scope for this chapter.

3.5. IMPLEMENTATION 33

Local Tree
There is a partition of all the cells (C+) of the parent tree (T +) with every p-th partition (C+

p)
is a superset ofLp and also contains the ghost cells for MPI communication. Refer [29] for the
conditions for partitioning the parent tree and the MPI ghost cells. The cell rank Pc : C+ 7→ Nk

maps every cell of the parent tree to a unique processor. For the leaf cells, the cell rank can be
defined using Eq:3.1 as

Pc(c) = p ⇐⇒ c ∈ Lp (3.2)

Ghost Cells and Communication Neighbors
As mentioned above, for a processor with rank p, the extended list of cell partition, (C+

p)
contains ghost cells (i.e the cells c ∈ C+

p with Pc(c) 6= p) and the list of the ranks of them is
the list of communication neighbors of p, given by

{∪n}p := {p′ ∈ Nk \ {p}
∣∣ ∃c ∈ C+

p s.t Pc(c) = p′} (3.3)

Local subdomain
The subset of control volume associated with a processor, Ωp = ∪c∈LpΩc. In order to

associate a unique owner with any point x ∈ Ω, we define Ωp := ∪c∈LpΩc and any discrete
Lagrangian point xs ∈ {∪v} is considered with a unique processor owner,p, if xs ∈ Ωp.

3.5.3 Partition of Front

p = 0 p = 2

p = 1
p = 3

(a)

p = 0 p = 2

p = 1
p = 3

(b)

Figure 3.4: (a) Every processor owns the local partition of vertices (Vp) and triangles (Ep). The ghost
layer contains all the non-local triangles (E+

p \Ep) and their non-local vertices (V+
p \Vp). (b) Edge cut

of partition.

Partition of the front can be either aimed at balanced distribution of computational load
associated with Lagrangian routines or can be aimed at maintaining a concurrency with the
locality of nearby leaf cells. In this thesis, the latter is preferred since balanced partition of

34 CHAPTER 3. PARALLEL STRATEGIES

(a) (b) (c) (d)

Figure 3.5: Distribution of Eulerian and Lagrangian Meshes in parallel computing. (a) Octree leaf cells
and front elements, (b) Partition of Octree (T) leaves among five procs. (Color represents rank), (c)
Partition of front (M) (d) Partition ofM such that the locality of vertices and elements are in the
neighborhood of leaf cells.

Lagrangian mesh doesn’t guarantee the local subsets of triangles and vertices are local to the
local Eulerian subdomain, Ωp.

If the leaf cells are partitioned by the SFC, as in Eq:3.1, then vertices can be partitioned in
such a way that each processor owns the local vertices. If we define the rank of a vertex as the
rank of the processor, which owns it, and similarly, we define rank for an (undirected) edge and
element of the front as the,

Pv(v) : V 7→ Nk : Maps a vertex v ∈ V to the (rank of its) owner processor
Pv(xs) = p ⇐⇒ xs ∈ Ωp (3.4)

Pl(l) : {∪l} 7→ Nk : Maps an edge l ∈ {∪l} to the (rank of its) owner processor
Pl({vi0 , vi1}) = p ⇐⇒ argmin

j
{Pv(vij)} = p (3.5)

Pe(e) : E 7→ Nk : Maps an element e to the (rank of its) owner processor.
Pe((vi0 , vi1 , vi2)) = p ⇐⇒ argmin

j
{Pv(vij)} = p (3.6)

So the partition is such that each processor p owns vertices, edges, and elements which
are local, i.e., whose ranks are p. These subsets are represented by Vp, {∪l}p and Ep and
we maintain an extended set of elements E+

p which contains all the ghost elements, E+
p \ E+

p

(non-local valence elements of elements in Ep). Partition of front is represented in Fig:3.3
Fig:3.9 and Fig:3.5. From Eq:3.4-Eq:3.6, we need to know the owner leaf cell of each vertex
to determine the rank of vertices, edges, and elements which are found using Algo:3 (LOCATE
routine). The algorithm of partition is shown in Algo:2.

LOCATE(xs, T): locating the owner cell of xs

The algorithm LOCATE(xs, T) (which is equivalent of o(xs)) returns the vertex-owner of
xs. The vertex-owner is a leaf-cell , which can be of any refinement level. So, we have to use
iterative search to find it. Rank of vertex, Pv(xs) is equivalent it Pc

(
o(xs)

)
is implemented

using LOCATE-RANK.

3.5. IMPLEMENTATION 35

Algorithm 2: FRONT-PARTITION
Data: Every processor owns

1. The local parent tree T +
p with cells C+

p with cell rank Pc(c) for all cells c ∈ C+
p

2. A copy of (global) front with ghost layersMp := (Vp,Ep,N p)
Result:

1. Local Mesh: Each processor reducesM toM+
p := (V+

p ,E+
p ,N+

p).
2. Connectivity: Connectivity is maintained inherently by maintaining the rank of ghost

elements and vertices. (Pv(v) ∀ v ∈ V+
p and Pe(e) ∀ e ∈ E+

p)

while MPI running do /* Rank of ’this’ processor is p */
1. for each vertex v do /* v ∈ V */

1.1. Pv(v)← −1 /* Unknown rank */
end
2. for each vertex e do /* e ∈ E */

2.1. Pe(e)← −1 /* Unknown rank */
end
3. for each vertex v do /* v ∈ V */

if LOCATE-RANK(v) == p then /* v ∈ Ωp */
3.1. Pv(v)← p /* Local vertex */
3.2. for each valence triangle e of v do

3.2.1. Pe(e)← p /* Assume Local element */
3.2.2. for each vertex v′ of e do /* v ∈ V */

3.2.3. p′ ← LOCATE-RANK(v′)
3.2.3. Pv(v′)← p′

3.2.3. Pe(e)← min{p′, Pe(e)}
end

end
end

end
/* Now local sets (Vp and Ep) are found. The algorithm used for the rank of a

vertex, LOCATE-RANK(v), in 3.1. and 3.2.3. is equivalent to Pc
(
LOCATE(v)

)
and

only works if the owner leaf cell of v is either a local cell or a ghost cell in the
local parent tree c ∈ C+

p

⋂
L. That is the reason we iterate through valence

vertices and find their rank rather than finding the rank of all vertices. The next
step will be to find all the missing ghost elements and their vertices. */
3.2. for each local triangle e do /* Pe(e) == p */

3.2. for each valence triangle e′ of e do /* Can skip if Pe(e′) 6= −1 */
3.2.1. Pe(e′)← p
3.2.2. for each vertex v′ of e′ do

3.2.3. p′ ← LOCATE-RANK(v′)
3.2.3. Pv(v′)← p′

3.2.3. Pe(e)← min{p′, Pe(e)}
end

end
end
Delete all vertices with Pv(v) == −1
Delete all elements with Pe(e) == −1

end

36 CHAPTER 3. PARALLEL STRATEGIES

Algorithm 3: LOCATE(xs,T +
p)

Data: Lagrangian Point xs, Local
parent tree T +

p with cells C+
p

and each of their rank
(Pc(c) ∀ c ∈ C+

p)
Result: Owner (local) leaf-cell ,

c ∈ Lp if xs ∈ Ωp

l← depth(T +
p)

while l ≥ 0 do
h← 2−l

c← (bxs0/hc , bxs1/hc , bxs2/hc , l)
if c ∈ Lp then
return(c)

end
l← l − 1

end
c← (−1,−1,−1,−1)

return(c)

/* Not found. Returns an invalid cell.
*/

Algorithm4:LOCATE-RANK(xs,T +
p)

Data: Lagrangian Point xs, Local
parent tree T +

p with cells C+
p

and each of their rank
(Pc(c) ∀ c ∈ C+

p)
Result: Rank of owner leaf-cell ,

c ∈ L⋂C+
p if c is a leaf cell

in the local parent tree
l← depth(T +

p)

while l ≥ 0 do
h← 2−l

c← (bxs0/hc , bxs1/hc , bxs2/hc , l)
if c ∈ C+

p

⋂
L then /* A Leaf cell

of parent tree */
return

(
Rank(c)

)
end
l← l − 1

end
return(−1)

/* Not found. Returns an invalid rank.
*/

3.6 Repartition

Asmentioned in the earlier chapter (2.6), bothT andMmodify in time, and the data structures
that store a set of leaves (and all other cells), vertices, elements, and neighbors are repartitioned
(such that equations Eq:3.1, Eq:3.4-3.6, are always satisfied). The repartition is also as called
dynamic load balancing. The two scenarios that arise from repartition are adaptive mesh
refinement and the front advection.

3.6.1 Adaptive Mesh Refinement

When the tree is modified by adaptive mesh refinement using the adapt wavelet algorithm
(section:2.28), dynamic load balancing of the AMR grid is required. In the context of the
Eulerian-Lagrangianmethod, we also need to redistribute the front so that the equations (Eq:3.4-
Eq:3.6) are satisfied. As mentioned, the dynamic balancing of the Eulerian grid is based on the
z-order curve of the new tree. In order to carry out the repartition of vertices, we can define a
z-order curve for vertices so that we can identify vertices in each leaf cell.

Z-order of Vertices
As in the point quadtree representation [49] [50], we can define SFC curve of vertices,

ZV : N|V| 7→ V as shown in Fig:3.6. If we store the vertices V in a cache called V ′ along
with two scalars SnvT and SzvT which store respectively the number of vertices in a leaf cell and
starting index (in the cache) of a vertex in the leaf cell, then all the vertices in a leaf cell can be

3.6. REPARTITION 37

found using
vi := V ′[i] ∈ Ωc if SzvT [c] ≤ i < SzvT [c] + SnvT [c] (3.7)

The algorithm is shown in Algo:5 and also refers to Fig:3.6

Algorithm 5: VERTEX-CACHE
Data:

1. The tree T with leaves L
2. The frontM := (V ,E ,N)

Result:
1. Cache V ′ of V
2. Scalar SnvT which stores the number of vertices in a cell.
3. Scalar SzvT , which stores the starting index of vertices in a cell.

1. Iterate through each leaf c ∈ L by Z
1.1. SnvT [c]← 0

2. Iterate through each vertex vi ∈ V
2.1. c← LOCATE(vi)
2.2. SnvT [c]← SnvT [c] + 1

3. zv ← 0
4. Iterate through each leaf c ∈ L by Z

4.1. zv ← zv + SnvT [c]
4.1. SzvT [c]← zv

5. Iterate through each vertex vi ∈ V
5.1. c← LOCATE(vi)
5.2. SzvT [c] = SzvT [c]− 1
5.3. j ← SzvT [c]
5.4. V ′[j]← vi

/* Now every vertices V ′[i] in the cache with index SzvT [c] ≤ i < SzvT + SnvT belongs
to the leaf c. */

3.6.2 Advection of Front

The marker points on the surface mesh advect with local velocity. In distributed computing,
each processor updates the coordinates of all local front points, ∀xs ∈ Vp:

xs ← xs + ∆tn
∑

c′∈{∪n}+c

u(xc′)δh(xc′ − xs) where c = o(xs) (3.8)

where the summation is carried out on all the cells in the neighbourhood of the owner cell
(o(xs)) of the vertex xs. Since the CFL condition |u|∆t

n

hmin
< 0.5 is imposed, it is guaranteed that

the the new coordinates of the vertex will be in the 3x3x3 neighborhood of o(xs) and we can
find the new rank of the vertex using LOCATE-RANK (Algo:4). Subsequently, the ghost layer is
updated by looking for rank of valance triangles and their vertices (as in Algo:2).

After every (or every few) number of time steps, the front mesh has to undergo remeshing
or topology modification routines (Section:3.8). Regridding in partitioned surface mesh is
discussed in Section:3.8. Parallel front topology modification operation is not discussed in this
thesis and is left for future development.

38 CHAPTER 3. PARALLEL STRATEGIES

3.7 Inter Grid Communication in Parallel

3.7.1 Cells, Elements, and Vertices in the neighborhood
As you have seen in equations Eq:3.4-Eq:3.6, since δh is 0 for |r| > 2, we can optimise the
summation if we have the vertex-neighborhood ({c′ ∈ {∪n}+

c | c = o(xs)}) of a front point
(xs) and all the front points ({v ∈ {∪v}c′ | c′ ∈ {∪n}+

c }) or front elements ({e ∈ {∪e}c′ | c′ ∈
{∪n}+

c }) in the cell-neighborhood of a leaf cell (c).

1. The cell-neighborhood {c′ ∈ {∪n}+
c } of the leaf-cell c := (i, j, k, l) can be easily found

by changing the indices like i← i± 1, 2

2. The cells in the neighborhood of the marker point xs, is the cell-neighborhood of the
vertex-owner cell, (o(xs)) of the marker point (xs). In a uniform grid of depth l, the
owner cell is simply

(⌊
xs0
2l

⌋
,
⌊
xs1
2l

⌋
,
⌊
xs2
2l

⌋
, l
)
and in an AMR grid, T , you can find it using

Algo:3 LOCATE..

3. The front points and front elements in the neighborhood of a leaf cell c ∈ O can be
easily obtained if you have the set of front points ({∪v}c′) or front elements ({∪e}c′) in
every cells c′ of the parent tree T +. The number of front points/front elements in a cell
is different for different cells. So, instead of creating front element arrays for each cell,
we can create a single front element cache that is in correspondence with the z-order of
leaves. (Refer Algo:5)

3.8. SURFACE REGRIDDING OR REMESHING IN PARALLEL 39

3.8 Surface Regridding or Remeshing in Parallel
As mentioned in Section:, front regridding is essential for Eulerian-Lagrangian methods involv-
ing a moving front. There are two aspects involved with front regridding (or surface remeshing
as in most of the literature): (i) metrics associated with surface quality which is demanded
by the solver; and (ii) time complexity, especially in the context of partitioned sets. With the
perspective of the objectives of this thesis, which is establishing a parallel front tracking code
with distributed Eulerian and Lagrangianmeshes, this section discusses how to efficiently regrid
a partitioned front or Lagrangian mesh with optimised communication.

The objectives of surface mesh regridding are maintaining the edge lengths within an
interval [amin, amax] where amax is of the order of h/2, maintaining quality triangles (closer
to an equilateral triangle) and smoother tangent planes for calculating surface derivatives. The
assigned edge length interval avoids leaks in δh interpolation between Eulerian and Lagrangian
meshes and avoid unnecessary small triangles, which do not give any advantage. The most
common metrics that are used to measure the quality of a surface mesh is (i) minimum or
maximum angle (optimal angle is 60 degrees), (ii) quality or aspect ratio (optimal value of
quality and aspect ratio are both 1) and (iii) the valence of the vertices (optimal valence of
an internal vertex is 6) [51]. The quality of the triangle can be expressed as Q(t) := 6At√

3StEt
where At, St and Et are respectively, triangle’s area, half perimeter, and length of the longest
edge. There are different classifications for remeshing algorithms [51] among which we use
surface remeshing by local mesh modification methods [52] which is suitable for front tracking
methods [53] [32]. In local mesh modification methods, edge manipulations are done in series
over all edges.
Data Structure Requirement

During mesh modification, we might add new front points and front elements or delete the
existing front points and front elements. Additionally, all these operations involve changes in the
way triangles are connected, and thus, the sets of vertex coordinates V , triangles E , neighbors
N undergo insertions, deletions, and modification. So, a triangle based surface mesh data
structures similar to [53] is used in this thesis where the sets of vertices, triangles and neighbors
are stored in a linked list which are capable of insertions and deletions. Refer to Sec:2.5 and
Sec:A.1.

3.8.1 Regridding in Parallel
In parallel remeshing, local mesh operations are divided among processors such that each
processor, with rank p, operates on local edges ({∪l}p) and local vertices (V). However, during
edge operations, special care has to be given for local edge-cut (cut(ΠV)

⋃{∪l}p) to avoid race
condition.
Avoiding Race Condition in MPI

Every edge operation creates or deletes triangles and vertices, which results in the modi-
fication of the triangle connectivity in the neighborhood of the edge (Fig:3.8(b)). Therefore,
the triangle-based database used in the thesis cannot be directly parallelized or multithreaded,
because multiple threads performing edge collapse or edge split operations on two neighbor-
ing edges might require changes in the connectivity of the same triangles, leading to a race
condition where different thread or processor tries to modify the same data simultaneously.
Apart from adding or deleting vertices and elements, an edge operation also changes the con-
nectivity of the triangles in the valence region of the edge. The valence region of an edge is

40 CHAPTER 3. PARALLEL STRATEGIES

shown in Fig:3.8(b). Due to the reason, the connectivity changes during an edge operation the
corresponding edge and makes the edge operation challenging for the edges in the edge-cut
(l ∈ cut(ΠV)) because of the race condition where different processors concurrently tries to
modify same data structure (V , E andN) at the same memory location. So, an edge operation
(collapsing or splitting) is carried out in two steps where in the first step of the operation we
carried out only the local edges, which are not edge-cut and which lie inside the local domain
completely (inside edge). (b) Subsequently, the edge operation is carried out on local edges,
which is also a cut-edge ({∪l}p

⋂
cut(ΠV)). The algorithm is explained in 6 and Fig:3.9. The

algorithm can be further improved if the mesh is implemented using a half-edge mesh [54]
which gives more independence in edge operation [55]. However, this is a future work.

Algorithm

3.8.2 Future Plan

The algorithm still requires further optimization for better scalability. To avoid the race condition
in edge operation, they are performed in steps as described in the section above. This restriction
can be addressed by employing a half-edge mesh which is left for future improvements. A
half-edge mesh [54] stores a triangle as a set of three consecutive directed half-edges, where
each half-edge is a directed edge connecting two vertices of a triangle. In the database, every
half-edge is connected to a previous and next half-edge of the triangle. Similarly, every half-
edge has a twin or flip half-edge, which is the oppositely directed half-edge of the neighboring
triangle. A half-edge mesh offers the advantage of edge collapse and edge split on every edges
independently. However, this approach might result in a temporarily invalid mesh where a
polygon has more than three edges (no longer a triangle) or a triangle with zero area, which can
be corrected afterward. This independence in edge operations can be utilized for hyperthreading
and MPI parallelization techniques.

The regrid algorithm discussed in this chapter doesn’t consider volume loss which can be
improved by employing algorithms like those discussed in [56] [57] [58].

3.9 Results
We discuss in detail the implementation and benchmark comparison of front tracking with
existing Literature in Chapter:4. Fig:3.10 and Fig:3.11 illustrate AMR and parallel capabilities
of the multiphase flow solver in 2D.

3.9.1 Scalability

In this section, we will evaluate the scalability of the parallel front tracking solver discussed in
the previous sections. Scalability of AMR Eulerian grid using Morton-curve-based partition
implemented in-house solver basilisk [29] is shown in Fig:4.10.

In order to test the scalability of repartition after advection (and subsequent regridding), it
is looked into with a simple test case. Here, four circular droplets are advected in a solenoidal
velocity field (given by stream function ψ(x, y) = 1

π
sin2 (πx) sin2 (πx) cos (π t

T
)). After each

time step,(i) the front undergoes regridding to even out the edge lengths, and (ii) the grid
undergoes AMR remeshing to capture the interface at maximum refinement. The average
computational time of different numbers of processors and levels are shown in Fig:3.12. The

3.9. RESULTS 41

Algorithm 6: PARALLEL-REGRID
Data:

1. Local parent tree T +
p with cells C+

p with cell rank Pc(c) for all cells c ∈ C+
p

2. Local Front with ghost layersM+
p := (V+

p ,E+
p ,N+

p) with processor rank for all
vertices (Pv(v) ∀ v ∈ V+

p) and triangles (Pe(e) ∀ e ∈ E+
p) given.

Result:
1. Improved Local FrontMp := (Vp,Ep,N p) with every vertices (v ∈ Vp) and triangles

(e ∈ Ep) satisfying the isotropic condition listed in Sec:2.5.6.
while MPI running do

1. for each local edge l := {vi, vj} except edge-cut do /* l ∈ {∪l}p \ cut(ΠV) */
1.1 if edge size is larger than amax then

1.1.1 Split l
end

end
2. Wait for nearby processors to finish step 1. /* MPI_Barrier could work */
3. for each local edge l which is a cut-edge do /* l ∈ {∪l}p

⋂
cut(ΠV) */

3.1. if edge size is larger than amax then /* */
3.1.1. Split l

end
end
4. MPI communicate (non-block send/receive) to update vertices, elements, and
connectivity in ghost region
5. for each local edge l := {vi, vj} except edge-cut do /* l ∈ {∪l}p \ cut(ΠV) */

5.1. if edge size is smaller than amin then /* */
5.1.1. Collapse l
which is left for future improvements

end
end
6. Wait for nearby processors to finish step 4. /* MPI_Barrier could work */
7. for each local edge l which is a cut-edge do /* l ∈ {∪l}p

⋂
cut(ΠV) */

7.1 if edge size is larger than amax then /* */
7.1.1. Collapse l

end
end
8. MPI communicate (non-block send/receive) to update ghost region
9. for each local vertex v do /* v ∈ Vp */

9.1. Vertex smooth v
end
10. MPI communicate (non-block send/rev) to update vertices in ghost region
11. Repeat Steps 1.-10. for few cycles (Ex: 6 smoothing cycles)

end

number of vertices and elements increases as the refinement level increases. Referring to
Fig:3.12(b), as the number of vertices and elements increase, the solver becomes more efficient.

42 CHAPTER 3. PARALLEL STRATEGIES

5
6

7

8

9

10

11
1213

14

15

16

17
18

19

20

21

22

23

24

25 0

1

2

3

4
5

27

28

(a)

0
1

2

3

4

5

6
78

9

10

11

12
13

14

15

16

17

18

19

20 21

22

23

24

25
26

27

28

(b)

Figure 3.6: Zorder of front points: (a): A front with vertices vi ∈ V marked with their indices i ∈ N|V|
in the set V . (b): Indices of vertices in the cache which are arranged according to the Morton curve.
Indices of vertices in the leaf cells with halo, children are ordered with the z-order of their children. This
ordering takes care of the refinement operation.

(a) (b) (c)

Figure 3.7: Regridding : (a)Split an edge when the edge size a is more than specified amax, resulting
in creation of two new triangles and a vertex. (b) Collapse an edge which is smaller than specified amin
resulting in the collapsing of two triangles and a vertex. (c) Vertex smoothing.

(a) (b) (c)

Figure 3.8: Valence : (a) Valence of the vertex: The valence triangles of a vertex is the set of triangles
that share the vertex. (b) Valence of the edge: The valence triangles of an edge is the set of triangles that
share either of the vertices of the edge. (c) Valence of the triangle: The valence triangles of a triangle is
the set of triangles that share at least one of the vertex of the triangle.

3.9. RESULTS 43

p = 0 p = 2

p = 1
p = 3

(a)

va

vb

p = 0 p = 2

va

vb

p = 1

va

vb

p = 3

va

vb

(b)

Figure 3.9: Splitting of edge operation in parallel to avoid race condition: (a) In the first step, the edge
operation (split/collapse) is carried out only on the inside edge ({∪ l}p \cut(ΠV)) which completely lies
inside the domain. (b) In the following step, the edge operation is carried out on local edges, which is
also a cut-edge ({∪ l}p

⋂
cut(ΠV)). NOTE: The second step has to be further split into two steps so

that two processors don’t split/merge edges of the same triangle which contains triple point (the points
that are shared by t va, vb)

(a) (b)

Figure 3.10: (a): A snapshot of a 2D atomization simulation implemented using parallel front tracking
method. In the simulation, a jet of radius R = 1/12 m is injected with a pulsatile velocity U =
0.1 + 0.05 sin(2πt/T)ms−1 with time period T = 0.1 s. The Reynold’s number isRe = 5800, surface
tension σ = 3 × 10−5, density ratio is ρ1/ρ0 = 2.84, viscosities are µ1 = 2. U R/(ρ1 Re), µ0 =
2. U R/(ρ0 Re). (b): Shows the AMR capability. The heaviside used in the simulation is simply the
volume fraction calculated from the front, which is discussed in the Ch:4 Sec:4.2.2.

44 CHAPTER 3. PARALLEL STRATEGIES

(a) (b)

Figure 3.11: Two snapshots of a cluster of rising bubbles in 2D. In front tracking the topology change is
not automatic, as is the case with VoF.

(a) (b)

Figure 3.12: Advection Test case: (a): Four circles are stretched with a predefined velocity field. (b):
Scalability test run on a workstation, for different refinement levels.

Chapter 4

Balanced Surface Tension

4.1 Introduction
This chapter explains the implementation of a balanced surface tension that eliminates spurious
current and conserves momentum. Well-balanced surface tension [59] [60] models discretize
terms in the Navier-Stokes equation such that in static droplet and bubble test cases, the Laplace
equilibrium is achieved, i.e., both the pressure and the surface tension discretization terms are
in balance so that spurious or parasitic currents are avoided. The desirable properties while
spatially discretizing surface tension terms are

• Well-balancedness: The pressure gradient balances the discrete surface tension in static
configurations such that:

−∇hp+ fσh = 0 (4.1)

• Discrete momentum conservation, Which is equivalent to

− fσh = ∇h · T σ
h (4.2)

where T σ
h is an appropriately defined capillary tensor.

Earlier approaches to surface tension discretization using CSF [33] suffered from parasitic
current or spurious current in stationary bubble or droplet test cases [61] [62]. In those
particular test cases where the Laplace pressure difference is balanced by the surface tension,
the NS equation can be written as

[[p]] = −σ(xs)κ(xs) ∀ xs ∈ Γ, (4.3)

which can be expressed in the spatiotemporal discretization equation [63],

∇h(p
n − σκnhHn

h) = 0. (4.4)

In the case of the spherical droplet at equilibrium, it reduces to [63]

peqb = σκeqbHh + C. (4.5)

In the front tracking method, the heaviside Hh in the above equation can be derived using
Eq:4.15. The two aspects of a well-balanced discretization requires that (i) the numerical
evaluation of curvature is constant, and (ii) the gradient operators used in both terms (Eq:4.15)
are similar or compatible [60] [59]. Well-balanced and momentum-conserving discretization

45

46 CHAPTER 4. BALANCED SURFACE TENSION

methods are implemented in VoF [60] and levelset [59] solvers. Implementation in [59] is
similar to the front tracking code in [60] which employs an integral formulation of surface
tension on the a portion of the interface reconstructed using a cubic spline interpolation of
marker points. In front tracking, the advection of markers produces small amplitude, high-
frequency errors in the curvature. In this chapter, we employ few Laplacian smoothing cycles
to take care of the the curvature fluctuations (Refer Sec:4.2.4).

4.2 Numerical Implementation

The Navier-Stokes equations (Eq:2.9-2.13) are solved using the projection method implemented
in Basilisk [29] and its extension to compressible multiphase flow [64] is explained in Sec:5.3 in
the next chapter. Spatial discretization of momentum equation is done on an Marker-And-Cell
staggered grid with AMR capability [29]. Discretization of surface tension term uses volume
integral formulation similar to [62].

4.2.1 Interface

s

t̂(sA)

xs(sA)

n̂(sA)

Ω1

Ω0 Γ

(a)

s

Ω1

Ω0

Γ

(κ(sA)<0)

n̂(sA)

∂t̂
∂s |sA

(κ(sB)>0)

n̂(sB)

∂t
∂s |sB

(b)

Figure 4.1: (a) parameter s, arc length θ(s), tangent t, normal t (b) positive (κa < 0)and negative
curvature(κb > 0)

The 2D interface Γ(t) at time t is the locus of interfacial points xs(s, t) for arc length
s ∈ [0, S] and t ∈ [0, T]. In discretized computation, we would rather have a discrete set of
marker points V := {xs0,xs1, ..} at any time step tn,. If we assume, the vertices are ordered
cyclically, then the set of front element can be considered as E := {(xs0,xs1), (xs1,x

s
2), ..}.

Let us define a polynomial interpolation functionMi(m) : [0, 1] 7→ R2 corresponding to each
element ei := (xsi ,x

s
i+1) ∈ E , that maps parameterm ∈ [0, 1] to points on the interface with all

the polynomials satisfyingMi(1) = Mi+1(0) = xsi+1. Then, the interface can be considered as

Γ =
{
Mi(m) |m ∈ [0, 1] and i ∈ N|V|

}
(4.6)

The tangent at interfacial point xsi is

t̂
∣∣
xsi

=
dMi/dm

‖dMi/dm‖

∣∣∣∣
t=0

(4.7)

4.2. NUMERICAL IMPLEMENTATION 47

For C1 (tangent) continuity

dMi/dm

‖dMi/dm‖

∣∣∣∣
t=1

=
dMi+1/dm

‖dMi+1/dm‖

∣∣∣∣
t=0

The direction of s is chosen such that points to the left and right of t̂(xs) belongs to Ω1 and
Ω0 respectively. So from the above convention, normal to the interface is obtained by rotating
t̂(s) counter clock-wise 90 degrees.

n̂ =

(
0 −1

1 0

)
t̂

The arc length from xs0 to xsi along the interface is

si =
i−1∑
j=0

1∫
0

∥∥∥∥dMj(m)

dm

∥∥∥∥ dm
For any point xs ∈ Γ on the interface corresponding to the element ei := (xsi ,x

s
i+1), all the

geometric parameters can be expressed in terms of the local parameter t ∈ [0, 1], or the arc
length s ∈ [si, si+1] or the coordinate xs itself depending on the convenience. Here, let us
define them in terms of t

xs(m) := Mi(m) (4.8)

s(m) := si +

∫ t

0

∥∥∥∥dMi(m)

dm

∥∥∥∥ dm (4.9)

t̂(m) =
dMi(m)/dm

‖dMi(m)/dm‖ (4.10)

κ(m)n̂(m) =
dt̂(m)

ds(m)
=

1

‖dMi(m)/dm‖
dt̂(m)

dm
(4.11)

Advection of the Interface

The marker points are advected using explicit integration (xs ← xs + ∆t us(xs)) where
marker velocity (us(xs)) is calculated from grid velocity (xc) using linear interpolation of
velocity components.

4.2.2 One fluid formulation

In one-fluid formulation, we solve the set of discretized equations of both fluids, considering
them as "one-fluid", allowing both the set of NS equations corresponding to both liquids into a
single set of equations. The fluid properties such as viscosity and density of the "one-fluid" are
determined by averaging the fluid properties of individual components. In this work, we follow
the arithmetic averaging [29] [32] [53] as

ρ(x) = ρ1H(x) + ρ2(1−H(x)) (4.12)
µ(x) = µ1H(x) + µ2(1−H(x)) (4.13)

48 CHAPTER 4. BALANCED SURFACE TENSION

êx

êy

êz

(a)

êx

êy

êz

(b)

êx

êy

êz

(c)

Figure 4.2: Heaviside Hh(x) in each control volume is taken as the volume fraction in the control
volume. (a) A cubic CV and all the triangular facets that intersect them (b) Polygons: Subset of each
triangle inside the cube (c) Void Fraction: Subset of cubic control which belongs to Ω0

(a) (b) (c)

Figure 4.3: Void fraction evaluated from an interface front at three different timesteps. The interface
is advected with a velocity field (given by stream function ψ(x, y) = 1

π sin2 (πx) sin2 (πx) cos (π t
T)).

The algorithm 11 can correctly calculate even if the interface is highly stretched such that there are cells
with front elements of opposite orientation ((b)).

where H(x) is the heaviside function which is given by

H(x) =

{
0 ∀ x ∈ Ωo

0 (interior points of fluid− 0,Ωo
0 = Ω1 \ Γ)

1 ∀ x ∈ Ωo
1 (interior points of fluid− 1,Ωo

1 = Ω1 \ Γ)
(4.14)

which is discontinous at the interface i.e ∀ x ∈ Γ.
There are many ways to determine the heaviside function. In most of the FT multiphase

flow solvers [53] [2], the heavy side function is determined by solving the following Poisson
equation

∇2Hh = ∇ ·Gh (4.15)

where Hh(xc) is the discretized heaviside evaluated in a cell c, and

Gh(xc) =
∑
e∈E

n̂eδh(xc − xse)
Ae
|Ωc|

(4.16)

where e ∈ E represent front elements, n̂e is the normal evaluated at the centroid of the element,
Ae is the area of the element, |Ωc| is the volume of the control volume corresponding to cell
c. The solution of Eq:4.15 doesn’t guarantee Hh falls in [0, 1] and can also result in erronous

4.2. NUMERICAL IMPLEMENTATION 49

heaviside value in the cells far from the interface [39]. Inorder to avoid these errors, special
care has to be taken in the Poisson solver like avoiding cells farther from interface [39]. This
method of solving for heaviside requires additional care while two interfaces approaches.

However, in this work, we take the void fraction as the heaviside, which is calculated directly
from the facets like in [62].

Hh(x) =
1

∆V

∫
dΩ

H(x)dv = f (4.17)

where f is the fraction of volume occupied by fluid − 1 in the computation cell. Fig:4.3
illustrates an example where the heaviside is evaluated as the volume fraction occupied by
reference fluid. [62] also used the same approach in 2D front tracking code. A general
algorithm (for both 2D and 3D) to evaluate void fraction in a control volume is explained in
detail in the appendix (Sec:A.5). A similar algorithm is described in [65] which is implemented
in [53]. This method avoidis overshoots and undershoots while evaluating heaviside as long
as there is no invalid interface intersections. However, since C0 continuity of the interface is
used in the evaluation, an additional filtering or Gaussian smoothing algorithm for smoother
heaviside is recommended before evaluating density and viscosity. The algorithm described
doesn’t require stitching of polygons as in [65].

—————————————————————–

4.2.3 Balanced FT in 2D

In the staggered stencil, the finite volume integral of the x component of themomentum equation
is carried out on the face-centered control volume Ωcx (4.4),

êx · fσ(xcx) =
1

|Ωcx|

∫
Ωcx

dV

∫
Γ

δ(xs − x)êx · Fσ(xs)dA (4.18)

=
1

|Ωcx|

∫
Ωcx∩Γ

σκn̂ (4.19)

Referring to Fig:4.4 and Eq:4.19, and using Frenet-Serret relation, the integral of−∇p+fσ
can be expressed as

êx ·
∫

Ωcx

(−∇p+ fσ)dv = −
D∫
C

p(y) dy +

A∫
B

p(y) dy +

C′∫
B′

∂σt̂

∂s
· êx ds (4.20)

By taking care of Laplace pressure jump at B′ and C ′, the above equation gives

1

|Ωcx|

∫
Ωcx

(−∂p
∂x

+ fσ,x)dv = − 1

h2

(
|C ′D| pi,j + |CC ′| (pi,j + σκ|C′)

)
+

1

h2

(
|BB′| pi−1,j + |B′A| (pi−1,j − σκ|B′)

)
+

1

h2

(∑
ei

m1(ei)∫
m0(ei)

∂σt̂

∂s
· êx ds

)
, (4.21)

50 CHAPTER 4. BALANCED SURFACE TENSION

fσ,x|(i+ 1
2 ,j)

Ω0 ∩ Ωcx

Ω1 ∩ Ωcx

pi−1,j pi,j

A D

B C

Γ
B′

C ′

tB′

tC′

(a)

fσ,x|(i+ 1
2 ,j)

|BB′| (pi−1,j)

|B′A| (pi−1,j − σκ|B′)
−σtB′,x

(pi,j) |C ′D|

(pi,j + σκ|C′) |CC ′|σtC′,x

A D

B C

B′

C ′

(b)

Figure 4.4: Finite volume integral: (a) In the MAC-staggered stencil, pressure pni,j is evaluated at the
centroid of the control volume Ωc corresponding to the cell c := (i, j, l) (where i and j are integer
index corresponding to x and y direction and l is the refinement level of cell). The x component of the
momentum equation is integrated over the face-centered control volume Ωc and the volume averaged x
component of surface tension fσ,x is calculated at the face center. (b) Integral of

∫
Ωcx

(
− ∂p
∂x + fσ,x

)
dv

over the control volume Ωcx

where the third term is the summation of elements ei := (xsi ,x
s
i+1) ∈ E which intersects

with the control volume Ωcx, and m0 and m1 are found using Liang-Barsky algorithm (0 ≤
m0 ≤ m1 ≤ 1) while cutting line segment (xsi ,x

s
i+1) by the control volume. This term can be

rewritten as

∑
ei

m1(ei)∫
m0(ei)

∂σt̂

∂s
· êx ds =

∑
ei

[m1(ei)−m0(ei))](σi+1t̂i+1 − σit̂i) · êx (4.22)

We finally have the discretised equation for Eq:4.4

1

|Ωcx|

∫
Ωcx

(−∂p
∂x

+ fσ,x)dv = −1

h
(pi,j − pi−1,j)−

1

h

(
pcap,xi,j − pcap,xi−1,j

)
+
∑
ei

[m1(ei)−m0(ei))](σi+1t̂i+1 − σit̂i) · êx (4.23)

where the capillary pressure correction in the x-component of the momentum equation (pcap,xi,j)

4.2. NUMERICAL IMPLEMENTATION 51

pi,j(xi, yj)

y′

(xi, yj − ∆
2)

(xi, yj + ∆
2)

Ω1 ∩ Ωc

Ω0 ∩ Ωc

Γ

κ(s)

(Case A)

pi,j(xi, yj)

y′

(xi, yj − ∆
2)

(xi, yj + ∆
2)

Ω1 ∩ Ωc

Ω0 ∩ Ωc

Γκ(s)

(Case B)

Figure 4.5: Capillary pressure correction to pcap,xi,j . Two cases where the interface intersects the right face
of the control volume Ωcx, above (xi, yj) as in Case A and below (xi, yj) as in Case B, are represented
here.

can be written as

pcap,xi,j =

σ(y′)κ(y′)(1

2
− |y′−yi|

h
) if y′ ≥ yi. Case A in Fig:4.5

−σ(y′)κ(y′)(1
2
− |y′−yi|

h
) if y′ < yi. Case B in Fig:4.5

0 if Γ doesn’t intersect the right face of Ωcx

(4.24)

where y′ ∈ (y − h
2
, y + h

2
) is the point at which the interface intersect the right face of the Ωcx,

and σ(y′)κ(y′) is interpolated from the marker points. Similarly pcap,yi,j can be derived.

4.2.4 Smoothing of curve
In front tracking, rather immersed boundary methods in general, advection of markers produces
small amplitude, high frequency errors in the marker positions. Thus, interface forces involving
higher-order marker position derivatives also have errors that can create numerical instability.
So we employ a smooth- ing algorithm, which ensures that all the terms involved in the
computation of the interface forces are smooth and have second-order convergence.

0.0 0.2 0.4 0.6 0.8 1.0

x(s)

0.995

1.000

1.005

y
(s
)

profile

analytical

(a)

0.0 0.5 1.0 1.5 2.0

x(s)

−5

0

5

e
=

y
f
it
(s
)
−

y
(s
)

×10−7

error

(b)

Figure 4.6: (a)Instance of the profile of an initially perturbed damping wave compared with the analytical
solution of Prosperetti. (b) High-frequency error in the numerical solution when solved with a front-
tracking solver without smoothing.

Fig:4.6 shows the fluid-fluid interface and Fig:4.9(a) shows the error from the analytical

52 CHAPTER 4. BALANCED SURFACE TENSION

solution, which is a smooth sine wave. This small high-frequency error gives rise to errors in
calculating curvature and their derivatives and potentially makes the integration of the system
of equations in time unstable.

0.0 0.2 0.4 0.6 0.8 1.0

x(s)

−5

0

5

e
=

y
f
it
(s
)
−

y
(s
)

×10−7

before after

(a)

0.0 0.2 0.4 0.6 0.8 1.0

s

−0.10

−0.05

0.00

0.05

0.10

κ
(s
)

before

after

(b)

0.0 0.2 0.4 0.6 0.8 1.0

s

−1

0

1

d
2
κ

d
s
2

before after

(c)

0.0 0.2 0.4 0.6 0.8 1.0

s

−1

0

1
d
2
κ

d
s
2

before after

(d)

Figure 4.7: (a) error in interface position (b) curvature (c) the first derivative of curvature and (c) second
derivative of curvature before and after a few cycles of smoothing cycles

There are different approaches to make the interface smooth. Here, we do a Laplacian
smoothing [66] [58], where we do pseudo-time step integration of type

u(s) = −cV N
d2κ(s)

ds2
n(s) (4.25)

with constant cV N can be determined from Von-Neumann stability analysis of the differential
equation. cV N can be determined as 1

8(∆s)4 . In Fig:4.9 it is evident how few number of cycles
of smoothing can kill the high-frequency errors.

4.3 Testcases
This section deals with the results of benchmarking test cases done with the front-tracking
multiphase solver described in this chapter. Moreover, they are compared with previous studies.

4.3.1 Static Droplet
When a perfectly circular droplet (or spherical droplet in 3D) of heavier fluid is kept in the bulk
of lighter fluid in the absence of gravity and other body forces, it will remain at static equilibrium
with higher pressure inside the drop, which is balanced by the Laplace pressure. However, in

4.3. TESTCASES 53

the direct numerical simulation of this multiphase problem, due to the inconsistency of the
terms in the discretization of the Navier-Stokes equation, the unbalanced stresses manifest as
unwanted velocity , which is called spurious current or parasitic current in literature.

µl, ρl

µg, ρg

DL

(a)

µl, ρl

µg, ρg

a0

L

(b)

Figure 4.8: (a) Computational setup for spurious current testcase in Sec:4.3.1. (b) damping capillary
wave in Sec4.3.2

In the subsection, we look into the parasitic current produced in a static droplet test case to
look into the well-balancedness of the discretization of NS. A circular droplet of diameter, D,
is kept at the center of a square computational domain of side L such that D/L = 0.4. The
computation is simplified by simulating only 1/4 of the domain with a quadrant circle placed
at the origin. The density and viscosity of the liquid that composes the liquid are ρl and µl,
respectively, and that of the surrounding gas is ρg and µg The domain is divided to 25 × 25

square control volumes such that there are 12.8 grid points per diameter.
The non-dimensional numbers involved in the problem are

Density ratio rρ =
ρl
ρg
,Viscosity ratio rµ =

µl
µg
,Laplace number La =

ρlσD

µl2

The time scale involved in the problem is capillary time scale Tσ =
√

ρlD3

µ
and viscous time

scale Tµ = ρlD
2

µ
.

4.3.2 Capillary wave

A well-established test case used to look into the robustness and study the order of convergence
of spatial discretization of a multiphase flow involving viscous stresses and capillary forces
is the damped oscillation of a capillary wave [67] [68] [69][20] [63][24][70]. The test case
involves studying the evolution of an initially perturbed two-fluid interface and comparing it
with the interface initializing a small perturbation on

An initially perturbed interface that lies at the center of the square box: The wavelength of
the wave is equal to the side length of the square. The ratio of the amplitude of perturbation to
the wavelength is 0.01. The densities and viscosities of fluids on both sides of the interface are
equal. Let Oh = 1/

√
3000, the non-dimensional viscosity ε = νk2/ω0 ≈ 6.472 × 10−2. The

square box is divided into 64x64 cells. Surface forces at the interface in the perturbed interface
dampen the wave with time. The evolution of amplitude a/λ is plotted with non-dimensional
time in Fig:4.13 and is compared with the analytical solution of Prosperetti [68] [71].
Case-A

The evolution of the amplitude of a capillary wave is shown in Fig:4.13 in the test case with
dimensional numbers listed in Table4.1.

54 CHAPTER 4. BALANCED SURFACE TENSION

0 2 4
t

Tµ

10−13

10−11

10−9

10−7

||u
|| ∞

U
µ

La = 120

La = 1200

La = 12000

(a) ρl/ρg = 1

0 2 4
t

Tµ

10−13

10−11

10−9

10−7

||u
|| ∞

U
µ

La = 120

La = 1200

La = 12000

(b) ρl/ρg = 10

0 2 4
t

Tµ

10−13

10−11

10−9

10−7

||u
|| ∞

U
µ

La = 120

La = 1200

La = 12000

(c) ρl/ρg = 100

0 2 4
t

Tµ

10−12

10−10

10−8

10−6

||u
|| ∞

U
µ

La = 120

La = 1200

La = 12000

(d) ρl/ρg = 1000

Figure 4.9: Decaying spurious current study for a static droplet test case with different ratios and
Laplace numbers explained in Sec:4.3.1. The x-axis represents time, which is non-dimensionalised
with viscous time scale and the y-axis is the maximum of the spurious velocity in the domain, which is
non-dimensionalized with a viscous velocity scale.

0 2 4
t

Tµ

10−6

10−5

10−4

10−3

||u
|| ∞

U
µ

e = 05%

e = 10%

e = 20%

(a)La = 120

0 2 4
t

Tµ

10−5

10−4

10−3

||u
|| ∞

U
µ

e = 05%

e = 10%

e = 20%

(c)La = 12000

Figure 4.10: Eccentricity introduced

µl
µg

ρl
ρg

La a0

λ

1 1 3000 0.01

Table 4.1: Nondimensional parameters for damping capillary wave test case A

Case-B

The evolution of the amplitude of a capillary wave is shown in Fig:4.12 in the test case with
dimensional numbers listed in Table4.2.

4.3. TESTCASES 55

0 5 10 15 20 25
non dimensional time t

Tµ

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li
ze
d
a
m
p
li
tu
d
e

a
(t
)

a
(0

)

FT

Prosperetti

(a)

8 16 32 64 128
grid points per wavelength, N

λ

10−3

10−2

10−1

er
ro
r,

L
2

FT

Popinet

O(h2)

(b)

Figure 4.11: (a) Evolution of normalized amplitude of an initially perturbed wave as mentioned in
Case-A of Sec:4.3.2. (b) The spatial convergence of L2 error

µl
µg

ρl
ρg

La a0

λ

55.72 850 3000 0.01

Table 4.2: Nondimensional parameters for damping capillary wave test Case-B of Sec:4.3.2

0 5 10 15 20 25
non dimensional time t

Tµ

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
li
ze
d
a
m
p
li
tu
d
e

a
(t
)

a
(0

)

FT

Prosperetti

(a)

8 16 32 64 128
grid points per wavelength, N

λ

10−3

10−2

10−1

er
ro
r,

L
2

FT

FT(ρ, µ smeared)

Popinet

O(h2)

(b)

Figure 4.12: (a) Evolution of normalized amplitude of an initially perturbed wave as mentioned in
testcase of Sec:4.3.2. (b) The spatial convergence of L2 error.

Spatial Convergence
Let us look into the error between the exact solution and the DNS solution for the current

front-tracking solver for different resolution of the grid and look into the converge. We define
the L2 error as

L2 =
1

λ

√
Ω0

25

∫ 25/Ω0

t=0

(h− hexact)2dt

which is the difference in the amplitude of the damped wave between the DNS and the exact
solution, which is averaged over a time period equals to 25/ω0. The frequency Ω0 is obtained
from

ω0
2 =

σk3

2ρ
where k =

2π

λ
is the wave number

Nondimensional parameters for damping capillary wave test case B Convergence of L2 is
studied by doing? the simulation for different grid resolution λ/δ = 8, 16, 32, 64, 128. The
error and convergence study is compared with [60].

56 CHAPTER 4. BALANCED SURFACE TENSION

Study / λ
∆h

8 16 32 64 128

current study 0.17561 0.0258687 0.0040554 0.00231449 0.000616792
Popinet[60] 0.1568 0.0279 0.00838 0.0018 0.000545

Popinet&Zaleski 0.3018 0.0778 0.0131 0.0082 0.00645

Table 4.3: L2 error for different / λ
∆h

(Case-A of Sec:4.3.2).

Study / λ
∆h

8 16 32

current study 0.255214 0.140576 0.056885
Popinet[60] 0.1971 0.0754 0.0159

Table 4.4: L2 error for different / λ
∆h

(Case-B of Sec:4.3.2).

4.3.3 Oscillating Droplet
Like the damping capillary wave test case in the above subsection 4.3.2, A small perturbation is
introduced on the circular interface separating two inviscid liquids, and the system is let evolve
in time [72] [44]. Due to the surface tension, the interface oscillates. Theoretically, the droplet
should oscillate without damping as both liquids are inviscid. However, the direct numerical
simulation shows that the perturbation numerically disappears in time.

An inviscid circular drop made up of a liquid of viscosity ρl with diameter, D is kept
inside another inviscid liquid of density ρg. The surface tension for the pair of liquids is σ. A
sinusoidal perturbation of amplitude ε0 is introduced on the interface at t = 0.

r(θ) =
D

2
+ ε0cos(nθ)

For this current test case, n is taken as 2. Theoretically, the perturbation gives rise to an
undamped oscillation of frequency

ω2
n =

(n3 − n)σ

(ρl + ρg)(D/2)3

ρl
ρg

La ε
D

1000 ∞ 0.05

Table 4.5: Nondimensional parameters for oscillating inviscid drop

4.3. TESTCASES 57

0.0 0.5 1.0 1.5 2.0 2.5
time t ×10−1

0

2

4

6

8

K
in
et
ic

E
n
er
g
y
∫ Ω

ρ
|u
|2

×10−4

N=32

N=64

N=128

N=256

Figure 4.13: Evolution of normalized amplitude of an oscillating inviscid drop of small amplitude

58 CHAPTER 4. BALANCED SURFACE TENSION

Chapter 5

Compressible Multiphase Flow using
Front Tracking

5.1 Introduction

This chapter explains the implementation of a compressible multiphase flow solver using the
front trackingmethod. The general algorithm regarding all-machmultiphase flow solver follows
[64], who have implemented the solver in AMR-based solver Basilisk [29]. [64] is a VoF-based
finite volume solver that considers the interfacial tension and the compressibility of both fluids.

5.2 Compressible Flow Solver

The compressible flow solver aims to solve the evolution of the interface and the subspaces that
occupy each fluid, the flow field variables, and the intrinsic properties of fluids, which, unlike an
incompressible flow, can vary. For a system of two-component fluid occupying a d-dimensional
computational domain Ω ⊂ Rd (d ∈ {2, 3}) with computational surface ∂Ω, the objective of
this solver is to look into the following,

Γ(t),Ω0(t),Ω1(t) ∀ t ∈ [0, T] ⊂ R
ui(x, t) ∀ t ∈ [0, T] and x ∈ Ωi(t) \ Γ(t)

pi(x, t), ρi(x, t), ei(x, t) ∀ t ∈ [0, T] and x ∈ Ωi(t) \ Γ(t)

where Γ(t) is an oriented closed surface that represents the interface separating two fluids, say
fluid− 0 and fluid− 1, which respectively occupy the domains Ω0(t) \ Γ(t) and Ω1(t) \ Γ(t)

such that Ω0(t) ∩ Ω1(t) = Γ(t) and Ω0(t) ∪ Ω1(t) = Ω(t). The index i ∈ {0, 1} in the
above description represents the i-th component of the system. u stands for the velocity
field. The thermodynamic properties of fluid, pressure, density, and specific internal energy
are represented by p, ρ, and e, respectively. We do not consider other scalars and vectors
that represent flow fields or properties of either component because they are constant for both
components or are derivable from the variables listed above.

59

60 CHAPTER 5. ALLMACH

5.2.1 Governing Equations
We can say that the following ten spatiotemporal variables can fully represent the system of
two-component compressible fluids

fi(x, t), ρi(x, t),ui(x, t), pi(x, t), ei(x, t) ∀ x ∈ Ωi and t ∈ [0, T] (5.1)

If H(x, t) is the heaviside with H(x, t) = 0 ∀ x ∈ Ω0(t) and H(x, t) = 1 ∀ x ∈ Ω1(t) then
the local heaviside fi is given by

fi(x, t) =

{
1− H(x, t) ∀ x ∈ Ω0(t)

H(x, t) ∀ x ∈ Ω1(t)
(5.2)

The Navier-Stokes equations that define the governing system are

∂

∂t
ρi +∇ · (ρiui) = 0 (5.3)

∂

∂t
(ρiui) +∇ · (ρiuiui) = −∇pi +∇ · τ i (5.4)

∂

∂t

(
ρi(ei +

1

2
u2
i)
)

+∇ ·
(
ρi(ei +

1

2
u2
i) ui

)
= −∇ · (uipi) +∇ · (τ iui) (5.5)

where τ i = 2µ∇1
2
(u+uT)− 2

3
µ(∇ ·ui)I is the viscous stress tensor and (ei + 1

2
|ui|2) is the

specific total energy of the fluid. The evolution of component spaces, Ωi(t) and interface, Γ(t)

are solved by integrating the following evolution equation of the heaviside function,

∂

∂t
fi + ui∇ · fi = 0 (5.6)

The equation of state (EOS) model used in this work is the stiffened gas EOS model,

ρiei =
pi + ΓiΠi

Γi − 1
(5.7)

where Γi and Πi are fitting parameters specific to each component of fluids.
The 5 pair of equations listed above (Eq:5.3 - Eq:5.7) gives a closure to the system. The

above system of equations can be numerically solved, provided sufficient boundary conditions
on ∂Ω and all the initial conditions at t = 0 and the jump boundary conditions at Γ(t) for each
pair of variables in 5.1. Given that there is no mass diffusion and slip at the boundary, we can
say that there is no velocity jump at the interface,

[[u]]Γ = 0, (5.8)

where [[]]Γ represents the jump in the variable when we move across the interface Γ from Ω0

to Γ1. Say, for a variable φ, the jump is

[[φ]]Γ = lim
s→0+

(φ(xs − sn̂(xs))− φ(xs + sn̂(xs))) ∀ xs ∈ Γ(t) (5.9)

where n̂(xs) is the normal defined at the interface point xs, xs − sn̂ and xs + sn̂ are points
in the subspaces Ω1 and Ω0 respectively just interior to Γ (since, by definition, the normal n̂
points towards the interior of Ω0).

5.2. COMPRESSIBLE FLOW SOLVER 61

In the presence of surface tension, the pressure jump can be written as the sum of jumps in
Laplace pressure and viscous stress, which gives

[[p]]Γ = −σκ+ n̂ · [[τ]]Γ · n̂ (5.10)

The absence of energy transfer across the interface gives

[[∇e · nΓ]]Γ = 0 (5.11)

Jump in local heaviside functions fi is inherently defined in their definition (Eq:5.2).
Apart from the governing equations (Eq:5.3 -Eq:5.7), the All-Mach algorithm uses some

other equations derived from Eq:5.3-5.7. The projection step in Navier-Stokes solver uses the
following pressure evolution equation (Eq:A.52)

dpi
dt

(
Γi
ρic2

i

− β2
i Ti
ρicpi

)
=

βi
ρcpi

Φ−∇ · u (5.12)

to solve for velocity and pressure at tn+1. In the Eq:5.12, Φ = τi : ui represents the viscous
dissipation c and represents the speed of the sound. For the specific model of the equation of
state

c2
i =

dpi
dρi

= Γi
pi +Πi

ρi
(5.13)

The equation Eq:5.12 can be approximated in the absence of viscous dissipation as(
1

ρc2

)
e

dpi
dt

=

(
1

ρc2

)
e

(
∂pi
∂t

+ u ·∇pi
)

= −∇ · u (5.14)

where
(

1
ρc2

)
e

=
(

Γi
ρic2i
− β2

i Ti
ρicpi

)
. The derivation of Eq:5.14 is explained in Sec:A.6. Some

of the above equations can be decoupled, and the total number of equations and, thus, the
variables that define the system uniquely can be reduced. Since f0(x, t) = 1 − H(x, t) and
f1(x, t) = H(x, t), we can express the pair of equations in Eq:5.6 into a single equation for
both subdomains as

∂

∂t
H + u ·∇H = 0 ∀ x ∈ Ω(t) (5.15)

The index on the velocity is dropped because the velocity has no jump near the interface.

5.2.2 Monolithic Approach

The algorithm is not completely monolithic, as solving the system of equations of both com-
ponents involves solving both the monolithic equation (where both the fluids are considered as
one-fluid) and solving separately for each component. For example, the projection algorithm
used in the solution of the Navier-Stokes equation is carried out by assuming both fluids as a
single fluid while advection of scalars (Eq:5.31) are carried out separately. For this reason, each
control cells store variables for both the components, and whenever both equations are solved
using a single equation: the phase average values of the variables in the cells are used, and
the contribution of the interface is added to the equation using the appropriate jump condition

62 CHAPTER 5. ALLMACH

mentioned in section:5.2.1.
The solver stores and solves for the discrete set of variables evaluated at the center of control

volumes c, referred as {∪φ}

{∪φ}c := {f, p} ∪ {∪fiφi}

where p is the pressure evaluated at the center of each cell and {∪fiφi} is the set of component
wise contribution of conserved variables

{∪fiφi} :=
⋃

i∈{0,1}

{ fiρi, fiρiui, fiρiEi} (5.16)

for each control volume cell. Ei in the above equation represents the total specific energy,
Ei = ei + 1

2
ui · ui, of the i-th component. The complete set corresponding to all the control

volumes L(T), is
{∪
{∪φ}c

}
.

As we move further in the chapter, we will be coming across some formulations that use
averaged or unified form of conserving variables in some monolithic expressions, discretized
or semi-discretized equations which are {ρ, ρu, ρE}.

φ :=
∑
i∈{0,1}

fiφi ∀ φ ∈ {ρ, ρu, ρE}. (5.17)

Many equations, like advection equations and interface advection in front tracking, use averaged
velocity, which is assumed to be continuous across the interface and is given by

u :=

∑
i fiρiui∑
i fiρi

. (5.18)

So, in short, the all-mach algorithm aims to find a discrete solution set
{∪
{∪φ}c

}n+1 at time
step tn+1 := tn + ∆tn given the discrete solution set

{∪
{∪φ}c

}n at time tn and a time step size
∆tn that satisfy all the stability criteria imposed by spatiotemporal discretization{∪

{∪φ}c
}n+1 Algo:9ALLMACH←−−−−−−−−

{∪
{∪φ}c

}n
,∆tn. (5.19)

In the following section, the governing equations will be either written for each component
identified with subscript i or written into a single equation where the subscript i is dropped.
Notation

The subscripts i ∈ {0, 1} are used to identify the fluid component separately. The subscript
j ∈ {0, .., D − 1} represents the direction in the Euclidian space. The computational model
is primarily used to solve compressible two-phase flows in either axisymmetric flows or three-
dimensional flows. In the future analysis in this chapter, the following notations will be followed
when analyzing the integration of the governing equation for a control volume. For a given
time step tn, the computational volume is discretized by a quad/octree T (tn) which has a
set of control volumes called leaves of the tree L(T). A control cell c ∈ L(T) has its
associated control volume, which is the square/cubic volume Ωc. The control surface ∂Ωc is the
union of all the six faces ∂Ωc = ∪f∂ΩFc . Variables associated with a face are identified with
superscript F as in φF . The six control faces can be uniquely identified by the outward normal,
nF ∈ {±ej ∀ j ∈ {0, 1, 2}}. For any primary variable φ ∈ {f, ρ, ρu, ρi(ei + 1

2
ui · ui)} in the

5.3. NUMERICAL METHOD 63

discretized (or semi-discretized) equations, the discretized value represents the value of φ at the
center of the control volume. φ might also be represented as φI , φI,J or φI,J ,K if the values of
the neighboring cells are present in the equation. In time discretisation, φn or φ(tn) represents
the value at time step tn. φF is used to represent face center value, and φi is used to identify the
two fluids separately.

5.2.3 Space and Time Discretization

For the time discretization, the continuous set [0, T] is discretized into {tn} = {tn | n ∈
{0, .., N}, tn+1 > tn, t0 = 0, tN = T}. The time step size defined ∆tn = tn+1 − tn satisfies
the CFL conditions and other stability criteria demanded by the scheme. As discussed in the
above chapter, the computational volume, Ω is discretized into many square/cubical control
volumes using quadtree or octree, i.e Ω = ∪c∈L(tn)Ωc [29]. The quadtree or octree ,T (tn),
used to discretize the control volume is time-dependent and is modified in each time step to
accommodate different length scales of the flow. The spatial solution of primary variables fi, ρi,
ρiui and ρiei are found for the discretized set of all points, which are the centroids of the control
volume, {xc}n = {x | x is the centroid of Ωc ∀ c ∈ L(tn)}. The fluxes of the above-mentioned
variables F Ffiφi are evaluated at the center of the control faces F of cells. Control faces are the
union of faces of control volumes, c i.e {F | F is a control face of c ∀ c ∈ L}.

For discretized control volumes, fi represents the fractional volume of i−th fluid in the
control volume and takes values [0, 1], unlike {0, 1} in the continuous framework. Both f0

and f1 are represented as 1 − f and f respectively, where f is the volume fraction of the
reference fluid (which is fluid− 1 in our case) in the control volume. f is the volume average
of continuous heaviside function (Eq:A.21).

5.2.4 Interface Representation

The domains Ωi(t) and the interface Γ(t) are interdependent they can be represented by a single
scalar. For example, a heaviside function (Eq:4.14) can be used to identify the domain.

• VoF: In the VoF method, the volume fraction of reference fluid f in the control volume
is stored as a scalar, and the cells are identified empty (f = 0), mixed (0 ≤ f ≤ 1) or
full (f = 1) depending on the value of f . The interface is reconstructed from the volume
fraction f using PLIC algorithm [?] [29].

• Front Tracking: In the front tracking algorithm, discrete connected marker points
constitute the interface. The volume fraction of each component can be found using
Algo:11.

5.3 Numerical Method

Using the continuity of velocity across the interface, we can combine the momentum the
equation in both the fluid domains into a single one and the implicit time integration of this
unified momentum equation is written in the following semi-discrete equation

ρn+1un+1 − ρnun
∆tn

+An+1(ρu) = −∇pn+1 +∇ · µ
(
∇un+1 + (∇un+1)

T
)

+ fn+1
σ (5.20)

64 CHAPTER 5. ALLMACH

where u is the continuous velocity, ρ = f0ρ0 + f1ρ1 the average density of the control volume,
p is the pressure in the unified formulation of Navier-Stokes, equation An+1(ρu) is the time
integral of∇ · ρuu as in Eq:5.31 and fn+1

σ is the surface tension which takes into account the
Laplace pressure jump at the interface (Eq:5.10). Since the above implicit equation cannot be
solved directly we first predict a velocity at tn+1 using pn instead as

ρn+1un+1
p − ρnun
∆tn

+ An+1(ρu) = −∇pn +∇ · µ
(
∇un+1

p + (∇un+1
p)

T
)

+ fn+1
σ (5.21)

Evaluation of the predicted velocity , un+1
p , is carried out in two steps. In the first step,

we evaluate u(adv) followed by un+1
p as explained in the following equations, where we split

Eq:5.21 into two as

ρn+1u(adv) − ρnun
∆tn

= −An+1(ρu) (5.22)

ρn+1un+1
p − ρn+1u(adv)

∆tn
= −∇pn +∇ · µ

(
∇un+1

p + (∇un+1
p)

T
)

+ fn+1
σ (5.23)

In the advection step, we evaluate advect variables f , ρ, ρu, ρ(e + 1
2
|u|2). For the reason

of stability, the advection for each variable is consistent and uses the same method. (Further
explanation is given in section:5.3.1). The equation Eq:5.23 is solved forun+1

p using a multigrid
solver.

Now we find un+1 using the equation

ρn+1un+1 − ρnun
∆tn

+ An+1(ρu) = −∇pn+1 +∇ · µ
(
∇un+1

p + (∇un+1
p)

T
)

+ fn+1
σ(5.24)

Subtracting Eq:5.21 from Eq:5.27 gives

un+1 = un+1
p +

∆tn

ρn+1

(
∇pn −∇pn+1

)
= u∗ − ∆tn

ρn+1
∇pn+1 (5.25)

where
u∗ = un+1

p +
∆tn

ρn+1
∇pn (5.26)

Eq:5.25 coupled with un+1 and pn+1 is solved with the pressure evolution equation (refer
Eq:5.12) (

1

ρc2

)
e

(
pn+1 − p(adv)

∆tn

)
= −∇ ·

(
u∗ − ∆tn

ρn+1
∇pn+1

)
(5.27)

where
(

1
ρc2

)
e
is the phase averaged value of

(
Γi
ρic2i
− β2

i Ti
ρicpi

)
and p(adv) is calculated numerically

from u(adv), E(adv). Further explanation of the projection algorithm is given in section:5.3.3.

The complete algorithm is split into four steps advection (Section:5.3.1), prediction (Sec-
tion:5.3.2), projection (Section:5.3.3) and energy updation (Section:5.3.4 which are discussed
below.

5.3. NUMERICAL METHOD 65

5.3.1 Advection
This subsection discusses how the advection terms in the governing equation corresponding to
variables ρi, ρiui and ρiEi are integrated in time and also discusses how we advect the volume
fraction of components in the cell fi are advected. The algorithm [64] uses a consistent method
in calculating flux for variables ({ρi, ρiui, ρiEi}) consistent with that of volume fraction
advection which is very crucial in the stability [73] [74] of the scheme especially for flows
consisting of fluid components with high-density ratios. The advection step is carried out in
directional split where the order of splitting is changed cyclically in every timestep. After each
time directional split, we find a new volume fraction f ∗ in each cell using the Weymouth-Yue
[18] algorithm. By the end of the last directional split advection, we will have the volume
fraction corresponding to fn+1

i in the cell. The complete advection algorithm is discussed
below in Algo:8.

φl φFl

∂ΩF
cΩc ∪ Ωl

cl := (I,J ,K,L) cr := (I + 1,J ,K,L)

uFj ej

h

|uF |∆tn

Figure 5.1: flux at a face ∂ΩFc : The flux of scalar fiφi through the face ∂ΩF which is shared by cells cl

and cr (marked in dashed blue) with normal±ej is evaluated as a multiple of φFi andFFfi ·n
F , where φFi

is the interpolated value of φi at a distance |uF |∆tn upstream of the face (Eq:5.38). If we take the fluid
component, i is colored in grey, then |FFfi | is the volume under the reconstructed piecewise interface,
which fluxes out (marked in dark grey) normalized with the volume of cube h3.

The evolution equation of a variable φ can be written in the conservative form

∂φ

∂t
+∇ · (uφ) = Sφ (5.28)

Eq:5.28 on time integration gives

φn+1 = φ(adv) + ∆tnSn+1
φ (5.29)

where
φ(adv) = φn − An+1(φ) (5.30)

where An+1(φ) is the time integral of∇ · (φu) as in Eq:5.31 or Eq:5.32.
In the advection step, we evaluate φ(adv) for the variables heaviside (f), density (ρ), mo-

mentum (ρu) and specific total energy (ρe+ 1
2
ρ|u|2) in their corresponding evolution equations

(Eq:5.3, Eq:5.4, Eq:5.5 and Eq:5.6) respectively. For the reason of consistency, the advection
scheme used for all the above-mentioned variables are the same. The volume average of the

66 CHAPTER 5. ALLMACH

time integral of advection term in the control volume Ωc,

An+1(φ) :=
1

|Ωc|

tn+1∫
tn

∫
Ωc

∇ · (φu)dvdt =
1

|Ωc|

tn+1∫
tn

∫
∂Ωc

φu · ndA dt (5.31)

where |Ωc| = hD is the volume of control volume. For a discretized cubic control volume, the
above integral can be written as a summation of all the cubic faces

An+1(φ) =
1

h3

∑
f

tn+1∫
tn

∫
∂ΩFc

φ(t)u·n(t)dAdt ≈ 1

h3

∑
f

tn+1∫
tn

φF(t)uF(t)·nFh2 dt =
∑
f

F Fφ ·nF

(5.32)
where the φF and uFn = (uF · nF)nF are the face-centered values of φ and outward normal
velocity, respectively. For nF = ±ej , uF · nF = ±uFj which gives

F Fφ = ej

(
1

h

∫ tn+1

tn
φ(t)uFj (t)dt

)
(5.33)

Eq:5.31 can be extended to vectors like momentum as

An+1(ρu) :=
∑

j ∈ {0,..,D−1}

An+1(ρuj)ej (5.34)

F Fφ is the discretized surface average of outward flux calculated byBell-Collela-Glaz scheme
[75] which can be written as In the single formulation φ is written as f0φ0 + f1φ1 which gives
advection term as the sum of advection of each phase

An+1(φ) =
∑
i∈{0,1}

An+1(fiφi) =
∑
f

FFfiφi (5.35)

In order to evaluate Ffiφi we need to integrate the infinitesimal flux fFi (t)φFi (t)uF(t)dt as

F Ffiφi = ej

(
1

h

∫ tn+1

tn
fFi (t)φFi (t)uFj (t)dt

)
= ej

(
φFi (tn)

1

h

∫ tn+1

tn
fFi (t)uFj (t)dt

)
= φFi (tn)F Ffi

(5.36)
where uF(t) = uF(t) · nF is the outward normal component of velocity at the face center and
FFfi is the fraction of fluid-i that fluxed out of the control volume at face F during the time
∆tn. FFfi is evaluated using the reconstructed piece-wise interface in geometric-VOF [29] (In
Fig:5.1). Alternatively, using the piecewise front segments in FT. In the integration, instead of
using the face-centered value, φFi (tn) we use the upstream value φFi (tn) which is calculated
using BCG second order upwind [75].

Flux
Given a face F shared by cells cl and cr. The cell cr is the face neighbor of cell cl in the

direction ej . The domain associated with face F is ∂ΩFc . We interpolate the velocity at the
face center uFj from the cell-centered value u. Then we determine the cell c ∈ {cl, cr} which
is the upwind cell (c = cl if uFj ≥ 0 and c = cr if uFj < 0). The flux of each component
is the corresponding volume (normalized with h3. Eq:5.36) occupied by each fluid between

5.3. NUMERICAL METHOD 67

Algorithm 7: FLUX
Data: un, f ∗, {fiφi}n,F , j
Result: {F Ffiφi}

/* This algorithm calculates fluxes of primary conservative variables of both fluids,
{fiφi}n := {fi, fiρi, fiρiui, fiρiEi} for at the cell faces during each directional split
advection. The flux corresponding to each quantity listed above is respectively
{F Ffi ,F Ffiρi ,F Ffiρiui ,F FfiρiEi} Refer to section:5.3.1. f ∗ is the volume fraction of
reference fluid before each sweep. The face F is shared by cells cl and cr. cr the face
neighbor cell of cl in the direction ej (Fig:5.1). */
Identify the cell c upstream to the face F /* c = cr if uFj < 0 and c = cr if uFj ≥ 0 */
if 0 < f ∗ < 1 then /* f ∗ in the cell c (mixed cell) */

Reconstruct interfacem · x = α in the cell c.
v ← volume between the face F and plane |uFj |∆tn upstream underm · x = α in
the cell c.
v ← v

hd
/* Normalize with cell volume */

end
else if f ∗ = 0 then v ← 0 /* empty cell */
else if f ∗ = 1 then v ← 1 /* full cell */

Evaluate ∂φi
∂xj

∣∣∣∣
j=0

using Eq:5.38

Evaluate φFi using 5.37
for each φ do
F Ff1
← sign(uFn) v ej /* Flux of reference component (fluid− 1) */

F Ff0
← sign(uFn) (1− v) ej /* Flux of non-reference component (fluid− 0) */

F Ffiφi ← φFi F
F
fi

end

68 CHAPTER 5. ALLMACH

the face F and a plane parallel to it, which is at a distance |uFj |∆t upwind to it. If the cell
c is either empty or full, the calculation of the flux of both components is straightforward.
For an empty cell (f ∗ = 0), flux of the reference component (F Fi1) and non-reference (F Ff0

)
are respectively 0 and (uFj ∆t)/h3ej . Similarly for full cell (f ∗ = 1), the fluxes F Fi1 and F Ff0

are respectively (uFj ∆t)/h3ej and 0. For mixed cells (0 ≤ f ∗ ≤ 1), we need to reconstruct
the discrete interface in the cell c, say, in the form m · x = α .If v is the volume bounded
between the above-mentioned planes, under the discrete interfacem · x = α in the cell, then
F Ff1

= sign(uFj)v/h3ej and F Ff0
= sign(uFj)(uFj ∆t− v)/h3ej .

Algorithm 8: ADVECTION
Data: {∪u}n, {∪f}n, {∪{∪fiφi}}n and ∆tn

/* {∪fiφi} = {fiρi, fiρiui, fiρiei + 1
2
ρiui · ui | i ∈ {0, 1}} */

Result: {∪f}n+1, {∪{∪fiφ(adv)
i }} /* Calculate fiφ(adv)

i as in Eq:5.35 */

for each cell c ∈ L(T) do /* with control volume Ωc */
if fn ≥ 1

2
then cnf ← 1 else cnf ← 0 /* Weymouth and Yue [18] */

end
for each direction j ∈ ND do /* Change the order every iteration of time step */

for each face F in j-th direction do /* F is shared by cells cl and cr as in Fig:5.1 */
{F Ffiφi} ← FLUX(un, f ∗, {φni },F , i, j)

end
for each cell c ∈ L(T) do /* with cubic control volume Ωc */

f ∗ ← f ∗ + cnf
∆tn

∆xj
(uFrj − uFlj) /* Weymouth and Yue [18] */

end
end
for each cell c ∈ L(T) do /* with control volume Ωc */

fn+1 ← f ∗

for each fiφi ∈ {∪fiφi} do
fiφ

(adv)
i ← fiφ

n
i

for each face F of cell c do /* with normal nF = ±êj */
fiφ

(adv)
i ← fiφ

(adv)
i + F Ffiφi · nF

end
end

end

For the face shared by the cells cl(I,J ,K,L) and cr(I + 1,J ,K,L) (the blue colored face
in Fig:5.1),

φFi is evaluated as

φFi (tn) =

{
φi(t

n)
∣∣
cl
±
(
h
2
− |uF |∆tn

)
∂φi
∂xj

∣∣
cl

if uFj ≥ 0

φi(t
n)
∣∣
cr
∓
(
h
2
− |uF |∆tn

)
∂φi
∂xj

∣∣
cr

if uFj < 0
(5.37)

where the subscript cl and cr are the corresponding values in the cells sharing the face. In case
of inward flux at any face, the φFi is calculated by interpolating from the cell-centered value of
the face neighbor where the evaluation of the slope at the center of the cell c(I,J ,K,L) in the

5.3. NUMERICAL METHOD 69

x direction (j = 0) is illustrated below

∂φi
∂xj

∣∣∣∣
j=0

=

1
h
g(φiI−1

, φiI , φiI+1
) if fiI−1

, fiI , fiI+1
> 0

1
h
(φiI+1

− φiI) if fiI−1
= 0 and fiI+1

> 0
1
h
(φiI − φiI−1

) if fiI−1
> 0 and fiI+1

= 0

0 otherwise

(5.38)

where the function g(φiI−1
, φiI , φiI+1

) is given by

g(φiI−1
,φiI , φiI+1

) =
min

(
θ(φiI − φiI−1

), 1
2
(φiI+1

− φiI−1
), θ(φiI+1

− φiI)
)

if φiI−1
> φiI > φiI+1

max
(
θ(φiI − φiI−1

), 1
2
(φiI+1

− φiI−1
), θ(φiI+1

− φiI)
)

if φiI−1
< φiI < φiI+1

0 Otherwise
(5.39)

The outward flux calculated at each face in Eq:5.37 is taken as 0 if outward normal component
of face centered velocity (uFn)

Interface Advection
Evolution equation corresponding to Eq:5.28 for time integration of volume fraction fi is

the conservative form of Eq:5.6 given by

∂

∂t
fi +∇ · (ufi) = fi∇ · u (5.40)

where the averaged velocityui is given byEq:5.18. Weymouth-Yue [18] suggested the dilatation
term fi∇ · u is approximated by cnfi∇ · u where

cnfi =

{
0 if fni < 1

2

1 if fni ≥ 1
2

(5.41)

This modification makes sure the f is within [0, 1] after each split advection and the net volume
conserves for both fluids after d number of split advection (where d is dimension of Eulerian
space) if ∇ · u = 0 (incompressible flow). If we say f ∗i , f ∗∗i are the volume fraction of i-th
component in the cell c before and after each directional split in direction j, we can write

f ∗∗i = f ∗i −
(
F Frfi − F

Fl
fi

)
· ej + cnf

∆tn

∆xj

(
uFrn − uFln

)
(5.42)

where Fl and Fl are the left and right faces of cell c in the direction ej . The complete interface
advection algorithm is given in Algo:8.

So, in the VoF method, the interface is inherently advected if we integrate fi

Γ(tn+1)
Algo:8 ADVECTION←−−−−−−−−−− (Γ(tn),un,∆tn) (5.43)

In the front tracking method, the heaviside is taken as the volume fraction and is calculated
using Algo:11 F2V3D and the φ(adv) is calculated in similar fashion (Eq:5.36, Algo:8). The
marker points, xs ∈ Γ(tn), are explicitly advected using locally interpolated velocity at marker

70 CHAPTER 5. ALLMACH

locations i.e d
dt
xs = u(xs) and thus the we have Γ(tn+1)

Γ(tn+1)
xs(tn+1)←xs(tn)+∆tnun(xs(tn))←−−−−−−−−−−−−−−−−−−− (Γ(tn),un,∆tn) (5.44)

However fn+1
i from the Weymouth-Yue [18] advection will be inconsistent with the volume

fraction calculated using Algo:F2V3D(Γ(tn+1)). It may be taken care of by adjusting themarker
points (xs ∈ Γ(tn+1)) by integrating the following equation in the pseudo time step

d

dτ
xs = CV N n̂(xs)

∑
c∈L

δh(xc − xs)(fn+1
1 − f̂n+1

1)

where fn+1
1 is the volume fraction of reference fluid after Weymouth-Yue [18] advection, f̂n+1

1

is the volume fraction of reference fluid calculated using Algo:11 (F2V3D) before every pseudo
timestep iteration, δh is the discrete Dirac delta function and CV N is a constant that satisfies
Von-Neumann stability. This idea is not pondered in this thesis and is left for future analysis.
Density Advection

Since Sφ = 0 in Eq:5.29 for φ = ρ which gives

(fiρi)
n+1 = (fiρi)

(adv) (5.45)

ρn+1 =
∑
i

(fiρi)
n+1 (5.46)

Velocity Advection
The ’average’ or ’unified’ advected velocity is found (Eq:5.22) as

u(adv) =
1

ρn+1

(
(ρu)n −∆tnAn+1(ρu)

)
(5.47)

where An+1(ρu) =
∑

i f
n+1
i An+1(ρu) and ρn+1 is found using Eq:5.46.

Thus, after the advection step, we would have found the volume fraction, (fn+1
i), density

(fiρi)
n+1 and thus Γ(tn+1) and Ωi(t

n+1). We have also evaluated (fiρiui)
(adv) and (fiρiEi)

(adv)

from which we will eventually find (fiρiui)
n+1 and (fiρiEi)

n+1 which will be discussed in the
following sections.

5.3.2 Prediction
Predicted velocity at tn+1, un+1

p is found by solving the equation

ρn+1un+1
p − ρn+1u(adv)

∆tn
= −∇pn +∇ · µ

(
∇un+1

p + (∇un+1
p)

T
)

+ fn+1
σ (5.48)

using multigrid solver in [29]. The averaged viscosity is taken as the harmonic average,
µ := 1/

∑
i(fi/µi). In Eq:5.48, the surface tension, fn+1

σ is evaluated from the interface location
Γn+1 in FT and from the local heavisides fn+1

i in VOF. We have discussed the implementation
of surface tension evaluation in front tracking in Section:??. Surface tension implementation
in VOF is discussed in the following section.
Surface Tension in VOF

Surface Tension using void fraction in VOF is implemented using Continuum Surface Force
(CSF) Model by [33]. fn+1

σ is the volumetric average of surface tension integral calculated at

5.3. NUMERICAL METHOD 71

the center of a control cell, say c, which can be written as

fn+1
σ (x) =

1

|Ωc|

∫
Ωc

 ∫
Γ

σ(xs) κ(xs) n̂(xs) dA

 δ(x′ − xs)dv(x′) (5.49)

where σ(xs), κ(xs) and n̂(xs) are respectively surface tension, curvature and normal defined
on a surface point xs on Γ(tn+1), δ is the Dirac delta function and VΩc = h3 is the volume
of control volume. Using the CSF model for constant surface tension, we evaluate the above
expression using the discrete cell-centered curvature and heaviside.

fn+1
σ (x) ≈ σκh(x)∇hC(x) (5.50)

For achieving balanced surface tension [60] implementation, we use face-centered cells for
discretization momentum and face-centered value σκ in the equation Eq: is calculated by
averaging the corresponding value in the cells that share that particular face. The cell-centered
value of κ is found using height function [60]. For an axisymmetric simulation, the curvature
can be calculated as

κ =
h
′′
r

(1 + h′r
2)

3/2
− 1

hr(1 + h′r
2)

1/2
(5.51)

where hr(z) is the height calculated in the radial direction and h′r = d/dz (hr) and h′′r =

d2/dz2(hr). Stable algorithms for calculating curvature using the height function is discussed
[60]. May also refer to the Appendix Sec:A.4.2.
Stability

The stability criteria imposed by the discretization scheme of surface tension is given by
([33] [76])

∆tn ≤
√

(ρ0 + ρ1)h3

4πσ
, (5.52)

where h is the dimension of the smallest cubic cells in the AMR grid.

5.3.3 Projection
In this projection step we solve pn+1 and un+1 as mentoined in Eq:5.27. When we rearrange
the terms, it gives

−∆tn∇ ·
(

1

ρn+1
∇pn+1

)
+

(
1

ρc2

)
e

pn+1 = −∇ · u∗ −
(

1

ρc2

)
e

p(adv)

∆tn
(5.53)

which is in the form of a Helmholtz equation

∇ · αp∇pn+1 − β2
p p

n+1 = γp (5.54)

where αp = 1
ρn+1 , β2

p = 1
∆tn

(1
ρc2

)e and γp =∇ ·u∗+
(

1
ρc2

)
e

p(adv)

∆tn
The above discrete Helmholtz

equation is solved in the AMR grid using in-built multigrid-based solver in basilisk.
In the above equation

(
1
ρc2

)
e

=
(

Γi
ρic2i
− β2

i Ti
ρicpi

)
. In the context of simulation of cavitation,

we can take gas as ideal with βi = 1/Ti, and for water we have Γi = 1 and βi ≈ 0 and

72 CHAPTER 5. ALLMACH

thus in both the cases
(

1
ρc2

)
e
≈
(

1
ρic2i

)
is a good approximation. So for empty and full cells

(1/ρc2)e can be readily evaluated as (1/ρ0c
2
0) and (1/ρ1c

2
1) respectively where the speed of

sound in the individual component ci are evaluated using the equation of state for reference and
non-reference fluid (Eq:A.47) gives(

1

ρc2

)
e

=

(
1

ρic2
i

)
=

1

Γi

1

p+ ΓiΠi

if fi = 1 (5.55)

and for a mixed cell with 0 < f < 1, we evaluate(
1

ρc2

)
e

=
1

Γ−1

p
(

1
Γ−1

+ 1
)

+ ΓΠ
Γ−1

where the cell averaged value of 1
(Γ−1)

and ΓΠ
(Γ−1)

are found using summing the the individual
contribution of each component

1

Γ − 1
=

1∑
i=0

fi
1

Γi − 1
and

ΓΠ

Γ − 1
=

1∑
i=0

fi
ΓiΠi

Γi − 1
(5.56)

(5.57)

p(adv) in Eq:5.53 is evaluated using the approximate evaluation

p(adv) ≈ ρE(adv) − 1

2
ρu · u(adv) − ΓΠ

Γ − 1
(5.58)

where

ρE(adv) =
1∑
i=0

fiρiE
(adv)
i , ρu =

1∑
i=0

(fiρiu)n,

u(adv) =

∑1
i=0 fiρiu

(adv)
i∑1

i=0 fiρi
,

ΓΠ

Γ − 1
=

1∑
i=0

fi
ΓiΠi

Γi − 1

The above Helmholtz equation reduces to a Poisson equation in the limit c → ∞ for an
incompressible flow.

The solution of Hemhotz equation Eq:5.53 is pn+1 from which you can find velocity un+1

using Eq:5.25 and Eq:5.26. Finally you can find fiρiui by mutliplying u with fiρi.

5.3.4 Energy Evolution
By the end of projection step, section5.3.3, the discrete solution set Vn+1 at time tn+1 are
updated except for the variables fiρiEi. In order to update the total specific energy, you have to
complete the energy evolution equation (Refer to Eq: and Eq:)

(fiρiEi)
n+1 = (fiρiEi)

(adv) + fn+1
i ∆tn

[
−∇ ·

(
un+1pn+1

i

)
+∇ ·

(
τ n+1
i · un+1

)]
(5.59)

where τ n+1
i = µi

[
∇un+1 + (∇un+1)

T
]
, pn+1

0 = pn+1 − fn+1σκn+1 and pn+1
1 = pn+1 + (1−

fn+1)σκn+1.
Now, all the variables corresponding to tn+1 are found. The complete algorithm of the

all-mach algorithm is shown in Algo:9.

5.4. TEST CASES 73

Algorithm 9: ALLMACH
Data: pn, ρin, (ρiu)n, (ρie+ 1

2
ρiu · u)

n
,∆t

Result: pn+1, ρi
n+1, (ρiu)n+1, (ρie+ 1

2
ρiu · u)

n+1

while tn < T do
Determine ∆tn using stability criteria
Calculate fn+1 and fiφ(adv)

i for all cells (Algo:8 (ADVECTION), Eq:5.31)
Calculate surface tension fn+1

σ at each cell centers (Eq:5.50)
Calculate predicted velocity un+1

p for each cells (Eq:5.48)
Calculate u∗ for each cells (Eq:5.26)
Calculate p(adv) using (Eq:5.58)
Calculate pn+1 (Eq:5.53, Eq:5.54)
Calculate ρun+1 (Eq:5.25)
Calculate ρEn+1 (Eq:5.59)

end

5.4 Test Cases

5.4.1 Weakly Non-Linear Collapse of Bubble

In this section, we discuss a test case to check the non-linearity of the compressible two-phase
flow system. In this test case, a bubble initially at equilibrium with ambient pressure p∞,0 is
suddenly applied with a pressure perturbation ∆p > 0 at t = 0+ such that the bubble collapses.
Let, at the initial equilibrium (t ≤ 0), the bubble has an equilibrium radius R0 with non-
condensible gas content with equilibrium gas pressure pG,0 which satisfy the Laplace pressure
jump pG,0 = p∞,0 + 2σ/R0 where σ is the surface tension. Let us use the characteristic velocity
scale as the collapse velocity Uc =

√
∆p
ρL

and the length scale Lc = R0 which gives the time
scale as Tc = R0/Uc.

Let us define a non-dimensional number using pressure perturbation as

P =
p∞
p∞,0

=
p∞,0 + ∆p

p∞,0
,

which is the ratio of new ambient pressure to the old (with P > 1) and in a violent collapse
P � 1. However, for this particular test case, we use P = 10 which corresponds to a weak
non-linear collapse. TheWeber Number (We), Reynolds Number (Re) andMach number (Ma)
are defined as

We =
∆pR0

σ
, Re =

R0

√
∆p ρL,0

µL
, andMa =

Uc
cL,0

=
1

cL,0

√
∆p

ρL,0
(5.60)

where ρL,0 is the density of surrounding liquid at initial equilibrium and µL is the liquid
viscosity. The gas density at pG,0 is ρG,0. Parameters of gas in it’s EOS equation (Eq:5.7)
are ΓG = γG = 1.4 and ΠG = 0. Meanwhile, the EOS equation of liquids are ΓL = 5.5

and ΠL = 1
ΓL

∆p
Ma2 − p∞ (Refer Eq:A.47 and Eq:5.60). There are two more non-dimensional

numbers, viscosity ratio µG
µL

and density ratio ρG,0
ρL,0

, which along with P , Re, We and Ma

uniquely represents the system. The set of non-dimensional numbers used in this test case are

74 CHAPTER 5. ALLMACH

listed in 5.1.
The result is comparedwith the solution of Rayleigh-Plesset equation [77] andKeller-Miksis

equation [78], and also with [64]. For consistency of comparison of result with solution of
Rayleigh-Plesset equation, we initialize the liquid pressure (p(r, 0+) ∀ r > R0) as predicted by
R-P equation in the incompressible limit of liquid p(r, t = 0+) = p∞,0 + ∆p (1− R0

r
).

P = p∞,0+∆p

p∞,0
ρG,0
ρL,0

µG
µL

Re We Ma

10 10−3 10−2 10 10 0.1

Table 5.1: Non-dimensional parameters used for the weakly collapse of a spherical bubble collapse test
case in Sec:5.4.1.

Figure 5.2: Evolution of non-dimensional radius R∗(t∗) = R(t∗)
R0

with non-dimensional time t∗ =

tU/R0 =
√

∆p
ρL

1
R0

t.

Chapter 6

Cavitation of Micro-Bubbles in Blood
Vessel

The immersed boundary method, originally implemented by [30]were used to simulate the
interaction of heart valves with blood flow.

The most simplified model (regarding the vessel) is assuming the vessel is rigid, and you
can look into the cavitation dynamics of the bubble to an acoustic perturbation. The expansion
ratio of the bubble in the rigid tube is reduced (compared to a bubble in an infinite bulk of
liquid) [8].The rigid tube assumption is an inadequate approximation to a blood capillary vessel
because, in reality, they are highly compliable.

6.1 Immersed Boundary Method: Fiber Mechanics
[]This section details how to model the FSI interaction of blood vessel wall with compressible
fluids. In fig:6.1, its represents a thin-walled, linearly arranged array of epithelial cell walls can
be represented as

(a) (b)

Figure 6.1: The blood capillary wall is comprised of linearly arrayed epithelial cells can be considered
as arrays of fibers.

6.1.1 Governing Equations
A bundle of fibers that represents a thin membrane Γ in R3 can be represented by a continuous
mapping of (q, r) ∈ R2. The membrane Γ is immersed in a fluid that occupies Γ ⊂ R3. If the
fluid is incompressible, and the membrane has the same density as that of the fluid, then the
governing equations for the coupled system can be expressed in Euler-Lagrangian formulation
as given in section:2.3 of the chapter:2.

75

76 CHAPTER 6. CAVITATION OF MICRO-BUBBLES IN BLOOD VESSEL

6.1.2 Membrane Force (Fibers Mechanics)

The force imparted by the membrane on the fluid, f , can be calculated from the deformation
on the membrane Γ.

If the membrane is assumed to be comprised of continuous bundles of independent fibers,
we may assume the local strain energy density functional is independent of cross-fibre strain.
If the paramter r represent a unique fibre and s represents the arc length along the fibre then
E(r, s, t) can be written in the form

E(r, s, t) = E(r, s, t)
(∂
∂s
xs(r, s, t),

∂2

∂s2
xs(r, s, t), .., ..

)
(6.1)

If we write the local energy density as the sum of extensional elastic energy and bending energy,
we can express it as

E(r, s, t) =
1

2
kt

[∥∥∥∥∂xs∂s

∥∥∥∥− 1

]2

+
1

2
kb

∥∥∥∥∂2xs

∂s2

∥∥∥∥2

, (6.2)

where kt and kb are the coefficients of elasticity [] . There are other formulations for elastic
energy density like [], etc. If the elastic energy model follows the Eq:6.5, the force density can
be written as (refer section:6.1.3 for the derivation)

F (r, s, t) =
∂

∂s
(T t̂)− kb

∂4

∂s4
xs (6.3)

whereT = kt(‖∂xs/∂s‖−1) is the tension in the discrete fibre element and t̂ = (∂xs/∂s)/(‖∂xs/∂s‖)
is the tangent along the fibre at xs

6.1.3 Discretisation of Membrane Force Density

By definition, force density in the discrete form, Fhi := F (r, si, t), at the Lagrangian point
xsi := xs(r, si, t) on a fiber designated by r at time t can be written as

F i = − 1

∆r∆s

∂Eh
∂xsi

(6.4)

The elastic energy functional, using the Eq:6.5, can be written in the discretized form as

Eh[(., ., t)] =
∑
i

∆r

{∑
j

∆s

{
1

2
kt

[∥∥∥∥xsj+1 − xsj
∆s

∥∥∥∥− 1

]2

+
1

2
kb

∥∥∥∥xsj+1 − 2xsj + xsj−1

∆s2

∥∥∥∥2
}}

,(6.5)

For the above discrete energy functional, the force density can be written as the sum of elastic
tension force and bending force density

F i = F ti + F bi (6.6)

6.2. LENGTH SCALES AND TIME SCALES 77

where the tension force density F ti and bending force density F bi at the point si on the fiber
identified by ′r′ are given by

F ti =
1

∆s

∑
j

kt

[∥∥∥∥xsj+1 − xsj
∆s

∥∥∥∥− 1

]
xsj+1 − xsj
‖xsj+1 − xsj‖

(δi,j+1 − δi,j) (6.7)

F bi = − 1

∆s2

∑
j

kb

[
xsj+1 − 2xsj + xsj−1

∆s2

]
(δi,j+1 − 2δi,j + δi,j−1) (6.8)

which in its continuous is expressed in Eq:6.3

6.2 Length Scales and Time Scales

This section discusses length scales, time scales involved in the physics involved in a targeted
drug delivery simulation. It also discusses the non-dimensional numbers relavant in the context.
Furthermore assumptions taken are elaborated ?

6.2.1 Length Scales

Capillary Vessel Radius RV,0

In targeted drug delivery we aims to enchance the porosity of blood capillaries also called as
capillary vessels which are the smallest vessels among the supplying networks of the circulatory
system and they have diameters ranging from 5-10 µm.

O(RV,0) ≈ 10 µm (6.9)

Rather than just being a supply channel capillaries are also the site at which the exchange
of gases (O2, CO2), proteins, etc happens. Depending on the organs, the capillaries have
different materials to exchange and thus different structure of walls; contniuous, fenestrated and
sinusoidal [?]. (move this sentence from here to ..)

Blood capillary Length, LV
The length of capillary vessel has influence in the oscillation of confined bubbles [Oguz and

Prosperetti]

Bubble Radius
The coated bubble used for enhancing ultrasound image contrast and targeted drug delivery

have equilibrium radius usually ranging from 2µm to 5µm (Marmottant etal (2005), Unger etal
2003, De Jong etal 2009, John S Allen etal 2001, Hynynen 2001)

O(R0) ≈ 2.5 µm (6.10)

Wavelength of sound in the gas
The wavelength of sound in gas (distance covered by sound during the time 2π/ω)

λG =
2π

ω

√
γRGT∞
MG

(6.11)

78 CHAPTER 6. CAVITATION OF MICRO-BUBBLES IN BLOOD VESSEL

where iω is the frequency of driving pressure wave. If λ >> R0 we can assume that the pressure
within the bubble is uniform. For air at T∞ = 300K,MG = 28.96g/mol −K, γG = 1.4.

O(λG) ≈ 2× 10−3m (6.12)

and we have λG >> R0.
Thermal Penetration Depth

δt =

√
Dt

ω
(6.13)

where Dt is the thermal diffusivity.

6.2.2 Time Scales

Driving Frequency, ω
ω is the frequency of applied acoustic wave. (Stable frequency range)

Natural Frequency in bulk, Ω0

The natural frequency of bubble in bulk is a measure commonly encountered in study and
analysis of gas bubble cavitation.

ω =

√
3k

ρLR2
0

(p∞,0 +
2σ

R0

)− 2σ

ρLR3
0

(6.14)

6.2.3 Non dimensional numbers

Mach Number
The mach in the context of cavitation is defined as the ratio of characteristic velocity of the

cavity interface to the speed of the sound in liquid. Characteristic velocity of interface can be
defined either as ωR0 or

√
pa/ρL where pa is the amplitude of acoustic pressure excitation.

Ma =
1

cL

√
pa
ρL

(6.15)

Reynolds Number

Re =
R0

µL

√
paρL (6.16)

Weber Number
Ratio of ambient pressure to Laplace pressure

We0 =
p∞,0R0

2σ
(6.17)

Laplace Number

La =
ρLR0σ

µ2
(6.18)

6.3. CAVITATION IN BLOOD VESSEL: AXI-SYMMETRIC SIMULATION 79

Ratio of radii ..

R0

RV,0

(6.19)

Eccentricity

e

RV,0

(6.20)

where e is the distance between undeformed bubble’s center and axis of vessel.
Density ratio

ρL,0
ρG,0

(6.21)

Viscosity ratio

µL
µG

(6.22)

Frequency Ratio

ω

ω0

(6.23)

6.3 Cavitation in Blood Vessel: Axi-Symmetric Simulation

ez

er

eθ
O
C (0, 0, L)(0, 0,−L)

Figure 6.2: Vessel of resting radius rv which has length 2 ∗ lv. Bubble of initial radius rb = (r(t = 0))
placed atOc(e, 0, 0).

6.4 Non-dimensional numbers
Cavitation of microbubble inside blood capillary depends on applied pressure field, vessel
compliance factors, blood matrix rheology and surrounding tissue properties. We simplify the
problem by assuming blood and surrounding tissue as Newtonian fluids of similar properties.

Exciting acoustic pressure:

p∞(t) = p0 − pasin(ωt)

Bubble response:

R(t)

R0

= f

(
pa
p0

, Re,We,K,
ω

ωN
, E1, E2,

e

Rv0

,
R0

Rv0

)

80 CHAPTER 6. CAVITATION OF MICRO-BUBBLES IN BLOOD VESSEL

where Re =
ρl0U0R0

µL
where U0 =

√
pa/ρl0

We =
ρl0U0

2R0

σ

K =
ρg0cg0

2

ρl0cl0
2

E1 =
ktDω

2

pacl0
2

E2 =
kbω

2

paDcl0
2

where E1 and E2 are two non-dimensional numbers involving linear and bending elasticity of
the membrane. e is the eccentricity.

Radii Ratio r = Rb
Rv

< 1 Eccentricity e = E
Rv

< 1− r

(a) (b) (c)

Figure 6.3: Collapse of bubble inside a vessel: Pressure contours plotted for different time. Immersed
boundary and gas-liquid interface are also plotted. Non-spherical collapse is visible. (p∞p∞0

= 9,We =

10, Re = 10,Ma = 0.1, µ1

µ2
= 100, ρ1

ρ2
= 1000, Rv0

R0
= 1.2, kt

(p∞−p∞0)R0
= 10000)

Chapter 7

Conclusion

7.1 Conclusion

This thesis has focused on implementing a scalable Eulerian-Lagrangian solver capable of
capturing compressible multiphase flows and fluid-structure interaction of membrane with
fluid. We have explained the distributed parallel algorithms that optimize data distribution and
communication.

In Chapter 2, we discussed about Eulerian-Lagrangian methods involving free surface and
thinmembranes. The chapter covers governing equations of E-L problems and routines involved
in a E-L problem implented in an adaptive mesh refinement.

In Chapter 3, we focused on developing algorithms for the partitions of datasets that optimize
intra-grid and inter-grid communications among AMR grids and Front grids. The routines
in Eulerian-Lagrangian methods can be categorized as Eulerian, Eulerian-Lagrangian, and
Lagrangian. Some of these operations alter the associated datasets, with the cost and frequency
of subsequent load balancing emerging as pivotal factors in selecting a graph partitioning
method. All these routines, active on partitioned subsets, necessitate MPI communications.
Ensuring uniformity in both size and computational load across each partitioned dataset while
simultaneously minimizing communication requirements stands as a paramount goal for any
MPI parallel computing algorithm. This thesis focuses on partitioning the surface mesh in a
manner ensuring that each processor possesses ownership of the marker points situated within
its domain. This arrangement facilitates a localized relationship between marker points and leaf
cells, ensuring they both reside on the same processor. With an increasing refinement level,
there is a corresponding increase in the number of vertices and elements. Scalability is directly
correlated to uniformity in which vertices are distributed among the processor. Scalability is
also directly correlated to the number of elements per processor, provided the uniformity of
distribution is not affected significantly.

We’ve developed a front-tracking solver that ensures both well-balanced and momentum
conservation, which is discussed in Chapter 4. This solver incorporates a Laplacian smoothing
routine, addressing the loss of surface smoothness during advection. The solver is also extended
to compressible multiphase flows which is discussed in Chapter 5.

The author also aimed to make the AMR-based parallel front tracking code an open source
project. The general architecture of source code is such that it is reusable and can be extendable
to other Eulerian-Lagrangian solvers with source terms near the embedded Lagrangian surface
or membrane.

81

82 CHAPTER 7. CONCLUSION

7.2 Future Works
Even though most of the algorithms were designed for both 3D and 2D models, the thesis
still needs to establish regridding and topology changes in 3D which. Parallel regridding
algorithms in Chapter 3 are yet not completely implemented. The current version of the code
avoids regridding some edges which are in the edge-cut. However, this version can simulate 3D
problems involving less surface deformation but fails otherwise by introducing discontinuity in
the tangent plane. Similarly, we have yet to consider the problem of parallel topology changes
in 3D. Both these problems are fundamental aspects of a multiphase flow solver involving
Lagrangian meshes and thus can be considered a primary future extension of this thesis.

This thesis has yet to focus on the aspect of volume conservation and higher-order accuracy
interpolation during the advection of the interface. Peskin’s interpolation and bilinear/trilinear
velocity interpolation do not guarantee the volume conservation of the fluid components.
The reason is that, say in an incompressible flow, even though the discrete velocity field is
divergence-free in each grid cell, the interpolated velocity may not be necessarily divergence-
free [32] [79]. The works by Peskin and Printz [79] and McDermott and Pope [80], focused on
schemes that minimise error in the divergence of the interpolated velocity at the marker points.
The implementation of better advection schemes like [80], [56] or [81] in the current solver
are straight forward, and these methods are promising in reducing the error during advection
schemes. In addition to these, the current regrid algorithms and Gaussian smoothing algorithm
can also be improved with the aim of volume conservation [56] [57] [58].

A half-edge mesh [54] is promising in parallel remeshing in shared and distributed memory
architecture and can thus be implemented to achieve better scalability.

Simulation of cavitation inside blood vessels involving both fluid-structure interaction and
compressible flow are not yet carried out in their expected depth. We have started some work
regarding the analysis of membrane stress and the natural frequency of oscillation of bubbles
inside compliable vessels, which requires extensive work and is thus avoided in this thesis. This
can also be considered as an extension of this thesis.

The updated documentation of the code and results used in this thesis will be available in
the git repository https://github.com/basilkottilingal/FT/. The author is planning
to publish this work comprehensively

• A-B Kottilingal, S Zaleski. Scalable parallel front tracking method in structured adaptive
mesh refinement (AMR) grid. [Work in Progress]

https://github.com/basilkottilingal/FT/

Appendix A

Appendix

A.1 Database For Front Tracking
The computational complexity of the front tracking method arises from the basic fact that a
separate mesh data of the fluid interface is required . Since they are independent from the
Eulerian grid, interpolation of data has to be done between the AMR grid and the Lagrangian
grid. The front represents the interface which is collection of connected triangular facets. The
vertices in all the triangles are ordered in clock-wise with respect to outer normal so that "inside"
and "outside" of each facets can be uniquely identified.

Figure A.1: Front grid maintains two list.(a) List
of front-points P = {p53, p63, p55, p59..}. (b) List
of front-elements E = {e81, e12, e54, e59..}. Each
front-points store the coordinates of them, while
each front-element store the integer-indices of its
vertices (front-points) in CCW order and also the
integer-indices of its neighbors (front-elements)
Elements Corners Neighbors
e54 p76, p63, p56 e99, e40, e63

..

..

There are two stacks of data: the first one is the list of marker points also referred as "front-
points" and the second one is the list of triangular facets also referred as "front-elements". A
front-point or a front-element is identified by an integer. The stack has "Prev" and "Next" which
are integers. (Refer Fig:A.1 and Fig:A.2)
Implementation of Sets as a Linked List

There are two types of data structures used in this chapter: linked-list (refer section:) and
tree (refer section:). The data structures of frontpoints V and frontelments E (refer section:)
are examples for linked-lists . When a linked-list , V , is used to implement the set {∪v}, there
are m′ = |V | number of nodes allocated for objects (m′ ≥ m) out of which m = |{∪v}|
nodes are occupied and constitutes the set {∪v}. An object, v, is accessed from V using an
indexing-mapping or indexing-function , V [i] that maps index i from full-index-set ĪV . We
used the square bracket here for index-mapping to distinguish from other mappings.

83

84 APPENDIX A. APPENDIX

Figure A.2: The stack used to
store integer indices of front-
points and front-elements.
Blue squares are filled part of
the stack and the red squares
are the non-filled.

A.1.1 Linked lists Iterators and Caches
This section discusses on the implementation of a linked list S corresponding to a set of objects
of s

Simple arrays,S := {
(
i, S[i]

)
| 0 ≤ i < 100} , which doesn’t need an insertion or

deletion can be implemented by allocating a linear memory array like here,
1 struct s{

2 dataype DATA;

3 };

4 s S[100]; // A linear array of s

These kind of linear array structure doesn’t allow to delete objects which are placed in between.
Linked lists

If you modify the graph as

S := {
(
i, S[ITERATOR(i)]

)
| 0 ≤ i < NOBJECTS < 100} (A.1)

where the ITERATOR iterates through a LINKEDLIST of the S

ITERATOR(i)←
{
HEAD if i = 0
NEXT[ITERATOR(i-1)] if 0 < i < NOBJECTS

(A.2)

and the LINKEDLIST is a connected data structure, where an index i is connected to two others
using PREV and NEXT, like

LINKEDLIST := {
(
i, (NEXT[i], PREV[i])

) ∣∣ 0 ≤ i < 100} (A.3)

Linked list allows you to delete from any index position. Here is a simple implementation of
such a linked list where you can store a maximum of 100 objects of s which also allows to to
insert or delete an instance of s

1 struct s{

2 dataype DATA;

3 };

4 s S[100];

5 /* A linked list */

6 int NEXT[100];

7 int PREV[100];

8 int HEAD, NOBJECT; // HEAD , NOBJECT in [0, 100)

A.1. DATABASE FOR FRONT TRACKING 85

In the above implemenetation, you can start from the head of the list (HEAD) and iterate through
the list using PREV[i].

1 int ITERATOR = HEAD;

2 for (int i=0; i<NOBJECTS; ++i) {

3 s _s = S[i]

4 // Do something with ’_s’

5 // ...

6 ITERATOR = PREV[ITERATOR];

7 }

Refer Fig:A.3 which has implemented the above snippets. You can modify the above code to
implement dynamicmemory allocation. These kind of linked list [ParisCode], are advantageous
for the following reasons

1. Insert or Delete object: Suitable for surface regrid operations

2. integer indices for objects: Integer indices for objects like vertex and neighbor helps to
communicate across processors in parallel computing.

Caches
A cache is a mapping of an index i to ITERATOR(i) for faster iteration through a linked

list. A cache CS of the graph S ..

CACHE := {
(
i, ITERATOR(i)

) ∣∣ 0 ≤ i < NOBJECTS} (A.4)

1 int CACHE[100];

2 int ITERATOR = HEAD;

3 for (int i=0; i<NOBJECTS; ++i) {

4 CACHE[i] = ITERATOR;

5 ITERATOR = PREV[ITERATOR];

6 }

7 //Now you can iterate through the list using CACHE

8 for (int i=0; i<NOBJECTS; ++i) {

9 s _s = S[CACHE[i]]

10 // Do something with ’_s’

11 // ...

12 }

Unlike the above snippet, the implementation is using memory addresses and are meant for very
large databases.

86 APPENDIX A. APPENDIX

1

2

3

4

5

6

7

8

HEAD

(a)

1

2

3

4

5

6

7

8

HEAD

(b)

1

2

3

4

5

6

7

8

HEAD

(c)

Figure A.3: (a): A linked list used to store indices of frontpoints and frontelements. and
are respectively the used and unused objects of the linked list. The integer index of each cell, represent
the integer index of either the frontelement inN or the frontpoint in V . Each objects is connected using
PREV and NEXT . All the objects previous to the HEAD including HEAD are the used part
of the linked list whihc comprises the set {∪s} and all objects next to HEAD are the unused part of the
linked list. (b): Adding an object to the list happens at the HEAD. (c): While you can delete an object
from any occuppied part of the linked list.

A.2. MORTON CURVE 87

A.2 Morton Curve
Similar to the definition of SFC Z as in 2.4.5, let’s define a map corresponding to each cells of
parent OctreeO+

Z+ : N|O+| 7→ {
∪
c}+ (A.5)

In this thesis, it employs [29] for implementing AMR grid that employs a Morton curve
(z-order indexing) as the SFC to traverse through the discrete sets of cells. Let’s use the
notationZ+ for the Morton curve. Using Morton curve, you can traverse through, the children
c′ = (2i+ i′, 2j + j′, 2k + k′, l + 1) of a internal cell c = (i, j, k, l) (only if all the children are
leaves), using

S+
z [c′] = S+

z [c] +M(c′) + 1 (A.6)
given c′ = (2i+ i′, 2j + j′, 2k + k′, l + 1) ∈ {∪c} ∀ i′, j′, k′ ∈ {0, 1}

where M(c) ∈ N2D is the relative position of a cell among its siblings defined by the Morton
curve which can defined as

M((i, j, k, l)) = 4 (i mod 2) + 2 (j mod 2) + (k mod 2)

Eq:A.6 can be generalised to define the Morton curve as a SFC Z+ : N|O+| 7→ {
∪
c}+ which

satisfies the following conditions

1.
Z+−1

[c0] = 0, (A.7)

where c0 is the root node of AMR tree.

2. For the children c′ = (2i+i′, 2j+j′, 2k+k′, l+1) and c′′ = (2i+i′′, 2j+j′′, 2k+k′′, l+1)

of an internal cell c = (i, j, k, l) we have

S+
z [c′] =

1 + S+
z [c] if M(c′) = 0

1 + S+
z [c′′] +

∣∣∣∣{∪dc}+

c′′

∣∣∣∣ if M(c′)−M(c′′) = 1
(A.8)

where {∪dc}+

c′′ is the set of all children of c′′.

The above definitions can be used to iterate through the entire parent tree by starting from the
root cell and every other iteration is either to its, sibling, or daughter withM() = 0 or ..

88 APPENDIX A. APPENDIX

A.3 MAC Staggered Grid
Staggered Grid used in the discretization of NS equation.

(p, u, v)i−1,j−1

(p, u, v)i−1,j

(p, u, v)i−1,j+1

(p, u, v)i,j−1

(p, u, v)i,j

(p, u, v)i,j+1

(p, u, v)i+1,j−1

(p, u, v)i+1,j

(p, u, v)i+1,j+1

(pf , uf)i− 3
2 ,j−1

(pf , uf)i− 3
2 ,j

(pf , uf)i− 3
2 ,j+1

(pf , uf)i− 1
2 ,j−1

(pf , uf)i− 1
2 ,j

(pf , uf)i− 1
2 ,j+1

(pf , uf)i+ 1
2 ,j−1

(pf , uf)i+ 1
2 ,j

(pf , uf)i+ 1
2 ,j+1

(pf , uf)i+ 3
2 ,j−1

(pf , uf)i+ 3
2 ,j

(pf , uf)i+ 3
2 ,j+1

(pf , vf)i−1,j− 3
2

(pf , vf)i−1,j− 1
2

(pf , vf)i−1,j+ 1
2

(pf , vf)i−1,j+ 3
2

(pf , vf)i−1,j− 3
2

(pf , vf)i,j− 1
2

(pf , vf)i,j+ 1
2

(pf , vf)i,j+ 3
2

(pf , vf)i+1,j− 3
2

(pf , vf)i+1,j− 1
2

(pf , vf)i+1,j+ 1
2

(pf , vf)i+1,j+ 3
2

Figure A.4: Grids used for Discretrising NS

A.4. DIFFERENTIALGEOMETRY, SURFACEDERIVATIVESANDSURFACE INTEGRALS89

A.4 Differential Geometry, Surface Derivatives and Surface
Integrals

A.4.1 A regular surface with Local parametrization

A surface S in Eulclidian space S ⊂ R3 is a regular surface if. every point of S has an
open neighborhood U ⊂ S for which there is an open subset V of R2 and a hemomorphism
f : V → U such that

1. fuction f is C∞ smooth

2. for each point (r, s) of V , the two partial derivatives ∂f
∂r

and ∂f
∂s

are linearly independent
as elements of R3

er

es

(r′, s′)

V

(a)

∂f
∂r

∂f
∂s

∂f
∂r × ∂f

∂s

U

S

(b)

Figure A.5: The neighborhood V of (r′, s′), (V ⊂ R2) is mapped to U which is the neighborhood
of X(r′, s′) by a smooth function. The directional derivatives of f should be linealy independent i.e
|∂f∂r × ∂f

∂s | 6= 0

Both ∂f
∂r
, ∂f
∂s

are basically the tangents of smooth surface S at X(r′, s′) any points in the
inifintesimal patchU , is a linear combination of the mentioned tangent vectors. The unit normal
vector is

n(r′, s′) = ±
∂f
∂r
× ∂f

∂s

|∂f
∂r
× ∂f

∂s
| (A.9)

A.4.2 Fundamental forms and Curvatures

First fundamental forms,E = ∂f
∂r
· ∂f
∂r

= ||∂f
∂r
||2, F = ∂f

∂r
· ∂f
∂s
,G = ∂f

∂s
· ∂f
∂s
,EG−F 2 = ||∂f

∂s
× ∂f

∂s
||2

Second Fundamental forms, L = ∂2f
∂r2 · n,M = ∂2f

∂r∂s
· n, N = ∂2f

∂s2
· n,

Gaussian (geometric mean) K = LN−M2

EG−F 2 and mean curvatures H = 1
2
GL−2FM+EN

EG−F 2

90 APPENDIX A. APPENDIX

A.4.3 Surface Gradient

Say (r′ + δr, s′ + δs) in the neighborhood V of (r′, s′) lies on the same surface contour of φ
passing through X(r′, s′) lying on surface S, then

dφ =
∂φ

∂r
δr +

∂φ

∂s
δs = 0 (A.10)

which gives

− δr
∂φ
∂s

=
δs
∂φ
∂r

= c′ (A.11)

The tangent vector to S which is also tangent to iso-contour passing through X(r′, s′) is

tφ = −c′∂φ
∂s

∂f

∂r
+ c′

∂φ

∂r

∂f

∂s
(A.12)

The surface gradient∇sφ is a local tangent vector normal to tφ, which is

∇sφ = c′′n× tφ = c′c′′
1

EG− F 2

(
∂f

∂r
× ∂f

∂s

)
× (−∂φ

∂s

∂f

∂r
+
∂φ

∂r

∂f

∂s
)

= c′′′
[
−∂f

∂r
(−∂φ

∂s
F +

∂φ

∂r
G) +

∂f

∂s
(−∂φ

∂s
E +

∂φ

∂r
F)

]
for any arbitrary point (r′ + dr, s′ + ds) in the neighborhood V of (r′, s′)

dφ =
∂φ

∂r
dr +

∂φ

∂s
ds = ∇sφ · dx

= c′′′
[
−∂f

∂r
(−∂φ

∂s
F +

∂φ

∂r
G) +

∂f

∂s
(−∂φ

∂s
E +

∂φ

∂r
F)

]
·
(
∂f

∂r
dr +

∂f

∂s
ds

)
= −c′′′(EG− F 2)

(
∂φ

∂r
dr +

∂φ

∂s
ds

)
which gives c′′′ = −1

EG−F 2 and thus

∇sφ =
1

EG− F 2

[
∂f

∂r
(
∂φ

∂r
G− ∂φ

∂s
F) +

∂f

∂s
(−∂φ

∂r
F +

∂φ

∂s
E)

]
(A.13)

Surface divergence of a vector F is (fixme)

∇sφ =
1

EG− F 2

[
∂f

∂r
(
∂φ

∂r
G− ∂φ

∂s
F) +

∂f

∂s
(−∂φ

∂r
F +

∂φ

∂s
E)

]
(A.14)

A.4.4 Surface of Revolution

In cylindrical coordinates the points in R3 are represented as (z, r, θ) with orthonormal basis
vectors ez, er and eφ (fixme: r coincides with r of hemomorphism map) For surfaces having
axial symmetry we can take (r, s) := (z, θ) where z and θ are axial coordinate and polar angle
and (with θ ∈ [0, 2π)) the mapping f = (z, a(z) cos θ, a(z) sin θ). The tangents and normal
(∂f/∂z, ∂f/∂θ, ±∂f/∂z × ∂f/∂θ) for any point on the surface S can be represented in the

A.4. DIFFERENTIALGEOMETRY, SURFACEDERIVATIVESANDSURFACE INTEGRALS91

er

es

(r′, s′)

V

(a)

∂f
∂s

∂f
∂r

∂f
∂r × ∂f

∂s

∇sφ

tφ

U

S

(b)

Figure A.6: The neighborhood V of (r′, s′), (V ⊂ R2) is mapped to U which is the neighborhood
of X(r′, s′) by a smooth function. The directional derivatives of f should be linealy independent i.e
|∂f∂r × ∂f

∂s | 6= 0

orthonormal basis as

{ez + a′ cos θer + a′ sin θeθ, −a sin θer + a cos θeθ, ± (aa′ez − a cos θer − a sin θeθ)}
(A.15)

where a′ = da/dz. We have the first fundamental forms E = 1 + a′2, F = 0, G = a2,
EG− F 2 = a2(1 + a′2),

er

ez

z

a(z)

(z, a(z) cos θ, a(z) sin θ)

θ

Γ

(a)

er

ez

n

t
(z, a(z))

Γ

(b)

Figure A.7: (a) Surfaces of revolution. (b) Analysis in a z − r plane

For cases of bubble cavitation simulation, consider only the normal towards fluid − 1

as defined in Chpater.2 and Chapter.3, we have unique orthonormal vectors composed out of

92 APPENDIX A. APPENDIX

tangents and normal as{
1√

1 + a′2
(ez + a′ cos θer + a′ sin θeθ) , − sin θer + cos θeθ,

1√
1 + a′2

(a′ez − cos θer − sin θeθ)

}
(A.16)

Curvature
For a surface of revolution, curvature which is the sum of principal curvatures is given

by κ = 2H = GL−2FM+EN
EG−F 2 We have second fundamentals L = −a′′/

√
1 + a′2, M = 0

N = a/
√

1 + a′2 which gives

κ =
−a′′

(1 + a′2)
3/2

+
1

a

1

(1 + a′2)
1/2

(A.17)

Surface Gradient
Using Eq:A.13, we have the surface gradient of an arbitrary scalar as

∇sφ =
1

a2 (1 + a′2)

{
(ez + a′ cos θer + a′ sin θeθ)

(
a2∂φ

∂z
− 0

)
+ (−a sin θer + a cos θeθ)

(
−0 + (1 + a′

2
)
∂φ

∂θ

)}
(A.18)

Axi Symmetric
For axi-symmetric case we have the equation is independent of θ, so we can take θ = 0. We

also have ∂φ
∂θ

= 0. So we have orthormal tangents and normal

{t, eθ,n} = { 1√
1 + a′2

ez +
a′√

1 + a′2
er, eθ, −

a′√
1 + a′2

ez +
1√

1 + a′2
er} (A.19)

and surface derivative

∇sφ =
1

(1 + a′2)
(ez + a′er)

∂φ

∂z
+

1

a
(eθ)

∂φ

∂θ
=

1√
1 + a′2

∂φ

∂z
t (A.20)

For problems in R3, we can represent

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 93

A.5 Volume fraction from the Front (Front2Vof Algorithm)

This section discusses in detail the algorithm to evaluate volume fraction from the front. Volume
fraction in a cell, f , is defined as

f =
1

h3

∫
Ωc

H(x, y, z)dv (A.21)

(whereH(x, y, z) is the heaviside function defined in 4.14) is the volume fraction in the control
volume occupied by fluid− 1. Let us define the following before explaining the algorithm,

• Ωc as the cubic control volume. For simplification, we take the control volume has one
vertex at the origin, as Ωc = {(x, y, z) | 0 ≤ x, y, z ≤ h}). The interior of the control
volume (the interior of the closed set Ωc) is Ωo

c = Ωc \ ∂Ωc

• We define the top face of the control volume as ∂Ωc;z=h = {(x, y, z) | 0 ≤ x, y ≤
h and z = h} with its interior ∂Ωo

c;z=h.
• We define the top-right edge of the control volume as the intersection of the top and right
faces, which gives ∂Ωc;z=h ∩ ∂Ωc;y=h = {(x, y, z) | 0 ≤ x ≤ h and y, z = h} with its
interior ∂Ωo

c;z=h ∩ ∂Ωo
c;y=h

• we define Γ as the oriented C0 surface (connected triangular edges/facets) that represents
the fluid-fluid interface.

• The subsets of Γ, (i) Γ ∩ Ωc, (ii) Γ ∩ ∂Ωc;z=h and (iii) Γ ∩ ∂Ωc;z=h ∩ ∂Ωc;y=h are the
portion of the interface that intersects the control volume, the top face, and the top-right
edge, respectively.

The algorithm defined in the following section does not take into consideration two special
cases

• Special Case 1: When the cell is empty

f = 0 when Ωc ⊆ Ω0

• Special Case 2: When the cell is full

f = 1 when Ωc ⊆ Ω1

and in both cases Ωo
c ∩ Γ = ∅. These cases are specially identified and treated. For the rest of

the cases with mixed cells (Ωo
c ∩ Γ 6= ∅), the algorithm is defined below.

We can say the volume belonging to fluid− 1 as the algebraic summation of volume under
an infinitesimal patch of area dA and it is a projection on the bottom plane. The volume fraction
of the cell can be evaluated by integrating the portion of the surface inside the control volume
as

f =
v

h3
=

1

h3

∫
Ωc∩Γ

(z n̂ · ez) dA

where v is the volume under the surface
∫

Ωc∩Γ
. Evaluation of f used in the above equation fails

if there are some interior points on the top face with H(x = 1) i.e ∂Ωo
c;z=h ∩ Ωo

1 6= ∅ So, we
rewrite the above equation as

f =
1

h3

∫
Ωc∩Γ

(z n̂ · ez) dA+
1

h2

∫
∂Ωc;z=h

H(x, y, h)dx dy given Ωo
c ∩ Γ 6= ∅ (A.22)

94 APPENDIX A. APPENDIX

The second term is the fraction of area on the top face Ωc;z=h belonging to fluid − 1. There
are 3 cases as follows

1

h2

∫
∂Ωc;z=h

H(x, y, h)dx dy

= 0 if ∂Ωo
c;z=h ∩ Γ = ∅ with ∂Ωc;z=h ⊂ Ω0

(empty top face cell)
∈ (0, 1) if ∂Ωo

c;z=h ∩ Γ 6= ∅
(mixed top face cell)

= 1 if ∂Ωo
c;z=h ∩ Γ = ∅ with ∂Ωc;z=h ⊂ Ω1

(full top face cell)

(A.23)

The full top face cell can be identified separately from the full top face cell case with the negative
sign of v

h3 . We can combine all three cases using

f = Fv

(
1

h3

∫
Ωc∩Γ

(z n̂ · ez) dA+
a

h2

)
(A.24)

where a
h2 is the area fraction on the top face, calculated only in the case of mixed top face cell,

and it is taken as 0 otherwise. The function Fv is defined as

Fv(v) =

{
v if v ≥ 0

1 + v if v < 0
(A.25)

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 95

Let’s now see how the area fraction is calculated for the case where the top face is a mixed-
face cell. The area fraction can be calculated as the area under the curve with the correction
term similar to Eq:A.22. ∂Ωc;z=h ∩ Γ

a

h2
=

1

h2

∫
Γ∩∂Ωc;z=h

(y n̂⊥ ·ey) dl+
∫

Γ∩∂Ωc;z=h∩∂Ωc;y=h

H(x, h, h)dx given ∂Ωo
c;z=h∩Γ6=∅ (A.26)

Taking into consideration all cases of empty, mixed, and full fractions on the top-right edge

a

h2
= Fv

(
1

h2

∫
Γ∩∂Ωc;z=h

(y n̂⊥ · ey) dl +
e

h

)
(A.27)

where e is the portion of the edge on the top-right edge that belongs to fluid − 1. n̂⊥ is the
normal to the infinitesimal patch dl which can be found as n̂⊥ = (n̂− (n̂ · ez)ez)/(|| . ||2)

The correction term, the edge fraction on the top-right edge, in eq:A.26 can be evaluated by
summing the points that are intersected by the surface and the top-right face.

e

h
= Fv

1

h

∑
Γ∩∂Ωc;z=h∩∂Ωc;y=h

x sign(n̂ · ex)

 given ∂Ωo
c;z=h ∩ ∂Ωo

c;y=h ∩ Γ 6= ∅ (A.28)

We can write the equation to evaluate the volume fraction into a single equation as

f = Fv

 1

h3

∫
Ωc∩Γ

(z n̂ · ez) dA+ Fv

 1

h2

∫
Γ∩∂Ωc;z=h

(y n̂⊥ · ey) dl+

Fv

1

h

∑
Γ∩∂Ωc;z=h∩∂Ωc;y=h

x sign(n̂ · ex)

 (A.29)

Intuitively, you can write the equation for a 2D square control volume Ωc = {(x, y) | 0 ≤ x, y ≤
1} and oriented smooth curve Γ

f = Fv

 1

h2

∫
Γ

(y n̂⊥ · ey) dl + Fv

1

h

∑
Γ∩∂Ωc;y=h

x sign(n̂ · ex)

 (A.30)

The evaluation of the volume fraction described above is illustrated with an example in A.8

Volume fraction in the cells with no surface intersection, Γ∩Ωc = ∅, is either 0 or 1. volume
fraction in such cell at time step (n+ 1) can be determined using

fn+1 =

{
1 if fn ≥ 1

2

0 if fn < 1
2

(A.31)

provided the CFL condition CFL < 1
2
. In all other cells, the volume fraction is determined using

the Eq:A.22. The correction terms a
h2 and e

h
need to be evaluated only when Γ ∩ ∂Ωc;z=h 6= ∅

and Γ ∩ ∂Ωc;z=h ∩ ∂Ωc;y=h 6= ∅ respectively.
The direction used in volume integration, area integration, and edge summation are ez,

96 APPENDIX A. APPENDIX

ey

ex

ez

Γ ∩ ∂Ωc

n̂(r, s)

h
Γ(r
, s

) ∩
Ω c

(a)

ey

ex

ez dAn̂

zez

(b)

ey

ex

ez

(c)
ey

ex

ez

h

n̂⊥ = n̂−(n̂·ez)ez

|| . ||2

a

(d)

ey

ex
ez

dln̂⊥

yey

Γ ∩ ∂Ωz=1

(e)

ey

ex
ez

e

h

n̂
⊥
⊥

=
si
g
n

(n̂
·e

x
)e

x

Γ ∩ ∂Ωz=1 ∩ ∂Ωy=1

(f)

Figure A.8: Calculating void fraction inside a cubic cell intercepted by a front: (a)A cylinder Γ := {(x, y, z) |F (x, y, z) = 0}
where F (x, y, z) = (x− 0.5)2 + (y − z)2 − 0.32 intersects the cubic control volume Ωc := {(x, y, z) | 0 ≤ x, y, z ≤ h}.
We define the fluid occupying the cylinder as fluid − 1 and the one outside as fluid − 0. Volume fraction, f defined as
f = 1

h3

∫
Ωc

H(x, y, z)dv (where H(x, y, z) is the heaviside function defined in 4.14) is the volume fraction in the control
volume occupied by fluid1.It can be evaluated as f = a

h2 + 1
h3

∫
Ωc∩Γ

(z n̂ · ez) dA where a is the area on the top face,
∂Ωc;z=h(= {(x, y, z) | 0 ≤ x, y ≤ 1, z = h}). The area on the top face that is inside the cylinder, a, is colored blue in (d).
The volume

∫
Ωc∩Γ

(z n̂ · ez) dA is the algebraic sum of the volume subtended between an infinitesimal patch dA on Γ and its
projection onto the bottom plane z = 0. It is represented in (b) and (c). The domain on which the volume integration is done,
Ωc∩Γ, is the portion of the surface that lies inside the control volume.(b) shows the volume integral with n̂ ·ez > 0. (c) shows
the volume integral with n̂ · ez < 0. The integration is split for the sake of explanation. (d) shows the area that lies inside the
cylinder and is cut by the top face of the cube. The area fraction on the top face, a

h2
= e

h
+ 1

h2

∫
Γ∩∂Ωc;z=h

(y n̂⊥ · ey) dl

where e is the portion of the edge on the top-right edge that is inside the cylinder. It is represented in the blue line segment in
(g)). The domain over which the area integral is done, Γ ∩ ∂Ωc;z=h, is the portion of the surface that intersects the top face of
the control volume. (f) shows the area integral. (g) shows the portion of the edge that lies inside the cylinder and is cut by the
top right edge of the cube. The edge fraction can be evaluated as e

h
= 1

h

∑
Γ∩∂Ωc;z=h∩∂Ωc;y=h

x sign(n̂ · ex)

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 97

ey and ex respectively. The selection of these directions is arbitrary, and the evaluation of
volume fraction can be done by arbitrarily choosing any other set, say {ed0, ed1, ed2} with
edi ∈ {ex, ey, ez}. The above algorithm can be used even when there are multiple fronts
intersecting the same control volume.
Clipping Algorithm

êx

êy

êz

êx

êy

êz

êx

êy

êz

êx

êy

êz

(a)

êx

êy

êz

(b)

êx

êy

êz

(c)

Figure A.9: Clipping of triangle by a cube: Edges of polygons are successively divided to get the polygon.
Firstly cut by the faces of the cube which lie on the planes (a) x = h

2 ± h
2 if they intersect the planes,

then by the faces of the cube which lie on the planes (b) y = h
2 ± h

2 and (c) z = h
2 ± h

2 respectively.

As discussed earlier we need to identify the domains Γ∩Ωc, Γ∩∂Ωc;z=h and Γ∩∂Ωc;z=h∩
∂Ωc;y=h for carrying out the integrations in Eq:A.29. Let us define

• Pi(v0, v1, .., vNv−1) is a convex polygon with Nv vertices and the vertices v0, .. vNv−1 are
ordered cyclically.

• Set of points on the Polygon θ(P) is defined as

θ(P (v0, .., vNv−1)) =

{
x

∣∣∣∣ x =
Nv−1∑
i=0

(
i−1∏
j=0

cj

Nv−2∏
j=i

(1− cj)
)
vi.X with 0≤cj≤1

∀j∈{0,..Nv−2}

}

with θo(P (v0, v1, .., vNv−1)) as its interior. The definition of θ and θocan be extended to
a set of points on triangles (θ(T (v0, v1, v2))) and points on line segments (θ(E(v0, v1)))
by taking Nv = 3 and Nv = 2 respectively in the definition.

• In the context of front tracking, the interface is represented by a collection of discrete
triangles, {T}. That gives

Γ =
⋃

Ti∈{T}

θ(Ti)

Using algorithm CLIP3D (Algo:10, also represented in Fig:A.9), we can find a polygon
which is the subset of respective triangular facet, θi, which represents the portion of the triangle
that lies inside the cube. In this algorithm, all edges of the triangle are divided by the planes
x = h

2
± h

2
if they cut. New points are inserted at the point of intersection of edges and planes,

making the triangle a polygon. Then all the vertices vj of the polygon that neither lies between
nor lies on the planes, i.e., |x− h

2
| > h

2
, are deleted. This is repeated in another direction to get

98 APPENDIX A. APPENDIX

the final polygon. The triangle that intersects the cubic control volume will result in a polygon
with a number of vertices more than zero. (Nv > 0).

Algorithm 10: CLIP3D : Clipping of triangle by a cube
Data: A triangle, T with ordered vertices (v0, v1, v2), and a cube,

Ωc = {(x, y, z) | 0 ≤ x, y, z ≤ h}
Result: A polygon P which is the intersection of both T and cube
Initialise P as polygon with Nv = 3 and vertices as v0, v1, v2

for each vertices, vj of polygon P ∀j ∈ {0, 1, .., Nv − 1} do
Svj ← 0 /* Svj = 0 means vj.X doesn’t lie on ∂Ωc */

end
for each direction,i ∀i ∈ {0, 1, 2} do

for each vertices, vj of polygon P ∀j ∈ {0, 1, .., Nv − 1} do
if (|vj.X[i]− h

2
| > h

2
) then

Ivj ← 0 /* Vertex lies outside */
else

Ivj ← 1 /* Vertex lies between or on the planes */
if (vj.X[i] == h) then

Svj ← Svj |2i /* Svj&2i == 1 means vj.X lie on ∂Ωc;x[i]=0 */
else if (vj.X[i] == h) then

Svj ← Svj |2i+3 /* Svj&2i+3 == 1 means vj.X lie on ∂Ωc;x[i]=h */
end

/* ’&’ and ’|’ means bitwise AND and bitwise OR respectively */
end

end
for each edges of P with end vertices va, vb do

if ((va.X[i]− h
2
± h

2
)(vb.X[i]− h

2
± h

2
) < 0) then

/* if the edge is split by faces of the cube x[i] = h
2
∓ h

2
*/

Insert vertex vc on the edge between va and vb such that
vc.X[i]← h

2
∓ h

2
/* setting the coordinates of the new vertex vc */

vc.X[k]← va.X[k] + (h
2
∓ h

2
− va.X[i])vb.X[k]−va.X[k]

vb.X[i]−va.X[i]
∀k ∈ {0, 1, 2} \ {i}

Ivc ← 1
Nv ← Nv + 1
if (vc.X[i] == 0) then

Svj ← Svj |2i /* Svc&2i == 1 means vc.X lie on ∂Ωc;x[i]=0 */
else if (vc.X[i] == h) then

Svj ← Svj |2i+3 /* Svc&2i+3 == 1 means vc.X lie on ∂Ωc;x[i]=h */
end

end
end
for each vertices vj of P ∀j ∈ {0, 1, .., Nv − 1} do

if (Ivj == 0) then
Remove vj from the polygon, P
Nv ← Nv − 1

end
end

end
/* If triangle and cube intersects θ(T) ∩ Ωo

c 6= ∅, CLIP3D return a convex polygon, P
with Nv > 0 with ordered vertices vj */

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 99

The CLIP3D algorithm also identifies whether the vertices of P lie on any specific face of
the cubic control volume. Vertex, vj of the polygon, P that lies on the face, ∂Ωc;x[i]=0 have
Svj&2i = 1. Vertex, vj of the polygon, P that lies on the face, ∂Ωc;x[i]=h have Svj&2i+3 = 1.
Inherently, it can also identify whether a vertex lies on an edge or on a corner of the cube.
So vertices lying on the top face satisfies Svj&25 = 1, vertices on top-right face satisfies
Svj&25 = 1 = Svj&24.

Let’s say {P}, {E} and {V } as the list of polygons, edges, and vertices defined as follows,

{P} = {Pi(v0, v1, .., vNv−1) | Pi = CLIP3D(Ti) withNv ≥ 3 and ∀Ti ∈ {T}} (A.32)
{E} = {Ej(vj, vj+1) | Ej(vj, vj+1) is an edge of Pi ∈ {P} with 25&Svj = 1 = 25&Svj+1

}(A.33)
{V } = {vj | vj is a vertex of Pi ∈ {P} with 24&Svj = 1 = 25&Svj} (A.34)

where θ(Pi) is the set of all points on the polygon. The subsets of Γ required in the Eq:A.29
can thus be written using the sets of {P}, {E} and {V }

Γ ∩ Ωc =
⋃

Pi∈{P}

θ(Pi) (A.35)

Γ ∩ ∂Ωc;z=h =
⋃

Ei∈{E}

θ(Ei) (A.36)

Γ ∩ ∂Ωc;z=h ∩ ∂Ωc;y=h =
⋃

vi∈{V }

{vi.X} (A.37)

Front to VOF algorithm
Complete algorithm to evaluate void fraction in a leaf cell c ∈ L is explained in Algo:11

(F2V3D) and represented in Fig:A.10.
Intialisation of volume fraction

The above algorithm can be used effectively in calculating the initial volume fraction f 0 at
t = 0 in all mixed cells ({P} 6= ∅). For other cells, we can initialize f 0 with the parametrized
or implicit function used to initialize the front. Let us say if the triangular mesh is initialized
from an implicit function F (x, y, z) = 0 with F (x, y, z) = 0 ∀ (x, y, z) ∈ Γ, then, the empty
or full cells can be initialized with the sign of the function F (xc) at the center of the control
volume (xc)

f 0(xc) =
1

2
(1 + sign(F (xc))) ∀ c ∈ L (A.38)

100 APPENDIX A. APPENDIX

e1e2

e0

(a)

e1e2

e0

(b)

e1e2

e0

(c)

e1e2

e0

(d)

e1e2

e0 e

(e)

e1e2

e0

(f)

e1e2

e0

(g)

e1e2

e0

(h)

Figure A.10: (a) The cubic control volume and the front elements (triangles) in the neighborhood which
intersects with the control volume (cube). (b) The polygons ({P}) are the subsets of triangles ({Ti}) is
marked in red. Volume belonging to fluid − 1 is filled blue. (c) Volume under the polygon. (d) Area
under the edges on the top face. (e) Edge portion on the top-front edge belonging to fluid − 1. Sets
{P}, {E} and {V } are marked red in (c), (d) and (e) respectively. The subset of the cube that belongs
to fluid 1 is in a filled blue color. The volume fraction calculated in (c) is corrected by the area fraction
in (d), which is also corrected by the edge fraction in (e). Volume corresponding to each is represented
in filled blue in (f), (g), and (h) respectively.

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 101

Algorithm 11: F2V3D: Finding void fraction in each computational cell from the front
Data: facets, {T} and cubic control volume, Ωc and volume fraction at time step n, fn
Result: volume fraction fn+1 in the control volume
Find set of polygons, {P} that intersects C.V using Eq:A.32 /* Using Algo:10 */
if {P} = ∅ then

fn+1 is found using Eq:A.31
else

v ← 1
h3

∑
Pi∈{P}

A(Pi) (n̂(Pi) · ez) (C(Pi) · ez) /* Fractional volume under

polygons */
/* A(Pi), n̂(Pi) and C(Pi) are area, normal and area centroid of Pi */

if {E} 6= ∅ then
a← 1

h2

∑
Ei∈{E}

L(Ei) (n̂⊥(Ei) · ey) (C(Ei) · ez) /* Fractional area under

edges */
/* L(Ei), n̂⊥(Ei) and C(Ei) are length, normal and centroid of Ei */

if {V } 6= ∅ then
e← 1

h

∑
vi∈{V }

(vi.X · ex) (n̂(vi) · ex) /* Edge fraction with H(x) = 1 on

top-right edge */
/* n(vi) surface normal at vi */

else
e← 0

end
a← a+ Fv(e) /* Correction of area fraction. Eq:A.29 */

else
a← 0

end
v ← v + Fv(a) /* Correction of volume fraction. Eq:A.29 */
fn+1 ← Fv(v)

end

102 APPENDIX A. APPENDIX

A.5.1 Filtering the color function
The Front2VOF algorithm results in a sharp interface which requires filtering for better results
[65] [82]. It can be done by applying a discrete filter on the stencil to get a smoother color
function c̃ from the void fraction c with a weightage of 1/8, 1/16, 1/32 and 1/64 to the void
fraction c in the center cell, face neighbors, edge neighbors and vertex neighbors respectively.

[65] [82] also uses an alternative approach with double Gaussian filtering. This method
uses the filtering equation

G(r) = A exp
(
−
[
(r · t)2/2σ2

t + (r · n)2/2σ2
n

])
(A.39)

where r is the distance from the center of the stencil, and the coefficient A is a normalizing
factor. The filtering window in the tangential and normal direction of the surface are chose as
σt = h

√
3, and σn = σt/4 respectively.

A.5.2 Test case to compare Front2VOF and Poisson Solver
Inorder to compare the current Front2VOF algorithm and the Poisson solver [39], we compare
the evolution of kinetic energy in an oscillating 3D droplet testcase where an initial ellipsoid
(Fig:??) with small eccentricity in one axis is allowed to oscillate in a viscous fluid. The
test case is presented in [53]. The results from Front2VOF method implemented by [82] is
compared with that of [53] which utilises the Poisson Solver to evaluate the color function.

(a) The color function with the Poisson approach. (b) The color function with the Front2VOF approach.

Figure A.11: Color function in the cells calculated from the front using (a) Poisson method of [39] (b)
Direct intergation from the interface [65] [82] which uses a method similar to the current work.

A.5. VOLUME FRACTION FROM THE FRONT (FRONT2VOF ALGORITHM) 103

[width=.35]./plots/meshbubbleimage1.png

Figure A.12: Test case of the oscillating bubble/droplet: initial mesh with D/∆x = 19.2.

 0

 5x10-9

 1x10-8

 1.5x10-8

 2x10-8

 2.5x10-8

 3x10-8

 3.5x10-8

 0 0.005 0.01 0.015 0.02 0.025

E
k

time

Oscillating bubble simulation with Front

D/∆x=38 reference simulation
D/∆x=19 F2V - Disc. Filt.

D/∆x=19 F2V - Gauss Filt.
D/∆x=19 Poisson

Figure A.13: Comparison of different filterings on the evolution of the kinetic energy over time.
Comparison of the evolution of kinetic energy calculated by front tracking solver which uses Front2VOF
algorithm (with filtering) with that [53] which uses the Poisson solver [39] for color function evaluation.
(Reproduced from [82] with permission)

104 APPENDIX A. APPENDIX

(a) D/∆x = 19, Poisson. (b) D/∆x = 19, Front2VOF.

(c) D/∆x = 38, Poisson. (d) D/∆x = 38, Front2VOF.

(e) D/∆x = 76, Poisson. (f) D/∆x = 76, Front2VOF.

Figure A.14: Evolution of the kinetic energy over time. Comparison of the evolution of kinetic energy
calculated by front tracking solver which uses Front2VOF algorithm (without filtering) with that [53]
which uses the Poisson solver [39] for color function evaluation. (Reproduced from [82] with permission)

A.6. PRESSURE EQUATION 105

A.6 Pressure Equation

Dot product of momentum equation (sigle formualtion) and velocity (continuous across the
interface)

ui

(
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj)

)
= ui

(
− ∂p
∂xi

+
∂τji
∂xj

+ fσi

)
(A.40)

∂

∂t
(
1

2
ρuiui) +

∂

∂xj

(
(
1

2
ρuiui)uj

)
= ∂

∂xj

(
ui(−pδij + τij + τσi,j)

)
−
(
−pδij + τij + τσi,j

)
∂ui
∂xj

(A.41)
(A.42)

energy equation (single formulation)

∂

∂t
(ρe+

1

2
ρuiui) +

∂

∂xj

(
(ρe+

1

2
ρuiui)uj

)
=

∂

∂xj

(
ui(−pδij + τij + τσi,j)

)
(A.43)

The difference

∂

∂t
(ρe) +

∂

∂xj
(ρeuj) = Φ− p∂uj

∂xj
(A.44)

and using continuity equation

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ∂uj

∂xj
(A.45)

the Eq:A.46 can be written as in the non conservative form as

ρ

(
∂e

∂t
+ uj

∂e

∂xj

)
= Φ− p∂uj

∂xj
(A.46)

Equation of speed of sound

c2 =
dp

dρ
(A.47)

equation of state ρ = ρ(p, e)

dρ =

(
∂ρ

∂p

)
e

dp+

(
∂ρ

∂e

)
p

de =
γ

c2
dp− ρβ

cp
de (A.48)

Eq:A.49 can be rewritten using eq:A.46 and A.45 as

−ρ∂uj
∂xj

=
γ

c2

(
dp

dt

)
− ρβ

cp

1

ρ

(
Φ− p∂uj

∂xj

)
(A.49)

γ

ρc2

(
dp

dt

)
− 1

ρ

ρβ

cp

1

ρ

(
+

p

ρc2

dp

dt

)
− β

ρcp
Φ = −∂uj

∂xj
(A.50)

dp

dt

(
γ

ρc2
− βp

ρ2cpc2

)
=

β

ρcp
Φ− ∂uj

∂xj
(A.51)

106 APPENDIX A. APPENDIX

dp

dt

(
γ

ρc2
− β2T

ρcp

)
=

β

ρcp
Φ− ∂uj

∂xj
(A.52)

For liquid γ = 1 and β ≈ 0, for ideal gases β = 1/T and in the absence of viscous dissipation,
we have

dp

dt

(
1

ρc2

)
= −∂uj

∂xj
(A.53)

A.7. RAYLEIGH-PLESSET EQUATION 107

A.7 Rayleigh-Plesset Equation

Rayleigh-Plesset Equation

1

ρL
(pB(t)− p∞(t)) = R

d2R

dt2
+

3

2
(
dR

dt
)2 +

4νL
R

dR

dt
+

2σ

ρLR

Non dimensional numbers
(Use characteristic velocity scale as collapse velocity Uc =

√
∆p
ρL

and length scale R0 and
time scale R0/Uc)

(1) ratio of new ambient pressure to old

P =
p∞
p∞,0

=
p∞,0 + ∆p

p∞,0

(with P > 0). In violent collapse P � 1

(2) Weber Number,We

We =
∆pR0

σ

(5) Reynolds Number

Re =
R0

√
∆p ρL
µL

(6) Non-dim time

t∗ = tU/R0 =

√
∆p

ρL

1

R0

t

(7) Non-dim Radius

R∗(t∗) =
R(t∗)

R0

(8) Non-dim Interface velocity

U∗(t∗) =
dR∗

dt∗
=

√
ρL
∆p

dR

dt

We alse have

dR

dt
=

√
∆p

ρL

dR∗

dt∗
;

d2R

dt2
=

1

R0

∆p

ρL

d2R∗

dt∗2
;

p∞,0
∆p

=
1

P − 1
;

p∞
∆p

=
P

P − 1

R-P (Non-dimensionalised)

R∗
dU∗

dt∗
+

3

2
U∗2 +

4

Re

U∗

R∗
+

2

We

1

R∗
=

(
1

P − 1
+

2

We

)(
1

R∗

)3γ

− P

P − 1

which gives

d

dt∗

[
R∗

U∗

]
=

 U∗

1
R∗

[(
P − 1 + 2

We

)(
1
R∗

)3γ − P − 3
2
U∗2 − 4

Re
U∗

R∗
− 2

We
1
R∗

]

108 APPENDIX A. APPENDIX

In the above equation

pG(t∗) =

[(
1

P − 1
+

2

We

)(
1

R∗

)3γ
]

∆p

p∞(t∗) =
P

P − 1
∆p

A.8 Keller-Miksis Equation (Weekly Compressible Liquid)
Keller-Miksis equation (Dimensional)

(
1− Ṙ

cL,0

)
R
d2R

dt2
+

(
1− 1

3

Ṙ

cL,0

)
3

2
(
dR

dt
)2 =

(
1 + Ṙ

cL,0

)
1

ρL,0
(pL(R, t)− p∞(t))

+ R
ρL,0cL,0

d
dt

(pL(R, t)− p∞(t)) (A.54)

Since the liquid is (slghtly) compressible the expression involves speed of sound at ambient.
ALso the liquid density is noy constant and K-M eqn involves the liquid density at ambient.

KM Non- Dimensional (in collapse) In the case of collapse, apart from the initially defined
non-dim numbers P , Re andWe, we need one more non-dim number, the Mach number.

Ma =
Uc
cL,0

=
1

cL,0

√
∆p

ρL,0

(1−Ma U∗)R∗
dU∗

dt∗
+

(
1− 1

3
Ma U∗

)
3

2
U∗2 =

(1 +Ma U∗)

{(
1

P − 1
+

2

We

)(
1

R∗

)3γ

− 2

We

1

R∗
− 4

Re

1

R∗
U∗ − P

P − 1

}

+Ma U∗

{
−3γ

(
1

P − 1
+

2

We

)(
1

R∗

)3γ

+
2

We

1

R∗
+

4

Re

1

R∗
U∗

}
−Ma

4

Re

dU∗

dt∗
(A.55)

which gives

dU∗

dt∗
= 1

R∗(1−Ma U∗)+Ma 4
Re

{
(1 + (1− 3γ)Ma U∗)

(
1

P−1
+ 2

We

) (
1
R∗

)3γ −
2
We

1
R∗
− 4

Re
1
R∗
U∗ − (1 +Ma U∗) P

P−1
−
(
1− 1

3
Ma U∗

)
3
2
U∗2
}

(A.56)

Bibliography

[1] B Dollet, P Marmottant, and V Garbin. Bubble dynamics in soft and biological matter.
Annual Review of Fluid Mechanics, 51:331–355, 2019.

[2] S O Unverdi and G Tryggvason. A front-tracking method for viscous, incompressible,
multi-fluid flows. Journal of computational physics, 100(1):25–37, 1992.

[3] C Peskin. The immersed interface method. Acta Numerica, 11:479–517, 2002.

[4] L Rayleigh. Viii. on the pressure developed in a liquid during the collapse of a spherical
cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 34(200):94–98, 1917.

[5] E A Neppiras. Acoustic cavitation. Physics reports, 61(3):159–251, 1980.

[6] S H Bloch, P A Dayton, and K W Ferrara. Targeted imaging using ultrasound contrast
agents. IEEE Engineering in Medicine and Biology Magazine, 23(5):18–29, 2004.

[7] S Martynov, E Stride, and N Saffari. The natural frequencies of microbubble oscillation
in elastic vessels. The Journal of the Acoustical Society of America, 126(6):2963–2972,
2009.

[8] S Qin and K W Ferrara. Acoustic response of compliable microvessels containing ultra-
sound contrast agents. Physics in Medicine & Biology, 51(20):5065, 2006.

[9] R J Price, D M Skyba, S Kaul, and T C Skalak. Delivery of colloidal particles and
red blood cells to tissue through microvessel ruptures created by targeted microbubble
destruction with ultrasound. Circulation, 98(13):1264–1267, 1998.

[10] J L Bull. The application of microbubbles for targeted drug delivery. Expert opinion on
drug delivery, 4(5):475–493, 2007.

[11] CCCoussios and RARoy. Applications of acoustics and cavitation to noninvasive therapy
and drug delivery. Annu. Rev. Fluid Mech., 40:395–420, 2008.

[12] H R Guzmán, A J McNamara, D X Nguyen, and M R Prausnitz. Bioeffects caused by
changes in acoustic cavitation bubble density and cell concentration: a unified explana-
tion based on cell-to-bubble ratio and blast radius. Ultrasound in medicine & biology,
29(8):1211–1222, 2003.

[13] P Prentice, A Cuschieri, K Dholakia, M Prausnitz, and P Campbell. Membrane disruption
by optically controlled microbubble cavitation. Nature physics, 1(2):107–110, 2005.

109

110 BIBLIOGRAPHY

[14] E C Everbach and C W Francis. Cavitational mechanisms in ultrasound-accelerated
thrombolysis at 1 mhz. Ultrasound in medicine & biology, 26(7):1153–1160, 2000.

[15] A F Prokop, A Soltani, and R A Roy. Cavitational mechanisms in ultrasound-accelerated
fibrinolysis. Ultrasound in medicine & biology, 33(6):924–933, 2007.

[16] C S Peskin. Numerical analysis of blood flow in the heart. Journal of computational
physics, 25(3):220–252, 1977.

[17] C W Hirt and B D Nichols. Volume of fluid (vof) method for the dynamics of free
boundaries. Journal of computational physics, 39(1):201–225, 1981.

[18] G D Weymouth and D K Yue. Conservative volume-of-fluid method for free-surface
simulations on cartesian-grids. Journal of Computational Physics, 229(8):2853–2865,
2010.

[19] M Rudman. Volume-tracking methods for interfacial flow calculations. International
journal for numerical methods in fluids, 24(7):671–691, 1997.

[20] D Gueyffier, J Li, A Nadim, R Scardovelli, and S Zaleski. Volume-of-fluid interface
tracking with smoothed surface stress methods for three-dimensional flows. Journal of
Computational physics, 152(2):423–456, 1999.

[21] D L Youngs. Time-dependent multi-material flow with large fluid distortion. Numerical
methods for fluid dynamics, 1982.

[22] S Osher and J A Sethian. Fronts propagating with curvature-dependent speed: Algorithms
based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49,
1988.

[23] S Osher and R P Fedkiw. Level set methods: an overview and some recent results. Journal
of Computational physics, 169(2):463–502, 2001.

[24] M Sussman and E G Puckett. A coupled level set and volume-of-fluid method for com-
puting 3d and axisymmetric incompressible two-phase flows. Journal of computational
physics, 162(2):301–337, 2000.

[25] B Bunner and G Tryggvason. Dynamics of homogeneous bubbly flows part 1. rise velocity
and microstructure of the bubbles. Journal of Fluid Mechanics, 466:17–52, 2002.

[26] B Bunner and G Tryggvason. Dynamics of homogeneous bubbly flows part 2. velocity
fluctuations. Journal of Fluid Mechanics, 466:53–84, 2002.

[27] C Kuan, J Sim, E Hassan, and W Shyy. Parallel eulerian-lagrangian method with adaptive
mesh refinement for moving boundary computation. In 51st AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, page 370, 2013.

[28] M N Farooqi, D Izbassarov, M Muradoğlu, and D Unat. Communication analysis and op-
timization of 3d front tracking method for multiphase flow simulations. The International
Journal of High Performance Computing Applications, 33(1):67–80, 2019.

[29] S Popinet and collaborators. Basilisk. http://basilisk.fr, 2013–2020.

http://basilisk.fr

BIBLIOGRAPHY 111

[30] C S Peskin. Flow patterns around heart valves: a digital computer method for solving the
equations of motion. Yeshiva University, 1972.

[31] JGlimm, JWGrove, XLi, andNZhao. Simple front tracking.Contemporarymathematics,
238(2):133–149, 1999.

[32] G Tryggvason, R Scardovelli, and S Zaleski. Direct numerical simulations of gas–liquid
multiphase flows. Cambridge university press, 2011.

[33] J U Brackbill, D B Kothe, and C Zemach. A continuum method for modeling surface
tension. Journal of computational physics, 100(2):335–354, 1992.

[34] M J Berger and J Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of computational Physics, 53(3):484–512, 1984.

[35] A M Roma. A multilevel self adaptive version of the immersed boundary method. New
York University, 1996.

[36] J Holke. Scalable algorithms for parallel tree-based adaptive mesh refinement with general
element types. arXiv preprint arXiv:1803.04970, 2018.

[37] M Bader. Space-filling curves: an introduction with applications in scientific computing,
volume 9. Springer Science & Business Media, 2012.

[38] P J Frey and H Borouchaki. Geometric surface mesh optimization. Computing and
visualization in science, 1(3):113–121, 1998.

[39] G Tryggvason, B Bunner, A Esmaeeli, D Juric, N Al-Rawahi, W Tauber, J Han, S Nas,
and Y Jan. A front-tracking method for the computations of multiphase flow. Journal of
computational physics, 169(2):708–759, 2001.

[40] T Brochu and R Bridson. Robust topological operations for dynamic explicit surfaces.
SIAM Journal on Scientific Computing, 31(4):2472–2493, 2009.

[41] A Guéziec, G Taubin, F Lazarus, and B Hom. Cutting and stitching: Converting sets
of polygons to manifold surfaces. IEEE Transactions on Visualization and Computer
Graphics, 7(2):136–151, 2001.

[42] S Shin and D Juric. Modeling three-dimensional multiphase flow using a level contour
reconstruction method for front tracking without connectivity. Journal of Computational
Physics, 180(2):427–470, 2002.

[43] J Pan, T Long, L Chirco, R Scardovelli, S Popinet, and S Zaleski. An edge-based interface
tracking (ebit)method formultiphase-flows simulationwith surface tension. arXiv preprint
arXiv:2309.00338, 2023.

[44] D Torres and J Brackbill. The point-set method: front-tracking without connectivity.
Journal of Computational Physics, 165(2):620–644, 2000.

[45] D Darmana, N G Deen, and J Kuipers. Parallelization of an euler–lagrange model using
mixed domain decomposition and a mirror domain technique: Application to dispersed
gas–liquid two-phase flow. Journal of Computational Physics, 220(1):216–248, 2006.

112 BIBLIOGRAPHY

[46] B Nkonga and P Charrier. Generalized parcel method for dispersed spray and message
passing strategy on unstructured meshes. Parallel Computing, 28(3):369–398, 2002.

[47] C Kuan. Parallel processing of Eulerian-Lagrangian, cell-based adaptive method for
moving boundary problems. PhD thesis, University of Michigan, 2013.

[48] S Schamberger and J Wierum. Graph partitioning in scientific simulations: Multilevel
schemes versus space-filling curves. In International Conference on Parallel Computing
Technologies, pages 165–179. Springer, 2003.

[49] P Frey and P George. Mesh Generation. Hermes Science Publishing, 2008.

[50] H Samet. The design and analysis of spatial data structures, volume 85. Addison-wesley
Reading, MA, 1990.

[51] D Khan, A Plopski, Y Fujimoto, M Kanbara, G Jabeen, Y J Zhang, X Zhang, and H Kato.
Surface remeshing: A systematic literature review of methods and research directions.
IEEE transactions on visualization and computer graphics, 28(3):1680–1713, 2020.

[52] W Yue, Q Guo, J Zhang, and G Wang. 3d triangular mesh optimization in geometry
processing for cad. In Proceedings of the 2007 ACM symposium on Solid and physical
modeling, pages 23–33, 2007.

[53] WAniszewski, T Arrufat, M Crialesi-Esposito, S Dabiri, D Fuster, Y Ling, J Lu, LMalan,
S Pal, R Scardovelli, et al. Parallel, robust, interface simulator (paris). Computer Physics
Communications, 263:107849, 2021.

[54] MMcGuire. The half-edge data structure. Website: http://www. flipcode. com/articles/ar-
ticle halfedgepf. shtml, 2000.

[55] M Hussain, Y Okada, and K Niijima. A fast and memory-efficient method for lod
modeling of polygonal models. In 2003 International Conference on Geometric Modeling
and Graphics, 2003. Proceedings, pages 137–142. IEEE, 2003.

[56] C Gorges, F Evrard, B van Wachem, and F Denner. Reducing volume and shape errors
in front tracking by divergence-preserving velocity interpolation and parabolic fit vertex
positioning. Journal of Computational Physics, 457:111072, 2022.

[57] P Lindstrom and G Turk. Evaluation of memoryless simplification. IEEE Transactions on
Visualization and Computer Graphics, 5(2):98–115, 1999.

[58] G Taubin. Curve and surface smoothing without shrinkage. In Proceedings of IEEE
international conference on computer vision, pages 852–857. IEEE, 1995.

[59] M O Abu-Al-Saud, S Popinet, and H A Tchelepi. A conservative and well-balanced
surface tension model. Journal of Computational Physics, 371:896–913, 2018.

[60] S Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows. Journal
of Computational Physics, 228(16):5838–5866, 2009.

[61] B Lafaurie, C Nardone, R Scardovelli, S Zaleski, and G Zanetti. Modelling merging
and fragmentation in multiphase flows with surfer. Journal of computational physics,
113(1):134–147, 1994.

BIBLIOGRAPHY 113

[62] S Popinet and S Zaleski. A front-tracking algorithm for accurate representation of surface
tension. International Journal for Numerical Methods in Fluids, 30(6):775–793, 1999.

[63] Y Renardy and M Renardy. Prost: a parabolic reconstruction of surface tension for the
volume-of-fluid method. Journal of computational physics, 183(2):400–421, 2002.

[64] D Fuster and S Popinet. An all-mach method for the simulation of bubble dynamics
problems in the presence of surface tension. Journal of Computational Physics, 374:752–
768, 2018.

[65] D KOFFI BI, S Zaleski, B Kottilingal, G Tryggvason, S Costanzo, R Scardovelli, Y Ling,
and J Lu. Exact computation of the color function from piecewise linear interfaces.
Bulletin of the American Physical Society, 67, 2022.

[66] D A Field. Laplacian smoothing and delaunay triangulations. Communications in applied
numerical methods, 4(6):709–712, 1988.

[67] H Lamb. Hydrodynamics. University Press, 1924.

[68] AProsperetti. Motion of two superposed viscous fluids. ThePhysics of Fluids, 24(7):1217–
1223, 1981.

[69] D Gerlach, G Tomar, G Biswas, and F Durst. Comparison of volume-of-fluid methods
for surface tension-dominant two-phase flows. International Journal of Heat and Mass
Transfer, 49(3-4):740–754, 2006.

[70] M Herrmann. A balanced force refined level set grid method for two-phase flows on
unstructured flow solver grids. Journal of computational physics, 227(4):2674–2706,
2008.

[71] L Cortelezzi and A Prosperetti. Small-amplitude waves on the surface of a layer of a
viscous liquid. Quarterly of Applied Mathematics, 38(4):375–389, 1981.

[72] D E Fyfe, E S Oran, and M Fritts. Surface tension and viscosity with lagrangian hy-
drodynamics on a triangular mesh. Journal of Computational Physics, 76(2):349–384,
1988.

[73] M Rudman. A volume-tracking method for incompressible multifluid flows with large
density variations. International Journal for numerical methods in fluids, 28(2):357–378,
1998.

[74] T Arrufat, M Crialesi-Esposito, D Fuster, Y Ling, L Malan, S Pal, R Scardovelli, G Tryg-
gvason, and S Zaleski. A mass-momentum consistent, volume-of-fluid method for incom-
pressible flow on staggered grids. Computers & Fluids, 215:104785, 2021.

[75] J B Bell, P Colella, and H M Glaz. A second-order projection method for the incompress-
ible navier-stokes equations. Journal of computational physics, 85(2):257–283, 1989.

[76] W C Elmore, W C Elmore, and M AHeald. Physics of waves. Courier Corporation, 1985.

[77] M S Plesset. The dynamics of cavitation bubbles. 1949.

114 BIBLIOGRAPHY

[78] J B Keller and M Miksis. Bubble oscillations of large amplitude. The Journal of the
Acoustical Society of America, 68(2):628–633, 1980.

[79] C S Peskin and B F Printz. Improved volume conservation in the computation of flows
with immersed elastic boundaries. Journal of computational physics, 105(1):33–46, 1993.

[80] R McDermott and S B Pope. The parabolic edge reconstruction method (perm) for
lagrangian particle advection. Journal of Computational Physics, 227(11):5447–5491,
2008.

[81] M Tavares, D Koffi-Bi, E Chénier, and S Vincent. A two-dimensional second order
conservative front-tracking method with an original marker advection approach based on
jump relations. Comput. Phys, 27(5):1550–1589, 2020.

[82] D KOFFI BI, S Zaleski, B Kottilingal, G Tryggvason, S Costanzo, R Scardovelli, Y Ling,
and J Lu. Exact computation of the color function from piecewise linear interfaces.
[Unpublished Work].

	Abstract
	Résumé
	Acknowledgement
	List of Symbols and Abbreviations
	Abbreviations
	Symbols

	Introduction
	Motivation
	Numerical Modelling

	Literature
	UCOM-ITN
	Thesis Outline

	Moving Interface
	Introduction
	Representation and Discretisation of Eulerian and Lagrangian Domains
	Fluid Structure Interfaction using Immersed Fibers
	Multiphase flow using Front Tracking

	Governing Equations
	Cell-Based AMR Grid
	Tree: Quadtrees and Octrees
	Control Volumes in an AMR grid
	Control Surfaces in an AMR grid
	A Valid Tree
	Traverse through Tree
	Cache of Leaves
	Scalars
	Temporal Discretisation
	Governing Equation and Solution set

	Fluid-Fluid Interface: An Oriented Surface
	Front: Discretised Interface
	Set of marker points or frontpoints
	Set of frontelements
	Surface Mesh or Front bold0mu mumu MMMMMM
	Patch, Mapping
	A Valid Front
	Databases for bold0mu mumu MMMMMM and bold0mu mumu TTTTTT

	Grid Modification
	Tree Modification
	Front Modification

	Inter Grid Communication
	Eulerian mesh to Lagrangian mesh interpolation
	Lagrangian Mesh to Eulerian Mesh Interpolation

	Parallel Strategies
	Parallel Strategies
	Literature Review
	Definitions used in this chapter
	Partition of Weighted Graphs for Parallel Computing
	Front/Octree as a Hypergraph

	Problem Statement
	Discussion on Metrics

	Implementation
	Partition of Tree and Front
	Partition of Tree and Parent Tree
	Partition of Front

	Repartition
	Adaptive Mesh Refinement
	Advection of Front

	Inter Grid Communication in Parallel
	Cells, Elements, and Vertices in the neighborhood

	Surface Regridding or Remeshing in Parallel
	Regridding in Parallel
	Future Plan

	Results
	Scalability

	Balanced Surface Tension
	Introduction
	Numerical Implementation
	Interface
	One fluid formulation
	Balanced FT in 2D
	Smoothing of curve

	Testcases
	Static Droplet
	Capillary wave
	Oscillating Droplet

	AllMach
	Introduction
	Compressible Flow Solver
	Governing Equations
	Monolithic Approach
	Space and Time Discretization
	Interface Representation

	Numerical Method
	Advection
	Prediction
	Projection
	Energy Evolution

	Test Cases
	Weakly Non-Linear Collapse of Bubble

	Cavitation of Micro-Bubbles in Blood Vessel
	Immersed Boundary Method: Fiber Mechanics
	Governing Equations
	Membrane Force (Fibers Mechanics)
	Discretisation of Membrane Force Density

	Length Scales and Time Scales
	Length Scales
	Time Scales
	Non dimensional numbers

	Cavitation in Blood Vessel: Axi-Symmetric Simulation
	Non-dimensional numbers

	Conclusion
	Conclusion
	Future Works

	Appendix
	Database For Front Tracking
	Linked lists Iterators and Caches

	Morton Curve
	MAC Staggered Grid
	Differential Geometry, Surface Derivatives and Surface Integrals
	A regular surface with Local parametrization
	Fundamental forms and Curvatures
	Surface Gradient
	Surface of Revolution

	Volume fraction from the Front (Front2Vof Algorithm)
	Filtering the color function
	Test case to compare Front2VOF and Poisson Solver

	Pressure Equation
	Rayleigh-Plesset Equation
	Keller-Miksis Equation (Weekly Compressible Liquid)

