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Chapter 1

Outline

Spectral theory of linear operators is an old, sophisticated and highly developed subject. It not
only finds its application in a vast variety of modern problems in mathematics and physics, but
it is also still a highly active field of research posing many open problems and enigmas.

Spectral theory, as we see it today, has been initiated by D. Hilbert [106–111] who was strongly
motivated by early works of I. Fredholm [79] on integral equations and the famous « alternative de
Fredholm ». In hindsight, however, modern spectral theory’s early forerunners can be traced back
to various subjects. For instance the principal axes theorem of analytic geometry, see [180, sec.
1], contained in works of P. de Fermat and R. Descartes.

Hilbert’s initial work sparked a veritable plethora of subsequent works by E. Schmidt, E.
Hellinger, H. Weyl, J. von Neumann and F. Riesz, to name but a few major contributors. These
works lead to an operator theoretic point of view of spectral theory and an abstract definition of
Hilbert spaces and, by intertwining Hilbert’s original formulation of spectral theory with the then
newly developed integration theory of Lebesgue, to the spectral theorem for bounded symmetric
linear operators in its integral form.

The passage from spectral theory for bounded linear operators to unbounded linear operators
(in the language of modern spectral theory) came with the advent of quantum mechanics in
1925. As formulated by W. Heisenberg and E. Schrödinger it describes physical observables using
operators and their spectra. It became quickly apparent that Hilbert’s spectral theory provided
a solid mathematical framework for quantum mechanics. However, the back then restriction
to bounded linear operators was too restrictive from a physics perspective. The reason being
that many fundamental observables in physics involve unbounded operators such as the position
operator, which multiplies an L2 function by its position variable, or the momentum operator,
which takes the differential of an L2 function.

Since these early days, spectral theory has enjoyed many developments which often have come
parallel and closely intertwined with advances in physics. A detailed overview would be beyond
the scope of this text, although, further below we will make some relevant connections.

1.1 Scope of this habilitation thesis

The main focus of this habilitation thesis are the spectral properties of disordered semiclassical
pseudo-differential operators and Toeplitz matrices. The disorder will predominantly be given by
small random perturbations.

In Part I we will discuss the spectral distribution on a macroscopic level, in the form of a
probabilistic Weyl law, and on the microscopic level, in the form of spectral statistics, of non-
selfadjoint semiclassical pseudo-differential operators subject to small random perturbations. The
relevant publications are

• S. Becker, I. Oltman, and M. Vogel, Absence of small magic angles for disordered tunneling
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2 CHAPTER 1. OUTLINE

potentials in twisted bilayer graphene, arXiv:2402.12799, (2024).

• S. Nonnenmacher and M. Vogel, Local eigenvalue statistics of one dimensional random non-
selfadjoint pseudodifferential operators, J. Eur. Math. Soc. 23 (2021), no. 5, 1521–1612.

• J. Sjöstrand and M. Vogel, Tunneling for the ∂-bar operator, accepted for publication in
Vietnam Journal of Mathematics, arXiv:2303.06096 (2023).

• M. Vogel, Spectral statistics of non-selfadjoint operators subject to small random perturba-
tions, Séminaire Laurent Schwartz - EDP et applications 19 (2016–2017), 24 p.

• M. Vogel, Almost sure Weyl law for quantized tori, Comm. Math. Phys 378 (2020), no. 2,
1539–1585.

In Part II we will first discuss probabilistic Weyl laws for noisy non-selfadjoint Toeplitz matrices
and related eigenvector localization. These noisy Toeplitz matrices are excellent toy models for
noisy pseudo-differential operators. The relevant publications are

• A. Basak, M. Vogel, and O. Zeitouni, Localization of eigenvectors of non-Hermitian banded
noisy Toeplitz matrices, Probability and Mathematical Physics 4 (2023), no. 3, 477–607.

• J. Sjöstrand and M. Vogel, Large bi-diagonal matrices and random perturbations, J. of Spec-
tral Theory 6 (2016), no. 4, 977–1020.

• J. Sjöstrand and M. Vogel, Interior eigenvalue density of large bi-diagonal matrices sub-
ject to random perturbations, Microlocal analysis and singular perturbation theory, RIMS
Kôkyûroku Bessatsu, B61 (2017), 201–227.

• J. Sjöstrand and M. Vogel, General toeplitz matrices subject to gaussian perturbations, Ann.
Henri Poincaré 22 (2021), no. 1, 49–81.

• J. Sjöstrand and M. Vogel, Toeplitz band matrices with small random perturbations, Indaga-
tiones Mathematicae 32 (2021), no. 1, 275–322.

• M. Vogel and O. Zeitouni, Deterministic equivalence for noisy perturbations, Proc. Amer.
Math. Soc. 149 (2021), 3905–3911.

In Part III we will consider a form of eigenvector delocalization in a selfadjoint setting. More
precisely, we will discuss Berry’s conjecture for Langrangian states which have been propagated
for a long time under the Schrödinger evolution semi-group induced by a random Schrödinger
type operator. The relevant publications are

• M. Ingremeau and M. Vogel, Emergence of gaussian fields in noisy quantum chaotic dynam-
ics, arXiv:2306.11617, (2023)

• M. Ingremeau and M. Vogel, Improved L∞ bounds for eigenfunctions under random pertur-
bations in negative curvature, arXiv:2403.13739, (2024).

In the Appendix A we review some basic notions of semiclassical analysis.

1.2 Notation

We frequently use the following notation: when we write a ≪ b, we mean that Ca ⩽ b for some
sufficiently large constant C > 0. The notation f = O(N) means that there exists a constant
C > 0 (independent of N) such that |f | ⩽ CN . When we want to emphasize that the constant
C > 0 depends on some parameter k, then we write Ck, or with the above big-O notation Ok(N).



1.2. NOTATION 3

When we write f = O(N−∞), then we mean that for every M ∈ N, there exists a constant
CM > 0, depending on M , such that |f | ⩽ CMN

−M . Similarly we will also use the notation
f = O(h∞), f = Ok(h), with h ∈]0, 1].

When we write f = o(1), as N → ∞, then we mean that f → 0 as N → ∞. Moreover, writing
f = o(N), as N → ∞, means that N−1f → 0 as N → ∞. Similarly, we will also use the notation
f = o(h), f = o(1), when h→ 0.

Writing a ≍ b means that there exists a constant C > 1 such that C−1a ⩽ b ⩽ Ca. We will
denote by [N ], N ∈ N∗, the discrete interval [1, N ] ∩N.
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Part I

Non-selfadjoint disordered
pseudo-differential operators
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Chapter 2

Spectral instability of non-selfadjoint
operators

2.1 Introduction

The spectral analysis of linear operators acting on a Hilbert space is much developed in the case
of selfadjoint operators: one can then use powerful tools, like the spectral theorem, or variational
methods. This fact has been very useful in mathematical physics, for example in quantum mechan-
ics, where the natural operators (quantum observables, Hamiltonian) are selfadjoint. However,
non-selfadjoint operators also appear in mathematical physics, and deserve to be investigated. For
instance, in quantum mechanics, the study of scattering systems naturally leads to the concept of
quantum resonances, which appear as the (complex valued) poles of the analytic continuation of
the scattering matrix (or of the resolvent of the Hamiltonian) into the so-called nonphysical sheet
of the complex energy plane. These resonances may also be obtained as bona fide eigenvalues of
a non-selfadjoint operator, obtained from the initial selfadjoint Hamiltonian through a complex
dilation procedure [2,11]. Still in quantum mechanics, when considering the evolution of a "small
system" in contact with an "environment", one can be lead to express the effective dynamics of
the small system through a non-selfadjoint Lindblad operator [134]. In statistical mechanics, the
evolution of the system may be described by a linear operator, which is often non-selfadjoint: the
Fokker-Planck, or the linearized Boltzmann equation typically contain convective as well as dis-
sipative terms, leading to non-selfadjoint operators. In hydrodynamics, the operators appearing
when linearizing the Navier-Stokes equation in the vicinity of some specific solution are generally
not selfadjoint [83].

When studying evolution problems generated by linear operators, one is naturally lead to
analyze the spectrum of that operator. Yet, in the non-selfadjoint case, the connection between
the long time evolution and a spectrum of complex eigenvalues is not so obvious as in the selfadjoint
case, since eigenstates do not form an orthonormal family. This difficulty of relating spectrum
and dynamics is linked with a characteristics of non-selfadjoint operators, namely the possible
strong instability of their spectrum with respect to small perturbations, a phenomenon nowadays
commonly called pseudospectral effect. Traditionally this spectral instability was considered as
a drawback, since it can be at the source of immense numerical errors, see [70]. However, as
we will see below, analyzing this instability can also exhibit interesting phenomena. Numerical
analysis studies, e.g. by L.N. Trefethen [188], somewhat changed the perspective of this instability
problem: they showed that considering the pseudospectrum of the (non-selfadjoint) operator —
that is the region where the norm of the resolvent operator exceeds some (large) threshold, see
Definition 2.2.1 below — is often more relevant than considering its spectrum, and can reveal
important dynamical information. As an example, when studying a certain class of nonlinear
diffusion equations, Sandsteede-Scheel [158], Raphael-Zworski [151] and Galkowski [82] showed
that the pseudospectrum of the (non-selfadjoint) linearization of the equation can explain the
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8 CHAPTER 2. SPECTRAL INSTABILITY OF NON-SELFADJOINT OPERATORS

finite time blow-up of the solutions to the full nonlinear equation, while the mere study of its
spectrum would suggest a stable evolution.

2.2 Spectral instability of non-selfadjoint operators

We begin by recalling the definition of the pseudospectrum of a linear operator, an important
notion which quantifies its spectral instability. This notion seems to have originated in the second
half of the 20th century in various contexts, see [188] for a historic overview. It quickly became an
important notion in numerical analysis as it allows to quantify how much eigenvalues can spread
out under the influence of small perturbations, see [187, 188] and the book [70]. We follow here
the latter reference.

Let H be a complex Hilbert space (assumed separable for simplicity) with norm ∥·∥ and scalar
product (·|·). Let P : H → H be a closed densely defined linear operator, with resolvent set ρ(P )
and spectrum Spec(P ) = C\ρ(P ).

Definition 2.2.1. For any ε > 0, we define the ε-pseudospectrum of P by

Specε(P ) := Spec(P ) ∪ {z ∈ ρ(P ); ∥(P − z)−1∥ > ε−1}. (2.2.1)

We remark that some authors define the ε-pseudospectrum with a ⩾ rather than a >. We,
however, follow here [70]. Note that with this choice of non-strict inequality the Specε(P ) is an
open set in C.

For P selfadjoint (or even normal), the spectral theorem implies that

Specε(P ) ⊂ Spec(P ) ∪D(0, ε). (2.2.2)

For P non-selfadjoint, the pseudospectrum of P can be much larger, as illustrated by the following
example.

Example 2.2.2. For N ≫ 1 consider the Jordan block matrix

PN =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . . 0
... . . .

. . . . . . 1
0 . . . . . . . . . 0


: CN → CN . (2.2.3)

The spectrum of PN is given by {0}. However, Theorem 6.4.2 below shows that for any ε > 0 and
any r ∈]0, 1[ we have that for N > 1 sufficiently large

D(0, r) ⊂ Specε(PN ).

An immediate consequence of (2.2.1) is the property that pseudospectra are nested. More
precisely,

Specε2(P ) ⊂ Specε1(P ), ε1 > ε2 > 0. (2.2.4)

The set (2.2.1) describes a region of spectral instability of the operator P , since any point in the
ε-pseudospectrum of P lies in the spectrum of a certain ε-perturbation of P [70].

Theorem 2.2.3. Let ε > 0. Then

Specε(P ) =
⋃

Q∈B(H,H)
∥Q∥<1

Spec(P + εQ). (2.2.5)
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Proof. See [70, p. 31].

A third, equivalent definition of the ε-pseudospectrum of P is via the existence of approximate
solutions to the eigenvalue problem (P − z)u = 0.

Theorem 2.2.4. Let ε > 0 and z ∈ C. Then the following statements are equivalent:

1. z ∈ Specε(P );

2. z ∈ Spec(P ) or there exists a uz ∈ D(P ) such that ∥(P − z)uz∥ < ε∥uz∥, where D(P )
denotes the domain of P .

Proof. See [70, p. 31].

Such a state uz is called an ε-quasimode, or simply a quasimode of P − z.

2.3 Spectral instability of semiclassical pseudo-differential opera-
tors

Although the notion of ε-pseudospectrum defined in Definition 2.2.1 is valid in the setting of
semiclassical pseudo-differential operators, we present here a somewhat different, yet still related
notion, which is more adapted to semiclassical setting. Here “semiclassical” means that our opera-
tors depend on a parameter h ∈]0, 1] (often referred to as “Planck’s parameter”), and that we will
be interested in the asymptotic (semiclassical ) regime h↘ 0. This small parameter will provide
us with a natural threshold to define the pseudospectrum, and thereby to measure the spectral
instability. The following discussion is based on the works by Davies [58] and Dencker, Sjöstrand
and Zworski [62].

Let the symbol p ∈ S(T ∗Rd,m) = S(m), m ⩾ 1, see Appendix A.1.1 for a definition of this
symbol class, be “classical”, namely it satisfies an asymptotic expansion in the limit h→ 0:

p(ρ;h) ∼ p0(ρ) + hp1(ρ) + . . . in S(m), (2.3.1)

where each pj ∈ S(m) is independent of h. We assume that there exists a z0 ∈ C and a C0 > 0
such that

|p0(ρ)− z0| ⩾ m(ρ)/C0, ρ ∈ T ∗Rd. (2.3.2)

In this case we call p0 the (semiclassical) principal symbol of p. We then define two subsets of C
associated with p0:

Σ := Σ(p0) := p0(T ∗Rd), Σ∞ := {z ∈ Σ; ∃(ρj)j⩾1 s.t. |ρj | → ∞, p0(ρj) → z}. (2.3.3)

The set Σ is the classical spectrum, and Σ∞ can be called the classical spectrum at infinity of the
Weyl quantization of Ph = pw(x, hDx;h), h ∈]0, 1], defined in (A.1.3).

2.3.1 Semiclassical pseudospectrum

Similar to [62], we define for a symbol p ∈ S(m) as in (2.3.1).

Λ±(p) :=

{
p(ρ); ± 1

2i
{p, p}(ρ) < 0

}
⊂ Σ ⊂ C, (2.3.4)

where {·, ·} denotes the Poisson bracket. Note that the condition 1
2i{p, p} ≠ 0 is the classical

analogue of the [P ∗
h , Ph] ̸= 0. As in [62] we call the set

Λ(p) := Λ− ∪ Λ+ (2.3.5)

the semiclassical pseudospectrum.
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Theorem 2.3.1 ( [62]). Suppose that n ⩾ 2, C∞
b (T ∗Rd) ∋ p ∼ p0 + hp1 + . . . , and p−1

0 (z) is
compact for a dense set of values z ∈ C. If Ph = pw(x, hDx), then

Λ(p0)\Σ∞ ⊂ Λ+(p0)

and for every z ∈ Λ+(p0) and every ρ0 ∈ T ∗Rd with

p0(ρ0) = z,
1

2i
{p0, p0}(ρ0) < 0,

there exists 0 ̸= e+ ∈ L2(Rd) such that

∥(Ph − z)e+∥ = O(h∞)∥e+∥, WFh(e+)
1 = {ρ0}. (2.3.6)

If, in addition, p has a bounded holomorphic continuation to to {ρ ∈ C2d, |Im ρ| ⩽ 1/C}, then
(2.3.6) holds with the h∞ replaced by exp(−1/(Ch)).

If n = 1, then the same conclusion holds, provide that in addition to the general assumptions,
each component of C\Σ∞ has a nonempty intersection with ∁Λ(p).

This result can be extended to unbounded symbols p ∈ S(T ∗Rd,m), as in (2.3.1), and
the corresponding operators Ph with principal symbol p0, by applying Theorem 2.3.1 to P̃h =
(Ph− z0)

−1(Ph− z1), with principal symbol p̃0 ∈ C∞
b (T ∗Rd) and z0 as in (2.3.2) and z0 ̸= z1. In-

deed, note that z ∈ Σ(p0) if and only if 0 ∈ Σ(p̃0), and that ρ ∈ p−1
0 (z) with ±{Re p0, Im p0}(ρ) < 0

is equivalent to ρ ∈ p̃−1
0 (0) with ±{Re p̃0, Im p̃0}(ρ) < 0. Furthermore, a quasimode u as Theorem

2.3.1 for P̃h then provides, after a possible truncation, a quasimode for Ph − z in the same sense.

By replacing Ph with its formal adjoint P ∗
h , and thus p with p, Theorem 2.3.1 yields that for

every z ∈ Λ−(p) and every ρ0 ∈ T ∗Rd with

p0(ρ0) = z,
1

2i
{p0, p0}(ρ0) > 0,

there exists 0 ̸= e− ∈ L2(Rd) such that

∥(Ph − z)∗e−∥ = O(h∞)∥e−∥, WFh(e−) = {ρ0}.

The additional statements of Theorem 2.3.1 about symbols admitting a holomorphic extension to
a complex neighborhood of R2d, and the case when n = 1 hold as well.

Example 2.3.2. The guiding example to keep in mind is the case of the non-selfadjoint Harmonic
oscillator

Ph = (hDx)
2 + ix2

seen as an unbounded operator L2(R) → L2(R). The principal symbol of Ph is given by p(x, ξ) =
ξ2 + ix2 ∈ S(T ∗R,m), with weight function m(x, ξ) = 1 + ξ2 + x2. We equip Ph with the domain
H(m) := (Ph + 1)−1L2(R), where the operator on the right is the pseudo-differential inverse of
Ph + 1. This choice of domain makes Ph a closed densely defined operator. Using, for instance,
the method of complex scaling we see that the spectrum of Ph is given by

Spec(Ph) = {eiπ/4(2n+ 1)h;n ∈ N}. (2.3.7)

Furthermore, Σ is the closed 1st quadrant in the complex plane, whereas Σ∞ = ∅. For ρ = (x, ξ) ∈
T ∗R, we find that

1

2i
{p, p}(x, ξ) = 2ξ · x. (2.3.8)

1This is to say that the semiclassical wavefront set of e+ is given by ρ0. In other words, the state e+ is
concentrated in position and frequency near the point ρ0. See (A.2.1) for a definition.
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Thus, for every z ∈ Σ̊ there exist points

ρj+(z) = (−1)j(−
√
|Re z|,

√
|Im z|), ρj−(z) = (−1)j(−

√
|Re z|,−

√
|Im z||), j = 1, 2,

such that

± 1

2i
{p, p}(ρj±(z)) < 0, j = 1, 2.

Using the WKB method, we can construct quasimodes of the form ej+(x;h) = aj+(x;h)e
iϕj+(x)/h

with aj+(x;h) ∈ C∞
c (R) admitting an asymptotic expansion aj+(x;h) ∼ aj+,0(x) + haj+,1(x) + . . .

with WFh(e
j
+) = {ρj+(z)} and

∥(Ph − z)ej+∥ = O(e−1/Ch), (2.3.9)

see [58,59] for an explicit computation, and [62] for a more general construction.

In fact the works of Davies [58,59] provide an explicit WKB construction for a quasimode u for
one-dimensional non-selfadjoint Schrödinger operators Ph−z = (hDx)

2+V (x)−z on L2(R) with
V ∈ C∞(R) complex-valued and z = V (a)+η2, for some a ∈ R, η > 0. Furthermore, one assumes
that ImV ′(a) ̸= 0. These works were the starting point for the quasimode construction for non-
selfadjoint (pseudo-)differential operators. Zworski [202] linked Davies’ quasimode construction
under the condition on the gradient of ImV to a quasimode construction under a non-vanishing
condition of the Poisson bracket 1

2i{p, p}. Furthermore, Zworski [202] established the link to the
famous commutator condition of Hörmander [116, 117]. A full generalization of the quasimode
construction under a non-vanishing condition of the poisson bracket, see Theorem 2.3.1 above, was
then achieved by Dencker, Sjöstrand and Zworski [62]. Finally, Pravda-Starov [148–150] improved
these results by modifying a quasimode construction by Moyer and Hörmander, see [119, Lemma
26.4.14], for adjoints of operators that do not satisfy the Nirenberg-Trèves condition (Ψ) for local
solvability.

Notice, that (2.3.6) (or (2.3.9) in the example above) implies that if the resolvent (Ph − z)−1

exists then it is larger than any power of h when h→ 0, or even larger than e1/Ch in the analytic
case. We call each family (ej+(z, h)) an h∞-quasimode of Ph−z, or for short a quasimode of Ph−z.

From the quasimode equation (2.3.6) it is easy to exhibit an operator Q of norm 1 and a
parameter δ = O(h∞), such that the perturbed operator Ph + δQ has an eigenvalue at z. For
instance, if we call the error r+ = (Ph−z)e+, we may take the rank 1 operator δQ = −r+⊗ (e+)

∗.
By Theorem 2.3.1 we see that the interior of the set Λ(p), away from the set Σ∞, is a zone of strong
spectral instability for Ph. For this reason we may refer to the semiclassical pseudospectrum Λ(p)
also as the (h∞-)pseudospectrum of Ph.

2.3.2 Outside the semiclassical pseudospectrum.

When
z ∈ C\Σ(p),

then by condition (2.3.2) we have that (p0(ρ) − z) ⩾ m(ρ)/C for some sufficiently large C > 0
and so we know that the inverse (Ph−z)−1 is a pseudo-differential operator with principal symbol
(p0 − z)−1 ∈ S(1/m) ⊂ S(1). Hence, (Ph − z)−1 maps L2 → L2 and

∥(Ph − z)−1∥ = O(1) (2.3.10)

uniformly in h > 0. Hence, from the semiclassical point of view we may consider C\Σ as a zone
of spectral stability.
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2.3.3 At the boundary of the semiclassical pseudospectrum

At the boundary of the semiclassical pseudospectrum we find a transition between the zone of
strong spectral instability and stability. Indeed at the boundary we find an improvement on the
resolvent bounds, assuming some additional non-degeneracy:

Splitting a symbol p ∈ C∞
b (T ∗Rd) into real and imaginary part, p = p1 + ip2, we consider the

iterated Poisson bracket

pI := {pi1 , {pi2 , {. . . , {pik−1
, pik}} . . . }}

where I ∈ {1, 2}k, and |I| = k is called the order of the Poisson bracket. The order of p at
ρ ∈ T ∗Rd is given by

k(ρ) := max{j ∈ N; pI(ρ) = 0, 1 < |I| ⩽ j}.

The order of z0 ∈ Σ\Σ∞ is the maximum of k(ρ) for ρ ∈ p−1(z0).

Theorem 2.3.3. [62,170] Assume that C∞
b (T ∗Rd) ∋ p ∼ p0 + hp1 + . . . . Let Ph = pw(x, hDx),

and let z0 ∈ ∂Σ(p0)\Σ∞(p0). Suppose that dp0 ̸= 0 at every point in p−1
0 (z0), that z0 is of finite

order k ⩾ 1 for p. Then, k is even and for h > 0 small enough

∥(Ph − z)−1∥ ⩽ Ch−
k

k+1 .

In particular, there exists a c0 > 0, such that for h > 0 small enough

{z ∈ C; |z − z0| ⩽ c0h
k

k+1 } ∩ Spec(Ph) = ∅.

This result was proven in dimension 1 by Zworski [203], and in certain cases by Boulton [40].
Further refinements have been obtained in [170]. Similar to the discussion after Theorem 2.3.1,
we can extend Theorem 2.3.3 to unbounded symbols p ∈ S(T ∗Rd,m) and their corresponding
quantizations.

Example 2.3.4. Recall the non-selfadjoint Harmonic oscillator Ph = (hDx)
2+ ix2 from Example

2.3.2. Here ∂Σ = R+ ∪ iR+, so we see by (2.3.8) that for 0 ̸= z0 ∈ Σ

1

2i
{p, p}(ρ) = {Re p, Im p}(ρ) = 0, ρ ∈ p−1(z0).

However, at such points we have

either {Re p, {Re p, Im p}}(ρ) = 4ξ2 ̸= 0, or {Im p, {Re p, Im p}}(ρ) = −4x2 ̸= 0,

so z0 is of order 2 for p = ξ2 + ix2, and Theorem 2.3.3 tells us that

∥(Ph − z0)
−1∥ ⩽ Ch−

2
3 .

We see that for a the ε-pseudospectrum of Ph to reach the boundary of Σ, we require ε > h2/3/C.

2.4 Singular values

In this section we review some basic notions from the spectral theory of non-selfadjoint operators.
We refer the reader to the book by Gohberg and Krĕın [89] for an excellent overview.



2.5. PSEUDOSPECTRA OF RANDOM MATRICES 13

2.4.1 Singular values

For a compact operator A : H → H on a complex separable Hilbert space we define, following [89],
the singular values of A to be the decreasing sequence

s1(A) ⩾ s2(A) ⩾ · · · ↘ 0, (2.4.1)

of all eigenvalues of the compact selfadjoint operator (A∗A)1/2. The intertwining relations

A(A∗A) = (AA∗)A, (A∗A)A∗ = A∗(AA∗)

imply that the non-vanishing singular values of A and A∗ coincide. Furthermore, we have min-max
characterization, see for example [89, p. 25], of the singular values

sj(A) = inf
L⊂H

sup
u∈L\{0}

((A∗A)1/2u|u)
(u|u)

,

where the infimum is taken over all closed subspaces L ⊂ H of codimension = j − 1.

The following theorem is due to Ky Fan [89, Corollary 2.2].

Theorem 2.4.1. Let A,B : H → H be compact operators. Then, for any n,m ⩾ 1

sn+m−1(A+B) ⩽ sn(A) + sm(B),

sn+m−1(AB) ⩽ sn(A)sm(B).
(2.4.2)

In the case when P : H → H is a bounded Fredholm operator of index 0 we introduce the
increasing sequence

0 ⩽ t1(P ) ⩽ t2(P ) ⩽ . . . (2.4.3)

consisting first of eigenvalues of (P ∗P )1/2, counting multiplicities, below the infimum of the es-
sential spectrum (should there be any) and then, if there are only finitely many such eigenvalues,
we repeat indefinitely that infimum. Again we have that tj(P ) = tj(P

∗). Indeed the number of 0
eigenvalues coincides as P is of index 0. Furthermore, given a normalized eigenvector e such that
P ∗Pe = t2e, t > 0, we see that PP ∗f = t2f , with f = t−1Pe, and vice versa.

Notice that if dimH =: N <∞, then

tj(P ) = sN+1−j(P ). (2.4.4)

When P : H → H is a closed densely defined unbounded Fredholm operator of index 0 we know
by a classical result due to von Neumann [129, Theorem 3.24, p. 275] that the operator P ∗P is
selfadjoint equipped with its natural domain

D(P ∗P ) := {u ∈ D(P );Pu ∈ D(P ∗)}. (2.4.5)

Furthermore, D(P ∗P ) is a core of P in the sense that the set {(u, Pu);u ∈ D(P ∗P )} is dense in
the graph(P ). We then define the sequence (2.4.3) as above.

We will also call the eigenvalues in (2.4.3) the singular values of P .

2.5 Pseudospectra of random matrices

Let M ∈ CN×N be a complex N × N matrix. It follows from the definition of singular values
presented in Section 2.4.1, that if M − z is bijective for some z ∈ C, then

∥(M − z)−1∥ = sN (M − z)−1.
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In view of (2.2.1), the ε-pseudospectrum of M is then characterized by the condition that z ∈
Specε(M)

z ∈ Specε(M) ⇐⇒ sN (M − z) < ε.

A classical result due to Sankar, Spielmann and Teng [159, Lemma 3.2] (stated there for real
Gaussian random matrices) tells us that with high probability the smallest singular value of a
deformed random matrix is not too small.

Theorem 2.5.1 ( [159] ). There exists a constant C > 0 such that the following holds. Let
N ⩾ 2, let X0 be an arbitrary complex N ×N matrix, and let Q be an N ×N complex Gaussian
random matrix whose entries are all independent copies of a complex Gaussian random variable
q ∼ NC(0, 1). Then, for any δ > 0

P (sN (X0 + δQ) < δt) ⩽ CNt2.

Proof. For real matrices the proof can be found in [159, Lemma 3.2], see also [183, Theorem 2.2].
For complex matrices a proof is presented for instance in [193, Appendix A].

Theorem 2.5.1 tells us that any fixed z ∈ C is not in the ε-pseudospectrum of X + δQ with
probability ⩾ 1 − CNε2δ−2. We can interpret this result as saying that the pseudospectrum of
random matrices is typically not too large. Theorem 2.5.1 has enjoyed many extensions. For
instance Rudelson and Vershynin [153] consider the case random matrices with iid sub-Gaussian
entries. Tao and Vu [181] consider iid entries of non-zero variance. Cook [56] consider the case
of random matrices whose of entries have an inhomogeneous variance profile under appropriate
assumptions. We end this section by noting the following, quantitative result due to Tao and Vu.

Theorem 2.5.2 ( [183]). Let q be a random variable with mean zero and bounded second moment,
and let γ ⩾ 1/2, A ⩾ 0 be constants. Then, there exists a constant C > 0, depending on q, γ, A
such that the following holds. Let Q be the random matrix of size N whose entries are independent
and identically distributed copies of q, let X0 be a deterministic matrix satisfying ∥X0∥ ⩽ Nγ.
Then,

P
(
sn(X0 +Q) ⩽ n−γ(2A+2)+1/2

)
⩽ C

(
n−A+o(1) +P(∥Q∥ ⩾ nγ)

)
. (2.5.1)

Example 2.5.3. Consider the case where q is a random variable satisfying the moment conditions

E[q] = 0, E[|q|2] = 1, E[|q|4] < +∞. (2.5.2)

Form [131] we know that (2.5.2) implies that E[∥Q∥] ⩽ CN1/2, which, using Markov’s inequality,
yields that for any ε > 0

P
[
∥Q∥ ⩾ CN1/2+ε

]
⩽ C−1N−1/2−εE[∥Q∥] ⩽ N−ε. (2.5.3)

In this case (2.5.1) becomes

P
(
sn(X0 +Q) ⩽ n−(ε+1/2)(2A+2)+1/2

)
⩽ C

(
n−A+o(1) +N−ε

)
. (2.5.4)

2.6 Grushin problem

We review a fundamental technique: the well-posed Grushin problem for a linear densely defined
family of operator P (z) : H → H, z ∈ C, on a complex (separable) Hilbert space H with domain
D ⊂ H. The general idea of setting up a Grushin problem is to extend this operator to an operator
of the form

P(z)
def
=

(
P (z) R−(z)
R+(z) 0

)
: D ⊕H− −→ H⊕H+,
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where H± (resp. R±(z)) are well chosen auxiliary spaces (resp. operators). The Grushin problem
is said to be well-posed if the extended operator P(z) is bijective for the range of z under study,
with a good control on its inverse. Roughly speaking, the role of R+(z) is to map the quasi-kernel
of P (z) to the auxiliary space, while R−(z) maps the latter to the quasi-cokernel of P (z); both
actions finally make P(z) invertible.

In the case where dimH− = dimH+ <∞, one decomposes the inverse operator blockwise as(
P (z) R−
R+ 0

)−1

=

(
E(z) E+(z)
E−(z) E−+(z)

)
def
= E(z).

From now on we assume that P (z) is Fredholm of index 0. We then identify H± ≃ CN .
Historically, Grushin Problems go back to Grushin [92] in the theory of linear partial differ-

ential equations where it was used to study hypoelliptic operators. In a different setting, such
an enlarged system was used by Sjöstrand [165], whose notation we use. Grushin problems have
proven useful in bifurcation theory, numerical analysis, and for treatments of spectral problems
arising in electromagnetism and quantum mechanics. For further details we refer the reader to
the review paper [177].

Now, given a well-posed Grushin Problem, the key observation, going back to Schur’s comple-
ment formula, is the following: the initial operator P (z) is invertible if and only if the finite rank
operator E−+(z) : C

N → CN is invertible, in which case both inverses are related by:

P−1 = E − E+E
−1
−+E, E−1

−+ = −R+P
−1R−. (2.6.1)

The finite rank operator E−+(z) is often called an effective Hamiltonian for the original problem
P (z). It depends in a nonlinear way on the spectral parameter z, but it has the advantage of being
finite dimensional. In a sense, E−+(z) encapsulates, in a minimal way, the spectral properties of
P . If the spectrum of P is discrete in the z-range under study, its eigenvalues can be obtained as
the zeros of detE−+(z) (with multiplicities).

We will present an explicit Grushin problem in Section 7.6.1 below.
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Chapter 3

Spectra of disordered non-selfadjoint
pseudo-differential operators

3.1 Introduction

In physical situations, an “ideal” evolution operator can be perturbed by many different sources,
most of them uncontrolled by the experimentalist. Hence, it seems relevant to set up a model of
random perturbations, and to investigate how the spectrum of our initial operator reacts upon
the addition of such perturbations. The spectrum of the perturbed operator thereby becomes
random which can be investigated by probabilistic methods. In this chapter we will discuss results
describing the macroscopic spectral distribution. More precisely we are interested in counting
eigenvalues in sets of diameter of order 1, for a particular class of non-selfadjoint operators.
Namely, we will focus on semiclassical pseudo-differential operators with complex valued symbols,
and with some ellipticity assumption ensuring that the spectrum is discrete (at least in some region
of the complex plane). As discussed in Section 2.3.1, the spectrum of these operators is in general
very sensitive to perturbations. In many examples the spectrum of the initial operator is localized
along 1-dimensional curves in the complex plane, while the spectrum of the perturbed operator
fills up the classical spectrum Σ, see (2.3.3), defined by the symbol of our unperturbed operator.
This filling up of the classical spectrum through perturbation has been studied in a series of works
by Hager [94, 95], Sjöstrand [96, 168, 169], Bordeaux-Montrieux [33] (see also [50] for a similar
phenomenon in the framework of Toeplitz operators on the 2-dimensional torus). These authors
show that the spectrum of the randomly perturbed operator satisfies, with high probability, a
complex valued version of Weyl’s law: the density of eigenvalues near a given “complex energy”
z0 inside the classical spectrum, is approximately given by (2πh)−dD(z0), where D(z0) > 0 is the
classical density at the energy z0, associated with the symbol of our initial operator.

In this chapter we will discuss these probabilistic Weyl laws, and in particular two extensions
obtained in [19,193].

3.2 Probabilistic Weyl law for non-selfadjoint operators

Consider the operator Ph = pw(x, hDx), with p as in (2.3.1), seen as an unbounded operator
L2(Rd) → L2(Rd). We equip Ph with the domain H(m) := (Ph − z0)

−1L2(Rd). Note that
(Ph − z0)

−1 exists for h > 0 small enough by the ellipticity condition (2.3.2). We will denote by
∥u∥m := ∥(Ph − z0)u∥ the associated norm on H(m). Although this norm depends on the choice
of the symbol p0 − z0, it is equivalent to the norm defined by any operator with elliptic principal
symbol q ∈ S(m), so that the space H(m) only depends on the order function m. Since H(m)
contains the Schwartz functions S(Rd) it is dense in L2(Rd).

Let us check that Ph equipped with domain H(m) is closed. Let (Ph− z0)uj → v and uj → u
in L2. Since (Ph − z0) : H(m) → L2 is bijective, it follows that uj → (Ph − z0)

−1v in H(m) and

17
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also in L2. So u = (Ph − z0)
−1v. Summing up, Ph equipped with domain H(m) is a densely

defined closed linear operator.

Recall (2.3.3), and let
Ω ⋐ C\Σ∞ (3.2.1)

be not entirely contained in Σ. Using the ellipticity assumption (2.3.2) it was proven in [96, Section
3] that

• Spec(Ph) ∩ Ω is discrete for h > 0 small enough,

• For all ε > 0 there exists an h(ε) > 0 such that

Spec(Ph) ∩ Ω ⊂ Σ+D(0, ε), 0 < h ⩽ h(ε),

where D(0, ε) denotes the disc in C of radius ε and centered at 0.

3.2.1 The selfadjoint setting

If Ph above is selfadjoint, which implies in particular that p is real-valued, we have the classical
Weyl asymptotics. We follow here [63] for a brief review.

Theorem 3.2.1. Let Ω be as in (3.2.1). For every h-independent interval I ⊂ Ω ∩ R with
VolR2d(∂I) = 0,

#(Spec(Ph) ∩ I) =
1

(2πh)d

(∫
p−1
0 (I)

dxdξ + o(1)

)
, h→ 0. (3.2.2)

This result is, in increasing generality, due to Chazarain [49], Helffer and Robert [99, 100],
Petkov and Robert [147] and Ivrii [125]. See also [63] for an overview. We highlight two special
cases: when I = [a, b], a < b, and a, b are not critical points of p0, then the error term becomes
O(h), see Chazarain [49], Helffer-Robert [99] and Ivrii [125]. When additionally the unions of
periodic Hp0 trajectories1 in the energy shell p−1

0 (a) and p−1
0 (b) are of Liouville measure 0, then

the error term is of the form

h

(∫
p0=a

p1(ρ)La(dρ)−
∫
p0=b

p1(ρ)Lb(dρ)

)
+ o(h), (3.2.3)

where Lλ denotes the Liouville measure on p−1
0 (λ). See Petkov and Robert [147] and Ivrii [125],

as well as [63], for details. Let us also highlight that similar results to Theorem 3.2.1 also hold on
compact smooth manifolds, see for instance [90, Chapter 12] and the references therein.

The corresponding results in the setting of selfadjoint partial differential operators in the high
energy limit go back to the seminal work of Weyl [198] and have a long and very rich history.
These are however beyond the scope of this review.

Example 3.2.2. The guiding example to keep in mind is the selfadjoint Harmonic oscillator

Ph = (hDx)
2 + x2 : L2(R) → L2(R)

seen as an unbounded operator. The principal symbol of Ph is given by p(x, ξ) = ξ2 + x2 ∈
S(T ∗R,m), with weight function m(x, ξ) = 1 + ξ2 + x2. We equip Ph with the domain H(m) :=
(Ph + 1)−1L2(R), where the operator on the right is the pseudo-differential inverse of Ph + 1.
This choice of domain makes Ph a closed densely defined operator. It is well-known (see for
instance [204, Theorem 6.2]) that the spectrum of Ph is given by

Spec(Ph) = {(2n+ 1)h;n ∈ N}.
1Hp0 denotes the Hamilton vector field induced by p0.
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Counting the points (2n+ 1)h contained in an interval [a, b], 0 ⩽ a < b <∞, gives

#(Spec(Ph) ∩ [a, b]) =
b− a

2h
+O(1).

Since VolR2({a ⩽ ξ2+x2 ⩽ b}) = π(b−a), we confirm Theorem 3.2.1 for the Harmonic oscillator.

3.2.2 The non-selfadjoint setting

The natural counterpart of Theorem 3.2.1 for non-selfadjoint operators would be eigenvalue asymp-
totics in a complex domain Ω ⋐ C as in (3.2.1). Recall the non-selfadjoint Harmonic oscillator Ph
from Example 2.3.2 with principal symbol p(x, ξ) = ξ2+ix2. In this case Σ = {z ∈ C; Re z, Im z ⩾
0} and Σ∞ = ∅. Any ∅ ≠ Ω ⋐ Σ away from the line eiπ/4R+ gives in view of (2.3.7) that

#(Spec(Ph) ∩ Ω) = 0.

On the other hand
1

2πh

∫
p−1(Ω)

dxdξ > 0.

This example suggests that a direct generalization of Theorem 3.2.1 to non-selfadjoint operators
with complex valued principal symbol cannot hold.

Let us comment on two settings where a form of Weyl asymptotics is known to hold: Upon
assuming analyticity, one may recover a sort of Weyl asymptotics. More precisely, as shown in
the works of Melin and Sjöstrand [142], Sjöstrand [167], Hitrik and Sjöstrand [112–114], Hitrik,
Sjöstrand and Vũ Ngo.c [115] and Rouby [152], the discrete spectrum of certain analytic non-
selfadjoint pseudo-differential operators is confined to curves in Σ. Moreover, one may recover
eigenvalue asymptotics via Bohr-Sommerfeld quantization conditions.

The second setting is when the non-selfadjointness of the operator Ph comes not from the
principal symbol p0 (assumed to be real-valued) but from the subprincipal symbol p1. For instance,
when studying the damped wave equation on a compact Riemannian manifold X one is led to
study the eigenvalues of the corresponding stationary operator

Ph(z) = −h2∆+ 2ih
√
a(x)

√
z, a ∈ C∞(X;R).

Here, ∆ denotes the Laplace-Beltrami operator on X and we call z ∈ C an eigenvalue of Ph(z)
if there exists a corresponding L2 function u contained in the kernel of Ph(z)− z. Actually, such
a u is smooth by elliptic regularity. Using Fredholm theory one can show that these eigenvalues
form a discrete set in C.

The principal part of Ph = Ph(z) is given by −h2∆, and thus is self-adjoint, with principal
symbol is p0(x, ξ) = |ξ|2x (the norm here is with respect to the Riemannian metric on X). However,
the subprincipal part is complex valued and non-selfadjoint.

Lebeau [132] established that there exist a± ∈ R such that for every ε > 0 there are only
finitely many eigenvalues such that

Im z

h
/∈ [a− − ε, a+ + ε].

Remark 3.2.3. In fact Lebeau provided precise expressions for a± in terms of infimum and the
supremum over the co-sphere bundle S∗X of the long time average of the damping function a
evolved via the geodesic flow. Further refinements have been obtained by Sjöstrand [166], and
when X is negatively curved by Anantharaman [5] and Jin [127].
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Additionally Markus and Matsaev [139] and Sjöstrand [166] proved the following analogue of
the Weyl law. For 0 < E1 < E2 <∞ and for C > 0 sufficiently large

#
(
Spec(Ph) ∩ ([E1, E2] + i[−Ch,Ch])

)
=

1

(2πh)d

(∫∫
p−1
0 ([E1,E2])

dxdξ +O(h)

)
. (3.2.4)

Finer results have been obtained by Anantharaman [5] and Jin [127] when X is negatively curved.

3.2.3 Probabilistic Weyl asymptotics

In a series of works by Hager [94–96] and Sjöstrand [168,169], the authors proved a Weyl law, with
overwhelming probability, for the eigenvalues in a compact set Ω ⋐ C as in (3.2.1) for randomly
perturbed operators

P δ = Ph + δQω, 0 < δ = δ(h) ≪ 1, (3.2.5)

where Ph is as in Section 2.3 and the random perturbation Qω is one of the following two types.

Random Matrix. Let N(h) → ∞ sufficiently fast as h → 0. Let qj,k, 0 ⩽ j, k < N(h)
be independent copies of a complex Gaussian random variable α ∼ NC(0, 1). We consider the
random matrix

Qω =
∑

0⩽j,k<N(h)

qj,k ej ⊗ e∗k, (3.2.6)

where {ej}j∈N ⊂ L2(Rd) is an orthonormal basis and ej ⊗ e∗ku = (u|ek)ej for u ∈ L2(R). The
condition on N(h) is determined by the requirement that the microsupport of the vectors in the
orthonormal system {ej}j<N(h) “covers” the compact set p−1

0 (Ω) ⊂ T ∗Rd, where p0 is the principal
symbol of Ph. For instance, we could take the first N(h) eigenfunctions (ordered according to
increasing eigenvalues) of the Harmonic oscillator Ph = −h2∆ + x2 on Rd. The number N(h)
is then determined by the condition that the semiclassical wavefront sets of ej , j ⩾ N(h), are
disjoint from p−1

0 (Ω). Alternatively, as in [96], one may take N(h) = ∞, however then one needs
to conjugate Qω by suitable elliptic Hilbert-Schmidt operators. We refer to [96] for more details.

Random Potential. Similar to the above, we take N(h) and an orthonormal family (ek)k∈N.
Let v be real or complex random vector in RN(h) or CN(h), respectively, with joint probability law

v∗(dP) = Z−1
h 1B(0,R)(v) e

ϕ(v)L(dv), (3.2.7)

where Zh > 0 is a normalization constant, B(0, R) is either the real ball ⋐ RN(h) or the complex
ball ⋐ CN(h) of radius R = R(h) ≫ 1, and centered at 0, L(dv) denotes the Lebesgue measure on
either RN(h) or CN(h) and ϕ ∈ C1 with

∥∇vϕ∥ = O(h−κ4) (3.2.8)

uniformly, for an arbitrary but fixed κ4 ⩾ 0. In [95] the case of non-compactly supported prob-
ability law was considered. More precisely, the entries of the random vector v were supposed to
be independent and identically distributed (iid) complex Gaussian random variables ∼ NC(0, 1).
In [168,169], the law (3.2.7) was considered. For the sake of simplicity we will not detail here the
precise conditions on the ek, R(h), and N(h), in this case but refer the reader to [168,169]. How-
ever, one example of a random vector v with law (3.2.8) is a truncated complex or real Gaussian
random variables with expectation 0, and uniformly bounded covariances. In fact, the meth-
ods in [168,169] can be extended to non-compactly supported probability distributions, provided
sufficient decay conditions at infinity are assumed. For instance iid complex Gaussian random
variables, as in the one dimensional case [95], are permissable. Finally, we remark that the meth-
ods in [168,169] can probably also be modified to allow for the case of more general independent
and identically distributed random variables.
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We define the random function

Vω =
∑

0⩽j<N(h)

vj ej . (3.2.9)

We call this perturbation a “random potential”, even though Vω is complex valued. When we
consider this type of perturbation, we will make the additional symmetry assumption:

p(x, ξ;h) = p(x,−ξ;h). (3.2.10)

Let Ω ⋐ C be an open simply connected set as in (3.2.1). For z ∈ Ω and 0 ⩽ t≪ 1 we set

Vz(t) = Vol{ρ ∈ T ∗Rd; |p0(ρ)− z|2 ⩽ t}. (3.2.11)

Let Γ ⋐ Ω be open with C2 boundary and make the following non-flatness assumption

∃κ ∈]0, 1], such that Vz(t) = O(tκ), uniformly for z ∈ neigh(∂Γ), 0 ⩽ t≪ 1. (3.2.12)

The above mentioned works show the following result.

Theorem 3.2.4 (Probabilistic Weyl’s law). Let Ω be as in (3.2.1). Let Γ ⋐ Ω be open with C2

boundary. Let P δh be a randomly perturbed operator as in (3.2.5) with e−1/Ch ≪ δ ⩽ hθ with θ > 0
sufficiently large. Then, in the limit h→ 0,

#
(
Spec(P δh) ∩ Γ

)
=

1

2πh

(∫∫
p−1
0 (Γ)

dxdξ + o(1)

)
with probability ⩾ 1− Chη, (3.2.13)

for some fixed η > 0.

The works [94–96,168,169] also provide an explicit control over θ, the error term in Weyl’s law,
and the error term in the probability estimate. Theorem 3.2.4 has also been extended to case of
elliptic semiclassical differential operators on compact manifolds [169] and to Toeplitz quantization
of the torus in [50]. We illustrate Theorem 3.2.4 with a numerical simulation in Figure 3.1 below.
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Integrated density of eigenvalues
Integrated Weyl law

Figure 3.1: The left hand side shows the spectrum of a discretization of Ph = hDx + exp(−ix), x ∈ S1,
(approximated by a N × N -matrix, N = 3999) perturbed with a random Gaussian matrix δQω with
h = N−1 and δ = N−4. The spectrum of the perturbed operator is in stark contrast to the spectrum of
the unperturbed operator Ph which is given by {hk; k ∈ Z}. Counting the eigenvalues in the black box
gives the integrated experimental density of eigenvalues (as a function of the imaginary part), averaged over
400 realizations of random Gaussian matrices, depicted as blue circles. Comparing it with the integrated
Weyl law (red line), we can see that the two densities coincide in the interior of the classical spectrum Σ,
whereas they differ close to boundary ∂Σ. This figure stems from [192].
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Theorem 3.2.4 is remarkable because such Weyl laws are typically a feature of selfadjoint
operator, whereas in the non-selfadjoint case they generally fail. Indeed, as laid out in Section
3.2.2, the discrete spectrum of the (unperturbed) non-selfadjoint operator Ph is usually localized
to curves in the pseudospectrum Σ, see [112–115,142,152]. In contrast, Theorem 3.2.4 shows that
a “generic” perturbation of size O(h∞) is sufficient for the spectrum to “fill out” Σ.

To illustrate this phenomenon recall the non-selfadjoint harmonic oscillator Ph = −h2∂2x+ ix2
on R from Example 2.3.2. Its spectrum is given by {eiπ/4(2n + 1)h;n ∈ N} [59] on the line
eiπ/4R+ ⊂ C. The Theorem 3.2.4 shows that a “generic” perturbation of arbitrarily small size is
sufficient to produce spectrum roughly equidistributed in its classical spectrum Σ, which is in this
case the upper right quadrant of C.

As observed in [50] for real analytic p condition (3.2.12) always holds for some κ > 0. Similarly,
when p is real analytic and such that Σ ⊂ C has non-empty interior, then

∀z ∈ ∂Ω : dp↾p−1(z) ̸= 0 =⇒ (3.2.12) holds with κ > 1/2. (3.2.14)

For smooth p we have that when for every z ∈ ∂Ω

dp, dp are linearly independent at every point of p−1(z),

then (3.2.12) holds with κ = 1.
(3.2.15)

Observe that dp and dp are linearly independent at ρ when {p, p}(ρ) ̸= 0, where {a, b} = ∂ξa ·
∂xb−∂xa ·∂ξb denotes the Poisson bracket. Moreover, in dimension d = 1 the condition {p, p} ≠ 0
on p−1(z) is equivalent to dp, dp being linearly independent at every point of p−1(z). However, in
dimension d > 1 this cannot in hold general as the integral of {p, p} with respect to the Liouville
measure on p−1(z) vanishes on every compact connected component of p−1(z), see [141, Lemma
8.1]. Furthermore, condition (3.2.15) cannot hold when z ∈ ∂Σ. However, some iterated Poisson
bracket may not be zero there. For example, it was observed in [96, Example 12.1] that if

∀ρ ∈ p−1(∂Ω) : {p, p}(ρ) ̸= 0 or {p, {p, p}}(ρ) ̸= 0, then (3.3.9) holds with κ =
3

4
. (3.2.16)

3.3 Probabilistic Weyl law for Quantized tori

In this section we present an extension of Theorem 3.2.4 for perturbations given by more general
random matrix ensembles presented in [193]. Furthermore, we will consider perturbations up to
the limiting strength such that δ∥Qω∥ = o(1) with overwhelming probability. This regime was
not covered by the results presented in Theorem 3.2.4 as the perturbation there is supposed to be
sufficiently small: typically, this puts us in the regime where δ∥Qω∥ = O(hd) with overwhelming
probability for some d > 0 large enough.

We consider Toeplitz quantizations of complex-valued functions on the 2d-dimensional dimen-
sional torus T2d = R2d/Z2d. This quantization maps smooth functions to Nd ×Nd matrices (in
general non-selfadjoint),

C∞(T2d) ∋ p 7→ pN ∈ L(CNd
,CN

d
). (3.3.1)

We will describe this procedure in Section 3.3.1, for more details see [193]. However, first we
observe that when d = 1, then T2 = S1

x × S1
ξ and

f = f(x) 7→ fN = diag(f(l/N); l = 0, . . . , N − 1)

g = g(ξ) 7→ gN = F∗
N diag(g(l/N); l = 0, . . . , N − 1)FN ,

(3.3.2)

where F∗
N = N−1/2(exp(2πikℓ/N))0⩽k,ℓ⩽N−1 is the discrete Fourier transform. In the case of T2,

the operators pN are also referred to as twisted Toeplitz matrices, see [70,189].
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Example 3.3.1. Consider the Scottish flag operator [50,70] given by the symbol

p(x, ξ) = cos(2πx) + i cos(2πξ), (x, ξ) ∈ T2. (3.3.3)

From (3.3.2) we get that

pN =



cosx1 i/2 0 0 . . . i/2
i/2 cosx2 i/2 0 . . . 0

0 i/2 cosx3 i/2
. . . 0

...
. . . . . . . . . . . .

...
0 . . . 0 i/2 cosxN−1 i/2
i/2 0 . . . 0 i/2 cosxN


(3.3.4)

where xj = 2πj/N , j = 1, . . . , N .
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Figure 3.2: The left hand side shows the spectrum of the unperturbed Scottish flag operator pN (3.3.3),
and the right hand side shows the spectrum of a pN +δQN , for N = 1000, QN a complex Gaussian random
matrix and δ = 10−12.

In [50] Christiansen and Zworski established a Weyl law for the expected number of eigenvalues
of small Gaussian random perturbations of pN . They proved

Theorem 3.3.2 ( [50]). Suppose that f ∈ C∞(T2d), and that Ω is a simply connected open set
with a smooth boundary, ∂Ω, such that for all z in a neighbourhood of ∂Ω,

volT2d({w : |f(w)− z|2 ⩽ t} = O(tκ), 0 ⩽ t≪ 1, (3.3.5)

with 1/2 < κ ⩽ 1. Let QN be a complex Gaussian random Nd ×Nd-matrix with independent and
identically distributed entries ∼ NC(0, 1). Then for any p ⩾ p0 > d+ 1/2

E
(
|Spec(fN +N−pQN ) ∩ Ω|

)
= NdvolT2d(f−1(Ω)) +O(Nd−β), (3.3.6)

for any β < (κ− 1)(κ+ 1).

Let us remark that the original result of [50] is presented with |f(w) − z| in (3.3.5) instead
of |f(w) − z|2, which then leads to 1 < κ ⩽ 2. We modified the notation to be more easily
comparable with the results that follow.

In Theorem 3.3.4 and 3.3.9 below we present a stronger result, estimating the probability that
this asymptotic holds and providing more precise error estimates. Moreover, we remove the lower
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bound on κ and simply demand it to be > 0. Furthermore, we allow for a universal probability
distribution in the perturbation, see Theorem 3.3.9. Finally, we remark that in our results we
allow for coupling constants which may go up to the critical case of N−p with p > d/2 and down
to being sub-exponentially small in N .

In [50] the authors state the following

Conjecture 3.3.3 ( [50]). Suppose that (3.3.5) holds for all z ∈ C with a fixed 0 < κ ⩽ 1. Define
random probability measures

µN = N−d
∑

λ∈Spec(fN+N−pQN )

δλ,

with p ⩾ p0 > d+ 1/2. Then, almost surely

µN ⇀ f∗(σ
n/n!), N → ∞,

where σ =
∑d

1 dξk ∧ dxk, (x, ξ) ∈ T2d, is the symplectic form in T2d.

We prove this conjecture, see Corollary 3.4.3 below, for general random matrix ensembles, and
coupling constants δ = N−p, p > d/2+1. When d/2+1 ⩾ p > d/2 we show that the convergence
still holds in probability.

3.3.1 Almost sure Weyl law

We are interested in the Toeplitz quantization of smooth functions on the 2d-dimensional torus
T2d = R2d/Zd. This is related to the more general Berezin-Toeplitz quantization of compact
symplectic Kähler manifolds, see [37] or for instance [78] for an introduction. A symbol p ∈
C∞(T2d) can be identified with a smooth periodic function on R2d. Hence p is in the symbol class
S(1), i.e. the class of smooth functions a ∈ C∞(R2d) such that for any β ∈ N2d there exists a
constant Cβ > 0 such that

|∂βa(ρ)| ⩽ Cβ. (3.3.7)

We let h ∈]0, 1] denote the semiclassical parameter. A symbol a ∈ S(1) = S(T ∗Rd, 1) may de-
pend on h, in which case we demand that the constants in the estimates (3.3.7) are uniform with
respect to h. The h-Weyl quantization aw(x, hDx) of such a symbol a is defined as in (A.1.3).
The operator aw(x, hDx) is a continuous linear map S → S, S ′ → S ′ and a bounded linear map
L2 → L2, see for instance in [63,140,204].

We denote by Hd
h the space of tempered distributions u ∈ S ′(Rd) which are Zd-translation

invariant in position and in frequency, more precisely

u(x+ n) = u(x), Fh(u)(ξ + n) = Fh(u)(ξ), ∀n ∈ Zd.

Here Fh denotes the semiclassical Fourier transform, defined by

(Fhu)(ξ) :=
1

(2πh)d/2

∫
e

i
h
xξu(x)dx, u ∈ S(Rd),

which maps S → S, S ′ → S ′ by duality, and L2 → L2 unitarily. The space Hd
h is ̸= {0} if and

only if h = 1/(2πN), for some N ∋ N > 0, in which case dimHd
h = Nd, and we can identify

Hd
h ≃ ℓ2(Zd/NZd) ≃ CNd .

When p ∈ C∞(T2d), possibly h dependent in the above sense, then pw(x, hDx) maps Hd
h into

itself, see [50], and the restriction

pN
def
= pw(x, hDx)↾Hd

h
: Hd

h −→ Hd
h, h =

1

2πN
,
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defines a quantization
C∞(T2d) ∋ p 7→ pN ∈ L(CNd

,CN
d
).

Using the Fourier transform, we can show that the matrix elements of pN are given by

(pN )m,j =
∑

n,r∈Zd

p̂(n, j −m− rN) e
iπ
N

(j+m)·n(−1)n·r, m, j ∈ (Z/NZ)d.

where p̂ is the Fourier transform of p.

Let h = 1/(2πN), N ∋ N > 0, and suppose that for p ∈ C∞(T2d) there exist pν ∈ C∞(T2d),
ν ∈ N, so that

p(ρ;h) ∼ p0(ρ) + hp1(ρ) + . . . in S(1), (3.3.8)

meaning that p−
∑M

0 hνpν ∈ hM+1S(1) for all M ∈ N. We call p0 the principal symbol of p.

We are interested in studying the eigenvalue distribution of pN + δQω for δ in a suitable range
and for Qω in a suitable ensemble of Nd ×Nd random matrices.

Let Ω ⋐ C be an open relatively compact simply connected set with a uniformly Lipschitz
boundary ∂Ω. For z in a neighbourhood of ∂Ω (denoted by neigh(∂Ω)) and 0 ⩽ t≪ 1 we set

Vz(t) = Vol{ρ ∈ T2d; |p0(ρ)− z|2 ⩽ t}. (3.3.9)

We make the following non-flatness assumption

∃κ ∈]0, 1], such that Vz(t) = O(tκ), uniformly for z ∈ neigh(∂Ω), 0 ⩽ t≪ 1. (3.3.10)

See in and around (3.2.14) for concrete examples when this non-flatness assumption holds. The
first result concerns the case of a perturbation by a complex Gaussian random matrix.

Theorem 3.3.4. Let p ∈ C∞(T2d) satisfy (3.3.8) and let N ⩾ 2. Let Ω ⋐ C be an open relatively
compact simply connected set with a uniformly Lipschitz boundary ∂Ω, so that (3.3.10) holds. Let
Qω be a complex Gaussian random Nd ×Nd-matrix with independent and identically distributed
entries, i.e.

Qω = (qi,j(ω))1⩽i,j⩽Nd , qi,j(ω) ∼ NC(0, 1) (iid). (3.3.11)

Let N−1 ≪ α≪ 1, let C > 0 be sufficiently large, and let

ε≫ ακ log
CNd/2

δα2
+ δN

d
2α−1/2, 0 < δ ≪ N−d/2α1/2. (3.3.12)

Then, ∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ O(Nd)

(∫
p−1
0 (∂Ω+D(0,r))

dρ+
ε

r
+ rκ

)

for 0 < r ≪ 1, with probability

⩾ 1−O(r−1)
(
Nd/2α−2δ−1 exp

(
α−κ(2δN

d
2α−1/2 − ε/C)

)
+ e−N

d
)
.

This Weyl law shows that the eigenvalues of the small random perturbations of pN roughly
equidistribute in Σ = p0(T

2d) the numerical range of the principal symbol of the operator pN .
This is illustrated in Figure 3.2. In Corollaries 3.3.5, 3.3.6, 3.3.7, 3.3.8, below we provide some
special cases of Theorem 3.3.4.
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Before we turn to the case of more general perturbations, let us discuss some special cases of
Theorem 3.3.4. Notice that when κ > 1/2 then (3.3.10) implies that∫

p−1
0 (∂Ω+D(0,r))

dρ = O(r2κ−1). (3.3.13)

One can easily see that r = ε
1
2κ minimizes (up to a constant) the error term in Theorem 3.3.4,

and it becomes
O(Ndε

2κ−1
2κ ).

Taking α = CN−1 and ε = C0N
−κ(logN)2, for some sufficiently large constants C,C0 > 1, one

obtains from Theorem 3.3.4 the following

Corollary 3.3.5. Under the assumptions of Theorem 3.3.4, we let κ ∈]1/2, 1] and set for p ⩾
(d+ 1)/2 + κ

δ =
1

C
N−p,

for some sufficiently large C > 0. Then,∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ O
(
Nd−κ+1/2(logN)(2κ−1)/κ

)
with probability ⩾ 1−O(N−∞).

Notice that at the price of increasing the error term of the eigenvalue counting estimate by
a factor Nβ , with β ∈]0, 1[, one can obtain the above result with probability ⩾ 1 − e−N

β′/C , for
some β′ ∈]0, 1[.

For p0 ∈]0, κ], we set α = CN−p0/κ and ε = C0N
−p0(logN)2, for some sufficiently large

constants C,C0 > 1. Then, one gets from Theorem 3.3.4 the following

Corollary 3.3.6. Under the assumptions of Theorem 3.3.4, we let κ ∈]1/2, 1] and for p0 ∈]0, κ]
set

δ =
1

C
N−(d+1)/2−p0 ,

for some sufficiently large C > 0. Then,∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ O
(
Nd−p0(2κ−1)/(2κ)(logN)(2κ−1)/κ

)
with probability ⩾ 1−O(N−∞).

Taking α = CN−1 and ε = C0N
β−κ, for some sufficiently large constants C,C0 > 1, and

β ∈]0, κ[, one obtains form Theorem 3.3.4 the following

Corollary 3.3.7. Under the assumptions of Theorem 3.3.4, we let κ ∈]1/2, 1] and β ∈]0, κ[. Set

δ = e−N
β
,

then, ∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ O
(
Nd+(β−κ)(2κ−1)/(2κ)

)
with probability

⩾ 1−O
(
e−N

β/C
)
.
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When 0 < κ ⩽ 1/2, then condition (3.3.13) still holds, however it does not provide us anymore
with decay. However, in many situations it is still reasonable to assume that∫

p−1
0 (∂Ω+D(0,r))

dρ = o(1), r → 0,

In this situation, the best we can have is an error term of order

o(Nd).

Similarly to Corollary 3.3.5, 3.3.7, we get that

Corollary 3.3.8. Under the assumptions of Theorem 3.3.4, we let κ ∈]0, 1] and for p > d/2 set

δ =
1

C
N−p,

for some sufficiently large C > 0. Then,∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ o(Nd) (3.3.14)

with probability ⩾ 1−O(N−∞). Moreover, when

δ = e−N
β
, for some β ∈]0, κ[,

then (3.3.14) holds with probability ⩾ 1−O(e−N
β/C).

The next result concerns the case of a perturbation by an iid matrix.

Theorem 3.3.9. Let p ∈ C∞(T2d) satisfy (3.3.8). Let Ω ⋐ C be an open relatively compact
simply connected set with a uniformly Lipschitz boundary ∂Ω, so that (3.3.10) holds. Let Qω be a
random Nd ×Nd-matrix whose entries are independent copies of a random variable q satisfying

E[q] = 0, E[|q|2] = 1, E[|q|4] < +∞.

For δ0 > 0 and some sufficiently large C > 0, let

δ =
1

C
N−d/2−δ0 ,

and for τ ∈ [0, 1[, set
ε = N−min(δ0,1)τκ logN +N−τδ0/2,

Then, ∣∣∣∣#(Spec(pN + δQω) ∩ Ω)−Nd

∫
p−1
0 (Ω)

dρ

∣∣∣∣ ⩽ O(Nd)

(∫
p−1
0 (∂Ω+D(0,r))

dρ+
ε

r
+ rκ

)
,

for 0 < r ≪ 1, with probability
⩾ 1−O(r−1)N−(1−τ)δ0 .

Similarly to Corollaries 3.3.5, 3.3.6, 3.3.7, 3.3.8, one can use Theorem 3.3.9 to get precise error
estimates in the various situations.

As a consequence of the proofs of Theorem 3.3.9, or of Theorem 3.3.4 in the Gaussian case,
we obtain the following result providing a positive response to Conjecture 3.3.3 by [50].
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Theorem 3.3.10. Let Qω and δ > 0 be as in Theorem 3.3.9 and assume that (3.3.10) holds
uniformly for all z ∈ C. Set

µN = N−d
∑

λ∈Spec(pN+δQω)

δλ.

Then, for δ0 > 1
µN ⇀ (p0)∗(dρ), almost surely,

and for δ0 ∈]0, 1],
µN ⇀ (p0)∗(dρ), in probability.

We remark than in the case of T2d the measure induced by the symplectic volume form σn/n!
given in Conjecture 3.3.3 is equal to the Lebesgue measure dρ on T2d.

3.3.2 Related results

The case of Toeplitz matrices given by symbols on T2 of the form
∑

n∈Z ane
inξ, (x, ξ) ∈ T2, was

studied in a series of recent works by Davies and Hager [60], Guionnet, Wood and Zeitouni [93],
Basak, Paquette and Zeitouni [13, 14], Sjöstrand and the author of this text [174, 175]. Such
symbols amount to the case of symbols which are constant in the x variable. In these works
the non-selfadjointness of the problem does however not come from the symbol itself but from
boundary conditions destroying the periodicity of the symbol in x by allowing for a discontinuity.
Nevertheless, these works show that by adding some small random noise the limit of the empirical
eigenvalues measure µN of the perturbed operator converges in probability (or even almost surely
in some cases) to p∗(dρ).

In [14] the authors treated in particular the special case of upper triangular banded twisted
Toeplitz matrices given by symbols of the form

p̃(x, ξ) =

N+∑
n=0

fn(2πx)e
−2πinξ, (x, ξ) ∈ T2

where fn is only assumed to be a Hölder continuous function and can have a discontinuity. They
showed through quite different methods from ours that the µN converges weakly in probability to
the measure

µ̃ = p̃∗(dρ).

Thus we recover this result of [14] (at least in the smooth periodic setting) with Theorem 3.3.10.
This suggests that the results of Theorem 3.3.10 also hold in the case of general twisted Toeplitz
matrices with band entries defined by C1 functions which are defined on a compact interval with
non-periodic boundary conditions.

Let us remark that Theorem 3.3.10 has been extended to general Berezin-Toeplitz quantiza-
tions on compact Kähler manifolds by Oltman [146] in the case of complex Gaussian noise.

3.3.3 Ideas of the proof

In the sequel we will identify Hd
h ≃ CN

d . We see P = pN as a bounded linear operator ℓ2 → ℓ2.
For z ∈ C let

0 ⩽ t21 ⩽ . . . ⩽ t2Nd (3.3.15)

denote the eigenvalues of Q = (P − z)∗(P − z) with an associated orthonormal basis of eigenfunc-
tions e1, . . . , eNd ∈ Hd

h.
Using methods from semiclassical analysis and functional calculus we can show that for 0 <

N ∈ N, N−1 ≪ α≪ 1, κ ∈]0, 1] as in (3.3.10), and for ψ ∈ C∞
c (R)

trψ

(
Q

α

)
= Nd

(∫
ψ
(q0
α

)
dVz(q0) +O(Nα)−1ακ

)
. (3.3.16)
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Moreover, for χ ∈ C∞
c ([0,∞[, [0,∞[) with χ(0) > 0,

log det

(
Q+ αχ

(
Q

α

))
= Nd

(∫
T2d

log |p0(ρ)− z|2 dρ+O
(
ακ log

1

α

))
.

(3.3.17)

The trace formula (3.3.16) implies that the number N(α) of eigenvalues of (p − z)∗N (p − z)N in
the interval [0, α] is

N(α) = O(Ndακ). (3.3.18)

Grushin Problem for the unperturbed operator Since P is Fredholm of index 0, the
spectra of Q and Q′ = (P −z)(P −z)∗ are equal, and we can find an orthonormal basis f1, . . . , fNd

of Hd
h comprised of eigenfunctions of Q′ associated with the eigenvalues (3.3.15), such that

(P − z)∗fi = tiei, (P − z)ei = tifi, i = 1, . . . , Nd. (3.3.19)

Let M > 0 be so that 0 ⩽ t21 ⩽ . . . ⩽ t2M ⩽ α, and let δi, 1 ⩽ i ⩽M , denote an orthonormal basis
of CM . Then, we know from (3.3.18) that

M = O(Ndακ). (3.3.20)

We put

R+ : Hd
h −→ CM : u 7−→

M∑
1

(u|ei) δi, (3.3.21)

and

R− : CM −→ Hd
h : u− 7−→

M∑
1

u−(i)fi, (3.3.22)

where u−(i) = (u−|δi). One can easily show that the Grushin problem

P(z) :=

(
P − z R−
R+ 0

)
: Hd

h × CM −→ Hd
h × CM , (3.3.23)

is bijective with inverse

P−1(z) = E(z) =
(
E(z) E+(z)
E−(z) E−+(z)

)
(3.3.24)

where

E(z) =
Nd∑
M+1

1

ti
ei ◦ f∗i , E+(z) =

M∑
1

ei ◦ δ∗i ,

E−(z) =
M∑
1

δi ◦ f∗i , E−+(z) = −
M∑
1

tjδj ◦ δ∗j .

(3.3.25)

By construction

∥E(z)∥ ⩽
1√
α
, ∥E±∥ = 1, ∥E−+∥ ⩽

√
α. (3.3.26)

It follows from (3.3.23) that

|detP(z)|2 =
Nd∏
M+1

t2i = α−M det1α(Q), 1α(x) = max(x, α). (3.3.27)

Since log | detP(z)|2 = log det1α(Q) + M log 1
α , we approximate 1α(x) by x + αχ

(
x
α

)
, with

χ ∈ C∞
c (R) a suitable cut-off function, apply (3.3.17) and get

log | detP(z)|2 = Nd

(∫
T2d

log |p0(ρ)− z|2 dρ+O
(
ακ log

1

α

))
. (3.3.28)
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Grushin Problem for the perturbed operator Let Qω : Hd
h → Hd

h be a bounded linear
operator and replace P by P δ = P + δQω, 0 ⩽ δ ≪ 1 in (3.3.23). This yields a Grushin problem
for the perturbed operator

Pδ(z)
def
=

(
P δ − z R−
R+ 0

)
: Hd

h × CM −→ Hd
h × CM . (3.3.29)

Using a Neumann series argument, Pδ(z) remains bijective, provided that δ∥Qω∥α−1/2 ⩽ 1
2 , with

inverse

Eδ(z) =
(
Eδ(z) Eδ+(z)
Eδ−(z) Eδ−+(z)

)
, (3.3.30)

where ∥Eδ∥ ⩽ 2α−1/2, ∥Eδ±∥ ⩽ 2, and ∥Eδ−+ − E−+∥ ⩽ 2∥δQω∥ ≪ 1. The Schur complement
formula applied to Pδ and Eδ, gives

log |det(P δ − z)| = log |detPδ(z)|+ log | detEδ−+(z)|. (3.3.31)

Since d
dδ log detP

δ = tr Eδ ddδP
δ, we have

∣∣∣log |detPδ| − log |detP|
∣∣∣ = ∣∣∣∣Re ∫ δ

0
tr (EτQω) dτ

∣∣∣∣ ⩽ O(δα−1/2∥Q∥tr ). (3.3.32)

So combining this with (3.3.28) and (3.3.31) gives

log | det(P δ − z)| =Nd

(∫
T2d

log |p0(ρ)− z| dρ+O(ακ log
1

α
) +O(δN−d/2α−1/2∥Q∥HS)

)
+ log | detEδ−+(z)|.

(3.3.33)

From the above estimates we can extract the deterministic upper bound

log |detEδ−+(z)| ⩽ O(Ndακ)| logα|. (3.3.34)

Probabilistic upper bound Consider the random matrix

Qω = (qi,j(ω))1⩽i,j⩽Nd (3.3.35)

whose entries qi,j(ω) are independent copies of a random variable q satisfying the moment condi-
tions

E[q] = 0, E[|q|2] = 1, E[|q|4] < +∞. (3.3.36)

Using a classical result due to Latala [131] and Markov’s inequality shows that for δ0 > 0 and
τ ∈]0, 1[

P
[
∥Qω∥ ⩾ CNd/2+(1−τ)δ0

]
⩽ N−(1−τ)δ0 . (3.3.37)

Taking δ = 1
CN

−d/2−δ0 and α = N−min(δ0,1)τ , the relations (3.3.33) and (3.3.34) give that

log |det(P δ − z)| ⩽ Nd

(∫
T2d

log |p0(ρ)− z| dρ+O(N−min(δ0,1)τκ logN) +O(N−τδ0/2)

)
.

(3.3.38)
with probability ⩾ 1−N−(1−τ)δ0 .



3.3. PROBABILISTIC WEYL LAW FOR QUANTIZED TORI 31

Probabilistic lower bound Using Theorem 2.5.2, we can prove the following

Proposition 3.3.11. Let K ⋐ C be an open connected relatively compact set and let z ∈ K.
Then, there exist a positive constants β,C > 0 such that for all τ ∈]0, 1[ and for each z ∈ K

P
(
log |detEδ−+(z)| ⩾ −βNd−κτ min(δ0,1) logN and ∥Qω∥ ⩽ CNd/2+(1−τ)δ0

)
⩾ 1−N−(1−τ)δ0 .

(3.3.39)

Applying the Ky Fan inequalities (2.4.2) to the right hand side of (2.6.1), one can show that

1

8
tn(E

δ
−+) ⩽ tn(P

δ − z) ⩽ tn(E
δ
−+), 1 ⩽ n ⩽M.

So, with the same probability as in (3.3.39), we have that t1(P δ − z) > 0 and so (P δ − z) is
bijective.

Using again (3.3.33), it follows from Proposition 3.3.11 that there exists a constant C > 0 such
that for each z ∈ K

log | det(P δ − z)| ⩾ Nd

(∫
T2d

log |p0(ρ)− z| dρ− CN−min(δ0,1)τκ logN − CN−τδ0/2
)
. (3.3.40)

with probability ⩾ 1−N−(1−τ)δ0 .

Combining the probabilistic upper bound (3.3.38) on log |det(pN + δQω − z)| and the proba-
bilistic lower bound (3.3.40), with Theorem 1.2 from [170] which provides estimates on the number
of zeros of holomorphic functions with exponential growth in Lipschitz domains, gives Theorem
3.3.9. Theorem 3.3.4 can be proven similarly.

Direct proof of Theorem 3.3.10 We begin by recalling some basic facts concerning the weak
convergence of measures. Let P(C) denote the space of probability measures µ on C, integrating
the logarithm at infinity ∫

log(1 + |x|)µ(dx) < +∞. (3.3.41)

We define the logarithmic potential of µ by

Uµ(z)
def
= −

∫
log |z − x|µ(dx). (3.3.42)

Since Uµ ∈ L1
loc(C, L(dz)), it follows that Uµ(z) < +∞ for Lebesgue almost every (a.e.) z ∈ C.

One property of the logarithmic potential is that for a given sequence of probability measures
{µn}n ∈ P(C), satisfying some suitable uniform integrability assumption, a.e. convergence of
the associated logarithmic potentials Uµn(z) → Uµ(z), for some µ ∈ P(C), implies the weak
convergence µn ⇀ µ. We refer the reader to [35] for a survey of related results and techniques.

There are various versions of the above observation known in the case of random measures,
see for instance [182, Theorem 2.8.3] or [35, 36]. In the following we describe a slightly modified
version of [182, Theorem 2.8.3].

Theorem 3.3.12. Let K,K ′ ⋐ C be open relatively compact sets with K ⊂ K ′, and let {µn}n∈N ∈
P(C) be as sequence of random measures so that for n large enough, almost surely (resp., with
probability ⩾ 1− o(1))

suppµn ⊂ K. (3.3.43)

Suppose that for a.e. z ∈ K ′ almost surely (resp., in probability)

Uµn(z) → Uµ(z), n→ ∞, (3.3.44)

where µ ∈ P(C) is some probability measure with suppµ ⊂ K. Then, almost surely (resp., in
probability),

µn ⇀ µ, n→ ∞, weakly. (3.3.45)
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Let µN be the empirical eigenvalue measure of P δ, and let µ = (p0)∗(dρ), be as in Theorem
3.3.10. Since p ∈ S(1), standard estimates from semiclassical analysis show that ∥pN∥ ⩽ O(1),
uniformly in N . So (3.3.37), in combination with a Borel-Cantelli argument when δ0 > 1, show
that the condition on the supports of µN and µ is satisfied.

For z /∈ Spec(P δ) we have that

UµN (z) = − 1

Nd
log | det(P δ − z)|.

Furthermore, Uµ(z) = −
∫
T2d log |p0(ρ)−z| dρ for any z ∈ C. The existence of this integral follows

from the fact that (3.3.10) is assume to hold uniformly for all z ∈ C. Thus, fixing z ∈ C, it follows
from (3.3.40), (3.3.38) that

|UµN (z)− Uµ(z)| = O(N−min(δ0,1)τκ logN) +O(N−τδ0/2).

with probability ⩾ 1−CN−(1−τ)δ0 . Hence, for any ε > 0 we find that P[|UµN (z)−Uµ(z)| ⩾ ε] ⩽
CN−(1−τ)δ0 for N > 1 sufficiently large. Hence, UµN (z) → Uµ(z) in probability when N → ∞.
Additionally, when δ0 > 1 we can choose τ ∈]0, 1[ such that the probabilities of the above events
are summable and so, by the Borel-Cantelli lemma, we have that UµN (z) → Uµ(z) almost surely,
when N → ∞. Theorem 3.3.12 then readily implies Theorem 3.3.10.

3.4 Probabilistic Weyl law for random tunneling potentials

In this section we present another extension of Theorem 3.2.4 to a different type of random
perturbations: random tunneling potentials. In the proof of Theorem 3.3.4 and 3.3.9 it is crucial
to show that the smallest singular value of the perturbed operator P − z, at some fixed z ∈ C,
is not too small with high probability. In this section, we will show this property in the context
of an operator appearing in a physical model for twisted bilayer graphene. Furthermore, as a
byproduct, we obtain a probabilistic Weyl law for such operators subject to a small perturbation
by a random tunneling potential. The results present here come from [19].

3.4.1 Twisted bilayer graphene

Twisted bilayer graphene is a stacked and twisted two-dimensional carbon material that exhibits a
variety of strongly correlated electron phenomena such as superconducting phases [48]. In the one-
particle band structure, the existence of strongly correlated phases is indicated by the occurrence
of flat bands. The purpose of this section is to study the stability of flat bands under small
random perturbations of the tunneling potentials described in Section 3.4.2. Such perturbations
adequately reflect material impurities e.g. due to internal strain effects (lattice relaxations) [143].

The stability of flat bands under random perturbations depends sensitively on the nature of
the disorder. If the disorder is signed, then classical Wegner-type estimates rule out the presence
of flat bands under disorder, since the integrated density of states does not exhibit any jump
discontinuities. This has been implemented for magnetic Schrödinger operators [55, 84–86] and
for twisted bilayer graphene Becker, Oltman and the author in [18].

Here, we deal with a more realistic scenario, where we study random perturbations of the
standard high-symmetry tunneling potentials in the Bistritzer-MacDonald Hamiltonian [25] for
twisted bilayer graphene, see [44, 197]. Since the potential perturbations are not signed, it is not
immediate that they can sufficiently perturb the spectrum to destroy the flat band. Theorem
3.4.2 below, shows that for random tunneling potential perturbations, there are no flat bands
with overwhelming probability.

Let us start by introducing the Hamiltonian. Thus, let h ∈]0, 1] be proportional to the physical
twisting angle, then the Bistritzer-MacDonald Hamiltonian is a semiclassical matrix-valued first



3.4. PROBABILISTIC WEYL LAW FOR RANDOM TUNNELING POTENTIALS 33

order differential operator of the form

HBM(w, h) =

(
wC Dh

D∗
h wC

)
(3.4.1)

acting on L2(C;C4) with domain H1(C;C4).
Letting Dx = 1

2(Dx1 − iDx2) and Dxj = −i∂xj , the matrix-valued entries in (3.4.1) are

Dh :=

(
2hDx U(x)
U(−x) 2hDx

)
and C =

(
0 V (x)

V (x) 0

)
, (3.4.2)

where he tunnelling potentials U, V are smooth functions which are characterized, for aj = 4
3πiω

j

and ω = exp(2πi/3), by

V (x+ aj) = ω̄V (x), V (ωx) = V (x), V (x) = V (−x), V (x̄) = V (−x),
U(x+ aj) = ω̄U(x), U(ωx) = ωU(x), U(x̄) = U(x).

(3.4.3)

In this article, we focus on the chiral limit [186]. This limit is obtained by setting w0 ≡ 0 in the
Hamiltonian (3.4.1)

Hchiral =

(
0 Dh

D∗
h 0

)
.

Since Hchiral is periodic with respect to the lattice

Γ := 4π(iωZ⊕ iω2Z), (3.4.4)

we can apply the Bloch-Floquet transform, see [17, Sec.2.3], to obtain an equivalent family of
operators parametrized by k ∈ C on L2(C/Γ;C4) with domain H1

h(C/Γ;C
4)

Hchiral(k) =

(
0 Dh + hk

D∗
h + hk̄ 0

)
. (3.4.5)

We see C/Γ as a smooth compact manifold equipped with a smooth positive density of integration
dx. A natural choice would be the Riemannian volume density inherited from C.

The operator (3.4.5) satisfies the chiral symmetry

diag(1,−1)Hchiral(k) diag(1,−1) = −Hchiral(k).

This implies that eigenvalues of Hchiral(k) come in pairs E−n(k) = −En(k) with

. . . ⩽ E−2(k) ⩽ E−1(k) ⩽ 0 ⩽ E1(k) ⩽ E2(k) ⩽ . . . .

When E1(k) ≡ 0 we say that Hchiral exhibits a flat band at energy zero. Since Dh is a Fredholm
operator of index 0, see e.g. [17, Proposition 2.3], one concludes that

E1(k) ≡ 0 ⇐⇒ Spec(Dh) = C. (3.4.6)

A twisting angle proportional to h at which (3.4.6) holds is referred to as a magic angle [17]. In the
present article, we shall use (3.4.6) to study the equivalent magic angle condition Spec(Dh) = C
under random perturbations by off-diagonal potentials of Dh. In Theorem 3.4.2, we show that the
lowest singular value of a suitable random perturbation Dh − z being at least an exponentially
small distance away from zero is overwhelmingly high. Thus, z is not in the spectrum of the
perturbation of Dh with great probability and thus there cannot be any flat band, or equivalently,
a magic angle.

One might object that an exponentially flat band would in practise still look fairly flat. But
in the case of the chiral model, it is known [17] that there are ⩾ O(1/h) many bands that are
O(e−c/h) close to zero energy. Thus, the bound in Theorem 3.4.2 implies that the designated flat
band may mix with the other exponentially small bands which do not carry a non-zero Chern
number.
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3.4.2 Random tunneling perturbation

Let P̃1, P̃2 be h-independent elliptic positive second order differential operators on C/Γ with
smooth coefficients. Put Pj = h2P̃j , j = 1, 2, and let {ψ1

n}n∈N, {ψ2
n}n∈N ⊂ L2(C/Γ;C) be two

orthonormal bases composed of eigenfunctions of P1 and P2, respectively, so that

Pjψ
j
n = µ2n,jψ

j
n, µn,j ⩾ 0. (3.4.7)

For L≫ 1 and Dj = Dj(L) > 0 we consider the potentials

qjα(x) =
∑

0⩽µjn⩽L

αnψ
j
n(x), α ∈ CDj . (3.4.8)

The Weyl law, see e.g. [90, Theorem 12.7] for the eigenvalues of elliptic self-adjoint second order
differential operators yields that

Dj ≍ L2h−2. (3.4.9)

We then know from standard Sobolev estimates that for j = 1, 2 and s > 1

∥qjα∥Hs
h(C/Γ)

⩽ Os(1)L
s∥α∥

C
Dj , ∥qjα∥L∞(C/Γ) ⩽ Os(1)h

−1Ls∥α∥
C

Dj . (3.4.10)

Here, Hs
h(C/Γ) is a semiclassical Sobolev space. Constraints on L and ∥α∥

C
Dj will be specified

later on. The potentials (3.4.8) give rise to a tunneling potential

Qγ =

(
0 q1α(x)

−q2β(x) 0

)
: L2(C/Γ;C2) → L2(C/Γ;C2), (3.4.11)

with γ = (α, β) ∈ CD1 × CD2 ≃ CD, D = D1 +D2. By (3.4.10)

∥Qγ∥L2(C/Γ;C2)→L2(C/Γ;C2) ⩽ ∥Qγ∥L∞(C/Γ;C2×2) = Os(1)h
−1Ls∥γ∥CD .

Let γ be real or complex random vector in RD or CD, respectively, with joint probability law

γ∗(dP) = Z−1
h 1B(0,R)(γ) e

ϕ(γ)L(dγ), (3.4.12)

where Zh > 0 is a normalization constant, B(0, R) is either the real ball ⋐ RD or the complex
ball ⋐ CD of radius R≫ 1, and centered at 0, L(dγ) denotes the Lebesgue measure on either RD

or CD and ϕ ∈ C1 with
∥∇γϕ∥ = O(h−κ4) (3.4.13)

uniformly, for an arbitrary but fixed κ4 ⩾ 0.

Fix s > 1 and ε ∈]0, s− 1[, and for C > 0 large enough, we fix

L = Ch
5

s−1−ε , Ch−2− 5s
s−1−ε ⩽ R ⩽ Ch−κ3 , κ3 ⩾ 2 +

5(1 + ε)

s− 1− ε
, (3.4.14)

and
κ1 = 1 +

5s

s− 1− ε
+ κ3, κ5 = κ3 + κ4 + 2 +

10

s− 1− ε
. (3.4.15)

Remark 3.4.1. One example for a random vector γ with law (3.4.12) is a truncated complex
or real Gaussian random variables with expectation 0, and uniformly bounded covariances. The
covariance matrix Σ ∈ CD×D then satisfies Σ > 0 and ∥Σ∥ = O(

√
D). In this case ϕ(γ) =

−⟨Σ−1γ|γ⟩ and (3.4.13) holds with κ4 = 1 + 5
s−1−ε + κ3.
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3.4.3 Absence of small magic angels with overwhelming probability

Let h ∈]0, 1] and consider the unbounded semiclassical differential operator

Dh :=

(
2hDx U(x)
U(−x) 2hDx

)
: L2(C/Γ;C2) → L2(C/Γ;C2), (3.4.16)

with U ∈ C∞(C/Γ;C) as in (3.4.3) below and equipped with the domain H1
h(C/Γ;C

2), making it
a closed densely defined unbounded operator. The semiclassical principal symbol of Dh is

d(x, ξ) =

(
ξ1 + iξ2 U(x)
U(−x) ξ1 + iξ2

)
∈ S1(T ∗(C/Γ);Hom(C2,C2)), (3.4.17)

see [19, Appendix A] for a review of matrix valued semiclassical pseudo-differential calculus. Using
the elliptic of d for |ξ| ≫ 1, one can easily check that Dh is Fredholm operator of index 0. See for
instance [17, Proposition 2.3].

Let τ0 ∈]0,
√
h], let C0 > 0 be large enough, and consider the perturbed operator

Dδ
h := Dh + δhκ1Qγ , δ =

τ0h
κ1+2

C0
, (3.4.18)

which, equipped with the domainH1
h(C/Γ;C

2), is a closed densely defined operator L2(C/Γ;C2) →
L2(C/Γ;C2).

Fix z ∈ C. Then
S := (Dh − z)∗(Dh − z)

is selfadjoint on H2
h(C/Γ;C

2). Since S is a positive selfadjoint operator with domain that injects
compactly into L2(C/Γ;C2), it follows that S has compact resolvent, and therefore its spectrum
contains only isolated eigenvalues of finite multiplicity. Let N := N(τ20 ) be the number of eigen-
values t2j of S in [0, τ20 ], i.e.

0 ⩽ t21 ⩽ . . . ⩽ t2N ⩽ τ20 < t2N+1 ⩽ . . . ,

with tj(Dh − z) = tj ⩾ 0. In [19, (4.13)] we prove an upper bound on N , using semiclassical
calculus similar to (3.3.16), which in combination with the corresponding lower bound on N
proven in [17, Theorem 5] gives

1

C
h−1 ⩽ N(τ20 ) ⩽ Ch−1, (3.4.19)

for some C > 0, provided that τ0 ⩾ hM , for some arbitrary but fixed M > 0. When the potential
U in (5.1.2) is analytic, we have the same conclusion when τ0 ⩾ e−1/Ch, for some C > 0 sufficiently
large.

We have the following probabilistic estimate on the smallest singular value of Dδ
h in (3.4.19).

Theorem 3.4.2. Let Dδ
h be as in (3.4.19), let 0 < ε < exp(−C1h

−2ε0(h)), C1 > 1 sufficiently
large, let N = N(τ20 ) be as in (3.4.18), and let

ε0(h) := C(log τ−1
0 + (log h−1)2)(h+ h2 log h−1).

with C > 0 large enough. Then, for h > 0 small enough

P

(
t1(D

δ
h − z) ⩾

ε

8(Cτ0)N−1

)
⩾ 1− Ch−κ5ε0(h) exp

(
− h2

Cε0(h)
log

1

ε

)
.

Since Dδ
h (3.4.18) is Fredholm of index 0, we immediately deduce from Theorem 3.4.2 the

following
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Corollary 3.4.3. Under the assumptions of Theorem 3.4.2, and h > 0 small enough, the spectrum
of Dδ

h is discrete with probability

⩾ 1− Ch−κ5ε0(h) exp

(
− h2

Cε0(h)
log

1

ε

)
.

Consider now the perturbed chiral operator

Hδ
chiral =

(
0 Dδ

h

(Dδ
h)

∗ 0

)
. (3.4.20)

In view of (3.4.6) and Corollary 3.4.3 we get the the following

Theorem 3.4.4. Under the assumptions of Theorem 3.4.2, and h > 0 small enough, Hδ
chiral does

not exhibit a flat band at energy 0, or equivalently h > 0 small enough is not a magic angle, with
probability

⩾ 1− Ch−κ5ε0(h) exp

(
− h2

Cε0(h)
log

1

ε

)
.

We may take for instance ε = exp(−1/(Ch)−C1h
−2ε0(h)), with C > 0 large enough, so that

h > 0 small enough is not a magic angle with probability ⩾ 1− C exp(−1/(Ch)).
Theorem 3.4.4 can be interpreted as an instability or absence of magic angles due to small

noise since for each h > 0 small enough, with overwhelming probability the perturbed chiral model
does not exhibit at flat band at energy 0.

3.4.4 Eigenvalue asymptotics – a probabilistic Weyl law

As a byproduct of Theorem 3.4.2 we obtain the following probabilistic Weyl law.

Theorem 3.4.5. Let Ω ⋐ C be relatively compact with Lipschitz boundary. Let λj(x, ξ), (x, ξ) ∈
T ∗(C/Γ), j = 1, 2 denote the two eigenvalues of d(x, ξ). Then, under the assumptions of Theorem
3.4.2, and for h > 0 small enough,

#(σ(Dδ
h) ∩ Ω) =

1

(2πh)2

2∑
1

∫∫
(λj)−1(Ω)

dxdξ +O(h−1) (3.4.21)

with probability

⩾ 1− Ch−κ5ε0(h) exp

(
− h2

Cε0(h)
log

1

ε

)
.

A direct calculation shows that

2∑
1

∫∫
(λj)−1(Ω)

dxdξ = 2|Ω| · |C/Γ|.

Furthermore, since the error term is independent of ε > 0, we may take for instance ε =
exp(−1/(Ch) − C1h

−2ε0(h)), with C > 0 large enough, so that for h > 0 small enough (3.4.21)
holds with probability ⩾ 1− C exp(−1/(Ch)).

The arguments presented in [19, Section 6] show that (3.4.21) holds for δ = 0 for h ∈]0, 1]\h
where h ⊂]0, 1] is a countable set. For the exceptional values h ∈ h we have that Spec(Dh) = C.
These exceptional h are proportional to the magic angles in twisted bilayer graphene. See Section
3.4.1 for a discussion. The probabilistic Weyl law Theorem (3.4.5) extends the Weyl law to all
h ∈]0, 1] for h > 0 small enough. This is numerically illustrated in Figure 3.3.

In [95,168,169] Hager and Sjöstrand proved a result similar to Theorem 3.4.2 for semiclassical
elliptic differential operators P (x, hDx) with principal symbol p(x, ξ) subject to small perturba-
tions of the form (3.4.8). However, in their work one requires fundamentally that the principal
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Figure 3.3: Top left: Away from magic angles h, Spec(Dh) = hΓ∗ with two-fold multiplicity. Top right:
Spectrum of randomly perturbed operator Dh away from magic angles h. Bottom left: Spectrum of Dh

numerically computed at largest magic angle h. In reality the spectrum is the entire complex plane.
Bottom right: Spectrum of random perturbation of Dh for h the largest magic angle.

symbol satisfies the symmetry p(x, ξ) = p(x,−ξ). In the present work we can circumvent this
assumption due to the 2× 2 matrix structure of Dh which allows for the use of random tunneling
potentials of the form (3.4.11).

Another stark difference to these previous works is that the operator Dh is somewhat patho-
logical from a spectral theory point of view. Indeed, for the discrete values of h ∈ h the spectrum
of operator Dh can be the entire complex plane C (precisely when h is proportional to a magic
angle). This possibility has been excluded in previous works by [95, 168, 169]. However, the ex-
ample of Dh shows that operators exhibiting such behavior are physically relevant. See Section
3.4.1 for a discussion and application.

3.4.5 Ideas of the proof

The strategy of proof is similar to that described in Section 3.3.3 with, however, two key differences.
The first difference is the probabilistic estimate on the smallest singular value described in Theorem
3.4.2. To prove this we use a modified version of a method developed Sjöstrand [168], adapted
to suit the operator Dh, and construct a tunneling potential Q such that the smallest singular
value of Dh+ δQ is not too small. Then we show that a good lower bound holds in fact with high
probability. This shows, in particular, that the spectrum of Dδ

h is purely discrete for h > 0 small
enough with high probability.

To prove Theorem 3.4.5, we first show that the spectrum Dδ
h is translation invariant under

the action of the dual lattice hΓ∗. Then, using a deformation method we show that number of
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eigenvalues of Dδ
h in a primitive cell of hΓ∗ is constant under small suitable deformations.



Chapter 4

Spectral statistics

In this section we discuss the works obtained in [145,191].

4.1 Introduction

The probabilistic Weyl’s law, Theorem 3.2.4, counts the eigenvalues in any regions, independent
of h, of discrete spectrum. In other words, it describes the spectrum at the macroscopic scale.
We focus in this section on pseudo-differential operators Ph, as in the beginning of Section 2.3,
on R. By Theorem 3.2.4, the density of eigenvalues of a randomly perturbed operators P δh near
a given “complex energy” z0 in the region of discrete spectrum inside the classical spectrum, is
approximately given by (2πh)−1D(z0), where D(z0) > 0 is the classical density at the energy z0,
associated with the symbol of our initial operator. Since the spectral density is of order h−1, it is
reasonable to think that the typical distance between nearest eigenvalues should be of order h1/2,
which we will call the microscopic scale. Our aim is to investigate the distribution of eigenvalues
at this microscopic scale, from a statistical point of view; in other words, we aim at studying
the local spectral statistics, for our family of randomly perturbed operators, in particular the type
of statistical correlations between nearby eigenvalues. A first result on these correlations has
been obtained by the author in [191], where we computed the 2-point correlation between the
eigenvalues of our randomly perturbed operator, in case of Gaussian perturbations.

We will give a full description of these local statistics, expressed in terms of a certain Gaussian
analytic functions. In particular, we will show a partial form of universality with respect to the
law of the random perturbation.

Before stating our results more precisely, and to provide some motivation, let us recall some
background on the topic of spectral statistics, from a mathematical physics perspective. In the
1950s Wigner had the idea, when studying the spectra of complicated Hamiltonian operators in
nuclear physics, to replace these (very structured) operators by large (non-structured) random
matrices [199]. Those random matrices could not reproduce the large scale density fluctuations of
the nuclear spectra, which depend on specific features of the system, but they could (empirically)
reproduce the local statistical properties of the spectra, at the scale of the mean spacing between
eigenvalues. Wigner and Dyson understood that these local statistical properties only depend on
certain global symmetries of the Hamiltonian, like time reversal invariance, but not on the fine
details of the Hamiltonian: these statistical properties were thus said to be universal [68]. In the
1980s, this universality conjecture was extended to simpler Hamiltonians, namely Laplacians on
Euclidean domains with specific shapes: Bohigas-Giannoni-Schmidt observed that if the billiard
flow in the domain is "chaotic", then the local spectral statistics of the corresponding Laplacian
correspond to Dyson’s Gaussian Orthogonal ensemble of random matrices [29]. In parallel, a large
variety of non-Gaussian random Hermitian matrix ensembles were developed and studied, notably
the Wigner random matrices (all entries are i.i.d., up to Hermitian symmetry), for which the local
spectral statistics was recently shown to be identical with that of the Gaussian ensembles [72],

39
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another manifestation of universality.
How about non-selfadjoint operators? Various random ensembles of nonhermitian matrices

have also been introduced in the theoretical physics literature. The main objective has been to
understand the distribution of quantum resonances for various types of scattering or dissipative
systems, see for instance [81, 88, 130, 205] (a short recent review can be found in [80]). For most
of these models, the focus has been to derive the mean spectral density, without investigating
the correlations between the eigenvalues. The “historical” nonhermitian random matrix model,
for which the full eigenvalue statistics has been derived in closed form, is the complex Ginibre
ensemble [87], where all entries are i.i.d. complex Gaussian; the nearby eigenvalues then exhibit a
statistical repulsion between themselves, similar to the case of Dyson’s Gaussian Unitary Ensemble
of hermitian matrices. For certain non-Gaussian ensembles, recent results [42, 184] have been
obtained on the eigenvalue distribution at the microscopic scale, including some partial universality
results.

Let us also mention a model studied recently by Capitaine and Bordenave [34] (see also [60]),
namely the case of a large Jordan block perturbed by a Ginibre random matrix: the authors prove
that most eigenvalues of the perturbed matrix lie close to the unit circle, but they also show that
the “outliers” (the relatively few eigenvalues away from the unit circle) are statistically distributed
like the zeros of a “hyperbolic” Gaussian analytic function (GAF). A similar result was proved by
Sjöstrand and the author [173] in the case of a non-selfadjoint bi-diagonal matrix, perturbed by
a small Ginibre matrix. In these two models, GAFs appear because the perturbation is chosen to
be Gaussian.

Our results will also involve Gaussian analytic functions, but of “Euclidean” type. In our case,
these GAFs will describe the bulk of the spectrum, as opposed to a few outliers; also, in our case
Gaussian functions appear in the limit, even though the perturbation operator or potential is not
necessarily Gaussian distributed.

4.2 The non-selfadjoint Harmonic oscillator revisited

Before stating our results in full generality, we will illustrate them by first focussing on a simple
case: the non-selfadjoint Harmonic oscillator Ph = −h2∂2x + ix2, see Example 2.3.2.

We begin by constructing two types of random perturbations, following [96]. Let {ek}k∈N
denote an orthonormal basis of L2(R) comprised of the eigenfunctions of the nonsemiclassical
harmonic oscillator H = −∂2x + x2, and let {qjk}j,k∈N, {vj}j∈N be independent and identically
distributed (i.i.d.) complex Gaussian random variables with expectation 0 and variance 1 (that
is, with distribution NC(0, 1)). Call N(h) = C1/h

2, with C1 > 0 large enough. Using these data,
we define two types of random operators Q:

1. A random, Ginibre-type matrix

Q =Mω =
1

N(h)

∑
0⩽j,k<N(h)

qj,k ej ⊗ e∗k

2. A random (complex valued) potential

Q = Vω =
1

N(h)

∑
0⩽j<N(h)

vj ej

(more precisely, Q is the operator of multiplication by the potential Vω).

The coupling parameter δ = δ(h) will be assumed to be in the range

hM ⩽ δ ⩽ hκ, (4.2.1)
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where κ > 3, and M > κ is an arbitrarily large but fixed constant. Although the random operator
Q and δ depend on h, we will omit this dependence in our notations. We are interested in the
spectrum of the perturbed operator

P δh = −h2∂2x + ix2 + δQ = Ph + δQ, (4.2.2)

where the random operatorQ is eitherMω or Vω. Note that, since the operatorQ is bounded on L2,
the spectrum of P δh remains purely discrete. More quantitatively, with probability exponentially
close to 1 as h→ 0, we have the bounds ∥Mω∥HS ⩽ Ch−1, ∥Vω∥∞ ⩽ Ch−1 [94, 96].

Our objective will be to study the spectrum of P δh in a microscopic neighbourhood of some
given point z0 ∈ Ω. As explained in the previous section, the probabilistic Weyl’s law [94,96] shows
that the typical density of eigenvalues near z0 is of order h−1, so we expect nearby eigenvalues
to be at distances ∼ h1/2 from one another. In order to test the statistical correlations between
nearby eigenvalues, we zoom to the scale h1/2 at the point z0, by defining the rescaled spectral
point process:

ZQ
h,z0

def
=

∑
z∈Spec(Ph+δQ)

δ(z−z0)h−1/2 .

Our main result is that, in the semiclassical limit, this rescaled point process converges in distribu-
tion to the point process formed by the zeros of a certain random analytic function. The building
block of this random functions is the (Euclidean) Gaussian analytic function (GAF), which we
now review.

4.2.1 The euclidean Gaussian analytic function

Let (αn)n∈N be i.i.d. normal complex Gaussian random variables, i.e. αn ∼ NC(0, 1). For a given
σ > 0, we consider the random entire series

gσ(w)
def
=

∞∑
n=0

αn
σn/2wn√

n!
, w ∈ C . (4.2.3)

With probability one, this series converges absolutely on the full plane, and defines a Gaussian
analytic function (GAF) on C: gσ is a random entire function, so that for any n ∈ N and any
w1, . . . , wn ∈ C the random vector (gσ(w1), . . . , gσ(wn)) is a centred complex Gaussian

(gσ(w1), . . . , gσ(wn)) ∼ NC(0,Γ), (4.2.4)

where the covariance matrix Γ ∈ GLn(C) has the entries

Γi,j = E
[
gσ(wi)gσ(wj)

]
def
= Kσ(wi, wj) = exp(σwiwj) . (4.2.5)

The function C2 ∋ (u, v) 7→ Kσ(u, v) is called the covariance kernel of the GAF gσ, it completely
determines its distribution. As a result, Kσ also completely determines the distribution of

Zgσ
def
=

∑
w∈g−1

σ (0)

δw,

the random point process defined by the zeros of the GAF gσ, see for instance [120].
The GAF zero process Zgσ has interesting geometric properties. Its covariance kernel shows

that for any w0 ∈ C, the translated function gσ(w + w0) is equal in distribution to the function
eσ(ww̄0+|w0|2)gσ(w), which has the same zeros as gσ(w): hence the zero process Zgσ is translation
invariant on C. The average density (1-point function) of Zgσ is thus constant over the plane, it is
equal to σ/π (see section 4.7). The linear dependence in σ is coherent with the scaling covariance
gσ(w)

d
= g1(

√
σw): dilating the zero process Zg1 by 1/

√
σ multiplies the average density by σ.
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Let us give a short historical background of the GAF. It has appeared in the context of
holomorphic representations of quantum mechanics, when investigating the properties of random
states. In the framework of Toeplitz quantization on a compact Kähler manifold M , one defines a
positive holomorphic line bundle L over M , and for any integer N ⩾ 1 a "quantum" Hilbert space
HN is formed by the holomorphic sections of the bundle L⊗N ; the limit N → ∞ is interpreted
as a semiclassical limit. In the case of the 1-dimensional projective space M = CP 1, which is the
phase space of the spin, Hannay [97] defined a natural ensemble of random holomorphic sections
in HN , and studied the point process formed by their zeros (topological constraints impose that
any section has exactly N zeros). He explained how to compute the k-point correlation function
of this process, and explicitly computed the limit (after microscopic rescaling) of the 2-point
correlation function, which coincides with the 2-point function of the GAF. A few years later,
Bleher-Schiffman-Zelditch [27] proved that, for a general Toeplitz quantization (M,L), the zeros
of random holomorphic sections converge, when N → ∞, to a universal process depending only
on the dimension of M . In dimension 1, this process is given by the zero process of the GAF.

4.2.2 Spectral statistics for the noisy non-selfadjoint Harmonic oscillator

We are now equipped to state our Theorem concerning the spectrum of P δh (4.2.2).

Theorem 4.2.1 (Complex harmonic oscillator). Fix z0 = X0 + iY0 ∈ Σ̊, and define the classical
density for the symbol p(x, ξ) = ξ2 + ix2 at the points ρj± ∈ p−1(z0):

σ(z0)
def
=

1

|{Re p, Im p}(ρj±(z0))|
=

1

4
√
X0Y0

, j = 1, 2.

For h ∈]0, 1], let the random perturbation Q be either Mω or Vω, and take δ in the interval (4.2.1).
Then, for any domain O ⋐ C, the rescaled spectral point process at z0 converges in distribution as
follows:

ZQ
h,z0

d−→ ZGz0,Q
on O, as h→ 0.

Here ZGz0,Q
is the zero point process for the random entire function Gz0,Q described below:

1. if the perturbation Q = Vω then

Gz0,V (w) = g1z0(w)g
2
z0(w), w ∈ C,

where g1z0 , g
2
z0 are two independent copies of the GAF gσ(z0).

2. if Q =Mω then
Gz0,M (w) = det

(
gi,jz0 (w)

)
1⩽i,j⩽2

, w ∈ C,

where gi,jz0 , 1 ⩽ i, j ⩽ 2, are 4 independent copies of the GAF gσ(z0).

The convergence in distribution of point processes is described more explicitly in Thm 4.7.1.
As we will explain in section 4.7, this convergence implies that all k-point measures converge as
well to the limiting ones.

4.3 Spectral statistics in a more general framework

The above theorem can be generalized to a large class of 1-dimensional non-selfadjoint h-pseudo-
differential operators, and with random perturbations which are not necessarily Gaussian. We
first present the class of unperturbed operators we will be dealing with.

Let us fix the type of unperturbed operators we will consider in this section. We will use the
notation ρ = (x, ξ) ∈ R2 ≃ T ∗R for phase space points.
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We consider a “classical” symbol p ∈ S(R2,m), as in (A.1.2), namely it satisfies an asymptotic
expansion in the limit h→ 0:

p(ρ;h) ∼ p0(ρ) + hp1(ρ) + . . . in S(R2,m), (4.3.1)

where each pj ∈ S(R2,m) is independent of h. In this case we call p0 the (semiclassical) principal
symbol of p. We then define two subsets of C associated with p0:

Σ
def
= p0(R2), Σ∞

def
= {z ∈ Σ; ∃(ρj)j⩾1 s.t. |ρj | → ∞, p0(ρj) → z}. (4.3.2)

Σ is the classical spectrum of the operator Ph defined below, while Σ∞ can be called the classical
spectrum at infinity. Furthermore, we suppose that the principal symbol p0 is elliptic at some
“energy” zout ∈ C\Σ:

∃C0 > 0, |p0(ρ)− zout| ⩾ m(ρ)/C0, ∀ρ ∈ R2. (4.3.3)

For h ∈]0, 1] we let Ph = pw(x, hDx;h) denote the h-Weyl quantization of the symbol p, de-
fined in (A.1.3). The closure of Ph as an unbounded operator on L2, has the dense domain
H(m)

def
= (Ph − zout)

−1(L2(R)) ⊂ L2(R); we will still denote this closed operator by Ph. More-
over, we will denote by ∥u∥m

def
= ∥(Ph − zout)u∥ the associated norm on H(m)1.

Let Ω̃ ⊂ C be open simply connected, not entirely contained in Σ, and such that Ω̃∩Σ∞ = ∅.
Then, the spectrum of Ph inside Ω̃ satisfies the following properties in the semiclassical limit
[94,96]:

• for h > 0 small enough, Spec(Ph) ∩ Ω̃ is discrete

• for all ε > 0, ∃h(ε) > 0 such that

Spec(Ph) ∩ Ω̃ ⊂ Σ+D(0, ε), ∀0 < h < h(ε). (4.3.4)

Here, D(0, ε) ⊂ C denotes the open disc of radius ε > 0 centred at 0.
In this work we will study the spectrum of small random perturbations of Ph, in the semiclas-

sical limit h→ 0, in the interior of Σ ∩ Ω̃.

4.4 Pseudospectrum and the energy shell

Let Ω̃ be as above and let

Ω ⋐ Ω̃ ∩ Σ̊ be open, simply connected. (4.4.1)

Recall that p0 is the principal symbol of p, see (4.3.1). We assume that:

for every ρ ∈ p−1
0 (Ω), the 1-forms dp0, dp0 are linearly independent. (4.4.2)

Since the dimension d = 1, this condition is equivalent to:

for every ρ ∈ p−1
0 (Ω), {Re p0, Im p0} ≠ 0, (4.4.3)

where {·, ·} denotes the Poisson bracket:

{p, q}(ρ) def
= ∂ξp(ρ) ∂xq(ρ)− ∂ξq(ρ) ∂xp(ρ), ρ = (x, ξ) ∈ R2 .

1Although this norm depends on the choice of the symbol p − zout, it is equivalent to the norm defined from
any elliptic operator in q ∈ S(m), so that the space H(m) only depends on the order function m.
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It was observed by Dencker, Sjöstrand and Zworski [62], and Sjöstrand [171] (see Theorem
2.3.1) that since Ω is relatively compact and simply connected, (4.4.2), or equivalently (4.4.3),
implies that there exists J ∈ N∗ depending only on Ω, so that for any z ∈ Ω, the “energy shell”
p−1
0 (z) consists of exactly 2J points:

p−1
0 (z) = {ρj±(z); j = 1, . . . , J}, with ± {Re p, Im p}(ρj±(z)) < 0,

ρi±(z) ̸= ρj±(z) if i ̸= j,
(HYP)

and the points ρj±(z) = (xj±(z), ξ
j
±(z)) depend smoothly on z.

We shall make the further (generic) assumption

∀z ∈ Ω, xi±(z) ̸= xj±(z) if i ̸= j , (HYP-x)

which will play a role when studying the perturbation by a random potential.
Theorem 2.3.1 shows that (HYP) implies, for each z ∈ Ω and each j = 1, . . . , J , the existence

of an h∞-quasimode for Ph − z (resp. (Ph − z)∗), microlocalized on ρj+(z) (resp. ρj−(z)). We will
denote those modes by ej± = ej±(z;h) ∈ L2(R), normalize them as ∥ej±∥ = 1, and they satisfy

∥(Ph − z)ej+∥ = O(h∞) and WFh(e
j
+) = {ρj+(z)}, (4.4.4)

respectively
∥(Ph − z)∗ej−∥ = O(h∞) and WFh(e

j
−) = {ρj−(z)}. (4.4.5)

The notion of semiclassical wavefront set WFh(u) is recalled in (A.2.1).
In view of the characterisation given in Theorem 2.2.4 of the pseudospectrum, we see that

the assumption (4.4.2) implies that Ω is contained in the h∞-pseudospectrum of Ph, a spectrally
highly unstable region.

4.5 Adding a random perturbation

We will now consider random perturbations of the operator Ph which are given by either a random
matrix or a random potential, generalizing a little the constructions made in section 4.2. As in
that section, we consider {ek}k∈N the orthonormal eigenbasis of the (nonsemiclassical) harmonic
oscillator H = −∂2x + x2.

Remark 4.5.1. This choice of orthonormal basis is convenient for us, but it is far from unique.
In fact what we need is a family of states (not necessarily orthonormal) such that the first N(h)
states microlocally cover a sufficiently large part of phase space, namely a neighbourhood of p−1

0 (Ω).
We also need to avoid states which would have a large overlap with some of the quasimodes ej±,
cf. (4.4.4), (4.4.5).

Let α be a complex valued random variable defined on some probability space (M,F ,P), with
the properties

E[α] = 0, E[α2] = 0, E[|α|2] = 1, E[|α|4+ϵ0 ] < +∞, (4.5.1)

where ε0 > 0 is an arbitrarily small but fixed constant. Here, E[·] denotes the expectation with
respect to the probability measure P. The Markov inequality implies the following tail estimate:
there exists a constant κα > 0 such that

P[|α| ⩾ γ] ⩽ κα γ
−(4+ε0), ∀γ > 0. (4.5.2)

Remark 4.5.2. For instance, the complex centred Gaussian random variable of eq. (4.2.3) satisfies
the above assumptions.
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Random Matrix. Let N(h) = C1/h
2, C1 > 0 large enough (we will be more precise about

this condition later). Let qj,k, 0 ⩽ j, k < N(h) be independent copies of the random variable α
satisfying the conditions (4.5.1). We consider the random matrix

Mω =
1

N(h)

∑
0⩽j,k<N(h)

qj,k ej ⊗ e∗k, (RM)

where ej ⊗ e∗ku = (u|ek)ej for u ∈ L2(R). For some coupling parameter 0 < δ ≪ 1, we define the
randomly perturbed operator

P δM = Ph + δMω. (4.5.3)

Random Potential. TakeN(h) = C1/h
2, C1 > 0 as above. Let vj , 0 ⩽ j < N(h) be independent

copies of the random variable α. Still using the same orthonormal family (ek)k∈N, we define the
random function

Vω =
1

N(h)

∑
0⩽j<N(h)

vj ej . (RP)

For 0 < δ ≪ 1, write the perturbed operator

P δV = Ph + δVω. (4.5.4)

We call this perturbation a “random potential”, even though Vω is complex valued. When we
consider this type of perturbation, we will make the additional symmetry assumption:

p(x, ξ;h) = p(x,−ξ;h). (SYM)

This hypothesis implies that we can group the points forming p−1
0 (z) (see (HYP)) in pairs, such

that ρj± = (xj ,±ξj). As a result, the centres of microlocalization of the quasimodes ej+ and ej−
are located on the same fibre T ∗

xj
R = {(xj , ξ), ξ ∈ R}.

Remark 4.5.3. We could relax the assumption (SYM) into requiring this symmetry only at the
level of the principal symbol, i.e. p0(x, ξ) = p0(x,−ξ). However, for the simplicity of the presen-
tation we prefer to make the above stronger hypothesis.

Restricting to bounded perturbations. For both types of perturbations, it will be easier for
us to restrict the random variables to large discs D(0, C/h), i.e. assume that

|vi|, |qi,j | ⩽ C/h, 0 ⩽ i, j < N(h), for some C > 0 sufficiently large. (4.5.5)

This restriction induces the boundedness of the perturbations Mω, Vω. Indeed on this restricted
probability space we have the bound,

∥Mω∥HS ⩽ Ch−1, (4.5.6)

where ∥Mω∥HS denotes the Hilbert-Schmidt norm of Mω. Respectively, in the case of the random
potential,

∥Vω∥∞ ⩽ Ch−1. (4.5.7)

We note that even for unrestricted random variables, these bounds on the perturbations hold
with high probability. Indeed, using (4.5.2) to estimate the probability that (4.5.5) holds, we
deduce that (4.5.6) holds with probability ⩾ 1 − C2h

ε0 , and that (4.5.7) occurs with probability
⩾ 1− C2h

2+ε0 , for some C2 > 0.

Finally, we will take the coupling parameter δ = δ(h) in the same interval as in (4.2.1).
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As discussed after (3.2.1), the spectra of P δM and P δV in Ω are purely discrete. The principal
aim of this section is to show that the statistical properties of these spectra, in a microscopic
neighbourhood of any z0 ∈ Ω, are universal, in a sense that we will specify later on.

Since p0 − z is elliptic for every z ∈ C\Σ, the resolvent norm ∥(Ph − z)−1∥ = O(1), uniformly
for z in compact subset of C\Σ, as h → 0. In view of (4.5.6), (4.5.7) and (4.2.1), we are
considering random perturbations of size ∥δMω∥HS ≪ h2 and ∥δVω∥∞ ≪ h2. Therefore, in view
of the characterisation (2.2.5) of the pseudospectrum, the spectra of P δM and P δV are contained in
Σ+D(0, ϵ), for any given ϵ > 0 and h > 0 small enough. Moreover, since Ω ⋐ Σ̊, we will not feel
the effects of the boundary of Σ; we will simply say that Ω lies in the bulk of the spectrum of the
perturbed operator.

4.6 Probabilistic Weyl’s law and local statistics

Recall the probabilistic Weyl law stated in Theorem 3.2.4. It shows that, with probability close
to 1, the number of eigenvalues of the perturbed operator P δh in any fixed subset of Ω is of order
≍ h−1. Hence, the spectrum of P δh will spread across Ω, with an average spacing between nearby
eigenvalues of order h1/2.
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Figure 4.1: Numerically computed spectra of the operators −h2∂2x + e3ix + δQ acting on L2(T), with
h = 10−3 and δ = 10−12. The perturbation Q is either a Gaussian random matrix Mω (left), or a Gaussian
random potential Vω (right). The region plotted is the same, it is part of the bulk (the units on the axes
are arbitrary). In the region the number of quasimodes is 2J , J = 6.

Figure 4.1 illustrates this behaviour for a choice of operator Ph = −h2∂2x + e3ix acting on the
torus T = R/2πZ. We draw random perturbations Mω, Vω and plot some region of the spectra
of P δM and P δV , in the interior of Σ. Both spectra are grossly uniform over the plotted region, yet
in the case of P δV (right plot) the distribution of the eigenvalues seems a bit “less uniform” than
in the case of P δM (left plot), in particular it allows the presence of small clusters of very near
eigenvalues.

To quantify this difference of uniformity between the spectra of P δM and P δV , we study the local
statistics of the eigenvalues, that is the statistics of the eigenvalues on the scale of their mean level
spacing. For this purpose, we fix a point z0 ∈ Ω. In both cases Q =Mω and Q = Vω, we view the
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rescaled spectrum of the randomly perturbed operator P δQ as a random point process

ZQ
h,z0

def
=

∑
z∈Spec(P δ

Q)

δ(z−z0)h−1/2 , Q =Mω or Q = Vω, (4.6.1)

where the eigenvalues are counted according to their algebraic multiplicities.
Notice that the rescaled eigenvalues (zj − z0)h

−1/2 have a mean spacing of order ≍ 1. Our
principal aim is to show that, under the assumption (4.5.1) on the random coefficients, in the
limit h → 0 the correlation functions of the processes ZM

h,z0
and ZV

h,z0
are universal, in the sense

that they

• depend only on the structure of the energy shell p−1
0 (z) and on the type of random pertur-

bation used, either Mω or Vω;

• are independent of the law of the random variable α used to define the random perturbations,
as long as satisfies (4.5.1).

Finally, let us stress that our results concern solely the eigenvalues in the bulk of the spectrum of
P δh , that is in the interior of the h∞-pseudospectrum of Ph. Near the boundary of that pseudospec-
trum, we expect the statistical properties of the eigenvalues to change drastically. It has been
shown by the author in [192] in the case of a model operator, that the probabilistic Weyl’s law
breaks down in the vicinity of ∂Σ, in fact, the density of eigenvalues explodes near that boundary.

4.7 Perturbation by a random potential

We begin with the case of a perturbation by a random potential Vω, eq. (4.5.4). In Weyl’s law of
Thm 3.2.4, the main term on the right hand side can be easily expressed in terms of the classical
spectral density, pull-back of the symplectic measure on T ∗R through the symbol p0:∫

p−1
0 (Γ)

dx dξ =

∫
Γ
(p0)∗(dx dξ)

(the Lebesgue measure dx dξ on R2 is also the measure induced by the symplectic form on T ∗R ∼=
R2).

From the structure (HYP) of the energy shell p−1
0 (z), the classical spectral density at the

energy z can be expressed as follows:

(p0)∗(dx dξ) =
J∑
j=1

(σj+(z) + σj−(z))L(dz), σj±(z) =
1

∓{Re p0, Im p0}(ρj±(z))
. (4.7.1)

Here L denotes the Lebesgue measure on C. In other words, each point ρj± of the energy shell
provides a density component σj±(z) > 0, which depends smoothly on z ∈ Ω.

If we additionally assume the symmetry (SYM) and group the points such that ρj± = (xj ,±ξj),
we find that σj+(z) = σj−(z) for all j = 1, . . . , J .

Universal limiting point process

Let us now state our main theorem for the perturbed operators P δV . It provides the asymptotic
behaviour of the rescaled spectral point processes ZV

h,z0
in the semiclassical limit.

Theorem 4.7.1. Let p be as in (4.3.1) satisfying (4.4.2) and (SYM). Let Ω ⋐ Σ̊ be as in (4.4.1),
and choose z0 ∈ Ω. Then, for any bounded open set O ⋐ C, the rescaled spectral point processes
at z0 converge in distribution:

ZV
h,z0

d−→ ZGz0
in O, as h→ 0.
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This convergence means that for any test function ϕ ∈ Cc(O,R),

⟨ZV
h,z0 , ϕ⟩ =

∑
z∈Spec(P δ

h)

ϕ((z − z0)h
−1/2)

d−→ ⟨ZGz0
, ϕ⟩ =

∑
z∈G−1

z0
(0)

ϕ(z), as h→ 0 .

Here ZGz0
is the zero point process for the random analytic function

Gz0(z) =
J∏
j=1

gjz0(z), z ∈ C,

where J is as in (HYP), the gjz0 are J independent GAFs gjz0 ∼ g
σj
+(z0)

(see section 4.2.1), with

σi+(z0) the local spectral densities given in (4.7.1).

The definition and basic properties of the GAFs have been presented in section 4.2.1. We refer
the reader to [120] for an in depth review.

This theorem tells us that at any given point z0 ∈ Ω in the bulk of the pseudospectrum, the
rescaled spectral point process converges, in the limit h → 0, to the point process given by the
zeros of the product of J independent GAFs. This limiting point process is the superposition of
J independent processes, each one generated by a GAF gjz0 . The latter only depends on the part
of the classical spectral density coming from the pair of points ρj± = (xj ,±ξj). In particular, this
limiting process is independent of the precise probability distribution of the coefficients (vj), as
long at it satisfies (4.5.1), or of the orthonormal family (ej) used to generate the random potential
Vω; this process only depends on the cardinal 2J of the energy shell p−1

0 (z) and of the local spectral
densities {σj+(z0), j = 1, . . . , J}.

It is known that the zero process of a single GAF exhibits a local repulsion between the nearby
points (see the section 4.7). On the opposite, as a superposition of J independent point processes,
the limiting process ZGz0

authorizes the presence of clusters of at most J points very close to one
another, confirming our observations in the right plot of Fig. 4.1 (for the considered operator and
plotted region, we have J = 6). In the next section we will analyze this clustering by computing
the correlation functions between the points of the process.

Scaling limit of the k-point measures

An explicit way to quantify the statistical correlations between k nearby eigenvalues of P δV consists
in defining the k-point measures of the point process ZV

h,z0
. These are positive measures µk,V,z0h on

Ok, where O is the open domain as in Theorem 4.7.1. These measures are defined through their
action on an arbitrary test function ϕ ∈ Cc(Ok,R+) as follows:

E
[
(ZV

h,z0)
⊗k(ϕ)

]
= E

[ ∑
z1,...,zk∈Spec(P δ)

ϕ
(
(z1 − z0)h

−1/2, . . . , (zk − z0)h
−1/2

) ]
def
=

∫
Ok

ϕ(w)µk,Vh,z0(dw) .

(4.7.2)

In practice, one often studies these measures away from the generalized diagonal ∆ = {z ∈
Ck;∃ i ̸= j s.t. zi = zj}, in order to avoid trivial self-correlations. Hence the test functions we
will use below will be chosen in Cc(Ok\∆,R+).

When these k-point measures are absolutely continuous with respect to the Lebesgue measure
on Ck, we call their densities the k-point functions.

Theorem 4.7.2. Let µk,Vh,z0 be the k-point measure of ZV
h,z0

, defined in (4.7.2), and let µk,Vz0 be the
k-point measure of the point process ZGz0

, given in Theorem 4.7.1. Then, for any domain O ⋐ C
and for all ϕ ∈ Cc(Ok\∆,R+),∫

Ok\∆
ϕ(w)µk,Vh,z0(dw) −→

∫
Ok\∆

ϕ(w)µk,Vz0 (dw), h→ 0.
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Moreover, µk,Vz0 is absolutely continuous with respect to the Lebesgue measure on Ck. Its density
dk,Vz0 is given by the following formula:

dk,Vz0 (w1, . . . , wk) =
∑
α∈NJ ,∑
j αj=k

∑
τ∈Sk

1

α!

J∏
j=1

d
αj
gj (wτ(α1+···+αj−1+1), . . . , wτ(α1+···+αj)) (4.7.3)

where Sk is the symmetric group on k elements, and for all 1 ⩽ j ⩽ J and all r ∈ N∗,

drgj (w) =
perm[Crj (w)−Br

j (w)(A
r
j)

−1(w)(Br
j )

∗(w)]

detπArj(w)
, while d0gj (w) ≡ 1 . (4.7.4)

Here, perm denotes the permanent of a matrix; Arj , B
r
j , C

r
j are complex r × r-matrices given by

(Arj)n,m = Kj(wn, w̄m), (Br
j )n,m = (∂wK

j)(wn, w̄m), (Crj )n,m = (∂2ww̄K
j)(wn, w̄m),

where Kj(w, w̄) = exp(σj+(z0)ww̄) is the covariance function of the GAFs gjz0 appearing in
Thm 4.7.1.

The function dr
gj
(z) in (4.7.4) is the r-point function for the zero process of the Gaussian

analytic function gj . The limiting k-point functions are thus obtained by concatenating the r-
point functions (1 ⩽ r ⩽ k) of the J GAFs gj associated with the points ρj± of the energy shell.
The zeros associated with different points ρj± are uncorrelated with one another.

A result by Nazarov and Sodin [77, Theorem 1.1] implies the following estimate for the r-point
densities of a single GAF.

Proposition 4.7.3. [77] Let O ⋐ C be a bounded domain. Let (gj = gjz0)1⩽j⩽J be the GAFs
appearing in Thm 4.7.1, and let dr

gj
(w), 1 ⩽ r ⩽ k, be the corresponding r-point functions as in

(4.7.4).
Then there exists a constant C = C(r, gj , O) > 1 such that, for any configuration of pairwise

distinct points w1, . . . , wk ∈ O,

C−1
∏
i<j

|wi − wj |2 ⩽ drgj (w1, . . . , wk) ⩽ C
∏
i<j

|wi − wj |2.

This estimate shows that the zeros of a GAF enjoy a statistical (quadratic) repulsion at short
distance, namely they are very unlikely to approach one another much more than the mean
distance.

In formula (4.7.3) we see that if k > J , each summand has at least one factor dαj

gj
with αj ⩾ 2.

Hence, Thm 4.7.2 and Prop. 4.7.3 lead to the following

Corollary 4.7.4. Let O ⋐ C be a bounded domain, let k > J , and let dk,Vz0 (w) be as in (4.7.3).
Then there exists a positive constant C = C(r,O) such that, for any configuration of pairwise
distinct points w1, . . . , wk ∈ O,

dk,Vz0 (w1, . . . , wk) ⩽ C
∑
i<j

|wi − wj |2.

We have seen by Theorem 4.7.2 that the limiting point process of the rescaled eigenvalues is
given by the superposition of J independent processes given by the zeros of independent Gaussian
analytic functions. Due to this independence, k points, each originating from a different GAF
process, may approach each other without any statistical repulsion: this authorizes the formation
of clusters of a most J points. As a result, for k ⩽ J the limiting k-point functions do not decay
to zero as the distances between the k points gets smaller: this authorizes the presence of clusters
of at most J points. This behaviour is made more explicit in the next section in the case k = 2.
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On the opposite, if k > J then at least two points must originate from the same GAF process,
and therefore statistically repel each other when approaching each other. This is exactly what
Corollary 4.7.4 tells us: the probability to find more than J points close together decays at
least quadratically with the distance. As a result, finding small clusters containing more than J
eigenvalues is very unlikely.

2-point correlation function

The 2-point correlation function of a point process is defined by the 2-point function, renormalized
by the local 1-point functions (or local average densities):

K2,Q
z0 (w1, w2) =

d2,Qz0 (w1, w2)

d1,Qz0 (w1)d
1,Q
z0 (w2)

, w1 ̸= w2 ∈ O, Q = Vω, Mω .

By Theorem 4.7.2, the limiting local 1-point function d1,Vz0 (w) is a constant function, given by

d1,Vz0 (w) =
J∑
j=1

σj+(z0)

π
, ∀w ∈ O.

This average density of eigenvalues (at the microscopic scale near z0) exactly corresponds to the
macroscopic density predicted by the probabilistic Weyl’s law in Theorem 3.2.4, see also (4.7.1).

The limiting 1-point and 2-point functions of the zero process generated by a single GAF gσ
(see section 4.2.1) are given by

d1gσ(w1) =
σ

π
, respectively d2gσ(w1, w2) =

(σ
π

)2
κ
(σ|w1 − w2|2

2

)
,

with the scaling function

κ(t)
def
=

(sinh2 t+ t2) cosh t− 2t sinh t

sinh3 t
, ∀t ⩾ 0. (4.7.5)

The function κ
(
σ|w1 − w2|2/2

)
describes the 2-point correlation function of the zeros of the GAF
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Figure 4.2: Plot of the function t 7→ κ(t2), see (4.7.5).

gσ. A remarkable property of this function is its isotropy: it only depends on the distance between
the points w1, w2. In Figure 4.2 we plot the function t 7→ κ(t2); it behaves as κ(t2) = t2(1+O(t4))
when t → 0, which reflects the quadratic repulsion between the nearby zeros of gσ. On the
opposite, when t≫ 1 it converges exponentially fast to unity, showing a fast decorrelation between
the zeros at large distances.
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To our knowledge, the function κ was first computed by Hannay [97], as the scaling limit 2-
point correlation function for the zeros of certain ensembles of random polynomials. In the work
by Bleher, Shiffman and Zelditch [27], κ describes the scaling limit 2-point correlation function
for the zeros of random holomorphic sections of large powers of a positive Hermitian line bundle
over a compact complex Kähler surface.

In the present work, κ appears as a building block for the limit 2-point correlation function of
the eigenvalues of P δV :

K2,V
z0 (w1, w2) = 1 +

J∑
j=1

(σj+(z0))
2(∑J

j=1 σ
j
+(z0)

)2
[
κ

(
σj+(z0)|w1 − w2|2

2

)
− 1

]
. (4.7.6)

Let us study more closely this 2-point correlation function:
Long range decorrelation: For |w1 − w2| ≫ 1, in the limit h → 0, the 2-point correlation
function converges exponentially fast to unity

K2,V
z0 (w1, w2) = 1 +O

(
e
−min

j
σj
+(z0)|w1−w2|2

)
.

This shows that two points at distances |w1 − w2| ≫ 1 are statistically uncorrelated.

A weak form of repulsion: When |w1 − w2| ≪ 1, in the limit h → 0, there is a weak form
of repulsion between two nearby eigenvalues,

K2,V
z0 (w1, w2) = 1−

J∑
j=1

σj+(z0)
2(∑J

l=1 σ
l
+(z0)

)2 [1− σj+(z0)|w1 − w2|2

2
+O(|w1 − w2|4)

]
. (4.7.7)

This formula shows that the probability to find two rescaled eigenvalues w1, w2 at distance ≪ 1
is smaller than the one to find them at large distances: pairs of rescaled eigenvalues show a weak
repulsion at short distance. However, the correlation function does not converge tozero when

|w1 − w2| → 0, but to the positive value 1−
∑J

j=1 σ
j
+(z0)2

(
∑J

l=1 σ
l
+(z0))2

. This weak repulsion can be explained

by the fact that the random function Gz0 is the product of J independent GAFs: two zeros w1, w2

will not repel each other if they originate from different GAFs, while they will repel quadratically
if they come from the same GAF. The net result is this weak form of repulsion. The larger the
number of quasimodes J , the weaker this repulsion becomes, since two zeros w1, w2 chosen at
random will have a smaller chance to come from the same GAF.

In Figure 4.3 we compare the limiting 2-point correlation functions K2,V
z0 with the one obtained

from numerical spectra of two operators on the torus T = R/(2πZ):

P δh,q = −h2∂2x + eiqx + δVω, q = 1, 3, x ∈ T. (4.7.8)

We took the parameters h = 10−3, δ = 10−12, and the Gaussian random potential Vω as in
section 4.2. We use operators defined on T because they are numerically easier to diagonalize
than operators on R. For each operator Ph,q, we drew 1000 samples of the random potential Vω,
and computed the corresponding spectra of P δV , then extracted from these spectra the correlation
function.

The analysis of the principal symbols pq,0 shows that the classical spectrum is, in both cases,
given by Σ = R+ + U(1). At the energy z0 = 1.6 (clearly located in the “bulk”), the operator
(Ph,q − z0) admits J = 2q quasimodes. Figure 4.3 compares the numerically obtained 2-point
correlation functions (shown as blue dots) of the operators P δh,1 (left) and P δh,3 (right), with the
theoretical scaling limit described in (4.7.7). For the two operators, the theoretical curve fits quite
well the numerical points, including at short distances |w1 − w2| ≪ 1.
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Figure 4.3: Blue points: rescaled 2-point correlation functions near the energy z0 = 1.6, obtained by
numerically computing the spectra of the operators Ph,1 (left) and Ph,3 (right) perturbed by a Gaussian
random potential δVω. Red curves: scaling limit 2-point correlation functions K2,V

z0 for both operators, as
given in (4.7.6); the horizontal coordinate is the rescaled square distance |w1 − w2|2.

4.8 Perturbation by a random matrix

We now describe the situation where the operator Ph is perturbed by a small random matrix δMω,
as described in (RM,4.5.3). In this case we do not need to assume the symmetry property (SYM)
for the symbol p0.

Universal limiting point process

Here as well, we can prove a convergence of the rescaled spectral point process ZM
h,z0

(see (4.6.1))
towards a limiting zero process when h→ 0.

Theorem 4.8.1. Let p be as in (4.3.1) satisfying (4.4.2). Let Ω ⋐ Σ̊ be as in (4.4.1). Choose
z0 ∈ Ω. Then, for any bounded open set O ⋐ C, the rescaled spectral point process ZM

h,z0
converges

in distribution towards the zero point process associated with a random analytic function G̃z0
described below:

ZM
h,z0

d−→ ZG̃z0
on O as h→ 0. (4.8.1)

The random function G̃z0 is defined as

G̃z0(w)
def
= det(gi,jz0 (w))1⩽i,j⩽J , w ∈ C,

where gi,jz0 , for 1 ⩽ i, j ⩽ J , are J2 independent GAFs gi,jz0 ∼ g
σi,j
z0

, for J is as in (HYP) and for
the parameters

σi,jz0 =
1

2
(σi+(z0) + σj−(z0)) . (4.8.2)

The local classical densities σi±(z0) associated with the points ρi±(z0), were defined in (4.7.1).
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Theorem 4.8.1 tells us that at any given point z0 ∈ Ω̃ ∩ Σ̊ in the bulk of the pseudospectrum,
the local rescaled point process of the eigenvalues of P δM is given, in the limit h→ 0, by the zero
process associated with the determinant of a J × J matrix, whose entries are independent GAFs.
The GAF situated at the entry i, j of the matrix only depends on the local classical densities of
the points ρi+(z0) and ρj−(z0).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.4: Blue points: values of the 2-point correlation functions, obtained by numerically computing
the spectra of the operators Ph,1 (left) and Ph,3 (right) perturbed by a Gaussian random matrix δMω.
The parameters z0, h, δ are as in Figure 4.3. Red curves: the 2-point correlation function for the Ginibre
ensemble, K2,Gin

z0 , as given in (4.8.5). The horizontal coordinate is the rescaled square distance |w1−w2|2.

The limiting point process ZG̃z0
features some partial form of universality: it is independent

of the precise law on the entries of the perturbation Mω (4.5.1), but only depends on the cardinal
2J of the energy shell p−1

0 (z), and of the local classical densities {σj±(z0); j = 1, . . . , J} (notice
that in absence of the symmetry (SYM), the densities σj+(z0) and σj−(z0) are a priori unrelated).

The limiting process ZG̃z0
is different from the universal limit ZGz0

studied in the previous

section. In particular the function G̃z0 is not given by a simple product of GAFs, but by a more
complicated expression, namely a determinant. As we will see below, we expect the zeros of G̃z0
to exhibit a quadratic repulsion between nearby points, as opposed to the zeros of the function
Gz0 in Thm 4.7.1.

Scaling limit k-point measures

A direct consequence of the convergence of the zero processes ZM
h,z0

is the convergence of their
k-point measures to those of the limiting point process.

Corollary 4.8.2. Let µk,Mh,z0 be the k-point measure of ZM
h,z0

, defined as in (4.7.2), and let µk,Mz0 be
the k-point measure of the point process ZG̃z0

described in Thm 4.8.1. Then, for any O ⋐ C open
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connected domain and for all ϕ ∈ Cc(Ok\∆,R+),∫
Ok\∆

ϕ(w)µk,Mh,z0 (dw) −→
∫
Ok\∆

ϕ(w)µk,Mz0 (dw), h→ 0.

One can calculate the densities of the limiting 1-point measures µ1,Mz0 :

d1,Mz0 (w) =
J∑
i=1

σi+(z0) + σi−(z0)

2π
, ∀w ∈ O. (4.8.3)

Not surprisingly, this microscopic density is exactly the rescaling of the macroscopic spectral
density at z0 predicted by the probabilistic Weyl’s law in Thm 3.2.4, see also (4.7.1). In the case
of an operator Ph satisfying the symmetry assumption (SYM), this microscopic density is equal to
the one obtained for the operator perturbed by a random potential: for such symmetric symbols,
the microscopic densities d1,Vz0 and d1,Mz0 coincide, and therefore cannot distinguish between the
type of perturbation imposed on Ph.

On the other hand, we believe that for k > 1, the k-point densities dk,Qz0 (equivalently, the
k-point correlation functions Kk,Q

z0 ) can distinguish between the two types of perturbation (still
assuming the symmetry (SYM) for the symbol). We have not been able to compute in closed
form the densities of the limiting k-point measures dk,Mz0 associated with the random function G̃z0 ;
however, the numerical experiments presented in Figure 4.4, as well as the Proposition 4.7.3, lead
us to the following

Conjecture 4.8.3. The k-point densities dk,Mz0 of the zero point process of the random function
G̃z0 described in Theorem 4.8.1 exhibit a quadratic repulsion at short distance. Namely, for any
open set O ⋐ C, there exists a constant C > 1 depending only on O and k such that, for all
pairwise distinct points w1, . . . , wk ∈ O,

C−1
∏
i<j

|wi − wj |2 ⩽ dk,Mz0 (w1, . . . , wk) ⩽ C
∏
i<j

|wi − wj |2.

In Figure 4.4 we compare numerical values of the 2-point correlation function with the 2-point
correlation function of a well-known spectral point process on C, namely the spectrum of large
Ginibre random matrices. This ensemble corresponds to random matrices Mω alone, when the
entries are i.i.d. Gaussian ∼ NC(0, 1), in the limit h → 0, or equivalently the limit or large
matrices. It has been known since the work of Ginibre [87] that the eigenvalues of these matrices
repel each other quadratically at short distance. When the eigenvalues are rescaled such that the
mean local density is given by d1(w) = σ/π, the 2-point correlation function takes the simple form

K2,Gin
σ (w1, w2) = 1− exp(−σ|w1 − w2|2) . (4.8.4)

Hence, in view of our local density (4.8.3), we draw on Fig. 4.4 the 2-point function

K2,Gin
z0 (w1, w2) = 1− exp

[
−1

2

( J∑
i=1

σi+(z0) + σi−(z0)
)
|w1 − w2|2

]
. (4.8.5)

This function is markedly different from the scaling function κ(t2) corresponding to the zero GAF
process (4.7.5). It seems rather close to our experimental data of Fig. 4.4, even though we observe
a deviation for values |w1 − w2| ∼ 1. Is this deviation due to the finite value of h used in our
numerical experiment? Or does the deviation persist when h → 0, that is in the limiting corre-
lation function K2,M

z0 ? We conjecture that the latter correlation function K2,M
z0 differs from the

(appropriately rescaled) Ginibre function K2,Gin
z0 , but that it becomes closer and closer to it when

the number of quasimodes J increases (a property which purely concerns the classical symbol p0).
Indeed, when J ≫ 1 the function G̃z0 is the determinant of a large matrix of independent GAFs.
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In any case, computing the k-point densities for the process ZGz0
seems to us to be an interesting

open problem.

We also mention the recent universality result by A. Maltsev and M. Osman [138] who proved
universality of the local Ginibre statistics for complex random matrices with iid entries with finite
moments and independent real and imaginary parts. Compared to our result the situation is how-
ever quite different as the randomness is not small. In our setting the randomness is effectlively
small compared to the unperturbed operator which, at least for finite J , can produce a diviation
from the universal Ginibre statistics, see Theorem 4.8.1.

Translation invariance

One easy property of the limiting point processes obtained in Theorems 4.7.2 and 4.8.1, is that
they are homogeneous and isotropic. This property is naturally inherited from the translation
invariance of the zero process of individual GAFs, as mentioned in section 4.2.1.

Proposition 4.8.4. The limiting point processes ZGz0
, resp. ZG̃z0

obtained in Theorems 4.7.2 and
4.8.1 are invariant in distribution under the action of the group of translations and rotations on C.
More precisely, for arbitrary α, β ∈ C with |α| = 1 let us define the plane isometry τ(w) = αw+β,
w ∈ C.

Then, the zero processes of Gz0 and G̃z0 satisfy

ZGz0

d
= ZGz0◦τ , resp. ZG̃z0

d
= ZG̃z0◦τ

.

4.9 Sketch and key ideas of the proof

The proof of the main results is built on two distinct parts. The first part uses linear algebra
and semiclassical methods to reduce the eigenvalue problem of the infinite dimensional operator
Ph, to a nonlinear spectral problem expressed in terms of a finite dimensional matrix (called the
effective Hamiltonian), which depends non-linearly on the spectral parameter. This reduction
will be applied to the randomly perturbed operators P δQ as well. The reduction is based on the
construction of quasimodes of the unperturbed operator.We use these quasimodes to construct a
well-posed Grushin problem for the operators Ph or P δQ, which leads to the effective Hamiltonian.
The spectrum of the random operator P δQ is now obtained as the zero locus of the determinant of
the effective Hamiltonian; in the case of the randomly perturbed operator P δQ, this determinant
is a certain type of random analytic function.

In the second part of the argument, we analyze the statistical properties of this random
analytic function. First, we rescale the spectral parameter near a given point z0, to the scale of
the average spacing between eigenvalues. Then, we show that, for each type of perturbation, the
determinant of the effective Hamiltonian (after some “change of gauge”) converges in distribution
to the universal random analytic function stated in Thm 4.7.1, resp. Thm 4.8.1.

Let us now give some more details on the successive steps.

Part I - Reduction to an effective Hamiltonian

By (4.4.2) for all z ∈ Ω and for each point ρj±(z), j = 1, . . . , J , in the energy shell p−1(z), we
can construct an h∞-quasimode ej± for the problem Ph − z resp. (Ph − z)∗ as in (4.4.4,4.4.5).
These quasimodes are microlocalized on ρj±, i.e. WFh(e

j
±) = {ρj±}. The quasimodes ej+ (resp.

ej−) essentially span the space of singular values of (Ph − z) (resp. (Ph − z)∗) smaller than h/C.
This property will be used later to extend the operator Ph− z into a well-posed Grushin problem.
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Almost holomorphic quasimodes For the quasimode construction, near each point ρ+ =
(x+, ξ+) ∈ p−1(z) we use the Malgrange preparation theorem to factorize our operator P − z,
microlocally near ρ+, into a simple form P̃ = hDx + g+(x, z). The WKB-method, then allows to
construct a state

ehol+ (x, z;h) = a+(x, z;h) e
i
h
ϕ+(x,z) , (4.9.1)

satisfying the quasimode equation

∥(Ph − z)ehol+ ∥ = O(h∞)∥ehol+ ∥. (4.9.2)

For a fixed z this WKB construction is standard [63], but we also need to control how the
quasimodes depend on the parameter z. In [95] the author treated the case where the symbol p
(4.3.1) is analytic. Here we are only assuming the symbol to be smooth, and we take particular
care to construct quasimodes depending on an almost holomorphic way of z, at least near the
reference point z0 where we study the spectrum. The almost holomorphicity near z0 takes the
form

e−
1
h
Φ+(z;h)∥∂z ehol+ (z;h)∥ = O(h−1|z − z0|∞ + h∞). (4.9.3)

Because we will eventually focus on z in an O(h1/2) neighbourhood of z0, the right hand side will
effectively be O(h∞).

This holomorphicity implies that the states ehol+ (z;h) are not L2 normalized for all z. Indeed,
we show that for z in a neighbourhood of z0, their norm takes the form

∥ehol+ (z;h)∥ = e
1
h
Φ+(z;h) , (4.9.4)

with a phase function

Φ+(z;h) = Φ+,0(z) +O(h log h), Φ+,0(z) := −Imϕ+(x+(z), z).

The normalized quasimode for (Ph − z), microlocalized on ρ+, as in (4.4.4), can then be defined
as e+(z;h) = e−

1
h
Φ+(z;h) ehol+ (z;h).

Similarly, for the adjoint problem (Ph − z)∗, we construct WKB states ehol− (z;h) which are
almost anti-holomorphic w.r.t. z and their normalized version e−(z;h) = e−

1
h
Φ−(z;h) ehol− (z;h).

Interaction between the quasimodes Next we analyse the overlaps (“interactions”) between
nearby quasimodes. These interactions will be relevant when computing the covariance of the
components of the effective Hamiltonian. Since two points ρj+(z), ρk+(z) (j ̸= k) remain at finite
distance, the corresponding quasimodes are essentially orthogonal to each other. On the other
hand, we will need to control the the interactions between the quasimodes microlocalized on ρj+(z)
and ρj+(w) when the energies z, w are close to one another other (in practice, |z −w| = O(h1/2)).
Exploiting the almost (anti-)holomorphy of ehol,j± to show that

(ej,hol+ (z)|ej,hol+ (w)) = e
2
h
Ψj

+(z,w;h) + small, Ψj
+(z, w;h) = Ψj

+,0(z, w) +O(h log h) . (4.9.5)

Here Ψj
+,0(z, w) is a polarization of the phase function Φ+,0(z), such as to be almost z-holomorphic

and almost w-antiholomorphic near {(z0, z0)}. In particular it satisfies the second-order Taylor
expansion

Ψ+,0(z0 + ζ1, z0 + ζ2) =
∑
|α|⩽2

(∂α1
z ∂α2

z̄ Φ+,0)(z0)
ζα1
1 ζ

α2

2

α!
+O(|ζ|3). (4.9.6)

Remark 4.9.1. In the case of perturbation by a random potential δVω, we will also need to compute
the interactions between the squared functions (ej−(x, z))

2, namely estimate scalar products of the
form ((ej−(z))

2|(ej+(w))2.
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Grushin Problem for the perturbed operator P δh The next step in the proof is to use the
quasimodes e±(z;h) to construct a well-posed Grusin problem P(z) for the operator Ph − z, see
Section 2.6.

In our case we construct our Grushin problem using the normalized quasimodes: we take

R+(z) : H(m) → CJ (R+(z)u)j = (u|ej+(z)), j = 1, . . . , J,

R−(z) : C
J → L2, R−(z)u− =

J∑
j=1

u−(j)e
j
−(z) .

The roles of R±(z) are quite transparent: R+(z) indeed maps the quasi-kernel of (P − z) (the
quasimodes ej+(z) to the auxiliary space, while R−(z) constructs the quasi-cokernel of (P − z)∗).
We thus obtain a well-posed Grushin problem P(z). Note that this construction was already
performed in [95].

After restricting our random variables to discs of radius Ch−1, the perturbations δQ of Ph
are small in norm, i.e. ∥δQ∥ ≪ 1. As a result, the Grushin problem is still well-posed if we
replace Ph by the perturbed operator P δQ. The eigenvalues of P δQ − z are then given by the zeros
or det(Eδ−+(z)), where Eδ−+(z) is the perturbed effective Hamiltonian. We compute this effective
Hamiltonian:

δ−J det(Eδ−+(z)) = (−1)J det
[(
Qej+(z)|ei−(z)

)
i,j⩽J +O(δh−5/2)

]
.

A crucial feature of this expression is the fact that the effective Hamiltonian is dominated by the
random perturbation, in spite of the fact that the latter is of size ∝ δ, which is a small parameter.
However, the unperturbed effective Hamiltonian E−+(z) is actually of size O(h∞), allowing a
perturbation of size hN to be comparatively large.

The quasimodes used in the definition of the effective Hamiltonian were normalized, hence
Eδ−+(z) is not holomorphic. Multiplying det(Eδ−+(z)) by an appropriate nonvanishing function of
z, we obtain a holomorphic function, of the following form:

Gδ(z;h) =
(
1 +R1

)
det
[
h−1/2

(
Qej,hol+ (z)|ei,hol− (z)

)
i,j⩽J +R2

]
, (4.9.7)

with R1, R2 some small (z-dependent) error terms. Not surprisingly, the normalized quasimodes
have been replaced by their almost (anti-)holomorphic counterparts in the expression. The entries
of the matrix on the right hand side are dominated by scalar products (Qej,hol+ (z)|ei,hol− (z)), which
represent the coupling between the quasimodes through the perturbation operator Q. Remember
that these quasimodes are microlocalized at different phase space points ρj+(z), ρi−(z); hence, the
coupling will be nonnegligible only if the perturbation operator Q is able to “transport mass” from
one point to the other.

Remark 4.9.2. Here a major difference occurs between the two types of perturbations. The ran-
dom operator Mω (eq. (RM)) will typically be able to couple any pair of quasimodes (ej,hol+ , ei,hol− ),
leading to a full J × J matrix. On the opposite, the multiplication by a random potential Vω will
not be able to couple quasimodes localized at different positions xj+ ̸= xi−. This is the reason why,
in this case, we need to assume the symmetry property (SYM), which ensures that each quasimode
ej+ admits a dual quasimode ej− with xj+ = xj−. The further assumption (HYP-x) ensures that no
other quasimode will be localized at xj+: this property makes the matrix (Vωe

j,hol
+ (z)|ei,hol− (z))i,j⩽J

approximately diagonal. This diagonal structure, will lead to a limiting random determinant given
by the product of J independent GAFs, each one corresponding to one of the diagonal entries. On
the opposite, for a random matrix perturbation, the full matrix (Mωe

j,hol
+ (z)|ei,hol− (z))i,j⩽J will lead

to a full matrix of GAFs.
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Part II - Convergence to Gaussian analytic functions

In the second part we study the point process consisting in the zeros of the random analytic
function Gδ(z;h) of eq. (4.9.7). Performing the rescaling z = zw := qz0+h

1/2w, with w contained
in some bounded open set O ⋐ C, we are led to study the zeros of the rescaled random function:

F δh(w)
def
= Gδ(z0 + h1/2w;h) = (1 +R1) det

[
(f δ,hi,j (w))i,j⩽J +R2

]
. (4.9.8)

The terms R1 and R2 are small, and they converge to 0 in probability sufficiently quickly. Hence
the expression is dominated by det(f δ,hi,j (w))i,j⩽J , where f δ,hi,j (w) = h−1/2

(
Qej,hol+ (zw)|ei,hol− (zw)

)
.

A key observation [162, Proposition 2.3] concerning random holomorphic functions and the
associated zero processes is that if a sequence of random holomorphic functions fn converges in
distribution to a random holomorphic function f (which is almost surely ̸≡ 0), then the zero point
processes of fn converges in distribution to the zero point process of f .

Therefore, we need to show that the function F δh (actually, after multiplication by appropriate
“gauge” factors) converges in distribution to the random analytic function Gz0 in the case of
Thm 4.7.1, resp. to G̃z0 in the case of Thm 4.8.1. In this sketch we mostly describe the second
case Q =Mω, and highlight the differences with the perturbation by a random potential.

Covariances To show the convergence of F δh , we will need to show that the entries f δ,hi,j (w)
converge in distribution to J2 independent GAFs.

The assumptions (4.5.1) on the coefficients of the random matrix Mω imply that at each point
w the random variable f δ,hi,j (w) is centered. The second step is to compute the covariances

E
[
f δ,hi,j (v)f

δ,h
l,k (w)

]
= h−1E

[
(Mωe

j,hol
+ (zv)|ei,hol− (zv))(e

k,hol
− (zw)|Mωe

l,hol
+ (zw))

]
.

Expanding the random operator Mω in the orthonormal family (em)m<N(h) leads to the following
expression:

E
[
f δ,hi,j (v)f

δ,h
l,k (w)

]
= h−1 (ej,hol+ (zv)|ΠN(h)e

k,hol
+ (zw))(e

l,hol
− (zw)|ΠN(h)e

i,hol
− (zv)), (4.9.9)

where ΠN(h) is the orthogonal projector on the space spanned by (em)m<N(h). From our assump-
tion on this orthonormal basis, this projector is equivalent with the identity microlocally near Ω;
since all our quasimodes are microlocalized inside Ω, the projectors ΠN(h) may be removed from
the scalar products, up to negligible errors. The covariance is hence expressed in terms of the
interations between neighbourhing quasimodes.

From our analysis of these interactions (4.9.5), (4.9.6), we deduce the following expressions for
the covariances:

E
[
f δ,hi,j (v)f

δ,h
l,k (w)

]
≈ h−1(ej,hol+ (zv)|ek,hol+ (zw)) (e

l,hol
− (zw)|ei,hol− (zv))

≈ δi,lδj,k e
2(∂2zz̄Φ

j
+,0(z0)+∂

2
zz̄Φ

i
−,0(z0))vw eFi,j(v)+Fi,j(w)

= δi,lδj,ke
1
2
(σj

+(z0)+σi
−(z0))vw eFi,j(v)+Fi,j(w)

=: Ki,j(v, w) eFi,j(v)+Fi,j(w).

(4.9.10)

The Kronecker factors already hint at the fact that the random functions f δ,hi,j and f δ,hl,k are statisti-
cally independent if (i, j) ̸= (l, k). To obtain the second line, we have expanded the phase function
Ψ±,0 describing the interaction kept up to second order (see the Taylor expansion (4.9.6)), and
have separated the mixed term vw̄ from the separated terms |v|2, |w|2 which we grouped in the
functions Fi,j(•).

To obtain the third line of (4.9.10) we used the relation between the phase function Φj±,0
describing the L2 norm of the quasimode, and the local classical density σj±, see (4.7.1). A direct
computation shows that

∂2zz̄Φ
j
±,0(z0) =

1

4
σj±(z0) .
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In the mixed term in (4.9.10) we recognize the covariance of the GAF gσij with parameter σij =
1
2(σ

j
++σ

i
−) (see (4.2.5)). Hence, the whole expression corresponds to the covariance of the modified

GAF
fGAFi,j

def
= eFi,j gσij .

Remark 4.9.3. In the case of a random potential, we perform a similar computation. In that
case the covariance will involve scalar products of the type ((ej,hol− (zv))

2|(ek,hol− (zw))
2), which will

be nonnegligible only if j = k; we also recover the covariance of a GAF multiplied by a gauge
factor.

Convergence to a Gaussian functions Computing the covariances is not sufficient to prove
the convergence in distribution of the random functions f δ,hi,j towards the modified GAFs fGAFi,j .
The entries of Mω are in general not Gaussian, so neither are the functions f δ,hi,j . Prohorov’s
Theorem shows that to prove the convergence of random functions, it is enough to prove the
convergence in the sense of finite dimensional distributions: namely, for any n ∈ N∗ and any set
of points (w1, . . . , wn) ∈ On, we need to show that the random complex vector

(f δ,hi,j (w1), . . . , f
δ,h
i,j (wn)) converges in distribution to (fGAFi,j (w1), . . . , f

GAF
i,j (wn)).

This type of convergence will be denoted by f δ,hi,j
fd→ fGAFi,j . We actually need to show that the

various functions f δ,hi,j are asymptotically independent from one another, and converge towards
independent GAFs fGAFi,j

The random operator Mω is in general not Gaussian, so to obtain convergences to Gaussian
vectors, we need to apply a suitable version of the central limit theorem. The application of the
CLT resides on the fact that each quasimode ej± has nonnegligible overlaps with many of the basis
states em used to construct Mω. Thanks to this property, the higher moments of the f δ,hi,j will
involve sums over many i.i.d. random variables α, and hence to a Gaussian law.

Taking into account the small error terms and applying Prohorov’s theorem, this leads to the
convergence in distribution of the full determinant

F δh(•)
d−→ det

(
(fGAFi,j (•))1⩽i,j⩽J

)
when h→ 0 .

Finally, we use the fact that the “gauge” functions split into Fi,j(v) = ϕi−(v)+ϕ
j
+(v). This splitting

allows to extract the gauge factors eFi,j from the random matrix as follows:(
fGAFi,j (v)

)
i,j

= diag(eϕ
i
−(v))

(
gσij (v)

)
i,j

diag(eϕ
j
+(v)) .

The determinant of the diagonal matrices never vanishes, so the zero process is that of the deter-
minant of matrix of GAFs gσij , as in Thm 4.8.1.

Remark 4.9.4. In the case of a random potential, the major difference lies in the fact that the
off-diagonal entries in (4.9.8) are negligible; this leads to a product of J independent functions,
each one converging to a GAF.

k-correlation functions The convergence of the point processes implies the convergence of the
k-point correlation measures. There remains to compute the latter, as given in Theorem 4.7.2,
Corollary 4.8.2 and Proposition 4.8.4. In the case of a perturbation by a random matrix type
operator, we can only compute the 1-point function, whereas in the case of a random potential
we obtain explicit formulas for the limiting k-point correlation functions.
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Chapter 5

Weyl law for exponentially small
singular values

In this section we discuss the results obtained in [176].

5.1 Introduction

In this section we study the small singular values of a non-selfadjoint semiclassical differential
operator Ph, of Fredholm index 0, on X being either Rd or a d-dimensional smooth compact
manifold, with semiclassical parameter h > 0 and symbol p. The motivation behind this question
is that if we wish to extend the result of Chapter 4 and Chapter 7 to the case of pseudo-differential
operators in dimension d > 1, then we need a precise control on the number of small singular
values. The standard Weyl law for self-adjoint operators would provide us with information in
intervals of the form [0, Ch] at best. The aim of this section is to gain information in much smaller
intervals near 0. We believe that such a result is as well of independent interest.

A natural sufficient condition for the non-selfadjointness of Ph is that {p, p} ̸≡ 0 on T ∗X–
here {·, ·} denotes the Poisson bracket – since this is the principal symbol of i

h [Ph, P
∗
h ]. It was

shown in the string of works [57–59, 62, 202] (reviewed in Section 2.3) that if there is a point
ρ+ ∈ T ∗X ∩ p−1(z), z ∈ C, such that 1

i {p, p}(ρ+) > 0 then there exists a smooth function e+ on
X, microlocalized to ρ+, such that

(P − z)e+ = O(h∞). (5.1.1)

The existence of such a quasimode implies the existence of a small singular value of (P − z)
of size O(h∞). Moreover, when p is analytic, then we may replace the above error estimates by
O(e−1/Ch).

On the other hand, near regions where 1
i {p, p} < 0 on p−1(z) microlocally |P − z| ⩾ h/C,

where we set |P − z| := ((P − z)∗(P − z))1/2. This indicates that the eigenfunctions of |P − z|, i.e.
the singular vectors of P−z should be microlocalized near the regions in p−1(z) where 1

i {p, p} > 0.
Similar observations, with a factor of (−1) in front of the Poisson bracket, hold for the singular
vectors of (P − z)∗.

In dimension d = 1, when p−1(z) is compact and {p, p} ≠ 0 on p−1(z), we can show that there
are #p−1(z) =: n0 many singular values of (P − z) and (P − z)∗ which are of size O(h∞) (or
O(e−1/Ch) when p is analytic), see for instance [62]. Here #A denotes the number of elements in
a set A. However, the n0 + 1-st singular value will typically be of size

√
h.

In higher dimensions the situation is more complicated. We will focus on the situation where
{p, p} ̸≡ 0 and separated by regions in p−1(z) where {p, p} = 0 but {p, {p, p}} ≠ 0. For related
results in more degenerate cases, see [148–150].
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The aim of this chapter is to study the number of small singular values for certain 2-dimensional
model operators Ph with the symbols p such that {p, p} ≠ 0 or {p, {p, p}} ≠ 0. We refer the reader
also to [12], where a related problem for the Dirichlet-Pauli operator was studied.

The model. We will work on the complex 1-dimensional manifold X + iY , where X = S1 =
R/2πZ and Y is equal to R or S1. We frequently identify X + iY with the real 2 dimensional
manifold X × Y , by writing z = x+ iy, x ∈ X, y ∈ Y .

Let h ∈]0, h0], h0 > 0, and let ϕ(z) be a real-valued smooth function on X + iY and consider
the operator

P = 2 e−ϕ/h ◦ hDz ◦ eϕ/h = 2(hDz + (Dzϕ)) = hDx + h∂y + ∂yϕ, (5.1.2)

where ∂z = 1
2(∂x + i∂y) and Dz =

1
i ∂z =

1
2(Dx + iDy). With a slight abuse of notation we write

ϕ(z) = ϕ(y), for z = x+ iy ∈ X + iY , and we choose the following two model cases

ϕ(y) =

{
1
3y

3, when Y = R,
sin y, when Y = S1.

(5.1.3)

We equip P with the domain

D(P ) =

{
{u ∈ L2(S1

x × Y ); (1 + y2)u, hDxu, hDyu ∈ L2(S1
x × Y )}, Y = Ry,

H1
h(S

1
x × Y ) = {u ∈ L2(S1

x × Y ); hDxu, hDyu ∈ L2(S1
x × Y )}, Y = S1

y .
(5.1.4)

The operator P has the symbol

p(x, y; ξ, η) := ξ + iη + ∂yϕ =: pξ(y, η), (5.1.5)

defined on S1
x × Y ×Rξ ×Rη. The characteristic set of P is given by

p−1(0) = {(x, y; ξ, η) ∈ S1 × Y ×Rξ ×Rη; η = 0, ∂yϕ = −ξ}. (5.1.6)

When Y = R we have ξ ⩽ 0 on p−1(0) and when Y = S1 we have ξ ∈ [−1, 1]. We exclude the
limiting values ξ = 0 and ξ ∈ {−1, 1} respectively and put

Σ = {(x, y; ξ, η) ∈ p−1(0); ξ < 0 when Y = R, −1 < ξ < 1 when Y = S1}. (5.1.7)

We recall that that the Hamilton vector field of a C1 function f(x, y, ξ, η) is given by

Hf = ∂ξf ∂x + ∂ηf ∂y − ∂xf ∂ξ − ∂yf ∂η.

Then we get

1

2i
{p, p} =

1

2i
Hp(p) =

1

2i
(∂ξp ∂xp+ ∂ηp ∂yp− ∂xp ∂ξp− ∂yp ∂ηp) = ∂2yϕ (5.1.8)

where {·, ·} denotes the Poisson bracket. We split Σ = Σ+ ∪ Σ−, where

Σ± = {(x, y; ξ, η) ∈ p−1(0); y = y±(ξ), ξ ∈]−∞, 0[ when Y = R,

ξ ∈]− 1, 1[ when Y = S1},
(5.1.9)

where we recall from (5.1.6) that η = 0 on p−1(0) and y±(ξ) are the solutions to ∂yϕ(y±(ξ)) = −ξ
with ±∂2yϕ(y±(ξ)) > 0. Observe that 1

2i{pξ, pξ} = ∂2yϕ and that {p, p}(x, y; ξ, η) = {pξ, pξ}(y, η),
so

Σ± = {(x, y; ξ, η) ∈ p−1(0); ±1

i
{p, p}(x, y; ξ, η) > 0}. (5.1.10)

The submanifolds Σ± are symplectic. Indeed let σ = dξ ∧ dx+ dη ∧ dy be the symplectic form on
T ∗(X × Y ). Then,

σ|Σ± ≃ dξ ∧ dx, (5.1.11)

since η = 0 on Σ±.
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5.2 Reduction to a one-dimensional model

We are interested in the singular values of P which are ≪ h2/3. We recall that the singular
spectrum of P is defined as the square root of the spectrum of P ∗P which is a positive essentially
self-adjoint operator and we equip it with its natural domain. Indeed, when Y = S1, then by the
Rellich theorem we know that the inclusion H2

h(S
1×S1) ↪−→ L2(S1×S1) is compact which implies

that P ∗P has a compact resolvent and so the spectrum of P ∗P is purely discrete and ⊂ [0,∞[.
When Y = R, we may perform a partial Fourier transformation in x to see that the resulting
operator is a Schrödinger operator with confining potential. So, also in this case the spectrum of
P ∗P being contained in [0,∞[, is discrete away from 0. The singular values of P are then defined
as the square roots of the eigenvalues of P ∗P .

We define the partial Fourier transform of a function u(x, y) on X × Y by

Fu(ξ, y) = û(ξ, y) =

∫
X
e−ixξ/hu(x, y)dx, ξ ∈ X̂ = hZ.

Then F : L2(X × Y ) → L2(X̂ × Y ) is unitary when X and Y are equipped with the Lebesgue
measure, and X̂ = hZ is equipped with the 1/(2π) times the counting measure on hZ.

After applying F , the equation Pu = v becomes

Pξû(ξ, y) = v̂(ξ, y), where Pξ = h∂y + ξ + ∂yϕ, ξ ∈ X̂, y ∈ Y, h ∈]0, h0]. (5.2.1)

Correspondingly P has the orthogonal direct sum decomposition

P =
⊕
ξ∈hZ

Pξ, Pξ = ξ + h∂y + ∂yϕ on Y, h ∈]0, h0]. (5.2.2)

We equip the operator Pξ with its natural domain given by the semiclassical Sobolev space

D(Pξ) = {u ∈ L2(R); (1 + y4)1/2u, hDyu ∈ L2(R)} (5.2.3)

when Y = R, and

D(Pξ) = H1
h(S

1) = {u ∈ L2(S1); hDyu ∈ L2(S1)},

when Y = S1. In fact Pξ is an elliptic pseudo-differential operator in its natural class and it will
follow that Pξ : D(Pξ) → L2(Y ) is a Fredholm operator of index 0, (can also be verified with
direct ODE arguments). This extends to the adjoint

P ∗
ξ = −h∂y + ξ + ∂yϕ, (5.2.4)

which has the same domain as Pξ. The principal symbol pξ of Pξ is given by

pξ(y, η) = iη + ξ + ∂yϕ(y), (y, η) ∈ T ∗Y, (5.2.5)

see also (5.1.5), and the one of P ∗
ξ is equal to pξ. Both operators are of principal type in the sense

that dpξ ̸= 0 and dpξ ̸= 0. The common characteristic set p−1
ξ (0) of Pξ and P ∗

ξ in (5.2.1), (5.2.4)
is given by

η = 0, ξ + ∂yϕ = 0. (5.2.6)

This is illustrated in Figure 5.1 below.
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ξ

y

y− y+

ξ

y

y+ y−

Figure 5.1: The characteristic set p−1
ξ (0) = {y±(ξ), 0} depicted at η = 0: On the left hand side ϕ(y) =

y3/3, y ∈ R, and on the right hand side ϕ(y) = sin y, y ∈ S1 ≃ [−π, π[, see also (5.1.3).

5.3 Weyl asymptotics via tunneling estimates

We are interested in the small singular values of Pξ and P ∗
ξ , see (5.2.1). More precisely we shall

study the bottom of the spectrum of the semiclassical differential operators P ∗
ξ Pξ and PξP ∗

ξ which
are elliptic away from the set (5.2.6). Both operators are essentially selfadjoint with domain

D(PξP
∗
ξ ) = D(P ∗

ξ Pξ)

=

{
{u ∈ L2(Y );hDyu, (hDy)

2u, (1 + y2)2u ∈ L2(Y )}, when Y = R;

H2(S1) = {u ∈ L2(S1);hDyu, (hDy)
2u ∈ L2(S1)}, when Y = S1.

(5.3.1)

Notice that P ∗
ξ Pξ and PξP ∗

ξ have purely discrete spectrum ⊂ [0,+∞[. Indeed, when Y = S1, then
by selfadjointness the operator (P ∗

ξ Pξ−z)−1, z ∈ C\R, is bounded L2(S1) → H2(S1). By Rellich’s
theorem the inclusion H2(S1) ↪→ L2(S1) is compact, so P ∗

ξ Pξ has compact resolvent L2(S1) →
L2(S1), and therefore purely discrete spectrum. When Y = R, then P ∗

ξ Pξ = −h2∂2y + |ξ+∂yϕ|2−
h∂2yϕ is a semiclassical Schrödinger operator on L2(R) with potential |ξ + ∂yϕ|2 − h∂2yϕ → +∞
when |y| → +∞. Hence, the spectrum of P ∗

ξ Pξ is purely discrete spectrum.
Moreover, the spectra σ(P ∗

ξ Pξ) and σ(PξP ∗
ξ ) coincide away from 0. To see this we argue in the

spirit of [89]. First notice that N (P ∗
ξ Pξ) = N (Pξ) and N (PξP

∗
ξ ) = N (P ∗

ξ ). Since Pξ is a Fredholm
operator of index 0, the dimensions of N (Pξ) and N (P ∗

ξ ) coincide and are finite. Hence we know
that P ∗

ξ Pξ and PξP ∗
ξ have the same number, say N0 of 0 eigenvalues. Let e1, e2, · · · ∈ D(P ∗

ξ Pξ) be
orthonormal basis of L2(Y ) of eigenvectors of P ∗

ξ Pξ and let 0 ⩽ t21 ⩽ t22 ⩽ . . . be the corresponding
eigenvalues. For j > N0, we have

P ∗
ξ Pξej = t2jej .

By elliptic regularity ej ∈ S(R) when Y = R and ej ∈ C∞(S1) when Y = S1. So we can apply
Pξ to the above equation and deduce that Pξej is an eigenvector of PξP ∗

ξ with eigenvalue t2j . So
σ(P ∗

ξ Pξ) ⊂ σ(PξP
∗
ξ ). Applying the same argument to PξP ∗

ξ shows that converse inclusion.
Summing up what we have shown so far, the spectra Spec(P ∗

ξ Pξ) and Spec(PξP
∗
ξ ) coincide for

all ξ ∈ R. Denoting the eigenvalues of P ∗
ξ Pξ and PξP ∗

ξ by t2j (Pξ) and t2j (P
∗
ξ ) respectively, arranged

in increasing order with tj(Pξ) ⩾ 0, tj(P ∗
ξ ) ⩾ 0. We will denote the singular values of Pξ by tk(ξ)

(or by tk(Pξ) when needed), k ∈ N, counting with their multiplicity and ordered in an increasing
way, i.e.

0 ⩽ t0(ξ) ⩽ t1(ξ) ⩽ · · · → +∞. (5.3.2)

The elliptic region Until further notice we restrict ξ such that Pξ is elliptic or close to elliptic.
More precisely, in view of Figure 5.1 and (5.2.6), we let we let −C0h

2/3 ⩽ ξ when Y = R, and
1− C0h

2/3 ⩽ |ξ| when Y = S1. Through resolvent estimates for Pξ we obtain the following

Theorem 5.3.1. We define ϕ as in (5.1.3) and Pξ = h∂y + ξ + ∂yϕ as in (5.2.1).
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1. Let Y = R. For every C0 > 0, there exists a constant C > 0 such that if −C0h
2/3 ⩽ ξ and

h0 > 0 is small enough, then the smallest singular value t0(ξ) of Pξ satisfies

t0(Pξ) ⩾
1

C
(ξ+ + h2/3),

where x+ := max{x, 0}, x ∈ R.
2. Let Y = R/2πZ. For every C0 > 0, there exists a constant C > 0 such that if 1−C0h

2/3 ⩽
|ξ| and h0 > 0 is small enough, then the smallest singular value t0(ξ) of Pξ satisfies

t0(Pξ) ⩾
1

C
((|ξ| − 1)+ + h2/3).

From a microlocal persepective, the above result is based on the fact that when ξ > 0 when
Y = R or |ξ| > 1 when Y = S1, the principal symbol of Pξ is in modulus > 0 and the result
follows from a suitable version of Gårding’s inequality. The resulting estimates can be extended
to the region |ξ| ⩽ O(h2/3) when Y = R and to ||ξ| − 1| ⩽ O(h2/3) by conjugation with a suitable
weight function.

Remark 5.3.2. When ξ = 0, we have that 0 is a point in the boundary of pξ(T ∗Y ) and {p, p}(0, 0) =
0. The symbol pξ satisfies the following subellipticity condition

H2
Im pξ

Re pξ(0, 0) = ∂3yϕ(0) ̸= 0

where HIm pξ denotes the Hamilton vector field induced by Im pξ. This, by [62, Theorem 1.4],
reviewed in Section 2.3.3, and [170, Theorem 1.1] (see also the references therein), implies that

∥P−1
0 ∥L2(R)→L2(R) = O(h−2/3). (5.3.3)

Using a Neumann series argument (5.3.3) immediately implies that

∥P−1
ξ ∥L2(R)→L2(R) = O(h−2/3), for |ξ| ≪ h2/3. (5.3.4)

For our model operators we will use more direct arguments.

The non-elliptic region Next, we study the “non-elliptic” region, that is to say that we study
the region where −ξ ≫ h2/3 when Y = R and h2/3 ≪ 1 − |ξ| when Y = S1. Linking P ∗

ξ Pξ to
a one-dimensional Witten Laplacian, we can employ the techniques from [101–104] to obtain the
following

Theorem 5.3.3. We define ϕ as in (5.1.3) and Pξ = h∂y + ξ + ∂yϕ as in (5.2.1) with h0 > 0
small enough. For ξ < 0, when Y = R, and ξ ∈] − 1, 1[ when Y = S1, let y+, y− ∈ Y be the
two solutions of the equation ∂yϕ(y) = −ξ, labelled so that ±∂2yϕ(y±) > 0. Let d denote the
Lithner-Agmon distance on Y for the metric (ξ + ∂yϕ(y))

2dy2 and define the action

S0 : D(S0) :=

{
]−∞, 0[, Y = R,

]− 1, 0[, Y = S1
→ ]0,+∞[, ξ 7→ S0(ξ) = d(y+(ξ), y−(ξ)).

Then, uniformly with respect to ξ varying in a compact h-independent subset of ] − ∞, 0[ when
Y = R, and of ]−1, 1[ when Y = S1, the smallest singular value of Pξ has the following asymptotic
expansion

t0(ξ) =h
1
2

(( |{pξ, pξ}(y+, 0)|
4π

)1/4( |{pξ, pξ}(y−, 0)|
4π

)1/4

+O(h)

)

×

{
e−S0/h, when Y = R∣∣∣e− 1

h
dJ (y+,y−−2π) − e−

1
h
dJ (y+,y−)

∣∣∣ , when Y = S1,
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for any ε > 0. In the latter case we identify y+, y− with points in ]− π, 0[ and ]0, π[ respectively
and let dJ denote the Lithner-Agmon distance on J =]y− − 2π, y−[.

Furthermore, for C0 > 0 large enough and h0 > 0 small enough, if −C0h
2/3 ⩾ ξ ⩾ −1/C0 or

−C0 ⩾ ξ when Y = R, or if C0h
2/3 ⩽ 1± ξ ⩽ 1/C0 when Y = S1, then

t0(ξ) = h
1
2

(( |{pξ, pξ}(y+, 0)|
4π

)1/4( |{pξ, pξ}(y−, 0)|
4π

)1/4

+O
(
h|ξ|−5/4

))
e−S0/h

=

√
h|ξ|1/4√
π

(
1 +O(h|ξ|−3/2)

)
e−4|ξ|3/2/3h.

We note here that the Lithner-Agmon distance d on Y for the metric (ξ+∂yϕ(y))
2dy2 satisfies

d(y±, y) = ±(f(y)− f(y±)), y ∈ neigh (y±),

with f(y, ξ) = yξ + ϕ(y).

On the other, we have the following control on the second smallest singular value of Pξ.

Theorem 5.3.4. Under the assumption of Theorem 5.3.1, when ξ varies in a compact h-independent
subset of ]−∞, 0[ when Y = R, and of ]− 1, 1[ when Y = S1, there exists a constant C > 0 such
that for h0 > 0 small enough t1(Pξ) ⩾ h1/2/C uniformly in ξ.

For every C0 > 0 the following holds: if C0h
2/3 ⩽ −ξ ⩽ 1/C0 or −ξ ⩾ C0 when Y = R,

there exists a constant C > 0 such that for h0 > 0 small enough t1(Pξ) ⩾ h1/2|ξ|1/4/C. If
C0h

2/3 ⩽ 1 + ξ ⩽ 1/C0 or C0h
2/3 ⩽ 1 − ξ ⩽ 1/C0 when Y = S1, there exists a constant C > 0

such that for h0 > 0 small enough t1(Pξ) ⩾ h1/2(1− |ξ|)1/4/C.

Notice that this result only treats the “non-elliptic” region, i.e. −ξ ≫ h2/3 when Y = R

and h2/3 ≪ 1 − |ξ| when Y = S1. However, in the remaining parameter range of ξ we already
have a lower bound on the smallest singular value thanks to Theorem 5.3.1. Putting both results
together, we deduce that the second smallest singular value of Pξ satisfies t1(Pξ) ⩾ h2/3/C for all
ξ ∈ R.

From the orthogonal decomposition (5.2.2) we see that the singular values of P are of the form
tk(ξ), k ∈ N, ξ ∈ hZ, where tk(ξ) denote the singular values of Pξ. By Theorems 5.3.1, 5.3.3 and
5.3.4, the singular values of P in [e−1/Ch, h2/3/C] when Y = R and in [0, h2/3/C] when Y = S1,
for C > 0 sufficiently large and h0 > 0 small enough, are of the form t0(ξ) where

ξ ∈ hZ satisfies

{
C0h

2/3 ⩽ −ξ ⩽ C0, Y = R,

C0h
2/3 ⩽ 1− |ξ|, Y = S1,

for C0 > 0 sufficiently large.
Recall (5.1.9), (5.1.10). The action S0 defined in Theorem 5.3.3 can be seen as an application

S0 : Σ+ → [0,+∞[

Our problem is then to study the distribution of the values t0(ξ). Here the counting measure∑
ξ∈hZ δξ appears naturally as well as its approximation 1

hdξ. Because of the translation invariance
in x, we can use the measure 1

2πhdx⊗dξ on S1×Rξ and dx⊗dξ can be identified with the symplectic
volume element σ|Σ+ on Σ+, see (5.1.10), (5.1.11). Using the Theorems 5.3.4 and 5.3.3, we then
can obtain the following Weyl-type asymptotics.

Theorem 5.3.5. Let P be (5.1.2), let Σ+ be as in (5.1.10) and recall (5.1.11). Let S0 be as in
Theorem 5.3.3. Let C0 > 0 be large enough and let

C0h ⩽
δ3/2

log δ−1
, δ > 0.
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Then, for 0 < a < b with b ≍ 1 and a ≍ δ3/2,∣∣∣∣∣#(Spec(√P ∗P ) ∩ [e−b/h, e−a/h]
)
− 1

2πh

∫
S−1
0 ([a,b])

dσ|Σ+

∣∣∣∣∣ = O(1)
log δ−1

√
δ

.

5.3.1 Possible generalizations

It is a natural and interesting question whether we can extend Theorem 5.3.5 to more general
two-dimensional (or even d-dimensional) operators satisfying similar Poisson bracket conditions.
However, it will require different techniques, as the above considered example is quite special
allowing not only for separation of variables but also for a link to one-dimensional Witten Laplacian
which is fundamental in the proof of the above discussed results.
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Chapter 6

Spectra of disordered NSA Toeplitz
matrices

Spectra of disordered non-selfadjoint Toeplitz matrices

6.1 Introduction

The problems and results which we have discussed in Chapter 3 can also be studied in the context
of randomly perturbed N ×N Toeplitz matrices in the large dimensional limit N → ∞ (playing
the role of the semiclassical limit h→ ∞). Indeed, in Theorems 6.5.1, 6.5.2 and 6.5.4 we will show
probabilistic Weyl asymptotics for such randomly perturbed Toeplitz matrices. To an extent we
have already done this in Section 3.3. However, here we consider the somewhat easier case of
genuine Toeplitz matrices, which will also allow for a lower regularity of the considered symbol.

The principal motivation for us to study such randomly perturbed Toeplitz matrices is that
they present a good toy model for the more intricate case of randomly perturbed pseudo-differential
operators. In this chapter we present the results from [172–175].

6.2 Toeplitz matrices

Let aν ∈ C, for ν ∈ Z and assume that

|aν | ⩽ O(1)m(ν), (6.2.1)

where m : Z →]0,+∞[ satisfies
(1 + |ν|)m(ν) ∈ ℓ1, (6.2.2)

and
m(−ν) = m(ν), ∀ν ∈ Z. (6.2.3)

Let

p(τ) =

+∞∑
−∞

aντ
ν , (6.2.4)

act on complex valued functions on Z. Here τ denotes translation by 1 unit to the right: τu(j) =
u(j − 1), j ∈ Z. By (6.2.2) we know that p(τ) = O(1) : ℓ2(Z) → ℓ2(Z). Indeed, for the
corresponding operator norm, we have

∥p(τ)∥ ⩽
∑

|aj |∥τ j∥ = ∥a∥ℓ1 ⩽ O(1)∥m∥ℓ1 . (6.2.5)

From the identity, τ(eikξ) = e−iξeikξ, we define the symbol of p(τ) by

p(e−iξ) =
∞∑
−∞

aνe
−iνξ. (6.2.6)

71
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It is an element of the Wiener algebra [39] and by (6.2.2) in C1(S1).

Definition 6.2.1. Let p(τ) be as in (6.2.4). We call

PN := 1[0,N [p(τ)1[0,N [, (6.2.7)

acting on CN ≃ ℓ2([0, N [), for 1 ⩾ N <∞, a Toeplitz matrix.

In matrix form we have

PN =



a0 a−1 . . . a−N− . . .
a1 a0 a−1 . . . . . .
...

. . . . . . . . .
...

aN+ . . . . . . . . . . . .
...

. . . . . . . . .
...

. . . . . . aN+ . . . a0


. (6.2.8)

We frequently identify ℓ2([0, N [) with the space ℓ2[0,N [(Z) of functions u ∈ ℓ2(Z) with support in
[0, N [.

6.3 Toeplitz band matrices

We will also consider the special case when only finitely many coefficients aν in (6.2.4) are non-
zero. In this case we let N± ⩾ 0 be in N, such that either N+ ̸= 0 or N− ̸= 0, and we consider
the operator

p(τ) :=

N+∑
j=−N−

ajτ
j , a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± ̸= 0, (6.3.1)

with symbol

p(e−iξ) =

N+∑
j=−N−

aνe
−iνξ, or with ζ = eiξ, C ∋ ζ 7→ p(1/ζ) =

N+∑
j=−N−

ajζ
−j . (6.3.2)

The latter is a meromorphic function.

Definition 6.3.1. Let p(τ) be as in (6.3.1). We call

PN := 1[0,N [p(τ)1[0,N [, (6.3.3)

acting on CN ≃ ℓ2([0, N [), for 1 ⩾ N <∞, a Toeplitz band matrix.

In matrix form a banded Toeplitz matrix PN looks like (6.2.8), however with all entries aν = 0
whenever ν > N+ or ν < −N−.

6.4 Spectra and Pseudospectra of Toeplitz matrices

The study of the spectra of such Toeplitz matrices PN (6.2.7) has a long and rich history, see [39]
for an overview. Note that p(τ) (6.2.4) as an operator ℓ2(Z) → ℓ2(Z) is a normal operator,
sometimes called the Laurent operator, and by Fourier series expansions, we see that its spectrum
is given by

Spec(p(τ)) = p(S1). (6.4.1)

The restriction PN = p(τ)|ℓ2(N) of p(τ) to ℓ2(N), usually called a Toeplitz operator, is in general
no longer normal, except for specific choices of the coefficients aν . The essential spectrum of the
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Toeplitz operator PN is given by p(S1), and we have point-spectrum in all loops of p(S1) with
non-zero winding number, see [39, Theorem 1.17], i.e.

Spec(PN) = p(S1) ∪ {z ∈ C; indp(S1)(z) ̸= 0}. (6.4.2)

By a result of Krein [39, Theorem 1.15] (or [175, Proposition 3.11] for a direct proof) the winding
number of p(S1) around the point z ̸∈ p(S1) is related to the Fredholm index of PN − z:

Ind(PN − z) = −indp(S1)(z). (6.4.3)

The spectrum of the Toeplitz matrix PN is contained in a small neighborhood of the spectrum of
PN. More precisely, for every ϵ > 0,

Spec(PN ) ⊂ Spec(PN) +D(0, ϵ) (6.4.4)

for N > 0 sufficiently large, where D(z, r) denotes the open disc of radius r, centered at z.
Moreover, the limit of σ(PN ) as N → ∞ is contained in a union of analytic arcs inside σ(PN),
see [39, Theorem 5.28]. This phenomenon can also be observed in the numerical simulations
presented on the left hand side in Figure 6.1. In general, we know that asymptotically the ε-
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Figure 6.1: The pictures on the left hand side shows the spectrum of the Toeplitz matrix PN given by the
symbol p(1/ζ) = 2iζ−1 + ζ2 + 7

10ζ
3 and the right hand side shows the spectrum of a random perturbation

PN + δQ, Q a N ×N Ginibre matrix, with N = 103 and coupling constant δ = 10−5. The red line shows
the symbol curve p(S1).

pseudospectrum of a Toeplitz matrix PN is given by the ε-pseudospectrum of the corresponding
Toeplitz operator PN.

Theorem 6.4.1 ( [70, Theorem 7.3]). Let p(τ) be as in (6.2.4), PN = p(τ)|ℓ2(N) and PN as in
Definition 6.2.1. Then, for any ε > 0 we have

lim
N→∞

Specε(PN ) = Specε(PN),

where the limit is with respect to the Hausdorff metric.

Since pseudospectra are nested, see (2.2.4), Theorem 6.4.1 and (6.4.2) already suggest that
every point z ∈ C enclosed by the curve p(S1) with non-zero winding is in the region of strong
spectral instability. This is made concrete for banded Toeplitz matrices by the following

Theorem 6.4.2 ( [15, 70, 175]). Let p(τ) be as in (6.3.1) and PN as in Definition 6.3.1. Then,
for any z ∈ {z ∈ C; indp(S1)(z) ̸= 0} there exists a normalized uN ∈ ℓ2([0, N [) such that

∥(PN − z)uN∥ = O(N−∞).
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In fact the error term can be shown to be of order O(e−N/C), for some C > 0, as proven for
instance in [15,175]. Indeed, as shown in these works and in view of (6.4.3) we have that

• if indp(S1)(z) < 0, then the Fredholm index of PN − z satisfies

Ind(PN − z) = dimker(PN − z) = −indp(S1)(z);

• if indp(S1)(z) > 0,

Ind(PN − z) = −dimker(PN − z)∗ = −indp(S1)(z).

Moreover, these kernels are spanned by exponentially decaying functions. In the first case, re-
stricting such a function u ∈ ker(PN− z) to the interval [0, N − 1] yields an approximate solution
to the equation (PN − z)u = 0. More precisely, setting e+ = ∥1[0,N−1]u∥−11[0,N−1]u, we get that

(PN − z)e+ = O(e−N/C).

Similarly, we get in the second case a e− ∈ ℓ2([0, N − 1]), ∥e−∥ = 1, with

(PN − z)∗e− = O(e−N/C).

In either case, it follows that z ∈ σ(PN ) or ∥(PN − z)−1∥ ⩾ Ce−N/C . So, these exponentially
precise quasimodes show that any fixed z with indp(S1)(z) ̸= 0, is contained in the e−N/C/C-
pseudospectrum of PN .

6.5 Probabilistic Weyl law for noisy Toeplitz matrices

In this section we discuss the works obtained in [173–175,194]. We show in Theorem 3.3.1 below
that after adding a small random perturbation to PN , most of its eigenvalues will be close to the
curve p(S1) with probability very close to 1. See Figure 6.1 and 6.2 for a numerical illustration.

6.5.1 Small Gaussian perturbation

Consider the random matrix

Qω := Qω(N) := (qj,k(ω))1⩽j,k⩽N (6.5.1)

with complex Gaussian law

(Qω)∗(dP) = π−N
2
e−∥Q∥2HSL(dQ),

where L denotes the Lebesgue measure on CN×N . In other words the entries qj,k of Qω are
independent copies of a complex Gaussian random variable α ∼ NC(0, 1) with expectation 0, and
variance 1. We recall that the probability distribution of such an α is given by

α∗(dP) = π−1e−|α|2L(dα),

where L(dα) denotes the Lebesgue measure on C. We are interested in studying the spectrum of
the random perturbations of the matrix P 0

N = PN :

P δN := P 0
N + δQω, 0 ⩽ δ ≪ 1. (6.5.2)
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6.5.2 Eigenvalue asymptotics in fixed smooth domains

Let Ω ⋐ C be an open simply connected set with smooth boundary ∂Ω, which is independent of
N , satisfying

1. ∂Ω intersects p(S1) in at most finitely many points;

2. p(S1) does not self-intersect at these points of intersection;

3. these points of intersection are non-critical, i.e.

dp ̸= 0 on p−1(∂Ω ∩ p(S1));

4. ∂Ω and p(S1) are transversal at every point of the intersection.

The first result concerns the eigenvalue asymptotics of randomly perturbed general Toeplitz ma-
trices.

Theorem 6.5.1. Let p be as in (6.2.6) and let P δN be as in (6.2.7) and (6.5.2). Let Ω be as above,
satisfying conditions (1) - (4), pick a δ0 ∈]0, 1[ and let δ1 > 3. If

e−N
δ0 ⩽ δ ≪ N−δ1 , (6.5.3)

then there exists εN = o(1), as N → ∞, such that∣∣∣∣∣#(σ(P δN ) ∩ Ω)− N

2π

∫
S1∩ p−1(Ω)

LS1(dθ)

∣∣∣∣∣ ⩽ εNN, (6.5.4)

with probability
⩾ 1− e−N

δ0
. (6.5.5)

In (6.5.4) we view p as a map from S1 to C. Theorem 3.3.1 shows that most eigenvalues of
P δN can be found close to the curve p(S1) with probability subexponentially close to 1. This is
illustrated in Figure 6.2 for two different symbols. The left hand side of Figure 6.2 shows the
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Figure 6.2: The left hand side shows the spectrum of the perturbed Toeplitz matrix with symbol defined
in (6.5.6), (6.5.7) and the right hand side shows the spectrum of the perturbed Toeplitz matrix with symbol
defined in (6.5.8), (6.5.7) The red line shows the symbol curve p(S1).

spectrum of a perturbed Toeplitz matrix with N = 2000 and δ = 10−14, given by the symbol
p = p0 + p1 where

p0(1/ζ) = −ζ−4 − (3 + 2i)ζ−3 + iζ−2 + ζ−1 + 10ζ + (3 + i)ζ2 + 4ζ3 + iζ4 (6.5.6)
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and

p1(1/ζ) =
∑
ν∈Z

aνζ
ν , a0 = 0, a−ν = 0.7|ν|−5 + i|ν|−9, aν = −2iν−5 + 0.5ν−9 ν ∈ N. (6.5.7)

The red line shows the curve p(S1). The right hand side of Figure 6.2 similarly shows the spectrum
of the perturbed Toeplitz matrix given by p = p0 + p1 where p1 is as above and

p0(1/ζ) = −4ζ1 − 2iζ2 + 2iζ−1 − ζ−2 + 2ζ−3. (6.5.8)

When we restrict to banded Toeplitz matrices, we have a more precise remainder estimate

Theorem 6.5.2. Let p be as in (6.3.1), set M = N++N− and let P δN be as in (6.3.3) and (6.5.2).
Let Ω be as above, satisfying conditions (1) - (4) and pick a δ0 ∈]0, 1[. There exists a constant
C > 0, such that, for N > 1 sufficiently large, if

Ce−N
δ0/(2M) ⩽ δ ⩽

N−4

C
,

then we have that∣∣∣∣#(Spec(P δN ) ∩ Ω)− N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ)

∣∣∣∣ ⩽ O(N δ0 logN). (6.5.9)

with probability
⩾ 1−O(logN)

(
e−N

2
+ δ−Me−

1
2
Nδ0
)
. (6.5.10)

6.5.3 Eigenvalue asymptotics in thin smooth domains

In Section 6.5.2 we saw that most eigenvalues of P δN lie “near” the curve p(S1). Now we want to
give a quantitative estimate on how close these eigenvalues are to the p(S1). For this purpose let
Ω ⋐ C be an open simply connected set with smooth boundary ∂Ω which is independent of N
and satisfies properties (1) - (4), as in Section 6.5.2.

Remark 6.5.3. We recall the notion of domains with associated Lipschitz weight: Let N ⩾ 1 be a
large parameter, and let Ω ⋐ C be an open simply connected set with Lipschitz boundary ω = ∂Ω
which may depend on N . More precisely, we assume that ∂Ω is Lipschitz with an associated
Lipschitz weight r : ω →]0,+∞[, which is a Lipschitz function of modulus ⩽ 1/2, in the following
way :

There exists a constant C0 > 0 such that for every x ∈ ω there exist new affine coordinates
ỹ = (ỹ1, ỹ2) of the form ỹ = U(y − x), y ∈ C ≃ R2 being the old coordinates, where U = Ux
is orthogonal, such that the intersection of Ω and the rectangle Rx := {y ∈ C; |ỹ1| < r(x), |ỹ2| <
C0r(x)} takes the form

{y ∈ Rx; ỹ2 > fx(ỹ1), |ỹ1| < r(x)}, (6.5.11)

where fx(ỹ1) is Lipschitz on [−r(x), r(x)], with Lipschitz modulus ⩽ C0.
Notice that (6.5.11) remains valid if we shrink the weight function r.

We consider an open simply connectedN -dependent set ΩN , with a uniformly Lipschitz bound-
ary ∂ΩN , which coincides with Ω in small tube around p(S1). More precisely, let

C

N
⩽ τ ⩽ O(1), (6.5.12)

and suppose that

ΩN ∩ {z ∈ C; dist (z, p(S1)) < τ} = Ω ∩ {z ∈ C; dist (z, p(S1)) < τ}, (6.5.13)
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and that ∂ΩN is uniformly Lipschitz with weight function

r(x) :=
1

C

(
dist (x, p(S1)) +

1

N

)
, x ∈ ∂ΩN ∩ {z ∈ C; dist (z, p(S1)) < τ}, (6.5.14)

inside {z ∈ C; dist (z, p(S1)) < τ} and with constant weight function

r(x) := τ, x ∈ ∂ΩN ∩ {z ∈ C; dist (z, p(S1)) ⩾ τ} (6.5.15)

outside. Let
0 < ℓ(N) (6.5.16)

be the length of ∂ΩN ∩ {z ∈ C; dist (z, p(S1)) ⩾ τ}.

Theorem 6.5.4. Let p be as in (6.3.1), set M = N++N− and let P δN be as in (6.3.3) and (6.5.2).
Let τ be as in (6.5.12) and let ΩN ⋐ C be a relatively compact open simply connected set satisfying
(6.5.13)–(6.5.16). Pick a δ0 ∈]0, 1[.

There exists a constant C > 0 such that for N > 1 sufficiently large, if

Ce−N
δ0/(2M) ⩽ δ ⩽

N−4

C
,

then,∣∣∣∣#(Spec(P δN ) ∩ Ω)− N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ)

∣∣∣∣ ⩽ O(N δ0ℓ(N)τ−1 +N δ0 log(τN)). (6.5.17)

with probability
⩾ 1−O(ℓ(N)τ−1 + log(τN))

(
e−N

2
+ C2δ

−|J |e−
1
2
Nδ0
)
. (6.5.18)

Remark 6.5.5. In the assumption 6.5.13 on ΩN we assumed that it coincides with an Ω with
smooth boundary, which is independent of N , inside a tube of radius τ around p(S1). Therefore,
assumption 6.5.13 implies that ℓ(N) ⩾ 1/C > 0. However, the proof of Theorems 6.5.2 and 6.5.4
shows that we can allow for Ω to be N dependent as long as its boundary ∂Ω remains uniformly
Lipschitz in the sense discussed above, and satisfies conditions (1)-(4) at the beginning of Section
6.5.2. Hence, Theorem 6.5.4 holds as well for sets ΩN , satisfying (6.5.12)-(6.5.15) with

C

N
⩽ ℓ(N). (6.5.19)

The upper bound on the coupling constant δ in Theorems 6.5.1, 6.5.2 and 6.5.4 is somewhat
artificial. We believe that following the same approach it can be extended to δ ⩽ N−κ, κ > 1/2,
however, at the price of worse error and probability estimates. Furthermore, one can allow for
much more general perturbations which only need satisy Assumption (6.6.3) and (6.6.4) below.
One such example of perturbations is given by random matrices whose entries are iid copies of a
centred random variables with bounded fourth moment, similar to the perturbations considered
in Section 3.3. However, we will not go into further details here.

6.6 Convergence of the empirical measure and related results

As already discussed in the context of Theorem 3.3.10, an alternative way to study the limiting
distribution of the eigenvalues of P δN , up to errors of o(N), is to study the empirical measure of
eigenvalues, defined by

ξN
def
=

1

N

∑
λ∈Spec(P δ

N )

δλ (6.6.1)

where the eigenvalues are counted including multiplicity and δλ denotes the Dirac measure at
λ ∈ C. We can show that, almost surely, ξN converges weakly to the push-forward of the uniform
measure on S1 by the symbol p.
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Theorem 6.6.1. Let δ0 ∈]0, 1[, let δ1 > 3 and let p be as in (6.2.4). If (6.5.3) holds, i.e.

e−N
δ0 ⩽ δ ≪ N−δ1

then, almost surely,

ξN ⇀ p∗

(
1

2π
LS1

)
, N → ∞, (6.6.2)

weakly, where LS1 denotes the Lebesgue measure on S1.

Related results and extensions Similar results to Theorem 6.6.1 have been proven in various
settings. In [13,14], the authors consider the special case of band Toeplitz matrices, i.e. PN with
p as in (6.3.1). They allow for perturbations by a quite general class of N ×N random matrices
Qω satisfying

1. Norm bound Assume that
E[∥Qω∥2HS] = O(N2). (6.6.3)

2. Anti-concentration bound For each θ > 0 there exist a β > 0 and an εN (θ) = o(1), as
N → ∞, such that for any fixed deterministic complex N×N matrix D with ∥D∥ = O(N θ),
we have that

P(sN (D +Qω) ⩽ N−β) = εN (θ). (6.6.4)

Remark 6.6.2. These assumptions hold for a large class of noise matrices, including those with
iid entries of zero mean and finite variance. We refer to [13, Remark 1.3] for details and references.

In this case they show that the convergence (6.6.2) holds weakly in probability for a coupling
constant δ = N−γ , with γ > 1/2. Furthermore, they prove a version of this theorem for Toeplitz
matrices with non-constant coefficients in the bands, see [14, Theorem 1.3, Theorem 4.1]. They
follow a different approach than we do: They compute directly log |detP δN − z| by relating it to
log | det P̃N (z)|, where P̃N (z) is a truncation of PN−z, where the smallest singular values ofMN−z
have been sufficiently lifted. Our approach, leading to the above results, is based on a Grushin
problem approach similar (although using a different Grushin problem) to what was discussed
in Section 3.3.3. This approach essentially also replaces det(P δN − z) by a deterministic version
where the small singular values have been sufficiently lifted similar to the approach in [13, 14].
However, the Grushin problem approach is robust enough to pass from finitely banded Toeplitz
matrices to general Toeplitz matrices. The link between the two methods, showing a deterministic
equivalence for noisy perturbations principle, has been made precise in [194] by Zeitouni and the
author. Also, as discussed there, we can weaken assumption (6.6.3) to assuming that there exists
a κ1 > 0 such that such that E[∥Qω∥] = O(Nκ1). However, we will not go into further details
here.

Theorem 6.6.1 also has notable shortcomings: We do not allow for a coupling constant up
to limiting strength of δ1 > 1/2, nor do we allow for more general random matrix ensembles as
perturbation. The proofs, can however be modified to allow for these extensions.

In the earlier work [93, 178], the authors prove that the convergence (6.6.2) holds weakly in
probability for the Jordan block matrix PN with p(τ) = τ−1 (6.2.4) and a perturbation given
by a complex Gaussian random matrix whose entries are independent complex Gaussian random
variables whose variances vanish (not necessarily at the same speed) polynomially fast, with
minimal decay of order N−1/2+. See also [60] for a related result.

In [200], using a replacement principle developed in [185], it was shown that the result of [93]
holds for perturbations given by complex random matrices whose entries are independent and
identically distributed random complex random variables with expectation 0 and variance 1 and
a coupling constant δ = N−γ , with γ > 2.



Chapter 7

Eigenvector localization of disordered
non-selfadjoint Toeplitz matrices

In this section we discuss the works obtained in [15].

7.1 Introduction

In this chapter we focus on the eigenvectors of large deterministic non-Hermitian N ×N Toeplitz
matrices PN with small additive random perturbations. As discussed in chapter 6, the spectra
of such matrices, apart from finitely many fluctuating outliers [13, 14, 16, 174, 175], mimic the
absolutely continuous spectra of the associated infinite dimensional Laurent operator on Z. This
is particularly striking since a perturbation of size O(N−∞) is sufficient to produce this effect,
whereas the spectrum of the unperturbed matrix is far from the spectrum of the Laurent operator.

The aim of this chapter is to discuss the eigenvectors associated with the eigenvalues of such
perturbed Toeplitz matrices. Are the eigenvectors localized or delocalized? The precise meanings
of these notions vary over different subjects, however, they all serve to capture how much an ℓ2

normalized eigenvectors concentrates on or spreads out over certain parts of its support.
In random matrix theory there are several ways of testing for localization or delocalization of

ℓ2 normalized eigenvectors ψ. One way is by comparing their ℓp norms for 2 < p ⩽ +∞ with
N1/p−1/2. Complete delocalization is said to occur when ∥ψ∥p = O(N1/p−1/2) (up to some loga-
rithmic factors) since N1/p−1/2 is the ℓp norm of the fully delocalized vector (N−1/2, . . . , N−1/2).
Conversely localized eigenvectors have a large ℓp norm, as for instance the fully localized vector
(0, 0, 1, 0, . . . , 0) has ℓp norm equal to one. These notions were used for instance to prove delocal-
ization via optimal ℓp bounds of the eigenvectors of Wigner matrices [73, 74], for non-Hermitian
random matrices [154], and for the adjacency matrix of Erdős-Rényi graphs [71]. Recently, local-
ization and delocalization of eigenvectors for the adjacency matrix of critical Erdős-Rényi graphs
were established in [3].

There is a complementary notion of delocalization, known as no-gaps delocalization, which
asserts that for any subset I ⊂ [N ], with |I| reasonably large, one has ∥ψ∥ℓ2(I) ≳ |I| (again allowing
for logarithmic factors). Recently, such delocalizations have been established for Wigner matrices
and matrices with independent and identically distributed (i.i.d.) entries (cf. [136,137,154]).

In the field of quantum chaos [160], in the setting of Hermitian pseudo-differential operators,
localization and delocalization of normalized eigenvectors are studied via their associated semi-
classical defect measures. Translated to the matrix setting [9], we note that

∑N
x=1 |ψ(x)|2δx, where

δx denotes the Dirac measure at x, defines a probability measure. One says that quantum ergodic-
ity occurs when

∑N
x=1 a(x)|ψ(x)|2 is close to 1

N

∑N
x=1 a(x) for most eigenvectors ψ, and uniquely

quantum ergodicity occurs when this holds for all eigenvectors. In contrast, scarring occurs when
we have concentration of the form

∑
x∈Λ |ψ(x)|2 ⩾ 1− ε, ε > 0, of the eigenvector on some small

set Λ. On the other hand, if ∥ψ∥p ≍ Nf(p) for some f(p) ̸= 1/2 − 1/p, then the eigenstate ψ

79
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is termed to be non-ergodic and multi-fractal [135]. These notions were recently applied to the
study of the eigenfunctions of the discrete Laplacian on large regular graphs [6,7], and to the proof
of delocalization of eigenvectors of generalized Wigner matrices [41]. See also [20] for results on
deformed Wigner matrices. For even stronger results concerning the delocalization of eigenvec-
tors of Wigner matrices we refer the reader to the recent works on the eigenstate thermalization
hypothesis in [51–54].

The aim of this chapter is to discuss recent results showing that the eigenvectors of non-
selfadjoint Toeplitz matrices subject to small random perturbations localize on a set of cardinality
N/ logN in the sense that they scar on a set of size N/ logN with probability close to one.

7.2 The setting and assumptions

We begin by recalling the setting, see also the discussion at the beginning of Chapter 6. Let
N± ∈ Z be such that −N− ⩽ N+ and either N+ ̸= 0 or N− ̸= 0. Let ai ∈ C, i ∈ Z, be such that
aN+ ̸= 0, a−N− ̸= 0, and ai = 0 for i ̸∈ [−N−, N+]. Introduce the symbol p(ζ) =

∑N+

−N−
ajζ

−j

and the associated N ×N Toeplitz matrix PN with entries PN (i, j) = ai−j , that is

PN =



a0 a−1 . . . a−N− . . .
a1 a0 a−1 . . . . . .
...

. . . . . . . . .
...

aN+ . . . . . . . . . . . .
...

. . . . . . . . .
...

. . . . . . aN+ . . . a0


. (7.2.1)

We consider here noisy perturbations of PN of the form

PQN,γ = PN +N−γQN , γ > 1, (7.2.2)

with QN an N × N (random) matrix satisfying Assumptions 7.2.1 and 7.2.2 below. The first
assumption is on the existence of finite moments.

Assumption 7.2.1. Let {Qi,j}Ni,j=1 be the entries of the N ×N noise matrix Q = QN .

(i) The entries of Q are jointly independent and have zero mean.

(ii) For any h ∈ N there exists an absolute constant Ch <∞ such that

N
max
i,j=1

E[|Qi,j |2h] ⩽ Ch.

For notation convenience, we take the sequence Ch increasing in h. To introduce the second
assumption, recall Lévy’s concentration function, defined for any complex-valued random variable
X and ε > 0 by

L(X, ε) def
= sup

w∈C
P(|X− w| ⩽ ε). (7.2.3)

Assumption 7.2.2. Assume that there exist absolute constants η ∈ (0, 1] and C7.2.2 < ∞, such
that

L(Qi,j , ε) ⩽ C7.2.2ε
1+η, (7.2.4)

for all sufficiently small ε > 0, uniformly for all N and i, j ∈ {1, 2, . . . , N}.
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(The standard example of a noise matrix satisfying Assumptions 7.2.1 and 7.2.2 is the complex
Ginibre matrix, i.e. with i.i.d. entries that are standard complex Gaussian variables.)

As discussed after Theorem 6.6.1, we know that all but o(N) of the eigenvalues {λNi } of PQN,γ
lie in a small neighborhood of the curve p(S1), where S1 := {z ∈ C : |z| = 1}; in fact, it was
shown in those references that the empirical measure of eigenvalues of PQN,γ ,

LN := N−1
N∑
i=1

δλNi
, (7.2.5)

converges weakly to the push forward of the uniform measure on S1 by p. As part of our study,
we will obtain more precise information, and show in Theorem 7.3.1 that most of the eigenvalues
lie in certain neighborhoods of width of order logN/N that are separated from p(S1) by distance
of the same order.

Our goal is to study the eigenvectors associated with the latter (random) eigenvalues. Roughly
speaking, we will show that those eigenvalues ẑ away from certain isolated bad points of p(S1)
have corresponding eigenvectors which are close to a random linear combination of the eigenvectors
ej of (PN − ẑI)∗(PN − ẑI) associated with its smallest eigenvalues. In particular we will show
that this random linear combination of vectors localizes at scale N/ logN . To state our results
precisely requires the introduction of some machinery, which we now do.

Sometimes, the symbol p possesses a natural contraction, defined as follows. Set

g(p) := gcd{|j| : j ̸= 0 and aj ̸= 0}, (7.2.6)

where “gcd” denotes the greatest common divisor. If g0 := g(p) > 1 then p(ζ) = qp(ζ
g0) for some

Laurent polynomial qp. If g0 = 1 then qp = p. For ε > 0 and a set B ⊂ C, Bε denotes the ε-blow
up of B, that is the Minkowski sum of the sets B and D(0, ε), the open disc of radius ε centered
at zero.

Definition 7.2.3 (Set of bad points). Let B1 be the collection of self intersection points of qp(S1),
and let B2 be the set of branch points, i.e. points z where the Laurent polynomial p(·) − z has
double roots. Set Bp := B1 ∪ B2 and Gp,ε := p(S1) \ Bεp.

In Definition 7.2.3, a point w ∈ C is a self intersection point of qp(S1) if there exist ζ1 ̸= ζ2 ∈ S1

so that qp(ζ1) = qp(ζ2) = w.
Throughout this chapter, we make the following assumption on the symbol p.

Assumption 7.2.4. The symbol p satisfies a−N− , aN+ ̸= 0, and B1 is a finite set.

7.3 Placement of most eigenvalues

Under Assumption 7.2.4, Bp is a finite set. Indeed, B2 is precisely the set of all z’s such that the
discriminant of the polynomial ζ 7→ ζN+p(ζ) − z vanishes, and [38, Lemma 11.4] yields that B2

is a finite set. We note that by [128], unless N− = N+ and |a−N− | = |aN+ |, B1 has cardinality
bounded above by (N+ +N− − 1)2, so symbols avoiding this situation satisfy Assumption 7.2.4.
For z ∈ C let

d(z) = indp(S1)(z)

denote the winding number of the curve p(S1) around z. We now describe the collection of
eigenvalues of interest to us. For 0 < ε,C <∞ and N large enough so that 2C logN/N < ε, set

Ω(ε, C,N) := {z ∈ C : C−1 logN/N < dist(z,Gp,ε) < C logN/N, d(z) ̸= 0}, (7.3.1)

where for a set B ⊂ C and w ∈ C we denote dist(w,B) := infw′∈B |w − w′|. Let

NΩ(ε,C,N),N,γ := |{λNi ∈ Ω(ε, C,N)}|
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denote the number of eigenvalues of PQN,γ that lie in Ω(ε, C,N).
The following theorem shows that most eigenvalues of PQN,γ lie in Ω(ε, C,N) for appropriate

ε, C.

Theorem 7.3.1. Let Assumptions 7.2.1, 7.2.2, and 7.2.4 hold. Fix µ > 0 and γ > 1. Then there
exist 0 < ε7.3.1, C7.3.1 <∞ (depending on γ, µ and p only) so that

P
(
NΩ(ε7.3.1,C7.3.1,N),N,γ < (1− µ)N

)
→N→∞ 0. (7.3.2)

Theorem 7.3.1 may be of independent interest since it improves upon previous results [13,14,
174,175] by providing a much sharper estimate on the position of the eigenvalues of PQN,γ . See also
the discussion after Theorem 6.6.1. In what follows, we fix µ > 0, γ > 1 and consider the ε7.3.1 and
C7.3.1 determined by Theorem 7.3.1. We then consider eigenvalues λNi ∈ Ω(ε7.3.1, C7.3.1, N). By
Theorem 7.3.1, most eigenvalues are of this type. Notice also that for any z ∈ Ω(ε7.3.1, C7.3.1, N),
we have that d = d(z) ̸= 0.

7.4 Eigenvector localization

The main result is the following description of the (right) eigenvectors of PQN,γ .

Theorem 7.4.1. Fix ε7.3.1, C7.3.1 and the notation as above.
1. The following occurs with probability approaching one as N → ∞. For each ẑ ∈ Ω(ε7.3.1, C7.3.1, N)

which is an eigenvalue of PQN,γ, let v = v(ẑ) denote the corresponding (right) eigenvector, normal-
ized so that ∥v∥2 = 1. Then there exists a vector w with ∥w∥2 = 1 such that

∥v − w∥2 = o(1), (7.4.1)

and a constant c > 0, depending on γ, so that for any ℓ = ℓ(N) ∈ [N ],

∥w∥ℓ2([ℓ,N ]) ⩽ e−cℓ logN/N/c, if d > 0,

∥w∥ℓ2([1,N−ℓ]) ⩽ e−cℓ logN/N/c, if d < 0.
(7.4.2)

The vector w can be taken as a (random) linear combination of the |d| eigenvectors of (PN −
ẑI)∗(PN − ẑI) corresponding to the |d| smallest eigenvalues.

2. Fix z0 = z0(N) ∈ Ω(ε7.3.1, C7.3.1, N) deterministic, C0, C̃0 large, and η > 0 small. Then,
there exist constants c1 = c1(η, C0, C̃0) and c0 = c0(γ) ∈ (0, 1), with c0 → 1 as γ → 1 and c0 → 0
as γ → ∞, so that, with probability at least 1 − η, for every ẑ = λNi ∈ D(z0, C0 logN/N), any
0 < ℓ ⩽ ℓ′ ⩽ C̃0N/ logN satisfying ℓ′ − ℓ > N c0 and all large N ,

∥w∥2ℓ2([ℓ,ℓ′]) ⩾ c1(ℓ
′ − ℓ) logN/N, if d > 0,

∥w∥2ℓ2([N−ℓ′,N−ℓ]) ⩾ c1(ℓ
′ − ℓ) logN/N, if d < 0.

(7.4.3)

Further, for any 0 < c′ ⩽ C̃0,

∥v∥2ℓ2([1,c′N/ logN ]) ⩾ c′c1/2, if d > 0,

∥v∥2ℓ2([N−c′N/ logN,N ]) ⩾ c′c1/2, if d < 0.
(7.4.4)

Theorem 7.4.1 shows a localization phenomenon, numerically illustrated in the examples of
Figure 7.1: for all eigenvalues in the good regions, the corresponding eigenvectors localize at scale
N/ logN , and for most eigenvalues, this is the scale at which the eigenvector is “spread out”.
(Contrast the situation with the regime γ < 1, where delocalization is observed in simulations,
see Figure 7.2; we discuss predictions for that regime in Section 7.6.4, after we introduce relevant
notions and in particular the relevant Grushin problem.)
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Figure 7.1: Eigenvectors (left panel) and eigenvalues (right panel) for N = 4000, γ = 1.2 and symbol
ζ + ζ2. Plotted are the moduli of the entries of the eigenvector that corresponds to the eigenvalue marked
with a red ×. The top two rows correspond to situations covered by Theorem 7.4.1; note the localization,
which occurs at scale N/ logN . The bottom row is not covered by Theorem 7.4.1, because the chosen
eigenvalue is at vanishing distance from B1.

Building on Theorem 7.4.1, equipped with a local estimate on the number of eigenvalues λNi in
regions of diameters O(logN/N) (a element used in the proof of Theorem 7.3.1, see [15, Theorem
7.4]) and applying a Fubini type argument, one can show that except for an arbitrarily small
fraction of the eigenvalues, the corresponding eigenvectors v(λNi ) localize at scale N/ logN . In
particular, we prove the following result.

Corollary 7.4.2. Let Assumptions 7.2.1, 7.2.2, and 7.2.4 hold. Then, for any µ > 0 there exists
µ1, µ2 > 0 so that with |supp µ1(v)| := min{|I| : ∥v∥ℓ2(I) > 1− µ1},

lim sup
N→∞

1

N
E#{i : supp µ1(v(λ

N
i )) < µ2N/ logN} ⩽ µ.

Theorem 7.4.1 states that the eigenvectors of PQN,γ corresponding to most eigenvalues ẑ can
be approximated by a random linear combination of the eigenvectors ej of (PN − ẑI)∗(PN − ẑI)
associated with its |d| smallest eigenvalues. These are precisely the right singular vectors of PN−ẑI
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associated with its |d| smallest singular values. However, these singular vectors ej are (in general)
difficult objects to study and do not admit an easy description. Therefore, we approximate these
singular vectors with certain quasimodes of the operator PN . Recall that the term quasimode for
PN and a (quasi-)eigenvalue z refers to an approximate ℓ2-normalized eigenvectors ψ ∈ CN of
PN − z in the sense that

∥(PN − z)ψ∥ → 0, N → ∞.

As explained in and after Theorem 6.4.2, when |d| = |indp(S1)(z)|, then have a |d|-dimensional
space of quasimodes associated with PN − zI. We can show that the eigenvectors ej of (PN −
zI)∗(PN −zI) associated with its |d| smallest eigenvalues are close to these quasimodes. We avoid
giving more details here, however, we emphasize that the construction of the ej-s depends on p, N
and z only and not on Q (even if eventually the value of z to which it will be applied will depend
on Q).

The upper bound (7.4.2) is due to the decaying nature of these |d| linearly independent quasi-
modes either to the left (when d < 0) or to the right (when d > 0). These quasimodes decay
exponentially quickly, |u(n)| ≍ e−rn or |u(n)| ≍ e−r(N−n), however, at different rates r > 0. Out
of these |d| quasimodes the first (|d| − g0) (recall (7.2.6)) quasimodes decay at a constant rate
r > 0, resulting in them being completely localized to a point, i.e. either on the left or right hand
side of the interval [1, N ]. In contrast, the rest decay at a rate r ≍ logN/N , which implies that
they localize at a scale N/ logN . In contrast, the lower bound (7.4.3) follows upon showing that
w has a non-negligible projection (in ℓ2) onto S, the subspace spanned by the last g0 quasimodes
that decay precisely at rate logN/N .

Note that Theorem 7.4.1 and Corollary 7.4.2 establish absences of quantum ergodicity and
no-gaps delocalization, and show that the semiclassical defect measure in this setting is the Dirac
measure at zero or one, depending on whether d is positive of negative.

One may wonder whether the assumption ẑ ∈ D(z0, C0 logN/N) in the second part of Theorem
7.4.1 is optimal. It is clear from the proof that to derive (7.4.3) one needs to control the supremum
of the random field z 7→ f̃(z)tQẽ(z) for some ẽ(z), f̃(z) ∈ CN such that the Lipschitz norms of
the functions z 7→ ẽ(z) and z 7→ f̃(z) are O(N/ logN) and O(1), respectively. It is then standard
to check that the supremum of the field {ẽ(z)tQf̃(z)} can only be bounded by an O(1) quantity
in discs of radius O(logN/N). The boundedness of this random field is crucial in deriving that
w has non-negligible projection onto S. Repeating the same reasoning one can also observe that
for all ẑ simultaneously in the good region, with probability approaching one, the ℓ2 norm of the
projection of w onto S is at least of the order logN/N , and we believe that this is the correct
picture.

7.5 Extensions

A natural extension of our results would be to the region γ ∈ (1/2, 1], see Section 7.6.4 for a
discussion. We mention a couple of additional potentially interesting extensions, of broad interest.

Sup-norm delocalization versus no-gaps delocalization. As already mentioned in Section
7.1, there are two complementary notions of delocalizations in the random matrix literature. It is
shown in [22,155] that both these notions of delocalization hold for Wigner matrices under various
assumptions on it entries. There is no reason to believe that these two notions of delocalizations
should hold simultaneously in any given setting.

Indeed, from the proof of Theorem 7.4.1 it follows that when PN is a Jordan block, i.e. its
symbol is p(ζ) = ζ, and γ > 3/2 we have that ∥v∥∞ ≍

√
logN/N for an eigenvector v cor-

responding to a bulk eigenvalue. Thus, in this simple setting, the eigenvectors corresponding to
most of the eigenvalues are completely delocalized according to the sup-norm criterion. However,
they do not satisfy no-gaps delocalization. It is worth investigating whether one indeed has that
∥v∥∞ ≍

√
logN/N for all γ > 1 and any finitely banded PN .



7.6. IDEAS OF THE PROOF OF THEOREM 7.4.1 85

Localization for the outlier eigenvalues and multi-fractal structure. Based on simulations
and some heuristic arguments, we predict that the eigenvector ψ corresponding to an eigenvalue
residing at a distance of order Nα−1, α ∈ (0, 1], from the spectral curve localizes at scale N1−α.
This shows in particular that for such a ψ one has ∥ψ∥p ≍ N

(α−1)·( 1
2
− 1

p
), establishing that such

eigenvectors are multi-fractal. The same reasoning shows that the eigenvectors corresponding
to outlier eigenvalues, i.e. those are at a distance of order one from p(S1), would be completely
localized. That is, most of their mass is carried by finitely many entries. It seems plausible that
the methods of the proof of Theorem 7.4.1 in [15] could be adapted to prove these results.

7.6 Ideas of the proof of Theorem 7.4.1

We begin by setting up, in some generality, a well-posed Grushin problem, based on [96,193], see
also Seciton 2.6. It, and its behavior under perturbations, plays a crucial role in our analysis.

7.6.1 Grushin problem for the unperturbed operator

Let P be a complex N × N -matrix. (In our application, we will often take P = PN − zI where
PN is the (deterministic) Toeplitz matrix with symbol p and z is a random parameter close to the
spectral curve p(S1). Then, all objects implicitly depend on z, and we suppress this dependence
in notation when not needed.) Let

0 ⩽ t21 ⩽ · · · ⩽ t2N (7.6.1)

denote the eigenvalues of P ∗P with associated orthonormal basis of eigenvectors e1, . . . , eN ∈ CN .
The spectra of P ∗P and PP ∗ are equal and we can find an orthonormal basis f1, . . . , fN ∈ CN of
eigenvectors of PP ∗ associated with the eigenvalues (7.6.1) such that

P ∗fi = tiei, P ei = tifi, i = 1, . . . , N. (7.6.2)

Let 0 < α≪ 1 and let M > 0 be the number of singular values ti ∈ [0, α], i.e.

0 ⩽ t1 ⩽ · · · ⩽ tM ⩽ α < tM+1 ⩽ · · · ⩽ tN . (7.6.3)

Let δi, 1 ⩽ i ⩽M , denote an orthonormal basis of CM . Put

R+ :=
M∑
i=1

δi ◦ e∗i , R− :=
M∑
i=1

fi ◦ δ∗i , (7.6.4)

Then the Grushin problem

P :=

(
P R−
R+ 0

)
: CN × CM −→ CN × CM (7.6.5)

is bijective. To see this we take (v, v+) ∈ CN × CM and proceed to solve

P
(
u
u−

)
=

(
v
v+

)
. (7.6.6)

We write u =
∑N

1 u(j)ej and v =
∑N

1 v(j)fj . Similarly, we express u−, v+ in the basis δ1, . . . , δM .
The relation (7.6.2) then shows that (7.6.6) is equivalent to{∑N

1 tiu(i)fi +
∑M

1 u−(j)fj =
∑N

1 v(j)fj ,

u(j) = v+(j), j = 1, . . . ,M,
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which can be written as
tiu(i) = v(i), i =M + 1, . . . , N,(

ti 1

1 0

)(
u(i)

u−(i)

)
=

(
v(i)

v+(i)

)
, i = 1, . . . ,M.

(7.6.7)

Since (
ti 1
1 0

)−1

=

(
0 1
1 −ti

)
,

we see that

P−1 =: E =

(
E E+

E− E−+

)
(7.6.8)

with

E =
N∑

M+1

1

ti
ei ◦ fi, E+ =

M∑
1

ei ◦ δ∗i , E− =
M∑
1

δi ◦ f∗i , and E−+ = −
M∑
1

tjδj ◦ δ∗j .

(7.6.9)

From (7.6.3) and (7.6.9) it follows that we have the following norm estimates

∥E(z)∥ ⩽
1

α
, ∥E±∥ = 1, ∥E−+∥ ⩽ α. (7.6.10)

Next, we recall a general fact on well-posed Grushin problems.

Lemma 7.6.1. Let H be an N -dimensional complex Hilbert space, and let N ⩾M > 0. Suppose
that

P =

(
P R−
R+ 0

)
: H× CM −→ H× CM

is a bijective matrix of linear operators, with inverse

E =

(
E E+

E− E−+

)
.

Then, E+ : N (E−+) → N (P ) is bijective with inverse R+ ↾N (P ), and E∗
− : N (E∗

−+) → N (P ∗) is
bijective with inverse R∗

− ↾N (P ∗).

Proof. From PE = 1, we get that PE+ +R−E−+ = 0 and so

E+ : N (E−+) → N (P ). (7.6.11)

Similarly, we get from EP = 1 the equation E−P + E−+R+ = 0, and hence

R+ : N (P ) → N (E−+). (7.6.12)

The identity EP +E+R+ = 1 yields that E+R+ = 1 on N (P ), which, together with R+E+ = 1,
shows that (7.6.11), (7.6.12), are bijective and inverser to each other. The proof of the second
claim is similar, one can follow the same arguments applied to P∗E∗ = E∗P∗ = 1.
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7.6.2 Grushin problem for the perturbed operator

Now we turn to the perturbed operator

P δ := P + δQ, 0 ⩽ δ ≪ 1. (7.6.13)

where Q is a complex N ×N -matrix (eventually, random). Let R± be as in (7.6.4), and put

Pδ :=

(
P δ R−
R+ 0

)
: CN × CM −→ CN × CM (7.6.14)

with P = P0. Applying E (see (7.6.8)) from the right to (7.6.14) yields

PδE = IN+M +

(
δQE δQE+

0 0

)
. (7.6.15)

Suppose that (I + δQE) is invertible. It is then straightforward to check that Pδ is invertible,
with inverse

(Pδ)−1 =: Eδ =
(
Eδ Eδ+
Eδ− Eδ−+

)
, (7.6.16)

where
Eδ = E(I + δQE)−1, Eδ− = E−(I + δQE)−1, (7.6.17)

Eδ−+ = E−+ − E−(I + δQE)−1δQE+, (7.6.18)

and
Eδ+ = E+ − E(I + δQE)−1δQE+. (7.6.19)

We note that if one takes P = PN−zIN with z an eigenvalue of PN+δQ, then Lemma 7.6.1 applied
to P δ gives a convenient description of the null-space of P , which is precisely the eigenspace of
PN +δQ corresponding to the eigenvalue z. This observation will be a crucial part of our analysis,
see (7.6.25) below.

Remark 7.6.2. Under the additional assumption that

2δ∥Q∥α−1 ⩽ 1, (7.6.20)

which will occur in our setup of Q as in Assumption 7.2.1 if δ = N−γ with γ > 3/2 (and with
α ≍ N−1), we obtain by a Neumann series argument that

Eδ =
(
Eδ Eδ+
Eδ− Eδ−+

)
= E +

∞∑
n=1

(−δ)n
(
E(QE)n (EQ)nE+

E−(QE)n E−(QE)n−1QE+

)
, (7.6.21)

where by (7.6.20), (7.6.10),

∥Eδ∥ = ∥E(1 + δQE)−1∥ ⩽ 2∥E∥ ⩽ 2α−1,

∥Eδ+∥ = ∥(1 + δQE)−1E+∥ ⩽ 2∥E+∥ ⩽ 2,

∥Eδ−∥ = ∥E−(1 + δQE)−1∥ ⩽ 2∥E−∥ ⩽ 2,

∥Eδ−+ − E−+∥ = ∥E−(1 + δQE)−1δQE+∥ ⩽ 2∥δQ∥ ⩽ α.

(7.6.22)

In particular, in that case,

Eδ+ = E+ − δQE(1 +O(δ∥Q∥α−1))E+ (7.6.23)

and
Eδ−+ = E−+ − δE−(1 +O(δ∥Q∥α−1))QE+. (7.6.24)
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7.6.3 Structure of the proof of Theorem 7.4.1

A key ingredient for the proof Theorem 7.4.1 is Theorem 7.3.1. The proof of the latter result splits
into two parts: In the first part we show that all eigenvalues must be separated from p(S1) by a
distance of the order logN/N . At a very high level it involves an expansion of the determinant of
PQN,γ − zIN , with z ∈ C, identifying the dominant term in that expansion, and showing that the
dominant cannot be equal to zero (with probability approaching one) when z is in the vicinity of
the spectral curve.

The second part of Theorem 7.3.1 requires us to show that most of the eigenvalues must be
within a distance O(logN/N) from spectral curve, again with probability approaching one. This
is achieved by an application of Jensen’s formula together with upper and lower bounds on the
log-potential of LN (see (7.2.5)).

In the remainder of this section we describe the structure of the proof of Theorem 7.4.1, taking
for granted Theorem 7.3.1 and various technical estimates. The proof of Theorem 7.4.1 begins
with the Grushin problem for P δz = PQN,γ − zI, see (7.6.16), for δ = N−γ , z which is roughly an
eigenvalue, and M = |indp(S1)(z)| (this will lead to tM+1 ≳ logN/N and α bounded below by a
constant multiple of logN/N). To keep track of the dependence on z, throughout this section we
write E(z), E+(z), etc. To relate the null-space of P δz with the null space of Eδ−+(z) we will use
Lemma 7.6.1 in an indirect manner: As in its proof note that from (7.6.14) and (7.6.16),

Eδ(z)P δz + Eδ+(z)R+(z) = I and Eδ−(z)P
δ
z + Eδ−+(z)R+(z) = 0. (7.6.25)

If z = ẑ were an eigenvalue of PQN,γ with corresponding normalized eigenvector v then, with
notation as in Section 7.6 and recalling the definition of Eδ+(z), we would obtain from (7.6.25)
that since {ei(ẑ)} forms an orthonormal basis of CN ,∑N

i=M+1
(ei(ẑ)

∗v) · ei(ẑ) = (I − E+(ẑ)R+(ẑ))v

= (I − Eδ+(ẑ)R+(ẑ))v − E(ẑ)(I + δQE(ẑ))−1δQE+(ẑ)R+(ẑ)v

= E(ẑ)(I + δQE(ẑ))−1δQE+(ẑ)R+(ẑ)v. (7.6.26)

Consider first the case where γ is large (γ > 3/2 will do). Since ∥Q∥ = O(N1/2+ϵ), for any ϵ > 0,
with high probability, we obtain that N−γ∥Q∥α−1 = o(1) and therefore (7.6.20) holds. Using
then (7.6.23)-(7.6.24), the projection of v on span(ei(z), i ⩾M +1) is negligible, which yields the
first part of Theorem 7.4.1.

To see the second part, still in the case of large γ (here we will need γ > 2) and z = ẑ, we
obtain from (7.6.25) that

0 = −Eδ−+(ẑ)R+(ẑ)v = −E−+(ẑ)R+(ẑ)v + δE−(ẑ)QE+(ẑ)R+(ẑ)x (7.6.27)
−δ2E−(ẑ)(I + δQE(ẑ))−1QE(ẑ)QE+(ẑ)R+(ẑ)v,

where we also have used the resolvent expansion. By the same reasoning as above, the third term in
(7.6.27) turns out to be of order o(δ), hence negligible compared to the first two terms. Therefore,
recalling the definitions of E±(z), E−+(z), and R+(z) we obtain that, with aj = (ej(ẑ)

∗v),

− E−+(ẑ)R+(ẑ)v + δE−(ẑ)QE+(ẑ)R+(ẑ)v

=
M∑
i=1

aitiδi + δ
M∑
i=1

 M∑
j=1

aj(fi(ẑ)
∗Qej(ẑ))

 δi = o(δ). (7.6.28)

Now, we know that there exists M > M0 ⩾ 0 so that tj decay exponentially in N for j ∈ [M0].
Thus, we obtain from (7.6.28) that for γ large,∥∥∥∥∥∥

M0∑
i=1

 M∑
j=1

aj · (fi(ẑ)∗Qej(ẑ))

 δi
∥∥∥∥∥∥ = o(1).
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Assume now that aj = o(1) for j = M0 + 1, . . . ,M . Using a basic chaining argument we would
then conclude that ∥∥∥∥∥∥

M0∑
i=1

M0∑
j=1

aj · (fi(ẑ)∗Qej(ẑ))

 δi
∥∥∥∥∥∥ = ∥aTA∥ = o(1),

where A is the M0 ×M0 matrix with entries Ai,j = fi(ẑ)
∗Qej(ẑ). If ẑ were deterministic, we

would have that the smallest singular value of A is o(1) and this would lead to a contradiction.
Since ẑ is actually random, we will proceed by using the fact that the functions fi, ei are localized,
which makes the minimal singular value of A continuous in z.

When γ ∈ (1, 2], the analysis, although following similar steps, is much more involved an
necessitates a fair amount of auxiliary results. Therefore, we do not discuss them here, but refer
the reader to [15].

7.6.4 The case γ < 1 - discussion and speculations

We end this section with some brief remarks concerning γ < 1. In that regime, the single entries of
δQ = N−γQ are larger than N−1, and in particular are asymptotically larger than the distance of
the eigenvalue from the spectral curve. In particular, when writing the Grushin problem (7.6.14),
one is forced to take M growing with N (in fact, essentially M ≍ N2(1−γ); This is forced by
the requirement that ∥E−(δQ)E+∥ < M/N). The resulting eigenvector of P δ are expected to
be given by a combination of the M bottom quasimodes, with random coefficients. Since the
quasimodes oscillate at scale N/M = N2γ−1, the combination is expected to converge to a γ-
dependent Gaussian process with correlation length of that scale. The simulations in Figure 7.2
are in line with this picture, although proving it require ideas going beyond the methods of the
present work.
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Figure 7.2: Eigenvectors (left panel) and eigenvalues (right panel) for N = 4000, γ = 0.8 and symbol
ζ + ζ2. These cases are not covered by Theorem 7.4.1. Note the stark difference with the corresponding
situations in Figure 7.1, in both the location of eigenvalues relative to p(S1) and in the localization
properties of eigenvectors.
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Chapter 8

Eigenvector delocalization for a noisy
chaotic quantum Hamiltonian

In this section we discuss the works obtained in [123,124].

8.1 Introduction

Background The theory of quantum chaos aims at understanding the nature of a quantum
system when its associated classical Hamiltonian system is chaotic. A guiding example is the
Laplace-Beltrami operator on a negatively curved smooth Riemannian manifold X. There the
geodesic flow has the Anosov property [69] which, in a sense, is the ideal chaotic behavior. The
corresponding quantum dynamics is given, in the high-energy or semiclassical limit, by the uni-
tary group generated by the Laplace-Beltrami operator ∆g on L2(X). The chaotic nature of
the geodesic flow is conjectured (and indeed proven in some cases) to have equidistributing in-
fluence on the spectral properties of the Laplacian. For instance, the random matrix conjecture
by Bohigas-Giannoni-Schmit [28, 30, 31] states that the fluctuations of the high-lying eigenval-
ues should resemble those of large Wigner random matrices. The corresponding eigenfunctions
are conjectured by Rudnick-Sarnack to be uniquely quantum ergodic [156] (see also [195]). More
precisely, it is conjectured that the family of eigenfunctions {ψλ}λ of ∆g indexed by their corre-
sponding eigenvalue satisfies

⟨Opλ−1/2(a)ψλ|ψλ⟩ →
∫
S∗X

adρ, λ→ ∞, (8.1.1)

for any a ∈ C∞(S∗X). This conjecture is motivated by the quantum ergodicity theorem of
Šnirel’man [196], Zelditch [201] and Colin de Verdière [61], claiming that (8.1.1) holds for a
density one sequence of eigenvalues λ. We refer the reader to [64] for an account of recent
advances regarding the quantum unique ergodicity conjecture.

Berry’s random wave conjecture Another way of understanding the delocalization properties
of the Laplacian’s eigenfunctions is covered by Berry’s random wave conjecture [24]. It claims that,
in the high energy limit, quantum chaotic eigenfunctions should resemble at a local scale a random
superposition of plane waves. For decades, this statement, comparing a sequence of deterministic
objects with a random object, was considered as a heuristic rather than a precise mathematical
statement. However, motivated by the Benjamini-Schramm convergence in the theory of large
random graphs, and by work by Bourgain [43] on the torus, it was recently suggested in [1, 121]
that to make sense of the randomness in Berry’s heuristic one should look at the eigenfunctions
near a random point. More precisely, when ψλ – an eigenfunction of the Laplacian at energy λ –
is rescaled to the scale of the wavelength λ−

1
2 around a randomly chosen point on the manifold,

it defines a family of random functions, whose law should converge weakly to that of an isotropic
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stationary monochromatic Gaussian random field. See section 8.4 for definitions and for a more
precise statement. Note that this interpretation of Berry’s conjecture implies the quantum unique
ergodicity conjecture, as is proven in [121].

For related recent advances on Berry’s random wave conjecture in the context of Wigner
matrices we refer the reader to [21].

The setting: Quantum chaotic propagation Here, work we will adopt a semiclassical point
of view. Rescaling the eigenvalue equation (−∆g − λ)ψλ = 0 by the eigenvalue λ = h−2 we get
the semiclassical equation (−h2∆g − 1)ψh = 0 where h > 0 denotes the semiclassical parameter.
Moreover, here, we will not be concerned with genuine eigenfunctions of the Laplacian but rather
with another important question in quantum chaos: understanding the long-time behaviour of the
Schrödinger equation for highly oscillating initial data. We wish to study the long-time evolution
of highly oscillatory initial data under the Schrödinger evolution semigroup e−ihth∆gfh which is
the solution to {

ih∂tu = −h2∆gu,

u|t=0 = fh = ae
i
h
ϕ.

(8.1.2)

For such long-time propagated quantum objects, one can sometimes prove properties analogous
to those of genuine eigenfunctions. For instance, in [161], Schubert considered Lagrangian states
fh associated to Lagrangian manifolds that are transverse to the stable directions of the dynamics
(see section 8.2), on a manifold of negative sectional curvature. He could show that the analogue of
(8.1.1) holds, with ψλ replaced with e−ihth∆gfh, where th goes to infinity as h→ 0, while remaining
smaller than some constant times | log h|. Hence, the large-time evolution of Lagrangian states
under the semiclassical Schrödinger equation (8.1.2) satisfies quantum unique ergodicity. It is
thus natural to wonder if such functions do also satisfy an analogue of Berry’s conjecture.

This questions was first raised in [122], and was given a partial positive answer. Namely,
in [122], the authors considered Lagrangian states with a generic phase, and first took the limit
h → 0, and then t → ∞ to obtain convergence to a Gaussian field. This result is probably not
optimal, and it seems natural to conjecture that the family of functions e−ihth∆fh satisfy Berry’s
conjecture as soon as fh is a Lagrangian state associated to Lagrangian manifold that is transverse
to the stable directions of the dynamics, and as soon as th → ∞ with th ⩽ c| log h|, for some small
enough c.

The result: noisy quantum chaotic propagation Our aim is to prove a result of this kind,
not for the genuine semiclassical Laplacian −h2

2 ∆g, but for generic small perturbations of the form

Ph,ω = −h
2

2
∆g + hαQω, α > 0,

where Qω is either a bounded random potential or a bounded semiclassical random pseudo-
differential operator obtained from the quantization of a random symbol oscillating at scale hβ ,
β ∈]0, 1/2[. The presence of a small noise term can be motivated by the fact that in genuine
physical situations an “ideal” evolution operator can be perturbed by many different sources,
many of which are uncontrolled by the experimentalist. It therefore seems relevant on its own to
study the propagation of initial data under the Schrödinger evolution semi-group induced by Ph,ω.

Our main aim is to study the family of functions

eithPh,ωfh

where fh is a Lagrangian state associated to a Lagrangian manifold that is close enough to the
unstable directions of the dynamics. Following our interpretation of Berry’s conjecture, we rescale
the propagated Lagrangian state to the microscale h around a uniformly at random chosen x
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point on X. This rescaling around x makes eithPh,ωfh a random smooth function that depends on
the additional random parameter ω

The first main result (Theorem 8.5.2 below) states that, whenever th → ∞ with th ≪ | log h|
and under appropriate conditions on α and β, the law of the randomly rescaled smooth function
(eithPh,ωfh) converges in probability (with respect to ω), to an isotropic stationary monochromatic
Gaussian field – the Berry Gaussian field.

The quantitative nature of our result shows (Corollary 8.5.4) that, for any sufficiently fast
decaying subsequence hj → 0, the randomly rescaled smooth function (eithPh,ωfh) satisfies Berry’s
conjecture ω-almost surely.

We can use these results (or more precisely elements of the proofs leading to these results) on
the random propagation of Lagrangian states to obtain

the second main result (Theorem 8.6.1 below), which states that with overwhelming probability,
we have a polynomial improvement over the Avakumovíc-Hörmander-Levitan bound (8.6.1) for
the eigenfunctions of the the Laplace-Beltrami operator subject to small random perturbations on
negatively curved compact manifolds.

The idea of adding a small generic perturbation to the semiclassical Laplace-Beltrami operator
to obtain additional properties on the propagator is not new. For instance, in [47,76], the authors
propagate eigenfunctions by the Schrödinger equation perturbed by a random perturbation, and
obtain improved Lp bounds by averaging over the perturbation; however, these results do not give
information about the eigenfunctions (or propagated eigenfunctions) of a genuine Schrödinger
operator. In a similar spirit, in [75], the authors perturbed the Laplace-Beltrami operator on a
manifold of negative sectional curvature, by adding to it a small random potential of size ≫ h1/2.
They show that, for any initial data which is microlocalized near the energy layer there is a high
probability that its propagation up to time O(| log h|) by the perturbed Schrödinger equation
satisfies some form of quantum ergodicity.

Note that the kind of perturbations we consider is quite different from those of [47,75,76]. The
perturbations imposed in these papers are always large enough to modify the underlying classi-
cal dynamics: a wave packet microlocalized around (x0, ξ0), when propagated by the perturbed
Schrödinger equation in the time scales under consideration in these papers, is not microlocalized
around the image of (x0, ξ0) by the corresponding geodesic flow. In contrast, we permit much
smaller perturbations, which do not affect the classical dynamics, but which will only modify the
phases of wave packets.

This allows for some delicate phase cancellations between wave packets, which we believe to be
a good toy model for quantum chaos. It should thus be easier to prove quantum chaotic properties
for eigenfunctions of Ph,ω with a generic ω than for the genuine Laplacian; such considerations
will be pursued elsewhere.

8.2 Lagrangian states

Let (X, g) be a smooth compact connected Riemannian manifold without boundary and of negative
sectional curvature. A Lagrangian state on X is a family of functions fh ∈ C∞(X) indexed by
h ∈]0, 1], defined by

fh(x) = a(x)eiϕ(x)/h, (8.2.1)

where ϕ ∈ C∞(O) for some connected and simply connected open subset O ⊂ X and a ∈ C∞
c (O).

To a Lagrangian state we can associate a Lagrangian manifold

Λϕ := {(x, dxϕ);x ∈ O} ⊂ T ∗X.
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A Lagrangian state is called monochromatic if Λϕ ⊂ S∗X := {(x, ξ) ∈ T ∗X; |ξ|x = 1}, i.e. if

|dxϕ| = 1 for all x ∈ O. (8.2.2)

The dynamics of the geodesic flow is hyperbolic on S∗X, so for any ρ ∈ S∗X we may decompose
the tangent spaces TρS∗X into unstable, neutral and stable directions

TρS
∗X = E+

ρ ⊕ E0
ρ ⊕ E−

ρ .

Definition 8.2.1. For every η > 0, we say that a Lagrangian manifold Λϕ ⊂ S∗X is η-unstable
if, for every ρ ∈ Λϕ and for every v ∈ TρΛ, writing v = (v+, v−, v0) ∈ E+

ρ ⊕ E−
ρ ⊕ E0

ρ , we have

|(0, v−, 0)|ρ ⩽ η|v|ρ.

Recall that the intrinsic distance distΛ(ρ1, ρ2) between two points ρ1, ρ2 ∈ Λ is the minimal
length of curves in Λ joining ρ1 and ρ2, the length being computed using an arbitrary metric on
T ∗X. We define the distortion of Λ as

distortion(Λ) := sup
ρ1,ρ2∈Λ

distΛ(ρ1, ρ2)

distT ∗X(ρ1, ρ2)
. (8.2.3)

8.3 Noisy propagation of Lagrangian states

Let h > 0 and let 0 ⩽ δ = δ(h) ≪ 1. Consider the Schrödinger-type operator

P δh := −h
2

2
∆g + δQω, (8.3.1)

where ∆g denotes the Laplace-Beltrami operator on (X, g) and where Qω is a random perturba-
tion described in detail below. Our aim is to study the large-time evolution of monochromatic
Lagrangian states fh on X under the Schrödinger equation{

ih∂tu = P δhu,

u|t=0 = fh.

In other word we are interested in the propagated Lagrangian state

u = ei
t
h
P δ
hfh, for t≫ 1. (8.3.2)

We will consider the two types of random perturbations Qω:

1. The case where Qω is the operator of multiplication by a random real-valued function

qω : X −→ R. (Random Potential case)

2. The case where Qω is a pseudo-differential operator given by the quantization

Qω := Oph(qω) (Random ΨDO case)

of a random real-valued function
qω : T ∗X −→ R

belonging to the symbol class S−∞
β (T ∗X), see the Appendix for a definition of this notion.
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Let us now describe what models of random functions qω we consider. Fix a parameter β ∈]0, 1/2[,
let Jh ⊂ N be a set of indices of cardinality |Jh| = O(h−M ), for some M > 0, and let {qj}j∈Jh
be a family of possibly h-dependent smooth compactly supported functions on X, when we are
in the Random Potential case, or on T ∗X when we are in the Random ΨDO case. To construct
a random function on X (resp. on the phase space T ∗X) from the single-site potentials qj , we
let ω = {ωj}j∈Jh be a sequence of independent and identically distributed (iid) random variables
(the precise assumptions we make on the {ωj} will be described in Hypothesis 8.3.5 below) and
we set

qω(ρ) :=
∑
j∈Jh

ωj qj(ρ), in the Random ΨDO case,

qω(x) :=
∑
j∈Jh

ωj qj(x), in the Random Potential case.
(8.3.3)

We make the following additional assumptions.

Hypothesis 8.3.1 (Hypotheses on the single-site potential).

i. Each qj is compactly supported, with a support of diameter O(hβ) uniformly in j ∈ Jh.

ii. There exists C > 0, independent of h, such that for all ρ ∈ X (resp. ρ ∈ T ∗X), ρ belongs to
the support of at most C functions qj.

iii. For any k ∈ N, there exists Ck > 0 such that

∥qj∥Ck ⩽ Ckh
−βk ∀j ∈ Jh. (8.3.4)

iv. There exists c0 > 0 such that, for any T > 0 and any ρ ∈ S∗X, we have

∑
j∈Jh

∫ T

0
qj
(
Φt(ρ)

)
dt ⩾ c0T, (8.3.5)

in the Random ΨDO case. Here, Φt : T ∗X −→ T ∗X denotes the geodesic flow. In the
Random Potential case, we work with the same assumption but with qj

(
Φt(ρ)

)
replaced by

qj
(
πX ◦ Φt(ρ)

)
, where πX : T ∗X → X denotes the projection on the base manifold X.

Example 8.3.2. To build such a family of single-site potentials, one may for instance cover X
(resp. S∗X) by geodesic balls B(ρj , h

β) of radius hβ and centred at ρj, such that each point belongs
to at most C balls. We may then take

qj = χ
(
h−βdist(ρj,h, ρ)

)
,

where χ ∈ C∞
c ([0,∞); [0, 1]) takes value 1 on [0, 1], and where dist means either distX or distT ∗X .

Hypothesis 8.3.3. We suppose that there exists 0 < ε0 <
1
4 and h0 > 0 such that for all h ⩽ h0,

we have
δh−2β−ε0 ⩽ 1, (8.3.6)

δ2hβ−2 ⩾ h−ε0 . (8.3.7)

In the Random Potential case, we will also need to assume that

δhβ−1 ⩽ hε0 . (8.3.8)



98 CHAPTER 8. EIGENVECTOR DELOCALIZATION

β

α

1
2

1

1
2

1

Figure 8.1: Admissible parameters α and β, see Hypothesis 8.3.3. The dark grey region is admissible for
the Random Potential case and the Random ΨDO case, while the light grey region is only admissible in
the Random ΨDO case.

Remark 8.3.4. It is natural to consider the case δ = hα with 2β ⩽ α. However, we will stick
with a coupling constant δ for the sake of generality.

Note that when δ = hα, conditions (8.3.6) and (8.3.7) rewrite

0 < β < min
(α
2
, 2− 2α

)
,

while (8.3.8) rewrites
β > 1− α.

These conditions are plotted on Figure 8.1.

Finally, we need some assumption on the probability distributions ωj .

Hypothesis 8.3.5. We suppose that the iid random variables (ωj)j∈Jh are real-valued and satisfy
the following assumptions:

1. The ωj are bounded.

2. Var(ωj) > 0.

3. We suppose that the random variables (ωj)j∈Jh have a common distribution with a compactly
supported density m ∈ C2

c (R; [0,+∞[) with respect to the Lebesgue measure.

8.4 Randomization, local weak limits and the Berry Gaussian field

We aim to compare a noisily propagated Lagrangian state u = ei
t
h
P δ
hfh (8.3.2) locally near a ran-

domly chosen point on X with a stationary isotropic smooth monochromatic Gaussian stochastic
process. To do this we will – roughly speaking – pick a point x0 of X uniformly at random, rescale
u near x0 to the microscopic scale h in local geodesic coordinates, and then compare this now
probabilistic rescaled version of u with a Gaussian stochastic process. To make this precise we
will recall notions introduced in [122].

Random smooth functions.

In what follows we equip the space C∞(Rd) with the topology of the convergence of all derivatives
over all compact sets, i.e. for the topology induced by the family of seminorms

∥f∥n := max
x∈B(0,n)

max
|α|⩽n

|∂αf(x)|, n ∈ N.
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Notice that C∞(Rd) is a separable Fréchet, and therefore a Polish, space. The above topology
can metrized with the distance

d(f, g) =

∞∑
n=1

2−nmin (∥f − g∥n, 1) . (8.4.1)

We equip C∞(Rd) with the Borel σ-algebra B(C∞(Rd)). A random smooth function on Rd is a
random variable with values in C∞(Rd). We refer the reader to the review [144, Appendix A] for
more details on this notion.

We highlight the notion of convergence in law. A sequence of random smooth functions {fn}n∈N
on Rd is said to converge in law to a random smooth function f on Rd, i.e.

fn
d−→ f, n→ ∞,

if the laws of the random functions converge weakly. More explicitly, this means that for all
bounded continuous functions F ∈ Cb(C

∞(Rd)) we have that

E[F (fn)] −→ E[F (f)], n→ ∞.

Randomization and local weak limits.

Our aim is to study the convergence of a sequence of deterministic smooth functions on X near
a randomly chosen point at the scale h > 0. To avoid any topological difficulties, we define this
convergence locally, though all of our results will hold regardless of the choice of localization.

Let U ⊂ X be a small enough open set so that we can define an orthonormal frame V =
(V1, . . . , Vd) on it, that is to say a family of smooth sections (Vi)i=1,...,d : U −→ TX such that,
for each x ∈ U , (V1(x), . . . , Vd(x)) is an orthonormal basis of TxX. If x ∈ U and y ∈ Rd, we will
write yV (x) := y1V1(x) + · · ·+ ydVd(x) ∈ TxX, and

expx(y) := expx(yV (x)) . (8.4.2)

Here expx denotes the exponential map restricted to TxX. Note that the map (8.4.2) is well defined
for all y ∈ Rd since the underlying Riemannian manifold is complete. All the constructions in
this section will depend on the choice of the local frame V , and will hence not be intrinsic.

With the above quantities and definitions in mind, we can define our notion of local weak limit.

Definition 8.4.1. (Local weak limit) Let (X, g) be a compact smooth Riemannian manifold. Let
U ⊂ X be an open set and V an orthonormal frame on U as in (8.4.2). Let {fh}h>0 be a family
of functions in C∞(X), and let f be a smooth random function on C∞(Rd). Let x be a random
variable with values in U uniformly distributed with respect to the Riemannian volume measure on
U .

Then, we say that f is the local weak limit of {fh}h in the frame V if the random smooth
function fx,h(y) := fh(expx(hy)) on Rd converges in law to f as h→ 0, i.e. if

fx,h
d−→ f, h→ 0.

Let us give some remarks on that definition: fx,h is a well defined C∞(Rd) random function
Rd and, by definition, saying that f is the local weak limit of {fx,h}h in the frame V means that,
for any bounded continuous functional F : C∞(Rd) −→ R, we have

Ex[F (fx,h)] :=
1

Vol(U)

∫
U
F (fx,h)dvg(x) −→ E[F (f)] as h→ 0, (8.4.3)

where dvg denotes the Riemannian volume measure on X.
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The Berry Gaussian field.

An almost surely (or a.s.) C∞ (centered) Gaussian field onRd is a random variable f taking, up to a
set of probability 0, values in C∞(Rd) such that for any finite collection of points x1, . . . ,xk ∈ Rd,
the random vector (f(x1), . . . , f(xk)) ∈ Cd is (centered) Gaussian. We say that two fields f1 and
f2 are equivalent if they have the same law. In the sequel, unless otherwise stated, we will always
identify fields which are equivalent.

Let f be an a.s. C∞, centered Gaussian field on Rd. Then, its covariance kernel K : (x,y) 7→
E[f(x)f(y)] defined on Rd ×Rd is positive definite, meaning that for each k-tuple (x1, . . . ,xk) ∈
(Rd)k, the matrix K(xi,xj)i,j is positive. As explained for instance in Appendix A.11 of [144],
the function K belongs to C∞(Rd×Rd) and there is actually a one-to-one correspondence (up to
equivalence) between smooth covariance kernels and a.s. C∞ centred Gaussian fields on Rd.

Definition 8.4.2. The Berry Gaussian field with normalization constant λ ∈ R, denoted by
BGFλ, is the unique (up to equivalence) a.s. C∞ stationary Gaussian field on Rd whose covariance
kernel is λ

∫
Sd−1 e

i(x−y)·ξdσ(ξ), where σ is the uniform probability measure on Sd−1.
If F : C∞(Rd) −→ R is a bounded continuous functional, its expectation with respect to the

BGFλ will be denoted by EBGFλ
[F ].

We remark that the Berry Gaussian field BGFλ is the unique (up to equivalence) normalized
monochromatic stationary isotropic Gaussian field with normalization E[|BGFλ(0)|2] = λ. Indeed,
stationary means that its covariance kernel depends only on the difference (x−y). Isotropic means
that the covariance kernel is invariant under (the same) rotation of x and y, so it only depends
on |x− y|. Monochromatic means that the covariance kernel satisfies −∆K = K with respect to
both variables x and y, corresponding to the fact that a realization f of the Berry Gaussian field
satisfies −∆f = f a.s.

8.5 Emergence of the BGF in noisy long-time propagation of La-
grangian states

Let fh be a monochromatic Lagrangian state whose associated Lagrangian manifold is η-unstable
for η small enough. We study the local weak limit of the propagated Lagrangian state uh = ei

t
h
P δ
hfh

(8.3.2). Following Definition 8.4.1 we are interested in studying the limiting law of the random
function (

ei
t
h
P δ
hfh

)
(expx(hy)) (8.5.1)

where x is a uniformly distributed random variable in U ⊂ X. Notice that in this expression we
have two different sources of randomness: one coming from the perturbation Qω and one coming
from x. To make this distinction clear we will denote the expectation with respect to x by Ex,
see (8.4.3), and the probability with respect to the law of ω by Pω. Accordingly we will denote
the associated expectation by Eω.

Our first result shows that when fixing x, away from a set of asymptotically negligible measure,
the random function (8.5.1) converges in law to a BGF.

Theorem 8.5.1. Let X be a compact connected Riemannian manifold with negative sectional
curvature and without boundary. Let P δh be as in (8.3.1) and suppose that Hypotheses 8.3.1, 8.3.3
and 8.3.5 are satisfied. Let D > 0. There exists η = η(D) > 0 such that the following holds.

Let fh = ae
i
h
ϕ be a monochromatic Lagrangian state associated to a Lagrangian manifold

which is η-unstable, has distortion ⩽ D and satisfies ∥ϕ∥C3 ⩽ D. There exists X0
h ⊂ X, with

Vol(X0
h) → 0 as h → 0, such that the following holds: Let U ⊂ X be an open set, and V be an

orthonormal frame on U . Let (th)h>0 be such that th → +∞, as h→ 0, and |th| = oh→0(| log h|).
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Then, for every x ∈ U \X0
h (

e
i
h
thP

δ
hfh

)
(expx(h·))

d−→ BGFλa

with λa =
∥a∥2

Vol(X) .

The assumption on the distortion of Λ (as defined in (8.2.3)) is purely technical, and it auto-
matically follows from bounds on ∥ϕ∥C2 if ϕ is defined on a convex set. We insist here on the fact
that the convergence in law stated in Theorem 8.5.1 is with respect to the ω random variables
coming from the random perturbation and for a fixed x.

Our second main result concerns the random smooth function(
ei

t
h
P δ
hfh

)
(expx(hy)) (8.5.2)

where x is a uniformly distributed random variable in U ⊂ X. The random variable x generates
the law of (8.5.2) which depends on ω. Indeed, this law is, with respect to ω a random probability
measure. The result below states that this random law converges weakly in probability (with
respect to ω) to the law of the BGF.

Theorem 8.5.2. Let X be a compact connected Riemannian manifold with negative sectional
curvature and without boundary. Let P δh be as in (8.3.1) and suppose that Hypotheses 8.3.1, 8.3.3
and 8.3.5 are satisfied. Let D > 0. There exists η = η(D) > 0 such that the following holds:

Let U ⊂ X be an open set, and V be an orthonormal frame on U . Let fh = ae
i
h
ϕ be a monochro-

matic Lagrangian state associated to a Lagrangian manifold which is η-unstable, has distortion ⩽ D
and satisfies ∥ϕ∥C3 ⩽ D. Let (th)h>0 be such that th −→

h→0
+∞ and |th| = oh→0(| log h|). Then, for

any ε > 0 and every F ∈ Cb(C
∞(Rd)) we have that for h > 0 small enough

Pω

[∣∣∣Ex[F (e
i
h
thP

δ
hfh(expx(h·)))]−EBGFλa

[F ]
∣∣∣ ⩾ ε

]
= O(h∞) (8.5.3)

where λa =
∥a∥2

Vol(X) .

Remark 8.5.3. The assumption |th| = oh→0(| log h|) can be slightly weakened. Indeed, the proof of
Theorem 8.5.2 actually shows that for every L ∈ N, there exists cL > 0 such that, if th ⩽ cL| log h|,
we have that for any ε > 0 and every F ∈ Cb(C

L(Rd)) we have that for h > 0 small enough

Pω

[∣∣∣Ex[F (e
i
h
thP

δ
hfh(expx(h·)))]−EBGFλa

[F ]
∣∣∣ ⩾ ε

]
= O(h∞).

Here F : CL(Rd) −→ R is a bounded functional which is continuous for the topology of convergence
of derivatives over compact sets.

The possibility of extending our results to longer time scales will be explored in future works.

Corollary 8.5.4. Under the assumptions of Theorem 8.5.2 we have that for any sequence hj → 0,
j → ∞, such that there exists an M > 0 such that (hMj )j∈N ∈ ℓ1(N), we have that for every
F ∈ Cb(C

∞(Rd))

Ex[F (e
i
hj
thjP

δ
hj fhj (expx(hj ·)))] → EBGFλa

[F ], j → ∞, (8.5.4)

ω-almost surely. In particular, ω-almost surely, BGFλa is the local weak limit of {e
i
hj
thjP

δ
hj fhj}hj

in the frame V .

While the first part of Corollary 8.5.4 follows readily from Theorem 8.5.2 and the Borel-Cantelli
lemma, the second part (about the local weak limit) is slightly more involved.
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8.6 An application: Improved L∞ bounds for eigenfunctions

Background There are several ways of describing the delocalization properties of eigenfunctions
ψλ of the Laplace-Beltrami operator: one is through the use of semiclassical measures, i.e. weak
limits of the probability measures |ψλ(x)|2dx (and their lifts to S∗X); another is by studying the
Lp norms of ψλ, and in particular, their L∞ norms.

It is has been known since the work of Avakumovíc, Hörmander and Levitan [10,118,133] that,
on any compact smooth Riemannian manifold, if −∆gψλ = λψλ, ψλ ∈ L2, then

∥ψλ∥L∞ ⩽ Cλ
d−1
4 ∥ψλ∥L2 , (8.6.1)

and these bounds are saturated by zonal spherical harmonics. More generally, sharp bounds for
the other Lp norms of eigenfunctions were obtained by Sogge in [179].

It is believed that, on manifolds of negative curvature, such bounds can be largely improved,
thus reflecting the aforementioned delocalization of eigenfunctions. For instance, on surfaces of
negative curvature, it was conjectured by Sarnak [160] that ∥ψλ∥L∞ = O(λε) for any ε > 0.
However, on negatively curved manifolds of higher dimension, such a bound cannot hold, since
[157] gave examples of eigenfunctions whose L∞ norm grows polynomially.

While the study of semiclassical measures of Laplace eigenfunctions on manifolds of negative
curvature has enjoyed major advances in the past years, see for instance [4,8,65,66], much less is
known for the L∞ norms. Bérard [23] proved a logarithmic improvement on (8.6.1) on manifolds
of negative curvature, i.e.

∥ψλ∥L∞ ⩽ C
λ

d−1
4

√
log λ

∥ψλ∥L2 . (8.6.2)

In the special setting of certain arithmetic surfaces Iwaniec and Sarnak [126] obtained polynomial
improvements on the estimate (8.6.1).

Recently, the estimate (8.6.2) was generalized to milder dynamical conditions than negative
curvature by Bonthonneau [32] and Canzani and Galkowski [46]. Similar logarithmic improve-
ments were obtained by several authors for other Lp norms, see [26, 45, 98, 105]. However, no
polynomial improvements over (8.6.1) were obtained in non-arithmetic settings.

It is believed that estimates as (8.6.1) or (8.6.2) could more easily be improved in a generic
setting, for instance by changing generically the metric or adding a generic potential. This is the
approach of the works by Eswarathasan and Toth [76] and Canzani, Jakobson and Toth [47]. Yet,
in these papers, the authors obtain bounds on the quantity ψλ(x) averaged over the perturbation,
hence, such results do not give information about genuine eigenfunctions of a generically perturbed
operator.

Here, we are interested in L∞ norms of eigenfunctions under generic perturbation. Namely, we
consider a manifold of negative curvature and build random perturbations of the Laplace-Beltrami
operator by adding a small random pseudo-differential operator with a symbol rapidly oscillating
on a mesoscopic scale. Roughly speaking, our main result given in Theorem 8.6.1 below states that

With overwhelming probability, we have a polynomial improvement over (8.6.1) for the eigen-
functions of the perturbed operator.

The setting Let (X, g) be a compact smooth Riemannian manifold of negative sectional curva-
ture, connected and without boundary, and let 0 < λ1 < λ2. Let ∆g denote the Laplace-Beltrami
operator on X.

In the sequel, we will use semiclassical notations: let h > 0 be a small parameter (corresponding
to a multiple of λ−1/2 in the introduction), and ψh ∈ L2(Rd) will be a normalized eigenfunction
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of −h2∆g, satisfying
−h2∆gψh = Ehψh, (8.6.3)

for some Eh ∈ (λ1, λ2). The bound (8.6.1) can be rephrased as

∥ψh∥L∞ = O(h
1−d
2 ). (8.6.4)

Our aim is to show that (8.6.4) can be improved if a small generic perturbation is added to −h2∆g.

8.6.1 Conjugating with noisy quantum dynamics

We work here under the same assumptions as in Section 8.3. The operator whose eigenfunctions
we will study in this section is not P δh , see (8.3.1), itself, but rather the operator

P̃ δh := e−i
t
h
P δ
h (−h2∆g)e

i t
h
P δ
h , (8.6.5)

for some fixed t > 0, independent of h. By a slightly exotic version of Egorov’s theorem A.4, we
have

P̃ δh = e−i
t
h
P δ
hP δhe

i t
h
P δ
h − δe−i

t
h
P δ
hQωe

i t
h
P δ
h

= −h2∆g + δQω − δe−i
t
h
P δ
hQωe

i t
h
P δ
h

=: −h2∆g + δQ̃ω.

Here, Q̃ω ∈ Ψcomp
β (X) with principal symbol

q̃ω = qω − (Φtδ)
∗qω +O(h1−2β) ∈ Scompβ . (8.6.6)

The operator P̃ δh may thus be seen as a perturbation of −h2∆g by a random pseudo-differential
operator δQ̃β given in leading order by a pseudo-differential operator with a random symbol in
δScomp

β (T ∗X). The operator P̃ δh has the same eigenvalues as −h2∆g, and if ψh is an eigenfunction

of −h2∆g, then e−i
t
h
P δ
hψh is an eigenfunction of P̃ δh . Our aim will thus be to obtain improved

bounds on
∥e−i

t
h
P δ
hψh∥L∞

with high probability (under appropriate conditions on δ and β).

8.6.2 Improved L∞ bounds

Recall Hypothesis 8.3.3 and Remark 8.3.4. Let us take Γ > 0 such that, for h small enough,

δh−2β ⩽ hΓ

h1−Γ ⩽ δhβ/2,
(8.6.7)

which is possible thanks to Hypothesis 8.3.3. In particular, when δ = hα, we may take

Γ < min(1− α− β

2
, α− 2β). (8.6.8)

We then set
Γ′ := min

(
Γ,

(d− 1)β

2

)
. (8.6.9)

Theorem 8.6.1. Let 0 < λ1 < λ2, let t > 0, and let P̃ δh be of the form (8.6.5). There exists
Ωh ⊂ Ω with P(Ωh) = 1−O(h∞) such that, for all ω ∈ Ωh, the following holds.

If ψh satisfies P̃ δhψh = Ehψh with Eh ∈ (λ1, λ2), then, for any Γ as in (8.6.9), we have

∥ψh∥L∞ ⩽ Ch
1−d
2

+Γ′−ε∥ψh∥L2 . (8.6.10)
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Actually, the same result holds with the same proof for spectral clusters of the form

ψh =
∑

λh∈[Eh,Eh+O(h)]

ψλh ,

where P̃ δhψλh = λhψλh and Eh ∈ (λ1, λ2).

Remark 8.6.2. The general strategy of the proof of Theorem 8.6.1 is that using the standard
normal form for operators of principal type and a suitable microlocal partition of unity, we can
show that an eigenfunction ψh of the Laplacian can be decomposed as a sum of O(h1−d−ε) many
Lagrangian states. We can then apply our results (or more precisely elements of the proofs leading
to these results) on noisy propagation of Lagrangian states to obtain the improve L∞ bounds. For
more details we refer the reader to [124].

Remark 8.6.3. When d = 2, we may take α = 5
7 and β = 2

7 − ε, leading to Γ′ = 1
7 − ε for an

arbitrarily small ε > 0, i.e.
∥ψh∥L∞ ⩽ Ch−

5
14

−ε∥ψh∥L2 . (8.6.11)

When d = 3, the optimal value of Γ′ we can obtain from (8.6.9) is Γ′ = 2
9 − ε.

Remark 8.6.4. By interpolation, one can obtain bounds for the other Lp norms. However, the
value of Γ′ we can obtain (at least for d = 2 or d = 3) does not improve Sogge’s estimates on the
smallest Lp norms, see [204, Theorem 10.10].

Remark 8.6.5. In the above, we make the assumption that X is negatively curved, so as to use
directly the technical results of the proofs in [123]. However, it is likely that the present argument
could be adapted without the negative curvature assumption, possibly with further restrictions on
α and β, and on the time t in (8.6.5). This will be pursued elsewhere.

8.7 Ideas of the proof of Theorems 8.5.1 and 8.5.2

The central tool to obtain the results of the previous paragraph is the WKB method, which
gives a precise description of the evolution of a Lagrangian state by the semiclassical Schrödinger
equation. Namely, when working on the universal cover X̃ of a manifold of negative curvature, it
is standard that the function ei

t
h
P̃ δ
h f̃h can be well-approximated by another Lagrangian state:

ã(x̃; t, h, δ)e
i
h
ϕ̃(x̃;t,h,δ). (8.7.1)

We can show that for the perturbations described in subsection 8.3, we may actually write

ei
t
h
P̃ δ
h f̃h(x̃) ≈ a(x̃; t)e

i
h
ϕ(x̃;t)ei

δ
h
Θ̃(x̃;t,h,δ), (8.7.2)

so that the randomness of P δh appears only through the random phase Θ̃. Actually, Θ̃ can be
written as the integral of qω over a geodesic going from Λ̃ϕ to x̃.

When working on the initial manifold X, we need to sum contributions coming from different
sheets in the universal cover, so that we get

ei
t
h
P δ
hfh(x) ≈

∑
k

ak(x; t)e
i
h
ϕk(x;t)ei

δ
h
Θk(x;t,h,δ), (8.7.3)

where the number of terms grows exponentially with k. When performing a rescaling at scale h,
we get (

ei
t
h
P δ
hfh

)
(expx(hy)) ≈

∑
k

ak(x; t)e
i
h
ϕk(x;t)ei

δ
h
Θk(x;t,h,δ)eiy·∇ϕk(x;t). (8.7.4)
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This is thus the sum of a large number of plane waves (in the y variable) with random phases.
We can show that the phases can be made independent by excluding a set of points x of small
measure, so that Theorem 8.5.1 will follow from the Central Limit Theorem.

To obtain Theorem 8.5.2, we show that, if x and x′ are at a distance hβ−ε from each other,
then the phases Θk(x; t, h, δ) and Θk(x

′; t, h, δ) are independent from each other, for most choices
of x and x′. This will allow us to transfer the randomness coming from P δh to spatial randomness,
obtained by picking the point x at random.
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Appendix A

A brief review of Semiclassical Analysis

In this appendix we review a few notions of semiclassical analysis following the books [63, 67, 90,
140,164,204].

A.1 Semiclassical Pseudo-differential Calculus

Let X be a smooth d-dimensional Riemannian manifold without boundary. Let T ∗X denote the
cotangent bundle and let T ∗

X denote the fiber-radial compactified cotangent bundle, see [190,
Section 2] and the book [67, Section E.1.3]. This bundle is a manifold with interior T ∗X and
boundary diffeomorphic to S∗X ≃ ∂T

∗
X.

A.1.1 Symbol classes and quantization on Rd

Let d ⩾ 1 and note that T ∗Rd ≃ R2d. An order function m ∈ C∞(R2d; [1,∞[), namely a function
satisfying the following growth conditions:

∃C0 ⩾ 1, ∃N0 > 0 : m(ρ) ⩽ C0⟨ρ− µ⟩N0m(µ), ∀ρ, µ ∈ R2d, (A.1.1)

with the usual “Japanese brackets” notation ⟨ρ − µ⟩ :=
√
1 + |ρ− µ|2. We will also sometimes

write (x, ξ) = ρ ∈ R2d, so that ξ ∈ Rd. To this order function is associated a semiclassical symbol
class [63, 204]. For η ∈ [0, 1/2] let

Sη(m) := Sη(R
2d,m) :=

{
q ∈ C∞(R2d

ρ , ]0, 1]h); ∀α ∈ N2d, ∃Cα > 0 :

|∂αρ q(ρ;h)| ⩽ Cαh
−η|ρ|m(ρ), ∀ρ ∈ R2d, ∀h ∈]0, 1]

}
. (A.1.2)

When η = 0 we will simply write S(m) = S0(m). For h ∈]0, 1] we let Ph denote the h-Weyl
quantization of the symbol p ∈ Sη(R

2d,m),

Phu(x) = pw(x, hDx;h)u(x) =
1

(2πh)d

∫∫
R2d

e
i
h
(x−y)·ξ p

(
x+ y

2
, ξ;h

)
u(y)dydξ, (A.1.3)

for u ∈ S(Rd), seen as an oscillatory integral. Note that Ph : S → S, and by duality Ph : S ′ → S ′,
continuously.

A.1.2 Symbol classes and quantization on general manifolds

For k ∈ R and η ∈ [0, 1/2[ we say that a smooth function a(x, ξ;h) ∈ C∞(T ∗X × (0, 1]) lies in
the symbol class Skη (X) if and only if for all compact sets K ⊂ X and all multiindices α, β ∈ Nd

there exists a constant Cα,β,K > 0 such that

sup
x∈K

|∂αx ∂
β
ξ a(x, ξ;h)| ⩽ Cα,β,Kh

−η(|α|+|β|)⟨ξ⟩k−|β|. (A.1.4)

109
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Here ⟨ξ⟩ := (1 + |ξ|2g)1/2. Note that this symbol class is independent of the choice of local
coordinates. We define a residual class of symbols by S−∞

η (X) :=
⋂
k∈R S

k
η (X). Furthermore,

h∞S−∞
η (X) is defined as follows

a ∈ h∞S−∞
η (X) ⇐⇒ ∀α, β ∈ Nd, K ⋐ X, N > 0 : ∂αx ∂

β
ξ a(x, ξ;h) = Oα,β,K,N (h

N ⟨ξ⟩−N ),

uniformly when x varies in K.

We will also consider the symbol classes Scomp
η (X) consisting of compactly supported func-

tions a(x, ξ;h) ∈ C∞(T ∗X × (0, 1]) satisfying (A.1.4), with a support bounded independently of
h. Hence, Scomp

η (X) ⊂ Skη (X) for all k ∈ R. When η = 0, then we write Scomp(X) = Scomp
0 (X)

and Sk(X) = Sk0 (X) for simplicity. If U is an open set of T ∗X, we will sometimes write Scomp
η (U)

for the set of functions a in Scomp
η (X) such that for any h ∈]0, 1], a has its support in U .

Pseudodifferential operators and quantization. A linear continuous map R = Rh : E ′(X) →
C∞(X) is called negligible, or in the residual class h∞Ψ−∞, if its distribution kernel KR is smooth
and each of its C∞(X ×X) seminorms is O(h∞), i.e. it satisfies

∂αx ∂
β
yKR(x, y) = O(h∞),

for all α, β ∈ Nd, when expressed in local coordinates.

A linear continuous map Ph : C∞
c (X) → D′(X) is called a semiclassical pseudo-differential

operator belonging to the space Ψm
h,η if and only if the following two conditions hold:

1. ϕPhψ is negligible for all ϕ, ψ ∈ C∞
c (X) with suppϕ ∩ suppψ = ∅;

2. for every cut-off chart (κ, χ) there exists a symbol pκ ∈ Smη (Rd) such that

χPhχ = χκ∗pwκ (x, hDx;h)(κ
−1)∗χ. (A.1.5)

Here, κ : X ∋ U → V ⊂ Rd is a diffeomorphism between open sets and χ ∈ C∞
c (U). We refer

to the pair (κ, χ) as a cut-off chart. In (A.1.5) we use the semiclassical Weyl quantization of the
symbols pκ defined in (A.1.3).

We have the surjective semiclassical principal symbol map

σ : Ψm
h,η(X) → Smη (X)/h1−2ηSm−1

η (X) (A.1.6)

whose kernel is given by h1−2ηΨm−1
h,η and its right inverse is given by a non-canonical quantization

map
Oph : Smη (X) → Ψm

h,η(X). (A.1.7)

Such a (not intrinsic) quantization map can be defined for example as follows: let (ϕj , χj)j be a
countable family of cut-off charts whose domains Uj cover X and such that

∑
j χj = 1 on X. Let

χ′
j ∈ C∞

c (Uj ; [0, 1]) be equal to 1 near suppχj . Then, given a ∈ Smη (X) we define

Oph(a) :=
∑
j

χ′
jϕ

∗
j ((ϕ̃

−1
j )∗(χja))

w(x, hDx;h)(ϕ
−1
j )∗χ′

j . (A.1.8)

where ϕ̃j : T ∗Uj → T ∗Vj is lift of the chart ϕj defined by ϕ̃j(x, ξ) = (x, (dϕ(x))−T ξ). Notice that
Oph(a) is in particular properly supported. Furthermore, we have that

Ψm
h,η(X) = Oph(S

m
η (X)) + h∞Ψ−∞. (A.1.9)
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We see that any operator in Ψm
h,η(X) can represented by a properly supported operator in Ψm

h,η(X)

up to a negligible term in h∞Ψ−∞.

Compositions of pseudo-differential operators are pseudo-differential operators and we have
for properly supported A ∈ Ψm

η (X), B ∈ Ψm′
η (X) that A ◦B ∈ Ψm+m′

η (X) and

σh(A ◦B) = σh(A)σh(B),

σh([A,B]) = −ih{σh(A), σh(B)},
(A.1.10)

where {·, ·} denotes the Poisson bracket with respect to the natural symplectic structure on T ∗X.

A.1.3 Semiclassical Sobolev spaces

We now recall the definition of semiclassical Sobolev spaces on X. First of all, when X = Rd, we
define for s ∈ R the semiclassical Sobolev space Hs

h(R
d) ⊂ S ′(Rd) as the space of all tempered

distributions u ∈ S ′(Rd) such that

∥u∥Hs
h(R

d) = ∥Oph(⟨ξ⟩s)u∥L2(Rd) <∞.

WhenX is a smooth manifold, we define for s ∈ R the local semiclassical Sobolev space Hs
h,loc(X) ⊂

D′(X) as the set of all distributions u ∈ D′(X) such that

(κ−1)∗χu ∈ Hs
h(R

d)

for all local coordinate charts κ : X ⊃ U → V ⊂ Rd and cut-off functions χ ∈ C∞
c (U). We

can turn Hs
h,loc(X) into a Fréchét space by equipping it with the countable family of seminorms

{∥(κ−1
k )∗χku∥Hs

h(R
d)}k∈K , for any fixed, open and locally finite countable covering of X with co-

ordinate charts {κk : X ⊃ Uk → Vk ⊂ Rd}k∈K and subordinate partition of unity {χk}k∈K ,
χk ∈ C∞

c (Uk). The topology on Hs
h,loc(X) induced by such a family of seminorms is independent

of the choice of open locally finite covering, coordinate charts and partition of unity.

We denote by Hs
h,comp(X) the space of all elements of Hs

h,loc(X) which are supported inside
some h-independent compact subset of X. When we are dealing with the case h = 1 in the local
Sobolev norms, we will simply write Hs

comp(X) and Hs
loc(X) for the corresponding spaces. We

note the following regularity result: each A ∈ Ψm
h,η(X) is bounded uniformly in h on compact sets

as an operator
A : Hs

h,comp(X) −→ Hs−m
h,loc (X). (A.1.11)

When X is compact then
Hs
h,comp(X) = Hs

h,loc(X) =: Hs
h(X)

and we can equip it with the norm

∥u∥2Hs
h(X) =

∑
k∈K

∥(κ−1
k )∗χku∥2Hs

h(R
d), Card(K) < +∞, (A.1.12)

where {κk} is a finite collection of coordinate charts with a subordinate partition of unity 1 =∑
k χk as above. This norm is not intrinsically defined, but taking different coordinate patches

and cut-off functions in (A.1.12) yields an equivalent norm.

Similarly we define, for every L ∈ N, the CL norms on X, by

∥u∥CL(X) = max
k∈K

∥(κ−1
k )∗χku∥CL(Rd). (A.1.13)
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Since X is compact it follows that taking different coordinate patches and cut-off functions in
(A.1.13) yields an equivalent norm. By standard arguments one then gets the Sobolev inequalities

∥u∥CL(X) = Od,s,L(1)h
−d/2−L∥u∥Hs

h(X) for s > L+ d/2. (A.1.14)

On non-compact manifolds it is more delicate to obtain well-defined Sobolev norms. For the
following discussion we refer the reader to [163, Appendix A].

A smooth Riemannian manifold X is called a manifold of bounded geometry if it has a strictly
positive injectivity radius rinj > 0 and every covariant derivative of the Riemann curvature tensor
R is bounded, i.e. for very m = 0, 1, . . . there exists a Cm > 0 such that |∇mR| ⩽ Cm.

Let X be a manifold of bounded geometry and denote by dvg the Riemannian density on X.
We define the semiclassical Sobolev norm ∥ · ∥Hs

h(X), s ∈ N, on C∞
c (X) by

∥u∥2Hs
h(X) =

s∑
m=0

∫
X
|(h∇)mu|2dvg, (A.1.15)

where | · | is understood as the norm on tensors induced by the Riemannian metric g.
We then define the Sobolev space Hs

h(X) to be the completion of C∞
c (X) with respect to the

norm (A.1.15). The space Hs
h(X) has a natural structure of a Hilbert space, and it is naturally

included in the space of distributions D′(X). In particular H0
h(X) = L2(X, dvg), where the latter

is defined via the L2 norm with respect to the integration measure dvg. The usual embedding
theorems hold, i.e. Hs

h(X) ⊂ Ckb (X) if s > k + d/2.
Since by assumption X has a strictly positive injectivity radius, we have the following result

essentially due to M. Gromov [91], see also [163, Lemma A.1.2] for a proof.

Lemma A.1.1. Let X be a smooth Riemannian manifold of bounded geometry and put ε0 = rinj/3.
Then, for every ε ∈ (0, ε0) there exists a countable covering of X by balls of radius ε such that
X =

⋃
k∈K B(xk, ε) and such that the covering of X by balls B(xk, 2ε) with double radius and the

same centres satisfies that the maximal number of the balls with non-empty intersection is finite.

This result implies the existence of a “uniform” partition of unity of X subordinate to the
covering by balls from the above Lemma. Indeed, for every ε ∈ (0, ε0), with ε0 > 0 as in the
Lemma above, there exists a partition of unity 1 =

∑
k χk on X such that χk ∈ C∞

c (X; [0,∞[)
with suppχk ⊂ B(xk, 2ε) (the points xk as in the above Lemma) and such that for every α ∈ Nd

there exists a constant Cα > 0 such that |∂αy χk(y)| ⩽ Cα in geodesic normal coordinates and
uniformly with respect to k.

Using this partition of unity we can give an alternative definition of the semiclassical Sobolev
norm ∥u∥h,s. Indeed, let κk : B(xk, 2ε) =: Uk → Vk ⊂ Rd be the local geodesic coordinate chart
in B(xk, 2ε), then we can define for s ∈ R

∥u∥2Hs
h(X) =

∑
k∈K

∥(κ−1
k )∗χku∥2Hs

h(R
d). (A.1.16)

The norms (A.1.15) and (A.1.16) are equivalent for s ∈ N.

In chapter 8 we are working with a compact smooth Riemannian manifold X of negative
sectional curvature and with its universal cover X̃. Let κk : Uk → Vk ⊂ Rd, k = 1, . . . ,M , be
the local geodesic coordinates on X with Uk = B(xk, 2ϵ) as in the discussion above (A.1.16), such
that the coordinate patches Uk, k = 1, . . . ,M , form a finite open covering of X. Furthermore,
let χk ∈ C∞

c (X; [0, 1]), k = 1, . . . ,M , be a finite partition of unity of X subordinate to this
open covering. Using that the covering map is a local isometry, we find that the lifted coordinate
charts κ̃k,ι = π̃∗k,ικk, where π̃k,ι := π̃|Uk,ι

: Ũk,ι → Uk, as in the beginning of Section A.1.4, are
local geodesic coordinates on X̃, the universal covering of X, with coordinate patches Ũk,ι =
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B(π̃−1
k,ι (xk), 2ϵ). Furthermore, the coordinate patches form a locally finite open covering of X̃.

The lifted cut-off functions χk,ι form a locally finite partition of unity on X̃, i.e.
∑

k,ι χ̃k,ι = 1 on
X̃. We will be working mostly with the following Sobolev and CL norms: let Ũ ⊂ X be an open
set, then

∥u∥2
Hs

h(X̃)
=
∑
k,ι

∥(κ−1
k,ι )

∗χk,ιu∥2Hs
h(R

d), ∥u∥
CL(Ũ)

:= max
k,ι

∥(κ−1
k,ι )

∗χk,ιu∥CL(Rd∩κk,ι(Ũ∩Ũk,ι))
.

(A.1.17)

A.1.4 Lifting pseudodifferential operators to the universal cover

In the sequel, (X, g) will be a smooth connected Riemannian manifold of negative sectional cur-
vature without boundary. We denote by rI its injectivity radius, which is a finite positive number
as soon as X is compact.

We write χ1 ≻ χ2 if χ1, χ2 ∈ C∞
c take values in [0, 1] and suppχ2 ⊂ ∁ supp (1−χ1). Similarly,

we write for an open relatively compact set K that χ ≻ 1K and 1K ≻ χ, if K ⊂ ∁ supp (1 − χ)
and suppχ ⊂ K, respectively.

If M is a matrix, its transpose will be denoted by M †. If A is a measurable subset of Rd or
of a Riemannian manifold, its volume will be denoted either by Vol(A) or by |A|. If A is a finite
set, we will denote its cardinality by Card(A) or |A|. Writing a ≍ b means that there exists a
constant C > 1 such that C−1a ⩽ b ⩽ Ca.

Cotangent space We denote by distX the geodesic distance on X. We denote by T ∗X the
cotangent bundle of X, and by πX : T ∗X −→ X the canonical projection. We recall that the
cotangent space T ∗X can be equipped in a canonical way with a symplectic form σ.

By | · |x and by ⟨·, ·⟩x we denote the norm and scalar product on T ∗
xX (respectively on TxX

whenever convenient) induced by the metric g. Furthermore, we equip the cotangent bundle T ∗X
with an arbitrary metric g0 such that the induced geodesic distance distT ∗X on T ∗X is so that
distT ∗X(ρ1, ρ2) ⩾ cdistX(πX(ρ1), πX(ρ2)) for some fixed constant c > 0. This is for instance the
case when we take g0 to be the Sasaki metric on T ∗X induced by g.

We will denote by S∗X ⊂ T ∗X the unit cotangent bundle, and by Φt : T ∗X −→ T ∗X the
geodesic flow. We will denote by the same letter its restriction Φt : S∗X −→ S∗X.

Universal cover We will denote the universal cover of X by π̃ : X̃ → X. Since X is a
connected Riemannian manifold of negative sectional curvature, X̃ is a simply-connected manifold
of negative sectional curvature. We equip X̃ and T ∗X̃ with the lifted Riemannian metrics g̃ and
g̃0, respectively. We denote by π̂ : T ∗X̃ −→ T ∗X the local diffeomorphism given by π̂(x̃, ξ̃) =
(π̃(x̃), (dx̃π̃)

−T ξ̃). We will be working not only on a compact connected smooth Riemannian
manifold X of negative sectional curvature, but also on its universal cover X̃. It will be useful to
discuss lifting a pseudo-differential operator P on X to a pseudo-differential operator P̃ on X̃.

Recall the covering map π̃ : X̃ → X and the map π̂ : T ∗X̃ → T ∗X defined above. By the
covering property we have that if U ⊂ X is a sufficiently small open set, then π̃−1(U) =

⊔
ι∈I Ũι

is a countable union of disjoint open sets. Furthermore, the restriction π̃ι := π̃|Uι : Ũι → U is a
diffeomorphism. Hence, we may lift a chart ϕ : U → V ⊂ Rd to a chart ϕ̃ι := (π̃−1

ι )∗ϕ : Ũι → V
on X̃. Similarly, we can lift a function χ ∈ C∞

c (U) to χ̃ι := (π̃−1
ι )∗χ ∈ C∞

c (Ũι). Slightly abusing
notation, we will also denote by χ̃ι its extension by 0 outside its support to a smooth compactly
supported function on X̃.

Lifting a pseudo-differential operator. Given a semiclassical pseudo-differential operator
P ∈ Ψm

h,η(X) with principal symbol σ(P ) = p ∈ Smη (T ∗X), we say that P̃ ∈ Ψm
h,η(X̃) is a lift of P

to the universal cover X̃ if the following three conditions hold:
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1. the principal symbol of P̃ is given by lifted principal symbol of P , i.e.

σ(P̃ ) = π̂∗σ(P ) ∈ Smβ (T ∗X̃); (A.1.18)

2. for every cut-off chart (κ, χ) on X such that (A.4.20) holds with pκ ∈ Smη (T ∗Rd), we have
that

(κ̃−1
ι )∗χ̃ιP̃hχ̃ικ̃

∗
ι = χ ◦ κ−1Oph(pκ)χ ◦ κ−1. (A.1.19)

3. for every ϕ, ψ ∈ C∞
c (X) with suppϕ∩suppψ = ∅ which may depend on h as in the paragraph

after (A.4.20), we have that ϕ̃ι′P̃hψ̃ι is negligible and that for every N ∈ N

ϕ̃ι′P̃hψ̃ι = Oϕ,ψ,N (h
∞) : H−N

h (X̃) → HN
h (X̃). (A.1.20)

In other words ϕ̃ι′P̃hψ̃ι is a bounded operator H−N
h (X̃) → HN

h (X̃) with operator norm
= Oϕ,ψ,N (h

∞) which is independent of ι, ι′.

Given a P ∈ Ψm
h,η(X), such a lift P̃ always exists. For instance, we may construct P̃ from the

non-canonical quantization (A.4.21) by lifting the cut-off charts. More precisely

P̃h =
∑

k∈K,ι∈I
ψk,ικ

∗
k,ιOph(pκk)(κ

−1
k,ι )

∗ψk,ι ∈ Ψm
h,η(X̃) (A.1.21)

satisfies (A.1.18–A.1.20).

A.2 Wavefront set

Wavefront set of a family of L2 functions For u = (u(h))h∈]0,1] a bounded family in L2(Rd),
its semiclassical wavefront set WFh(u) denotes the phase space region where u is h-microlocalized:

WFh(u)
def
= ∁

{
(x, ξ) ∈ R2d; ∃a ∈ C∞

c (R2d), a(x, ξ) = 1, ∥aw(x, hDx)u(h)∥L2 = O(h∞),
}

(A.2.1)
where aw denotes the Weyl quantization of a. This notion can readily be generalized to h-tempered
distributions on smooth manifolds. However, we do not need this here.

Wavefront sets of pseudo-differential operators For a ∈ Skη (T
∗X) we define its essential

support ess-supp a ⊂ T
∗
X as follows: a point ρ ∈ T

∗
X is not contained in ess-supp a if there

exists a neighborhood U of ρ in T
∗
X such that for all α, β ∈ Nd, N > 0 there exists a constant

Cα,β,N > 0 such that

|∂αx ∂
β
ξ a(x, ξ;h)| ⩽ Cα,η,Nh

N ⟨ξ⟩−N , (x, ξ) ∈ U ∩ T ∗X.

For Ph ∈ Ψm
h,η we define the wavefront set WFh(Ph) ⊂ T

∗
X as follows: a point (x, ξ) ∈ T

∗
X

does not lie in WFh(Ph) if and only if for each cut-off chart (ϕ, χ), such that x is contained in the
domain of ϕ, we have that (ϕ(x), (dϕ(x))−T ξ) /∈ ess-supp pκ, with pκ defined as in (A.1.5).

If A ∈ Ψm
h,η, Bh ∈ Ψm′

h,η′ are properly supported, then

WFh(AB) ⊂ WFh(A) ∩WFh(B). (A.2.2)

In particular, if b ≡ 1 on WFh(A), we have

A = Oph(b)A+ h∞Ψ−∞. (A.2.3)
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Compactly supported pseudo-differential operators in Ψm
η (X) with compact wavefront sets in

T ∗X are called compactly microlocalized and we will denote this class by Ψcomp
η (X). Notice that

Ψcomp
η (X) ⊂ Ψm

η (X) for all m ∈ R. Furthermore,

Ψcomp
h,η (X) = Oph(S

comp
η (X)) + h∞Ψ−∞. (A.2.4)

When we make use of this identity for an A ∈ Ψcomp
h,η (X) then we call an a ∈ Scomp

η (X), such that
A = Oph(a) + h∞Ψ−∞, a full symbol of A (though this notion is not intrinsic and depends on a
choice of quantization). For A = Oph(a) ∈ Ψcomp

h (X), we have

WFh(A) = ess-supp a, (A.2.5)

noting that this does not depend on the choice of the quantization. When K is a compact subset
of T ∗X and WFh(A) ⊂ K, we will sometimes say that A is microsupported inside K.

The principal symbol map

σh : Ψcomp
h,η (X) → Scomp

η (X)/(h1−2ηScomp
η (X) + h∞S−∞(X))

is surjective with kernel given by h1−2ηΨcomp
h,η (X). Thanks to (A.2.2), the composition of two

compactly microlocalized operators is still compactly microlocalized, i.e.

A,B ∈ Ψcomp
η (X) ⇒ A ◦B ∈ Ψcomp

η (X),

and (A.1.10) is still valid. Moreover, the standard composition formulas of symbols in R2d, see
for instance [63, Proposition 7.6] show also that when A ∈ Ψk

0(X) and B ∈ Ψcomp
η (X) then

A ◦B ∈ Ψcomp
η (X) and

σh(AB) ≡ σh(A)σh(B) mod h1−ηScomp
η (X) + h−∞S∞(X). (A.2.6)

A.3 Microlocalization

Given the notion of semiclassical wavefront set, it is natural to consider operators and their
properties microlocally. Let X1, X2 be two smooth d-dimensional manifolds and let h ∈]0, h0]. We
say that a family of distributions uh ∈ D′(X1) is h-tempered if for each χ ∈ C∞

c (X1) there exist
constants N ⩾ 0 and C > 0 such that

∥χuh∥H−N
h (X1)

⩽ Ch−N ,

where ∥·∥H−N
h (X1)

, s ∈ R, denotes the semiclassical Sobolev norm of order s, see e.g. [67, Defintion
E.19]. We say that a family of operators Th : C∞

c (X2) → D′(X1) is h-tempered if the family of
associated Schwartz kernels KTh ∈ D′(X1 ×X2) is h-tempered.

For open sets V ⋐ T ∗X1 and U ⋐ T ∗X2, the operators defined microlocally near V × U are
given by the equivalence classes of tempered operators defined by the following relation: T ∼ T ′

if and only if there exists open sets Ṽ ⋐ T ∗X1, Ũ ⋐ T ∗X2 with U ⋐ Ũ , V ⋐ Ṽ such that, for any
A ∈ Ψcomp

h (X1), B ∈ Ψcomp
h (X2) with WFh(A) ⊂ Ṽ , WFh(B) ⊂ Ũ , we have

A(T − T ′)B = O(h∞)Ψ−∞ (A.3.1)

For two such operators we say that T = T ′ microlocally near V × U . Similarly, we say that
S = T−1 microlocally near V × V (and thus, that S is microlocally invertible near V × V ), if
ST = Id microlocally near U × U , and TS = Id microlocally near V × V .
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A.4 A slightly exotic version of Egorov’s Theorem

To finish, we present a version of Egorov’s theorem for symbols in an exotic symbol class. This
theorem, which relates the evolution of quantum and classical observables, is usually stated when
the Hamiltonian generating the classical evolution is independent of h, see for instance [204, The-
orem 11.1]. In our case the Hamiltonian p = |ξ|2x + δqω induced by (8.3.1), depends on h, and so
we need this more general version.

Let X be a compact smooth Riemannian manifold, and recall that the operator P δh given in
(8.3.1) is of the form

P δh := −h
2

2
∆ + δQ, 0 ⩽ δ ≪ 1,

with Q ∈ Ψ−∞
β (X) self-adjoint. The operator P δh does thus have with full symbol p(x, ξ; δ) =

−1
2 |ξ|

2
g + δq, q ∈ S−∞

β (T ∗X).
Recall from (8.3.6) that we assume that there exists 0 < ε0 <

1
4 and h0 > 0 such that for all

h ⩽ h0, we have
δh−2β−ε0 ⩽ 1. (A.4.1)

By the Kato-Rellich theorem we know that the operator P δh is selfadjoint with domain H2
h(X). By

Stone’s Theorem (see for instance [204, Theorem C.13]), we then know that it induces a strongly
continuous unitary group

Uδ(t) = e−i
t
h
P δ
h = O(1) : L2(X) → L2(X), t ∈ R. (A.4.2)

Since the Laplacian −∆g is a positive elliptic second order differential operator on X, we can equip
the Sobolev space Hk

h(X) with the norm ∥(1− h2∆g)
k/2f∥H0 . Since P δh and Uδ(t) commute, we

see that

∥(1− h2∆g)Uδ(t)f∥Hk
h
⩽ ∥Uδ(t)(1 + P δh)f∥Hk

h
+ ∥δQf∥Hk

h

⩽ ∥Uδ(t)(1 + P δh)f∥Hk
h
+Ok(δ)∥f∥H0

h

⩽ ∥Uδ(t)(1− h2∆g)f∥Hk
h
+ ∥Uδ(t)δQf∥Hk

h
+Ok(δ)∥f∥H0

h
,

(A.4.3)

where in the last line we used that since Q is compactly microlocalized, it follows that Q = ON (1) :
H−N
h → HN

h . When k = 0, then (A.4.2) and (A.4.3) yield that Uδ(t) = O(1) : H2
h(X) → H2

h(X).
Iterating this argument, shows that Uδ(t) = On(1) : H2n

h (X) → H2n
h (X), and we deduce by

duality and interpolation that

Uδ(t) = Os(1) : H
s
h(X) → Hs

h(X), s ∈ R. (A.4.4)

Let Hp denote the Hamilton vector flow induced by p, and let Φtδ denote the associated
Hamilton flow. Let K ⊂ T ∗X be a compact set and let T > 0, then there exists a compact set
KT ⊂ T ∗X, independent of h and δ, such that Φtδ(K) ⊂ KT for all t ∈ [−T, T ]. For each k, fix a
norm ∥ · ∥Ck(U ;KT ), by covering U and KT in finitely many local coordinate charts, for the space
Ck(U ;KT ) of k times continuously differentiable functions on U with values in KT . Then, by
mimicking the proof of [123, Lemma 4.1] for finite times, we find that for each k ∈ N

∥Φtδ∥Ck(U ;KT ) ⩽ Ok,T (1)(1 + δh−β(k+1)) (A.4.5)

uniformly in t ∈ [−T, T ].

Proposition A.4.1. Let β ∈ [0, 1/2[. Then for each t ∈ R and each A ∈ Ψcomp
β (X) there exists

a Atδ ∈ Ψcomp
β (X), such that

Uδ(−t)AUδ(t) = Atδ + h∞Ψ−∞. (A.4.6)

Moreover, WFh(A
t
δ) ⊂ Φtδ(WFh(A)) and σ(Atδ) = σ(A) ◦ Φtδ +O(h1−2β) ∈ Scomp

β (X).
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Proof. We will mimic the proof of [204, Theorem 11.1].

1. Let a ∈ Scomp
β be the full symbol of A and define

at := a ◦ Φtδ. (A.4.7)

Let t ∈ [−T, T ], and notice that at is compactly supported in Φ−t
δ (supp a). Since Φtδ is a family

of diffeomorphisms depending smoothly on t, there exists a compact set K ⊂ T ∗X such that
Φ−t
δ (supp a) ⊂ K for all t ∈ [−T, T ].

Recall that the derivatives of the composition of a smooth functions f ∈ C∞(Rd) and g ∈
C∞(Rd;Rd) are given by the generalized Fàa di Bruno formula

∂α(f ◦ g) =
∑
αℓ,j

cα,j(∂xj1 ···xjmf) ◦ g ·
m∏
ℓ=1

∂αℓψjℓ , α ∈ Nd, (A.4.8)

where cα,j are constants jℓ ∈ {1, . . . , d} and α1, . . . , αm are multiindices whose sum is equal to α.
Since a ∈ Scomp

β (X), it follows from (A.4.5) and (A.4.8), that at ∈ Scomp
β (X).

2. Set B(t) := Uδ(−t)AUδ(t) and define a family of operators Bk(t), k ∈ N, iteratively, as
follows: First, put B0(t) = Oph(a

t) ∈ Ψcomp
β . Then,

[Pδ, B0(t)] = [P0, B0(t)] + δ[Q,B0(t)] =
h

i
Oph({p, at})− Ê0(t)− Ẽ0(t), (A.4.9)

where Ê0(t) = [P0, B0(t)]−h
iOph({p, at}) ∈ h2(1−β)Ψcomp

β and Ẽ0(t) = δ[Q,B0(t)] ∈ δh2(1−2β)Ψcomp
β

by (A.1.10) and (A.2.6). By (A.4.1), it follows that E0(t) := Ê0(t)+Ẽ0(t) ∈ h2(1−β)Ψcomp
β . Notice

that E0(t) depends smoothly on t since this is the case for B0(t) and at. Let e0(t) ∈ h2(1−β)Scomp
β

be the full symbol of E0(t). Since ∂tat = Hpa
t, it follows from (A.4.9) that

hDtB0(t) = [P δh , B0(t)] + E0(t). (A.4.10)

Next define a sequence of symbols ek(t) ∈ hk(1−2β)+2(1−β)Scomp
β , ck+1(t) ∈ h(k+1)(1−2β)Scomp

β ,
k ∈ N, depending smoothly on t, with e0(t) ∈ h2(1−β)Scomp

β as above and

ck+1(t) =
i

h

∫ t

0
(Φt−sδ )∗ek(s)ds, ck+1(0) = 0, (A.4.11)

and ek+1(t) being the full symbol of Ek+1(t) ∈ h(k+1)(1−2β)+2(1−β)Ψcomp
β defined via the relation

hDtOph(ck+1(t)) =
h

i
Oph({p, ck+1(t)}) + Oph(ek(t))

= [P δh ,Oph(ck+1(t))]− Ek+1(t) + Oph(ek(t)).
(A.4.12)

Here, we used the fact that hDtck+1(t) = Hpck+1(t) + ek(t) in the first line, and (A.1.10), (A.2.6)
in the last line. Put

Bk+1(t) = Bk(t)−Oph(ck+1(t)). (A.4.13)

Then, for each k ∈ N∗

hDtBk(t) = [P δh , Bk(t)] + Ek(t) + h∞Ψ−∞. (A.4.14)

3. By Borel summation, there exists a b(t) ∈ S−∞
β (X) such that

b(t) ∼
∑
k∈N

bk(t), b0(t) = a(t) ∈ Scomp
β , bk(t) = −ck(t) ∈ hk(1−2β)Scomp

β , k ⩾ 1.
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Hence, Oph(b(0)) = A+A1, with A1 ∈ h∞Ψ−∞, and

hDtOph(b(t)) = [P δh ,Oph(b(t))] +R(t), R(t) ∈ h∞Ψ−∞

By integration, we get that

Uδ(−t)AUδ(t)−Oph(b(t)) = Uδ(−t)(A− Uδ(t)Oph(b(t))Uδ(−t))Uδ(t)

= −Uδ(−t)
[∫ t

0
hDs (Uδ(s)Oph(b(s))Uδ(−s)) ds

]
Uδ(t)− Uδ(−t)A1Uδ(t)

= −
∫ t

0
Uδ(s− t)R(s)Uδ(t− s)ds− Uδ(−t)A1Uδ(t).

(A.4.15)

Since R(s) ∈ h∞Ψ−∞, we see by (A.4.4) that Uδ(−t)AUδ(t) − Oph(b(t)) ∈ h∞Ψ−∞. Applying
the same argument to the term containing A1, we conclude (A.4.6).

The statement on the wave front set follows from (A.2.5) and the observation that supp ck+1(t) ⊂
Φ−t
δ (supp a), see (A.4.11), as is true for a(t).

A.4.1 Semiclassical pseudo-differential operators

Let m ∈ R and let η ∈ [0, 1/2[. We consider the class of symbols

Smη (T ∗X) =
{
a(· ;h) ∈ C∞(T ∗X);h ∈]0, 1], |∂αx ∂

β
ξ a(x, ξ;h)| ⩽ Cα,βh

−η(|α|+|β|)⟨ξ⟩m−|β|
}
,

(A.4.16)
where ⟨ξ⟩ = (1 + |ξ|2x).

We will define the symbol space of order −∞ by S−∞
η (T ∗X) :=

⋂
m S

m
η (T ∗X). A linear

continuous map R = Rh : E ′(X) → C∞(X) is called negligible if its distribution kernel KR is
smooth and each of its C∞(X ×X) seminorms is O(h∞), i.e. it satisfies

∂αx ∂
β
yKR(x, y) = O(h∞), (A.4.17)

for all α, β ∈ Nd, when expressed in local coordinates.
A linear continuous map Ph : C∞

c (X) → D′(X) is called a semiclassical pseudo-differential
operator belonging to the space Ψm

h,η if and only if we can express Ph as

Ph =
∑
k∈K

χkκ
∗
kOph(pk)(κ

−1
k )∗χk +Kh, (A.4.18)

where pk ∈ Smη (T ∗Rd), Kh is negligible, the κk : Uk → Vk are a collection of diffeomorphisms
between open sets Uk ⊂ X and Vk ⊂ Rd with the collection of Uk being locally finite, and
χk ∈ C∞

c (Uk). We will refer to the induced family (κk, χk)k as cut-off charts. In (A.4.18) we use
the standard semiclassical quantization of the symbols pk

Oph(pk)u(x) =
1

(2hπ)d

∫∫
R2d

e
i
h
·(x−y)·ξpk(x, ξ;h)u(y)dydξ, u ∈ C∞

c (Vk), (A.4.19)

seen as an oscillatory integral. Here ⟨·, ·⟩ denotes the Euclidean scalar product on Rd.

Equivalently, a linear continuous map Ph : C∞
c (X) → D′(X) is in Ψm

h,η if and only if the
following two conditions hold:

1. ϕPhψ is negligible for all ϕ, ψ ∈ C∞
c (X) with suppϕ ∩ suppψ = ∅ (pseudolocality);

2. for every cut-off chart (κ, χ) there exists a symbol pκ ∈ Smη (T ∗Rd) such that

χPhχ = χκ∗Oph(pκ)(κ
−1)∗χ. (A.4.20)
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The property of pseudolocality can be extended to h-dependent cut-off functions ϕ, ψ ∈ C∞
c with

support contained in some h-independent compact set, with |∂αϕ(x)|, |∂αψ(x)| ⩽ Oα(h
−ε|α|), for

some 0 ⩽ ε < 1/2 and dist (suppϕ, suppψ) ⩾ hε0/C, 0 ⩽ ε0 < 1/2, C > 0.
Given a symbol p ∈ Smη (T ∗X) one can obtain an operator Ph ∈ Ψm

h,η, for instance, in the
following way: Take a partition of unity {ψk}k∈K subordinate to a locally finite covering of X by
coordinate charts {κk : X ⊃ Uk → Vk ⊂ Rd}k∈K such that

∑
ψ2
k = 1. Then

Ph =
∑
k∈K

ψkκ
∗
kOph(pκk)(κ

−1
k )∗ψk ∈ Ψm

h,η, (A.4.21)

where pκk = p ◦ κ̂−1
k is the pullback of p to T ∗Vk via the symplectomorphism κ̂−1

k : T ∗Vk → T ∗Uk
defined by κ̂−1

k (x, ξ) = (κ−1
k (x), (dxκ

−1
k )−T ξ). Given a symbol p ∈ Ψm

h,η, we will often write

Ph = Oph(p), (A.4.22)

for a pseudo-differential operator Ph with principal symbol σ(Ph) = p.
The correspondence Ph 7→ p is not globally well-defined, but it gives rise to a bijection

Ψm
h,η/h

1−2ηΨm−1
h,η −→ Smη (T ∗X)/h1−2ηSm−1

η (T ∗X). (A.4.23)

The image σP of P under the map (A.4.23) is called principal symbol of P .
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Abstract The main focus of this habilitation thesis is on the spectral properties of dis-
ordered semiclassical pseudo-differential operators and Toeplitz matrices. The disorder
will predominantly be given by small random perturbations.
This manuscript is organized in three main parts which each focus on a different aspect.
In Part I we will discuss the spectral distribution of non-selfadjoint semiclassical pseudo-
differential operators subject to small random perturbations on a macroscopic level, in
the form of a probabilistic Weyl law, and on the microscopic level, in the form of spectral
statistics.
In Part II we will first discuss recent results on eigenvector localization for large noisy
Toeplitz matrices. These are excellent toy models for noisy semiclassical pseudo-
differential operators. We will first present results concerning a probabilistic Weyl law
for the eigenvalues of noisy non-selfadjoint Toeplitz matrices and then discuss a related
eigenvector localization phenomenon.
In Part III we will consider a form of eigenvector delocalization in a selfadjoint quantum
chaotic setting. More precisely, we will discuss recent results showing that on a compact
negatively curved Riemannian manifold, Langrangian states which have been propag-
ated for a long time under the Schrödinger evolution semi-group, induced by a random
Schrödinger type operator, satisfy Berry’s conjecture. Additionally, we discuss improved
L∞ bounds for the eigenfunctions of the semiclassical Laplacian subject to small random
perturbations.
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