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Chapter 1

Abrégé des contributions de la thèse

Contexte

Le traitement numérique du signal possède de nombreux domaines d’applications,
parmi lesquels l’imagerie biomédicale, l’astronomie, la météorologie et le contrôle non-
destructif. Les travaux de cette thèse sont à l’intersection entre le traitement numérique
du signal et les problèmes inverses. À partir d’un vecteur de mesures y ∈ RN , le but est
de retrouver une solution d’intérêt x ∈ RQ telle que:

y = Ax+ ε, (1.1)

où ε ∈ RN est un terme de bruit, et la matrice A ∈ RN×Q est un modèle linaire connu à
l’avance.

Selon la loi de probabilité suivie par le terme de bruit, ce problème mathématique
se traduit par des problèmes d’optimisation différents. Si le terme de bruit est supposé
gaussien, indépendant et identiquement distribué (ε ∼ N (0, σ2I)), trouver le meilleur
ajustement pour x dans l’Équation (1.1) revient à résoudre le problème d’optimisation
suivant:

x̂LS = arg min
x∈RQ

1
2‖y −Ax‖2

2. (1.2)

Le Problème (1.2) est le problème de moindres-carrés standard.
Dans bien des cas, le modèle est sous-déterminé, entraînant une infinité de solutions

à l’Équation (1.1). Sinon, dans le cas d’un modèle sur-déterminé, si A est de rang plein,
le Problème (1.2) a une solution analytique qui vaut:

x̂LS := (ATA)−1ATy. (1.3)

Malheureusement, les matrices A utilisées en traitement du signal amènent très souvent
à des matrices ATA avec un très mauvais conditionnement, ce qui signifie que l’estimée
x̂LS = xvrai + (ATA)−1ATε est numériquement instable, dû au terme (ATA)−1ATε pos-
sédant une forte variance. Pour résoudre ces difficultés, un terme additionnel est ajouté,

9
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soit comme une contrainte du problème, soit comme une pénalité dans la fonction objectif.
Ce terme correspond à une connaissance a priori sur la structure de la solution x. Dans
un cadre Bayésien, ce terme correspond à la loi de probabilité attribuée à x.

Dans cette thèse, la structure de la solution x est choisie parcimonieuse, ce qui veut
dire qu’un grand nombre de composantes xi sont supposées valoir 0, ce que l’on mesure
par la fonction `0: ‖x‖0 := Card({i | xi 6= 0}). De tels problèmes ont émergé dans le
champ du traitement du signal il y a plusieurs décennies, avec des exemples d’application
en imagerie astronomique [Singer et al. 1979], en séismographie [Kormylo et al. 1982]
et en contrôle non-destructif [Zala 1992] (voir Section 3.2.1 pour plus de détails à pro-
pos de ces exemples). Dans le champ des statistiques, les tâches de sélection de vari-
ables peuvent être retracées au moins jusqu’à 1901 avec la méthode d’Analyse en Com-
posante Principale [Pearson 1901]. Depuis plusieurs décennies également, des algorithmes
d’optimisation parcimonieuse ont été développés [Alliney et al. 1994; Efroymson 1960;
Kormylo et al. 1982; Miller 1990; Zala 1992]. À cause de l’aspect NP-difficile du prob-
lème `0 sous-jacent [Natarajan 1995], résoudre exactement un problème `0 a longtemps
été considéré comme une tâche impossible. Ainsi, une vaste litérature s’est développée
autour de méthodes (polynomiales) approchées, qui peuvent être retracées jusque les an-
nées 1960 [Efroymson 1960]. Ces méthodes approchées peuvent être classifiées en trois
catégories:

— Les méthodes utilisant une relaxation convexe du problème `0 originel [Ben Mhenni
2020; Ben Mhenni, Bourguignon, Mongeau, et al. 2020; Condat et al. 2019; Daubechies
et al. 2004; Efron et al. 2004; Friedman et al. 2010; Lee et al. 2006; Loth 2011; Mas-
sias 2017; Massias et al. 2020; Osborne et al. 2000; Qian et al. 2019; Wainwright
2009].

— Les méthodes utilisant une recherche heuristique dans le problème `0 originel [Ben
Mhenni, Bourguignon, and Idier 2020; Blumensath et al. 2008; Chen et al. 1988;
Pati et al. 1993; Soussen et al. 2011; Tropp 2004].

— Les méthodes utilisant une relaxation non-convexe du problème `0 [Fan et al. 2001;
Soubies et al. 2017; C.-H. Zhang 2010].

Par la suite, des méthodes pour résoudre exactement des problèmes d’optimisation parci-
monieuse `0 ont été proposées, d’abord il y a une dizaine d’année [Bertsimas, King, et al.
2016; Bourguignon, Ninin, et al. 2016], via la reformulation de ces problèmes comme des
problèmes MIP (Mixed Integer Programming) résolus via des solveurs génériques comme
CPLEX, GUROBI, CBC... Pour dépasser les limites de passage à l’échelle des solveurs
génériques, des méthodes dédiées ont ensuite été développées [Ben Mhenni 2020; Bertsi-
mas and Shioda 2009; Guyard et al. 2022; Hazimeh et al. 2021], entre autre le précédent
travail de thèse [Ben Mhenni 2020]. La présente thèse se fonde sur les travaux de [Ben
Mhenni 2020], et propose des techniques d’accélérations de l’algorithme de séparation-
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évaluation utilisé, ainsi que son extension au cas de la parcimonie structurée.

Résumé des contributions

Ce rapport de thèse est organisé comme suit.
Le Chapitre 3 présente le contexte de l’optimisation parcimonieuse, ses champs d’applications

ainsi que des algorithmes de résolution de l’état de l’art, qui sont généralement des méth-
odes obtenant une solution approchée du problème d’optimisation combinant un terme
d’ajustement aux données quadratique avec un terme `0. Les algorithmes d’optimisation
résolvant exactement le problème d’optimisation sus-mentionné sont ensuite exposés, et
l’algorithme utilisé comme point de départ de cette thèse, qui est un algorithme de
séparation-évaluation (branch-and-bound en anglais) dédié à la résolution de problèmes de
moindres carrés parcimonieux [Ben Mhenni 2020; Ben Mhenni, Bourguignon, and Ninin
2021], est détaillé.

Un algorithme de séparation-évaluation approxime une séquence de sous-problèmes
en calculant des bornes inférieures et supérieures sur le minimum de la fonction objec-
tif de ces sous-problèmes. Un algorithme de séparation-évaluation a quelques éléments
clefs, entre autre la stratégie d’exploration, pour savoir dans quel ordre borner les sous-
problèmes, et la méthode pour obtenir les bornes inférieures des sous-problèmes con-
sidérés. Afin d’étudier comment accélérer un algorithme de séparation-évaluation dédié
à l’optimisation parcimonieuse, de nouvelles stratégies d’exploration sont proposées et
leur performance comparées par rapport à des stratégies d’exploration standard dans le
Chapitre 4. Également, dans le même objectif d’accélération, différentes propriétés tirées
de l’analyse convexe sont utilisées pour proposer trois techniques d’accélérations du calcul
de la borne inférieure. Ces trois techniques sont exposées dans le Chapitre 5.

Le cadre précédent, qui sera appelée dans la suite parcimonie scalaire, a pour ob-
jectif de mettre la majorité des variables de la solution à zéro, ou réciproquement de
n’avoir qu’un petit nombre de variables non nulles. Le cadre de la parcimonie struc-
turée étend cette approche en ne se focalisant plus sur les variables individuellement,
mais sur des groupes de variables. Une extension de l’algorithme précédent est proposée
pour résoudre des problèmes d’optimisation parcimonieuse structurée, où la solution est
supposée comprendre de nombreux groupes de variables valant conjointement 0, au lieu
d’être supposée comprendre des variables valant 0 de manière indépendante les unes des
autres. Le Chapitre 6 introduit le sujet de l’optimisation parcimonieuse structurée, avec
des champs d’applications ainsi que des algorithmes de résolution de l’état de l’art. Le
Chapitre 7 est dédié à l’extension de l’algorithme de séparation-évaluation de [Ben Mhenni
2020; Ben Mhenni, Bourguignon, and Ninin 2021] au cas de la parcimonie structurée, en
détaillant les défis rencontrés en chemin, et les solutions trouvées. Ce faisant, plusieurs
problèmes d’optimisation différents, proposant différentes bornes inférieures sur les sous-
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problèmes créés, apparaissent. Ces différentes formulations pour obtenir une borne in-
férieure d’un sous-problème sont détaillées et comparées dans le Chapitre 8. Les trois
techniques d’accélération du calcul des bornes inférieures introduites précédemment dans
le Chapitre 5 sont ensuite adaptées au cas de la parcimonie structurée dans le Chapitre 9.
À notre connaissance, l’algorithme de séparation-évaluation développé dans cette thèse est
le premier algorithme dédié résolvant exactement des problèmes de parcimonie structurée
`0. Une comparaison avec des méthodes de l’état de l’art est proposée dans le Chapitre 10
afin d’apporter un éclairage sur les avantages et les limites des travaux de cette thèse.

Enfin, le code de l’algorithme de séparation-évaluation, développé depuis plus de 6 ans
maintenant (ce code étant le résultat de cette thèse et du travail de thèse précédent de [Ben
Mhenni 2020]), est fourni comme un outil de recherche aux communautés du traitement du
signal et de l’optimisation. Ainsi, le Chapitre 11 présente l’architecture logicielle utilisée,
avec ses extensions possibles et ses limites, ainsi que la manière de prendre en compte
la structure de groupe (dans le cas de la parcimonie structurée), avant de dessiner des
perspectives sur des manières de dépasser les limites de performance actuelles.

Les contributions de cette thèse ont été publiées dans différentes conférences et jour-
naux d’optimisation et de traitement du signal:

Article de journal

1. G. Samain, S. Bourguignon, J. Ninin, "Techniques for accelerating branch-and-
bound algorithms dedicated to sparse optimization", Optimization Methods and
Software, 1-38, 2023, URL: https://www.tandfonline.com/doi/full/10.1080/
10556788.2023.2241154. Accepté pour publication.

Conférence avec actes expertisés

1. G. Samain, S. Bourguignon, J. Ninin, "Techniques d’accélération d’une méthode
de Branch-and-bound pour l’optimisation parcimonieuse", GRETSI’22 XXVIIIème
Colloque Francophone de Traitement du Signal et des Images, Sep 2022, Nancy,
France.

Conférence avec résumés

1. G. Samain, J. Ninin, S. Bourguignon, "Branch-and-bound algorithm applied to
sparse optimization problems: a study of some exploration strategies", EUROPT
18th Workshop on Advances in Continuous Optimization, Juil 2021, Toulouse, France.

2. G. Samain, S. Bourguignon, J. Ninin, "Techniques for accelerating branch-and-
bound algorithms dedicated to sparse optimization", EUROPT 19th Workshop on
Advances in Continuous Optimization, Juil 2022, Lisbonne, Portugal.
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3. G. Samain, S. Bourguignon, J. Ninin, "La dualité convexe comme accélération d’un
algorithme de Branch-and-Bound dédié à l’optimisation parcimonieuse", 23e édition
du congrès ROADEF, Recherche Opérationnelle et de l’Aide à la Décision en France,
Fév 2022, Villeurbanne - Lyon, France.

4. G. Samain, S. Bourguignon, J. Ninin, "Un algorithme branch-and-bound pour ré-
soudre exactement des problèmes d’optimisation parcimonieuse structurée", 24e édi-
tion du congrès ROADEF, Recherche Opérationnelle et de l’Aide à la Décision en
France, Fév 2023, Rennes, France.

Également, le code associé est mis à disposition sous licence libre:

Code

1. G. Samain, M. Latif, R. Ben Mhenni, J. Ninin, S. Bourguignon (2024) Mimosa
(2.0.2), source code. https://gitlab.univ-nantes.fr/samain-g/mimosa-solver/
-/tree/structured_sparsity?ref_type=heads
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Chapter 2

General introduction

Context

The work of this thesis is at the intersection of numerical signal processing and inverse
problems. From a vector of measurements y ∈ RN , the goal is to retrieve some solution
of interest x ∈ RQ such that:

y = Ax+ ε, (2.1)

where vector ε ∈ RN is a noise term, and matrix A ∈ RN×Q is a matrix known in advance.
Depending on the probability distribution followed by the noise term, this mathe-

matical problem translates into different optimization problems. If the noise samples are
assumed to be Gaussian, independent, identically distributed (ε ∼ N (0, σ2I)), then find-
ing the best fit for x in Equation (2.1) in the sense of the Maximum Likelihood estimate
amounts to solving the following optimization problem:

x̂LS = arg min
x∈RQ

1
2‖y −Ax‖2

2. (2.2)

Problem (2.2) is the standard least-square problem.
In many cases, the model is underdetermined, which means there are infinitely many

solutions to Equation (2.1). Otherwise, in the overdetermined case, if A is full rank, an
analytical solution to Problem (2.2) is available and reads:

x̂LS := (ATA)−1ATy. (2.3)

Unfortunately, in numerical signal processing, the matrix A at hand often leads to
very badly conditioned ATA matrices, meaning the previous estimate x̂LS = xtruth +
(ATA)−1ATε is numerically unstable, due to the term (ATA)−1ATε having a high vari-
ance. To overcome these issues, an additional term is added, either as a constraint of the
problem, or a penalty in the objective function. This term corresponds to some a priori
knowledge of the structure of the solution x. In a Bayesian framework, it corresponds to
the prior probabilistic distribution given to x.

14



General introduction

In this thesis, the structure of the solution x is assumed to be sparse, which means
a lot of components xi are assumed to value 0, measured by the `0 function: ‖x‖0 :=
Card({i | xi 6= 0}). Such problems emerged in signal processing several decades ago, with
applications for example in astronomical imaging [Singer et al. 1979], seismography [Ko-
rmylo et al. 1982] and non-destructive testing [Zala 1992] (see Section 3.2.1 for more details
about these examples). In the field of statistics, variable selection tasks can be dated back
to 1901 with Principal Component Analysis [Pearson 1901]. To solve these tasks, sparse
optimization algorithms were developed during several decades now [Alliney et al. 1994;
Efroymson 1960; Kormylo et al. 1982; Miller 1990; Zala 1992]. Due to the NP-hardness
of the underlying `0 problems [Natarajan 1995], exactly solving `0 sparse optimization
problems was deemed impossible for a long time. As such, there is a vast literature about
approximate (polynomial) methods, which can be dated back to the 1960s [Efroymson
1960]. Those approximate methods can be classified into three categories:

— Methods dealing with a convex relaxation of the problem instead of the original
one [Ben Mhenni 2020; Ben Mhenni, Bourguignon, Mongeau, et al. 2020; Condat
et al. 2019; Daubechies et al. 2004; Efron et al. 2004; Friedman et al. 2010; Lee
et al. 2006; Loth 2011; Massias 2017; Massias et al. 2020; Osborne et al. 2000; Qian
et al. 2019; Wainwright 2009].

— Methods doing some heuristic search in the original problem [Ben Mhenni, Bour-
guignon, and Idier 2020; Blumensath et al. 2008; Chen et al. 1988; Pati et al. 1993;
Soussen et al. 2011; Tropp 2004].

— Methods using a non-convex relaxation of the problem instead of the original one [Fan
et al. 2001; Soubies et al. 2017; C.-H. Zhang 2010].

Then, around a decade ago, methods for exactly solving `0 sparse optimization problems
emerged [Bertsimas, King, et al. 2016; Bourguignon, Ninin, et al. 2016], which were
relying on generic Mixed Integer Programming (MIP) solvers such as CPLEX, GUROBI,
CBC, ... To lift up the scaling limits of generic solvers, dedicated methods were then
developed [Ben Mhenni 2020; Bertsimas and Shioda 2009; Guyard et al. 2022; Hazimeh
et al. 2021], among which the former thesis work [Ben Mhenni 2020]. This present thesis
is based on the work of [Ben Mhenni 2020], and proposes some acceleration techniques of
the branch-and-bound algorithm used, as well as an extension to the structured sparsity
case.

Outline of the contributions

This report is organized as follows.
In Chapter 3, we present the context of sparse optimization, with its application

fields as well as state-of-the-art solving algorithms, which are generally searching for an
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approximate solution to an optimization problem combining a quadratic data-fitting term
with a `0 term. The existing optimization algorithms tackling the exact resolution of such
optimization problem are then discussed, and the algorithm used as the starting basis
of this thesis, which is a branch-and-bound algorithm tailored for sparse `0 least-squares
optimization problems [Ben Mhenni 2020; Ben Mhenni, Bourguignon, and Ninin 2021], is
detailed.

A branch-and-bound algorithm sequentially approximates the solution of subproblems
by computing lower bounds and upper bounds on the minimum of the objective value of
these subproblems. Such algorithm has some key building blocks, among which the ex-
ploration strategy, to know which subproblems should be bounded first, and the method
to compute lower bounds, the goal being to fastly compute a lower bound providing a
good approximation of the subproblem at hand. To study how to accelerate a branch-
and-bound algorithm dedicated to sparse optimization, we design some new exploration
strategies and assess their performance against standard ones in Chapter 4, and we lever-
age different convex analysis properties to propose three techniques for accelerating the
computation of lower bounds in Chapter 5.

Standard sparsity, which will be called scalar sparsity, is about setting the majority of
the variables to zero, or conversely to get a small number of variables to some non-zero
value. Structured sparsity extends this approach by targeting not just individual variables
but groups of variables. We propose an extension of the previous branch-and-bound
algorithm for tackling structured sparsity optimization problems, where the solution is
sought to have groups of variables which jointly value 0, instead of having variables valuing
0 in an independent manner. Chapter 6 broadly introduces the subject of structured
sparsity, with application problems as well as state-of-the-art algorithms. Chapter 7
is dedicated to extending the branch-and-bound algorithm of [Ben Mhenni 2020; Ben
Mhenni, Bourguignon, and Ninin 2021] to the structured sparsity setup, detailing the
challenges faced in the process, as well as the solution provided. This leads to several
optimization problems providing different lower bounds for the subproblems created inside
the branch-and-bound algorithm. These different optimization problems are detailed, and
algorithmic solutions are proposed and compared in Chapter 8. Lower bound accelerations
developed in Chapter 5 are then adapted to the structured sparsity case in Chapter 9.
As far as we know, the branch-and-bound algorithm developed in this thesis is the first
dedicated algorithm tackling exactly `0 structured sparsity problems. We propose some
comparison with state-of-the art methods in Chapter 10 to highlight the benefits and
limits of this work.

Finally, the branch-and-bound algorithm code, developed for more than 6 years now
(being the result of this thesis and the former one [Ben Mhenni 2020]), is given as a research
tool for the signal processing and optimization communities. To this end, Chapter 11
presents the software architecture used, with its possible extensions and its current limits,
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as well as how the group structure is taken into account, before giving future paths for
lifting up the current performance limits.

The contributions of this thesis were published in optimization and signal processing
conferences and journals:

Journal article

1. G. Samain, S. Bourguignon, J. Ninin, "Techniques for accelerating branch-and-
bound algorithms dedicated to sparse optimization", in: Optimization Methods and
Software, 1-38, 2023, URL: https://www.tandfonline.com/doi/full/10.1080/
10556788.2023.2241154. Accepted for publication.

Conference with peer-reviewed proceedings

1. G. Samain, S. Bourguignon, J. Ninin, "Techniques d’accélération d’une méthode de
Branch-and-bound pour l’optimisation parcimonieuse", in: GRETSI’22 XXVIIIème
Colloque Francophone de Traitement du Signal et des Images, Sep 2022, Nancy,
France.

Conference with peer-reviewed abstracts

1. G. Samain, J. Ninin, S. Bourguignon, "Branch-and-bound algorithm applied to
sparse optimization problems: a study of some exploration strategies", in: EU-
ROPT 18th Workshop on Advances in Continuous Optimization, Jul 2021, Toulouse,
France.

2. G. Samain, S. Bourguignon, J. Ninin, "La dualité convexe comme accélération d’un
algorithme de Branch-and-Bound dédié à l’optimisation parcimonieuse", in: 23e
édition du congrès ROADEF, Recherche Opérationnelle et de l’Aide à la Décision
en France, Feb 2022, Villeurbanne - Lyon, France.

3. G. Samain, S. Bourguignon, J. Ninin, "Techniques for accelerating branch-and-
bound algorithms dedicated to sparse optimization", in: EUROPT 19th Workshop
on Advances in Continuous Optimization, Jul 2022, Lisbon, Portugal.

4. G. Samain, S. Bourguignon, J. Ninin, "Un algorithme branch-and-bound pour ré-
soudre exactement des problèmes d’optimisation parcimonieuse structurée", in: 24e
édition du congrès ROADEF, Recherche Opérationnelle et de l’Aide à la Décision
en France, Feb 2023, Rennes, France.

Moreover, the source code of the thesis software is available under a free software licence
at:

Code
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1. G. Samain, M. Latif, R. Ben Mhenni, J. Ninin, S. Bourguignon (2024) Mimosa
(2.0.2), source code. https://gitlab.univ-nantes.fr/samain-g/mimosa-solver/
-/tree/structured_sparsity?ref_type=heads
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Chapter 3

Panorama of scalar sparsity
optimization problems
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3.1 Introduction

What is a sparse optimization problem? This is an optimization problem where we
look for a solution with only a small number of active features. In the simplest case, these
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features are just the variables of the solution. This will be the case for this Part I. More
complex cases do exist. In Part II we will see how we can tackle features which are groups
of variables. For a regression task, this gives rise for example to the following bi-objective
problem :

min
x∈RQ
{1

2‖y −Ax‖2
2, ‖x‖0}. (3.1)

with ‖ · ‖0 the `0 counting function: ‖x‖0 := Card({i|xi 6= 0}). In Problem (3.1), we
are looking for solutions which are at the same time fitting the data y ∈ RN and with a
small amount of non-zero variables, which we will call active variables. The set of nonzero
variables of a solution is called the support of the solution. The matrix A ∈ RN×Q can
be of arbitrary shape and content.

Notations In the remainder of this report, vectors will be denoted as x (italic, bold,
lowercase letters), matrices will be written as A (standard, bold, uppercase letters) and
scalars will have italic non-bold fonts (like xi ofM). The notation ai with i a scalar refers
to the i-th column of matrix A, while the notation AS where S is a set designates the
submatrix formed by concatenating the columns indexed by the members of S.

In the remainder of this report, unless otherwise stated, A is assumed to be normalized:
∀i ∈ {1, .., Q}, ‖ai‖2 = 1. Solving Problem (3.1) amounts to sampling its Pareto front,
which is expensive. From that bi-objective problem, we will formulate simpler mono-
objective problems.

An intuitive way to formulate a mono-objective problem from (3.1) is to seek the best
possible solution given a budget of active variables (with K ∈ N∗ representing the budget
of variables):

min
x∈RQ

1
2‖y −Ax‖2

2 subject to (s.t.) ‖x‖0 ≤ K. (P2/0)

The penalized formulation of Problem (P2/0) is also used (with µ ∈ R+ which represents
a trade-off between data fitting and sparsity):

min
x∈RQ

1
2‖y −Ax‖2

2 + µ‖x‖0. (P2+0)

We can also look for the sparsest solution given an approximation quality target, which
looks like (with ε ∈ R+ the allowed approximation error):

min
x∈RQ

‖x‖0 s.t. 1
2‖y −Ax‖2

2 ≤ ε. (P0/2)

Problems (P2/0), (P2+0) and (P0/2) are all NP-hard [Natarajan 1995]. Problems (P2/0)
and (P0/2) enjoy some easy interpretation of their parameter, while Problem (P2+0) is
an unconstrained problem, which enjoys specific algorithms (see [Ben Mhenni 2020] for
examples of such specific algorithms). This chapter is a broad introduction to the field
of sparse optimization problems such as (P2/0), (P2+0) or (P0/2). We will link these
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formulations to some practical applications in Section 3.2. After that, we will move to a
general review of algorithms dedicated to the resolution of such problems in Section 3.3
before exposing the specific framework this thesis is built on in Section 3.4. Contributions
of this thesis will be summarized in Section 3.5, and the datasets used throughout this
thesis for numerical experiments are detailed in Section 3.6.

3.2 Applications involving sparsity

Sparse optimization problems have found numerous applications in domains such as
signal processing, machine learning, statistics and finance. We highlight here some of
these use cases of sparsity (this list is not exhaustive).

3.2.1 Sparse deconvolution

In the general deconvolution context, we wish to retrieve a "true" signal (x) from
twisted and noisy measurements (y), the twisted part being modelled by the convolution of
a linear filter with the true signal (matrix A) [Stéphane 2009]. In the sparse deconvolution
context, we are looking for true signals which are sparse by nature. Such signals arise
for example in non-destructive testing [Zala 1992], where the anomalies to detected are
rarely present, seismography [Kormylo et al. 1982], where it is assumed that only a small
amount of changes of material should be detected, and astronomical imaging [Singer
et al. 1979], where stars are bright spots on a black background. Depending on the
application, we may look for a specific number of components, using Problem (P2/0) (see
for example [Gilbert et al. 2003]), a prescribed approximation error using Problem (P0/2)
(see for example [G. M. Davis et al. 1997]), or for a given trade-off between data fidelity
and sparsity, leading us to use Problem (P2+0) (see for example [Soussen et al. 2011]).

3.2.2 Source separation

In the source separation context, we measure some data which are a mixture of some
specific sources. In our context where the matrix A is fixed, these sources are known a
priori. The goal is to retrieve and to untangle the different sources from the measurements.
An example of source separation is spectral unmixing [Iordache et al. 2011]. In this case,
each pixel is associated with a measured reflectance. Each pixel is a mixture of elementary
spectral signatures. Each source has its own specific spectral signature. The goal is to
recover the sources inside each pixel, knowing that there are only a few of them per pixel.
The model A is then the concatenation of the spectral signatures of the different sources,
and x represent the abundance of a given source in the pixel. This can be typically
modelled by a problem of the form of (P2/0), where the best fit to data is sought given a
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budget of spectral signatures, or (P0/2), where the sparsest approximation is sought given
an approximation quality.

3.2.3 Variable selection

In statistics, we often deal with models containing a huge number of predictors. As
such, tools like Principal Component Analysis [Pearson 1901] have been developed to help
taking a grasp on the model at hand. Thus, we simplify the model itself before using the
simplified model to fit some data. That way, we obtain a lower number of predictors,
and it is easier to interpret the model parameters estimated from the data. Basically, we
can see variable selection as having the same goal (obtain a lower number of predictors)
without compromising the model quality (keeping the complex model).

It is generally formulated using Problem (P2+0) [Bonnefoy et al. 2014; Friedman et al.
2010; Hazimeh et al. 2021], and solved using several values of the trade-off parameter µ,
in an attempt to both sample the Pareto front of Problem (3.1) and ease the computation
and numerical issues when dealing with small values of µ. Problem (P2/0) can also be
used, the optimization task is called subset selection in that case [Miller 1990]. In this
application, y typically represents raw data, and A is a concatenation of the predictors
impact on measured data.

3.2.4 Portfolio optimization

In the field of finance, sparse problems have enjoyed a fruitful use for asset manage-
ment. Sparse portfolio optimization [Bertsimas and Shioda 2009; Cui et al. 2013], in its
standard form, wishes to maximize profit using few assets, and is a (developed) variant
of problem (P2/0):

min
x∈RQ

1
2x

T ATA︸ ︷︷ ︸
Σ

x− yTA︸ ︷︷ ︸
r

x+ 1
2‖y‖

2
2 s.t. ‖x‖0 ≤ K

where r represents the expected rates of return of the different assets, and Σ the covari-
ance of these rates. Some additional constraints are added to reflect asset management
practices, most notably a minimum amplitude constraint for assets in use (if we are going
to invest in an asset, we want to invest a minimal amount of money).

3.2.5 Compression

Compressing data can be thought as a two-step procedure:

1. Transform the data to exhibit repetitive patterns.

2. Efficiently encode the patterns.
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The first step often uses zeros as a repetitive pattern. The goal is then to transform
and/or approximate the data y to get a lot of zeros. Compression standards such as
JPEG [Joint Photographic Experts Group 1992] and JPEG 2000 [Joint Photographic
Experts Group 2000] are actually formulating problems such as (P2/0), K being related
to the compression rate.

In the case of JPEG, the model A represents the inverse discrete cosine transform
operator, and in the case of JPEG2000 the model A is an inverse wavelet transform.
In both cases, the model A is an orthogonal matrix, which dramatically simplifies the
problem because the term 1

2‖y−Ax‖2
2 is equal to 1

2‖A
Ty−x‖2

2, leading to the following
problem:

min
x∈RQ

1
2‖A

Ty − x‖2
2 s.t. ‖x‖0 ≤ K. (3.2)

this problem is separable in each variable xi, and its solution reads:

S = argmaxK |ATy|,x?S = AT
Sy,∀i /∈ S, x?i = 0.

where arg maxK returns a set containing the indices of the K largest components of a
given vector (see Appendix A.1 on page 163 for a sketch of the proof of this analytical
solution). However, we can also aim for better compression results with non-orthogonal
A [Candès et al. 2011], and in this case we get back to problem (P2/0) or (P0/2).

3.3 State-of-the-art algorithms

Sparse optimization algorithms were developed during several decades now [Alliney
et al. 1994; Efroymson 1960; Kormylo et al. 1982; Miller 1990; Zala 1992]. Due to the NP-
hardness of the underlying problems [Natarajan 1995], exactly solving sparse optimization
problems was deemed impossible for a long time. As such, there is a vast literature about
approximate (polynomial) methods, which can be dated back to the 1960s [Efroymson
1960]. Those approximate methods can be classified into three categories:

— Methods dealing with a convex relaxation of the problem instead of the original one.
These will be detailed in Section 3.3.1.

— Methods doing some heuristic search in the original problem. These methods will
be detailed in Section 3.3.2.

— Methods using a non-convex relaxation of the problem instead of the original one.
These will be detailed in Section 3.3.3.

Even though the `0 original problems are NP-hard, in practice we can still solve some
of them in a tractable time. This has been highlighted almost a decade ago [Bertsimas,
King, et al. 2016; Bourguignon, Ninin, et al. 2016], and further research will be detailed
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in Section 3.3.4 before describing the algorithm used as a starting basis of this thesis in
Section 3.4.

3.3.1 Convex relaxation: `1-norm methods

The original `0 problems are discontinuous, non-convex and non-differentiable, and
their NP-hardness comes from those properties. One way to deal with these difficulties
is to ease them by finding a problem as close as possible to the original one while having
nicer properties. This is exactly the principle behind `1 norm methods, the `1 norm being
the closest continuous and convex lower approximation of the `0 function (on a bounded
domain, see Figure 3.1 for an illustration). A lot of attention [Daubechies et al. 2004;
Efron et al. 2004; Friedman et al. 2010; Massias 2017; Massias et al. 2020; Qian et al.
2019; Wainwright 2009] has been paid to the relaxed version of Problem (P2+0), which
reads:

min
x

1
2‖y −Ax‖2

2 + λ‖x‖1. (P2+1)

Due to the convexity of the problem, the constrained relaxations of Problem (P2/0)
and (P0/2) can be reformulated as Problem (P2+1) with a correct choice of λ. Moreover,
under conditions such as the Exact Recovery Condition [Tropp 2004] or the Restricted
Isometry Property [Candès et al. 2006], the support of the global minimizer of (P2+1)
coincides with the one of Problem (P2+0). As the `1 norm is convex, a descent algorithm
is able to find the global minimum of the problem.

-M 0 M
0

1

Figure 3.1 – The `1 norm is the best convex under-approximation of the `0 term, provided
a bounded domain

Still, some points like 0 being non-differentiable points of the `1 norm, the relaxed
problems need dedicated algorithms, as no gradient is directly available. Different al-
gorithms have been developed to tackle the non-differentiable nature of the problem.
A non-exhaustive list of the different classes of such algorithms is detailed below, with
the first two (proximal algorithms and coordinate descent ones) having an asymptotic
convergence guarantee, while the last two (active set algorithm, homotopy continuation
method) enjoy a stronger exact convergence guarantee (convergence in a finite number of
iterations).
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Proximal algorithms Proximal algorithms [Briceño-Arias et al. 2023; Combettes et
al. 2019; Condat et al. 2019; Komodakis et al. 2014; J.-J. Moreau 1962] rely on the
monotone operator theory [Bauschke et al. 2011] to iteratively minimize the problem by
doing alternate direction descent. We separate the objective function in two halves. On
one hand, we have the smooth, differentiable and non-separable term h(x) = 1

2‖y−Ax‖2
2.

We can use its gradient to have a descent direction on this term. On the other hand, we
have the non-differentiable but separable term g(x) = λ‖x‖1. We will use the proximal
operator (3.3) to get a descent direction on this term:

prox
λf

(z) = arg min
x

1
2‖z − x‖

2
2 + λf(x). (3.3)

Overall, we will take descent steps in h and in g alternately, the whole scheme being proved
convergent to minx h(x) + g(x) under some technical considerations on the descent steps,
which are mainly bounded between zero and a constant depending on the spectral norm
of A [Condat et al. 2019]. This splitting scheme for the minimization of a composite func-
tion can be used for two [Chambolle and Pock 2011; Daubechies et al. 2004; Komodakis
et al. 2014; Malitsky et al. 2018], three [Condat et al. 2019; Komodakis et al. 2014] or
an arbitrary number [Condat et al. 2019] of terms, requiring a differentiable term such as
our function h [Daubechies et al. 2004] or not [Chambolle and Pock 2011; Malitsky et al.
2018], with accelerations [Beck et al. 2009] or not [Daubechies et al. 2004] (see [Condat
et al. 2019] for a review). Proximal algorithms also enjoy some interesting computational
benefits. It is possible to parallelize them, as the proximal operator is separable if the
targeted function (f in Problem (3.3)) is separable, and we only need to know how to
multiply a vector with A and AT . In particular, we do not need to construct, or even to
have the knowledge of the matrix A. When the matrix A corresponds to some orthogonal
transform, then we only need to be able to compute the transform (A·) and the inverse
transform (AT · for an orthgonal transform). This property is particularly used in signal
and image processing [Chambolle, DeVore, et al. 1998], where the matrix A often cor-
responds to some transforms such as Fourier transform or a wavelet transform, and fast
algorithms (e.g. FFT) are available to compute the transform (A·) and its inverse (AT ·).

One famous example of proximal algorithms is ISTA (Iterative Soft Thresholding Al-
gorithm) [Daubechies et al. 2004], which is briefly described in Algorithm 1, where ST
denotes the soft-thresholding operator, defined as:

STν(u) := sign(u) ◦ [|u| − ν1]+ (3.4)

where 1 is a vector full of 1, [·]+ := max(0, ·) (where max is a component-wise maximum),
and ◦ is the Hadamard-Schur (term-by-term) product. Figure 3.2 gives the shape of the
ST operator for a scalar. ISTA is dedicated to the resolution of Problem (P2+1). However,
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its principle generalizes to other convex problems involving a differentiable function h and
a non-differentiable function g.

Algorithm 1 Iterative Soft Thresholding
1: procedure ISTA(A,y, λ, τ,x0)
2: k ← 0
3: while not convergence do
4: xk+ 1

2 ← xk + τAT (y −Axk)
5: xk+1 ← STτλ(xk+ 1

2 )
6: k ← k + 1
7: end while
8: end procedure

- 0

0 ST

Figure 3.2 – The soft-thresholding operator ST.

Coordinate descent algorithms Coordinate descent algorithms aim to minimize a
given objective function by iteratively minimizing over one coordinate at a time. In the
general case, they are deemed poorly performing when compared to full gradient descent.
However, in the case of sparse optimization, including `1-norm problem minimization, they
perform well [Bach et al. 2011; Friedman et al. 2010], partly due to their ability to leverage
the sparse nature of the sought solution by skipping some iterations involving coordinates
at 0. A coordinate descent algorithm applied on Problem (P2+1) will successively and
iteratively solve scalar subproblems where only one coordinate is allowed to move at each
iteration k:

xk+1
i = arg min

xi

1
2‖y −A{1,..,Q}\{i}xk{1,..,Q}\{i}︸ ︷︷ ︸

constant

−aixi‖2
2 + λ‖x{1,..,Q}\{i}‖1︸ ︷︷ ︸

constant

+λ|xi|,

= arg min
xi

1
2‖ei − aixi‖

2
2 + λ|xi|.

(3.5)
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In Problem (3.5), ei is a constant in the minimization, equal to: y − ∑
j 6=i ajxj. If

the different coordinates are visited regularly and if all instances of Problem (3.5) are
solved exactly to minimality, the algorithm converges to the minimum or Problem (P2+1)
(see [Tseng 2001] for all the details and technical conditions). The solution of (3.5) is
analytical, and reads (proof in Appendix A.2):

xi = 1
‖ai‖22

STλ(aTi ei). (3.6)

A coordinate descent algorithm dedicated to the resolution of Problem (P2+1) is given in
Algorithm 2. An interesting property of coordinate descent algorithms for Problem (P2+1)

Algorithm 2 Iterative coordinate descent algorithm for Problem (P2+1)
1: procedure ICD(A,y, λ,x0)
2: k ← 0
3: x← x0

4: while not convergence do
5: for i ∈ {1, .., Q} do
6: ei ← y −∑j 6=i ajxj
7: xi ← 1

‖ai‖22
STλ(aTi ei)

8: end for
9: k ← k + 1
10: end while
11: end procedure

is that each coordinate must be visited regularly, but some can be visited more often than
others without compromising convergence. As such, we can rely on the sparse nature
of the target solution to visit frequently coordinates which are currently non-zero in the
iterates, and visit the zero coordinates only from time to time. This technique of partial
visits (which is an instance of spacer steps [Bertsekas 1982]) can greatly speed-up the
algorithm [Bourguignon, Mary, et al. 2011; Friedman et al. 2010; Johnson et al. 2017].

Active set algorithms Active set algorithms are originally designed to handle differen-
tiable problems with linear inequality constraints [Nocedal et al. 2006]. These algorithms
solve partial problems where some of these constrained are removed, called the inactive
constraints, and some are equated, called the active constraints. In other words, we solve
partial problems where we decided beforehand which constraints are saturated and which
are not. If the guess is wrong, we adjust the set of active constraints and solve a par-
tial problem with the updated active set. When optimality conditions are satisfied, the
algorithm converges.

As the algorithm retrieves the minimum of the objective function on a given active
set, and as it decreases the objective function at each iteration, it cannot visit the same
active set several times. The number of active sets corresponds to 2N , with N being the
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number of inequality constraints. This number is potentially huge, but finite. Thus, an
active set algorithms converges in a finite number of iterations.

Problem (P2+1) is non-differentiable, and has no inequality constraints. A vanilla
active set algorithm cannot handle this problem. However we can adapt it using the
support of the solution: we will decide beforehand which variables are non-zero, the
active variables, and which are not, the inactive variables. Minimizing over the active
variable can be done through a gradient/Newton descent, as the `1 norm is differentiable
everywhere except on zero-valued coordinates. This scheme has been described in length
in [Ben Mhenni 2020; Ben Mhenni, Bourguignon, Mongeau, et al. 2020; Lee et al. 2006;
Loth 2011]. Note that in this scheme, inactive variables are variables constrained to be
zero. Compared to the standard use of active set algorithms, the meaning of active and
inactive sets relative to constraints is swapped.

Homotopy continuation The homotopy continuation method [Ben Mhenni 2020; Os-
borne et al. 2000] is dedicated to solving Problem (P2+1) and uses the structure of the
minimizer of this problem. Indeed, the minimizer is a piecewise linear function of the
penalty parameter λ [Osborne et al. 2000]. This means the support of the minimizer is
piecewise constant over the values of λ. The homotopy continuation algorithm starts from
a high value λ0 := maxi∈{1,..,Q} |aTi y| such that the solution is identically zero. Then, it
iteratively identifies the different breakpoint values of λk where the support of the min-
imizer changes. The solution corresponding to the different breakpoint values is known
analytically. When the algorithm finds λk and λk+1 bounding the target parameter, the
minimizer is retrieved through a linear combination of the solutions attached to λk and
λk+1. The homotopy algorithm is particularly suited for very sparse problems as it starts
for the zero solution and mainly adds components to the iterates, and performs well even
in the case of very correlated columns of A (see [Bach et al. 2011] for some numerical
experiments).

3.3.2 `0 heuristics

Heuristics are doing local search: they guarantee to reach a local minimum. If the
matrix A is "nice" enough, as characterized by conditions such as ERC [Tropp 2004],
they can even be proved to reach the global minimum in the low noise regime. Several
classes of heuristics exist, we will describe here two classes, proximal methods and greedy
algorithms.

Proximal methods Proximal methods such as Iterative Hard Thresholding (IHT) [Blu-
mensath et al. 2008], borrow the main ideas from `1 norm minimization. As such, they
are primarily targeted to solve the penalized problem (P2+0). Let’s note that due to the
non-convex nature of the `0 term, a proximal gradient descent algorithm such as IHT

29



Panorama of scalar sparsity optimization problems

does converge to a local minimum only, without any guarantee about the global quality
of this local minimum if no assumption on A is taken. The proximal operator on the `0

term µ‖z‖0 is called the hard-thresholding operator and reads:

HTµ(z) := x | ∀i, xi =
zi if |zi| > µ

0 if |zi| ≤ µ
. (3.7)

The shape of the hard-thresholding operator is given in Figure 3.3.

- 0

0 HT

Figure 3.3 – The hard-thresholding operator

Greedy algorithms In greedy algorithms, we build a solution by increasingly adding
or removing components from it. This recursive construction fits nicely for solving Prob-
lem (P2/0) and Problem (P0/2), and classical algorithms such as Orthogonal Matching
Pursuit (OMP) [Pati et al. 1993] and Orthogonal Least Squares [Chen et al. 1988] are
built specifically for solving instances of these problems, the parameter K or ε being the
stopping criterion of the algorithm. Other algorithms in the "greedy" category are opti-
mizing Problem (P2+0) instead [Ben Mhenni, Bourguignon, and Idier 2020; Soussen et al.
2011].

To give an example of how greedy algorithms work, we will give a brief description of
the OMP algorithm. The OMP algorithm uses an approximation which is exact if A is
orthogonal. If A is orthogonal, as we have seen in Section 3.2.5, we are trying to solve
Problem (3.2). This problem has an analytical solution, which is:

 S∗ = argmaxK |aTi y|
x∗ = arg minx 1

2‖A
T
S∗y − x‖2

2 = AT
S∗y,

(3.8)

where arg maxK is the "argmax K" operator, giving the indices of the K maximum compo-
nents. In other words the solution (3.8) is composed of the K components which correlate
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the most with the measurements y. This quantity, y, can also be viewed as the residual of
the zero solution: r = y −Ax0, with x0 = 0. The OMP algorithm constructs a solution
progressively using the correlation to a residual quantity which is the error term linked to
the current approximation Ax. Then, OMP will add the component which correlates the
most with the residual (error) term. Once the component is added, the current solution
and the residual are updated. This way, OMP does not choose all the components from
y only, but looks at the outcome of adding features which are influencing each other.
Algorithm 3 describes the different steps of OMP. Note that step 8 is written with an

Algorithm 3 Orthogonal Matching Pursuit for Problem (P2/0)
1: procedure OMP(y, A, K)
2: r ← y . Initialize residual.
3: x← 0
4: S ← ∅
5: while |S| < K do
6: j ← arg maxi/∈S |aTi r| . Find the best atom to add.
7: S ← S ∪ {j} . Add it to the support.
8: xS ← arg minzS

1
2‖y −ASzS‖2

2 . Estimate amplitudes of the new solution.
9: r ← y −ASxS

10: end while
11: return x, S
12: end procedure

arg min for the sake of clarity, but the solution is analytical and reads:

xS = (AT
SAS)−1AT

Sy. (3.9)

3.3.3 Non-convex relaxations

While finding the global minimum of the `1-norm relaxation and finding a local min-
imum of the original `0 problem are now pretty known, another class of methods relies
on a non-convex relaxation of the original problem. It is in some sense a middle ground,
because these methods are doing a local search like `0 heuristics, but are using a relaxation
of the original problem like `1-norm problems. The relaxed problem being non-convex,
practical approaches rely on some descent algorithm (which can be, for example, a prox-
imal algorithm [X. Zhang et al. 2023], a coordinate descent algorithm [Chouzenoux et al.
2016], or a reweighted `1-norm iterative scheme [Lazzaro et al. 2015; Soubies et al. 2015]),
able to find a local minimum, without knowing if this minimum is the global one of not.
The theoretical side is quite loose, in the sense that there is no guarantee of converging
to the global minimum of the problem which is a relaxation of the `0 problem and not
the original one. However, we can start descent algorithms from multiple initial points,
attempting to escape local minima. In practice, these methods lead to satisfactory solu-
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tions [Fan et al. 2001; C.-H. Zhang 2010]. For a review of this field, the reader is referred
to [Soubies et al. 2017].

3.3.4 Exact `0 optimization

Finally, we can also prefer to solve exactly the original problem, for contexts where the
quality of the minimizer is crucial. Deemed impossible in the past (and still advertised as
impossible by some papers in the present !), finding the global minimum of `0 problems is
possible. Clearly, the related algorithms have a worst-case complexity which is exponen-
tial in the size of the unknowns, compared to the previously described algorithms which
are all polynomial in the worst case. Indeed, in the worst case, the related algorithms are

doing an exhaustive combinatorial search, exploring all the
N
k

 possible support config-

urations. Consequently, no theoretical result tells us the related algorithms terminate in a
"reasonable" time. In practice, we are rarely in the worst case, and the related algorithms
converge much faster. What are these algorithms? They are mainly branch-and-bound
and branch-and-cut algorithms, either generic ones [Bertsimas, King, et al. 2016; Bour-
guignon, Ninin, et al. 2016], or dedicated ones [Ben Mhenni 2020; Bertsimas and Shioda
2009; Guyard et al. 2022; Hazimeh et al. 2021].

For the generic algorithms, these are generally Mixed Integer Programming (MIP)
solvers, such as CBC, CPLEX, GUROBI, ... Using them to solve one of the prob-
lem (P2/0), (P2+0), (P0/2) amounts to rewrite it in a MIP form, which means rewriting the
`0 term as a sum of binary variables, adding constraints such that those binary variables
are indicating if a given xi is zero or non-zero. For example, using the so called "big-M"
constraints, one can formulate Problem (P2+0) in a MIP form as (see [Bertsimas, King,
et al. 2016; Bienstock 1996; Bourguignon, Ninin, et al. 2016]):

min
x∈RQ,b∈{0,1}Q

1
2‖y −Ax‖2

2 + µ
Q∑
i=1

bi s.t. ∀i ∈ {1, .., Q},−Mbi ≤ xi ≤Mbi. (3.10)

In Problem (3.10), M must be chosen big enough so that the global minimum of Prob-
lem (P2+0) lies inside the feasible space. Generic solvers allow one to do rapid prototyping,
and are also suited to solve sparse problems with arbitrary linear inequality and equality
constraints. They are also especially suited when designing accelerations such as cuts,
which are reducing the search space by adding some non-trivial linear constraints. One
drawback of generic solvers is their poor performance when scaling up the problems di-
mensions. Dedicated algorithms can do much better in this respect, see for example [Ben
Mhenni 2020; Ben Mhenni, Bourguignon, and Ninin 2021] for a comparison.

On the dedicated algorithms side, some are dedicated to the penalized formulation (P2+0) [Gu-
yard et al. 2022; Hazimeh et al. 2021], some target the cardinality constrained one (P2/0) [Bert-
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simas and Shioda 2009], and some are suited for all three formulations [Ben Mhenni 2020;
Bourguignon, Ninin, et al. 2016]. The behaviour of one of these dedicated branch-and-
bound algorithms, which used as the starting basis of this thesis, will be described in
Section 3.4.

3.4 Branch-and-bound basis of this thesis

This section is dedicated to describing the branch-and-bound algorithm this thesis is
based upon. This can be seen as a digest of earlier publications linked to Ramzi Ben
Mhenni’s works [Ben Mhenni 2020; Ben Mhenni, Bourguignon, and Ninin 2021]. No new
contribution is claimed within this section. Also, while the original work [Ben Mhenni
2020] is suited to the three problems (P2/0), (P2+1), (P0/2), we will focus on the penalized
problem (P2+0) for the remainder of this report.

3.4.1 Main ideas

Branch-and-bound algorithms [Nemhauser et al. 1988] rely on a divide-and-conquer
strategy: the search space is iteratively divided into smaller blocks, represented by nodes
in a tree. A node is then a subproblem, which is simpler than the original one because its
search space is reduced. Indeed, the search space corresponding to a node is smaller than
the one of the node’s parent. For each node, we compute upper and lower bounds on the
minimum of the corresponding subproblem. As we progress through the algorithm, the
search space in each node becomes smaller, refining the bounds.

If we iterate the node division process so that the resulting nodes have a search space
containing only one point, we will compute exactly the minimum of the original function
in these nodes, but we will also have an exponential number of nodes, hitting the worst-
case complexity of the algorithm. Instead, we will use the bounds we have for each node.
The lowest upper bound across all nodes ub represents the best solution found so far. If
a given node Ni has a lower bound lbNi

greater than ub, it means that the corresponding
subproblem minimum value exceed ub, so this node cannot improve the currently best
solution. Consequently, this node is not worth being explored, and we can stop dividing
it: we prune the node.

This node pruning is a key element in making a branch-and-bound method more effec-
tive than its worst-case complexity. A synthetic version of a branch-and-bound method
is given in Algorithm 4.

Search space Before detailing the main steps of Algorithm 4, we need to know what
is the search space at hand. A naive way would be to search over the space of x: RQ.
However, if we look more in depth at problem (P2+0), we can see that if we fix the support
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Algorithm 4 Branch & Bound algorithm for optimization of (P2+0).
1: procedure BranchAndBound(L) with L a data structure holding nodes
2: lb← −∞, ub← +∞ and x̂← 0
3: while L is not empty or another stopping condition is not met do
4: Pop a node N from L. . Exploration strategy
5: Divide N into two sub-nodes L and R. . Branching strategy
6: for each sub-node Ni in {L, R} do
7: Compute a lower bound lbNi

of Ni with solution xNi
lb . . Bounding

8: if lbNi
< ub then

9: Compute an upper bound ubNi
of Ni with solution xNi

ub . . Bounding
10: if ubNi

< ub then
11: Update the best solution found: x̂← xNi

ub and ub← ubNi
.

12: Prune nodes in L which are sub-optimal with respect to the new ub
(such that lbN > ub).

13: end if
14: Push Ni in L. . Exploration strategy
15: end if
16: end for
17: end while
18: if L is not empty then . Case of a truncated branch-and-bound
19: Compute the lowest lower bound: lb← min

N∈L
lbN

20: else
21: lb← ub
22: end if
23: return (lb, ub, x̂) . The minimum value lies in [lb, ub]
24: end procedure
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P

L
2 ∈ S1

R
2 ∈ S0

S̄ = {1, 2, 3}
S1 = ∅
S0 = ∅

S̄ = {1, 3}
S1 = {2}
S0 = ∅

S̄ = {1, 3}
S1 = ∅
S0 = {2}

Figure 3.4 – Node division example, where we branch on the green variable.

of the solution S = {i|xi 6= 0}, the `0 term becomes constant and we end up with a simple
least-squares problem:

x∗S = arg min
xS

1
2‖y −ASxS‖2

2 + µ|S| = (AT
SAS)−1AT

Sy. (3.11)

This means the difficult task in problem (P2+0) is finding the correct support. Once the
support is optimal, finding the optimal amplitudes is easy. Consequently, the branch-and-
bound procedure described in Algorithm 4 focuses on finding the optimal support. We do
so by using the space of supports as a search space. Each node identifies with a subspace
of supports: a set where some components of x must be nonzero, some other components
must be zero, and some components remain free. We denote a node by N(S1, S0, S̄)
(simplified to N when there is no ambiguity), where:

— S1 contains the indices of the nonzero components,

— S0 contains the indices of the zero components,

— S̄ contains the indices of the undecided components.

In this context, dividing a node N(S1, S0, S̄) into two children means taking an index
i from S̄ and putting it to S1 for the left child and to S0 for the right child (the left and
right side being arbitrary conventions), as illustrated by Figure 3.4. Now, let’s write the
subproblem corresponding to a node. When a components is put to S0, it is set at 0,
so it will be removed from the data-fitting term as well as from the `0 term. When a
component is put to S1, it must be part of the solution, so it is kept in the data-fitting
term, but its contribution to the `0 term is replaced by 1: it must be part of the support,
so the `0 term must count it. This means that inside a node N(S1, S0, S̄), the `0 problem
reads:

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ‖xS̄‖0 s.t. xS0 = 0. (3.12)

Replacing µ‖xS1‖0 by µ|S1| assumes that every component in S1 will be non-zero at the
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optimum. If it is not the case, in other words if some components in S1 are at 0 at the
optimum, this means the guess for S1 is wrong: these components should not be in S1.
In this case, Problem (3.12) for the node considered will have a higher objective function
than for a node with the same components in S1 except the ones at 0 (which can be either
in S̄ or S0), so the wrong guess will be discarded by sub-optimality.

Key points We are now ready to detail the main steps of the branch-and-bound algo-
rithm 4. They are three building blocks for a branch-and-bound:

— the lower and upper bounding methods (steps 7 and 9 respectively),

— the index i ∈ S̄ to pick to divide a node into two children, called the branching
strategy (step 5),

— the method to choose the next node to be divided, called the exploration strategy
(steps 4 and 14).

These building blocks are now detailed in Sections 3.4.2, 3.4.3, 3.4.4, respectively.

3.4.2 Bounds

Bounds are crucial for the branch-and-bound performance. We wish to have bounds
which are at the same time as tight as possible and cheap to compute.

Lower bound A tight lower bound will be helpful to prune a lot of sub-optimal nodes.
At the same time, we wish to have something computationally cheap. To this end, we use
a convex relaxation, and in particular an `1-norm relaxation. However, the `1 norm is a
convex lower approximation of the `0 function only on a bounded domain (see Figure 3.1).
To overcome this, we add a box constraint to our original problem:

min
x∈RQ

1
2‖y −Ax‖2

2 + µ‖x‖0 s.t. ‖x‖∞ ≤M (PM2+0)

where M ∈ R+∗ is fixed and ‖ · ‖∞ stands for the `∞-norm: ‖x‖∞ := maxi∈{1,..,Q} |xi|.
This box constraint leads to nodes subproblems of the form:

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ‖xS̄‖0 s.t.

‖x‖∞ ≤M

xS0 = 0
. (PN

2+0)

At any feasible point of problem (PN
2+0), we have:

‖x‖0 =
∑

i∈{1..Q}
1xi 6=0 ≥

∑
i∈{1..Q}

|xi|
M

= 1
M

∑
i∈{1..Q}

|xi| = 1
M
‖x‖1. (3.13)
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This means that a valid lower bound lbN of Problem (PN
2+0) is:

lbN = min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ

M
‖xS̄‖1 s.t. ‖x‖∞ ≤M,xS0 = 0. (PN

2+1)

This is the lower bound problem we are going to focus on in the remaining of Part I.
The minimizer of this problem will be denoted as xN

lb . Problem (PN
2+1) can be solved

by any algorithm presented in Section 3.3.1 with some minor adaptations. Computing
such lower bound at each node takes approximately 90% of the total running time of the
algorithm. Accelerating those computations is one contribution of this thesis, detailed in
Chapter 5.

Upper bound We would like to have an upper bound both cheap to compute and able
to retrieve the global minimum of the corresponding subproblem when the node has no
component in S̄ (the support is fully decided). As such, we will compute the optimal
solution of Problem (PN

2+0) when restricted to S1:

ubN = min
x

1
2‖y −AS1xS1‖

2
2 + µ|S1| s.t.


‖x‖∞ ≤M

xS0 = 0
xS̄ = 0

. (3.14)

Problem (3.14) is just a box-constrained least-squares problem. Though quite simple, no
analytical solution can be given, and we rely on an iterative algorithm to optimize it, such
as an active set algorithm (see Section 3.3.1), or an interior point algorithm (see [Nocedal
et al. 2006] for a description of interior point algorithms).

3.4.3 Exploration strategy

The exploration strategy defines the way to pick the next node to be divided. Stan-
dard exploration strategies include depth-first search, breadth-first search and best-first
search [Nemhauser et al. 1988].

Depth-first search seeks to unroll a branch (a path) in the branch-and-bound tree as
deep as possible, before unrolling another branch. In other words, when we divide a node,
the next node to be divided will be one of its children, as long as no pruning happens. In
case of pruning, we backtrack to the closest ancestor and start again unrolling. Depth-first
search is deemed to quickly give good upper bounds, by quickly following the choices of
the branching strategy.

Breadth-first search is quite the opposite of depth-first search. While in depth-first
search, we seek to get as deep as possible, in breadth-first search we seek to be as close
to the root node as possible. In other words, we explore the branch-and-bound tree by
dividing all the nodes at a given height before dividing nodes deeper in the tree. Breadth-
first search is believed to be poorly performing in general when it comes to refining the
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Figure 3.5 – Two different exploration strategies operating on a branch-and-bound tree.
Depth-first search (top) and best-first search (bottom). Numerical values in the upper
(respectively lower) part of each node N indicates its corresponding upper bound ubN
(respectively its lower bound lbN). The red arrows illustrate the path followed by the
exploration strategy. A node denoted by P is a pruned node: its children are not created,
saving all the nodes marked by an X.

bounds, even though it can provide quite diverse solutions when using a truncated branch-
and-bound, that is to say when the branch-and-bound is stopped before convergence.

Best-first search is quite different from the previous two strategies because it does not
rely on the structural position of the nodes, but on the bounds computed at each node.
More precisely, best-first search divides in priority the node with the lowest lower bound.
As such, it is deemed to quickly increase the lower bounds, which can be thought as the
dual behaviour of depth-first search.

Empirically, the choice of the exploration strategy has an impact on the overall per-
formance. A small hand-crafted example is given in Figure 3.5 to illustrate how two
different exploration strategies applied on the same branch-and-bound tree lead to a dif-
ferent number of explored nodes. In this small example, 25 nodes are explored using
depth-first search, while only 21 nodes are explored using best-first search.

One contribution of this thesis is the design of tailored exploration strategies, and
their comparison with standard ones. This will be detailed in Chapter 4.
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3.4.4 Branching strategy

The branching strategy is responsible for dividing a node into two children. An impor-
tant aspect of this division is to be able to create a "favorable" node and a "defavorable"
one. The "favorable" node would be the node which has a high chance to contain the
optimal support. A favorable node should have a good (i.e. a low) upper bound, chal-
lenging the current ub as often as possible. The "defavorable" node would be a node with
a low chance to contain the optimal support. A defavorable node should have a high
lower bound, leading it to be pruned as soon as possible. As a recall, in our case, dividing
a node N(S1, S0, S̄) means taking a component index i from S̄. This component is then
put into S1 for its left child, and into S0 for its right child (the left and right side being
arbitrary conventions). The branching strategy is about which i ∈ S̄ should be picked.

Standard branching strategies include strong branching, maximum infeasibility and
minimum infeasibility [Ben Mhenni 2020; Bienstock 1996]. Strong branching has a look-
before-leaping behaviour: at a given node, all the possible divisions will be tested, and
we retain the one giving the best improvement of bounds. This branching rule is really
costly, as we compute a high number (in the order of 2Q) of lower bounds for each node.
Some variations try to avoid testing every combination through some heuristic decision
(see for example [Achterberg et al. 2005]).

Maximum infeasibility originally comes from the resolution of MIP problems. When
looking at the MIP problem (3.10), a generic solver will compute lower bounds on it by
computing relaxations, where bi ∈ {0, 1} is relaxed to bi ∈ [0, 1]. Maximum infeasibility
then chooses the variable bi which is closest to 1

2 . In our case, this means taking the
minimizer of the lower bound problem xN

lb , and picking the variable in S̄ whose absolute
value is the closest to M

2 (see [Ben Mhenni 2020]):

i = arg max
i∈S̄

(
min(|(xN

lb)i|,M − |(xN
lb)i|)

)
(3.15)

Minimum infeasibility is the opposite: it chooses the variable in S̄ whose absolute value
is the closest to either 0 or M :

i = arg min
i∈S̄

(
min(|(xN

lb)i|,M − |(xN
lb)i|)

)
(3.16)

Both maximum infeasibility and minimum infeasibility are standard choices for generic
solvers. However, they give equal importance to zero variables and high amplitude ones.
Here, we will use the maximum of amplitude rule developed in [Ben Mhenni 2020] as-is,
which reads:

i = arg max
i∈S̄

|(xN
lb)i| (3.17)

This rule, which favours components close to ±M (whereas minimum infeasibility favours
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components close to 0 or ±M in a symetric manner) shows better performance than
standard choices for sparse optimization problems [Ben Mhenni 2020]. Intuitively, it
selects components which have a high amplitude in the lower bound, meaning they have
a good chance to be in the optimal support. Therefore, including these components to
the support lead to "favorable" nodes, while excluding them lead to "defavorable" nodes.

3.5 Contributions

Three classes of contributions were made during this thesis. All tried to improve
or generalize the branch-and-bound algorithm described previously. The first class of
contributions keeps Problem (PM2+0) as the target problem, and try to make the branch-
and-bound quicker, either by choosing an appropriate exploration strategy (detailed in
Chapter 4) or by making lower bound computations more efficient (detailed in Chapter 5).

The second class of contributions extends Problem (PM2+0) to the more general class of
structured sparsity, which requires some changes about the search space and node division
framework (detailed in Chapter 7) as well as new formulations and algorithms to compute
the lower bounds (detailed in Chapter 8). Accelerations for the lower bound computations
are proposed in Chapter 9, and comparisons with state of the art methods are proposed
in Chapter 10.

Finally, the third class of contributions are transverse, and corresponds to contribu-
tions related to the implementation of the algorithms of the previous chapters. They
cover modularization of the branch-and-bound code to ease further developments, as well
as adaptations for the structured sparsity case, which are both covered in Chapter 11.

These contributions are tested, whenever applicable, against synthetic datasets whose
generation is described in Section 3.6.

3.6 Data generation protocol

For the different numerical experiments investigated in the following of this thesis
report, datasets were generated in a similar vein to [Ben Mhenni, Bourguignon, and Ninin
2021; Bertsimas, King, et al. 2016]. The goal is to generate random matrices A of varying
difficulty. To this end, the matrices are generated with rows following a multivariate
Gaussian distribution ai ∼ N (0,Σ). The covariance matrix Σ is set such that Σii = 1
and ∀i,∀j 6= i,Σij = ρ|i−j|, ρ ∈ [0, 1[. When ρ is close to 1, neighbouring columns of A
are highly correlated, which gives a difficult optimization problem. Conversely, when ρ is
close to 0, neighbouring columns of A are lowly correlated, and the optimization problem
is easier. In both cases, two columns of A are more correlated if they are close to each
other. The columns of matrix A are normalized: ∀i ∈ {1, .., Q}, ‖ai‖2 = 1.
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To simulate diverse situations, we will use different values of ρ. To keep tractable
instances, we will adjust problems dimensions with the ρ chosen. The values for ρ,Q,N
used in this thesis are summarized in Table 3.1. ρ = 0.92 corresponds to very difficult
problems, ρ = 0.8 and ρ = 0.7 corresponds to moderately correlated problems, and ρ = 0
corresponds to easy (but high-dimensional) problems.

N Q
ρ = 0.92 500 100
ρ = 0.8 500 100
ρ = 0.7 500 1 000
ρ = 0 1 000 100 000

Table 3.1 – Values for ρ,N,Q

Once the matrix A is generated, we create instances by generating a ground truth
value xtruth with a support Struth such that ∀i ∈ Struth, xi = 1, ∀i /∈ Struth, xi = 0. Mea-
surements y ∈ RN are generated with the relation y := Axtruth + ε, with additive noise
ε ∼ N (0, σ2

ε ). The noise variance σ2
ε is set such that the signal-to-noise ratio (SNR)

‖Axtruth‖2
2/(Nσ2

ε ) is equal to 6 (or equivalently a SNR of about 7.78 dB). The µ param-
eter of Problem (PM2+0) is tuned empirically to retrieve a solution x̂ in Algorithm 4 such
that ‖x̂‖0 = ‖xtruth‖0

1. Parameter M is set to 1.1 max |ATy|. Authors in [Ben Mhenni,
Bourguignon, and Ninin 2021] used similar datasets, and investigated the performance of
different methods, including `1-norm methods as well as the branch-and-bound algorithm
used as a starting basis of this thesis with different time limits. As shows in [Ben Mhenni,
Bourguignon, and Ninin 2021], the branch-and-bound algorithm improves the quality of
the estimated solution, compared to state-of-the-art approaches, particularly the `1-norm
method, as soon as the branch-and-bound algorithm is left running for more than 10
seconds.

1. The different datasets used in this thesis for ρ ∈ {0.7, 0.8, 0.92} are available at https://gitlab.
univ-nantes.fr/samain-g/mimosa-random-matrices-dataset
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Chapter 4

Exploration strategies study in the
branch-and-bound setting
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4.1 Introduction

Exploration strategies have an impact on the overall performance of a branch-and-
bound algorithm, as Section 3.4.3 (on page 37) showed. The performance here can be
defined in two ways. Indeed, a branch-and-bound algorithm retrieves the global minimizer
of the problem at hand when it terminates. More precisely, when no more nodes can
be explored, the current estimate is proved to be the global minimizer. However, the
branch-and-bound algorithm may retrieve this global minimizer while still having many
nodes to explore. This leads to the use of a truncated branch-and-bound as a heuristic
on the problem [Ben Mhenni, Bourguignon, and Ninin 2021]. Therefore, one may be
interested either in the speed of a branch-and-bound algorithm run until termination
(which finds and proves the global minimizer) or the quality of the solution retrieved
by a truncated branch-and-bound algorithm (which hopefully finds, without any proof,
the global minimizer). In this chapter, several exploration strategies are studied and
compared in order to define the best choice when solving sparse optimization problems,
for both use cases. To cast the different exploration strategies in an uniform way, a
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parallel is made between an exploration strategy and a data structure containing nodes
in Section 4.2. Building on this analogy, standard explorations strategies are expressed
as a choice of data structures in Section 4.3 before designing new exploration strategies
in Section 4.4. Finally, the performance of the different choices considered is assessed in
Section 4.5 before concluding and drawing out some future work in Section 4.6.

4.2 Exploration strategies as data structures

Data structures and algorithms are both fundamental aspects of computer science.
On the micro viewpoint, the need for different ways to organize information leads to the
creation of trees, heaps, double-ended queues, stacks (Last In First Out), FIFOs (First
In First Out). On the macro viewpoint, we can see database storage schemes such as
Relational databases, triplet-store databases, Document databases, Graph databases as
instances of the same need.

In the mathematical optimization field, we are especially focused in the algorithmic
part, trying to get the best out of data which are matrices and vectors. Matrices and
vectors are simple data structures: they are lists. As we generally do not store a lot of
information, we are fine with variables and lists. However, when designing a branch-and-
bound algorithm, we have to choose how to store the nodes we will create along the way.
We may need to store hundreds of thousands of nodes at a given time, so a correct choice
of data structure is needed.

What defines a correct choice of data structure? This would be a data structure suited
to the tasks at hand. Some data structures are better suited for raw access, others for
inserting data at arbitrary positions. Some are fast to add data, others are suited to
delete data at an arbitrary position. The correct choice depends on the frequency of
those operations. In our case, what are the requirements for this data structure? It must
store (Algorithm 4 step 14, on page 34) and give (Algorithm 4 step 4, same page) nodes
fast. Iterating over the whole data structure is rare, and we will never need to directly
access a node (we do not need an indexation or a key for a given node). When we give
a node (step 4), it is removed from the data structure. Arbitrary deletion will seldom
happen. Several data structures meet these overall light requirements. Additionally, the
scheduling of the nodes given by the Pop function (Algorithm 4 step 4) should match
the order of the exploration strategy used. Consequently, this is the exploration strategy
which will drive the choice of the data structure, such that the prescribed scheduling of
nodes is implemented through operations with low complexity on the data structure.

Our proposition is to merge both concepts: one exploration strategy = one data
structure. The behaviour of this exploration strategy (and data structure) is completely
encoded in the push (step 14) and pop (step 4) functions of Algorithm 4. Consequently, in
the branch-and-bound algorithm developed in this thesis, the search tree is never stored
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entirely. Only leaf nodes of this search tree are stored. The exploration strategy, which is
a particular walk in the tree, is then defined by the order in which leaf nodes are analyzed.
This order is implemented through the choice of a given data structure.

4.3 Standard exploration strategies viewed as data
structures

Three standard strategies were seen in Section 3.4.3 (page 37): Depth-first search,
Breadth-first search, Best-first search.

Depth-first search completely unrolls a branch before unrolling another one. In other
words, when a node is divided, one of its children is immediately explored. When the
sub-tree given by this child is completely explored, the second child is explored. A stack,
also called LIFO (Last In First Out), implements this behaviour with O(1) operations.
The behaviour of a stack can be sketched as a tower of bricks. The lower bricks cannot
be touched, only the highest brick in the tower can be taken, or another brick can be put
on top of the tower. Depth-first search is implemented by replacing bricks by nodes in
the previous analogy: nodes are stored by putting them on top of the tower, and the next
node to be explored is the one at the top of the tower.

Breadth-first search explores in priority nodes which are closest to the root. This
means we do not go straight to newly created nodes, but rather explore the older ones.
This behaviour is implemented with O(1) operations on a FIFO (First In First Out).
Supermarket racks are recharged using a FIFO method: new products (with far expiry
date) are put at the rear of the rack, while older ones (with closer expiry date) are moved
to the front of the rack.

Best-first search explores the node with the lowest lower bound first. This corresponds
to a heap. A heap is a partially ordered data structure such that the element with the
minimum value according to a given metric is put at the top of the heap (insertion is done
in O(log(n))). The pop function always takes the top element of the heap in O(log(n)).
Compared to a sorted list, insertions and deletions are faster, O(log(n)) compared to
O(n log(n)) in contiguous memory for deletion. To get Best-first search, the metric should
be the lower bound value. We will say this is a heap sorted on the lower bound, to
emphasize the metric used (keep in mind the heap is only partially sorted, not fully
sorted). Other metrics will lead to other exploration strategies. For example, the Limited
Discrepancy Search (LDS) [Harvey et al. 1995] is a less common exploration strategy where
we would like to get good upper bounds without the bias of the depth-first search, which
treats differently branching choices according to the moment they were made. Indeed, to
get good upper bounds, we should look in priority at nodes where the fewest "defavorable"
branching happened. This is what is done in depth-first search when a branch is unrolled.
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But when backtracking, the nodes explored in priority are those which are closer to the
branch we just unrolled, regardless or whether these nodes are "defavorable" or not. The
LDS strategy, on the other hand, explicitly explore the least "defavorable" nodes first. In
our data structure framework, the LDS strategy corresponds to a heap sorted on the size
of S0: the first nodes to be explored are those with the least number of variables set to 0.

4.4 Propositions of tailored exploration strategies

We propose novel exploration strategies, tailored to the structure of Problem (PN
2+1)

(on page 37) structure. Indeed, the lower bound of a node is the minimum of Prob-
lem (PN

2+1), which is the sum of the data-fitting least-squares term, and of the `1-norm
term. Thus, a first idea is to see what happens when we focus only on one of these two
terms. Consequently, as Best-first search is a heap sorted on the lower bound, we propose
Least-square-first search, a heap sorted on the least-square (data fitting) term, and `1-first
search, a heap sorted on the `1 norm term. These two new strategies will respectively
favor nodes matching data (without looking at sparsity) and nodes with sparse solution
on S̄ components (without looking at data fidelity).

Additionally, we would like to get the benefit of the Depth-first search (stack) to quickly
get good feasible solutions (good upper bounds ub) and the ability of Best-first search
(heap sorted on the lower bound) to efficiently increase lower bounds. In schematic terms,
Depth-first search quickly finds the best solution, but takes time to prove its optimality:
during most iterations, the global minimum of Problem (PM2+0) (on page 36) is already
found without being aware of it. On the other side, Best-first search is quite long to find
the best solution, but quicker to prove its optimality. This general belief on the behaviour
of Depth-first search and Best-first search is problem-agnostic. Testing that hypothesis
on our actual problem is a contribution of this thesis, as well as the design of mixed
strategies.

Mixed strategies (the second idea in this chapter) correspond to mixing several strate-
gies together (see for example [Neveu et al. 2016] with the introduced LBvUB and LBvXX,
randomly mixing exploration strategies). In our case, we will mix two strategies, and we
will do that sequentially: we will start with a given strategy, and when a condition is met,
we switch to a second strategy. Several conditions could be designed: we could use the
number of ub update, the number of nodes after the last ub update, the percentage of
pruned nodes, ... Here, we will use a basic condition, the number of nodes: after having
created Nswitch nodes, we switch to the second strategy. Implementation-wise, we do this
by using the data structure corresponding to the first strategy, and when the condition is
met we Pop all the nodes from the first data structure and Push them to the second one.

If the general knowledge about Depth-first search and Best-first search is applicable to
Problem (PM2+0), then a mixed strategy starting with a stack and switching to a heap sorted
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on the lower bound should get good performance, better than the two ones implemented
separately hopefully. We will name that strategy in the data structure naming as stack
then heap on lb. Moreover, we also test mixed strategies where we start with Depth-
first search and then switch to Least-square-first (stack then heap on ls), and Depth-first
search then `1-first (stack then heap on l1).

4.5 Numerical experiments and results

4.5.1 Experiment description

We will test all the tailored strategies exposed in Section 4.4 as well as stack (Depth-
first search) and heap on lb (Best-first search). For the mixed strategies, we will use three
values for the number of created nodes threshold Nswitch: 10, 100, 1000. Finally, we test
13 strategies:

— stack (stack)

— heap on lb (heaplb)

— heap on ls (heapLS)

— heap on l1 (heap`1)

— stack then heap on lb:

— with Nswitch = 20 (stack20 + heaplb)

— with Nswitch = 200 (stack200 + heaplb)

— with Nswitch = 2000 (stack2000 + heaplb)

— stack then heap on ls:

— with Nswitch = 20 (stack20 + heapLS)

— with Nswitch = 200 (stack200 + heapLS)

— with Nswitch = 2000 (stack2000 + heapLS)

— stack then heap on l1:

— with Nswitch = 20 (stack20 + heap`1)

— with Nswitch = 200 (stack200 + heap`1)

— with Nswitch = 2000 (stack2000 + heap`1)

To test the different exploration strategies, we will test them on the same datasets. This
will be a synthetic one, inspired by [Bertsimas, King, et al. 2016], generated with the
procedure detailed in Section 3.6 (on page 40). As a recall, the goal is to solve the `0

problem on 10 instances for each value of ρ.
We will consider N = 500, Q = 100, ρ = 0.8 (moderate correlation) and N = 500, Q =

100, ρ = 0.92 (strong correlation), and we will compare the different strategies against
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two metrics: the number of created nodes to find and prove the global minimum, as well
as the number of created nodes to find the global minimum, without the proof. The first
metric is of interest when we want to get the global minimum at all times (we wish a
guarantee of optimality), whereas the second metric is of interest to get a good solution
quick, and stop prematurely (for example with an elapsed time bound) the execution of
the branch-and-bound algorithm.

4.5.2 Results

We show the simulation results as performance profiles [Dolan et al. 2002]. Perfor-
mance profiles were designed to give more subtle comparison than just comparing the
average execution time of each strategy. The horizontal axis is a performance ratio, it
measures how many times slower is, in the sense of how many times more nodes are cre-
ated by, a given strategy compared to the best performing one. The vertical axis is an
instance proportion (1 means 100% of instances). Consequently, a strategy which would
be the best for every instances would show as an horizontal line vertically located at 1.
Otherwise, it means this strategy is not the best one for every instance. If two curves
are crossing, it means that one strategy is very good on a subset of instances but overall
slower than the second strategy.

With this in mind, Figure 4.1 shows the performance of the different strategies on
the first metric, namely the total number of created nodes in the branch-and-bound
algorithm. For ρ = 0.8 (top), we can see that the heaplb (Best-first search) is the best for
all instances, and stack (Depth-first search) is the worst. Note that the vertical axis is
restricted to the instance proportion [0.95, 1], and the performance ratio does not exceed
1.15: all strategies are close to one another. Mixed strategies are in between stack and
their corresponding heap, the ones with Nswitch = 2000 being closer to the stack, the ones
with Nswitch = 20 being closer to their corresponding heap. For ρ = 0.92 (bottom), the
situation is more contrasted, and we can actually see all the different strategies clearly.
Here again, heaplb is the best performing strategy. Interestingly, the poorest performing
one is not the stack but an `1 based strategy. Actually, the `1 strategies (blue) are all on
the bottom of the figure (worst strategies). Least-square based strategies (red) are not as
good as their counterparts using the full lower bound instead of just the data-fitting term,
but they are still better than stack: relying only on the least-square term to schedule
node division is an acceptable choice (though not the best) when it comes to solving the
problem with an optimality proof.

Figure 4.2 shows the performance of the different strategies on the second metric,
namely the number of nodes required to find the optimal solution, without knowing (thus
proving) it yet. For ρ = 0.8 (top) we can clearly see that heaplb is by far the worst
strategy. There is no clear winner on every instance, but overall heapLS (Least-square
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first) is the best strategy for quickly finding the global minimum without proving it. For
ρ = 0.92, there is more contrast (similarly to the situation in Figure 4.1), though the
main conclusions are the same: heaplb is very bad, heapLS is the best. Interestingly,
the different stack + heaplb mixed strategies are way better than heaplb itself, but also
than the stack strategy: there is some kind of a "best of both worlds" effect. The differ-
ent stack + heapLS are better than the different stack + heaplb, and stack + heap`1

strategies are worse than stack. For this metric, heapLS is the best performing strategy,
and mixed strategies using either heapLS or heaplb are reasonable choices (though not the
best possible).

We can draw some conclusions from these results. First, for Problem (PM2+0), Best-first
search is the quickest to solve the problem to optimality with proof, whereas it is very
bad if we are interested in quickly finding the optimal solution without proving it (one use
case here being a truncated branch-and-bound). The difference in terms of performance
is especially visible when problems are hard: if the matrix A has very correlated columns,
the choice of the exploration strategy has a visible impact. When A has weakly correlated
columns, all strategies tend to perform similarly. For quickly finding the best solution,
heapLS, one contribution of this thesis, which explores in priority nodes with lower bounds
having a small least-squares term, is the best suited one. If one looks to fix an exploration
strategy without knowing in advance their goal (either quickly finding or quickly proving
the optimal solution), one of stack + heaplb, heapLS and one of stack + heapLS are
reasonable choices, which highlights that mixed strategies can play a role of a by-default
setting.

4.6 Discussion

Conclusion In this chapter, contributions were developed to accelerate the branch-
and-bound algorithm, both for finding the optimal solution as well as proving it,
through the design of exploration strategies. To this end:
— a parallel between the exploration strategy of a branch-and-bound algorithm

and data structures containing nodes was detailed;

— standard and new exploration strategies were designed for the branch-and-bound
algorithm of this thesis;

— the performance of the different exploration strategies was assessed through nu-
merical experiments, with heaplb being the best strategy for finding and proving
the optimal solution, whereas heapLS is the best strategy for quickly finding the
optimal solution.
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ρ = 0.8, Q = 100
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ρ = 0.92, Q = 100

Figure 4.1 – Performance profiles comparing the number of created nodes for different
exploration strategies, for moderately difficult problems (ρ = 0.8, top) and highly difficult
problems (ρ = 0.92, bottom). Exploration is run until the entire search tree has been
explored or the computation time exceeds one hour, in the latter case the instance is
removed from the comparison. The black dotted line with diamonds represents the stack
implementation, and the full line with circles represents the heap implementation, sorted
on the lower bound (magenta), its least-squares term (red), or its `1-norm term (blue).
Mixed strategies stackNswitch + heap use the same color code for the heap sorting, and
are represented with full lines for Nswitch = 20, dashed lines for Nswitch = 200, and dotted
lines for Nswitch = 2000.
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Figure 4.2 – Performance profiles comparing the number of created nodes required to
find the optimal solution without proving its optimality, for different exploration
strategies, for moderately difficult problems (ρ = 0.8, top) and highly difficult problems
(ρ = 0.92, bottom). The black dotted line with diamonds represents the stack implemen-
tation, and the full line with circles represents the heap implementation, sorted on the
lower bound (magenta), its least-squares term (red), or its `1-norm term (blue). Mixed
strategies stackNswitch + heap use the same color code for the heap sorting, and are rep-
resented with full lines for Nswitch = 20, dashed lines for Nswitch = 200, and dotted lines
for Nswitch = 2000.
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Perspectives Many things could be done and improved in this exploration strategy
study, mainly around the mixed strategies. First, the switching condition Nswitch is very
crude, and we could design smarter switching conditions, some of those being already
written in Section 4.4. Second, starting with the stack strategy is questionable. The
intent of this choice is to quickly get a good upper bound ub, but LDS or other strategies
not mentioned here may be better suited for that purpose. Third, the choice of starting
by a good upper bound decreasing strategy and then switching to a heap is questionable.
Maybe it’s better to start exploring nodes fitting to data and then seek for sparse nodes
first? We would start with heapLS and then switch to heap`1 in that case. Fourth, the
choice of sequential mixed strategy, where only one exploration strategy is used at a
given time, has not been discussed, but it is not the only way to mix strategies. Some
authors [Neveu et al. 2016] propose to maintain several data structures in parallel and pick
the next node to be divided by calling Pop on a randomly chosen data structure (without
forgetting to maintain the consistency between all the data structures by removing that
node from all of them).

Finally, when looking at how fast we find the best solution without proving it, anytime
strategies [Luo et al. 2021] should be considered. These strategies are designed for the case
of a truncated branch-and-bound, and as such they look for both favorable and diverse
nodes, trying to somehow correctly sample the branch-and-bound tree. Testing these
anytime strategies against ours in their ability to quickly find the global minimum would
be a nice addition to these contributions.
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Chapter 5

Accelerate lower bound estimation in
the branch-and-bound
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5.1 Motivation

As a recall (on page 37), lower bounds are computed by solving Problem (PN
2+1):

lbN = min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ

M
‖xS̄‖1 s.t. ‖x‖∞ ≤M,xS0 = 0, (PN

2+1)
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which can be seen as the LASSO Problem (P2+1) (on page 25) with an additional box
constraint, and a `1-norm term applied on a subset of variables only. As pointed out
in Section 3.4.2 (on page 36), in our experiments, computing the lower bounds at each
node evaluation takes approximately 90% of the total running time of the branch-and-
bound. Consequently, as computing lower bounds is a performance bottleneck, we are
aiming to compute them faster. Two main ideas have been explored in this thesis, with
corresponding techniques for each idea. The first one is to accelerate the goal of lower
bounds. Indeed, lower bounds serve two different purposes: check if a node should be
pruned, and if not, use the precise lower bound value (and related minimizer) to define
how to divide the node (additionally, some exploration strategies also use the lower bound
value). The first use of lower bounds (prune nodes) does not require the exact computation
of the lower bound. Section 5.2 investigates a technique to accelerate this pruning decision
through the computation of approximations of the lower bound. The second idea is to
ease the job of the optimization algorithm computing the lower bounds. To this end,
we will investigate how the dual problem can be used to prematurely stop optimization
algorithms, as detailed in Section 5.3. Finally, screening methods, which are reducing the
problem dimension dynamically during the iterations of the optimization algorithm, are
investigated in Section 5.4, before giving some concluding remarks and perspectives in
Section 5.5.

5.2 Early node pruning through duality

As mentioned earlier when detailing Algorithm 4 (on page 34), one goal of lower
bounds, obtained by solving Problem (PN

2+1) at each node, is to prune sub-optimal nodes:
if a node’s lower bound lbN is greater than ub, then the node is pruned. Notice that we
do not need the exact value of lbN, we just need to know whether we have lbN ≥ ub or
not. Therefore, the idea of what we call early pruning is to build a function D which
under-estimates the value of the lower bound, that is the minimum of Problem (PN

2+1):
∀w ∈ RN , D(w) ≤ lbN. If at a given w, we have D(w) ≥ ub, then we can prune the
node, since the relation lbN ≥ D(w) ≥ ub holds. This case is illustrated in Figure 5.1
(left, node Npruned).

We can construct such a decision function D(x) using the dual problem of (PN
2+1).

After describing the mathematical expression of the dual in Section 5.2.1 and the related
literature on duality based pruning in Section 5.2.2, we will describe and investigate
empirical performance of some optimization algorithms to this respect in Section 5.2.3 and
finally investigate the performance of the early pruning technique itself in Section 5.2.4
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Figure 5.1 – Early pruning illustration: primal and dual iterates for the optimization
of (PN

2+1) (dashed and full lines, respectively), and the best known upper bound (dotted
horizontal line). Left: pruning of the node is achieved after convergence of the primal
descent algorithm minimizing (PN

2+1) (here in 100 iterations), but the dual value after 10
iterations informs us that the node can be pruned (green circle). Right: in this case, the
lower bound lbN is too low and the node cannot be pruned.

5.2.1 Dual problem at each node

We can use some standard convex analysis properties to build a suited function D(x).
Indeed Problem (PN

2+1) is convex and can be written as:

min
x∈RQ

P (x) := f(Ax) + g(x), (5.1)

with f(u) := 1
2‖y − u‖

2
2

and g(x) := µ|S1|+ µ
M
‖xS̄‖1 + I[−M,M ]Q(x) + I{0}|S0|(xS0),

where IC(x) is the indicator function equal to 0 if x ∈ C and +∞ otherwise. Let φ∗(w) :=
supxwTx − φ(x) denote the Fenchel conjugate of any convex function φ. We use the
Fenchel-Rockafellar theorem ([Rockafellar 1970], theorem 31.2) to get the dual problem
associated with Problem (5.1), which reads:

max
w∈RN

D(w) := −f ∗(w)− g∗(−ATw). (5.2)

For the detailed expression of this dual problem, given in Proposition 5.2.2, Lemma 5.2.1
will be used.

Lemma 5.2.1. Let h(xi) := λ|xi|+ I[−M,M ](xi) where xi ∈ R, λ > 0,M > 0. The Fenchel
conjugate of h is:

∀ui ∈ R, h∗(ui) := M [|ui| − λ]+ = M max(0, |ui| − λ) (5.3)
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Proof. From the definition of the Fenchel conjugate, we have:

h∗(ui) = sup
xi∈R

(
uixi − λ|xi| − I[−M,M ](xi)

)
= sup
−M≤xi≤M

(uixi − λ|xi|)

= sup
0≤|xi|≤M

(|ui||xi| − λ|xi|) = sup
0≤|xi|≤M

|xi|(|ui| − λ)

= M [|ui| − λ]+

Proposition 5.2.2. The dual problem of Problem (PN
2+1) reads:

max
w∈RN

1
2(‖y‖2

2 − ‖w + y‖2
2)−M

∑
i∈S̄

max(0, |aTi w| − µ
M

) + ‖AT
S1w‖1

+ µ|S1|. (DN
2+1)

The objective function of this problem is D(w).

Proof. From the dual problem expression (5.2), It comes that:

f ∗(w) = 1
2(‖w + y‖2

2 − ‖y‖
2
2) (5.4)

and using Lemma 5.2.1 for the components in S̄ (and in S1) the Fenchel conjugate of g
can be obtained by:

g∗(u) = sup
x

(
uTx− µ|S1| − µ

M
‖xS̄‖1 − I[−M,M ]Q(x)− I{0}|S0|(xS0)

)
︸ ︷︷ ︸

separable

,

=
∑
i∈S̄

sup
−M≤xi≤M

(uixi − µ
M
|xi|) +

∑
i∈S1

sup
−M≤xi≤M

uixi

+
∑
i∈S0

sup
−M≤xi≤M

(uixi − I{0}(xi)︸ ︷︷ ︸
=0

) − µ|S1|,

= M

∑
i∈S̄

[|ui| − µ
M

]+ +
∑
i∈S1

|ui|

− µ|S1|.

(5.5)

Let us remark that the dual problem is not constrained, and its objective function
is analytical and simple to evaluate. Weak duality states that P (x) ≥ D(w),∀(x,w) ∈
RQ×RN . Weak duality ensures that the dual objective D(w) is a valid under-estimation,
because it means in particular that lbN = P (x?) ≥ D(w),∀w ∈ RN . In our case, strong
duality applies too 1, which means that at optimality we have P (x?) = D(w?), with

1. Slater’s constraint qualifications trivially hold because the objective function is convex, and there
exists a strictly feasible point, we can take for example 0 (it is strictly feasible inside all the box con-
straints).
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x? = arg minx∈RQ P (x) and w? = arg maxw∈RN D(w). Strong duality is not mandatory
to build a valid under-estimator, but it is convenient, in the sense that if D(w) never
prunes the node, then the node should not be pruned: there is no undecidable zone where
the node should be pruned but D(w) cannot tell us to.

An illustration of the intended behaviour is sketched in Figure 5.1, where a node is
pruned as soon as D(w) ≥ ub for some generated dual point w. If such a situation occurs
at many nodes during the branch-and-bound algorithm iterations, the computation time
is expected to decrease.

In practice, we still need to define which dual points w will be used for evaluating
D(w). If we use a primal-dual algorithm, we can take the generated dual points. However,
we will also use some algorithms which are only generating primal iterates. It turns out
that standard convex analysis arguments give a starting basis. Indeed, the first-order
Kuhn-Tucker optimality conditions read [Rockafellar 1970]:

w? ∈ ∂f(Ax?) (5.6a)
−ATw? ∈ ∂g(x?) (5.6b)

Ax? ∈ ∂f ∗(w?) (5.6c)
x? ∈ ∂g∗(−ATw?) (5.6d)

where ∂f denotes the subdifferential of function f , defined as [Rockafellar 1970]:

∂f(x) := {u ∈ RN | ∀y ∈ RN , f(y) ≥ f(x) + uT (y − x)}.

In our case, condition (5.6a) means we have w? = Ax? − y. We will extend this relation
the same way as in [Bonnefoy et al. 2014]: we link a primal iterate xk with a dual
iterate wk by wk := Axk − y. This relationship, which is arbitrary, has two advantages.
First, if the optimization algorithm converges to x?, the dual iterates will converge to
w?. Note that we do not have any guarantee about the dynamic of the dual convergence.
In particular, if the optimization algorithm monotonically decreases the primal objective
function, the dual objective values D(wk) can be non-monotonically increasing. Second, a
lot of standard algorithms detailed in Section 3.3.1 (on page 25)compute at each iteration
the residual, defined as rk := y − Axk = −wk, thus the point wk comes without any
additional cost.

5.2.2 Link with literature

In the literature related to exactly solving `0 problems, the dual expression of the lower
bound problems of a given branch-and-bound algorithm has been investigated in [Guyard
et al. 2022; Hazimeh et al. 2021]. In [Hazimeh et al. 2021], the authors use a coordinate
descent algorithm to inexactly (therefore quickly) solve their lower bound problems. As
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such, they only have feasible points of the primal problem, whose objective function value
is not a valid lower bound. Therefore, they use the objective function of Problem (DN

2+1)
to get a valid lower bound at the end of the coordinate descent algorithm iterations.

In [Guyard et al. 2022], the authors evaluateD(w) on several dual iteratesw generated
as in our case. However, they use it to prune children of the current node instead of the
node itself, leveraging the fact that the dual objective function D(w) of a children node
can be easily obtained from its parent. Their technique is a different trade-off: as they have
to test several children (and therefore evaluate several times the dual objective function),
it is more costly, but it can be more effective than our early pruning strategy.

5.2.3 Algorithms dueling for increasing the dual objective value

As pointed out in Section 5.2.1, as long as an optimization algorithm converging to
the optimal primal point x? is used, the optimal dual point w? will finally be reached. So,
D(w) will globally increase, although not monotonically (remember the dual problem (5.2)
is a maximization problem) from D(w0) to D(w?). However, we do not control the
intermediate behaviour.

Moreover, there are several families of algorithms we can use to minimize the lower
bound problem (PN

2+1). To know which algorithm is better suited for early pruning, we
empirically study how they increase D(w) over time. Indeed, if we are able to increase
quickly D(wk), we may quickly meet the condition D(wk) ≥ ub needed to prune the
node.

We will consider the different `1-norm optimization algorithms as described in Sec-
tion 3.3.1. However, such standard algorithms are designed without the box constraint
and support separation included in Problem (PN

2+1) and require some specific develop-
ments. For active-set and homotopy algorithms adaptations were already introduced
in [Ben Mhenni 2020]. For proximal algorithms and coordinate descent ones, we need to
adapt them to Problem (PN

2+1).

Proximal algorithms Proximal algorithms use the proximity operator of the non-
differentiable function(s) to decrease the objective function. Plenty of algorithms exist,
and we will pick two standard algorithms in our comparison: the forward-backward algo-
rithm [Daubechies et al. 2004] as a reference primal-only algorithm, and the Chambolle-
Pock algorithm [Chambolle and Pock 2011] as a reference primal-dual algorithm. What we
just need to do to adapt these algorithms to our case is to write the analytical solution of
the proximity operator problem related to the non-differentiable part of Problem (PN

2+1):

xk+1 = prox
ηg

(xk) = arg min
x

1
2‖x

k − x‖2
2 + η(‖xS̄‖1 + I{0}(xS0) + I[−M,M ]Q(x)) (5.7)
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with η ∈ R. The proximal operator of a sum of separable terms is the sum of the
individual proximal operators. Also, the proximal operator of only an indicator function
is the projection operator Π onto the corresponding set. Separating the terms in (5.7) we
get:

∀i ∈ S0, x
k+1
i = 0, (5.8a)

∀i ∈ S1, x
k+1
i = Π[−M,M ](xki ), (5.8b)

∀i ∈ S̄, xk+1
i = arg min

xi

1
2(xki − xi)2 + η(|xi|+ I[−M,M ](xi)). (5.8c)

The first-order optimality condition for (5.8c) reads: ∀i ∈ S̄,

0 ∈ {−xki + xk+1
i }+ η




1 if xk+1
i > 0

[−1, 1] if xk+1
i = 0

−1 if xk+1
i < 0

+


[0,+∞[ if xk+1

i = M

0 if xk+1
i ∈]−M,M [

]−∞, 0] if xk+1
i = −M


 .
(5.9)

Separating this condition for the different possible cases, we have:

For xk+1
i = M :

0 ∈ {−xki +M}+ {η}+ [0,+∞[⇐⇒ xki −M − η ≥ 0 ⇐⇒ xki ≥M + η.

For xk+1
i ∈]0,M [:

0 ∈ {−xki + xk+1
i }+ {η} ⇐⇒ xk+1

i = xki − η ∈]0,M [ =⇒ xki ∈]η,M + η[.
For xk+1

i = 0 :
0 ∈ {−xki + 0}+ [−η, η] ⇐⇒ xki ∈ [−η, η].

For xk+1
i ∈]−M, 0[:

0 ∈ {−xki + xk+1
i } − {η} ⇐⇒ xk+1

i = xki + η ∈]−M, 0[
=⇒ xki ∈]−M − η,−η[.

For xk+1
i = −M :

0 ∈ {−xki −M} − {η}+]−∞, 0] ⇐⇒ xki + η +M ≤ 0 ⇐⇒ xki ≤ −M − η.

Consequently, as all the conditions on xk+1
i are disjoint, and as there is no value of xki

common to several cases, we can derive the following rules:

If |xki | ≤ η, then xk+1
i = 0;

If |xki | ∈ ]η,M + η[, then xk+1
i = sign(xki )(|xk| − η);

If |xki | ≥M + η, then xk+1
i = sign(xki )M
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Figure 5.2 – Illustration of the capped soft-thresholding function in 1D

with [·]+ := max(·,0), the max being applied component-wise. That is, written in a more
compact form:

∀i ∈ S̄, xk+1
i = Π|−M,M ]{sign(xki )[|xki | − η]+} (5.10)

This is actually just composing the projection on the box with the soft-thresholding
operator [Chaux et al. 2009; Hazimeh et al. 2021], we call it the capped soft-thresholding
operator CSTη

[−M,M ]. Figure 5.2 gives an illustration of this operator on a scalar.

Algorithm 5 gives the Forward-Backward algorithm tailored to solve Problem (PN
2+1),

and Algorithm 6 gives the Chambolle-Pock algorithm tailored to solve Problem (PN
2+1).

Algorithm 5 Forward-Backward algorithm for Problem (PN
2+1)

1: procedure FB(A,y, λ, τ,x0)
2: k ← 0
3: while not convergence do
4: xk+ 1

2 ← xk + τAT (y −Axk)
5: ∀i ∈ S0, x

k+1
i ← 0

6: ∀i ∈ S1, x
k+1
i ← Π|−M,M ]

{
x
k+ 1

2
i

}

7: ∀i ∈ S̄, xk+1
i ← Π|−M,M ]

{
sign

(
x
k+ 1

2
i

)[∣∣∣∣∣xk+ 1
2

i

∣∣∣∣∣− η
]

+

}
8: k ← k + 1
9: end while

10: end procedure
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Algorithm 6 Chambolle-Pock algorithm for Problem (PN
2+1)

1: procedure CP(A,y, λ, τ, σ, ρ,x0,w0)
2: k ← 0
3: while not convergence do
4: xk+ 1

2 ← xk − τAT w̄k

5: ∀i ∈ S0, x
k+1
i ← 0

6: ∀i ∈ S1, x
k+1
i ← Π|−M,M ]

{
x
k+ 1

2
i

}

7: ∀i ∈ S̄, xk+1
i ← Π|−M,M ]

{
sign

(
x
k+ 1

2
i

)[∣∣∣∣∣xk+ 1
2

i

∣∣∣∣∣− η
]

+

}
8: wk+1 ← wk+σ(Axk+1−y)

1+σ
9: w̄k+1 ← wk+1 + ρ(wk+1 −wk)
10: k ← k + 1
11: end while
12: end procedure

Coordinate descent algorithms Coordinate descent algorithms solve scalar sub-
problems. For coordinates i ∈ S̄, this scalar subproblem is:

x?i = arg min
xi

P (xi) = 1
2‖ei − aixi‖

2
2 + µ

M
|xi|+ I[−M,M ](xi) (5.11)

where ei is a constant in this minimization problem: it corresponds to the residual gen-
erated by all the components except the xi at hand, that is, ei = y−∑j 6=i ajxj. To get a
convergent coordinate descent algorithm, we need the analytical solution of this problem.
Problem (5.11) rewrites as:

x?i = arg min
xi

1
2

eTi ei − 2(aTi ei)xi + (aTi ai)︸ ︷︷ ︸
=1

x2
i

+ µ
M
|xi|+ I[−M,M ](xi)

= arg min
xi

1
2(aTi ei − xi)2 + αi + µ

M
|xi|+ I[−M,M ](xi).

(5.12)

αi ∈ R being a constant. Problem (5.12) identifies with Problem (5.8c), using a similar
method, its analytical solution reads:

∀i ∈ S̄, x?i = Π[−M,M ]{(aTi ai)−1︸ ︷︷ ︸
=1

sign(aTi ei)[|aTi ei| − µ
M

]+}. (5.13)

The term sign(aTi ei)[|aTi ei|− µ
M

]+ is once again the soft-thresholding operator [Daubechies
et al. 2004].

For components i ∈ S1, the problem reads:

x?i = arg min
xi

P (xi) := 1
2‖ei − aixi‖

2
2 + I[−M,M ](xi) (5.14)
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from which it comes that:

∀i ∈ S1, x
?
i = Π[−M,M ]{(aTi ai)−1︸ ︷︷ ︸

=1

aTi ei)} (5.15)

Algorithm 7 gives the coordinate descent algorithm tailored to solve Problem (PN
2+1).

The stopping criterion used is a vanishing duality gap.

Algorithm 7 Iterative coordinate descent algorithm for Problem (PN
2+1)

1: procedure ICD(A,y, λ,x0)
2: k ← 0
3: x← x0

4: e← y −Ax
5: while not convergence do
6: for i ∈ S1 do
7: ei ← y −AS1\{i}xS1\{i} −AS̄xS̄
8: xi ← Π[−M,M ]{aTi ei)}
9: end for

10: for i ∈ S̄ do
11: ei ← y −AS1xS1 −AS̄\{i}xS̄\{i}
12: xi ← Π[−M,M ]{sign(aTi ei)[|aTi ei| − µ

M
]+}

13: end for
14: k ← k + 1
15: end while
16: end procedure

Performance of the different algorithms considered for ascending dual values
We will now compare the different algorithms on their ability to quickly improve the dual
objective value (Problem (DN

2+1), which is the dual of Problem (PN
2+1)). Implementation

is performed in Matlab. We compare Forward-Backward [Daubechies et al. 2004] (primal
proximal algorithm), Chambolle-Pock [Chambolle and Pock 2011] (primal-dual proximal
algorithm), coordinate descent [Friedman et al. 2010], active-set [Lee et al. 2006] and ho-
motopy continuation [Osborne et al. 2000] algorithms. For the Chambolle-Pock algorithm,
we use the dual points generated during the iterations. For all other algorithms except
homotopy continuation, we use the formula wk = Axk − y described previously, where
xk is a primal iterate. For the homotopy continuation, we introduce an additional rescal-
ing step. Indeed, the algorithm solves a sequence of problems for different values of the
penalty parameter λ, say λk. The different problems are solved exactly, which means we
have access to some Axk−y which is the optimal dual point for some λk > µ. We propose
to take benefit of the knowledge of λk to use a rescaled dual point: wk = µ

λk (Axk − y).
We ran the different algorithms on a subset of instances described in Section 3.6 (on

page 40). Figure 5.3 shows the typical performance at the root node, that is to say with
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Figure 5.3 – Evolution of the primal (top) and dual (bottom) objective functions of a
relaxed problem (ρ = 0.8, Q = 100) at the root node of the branch-and-bound algorithm,
for different optimization strategies, as a function of the iteration number (left) and of
the computation time (right).
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Figure 5.4 – Evolution of the primal (top) and dual (bottom) objective functions of a
relaxation problem (ρ = 0, Q = 100 000) at the root node of the branch-and-bound
algorithm, for different optimization strategies, as a function of the iteration number
(left) and of the computation time (right).

S1 = S0 = ∅, S̄ = {1, .., Q}, which corresponds to a `1-norm box-constrained problem, in
a small (Q = 100), moderately correlated (ρ = 0.8) setting, while Figure 5.4 shows the
typical performance for large (Q = 100 000), decorrelated (ρ = 0) problems.

Looking at Figure 5.3, we can see that while the homotopy continuation does not
decrease sharply the primal objective (top part) compared to other algorithms, it is the
fastest to increase the dual (bottom part) in terms of elapsed time (bottom right), and
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the quickest to get the dual to optimality in terms of number of iterations (bottom left).
Coordinate descent is better, in terms of number of iterations (left half), both to quickly
decrease the primal objective (top left) and to quickly increase the dual objective (bottom
left), though it takes more time to yield convergence than the homotopy continuation. All
other algorithms are not competitive as far as increasing the dual objective is concerned
(bottom part).

Looking at Figure 5.4, for higher-dimensional, uncorrelated problems, the coordinate
descent algorithm is now the best for reaching optimality, both in terms of number of
iterations and time. The homotopy continuation is still very efficient for quickly increasing
the dual objective in terms of elapsed time (bottom right), although it is slower than
coordinate descent to achieve convergence.

Consequently, in the following sections of this chapter, we will use coordinate descent
and homotopy continuation algorithms. Homotopy continuation will be our choice when
tackling correlated problems, and coordinate descent will be our choice for (large size)
decorrelated problems.

5.2.4 Numerical experiments and results

Datasets description The performance of early pruning is benchmarked on a synthetic
dataset following the protocol presented in Section 3.6. A summary of the different
parameters considered is given in Table 5.1. The exploration strategy used is depth-first
search (which acts here as a baseline strategy).

Size ρ N Q K
Small {0.8, 0.92} 500 100 9
Moderate 0.7 500 1 000 9
Large 0 1 000 100 000 9

Table 5.1 – Parameters used for the different synthetic instances generated for evaluating
the performance of early pruning. 10 instances are generated for each combination of
parameters.

Results Table 5.2 gives an aggregated view of the performance of the early pruning
for the different considered datasets. The performance metric considered is the number
of inner iterations of homotopy continuation (ρ ∈ {0.7, 0.8, 0.92}) or coordinate descent
(ρ = 0) saved for all the nodes of all instances for a given problem category. We can
clearly see that when the problem is simpler (small ρ in the synthetic instances), the
performances are better: we are able to prune nodes earlier. In particular, we save more
than three quarters of the iterations of the algorithm solving Problem (PN

2+1), for synthetic
instances with ρ = 0. This saving is of the order of one quarter for synthetic instances
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Problem category # iterations # iterations % Saved
without early pruning with early pruning

ρ = 0 Q = 100 000 48 141 10 552 78.1 %
ρ = 0.7 Q = 1 000 182 792 138 543 24.2 %
ρ = 0.8 Q = 100 338 951 304 507 10.2 %
ρ = 0.92 Q = 100 68 585 732 66 555 082 2.97 %

Table 5.2 – Duality-based early pruning: number of saved iterations without and with
early pruning (sum for all the nodes of 10 instances for each problem category).

with ρ = 0.7. For ρ = 0.8, 10% of the iterations are saved. When we increase the matrix
correlation up to ρ = 0.92, this saving drops to less than 3%.

Interesting insights come when looking more deeply at these results, particularly when
separating the nodes according to their number of selected variables, which is the cardi-
nality of S1. Figure 5.5 shows the same performance metric (the percentage of iterations
saved for the algorithm solving Problem (PN

2+1)) with a finer-grained view. For each value
of ρ, all instances are aggregated together. These instances are solved by creating several
nodes, and these nodes are categorized according to their number of selected variables.
For each category, we draw a boxplot aggregating the performance metric value for all
nodes in that category. If we first focus on the small size instances (Q = 100, with
ρ ∈ {0.8, 0.92}), we can see again that increasing the correlation level decreases the per-
formance. Additionally, nodes with a higher number of selected variables in S1 are pruned
earlier. For ρ = 0.8, the median line (in red) hardly exceeds 0 for |S1| ∈ {0, .., 5}, while
for |S1| = 9 it is at 50%, meaning that we save more than 50% of the iterations for half of
the nodes with 9 selected variables. For ρ = 0.92, we can observe the same effect, though
it is way fainter. We can also see that although the overall performance is very poor,
some nodes with between 9 and 13 variables in S1 get all their iterations saved (meaning
the initial dual point is good enough to prune the node).

Let us remark additionally that Figure 5.5 also shows that problems with ρ = 0.92
are more difficult than for ρ = 0.8. Indeed, in both cases, the considered instances have
a true support size of 9. For ρ = 0.8, no node with more than 10 selected variables is
created, whereas for ρ = 0.92, nodes with up to 16 selected variables are created, showing
that the algorithm has more difficulty in identifying the correct support size. In other
words: it is more difficult to prune nodes with a bigger support than the true one.

Next, if we look at the problems of moderate difficulty (ρ = 0.7), we can see the
same trend linking performance to the size of S1. For |S1| = 9 and |S1| = 10 we see an
"all-or-nothing" behaviour: we either save almost all the iterations, or no iteration at all.
This behaviour may be a hint that we reached a point where it is very simple to prune
nodes that should be pruned.

For large size problems (ρ = 0), the "all-of-nothing" effect is actually present for each
category, meaning nodes which should be pruned are pruned very quickly when using the
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Figure 5.5 – Results for duality-based early pruning: ratio of saved sub-iterations as a
function of the number of non-zero variables at the corresponding node, for four correlation
levels in matrix A and problem sizes. The cardinality of the solution is K = 9. Each
box shows the first and third quartiles on the fraction of saved iterations, the red dash
indicates the median value, and black dashes indicate the extreme values.

dual. Moreover, there is only one node with |S1| = 8 and one other with |S1| = 9. This
means we were able to prune all the "wrong" nodes before reaching the true cardinality
of 9.

5.3 Tradeoff lower bound estimation accuracy versus
estimation time

5.3.1 Principle

In this Section, we further leverage the dual objective to accelerate the lower bound
algorithm in the case of a non-prunable node (that is, a node which must be divided).
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Indeed, in the previous section, we use dual values to take quicker decisions to prune
nodes. If a node must not be pruned (right part of Figure 5.1), we run the optimization
algorithm until it reaches optimality. However, as the dual objectiveD(wk) is a valid lower
bound, we can also stop the algorithm before convergence, and take the value of D(wk) as
a valid lower bound. If we stop late, we won’t save a huge number of iterations. If we stop
too early, a quality problem happens. Interestingly, once we know that we won’t prune a
node, the exact value of the lower bound is only used for certain explorations strategies,
so we could accept with a very crude approximation of the minimum of Problem (PN

2+1).
However, the branching rule (3.17):

i = arg max
i∈S̄

|(xN
lb)i| (3.17)

uses the minimizer of Problem (PN
2+1).

If we stop at iteration k, we will use D(wk) as a lower bound, and xk as a solution.
If we stop too early, xk will be quite different from x? the minimizer of Problem (PN

2+1),
and we will take poor branching decisions. So there is a trade-off between accelerating
the `1 problems and keeping good performance on the `0 problem.

5.3.2 Expression

We will use the duality gap as a stopping criterion to track how early we stop the
algorithm. In other words, once the duality gap falls below a given threshold, we stop
iterating and use the current D(wk) as a lower bound.

Using an absolute threshold, like P (xk) − D(wk) < 10−2 as a stopping criterion, is
not really satisfactory. Indeed, if P (xk) = 100, reaching the stopping criterion means
that D(wk) is within 1% of the value of P (xk), whereas if P (xk) = 10 000, reaching the
stopping criterion means that D(wk) is within 1 �, or 0.01%, of P (xk). Instead, we
will favour a relative threshold, for a stopping criterion of the form of P (xk)−D(wk) <
γP (xk), where γ is a relative gap to be met. In the case where P (xk) is very close to
zero, numerical issues may arise. To overcome this, we add a small absolute threshold to
act as a safeguard. The definitive stopping criterion is then:

P (xk)−D(wk) < γP (xk) + 10−8. (5.16)

In practice, the values of γ will typically lie in the interval [10−8, 10−1].

5.3.3 Numerical experiments and results

In this section, we will investigate how different values of the parameter γ in (5.16)
affect the performance of the branch-and-bound. We use the same datasets as in Sec-
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tion 5.2.4. As a recall, the homotopy continuation algorithm is used for ρ ∈ {0.7, 0.8, 0.92},
while the coordinate descent algorithm is used for ρ = 0.

Figure 5.6 shows the performance of the technique for ρ = 0.92 (left) and ρ = 0.8
(right). Three metrics are considered: the total time required to solve the problem (top),
the total number of nodes to solve the problem (middle), and the ratio between both,
meaning the average computation time per node (bottom). Results for each instance
(thigh colored lines) are plotted against these metrics for different values of γ, ranging
from 10−1 (left of the axis) to 0 (right of the axis), and their average is plotted as a black
dashed line. Looking at the solving time (top), we can see that while some values of γ are
clearly not optimal (γ ∈ {10−1, 10−2} for ρ = 0.92, γ = 10−1 for ρ = 0.8), there is a range
of values of γ that leads to satisfactory results. In particular, completely disabling the
technique (γ = 0) is neither worse nor better than using it in the range γ ∈ [10−8, 10−3].
What is particularly interesting is that the curves are not just flat on the solving time
metric, but also on the number of created nodes (middle) and the average time per node
(bottom). The fact that the setting of γ has no significant impact on both the average
computing time per node and the number of created nodes for the range [0, 10−3] means the
number of iterations of the algorithm does not significantly change between two different
values of γ within the range [0, 10−3]. This means there are only few iterations of the
algorithm where the duality gap lies in the interval given by γ ∈ [10−8, 10−3].

Figure 5.7 shows the performance of the technique for ρ = 0.7 (left) and ρ = 0 (right).
Looking at the solving time (top), there is a slight advantage for γ = 10−2 for ρ = 0.7.
For ρ = 0, there is no significant change in the range γ ∈ [0, 10−2], which can also be
seen when looking at the total number of created nodes (middle) and the average time
per node (bottom).

While the results of Figure 5.6 and Figure 5.7 show that allowing inexact conver-
gence does not improve the overall efficiency, this technique will have more impact in the
structured sparsity case (Chapter 9 on page 121).
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Figure 5.6 – Results of inexact convergence monitoring for small size problems (ρ ∈
{0.8, 0.92}, Q = 100), one color per instance, the dashed line being the mean. All curves
are plotting the performance of values of γ (horizontal axis, in decreasing magnitude)
against three different metric: the total time to solve the problem to optimality (top),
the number of nodes created to solve the problem (middle), and the average time spent
on each node (bottom). The homotopy continuation algorithm is used for both ρ = 0.92
and ρ = 0.8. The point γ = 0 corresponds to exact convergence.
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Figure 5.7 – Results of inexact convergence monitoring for moderate size (ρ = 0.7, Q =
1 000) and large size (ρ = 0, Q = 100 000) problems, one color per instance, the dashed
line being the mean. All curves are plotting the performance of values of γ (horizontal
axis, in decreasing magnitude) against three different metric: the total time to solve the
problem to optimality (top), the number of nodes created to solve the problem (middle),
and the average time spent on each node (bottom). The homotopy continuation algorithm
is used for ρ = 0.7, while the coordinate descent algorithm is used for ρ = 0. The point
γ = 0 corresponds to exact convergence.
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5.4 Gap-Safe screening

5.4.1 Introduction

In the mathematical programming field, a screening method aims to find the optimal
value of some variables before a given optimization algorithm ended. This way, the op-
timization algorithm keeps running with less variables. In the generic context of sparse
optimization, a screening method will fix some variables to zero. The other variables
remain to be estimated through a given optimization algorithm. In the case of Prob-
lem (PN

2+1), a screening method will fix some variables to 0, +M or −M .

Typology Screening methods [Bonnefoy et al. 2014; Dantas et al. 2019; El Ghaoui
et al. 2010; Fercoq et al. 2015; Kuang et al. 2017; Liu et al. 2013; Ndiaye et al. 2017;
Ren et al. 2017; Tibshirani et al. 2010; J. Wang et al. 2015; Y. Wang et al. 2013; Xiang
and Ramadge 2012; Xiang, Y. Wang, et al. 2014; Xiang, Xu, et al. 2011; Xianli et al.
2018; Yoshida et al. 2019; Zeng et al. 2020; W. Zhang et al. 2018; Zimmert et al. 2015]
are usually categorized along two dimensions: their safety guarantees, and their coupling
degree with an optimization algorithm. For the safety part, we distinguish between safe
and strong screening. A safe screening guarantees that the screened variables are actually
set at their optimal value. Conversely, a strong screening does not provide this kind
of guarantee, but can fix more variables. For the coupling degree part, we distinguish
between static, sequential and dynamic screening. The community around the penalized
LASSO (P2+1) problem contributed to popularize the screening methods, starting from
the seminal paper [El Ghaoui et al. 2010]. In the context of the penalized LASSO (P2+1):

min
x

1
2‖y −Ax‖2

2 + λ‖x‖1, (P2+1)

static screening [El Ghaoui et al. 2010; Xiang and Ramadge 2012; Xiang, Y. Wang, et
al. 2014; Xiang, Xu, et al. 2011] fixes some variables to 0 before optimization occurs,
using just the data y, the matrix A and the regularization parameter λ. After fixing
variables, the optimization algorithm is run on the remaining variables (thus on a reduced
problem). Sequential screening [Liu et al. 2013; J. Wang et al. 2015] was developed in
the same context, where an instance is solved several times with different values of λ. In
this case, sequential screening acts like static screening, in the sense that it runs before
the optimization algorithm for a given value of λ. The difference lies in the quantities
used to fix variables to zero. Instead of relying only on y,A, λ, sequential screening uses
additionally the optimal solution got from optimizing the problem for a greater value of
the regularization parameter λ0 > λ. This allows sequential screening to achieve better
performance, however it requires solving problems with λ0 > λ to optimality, which can
be complex to do in practice [Xianli et al. 2018]. Dynamic screening methods [Bonnefoy
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et al. 2014; Fercoq et al. 2015; Ndiaye et al. 2017; Raj et al. 2016] follow another path.
They work by using a feasible dual point for the problem with the target λ. As their
only requirement is a feasible dual point, we can generate several dual points and apply
a dynamic screening several times, hoping to fix more variables to zero. In practice, this
allows dynamic screening to be inserted within the optimization algorithm.

In our case, we would like to apply a screening method to Problem (PN
2+1), but we need

to retrieve its minimum, otherwise we may not have a valid lower bound. Consequently,
we are restricted to safe screening methods. Moreover, we need a screening which can be
adapted to Problem (PN

2+1), which is not the standard penalized LASSO Problem (P2+1).

There are plenty of safe screening methods designed for the LASSO [Bonnefoy et al.
2014; Dantas et al. 2019; El Ghaoui et al. 2010; Fercoq et al. 2015; Liu et al. 2013; Ren et
al. 2017; J. Wang et al. 2015; Xiang and Ramadge 2012; Xiang, Xu, et al. 2011; Xianli et
al. 2018], some of which use the precise geometry of the dual problem [J. Wang et al. 2015;
Xiang and Ramadge 2012; Xianli et al. 2018], making them difficult to adapt to even slight
variations of the LASSO problem. Other approaches, like Gap-Safe screening [Fercoq et
al. 2015; Ndiaye et al. 2017; Raj et al. 2016], use more generic analytical properties of the
problem and are easier to adapt, therefore they we will used for Problem (PN

2+1).

5.4.2 Screening rules for lower bound optimization problems

Screening rules are derived from the KKT optimality conditions, more precisely from
condition (5.6b). From the expression of g in Problem (5.1), its sub-differential reads:

ν ∈ ∂g(x) = ∂
(
µ
M
‖xS̄‖1

)
+ ∂

(
I[−M,M ]Q(x)

)
.

As it is separable, its i-th component reads:

∀i ∈ S̄, νi ∈ ∂
(
µ
M
|xi|

)
+ ∂

(
I[−M,M ](xi)

)
and ∀i ∈ S1, νi ∈ ∂

(
I[−M,M ](xi)

)
,

with ∂|xi| =
 sign(xi) if xi 6= 0

[−1, 1] if xi = 0
and ∂I[−M,M ](xi) =


[0,+∞[ if xi = M

0 if |xi| < M

]−∞, 0] if xi = −M
.

Therefore, we can derive the following screening rules:

Lemma 5.4.1. Let x? the minimizer of the primal problem (PN
2+1) and w? the mini-

mizer of its corresponding dual problem (DN
2+1), we have the following screening rules for
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Problem (PN
2+1):

∀i ∈ S̄, if |aTi w?| > µ
M
, then x?i = −M sign(aTi w?); (5.17a)

∀i ∈ S̄, if |aTi w?| < µ
M
, then x?i = 0; (5.17b)

∀i ∈ S1, if aTi w? 6= 0, then x?i = −M sign(aTi w?). (5.17c)

Proof. The optimality condition −ATw? ∈ ∂g(x?) can be separated into the following
cases: 

∀i ∈ S̄ with x?i = M, −aTi w? ∈ [ µ
M
,+∞[

∀i ∈ S̄ with x?i ∈ ]0,M [, −aTi w? = µ
M

∀i ∈ S̄ with x?i = 0, −aTi w? ∈ [− µ
M
, µ
M

]

∀i ∈ S̄ with x?i ∈ ]−M, 0[, −aTi w? = − µ
M

∀i ∈ S̄ with x?i = −M, −aTi w? ∈ ]−∞,− µ
M

]

∀i ∈ S1 with x?i = M, −aTi w? ∈ [0,+∞[

∀i ∈ S1 with x?i ∈]−M,M [, −aTi w? = 0

∀i ∈ S1 with x?i = −M, −aTi w? ∈]−∞,−0]

. (5.18)

From Equation (5.18), the rules of Lemma 5.4.1 follow.

The rules of Lemma 5.4.1 are valid and safe for the optimal dual point w?, meaning
for example that if we have for some i ∈ S̄, |aTi w?| < µ

M
, then we can set xi to zero and

this will be its optimal value (x?i will be zero at the end of the optimization procedure).
However, to be able to do that, we must know w?. In practice, finding w? may be as
difficult as finding x?, so the screening rules in Lemma 5.4.1 are not usable as-is.

Instead, in the same vein as [Bonnefoy et al. 2014; Ndiaye et al. 2017; Raj et al. 2016;
J. Wang et al. 2015; Xiang, Xu, et al. 2011], we use what the screening literature calls a
safe region, generally written R. This safe region is built from a feasible dual point w,
and uses some regularity properties of the problem at hand to draw a region of the dual
space which contains the optimal dual point w?, in a guaranteed way for safe screening (or
with good probability for strong screening). If every point in the region R obeys a given
rule of Lemma 5.4.1, then we can fix the corresponding xi to its optimal value. Testing
over all points of R would be prohibitively expensive, so a simple region is considered, a
sphere, and checking the validity of a given rule for each point of the sphere will be done
through a single test.

Indeed, for every dual point w, we have (using triangle inequality):

|aTi w?| = |aTi w? − aTi w + aTi w| ≤ |aTi w? − aTi w|+ |aTi w|. (5.19)
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As a recall, we assume that the columns of matrix A have unit `2 norm. Then, using the
Cauchy-Schwarz inequality, we have:

|aTi w? − aTi w| ≤ ‖ai‖2‖w
? −w‖2 = ‖w? −w‖2,

so that |aTi w?| ≤ |aTi w|+‖w? −w‖2. This means that if we have for some i ∈ S̄, |aTi w|+
‖w? −w‖2 <

µ
M
, then |aTi w?| < µ

M
and we can set x?i = 0 from (5.17b). In practice, as

we do not know ‖w? −w‖2, we will bound it by the radius r of a sphere centered on w:
R = B(w, r). This gives us a test usable in practice for rule (5.17b).

For rules (5.17a) and (5.17c), using reverse triangle inequality:

|aTi w?| = |aTi w + aTi w? − aTi w| = |aTi w − (−aTi w? − aTi (−w))|
≥ |aTi w| − | − aTi (w? −w)|︸ ︷︷ ︸

≤‖ai‖2‖w?−w‖2

≥ |aTi w| − ‖ai‖2‖w
? −w‖2 = |aTi w| − ‖w? −w‖2.

(5.20)

From these properties, we can write screening tests which are usable in practice:

Theorem 5.4.2. Given a safe sphere region w? ∈ R = B(w, r), we have:

∀i ∈ S̄, if |aTi w| > µ
M

+ r, then x?i = −M sign(aTi w); (5.21a)
∀i ∈ S̄, if |aTi w| < µ

M
− r, then x?i = 0; (5.21b)

∀i ∈ S1, if |aTi w| > r, then x?i = −M sign(aTi w). (5.21c)

Proof. The proof follows the standard screening proofs such as the ones in [El Ghaoui
et al. 2010]. As w? ∈ B(w, r), we have ‖w? −w‖2 ≤ r. For rule (5.17a), we use
Equation (5.20) stating that |aTi w?| ≥ |aTi w| − ‖w? −w‖2. As ‖w? −w‖2 ≤ r holds,
we have |aTi w?| ≥ |aTi w| − r. This means that if |aTi w| − r > µ

M
⇐⇒ |aTi w| > µ

M
+ r

holds, we have |aTi w?| > µ
M
, therefore x?i = −M sign(aTi w?). As the rule holds for every

point in R, this implies there is no change of sign inside the sphere (otherwise we would
have some points w0 with aTi w0 close to zero, therefore not fulfilling the rule), meaning
that sign(aTi w?) = sign(aTi w), so x?i = −M sign(aTi w).

For rule (5.17b), we use Equation (5.19) which gives |aTi w?| ≤ |aTi w|+ ‖w? −w‖2 ≤
|aTi w| + r. This means that if we have |aTi w| + r < µ

M
⇐⇒ |aTi w| < µ

M
− r, then

|aTi w?| < µ
M

holds and x?i = 0.
For rule (5.17c), we rewrite it as |aTi w?| > 0 and use again Equation (5.20).

To get an actual screening test, we must be able to express the sphere radius r. We
will resort to the Gap-Safe sphere, as detailed in the next section.
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5.4.3 Gap-Safe sphere

Gap-Safe screening uses the regularity of the problem to give a safety guarantee, thus
a sufficiently high radius r for a safe sphere, through the duality gap. The following
proposition uses the standard argument of GapSafe screening tests [Raj et al. 2016]:

Proposition 5.4.3. Using an arbitrary dual point w and an arbitrary primal point x, we
can use r =

√
2G(x,w) in the tests (5.21) to get safe tests, with G(x,w) := P (x)−D(w).

Proof. Using an arbitrary primal-dual pair (x,w) ∈ [−M,M ]Q × RN , we have:

G(x,w) := P (x)−D(w)
≥ P (x?)−D(w) = D(w?)−D(w) = −f ∗(w?)− g∗(−ATw?) + f ∗(w) + g∗(−ATw).

Since f ∗ in Problem (5.2) is 1-strongly convex, we have:

f ∗(w) ≥ f ∗(w?) +∇f ∗(w?)T (w −w?) + 1
2‖w −w

?‖2
2.

Since g∗ in Problem (5.2) is convex, we have:

g∗(−ATw) ≥ g∗(−ATw?) +
(
∂g∗(−ATw?)

)T
(−ATw + ATw?).

Therefore, we have:

G(x,w) ≥ −f ∗(w?)− g∗(−ATw?)
+ f ∗(w?) +∇f ∗(w?)T (w −w?) + 1

2‖w −w
?‖2

2

+ g∗(−ATw?) +
(
∂g∗(−ATw?)

)T
(−ATw + ATw?),

= ∇f ∗(w?)T (w −w?) +
(
∂g∗(−ATw?)

)T
(−ATw + ATw?) + 1

2‖w −w
?‖2

2.

Due to the first optimality conditions, we have:

∇f ∗(w?)T (w −w?) +
(
∂g∗(−ATw?)

)T
(−ATw + ATw?) ≥ 0.

Consequently, we have G(x,w) ≥ 1
2‖w −w

?‖2
2 ⇐⇒ ‖w −w?‖2 ≤

√
2G(x,w). Thus,

we have w? ∈ B(w,
√

2G(x,w)), and the Proposition follows.

5.4.4 Upper bound trick

We now consider a refinement over the Gap-Safe screening detailed in Section 5.4.3.
We use the Gap-Safe sphere with radius r =

√
2G(x,w), that we can also write as

r =
√

2(P (x)−D(w)). While the tests (5.21) depend on the dual point w, the only
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dependence on x is for the value of P (x). This means that as long as we have a valid
primal value P (x), we do not need to know the corresponding primal point x giving this
value.

As a recall, ub is the best upper bound found so far in the branch-and-bound. The
intent is then to use ub in the radius expression r if the current primal P (x) is higher. If
the current node is in the case of Nunpruned in Figure 5.1 (right), then we have for x the
current iterate P (x) ≥ ub ≥ P (x?) and we can use ub as our primal value without losing
the screening safety, because there exists an x such that P (x) = ub.

If the current node is in the case of Npruned in Figure 5.1 (left), then we have P (x) ≥
P (x?) > ub. In this case, using ub instead of P (x) can lead the screening tests to discard
the optimal point x?, and the descent algorithm operating on the remaining variables will
converge to a point x̂ such that P (x) ≥ P (x̂) > P (x?) > ub: P (x̂), is not a valid lower
bound for the node. However, as P (x?) > ub, this node should be pruned. Fortunately, as
P (x̂) > P (x?) > ub, taking P (x̂) instead of P (x?) will lead to the same pruning decision
for this node.

Summing up, when using ub instead of P (x) in the radius r, for nodes such as
Nunpruned, the screening is safe and we will get the correct lower bound value lbN, and
for nodes such as Npruned, we will take the correct pruning decision, even if the screening
discards too many components. We will use that in practice to replace the radius of the
sphere from r =

√
2(P (x)−D(w)) to r =

√
2(p−D(w)) where p = min(P (x), ub).

5.4.5 Numerical experiments and results

Dataset We consider the same datasets than in Section 5.2.4. In particular, we keep
the same setup of synthetic datasets with ρ ∈ {0, 0.7, 0.8, 0.92}, 10 instances for each
value of ρ. The homotopy continuation algorithm is used for ρ ∈ {0.7, 0.8, 0.92}, while
the coordinate descent algorithm is used for ρ = 0.

Results Figure 5.8 shows the performance of the screening applied dynamically at each
sub-iteration, the metric considered is the percentage of variables fixed to zero (no variable
was screened to ±M in our experiments, probably because M was chosen large enough).
The results are average percentages for all the nodes with a given number of active vari-
ables |S1|, the nodes being either grouped by instance (diamond points) or aggregated
across all instances (dashed line). First, a noteworthy observation lies in the evolution
of the performance with |S1|. While for the early pruning detailed in Section 5.2 perfor-
mance improves with increasing |S1|, we can see the opposite behaviour here. This may
be due to the fact that as |S1| increases, we have less nodes, and as we get deeper in
the tree, we are following branches containing good solutions where it becomes harder to
discriminate between "good" and "bad" atoms at first glance. Then, we can see that the
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performance clearly depends on the correlation level ρ: the less correlated, the better,
from almost 100% screened variables for nodes with |S1| = 0 for ρ = 0 to about 3% for
ρ = 0.92. The performance fall is particularly visible between ρ = 0.8 and ρ = 0.92,
as we lose an order of magnitude. This general behaviour was expected. Indeed, when
taking the dual point w = Ax − y, the screening method is trying to highlight atoms
(columns) of A which have such a small correlation with the residual that it should be
discarded from the solution. If ρ is close to 0, atoms are lowly correlated to each other,
and the screening is at ease. If ρ is close to 1, then atoms tend to be highly correlated to
each other. In such a context, an atom has either a high correlation with the residual, or
no atom correlates with the residual the current iterate is close to the optimal solution,
making the screening unable to discard variables before reaching optimality. On average,
the percentage of screened variables is at 1% for ρ = 0.92, 8.92% for ρ = 0.8, 61.3% for
ρ = 0.7 and 95.6% for ρ = 0.
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Figure 5.8 – Screening performance as a function of the number of non-zero variables at
the corresponding nodes for four correlation levels in matrix A and problem sizes. The
cardinality of the solution is K = 9. For each instance, one point represents the average
ratio of screened variables over the nodes with cardinality |S1|. The dashed line shows
the average ratio of screened variables over all instances. The homotopy continuation
algorithm is used for ρ ∈ {0.7, 0.8, 0.92}, while the coordinate descent algorithm is used
for ρ = 0.

77



Accelerate lower bound estimation in the branch-and-bound

5.5 Discussion
Conclusion In this chapter, several contributions were developed to accelerate lower
bound computations, namely:
— use the dual problem objective function of Problem (PN

2+1) as an early lower
bound to prune node as soon as possible;

— use same dual problem to stop an optimization algorithm before convergence
while keeping control of the approximation quality;

— leverage the duality gap in a GapSafe screening tailored to our problem;

— show through numerical experiments the potential of each technique, which are
all influenced by the correlation level ρ.

Perspectives Several aspects of this chapter dedicated to lower bound accelerations
could be further investigated. On the early pruning side, we could extend the numerical
study with children node pruning, called node screening in [Guyard et al. 2022], to see
in which part of the branch-and-bound tree it performs better, in the hope of identifying
zones where we should apply pruning and zones where it is not worth the effort.

A similar zoning strategy could be used for screening as well, given that screening
tests have a computational cost. Additionally, more aggressive strategies could be used.
Indeed, we need to get the optimal primal solution x? at the end of the optimization. A
safe screening strategy guarantees that x? remains in the feasible space at each iteration,
whereas we only need x? to be in the feasible space at the last iteration. We can use a
two-stage method to this end. The first stage can be a strong, unsafe screening for the
first iterations, and once we converged in this unsafe setup, rollback the strong screening
decisions, apply a safe screening method, and continue iterating in a safe setup that
constitutes our second stage. We hope that in this case, the strong screening will at the
same time discard a lot of variables so that the unsafe setup is quick the converge, and
that it converges to a "not so bad" x̂ which can reach x? quickly in the safe setup. Instead
of a strong screening for the unsafe setup (the first stage), we can use an active set method
where we solve subproblems with few variables. Some active set methods were derived
from Gap-Safe screening [Massias 2017] where we use a contracted version of the Gap-Safe
sphere:

√
1
2G(x,w) instead of

√
2G(x,w) for example. This could be a convenient way

to further leverage Gap-Safe screening in our branch-and-bound framework.
Moreover, the three techniques of this chapter, namely early pruning, dual-monitored

inexact convergence and screening methods are extensively using the dual problem, for its
objective function as well as for its iterates. As shown in Section 5.2.3, different primal
and primal-dual optimization algorithms lead to different dual iterates, with very different
objective values. Therefore, it can be interesting to further explore possibilities to refine
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a given dual iterate to improve its objective function. Solving exactly the dual problem is
as difficult as solving the primal problem, but heuristic search could help to quickly get a
"good" dual point, enough to either prune the node or screen variables.
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Structured sparsity
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Chapter 6

Review of structured sparsity
problems and algorithms
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6.1 Introduction

In Part I we have seen several methods handling sparsity on the variables of x: we
want to the majority of the variables to be zero, or conversely to get a small number of
variables to some non-zero value. Structured sparsity extends this approach by targeting
not just individual variables but groups of variables. Given prescribed groups, we want
a solution with a lot of these groups to zero, or conversely a small number of them to
be non-zero (see Figure 6.1 for an example). As we shall see in Chapter 7, these two
viewpoints (a lot of zeros or a small number of non-zeros) do not have exactly the same
meaning.

In the general case, groups can be of varying size, and groups can overlap, meaning
they can have a non-empty intersection (see Figure 6.2 for an example). "Structured
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y A x

Figure 6.1 – An example of structured sparsity without overlap: all groups are disjoint.
Here, g2 and g5 are present in the solution x.

y A x

Figure 6.2 – An example of structured sparsity with overlap: some groups are intersecting
with others (g1 with g2, g3 with g2, g4 with g5). Here, g1, g3 and g4 are present in the
solution x.
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sparsity" refers to this general case. Other terms do exist in the literature, such as "group
sparsity", which refers to a non-overlapping setup [Bach et al. 2012]. Consequently, Group
LASSO [Yuan et al. 2006] is to the group sparsity case what LASSO is to the scalar sparsity
case. As we will see in Chapter 8, overlapping groups make the problem more difficult,
and even convex relaxations are trickier to optimize.

For the mathematical notation side, g will usually denote a group, that is, a set
of components. Vector xg denotes the vector x restricted to the components in group
g. The scalar sparsity term ‖x‖0 can also be written as ∑i∈{1,..,Q} 1xi 6=0. This term
quite naturally extends to structured sparsity with ∑g∈G 1xg 6=0 where G defines the set of
groups. Consequently, we write the structured sparsity counterpart of Problem (PM2+0):

min
x∈RQ

1
2‖y −Ax‖2

2 + µ‖x‖0 s.t. ‖x‖∞ ≤M (PM2+0)

which as not been given in the literature to the best of our knowledge, as:

min
x

1
2‖y −Ax‖2

2 + µ
∑
g∈G

1xg 6=0 s.t. ‖x‖∞ ≤M. (P2+0s)

In the remainder of this chapter we will review some application problems using struc-
tured sparsity in Section 6.2 as well as existing methods to tackle these problems in
Section 6.3.

6.2 Applications

This section provides some non-exhaustive list of application examples of structured
sparsity found in the literature.

6.2.1 Structured hyperspectral unmixing

Section 3.2.2 (page 22) already mentioned the use-case of hyperspectral imaging, where
we wish to recover the proportion of materials in a pixel, given a measured discretized
spectrum with materials mixed together [Ben Mhenni, Bourguignon, Ninin, and Schmidt
2018]. Some materials do have polarity properties, meaning a single material can lead to
several spectra [Iordache et al. 2011]. One way to deal with this is to stack the different
spectra of a given material in one group. The optimization task is then to untangle
materials from the measurements, knowing there is a small number of materials (so a
small number of groups) in the scene.
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6.2.2 Sparse spectral analysis

When a measured signal is known to have a sparse Fourier transform, a natural way
to analyse or recover it is to look for a sparse decomposition in the Fourier domain [Bour-
guignon, Carfantan, et al. 2007]. For the magnitude of the Fourier transform, which is
real-valued, this can be done with the branch-and-bound algorithm of Part I. For tack-
ling the Fourier transform (including magnitude and phase), which is complex-valued, it
has been shown in the `1 case [Bourguignon, Carfantan, et al. 2007] that breaking the
complex numbers c ∈ C into two real numbers (Re(c), Im(c)), without any structure or
relationship holding them together, leads to poorer results than taking into account the
grouping introduced by complex numbers.

In our setting, such task would be done by transforming each complex number into
a real pair, each pair corresponding to a group. Getting a solution with a small num-
ber of groups means getting a solution with few nonzero complex numbers. Structured
sparsity has also been used to retrieve solutions which are sparse in the time-frequency
plane [Kowalski et al. 2009].

6.2.3 Factor selection

In some applications in statistics we wish to get some variable reduction as in Sec-
tion 3.2.3 (page 23), but these variables are organized into cohesive blocks. A factor is
then one of those blocks, and we wish to retrieve a model fitting the data with few factors
(see for example [Cong et al. 2017; Yuan et al. 2006]). For example, in [Yuan et al. 2006],
authors the fuse different modalities of a categorical factor (for example for the factor
"color", modalities can be "black", "white" or "other") into a group for each factor, the
aim being to be able to discard factors which have no influence on the final outcome.
The application of this model reduction is then as general as the variable selection one
presented in Section 3.2.3.

6.2.4 Hierarchical selection

Hierarchical selection is a regularization structure where activating some groups imply
activating some others (see [Bach et al. 2012; Jenatton et al. 2011] and references therein).
As pointed out in [Bach et al. 2012], this type of regularization enjoys some use in topic
modelling, wavelet decomposition, and gene networks tasks, to name a few. The general
idea of hierarchical selection is that including some variable xj in the solution requires
including some other variable xi. This example can extend to more than one implied
group. If we graph the implication network, with each variable being a node, and a node
xi being linked to xj if xj =⇒ xi, a hierarchical selection then corresponds to a tree, as
shown in Figure 6.3 (Figure 6.3 is taken from paper [Bach et al. 2012]).
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Figure 6.3 – A hierarchical sparsity example. Setting variable 2 to 0 implies setting
variable 4 to 0 as well. This figure is taken from [Bach et al. 2012].

Figure 6.4 – An example of M/EEG task, with three activated neuron clusters (in red,
green and blue) to reconstruct from measurements. Figure taken from [Gramfort et al.
2012]

A way to model this kind of implication constraints is to put groups enclosing each
other. As shown in Figure 6.3, we create a group for each variable, this group containing
the corresponding variable as well as all its descendants in the hierarchical tree.

6.2.5 Magneto and Electro-encephalography (M/EEG)

In M/EEG, we are looking for the activation of some neuron clusters in the brain (see
Figure 6.4 for an example, taken from [Gramfort et al. 2012]). As there are many more
sources of electric power in the brain (many neuron clusters) than sensors, the problem is
underdetermined and difficult to tackle (see [Gramfort et al. 2012] and references therein).
To promote sources which are both spatially concentrated and continuously activated
during the time of acquisition, a regularization on both space and time is used, leading
to mixed norms like we mentioned previously, called two-level mixed norms, but also
three-level mixed norms [Gramfort et al. 2012], which are out of scope of the present
work.
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6.3 State-of-the-art methods

Like in Part I, state-of-the-art methods solving approximately the original `0 problem
can be categorized into three groups: convex relaxations, `0 heuristics, and non-convex
relaxations.

6.3.1 Convex relaxations: mixed norms

The original problem (P2+0s) is NP-Hard, discontinuous, non-convex. In a similar
fashion to methods presented in Section 3.3.1 (page 25), convex relaxations of the original
problem can be used. In this case, the term 1xg 6=0 is relaxed by using a `q norm: ‖xg‖q.
In general, the choice of q = 2 is made, meaning we wish to solve the following problem:

min
x

1
2‖y −Ax‖2

2 + λ
∑
g∈G
‖xg‖2. (6.1)

This problem is called the Group LASSO [Yuan et al. 2006]. The sum can be seen as an
`1 norm of the vector: 

‖xg1‖2

‖xg2‖2
...

 ,
therefore we say Problem (6.1) is a mixed norm problem, in this case with a `1− `2 mixed
norm [Gramfort et al. 2012]. When the different groups are disjoint, the proximal operator
is analytical, and proximal algorithms of Section 3.3.1 can be used as-is (see Chapter 8
for more details). However, when groups are overlapping, no analytical expression of the
proximal operator is available.

Let’s note that when solving Problem (6.1) some groups will be set to zero, and the
solution x will be composed of the variables belonging to non-zero groups only [Bach
et al. 2012; Jenatton et al. 2011]. In other words, the solution zeros are formed by the
union of the zero groups. Another approach, latent LASSO in the context of convex
relaxations, consists in defining the solution zeros by the intersection of the zero groups
(see Problem (6.2)). When groups are overlapping, this means a variable is non-zero when
at least one group including this variable is active (non-zero). In Figure 6.2, this would
mean the active groups are g1 and either g3 or g4. In contrast, in Problem (6.1), for a
variable to be non-zero we need all groups including it to be active. In Figure 6.2, this
means the active groups are g1, g3 and g4. Latent LASSO [Obozinski et al. 2011] has seen
some fruitful applications in M/EEG [Gramfort et al. 2012], and more generally to graph
sparsity applications [Huang et al. 2011], and is formulated as:

min
x∈RQ,Z∈RQ×|G|

1
2‖y −Ax‖2

2 + λ
|G|∑
i=1
‖zi‖2 s.t. x =

|G|∑
i=1
zi. (6.2)
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The reader is referred to [Obozinski et al. 2011] and references therein for the optimization
algorithms solving Problem (6.2).

6.3.2 Heuristics on the `0 problem

Local search algorithms have also been designed to give approximations of the solution
to Problem (P2+0s). All these algorithms are tackling the constrained version of the `0

structured sparsity (or some extension of it), which write in our setting as Problem (P2/0q):

min
x∈RQ

1
2‖y −Ax‖2

2 s.t.
∑
g∈G

1xg 6=0 ≤ K. (P2/0q)

Variants of the Orthogonal Matching Pursuit have been designed in [Eldar et al. 2010;
Huang et al. 2011], where [Eldar et al. 2010] is dedicated to the fixed size and non-
overlapping case, and [Huang et al. 2011] tackles the overlapping case, using an union of
groups approach as in the Latent LASSO. In [Fujii et al. 2018], authors tackle a more
generic problem of combinatorial sparsity, where the set of possible supports is not con-
strained by a cardinality constraint, but by a more involved definition of the feasible set
(for example, allowing {g1, g2} as a support but not {g1, g3}, even if both supports are of
size 2). In [Krause et al. 2010] and [Cong et al. 2017], authors respectively developed a
forward (like OMP, adding atoms iteratively) and a forward-backward (adding and delet-
ing atoms iteratively) greedy algorithm in the (also more general) dictionary selection
context, where both the features x and the dictionary A are learned.

Outside of the world of greedy algorithms, a variant of Iterative Hard Thresholding
was designed in [Baraniuk et al. 2010] to tackle Problem (P2+0s). To the best of our
knowledge, the literature tackling the Problem (P2+0s) is scarce.

6.3.3 Non-convex approaches

The field of structured sparsity through non-convex formulations is an ongoing research
topic which is not yet as mature as its scalar sparsity counterpart. It appears the field
emerged a decade ago, with authors in [H. Wang et al. 2013] tackling the problem of
dictionary learning (meaning x and A are both unknowns to be recovered) by a structured
sparsity prior with a non-convex surrogate, namely an mixed `q norm with 0 < q < 1.
Authors in [D. Wang et al. 2016] propose a numerical comparison of several algorithms
doing the same task (dictionary learning) with the same non-convex term (`q, 0 < q < 1
penalty).

A non-convex penalty in the form of a logarithmic based penalty for the problem of
blind structured sparsity is used in [Lazzaro et al. 2015]. The blind aspect means the
groups are not known in advance. In the deconvolution setting, the unknown is a vector
of time-domain samples, and structured sparsity usually occurs for grouping together
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several consecutive points into a time segment. For the structured sparsity looked at in
this thesis, we know the position and size of the time segment. For the blind structured
sparsity case, we typically do not know the segment boundaries.

More recently, authors in [X. Zhang et al. 2023] proposed a unified algorithm for solving
structured sparsity problems with several types of non-convex non-separable penalties
including the mixed `q, 0 < q < 1 ones. Their target problem is more general than that
of this thesis, as they formulate a problem where x is not a vector but a matrix, the
(structured) sparsity prior being a (structured) low-rank prior.

6.3.4 Exact `0 optimization

As far as we know, no dedicated method was previously developed for the exact op-
timization of Problem (P2+0s). This work can be considered as a way to fill this gap.
The structured sparsity measure considered in this work extends the scalar sparsity de-
tailed in Part I, therefore we will use a regularizer promoting a small number of active
groups. More involved forms of structured sparsity, for example by specifying explicitly
the allowed supports as in [Fujii et al. 2018], are not addressed here. When developing
a branch-and-bound algorithm for solving Problem (P2+0s), several issues and degrees of
freedom arise compared to the scalar sparsity case in Part I. Chapter 7 presents the differ-
ent issues specific to the structured sparsity case, namely the way to structure the search
space, the way to bound and divide a node, as well as the choices made to tackle them.
Chapter 8 is dedicated to the formulation and numerical resolution of lower bounds, where
some degrees of freedom give rise to several problem formulations which are all extensions
of Problem (PN

2+1):

lbN = min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ

M
‖xS̄‖1 s.t. ‖x‖∞ ≤M,xS0 = 0. (PN

2+1)

Chapter 9 extends the different lower bound accelerations of Chapter 5 to the structured
sparsity case and studies their performance. Finally, Chapter 10 compares the proposed
branch-and-bound algorithm with methods of the state-of-the-art.
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Branch-and-bound algorithm for
structured sparsity
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7.1 Introduction

As far as we know, no algorithm was designed to solve exactly Problem (P2+0s):

min
x

1
2‖y −Ax‖2

2 + µ
∑
g∈G

1xg 6=0 s.t. ‖x‖∞ ≤M. (P2+0s)

Building on the basis of the branch-and-bound algorithm created in [Ben Mhenni 2020]
and further developed in Part I, we propose here several contributions which together form
the skeleton of a sound branch-and-bound algorithm for solving optimization problems
with a structured sparsity regularizer.

We start by detailing how the branch-and-bound algorithm will explore the combi-
natorial search space of the problem in Section 7.2. Then, we focus on the particular
case of overlapping groups in Section 7.3, and how this particular case drives the way to
associate groups to variables for the different subproblems. Upper and lower bounding
of subproblems is formulated in Section 7.4, and branching strategies are discussed in
Section 7.5. Perspectives and areas of future development are drawn in Section 7.6.
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7.2 Search space

Taking a step back at what was done in Part I, what is the fundamental goal of a
branch-and-bound algorithm? We may answer this question in multiple ways. One view-
point is to say that a branch-and-bound algorithm reduces the combinatorial complexity
of the original problem by making choices, which creates subproblems to be solved. As
such, the choices made by a branch-and-bound algorithm should effectively reduce the
complexity of the problem.

In Part I, we were dealing with problems which are NP-hard just due to the term
‖x‖0 = ∑

i∈{1,...,Q} 1xi 6=0. To reduce the complexity of the problem, we make choices on
whether a given xi is nonzero or zero. In other words, we choose the value of some 1xi 6=0

terms in the previous sum. Here, we consider problems whose NP-hardness comes from
the term∑

g∈G 1xg 6=0. To reduce the complexity of the problem, we apply the same method
as before: make choices on the value of some 1xg 6=0 terms of the sum. This means we
make choices on whether the components xg are part of the support of the solution or
not. We can also consider groups instead of components, and make choices on whether
a given group g is part of the solution or not. To highlight the role of a group in the
final solution, we need a concept which links groups to the final solution, in the same way
the notion of support links variables to the final solution in the scalar sparsity case. To
this end, we introduce the term group support of the solution. The group support of a
solution just designates the active groups of this solution: the groups corresponding to
the variables which are in the support of the solution.

In the scalar sparsity case, we represent a support subspace by using S1, S0, S̄ to define
the indices of the variables which are respectively active, inactive, and undecided at a node
N (see Section 3.4.1 on page 33). In the same vein, we use notations G1, G0, Ḡ for groups:
G1 is then the index set of active groups, G0 is the index set of inactive groups, and Ḡ
the index set of undecided groups.

In Part I, making a choice means dividing a node, which in turn means picking an
undecided variable (a variable belonging to S̄ in the current node) and including it in the
support (putting it to S1) for a child node or excluding from the support of the solution
(putting it to S0) for a another child node. In the context of structured sparsity, we will
apply the same reasoning: we will divide a node by taking an undecided group g ∈ Ḡ

and forcing it to be either part of the solution, putting g to G1, or to be excluded from
the solution, putting g to G0. Figure 7.1 gives an illustration of the behaviour of the
branch-and-bound algorithm in the scalar case compared to the structured case, where
three groups where arbitrarily chosen, with the first group g1 being linked to variables x1

and x3, g2 being linked to variables x1, x2, x4, and g3 being linked to variable x3.
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P

L
2 ∈ S1

R
2 ∈ S0

S̄ = {1, 2, 3}
S1 = ∅
S0 = ∅

S̄ = {1, 3}
S1 = {2}
S0 = ∅

S̄ = {1, 3}
S1 = ∅
S0 = {2}

P

L

g2 ∈ G1

R

g2 ∈ G0

Ḡ = {g1 = {1, 3}, g2 = {1, 2, 4}, g3 = {3}}
G1 = ∅
G0 = ∅

Ḡ = {g1, g3}
G1 = {g2}
G0 = ∅

Ḡ = {g1, g3}
G1 = ∅
G0 = {g2}

Scalar sparsity division (Part I) Structured sparsity division (Part II)

Figure 7.1 – Node division examples, where we branch on the green variable (left) or
group (right).

7.3 Overlapping groups

If the branch-and-bound algorithm makes choices about groups, a natural question
is to wonder what happens to individual variables. In other words, how a change in
the groups partition {G1, G0, Ḡ} influences the variables partition {S1, S0, S̄}. The most
intuitive way is to say that undecided variables are variables belonging to undecided
groups, meaning that S̄ = ∪g∈Ḡ{i ∈ g}, and so on for S1 and S0: S1 = ∪g∈G1{i ∈ g},
S0 = ∪g∈G0{i ∈ G0}. For example, in Figure 7.1 (right), we have for node P: S̄ =
{1, 2, 3, 4}, S1 = ∅, S0 = ∅.

Unfortunately, it is not sufficient in the case of overlapping groups, which are groups
with non-empty intersection. Indeed, as the example in Figure 7.2 (left) shows, a variable
belonging to a group in G1 and to a group in G0 is in an ambiguous state with the
aforementioned rule: should this variable be included in the solution? Excluded from
the solution? Left undecided? There is a choice to be made here, which will impact
the obtained solution. For example, in problems modeled by a latent LASSO approach
(Problem (6.2)):

min
x∈RQ,Z∈RQ×|G|

1
2‖y −Ax‖2

2 + λ
|G|∑
i=1
‖zi‖2 s.t. x =

|G|∑
i=1
zi,

we would typically favour the groups in G1, meaning that x1 in Figure 7.2 (left) belongs to
S1: we favour the activation of variables. We will denote this choice activation-first. The
activation-first strategy is well suited for problems with small groups which are aggregated
together to form a bigger structure, like graph sparsity [Huang et al. 2011]. The other
strategy, exclusion-first, favours the exclusion of variables, as shown in Figure 7.2 (left).
This approach, which is the one of [Jenatton et al. 2011], is especially of interest for

91



Branch-and-bound algorithm for structured sparsity

Figure 7.2 – An overlap example with G1 and G0 (left), and with G1 and Ḡ (right).
Taking the group structure of Figure 7.1, we place ourselves in the situation where g2 is
in G1 and g1 is either in G0 (left) or Ḡ (right). Both groups have the component x1 in
common, therefore it is unclear if x1 must be zero/non-zero (left), or non-zero/undecided
(right). Two choices exist, and we will take the exclusion-first approach, where x1 is put
to 0 (left) and left undecided (right).

hierarchical sparsity [Bach et al. 2012; Jenatton et al. 2011], where some predictors must
be active for other predictors to be activable (there are implication constraints), and is
modelled with groups of large size and groups of small size.

Definition of the variable supports When favouring the exclusion of variables, the
definition of S0 is clear: it contains the indices of all the variables belonging to groups
in G0: S0 := ∪g∈G0g. However, there is still an ambiguity in the definition of S̄ and S1.
Indeed, as shown in Figure 7.2 (right), if a variable belongs to a group in G1 and at the
same time to a group in Ḡ, should this variable go in S̄ or in S1?

We will make a choice based on properties of the supports S1, S0, S̄ in the scalar case.
First, {S1, S0, S̄} constitutes a partition of the variables indices. Second, whenever a
variable is in S0 or S1 in a given node, it remains in the same set in the children nodes.

Looking back at our structured sparsity case, we would like to keep {S1, S0, S̄} as a
partition, which means that the ambiguous variable in Figure 7.2 (right) cannot be at the
same time in S1 and S̄. Also, we would like to keep the property that a variable put into
S1 or S0 in given node will stay at the same place for all its descendants. This means the
variable should be put in S̄ (right part of Figure 7.2). Indeed, as this variable belongs to
an undecided group, this undecided group could be put to G0 in a child node, therefore
the variable will be moved to S0. To make variables in S1 stay in S1 for all descendants,
we need these variables to belong only to groups in G1. The mathematical definition of
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the variable supports is then:

S0 := ∪g∈G0g

S̄ := ∪g∈Ḡ \ S0

S1 := ∪g∈G1 \ S̄ ∪ S0

This way to associate the variables supports S1, S0, S̄ to a given groups support con-
figuration G1, G0, Ḡ is done in the branching step (see Algorithm 8). As such, integrating
an approach like the latent-LASSO for overlapping groups (favouring inclusion of groups
instead of exclusion like this work) only amounts to implementing another branching op-
erator to get the correct search space. Now that we explicitly defined the search space at
hand, we can go to the formulation of bounds.

Algorithm 8 Branching operations for structured sparsity (exclusion-first)
1: procedure Split(N(G1, G0, Ḡ, S1, S0, S̄))
2: g ← getBranchingIndex(N)
3: Gleft

1 ← G1 ∪ g, Sleft
1 ← S1, S̄left ← S̄

4: Gright
0 ← G0 ∪ g, Sright

0 ← S0, S̄right ← S̄
5: for i ∈ g do
6: if i ∈ S̄ and i /∈ ⋃g∈Ḡ g and i /∈ ⋃g∈G0 g then . i is only in G1 groups
7: Sleft

1 ← Sleft
1 ∪ {i}, S̄left ← S̄left \ {i} . Left node: move i from S̄ to S1.

8: end if
9: if i ∈ S̄ then
10: Sright

0 ← Sright
0 ∪ {i}, S̄right ← S̄right \ {i} . Right node: move i to S0.

11: end if
12: end for
13: return [Nleft(Gleft

1 , G0, Ḡ
left, Sleft

1 , S0, S̄
left); Nright(G1, G

right
0 , Ḡright, S1, S

right
0 , S̄right)]

14: end procedure

7.4 Bounding operators

With the search space defined in Section 7.2 and refined in Section 7.3 for overlapping
groups, we are now ready to express the Problem (P2+0s) involved at a given node. In-
deed, given a group partition G1, G0, Ḡ and its corresponding variable partition S1, S0, S̄,
Problem (P2+0s) reads:

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

∑
g∈Ḡ

1xg 6=0 s.t.
‖x‖∞ ≤M

xS0 = 0
. (PN

2+0s)
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This is the structured sparsity equivalent of Problem (PN
2+0):

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ‖xS̄‖0 s.t.

‖x‖∞ ≤M

xS0 = 0
(PN

2+0)

defined in Part I. Problem (PN
2+0s) is NP-hard due to the term ∑

g∈Ḡ 1xg 6=0, and we will
approximate its minimum using lower and upper bounds. With the variable supports
choices made in Section 7.3, we can naturally extend the expressions used in Part I.

7.4.1 Formulating and solving nodes upper bound

For the upper bound, we will use the same trick as in Section 3.4.2: add the constraint
xS̄ = 0, in other words restrict Problem (PN

2+0s) to variables in S1 only:

min
x∈RQ

1
2‖y −AS1xS1‖

2
2 + µ|G1| s.t.


‖x‖∞ ≤M

xS0 = 0
xS̄ = 0

. (7.1)

Indeed, with the definition of S̄ used in Section 7.3, groups in Ḡ contain variables which
are either in S̄ or in S0 (variables in S1 belong to groups which are all in G1). This
means that the combined constraints xS0 = 0 and xS̄ = 0 completely cancel the term∑
g∈Ḡ 1xg 6=0 in Problem (PN

2+0s), which proves that the minimum of Problem (7.1) is an
upper bound of the minimum of Problem (PN

2+0s).
As in the scalar case, Problem (7.1) is a simple box-constrained least-squares prob-

lem, for which we can use again the upper bounds optimization procedure described in
Section 3.4.2, namely standard active set or interior point methods.

7.4.2 Generic nodes lower bound through convex relaxation

To build lower bounds on Problem (PN
2+0s), we will use a convex relaxation of the

terms 1xg 6=0. We will use again the link between the absolute value and the indicator
function (Inequality (3.13)) to this end:

‖x‖0 =
∑

i∈{1..Q}
1xi 6=0 ≥

∑
i∈{1..Q}

|xi|
M

= 1
M

∑
i∈{1..Q}

|xi| = 1
M
‖x‖1. (3.13)

Proposition 7.4.1. For any group g 6= ∅ and any vector xg ∈ R|g|, M > 0 and q ∈
[1,+∞], we have:

∀xg ∈ [−M,M ]|g|,1xg 6=0 ≥
1
M

‖xg‖q
|g|1/q

. (7.2)

Proof. The relation trivially holds for xg = 0. For xg 6= 0, we have:
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— for q = +∞:

xg ∈ [−M,M ]|q| \ 0 ⇐⇒ 0 < ‖xg‖∞ ≤M

⇐⇒ 0 < ‖xg‖∞
M

≤ 1 = 1xg 6=0

— for q ∈ R∗+:

xg ∈ [−M,M ]|g| \ 0 =⇒ ∀i ∈ g, 0 ≤ |xi| ≤M

=⇒ ∀i ∈ g, 0 ≤ |xi|q ≤M q

=⇒ 0 ≤
∑
i∈g
|xi|q ≤M q|g|

⇐⇒ 0 ≤
∑
i∈g
|xi|q

1/q

≤M |g|1/q

⇐⇒ 0 ≤
‖xg‖q
M |g|1/q

≤ 1 = 1xg 6=0

Consequently, we will compute lower bounds on Problem (PN
2+0s) instances thanks to the

following proposition:

Proposition 7.4.2. For any q ∈ [1,+∞], a valid lower bound on the minimum of Prob-
lem (PN

2+0s) is given by the minimum of the following problem:

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ

‖xg‖q
|g|1/q

s.t.
‖x‖∞ ≤M

xS0 = 0
. (PN

2+1q)

Proof. Problem (PN
2+1q) is obtained from Problem (PN

2+0s) by replacing µ∑g∈Ḡ 1xg 6=0 with
µ
M

∑
g∈Ḡ

‖xg‖q

|g|1/q . By Proposition 7.4.1, we know that µ
M

∑
g∈Ḡ

‖xg‖q

|g|1/q ≤ µ
∑
g∈Ḡ 1xg 6=0. Con-

sequently, the cost function of Problem (PN
2+1q) is always lower than the cost function of

Problem (PN
2+0s) for the same x, therefore the minimum of Problem (PN

2+1q) is lower than
the minimum of Problem (PN

2+0s).

Chapter 8 will further detail the influence of the choice of q, as well as how to solve
Problem (PN

2+1q) in practice.

7.5 Branching rule

Dividing a node into two children in the structured case fundamentally works the
same way as in the scalar case: choose a group still undecided, force it to be part of
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the solution for one child, force it to be excluded from the solution for the other child.
However, knowing which group should be picked for this process is a question that remains
to be answered. In the scalar sparsity case, we use the maximum of amplitude branching
rule defined by Problem (3.17): i := arg maxi∈S̄ |xN

LB|i. We would like to extend this rule
to the structured sparsity case. To this end, we must define what is the "amplitude of a
group": how can we define the amplitude of a given subvector xg? It turns out several
definitions are possible. Indeed, we can see the amplitude as an absolute value, leading
quite naturally to the `1 norm: ‖xg‖1 is then our group amplitude. However, if we think

about a complex number c, its amplitude is defined by
√
Re(c)2 + Im(c)2 =

∥∥∥∥∥∥Re(c)
Im(c)

∥∥∥∥∥∥
2

. In

this context, it is more natural to set the group amplitude as ‖xg‖2. Moreover, in the
context of groups of varying size, we may want to favour groups with a high amplitude
density, meaning groups which are both of high amplitude and of small size, leading to
normalized versions of the two norms above: either ‖xg‖1

|g| or ‖xg‖2√
|g|

(see Proposition 7.4.1
for the choice of the normalization term).

A way to define the branching rule is then to reuse the penalty term of the lower bound
problem (PN

2+1q). As shown in Section 7.4.2, an appropriate normalization is required to
get a valid lower approximation of the `0 term. Our branching rule reads:

g = arg max
g∈Ḡ

‖xg‖q
|g|1/q

, (7.3)

where q ∈ N∗ ∪{+∞} defines the convex relaxation in Problem (PN
2+1q). We will call this

branching rule the maximum normalized `q branching rule, it can be seen as an extension
of the maximum amplitude branching rule of the scalar case given in Problem (3.17).
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7.6 Discussion
Conclusion To propose a working branch-and-bound method in the structured
sparsity case, several design choices were made in this chapter, namely:
— explore the space of group supports (thanks to the use of the partition

G1, G0, Ḡ);

— give priority to the exclusion of a group over its inclusion in the solution, leading
to a specific link between the groups partition {G1, G0, Ḡ} and the variables
partition {S1, S0, S̄};

— define the upper bound of a node using a problem restricted to the set of active
variables, S1;

— define the lower bound of a node using a `1− `q mixed-norm optimization prob-
lem;

— extend the scalar sparsity branching strategy to the structured case: the maxi-
mum normalized `q rule.

Perspectives A branch-and-bound algorithm has multiple degrees of freedom. On top
of this, for the structured sparsity studied here, some choices must be made between
several alternatives to avoid ambiguous situations. Consequently, the design choices in-
troduced in this chapter, driven by simplicity and consistency with the scalar sparsity
case, could be discussed as well as extended to handle more use cases. To begin with,
the current choice for the search space is to give priority to the exclusion of groups: it is
exclusion-first. Inclusion-first corresponds to what is done in the Latent-LASSO problem.
As this way to structure the support is completely contained in the branching strategy, it
is possible to allow both exclusion-first and inclusion-first in the branch-and-bound algo-
rithm, letting the user choose the structuration of the search space. Also, tying together
the branching strategy with the lower bound formulation is an intuitive but question-
able choice. Carrying numerical studies to see which are the best combinations between
branching and lower bounding is an open perspective of this thesis. Finally, the upper
bound formulation is a straightforward extension from the scalar sparsity case. However,
even in the scalar sparsity case, upper bounds could be refined thanks to some local search
algorithm (for example greedy algorithms such as OMP). The idea holds in the structured
sparsity case too.
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8.1 Introduction

Building on the branch-and-bound framework of Chapter 7 (page 89), this chapter
presents in depth the formulation and resolution of the lower bounds given by Prob-
lem (PN

2+1q):

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ

‖xg‖q
|g|1/q

s.t.
‖x‖∞ ≤M

xS0 = 0
, (PN

2+1q)

with q ∈ {1, 2,+∞}. The link between Problem (PN
2+1q) and problems tackled in the

literature is studied in Section 8.2. Then, different choices of q in Problem (PN
2+1q) are

considered in Section 8.2. Practical aspects exposed in Section 8.3 will lead to a separation
between the case q = 1, detailed in Section 8.4, and the other values of q, detailed
in Section 8.5. A hybrid formulation dedicated to the case of overlapping groups is
then introduced in Section 8.6. Numerical experiments assess the performance of the
different formulations in Section 8.7, and the contributions of this chapter are discussed
in Section 8.8.

8.2 `q formulations and links with other works

The lower bound problem (PN
2+1q) is a variant of well-known mixed norm problems

in the literature [Bourguignon, Carfantan, et al. 2007; Jenatton et al. 2011; Yuan et al.
2006]. In a standard mixed norm, we apply a given norm to groups of unknowns, and
then take another norm on the results to get our final value. These two-stage norms
are not the only example of mixed norms, in particular 3-stage mixed norms were used
in [Gramfort et al. 2012] in the context of MEG imaging. Problem (PN

2+1q) uses a `1 − `q
mixed norm: summing `q norm terms applied on groups.

The choice of q = 2, meaning applying an `2 norm to each block, has been used
and investigated in the literature (see for example [Bourguignon, Carfantan, et al. 2007;
Jenatton et al. 2011; Yuan et al. 2006]). If the LASSO is seen as a standard way to promote
sparse solutions through a convex problem, `1 − `2 is seen as its standard counterpart to
promote structured sparse solutions. Group LASSO is related to Problem (PN

2+1q) where
q = 2 and the group support partition G1, G0, Ḡ is taken so that G1 = G0 = ∅, Ḡ =
{1, ..., |G|} where |G| is the number of groups (see Section 8.5 for more details about this
link).

However, the Group LASSO formulation, with its `1 − `2 mixed norm, is not always
the best suited formulation. Indeed, in the case of overlapping groups, Group LASSO
will retrieve a solution whose zeros will be the union of the inactive groups (groups whose
variables are set to zero). This means the non-zero components are the complement of the
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union of inactive groups. This corresponds to the example of Figure 7.2 (on page 92) of
Chapter 7. In other words, the optimization algorithm chooses groups to be excluded from
the support of the solution. In some application contexts [Huang et al. 2011; Obozinski
et al. 2011], we are more interested in an algorithm which chooses groups to be included
in the support of the solution, leading to the Latent-LASSO problem (6.2):

min
x∈RQ,Z∈RQ×|G|

1
2‖y −Ax‖2

2 + λ
|G|∑
i=1
‖zi‖2 s.t. x =

|G|∑
i=1
zi. (4.2)

We can see this problem as solving a Group LASSO on latent vectors zi, and then re-
constructing x with the union of groups in Z. Additionally, on the algorithmic side,
solving Group LASSO with overlapping groups is computationally demanding (see Sec-
tion 8.3 for more details), whereas Latent-LASSO is computationally tractable. While
Problem (6.2) allows one to model a different context than the one of Group LASSO, its
immediate drawback is that the latent formulation doubles the number of variables. In
high-dimensional contexts, this augmentation can be expensive.

In Problem (PN
2+1q), we can of course choose other values of q than q = 2, since it

provides a valid relaxation for all q ≥ 1. In particular, the q = ∞ case has seen some
investigation, although this penalty tends to give minimizer with many components of
the same magnitude, which could be undesired [Bach et al. 2011].

8.3 Overview of the different formulations

In the remaining of this thesis, we will use q ∈ {1, 2,∞} (which give rise to quite
simple optimization problems), which means we will deal with the following mixed norms:∑
g∈Ḡ

‖xg‖1
|g| , ∑g∈Ḡ

‖xg‖2√
|g|

and ∑g∈Ḡ ‖xg‖∞. These three mixed norms will be compared on
a theoretical side as well as on a computational, algorithmic side.

From a theoretical perspective, we can order the quality of the different `q relaxations
with respect to the `0 term:

Proposition 8.3.1. For any vector xg ∈ [−M,M ]|g|,M > 0, we have:

‖xg‖1
M |g|

≤
‖xg‖2

M
√
|g|
≤
‖xg‖∞
M

≤ 1xg 6=0. (8.1)

Proof. Proposition 7.4.1 already establishes that ‖xg‖∞
M

≤ 1xg 6=0. What remains to be
proved is that:

‖xg‖1
|g|

≤
‖xg‖2√
|g|
≤ ‖xg‖∞,

which comes from the equivalence relations between norms. Indeed, for the first inequality,
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we have using Cauchy-Schwarz inequality:

‖xg‖1
|g|

=

√√√√√∑
i∈g
|xi|

1
|g|

2

≤
√√√√∑

i∈g
|xi|2 ×

∑
i∈g

1
|g|2

= ‖xg‖2 ×

√√√√ |g|
|g|2

= ‖xg‖2√
|g|

.

For the second inequality, we have:

‖xg‖2√
|g|

=

√√√√∑i∈g |xi|2
|g|

≤

√√√√∑i∈g(maxi∈g |xi|)2

|g|
=

√√√√∑i∈g ‖xg‖
2
∞

|g|
=

√√√√ |g| ‖xg‖2
∞

|g|
= ‖xg‖∞.

Proposition 8.3.1 tells us that the `1−`∞ relaxation is tighter than the `1−`2 relaxation,
and the `1− `1 relaxation is the worst among all three. An illustration of this ordering is
given in Figure 8.1.

≤ ≤ ≤
‖xg‖1
M |g|

‖xg‖2
M
√
|g|

‖xg‖∞
M

1xg 6=0

Figure 8.1 – Illustration of the ordering of the different penalties used. The `1 − `1 (left)
penalty is the loosest relaxation of the original `0 penalty (right).

Consequently, on a theoretical side, we would like to always use the `1− `∞ relaxation
to ensure good lower bounds. On top of that, even though the `1− `2 is less tight, it still
preserves the non-separability of a given group, whereas the `1 − `1 relaxation destroys
the group-wise penalty to get back to a component-wise penalty, leading to poorer quality
with respect to the desired structured sparsity prior.

State-of-the-art methods [İ. Bayram 2018; I. Bayram 2011; Mosci et al. 2010] solving
mixed norm problems involve a proximal splitting scheme, taking the proximal operator
of the penalty, which reads:

ν = prox
τ
µ
M

(
I[−M,M ]Q (·)+

∑
g∈Ḡ

‖·g‖q
|g|1/q

)(xk) = arg min
x∈[−M,M ]Q

1
2‖x− x

k‖2
2 + τ µ

M

∑
g∈Ḡ

‖xg‖q
|g|1/q

. (8.2)

When groups in Ḡ are disjoint, this operator is group-separable and can decomposed for
all g ∈ Ḡ as:

∀g ∈ Ḡ,νg = arg min
x∈[−M,M ]Q

1
2‖xg − x

k
g‖

2
2 + τ µ

M

‖xg‖q
|g|1/q

. (8.3)
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This minimization problem is similar to the subproblems solved by a block coordinate
descent algorithm, where the original problem is solved by optimizing a sequence of
smaller subproblems (see Section 5.2.3 on page 57 and 8.5.2 on page 104 for more de-
tails). Algorithms can be designed to solve this proximal operator. However, if groups
are overlapping, we cannot decompose the proximal operator (8.2) this way, and we must
stick with the sum of groups. If q > 1, the `q norm is not separable, and the proximal
operator is not computationally tractable. If q = 1, the proximal operator rewrites as a
separable weighted `1-norm problem whose analytical solution is known. This means that
in the case of overlapping groups, we do not have a straightforward descent algorithm to
compute the minimum of the `1− `2 and `1− `∞ relaxations, this minimum being needed
to give a valid lower bound on the `0 Problem (PN

2+0s):

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

∑
g∈Ḡ

1xg 6=0 s.t.
‖x‖∞ ≤M

xS0 = 0
. (PN

2+0s)

Consequently, we will use these formulations in the case of disjoint groups only. In the
case of overlapping groups, we will resort to the `1− `1 relaxation, detailed in Section 8.4.
In the case of disjoint groups, we will use the algorithm designed to solve the `1 − `2 and
`1 − `∞ formulations which is detailed in Section 8.5.

8.4 Separable formulation: `1−`1 relaxation for over-
lapping and disjoint groups cases

8.4.1 Motivation

The `1 − `1 relaxation somehow destroys the structure of the problem: we no longer
deal with groups of variables, we deal with individual variables. This means the minimizer
can be expected to be of poor quality with respect to the structured sparsity prior. As
Proposition 8.3.1 shows, this is the loosest relaxation compared to `1 − `2 and `1 − `∞.
However, the `1−`1 relaxation can be solved with overlapping groups quickly, and we can
reuse almost directly the algorithms described for the scalar sparsity case in Section 3.3
(on page 24).

8.4.2 Multiple weights and multiple bounds variants

Let us recall Problem (PN
2+1q) in the q = 1 case:

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ

‖xg‖1
|g|

s.t.
‖x‖∞ ≤M

xS0 = 0
. (PN

2+11)

102



Formulating and solving structured sparsity lower bound problems in practice

We know that each group in Ḡ contains variables which are either in S0, in that case they
value 0, or in S̄. This means we can reorder the expression of the mixed norm in the
following way:

∑
g∈Ḡ

‖xg‖1
|g|

=
∑
g∈Ḡ

∑
i∈S̄∩g

|xi|
|g|

=
∑
i∈S̄

∑
g∈Ḡ:i∈g

|xi|
|g|

=
∑
i∈S̄
|xi|

 ∑
g∈Ḡ:i∈g

1
|g|

 .
We denote αi := ∑

g∈Ḡ:i∈g
1
|g| . We reach a multiple-weight `1-norm problem:

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
i∈S̄

αi|xi| s.t.
‖x‖∞ ≤M

xS0 = 0
. (PNweight

2+11 )

The quantities αi = ∑
g∈Ḡ:i∈g

1
|g| depend on the configuration of Ḡ and S̄, so they must be

updated at each node. They are counting the number of free groups a given variable is
part of. That is, with groups of size 4, αi = 1

4 means a variable which is part of only one
undecided group, whereas αi = 1 means it is part of 4 such groups, which are therefore
overlapping.

Problem (PNweight
2+11 ) can be solved by several standard algorithms through little varia-

tions from the scalar sparsity case. Indeed, Problem (PNweight
2+11 ) differs from Problem (PN

2+1)
(on page 37) only on the variable weights before the absolute value terms. Proximal, coor-
dinate descent and active-set algorithms can be adapted in a straightforward way to solve
this problem. However, the homotopy continuation algorithm, which enjoys particularly
good performance in the scalar case (see Chapter 5 and [Bach et al. 2011]), is based on
the property that the LASSO problem is piecewise linear in the regularization parameter.
To adapt this algorithm, the regularization parameter must be a scalar, not a vector. We
can make a variable change to get back to a single-weight `1 norm problem. Let us define
vector z ∈ RQ such that:

∀i ∈ S1, zi = xi,

∀i ∈ S̄, zi = xiαi,

∀i ∈ S0, zi = xi = 0.

We can now replace αi|xi| by |zi|. We also need to replace the different products aixi
appearing in the data-fitting term. We define A as:

∀i ∈ S1, Ai = ai,

∀i ∈ S̄, Ai = ai/αi,

∀i ∈ S0, Ai = ai,
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such that Aizi = aixi. Problem (PNweight
2+11 ) rewrites as:

min
z∈RQ

1
2‖y −AS1zS1 −AS̄zS̄‖

2
2 + µ|G1|+ µ

M
‖zS̄‖1 s.t.


zS0 = 0

‖zS1‖∞ ≤M

∀i ∈ S̄, |zi| ≤Mαi

. (PNbound
2+11 )

Problem (PNbound
2+11 ) can be tackled by the homotopy continuation algorithm adapted from

Chapter 5.

8.5 Disjoint groups formulations: `1 − `2 and `1 − `∞
relaxations

8.5.1 Applicability

As mentioned in Section 8.3, Problem (PN
2+12):

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ

‖xg‖2√
|g|

s.t.
‖x‖∞ ≤M

xS0 = 0
(PN

2+12)

and Problem (PN
2+1∞):

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ
‖xg‖∞ s.t.

‖x‖∞ ≤M

xS0 = 0
(PN

2+1∞)

can only be used in the case of disjoint groups, otherwise we do not have any simple and
efficient optimization algorithm available. In both cases, we need an algorithm able to
tackle the mixed norm term, which is non-differentiable. This is the topic of the next
section.

8.5.2 Resolution: Iterative Group Descent algorithm

Problems (PN
2+12) and (PN

2+1∞) cannot be solved by a homotopy continuation method.
In the scalar case, the homotopy continuation method and the coordinate descent algo-
rithm are the best performing algorithms (see Chapter 5). Consequently, we resort to a
block coordinate descent algorithm called Iterative Group Descent, abbreviated in the fol-
lowing as IGD, which is a block-coordinate descent algorithm. The general optimization
scheme looks as Algorithm 9. Algorithm 9, which is a particularization of [Tseng 2001]
for Problem (PN

2+1q), sequentially solves subproblems where only some components are
optimized. For variables in S1, we solve scalar subproblems where only one variable is
updated (step 6). For variables in S̄, we solve subproblems where only variables belong-
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Algorithm 9 Iterative Group Descent algorithm for (PN
2+1q)

1: procedure IGD(y, A, µ, x0, G1, Ḡ, S1, S̄)
2: x← x0

3: while not convergence do
4: for i ∈ S1 do
5: ri ← y −AS1\{i}xS1\{i} −AS̄xS̄
6: xi ← arg minv∈[−M,M ]

1
2‖ri − aiv‖

2
2

7: end for
8: for g ∈ Ḡ do
9: rg ← y −AS1xS1 −AS̄\gxS̄\g

10: xg ← arg minν∈[−M,M ]|g|
1
2‖rg −Agν‖2

2 + µ
M

‖ν‖q

|g|1/q

11: end for
12: end while
13: return x
14: end procedure

ing to one group of Ḡ are updated (step 10). In both cases, subproblems are done using
a residual expression (step 5 and 9), where the contribution of the currently optimized
variables is removed. One question is then if this algorithm doable in practice or not. In
other words, are the steps 6 and 10 doable in practice ? It turns out that the S1-specific
step 6 is easy to implement:

Proposition 8.5.1. Step 6 of Algorithm 9 is computed as:

xi ← Π[−M,M ]
(
aTi ri

)
, with Π[−M,M ] the projection operator on [−M,M ].

The proof of Proposition 8.5.1 is given in Appendix A.3 (page 166). An illustration
giving a sense of the proof is given in Figure 8.2.

However, in Algorithm 9, Step 10:

xg ← arg min
ν∈[−M,M ]|g|

1
2‖rg −Agν‖2

2 + µ
M

‖ν‖q
|g|1/q

has no analytical solution, due to the linear mixing operator Ag. This means that step 10
will be computed approximately, and at the global scale the convergence of Algorithm 9
will be difficult to ensure. This convergence is however needed to get a valid lower bound
on the `0-penalized Problem (PN

2+0s).
Indeed, the convergence proof of a Block-Coordinate Descent algorithm, available

in [Tseng 2001], relies on the fact that both steps 6 and 10 are performed exactly. In the
literature, the spacer step argument of [Bertsekas 1982] is a classical tool for handling
approximated steps. However, this does not solve our issue. Indeed, the spacer step
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Mx?i = aTi ri

fb

x?j = aTj rj

fr

Figure 8.2 – An illustration giving a sketch of a proof for Proposition 8.5.1. Given two
functions fb(xi) := 1

2‖ri − aixi‖
2
2, in blue, and fr(xj) := 1

2‖rj − ajxj‖
2
2, in red, such that

the minimizer x?i of fb lies inside the feasible domain xi ∈ [−M,M ], whereas the minimizer
x?j of fr violates the constraint xj ∈ [−M,M ]. Graphically, the minimizer of fb inside the
domain [−M,M ] is x?i , while the minimizer of fr inside the domain [−M,M ] is M .

106



Formulating and solving structured sparsity lower bound problems in practice

argument tells us that we can insert into a convergent algorithm, using proved convergent
steps, any number of arbitrary approximate steps and still have a convergent algorithm,
as long as these approximate steps do not increase the objective function. While this
is useful to accelerate a convergent algorithm by inserting fast approximate steps, our
problem here is that we cannot construct the proved convergent steps: we only know
how to make approximate ones. This means we do not have any theoretical convergence
guarantee as long as step 10 is performed approximately, which looks rather mandatory
as no analytical solution is known. In our case, we will solve approximately step 10
using a Davis-Yin proximal algorithm [D. Davis et al. 2015] (see Algorithm 10), handling
separately the data-fitting term, the `q penalty and the box constraint. We will construct
our approximate steps by using only one iteration of the Davis-Yin scheme: we apply
only one iteration of the proximal algorithm, and then update variables in the next group
in Ḡ. This algorithm is called in Step 10 of Algorithm 9 successively for each group of

Algorithm 10 Davis-Yin proximal algorithm applied to Step 10 of Algorithm 9.
1: procedure DavisYin(y, A, λ = µ/M , x0, g ∈ Ḡ, θ, ρ, q)
2: x← x0

3: s← x0

4: while not convergence do
5: e← y −Ax
6: γ ← −AT

g e

7: s← s+ ρ
(
proxθλ‖.‖q

(2xg − s− θγ)− xg
)

8: xg ← Π[−M,M ]|g|(s)
9: end while

10: return x
11: end procedure

variables xg, g ∈ Ḡ. In practice, the initial point x0 is set to the primal point of the
current iteration of Algorithm 9, which is most probably different from a trivial setting
such as 0.

In order to make an efficient algorithm in practice while still having some hint about
the solution quality, a different approach is used according to the relaxation at hand:
either `1 − `2 or `1 − `∞, that we detail hereafter.

`1 − `∞ relaxation: dual at the rescue Fortunately, in the disjoint group case, the
convergence of Algorithm 9 when solving Problem (PN

2+1∞) can be monitored by using
the duality gap. Indeed, as Proposition 8.5.2 shows, the dual problem is available using
a similar method than in Section 5.2.1 (page 54).

Proposition 8.5.2. For the disjoint groups case, the dual problem of Problem (PN
2+1∞)
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reads:
max
w∈RN

D(w) := −1
2(‖w + y‖2

2 − ‖y‖
2
2)

−M

‖AT
S1w‖1 +

∑
g∈Ḡ

[‖AT
gw‖1 −

µ
M

]+


+µ|G1|.

(DN
2+1∞)

Proof. The primal problem (PN
2+1∞) reads:

min
x∈RQ

f(Ax) + h(x) (8.4)

with f(x) = 1
2‖y − x‖

2
2 and h(x) = µ|G1|+ µ

M
‖x‖∞ + I[−M,M ]Q(x) + I{0}|S0|(xS0). Using

the Fenchel-Rockafellar theorem ([Rockafellar 1970], theorem 31.2), the dual problem
reads:

max
w∈RN

−f ∗(w)− h∗(−ATw) (8.5)

with f ∗ and g∗ the Fenchel conjugates of f and g respectively. Function f ∗ reads simply
f ∗(w) = 1

2(‖w + y‖2
2 − ‖y‖

2
2). In the case of disjoint groups, we have S1 = ⋃

g∈G1 g, S̄ =⋃
g∈Ḡ g, S0 = ⋃

g∈G0 g, therefore h∗(u) = supx∈RQ uTx− h(x) = h∗S1(u) + h∗S0(u) + h∗
Ḡ

(u)
is separable into three blocks:

— the S1 block: h∗S1(u) := supxS1∈[−M,M ]|S1| u
T
S1xS1 − µ|G1|,

— the S0 block: h∗S0(u) := 0,

— and the Ḡ block: h∗
Ḡ

(u) := ∑
g∈Ḡ supxg∈R|g| sg(xg), with sg(xg) := uTg xg− µ

M
‖xg‖∞−

I[−M,M ]|g|(xg).

The term for the S1 block has already been studied in Section 5.2.1, and gives rise to
the term h∗S1(u) = M

∑
i∈S1 |ui| − µ|G1| = M‖uS1‖1 − µ|G1|. For the Ḡ block, using the

subdifferential of the `∞ norm (see Appendix B.1 on page 168), the first-order optimality
conditions give us for each supremum operator, using xg as the optimal point:

Case 1: xg = 0

xg = arg max
xg∈R|g|

sg(xg) ⇐⇒ 0 ∈ {ug} − µ
M
{v ∈ R|g| | ‖v‖1 ≤ 1} − {0}

=⇒ ‖ug‖1 ≤
µ
M

and we have sg(xg) = 0.
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Case 2: xg 6= 0

xg = arg max
x∈R|g|

sg(x)

⇐⇒ 0 ∈ {ug} − µ
M
{v ∈ R|g| | ‖v‖1 = 1,vTxg = ‖xg‖∞}

−

z ∈ R|g| | ∀i ∈ {1, .., |g|}, zi ∈


[0,+∞[ if (xg)i = M

{0} if (xg)i ∈]−M,M [
]−∞, 0] if (xg)i = −M




=⇒ ‖ug‖1 ∈ {
µ
M
}+

[0,+∞[ if ‖xg‖∞ = M

0 if ‖xg‖∞ < M

 .
This means that xg 6= 0 =⇒ ‖ug‖1 ≥

µ
M
. Now, if we look at the supremum value of

sg(xg), we have:

sup
xg∈[−M,M ]|g|

uTg xg − µ
M
‖x‖∞ = sup

xg∈[−M,M ]|g|
‖xg‖∞

(
uTg

xg

‖xg‖∞
− µ

M

)
.

‖xg‖∞ acts as a scaling here. The quantity to maximize is then uTg
xg

‖xg‖∞
. The maximum

of this quantity is reached when xg

‖xg‖∞
= sign(ug), meaning uTg

xg

‖xg‖∞
= ‖ug‖1 ≥

µ
M
,

implying uTg
xg

‖xg‖∞
− µ

M
≥ 0. If ‖ug‖1 = µ

M
, the supremum of sg is 0, if ‖ug‖1 >

µ
M
, then

the supremum of sg will be reached when ‖xg‖∞ = M (higher values of the `∞-norm are
forbidden by the constraint), and this value is:

sup
xg∈[−M,M ]|g|

‖xg‖∞
(
uTg

xg

‖xg‖∞
− µ

M

)
= M

(
‖ug‖1 −

µ
M

)
.

Summing up, we have:

— if xg = 0, then ‖ug‖1 ≤
µ
M

and sg(xg) = 0,

— if xg 6= 0, then ‖ug‖1 ≥
µ
M

and sg(xg) = M(‖ug‖1 −
µ
M

).

When we reverse the implications between xg and ug, we have:

— ‖ug‖1 >
µ
M

=⇒ ¬(xg = 0) ⇐⇒ xg 6= 0 =⇒ sg(xg) = M(‖ug‖1 −
µ
M

).

— ‖ug‖1 <
µ
M

=⇒ ¬(xg 6= 0) ⇐⇒ xg = 0 =⇒ sg(xg) = 0.

— ‖ug‖1 = µ
M

=⇒ sg(xg) = 0.

Aggregating all cases gives:

sup
x
sg(x) = M [‖ug‖1 −

µ
M

]+. (8.6)

109



Formulating and solving structured sparsity lower bound problems in practice

Finally, function h∗ reads:

h∗(u) = sup
x∈RQ

uTx− µ|G1| − µ
M
‖x‖∞ − I[−M,M ]Q(x)− I{0}|S0|(xS0)

= M‖uS1‖1 − µ|G1|︸ ︷︷ ︸
h∗S1

(u)

+
∑
g∈Ḡ

sup
x∈R|g|

uTg xg − µ
M
‖xg‖∞ − I[−M,M ]|g|(x)

︸ ︷︷ ︸
h∗

Ḡ
(u)

= M‖uS1‖1 − µ|G1|+
∑
g∈Ḡ

M [‖ug‖1 −
µ
M

]+︸ ︷︷ ︸
from (8.6)

= M

‖uS1‖1 +
∑
g∈Ḡ

[‖ug‖1 −
µ
M

]+

− µ|G1|,

=⇒ h∗(−ATw) = M

‖AT
S1w‖1 +

∑
g∈Ḡ

[‖AT
gw‖1 −

µ
M

]+

− µ|G1|.

The objective function of Problem (DN
2+1∞) will be used to get valid lower bounds

on Problem (PN
2+0s). Let’s denote by P (x) the objective function of Problem (PN

2+1∞)
applied at the point x, and by D(w) the objective function Problem (DN

2+1∞) applied at
point w. We know that D(w) ≤ P (x) ∀(x,w) ∈ [−M,M ]Q × RN , which means that
each dual value D(w) is a valid lower bound for our problem: D(w) ≤ P (x?) = lbN

holds. Strong duality also holds: at optimality, we have D(w?) = P (x?). This allows
us to ensure an empirical convergence. More precisely, even though we cannot ensure
that Algorithm 9 converges to the minimum value of Problem (PN

2+1∞), we can track the
duality gap P (x)−D(w) and stop the algorithm by monitoring this gap (assuming this
duality gap vanishes to zero in practice).

`1− `2 relaxation: it is all about approximation In the `1− `2 case, we do not have
access to an analytical formulation of the solution of the dual problem. Indeed, computing
the Fenchel conjugate of the regularization term corresponds to solving Problem (8.7):

g?(u) = sup
x∈[−M,M ]Q

uTx− µ
M
‖xS̄‖2 − I{0}|S0|(xS0), (8.7)

for which no analytical solution could be found. This means we do not have any way to
check the convergence of Algorithm 9 in the `1 − `2 case, neither by a convergence proof
nor by monitoring the duality gap. Consequently, we resort to some heuristic tuning to
make the algorithm converge in practice. We will emulate a "convergent" step by using
more iterations of the Davis-Yin proximal algorithm [D. Davis et al. 2015]. The intent
is to get sufficiently close to the minimizer of the subproblem in step 10 of Algorithm 9
so that the algorithm does converge properly, even though we have no way to monitor
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its convergence in practice. Through empirical simulations, using 10 iterations of the
Davis-Yin proximal algorithm is good enough to get bounds which are in-between the
ones provided by the `1 − `1 and the `1 − `∞ relaxations.

8.6 Hybrid `1 − (`1 + `∞) formulation for the overlap-
ping group case

8.6.1 Motivation

Section 8.3 highlighted the fact that for overlapping groups, we do not have any
satisfactory way to solve the `1 − `2 and `1 − `∞ formulations. This issue arises with
overlapping groups in Ḡ, which is the set of undecided groups. Overlapping groups in G1

and G0 are not problematic, and groups in Ḡ which are overlapping only with groups in
G1 and G0 are also fine.

Moreover, to divide a node, a group from Ḡ is taken and placed in G1 (left child) or
G0 (right child). Consequently, children nodes have less groups in Ḡ, so potentially less
overlapping groups in Ḡ. Therefore, we propose a hybrid formulation, which considers a
separable (`1 − `1) penalty on the overlapping groups of Ḡ, and a non-separable penalty
(`1 − `∞) on the disjoint groups of Ḡ only 1.

8.6.2 Formulation

The proposed hybrid formulation, trying to get the best of both worlds between the
ability of the `1−`1 formulation to deal with overlapping groups and the relaxation quality
of the `1 − `∞ formulation, reads:

LBhyb = min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡover

‖xg‖1
|g|

+ µ
M

∑
g∈Ḡdis

‖xg‖∞

s.t.
 xS0 = 0
‖x‖∞ ≤M

.

(8.8)

1. the non-separable penalty is chosen to be the `1 − `∞ penalty and not the `1 − `2 penalty, for the
`1 − `∞ relaxation quality (see Section 8.3) and the ability to monitor the convergence of the algorithm
solving it (see Section 8.5.2)
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where Ḡover is the set of overlapping groups in Ḡ, and Ḡdis the set of disjoint groups in
Ḡ. Formally, we have:

Ḡ = Ḡover ∪ Ḡdis, Ḡover ∩ Ḡdis = ∅,
Ḡover = {g ∈ Ḡ | ∃g′ ∈ Ḡ \ {g}, g ∩ g′ 6= ∅},
Ḡdis = {g ∈ Ḡ | ∀g′ ∈ Ḡ \ {g}, g ∩ g′ = ∅}.

This hybrid formulation mixes an `1 − `1 term for overlapping groups (those in Ḡover),
and an `1 − `∞ term for disjoint groups (those in Ḡdis). We will call this formulation
`1 − (`1 + `∞). For the `1 − `1 term, we can use the same reordering as in Section 8.4.2.
Using a multiple-weight formulation for the `1 − `1 term, we get:

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
i∈S̄over

αi|xi|+ µ
M

∑
g∈Ḡdis

‖xg‖∞

s.t.
 xS0 = 0
‖x‖∞ ≤M

,

(PN
2+1(1+∞))

with S̄over the set of all variables contained in overlapping groups of Ḡ, and the αi defined
as in Section 8.4.2. Formally, we have:

S̄over := {i ∈ {1, .., Q} | ∃g ∈ Ḡover, i ∈ g} =
⋃

g∈Ḡover

g,

∀i ∈ S̄over, αi =
∑

g∈Ḡover:i∈g

1
|g|
.

8.6.3 Resolution: hybrid IGD

We propose a block coordinate descent algorithm to solve Problem (PN
2+1(1+∞)), in a

similar vein than Algorithm 9. The different subproblems of this algorithm are:

— one subproblem for each variable in S1, solved using Proposition 8.5.1,

— one subproblem for each variable in S̄over, solved using (5.13),

— one subproblem for each group in Ḡdis, approximated using a Davis-Yin scheme
(Algorithm 10).

The overall convergence of the algorithm is empirically ensured by monitoring the duality
gap, in a similar way to the IGD algorithm of Section 8.5.2 when applied to the `1 − `∞
relaxation. The dual problem of Problem (PN

2+1(1+∞)) is detailed in Proposition 8.6.1
below. The resulting algorithm is called Hybrid Iterative Group Descent and detailed in
Algorithm 11, using A−g (respectively x−g), with g a set of indices, as a notation for
A{1,..,Q}\g (respectively x{1,..,Q}\g).
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Proposition 8.6.1. The dual problem of Problem (PN
2+1(1+∞)) reads:

max
w∈RN

D(w) := −1
2(‖w + y‖2

2 − ‖y‖
2
2)

−M

‖AT
S1w‖1 +

∑
i∈S̄over

[
|aTi w| − αi µM

]
+

+
∑

g∈Ḡdis

[
‖AT

gw‖1 −
µ
M

]
+


+µ|G1|

(DN
2+1(1+∞))

Proof. Problem (PN
2+1(1+∞)) can be recast as minx f(Ax)+g(x) with f(Ax) = 1

2‖y −Ax‖2
2

and:

g(x) = I[−M,M ]Q(x) + µ|G1|+ I{0}|S0|(xS0) + µ
M

∑
i∈S̄over

αi|xi|+ µ
M

∑
g∈Ḡdis

‖xg‖∞.

The Fenchel conjugate of f is f ∗(u) = 1
2(‖w + y‖2

2 − ‖y‖
2
2), while the Fenchel conjugate

of g reads by separability g∗(u) = νS1(uS1) + νS0(uS0) + νS̄over(uS̄over) + νḠdis(uS̄dis) with:

— S̄dis the set of variable in disjoint groups: S̄dis = ⋃
g∈Ḡdis g;

— νS1(uS1) := supxS1∈[−M,M ]|S1| u
T
S1xS1 − µ|G1| = M‖uS1‖1 − µ|G1|, this term being

shared with the `1− `1 (DNweight
2+11 ) and `1− `∞ (DN

2+1∞) formulations dual problems;

— νS0(uS0) := supxS0∈{0}
|S0| u

T
S0xS0 = 0, this term being shared with the `1−`1 (DNweight

2+11 )
and `1 − `∞ (DN

2+1∞) formulations dual problems;

— νS̄over(uS̄over) := supxS̄over∈[−M,M ]|S̄over| uTS̄overxS̄over− µ
M

∑
i∈S̄over αi|xi| = M

∑
i∈S̄over

[
|ui| − αi µM

]
+
,

this term being similar to the S̄ term of the `1−`1 formulation dual problem (DNweight
2+11 );

— νḠdis(uS̄dis) := sup
x

S̄dis∈[−M,M ]|S̄dis| u
T
S̄disxS̄dis− µ

M

∑
g∈Ḡdis ‖xg‖∞ = M

∑
g∈Ḡdis

[
‖ug‖1 −

µ
M

]
+
,

this term being similar to the Ḡ term of the `1−`∞ formulation dual problem (DN
2+1∞).

The dual problem follows by injecting the definitions of f ∗ and g∗ into the dual objective
function D(w) := −f ∗(w)− g∗(−ATw).
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Algorithm 11 Hybrid IGD algorithm for problem (PN
2+1(1+∞)).

1: procedure IGDHyb(y, A, µ, x0, G1, Ḡ, S1, S̄)
2: while not convergence do
3: for i ∈ S1 do
4: ri ← y −A−{i}x−{i}
5: xk+1

i ← arg minxi∈[−M,M ]
1
2‖ri − aixi‖

2
2 = Π[−M,M ]((aTi ai)−1(aTi ri))

6: end for
7: for i ∈ S̄over do
8: ri ← y −A−{i}x−{i}
9: xk+1

i ← arg minxi∈[−M,M ]
1
2‖ri − aixi‖

2
2 + α µ

M
|xi|

10: end for
11: for g ∈ Ḡdis do
12: rg ← y −A−gx−g
13: xk+1

g ← DavisYin(y,A, µ
M
,xk+1, g, θ, ρ, q =∞)

14: end fork ← k + 1
15: end while
16: return xk
17: end procedure
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8.7 Numerical experiments

8.7.1 Dataset

The goal here is to benchmark the performance of the different formulations of the
lower bounds in both the separable case and the overlapping case. We consider synthetic
datasets generated by the protocol described in Section 3.6 (page 40). The datasets in
this section were generated with a common group structure for ease of comparison. All
groups are of size 4 and non-overlapping, so that with Q = 100 (respectively Q = 1 000)
variables, there are 25 (respectively 250) groups. A summary of the different parameters
considered is given in Table 8.1. Given a group structure, the ground truth solution xtruth

Size ρ N Q K
Small {0.8, 0.92} 500 100 6
Moderate 0.7 500 1 000 6

Table 8.1 – Parameters used for the different synthetic instances generated for evaluating
the performance of the branch-and-bound algorithm for structured sparsity problems. 10
instances are generated for each combination of parameters, with groups of 4 variables.

is generated by setting variables in K groups to 1. Solving the instances generated from
the parameters of Table 8.1 without any group structure given to the solver would be
prohibitively expensive, because it would mean looking for a solution with 24 nonzero
variables (6 groups with 4 variables). Two benchmarks are proposed in the following: one
in a separable case, one in an overlapping case. For the separable case, the group structure
given to the solver is the one used for generating the instances. For the overlapping case,
the group structure given to the solver is composed of groups of size 4, with two consecutive
groups overlapping over 2 variables (see Figure 8.3 for an illustration of both cases). The
exploration strategy used is depth-first search (which acts as a baseline strategy).

Data is generated disjoint 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Solving with disjoint groups · · · · · · · · · · · · · · · ·

Solving with overlapping groups · · · · · · · · · · · · · · · ·

Figure 8.3 – An illustration of the data generation and modelisation setup. The data is
generated by putting groups of 4 variables to 0 or 1. After that, two different modelisations
of the problem are used. The disjoint case reuses the same group structure, while the
overlapping case adds groups so that two consecutive groups overlap by 2 variables.
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Figure 8.4 – Comparison of the different choices for the lower bound formulation on the
separable group structure with ρ ∈ {0.7, 0.8, 0.92}. The different metrics considered are
the time to solve the problem to optimality in seconds (top), the number of nodes created
to solve to optimality (middle) and the ratio between both, in other words the average
time spent to bound a node in seconds (bottom). The time limit is set to one hour.

8.7.2 Results

Separable case For each instance where the branch-and-bound converged, all the for-
mulations gave the same minimizer. Figure 8.4 shows the performance of the different
formulations (`1 − `1, `1 − `2, `1 − `∞) for solving the instances in the separable setting.
For each value of ρ, three metrics are plotted, one point per instance, for each formula-
tion: the total time to solve a given instance in seconds, the number of nodes created
to solve this instance, and the average time in seconds spent on solving a node of this
instance. For ρ = 0.7 (containing the larger size instances, with Q = 1 000), the hierarchy
between the formulation is quite clear when looking at the solving time, with the `1 − `1

formulation yielding the slowest algorithm (no instance did terminate in 3 600s) and the
`1−`∞ formulation the fastest (1 937s per instance on average), with the `1−`2 relaxation
in-between (2 369s per instance on average). The branch-and-bound algorithm comput-
ing lower bounds with the `1 − `2 formulation reaches the time limit for 4 instances, and
with the `1 − `∞ one for 3 instances. This difference comes from the number of explored
nodes, which is the lowest for the branch-and-bound algorithm using `1 − `∞ relaxation
(4 615 nodes per instance on average), and the largest when using the `1 − `1 relaxation
(21 766 nodes per instance on average), with the `1 − `2 relaxation in-between (13 571
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nodes per instance on average), which is consistent with Inequality (8.1). Interestingly,
when looking at the average bounding time of each node, solving the `1 − `∞ relaxation
takes substantially more time per node (0.389s per node on average) than solving the
`1− `1 and `1− `2 formulations (respectively 0.17s and 0.17s per node on average). That
is, in the case of ρ = 0.7, Q = 1 000, increasing the bound quality by using the `1 − `∞
relaxation instead of the `1− `1 relaxation decreases enough the number of created nodes
(divided by 4.7 on average) so that the higher solving time per node (multiplied by 2.2
on average) is more than compensated. For ρ = 0.8 and ρ = 0.92 (smaller size instances,
with Q = 100), the opposite hierarchy appears: using the `1 − `1 relaxation gives the
fastest branch-and-bound algorithm (38s on average for ρ = 0.92, 0.61s on average for
ρ = 0.8), while using the `1−`∞ relaxation gives the slowest branch-and-bound algorithm
(75s on average for ρ = 0.92, 1.9s on average for ρ = 0.8), with the `1 − `2 relaxation
giving in-between results (59s on average for ρ = 0.92, 1.2s on average for ρ = 0.8). This
is because the small gain in the number of created nodes when using the `1−`∞ relaxation
instead of the `1 − `1 relaxation (44% less nodes created on average for ρ = 0.92, 34%
less nodes created on average for ρ = 0.8) cannot compensate the gap in the bounding
time per node (multiplied by 1.9 on average for ρ = 0.92, multiplied by 3.1 on average
for ρ = 0.8). This was expected, because when ρ increases, the convex relaxations get
looser, and improving the quality of the relaxation by using the `1−`∞ relaxation instead
of the `1 − `1 relaxation is not sufficient to get significantly tighter bounds, meaning the
algorithm does not prune significantly more nodes. Here, this cap on the lower bound
quality makes the `1 − `∞ formulation not worth the effort, and the quickest formulation
to compute, namely the `1 − `1 formulation here, is to be preferred.

Overlapping case For each instance where the branch-and-bound converged, all the
formulations gave the same minimizer. Figure 8.5 shows the performance of the branch-
and-bound algorithm when using the `1− `1 relaxation and the `1− (`1 + `∞) relaxation,
in the overlapping group structure setting (as a recall, these relaxations are the only valid
ones developed in this thesis in the overlapping groups case). For ρ = 0.7, Q = 1 000,
when looking at the solving time, both formulations hit the time limit for every instance:
these formulations cannot scale to this kind of setting because of its size. As these
instances did not converge, the number of created nodes cannot be compared fairly. For
the average solving time per node, the results tend to favour the `1− (`1 + `∞) relaxation
(0.039s per node on average) over the `1− `1 relaxation (0.042s per node on average). For
ρ = 0.8, Q = 100, using the `1 − `1 relaxation gives a slightly faster branch-and-bound
algorithm than choosing the `1 − (`1 + `∞) relaxation, with a solving time of 25.6s on
average compared to 26.2s on average. Here, using the branch-and-bound algorithm with
the `1− (`1 + `∞) relaxation creates twice less nodes than with the `1− `1 relaxation, but
it doubles the time to solve each node on average. For ρ = 0.92, Q = 100, when looking
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Figure 8.5 – Comparison of the different choices for the lower bound formulation on the
overlapping group structure with ρ ∈ {0.7, 0.8, 0.92}. The different metrics considered
are the time to solve the problem to optimality ins (top), the number of nodes created to
solve to optimality (middle) and the ratio between both, in other words the average time
spent to bound a node ins (bottom). The time limit is set to one hour.
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at the solving time, the branch-and-bound using the `1 − (`1 + `∞) formulation is faster
(1 631s on average) than its counterpart using the `1 − `1 relaxation (2 283s on average).
Although the `1 − (`1 + `∞) formulation takes 5.3 more time per node, it creates 7.4 less
nodes, making it the best choice overall.

8.8 Discussion
Conclusion This chapter explored the way to formulate lower bounds in the branch-
and-bound framework proposed in Chapter 7. To this end:
— three mixed norms formulations were proposed, namely `1 − `1, `1 − `2 and

`1 − `∞, to build convex relaxations of the original `0 problems,

— algorithms solving these relaxation problems were proposed,

— the tightness of each relaxation and their ability to tackle the specific case of
overlapping groups leads to design a hybrid relaxation tailored for the overlap-
ping case, with its own solving algorithm,

— the quality of these relaxations was assessed theoretically and empirically, the
best performing relaxation depending on the problem at hand.

Perspectives Building good lower bounds at each node of the branch-and-bound al-
gorithm described in Chapter 7 amounts to finding a relaxation of the original problem,
which should be as tight as possible, and finding a fast algorithm for solving it: we are
looking for the optimal relaxation-algorithm pair. Here, the choice was to use a convex
mixed-norm-based relaxation, with several choices of mixed norms, solved by a tailored
block coordinate descent algorithm. In this setup, there was no universally best relax-
ation, as the tightest relaxations are also the most computationally demanding, and the
best trade-off depends on the context. It would be interesting to compare this choice
with other ones. Indeed, on the relaxation side, non-convex approaches described in Sec-
tion 6.3.3 (page 87) provide tighter relaxation at the cost of a less tractable problem.
Such an approach would be interesting to compare with the present contributions. On
the algorithmic side, three questions arise when using Algorithm 9, dedicated to solving
non-separable mixed norms (`1−`2 and `1−`∞) formulations. When using this algorithm,
we approximate the analytically unknown minimization step 10 by resorting to the Davis-
Yin scheme. We used one iteration of the scheme to approximate the minimization step.
The first question is then if using more iterations of the Davis-Yin scheme could lead to
greater overall performance, spending more time on inner steps to get better approxima-
tions. The second question is related to the performance of this scheme, compared with
other optimization schemes. Indeed, other proximal algorithms involving three functions
could be used (see [Condat et al. 2019] for a review), and a proximal algorithm involving
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two functions with augmented data (merging two functions in one at the cost of dou-
bling the size of the dual vector) is also possible. Among all these methods, which one
is the best performing one in the context of exact structured sparsity optimization is an
open question. The third question is a theoretical one. Approximating the minimization
step 10 in Algorithm 9 instead of doing it exactly breaks the assumptions of the con-
vergence proofs in [Tseng 2001], and makes us resort to an empirical monitoring of the
duality gap to check convergence. In particular, it makes solving the `1 − `2 formula-
tion very fragile algorithmically speaking, with no convergence proof nor practical way to
monitor convergence, even though in our experiments the branch-and-bound algorithm
retrieved the same minimizer than with the other formulations. Therefore, the possibility
to derive convergence proofs using an approximated step such as the Davis-Yin scheme is
worth being studied.

For the overlapping case, the choice made here is to either consider all the groups
together (`1 − `1 formulation), or to separate between disjoint groups and overlapping
groups (`1 − (`1 + `∞) formulation). This separation could be further refined. Indeed,
a number of overlapping group structures use groups which are overlapping with a few
number of other groups. This means that for a given group, it is possible to find a number
of other groups that does not intersect with it. In [I. Bayram 2011], the author propose an
optimization algorithm in an overlapping group case by identifying, inside the overlapping
groups, subsets of groups disjoint to each other. The proposed optimization algorithm
then solves subproblems, where only one such subset is allowed to move. What is the
empirical performance of such an approach for lower bounding nodes inside a branch-
and-bound algorithm is still an open question.
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Chapter 9

Structured sparsity lower bound
accelerations

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Accelerations for the `1 − `1 relaxation . . . . . . . . . . . . . . 122

9.2.1 Dual objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.2 GapSafe screening . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Accelerations for the `1 − `∞ relaxation (disjoint groups case) 125

9.3.1 Dual objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3.2 GapSafe screening . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4 Numerical experiments and results . . . . . . . . . . . . . . . . 128

9.4.1 Early pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.4.2 Inexact convergence inside relaxed problems . . . . . . . . . . . 131

9.4.3 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Introduction

As pointed out in Section 5.1 (on page 52) considering scalar sparsity, a huge part
of the running time of the branch-and-bound algorithm is dedicated to the lower bounds
computations. In this part, we wish to implement and evaluate the same kind of acceler-
ations as in Chapter 5 (page 52), adapted to the structured sparsity case. In other words,
while Chapter 8 was dedicated to formulating the lower bound problems and the descent
algorithms solving them, this chapter is dedicated to accelerating the computation of
these lower bounds.

Three different accelerations have been studied in Chapter 5:

— Using the dual objective to prune nodes before convergence.
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— Using the dual objective to get a valid lower bound before convergence for non-
pruned nodes.

— Using the GapSafe screening method to reduce dimension and accelerate the opti-
mization algorithm.

All three accelerations require the knowledge of an analytical expression for the dual
objective. The first two use the dual objective value directly (see Chapter 5), while
the screening method requires a more involved development. Both the dual objective
expression and the screening method are detailed for the `1 − `1 relaxation (Section 9.2)
and the `1 − `∞ relaxation (Section 9.3) before going to some numerical experiments. As
no analytical expression of the dual objective is known for the `1 − `2 relaxation, it is
ignored in the following.

9.2 Accelerations for the `1 − `1 relaxation

As a recall, the `1 − `1 relaxation reads:

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
i∈S̄

αi|xi| s.t.
‖x‖∞ ≤M

xS0 = 0
(PNweight

2+11 )

for the multiple-weights variant, and:

min
z

1
2‖y −AS1zS1 −AS̄zS̄‖

2
2 + µ|G1|+ µ

M
‖zS̄‖1 s.t.


zS0 = 0

‖zS1‖∞ ≤M

∀i ∈ S̄, |zi| ≤Mαi

(PNbound
2+11 )

for the multiple-bounds variant, with A such that ∀i ∈ S̄,Ai = ai/αi, and ∀i ∈ S1 ∪
S0,Ai = ai. As a recall, both formulations can be solved by state-of-the-art algorithms
(Section 3.3 on page 24) with minor modifications. The goal here is to accelerate the
computation of lower bounds thanks to these formulations.

Adapting the previously mentioned accelerations means getting the expression of the
dual objective, which is the subject of Section 9.2.1, and getting the correct screening
tests, which is the subject of Section 9.2.2. In the `1 − `1 case, a lot of concepts from
scalar sparsity are easily transferable.

9.2.1 Dual objective

We derive here the dual problem for both variants of the `1 − `1 formulation: the
multiple-weight variant (PNweight

2+11 ) and the multiple-bound variant (PNbound
2+11 ). As we will

see in Proposition 9.2.2, both objectives are strictly equivalent.

Proposition 9.2.1. The dual problem of the multiple-weight variant (PNweight
2+11 ) reads:
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max
w∈RN

− 1
2(‖w + y‖2

2 − ‖y‖
2
2) + µ|G1|

−M

∑
i∈S̄

[
|aTi w| − αi µM

]
+

+ ‖AT
S1w‖1

 (DNweight
2+11 )

with [·]+ = max(0, ·).

Proof. Like Problem (5.1) (page 54), we are in the setting of the Fenchel-Rockafellar
theorem ([Rockafellar 1970], theorem 31.2) with f(Ax) = 1

2‖y −Ax‖2
2 and g(x) =

µ|G1| + µ
M

∑
i∈S̄ αi|xi| + I[−M,M ]Q(x) + I{0}|S0|(xS0). As a recall, the dual problem reads

maxw−f ∗(w) − g∗(−ATw), with f ∗ and g∗ the Fenchel conjugates of f and g respec-
tively. The Fenchel conjugate of f reads f ∗(w) = 1

2(‖w + y‖2
2 − ‖y‖

2
2) (see Section 5.2.1

on page 54). The expression of g∗ is developed hereafter, following the same technique as
in Section 5.2.1:

g∗(u) = sup
x∈[−M,M ]Q

uTx− µ|G1| − µ
M

∑
i∈S̄

αi|xi| − I[−M,M ]Q(x)− I{0}|S0|(xS0)


︸ ︷︷ ︸
separable in each variable xi

,

=
∑
i∈S̄

sup
|xi|≤M

(uixi − µ
M
αi|xi|) +

∑
i∈S1

sup
|xi|≤M

uixi

+
∑
i∈S0

sup
|xi|≤M

(uixi − I{0}(xi)︸ ︷︷ ︸
=0

) − µ|G1|,

=
∑
i∈S̄

sup
|xi|≤M

(|ui||xi| − αi µM |xi|) +
∑
i∈S1

sup
|xi|≤M

|ui||xi| − µ|G1|,

=
∑
i∈S̄

sup
|xi|≤M

(
|xi|(|ui| − αi µM )

)
+
∑
i∈S1

|ui|M − µ|G1|,

= M

∑
i∈S̄

[
|ui| − αi µM

]
+

+ ‖uS1‖1

− µ|G1|.

=⇒ g∗(−ATw) = M

∑
i∈S̄

[
|aTi w| − αi µM

]
+

+
∑
i∈S1

|aTi w|

− µ|G1|.

(9.1)
The dual expression in Problem (DNweight

2+11 ) follows straightforwardly.

Proposition 9.2.2. The dual problem of the multiple-bound variant (PNbound
2+11 ) reads:

max
w∈RN

− 1
2(‖w + y‖2

2 − ‖y‖
2
2) + µ|G1|

−

∑
i∈S̄

Mαi
[
|ATi w| − µ

M

]
+

+M‖ATS1w‖1

 (DNbound
2+11 )

Moreover, this problem is the same than Problem (DNweight
2+11 ).

The proof of Proposition 9.2.2 is given in Appendix C.1 (page 176).
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9.2.2 GapSafe screening

Like in the scalar sparsity case, the goal here is to set individual variables to 0 and
±M . We assume here without loss of generality that A is normalized to have unit `2-norm
columns. We derive here the screening tests for both variants of the `1 − `1 formulation:
the multiple-weight variant (PNweight

2+11 ) and the multiple-bound variant (PNbound
2+11 ). As we

will see in Proposition 9.2.4, both tests are equivalent.

Theorem 9.2.3. The GapSafe screening test for Problem (PNweight
2+11 ) reads:

∀i ∈ S̄, if |aTi w| > αi
µ
M

+
√

2G(x,w), then x?i = −M sign(aTi w); (9.2a)

∀i ∈ S̄, if |aTi w| < αi
µ
M
−
√

2G(x,w), then x?i = 0; (9.2b)

∀i ∈ S1, if |aTi w| >
√

2G(x,w), then x?i = −M sign(aTi w). (9.2c)

Proof. The screening rules come from the regularization term, which in the `1−`1 multiple-
weight formulation reads:

g(x) := µ|G1|+ µ
M

∑
i∈S̄

αi|xi|+ I[−M,M ]Q(x) + I{0}|S0|(xS0). (9.3)

From the Karush-Kuhn-Tucker optimality conditions (5.6):

w? ∈ ∂f(Ax?)
−ATw? ∈ ∂g(x?)

Ax? ∈ ∂f ∗(w?)
x? ∈ ∂g∗(−ATw?)

we use the condition (5.6b): −ATw? ∈ ∂g(x?), where ∂ denotes the subdifferential
operator. This condition is separable variable per variable, and gives the following cases:



∀i ∈ S̄ with x?i = M, −aTi w? ∈ [αi µM ,+∞[

∀i ∈ S̄ with x?i ∈ ]0,M [, −aTi w? = αi
µ
M

∀i ∈ S̄ with x?i = 0, −aTi w? ∈ [−αi µM , αi
µ
M

]

∀i ∈ S̄ with x?i ∈ ]−M, 0[, −aTi w? = −αi µM
∀i ∈ S̄ with x?i = −M, −aTi w? ∈ ]−∞,−αi µM ]

∀i ∈ S1 with x?i = M, −aTi w? ∈ [0,+∞[

∀i ∈ S1 with x?i ∈]−M,M [, −aTi w? = 0

∀i ∈ S1 with x?i = −M, −aTi w? ∈]−∞,−0]

. (9.4)
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This gives us screening rules which are the equivalent of Lemma 5.4.1 (page 72). In the
scalar sparsity case, we used Lemma 5.4.1 coupled with Inequality (5.19):

|aTi w?| ≤ |aTi w|+ ‖w? −w‖2

and Inequality (5.20):
|aTi w?| ≥ |aTi w| − ‖w? −w‖2

to get the screening tests of Theorem 5.4.2. In a similar manner here, using 9.4 along
with equations (5.19) and (5.20), we get the screening tests (9.2).

Proposition 9.2.4. The GapSafe screening test for Problem (PNbound
2+11 ) reads:

∀i ∈ S̄, if |ATi w| > µ
M

+ ‖Ai‖2

√
2G(x,w), then z?i = −Mαi sign(ATi w); (9.5a)

∀i ∈ S̄, if |ATi w| < µ
M
− ‖Ai‖2

√
2G(x,w), then z?i = 0; (9.5b)

∀i ∈ S1, if |ATi w| > ‖Ai‖2

√
2G(x,w), then z?i = −M sign(ATi w). (9.5c)

with z defined as:

— ∀i ∈ S̄, zi = αixi,

— ∀i ∈ S1 ∪ S0, zi = xi.

Moreover, tests (9.5) are equivalent to tests (9.2).

The proof of Proposition 9.2.4 is given in Appendix C.2 (page 177).
In the same vein than in Section 5.4.4 (page 74), ub will be leveraged to further

improve the screening performance when ub is lower than the current primal value P (x).

9.3 Accelerations for the `1 − `∞ relaxation (disjoint
groups case)

In a similar manner to the previous section, we will give the dual expression in Sec-
tion 9.3.1, and then we develop screening tests in Section 9.3.2.

9.3.1 Dual objective

The dual objective function has already been obtained through Problem (DN
2+1∞) in

Section 8.5.2, as it was needed to monitor the convergence of the IGD algorithm. As a
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recall, the dual problem of the `1 − `∞ formulation reads:

max
w∈RN

D(w) := −1
2(‖w + y‖2

2 − ‖y‖
2
2)−M

‖AT
S1w‖1 +

∑
g∈Ḡ

[‖AT
gw‖1 −

µ
M

]+

+ µ|G1|

9.3.2 GapSafe screening

As explained in Section 5.4 (page 70) of Chapter 5, the GapSafe screening depends
on screening rules, which depend on the formulation, and the screening sphere, which is
always the same throughout all this thesis, as the data-fitting term is always 1

2‖y −Ax‖2
2.

The screening rules come from the regularization term, which in the `1 − `∞ formulation
reads:

g(x) := µ|G1|+ µ
M

∑
g∈Ḡ
‖xg‖∞ + I[−M,M ]Q(x) + I{0}|S0|(xS0). (9.6)

More precisely, the screening rules come from the KKT optimality condition (5.6b), which
reads −ATw? ∈ ∂g(x?), where ∂ denotes the subdifferential operator.

In function g, terms involving variables in S1 and S0 are the same than for the `1− `1

formulation, giving the same rules, therefore they are omitted in the following. The `1−`∞
relaxation is computationally tractable for disjoint groups only, therefore this is the only
case considered in the following. This means separability of the different groups in Ḡ

holds, which means the conditions of interest rewrite:

∀g ∈ Ḡ,−AT
gw

? ∈ µ
M
∂‖x?g‖∞ + ∂I[−M,M ]|g|(x?g). (9.7)

Using the expression of the subdifferential of the `∞ norm (see Appendix B.1 on page 168
for the proof), we rewrite the previous expression as:

∀g ∈ Ḡ,−AT
gw

? ∈ µ
M

u ∈ R|g| | ‖u‖1 = 1,uTxg = ‖xg‖∞ if xg 6= 0
u ∈ R|g| | ‖u‖1 ≤ 1 if xg = 0


+

v ∈ R|g| | ∀i ∈ {1, .., |g|}, vi ∈


[0,+∞[ if xi = M

{0} if xi ∈ ]−M,M [
]−∞, 0] if xi = −M




=⇒ ∀g ∈ Ḡ, ‖ −AT
gw

?‖1 ∈
µ
M

 {1} if xg 6= 0
[0, 1] if xg = 0

+
[0,+∞[ if ‖xg‖∞ = M

{0} if ‖xg‖∞ < M


⇐⇒ ∀g ∈ Ḡ, ‖AT

gw
?‖1 ∈


[ µ
M
,+∞[ if ‖xg‖∞ = M

{ µ
M
} if ‖xg‖∞ ∈ ]0,M [

[0, µ
M

] if ‖xg‖∞ = 0

 .
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This means we have the following screening rules:

∀g ∈ Ḡ, if ‖AT
gw

?‖1 >
µ
M

then ‖x?g‖∞ = M ; (9.8a)
∀g ∈ Ḡ, if ‖AT

gw
?‖1 <

µ
M

then ‖x?g‖∞ = 0. (9.8b)

In practice, the rule leading to ‖x?g‖∞ = M is seldom informative, because while it does
give the value of the objective function, it does not give the solution reaching this value. In
the following, only the rule leading to ‖x?g‖∞ = 0 ⇐⇒ x?g = 0 will be used. Now, these
rules use the optimal dual point w?, which is not known in practice. From Section 5.4
(page 70), we already know that ∀w ∈ RN ,∀x ∈ [−M,M ]Q, ‖w −w?‖2 ≤

√
2G(x,w).

Indeed, our function g in (9.6) is still convex like in the scalar sparsity case, and the
function f did not change, so the same result holds here.

Now, the question is how we can plug this into the screening rules defined earlier.
Using a similar technique as in Section 5.4:

∀w ∈ RN‖AT
gw

?‖1 = ‖AT
g (w? −w) + AT

gw‖1 ≤ ‖A
T
g (w? −w)‖1 + ‖AT

gw‖1

=
∑
i∈g
|aTi (w? −w)|+ ‖AT

gw‖1

=
∑
i∈g
‖aTi (w? −w)‖2 + ‖AT

gw‖1

≤
∑
i∈g
‖ai‖2‖w

? −w‖2 + ‖AT
gw‖1

= ‖AT
gw‖1 + ‖w? −w‖2

∑
i∈g
‖ai‖2.

(9.9)

We assume a normalized matrix A, meaning that ∑i∈g ‖ai‖2 = |g|. Inequality (9.9) can
be used to construct the following test:

Proposition 9.3.1. ∀(x,w) ∈ [−M,M ]Q × RN , we have:

∀g ∈ Ḡ, if ‖AT
gw‖1 <

µ
M
− |g|

√
2G(x,w) then x?g = 0. (9.10)

Proof. Using Inequality (9.9), we have:

‖AT
gw

?‖1 ≤ ‖A
T
gw‖1 + ‖w? −w‖2|g| ≤ ‖A

T
gw‖1 + |g|

√
2G(x,w).

This means that we have:

‖AT
gw‖1 <

µ
M
− |g|

√
2G(x,w) ⇐⇒ ‖AT

gw‖1 + |g|
√

2G(x,w) < µ
M

=⇒ ‖AT
gw

?‖1 <
µ
M

=⇒ x?g = 0.
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Note Even though both are setting groups of variables to zero, this screening test is
different from the screening test of the Group LASSO which typically reads [Raj et al.
2016]:

If ‖AT
gw‖2 <

µ
M
− ‖Ag‖fro

√
2G(x,w) then x?g = 0, (9.11)

with ‖Ag‖fro the Frobenius norm of submatrix Ag. This is because the Group LASSO
uses an `2 norm as a regularizer, leading to a rule depending on ‖AT

gw
?‖2 instead of a

rule depending on ‖AT
gw

?‖1.

9.4 Numerical experiments and results

In the following, the performance of the different acceleration strategies is bench-
marked on synthetic datasets for the branch-and-bound algorithm using the `1 − `1 as
well as the `1 − `∞ relaxations. The metrics considered are the ones already used in
Chapter 5. The datasets are the ones introduced in Chapter 8. In this section, as we
benchmark non-separable formulations, we restrict ourselves to the non-overlapping setup
of Chapter 8. As a recall, there are 6 groups of 4 components in the ground truth so-
lution, with the correlation level of matrix A set to ρ ∈ {0.7, 0.8, 0.92}. Ten instances
are generated for each value of ρ. Here again computations for solving each instance are
limited to one hour.

9.4.1 Early pruning

Figure 9.1 shows the performance of early pruning for the branch-and-bound algorithm
using the `1 − `1 relaxation (left) and the `1 − `∞ relaxation (right), with the different
datasets considered. As a recall, early pruning aims to take the decision to prune a given
node before the optimization algorithm solving Problem (PN

2+1q):

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

∑
g∈Ḡ

1xg 6=0 s.t.
‖x‖∞ ≤M

xS0 = 0
(PN

2+0s)

converged to the final lower bound value. The iterative coordinate descent detailed in
Section 5.2.3 (page 57)is used for solving the `1 − `1 relaxation, while the iterative group
descent algorithm detailed in Section 8.5.2 (page 105) is used for solving the `1 − `∞

relaxation. The nodes are categorized on |G1| the number of groups included in the
solution. We can see here an "all-or-nothing" behaviour, where there is no real gain for
small values of |G1|, and as |G1| increases a large number of iterations are saved thanks
to early pruning. For ρ = 0.92, the dual pruning is really effective for nodes with more
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than 7 selected groups. For ρ = 0.8, this effect is seen for nodes with more than 6
selected groups, and for ρ = 0.7 this is the case for nodes with more than 8 selected
groups in the case of the `1 − `1 relaxation, and for nodes with more than 7 selected
groups for the `1− `∞ relaxation. Interestingly, both relaxations behave in a similar way,
although the `1−`1 formulation enjoys a stronger gain from early pruning than the `1−`∞
formulation. Table 9.1 shows the overall performance of the branch-and-bound algorithm
using the early pruning method when aggregating all nodes of all instances together for
a fixed value of ρ. The performance of early pruning is very promising, with at least 40%
of saved iterations (ρ = 0.92 dataset, solved with a branch-and-bound using the `1 − `∞
relaxation), up to 85.5% saved sub-iterations (ρ = 0.8 dataset, solved with a branch-and-
bound using the `1 − `1 relaxation). Here also, results show that the branch-and-bound
using the `1 − `1 relaxation enjoys more saved iterations than the one using the `1 − `∞
relaxation, with more than 20 points of difference in favour of the `1 − `1 relaxation for
ρ = 0.8 and ρ = 0.92, and less than 3 points in favour of the `1 − `∞ for ρ = 0.7.

`1 − `1 relaxation `1 − `∞ relaxation

ρ = 0.92 ρ = 0.92

0 2 4 6 8 10 12 14

0

50

100

0 2 4 6 8 10 12
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100
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0 1 2 3 4 5 6 7 8 9

0
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100
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0
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Figure 9.1 – Early pruning performance, for the branch-and-bound algorithm using
the `1 − `1 and the `1 − `∞ relaxations, on the different datasets considered (ρ ∈
{0.7, 0.8, 0.92}). The boxplots show the ratio of saved iterations by the use of early
pruning, given the number of selected groups in the underlying nodes.
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Problem category # iterations # iterations % Saved
without early pruning with early pruning

`1 − `1 relaxation, ρ = 0.7 49 182 748 15 043 858 69.4 %
`1 − `1 relaxation, ρ = 0.8 471 261 68 148 85.5 %
`1 − `1 relaxation, ρ = 0.92 14 981 676 4 712 299 68.5 %
`1 − `∞ relaxation, ρ = 0.7 26 919 997 8 915 651 66.9 %
`1 − `∞ relaxation, ρ = 0.8 443 306 159 198 64.1 %
`1 − `∞ relaxation, ρ = 0.92 12 374 791 7 194 778 41.9 %

Table 9.1 – Results for duality-based early pruning: number of saved iterations without
and with early pruning, for the `1 − `1 and `1 − `∞ relaxations.
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9.4.2 Inexact convergence inside relaxed problems

We are here interested in trading off the quality of the lower bound with the com-
putational effort needed to obtain it. Similar to the scalar sparsity case in Section 5.3
(page 65), we do this by stopping before convergence the optimization algorithm solving
Problem (PN

2+1q):

min
x∈RQ

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

M

∑
g∈Ḡ

‖xg‖q
|g|1/q

s.t.
‖x‖∞ ≤M

xS0 = 0
. (PN

2+1q)

The quality of the approximation is monitored by the quantity γ, which is linked to the
duality gap through the stopping criterion (5.16), which is recalled below for a given
primal iterate xk and a given dual iterate wk:

P (xk)−D(wk) < γ|P (xk)|+ 10−8.

Figure 9.2 shows the performance of the inexact convergence technique described in Sec-
tion 5.3 (page 65) for the branch-and-bound algorithm using the `1 − `1 formulation.
When looking at the time required to solve the instances (top), we can see that the best
parameter value is around γ = 10−3 for ρ = 0.92 (left) and ρ = 0.8 (middle). On average,
using γ = 10−3 instead of γ = 0 (meaning exact convergence) is 1.97 times faster for
ρ = 0.92, and 1.95 times faster for ρ = 0.8. For ρ = 0.7, there is no gain in using γ 6= 0, as
a lot of instances are reaching the 1h limit for every value of γ (recall that in Chapter 8 the
`1−`1 formulation was always hitting this limit for ρ = 0.7). For ρ = 0.92 and ρ = 0.8, the
previously optimal choice of γ = 10−3 corresponds to the last (reading the plots from left
to right) value providing a significant decrease in the number of created nodes (middle),
while the time spent on each node always increases as γ decreases (bottom).

Figure 9.3 shows the corresponding results using the `1 − `∞ formulation. For the
three values of ρ, when looking at the solving time (top), we clearly see an optimal value
around γ = 10−2. On average, using γ = 10−2 instead of γ = 0 (exact convergence) is 2.88
times faster for ρ = 0.92, 4.25 times faster for ρ = 0.8, and 2.42 times faster for ρ = 0.7.
Interestingly, this optimal value γ = 10−2 is a trade-off between creating less nodes and
spending less time on each node. Indeed, setting the parameter to γ = 10−3 leads to
a branch-and-bound algorithm creating less nodes but taking more time for each node.
Setting the parameter to γ = 10−1 yields the opposite behaviour: more nodes created by
the branch-and-bound algorithm, but less time spent on each node.
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Figure 9.2 – Results of inexact convergence monitoring when using the `1 − `1 relaxation
for structured sparsity problems (ρ ∈ {0.7, 0.8, 0.92}), one color per instance, the dashed
line being the mean. All curves plot the performance as a function of γ against three
different metrics: the total time to solve the problem to optimality (top), the number of
nodes created to solve the problem (middle), and the average time spent on each node
(bottom). The point γ = 0 corresponds to exact convergence.
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Figure 9.3 – Results of inexact convergence monitoring when using the `1− `∞ relaxation
for structured sparsity problems (ρ ∈ {0.7, 0.8, 0.92}), one color per instance, the dashed
line being the mean. All curves plot the performance as a function of γ against three
different metrics: the total time to solve the problem to optimality (top), the number of
nodes created to solve the problem (middle), and the average time spent on each node
(bottom). The point γ = 0 corresponds to exact convergence.
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9.4.3 Screening

In this section, we evaluate the performance of the screening tests derived previously
in Sections 9.2.2 and 9.3.2, for the `1 − `1 and the `1 − `∞ relaxations respectively.

Figure 9.4 shows the performance of the Gap-Safe screening for both relaxations.
We draw some general observations similar to the ones of Chapter 5, namely that the
performance of screening decreases as ρ increases, and that it can fix variables to 0 even
in the case of nodes with a small amount of selected groups. Interestingly, this performance
drop is much more visible for the `1 − `∞ formulation than for the `1 − `1 formulation,
with the mean percentage of screened variable for ρ = 0.8 being at 21.6% for the `1 − `1

formulation while it is at 3.17% for the `1−`∞ formulation. This is due to the fact that in
the `1 − `∞ relaxation, the screening method aims to set groups (containing 4 variables)
to zero, whereas in the `1−`1 relaxation, the screening method aims to set single variables
to zero. Setting a group of 4 variables to zero is a stronger decision than setting a single
variable to zero, therefore the test used for the `1− `∞ relaxation is more difficult to pass
than the one used for the `1 − `1 relaxation, particularly when ρ is high. For ρ = 0.92,
the average percentage of screening variable is at 19% for the `1 − `1 formulation, and at
2.05% for the `1− `∞ formulation. Consequently, the screening on the `1− `∞ relaxation
is practically useless for ρ = 0.8 and ρ = 0.92. For ρ = 0.7, the average percentage of
screening variable is at 62.8% for the `1 − `1 formulation, and at 35.5% for the `1 − `∞
formulation, therefore for both formulations, the screening gives promising results. The
difference between ρ = 0.7 and ρ ∈ {0.8, 0.92} was already observed in the scalar case in
Section 5.4.5 (page 75), and comes from the fact that as ρ decreases, the relaxations get
easier and the screening is able to set more variables to 0.
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`1 − `1 relaxation `1 − `∞ relaxation
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Figure 9.4 – Performance of the screening rule for discarding variables, expressed as a
percentage of variables set to 0, given the number of selected groups of the underlying
nodes, for the `1 − `1 and `1 − `∞ formulations, with ρ ∈ {0.7, 0.8, 0.92}.
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9.5 Discussion
Conclusion This chapter took the accelerations detailed in Chapter 5 and adapted
them to the structured sparsity case with disjoint groups. To this end:
— the dual problem of the `1 − `1 formulation was derived, to get early pruning

and inexact convergence techniques running;

— screening rules for both the `1 − `1 and `1 − `∞ formulations were derived ;

— the performance of the three techniques detailed previously (early pruning, in-
exact convergence, and screening) was assessed through numerical simulations,
showing the `1 − `1 formulation tends to get a greater benefit from these accel-
erations than the `1 − `∞ formulation.

Perspectives On top of the perspectives for the accelerations themselves detailed in
Chapter 5, several aspects can be developed to enhance these accelerations in the struc-
tured sparsity world. First, it could be possible to combine the dual expressions and the
screening rules of the `1 − `1 and `1 − `∞ formulations to build the dual problem and
screening rules for the hybrid `1 − (`1 + `∞) formulation (which is a promising formula-
tion, as Chapter 8 showed). Assessing the performance of the different techniques on this
hybrid formulation opens the path for benchmarking these techniques on datasets with
overlapping groups. Will the different techniques suffer or benefit from this additional
flexibility? Also, some overlapping group structure in the literature models a hierarchy
between groups, or logical constraints [Bach et al. 2012; Jenatton et al. 2011]. It could be
interesting to see if an optimization algorithm could be designed to explicitly use these
constraints to reduce the search space and accelerate the computation of lower bounds.
Finally, as this section showed that the acceleration techniques were more powerful on the
`1− `1 formulation than on the `1− `∞ formulation, most notably the screening method,
it could be interesting to see if we can pass information from the `1 − `1 screening to
help to solve the `1 − `∞ formulation. A possible way is to apply the decisions of the
`1 − `1 screening for the first iterations of the optimization algorithm solving the `1 − `∞
formulation. Those decisions act as heuristics: the global minimum may be lost in the
process. Then, after some iterations of the algorithm, the decisions of the `1−`1 screening
are cancelled, and the remaining iterations of the optimization algorithm are done using
only the decisions of the `1 − `∞ screening.
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Chapter 10

Branch-and-bound algorithm
compared to alternative methods

Contents
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10.1 Introduction

In this chapter, the branch-and-bound method built throughout Chapter 7 to 9 is
compared against state-of-the-art approaches. Two baseline approaches unrelated to this
thesis will be used here for comparisons. The first one relies on a convex relaxation of
the `0 problem. This approach leads to different solutions, but is obviously much more
efficient computationally. The second approach uses CPLEX to solve the `0 problems,
using a Mixed-Integer Problem formulation. This approach leads to the same solutions,
and the computation time will be compared. These competing methods are detailed in
Section 10.2, then numerical experiments are carried in Section 10.3 before concluding
and drawing some perspectives in Section 10.4.
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10.2 The competing methods

10.2.1 Convex relaxation

A standard way to solve structured sparsity problems in a separable case is to use the
Group LASSO Problem (6.1), whose definition is recalled below:

min
x∈RQ

1
2‖y −Ax‖2

2 + λ
∑
g∈G
‖xg‖2. (6.1)

In our case, to be closer to the setting of Problem (P2+0s), where a box constraint is
present, the convex relaxation used will be:

min
x∈RQ

1
2‖y −Ax‖2

2 + λ
∑
g∈G
‖xg‖2 s.t. ‖x‖∞ ≤M. (PM2+12)

This corresponds to solving Problem (PN
2+1q) (on page 95)at the root node of the branch-

and-bound algorithm search tree, choosing q = 2. Problem (PM2+12) will be solved thanks
to the IGD algorithm detailed in Section 8.5.2 (page 104).

10.2.2 Mixed-Integer problem

In this Part II, a branch-and-bound algorithm dedicated to solving Problem (P2+0s):

min
x

1
2‖y −Ax‖2

2 + µ
∑
g∈G

1xg 6=0 s.t. ‖x‖∞ ≤M (P2+0s)

is detailed. However, this is not the only method available for solving this problem.
Indeed, one could also use a generic Mixed-Integer Programming (MIP) solver, such as
CPLEX, GUROBI or CBC, to minimize Problem (P2+0s). To do that, Problem (P2+0s)
has to be reformulated in a MIP form:

min
x∈RQ,b∈{0,1}|G|

1
2‖y −Ax‖2

2 + µ
|G|∑
i=1

bi s.t. ∀i ∈ {1, .., |G|},∀j ∈ Gi,−Mbi ≤ xj ≤Mbi

(10.1)
where G defines the set of groups, and Gi the i-th group in this set according to some
ordering. This problem is similar to the scalar sparsity MIP formulation given by Prob-
lem (3.10), the only difference being that the binary variables are tied to groups instead
of individual variables xi. In other words, bi = 0 =⇒ ∀j ∈ Gi, xj = 0, and bi = 1 is just
a boundedness assumption on the different xj.
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10.3 Numerical experiments

The branch-and-bound method for structured sparsity problems developed in this
thesis is compared on the solution quality side against the convex relaxation formulated
by Problem (PM2+12) in Section 10.3.2, and on the computing time side against CPLEX
solving Problem (10.1) in Section 10.3.3.

10.3.1 Dataset

The datasets used are the same than the ones in Chapter 9. As a recall, the different
parameters considered are in Table 10.1. For each instance, the ground truth solution has
6 groups of 4 non-zero variables, which means there are 24 non-zero variables.

Size ρ N Q K
Small {0.8, 0.92} 500 100 6
Moderate 0.7 500 1 000 6

Table 10.1 – Parameters used for the different synthetic instances generated for evaluating
the performance of the accelerations in the structured sparsity case. 10 instances are
generated for each combination of parameters.

10.3.2 Comparison with convex relaxation

In this section, we will compare the branch-and-bound algorithm proposed in this
thesis with the convex method detailed in Section 10.2.1.

Comparison protocol The goal here is to compare the quality of the solutions given
by both methods. The metric used is the number of variables which are not matching the
ground truth solution. In other words, given an estimate x̂ and a ground truth solution
xtruth, both with the same number of non-zero variables, the metric considered reads:

D(x̂,xtruth) = ‖x̂− xtruth‖0/2.

The lower the metric, the better.

Results As the tailored branch-and-bound algorithm always matches the ground truth,
meaning the method of this thesis always recover the best solution possible, only the
results concerning the convex method will be shown here. Table 10.2 shows the results
of the convex method used when considering solution quality. For ρ = 0.7, the convex
method is able to retrieve the correct support for each instance, owing to the easiness
of the problems (compared to ρ ∈ {0.8, 0.92}). In this case, the benefit of the tailored
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branch-and-bound algorithm, or any other algorithm exactly solving the `0 problem, is
not on the solution quality, but on the guarantee of this quality. Indeed, the branch-
and-bound algorithm has a guarantee of optimality, whereas the convex method does
not. For ρ = 0.8, the convex method suffers from recovery errors on two instances, and
for ρ = 0.92, no instance is correctly recovered, with a support error of one third (8.4)
of the 24 components (6 groups of 4 variables) on average. As expected, the quality of
the solution retrieved by the convex method degrades when ρ increases. Indeed, for the
scalar case, it is known that under certain conditions such as RIP [Candès et al. 2006] or
ERC [Tropp 2004], the `1-norm method is proven to retrieve the correct support. In our
data generation setting, an extension of these conditions to the structured sparsity case,
like Structured-RIP [Huang et al. 2011], would be fulfilled with small values of ρ.

# instances with perfect recovery mean value of D(x̂,xtruth)
ρ = 0.7 10 0
ρ = 0.8 8 0.8
ρ = 0.92 0 8.4

Table 10.2 – Results for Problem (PM2+12) regarding the solution quality on different values
of ρ (left column). The metrics considered are the number of instances with perfect
support recovery (middle column) and the mean value of support errors (right). The
tailored branch-and-bound algorithm always matches the ground truth

10.3.3 Comparison with CPLEX

In this section, we will compare the branch-and-bound algorithm proposed in this
thesis with CPLEX. As both methods are solving exactly the `0 problem, the solution is
the same. The comparison concerns computation time.

Comparison protocol The experiments were carried with CPLEX v12.8.0. For the
branch-and-bound algorithm of this thesis, given that each acceleration technique has an
underlying cost, which means it is not always worth using it, several parameters for the
accelerations were considered:

— for early pruning: disabling completely or enabling it at each iteration,

— for inexact convergence: γ ∈ {0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1},

— for screening: disabling it completely, enabling it at each iteration, enabling it every
10 iterations.

Among all these configurations, the best one was kept to be compared against CPLEX.
Both methods were run on one processor core, disabling parallelization.
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Results Figure 10.1 shows the computing time of CPLEX and our branch-and-bound
algorithm. For ρ = 0.7 (left), we can see that our algorithm is clearly better than CPLEX.
The choice of the formulation (`1 − `∞ relaxation) and the accelerations (early pruning
enabled, γ = 10−2, screening tests used every 10 iterations) is important here. Indeed, as
seen in Chapter 8, solving the same dataset with the non-accelerated `1 − `1 formulation
hits the timeout for each instance, whereas the non-accelerated `1−`∞ formulation hits the
timeout for 3 instances, and the accelerated one for one instance only. By comparison,
CPLEX hits the timeout for 7 instances. On average, the tailored branch-and-bound
algorithm is 4.03 times faster than CPLEX for ρ = 0.7, Q = 1 000. The picture is reversed
for ρ = 0.8 (middle) and ρ = 0.92 (right), where CPLEX is a clear winner when compared
to our algorithm. On average, CPLEX is 2.86 times faster for ρ = 0.8, and 45.3 times
faster for ρ = 0.92. This can be explained by two factors. The first one is the correlation
level ρ. When ρ increases, the lower bounds worsen, and the performance of the branch-
and-bound depends more on the exploration strategy and the branching rule used. On
these two aspects, CPLEX enjoys several decades of development and fine-tuning that
could not possibly be matched during this thesis. The second factor is the dimension.
Indeed, CPLEX evaluates the lower bounds through a generic quadratic programming
algorithm. Generic quadratic programming algorithms are very efficient as long as the
number of optimization variable is limited (Q = 100 for ρ ∈ {0.8, 0.92}). Conversely, as
dimension grows, such algorithms do not scale well, and tailored `1-norm algorithms are
more suited.

ρ = 0.7, Q = 1 000 ρ = 0.8, Q = 100 ρ = 0.92, Q = 100
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Figure 10.1 – Total computing time for instances with ρ ∈ {0.7, 0.8, 0.92}. CPLEX (blue)
is compared against the branch-and-bound algorithm of this thesis (red and yellow),
each time with early pruning enabled at each iteration and screening enabled every 10
iterations.
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10.4 Discussion
Conclusion This chapter compared the performance of the branch-and-bound al-
gorithm detailed in this thesis against state-of-the-art methods. To this end:
— two competing methods were chosen and detailed, namely a convex relaxation

close to the `1− `2 relaxation, and a Mixed Integer Programming reformulation
of the `0 problem solved by CPLEX;

— the quality of the solution retrieved by the convex relaxation method was com-
pared against the tailored branch-and-bound algorithm solutions, the latter one
providing solutions of better quality for highly correlated problems;

— the computation time required to solve exactly the `0 problem was compared for
CPLEX and the tailored branch-and-bound algorithm, the latter one providing
quicker solving time for weakly correlated problems.

Perspectives The numerical results of this chapter draw two areas of development. The
considered datasets were successfully solved by the tailored branch-and-bound, however
they were either solved correctly by the convex method (ρ = 0.7) or solved faster with
CPLEX (ρ = 0.8 and ρ = 0.92). A natural question is then to wonder what is the class
of problems were using our tailored branch-and-bound is a net gain compared to state-
of-the-art methods. In the same vein, identifying the cases were the convex method gives
the same solution quality in practice would be a valuable contribution for the research
community, helping it to decide when it is sufficient to use a convex method, and when
an exact `0 method is required. A second question is about the reasons of CPLEX
outperforming our branch-and-bound algorithm for ρ = 0.8 and ρ = 0.92. This is certainly
due to the branching rules and exploration strategies used in CPLEX. What is the best
choice for these two blocks of a branch-and-bound algorithm in the case of structured
sparsity, and how to efficiently implement them, is an open question. Finally, one could
wonder how the current code competes with other methods than the two presented here.
Most notably, comparing the dedicated branch-and-bound against non-convex approaches
would also be a valuable contribution.
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Chapter 11

Software engineering concerns

This chapter describes some software engineering aspects of the branch-and-bound
code used throughout this thesis, starting with the software architecture used in Sec-
tion 11.1. Then, the way to take into account the group structure for the structured
sparsity case is explained in Section 11.2 before concluding and drawing some perspec-
tives in Section 11.3.

11.1 Modular branch-and-bound
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11.1 Modular branch-and-bound . . . . . . . . . . . . . . . . . . . . 144
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11.1.2 General components . . . . . . . . . . . . . . . . . . . . . . . . 145
11.1.3 Detailed view on components . . . . . . . . . . . . . . . . . . . 149

11.2 Structured sparsity: group indicator matrix P . . . . . . . . . 154
11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11.1.1 Introduction

To test the different contributions of this work, which are generally "orthogonal" to
each other (exploration strategies, branching strategies, lower bounds, accelerations inside
these lower bounds), a modularization of the code developed during the former PhD thesis
work by Ramzi Ben Mhenni [Ben Mhenni 2020] was done to ease the development of new
contributions as well as their integration in the branch-and-bound code. The contribution
here is a standard software development work: identify components which are building
blocks of the method, define interfaces for the remainder of the code to interact with
these components, and implement that in the actual code, which generally means make a
redesign of the way code paths are calling each other. This way, we can go from a tightly
coupled code to a more modular architecture with lightly coupled components. This code
is available at https://gitlab.univ-nantes.fr/samain-g/mimosa-solver.
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As this branch-and-bound is a research code, a particular attention has been put into
the definition of correct and feature-complete interfaces between the components. Indeed,
we wish to have several concurrent implementations of the same component living at
the same time in our code base. Before going to the detailed UML (Unified Modeling
Language) drawings in Section 11.1.3, the main components are described more informally
in Section 11.1.2.

11.1.2 General components

What is a branch-and-bound algorithm? Basically, it is a main loop creating nodes
and bounding these nodes in a specific order. This means we have these very fundamental
components:

— the node division component,

— the node scheduling component,

— the node lower bounding component,

— the node upper bounding component.

This corresponds to the synthetic view of Algorithm 4 (page 34): the main loop takes a
node from the node scheduler, divides it, and computes the bounds on the children node
created this way. Each child which is not pruned is then given back to the node scheduler.

These components are drawn as UML interfaces in Figure 11.1. The simplest inter-
faces are SplitInterface, LBInterface, UBInterface, , corresponding respectively to
the node division component, the node lower bounding component and the node upper
bounding component. These interfaces are actually what C++ calls abstract object func-
tion classes. From an object oriented programming perspective, these are just abstract
classes redefining the function call operator operator(), meaning the concrete objects
from (concrete) derived classes will be callable as functions. From a procedural paradigm
(Matlab, C, Fortran), abstract object functions are actually quite simple: they are func-
tion pointers (also called function handle in Matlab) with some inner state kept between
different calls. As function pointers, they are just declaring that somewhere in the code
will exist a function callable with the corresponding arguments. In a sense, this is a func-
tion specification. We can define several functions following this specification, and choose
at run time which one will be used. The main interfaces are described below.

SplitInterface SplitInterface is declaring a specification for a function taking a
node as an argument and returning a list of (usually two) children nodes. Different
branching strategies can be coded, the final choice being done at run time, which allows
for user-side configuration but also dynamic change of branching strategies while iterating
in the branch-and-bound main loop. The last feature was not developed (but is doable
quite quickly), while the user configuration is an implemented feature of the modular
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Figure 11.1 – The core interface providing the components of the branch-and-bound al-
gorithm. The links displayed between interfaces are simplifications.

branch-and-bound. With the previous, tightly coupled code, that choice was done through
a global variable set at compile time, meaning one had to modify the correct variable in
the code and then recompile to test different branching strategies.

UBInterface UBInterface specifies a function taking a node and returning an upper
bound on the problem at hand as well as its antecedent (the xUB point at which the upper
bound value is reached). Several implementations of the upper bounding interface coex-
ist, because the branch-and-bound code is actually solving more than just one problem.
Indeed, the penalized Problem (PM2+0) is considered, as well as constrained variants for
scalar sparsity (these constrained variants are contributions of [Ben Mhenni 2020]), and
structured sparsity problems (this is a contribution of this thesis, coming from Part II).
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LBInterface For LBInterface, several implementations do exist to compute a lower
bound of a given problem, for example Problem (PN

2+0):

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ‖xS̄‖0 s.t.

‖x‖∞ ≤M

xS0 = 0
. (PN

2+0)

Currently, for Problem (PN
2+0), each implementation is a different algorithm finding the

minimum of the same function, namely solving Problem (PN
2+1):

lbN = min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|S1|+ µ

M
‖xS̄‖1 s.t. ‖x‖∞ ≤M,xS0 = 0. (PN

2+1)

If we used other problem formulations than Problem (PN
2+1) to find a valid lower bound

of Problem (PN
2+0), the algorithms solving this new formulation would also be instances

of LBInterface, which is specifying a function taking a node and the upper bound point
given by UBInterface, and returns the lower bound value and its antecedent. This is the
case for the structured sparsity Problem (PN

2+0s):

min
x

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 + µ|G1|+ µ

∑
g∈Ḡ

1xg 6=0 s.t.
‖x‖∞ ≤M

xS0 = 0
, (PN

2+0s)

where different problems lower bounding the `0 one are used. Like UBInterface, more
implementations exist in the code than presented in this report: they are tackling other
problems described in [Ben Mhenni 2020]. The choice of adding the upper bound an-
tecedent in the arguments is a design decision which could be removed in the future. In
more pragmatic terms, it was put there because every algorithm implemented so far use
it. If we find a case were this antecedent is not used, this could lead to a redesign of this
interface.

More involved interfaces are also used, which are not reducible to object functions: we
now define several methods operating on them.

NodeContainerInterface NodeContainerInterface corresponds to the node sched-
uler component, also named the exploration strategy. As highlighted in Chapter 4, an ex-
ploration strategy can be implemented as a data structure, therefore NodeContainerInterface
specifies the interface of a data structure. The most important methods are push and pop,
which are respectively storing a node in the node container (using some underlying data
structure) and getting a node out of the node container. In the Rust programming lan-
guage way of phrasing it, it owns nodes, it does not borrow them. This means that when
we call push the node is absorbed in the node container and cannot be used elsewhere
in the code as long as a call to pop did not eject that node from the container. Methods
push and pop are encoding together a given exploration strategy. Methods empty, reset
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and remove are utility methods, respectively checking if the container is empty, forcing
the container to be empty, and removing a specific node. Note that in an usual workflow,
remove is never used: node removal happens through pop and also prune. Indeed, prune
removes nodes with a lower bound higher than the current value of ub. While this check
happens before inserting new nodes to the container as seen in Algorithm 4 (page 34),
it also needs to be done on older nodes once the value of ub is updated. top returns
the top-priority node according to the exploration strategy. As remove, it is currently
more for debugging purpose than for a production workflow. pop can be seen as the
combination of top and then remove. Finally, getLowestLB gives the lowest lower bound
value among all nodes stored in the container. This can be used for a certificate of op-
timality when stopping the branch-and-bound before convergence. As the main goal of
this thesis is to propose a method solving exactly `0 problems, this possibility of using a
truncated branch-and-bound as a good `0 heuristic has not been investigated, therefore
getLowestLB is not currently used (but is implemented for every data structure).

NodeInterface Finally, the most complex of the core interfaces encodes a so far un-
mentioned aspect of a branch-and-bound, namely the role of a node. We apply splitting
operators, bounding operators on nodes, we push and pop them from containers. No algo-
rithmic intelligence lies inside a node. However, a node is a storage vessel, and as such it
has a separated interface. Currently there is one node implementation in use in the code,
but it can change according to the storage needs. Indeed, the current implementation as-
sumes we have enough memory for pre-computed quantities, even with millions of nodes
stored at a given time. In a more restricted setup in terms of working memory, some
quantities which are currently stored can be recomputed on-the-fly at the price of some
computing time, leading to other node implementations. In a node, we typically store sup-
port information: the S1, S0, S̄ supports, leading to the getS1, setS1, getS0, setS0,
getSBar, setSBar methods, for getting and setting these supports (for structured spar-
sity detailed in Part II, we have the corresponding methods for handling group supports).
The same thing goes for the bounds, with getUB, setUB, getxUB, setxUB, getLB,
setLB, getxLB, setxLB manipulating either a bound or the antecedent (the minimizer)
of a given bound. Nodes are attributed names to be able to log node-specific informa-
tion to the user, this is done through the getName, setName, nameRightChildOfName,
nameLeftChildOfName methods, the last two encoding the convention for naming chil-
dren of a given node. Some utility functions were added, getDepth and getK, respectively
giving the depth and the number of selected variables (|S1| quantity) of a node. Some
quantities corresponds to partial terms, most notably used for the exploration strategy
study detailed in Chapter 4. Namely, getUBLS, setUBLS handle the upper bound data fit-
ting term 1

2‖y −AS1xS1‖
2
2 of Problem (3.14), getLBLS, setLBLS the corresponding term

1
2‖y −AS1xS1 −AS̄xS̄‖

2
2 for the lower bound Problem (PN

2+1), and getLBL1, setLBL1
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handle the sparsity term µ
M
‖xS̄‖1 of the same lower bound Problem (PN

2+1). getLPS,
setLPS are getting and setting the `1 path selection score, which is a score able to guide
branching (node division, the splitting component obeying SplitInterface), see [Ben
Mhenni 2020] for more details about this score. Some flags are here to drive the actions of
the branch-and-bound main loop. Namely isFeasible, setFeasible respectively check
and set whether the current node is feasible or not (this is guiding node division or pruning
for constrained variant of Problem (PM2+0)), while isSolution, setSolution check and
set whether the current node’s lower bound solution is already a solution of the original `0

problem being solved, meaning we actually found the minimum of Problem (PN
2+0) for this

node. In a Mixed-Integer Programming (MIP) framework, isSolution, setSolution
correspond to checking if the relaxed variables bi ∈ [0, 1] are integral in the lower bound
solution for a given node. duplicate, as its name suggests, duplicates a node. This
is a raw operation exclusively used inside splitting component implementations. This
method is meant to create children nodes from the current one, and as such some quan-
tities are copied automatically, such as the bounds values. getHtHinv gives the quantity
(AT

S1AS1)−1, the exact way to obtain this inverse (for example through some matrix
factorization) being left to the node component implementation. Finally, there are also
methods calling the splitting, bounding and contracting components accordingly, with the
noteworthy presence of a boolean argument for getLB and getxLB telling the node if the
lower bound of the parent node is good enough or if we should compute the exact lower
bound of this node. Relying on the parent’s lower bound may look rather strange, but
it is actually the way we handle warm start in lower bound algorithms: at the beginning
of the algorithm we ask the current node its by-default lower bound, which is the lower
bound of its parent, and at the end of the algorithm we will erase these by-default values
with the correct ones.

11.1.3 Detailed view on components

The goal of this section is to uncover more details about the current software ar-
chitecture, both in the areas where modularization was needed as well as in areas where
modularization is expected in the future, as displayed in Figure 11.2, as well as in a 3 pages
long format in Appendix D. On top of the core components described in Section 11.1.2,
several classes were added.

Class ContractInterface acts as a placeholder for methods able to reduce the dimen-
sion of the problem in a given node, called a contractor. The node screening of [Guyard
et al. 2022] could be implemented through a contractor component. A technique such as
the `0 screening of [Atamtürk et al. 2020] would also be implemented through subclassing
ContractInterface.

Moreover, a ContextData class was added, to pass some global context to compo-
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Figure 11.2 – Overview of all the classes of the code with methods details. Some classes
were skipped for brevity.
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nents. Originally created to blindly pack all the global variables that were present in the
tightly coupled code, it progressively expanded to contain also information such as the
current upper bound value and its antecedent, as well as a link to a ProblemData in-
stance. ProblemData contains all the instance information, meaning it holds y, A, µ, M
and the group structure in the case of structured sparsity. It also computes once, accord-
ing to some flags, different derived quantities which are used in every node, such as ATA,
which is used every time the gradient of a least-squares term is needed, whose formula
is AT (y −Ax) = ATy −ATAx. This avoids recomputing these quantities inside each
node. This construction makes it easy to provide some information about global options
and/or problem setup to components: we just have to pass the ContextData instance as
a reference at the construction of the given component. For example, one branching strat-
egy (one node splitting component), implemented as a derived class of SplitInterface,
named MaxNormalizedL1GiBranchingRule, chooses in the structured sparsity case the
undecided group to branch on by looking at the lower bound antecedent xLB of Prob-
lem (PNweight

2+11 ) and taking the undecided group with the maximum `1-norm, normalizing
by the group size. The group size is given by the group structure, which is not stored
in each node: that would take an unnecessary amount of memory. Instead, a reference
to ContextData is passed at the construction of the MaxNormalizedL1GiBranchingRule
object to retrieve the group structure. We could have passed a reference to ProblemData
instead. The choice of ContextData was driven by genericity: even if the implementa-
tion of MaxNormalizedL1GiBranchingRule changes and uses options which are not in
ProblemData, it will most likely finds every information it needs in the node and the
ContextData object. Also, this eases usage of components: if a component needs some
global information, it always uses a ContextData object, regardless of the precise infor-
mation it retrieves from this context object.

Let us now look briefly at the different subclasses of the core components described in
Section 11.1.2.

NodeContainerInterface The derived classes of NodeContainerInterface are follow-
ing the strategies described in Chapter 4. LIFONodeContainer implements a stack data
structure, meaning a Depth-first exploration strategy. This is nothing more than the
standard stack data structure in the NodeContainerInterface framework. In particular,
no reordering of nodes occurs. This means that depending on the order in which someone
pushes the right and left child of a given node, the Depth-first exploration will favour
in priority the left branch or the right branch. MinimierNodeContainer implements a
generic heap, independent of a given comparison operator. This means it implements
at the same time heaps sorted on the lower bound, on the `1 value of xLB, etc. In-
ternally, MinimierNodeContainer is a C++ template with a parameter, a comparator,
which is an object function. MinimierLBCompare implements the lower bound (partial)
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sorting, used for Best-first search. MinimierL1Compare is used for `1-first exploration,
MinimierLSCompare for Least-square-first exploration, MinimierLDSCompare for Limited
Discrepancy Search exploration (see Chapter 4 for more details on all these exploration
strategies). LIFOThenMinimierThresholdNodeContainer implements the mixed strate-
gies described in Chapter 4 using the same template mechanism than MinimierNodeContainer.

UBInterface For the upper bound, we have one subclass for each problem formulation.
UBL2pL0 is the one used for solving Problem (3.14):

ubN = min
x

1
2‖y −AS1xS1‖

2
2 + µ|S1| s.t.


‖x‖∞ ≤M

xS0 = 0
xS̄ = 0

. (3.14)

As all the variants are really close to each other, internally all the subclasses, during their
operation, call the same object function QuadraticProgramWithBigMSolverInterface
whose goal is to solve a least-square problem under box constraints. The different up-
per bound subclasses are just recombining the outputs of that solver to get the pre-
cise objective function of the problem formulation at hand. Two implementations of
QuadraticProgramWithBigMSolverInterface exists, one using the CPLEX quadratic
solver, called CplexQPSolver, and one using a quadratic solver of an open-source library
called dlib 1, called DlibQPSolver, in order to compare the performance of both solvers.

SplitInterface Splitting implementations work like upper bound implementation, and
the MinimierNodeContainer class: there is one entry point doing the heavy lifting,
and then several small variants. AbstractSplitInTwo does the main job of splitting
a node into two children, and delegates to subclasses the work of picking the vari-
able to branch on to make the two children. The subclasses MaxXiBranchingRule,
MostUndeterminedXiBranchingRule, MaxLPSBranchingRule are just overloading the hook
method getBranchingIndex which is left pure virtual (therefore undefined) in AbstractSplitInTwo.

OptimizerInterface The current layer of abstraction (and separation of concerns)
with OptimizerInterface on one hand and Optimizer on the other hand is unnec-
essarily complex in the current implementation: we could do the same thing by getting
rid of OptimizerInterface. However, this was left here to ease future developments
of other main branch-and-bound loops. If parallel or distributed implementations of
the branch-and-bound are developed, this will most likely lead to other subclasses of
OptimizerInterface.

1. Accessible on http://dlib.net
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NodeInterface This is approximately the same case than for OptimizerInterface:
we have currently something too complex for our current needs, the actual objects in
use being instances of OptimizerNode which derives from CommonNodeImplementation
which itself derives from NodeInterface. In particular, while the intermediate level
CommonNodeImplementation eased the implementation transition which happened during
this thesis (from the tightly coupled code to the modular one), its presence in the final
code is highly questionable, and actually depends on whether future implementation on
node classes using different trade-offs (in terms of memory consumed vs cpu time) will
share common points with the current OptimizerNode.

LBInterface As a great part of the work of [Ben Mhenni 2020] and of this work is
dedicated to computations of lower bounds, it is not a surprise if it is one of the richest
class hierarchy in the code. Similarly to the upper bounds, we must be able to com-
pute lower bounds for different problem variants. On top of this, several algorithms
were implemented and compared. During this thesis, the work of [Ben Mhenni 2020]
was repacked into components. This concerns the CplexRelaxXXX subclasses, as well as
GenericHomotopy and ActiveSetL2pL0. The CplexRelaxXXX subclasses are using a MIP
formulation given to the CPLEX generic solver to compute the lower bounds problems
such as Problem (PN

2+0). No work was done on them during this thesis. Only repack-
aging happened. For ActiveSetL2pL0 and GenericHomotopy, accelerations of Chap-
ter 5 were implemented. GenericHomotopy uses different stopping criteria according to
the problem variant considered, the stopping criterion being specified by the interface
HomotopyStoppingCriteriaInterface. HomotopyL2pL0StoppingCriteria is the crite-
rion used to solve Problem (PN

2+1). ActiveSetL2pL0 corresponds to an active set algo-
rithm (see Section 3.3.1 starting on page 25 for more details), while GenericHomotopy
corresponds to a homotopy continuation algorithm (see Section 3.3.1 for more details).
During this thesis, several coordinate descent algorithms were also implemented, among
which the one solving structured sparsity for non-separable formulation, IGD (see Algo-
rithm 9 on page 105), which corresponds to the class IGDL2pL0Lq. Contrary to an active
set method or an homotopy continuation method, where the main loop stops by design
in a fixed number of steps, the definition of a coordinate descent algorithm requests a
stopping criterion. Coordinate descent algorithm is an iterative procedure, where the
convergence is asymptotic, and stopping criteria often used are a maximum number of
iterations, a small change between consecutive iterates (‖xk − xk−1‖2 ≤ εx), a small
change of objective function between consecutive iterates (‖f(xk) − f(xk−1)‖2 ≤ εf ).
Here, we will use the fact that we know the dual of our problem of interest and will
prefer a small duality gap G(x,w) ≤ εg as our stopping criterion, knowing from the the-
ory of convex analysis that G(x,w) = 0 is a sufficient condition for convergence. This,
paired with the need to be problem-agnostic at the higher level (so that we can for ex-
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ample use early pruning and screening with the generic code inside GenericHomotopy)
leads to the creation of primal objective and dual objective interfaces, respectively named
PrimalProblemObjectiveInterface and DualProblemObjectiveInterface. These are
specifying interfaces for object functions. For example, the pair used for the `1−`∞ Prob-
lem (PN

2+1∞) is L2pL1Linf_primal and L2pL1Linf_dual. Also, as the IGD algorithm re-
quires computing the proximal operator of the non-separable formulation at hand, and as
it can solve several different non-separable formulations, the way to compute the proximal
operator was also abstracted through ProxLpInterface, with ProxL2 giving the proximal
operator for the `1 − `2 formulation, while ProxLinf gives the proximal operator of the
`1 − `∞ operator.

11.2 Structured sparsity: group indicator matrix P

In the structured sparsity case, another issue arises due to the grouping. To be able
to handle the general case of groups, with varying size and overlaps, while still keeping
a unified code as simple as possible, we internally use a matrix called P ("partitioning"
matrix), whose general term is ∀j ∈ {1, .., |G|}, ∀i ∈ {1, .., Q}, Pji = 1gj

(i). The goal here
is to leverage the performance of linear algebra libraries, relying on several decades of
hardware optimization for vector calculus, (with for example development of the Single
Instruction Multiple Data (SIMD) instructions of processors), to be computationally more
efficient than with sequential loops on a list of groups.

In other words, P ∈ R|G|×Q has this kind of shape:

P =


1 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 0 0
0 1 1 0 1 1 1

 .

Each row of P corresponds to a group. In each row j, we have a 1 at Pji if xi belongs
to the j-th group. In the previous example of P, there are 7 variables and 4 groups, these
groups being:

— g1 = {x1, x2},

— g2 = {x2, x3, x5},

— g3 = {x4},

— g4 = {x2, x3, x5, x6, x7}.

With this matrix, several computations about inclusion of variables into groups are
solved using vector (or matrix-vector) calculus. A first example is how to compute the
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cardinality of each group: |gj|. For this, we just sum all the columns together giving us:

pcolsum =


2
3
1
5

 .

Moreover, summing all the rows together, we get:

prowsum =
(
1 3 2 1 2 1 1

)
.

This gives us the number of groups containing a given variable (x1 belongs to one group
only, x2 to 3 groups, and so on). After that, identifying overlapping and disjoint groups is
easy: we just have to select the indices of the variables with a score greater than 1. Using
something such as the Matlab expression find(prowsum > 1) would give us the following
indicator vector:

poverlapindex =
(
0 1 1 0 1 0 0

)
.

This index can be used to restrict the P matrix to the overlapping variables:

Poverlap =


1 0 0
1 1 1
0 0 0
1 1 1

 .

Summing all the columns gives us the number of overlapping variables each group contains:

poverlapcolsum =


1
3
0
3

 .

Overlapping groups are all the groups where poverlapcolsum
j > 0. At a given node, looking

for the overlapping groups of Ḡ amounts to applying the steps above on a submatrix of
P containing only the Ḡ lines. Also, note that if we do P|x|, the result we get is the `1

norm of all the groups:

P|x| =


‖xg1‖1

‖xg2‖1

‖xg3‖1

‖xg4‖1

 .

P|x| can also be written as ∑Q
i=1 pi|xi| =

∑Q
i=1(P ◦ |X|)i where X ∈ R|G|×Q duplicates xT
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on each row and ◦ denotes the Hadamard-Schur (term-by-term) product. This allows us
to do with matrix-vector products the `q norm of the different groups, given any value of
q ∈ N∗ ∪ {∞}. For q ∈ N∗, the general formula is:


‖xg1‖q
‖xg2‖q
‖xg3‖q
‖xg4‖q

 =
 Q∑
i=1

(P ◦ |X|q)i

1/q

where .q stands for the term-by-term power operator. In particular, for the `2 norm:
‖xg1‖2

‖xg2‖2

‖xg3‖2

‖xg4‖2

 =

√√√√ Q∑
i=1

(P ◦ |X|2)i.

where √... applies term-by-term. For q =∞, the formula is:


‖xg1‖∞
‖xg2‖∞
‖xg3‖∞
‖xg4‖∞

 = max
i∈{1,..,Q}

(P ◦ |X|)i.

where max applies term-by-term.

While this matrix is quite useful and allows parallelization of some computations,
it is costly in memory. Indeed, P ∈ R|G|×Q. If we have a number of groups which is
proportional to the number of components, which happens for example in the case of
fixed size disjoint groups (like Group LASSO), then P grows quadratically as Q increases,
which is the same rate as ATA. So, in practice, using P limits us to no more than
Q = 104. For now, no alternative code path (like encoding P as a sparse matrix) were
developed to overcome this scaling issue.
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11.3 Discussion

Conclusion This chapter presented the software architecture of the branch-and-
bound algorithm used in this thesis, as well as the way to handle structured sparsity.
To this end:
— the need for modularity in the code base was introduced;

— the core components were given abstract interfaces with precisely defined oper-
ations;

— several different implementations of the same component were described;

— the matrix P used for handling the structured sparsity case was detailed.

On a software engineering perspective, the current implementation draws several areas
of future work. First, on a fine-grained level, some data types could be refined, especially
when variables of these types arise very frequently. This is the case for the supports (the
different G1, G0, Ḡ, S1, S0, S̄), which are currently defined as vectors of integers, whereas a
bit-array implementation would be much more memory efficient. On a higher level, several
places of the code uses a generic function which is further refined. This is the case for
AbstractSplitInTwo and IGDL2pL0Lq for example. However, different ways to implement
this kind of behaviour were used: subclassing with overloading of hook methods in one
hand (case of AbstractSplitInTwo), and passing object function references to generic
functions on the other hand (case of IGDL2pL0Lq). Standardizing the practice throughout
the code would ease future collaborative work on this code base.

Several leads can be followed to enhance the scalability of the branch-and-bound.
Apart from tiny refactoring and optimization of the implementation here and there, four
classes of levers could be used in this code. The first one relates to saving computations.
Indeed, as things are currently standing, all instances are treated as completely different
problems. While this is appealing to get a simple generic code, in real applications we
can expect the model at hand to be reused for several instances. In other words, x, y and
potentially µ are specific to each instance, but the matrix A and potentially the group
structure are common to several instances. This means that some computations on the
matrix A (in particular when computing column norms, or eigenvalues of submatrices)
could be done once for a batch of instances, instead of being done for each instance.

A second lever is to be able to perform computations on a matrix regardless of its abil-
ity to fit in memory. Out-of-memory computations require an abstraction layer between
the object manipulated and the exact location of the data corresponding to this object.
Once that layer is set up, the data could be in memory if it fits, on disk if it does not,
distributed on several computers, or even stored on a remote storage service. This would
allow us to use the current code for instances which do not fit in memory. However, care
must be taken, as out-of-memory computations is no silver bullet: if the data are not in
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memory, this will most probably mean a latency increase to retrieve the needed content,
which means the wall-clock computation time will explode because the code will often
wait for data transfers to happen. To overcome that, two mitigation techniques can be
used. The first technique is to reduce the size/frequency of the issue. Basically, it amounts
to try to find other ways of computing our numbers so that we use more compact data.
The second technique, caching, consists in seeing if the huge object we are manipulating
has some "hot" and some "cold" parts. Typically, if a matrix is too huge to fit in memory,
we would wonder if some columns of this matrix are frequently used, the "hot" parts, the
rest being used quite infrequently, the "cold" parts. The "hot" parts are then stored in
memory, drastically reducing latency, while the cold parts are accessed through standard
out-of-memory transfers, keeping the memory consumption at an acceptable level.

A third lever is to be smarter in the way to handle matrices. Indeed, for now all the
matrices are considered dense and stored that way. Detecting sparse matrices, storing
them efficiently is a first step. A second step is to approximate dense matrices by sparse
ones. In that case, if we’re still interested in the global optimality property of the solution
retrieved by the branch-and-bound, we need to monitor the approximation quality.

Finally, extending the implementation to have, in a similar way to CPLEX, a multi-
threaded, or even distributed (on multiple machines) branch-and-bound is manageable yet
non trivial. Indeed, data synchronisation issues must be taken into account, which will
limit the ability to benefit from parallelization. Most probably, tackling these issues will
imply having another implementation of OptimizerInterface. Moreover, as the best
upper bound ub is shared across all nodes, it means it should be shared across all threads
of the branch-and-bound. This means that ContextData should be modified, perhaps
by separating into two different classes the quantities which are read-only (and poses
no data synchronization issues) and the ones which are updated during the branch-and-
bound (where some data synchronization must be provided). Another option would be
to keep a local ubthread, which is the lowest upper bound among all the nodes explored by
the current thread. As we have by construction ubthread ≥ ub, less nodes will be pruned.
Depending on the amount of nodes whose lower bounds are in between ub and ubthread, the
wall-clock time of the parallel branch-and-bound may be lower or greater than it’s single-
core, sequential counterpart (which is the current implementation). Of course, between
always-on synchronization and no synchronization, there is a middle ground which can be
explored too. To balance the work between the different threads, a work-stealing approach
could be used [Wikipedia contributors 2023b], where each thread has its own tasks, and
thread with no remaining tasks steals some to busy threads. In our case, a task is a
node to evaluate, and work-stealing would be implemented by having each thread hold its
own instance of an implementation of NodeContainerInterface, implementation which
must be thread-safe to allow a thread to steal some nodes from a busy thread without
synchronization issues. This need to keep threads "busy" will drive a particular way to
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assign nodes to threads, resulting in some kind of meta exploration strategy. How this
meta exploration strategy affects the overall performance is an open question. The other
components of the branch-and-bound take place on one node at a given time, and should
pose no problem for parallelizing the branch-and-bound code.

159



Chapter 12

General conclusion and perspectives

Based on the branch-and-bound algorithm first developed in [Ben Mhenni 2020; Ben
Mhenni, Bourguignon, and Ninin 2021], this thesis proposed three types of contributions.
First, acceleration techniques, located in the choice of the exploration strategy, as well
as in leveraging convex duality for the `1-norm optimization problems used to compute
lower bounds, were proposed in Part I. The potential of a given technique is heavily
influenced by the problem at hand. The choice of an exploration strategy is of particular
importance when the matrix of the problem is very correlated, represented in this thesis
by datasets with ρ close to 1. When the matrix is less correlated, which corresponds to
datasets with ρ close to 0, all exploration strategies tend to give similar performance.
Early pruning and screening techniques are influenced in the other way: these techniques
are less effective when the matrix of the problem is more correlated. Moreover, these
techniques have a computational cost, so to use them as efficiently as possible, one must
apply them only when they are worth it. In this thesis, the efficiency of early pruning
and screening was assessed according to |S1|, the number of selected variables, inside each
node created during the branch-and-bound algorithm iterations. It was shown that early
pruning performs better for nodes with a good amount of selected variables with respect
to the sparsity of the ground truth solution, while the screening method performs better
for nodes with few selected variables. Other criteria for choosing when to apply a given
technique may be worth being explored. Then, an extension of the original algorithm to
tackle more general structured sparsity optimization problems, where the sparsity prior
is put on groups of variables, was proposed and discussed in Part II. Using the structure
of the problem makes the branch-and-bound method of this thesis, which is the first work
towards a dedicated algorithm for exactly solving `0 structured sparsity problems, able
to tackle problems with a higher number of active variables. However if this dedicated
method outperforms generic solvers such as CPLEX in high-dimensional, lowly correlated
settings, it is not competitive in the case of low-dimensional, highly correlated datasets.
This is most probably due to the decades of research in combinatorial optimization put into
such generic solvers, which could not be fully implemented in our approach in a reasonable
time. Finally, in the hope of making the current code a usable tool for the research
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community, software engineering contributions were detailed in Part III. In particular,
the current software architecture strived for modularity, and is a first step towards more
parallelization of the code.

This work opens the path for future works in different areas. On the software engi-
neering side, integrating the current code, as well as the datasets used, into a standardized
benchmarking solution such as BenchOpt [T. Moreau et al. 2022] 1, which is a tool for
comparing optimization algorithm in a reproducible way, would be a valuable contribution
for making the software more accessible to new users. This would also allow an easier
comparison with competing methods, as well as using other datasets in a more streamlined
way. On the modeling side, taking a step back, this thesis focused on Problem (P2+0),
which reads:

min
x∈RQ

1
2‖y −Ax‖2

2 + µ‖x‖0, (P2+0)

as well as its structured sparsity extension. Three perspectives arise. The first one
relates to the sparsity term µ‖x‖0. Tuning µ is not straightforward given an application
problem, in part because we may not know in advance what is the preferred trade-off
between sparsity and data fidelity. To overcome this, a bi-objective formulation could be
used, such as:

min
x∈RQ

{
‖y −Ax‖2

2, ‖x‖0

}
. (P{2,0})

Solving Problem (P{2,0}) allows the user to choose among a series of possible trade-offs
between data fidelity and solution sparsity. Since the `0 term can only take integer values,
it roughly amounts to solving a sequence of the cardinality constrained Problem (P2/0)
which reads:

min
x∈RQ

1
2‖y −Ax‖2

2 subject to (s.t.) ‖x‖0 ≤ K, (P2/0)

for K ∈ {1, .., Kmax}. This could be done by allowing the branch-and-bound algorithm
to compute several bounds for the same node, one for each value of K ∈ {1, .., Kmax}.
As explained in [Ben Mhenni 2020], this could be done with the same cost as for solving
Problem (P2/0) for K = Kmax only, using the homotopy algorithm, which is an efficient
strategy in low-dimensional settings, to compute the lower bounds. In higher dimension,
it was shown (see Section 5.2.3 on page 57 and [Bach et al. 2011]) that other algorithmic
designs (e.g. coordinate descent algorithms) are better suited for the computation of
lower bounds. How to achieve an efficient bi-objective resolution in such settings or for
structured sparsity cases remains to be explored.

A second modeling perspective is related to the data fidelity term ‖y −Ax‖2
2. While

quite standard, this choice of cost function is restrictive, and may not be appropriate
for every application case. In the general case, the branch-and-bound algorithm of this
thesis can be straightforwardly adapted to problems using different data fidelity terms,

1. Available at https://benchopt.github.io.
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as long as an efficient algorithm for computing the `1-norm-relaxed problem is available.
Less standard data fidelity terms may be worth being considered. For example, when
estimating the reproduction coefficient of Covid-19 [Abry et al. 2020], the state-of-the-art
epidemiology model leads to a data fidelity term which is the Kullback-Leibler divergence.
Also, sparsity prior reformulations can be used in classification tasks, most notably for
allowing a small number of outlier samples to be misclassified, as Support Vector Ma-
chine [Wikipedia contributors 2023a] does when using a soft-margin. Classification tasks
also use different data fidelity terms.

A third modeling perspective is related to the structured sparsity problem used. It
is a direct extension of its scalar sparsity equivalent, and methods to tackle overlapping
groups, and groups of varying size, were shown. However, it does not handle all possible
cases of structured sparsity. For example, our approach is not suited to model constraints
of mutual exclusion, where selecting a variable implies excluding another one. Extending
the method to integrate other structured sparsity constraints is worth being studied.

Finally, on a practitioner side, a branch-and-bound algorithm which converges to the
optimal solution in an unknown amount of time may not be adequate. In practice, it
could be preferable to have a branch-and-bound algorithm running using a fixed time
budget, giving the best solution found in this time. To this end, anytime exploration
strategies [Luo et al. 2021] is part of the answer. In this case, what is the best upper
bound algorithm (for example an `0 heuristic algorithm such as OMP, OLS, IHT, ...) for
giving the best estimate in a given time budget is an open question.
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Appendix A

Standard results

This appendix is dedicated to the proofs of some standard results, which are given for
the sake of completeness to readers who are new to the field.

A.1 Sketch of the proof for the solution of Prob-
lem (3.2)

We wish to recover the minimum of the following problem:

min
x∈RQ

1
2‖A

Ty − x‖2
2 s.t. ‖x‖0 ≤ K.

This problem can be formulated as a bi-level optimization procedure: first find the
correct location of the non-zeros, satisfying ‖x‖0 ≤ K, and then optimize the amplitudes
of these non-zero components:

min
S⊂{1,..,Q} | |S|≤K

1
2

∑
i/∈S

(aTi y)2 +
∑
i∈S

min
xi

(aTi y − xi)2

 .
The inner minimization problems are not constrained, so the solution is trivially x?i =

aTi y, which means the problem reads:

min
S⊂{1,..,Q} | |S|≤K

1
2

∑
i/∈S

(aTi y)2,

= min
S⊂{1,..,Q} | |S|≤K

1
2


Q∑
i=1

(aTi y)2

︸ ︷︷ ︸
constant

−
∑
i∈S

(aTi y)2


As (aTi y)2 ≥ 0, we want the set S to be as large as possible, meaning that S is such

that |S| = K. Then, inside these K components, we want to select those which maximizes
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the term∑
i∈S(aTi y)2. This leads to selecting the components with the largest |aTi y| value,

meaning the solution of Problem (3.2) is:

S = argmaxK |ATy|,x?S = AT
Sy,∀i /∈ S, x?i = 0.

where arg maxK returns a set containing the K largest components of a given vector.

A.2 Analytical solution of the scalar `1 problem

Many other sources giving this proof can be found, although it is generally done in the
case of a normalized matrix A (i.e. for all columns ai of the matrix, we have ‖ai‖2 = 1),
whereas here we do not use a normalization assumption. The original problem states as:

min
x

1
2‖ei − aixi‖

2
2 + λ|xi|

where ei is a constant for the problem. We express the first order optimality condition
using the subdifferential:

0 ∈ {−aTi (ei − aixi)}+


λ if xi > 0

[−λ, λ] if xi = 0
−λ if xi < 0

⇐⇒ 0 ∈ {−aTi ei}+ {aTi aixi}+


λ if xi > 0

[−λ, λ] if xi = 0
−λ if xi < 0

⇐⇒ −{aTi aixi} ∈ {−aTi ei}+


λ if xi > 0

[−λ, λ] if xi = 0
−λ if xi < 0

⇐⇒ {aTi aixi} ∈ −{−aTi ei} −


λ if xi > 0

[−λ, λ] if xi = 0
−λ if xi < 0

⇐⇒ {‖ai‖2
2xi} ∈ {a

T
i ei}+


−λ if xi > 0

[−λ, λ] if xi = 0
λ if xi < 0

⇐⇒ xi ∈


1
‖ai‖22

(aTi ei − λ) if xi > 0
[ 1
‖ai‖22

(aTi ei − λ), 1
‖ai‖22

(aTi ei + λ)] if xi = 0
1
‖ai‖22

(aTi ei + λ) if xi < 0
.

So once we know the sign of the xi, we know its value. Actually, we can use the previous
relation to get the sign of xi. Indeed, we have the following cases:
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Case 1: xi > 0
We have:

xi = 1
‖ai‖22

(aTi ei − λ) > 0 ⇐⇒ aTi ei > λ

Case 2: xi < 0
We have:

xi = 1
‖ai‖22

(aTi ei + λ) < 0 ⇐⇒ aTi ei < −λ

Case 3: xi = 0
We have:

0 ∈ [ 1
‖ai‖22

(aTi ei − λ), 1
‖ai‖22

(aTi ei + λ)]

⇐⇒ −aTi ei ∈ [−λ, λ]
⇐⇒ aTi ei ∈ [−λ, λ]

(the last line coming from −[−λ, λ] = [−λ,−(−λ)] = [−λ, λ])
Summing up these three cases, we have:

— xi > 0 =⇒ aTi ei > λ,

— xi = 0 =⇒ aTi ei ∈ [−λ, λ],

— xi < 0 =⇒ aTi ei < −λ.

These three cases are disjoint in the values of aTi ei and xi, and they cover the full range
of aTi ei, so we can write (using contraposition of implications):

aTi ei > λ ⇐⇒ ¬(aTi ei ≤ λ)
⇐⇒ ¬(aTi ei ∈ [−λ, λ]) and ¬(aTi ei < −λ)
=⇒ ¬(xi = 0) and ¬(xi < 0)
⇐⇒ xi > 0.

Thus, we have aTi ei > λ ⇐⇒ xi > 0. The same reasoning can be applied to all three
cases to get:

— xi > 0 ⇐⇒ aTi ei > λ,

— xi = 0 ⇐⇒ aTi ei ∈ [−λ, λ],

— xi < 0 ⇐⇒ aTi ei < −λ.

So the final analytical solution reads:

— if aTi ei > λ then xi = 1
‖ai‖22

(aTi ei − λ),

— if aTi ei ∈ [−λ, λ] then xi = 0,

— if aTi ei < −λ then 1
‖ai‖22

(aTi ei + λ),
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which can be restated as xi = 1
‖ai‖22

STλ(aTi ei), with STλ the soft-thresholding operator
defined as:

STλ(u) =


u− λ u > λ

0 u ∈ [−λ, λ]
u+ λ u < −λ

.

A.3 Proof of Proposition 8.5.1

The goal here is to show the proof of the expression allowing us to compute the S1

steps in the IGD algorithm:

xi ← arg min
v∈[−M,M ]

1
2‖ri − aiv‖

2
2.

Proof. The first-order optimality condition for problem in Algorithm 9 step 6 reads (using
sub-differentials):

0 ∈ {−aTi (ri − aixi)}+


[0,+∞[ xi = M

{0} |xi| < M

]−∞, 0] xi = −M
(A.1)

Let us separate the three different cases:

Case 1: |xi| < M

Condition (A.1) then reads:

0 ∈ {−aTi (ri − aixi)}
⇐⇒ 0 = − aTi (ri − aixi)
⇐⇒ xi = (aTi ai)−1aTi ri ∈ ]−M,M [.

Case 2: xi = M

Condition (A.1) then reads:

0 ∈ {−aTi (ri − aiM)}+ [0,+∞[
⇐⇒ 0 ∈ {−aTi ri}+ {aTi aiM}+ [0,+∞[

⇐⇒ aTi ri ∈ [aTi aiM,+∞[
⇐⇒ (aTi ai)−1aTi ri ≥M.

(as a recall (aTi ai)−1 ≥ 0 holds)

Case 3: xi = −M
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Condition (A.1) then reads:

0 ∈ {−aTi (ri − ai(−M))}+ [−∞, 0[
⇐⇒ aTi ri ∈ ]−∞,aTi ai(−M)]

⇐⇒ (aTi ai)−1aTi ri ≤ −M.

Summing up, we have (as all cases are disjoint):

xi = M ⇐⇒ (aTi ai)−1aTi ri ≥M,

xi ∈]−M,M [⇐⇒ (aTi ai)−1aTi ri ∈]−M,M [,
xi = −M ⇐⇒ (aTi ai)−1aTi ri ≤ −M.

This gives then the expression xi = Π[−M,M ]((aTi ai)−1aTi ri).
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Properties of the `∞ norm

This chapter is dedicated to the subdifferential and the proximity operator of the `∞
norm, both of which are used in Part II of this thesis. The results of this appendix are
not novel. However, as the author had some difficulty finding clear and detailed resources
about these operators applied on the `∞ norm, this is given as a pedagogical resource.

B.1 Subdifferential of the `∞ norm

We are looking for the subdifferential (also called subgradient) of the `∞ norm of some
x ∈ Rd. The basic expression reads:

∂‖x‖∞ = {u ∈ Rd | ∀z ∈ Rd,uT (z − x) + ‖x‖∞ ≤ ‖z‖∞}
= {u ∈ Rd | ∀z ∈ Rd,uTz − uTx+ ‖x‖∞ ≤ ‖z‖∞}.

As a recall, in this expression x is given, and we wish to retrieve the set of u such that
the relationship holds for every z. The result is:

∂‖0‖∞ = {u ∈ Rd | ‖u‖1 ≤ 1}
∀x ∈ Rd,x 6= 0 =⇒ ∂‖x‖∞ = {u ∈ Rd | ‖u‖1 = 1,uTx = ‖x‖∞}.

The proof is separated into two cases, depending on the nullity of x.
Case 1: x = 0.
In this case, we have:

∂‖0‖∞ = {u ∈ Rd | ∀z ∈ Rd,uTz ≤ ‖z‖∞}.

Letting u such that ‖u‖1 > 1, we can construct some z such that the inequality does not
hold. Indeed, with z = M sign(u),M ∈ R∗+, we have:
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uTz = M
d∑
i=1

ui sign(ui) = M
d∑
i=1
|ui| = M‖u‖1 > M

‖z‖∞ = max
i∈{1,..,d}

(sign(ui)M) = M < uTz

This means that we have ∂‖0‖∞ ⊆ {u | ‖u‖1 ≤ 1}. We are now proving the equality of
these two sets by showing that u ∈ {u | ‖u‖1 ≤ 1} =⇒ u ∈ ∂‖0‖∞. Let’s denote by i∞
one index of z attaining its `∞ norm: |zi∞| = ‖z‖∞. Then:

∀z ∈ Rd, ‖u‖1 ≤ 1 ⇐⇒
d∑
i=1
|ui| ≤ 1 ⇐⇒ (

d∑
i=1
|ui|)|zi∞| ≤ ‖z‖∞

=⇒
d∑
i=1

uizi ≤
d∑
i=1
|ui||zi| ≤

d∑
i=1
|ui||zi∞| ≤ ‖z‖∞

=⇒ uTz ≤ ‖z‖∞.

(B.1)

This means that we have ∂‖0‖∞ = {u ∈ Rd | ‖u‖1 ≤ 1}.
Case 2: x 6= 0
The result here is that:

x 6= 0 =⇒ ∂‖x‖∞ = {u ∈ Rd | ‖u‖1 = 1,uTx = ‖x‖∞}.

The proof is laid out in these steps:

— ∂‖x‖∞ =⇒ ‖u‖1 ≤ 1,

— we can find a counter-example in this set, prompting the need to have additionally
uTx = ‖x‖∞,

— uTx = ‖x‖∞ =⇒ ‖u‖1 = 1.

Let’s begin with ∂‖x‖∞ =⇒ ‖u‖1 ≤ 1 (first step). This is similar to what has been done
in case 1. The inequality which must be fulfilled for all z is uTz−uTx+ ‖x‖∞ ≤ ‖z‖∞.
Let’s use a u such that ‖u‖1 > 1. Then, with z = M sign(u),M ∈ R∗+, we have
uTz > ‖z‖∞. More precisely, we have uTz − ‖z‖∞ = (‖u‖1 − 1)M . As we can choose
M as large as we want, we can pick one such that uTz − ‖z‖∞ > uTx − ‖x‖∞ ⇐⇒
uTz − uTx + ‖x‖∞ > ‖z‖∞. As the inequality must hold for every z, so we have
∂‖x‖∞ ⊆ {u ∈ Rd | ‖u‖1 ≤ 1}.

Then (second step), this set for u is actually too large. Indeed, reusing Equation (B.1)
for x, we have:

u ∈ Rd | ‖u‖1 ≤ 1 =⇒ uTx ≤ ‖x‖∞ ⇐⇒ −uTx+ ‖x‖∞ ≥ 0.
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However, if we take z = 0, the definition of the subdifferential yields:

−uTx+ ‖x‖∞ ≤ 0,

which means that −uTx+ ‖x‖∞ = 0 ⇐⇒ uTx = ‖x‖∞ must hold.

Now (third step), uTx = ‖x‖∞ implies that ‖u‖1 = 1. Indeed, let’s take again
Equation B.1 with strict inequalities this time, and applied to x:

∀x ∈ Rd, ‖u‖1 < 1 ⇐⇒
d∑
i=1
|ui| < 1 ⇐⇒ (

d∑
i=1
|ui|)|xi∞| < ‖x‖∞

=⇒
d∑
i=1

uixi ≤
d∑
i=1
|ui||xi| ≤

d∑
i=1
|ui||xi∞| < ‖x‖∞

=⇒ uTx < ‖x‖∞.

(B.2)

Step 2 showed that uTx = ‖x‖∞, which implies by Equation (B.2) that ‖u‖1 = 1. So we
are now at ∂‖x‖∞ ⊆ {u ∈ Rd | ‖u‖1 = 1,uTx = ‖x‖∞} = {u | ‖u‖1 = 1} ∩ {u | uTx =
‖x‖∞}. Let’s prove the reverse inclusion.

By definition of the set and by Equation (B.1), we have:

∀z ∈ Rd, ∀u ∈ {u | ‖u‖1 = 1} ∩ {u ∈ Rd | uTx = ‖x‖∞},
uTz − uTx+ ‖x‖∞ = uTz ≤ ‖z‖∞
⇐⇒ uT (z − x) + ‖x‖∞ ≤ ‖z‖∞
⇐⇒ u ∈ ∂‖x‖∞.

This proves {u ∈ Rd | ‖u‖1 = 1,uTx = ‖x‖∞} ⊆ ∂‖x‖∞, which completes the previous
proof to get:

∀x 6= 0, ∂‖x‖∞ = {u ∈ Rd | ‖u‖1 = 1,uTx = ‖x‖∞}.

B.2 Proximal operator of the `∞ norm

This section is given as a reference for understanding how to compute the proximal
operator of the `∞ norm. This is given as a pedagogical reference for the proof of its
expression, as well as a (hopefully) clear explanation about the way to compute that
expression efficiently. We are looking to get the expression of the following optimization
problem:

x̂ = prox
τ‖.‖∞

(z) = arg min
x

1
2‖z − x‖

2
2 + τ‖x‖∞
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The result is: if ∃s ∈ R+
∗ |

∑Q
i=1 max(0, |zi| − s) = τ , then x̂ = sign(z) � min(|z|, s),

otherwise x̂ = 0. For proving this, let’s define two sets of indices: S∞ contains the indices
of variables which are concerned by the term τ‖x‖∞. In other words:

S∞ = {i, |xi| = ‖x‖∞}.

Its counterpart, S<, will hold the remaining variables:

S< = {i, |xi| < ‖x‖∞}.

With x ∈ RQ, we have {1, .., Q} = S∞ ∪ S<. Decomposing the proximal operator using
those two sets, we have:

prox
τ‖.‖∞

(z) = arg min
x

1
2‖zS< − xS<‖

2
2 + 1

2‖zS∞ − xS∞‖
2
2 + τ‖xS∞‖∞.

The proximal operator is completely separable for the variables in S<, and the quadratic
term naturally lead to xS< = zS< . Let’s now focus on the variables in S∞. If ‖xS∞‖∞ = 0,
then x = 0. Otherwise, we have ∀(i, j) ∈ S∞, |xi| = |xj| 6= 0. Note that the signs may be
different. Let’s write the sub-differential of this very specific `∞ term, using t = xS∞ :

∂‖t‖∞ = {u,∀y ∈ R|S∞|,uT (y − t) + ‖t‖∞ ≤ ‖y‖∞}.

Using Appendix B.1, this subdifferential is:

∂‖t‖∞ = {u ∈ RS∞ | ‖u‖1 = 1,uT t = ‖t‖∞}.

Looking back at the proximal operator reduced to S∞, we have:

xS∞ = prox
τ‖.‖∞

(zS∞) = arg min
t

1
2‖zS∞ − t‖

2
2 + τ‖t‖∞︸ ︷︷ ︸

p(t)

⇐⇒ 0 ∈ ∂p(xS∞) ⇐⇒ 0 ∈ {−(zS∞ − xS∞)}+ τ{u ∈ R|S∞| | ‖u‖1 = 1,uTxS∞ = ‖xS∞‖∞}
⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | zS∞ − τu = xS∞

⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i − τui = (xS∞)i = ±‖x‖∞ 6= 0.

Let’s prove two sign equalities that will come handy after:

Proposition B.2.1. Given the previously defined xS∞, we have:

if x 6= 0;u ∈ ∂‖xS∞‖∞ =⇒ ∀i ∈ {1, .., |S∞|}, sign(ui) = sign[(xS∞)i]. (B.3)
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Proof.

u ∈ ∂‖xS∞‖∞ =⇒ uTxS∞ = ‖xS∞‖∞ > 0 and ‖u‖1 = 1

‖u‖1 = 1 ⇐⇒
|S∞|∑
i=1
|ui| = 1

⇐⇒ uTxS∞ =
|S∞|∑
i=1

ui(xS∞)i ≤
|S∞|∑
i=1
|ui||xS∞|i = ‖xS∞‖∞ > 0

as uTxS∞ = ‖xS∞‖∞ also holds,
we must have equality between both sums:

=⇒ ∀i ∈ {1, .., |S∞|}, ui(xS∞)i = |ui||xS∞|i ⇐⇒ sign(ui) = sign[(xS∞)i].

Proposition B.2.2. Given the previously defined zS∞ and xS∞, we have:

if x 6= 0;∀i ∈ {1, .., |S∞|}, sign [(z∞)i] = sign [(x∞)i] . (B.4)

Proof. The proximal operator gives rise to:

∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i − τui = (xS∞)i = ±‖x‖∞ 6= 0
⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i sign[(xS∞)i]− τui sign[(xS∞)i] = ‖x‖∞ > 0

using Proposition B.2.1:
⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i sign[(xS∞)i] = τ |ui|+ ‖x‖∞ > 0

=⇒ ∀i ∈ {1, .., |S∞|} sign[(zS∞)i] = sign[(xS∞)i].

Now, following the proximal operator implications:

∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i − τui = (xS∞)i = ±‖x‖∞ 6= 0
⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} (zS∞)i sign[(xS∞)i]− τui sign[(xS∞)i] = ‖x‖∞

using proposition B.2.1 and B.2.2:
⇐⇒ ∃u ∈ ∂‖xS∞‖∞ | ∀i ∈ {1, .., |S∞|} |(zS∞)i| − τ |ui| = ‖x‖∞
=⇒ ∃u ∈ ∂‖xS∞‖∞ |

∑
i∈{1,..,|S∞|}

(|(zS∞)i| − ‖x‖∞) = τ
∑

i∈{1,..,|S∞|}
|ui| = τ

=⇒ ∃u ∈ ∂‖xS∞‖∞ |
∑

i∈{1,..,|S∞|}
|(zS∞)i| > τ.

Let’s recall that all this reasoning is in the case ‖x‖∞ > 0. Now, let’s try to transform
these implications into rules to get values from z to x, keeping the oracle separation
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S∞ and S< unknown in practice as these sets depend on the solution of the proximal
problem which is unknown. If we have ∑i∈{1,..,|S∞|} |(zS∞)i| ≤ τ , then this means that
‖x‖∞ = 0, which means that x = 0. Otherwise, we have some s ∈ R+

∗ such that∑
i∈{1,..,|S∞|}(|(zS∞)i| − s) = τ . This s is our value for ‖x‖∞, which means we will do an

`∞ ball projection with this radius. In other words, we have xS∞ = s� sign(zS∞), where
� is the term-by-term product (Hadamar product). In that case, we should also have
xS< = zS< .

This separation of the solution into two sets, S∞ and S<, is unknown in practice, so
we must have a way to infer them from z if s > 0, before the computation of s which
requires the knowledge of S∞. It turns out that when s > 0 exists, we have:

∀i ∈ S<, |xi| < s ⇐⇒ |zi| < s ⇐⇒ |zi| − s < 0.

This means that we can compute the previous sum on the whole z just by cancelling the
negative values. This leads to the following final expression: If ∃s ∈ R+

∗ |
∑Q
i=1 max(0, |zi|−

s) = τ , then x = sign(z)�min(|z|, s), otherwise x = 0.

How to compute that Finding the s value inside the summed max terms seems rather
intricate at first glance. However, with some manipulation, it is tractable. Let’s denote
by γ the magnitude sorted version of z:

∀i ∈ {1, .., Q},∃!j ∈ {1, .., Q}, zi = γj

∀i ∈ {1, .., Q− 1}, |γi| ≥ |γi+1|.

Then, we have:

Q∑
i=1

max(0, |zi| − s) = τ

⇐⇒
Q∑
i=1

max(0, |γi| − s) = τ

⇐⇒
K∑
i=1

(|γi| − s) = τ.
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with K separating the non-zero and zero terms: ∀i ≤ K, γi > s,∀i > K, γi ≤ s. Rear-
ranging the equation, we have:

K∑
i=1

(|γi| − s) = τ

⇐⇒ (
K∑
i=1
|γi|)− sK = τ

⇐⇒ (∑K
i=1 |γi|)− τ

K
= s.

Let’s denote by s(K) this quantity: s(K) = (
∑K

i=1 |γi|)−τ
K

. These s(K) would be the correct
s if there was only the K largest coordinates of z in the sum. In other words, the Q−K
remaining coordinates should be cancelled by the value of s(K). This means we look for
the value of K such that:

∀j > K, |γK | > s(K) ≥ |γj| ⇐⇒ |γK | > s(K) ≥ |γK+1|.

Looking back at the definition of s(K), we have the following equality:

s(K) = K+1
K
s(K + 1)− |γK+1|

K
.

This means that:

s(K) ≥ |γK+1|

⇐⇒ K+1
K
s(K + 1)− |γK+1|

K
≥ |γK+1|

⇐⇒ K+1
K
s(K + 1) ≥ |γK+1|(1 + 1

K
)

⇐⇒ s(K + 1) ≥ |γK+1|.

Consequently, our condition rewrites:

|γK | > s(K) ≥ |γK+1| ⇐⇒ |γK | > s(K) and |γK+1| ≤ s(K + 1).

Therefore, we are looking for the last γK such that |γK | > s(K) holds. In terms of prac-
tical implementation, the different s(K) can be computed in one row, using cumulative
summing functions (such as cumsum in Matlab) and element-wise subtraction and division.
After that, taking the max of a vector condition such as |γ| > s has a complexity of O(n).
To get the γ vector, we must use a sorting operator, which generally has a complexity
of O(n log(n)), therefore this is the driving term for the algorithmic complexity of the
overall procedure. A semi-formal writing of this procedure is given in Algorithm 12.
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Algorithm 12 Proximal operator of the `∞ function
1: procedure Prox-`∞(z, τ)
2: γ ← sort(z, ’descend’)
3: c← (cumsum(|γ|) - τ) ./ cumsum(ones(Q, 1)) . Our candidates for s, using

element-wise division and subtraction.
4: good ← (|γ| > c) . This is to be read as a vector boolean expression.
5: K ← arg max(good) . Get the latest |γi| matching the condition.
6: s← cK
7: x← sign(z)�min(|z|, s) . Note that we use z and not γ to keep the original

order.
8: return x
9: end procedure
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Appendix C

Remaining proofs of the thesis
contributions

This appendix is dedicated to proofs omitted in the main text. They are part of the
contributions of this thesis.

C.1 Proof of Proposition 9.2.2

Proof. We will just show the equivalence with Problem (DNweight
2+11 ):

max
w∈RN

− 1
2(‖w + y‖2

2 − ‖y‖
2
2) + µ|G1|

−M

∑
i∈S̄

[
|aTi w| − αi µM

]
+

+ ‖AT
S1w‖1

 (DNweight
2+11 )

Injecting the definition of A, namely:

— ∀i ∈ S̄,Ai = ai/αi,

— ∀i ∈ S1 ∪ S0,Ai = ai,

into the dual definition, we get:

max
w∈RN

− 1
2(‖w + y‖2

2 − ‖y‖
2
2) + µ|G1|

−

∑
i∈S̄

Mαi
[

1
αi

(|aTi w| − αi µM )
]

+
+M‖AT

S1w‖1


We have:

∑
i∈S̄

Mαi
[

1
αi

(|aTi w| − αi µM )
]

+
=
∑
i∈S̄

Mαi
1
αi

[
|aTi w| − αi µM

]
+

= M
∑
i∈S̄

[
|aTi w| − αi µM

]
+
.

Injecting this last form into the dual objective, we get the multiple-weight variant.
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C.2 Proof of Proposition 9.2.4

Proof. The tests can be proved in the same way than for Theorem (9.2.3) (on page 125),
starting from −ATw? ∈ ∂g(z?), separating the different cases, and then plugging Inequal-
ity (5.19):

|aTi w?| ≤ |aTi w|+ ‖ai‖2‖w
? −w‖2

and Inequality (5.20):

|aTi w?| ≥ |aTi w| − ‖ai‖2‖w
? −w‖2.

In this case the different columns Ai, i ∈ S̄ are not unit norm, so the different ‖Ai‖2 must
be kept.

Here, we will instead directly show that tests (9.5) (on page 125) are equivalent to
tests (9.2) (on page 124). Injecting the definitions of A, z, namely:

— ∀i ∈ S̄,Ai = ai/αi,

— ∀i ∈ S1 ∪ S0,Ai = ai,

— ∀i ∈ S̄, zi = αixi,

— ∀i ∈ S1 ∪ S0, zi = xi,

into tests (9.5), we get:

∀i ∈ S̄, if 1
αi
|aTi w| > µ

M
+ 1

αi
‖ai‖2︸ ︷︷ ︸

=1

√
2G(x,w), then αix?i = −αiM sign( 1

αi︸︷︷︸
>0

aTi w);

∀i ∈ S̄, if 1
αi
|aTi w| < µ

M
− 1

αi
‖ai‖2︸ ︷︷ ︸

=1

√
2G(x,w), then αix?i = 0;

∀i ∈ S1, if |aTi w| > ‖ai‖2︸ ︷︷ ︸
=1

√
2G(x,w), then x?i = −Mi sign(aTi w).

The last test is already exactly the same as (9.2c), and the two previous ones are just the
first two tests of (9.2) where we multiplied by 1

αi
(which is strictly positive) on both sides

of the inequalities, an multiplied by αi (also strictly positive) on the tests consequences.
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Appendix D

Overview of all the classes of the code

This covers the same software architecture as in Figure 11.2 (on page 150), displayed
on 3 pages instead of a single figure.
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NodeInterface

+getDepth(): int
+getS0(): support
+getS1(): support
+getSBar(): support
+getK(): int
+getLS(): double
+getHtHinv(): mat
+setUB(ub:double): void
+setLB(lb:double): void
+setxUB(xub:double): void
+setxLB(xlb:vec): void
+setLS(ls:double): void
+setS0(s0:support): void
+setS1(s1:support)
+setSBar(sbar:support)
+duplicate(): NodeInterface*
+setFeasible(feasible:bool): void
+isFeasible(): bool
+setSolution(solution:bool)
+isSolution(): bool
+computeUB(): bound_type
+getUB(): double
+getxUB(): vec
+computeLB(xub:vec): bound_type
+getLB(old_is_good:bool=false): double
+getxLB(old_is_good:bool=false): vec
+split(): node_list
+contract(): NodeInterface&
+getName(): string
+setName(name:string): void
+nameRightChildOfName(parent_name:string): string
+nameLeftChildOfName(parent_name:string): string

NodeImplementation
-LB: double
-LS: double
-S1: support
-S0: support
-SBar: support
-xlb: vec
-HtHinv: mat
-exact_LB: bool
-feasible: bool
-solution: bool

Optimizer

+Optimizer(split_op:SplitInterface&,contract_op:ContractInterface&)

ProblemData
+A: mat
+AtA: mat
+bigM: double
+y: vec
+mu: double
+eps: double
+K: unsigned int
+pt: ProblemType
+P: mat

+Problem(Hmat:mat,yvec:vec,BigM:double,param:ParamType,
         pt:ProblemType)

NodeContainerInterface

+top(): NodeInterface*
+pop(): NodeInterface*
+push(node:NodeInterface*): void
+prune(ub:double): void
+getLowestLB(): double
+empty(): bool
+reset(): void
+remove(node:NodeInterface*): void

LIFONodeContainer
-storage: std::vector<NodeInterface*>

+LIFONodeContainer(context:Context&)

MinimierNodeContainer
-storage: make_heap(std::vector<NodeInterface*>)

+MinimierNodeContainer(context:Context&)

UBInterface

+operator()(node:NodeInterface&): bound_type

UBL2L0

+UB(optimizer:Optimizer*)

OptimizerInterface

+optimize(problem:Problem&,rt:RelaxationType,
          node_set:NodeContainerInterface&): ???
+getIterationNumer(): int
+getTestTime(): float
+getRelaxationTime(): float
+getBestUB(): bound_type
+getNumberOfAnalyzedNodes(): unsigned int

ContextData
+UB: double
+xUB: vec
+BBNodeNum: int
+BestNodeNum: int
+TimeBBMax: double
+T_relaxation: double
+T_test: double
+warm_restart: bool

LIFOThenMinimierThresholdNodeContainer
-storage: NodeContainer*
+threshold: int

+LIFOThenMinimierThresholdNodeContainer(context:Context&,
                                        threshold:int)

UBL2pL0

+UB(optimizer:Optimizer*)

UBL0L2

+UB(optimizer:Optimizer*)

QuadraticProgramWithBigMSolverInterface

+operator()(y:vec,A_S1:mat,M:double): bound_type

CplexQPSolver

+operator()(y:vec,A_S1:mat,M:double): bound_type

DlibQPSolver

+operator()(y:vec,A_S1:mat,M:double): bound_type



LBInterface

+operator()(node:NodeInterface&,xub:vec): bound_type

SplitInterface

+operator()(node:NodeInterface&,xlb:vec): node_list

ContractInterface

+operator()(node:NodeInterface&): NodeInterface&

DummyContract

+DummyContract(optimizer:Optimizer&)

MaxXiBranchingRule

+MaxXiBranchingRule(optimizer:Optimizer&)
+getBranchingIndex(): int

vec: armadillo vector
mat: armadillo matrix
support: typedef std::vector<int>
bound_type: std::pair<vec, double>

Operators for splitting and contracting
are created before-hand and passed to
the Optimizer constructor.

MaxLPSBranchingRule

+MaxLPSBranchingRule(optimizer:Optimizer&)
+getBranchingIndex(): int

MinimierComparator

+operator()(node1:NodeInterface&,node2:NodeInterface&): bool

MinimierLBCompare MinimierL1Compare MinimierLSCompare

MostUndeterminedXiBranchingRule

+MostUndeterminedXiBranchingRule(optimizer:Optimizer&)
+getBranchingIndex(): int

AbstractSplitInTwo

+operator()(node:NodeInterface&,xlb:vec): node_list
+getBranchingIndex(): int

MinimierLDSCompare



GenericHomotopy

+GenericHomotopy(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

CplexRelaxL0L2

+CplexRelaxL0L2(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

CplexRelaxL2L0

+CplexRelaxL2L0(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

CplexRelaxL2pL0

+CplexRelaxL2pL0(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

ActiveSetL2pL0

+ActiveSetL2pL0(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

HomotopyStoppingCriteriaInterface

HomotopyL0L2StoppingCriteria

HomotopyL2L0StoppingCriteria

HomotopyL2pL0StoppingCriteria

IGDL2pL0Lq

+IGDL2pL0Lq(optimizer:Optimizer&)
+operator()(node:NodeInterface&,xub:vec): bound_type

ProxLpInterface

+operator()(x:vec,param:double): vec

PrimalProblemObjectiveInterfaceStructured

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,x_S1:vec,x_SBar:vec,
          P_G1_S1:mat,P_GBar_SBar:mat): double

DualProblemObjectiveInterfaceStructured

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,w:vec,P_G1_S1:mat,
          P_GBar_SBar:mat): double

ProxL2

+operator()(x:vec,param:double): vec

ProxLinf

+operator()(x:vec,param:double): vec

L2pL1L2_primal

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,x_S1:vec,x_SBar:vec,
          P_G1_S1:mat,P_GBar_SBar:mat): double

L2pL1Linf_primal

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,x_S1:vec,x_SBar:vec,
          P_G1_S1:mat,P_GBar_SBar:mat): double

L2pL1L2_dual

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,w:vec,P_G1_S1:mat,
          P_GBar_SBar:mat): double

L2pL1Linf_dual

+operator()(y:vec,M:double,param:double,
          A_S1:mat,A_SBar:mat,w:vec,P_G1_S1:mat,
          P_GBar_SBar:mat): double
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Titre : Algorithme de branch-and-bound pour la résolution efficace de problèmes d’optimisation
parcimonieuse.

Mot clés : Branch-and-bound, `0, Optimisation combinatoire, Optimisation continue

Résumé : De nombreux problèmes inverses
en traitement du signal, statistique, imagerie bio-
médicale, astronomie et apprentissage machine
peuvent se formuler comme la recherche de la
meilleure combinaison de motifs expliquant les
données, ces motifs étant choisis dans un cata-
logue connu. L’aspect parcimonieux du problème
réside dans le faible nombre de motifs que l’on
cherche à sélectionner via l’utilisation d’un terme
`0. Plusieurs méthodes standards, telles que des
algorithmes gloutons (OMP, OLS) et des refor-
mulations convexes du problème (notamment en
norme `1), permettent d’obtenir des solutions ap-

prochées de ce problème `0. Plus récemment,
des méthodes permettant de résoudre exacte-
ment le problème `0 ont été développées, reposant
sur des algorithmes de branch-and-bound. L’objec-
tif de cette thèse est double. D’une part, explo-
rer les possibilités d’accélérations des algorithmes
branch-and-bound `0. D’autre part, étendre ces
méthodes à des cas de parcimonie structurée, où
l’on ne cherche plus simplement un faible nombre
de motifs, mais un faible nombre de groupes de
motifs. Ces contributions font l’objet d’un code
open-source proposé au plus grand nombre.

Title: Branch-and-bound algorithm for efficient resolution of sparse optimization problems

Keywords: Branch-and-bound, `0, Combinatorial optimization, Continuous optimization

Abstract: Numerous inverse problems in sig-
nal processing, statistics, biomedical imaging, as-
tronomy and machine learning can be cast as
the search for the best pattern combination fitting
measurements, these patterns being taken from
a known dictionary. The sparsity of the problem
comes from the small number of patterns desired,
using a `0 term. Several standard methods, among
which greedy algorithms (OMP, OLS) and convex
reformulations (most notably the `1-norm reformu-
lation), provide approximate solutions to this `0
problem. More recently, methods able to solve ex-

actly the `0 problem were designed, using branch-
and-bound algorithms. This PhD thesis has two
goals. First, explore possible accelerations of cur-
rent branch-and-bound algorithms dedicated to the
`0 problem. Then, extend these branch-and-bound
algorithms to the case of structured sparsity, where
we are not looking for a small number of patterns
fitting data, but a small number of groups of pat-
terns fitting data. These contributions lead to the
development of an open-source code publicly re-
leased.
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