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Introduction Le trouble dépressif caractérisé (TDC) est un 

fardeau mondial dont le traitement par des antidépresseurs 

(ATD) est modestement efficace. Les prédicteurs de la réponse 

aux antidépresseurs peuvent contribuer à améliorer les résultats 

thérapeutiques. Des centaines d'associations biologiques sont 

observées au niveau génétique et métabolomique, mais de 

nouvelles méthodes, outils et stratégies continuent d'évoluer, 

ouvrant de nouvelles voies d'analyse. L'objectif de cette thèse est 

d'exploiter de nouvelles stratégies pour explorer l'association de 

la variation génétique au sein des gènes candidats avec les 

résultats cliniques et les concentrations de métabolites après le 

traitement ATD. 

 

Méthodes Ce travail est basé sur l'analyse des données de 

METADAP, une cohorte prospective, multicentrique et naturaliste 

de 624 patients âgés de 18 à 65 ans souffrant d'un épisode 

dépressif caractérisé (EDC) dans le contexte de TDC et nécessitant 

un nouveau traitement ATD. Les patients ont subi une évaluation 

clinique et biologique à l'inclusion et 1, 3 et 6 mois après le début 

du traitement par ATD. Les données analysées comprenaient des 

mesures cliniques, des données génétiques provenant d'un panel 

de gènes séquencés à haut débit ou d'un génotypage TaqMan et 

des concentrations de sérotonine (5-HT) et d'acide 5-

hydroxyindoleacétique (5-HIAA). 

 

Résultats 1) le polymorphisme génétique ERICH3 

rs11580409(A>C) a été associé à une amélioration clinique, 

mais pas aux niveaux de 5-HT, après un traitement ATD chez 

des patients déprimés ; 2) l'allèle A du polymorphisme 

génétique MAOA rs979605(A>G) a été associé à une plus 

mauvaise amélioration clinique chez les femmes que chez les 

hommes, tandis que le polymorphisme génétique MAOB 

rs1799836(T>C) a été associé au rapport 5-HIAA/5-HT 

plasmatique ; 3) l'accumulation de variations génétiques rares 

d'ARRB1 et deux polymorphismes génétiques d'ARRB1 ayant 

des conséquences fonctionnelles potentielles, rs553664(G>A) 

et rs536852(A>G), ont été associés à des résultats cliniques 

plus défavorables ; 4) dans un panel de gènes candidats, la 

variation génétique de SLC1A1 a été la plus associée à des 

mesures cliniques ; l'allèle C du polymorphisme génétique 

SLC1A1 rs301435(T>C) a été associé à une amélioration 

clinique plus défavorable. 

 

Conclusion Ce travail s'est appuyé sur de nouvelles stratégies 

pour révéler plusieurs associations entre les variations 

génétiques candidates et les résultats cliniques à la suite d'un 

traitement ATD. Ces résultats suggèrent plusieurs associations 

dépendantes du contexte. Cependant, la plupart d'entre elles 

restent des associations nécessitant une réplication 

indépendante et une validation fonctionnelle dans le contexte 

du traitement ATD de TDC. 
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Introduction Major Depressive Disorder (MDD) is a global 

burden whose treatment with antidepressant drugs (ATDs) is 

modestly effective. Predictors of ATD response may help improve 

therapeutic outcomes. Hundreds of biological associations are 

observed at both the genetic and metabolomic level, but novel 

methods, tools, and strategies continue to evolve, opening new 

avenues of analysis. The objective of this thesis is to leverage 

novel strategies to explore the association of genetic variation 

within candidate genes with clinical outcomes and metabolite 

concentrations following ATD treatment. 

 

Methods This work is based on the analysis of data from 

METADAP, a prospective, multicentric, and naturalistic cohort of 

624 patients between 18 and 65 years of age suffering from a 

major depressive episode (MDE) in the context of MDD and 

requiring a new ATD treatment. Patients underwent clinical and 

biological evaluation at inclusion and 1, 3, and 6 months after 

beginning ATD treatment. Analyzed data included clinical 

measures, genetic data from a high-throughput sequencing gene 

panel or TaqMan genotyping, and serotonin (5-HT) and 5-

hydroxyindoleacetic acid (5-HIAA) concentrations.  

Results 1) the ERICH3 rs11580409(A>C) genetic polymorphism 

was associated with clinical improvement, but not 5-HT levels, 

following ATD treatment in depressed patients; 2) the A allele 

of the MAOA rs979605(A>G) genetic polymorphism was 

associated with worse clinical improvement in females 

compared to males, while the MAOB rs1799836(T>C) genetic 

polymorphism was associated with the plasma 5-HIAA/5-HT 

ratio; 3) rare ARRB1 genetic variation accumulation and two 

ARRB1 genetic polymorphisms with potential functional 

consequences, rs553664(G>A) and rs536852(A>G), were 

associated with worse clinical outcomes; 4) across a candidate 

gene panel, SLC1A1 genetic variation was most associated with 

clinical measures; the C allele of the SLC1A1 rs301435(T>C) 

genetic polymorphism was associated with worse clinical 

improvement. 

 

Conclusion This work leveraged novel strategies to reveal 

several associations between candidate genetic variation and 

clinical outcomes following ATD treatment. Several context-

dependent associations are suggested by these findings. 

However, most remain associations requiring independent 

replication and functional validation in the context of ATD 

treatment for MDD. 
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Preface 

Major Depressive Disorder is a psychiatric disorder of global and high financial 

burden, with debilitating consequences for patients. Unfortunately, its treatment with 

pharmacological therapies including antidepressant drugs remains modestly effective. The 

identification of biological factors that can predict whether an individual will respond to 

antidepressant treatment may help improve therapeutic outcomes. Hundreds of biological 

associations with clinical outcomes following antidepressant treatment spanning myriad 

biological pathways are known, including those related to genetic variation. Owing to 

advancements in methods, tools, and analytical strategies, as well as the accessibility of data, 

novel approaches for genetic investigation in association with the response to antidepressant 

treatment are possible. 

The objective of this thesis project was to explore the association of genetic variation 

within candidate genes with clinical outcomes and metabolite concentrations following 

antidepressant drug treatment in depressed individuals using novel strategies. These genetic 

targets included: (1) the ERICH3 rs11580409(A>C) genetic polymorphism that was 

previously associated with variable serotonin levels and clinical response in several cohorts 

of depressed individuals; (2) genetic variation within the X chromosome-linked MAOA and 

MAOB, encoding monoamine oxidase, which metabolizes monoamine neurotransmitters, the 

targets of first-line antidepressant treatments; (3) genetic variation—both rare and common 

with potential functional consequences on gene expression—within ARRB1, encoding a 

protein that modulates receptor activity; (4) genetic variation within all candidate genes of a 

high-throughput sequencing gene panel. 

  



Synthèse de la Thèse 

1. Introduction 

Le trouble dépressif caractérisé (TDC) est un fardeau mondial dont le traitement par 

les antidépresseurs (ATD) est modestement efficace. Les indicateurs de la réponse aux 

traitements ATD peuvent contribuer à l’amélioration des résultats thérapeutiques et 

comprennent des facteurs biologiques dont ceux liés à la pharmacocinétique—le devenir du 

médicament dans l’organisme—et le pharmacodynamie—l’action du médicament sur 

l’organisme. Le mécanisme d’action des traitements ATD reste mal connu, mais leur 

influence sur les concentrations synaptiques des neurotransmetteurs monoamines dont 

sérotonine (5-HT) entraine une augmentation de la neurotransmission monoaminergique et, 

par conséquent, des processus liés à la neuroplasticité. Des facteurs au niveau de la synapse et 

liés à la neurotransmission monoaminergique sont donc d’intérêt.  

Des associations génétiques à ce niveau sont connues, dont des gènes encodant des 

métaboliseurs des neurotransmetteurs et des protéines liées à la signalisation des récepteurs. 

Cependant, ces associations génétiques sont rarement répliquées, n’impliquent généralement 

que des polymorphismes fréquents et n’expliquent pas leurs conséquences biologiques 

potentielles. Des nouvelles méthodes, outils et stratégies continuent d'évoluer et s’ouvrent 

aux nouvelles voies d'analyse pour ces facteurs génétiques. L'objectif de cette thèse est 

d'exploiter de nouvelles stratégies pour explorer l'association de la variation génétique au sein 

des gènes candidats liés plutôt à la neurotransmission monoaminergique avec les résultats 

cliniques et les concentrations de métabolites à la suite d’un traitement ATD chez des patients 

souffrants d’un épisode dépressif caractérisé (EDC) dans le contexte de TDC. 

2. Patients, Matériels et Méthodes 

Ce travail se base sur l'analyse des données de METADAP, une cohorte prospective, 

multicentrique et naturaliste de 624 patients âgés de 18 à 65 ans souffrants d'un EDC dans le 

contexte de TDC, nécessitants un nouveau traitement ATD et ayant un score de ≥18 sur 

l'échelle de dépression de Hamilton à 17-items (HDRS). Les évaluations cliniques ont été 

faites à l'inclusion et 1, 3 et 6 mois après le début du traitement ATD. Les facteurs cliniques 

analysés comprenaient le HDRS, les scores des échelles de l’impression clinique globale 

(CGI), la réponse (définie par un changement du score HDRS ≥50%) et la rémission (définie 

par un score HDRS ≤7). La 5-HT et l’acide 5-hydroxyindoleacétique (5-HIAA), le métabolite 

principal de la 5-HT, ont été dosés du plasma sanguin par la chromatographie en phase 

liquide à très haute performance. Les données génétiques sont issues soit de la technologie 



TaqMan soit du séquençage à haut débit selon un panel de 72 gènes candidats. Les 

informations de cette dernière méthode ont été stockées dans des fichiers de Variant Call 

Format (VCF). Les VCFs ont été téléchargés sur R pour le prétraitement et l’analyse. Les 

analyses ont été réalisées principalement en utilisant des modèles à effets mixtes. La variation 

génétique rare a été analysée en utilisant le package GMMAT. L’ensemble des 

polymorphismes fréquents issus de HTS a été analysé en utilisant Genome-to-Phenome 

Sparse Regression (G2PSR). 

3. Résultats 

Premièrement, on a analysé le polymorphisme génétique rs11580409(A>C) du gène 

ERICH3, un gène associé aux taux de la 5-HT et un polymorphisme associé à la réponse aux 

traitements ATDs. Chez des patients déprimés de METADAP, le polymorphisme rs11580409 

a été associé à une amélioration clinique après un traitement ATD. Les homozygotes CC 

avaient un score HDRS plus bas et un taux de réponse plus élevé par rapport aux porteurs de 

l’allèle A après 6 mois de traitement. Cependant, on n’a pas répliqué l’association de ce 

polymorphisme aux taux de la 5-HT. 

Deuxièmement, on a regardé la variation génétique au sein de MAOA et de MAOB, 

encodant la monoamine oxydase (MAO). Cinq polymorphismes de MAOA et un de MAOB 

ont été identifiés par le HTS. Le déséquilibre de liaison était élevé entre les 5 

polymorphismes de MAOA. On a donc analysé le polymorphisme rs979605(A>G) de MAOA 

comme proxy de ces 5 et le polymorphisme rs1799836(T>C) de MAOB. Une interaction 

entre le polymorphisme rs979605 et le sexe a été associée au score HDRS. Les femmes 

homozygotes AA avaient un score HDRS significativement plus élevé par rapport aux 

hommes portants l’allèle A après 6 mois de traitement. Le polymorphisme rs1799836 de 

MAOB a été associé au ratio plasmatique de 5-HIAA/5-HT. 

Troisièmement, on a regardé la variation génétique d’ARRB1 encodant beta-arrestine 

1, une protéine multifonctionnelle au niveau des récepteurs. Plus de 900 polymorphismes ont 

été identifiés, dont 643 rares et 9 fréquents et annotés d’avoir une haute probabilité de 

perturber la liaison d’un facteur de transcription (TF) ou d’influencer l’expression génique 

selon leur score de RegulomeDB (i.e., <3). Les 643 polymorphismes rares ont été associés au 

score HDRS et à la rémission dans des tests de burden, suggérant que la majorité de la 

variation rare avait une influence dans la même direction. Une accumulation de variants rares 

était bien associé à une moins bonne amélioration après un traitement ATD dans des modèles 

des effets mixtes. Deux polymorphismes fréquents et annotés, rs553664(G>A) et 

rs536852(A>G), ont été associés au score HDRS et à la rémission. Le polymorphisme 



rs536852 n’était pas fortement corrélé aux autres polymorphismes et a été annoté de 

potentiellement perturber la liaison de TFs comme FOS et JUN.  

En dernier, on a analysé l’ensemble des polymorphismes fréquents du panel de 72 

gènes candidats en utilisant la méthode G2PSR pour agréger les polymorphismes selon leurs 

contextes géniques. Puisque ARRB1 et ARRB2 ont été séquencés entièrement par rapport aux 

autres gènes du panel (des régions exoniques uniquement) 3 analyses ont été réalisées : l’une 

avec tous les polymorphismes ; l’une où ARRB1 a été divisé en 8 sous-groupes ; l’une où 

ARRB1 et ARRB2 ont été limités aux régions exoniques. Le gène SLC1A1 a été identifié dans 

chaque analyse. Les 7 polymorphismes de SLC1A1 ont été analysés en utilisant des modèles à 

effets mixtes. Parmi eux, le polymorphisme rs301435(T>C) a été associé à plusieurs mesures 

dont le score HDRS et la rémission. Dans chaque cas, l'allèle C a été associé à une moins 

bonne amélioration clinique après un traitement ATD. 

4. Discussion & Conclusion 

Ce travail s'est appuyé sur l’utilisation des nouvelles stratégies pour analyser 

l’association des polymorphismes des gènes candidats monoaminergiques à la réponse aux 

traitements ATDs chez des patients souffrants d’un EDC dans le contexte de TDC.  

L’association du polymorphisme rs11580409(A>C) d’ERICH3 aux mesures 

d’amélioration après un traitement ATD chez des patients de METADAP rejoint et enrichie 

d’autres résultats décrits dans la littérature. ERICH3 a été récemment identifié dans le 

contexte de la réponse aux ATDs qui soulignent aussi l’image incomplète du mécanisme 

d’action des ATDs et les facteurs qui influencent la variabilité observée de la réponse. 

L’allèle A du polymorphisme rs979605(A>G) de MAOA était associé à une moins 

bonne amélioration chez les femmes mais à une meilleure amélioration chez les hommes, qui 

suggère une association qui dépend du sexe. Différents facteurs peuvent influencer 

l’expression et/ou l’activé de MAO, dont les hormones sexuelles, qui peuvent aider à 

expliquer cette observation.  

L’analyse de la variation génétique d’ARRB1 souligne l’usage de RegulomeDB pour 

la priorisation des polymorphismes ainsi que l’importance de la variation génétique rare dans 

le contexte de l’amélioration après un traitement ATD. En effet, la variation rare est très peu 

analysée dans ce contexte. Malgré l’association des polymorphismes fréquents et annotés, ces 

associations doivent être répliquées dans des cohortes indépendantes et leurs conséquences 

potentielles doivent être investiguées dans des analyses fonctionnelles. 

Nos résultats soulignent l’association de la variation génétique liée à la 

neurotransmission monoaminergique à l’amélioration à la suite d’un traitement ATD, mais 



désigne également celle du système glutamatergique. Ce système continue à gagner d’intérêt 

surtout grâce aux résultats cliniques liés au traitement par kétamine, un antagoniste de 

récepteur NMDA de glutamate disposant d’une action antidépresseur rapide. 

Ce projet bénéficie de sa taille d’échantillon, son design, son homogénéité 

diagnostique et sa durée de suivi. Il est limité par le taux de perte de vue, l’analyse des taux 

de métabolites périphériques qui diffèrent probablement de ceux du cerveau et l’influence 

simultanée des différents facteurs sur l’amélioration clinique dont le placébo, les facteurs 

environnementaux et d’autres thérapies. 

Plusieurs associations génétiques ont été identifiées dans le contexte de l’amélioration aux 

traitements antidépresseurs pour le TDC en utilisant des nouvelles stratégies, mais elles 

nécessitant la réplication dans des cohortes indépendantes et, pour la majorité des résultats, la 

validation par des analyses fonctionnelles. 
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I. Introduction 

I.1. Major Depressive Disorder 

I.1.1. Background 

Major Depressive Disorder (MDD) is the leading contributor to global disability. 

Over 300 million individuals worldwide (~4.4% of the global population) suffer from MDD 

(World Health Organization, 2017). Lifetime prevalence suggests that 20% of all individuals 

meet the criteria for a major depressive episode (MDE) during their lifetimes. Compared to 

general populations, MDD is associated with an increased risk for overall mortality, suicide, 

and the development of other health conditions (Chesney et al., 2014; Penninx et al., 2013). 

Females across all age ranges suffer more frequently from MDD (World Health 

Organization, 2017) and experience longer and more severe depressive episodes compared to 

males (LeGates et al., 2019). The economic burden of MDD is substantial. Among US adults 

with MDD, economic burden rose from 236.6 billion USD in 2010 to 326.2 billion USD in 

2018, of which 60% was attributable to increased costs (Greenberg et al., 2021). 

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM) 

(American Psychiatric Association, 2022), MDD is characterized by at least two weeks of 

experiencing five or more of the following, including, necessarily, a depressed mood or a loss 

of interest or pleasure in most regular activities (i.e., anhedonia) and (1) decreased or 

increased sleep, (2) significant changes in weight and/or appetite, (3) impaired psychomotor 

status (e.g., slowed thought or reduced physical activity), (4) fatigue or loss of energy, (5) 

feelings of worthlessness or excessive guilt, (6) diminished ability to think or concentrate, or 

indecisiveness, and (7) recurrent thoughts of death or suicidal ideation, or suicidal behavior.  

An MDE related to MDD can be further specified by several subcategorizations, 

including severity (e.g., mild or severe), anxious distress (e.g., increased reporting of suicidal 

thoughts), and presentation with different features [e.g., mixed, melancholic (e.g., 

anhedonia), atypical, psychotic (e.g., hallucinations), and catatonic (e.g., decreased motor 

activity)] (Otte et al., 2016). Its numerous and varied clinical presentations (Zimmerman et 

al., 2015) suggest that many diverse and heterogeneous populations fall under the diagnostic 

of MDD (Goldberg, 2011).  

Many methods exist to measure and quantify depressive symptoms and severity in 

clinical practice and research, including self- and clinician-administered interviews and scales 

[for several examples, see Table 1 (page 2)] (Baer and Blais, 2010; Busner and Targum, 

2007). The 17-item Hamilton Depression Rating Scale (HDRS), for example, poses questions 

related to mood, anxiety, diet, and somatic symptoms (Hamilton, 1960). Scores for 
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Table 1: Depression rating scales 
Scale Abbreviation Administration Cut-offs (depression) Strengths Limitations 

Beck Depression Inventory BDI Self-rated 1–10: normal 

11–16: mild disturbance 

17–20: borderline 

21–30: moderate 

31–40: severe 

>40: extreme 

• Self-rating saves time and 

does not require trained 

professionals 

• Validity is highly variable 

Clinical Global Impressions-

Severity and Improvement 

CGI-S and CGI-I Clinician-rated 1: not at all ill 

2: borderline mentally ill 

3: mildly ill 

4: moderately ill 

5: markedly ill 

6: severely ill 

7: among the most 

extremely ill 

• Correlates well with other 

established scales (e.g., 

HDRS) 

• Single-question format is 

quick 

• General for use in other 

psychiatric disorders 

• Poor inter-rater reliability 

due to dependence on clinical 

experience and judgment 

Hamilton Depression Rating 

Scale (17-items) 

HDRS Clinician-rated 0–6: not present 

7–17: mild  

18–24: moderate 

>24: severe  

• Widely used in clinical trials 

• High internal consistency, 

inter-rater reliability, and 

validity 

• Does not include all MDD 

symptom domains 

• Uneven weighting for 

different symptom domains 

Montgomery and Åsberg 

Depression Rating Scale 

MADRS Clinician-rated <10: remission 

>30: severe 

• High internal consistency 

and validity 

• Sensitive to changes 

resulting from antidepressant 

treatment 

• Focused more on 

psychological rather than 

somatic symptoms 

• Reliability may vary 

between professionals 

Quick Inventory of Depressive 

Symptomatology 

QIDS Clinician (C) and self-

rated (SR) versions 

<6: not present 

6–10: mild 

11–15: moderate 

16–20: severe 

>21: very severe 

• High internal consistency, 

inter-rater reliability, and 

validity 

• Includes more symptom 

domains according to DSM 

definition 

• Clinician-rated is time-

consuming and requires 

trained professionals 

DSM: Diagnostic and Statistical Manual of Mental Disorders; MDD: Major Depressive Disorder 
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stratification by severity are often employed by these scales (e.g., a score of 18–24 on the 

HDRS suggests moderate depression) (Baer and Blais, 2010). Along with clinical judgement, 

these scales can be used to measure and assess improvement during treatment. Other 

treatment-related outcomes derived from these scales are also commonly used in research, 

including response (e.g., an improved depressive symptom score ≥50% compared to baseline) 

and remission [e.g., a depressive symptom score below a certain threshold (e.g., <8 on the 

HDRS)] (Rush et al., 2006; Trivedi et al., 2006).  

I.1.2. Treatments for Major Depressive Disorder 

Several therapies for the treatment of MDD are used today, including 

psychotherapies, somatic therapies, and pharmacological therapies [for a non-exhaustive list, 

see Table 2 (page 4)]. Although each is effective in the treatment of MDEs, antidepressant 

drug (ATD) pharmacotherapy remains the first-line recommended treatment (Malhi and 

Mann, 2018). Most prescribed ATDs fall into two main classes, selective serotonin reuptake 

inhibitors (SSRI) and serotonin-norepinephrine reuptake inhibitors (SNRI), though tricyclic 

antidepressants (TCA), monoamine oxidase inhibitors (MAOI), and other “atypical” ATDs 

with different pharmacological targets are also available and may be prescribed under 

different clinical circumstances (Malhi and Mann, 2018; Otte et al., 2016). 

Dozens of ATDs with similar efficacy are commercially available in France today. 

Although this offers a variety of options, it ultimately lends itself to a “trial-and-error” 

approach in the treatment of MDD (Nemeroff, 2020). This becomes more burdensome given 

that ATDs share two discouraging characteristics: (1) a typically weeks-long delay to any 

measurable benefit; (2) modest efficacy, with comparable response rates around 50% (Malhi 

and Mann, 2018; Otte et al., 2016). Indeed, following 4–12 weeks of ATD treatment, rates of 

response (47%–69%) and remission (27%–51%) remain modest across cohorts of depressed 

individuals [see Table 3 (page 6)]. These rates were equally modest in the Sequenced 

Treatment Alternatives to Relieve Depression (STAR*D) cohort—the largest cohort of ATD-

treated depressed patients (Laje et al., 2009)—in which one-half responded and one-third 

remitted following 14 weeks of citalopram treatment (Trivedi et al., 2006). Moreover, 

remission rates fall with successive treatments, while relapse rates rise (Rush et al., 2004). 
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Table 2: Types of therapies for the treatment of MDD 
Therapy Abbrv Target Strengths Limitations References 

Psychotherapy 

Cognitive behavioral therapy CBT 

Aims to replace distorted, negative 

thoughts with realistic, positive 

ones 

• Comparable efficacy compared 

to pharmacological therapies 

• Improved efficacy when 

combined with pharmacological 

therapies 

• Limited use due to time 

constraints, lack of resources, and 

cost 

Karyotaki et al., 2016; 

Otte et al., 2016; Sverre 

et al., 2023; Weitz et al., 

2015 

Mindfulness-based therapy MBT 

Aims to non-judgmentally 

experience and accept negative 

thoughts 

Somatic therapy 

Electroconvulsive therapy ECT Generally used on patients with 

TRD 

• High remission rates (60%–

95%) 

• Successful in treating severe 

cases (TRD, psychotic MDE) 

• High relapse rate (~80%) 

• Cognitive side effects 
Haddad et al., 2015 

Repetitive transcranial magnetic 

stimulation   rTMS 
• Safer compared to ECT 

• Less effective than ECT 

• Treatment duration does not 

differ greatly from first-line 

pharmacological therapies Vagus nerve stimulation VNS 

Aaronson et al., 2017; 

Colle et al., 2021 

Pharmacological therapy 

Ketamine KET 

Antagonist of the NMDA 

glutamate receptor 

• Rapid (~24 hours) and long-

lasting (1–2 weeks) 

antidepressant action 

• Improvement not sustained with 

KET alone 

• Findings remain preliminary 

• Adverse side effects (e.g., 

cognitive decline, dissociation) 

Haddad et al., 2015; 

LeGates et al., 2019; 

Lener et al., 2017; 

Sanacora et al., 2012 

Monoamine oxidase inhibitor MAOI 

Blocks the metabolism of 

monoamine neurotransmitters by 

MAO 
• More effective in treating MDE 

compared to SSRIs and SNRIs 

• Adverse side effects (e.g., 

cardiac effects) Carvalho et al., 2016; 

Cipriani et al., 2018; 

Malhi and Mann, 2018; 

Undurraga and 

Baldessarini, 2017 

Tricyclic antidepressant TCA 

Blocks the reuptake of 5-HT and 

norepinephrine 

Serotonin-norepinephrine 

reuptake inhibitor SNRI 

Blocks the reuptake of 5-HT and 

norepinephrine 
• Improved selectivity and 

tolerability 

• Modest efficacy 

• Weeks-long delay in therapeutic 

response 

• Side effects remain common 

especially with long-term use 

Selective serotonin reuptake 

inhibitor SSRI Blocks the reuptake of 5-HT 
5-HT: serotonin; MAO: monoamine oxidase; MDE: major depressive episode; NMDA: N-methyl-D-aspartate 
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I.1.3. Drug response and factors of variability 

Although response to ATD therapies depends on adequate dosing, treatment duration, 

and adherence to the prescribed drug (Haddad et al., 2015), it can be influenced by other 

factors. Pharmacology, the study of drug action and response, seeks to examine and better 

understand the factors underlying the interindividual variability in drug response and toxicity. 

This often requires prior knowledge, most importantly about the individual, to determine the 

“right” pharmacological therapy (e.g., the correct drug, dose, and frequency) (Vallance and 

Smart, 2006).  

Although this concept of precision medicine is a promising idea, various factors can 

influence drug response, including drug characteristics (e.g., dosage and drug-drug 

interactions), environmental factors (e.g., diet), and one’s own biology (Turner et al., 2015). 

As such, biological factors that predict drug response (i.e., biomarkers) are of interest when 

searching for the “right” pharmacological treatment. These factors are often related to drug 

pharmacokinetics (PK) and pharmacodynamics (PD), or, respectively, how the body affects 

the drug—including its absorption, distribution, metabolism, and excretion—and how the 

drug affects the body (Turner et al., 2015).  

ATDs differ greatly with respect to their PK (Hiemke and Härtter, 2000), which plays 

into drug selection and dosing since active metabolites must maintain specific concentrations 

to have a therapeutic effect (Wyska, 2019). Various biological factors can influence ATD 

concentrations, including members of the cytochrome P450 (CYP) superfamily. Indeed, 

interindividual variability in ATD concentrations, which depends on hepatic transport and 

CYP-mediated metabolism, is associated with CYP activity (Wyska, 2019). Genetic variation 

in CYP-encoding genes can reduce, enhance, or abolish CYP activity and/or gene expression 

(Tracy et al., 2016) and variation specifically within CYP2D6 and CYP2C19 is associated 

with SSRI concentrations (Ji et al., 2014; Jukić et al., 2018). The Clinical Pharmacogenetics 

Implementation Consortium (CPIC) also recommends clinical guidelines to help guide ATD 

dosing and selection based on CYP2D6 and CYP2C19 genetic variation that is expertly 

validated to influence the efficacy and tolerability of ATDs (Bousman et al., 2023; Hicks et 

al., 2017). 

Like the cause(s) of depression, the PD of ATDs remains less well understood. ATD 

treatment outcomes have been explored and associated with factors related to hypothalamic–

pituitary–adrenal (HPA) axis dysregulation, altered glutamatergic signaling, 

neurodegeneration, immunological status, and more (Kamran et al., 2022; Leboyer et al., 

2016). Though important, ATDs were not designed to directly target these factors, but rather  
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Table 3: Cohorts of depressed patients 

Cohort N 

F/M 

ratio Ethnicity Inclusion Treatment(s) 

F/u 

(weeks) Assessment 

Response/ 

remission  

definition 

Response 

rate 

Remission 

rate Strengths Limitations Reference 

GENDEP 811 1.74 European 

• Aged >18 years 

• Moderate MDE 

(ICD–10 or 

DSM–IV) 

citalopram,  

nortriptyline 12 

MADRS, 

HDRS, BDI 

• ≥50% 

reduction in 

HDRS score 

• HDRS 

score ≤7 57% 41% 

Ancestry 

determined up 

to 2 

generations 

(population 

stratification) 

Use of 

nortriptyline 

(generalizability) Uher et al., 2009b 

GSRD 702 2.64 European 

• MDD (DSM-IV) 

• ≥1 adequate 

ATD treatment¹ 
during current 

MDE 

naturalistic 

n.r. 8 HDRS 

• HDRS 

score <17 

after ≤2 

adequate 

consecutive 

ATD trials 

during the 

last MDE 

• n.r. 51% n.r. 

• Examination 

of TRD 

(clinical 

severity) 

• Naturalistic 

(real-world 

treatment) 

TRD definition is 

one of several in 

the literature 

(generalizability) Souery et al., 2007 

ISPC 865 1.30 

Asian, 

European 

Varied by site 

In general, 

patients were: 

• Aged ≥18 years 

• MDD diagnosis 

(DSM-IV) 

• Met minimum 

HDRS score (8–

18)  

citalopram, escitalopram,  

fluoxetine, fluvoxamine, 

paroxetine, sertraline,  

venlafaxine 3–8 HDRS 

 

• ≥50% 

reduction in 

HDRS score 

after 4 weeks 

of treatment 

• n.r. 48% n.r. 

Mixed 

population can 

identify factors 

in both Asian 

and European 

populations 

• Mixed ancestry 

(population 

stratification) 

• Varied follow-up 

time across sites 

(limited analysis) Biernacka et al., 2015 

MAKE BETTER 1,000 n.r. Korean 

• Aged >7 years 

• Diagnosis with 

MDD, dysthymic 

disorders, or 

depressive 

disorders not 

specified by the 

DSM-IV 

• HDRS score≥14 

naturalistic 

bupropion, 

desvenlafaxine, 

duloxetine, escitalopram, 

fluoxetine, mirtazapine, 

paroxetine, sertraline, 

TCAs, venlafaxine, 

vortioxetine 104 

HDRS, 

HADS 

• ≥20% 

reduction in 

HDRS score 

after 2 weeks 

of treatment 

• HDRS 

score ≤ 7 

after 12 

weeks of 

treatment 83% 43% 

Ethnically 

homogenous 

Clinically 

heterogeneous Kang et al., 2020, 2018 

MARS 842 1.32 European 

• Aged 18–75 

years 

• MDE, recurrent 

depression, or 

bipolar disorder 

(DSM-IV) 

naturalistic 

n.r., except in terms of 

ATD class: NaSSA, NRI, 

others, SSRI, SNRI, TCA  5 HDRS 

• ≥50% 

reduction in 

HDRS after 5 

weeks of 

treatment 

• HDRS 

score ≤7  52% 28% 

• Large cohort 

• Naturalistic 

(real-world 

treatment) 

• Clinical 

stratification 

• Short follow-up Hennings et al., 2009 
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METADAP 624 2.20 

Mixed 

(~90% 

European) 

• Aged 18–65 

years 

• Current MDE in 

MDD (DSM-IV) 

• HDRS score≥18 

naturalistic 

fluoxetine, paroxetine, 

sertraline, citalopram, 

escitalopram, 

fluvoxamine, venlafaxine, 

milnacipran, duloxetine, 

clomipramine, 

amitriptyline, imipramine, 

mianserin, mirtazapine, 

agomelatine, tianeptine, 

iproniazid, moclobemide, 

ECT, rTMS  26 HDRS 

• ≥50% 

reduction in 

HDRS score 

• HDRS 

score ≤7 53%³ 27%³ 

Long-term 

follow-up 

High dropout rate 

by last timepoint Corruble et al., 2015 

PGRN-AMPS 463 1.82 White 

• Aged 18–84 

years 

• MDE in MDD 

(DSM-IV) 

• HDRS score≥14 
citalopram,  

escitalopram 8 

HDRS,  

QIDS-C16 

• ≥50% 

reduction in 

QIDS-C16 

score 

• QIDS-C16 

score ≤5 69% 50% 

Findings 

generalizable 

to typical ATD 

treatments and 

STAR*D level 

1 

• Short follow-up 

time 

• Findings 

generalizable to 

SSRIs alone Mrazek et al., 2014 

PReDICT 344 1.32 

Mixed 

(~48% 

White) 

• Aged 18–65 

years 

• MDE (DSM-IV) 

without prior 

treatment for 

MDD 

• HDRS score≥18 

at screening and 

≥15 at baseline escitalopram, duloxetine 12 

HDRS, 

QIDS-SR16, 

BDI 

• ≥50% 

reduction in 

HDRS score 

from baseline 

• HDRS 

score ≤7 at 

week 10 and 

week 12 64% 51% 

Examination 

of first-time 

MDEs 

(clinical 

severity) 

Small cohort, 

recruitment based 

on advertising and 

primary care 

referral (clinical 

severity) Dunlop et al., 2017 

STAR*D 2,876 1.76 

Mixed 

(~76% 

Caucasian) 

• Aged 18–85 

years 

• MDD (DSM-IV) 

• HDRS score≥14 

(1) citalopram; (2) 

bupropion, sertraline, 

venlafaxine; (3) 

mirtazapine, nortriptyline; 

(4) tranylcypromine, 

venlafaxine+mirtazapine 14² 

HDRS,  

QIDS-C16, 

QIDS-SR16 

• ≥50% 

reduction in 

QIDS-SR16 

at the last 

assessment 

• HDRS 

score ≤7 at 

exit 47% 28% 

• Large cohort 

• Naturalistic 

treatment 

(real-world 

treatment 

strategies) 

• Results of level 1 

may not be 

generalizable to 

other treatments 

• High dropout rate 

by last timepoint 

Rush et al., 2004; 

Trivedi et al., 2006 

ATD: antidepressant drug; BDI: Beck Depression Inventory; DSM: Diagnostic and Statistical Manual of Mental Disorders; ECT: electroconvulsive therapy; F: female; F/u: follow-up; HADS: Hospital 

Anxiety and Depression Scale; HDRS: Hamilton Depression Rating Scale; ICD: International Classification of Diseases; M: male; MADRS: Montgomery and Asberg Depression Rating Scale; MDD: 

Major Depressive Disorder; MDE: major depressive episode; N: sample size; NaSSA: noradrenergic specific serotonergic antidepressant; n.r.: not reported; NRI: norepinephrine reuptake inhibitor; QIDS-

C16: Quick Inventory of Depressive Symptomatology, clinician-rated; QIDS-SR16: Quick Inventory of Depressive Symptomatology, self-reported; SSRI: selective serotonin reuptake inhibitor; SNRI: 

serotonin-norepinephrine reuptake inhibitor; TCA: tricyclic antidepressant; TRD: treatment resistant depression 

¹ ≥4 weeks in duration and dose ≥the lowest effective dose (product datasheet); ² in level 1 of the sequenced trials; ³ among the 326 measures available after 3 months of treatment 
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the synaptic concentrations of the monoamine neurotransmitters, serotonin [i.e., 5-

hydroxytryptamine (5-HT)], dopamine, and noradrenaline (i.e., norepinephrine) (Malhi and 

Mann, 2018; Otte et al., 2016). Following the association of depleted monoamine 

neurotransmitter levels with depressive symptoms and the ability of early ATDs (i.e., TCAs 

and MAOIs) to enhance monoamine neurotransmission, these compounds were implicated in 

the pathophysiology of MDD and its treatment with ATDs (Otte et al., 2016).  

Most ATDs influence monoamine neurotransmitter concentrations by directly 

blocking their reuptake into presynaptic neurons (e.g., SSRIs, SNRIs, and TCAs) or their 

enzymatic degradation (e.g., MAOIs) [see Figure 1 (page 9) and Table 2 (page 4)]. 

However, the true mechanistic action of ATDs remains largely unknown. Still, increased 

monoamine neurotransmitter levels are thought to (1) enhance monoamine neurotransmitter 

receptor signaling, (2) consequently stimulate second messenger pathways in postsynaptic 

neurons, and (3) cause downstream changes in gene expression, neurogenesis (i.e., the 

process of forming new neurons), and neuroplasticity (i.e., the ability of neurons to grow, 

adapt, and strengthen connections) (Malhi and Mann, 2018; Otte et al., 2016). 

I.2. The search for biomarkers of antidepressant drug response 

Although sociodemographic (e.g., education level) and clinical (e.g., baseline 

severity) associations are known (Jain et al., 2013; Rost et al., 2022), biological associations 

are also observed, including those with genomic (Singh et al., 2023), epigenomic (Engelmann 

et al., 2022; Webb et al., 2020; Zhou et al., 2021), transcriptomic (Belzeaux et al., 2018), 

proteomic (Gadad et al., 2018), and metabolomic factors (Duan and Xie, 2020).  

These different “omics” approaches aim to capture variability at different biological 

levels with varied characteristics, ranging from fixed genetic variation at the level of DNA, 

the unchanging yet regulable genomic blueprint, to the concentrations of metabolites—

constantly fluctuating materials closely associated with clinical phenotypes (Neavin et al., 

2016). Pharmacogenetics (PGx) and pharmacometabolomics (PMx) seek to investigate how 

drug response is influenced by genetic variation and metabolite levels, respectively. 
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Figure 1: Antidepressant action at the synapse in the pharmacological treatment of depression 

All available antidepressant drugs act on elements of monoamine neurotransmission on presynaptic 

(purple) and postsynaptic (orange) neurons (e.g., by altering neurotransmitter concentrations within 

the synapse). These changes lead to increased neurotransmission, including G protein-mediated 

signaling, consequent cell signaling and second messenger pathways, altered gene expression, and, 

ultimately, neural remodeling and neurogenesis. The table shows the specific receptor/transporter 

interactions of various antidepressant drugs, including SSRIs (light blue), SNRIs (yellow), TCAs 

(blue gray), other antidepressants (light yellow), and MAOIs (white). For example, agomelatine 

interacts with postsynaptic serotonergic receptors while duloxetine interacts with 5-HTT and NAT. 

5-HT: serotonin; 5-HTR: serotonin receptor; 5-HTT: serotonin transporter; DAR: dopamine 

receptor; DAT: dopamine transporter; NAR: noradrenaline receptor; NAT: noradrenaline transporter; 

R: receptor; MA: monoamine; MAO: monoamine oxidase; MAOI: monoamine oxidase inhibitor 

TCAs: tricyclic antidepressants; SSRIs: selective serotonin reuptake inhibitors; SNRIs: serotonin-

noradrenaline reuptake inhibitors; VMAT: vesicular monoamine transporter 
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I.2.1. Pharmacometabolomics (PMx) 

PMx is the study of metabolic profiles to better understand drug effects and their 

predictive potential for drug response. PMx can capture real-time treatment-related changes 

and provide insight into drug PK and PD, as well as interindividual and intergroup treatment 

response (Beger et al., 2020). Importantly, PMx may help to inform pharmacological 

interventions by, for example, classifying and stratifying responders and non-responders 

(Kaddurah-Daouk et al., 2014). Targeted and untargeted (i.e., global) approaches exist. 

Targeted approaches typically employ absolute quantification [i.e., metabolite concentrations 

(e.g., μg/mL)] while untargeted approaches are generally limited to relative quantification 

(i.e., peak intensities), which can differ between laboratories, batches, instrument 

parameterizations, and data processing methods (Castelli et al., 2022). 

Several methods for biological metabolite measurement exist [see Table 4 (page 11)] 

(Gamache et al., 2004; Lu et al., 2017). Comparatively, mass spectrometry (MS) benefits 

from improved accessibility and convenience thanks to commercially available kits. For 

example, the BIOCRATES AbsoluteIDQ® p180 kit is an MS-based targeted metabolomic 

assay for the identification and absolute quantification of 180 endogenous metabolites, 

including 5-HT (Laiakis et al., 2013). These kits have been used to discover metabolic 

signatures in disease, but also provide a means of standardization (Saigusa et al., 2021). 

Many metabolic pathways are associated with the response to ATD treatment in 

depression, including lipid metabolism, as observed by our team through associations with 

changes in acetyl- and acyl-carnitines (Ait Tayeb et al., 2023, 2021) [see Table 5 (page 13)]. 

Since monoamine neurotransmission is implicated in depression (Malhi and Mann, 2018; 

Otte et al., 2016), and since ATDs—which almost all target 5-HT levels—are relatively 

effective treatments (Jauhar et al., 2023), 5-HT remains the main metabolic target in the study 

of MDD and the response to its treatment with ATDs [see Table 5 (page 13)].  

Similar to other case-control studies of 5-HT levels (Holck et al., 2019; Sun et al., 

2020), our team observed lower 5-HT levels in depressed patients compared to healthy 

controls (Colle et al., 2020). In depressed patients, higher levels of 5-HT at baseline and 

during ATD treatment have been associated with improved clinical outcomes (Bhattacharyya 

et al., 2019; Holck et al., 2019; Sun et al., 2020). Among 31 plasma metabolites, 5-HT levels 

at baseline and during treatment were also the most significantly associated with clinical 

response measures in the Pharmacogenomics Research Network-Antidepressant Medication 

Pharmacogenomics Study (PGRN-AMPS) cohort, with higher baseline levels and greater 

decreases during ATD treatment associating with improved outcomes (Gupta et al., 2016). 
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Table 4: Pharmacometabolomic approaches 

Method Abbreviation Strengths Limitations 

Gas chromatography mass spectrometry GC-MS 

• Can identify and quantify metabolites with highly 

variable concentrations in a sample 

• High-throughput (hundreds of samples per day) 

• Obtaining structural information is not 

straightforward or effective 

• Cannot be used for metabolites that cannot be 

volatilized (i.e., converted from liquid to gas) 

• Low mass accuracy (unless at the expense of cost or 

throughput) 

Liquid chromatography electrochemical 

array 
LCECA 

• Powerful tool for the analysis of redox metabolites 

(e.g., serotonin pathway metabolites) 

• High sensitivity (femtomolar range) 

• High precision 

• Low cost 

• Applicable only to electrochemically active 

metabolites 

• Low-throughput (~dozen samples per day) 

• Structural information is lacking 

Liquid chromatography mass spectrometry LC-MS 

• Can identify and quantify metabolites with highly 

variable concentrations in a sample 

• Highly flexible (applicable to most metabolites, 

adjustable accuracy and throughput) 

• High-throughput (hundreds of samples per day) 

• Exact metabolite composition possible 

• Obtaining structural information is not 

straightforward or effective 

• Variable precision 

Nuclear magnetic resonance NMR 
• Powerful tool for structural investigations 

• High-throughput (hundreds of samples per day) 

• Poor sensitivity compared to other methods 

• High cost 
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This latter PMx study also investigated how genetic variation may be associated with 

ATD response-associated plasma 5-HT levels (Gupta et al., 2016). In this PMx-informed 

genetic analysis, genetic variation within TSPAN5 and ERICH3 was associated with plasma 

5-HT levels. Further functional analyses demonstrated that TSPAN5 influenced the levels of 

serotonin pathway enzymes, while ERICH3 more directly influenced 5-HT concentrations. 

One genetic variant of ERICH3 in particular, rs11580409(A>C), was associated with (1) 

decreases in ERICH3 levels, (2) variation in plasma 5-HT levels at baseline and during ATD 

treatment, and (3) clinical response in several depressed cohorts, including the STAR*D 

(Gupta et al., 2016; Liu et al., 2020).  

These PMx-informed genetic analyses highlight the potential utility of combining 

different “omics” strategies to help elucidate or clarify the mechanisms underlying ATD 

treatment (Neavin et al., 2016). They equally underline the importance of the association of 

genetic variation with the response to ATD treatment. 

I.2.2. Pharmacogenetics (PGx) 

PGx is the study of how genetic variation influences drug response (Porcelli et al., 

2011). Overall, PGx seeks to leverage genomic technology to identify genetic factors that can 

aid in drug development, selection, and optimization to maximize drug efficacy while 

minimizing toxicity (Pirmohamed, 2023).  

Germline genetic variation is of particular importance to PGx (Ku et al., 2010) and 

includes both small- and large-scale variation. However, single nucleotide substitutions are 

the most frequently reported type of genetic variation with pharmacological consequences 

(Tafazoli et al., 2020). They are further classified by their population-level minor allele 

frequency (MAF), with single nucleotide variation (SNV) present in <1% and single 

nucleotide polymorphisms (SNP) present in ≥1%.  

Genetic variation occurs between and within genes. Within-gene variation is further 

categorized into whether it occurs within protein-coding regions (i.e., exons), between them 

(i.e., introns), or in 3’- and 5’- untranslated regions (UTR). Depending on its effect on the 

encoded protein’s amino acid structure, exonic single nucleotide substitutions can be 

synonymous (no alteration), missense (a substitution to a different amino acid), or nonsense 

(an alteration to an amino acid chain-terminating “stop” codon) [see Figure 2 (page 15)].  
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Table 5: Pharmacometabolomic associations with clinical outcomes following antidepressant treatment 

Reference 

Sample  

source 

Assay 

method N Treatment(s) 

F/u 

(weeks) Outcome(s) Pathway(s) Metabolite(s) Association(s) 

Ait Tayeb 

et al., 2021 Plasma 

LC-MS 

(p180 Kit) 460 

naturalistic 
fluoxetine, 

paroxetine, 

sertraline, 

citalopram, 

escitalopram, 

fluvoxamine, 

venlafaxine, 

milnacipran, 

duloxetine, 

clomipramine, 

amitriptyline, 

imipramine, 

mianserin, 

mirtazapine, 

agomelatine, 

tianeptine, 

iproniazid, 

moclobemide, ECT, 

rTMS 

26 

HDRS score 

change, 

response¹, 

remission² Lipid metabolism acetyl-L-carnitines 

↑ L-carnitine/acetyl-L-carnitine ratio in 

responders/remitters 

Ait Tayeb 

et al., 2023 Plasma 

LC-MS 

(p180 Kit) 460 26 

HDRS score 

change, 

response¹, 

remission² Lipid metabolism acylcarnitines 

↓ levels of medium- and long-chain 

acylcarnitines ∞ ↑ HDRS score 

Bhattachary

ya et al., 

2019 Plasma LCECA 290 

citalopram, 

escitalopram 8 

HDRS score 

change, 

response¹ 

Tryptophan 

metabolism 

Serotonin pathway 

Norepinephrine 

metabolism 

5-HT 

↘ levels ∞ greater score change 

greater ↘ in responders 

5-HIAA ↗ levels ∞ greater score change 

3-methoxy-4-

hydroxyphenylglycol greater ↘ in responders 

Caspani et 

al., 2021 Plasma NMR 211 escitalopram 8 

MADRS score 

change 

Lipoprotein 

metabolism apolipoprotein, HDL ↓ baseline levels in male responders 

Czysz et 

al., 2019 Plasma 

LC-MS 

(p180 Kit) 159 

escitalopram, 

bupropion + 

escitalopram, 

venlafaxine + 

mirtazapine 12 

QIDS-SR16 

score change Membrane structure 

phosphatidylcholine 

diacyl C38:1 ↑ baseline levels ∞ smaller score changes 

Erabi et al., 

2020 Plasma LC-MS 62 escitalopram 6 

HDRS score 

change, 

response¹ 

Tryptophan 

metabolism 

Kynurenine pathway 

kynurenic acid, 

kynurenine 

↓ levels ∞ greater score changes 

↓ baseline levels in responders 

Gupta et 

al., 2016 Plasma LCECA 306 

citalopram, 

escitalopram 8 

% change 

QIDS-C score, 

response³, 

Tryptophan 

metabolism 

Serotonin pathway 5-HT 

greater ↘ ∞ greater % change 

greater ↘ in responders/remitters 
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remission⁴ 
Holck et 

al., 2019 Plasma LC-MS 26 sertraline 8 response¹  Serotonin pathway 5-HT greater ↘ in responders 

Ji et al., 

2011 Plasma GC-MS 40 escitalopram 8 response³ Nitrogen metabolism glycine ↓ baseline levels in responders 

Kaddurah-

Daouk et 

al., 2011 Serum LCECA 43 sertraline 4 response¹  

Tryptophan 

metabolism 

Serotonin pathway 

dihydroxyphenylacetic 

acid, 4-

hydroxyphenyllactic 

acid, 5-HT, gamma 

tocopherol 

known chemicals with high VIP values to 

discriminate responders and non-

responders 

Kaddurah-

Daouk et 

al., 2013 Serum GC-MS 43 sertraline 4 

HDRS score 

change 

Energy metabolism 

Signaling 

Protein synthesis 

branched-chain amino 

acids  

↘ levels of valine, leucine, and isoleucine 

∞ greater score changes 

Mahmoudia

nDehkordi 

et al., 2021 Plasma 

LC-MS 

(p180 Kit) 136 

citalopram, 

escitalopram 8 

% change 

HDRS score 

Lipid metabolism 

Tryptophan 

metabolism 

acylcarnitines, amines, 

phosphatidylcholines 

↗ levels of C5-M-DC (acylcarnitine), 

histidine, proline, kynurenine, trans-5 

hydroxyproline (amines), and several 

phosphatidylcholines ∞ greater % change 

Sun et al., 

2020 Plasma LC-MS 161 

desvenlafaxine, 

escitalopram 8 

% change in 

HDRS score, 

response¹, 

remission² 

Tryptophan 

metabolism 

Serotonin pathway 5-HT 

↑ baseline levels ∞ greater % change 

↑ baseline levels in escitalopram 

responders 

Zhu et al., 

2013 Serum LCECA 75 sertraline 4 

% change 

HDRS score, 

response¹  

Tryptophan 

metabolism 

Serotonin pathway 

Methoxyindole 

pathway 

5-methoxytryptamine 

↑ baseline levels ∞ greater score changes 

greater ↘ in responders 

melatonin greater ↗ in responders 

5-HT greater ↘ in responders 

5-HIAA: 5-hydroxyindoleacetic acid; 5-HT: serotonin; F/u: follow-up; GC: gas chromatography; HDRS: Hamilton Depression Rating Scale; LC: liquid chromatography; 

LCECA: liquid chromatography electrochemical array; MADRS: Montgomery and Åsberg Depression Rating Scale; MS: mass spectrometry; N: sample size; NMR: 

nuclear magnetic resonance; p180 Kit: BIOCRATES AbsoluteIDQ® p180 kit; QIDS-C16: Quick Inventory of Depressive Symptomatology, clinician-rated; QIDS-SR16: 

Quick Inventory of Depressive Symptomatology, self-reported 

¹ HDRS reduction of ≥50%; ² HDRS ≤7; ³ QIDS-C16 reduction of ≥50%; ⁴ QIDS-C16 ≤5; ↑ higher; ↓ lower; ↘ decrease(d); ↗ increase(d); ∞ associated with 
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Figure 2: Genetic variation 

Genetic variation can be both small- and large-scale. Single nucleotide substitutions and indels (black and bold A, T, C, G) can occur between genes, within 

them (gray boxes), or at splice sites. Intergenic and genic mutations resemble one another, but genic mutations within exons or UTRs (nested dark gray 

blocks) can have varied effects on the encoded amino acid. Splice site mutations can lead to exon exclusion or intron inclusion in the encoded amino acid. 

CNV: copy number variation; indel: insertion/deletion; LD: linkage disequilibrium; UTR: untranslated region 
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Missense and nonsense mutations often have more straightforward effects on protein 

structure, protein levels, or downstream processes, and even synonymous variation is thought 

to disrupt splicing, transcription, protein folding, and mRNA stability (Zeng and Bromberg, 

2019). Non-coding variation (i.e., intronic and intragenic)—which encompasses the vast 

majority of disease-associated genetic variation—has largely unknown consequences (Lin et 

al., 2019). This uncertainty is further confounded by (1) linkage disequilibrium (LD), the 

degree to which an allele of one genetic variant is inherited or correlated with an allele of 

another genetic variant (Myers et al., 2020) [see Figure 2 (page 15)] and (2) specific disease-

associated contexts (e.g., gene, cell type, and tissue) (Kundaje et al., 2015).  

I.2.2.1. Pharmacogenetic approaches 

Hypothesis-driven (i.e., leveraging prior knowledge to guide targeted genetic 

investigations) and hypothesis-generating (i.e., leveraging large datasets to find associations 

without any prior knowledge) approaches are used in PGx (Hulsen et al., 2019). Candidate 

gene (and pathway) studies and genome-wide association studies (GWAS) are commonly 

used hypothesis-driven and hypothesis-generating approaches, respectively; high-throughput 

sequencing (HTS) is applicable in each case. Each relies on different methodologies, and 

each has its strengths and limitations [see Table 6 (page 17)]. 

Since the pathophysiology of MDD and the action of ATDs remain largely unknown, 

hypothesis-generating approaches offer a powerful means of genetic investigation. Indeed, 

hundreds of significantly associated genetic polymorphisms in hundreds of genes have been 

identified using GWAS (Singh et al., 2023). For example, a genome-wide significant 

polymorphism in RNF219-AS1 was identified in a large population of self-reported 23andMe 

questionnaire responders [see Table 7 (page 19)] (Li et al., 2020, 2016). Conversely, in the 

largest GWAS of clinical outcomes following ATD treatment in clinically diagnosed 

individuals to date, no genome-wide significant loci were identified (Pain et al., 2021). 

Although a powerful tool for discovery, GWAS is limited notably in the analysis of complex, 

heterogeneous diseases, like MDD. 

The candidate approach, which leverages prior knowledge and often investigates PK- 

and PD-related genes (Alghamdi and Padmanabhan, 2014; Jorgensen et al., 2009), has also 

identified significant genetic associations with clinical outcomes following ATD treatment 

within several candidate genes (Kato and Serretti, 2010; Porcelli et al., 2011; Singh et al., 

2023; Uher et al., 2009a). For example, associations have been identified with genetic
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Table 6: Pharmacogenetic approaches 
Approach Abbrv Methodology Strengths Limitations References 

Candidate gene (and 

pathway) 
n.a. 

Leverages prior knowledge to 

guide genetic investigation 

Aims to target highly relevant genes 

and genetic variation, generally 

related to drug PK and PD 

• More time-consuming in comparison 

to other approaches 

• Appropriate gene selection can be 

limited for complex, polygenic diseases 

that may remain poorly understood 

Alghamdi and 

Padmanabhan, 2014; 

Jorgensen et al., 2009 

Genome-wide 

association study 
GWAS 

Millions of preselected, common 

genetic markers across the 

genomes of many individuals are 

genotyped using microarray 

technology 

• Allows for the simultaneous analysis 

of millions of genetic variants at once 

without any prior knowledge 

• Well-characterized methodology  

• Affordable 

• GWAS data applicable to other 

genetic analyses like PRS 

• Generates large volumes of data 

requiring dedicated workflows and staff 

• Limited in the analysis of complex, 

polygenic diseases 

• Burdened by multiple testing 

correction and extreme statistical 

significance thresholds (P<0.00000005) 

• Increased sample sizes to boost 

statistical power may introduce more 

heterogeneity and analytical 

confounding 

Moore, 2017; Tam et 

al., 2019; Uffelmann et 

al., 2021 

High-throughput 

sequencing 
HTS 

Using the Illumina system, DNA 

is fragmented, amplified, and 

sequenced on flow cells 

(fluorescent-labeled nucleotides 

for each of the four nucleotides 

are added and recorded), then 

sequenced DNA is aligned to a 

reference genome and software is 

used to identify genetic variants 

• Allows for the detection of de novo 

and rare genetic variation 

• Applicable to candidate, genome-

wide, and exome-wide approaches 

• Continued improvements in 

accuracy, scalability, and flexibility 

• Prone to sequencing and analytical 

biases 

• Generates large volumes of data 

requiring dedicated workflows and staff 

• More expensive in comparison to other 

approaches 

• Less accurate in comparison to GWAS, 

especially in low-complexity and 

duplicated/deleted regions 

DePristo et al., 2011; 

Hong et al., 2013; Li et 

al., 2019; Slatko et al., 

2018 

n.a.: not applicable; PD: pharmacodynamic; PK: pharmacokinetic; PRS: polygenic risk score 
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variation in MAOA [encoding monoamine oxidase (MAO), which metabolizes monoamine 

neurotransmitters (Uzbekov, 2021)], BDNF [encoding brain derived neurotrophic factor 

(BDNF), which plays a role in regulating neurogenesis and neuroplasticity (Duman and Li, 

2012; Holsboer, 2000)], and ARRB1 [encoding β-arrestin 1, which has defined roles in 

receptor desensitization of many G protein-coupled receptor (GPCR) families, including 

monoamine neurotransmitter receptors (Kovacs et al., 2009; Lefkowitz and Shenoy, 2005)] 

[see Table 7 (page 19)] . 

Lastly, high-throughput sequencing (HTS) remains a particularly versatile approach to 

the analysis of genetic variation since it can examine genetic variation across the whole 

genome (or exome) or in target candidate regions. Indeed, genetic variants associated with 

the response to ATD treatment have been identified in both “ome”-wide and targeted HTS 

analyses [see Table 7 (page 19)] (Levchenko et al., 2020; Park et al., 2021; Xu et al., 2020). 

HTS is also a powerful approach thanks to its ability to identify de novo and rare genetic 

variants. Importantly, although common genetic variation is estimated to account for 20%–

42% of individual variation in ATD response (Pain et al., 2021; Tansey et al., 2013), rare 

genetic variation may account for some of the missing heritability (Pirmohamed, 2023). For 

example, up to 40% of functional variability in PK- and PD-related targets is suggested to be 

attributed to rare, non-synonymous genetic variation (Kozyra et al., 2017). 

I.2.2.1. Novel approaches and in silico tools for pharmacogenetic analyses 

I.2.2.1.1. New methods and analytical strategies 

Various methods and analytical strategies for genetic analysis have evolved alongside 

approaches like GWAS and HTS. With the increased identification of rare genetic variation 

through HTS, these include methods for the generally underpowered analysis of rare genetic 

variation. These methods generally aggregate genetic variation into biological contexts (e.g., 

by gene) [see Figure 3 (page 22)]. However, different methods make different assumptions, 

especially with respect to the presence, direction, and magnitude of rare genetic variation’s 

effect. For example, burden tests assume that all genetic variation (1) has an effect and (2) 

acts in the same direction (e.g., deleteriously). Conversely, the Sequence Kernel Association 

Test (SKAT) allows for mixing causal and non-causal variants, and variants with effects in 

opposing directions (Wu et al., 2011). However, these assumptions are not generally known, 

and so SKAT-O was developed to optimize test selection based on the power of each test 

(Lee et al., 2012b, 2012a). SKAT-O was also recently extended for use with repeated 

measures in longitudinal designs (Chen et al., 2019), making it particularly useful for the 

analysis of clinical outcomes following ATD treatment [see Figure 3 (page 22)].  
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Table 7: Genetic associations with clinical outcomes following antidepressant treatment 

Gene Variant (RS) Ref Alt Approach Cohort(s) N Population Treatment(s) 

F/u 

(weeks) Outcome 

Risk 

group 

(NR) 

OR 

[95%CI] P value Reference 

pharmacokinetic factors 

CYP2C8 rs2071426 T C HTS (CAND) 
- 

530 Han Chinese 

SSRI, SNRI, 

other 8 HDRS score 
- - 

0.0000032 Xu et al., 2020 

CYP2D6 rs1065852 C T CAND 
- 

94 Korean escitalopram 12 response¹ T 

5.61 

[2.32-13.59] <0.001 Han et al., 2013 

pharmacodynamic factors 

monoamine metabolizing enzymes 

COMT rs6267 G T HTS (CAND) 

MAKE 

BETTER 1,000 Korean males naturalistic 12 

early response/ 

remission⁸ G 

2.83 

[1.27-6.29] 0.015 Kang et al., 2020 

MAOA rs6323 G T CAND - 116 European mirtazapine 4 response¹ G - 0.02 Tadić et al., 2007a 

monoamine transporters 

SLC6A2  rs2242446  C T CAND 
- 

96 Japanese milnacipran 6 response³ C 

2.10 

[1.08-4.11] 0.03 Yoshida et al., 2004 

SLC6A4 5HTTLPR Long Short CAND 
- 

940 Korean 

fluoxetine, 

sertraline 6 response¹ Long 

3.90 

[2.04-7.46] 0.000052 Myung et al., 2013 

monoamine receptors 

HTR2A rs6314 C T CAND 

- 

163 Caucasian 

paroxetine, 

citalopram, 

imipramine, 

lofepramine, 

phenelzine 6 response¹ GG 

3.83 

[1.25-11.76] 0.02 Wilkie et al., 2009 

HTR4 rs1345697 T G CAND 

META- 

DAP 492 Mixed naturalistic 13 HDRS score GG 
- 

0.0062 

Poinsignon et al., 

2022 

intracellular signaling 

ARRB1 rs12274033 T C CAND 
- 

270 Korean mirtazapine 4 remission² T 

0.33 

[0.12-0.88] 0.027 Chang et al., 2015 

ARRB2 rs4790694 A C CAND 

META- 

DAP 569 Mixed naturalistic 26 response¹ A 

2.01 

[1.15-3.51] 0.014 Petit et al., 2018 

GNA15 rs11671393 G C HTS (CAND) 

- 

530 Han Chinese 

SSRI,  

SNRI,  

other 8 HDRS score 

- - 

0.000000000005 Xu et al., 2020 

Other 

ACSS3 rs10492002 C T GWAS 

STAR*D, 

GENDEP 

1116, 

585 Mixed 

citalopram, 

escitalopram, 

nortriptyline 12 

sustained 

response vs. 

un-sustained 

response T 

0.61 

[0.50-0.75] 0.0000045 Hunter et al., 2013 

AUTS2 rs7785360 G A GWAS 

- 

711 Korean 

escitalopram, 

sertraline, 

fluoxetine, 6 response¹ A 

0.31 

[0.20-0.47] 0.000000016 Myung et al., 2015 
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paroxetine 

BDNF rs6265 G A CAND 
- 

298 Han Chinese paroxetine 6 response¹ G 

2.08 

[1.43-3.01] <0.0001 

X.-C. Wang et al., 

2014 

BMP7 rs6127921 A C GWAS STAR*D 1,491 Mixed citalopram 14 response⁴ C 

0.57 

[0.46-0.72] 0.00000345 Garriock et al., 2010 

CDH17 rs6989467 A G GWAS MARS 339 Caucasian 

naturalistic, 

citalopram 5 response⁶ 
- - 

0.00000076 Ising et al., 2009 

FKBP5 rs1360780 T C CAND STAR*D 1,809 White citalopram 14 remission⁷ CC 

1.43 

[1.07-1.91] 0.015 Lekman et al., 2008 

GPRIN3--[]--SNCA rs1908557 T C GWAS 23andMe 4,536 European bupropion 
- 

response vs 

non-response⁹ C 

1.35 

[1.21-1.50] 0.000000026 

 

Li et al., 2016 

GRIA4 rs11226856 G A CAND STAR*D 1,541 Mixed citalopram 2 response⁵ A 

1.55 

[1.24-1.92] 0.000085 Fabbri et al., 2013 

GRIK4 rs1954787 T C CAND STAR*D 1,816 Mixed citalopram 6 response⁵ C - 0.00023 Paddock et al., 2007 

IL11 rs1126757 T C GWAS GENDEP 706 Caucasian 

escitalopram, 

nortriptyline 12 

% change in 

MADRS 
- - 

0.00049 Uher et al., 2010 

KRTAP1-1  rs3213755 G A HTS (GWAS) 
- 

100 Korean escitalopram 6 remission² G 

1.86 

[1.32-2.61] 0.00041 Park et al., 2021 

PIP4K2A  rs61731109 C T HTS (CAND) 
- 

96 European naturalistic 4 response¹ C 
- 

0.000943 

Levchenko et al., 

2020 

PPP2C8 rs4733201 G T HTS (CAND) 

- 

530 Han Chinese 

SSRI,  

SNRI,  

other 8 HDRS score 

- - 

0.000000011 Xu et al., 2020 

PRNP rs1800014 G A HTS (CAND) 

MAKE 

BETTER 1,000 Korean males naturalistic 12 

early response/ 

remission⁸ G 

3.78 

[1.45−9.84] 0.0098 Kang et al., 2020 

RNF219-AS1 rs4884091 G A GWAS 23andMe 12,537 European SSRI 
- 

response vs 

non-response⁹ 
- 

1.21 0.000000024 Li et al., 2020 

RORA rs809736 A G GWAS STAR*D 1,491 Mixed citalopram 14 response⁴ 
- 

1.52 

[1.27-1.83] 0.00000819 Garriock et al., 2010 

SLIT3 rs10516049 A G GWAS 

- 

96 Japanese 

paroxetine, 

fluvoxamine, 

nortriptyline, 

milnacipran 8 response¹ G 

10.3 

[3.64-29.41] 0.00000043 Sasayama et al., 2013 

UST rs2500535 A G GWAS GENDEP 706 Caucasian 

escitalopram, 

nortriptyline 12 

% change in 

MADRS 
- - 

0.0012 Uher et al., 2010 

Alt: alternative allele; CAND: candidate; F/u: follow-up; GWAS: genome-wide association study; HDRS: Hamilton Depression Rating Scale; HTS: high-throughput sequencing; MADRS: 

Montgomery and Asberg Depression Rating Scale; N: sample size; NR: non-response; OR: odds ratio; QIDS-C16: Quick Inventory of Depressive Symptomatology, clinician-rated; QIDS-SR16: 

Quick Inventory of Depressive Symptomatology, self-reported; Ref: reference allele; RS: reference SNP identifier; SSRI: selective serotonin reuptake inhibitor; SNRI: serotonin-noradrenaline 

reuptake inhibitor 

¹ HDRS reduction of ≥50%; ² HDRS ≤7; ³ MADRS reduction ≥50%; ⁴ QIDS-SR16 reduction ≥50%; ⁵ QIDS-C16 reduction of ≥50%; ⁶ HDRS reduction ≥25%; ⁷ QIDS-C16 ≤5; ⁸ HDRS reduction 

<20% at 2 weeks and remission² at 12 weeks; ⁹ 23andMe ‘Antidepressant Efficacy and Side Effects’ questionnaire 
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Methods aimed at reducing data dimensionality also exist for the analysis of common 

genetic variation, notably to help ease the statistical burden associated with GWAS. Genome-

to-Phenome Sparse Regression (G2PSR), for example, aims to reduce data dimensionality by 

aggregating and jointly analyzing genetic variants according to defined biological contexts, 

such as genes [see Figure 3 (page 22)] (Deprez et al., 2022). Other analyses, including 

polygenic risk scores (PRS), make use of data like GWAS summary statistics (e.g., effect 

sizes, standard errors, and P values). PRS are calculated as the sum of the number of risk 

alleles (i.e., 0, 1, or 2) for each selected genetic loci multiplied by their effect sizes (e.g., odds 

ratio or beta coefficients) (Lewis and Vassos, 2020). However, PRS have thus far 

demonstrated limited utility in association with the response to ATD treatment (García-

González et al., 2017; Lewis and Vassos, 2020; Meerman et al., 2022; Ward et al., 2018). 

Still, higher PRS were generally associated with worse treatment response, suggesting an 

association between genomic burden and non-response to ATDs (Meerman et al., 2022).  

Several candidate genes with associations to ATD response and/or MDD phenotypes, 

including MAOA (Tadić et al., 2007a) and GRIA3 [encoding an α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit (de Sousa et al., 

2017)], are located on the X chromosome. The X chromosome poses unique challenges for 

genetic analysis since (1) females possess two X chromosomes (and thus two gene copies and 

two alleles), while males possess only one, and (2) some genes may escape from X 

chromosome inactivation (XCI) (Berletch et al., 2011; Carrel and Willard, 2005), a biological 

mechanism that compensates for dosage differences in X-linked gene products between 

males and females by randomly inactivating one X chromosome in females (Johnston et al., 

2008). Various strategies to account for X-linked factors exist (Chen et al., 2021; Clayton, 

2008; Song et al., 2021; J. Wang et al., 2014), such as coding males like female heterozygotes 

(i.e., 1) or homozygotes (i.e., 2) to account for escape from XCI and random XCI, 

respectively (Clayton, 2009). XCI status is often unknown, however, and model 

misspecification can result in a loss of power. Recently, the inclusion of the sex × genotype 

interaction was shown to eliminate model misspecification biases and preserve power under 

different XCI status assumptions (Chen et al., 2021; Song et al., 2021). Its inclusion in X-

linked genetic analyses may thus help to elucidate dosage effects or sex-specific associations. 
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Figure 3: Strategies for the analysis of genetic variation  

HTS can be used to identify common (black) and rare (red) genetic variation. Uniquely labeled 

genetic variation (e.g., by RS identifier) can be annotated with in silico predictions, functional 

annotations, and literature-based associations using various tools and databases (gray stacks). Genetic 

variation can be analyzed independently (blue), lending itself to other analyses (e.g., PRS), or jointly 

(orange) following aggregation into biological contexts (e.g., genes A, B, and C). Aggregation is also 

used to study rare genetic variation, though each method makes different assumptions on the 

presence, direction, and magnitude of the effect (dashed lines) of each rare genetic variant (individual 

boxes) 

eQTL: expression quantitative trait loci; HTS: high-throughput sequencing; G2PSR: Genome-to-

Phenome Sparse Regression; PD: pharmacodynamics; PK: pharmacokinetics; PRS: polygenic risk 

score; rs: reference SNP; SKAT: Sequence Kernel Association Test; TF: transcription factor 
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I.2.2.1.1. in silico tools for genetic variant prioritization 

Although functional consequences for the majority of genetic variation remain to be 

elucidated, in silico predictive tools and functional databases can annotate genetic variants 

with informative data (Sefid Dashti and Gamieldien, 2017). Many in silico tools exist to 

predict the impact of different types of genetic variation, including missense, synonymous, 

and intronic variants (Katsonis et al., 2022). By leveraging feature data (e.g., genomic, 

protein sequence, and evolutionary constraints) and training data (e.g., known 

polymorphism–Mendelian disease associations), these tools can calculate the probability that 

a genetic variant is damaging.  

Often, a genetic variant identifier [e.g., Reference SNP (rs) identifier] is enough to 

access the data stored in functional databases, including in silico predictions, associations 

with gene expression, and annotations with transcription factor motif alteration or protein 

binding disruption [see Figure 3 (page 22)]. Genetic variants for which different genotypes 

are associated with the expression of a target gene are known as expression quantitative trait 

loci (eQTL) (Ward and Kellis, 2016). The expression of both local (i.e., cis) and distant genes 

(i.e., trans) can be influenced by eQTL (Westra et al., 2013). Moreover, eQTL sometimes 

affect gene expression in a tissue-dependent manner (The GTEx Consortium, 2013), which 

can shift its relevance and interpretation depending on disease and/or treatment (Ramasamy 

et al., 2014). Importantly, since about 80% of the human genome, including non-coding 

variation, is suggested to fall within a functional region, functional annotations may help to 

hypothesize a genetic variant’s impact (The ENCODE Project Consortium, 2012).  

The exploration and analysis of eQTL have led to the development and curation of 

multiple eQTL databases, including those examining gene expression in blood (Westra et al., 

2013), across tissues (The GTEx Consortium, 2013), and within various brain regions 

(Ramasamy et al., 2014). Other databases include these eQTL data and annotations of 

functional consequences [see Table 8 (page 24)] (Rojano et al., 2019). RegulomeDB, for 

example, links gene expression and disrupted transcription factor motif and protein binding 

data to known genetic variants and ranks their likelihood to fall within a functional element 

(Boyle et al., 2012). Other databases, such as PharmGKB (Whirl‐Carrillo et al., 2021) and 

PharmVar (Gaedigk et al., 2021), are specifically devoted to the curation of both PK- and 

PD-related genetic variation. 
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Table 8: Databases for the functional annotation of genetic variants 
Database 

(version) Annotation Data sources Scoring Advantages Reference 

Annotation 

FORGEdb (v2) 

Regulatory 

regions 

TF binding 

Target genes 

Protein-level 

changes 

ENCODE, Roadmap 

Epigenomics, 

BLUEPRINT 

CATO scores 

ABC data, GTEx, 

eQTLGen 

CADD scores 

2 points - DNase I hotspot (chromatin accessibility) 

2 points - Histone mark ChIP-seq broadPeak (regulatory states) 

1 point - TF motif 

1 point - CATO score (potential TF binding) 

2 points - Activity-by-contact (ABC) interaction (gene looping) 

2 points - Expression quantitative trait locus (eQTL) (gene expression association) 

• Implements more and 

more updated data 

sources 

• Implements CADD 

data for protein-coding 

variation 

Breeze et al., 

2022 

HaploReg (v4.2) 

Sequence 

conservation 

Regulatory 

regions 

eQTL 

LD 

SiPhy, GERP 

ENCODE, Roadmap 

Epigenomics 

GTEx, GEUVADIS 

1000 Genomes Project 

n.a. 

Provides variants in LD 

and detailed data 

source annotation 

information compared 

to RegulomeDB 

Ward and 

Kellis, 2016 

INFERNO 

LD 

Genomic position 

Regulatory 

regions 

eQTL 

Pathway 

Risk 

polymorphisms 

1000 Genomes Project, 

UCSC knownGene 

FANTOM5, Roadmap 

Epigenomics, HOMER, 

GENCODE 

GTEx 

KEGG, Gene Ontology 

PredictDB, MetaXcan 

n.a. 
Provides context-

specific annotation 

(e.g., gene, tissue, long 

non-coding RNA) 

Amlie-Wolf 

et al., 2018 

RegulomeDB 

(v2.2) 

TF binding 

eQTL 

Regulatory 

regions 

JASPAR 

GTEx 

ENCODE, TRACE, 

EpiMap, various 

publications 

1 - Likely to affect binding and linked to expression of a gene target 

2 - Likely to affect binding 

3 - Less likely to affect binding 

4–6 - Minimal binding evidence 

Early functional 

annotation database 

integrating data from 

many sources and 

providing an annotation 

score for prioritization 

Boyle et al., 

2012 

rVarBase (v2.0) 

TF binding 

Regulatory 

regions 

LD 

Disease 

associations 

eQTL 

UCSC TFBS conserved, 

TRANSFAC, JASPAR, 

ENCODE-motif 

ENCODE, Roadmap 

Epigenomics, Lncipedia, 

miRBase, Ensembl, 

miRTarBase, TargetScan, 

miRnada 

1000 Genomes Project, 

HapMap 

GWAS catalog, CNVD 

GTEx, BrainEAC 

n.a. 

Provides variants in LD 

and detailed data 

source annotation 

information compared 

to RegulomeDB 

Guo et al., 

2016 
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VARAdb (v1.0) 

eQTL 

LD 

Risk 

polymorphisms 

Sequence 

conservation 

Motif changes 

Somatic mutations 

Drug-gene 

pairings 

Regulatory 

regions 

Pathway 

GTEx, Pan-canQTL 

1000 Genomes Project 

NHGRI GWAS Catalog, 

GWASdb, GAD, 

GRASP, DisGeNet 

UCSC Browser 

ENCODE, FactorBook, 

HOCOMOCO, Homer 

OncoBase 

PharmGKB 

Roadmap Epigenomics, 

VISTA Enhancer 

Browser, Endb, HACER, 

FANTOM5, GENCODE, 

TRlnc, Remap, Cistrome, 

ChIP-Atlas, GTRD 

KEGG, Reactome, Net-

Path, PANTHER, CTD, 

SMPDB 

1 point - risk SNP 

1 point - eQTL 

1 point - motif change 

1 point - conservation 

1 point - enhancer/super enhancer 

1 point - promoter 

1 point - TF binding 

1 point - ATAC accessible region 

1 point - Hi-C 

• More genetic 

variation and 

regulatory annotations 

compared to HaploReg, 

RegulomeDB, 

rVarBase 

• Optional analysis 

tools (e.g., pathway) 

Pan et al., 

2021 

Pharmacogenetics 

PharmGKB 

Clinical 

Drug label 

Variant 

Published articles (e.g., 

pharmacogenomics 

journal) 

1A - high level of evidence (variant-specific clinical guideline/FDA-approved annotation) 

1B - high level of evidence (without clinical guidelines/FDA-approved annotation) 

2A - moderate level of evidence (in Tier 1 "known" pharmacogenes) 

2B - moderate level of evidence (not in Tier 1 pharmacogenes) 

3 - low level of evidence 

4 - unsupported 

Includes PK- and PD-

associated genetic 

variation 

Whirl‐Carrillo 

et al., 2021 

PharmVar 

(v6.0.2) 

Variant impact 

Evidence level 

Community and 

published data 

0-100 points based on (a) gene curation level; (b) clinical annotation level; (c) 

pathogenicity of gene; (d) gene variation maintenance by other databases; (e) 

considerations such as part of pharmacogenetic testing or emergence of new data 

• Large community that 

leverages consortium 

members, expert 

panels, CPIC and 

PharmGKB data, and 

advisory boards to 

select robust 

pharmacogenes 

• Standardization of 

variant nomenclature 

Gaedigk et 

al., 2021 

CPIC: Clinical Pharmacogenetics Implementation Consortium; eQTL: expression quantitative trait loci; LD: linkage disequilibrium; n.a.: not applicable; PD: pharmacodynamic; PK: 

pharmacokinetic; SNP: single nucleotide polymorphism; TF: transcription factor 
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I.2.2.1.1. New strategies for PGx analysis of ATD response 

PGx has provided valuable insight into the variability of the response to ATD 

treatment in MDD. Indeed, early evidence suggests that PGx-guided treatment leveraging 

genetic variation in several genes (e.g., CYP2D6, CYP2C19, and HTR2A) may improve 

clinical outcomes (Bousman et al., 2023; Brown et al., 2022; Tafazoli et al., 2021). 

Despite these promising findings, and increasingly evolving and accessible data of 

genetic variation, the clinical application of PGx to ATD treatment response remains elusive. 

Indeed, hundreds of associations have been observed in just the last couple decades, but 

robust and replicated associations are rare (Kendall et al., 2021; Pain et al., 2021; Singh et al., 

2023). These findings are likely due in part to the fact that the genetic basis of MDD and the 

response to its treatment with ATDs is not yet fully understood (Corponi et al., 2019).  

ATDs designed to target monoamine neurotransmission remain modestly effective 

despite decades of prescription and use (Otte et al., 2016; Trivedi et al., 2006). New avenues 

related to monoamine neurotransmission are still being discovered, like ERICH3—a 

previously uncharacterized protein that influences 5-HT levels (Gupta et al., 2016; Liu et al., 

2020)—and “biased” pharmacological agents that preferentially activate G protein-dependent 

or -independent pathways (Bond et al., 2019). The monoamine synapse—including genes 

encoding proteins involved in its function—thus remains an interesting target for genetic 

analysis. As our understanding of it improves, precision medicine—including the use of 

biomarkers—to treat MDD with ATDs is sure to advance as well (Gadad et al., 2018; Hassan 

et al., 2022). 
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I.3. Objectives and hypotheses 

The overall objective of this thesis project was to use novel strategies to analyze the 

association of genetic variation within candidate genes with plasma metabolite concentrations 

and/or clinical outcomes following ATD treatment in 6-month ATD-treated individuals 

suffering from a MDE in the context of MDD. More specifically, we sought to:  

(1) replicate the association of the ERICH3 rs11580409(A>C) genetic polymorphism, 

previously identified by the Mayo Clinic (Gupta et al., 2016), with clinical outcomes and 

plasma 5-HT levels;  

(2) examine the association of genetic variation in the X chromosome-linked genes, 

MAOA and MAOB (encoding MAO), with clinical outcomes and plasma metabolite levels;  

(3) investigate the association between clinical outcomes following ATD treatment 

and genetic variation within ARRB1 (encoding β-arrestin 1), including both common genetic 

variation with potential functional consequences on gene expression and rare genetic 

variation. 

These targets are shown in the context of ATD treatment in Figure 4 (page 28). 

We also sought to analyze HTS-identified genetic variation of a candidate gene panel 

using the polymorphism-gene constraint method, G2PSR, to identify which candidate genes 

were most associated with clinical outcomes following ATD treatment. 
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Figure 4: Research targets in the context of antidepressant drug treatment 

The first three targets of this thesis project (i.e., ERICH3, MAO, and β-arrestin) are shown in their 

biological contexts with respect to antidepressant drug treatment for MDD. The levels of 5-HT (blue 

dot) in the synaptic cleft are influenced by factors in the presynaptic neuron (purple) including MAO 

[an enzyme that metabolizes 5-HT into 5-HIAA (black dot)] and ERICH3 (a protein hypothesized to 

be involved in 5-HT trafficking). On the postsynaptic neuron (orange), 5-HT binds to 5-HT receptors 

(5-HTR) and activates G protein-dependent signaling (dashed arrow), leading to cell signaling and 

second messenger pathways, downstream gene expression, and consequent neurogenesis and 

neuroplasticity. β-arrestin can bind to 5-HTRs and block G protein-mediated signaling and/or promote 

G protein-independent signaling (dotted arrow). 

5-HIAA: 5-hydroxyindoleacetic acid; 5-HT: serotonin; 5-HTT: serotonin transporter; MAO: 

monoamine oxidase; MDD: Major Depressive Disorder; VMAT: vesicular monoamine transporter 
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II. Patients, Materials, and Methods 

II.1. The METADAP cohort 

II.1.1. Study design 

The work presented in this manuscript was carried out in depressed patients of the 

METADAP cohort (Corruble et al., 2015). METADAP (Do Antidepressants Induce 

Metabolic Syndromes METADAP Study; ClinicalTrials.gov Identifier: NCT00526383) is a 

prospective, open-label, multicenter, naturalistic, 6-month follow-up cohort of patients with a 

current MDE in the context of MDD requiring the introduction of an ATD treatment. 

The primary objective of METADAP was to evaluate the development of metabolic 

syndromes under ATD treatment. However, it was designed in such a way as to be able to 

pursue broader explorations. The principal investigator of METADAP is Pr. Emmanuelle 

Corruble. The pharmacology laboratory (under the direction of Pr. Laurent Becquemont and 

Pr. Céline Verstuyft) oversaw the METADAP biobank and PGx and PMx analyses. The 

endocrinologist, Pr. Bruno Fève, was the expert for the diagnosis of metabolic syndromes. 

The psychiatric department and these investigators were involved in the design and 

management of the study. Four phases of evaluation were carried out with patients over the 

course of the study: at inclusion and the introduction of the ATD treatment (M0) and after 1 

month (M1), 3 months (M3), and 6 months (M6) of ATD treatment. Patients were included 

from November 2009 to March 2013. The study was registered by the French Agency for the 

Safety of Medicines and Health Products and the Commission Nationale de l'Informatique et 

des Libertés (CNIL). It was approved by the ethics committee (personal protection 

committee) of Paris-Boulogne and complied with international ethical standards. The 

Assistance Publique – Hôpitaux de Paris (AP-HP) promoted the study. METADAP is funded 

by two national Clinical Research Programs (PHRC) (AOM06022, AOR 10 071). The 

patients included were clinically evaluated using both clinician-rated scales and self-report 

questionnaires. A serum biobank was constructed from routine blood samples collected at 

each evaluation phase. Biological data were generated from METADAP biobank samples for 

genetic and metabolomic analyses. 

II.1.2. Study population 

II.1.2.1. Inclusion criteria 

Patients were aged 18 to 65 years of age and were either hospitalized or consulted in 

the psychiatric departments of the following university hospitals: (1) University Hospital 

Center (CHU) of Bicêtre; (2) CHU Saint-Antoine; (3) Fernand Widal University Hospital; (4) 
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Grenoble University Hospital; (5) University Hospital of Lille; (6) University Hospital of 

Besançon. 

Patients presented with a current MDE in the context of MDD according to DSM-IV-

TR criteria, as assessed by the standardized Mini International Neuropsychiatric Interview 

(MINI) (Sheehan et al., 1998), and had a total score of ≥18 on the French translation of the 

17-item Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960). Patients required the 

introduction of an ATD treatment approved by the European authorities at a dose 

recommended by the Autorisation de Mise sur le Marché (AMM). Treatment resistance, a 

suicide attempt prior to inclusion, and the presence of suicidal ideation were not criteria for 

exclusion. Patients gave written informed consent for study participation and genetic 

analysis, including pharmacogenetic analyses related to the response to ATD treatment. 

II.1.2.2. Exclusion criteria 

Patients presenting with an MDE with psychotic symptoms (DSM-IV-TR), bipolar 

disorder (DSM-IV-TR), psychotic disorder (DSM-IV-TR), or alcohol or drug dependence 

(DSM-IV-TR)—except for tobacco—were excluded. Patients treated with a mood stabilizer 

(e.g., lithium, valproate, lamotrigine, or carbamazepine) or antipsychotics for ≥4 months 

during the year before inclusion were also excluded. Patients with psychiatric symptoms of 

organic origin, unstable medical pathologies, or who were currently pregnant were also 

excluded. These features were evaluated by the clinician. Patients involuntarily admitted to 

the hospital or who were under guardianship could not be included. 

II.1.3. Treatments 

II.1.3.1. Evaluated treatments 

Evaluated treatments were prescribed naturalistically (i.e., in real-world prescription 

conditions) at the dose recommended by the Autorisation de Mise sur le Marché (AMM). 

These treatments included the following: (1) SSRIs [fluoxetine (20-60 mg/day), paroxetine 

(20-50 mg/day), sertraline (50-200 mg/day), citalopram (20-60 mg/day), escitalopram (10-20 

mg/day), fluvoxamine (100-300 mg/day)]; (2) SNRIs [venlafaxine (75-375 mg/day), 

milnacipran (50-100mg/day), duloxetine (60-120mg/day)]; (3) TCAs [clomipramine (50-

150mg/day), amitriptyline (50-150mg/day), imipramine (50-150 mg/day)]; (4) Other 

[mianserin (30-90 mg/day), mirtazapine (15-45 mg/day), agomelatine (25-50 mg/day), 

tianeptine (25-37.5 mg/day), iproniazid (50-100 mg/day), moclobemide (300-600 mg/day)]; 

electroconvulsive therapy (ECT); transcranial magnetic stimulation (rTMS). Pharmacological 

treatment levels were measured, but administration times were not precisely collected since 
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patients needed to fast before taking the treatment. Still, patients treated with citalopram and 

escitalopram showed a good level of compliance (unpublished data). 

II.1.3.2. Tolerated psychotropic treatments 

Benzodiazepines were tolerated and were prescribed at the minimum effective dose 

for the minimum duration. Cyamemazine and hydroxyzine were tolerated at minimal 

effective doses and for the shortest possible duration for anxiolytic/hypnotic purposes. Their 

prescription was not to exceed 14 days. 

II.1.4. Clinical evaluation 

Two clinician-rated depression rating scales were used to assess depressive symptoms 

in METADAP patients: the 17-item HDRS and the Clinical Global Impressions (CGI) – 

Severity (CGI-S) and Improvement (CGI-I) scales. Measures were taken at baseline (M0), 

M1, M3, and M6. The HDRS is the reference scale for assessing MDE severity and for 

evaluating the evolution of depressive symptoms and response/remission during and after 

ATD treatment (Carrozzino et al., 2020). Response and remission were defined according to 

the recommendations of the American College of Neuropsychopharmacology (ACNP) Task 

Force (Rush et al., 2006). Response was defined as a ≥50% decrease in the HDRS score from 

baseline (M0). Remission was defined as an HDRS score ≤7 after ≥4 weeks of ATD 

treatment. 

II.1.5. General description of the cohort 

Six hundred twenty-four patients were included in METADAP. The mean age was 

45.6 years (SD=13.2) and 433 patients (69.4%) were female. Among these 624 patients, 566 

(90.7%) were Caucasian, 40 (6.4%) were African, 8 (1.3%) were Asian, 7 (1.1%) were of 

mixed ancestry, and 3 (0.5%) were of unknown ethnicity. Information on ethnicity was 

reported by the patient. The definitions used for ethnic groups are comparable to those of the 

United States Census Bureau. Caucasian ethnicity was defined as having Caucasian parents, 

African as having Sub-Saharan African and/or Afro-Caribbean parents, and Asian as having 

East Asian, Central Asian, and/or South Asian parents (Morales et al., 2018). All patients 

provided written informed consent for study participation (Corruble et al., 2015).  

At baseline, the mean HDRS score was 24.7 (SD=5.0). Among the 624 patients, 243 

(38.9%) received an SSRI, 240 (38.5%) an SNRI, 55 (8.8%) a TCA, and 86 (13.8%) another 

treatment, including MAOIs and ECT. Three hundred eighty-seven patients (62.0%) left the 

study before the end of follow-up. Among them, 214 (55.3%) were lost to follow-up, 135 

(34.9%) stopped or changed treatment, 21 (5.4%) were removed due to the appearance of an 

exclusion criterion, 15 (3.9%) were removed due to the use of an unauthorized treatment, and 
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2 (0.5%) died. At M1, 182 patients (39.4%) were responders to treatment and 87 (18.8%) 

were in remission. At M3, 162 patients (49.6%) were responders and 85 (26.1%) were in 

remission. At M6, 159 patients (67.1%) were responders and 101 (42.6%) were in remission. 

No evidence of an effect of recruitment site on response and remission following treatment 

was observed. 

II.2. Biological sample obtention and conservation  

All biological data analyzed in this work is derived from blood samples, which 

allowed for the construction of a biobank of plasma, serum, and DNA samples. Fasting whole 

blood samples (1 mL) were collected between 8 a.m. and 10 a.m.—before taking any 

treatment—and stored in EDTA tubes for plasma analysis (Trabado et al. 2017). 

Lymphocytic DNA was extracted using the Puregene kit (Gentra Systems) and stored at -

20°C at the Centre de Ressources Biologiques (CRB) Paris-Saclay for subsequent genetic 

analyses. 

II.3. Plasma assay 

All plasma metabolite assays presented within this work are derived from the AP-HP–

Institut Servier (Plateforme Technologie Servier, Orléans, France) consortium validated by a 

convention signed by the Direction de la Recherche Clinique et de l’Innovation (DRCI) of the 

AP-HP, the study investigators, and Servier. 

II.3.1. Serotonin pathway metabolite measurement 

Fifty μL of plasma stored at -80°C was used to prepare metabolite extracts via protein 

precipitation with 250 μL of acetonitrile, evaporation under nitrogen, and reconstitution in 50 

μL of water. Reference human plasma samples were prepared 3 times in all analytical batches 

as a system control within and between analyses. Ultraperformance liquid chromatography 

coupled with mass spectrometry (UPLC-MS) was used via a Waters Acquity UPLC system 

coupled to a ThermoScientific Q Exactive mass spectrometer. Values below the lower limit 

of quantification (LLOQ) were imputed as 
𝐿𝐿𝑂𝑄

√2
 for statistical analyses (Colle et al., 2020). 

II.4. Genotyping 

II.4.1. Genotyping of the ERICH3 rs11580409 polymorphism 

Genotyping of the ERICH3 rs11580409(A>C) polymorphism was performed by a 

technician under the supervision and validation of Pr. Céline Verstuyft at the pharmacology 

laboratory of the Université Paris-Saclay’s Faculté de Médecine. Genotyping was performed 

blind to clinical evaluations and was performed using TaqMan technology (Thermofisher®, 

Courtaboeuf, France) according to the manufacturer’s instructions. Allelic discrimination was 
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performed using the QuantStudio™ 7 Flex Real-Time PCR System (Thermofisher®, Les 

Ulis, France). This technique allowed for the identification of the 3 possible genotypes: AA 

homozygotes, AC heterozygotes, and CC homozygotes. Genotypes were determined using 

the forward (5′CTGTTTCCCCTTCTTCCGCT-3′) and reverse (5′-

GAGGGCAGCCCTGAGGA-3′) primers. The A allele was detected using a VIC-fluorescent 

probe (5′-TCTCTTGCTAAATCTAATTC-3′) while the C allele was detected using a FAM-

fluorescent probe (5′-CTCTTGCTACATCTAATT-3′). 

II.4.2. High-throughput sequencing 

Genotyping of genetic variants within ARRB1, MAOA and MAOB, and other genes 

involved in mood disorders and ATD metabolism of the targeted METADAP gene panel [see 

Table 9 (page 34)] was performed under the supervision of Pr. Céline Verstuyft and in 

collaboration with Pr. Jérôme Bouligand using HTS on an Illumina MiSeq benchtop 

sequencer in the Génétique Moléculaire–Pharmacogénétique–Hormonologie service at 

Hôpital Bicêtre. Sequencing of exonic and flanking regions (±50 base pairs) was performed 

for all genes of the targeted METADAP gene panel except for ARRB1 and ARRB2 which 

were whole-gene sequenced, including exons, introns, and 5′- and 3′-UTRs. Sequencing data 

were aligned to the hg19 human reference genome using BWA-MEM 0.7.10 (Li, 2013). 

Variant calling was performed using the GATK (v3.4-46). Variant calls were stored in 

Variant Call Format (VCF) files (Chappell et al., 2021). 

II.4.2.1. Genetic variant selection 

Variant Call Format data were loaded into R (v4.1.0) (R Core Team., 2020). Variant 

calls with a sequencing depth <20, a quality score <275 (for SNPs) or <770 (for indels), or an 

allele balance <0.34 or >0.79 (for heterozygous calls) or <0.96 (for homozygous calls) were 

annotated as poor-quality variant calls. Genetic variants identified through HTS with a call 

rate <95% were removed from analyses of ARRB1 and MAOA and MAOB. Genetic variants 

were classified by their frequency. Frequent genetic variants were defined by a MAF≥5%, 

while rare genetic variants were defined by a MAF<5%. 

II.4.2.2. Linkage analysis 

LD was assessed using HaploView (v4.2) (Barrett et al., 2005) or the ld function from 

the snpStats package in R (Clayton, 2023) in the subpopulation of Caucasian patients. 

Variants with a r2≥0.8 were considered to be in LD. The genetic variant with the highest 

MAF among those in LD was selected as a proxy for further analysis. 
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Table 9: METADAP gene panel for high-throughput sequencing 

Gene  

symbol Gene name (Entrez) Chr 

Size  

(bp) 

Max 

CDS 

size (bp) Strand 

Coverage 

(bp) Function (Entrez) 

ionotropic glutamate receptor             

GRIA1 glutamate ionotropic receptor AMPA type subunit 1 5 323,200 2,751 + 5,639 

ionotropic glutamate receptor involved 

in excitatory neurotransmission 

GRIA2 glutamate ionotropic receptor AMPA type subunit 2 4 145,956 2,652 + 5,509 

GRIA3 glutamate ionotropic receptor AMPA type subunit 3 X 306,636 2,685 + 5,983 

GRIA4 glutamate ionotropic receptor AMPA type subunit 4 11 372,018 2,709 + 5,563 

GRIK1 glutamate ionotropic receptor kainate type subunit 1 21 403,061 2,850 - 5,820 

GRIK2 glutamate ionotropic receptor kainate type subunit 2 6 676,375 2,727 + 6,176 

GRIK3 glutamate ionotropic receptor kainate type subunit 3 1 238,989 2,760 - 4,920 

GRIK4 glutamate ionotropic receptor kainate type subunit 4 11 477,159 2,871 + 6,480 

GRIK5 glutamate ionotropic receptor kainate type subunit 5 19 71,883 2,946 - 5,872 

GRIN2B glutamate ionotropic receptor NMDA type subunit 2B 12 444,266 4,455 - 5,880 

monoamine transmembrane transport             

SLC22A1 solute carrier family 22 member 1 6 36,904 1,665 + 3,180 
transport of endogenous organic cations 

and drugs/toxins 
SLC22A2 solute carrier family 22 member 2 6 42,067 1,668 - 3,180 

SLC22A3 solute carrier family 22 member 3 6 104,200 1,674 + 3,329 

SLC29A4 solute carrier family 29 member 4 7 23,970 1,593 + 2,880 

transport of monoamines into 

presynaptic neurons 

SLC6A2 solute carrier family 6 member 2 16 50,205 1,887 + 4,680 

transports norepinephrine into 

presynaptic neurons 

SLC6A3 solute carrier family 6 member 3 5 52,647 1,863 - 4,020 

transports dopamine into presynaptic 

neurons 

SLC6A4 solute carrier family 6 member 4 17 41,379 1,893 - 3,840 

transports serotonin into presynaptic 

neurons 

circadian rhythm             

ARNTL/BMAL1 bHLH ARNT like 1 11 110,615 1,881 + 6,787 

bHLH protein that forms a heterodimer 

with CLOCK and activates transcription 

of circadian rhythm-related genes 

CLOCK clock circadian regulator 4 119,007 2,541 - 6,174 

bHLH protein that forms a heterodimer 

with BMAL1 and activates transcription 

of circadian rhythm-related genes 

CRY1 cryptochrome circadian regulator 1 12 102,186 1,761 - 3,969 

component of the circadian core 

oscillator complex that regulates the 
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CRY2 cryptochrome circadian regulator 2 11 36,127 1,845 + 4,730 

circadian clock 

NPAS2 neuronal PAS domain protein 2 2 176,691 2,670 + 6,300 

bHLH protein that may function as a 

part of a molecular clock 

PER2 period circadian regulator 2 2 44,567 3,768 - 7,819 

component of circadian rhythms for 

locomotor activity, metabolism, and 

behavior 

cytokine activity             

CXCL8 C-X-C motif chemokine ligand 8 4 3,148 300 + 1,233 

important mediator of the inflammatory 

response 

IL18 interleukin 18 6 20,835 582 - 1,200 

IL1B interleukin 1 beta 2 7,029 810 - 1,740 

IL6 interleukin 6 7 4,799 759 + 1,440 

TNF tumor necrosis factor 6 2,772 702 + 1,854 

proinflammatory cytokine involved in 

cell proliferation, differentiation, and 

apoptosis 

regulation of metabolic processes             

ADIPOR2 adiponectin receptor 2 12 97,605 1,161 + 1,980 

receptor for globular and full-length 

adiponectin 

AKT1 AKT serine/threonine kinase 1 14 26,400 1,443 - 4,080 

key component of many signaling 

pathways involving the binding of 

membrane-bound ligands including 

receptor tyrosine kinases and GPCRs 

INS insulin 11 1,431 333 - 1,320 

peptide hormone that regulates 

carbohydrate and lipid metabolism 

LEP leptin 7 16,352 504 + 780 

protein that plays role in the regulation 

of energy homeostasis  

LEPR leptin receptor 1 220,908 3,498 + 6,853 

receptor for leptin involved in regulation 

of fat metabolism 

synapse assembly regulation             

BDNF brain derived neurotrophic factor 11 67,138 990 - 1,920 

protein that promotes neuronal survival 

in the adult brain 

NGFR nerve growth factor receptor 17 19,716 1,284 + 2,040 

receptor for factors including BDNF 

with roles in neuronal survival 

NLGN3 neuroligin 3 X 26,361 2,547 + 3,709 

may act as ligands for neurexins and be 

involved in the formation and 

remodeling of central nervous system 

synapses 
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NRXN1 neurexin 1 2 1,113,630 4,644 - 11,205 

cell-surface receptor that binds 

neuroligins to form synaptic complexes 

in the central nervous system that are 

required for efficient neurotransmission 

NTRK2 neurotrophic receptor tyrosine kinase 2 9 358,533 2,517 + 5,468 

receptor for neurotrophins including 

BDNF 

neurotransmitter receptor activity              

DRD2 dopamine receptor D2 11 65,794 1,338 - 2,400 

encodes the D2 subtype of the GPCR 

receptor for dopamine 

HTR1A 5-hydroxytryptamine receptor 1A 5 4,572 1,269 - 1,380 

encodes a GPCR for serotonin HTR4 5-hydroxytryptamine receptor 4 5 203,496 1,287 - 4,074 

HTR5A 5-hydroxytryptamine receptor 5A 7 17,069 1,074 + 1,380 

organic anion transmembrane transport              

SLC22A6 solute carrier family 22 member 6 11 8,371 1,692 - 2,999 

integral membrane protein involved in 

the transport and excretion of organic 

anions 

SLCO1A2 solute carrier organic anion transporter family member 1A2 12 155,035 2,013 - 4,320 
sodium-independent transporter that 

mediates cellular uptake of organic 

anions in the liver 
SLCO1B1 solute carrier organic anion transporter family member 1B1 12 108,603 2,076 + 3,720 

SLCO1B3 solute carrier organic anion transporter family member 1B3 12 106,207 2,247 + 4,800 

xenobiotic transmembrane transport             

ABCC1 ATP binding cassette subfamily C member 1 16 193,438 4,626 + 8,820 transports various molecules across 

extra-and intra-cellular membranes 

including xenobiotics across the blood-

brain barrier 
ABCC2 ATP binding cassette subfamily C member 2 10 69,955 4,368 + 8,997 

ABCG2 ATP binding cassette subfamily G member 2 4 141,363 1,968 - 4,620 

arrestin family activity             

ARRB1 arrestin beta 1 11 91,540 1,257 - 81,947 participates in agonist-mediated 

desensitization of GPCRs ARRB2 arrestin beta 2 17 10,866 1,293 + 10,226 

gap junction assembly             

GJA1 gap junction protein alpha 1 6 14,082 1,149 + 1,260 

component of gap junctions that allow 

for the diffusion of material between 
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GJB6 gap junction protein beta 6 13 10,358 786 - 900 

cells 

kynurenine metabolism             

IDO1 indoleamine 2,3-dioxygenase 1 8 14,900 1,212 + 2,625 
catalyzes the first and rate-limiting step 

in tryptophan catabolism to N-formyl-

kynurenine 
IDO2 indoleamine 2,3-dioxygenase 2 8 81,742 1,263 + 3,900 

neurotransmitter metabolism             

MAOA monoamine oxidase A X 91,811 1,584 + 3,840 
catalyzes the oxidative deamination of 

amines such as dopamine, 

norepinephrine, and serotonin 
MAOB monoamine oxidase B X 115,840 1,563 - 3,780 

xenobiotic metabolism             

CYP2C19 cytochrome P450 family 2 subfamily C member 19 10 92,867 1,473 + 2,700 catalyzes many reactions involved in 

drug metabolism CYP2D6 cytochrome P450 family 2 subfamily D member 6 22 4,312 1,494 - 3,000 

arrestin family activity/stress response/synapse assembly regulation/Wnt signaling   

CREB1 cAMP responsive element binding protein 1 2 76,027 1,026 + 2,700 

leucine zipper TF that activates gene 

transcription in response to hormonal 

stimulation of the cAMP pathway 

bp: base pairs; bHLH: basic helix-loop-helix; CDS: coding sequence; ER: endoplasmic reticulum; GPCR: G protein-coupled receptor; HPA: hypothalamic-pituitary-

adrenal; TF: transcription factor 
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II.1. Statistical analyses 

The statistical analyses presented in this work were performed with R (v4.1.0) (R 

Core Team., 2020) using the integrated development environment, RStudio (v1.3.1093 or 

later) (RStudio Team, 2020). Data were managed using Excel (Microsoft Office 2019, 

Microsoft Corporation). Univariate analyses were performed for sociodemographic, clinical, 

and biological data and are presented as the mean (m) and standard deviation (SD) for 

quantitative variables and as the number of subjects (n) and percentage (%) for qualitative 

variables. Quantitative data were analyzed according to groups and normality, which was 

assessed visually and using the Shapiro-Wilk test. In the case of normally distributed data, the 

Student t test (for 2 groups) or the analysis of variance (ANOVA) test (for ≥3 groups) were 

performed. In the case of non-normally distributed data, the nonparametric Wilcoxon test (for 

2 groups) or the Kruskal-Wallis test (for ≥3 groups) were performed. Qualitative data were 

analyzed using the chi-squared test or the Fisher Exact Test if the number of subjects in any 

group was fewer than 20. Multivariate analyses were based on linear regression models when 

the response (i.e., dependent) variable was quantitative and logistic regression models when 

the response variable was qualitative. Model covariates were chosen a priori according to the 

literature and/or hypotheses or a posteriori if a factor was observed to significantly (i.e., 

P<0.05) differ between groups. 

Mixed-effects models were created to analyze longitudinal (i.e., repeated measures) 

data. Linear mixed-effects models (for quantitative variables) and generalized logistic mixed-

effects models (for qualitative variables) were constructed with the lme4 package (Bates et 

al., 2015). Mixed-effects models are also robust to missing data (e.g., due to loss to follow-

up) and can estimate missing values from available data (Mallinckrodt et al., 2003). 

Significance of fixed effects was assessed with the Satterthwaite method in linear mixed-

effects models and with the Wald chi-square test in generalized linear mixed-effects models 

(Luke, 2017). A significance threshold of P<0.05 was considered significant by default and 

in the case of exploratory analyses. Otherwise, a Bonferroni correction for multiple 

comparisons was applied. 

Rare genetic variation was analyzed through a variant set analysis using the SMMAT 

function of the GMMAT package (v1.3.2) in R, which accounts for repeated measures in 

longitudinal data and can analyze both continuous and binary variables (Chen et al., 2019). 

Null models were constructed to include both a priori and a posteriori covariables as 

discussed above. Gaussian distributions with an identity link function were used to model 

quantitative variables, while binomial distributions with a logit link function were used to 



Page 39 of 145 

 

model qualitative variables. Genomic relationship matrices were constructed using the 

snpgdsGRM function of the SNPRelate package (v1.26.0) (Zheng et al., 2012). Default 

settings for SMMAT were used, except that the “use.minor.allele” argument was set to 

True—corresponding to the use of the minor allele as the coding allele rather than the 

alternative allele—and the “MAF.range” was set to 0.00-0.50. The SKAT-O test, 

corresponding to a linear combination of the burden and SKAT statistics, was used (Lee et 

al., 2012a). The significance level was adjusted using the Bonferroni correction as needed, 

according to the number of genes analyzed. 

II.2. Whole-panel analysis using Genome-to-Phenome Sparse Regression 

In collaboration with the Inria Epione team of Nice (Dr. Marie Deprez, Dr. Marco 

Lorenzi, and Dr. Susanne Thümmler), Genome-to-Phenome Sparse Regression (G2PSR) was 

used to analyze the association between all common genetic variation (i.e., MAF≥5%) within 

genes of the targeted METADAP gene panel [see Table 9 (page 34)] according to their gene 

context and several clinical variables during ATD treatment. Data at M1, M3, and M6 for (1) 

the HDRS total score, (2) the percent change in the HDRS total score relative to baseline 

(M0), (3) the CGI-S score, and (4) the CGI-I score were analyzed. The performance of 

G2PSR improves with the inclusion of redundant data like those analyzed (personal 

communication). Missing data were imputed as the median. 

For different analyses with G2PSR, genetic variation within ARRB2 and/or ARRB1 

was altered as follows: (1) genetic variation within ARRB1 was split into eight groups of 8–9 

genetic polymorphisms to better resemble the number of genetic polymorphisms within other 

panel genes (range: 1–13 polymorphisms); (2) genetic variation was limited to exonic and 5’- 

and 3’-UTR genetic polymorphisms to better resemble the sequenced regions of other panel 

genes (i.e., exonic regions) and to reduce the potential bias introduced by the greater number 

of genetic polymorphisms identified in these genes. 

Call rates for each genetic variant were calculated as the number of poor-quality 

variant calls divided by the total number of variant calls; poor-quality variant calls were 

annotated by: a sequencing depth <20, SNPs with a quality score <275, indels with a quality 

score <770, heterozygous variant calls with an allele balance <0.34 or >0.79, and 

homozygous variant calls with an allele balance <0.96. Genetic variants with a call rate 

<89.12% (the lower quintile) were excluded. Genetic variation within CYP2D6 was removed 

from analysis due to high sequence homology between CYP2D6, CYP2D7, and CYP2D8, 

consequent read alignment confounding across these three regions and, likely as a result, 

lower overall call quality in CYP2D6 genetic variation (mostly with respect to allele balance). 
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LD between genetic variants was assessed using the ld function from the snpStats package in 

R. For those genetic variants in strong LD (i.e., r2≥0.8), those with the higher MAF were 

selected for further analysis as proxies.  

G2PSR was run on Python 3 in a Jupyter environment 

(https://jupyterhub.ijclab.in2p3.fr/). Three matrices were generated to use G2PSR: (1) a 

sample × phenotype matrix, containing data for each of the analyzed phenotypic variables; 

(2) a genetic variant × associated gene matrix, containing either a 1 (if the genetic variant was 

associated with the gene) or a 0 (if the genetic variant was not associated with the gene); (3) a 

genetic variant × sample matrix, containing the number of alternative alleles (0, 1, 2). G2PSR 

was parameterized to 50,000 epochs (i.e., iterations) at 1,000 steps and run 10 times to obtain 

means and SDs for the loss value, sigma, and α parameters. The early stopping strategy was 

applied to determine the optimal epoch to identify relevant genes (i.e., α<0.05) (Deprez et al., 

2022).   

https://jupyterhub.ijclab.in2p3.fr/
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III. Results 

III.1. The ERICH3 rs11580409 genetic polymorphism is associated with clinical 

improvement following 6 months of antidepressant treatment in depressed patients 

The ERICH3 rs11580409(A>C) genetic polymorphism was recently identified in a 

GWAS of plasma 5-HT levels before and after citalopram treatment in the PGRN-AMPS 

cohort and shown to be associated with 5-HT levels and clinical response in several 

depressed cohorts, including the STAR*D. We hypothesized that the ERICH3 rs11580409 

genetic polymorphism would be associated with clinical outcomes and plasma 5-HT levels 

following ATD treatment in patients of the METADAP cohort. 

III.1.1. Overview of patients, materials, and methods 

A total of 377 Caucasian patients with ≥1 follow-up measure during the study were 

analyzed for HDRS score changes and response and remission rates after 1, 3, and 6 months 

of ATD treatment. Among them, 150 patients were analyzed for associations with plasma 5-

HT levels at baseline and after 3 and 6 months of ATD treatment. The ERICH3 

rs11580409(A>C) genetic polymorphism was genotyped from leukocytic DNA using 

TaqMan technology. 5-HT levels were measured from fasting plasma samples using UPLC-

MS and imputed where needed. Linear mixed-effects models were constructed in R and 

adjusted a priori for age, sex, and ATD class, as well as ATD-naïve status in the analysis of 

plasma 5-HT levels. Plasma 5-HT levels were log-transformed for analysis. 

III.1.2. Principal results 

Among the 377 patients analyzed for clinical associations, the frequency of the 

rs11580409 C allele was 36.7%. The time × rs11580409 interaction was significantly 

associated with the HDRS score. After 6 months of ATD treatment, CC homozygotes had a 

significantly lower HDRS score compared to AC heterozygotes. Under a recessive genetic 

model (CC versus AA/AC), the time × rs11580409 interaction was significantly associated 

with the HDRS score and response rates. After 6 months of ATD treatment, CC homozygotes 

had a significantly lower HDRS score and significantly higher response rate compared to A 

allele carriers.  

Among the 150 patients analyzed for associations with plasma 5-HT levels, 21.33% 

of all plasma 5-HT levels were imputed. Baseline plasma 5-HT levels were significantly 

higher compared to levels after 3 and 6 months of ATD treatment. No association between 

the rs11580409 genetic polymorphism and plasma 5-HT levels was observed, even when 

imputed values were removed from the analysis. Plasma 5-HT levels were not associated 

with clinical outcomes. 
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III.1.3. Summary of the discussion 

Our analysis is the first investigation of the ERICH3 rs11580409 genetic 

polymorphism with clinical outcomes following ATD treatment in depressed patients 

independent of those led by the Mayo Clinic. Compared to other cohorts of depressed 

patients in which the rs11580409 polymorphism was analyzed, we observed significant 

differences in clinical outcomes between rs11580409 genotypes after 6 months of ATD 

treatment; treatment duration or depression severity may moderate the association of 

rs11580409 with clinical outcomes following ATD treatment in depression.  

The ERICH3 rs11580409(A>C) genetic polymorphism is not genome-wide 

significant, but functional analyses led by the Mayo Clinic have suggested it has a role in 5-

HT trafficking and is intimately tied to 5-HT levels. It thus remains an intriguing target for 

continued analysis in the treatment of depression with ATDs. We did not replicate the 

association of rs11580409 with plasma 5-HT levels. However, the method used for plasma 5-

HT quantification was less sensitive compared to previous studies, and imputed values were 

used. This study was limited by its high dropout rate, the use of imputed plasma 5-HT values, 

and its sample size, especially in the analysis of plasma 5-HT levels.  

III.1.4. Conclusion 

We observed an association of the ERICH3 rs11580409 (A>C) genetic polymorphism 

with clinical improvement following 6 months of ATD treatment, which, along with its other 

associations in similar contexts, argues for its continued study. 

III.1.5. Publication 

Our results were published as an original research article in Progress in Neuro-

Psychopharmacology & Biological Psychiatry (2023 impact factor: 5.201) (Chappell et al., 

2022b). Findings were presented as an oral communication at the Congrès de la Société 

Française de Pharmacologie et de Thérapeutique (SFPT) in Lille, France (June 14–16, 2022).  
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III.1.6. Supplementary Materials 

 

Supplementary Figure S1 

An example of the genotype calling with the TaqMan SNP genotyping assay. Allelic discrimination of the 

ERICH3 rs11580409 A allele (y-axis) and the C allele (x-axis) allow for genotyping of each sample (red, blue, 

or green) relative to negative controls (black X’s, see legend). 

 

 
Supplementary Figure S2 

Histograms [left; density (y-axis) and value (x-axis)] and normal QQ plots [right; sample quantile (y-axis) and 

theoretical quantile (x-axis)] are shown for serotonin (5HT) values at M0 (left), M3 (middle), and M6 (right) 

when untransformed (top), square root-transformed (middle), and log2-transformed (bottom). P values from 

Shapiro-Wilk normality tests are shown with each corresponding histogram. 
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Supplementary Table 1: Post-hoc comparisons of significant mixed-effects models  
Shown are the emmeans contrasts obtained from mixed-effects models. *: P<0.05. P-values are adjusted by Bonferroni corrections (0.05/9 in the additive genetic model, 

0.05/3 in the recessive genetic model). 95%CI: 95% confidence interval; AD: antidepressant drug; df: degrees of freedom; ECT: electroconvulsive therapy; M1: after 1 

month of AD treatment; M3: after 3 months of AD treatment; M6: after 6 months of AD treatment; OR: odds ratio; P: P-value; Padj: Bonferroni-adjusted P-value; se: 

standard error 

Additive genetic model             

contrast coefficient se df 95%CI t P Padj 

HDRS               

M1               

CC - AC 1.05 1.05 956.58 -1.01 – 3.12 1.00 0.32 1 

CC - AA 0.12 1.05 955.14 -1.94 – 2.19 0.12 0.91 1 

AC - AA -0.93 0.77 943.25 -2.44 – 0.59 -1.20 0.23 1 

M3               

CC - AC -1.77 1.21 1084.89 -4.14 – 0.61 -1.46 0.15 1 

CC - AA -1.33 1.23 1093.09 -3.74 – 1.08 -1.08 0.28 1 

AC - AA 0.44 0.88 1072.27 -1.29 – 2.16 0.50 0.62 1 

M6               

CC - AC -4.04 1.36 1149.45 -6.71 – -1.38 -2.97 0.0030 0.027* 

CC - AA -2.91 1.37 1151.37 -5.60 – -0.22 -2.12 0.034 0.31 

AC - AA 1.14 0.98 1140.15 -0.78 – 3.05 1.16 0.25 1 

Recessive genetic model             

contrast coefficient se df 95%CI t P Padj 

HDRS               

M1               

CC - AA/AC 0.59 0.98 964.43 -1.33 – 2.51 0.60 0.55 1 

M3               

CC - AA/AC -1.55 1.14 1096.77 -3.79 – 0.68 -1.37 0.17 0.52 

M6               

CC - AA/AC -3.50 1.28 1156.32 -6.0 – -0.99 -2.74 0.0062 0.019* 

Response               

contrast OR se df 95%CI z P Padj 

M1               

CC - AA/AC 0.84 0.32 Inf 0.40 – 1.78 -0.45 0.65 1 

M3               

CC - AA/AC 1.43 0.65 Inf 0.59 – 3.47 0.79 0.43 1 

M6               

CC - AA/AC 5.81 4.12 Inf 1.45 – 23.36 2.48 0.013 0.039* 
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Supplementary Table 2: Mixed-effects model results of clinical outcomes with 5HT levels         
ANOVA results for mixed-effects models of the HDRS score, response, and remission. HDRS was assessed using the Satterthwaite method while response and remission 

were assessed using the Wald chi-square method. The association of 5HT levels both across time and baseline 5HT levels alone with clinical outcomes was assessed. den: 

denominator; df: degrees of freedom; MS: mean squares; num: numerator; P: P-value; SS: sum of squares. 

 HDRS Response Remission 

 SS MS df (num) df (den) F P Chisq df P Chisq df P 

All values                         

5HT across time                         

Age 1.760 1.760 1 144.107 0.075 0.784 0.766 1 0.382 0.180 1 0.671 

Sex 21.178 21.178 1 143.454 0.904 0.343 1.928 1 0.165 1.966 1 0.161 

AD Class 148.852 37.213 4 147.501 1.589 0.180 7.734 4 0.102 2.377 3 0.498 

5HT 33.775 33.775 1 436.317 1.442 0.230 0.203 1 0.652 1.245 1 0.265 

Time 14766.573 7383.286 2 308.304 315.221 <0.001 1.255 1 0.263 4.283 1 0.038 

5HT:Time 10.053 5.027 2 348.246 0.215 0.807 0.000 1 0.995 0.752 1 0.386 

Baseline 5HT                         

Age 1.738 1.738 1 142.000 0.075 0.784 0.829 1 0.362 0.128 1 0.721 

Sex 24.550 24.550 1 142.000 1.062 0.305 1.980 1 0.159 2.108 1 0.147 

AD Class 164.709 41.177 4 142.000 1.781 0.136 7.612 4 0.107 2.129 3 0.546 

Baseline 5HT 41.243 41.243 1 142.000 1.784 0.184 0.004 1 0.949 0.134 1 0.714 

Time 17248.218 8624.109 2 296.000 373.016 <0.001 1.280 1 0.258 4.848 1 0.028 

Baseline 5HT:Time 94.948 47.474 2 296.000 2.053 0.130 1.141 1 0.286 0.543 1 0.461 

No imputed values                         

5HT across time                         

Age 0.622 0.622 1 141.445 0.024 0.878 1.053 1 0.305 0.355 1 0.551 

Sex 25.605 25.605 1 138.350 0.972 0.326 1.374 1 0.241 2.671 1 0.102 

AD Class 166.043 41.511 4 134.057 1.575 0.184 6.847 4 0.144 3.048 4 0.550 

5HT 17.121 17.121 1 338.576 0.650 0.421 0.435 1 0.509 0.385 1 0.535 

Time 12295.410 6147.705 2 249.811 233.295 0.000 1.406 1 0.236 3.771 1 0.052 

5HT:Time 19.865 9.933 2 283.272 0.377 0.686 0.189 1 0.664 2.781 1 0.095 

Baseline 5HT                         

Age 0.518 0.518 1 136.707 0.020 0.888 1.294 1 0.255 0.314 1 0.575 

Sex 34.931 34.931 1 136.439 1.338 0.249 1.559 1 0.212 2.617 1 0.106 

AD Class 190.356 47.589 4 128.826 1.823 0.128 6.423 4 0.170 2.864 4 0.581 

Baseline 5HT 63.660 63.660 1 141.331 2.438 0.121 0.139 1 0.709 0.249 1 0.618 

Time 13982.669 6991.334 2 238.675 267.752 0.000 1.331 1 0.249 4.484 1 0.034 

Baseline 5HT:Time 45.154 22.577 2 248.735 0.865 0.422 1.028 1 0.311 0.072 1 0.789 



Page 54 of 145 

 

III.2. The MAOA rs979605 genetic polymorphism is differentially associated with 

clinical improvement following antidepressant treatment in depressed males and 

females 

MAO metabolizes monoamine neurotransmitters [e.g., 5-HT to 5-hydroxyindoleacetic 

acid (5-HIAA)], whose concentrations are targeted by first-line ATDs. Compared to healthy 

individuals, MAO activity is increased in depressed patients. Genetic variation within MAOA 

and MAOB (encoding MAO) is associated with clinical outcomes following ATD treatment 

in depressed patients. These genes are located on the X chromosome, which poses unique 

statistical challenges for genetic analysis since (1) females possess twice the number of X 

chromosomes compared to males and (2) some X chromosomal regions escape from X 

chromosome inactivation, which corrects for dosage differences between the sexes. Strategies 

to control for X-linked factors have been developed. We hypothesized that MAOA and MAOB 

genetic variation would be associated with clinical outcomes and the plasma 5-HIAA/5-HT 

ratio (as an estimate of MAO activity) following ATD treatment in patients of the 

METADAP cohort. 

III.2.1. Overview of patients, materials, and methods 

A total of 378 patients with ≥1 follow-up measure during the study were analyzed for 

HDRS score changes and response and remission rates after 1, 3, and 6 months of ATD 

treatment. Among them, 148 patients were analyzed for associations with the plasma 5-

HIAA/5-HT ratio. MAOA and MAOB genetic variation was genotyped from leukocytic DNA 

using HTS. Variant calls were subjected to quality control and LD analysis. Common genetic 

variation (MAF≥5%) was retained for analysis. 5-HIAA and 5-HT levels were measured 

from fasting plasma samples using UPLC-MS and imputed where needed. Linear mixed-

effects models were constructed in R and adjusted a priori for age, sex, ATD class, and 

smoking status, as well as ATD-naïve status in the analysis of the plasma 5-HIAA/5-HT 

ratio. The sex × genotype interaction and a dominance term were included to control for X-

linked factors. The plasma 5-HIAA/5-HT ratio was log-transformed for analysis. 

III.2.2. Principal results 

Among the 378 patients, 6 common (MAF≥5%) genetic polymorphisms were 

identified: 5 in MAOA and 1 in MAOB [rs1799836(T>C)]. The 5 MAOA genetic 

polymorphisms were in strong LD, so the rs979605(A>G) genetic polymorphism was 

selected as a proxy. Thus, rs979605 and rs1799836 were analyzed. The sex × rs979605 

interaction was significantly associated with the HDRS score. Compared to G allele carriers, 

sex significantly associated with the HDRS score among A allele carriers, suggesting a 



Page 55 of 145 

 

differential association of the rs979605 A allele with the HDRS score depending on sex. 

Female AA homozygotes had a significantly higher HDRS score compared to male A carriers 

after 6 months of ATD treatment. The rs1799836 genetic polymorphism was associated with 

the plasma 5-HIAA/5-HT ratio. Overall, CC/C females/males had a lower plasma 5-HIAA/5-

HT ratio compared to TT/T females/males. 

III.2.3. Summary of the discussion 

To date, this is the largest analysis of MAOA/MAOB genetic variation with clinical 

outcomes following ATD treatment in depressed patients. Previous analyses of 

MAOA/MAOB genetic variation with clinical outcomes following ATD treatment in 

depressed patients were performed in males and females separately. Our combined analysis 

allowed for the identification of a sex × genotype interaction and a potential sex-dependent 

association of the MAOA rs979605 genetic polymorphism.  

MAO activity is influenced by many factors that we attempted to control for in our 

analysis of the association between the rs1799836 genetic polymorphism and the plasma 5-

HIAA/5-HT ratio. This analysis was limited by its high dropout rate, its sample size, and the 

fact that the 5-HIAA/5-HT ratio is an estimate of MAO activity calculated from peripheral 

metabolite levels, which may differ from those of the brain. 

III.2.4. Conclusion 

Female homozygotes of the MAOA rs979605(A>G) A allele had significantly worse 

clinical improvement following 6 months of ATD treatment compared to male A carriers, a 

finding that suggests a potential moderating role of sex in this association that warrants 

further investigation. 

III.2.5. Publication 

Our results were published as an Article in the International Journal of Molecular 

Sciences (2023 impact factor: 6.208) (Chappell et al., 2023). Findings were presented as a 

poster at the Congrès de la Société Française de Pharmacologie et de Thérapeutique (SFPT) 

in Limoges, France (June 12–14, 2023) and at the 7th International Congress of the European 

Society for Pharmacogenomics and Personalised Therapy (ESPT) in Copenhagen, Denmark 

(October 25–28, 2023). 
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III.2.6. Supplementary Materials 

 

Figure S1: LD associations between MAOA and MAOB variants  

For the 6 genetic variants of MAOA (rs6323, rs2235186, rs979606, rs979605, and rs1137070) and MAOB 

(rs1799836), we show the LD plots constructed using HaploView (v4.2) in the whole population as well as in 

males and females separately. Values within boxes correspond to r2 values. Variants with an r2>80 are 

considered in strong LD. Block 1 defines the haplotype block for variants observed to be in strong LD. 

 

 

Figure S2: 5HIAA/5HT transformations  

For each of the non-transformed (top), square-root-transformed (middle), and log2-transformed (bottom) 

5HIAA/5HT ratios at each time point (M0: left; M3: center; M6: right) are shown density histograms (left) and 

QQ plots (right). For histograms, 5HIAA/5HT ratios (x-axis) are plotted according to density (y-axis) in gray 

bars, while the normal distribution is shown as a black curve in histograms. P-values correspond to Shapiro-

Wilk tests of normality. 
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Table S1: Associations of the HDRS score with MAOA rs979605 allelic subgroups 

Results of mixed-effects models of the HDRS score in rs979605(A>G) allelic subgroups. Allelic subgroups were analyzed according to random XCI and escape from XCI 

status. HDRS was assessed using the Satterthwaite method. *: P<0.0125 to account for the 4 analyses. den: denominator; df: degrees of freedom; MS: mean squares; num: 

numerator; P: P-value; SS: sum of squares; XCI: X-chromosome inactivation. 

 

Coding 

strategy SS MS df (num) df (den) F P  SS MS df (num) df (den) F P 

  A allele  G allele 

Age 

Random XCI 

Females (0, 1),  

Males (1) 

17.26 17.26 1 175.27 0.64 0.43  4.56 4.56 1 295.99 0.14 0.70 

Sex 208.15 208.15 1 187.82 7.66 0.0062*  20.52 20.52 1 289.49 0.65 0.42 

AD Class 124.54 31.14 4 181.84 1.15 0.34  123.44 30.86 4 303.02 0.98 0.42 

Loss to follow-up 

(M1) 168.16 168.16 1 205.11 6.19 0.014  53.82 53.82 1 361.62 1.70 0.19 

Smoking status 37.72 18.86 2 177.10 0.69 0.50  21.14 10.57 2 296.73 0.33 0.72 

Time 13198.22 4399.41 3 410.00 161.92 <0.001*  29730.27 9910.09 3 694.95 313.17 <0.001* 

rs979605 51.88 51.88 1 192.39 1.91 0.17  25.48 25.48 1 287.37 0.81 0.37 

Sex:Time 258.50 86.17 3 418.07 3.17 0.024  87.66 29.22 3 699.71 0.92 0.43 

Time:rs979605 183.20 61.07 3 421.42 2.25 0.082  21.93 7.31 3 697.86 0.23 0.87                
Age 

Escape from 

XCI 

Females (0, 1),  

Males (0) 

17.26 17.26 1 175.27 0.64 0.43  4.56 4.56 1 295.99 0.14 0.70 

Sex 105.15 105.15 1 165.49 3.87 0.051  0.11 0.11 1 287.29 0.0035 0.95 

AD Class 124.54 31.14 4 181.84 1.15 0.34  123.44 30.86 4 303.02 0.98 0.42 

Loss to follow-up 

(M1) 168.16 168.16 1 205.11 6.19 0.014  53.82 53.82 1 361.62 0.70 0.19 

Smoking status 37.72 18.86 2 177.10 0.69 0.50  21.14 10.57 2 296.73 0.33 0.72 

Time 16946.01 5648.67 3 411.24 207.90 <0.001*  29730.27 9910.09 3 694.95 313.17 <0.001* 

rs979605 23.52 23.52 1 177.45 0.87 0.35  25.48 25.48 1 287.37 0.81 0.37 

Sex:Time 79.88 26.63 3 411.19 0.98 0.40  120.40 40.13 3 698.27 1.27 0.28 

Time:rs979605 183.20 61.07 3 421.42 2.25 0.082   21.93 7.31 3 697.86 0.23 0.87 
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Table S2: Associations of the plasma 5HIAA/5HT ratio with MAOB rs1799836 without sex interactions 

Results for mixed-effects models of the 5HIAA/5HT ratio without sex interactions included, assessed using the Satterthwaite method. *: P<0.05. den: denominator; df: 

degrees of freedom; MS: mean squares; num: numerator; P: P-value; SS: sum of squares. 

 SS MS df (num) df (den) F P 

Age 15.46 15.46 1 134.69 8.01 0.0054* 

Sex 0.71 0.71 1 135.70 0.37 0.55 

AD class 42.27 10.57 4 135.74 5.47 <0.001* 

Smoking status 2.45 1.22 2 135.64 0.63 0.53 

AD-naïve status 24.38 24.38 1 376.58 12.63 <0.001* 

Time 40.30 20.15 2 301.02 10.44 <0.001* 

rs1799836 dominance term 0.017 0.017 1 300.00 0.0086 0.93 

rs1799836 11.59 11.59 1 135.00 6.00 0.016* 

Time:rs17998361 5.03 1.26 4 284.31 0.65 0.63 
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III.3. The association of ARRB1 genetic polymorphisms with response to 

antidepressant treatment in depressed patients 

β-arrestin 1 is involved in receptor desensitization, protein scaffolding, and G protein-

independent signaling. Compared to healthy individuals, β-arrestin 1 levels are lower in 

depressed patients but normalize after ATD treatment. Genetic variation within ARRB1 

(encoding β-arrestin 1) is associated with MDD and the response to ATD treatment in 

depressed patients. Advancements in genomic technology have allowed for functional 

annotation and rare variant detection. Functional annotation can help guide genetic analysis, 

while the analysis of rare genetic variation requires different analytical approaches. We 

hypothesized that common ARRB1 genetic variation with potential functional consequences 

and the accumulation of rare ARRB1 genetic variation would be associated with clinical 

outcomes following ATD treatment in patients of the METADAP cohort. 

III.3.1. Overview of patients, materials, and methods 

A total of 388 patients with ≥1 follow-up measure during the study were analyzed for 

HDRS score changes and response and remission rates after 1, 3, and 6 months of ATD 

treatment. ARRB1 genetic variation was genotyped from leukocytic DNA using HTS. Variant 

calls were subjected to quality control and LD analysis and separated into rare (MAF<5) and 

common (MAF≥5%) genetic variation. Common genetic variation with a RegulomeDB score 

≤2 was retained for analysis. Variant set analyses were used to examine the association of 

rare genetic variation with clinical measures and adjusted a priori for age, sex, and ATD 

class. Linear mixed-effects models were constructed in R and adjusted a priori for age, sex, 

and ATD class to analyze the association of the HDRS score and response and remission 

rates with common genetic variants and rare variant counts. 

III.3.2. Principal results 

Among the 388 patients analyzed, 953 ARRB1 genetic variants were identified: 643 

rare and 12 common with a RegulomeDB score ≤2. Rare genetic variation was significantly 

associated with the HDRS score and remission rates in variant set analyses, while rare variant 

counts were significantly associated with the HDRS score and response and remission rates. 

Among the 12 common genetic variants, the time × rs536852(A>G) and time × 

rs553664(G>A) interactions were significantly associated with the HDRS score and 

remission. After 6 months of treatment, rs553664 AA homozygotes and rs536852 GG 

homozygotes had higher HDRS scores—and for rs536852, lower remission rates—compared 

to heterozygotes. rs536852 was not observed to be in LD with any genetic variants from data 
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of the 1000 Genomes Project. Several proteins, including FOS and JUN, were annotated as 

binding to regions containing rs536852 and rs553664. 

III.3.3. Summary of the discussion 

Our targeted analysis of ARRB1 genetic variation with clinical outcomes following 

ATD treatment in depressed patients is the largest to date. The results suggest that the 

accumulation of rare ARRB1 genetic variation and 2 common genetic variants of ARRB1 are 

associated with clinical outcomes following ATD treatment in depressed patients. Which rare 

variants are responsible, and to what degree, remains to be elucidated.  

The potential functional consequences of the significantly associated common genetic 

variation remains to be validated. However, their annotation with transcription factors such as 

FOS and JUN, which have been described in the context of ATD treatment for depression, 

offers a line of investigation. This analysis was limited by its dropout rate. The overlapping 

roles of β-arrestin 1 and 2 also confounds the interpretation of our results. 

III.3.4. Conclusion 

Both the accumulation of rare ARRB1 genetic variation and common ARRB1 genetic 

polymorphisms with potential functional consequences were associated with clinical 

improvement following ATD treatment, though these findings require replication and 

functional study. 

III.3.5. Publication 

Our results were published as an Original Research article in the journal Frontiers in 

Pharmacology (2023 impact factor: 5.988) (Chappell et al., 2022a). Early findings were 

presented as an electronic poster at the 11th Assises de Génétique Humaine et Médicale 

Couvent des Jacobins in Rennes, France (February 1–4, 2022). 
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III.3.6. Supplementary Materials 

 

Supplementary Figure 1: LD plot for the 12 prioritized frequent SNPs 

Shown are the LD associations between each of the 12 prioritized SNPs. Haplotype blocks are defined 

by an r2>0.80 (values shown in each square).  

LD: linkage disequilibrium 

 

Supplementary Figure 2: LD analysis of rs536852 using the 1000 Genomes Project 

r2 associations relative to rs536822 (y-axis) in non-Finnish European populations of the 1000 

Genomes Project between rs536852, rs553664, and rs506233, and linked variants, plotted according 

to their hg19 genomic position (x-axis).  

LD: linkage disequilibrium 
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Supplementary Table 2: Sociodemographic characteristics according to genotype 
Sociodemographic characteristics of METADAP patients are shown according to genotype for each of the 9 prioritized SNPs (i.e., MAF≥5% and RegulomeDB category rank of 1 or 2). 

Kruskal-Wallis tests were used to compare age, tobacco consumption, onset age of MDE, and baseline HDRS scores (presented as mean±standard deviation). Fisher Exact tests were used to 

compare sex, socio-education status, ethnicity, smoking status at baseline, MDE recurrence, prescribed AD drug, and dropout rates across study time (presented as the number of patients and 

percentage). *: P<0.05; **: P<0.01; ***: P<0.001. AD: antidepressant drug; ECT: electroconvulsive therapy; HDRS: 17-item Hamilton Depression Rating Scale; m: mean; M1: after 1 month 

of treatment; M3: after 3 months of treatment; M6: after 6 months of treatment; MDE: major depressive episode; n: number of patients; P: P-value; SNRI: serotonin norepinephrine reuptake 

inhibitor; sd: standard deviation; SSRI: selective serotonin reuptake inhibitor; TCA: tricyclic antidepressant 

 

  Total rs2279130 rs501372 rs877711 

   CC CT TT P CC CA AA P GG GA AA P 

  n=388 n=334 n=50 n=3  n=134 n=194 n=54  n=303 n=75 n=8  
Age (m±sd)  45.4±13.3 45±13.1 47.3±14 57.7±18.3 0.14 44.5±12.9 45.7±13.3 47.3±14.8 0.37 45.7±13.3 45.5±13.2 38.9±16.2 0.51 

Female (n(%))  263(68) 224(67) 36(72) 2(67) 0.79 87(65) 127(65) 45(83) 0.027* 199(66) 55(73) 7(88) 0.25 

Education (n(%)) Primary 36(9) 30(9) 5(10) 0(0) 0.16 13(10) 16(8) 7(13) 0.40 30(10) 6(8) 0(0) 0.86 

 High school 168(43) 144(43) 21(42) 3(100)  51(38) 88(45) 27(50)  128(42) 35(47) 5(62)  

 University 183(47) 160(48) 23(46) 0(0)  70(52) 89(46) 20(37)  144(48) 34(45) 3(38)  
Ethnicity (n(%)) Caucasian 353(91) 305(91) 44(88) 3(100) 0.53 126(94) 177(91) 45(83) 0.0023* 276(91) 67(89) 8(100) 0.84 

 African 24(6) 19(6) 5(10) 0(0)  7(5) 7(4) 9(17)  18(6) 6(8) 0(0)  

 Mixed 10(3) 9(3) 1(2) 0(0)  1(1) 9(5) 0(0)  9(3) 1(1) 0(0)  
Current smoker (n(%))   149(38) 129(39) 19(38) 1(33) 1.00 51(38) 72(37) 23(43) 0.76 112(37) 31(41) 5(62) 0.27 

Pack years (m±sd)  15.2(14.9) 14.8±14.1 18.2±19.6 2±NA 0.37 13.9±15.8 15.6±14.8 15.6±13.4 0.52 15.8±15.5 12.5±10.1 18.2±21.7 0.69 

Recurrent MDE (n(%))  284(73) 242(72) 39(78) 2(67) 0.58 91(68) 150(77) 40(74) 0.16 225(74) 53(71) 5(62) 0.55 

Onset age MDE 

(m±sd))  35.3±14.5 35±14.3 37.3±15.6 28.7±18.9 0.50 34.3±14 35.6±14.7 36.4±15.2 0.54 35.2±14.7 35.8±13.6 32.9±15.9 0.79 

Baseline HDRS 

(m±sd))  24.8±4.9 24.8±4.9 24.5±4.7 21.3±0.6 0.41 24.8±4.8 24.9±5 24.2±4.8 0.70 25.2±4.9 23.4±4.8 22.5±4.7 0.0049* 

Prescribed AD (n(%)) SSRI 157(40) 140(42) 16(32) 1(33) 0.0081* 57(43) 76(39) 24(44) 0.38 121(40) 29(39) 6(75) 0.23 

 SNRI 158(41) 140(42) 16(32) 1(33)  53(40) 85(44) 16(30)  127(42) 30(40) 0(0)  

 TCA 24(6) 21(6) 3(6) 0(0)  6(4) 14(7) 3(6)  18(6) 6(8) 0(0)  

 Other 34(9) 24(7) 9(18) 1(33)  11(8) 14(7) 8(15)  25(8) 7(9) 2(25)  

 ECT 15(4) 9(3) 6(12) 0(0)  7(5) 5(3) 3(6)  12(4) 3(4) 0(0)  
Dropout (n(%)) M1 21(5) 18(5) 3(6) 0(0) 0.78 8(6) 9(5) 4(7) 0.61 14(5) 7(9) 0(0) 0.24 

 M3 121(31) 102(31) 17(34) 2(67) 0.32 39(29) 59(30) 22(41) 0.27 92(30) 23(31) 5(62) 0.18 

  M6 179(46) 151(45) 25(50) 2(67) 0.62 55(41) 97(50) 26(48) 0.27 134(44) 39(52) 5(62) 0.32 

   rs553664 rs536852 rs1676887 

   GG GA AA P GG GA AA P GG GA AA P 

   n=115 n=181 n=89  n=106 n=190 n=88  n=310 n=68 n=6  
Age (m±sd)   44.4±13.5 46.7±13.2 44.3±13.4 0.23 45.3±13.5 46.9±13.2 42.6±13.1 0.041* 45.3±13.2 46.6±13.5 37.7±16.1 0.37 

Female (n(%))   70(61) 126(70) 64(72) 0.18 77(73) 130(68) 52(59) 0.13 205(66) 49(72) 5(83) 0.52 

Education (n(%)) Primary  10(9) 13(7) 13(15) 0.21 14(13) 15(8) 7(8) 0.34 29(9) 7(10) 0(0) 0.99 

 High school  44(38) 83(46) 39(44)  51(48) 78(41) 37(42)  134(43) 31(46) 3(50)  

 University  60(52) 85(47) 37(42)  41(39) 96(51) 44(50)  146(47) 30(44) 3(50)  
Ethnicity (n(%)) Caucasian  111(97) 166(92) 73(82) 0.0001* 92(87) 173(91) 85(97) 0.014* 280(90) 63(93) 6(100) 0.96 
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 African  0(0) 12(7) 12(13)  11(10) 12(6) 0(0)  20(6) 4(6) 0(0)  

 Mixed  4(3) 2(1) 4(4)  3(3) 4(2) 3(3)  9(3) 1(1) 0(0)  
Current smoker (n(%))    55(48) 57(31) 35(39) 0.018* 40(38) 64(34) 44(50) 0.035* 113(36) 28(41) 5(83) 0.054 

Pack years (m±sd)   11.9±10.9 18.4±18.5 13.5±10.8 0.08 16.2±15.7 15.9±16.1 12.7±11.4 0.48 15.3±15.5 15.6±13.1 7.8±5.8 0.40 

Recurrent MDE (n(%))   84(73) 131(72) 67(75) 0.89 82(77) 136(72) 63(72) 0.54 224(72) 52(76) 5(83) 0.74 

Onset age MDE 

(m±sd))   34.1±13.8 36.1±14.6 35.1±15.2 0.52 35.1±14.8 36.7±14.7 32.3±13.3 0.06 35.3±14.7 35.7±13.5 33.5±17.7 0.87 

Baseline HDRS 

(m±sd))   23.6±4.4 25.2±4.7 25.2±5.4 0.025* 25.3±5.2 24.9±4.8 24±4.7 0.20 25.1±5 23.5±4.4 23.7±5 0.06 

Prescribed AD (n(%)) SSRI  46(40) 70(39) 41(46) 0.93 46(43) 72(38) 39(44) 0.66 124(40) 27(40) 5(83) 0.81 

 SNRI  48(42) 77(43) 30(34)  35(33) 84(44) 35(40)  127(41) 27(40) 1(17)  

 TCA  6(5) 11(6) 7(8)  9(8) 10(5) 5(6)  20(6) 4(6) 0(0)  

 Other  11(10) 16(9) 7(8)  10(9) 18(9) 6(7)  28(9) 6(9) 0(0)  

 ECT  4(3) 7(4) 4(4)  6(6) 6(3) 3(3)  11(4) 4(6) 0(0)  
Dropout (n(%)) M1  8(7) 8(4) 5(6) 0.62 6(6) 9(5) 6(7) 0.73 14(5) 6(9) 0(0) 0.44 

 M3  29(25) 61(34) 30(34) 0.26 36(34) 59(31) 24(27) 0.61 90(29) 27(40) 2(33) 0.22 

  M6   54(47) 80(44) 44(49) 0.71 50(47) 85(45) 42(48) 0.87 137(44) 39(57) 2(33) 0.11 

   rs113636971 rs504683 rs561923 

   AA AG GG P AA AG GG P CC CA AA P 

   n=340 n=46 n=2  n=195 n=164 n=27  n=220 n=142 n=20  
Age (m±sd)   45.4±13.3 45.6±13.9 43±8.5 0.94 44.4±13.4 46.3±13 47.4±14.3 0.30 44.1±13.6 47±12.5 50.1±15.1 0.052 

Female (n(%))   233(69) 29(63) 1(50) 0.51 134(69) 108(66) 20(74) 0.68 150(68) 94(66) 14(70) 0.90 

Education (n(%)) Primary  32(9) 4(9) 0(0) 0.83 17(9) 16(10) 2(7) 0.95 20(9) 15(11) 1(5) 0.94 

 High school  147(43) 21(46) 0(0)  85(44) 73(45) 10(37)  91(41) 64(45) 9(45)  

 University  160(47) 21(46) 2(100)  92(47) 75(46) 15(56)  108(49) 63(44) 10(50)  
Ethnicity (n(%)) Caucasian  308(91) 43(93) 2(100) 0.92 167(86) 157(96) 27(100) 0.0044* 192(87) 136(96) 20(100) 0.032* 

 African  22(6) 2(4) 0(0)  19(10) 5(3) 0(0)  19(9) 4(3) 0(0)  

 Mixed  9(3) 1(2) 0(0)  9(5) 1(1) 0(0)  9(4) 1(1) 0(0)  
Current smoker (n(%))    126(37) 22(48) 1(50) 0.31 82(42) 59(36) 8(30) 0.32 90(41) 50(35) 6(30) 0.42 

Pack years (m±sd)   15.3±15.4 14±11.3 20±NA 0.72 14.4±14.5 16.7±15.1 13±17 0.26 14.3±14.3 17.6±16.2 11.1±12.5 0.24 

Recurrent MDE (n(%))   246(72) 36(78) 2(100) 0.67 138(71) 122(74) 23(85) 0.28 159(72) 105(74) 16(80) 0.80 

Onset age MDE 

(m±sd))   35.7±14.4 32.5±14.7 29±4.2 0.39 35±14 35.5±15.1 34.9±14.1 0.94 34.7±14 35.9±14.9 37±17.3 0.65 

Baseline HDRS 

(m±sd))   24.8±4.9 24.6±4.9 21.5±0.7 0.58 25.1±5.1 24.6±4.6 24.1±5.3 0.55 24.9±5.1 24.5±4.5 24.6±5.5 0.85 

Prescribed AD (n(%)) SSRI  139(41) 18(39) 0(0) 0.08 85(44) 64(39) 8(30) 0.41 90(41) 58(41) 7(35) 0.84 

 SNRI  139(41) 19(41) 0(0)  72(37) 72(44) 12(44)  86(39) 60(42) 9(45)  

 TCA  19(6) 5(11) 0(0)  12(6) 11(7) 1(4)  15(7) 8(6) 1(5)  

 Other  30(9) 2(4) 2(100)  20(10) 11(7) 3(11)  22(10) 10(7) 1(5)  

 ECT  13(4) 2(4) 0(0)  6(3) 6(4) 3(11)  7(3) 6(4) 2(10)  
Dropout (n(%)) M1  18(5) 3(7) 0(0) 0.76 9(5) 10(6) 2(7) 0.68 9(4) 10(7) 2(10) 0.21 

 M3  110(32) 10(22) 1(50) 0.23 63(32) 48(29) 10(37) 0.65 79(36) 34(24) 7(35) 0.046* 

  M6   158(46) 20(43) 1(50) 0.88 92(47) 74(45) 13(48) 0.91 108(49) 58(41) 10(50) 0.29 
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III.4. Using Biological Constraint to Identify Relevant Genes in Association with 

Clinical Improvement Following Antidepressant Treatment in Depressed Patients 

Numerous biological mechanisms are implicated in MDD and the response to its 

treatment with ATDs. As such, genes within these pathways remain candidate biomarkers. 

Genetic analysis for genome-wide approaches like GWAS and HTS is burdened by the 

number of statistical tests performed. Methods aimed at reducing data dimensionality can aid 

in reducing this statistical burden. The aggregation of genetic variation to their associated 

genes and their joint analysis is one example of this. We aimed to identify which genes from 

a targeted HTS gene panel were most relevant to clinical outcome measures following ATD 

treatment in patients of the METADAP cohort by using the biological constraint method, 

G2PSR. 

III.4.1. Overview of patients, materials, and methods 

A total of 394 patients with ≥1 follow-up measure during the study were analyzed. 

Genetic variation was genotyped from leukocytic DNA using HTS and a targeted gene panel 

of 72 candidate genes for MDD and ATD treatment outcomes. Variant calls were subjected 

to quality control. Common genetic variation (MAF≥5%) was retained for analysis. Data 

were prepared in R. The HDRS score, percentage change, CGI-S, and CGI-I at M1, M3, and 

M6 were analyzed with G2PSR. G2PSR was run using Python 3 in a Jupyter environment. 

Linear mixed-effects models were constructed in R and adjusted a priori for age, sex, and 

ATD class to analyze the aforementioned clinical outcomes and response and remission rates. 

III.4.2. Principal results 

Among the 394 patients analyzed, 4,326 genetic variants were identified in 71 of 72 

genes. Overall, 323 common genetic variants within 58 genes were analyzed. SLC1A1 was 

the most relevant gene identified. Among the 7 SLC1A1 genetic variants, the rs301435(T>C) 

genetic polymorphism was significantly associated with the HDRS and CGI-I scores, 

percentage change, and response and remission rates. 

III.4.3. Summary of the discussion 

Our whole METADAP gene panel analysis is the first application of G2PSR to 

targeted HTS data. The results suggest that genetic variation within SLC1A1—and especially 

the rs301435 genetic polymorphism—is associated with clinical outcomes following ATD 

treatment. This appears to be the first association of SLC1A1 genetic variation with clinical 

outcomes following ATD treatment in depressed patients. However, SLC1A1 has been 

previously associated with clinical outcomes following ATD treatment in patients with 

obsessive compulsive disorder (OCD). These and other data support the implication of the 
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glutamatergic system in the pathophysiology of MDD and its treatment with ATDs. The role 

of SLC1A1 and the functional consequences of SLC1A1 genetic variation in these contexts 

require further study. This analysis was limited by its dropout rate and various features of the 

analyzed data (i.e., relatively small volume, genetic variation distribution per gene, and 

enrichment of relevant genes). 

III.4.4. Conclusion 

G2PSR identified genetic variation within SLC1A1 as associated with clinical 

outcomes following ATD treatment. Significant associations were observed with the 

rs301435(T>C) genetic polymorphism. This and previous findings between SLC1A1 and 

pharmacological response in psychiatric disorders argue for continued study. 

III.4.5. Publication 

A formal manuscript of this work is in preparation. Herein, we present it in its current 

state. 
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Using Biological Constraint to Identify Relevant Genes in Association with Clinical 

Improvement Following Antidepressant Treatment in Depressed Patients 

 

Abstract 

Major Depressive Disorder (MDD) is the current leading cause of disability worldwide. 

Genetic variation can influence the effect of its main treatment option, antidepressant drugs 

(ATD). Genome-wide association studies aid genetic analysis but suffer notably from 

multiple testing; aggregating genetic variation to genes can reduce this burden. We aimed to 

analyze the association of gene-constrained genetic variation from a targeted panel with 

clinical outcomes in a cohort of 6-month ATD-treated individuals. 

Clinical data were obtained at baseline and after 1 (M1), 3 (M3), and 6 (M6) months of ATD 

treatment in 394 patients of the METADAP cohort. Genetic data were obtained from high-

throughput sequencing (HTS) using a targeted gene panel of 72 candidate genes. Genome-to-

Phenome Sparse Regression (G2PSR) was used to analyze the association of gene-

constrained genetic variation with the Hamilton Depression Rating Scale (HDRS) and 

Clinical Global Impressions (CGI) scores and the HDRS percentage change. Mixed-effects 

models were used to assess the association of genetic variation with these clinical measures 

and response and remission rates across time. 

Among the 394 individuals, 323 genetic variants within 58 genes were analyzed. SLC1A1 

was identified in association with clinical outcomes. The SLC1A1 rs301435(T>C) genetic 

polymorphism was significantly associated with the HDRS (P=0.0077) and CGI-

Improvement scores (P=0.014), percentage change (P=0.026), and response (P=0.038) and 

remission rates (P=0.016). In each case, the C allele was associated with worse improvement. 

Our results demonstrate the utility of G2PSR in analyzing targeted HTS genetic data and an 

association of SLC1A1 genetic variation with clinical improvement following ATD treatment 

in depressed patients. Further investigations of SLC1A1 may demonstrate its utility as a 

biomarker in this context. 

 

Keywords 

Major Depressive Disorder, antidepressant, pharmacogenetics, biological constraint, SLC1A1, 

Excitatory Amino Acid Transporter 3  
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Introduction 

Major Depressive Disorder (MDD) is the leading contributor to global disability 1. 

Antidepressant drugs (ATD) remain the main treatment option for major depressive episodes 

(MDE), but only about half of ATD-treated patients respond to ATD therapy 2. Clinical 

improvement is typically observed only after 4–6 weeks of treatment, prolonging the course 

of therapy and its cost 3. The complexity and heterogeneity of MDD likely contribute 4,5. 

Genetic variation, including single nucleotide polymorphisms (SNP), influences the 

response to ATD treatment 6. Hundreds of genetic associations have been identified 7, some 

of which are located in genes that belong to biological mechanisms implicated in the 

pathophysiology of MDD, including monoamine neurotransmission, glutamatergic signaling, 

hypothalamic–pituitary–adrenal (HPA) axis dysregulation, and inflammation 8. 

Both candidate studies and large-scale genome-wide association studies (GWAS) 

have tried to identify common underlying genetic factors of the response to ATD treatment 7. 

In GWAS, independent tests for each genetic polymorphism (often millions) are performed 

for each phenotype of interest 9. Multiple testing correction helps limit false positives, but the 

high level of significance needed may also remove true positives 9. As a result, genome-wide 

significant associations are scarce among clinically diagnosed populations 7,10.  

Approaches like gene- or pathway-based association tests are proposed to help reduce 

the multiple testing burden. Often, these methods aggregate and jointly analyze genetic 

polymorphisms according to their associated genes or pathways 11. For example, ETV4—a 

factor related to hippocampal dendrite development and plasticity—was identified in 

association with percentage improvement and remission in the largest clinical cohort analysis 

of ATD response in depression 10.  

Like GWAS, high-throughput sequencing (HTS) can identify and analyze genome-

wide genetic variation, though it can also be applied to the analysis of exomes (i.e., coding 

regions) and candidate regions 12, often with improvements to cost and time 13. Gene panels 

for drug response generally target pharmacogenes that influence drug metabolism and/or 

efficacy 14. In the study of ATD outcomes in depression, genetic variation in several 

candidate genes is commonly explored, many of which relate to ATD metabolism, 

monoamine neurotransmission, glutamatergic signaling, the HPA axis, and inflammation 7,15. 

Given the diversity of genetic data—from genome-wide to targeted regions—and  

phenotypic features, gene-based analyses require varied flexibility, scalability, and 

performance. Genome-to-Phenome Sparse Regression (G2PSR) is one method that can 

analyze the association between large (i.e., ~100,000 SNPs in ~4,000 genes) and small (i.e., 

targeted regions) volumes of biologically-constrained genetic variation and several 

phenotypic features, alleviating the need for multiple testing 16. Importantly, its efficacy was 

demonstrated in the genetic analysis of clinical and imaging data in Alzheimer’s disease. 

We sought to use G2PSR to explore which genes, if any, of a targeted panel of genes 

related to MDD and ATD treatment outcomes may be associated with clinical improvement 

outcomes following 6 months of ATD treatment in individuals with a current MDE in the 

context of MDD.  

 

 

Patients, Materials, and Methods 

 

Study design 

 

The METADAP cohort is a 6-month prospective, naturalistic treatment, multicentric 

study carried out in a psychiatric setting 17. Patients with a current MDE were treated and 

assessed before and during ATD treatment. This study was registered by the French National 
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Agency for Medicine and Health Products Safety (ANSM) and the Commission Nationale de 

l’Informatique et des Libertés (CNIL). It was approved by the Ethics Committee of Paris-

Boulogne (France) and conformed to international ethical standards (ClinicalTrials.gov 

identifier: NCT00526383).  

 

Patients 

 

Males and females 18–65 years of age without a serious medical or inflammatory 

condition were recruited. Inclusion criteria were presentation with a MDE in the context of 

MDD (DSM-IVTR), as assessed by the Mini International Neuropsychiatric Interview 

(MINI), a score ≥18 on the 17-item Hamilton Depression Rating Scale (HDRS) 18, and need 

for a new ATD treatment. Patients with psychotic symptoms or other mental disorders—such 

as psychotic disorder, bipolar disorder, alcohol or drug dependence, or an eating disorder—or 

those who were pregnant or who had organic brain syndromes or serious medical conditions, 

were excluded. Measures and samples were obtained prior to beginning ATD treatment (M0), 

and after 1 (M1), 3 (M3), and 6 (M6) months of ATD treatment. 

Of the 643 patients included in METADAP, 19 had major protocol deviations and 

were excluded. Of the 624 available for analysis, 519 patients provided samples for genetic 

studies. From these, 401 have undergone high-throughput sequencing. Two samples were 

removed due to technical difficulties. As the objective of this study was to examine clinical 

response following ATD treatment, 5 patients for whom no follow-up measures were 

available (i.e., at M1, M3, and M6) were removed. Thus, 394 patients were analyzed. 

Dropouts occurred mainly because of ATD changes, use of unauthorized drugs, or loss to 

follow-up. Information about ancestry was self-reported. Caucasian patients were defined as 

having Caucasian parents, African patients as having Sub-Saharan African and/or Afro-

Caribbean parents, and Asian patients as having East Asian, Central Asian, and/or South 

Asian parents 19. All individuals provided written informed consent for study participation 

and genetic analyses 17. 

 

Antidepressant treatment 

 

ATD monotherapies were prescribed by a psychiatrist in a “real world” psychiatric 

treatment setting as previously described 17. ATDs belonged to 1 of 4 classes: selective 

serotonin reuptake inhibitors (SSRI), serotonin norepinephrine reuptake inhibitors (SNRI), 

tricyclic antidepressants (TCA), or other ATD treatments. In this ancillary study of 394 

patients, 40% (n=156) were prescribed an SSRI, 40% (n=158) an SNRI, 7% (n=26) a TCA, 

and 9% (n=34) another ATD treatment. If a change in treatment was required during follow-

up, the patient was dropped from the study. 

 

Assessment of antidepressant treatment response 

 

The HDRS 18 and Clinical Global Impressions (CGI)-Severity scale (CGI-S) 20 were 

used to assess depression severity at M0 (i.e., baseline). The HDRS and CGI-S, as well as the 

percentage change from the baseline HDRS score (hereafter referred to as percentage change) 

and CGI-Improvement scale (CGI-I) 20, were used to assess clinical improvement to ATD 

treatment at M1, M3, and M6. Responders were defined by an improved HDRS score ≥50% 

relative to baseline, remitters by a HDRS score ≤7 after ≥4 weeks of ATD treatment, as 

recommended by the American College of Neuropsychopharmacology (ACNP) Task Force 
21. Clinical assessments were performed blind to genotyping results. Each interview and 

http://clinicaltrials.gov/
http://clinicaltrials.gov/show/NCT00526383
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diagnostic assignment was reviewed by a senior psychiatrist. For each patient, all visits were 

reviewed by the same psychiatrist.  

 

High-throughput sequencing 

 

Five mL of whole blood was collected at baseline. Leukocytic DNA was extracted 

from 1 mL of blood using a Puregene Kit (Gentra systems, Minneapolis, USA) and stored at -

20°C. Patient DNA samples were sequenced using a targeted-exome panel of pharmacogenes 

involved in mood disorders and ATD metabolism. The protocols used for high-throughput 

sequencing and information about the gene panel and variant calling are described elsewhere 
22. Briefly, the METADAP gene panel targeted exons and intronic flanking regions (±50 base 

pairs) of 72 candidate genes, though ARRB1 and ARRB2 were whole-gene sequenced. 

 

Variant call data 

 

Variant Call Format data were loaded into R (v4.1.0) 23. Individual variant calls were 

annotated for call quality as previously described 24. Briefly, variant calls with a sequencing 

depth <20, SNPs with a quality score <275, insertions/deletions with a quality score <770, 

heterozygous variant calls with an allele balance <0.34 or >0.79, and homozygous variant 

calls with an allele balance <0.96 were annotated as poor-quality calls. Call rates were 

calculated as the number of poor-quality calls divided by the total number of calls. Genetic 

variants with a call rate <89.12% (lower quintile) were excluded. Genetic variants within 

CYP2D6 (n=22) were excluded due to (1) an overall low call rate (mean=66%), with 81.82% 

of variants below 89.12%, and (2) read alignment to regions of CYP2D6, CYP2D7, and 

CYP2D8 due to their high sequence homology 25. 

Linkage disequilibrium (LD) between genetic variants was assessed using the ld 

function from the snpStats package in R 26. For genetic variants in strong LD (i.e., r2≥0.8), 

those with the highest MAF were selected for analysis while the others were removed. 

 

G2PSR data and parameterization 

 

G2PSR was run using Python 3 in a Jupyter environment 

(https://jupyterhub.ijclab.in2p3.fr/). Three matrices were generated for use with G2PSR, as 

previously described 16. The sample × phenotype matrix contained data for each phenotypic 

variable (i.e., the HDRS score, percentage change, the CGI-S, and the CGI-I). The 

redundancy from including each improves accuracy and helps with the identification of 

relevant genes 16. Data at M1, M3, and M6 were included. Missing clinical data were imputed 

as the median. The genetic polymorphism × sample matrix contained the number of variant 

alleles carried (i.e., 0, 1, or 2) by each patient for each included genetic variant. The genetic 

polymorphism × gene matrix contained polymorphism-gene constraints (i.e., 1 if 

polymorphism is associated with the gene, 0 otherwise).  

Since ARRB1 and ARRB2 were whole-gene sequenced compared to the rest of the 

targeted gene panel, we created 3 datasets for use with G2PSR: (1) with all genetic variation 

constrained to their respective genes; (2) with genetic variation of ARRB1 divided into 8 

separate regions of 8–9 genetic variants to better match the number of variants of other genes; 

(3) with genetic variation of ARRB1 and ARRB2 limited to exonic and 5’- and 3’-UTR 

genetic variants only to better match the exonic sequencing of the other genes. 

G2PSR was initialized to 50,000 epochs and 1,000 steps. G2PSR was run 10 times to 

obtain means and SDs for loss, sigma, and α parameters. Early stopping was used to 

determine the optimal epoch for the identification of relevant genes (i.e., α<0.05) 16. 

https://jupyterhub.ijclab.in2p3.fr/
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Data analysis 

 

Statistical analyses were performed in R (v4.1.0) 23. Quantitative variables were non-

normally distributed and analyzed using nonparametric Kruskal-Wallis (when comparing 3 

groups) or Wilcoxon tests (when comparing 2 groups). Qualitative variables were analyzed 

using chi-square or Fisher Exact tests if >20% of expected cell counts were <5. Linear 

mixed-effects models and generalized linear mixed-effects regression models with the 

binomial link function were constructed using the lme4 package (v1.1-27.1) 27. The main 

variable to explain was the HDRS total score. Other variables to explain were the response 

and remission rates. The number of major alleles (i.e., 0, 1, or 2) was the main explanatory 

variable examined. Age, sex, and ATD class were included a priori as fixed-effects 

covariables. Sociodemographic and baseline clinical variables that significantly differed 

between genotypes (i.e., P<0.05) were also included as fixed-effects covariables. Individual 

was considered as a random intercept to account for the repeated measures. A significance 

threshold of P<0.05 was considered significant. 

 

Results 

 

Patient demographics 

 

Sociodemographic characteristics for the whole cohort are shown in Table 1. The 

mean age was 45.4, 68% of subjects were female, and 91% of subjects were Caucasian. 

SSRIs or SNRIs were prescribed to 80% of subjects and 47% of subjects were missing at 

follow-up at M6. 

 
Table 1: Sociodemographic characteristics 

Sociodemographic characteristics for the whole sample. Age, onset age of MDE, and baseline HDRS are 

presented as mean±SD. Sex, education level, smoking status at baseline, MDE recurrence, prescribed ATD, and 

missing data during follow-up are presented as the group number and percentage. 

ATD: antidepressant drug; ECT: electroconvulsive therapy; HDRS: 17-item Hamilton Depression Rating 

Scale; M1: 1 month after beginning antidepressant treatment; M3: 3 months after beginning antidepressant 

treatment; M6: 6 months after beginning antidepressant treatment; MDE: major depressive episode; n: number 

of patients; SNRI: serotonin norepinephrine reuptake inhibitor; SSRI: selective serotonin reuptake inhibitor; 

TCA: tricyclic antidepressant 

    n=394 

Age (in years) (m±sd)  45.4±13.3 

Sex [n (%)]  268(68) 

Education level [n (%)] Primary 37(9) 

 Secondary 171(43) 

 Tertiary 185(47) 

Ethnicity [n (%)] Caucasian 358(91) 

 African 25(6) 

 Mixed 10(3) 

Current smoker [n (%)]  149(38) 

Recurrent MDE [n (%)]  289(73) 

Onset age MDE (m±sd)  35.3±14.5 

Baseline HDRS (m±sd)  24.8±5 

Prescribed ATD [n (%)] SSRI 158(40) 

 SNRI 159(40) 

 TCA 26(7) 

 Other 34(9) 

 ECT 17(4) 

Missing at follow-up [n (%)] M1 21(5) 

 M3 124(31) 

  M6 184(47) 
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Genetic variation selection 

 

Among the 394 subjects, 4,326 genetic variants were identified in 71 of 72 gene panel 

genes, of which 600 (14%) were common (MAF≥5%). Among these, 480 genetic variants 

(80%) were of good quality. Seventy-one genetic variants were in LD and removed. Thus, 

323 genetic variants within 58 genes were analyzed. Among the 58 genes, almost 48% 

carried 3 or fewer genetic variants, while 1 (ARRB1) carried 67 (see Figure 1). When limiting 

ARRB1 and ARRB2 to exonic genetic variants only, 254 genetic variants within 58 genes 

were analyzed. 

 

 
Figure 1: Gene counts according to number of genetic variants 

Gene counts (y-axis) according to the number of genetic variants (x-axis) are shown. 

 

G2PSR 

 

The loss parameter began to normalize after ~20,000 epochs. Sigma parameters began 

to decrease around 10,000 epochs for CGI measures and 18,000 epochs for HDRS measures 

and normalize around 25,000 epochs (see Figure 2). We thus looked for relevant genes at 

25,000 epochs. Here, SLC1A1 (α=0.047) and ARRB1 (α=0.033) were identified (see Figure 

3A). 

When genetic variation within ARRB1 was divided into 8 separate regions, or when 

genetic variation within ARRB1 and ARRB2 were limited to exonic sequences only, loss and 

sigma parameters did not vary from the initial analysis (data not shown). We thus looked for 

relevant genes at 25,000 epochs in these analyses as well. In the divided ARRB1 analysis, 

NPAS2 (α=0.048), SLC6A3 (α=0.047), and SLC1A1 (α=0.042) were identified (see Figure 

3B). In the exonic ARRB1 and ARRB2 analysis, SLC1A1 was the only gene identified 

(α=0.039) (see Figure 3C). 

Since SLC1A1 was the only gene identified in each analysis, we selected it and its 

associated genetic variants for further analysis. 



Page 103 of 145 

 

 
Figure 2: G2PSR loss and sigma parameters for optimization 

Log-transformed loss (A) and sigma (B) values (y-axes) are shown for each epoch/iteration (x-axes). Error-bars represent SD (10 replicate analyses).  
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Figure 3: Relevant genes identified from G2PSR analyses 

Relevant genes (red lines) identified in each of 3 G2PSR analyses: (A) all genetic variation constrained to their respective genes; (B) ARRB1 genetic variation 

divided into subregions; (C) ARRB1 and ARRB2 genetic variation limited to exonic regions. The red, dashed horizontal line represents the significance 

threshold of α<0.05. 
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Association of genetic variation within G2PSR-identified genes with clinical outcomes 

 

We next analyzed the association of the 7 SLC1A1 genetic variants with the HDRS 

score using mixed-effects models. Among these 7 variants, and after controlling for age, sex, 

ATD class, time, and significant clinical and sociodemographic factors (see Supplementary 

Table 1), the rs301435(T>C) genetic polymorphism was significantly associated with the 

HDRS score, with the number of C alleles increasing with the HDRS score overall 

(coef=0.96, 95%CI [0.26–1.66], P=0.0077) (see Table 3). At M3, the number of C alleles 

was significantly associated with increased HDRS scores (coef=1.67, 95%CI [0.42–2.93], 

P=0.0091) (see Figure 4A). 

The number of rs301435 C alleles was also associated with overall lower percentage 

change and overall higher CGI-I scores, but not with the CGI-S score (see Table 4 and Figure 

2B-D). At M3, the number of C alleles was significantly associated with a lower percentage 

change (coef=-5.38, 95%CI [-10.3–-0.46], P=0.032) and higher CGI-I score (coef=0.26, 

95%CI [0.068–0.45], P=0.0081) (see Figure 4B and 4D). 

Lastly, we examined the association of rs301435 with response and remission rates. 

The number of rs301435 C alleles was associated with overall lower response and remission 

rates (see Table 4). The number of C alleles was significantly associated with decreased 

remission rates at M1 (OR=0.66, 95%CI [0.45–0.96], P=0.032) and with decreased response 

rates at M3 (OR=0.66, 95%CI [0.45–0.94], P=0.023) (see Figure 4E-F). 
 

Table 3: Mixed-effects model results of the association of 7 SLC1A1 genetic variants with the HDRS score 

For each SLC1A1 genetic variant we show the results of the mixed-effects models of the HDRS total score. 

Models were adjusted for age, sex, ATD class, time, and significant clinical and sociodemographic factors (see 

Supplementary Table 1). Bold text and **: P<0.01. 

95%CI: 95% confidence interval; df: degrees of freedom; P: P-value; se: standard error 

 

term estimate se stat df 95%CI P 

rs45518336 -0.50 0.44 -1.12 375.05 -1.36–0.37 0.26 

rs10974625 0.16 0.41 0.38 372.95 -0.64–0.95 0.70 

rs2228622 -0.07 0.37 -0.20 381.27 -0.81–0.66 0.84 

rs12682807 0.54 0.61 0.88 376.13 -0.67–1.74 0.38 

rs301430 0.27 0.37 0.72 369.76 -0.46–0.99 0.47 

rs1471786 -0.56 0.50 -1.10 377.06 -1.55–0.43 0.27 

rs301435 0.96 0.36 2.68 373.80 0.26–1.66 0.0077** 

 
Table 4: Mixed-effects model results of the association between the SLC1A1 rs301435 genetic variant and 

clinical outcomes 

Results for mixed-effects models examining the association of the SLC1A1 rs301435 genetic polymorphism 

with the percentage change, CGI-S score, CGI-I score, and response and remission rates. Models were adjusted 

for age, sex, ATD class, and time. Bold text and (1) *: P<0.05; (2) **: P<0.01; (3) ***: P<0.001.  

95%CI: 95% confidence interval; CGI-I: Clinical Global Impressions – Improvement scale; CGI-S: Clinical 

Global Impressions – Severity scale; df: degrees of freedom; P: P-value; se: standard error 

 

 rs301435 

clinical outcome estimate se stat df 95%CI P 

Percentage change -3.99 1.79 -2.23 352.00 -7.51–-0.47 0.026* 

CGI-S 0.12 0.07 1.84 391.36 -0.01–0.25 0.066 

CGI-I 0.16 0.06 2.47 358.10 0.03–0.28 0.014* 

Response 0.75 0.10 -2.07 - 0.57–0.98 0.038* 

Remission 0.61 0.12 -2.41 - 0.41–0.91 0.016* 
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Figure 4: Clinical measures during 6 months of antidepressant treatment according to SLC1A1 rs301435 

genotypes 

Average HDRS scores (A), percentage changes (B), CGI-S scores (C), CGI-I scores (D), response rates (E), and 

remission rates (F) (y-axes) across time (x-axes) between rs301435 genotypes (see legends). Error bars 

correspond to the standard error of the mean. *: P<0.05; **: P<0.01. 

HDRS: 17-item Hamilton Depression Rating Scale; M0: baseline, prior to beginning antidepressant treatment; 

M1: 1 month after beginning antidepressant treatment; M3: 3 months after beginning antidepressant treatment; 

M6: 6 months after beginning antidepressant treatment; n: number of individuals 
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Discussion 

In this ancillary investigation of the METADAP cohort, we analyzed genetic variation 

constrained to genes of a targeted HTS gene panel to identify genes associated with clinical 

outcomes following ATD treatment in individuals suffering from MDE in the context of 

MDD. To the best of our knowledge, this is the first application of G2PSR to the analysis of 

targeted HTS genetic data. Findings from G2PSR suggested that genetic variation within 

SLC1A1 was strongly associated with clinical measures. We then observed significant 

associations between the rs301435(T>C) genetic polymorphism and the HDRS and CGI-I 

scores, percentage change, and response and remission rates. Overall, the rs301435 C allele 

was associated with worse improvement, especially after 3 months of ATD treatment. 

G2PSR was previously used to explore genetic associations with Alzheimer’s disease 
16. Among 104,854 SNPs across 3,953 genes, APOE—the principal genetic risk factor of 

Alzheimer’s disease—and other genes associated with mechanisms of Alzheimer’s disease 

onset or progression were identified in association with cognition scales and imaging data 16. 

In comparison, our analysis of 323 genetic variants across 58 genes represents a 324- and 68-

fold decrease in the number of genetic variants and genes, respectively. Despite the 

significantly smaller volume of data, a low significance threshold from performing tests for 

each of the 323 genetic variants would need to be applied (i.e., P<0.05/323=0.00015), 

highlighting the interest of using G2PSR. In our analysis, G2PSR was able to identify 

SLC1A1, which follow-up analyses confirmed contained genetic variation associated with 

clinical outcomes following ATD treatment. Our findings suggest that G2PSR is a useful tool 

for genetic analysis when applied to targeted sequencing data. 

Pharmacological investigations of SLC1A1 genetic variation have been performed 

notably in the context of obsessive compulsive disorder (OCD) 28–31. In a population of 340 

Han Chinese patients, the CC genotype of the rs301430(T>C) genetic polymorphism was 

associated with improved outcomes following 12 weeks of fluoxetine (an SSRI) treatment 30. 

Among 243 Iranian patients, rs2228622(G>A) and rs3780413(C>G) were associated with 

response following 12 weeks of fluvoxamine (an SSRI) treatment 31. Lastly, in a study of 248 

Spanish Caucasian patients, variant allele carriers of rs301434(C>T), rs301435(T>C), and 

rs3087879(G>C) were more resistant following more than 12 weeks of SSRI treatment 28.  

In our analysis, no significant associations between the HDRS score and rs301430 or 

rs2228622 were observed. This may be due to ethnic differences. Indeed, Han Chinese and 

Iranian populations were previously examined 30,31, whereas our analysis was performed in a 

predominantly Caucasian population (~90%). The proportion of genotypes for each of these 

genetic polymorphisms also significantly differed with respect to ethnicity in our sample. The 

rs301435 genetic polymorphism was significantly associated with the HDRS and several 

other clinical outcomes. Here, the number of rs301435 C alleles was associated with worse 

improvement following ATD treatment, notably after 3 months of treatment. Our findings 

appear to agree with the study of Real et al., wherein rs301435 variant allele carriers (i.e., the 

C allele) were more resistant to SSRI treatment in the context of OCD 28. 

OCD and MDD share many characteristics and symptoms, and OCD is one of the 

most common comorbidities of MDD 32. Alongside other psychiatric diseases, altered 

glutamatergic signaling is implicated and shared by OCD and MDD 33. SLC1A1 encodes the 

neuronal glutamate transporter, Excitatory Amino Acid Transporter 3 (EAAT3), which aids 

in terminating glutamatergic excitatory signals through the cellular reuptake and synaptic 

removal of glutamate 29,34. The functional consequences of SLC1A1 genetic variation remain, 

to the best of our knowledge, to be characterized and experimentally validated. However, our 

findings suggest that genetic variation within SLC1A1, which may alter glutamatergic 

processes, should continue to be investigated in association with ATD treatment outcomes. 
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Limitations 

There are several limitations to our study. First, the proportion of missing data during 

follow-up is high. However, the use of mixed-effects models helps to control for the bias 

introduced by missing data 35. Second, the volume, distribution (i.e., 20% of genes with 1 

polymorphism), and relevance (i.e., oversaturation of associated genes) of the genetic data 

used with G2PSR may represent several biases and limitations. Indeed, genes with more 

genetic variation may introduce selection bias, while the enrichment of relevant genes can 

negatively impact the performance of G2PSR 16. As such, the number of relevant genes 

identified may have been limited, too. Third, despite the removal of non-relevant genes with 

G2PSR, the SLC1A1 rs301435 genetic polymorphism does not survive multiple testing 

correction (P<0.05/7=0.0071). We underline that this analysis remains exploratory in nature 
36. Additionally, the association of the rs301435 genetic polymorphism with multiple clinical 

outcomes bolsters its potential as a genetic marker for the response to ATD treatment. This 

study benefits from its prospective and naturalistic design, which better reflects “real-world” 

clinical practice.  

 

Conclusion 

In conclusion, we identified genetic variation of SLC1A1 as relevant in association 

with ATD treatment outcomes and, consequently, an association of the C allele of the 

rs301435(T>C) genetic polymorphism with worse clinical outcomes following ATD 

treatment. Previous associations of SLC1A1 genetic variation with psychiatric disorders and 

with response to pharmacological treatment argue for its continued study in these contexts. 

Analysis in ethnically diverse and longitudinal studies would help confirm our findings. 
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III.4.6. Supplementary Materials 

Supplementary Table 1: Sociodemographic characteristics according to SLC1A1 polymorphism genotypes 

Sociodemographic characteristics of METADAP patients are shown according to genotype for each of the 7 SLC1A1 polymorphisms. Kruskal-Wallis tests were used to compare age, onset age of MDE, and baseline HDRS scores (presented as 

mean±standard deviation). Chi square or Fisher Exact tests were used to compare sex, socio-education status, ethnicity, smoking status at baseline, MDE recurrence, prescribed ATD drug, and missing at follow-up rates (presented as the number of 

patients and percentage). *: P<0.05; ***: P<0.001. ATD: antidepressant drug; ECT: electroconvulsive therapy; HDRS: 17-item Hamilton Depression Rating Scale; m: mean; M1: after 1 month of treatment; M3: after 3 months of treatment; M6: 

after 6 months of treatment; MDE: major depressive episode; n: number of patients; P: P-value; SNRI: serotonin norepinephrine reuptake inhibitor; sd: standard deviation; SSRI: selective serotonin reuptake inhibitor; TCA: tricyclic antidepressant 

  rs45518336 rs10974625 rs2228622 rs12682807 

  TT AT AA P AA GA GG P AA GA GG P CC AC AA P 

    n=14 n=162 n=218   n=28 n=161 n=205   n=64 n=189 n=141   n=4 n=64 n=326   

Age (in years) (m±sd)  47.7±11.8 45±13.4 45.6±13.3 0.68 47.9±13.8 45.1±12.6 45.4±13.7 0.67 45.4±13.4 45.1±13.2 45.9±13.4 0.90 46.5±9.5 45.8±13.1 45.3±13.4 0.99 

Sex [n (%)]   9(64) 111(69) 148(68) 0.95 19(68) 110(68) 139(68) 0.99 41(64) 125(66) 102(72) 0.37 3(75) 43(67) 222(68) 0.95 

Education level [n (%)] Primary 2(14) 16(10) 19(9) 0.27 3(11) 12(7) 22(11) 0.69 6(9) 17(9) 14(10) 0.98 0(0) 4(6) 33(10) 0.68 

  Secondary 8(57) 77(48) 86(39)   14(50) 74(46) 83(40)   29(45) 79(42) 63(45)   3(75) 31(48) 137(42)   

 Tertiary 4(29) 69(43) 112(51)  11(39) 75(47) 99(48)  29(45) 92(49) 64(45)  1(25) 29(45) 155(48)  
Ethnicity [n (%)] Caucasian 14(100) 149(92) 195(89) 0.72 24(86) 144(89) 190(93) 0.51 60(94) 182(96) 116(82) <0.001*** 3(75) 61(95) 294(90) 0.23 

 African 0(0) 8(5) 17(8)  3(11) 12(7) 10(5)  1(2) 5(3) 19(13)  0(0) 2(3) 23(7)  
  Mixed 0(0) 4(2) 6(3)   1(4) 5(3) 4(2)   3(5) 1(1) 6(4)   1(25) 1(2) 8(2)   

Current smoker [n (%)]  9(64) 64(40) 76(35) 0.075 12(43) 61(38) 76(37) 0.84 26(41) 69(37) 54(38) 0.83 2(50) 29(45) 118(36) 0.34 

Recurrent MDE [n (%)]   11(79) 121(75) 157(72) 0.76 22(79) 122(76) 145(71) 0.45 48(75) 132(70) 109(77) 0.30 3(75) 51(80) 235(72) 0.45 

Onset age MDE (m±sd)  39.5±14.1 34.1±13.9 36±14.8 0.21 36.5±17.6 34.8±14.4 35.6±14.1 0.93 35.7±13.6 35.7±14.2 34.7±15.3 0.74 37.2±18.3 34.4±13.9 35.5±14.6 0.81 

Baseline HDRS (m±sd)   25.9±6 24.8±4.9 24.8±5 0.77 25.9±5.8 24.3±4.6 25.1±5.1 0.29 25.4±5.3 24.7±4.7 24.7±5.1 0.66 20.8±3 24.9±4.7 24.8±5 0.20 

Prescribed ATD [n (%)] SSRI 6(43) 66(41) 86(39) 0.51 14(50) 65(40) 79(39) 0.073 23(36) 69(37) 66(47) 0.14 1(25) 25(39) 132(40) 0.25 

  SNRI 5(36) 66(41) 88(40)   4(14) 61(38) 94(46)   34(53) 77(41) 48(34)   1(25) 20(31) 138(42)   

 TCA 0(0) 15(9) 11(5)  4(14) 11(7) 11(5)  4(6) 14(7) 8(6)  1(25) 6(9) 19(6)  
  Other 0(0) 11(7) 23(11)   3(11) 16(10) 15(7)   2(3) 20(11) 12(9)   1(25) 6(9) 27(8)   

 ECT 3(21) 4(2) 10(5)  3(11) 8(5) 6(3)  1(2) 9(5) 7(5)  0(0) 7(11) 10(3)  
Missing at follow-up [n (%)] M1 0(0) 8(5) 13(6) 0.60 0(0) 11(7) 10(5) 0.30 5(8) 11(6) 5(4) 0.41 1(25) 2(3) 18(6) 0.16 

 M3 4(29) 47(29) 73(33) 0.63 9(32) 47(29) 68(33) 0.72 23(36) 59(31) 42(30) 0.68 1(25) 20(31) 103(32) 1.00 

  M6 6(43) 79(49) 99(45) 0.78 10(36) 69(43) 105(51) 0.14 33(52) 91(48) 60(43) 0.42 2(50) 27(42) 155(48) 0.78                   

  rs301430 rs1471786 rs301435     

  CC TC TT P AA GA GG P TT CT CC P     
    n=59 n=171 n=164   n=8 n=95 n=291   n=90 n=206 n=98       
Age (in years) (m±sd)  45.9±13.6 44.6±12.8 46.1±13.6 0.47 43.9±11.7 45.4±13.2 45.5±13.4 0.90 44.3±13.5 46.5±13.2 44.2±13 0.26     
Sex [n (%)]   42(71) 117(68) 109(66) 0.79 6(75) 66(69) 196(67) 0.85 64(71) 136(66) 68(69) 0.65     
Education level [n (%)] Primary 11(19) 9(5) 17(10) 0.018* 1(12) 8(8) 28(10) 0.86 9(10) 19(9) 9(9) 1.00     
  Secondary 28(47) 79(46) 64(39)   4(50) 45(47) 122(42)   40(44) 89(43) 42(43)       

 Tertiary 20(34) 83(49) 82(50)  3(38) 42(44) 140(48)  41(46) 97(47) 47(48)      
Ethnicity [n (%)] Caucasian 43(73) 154(90) 161(98) <0.001*** 5(62) 85(89) 268(92) 0.082 86(96) 189(92) 83(85) 0.13     

 African 13(22) 10(6) 2(1)  2(25) 7(7) 16(5)  3(3) 13(6) 9(9)      
  Mixed 3(5) 6(4) 1(1)   1(12) 3(3) 6(2)   1(1) 4(2) 5(5)       
Current smoker [n (%)]  20(34) 62(36) 67(41) 0.55 3(38) 37(39) 109(37) 0.95 36(40) 77(37) 36(37) 0.88     
Recurrent MDE [n (%)]   45(76) 126(74) 118(72) 0.81 5(62) 76(80) 208(71) 0.21 62(69) 156(76) 71(72) 0.46     
Onset age MDE (m±sd)  35.7±16.4 34.6±13.8 36±14.4 0.77 35.8±16.8 34.2±14.5 35.7±14.4 0.61 35.1±14.3 35.6±14.9 34.9±13.7 0.98     
Baseline HDRS (m±sd)   25.4±5.3 24.6±4.7 24.8±5.1 0.62 25.2±5.2 25.5±4.9 24.6±5 0.16 24.6±5.1 24.6±5 25.4±4.8 0.26     
Prescribed ATD [n (%)] SSRI 29(49) 64(37) 65(40) 0.16 2(25) 40(42) 116(40) 0.084 36(40) 79(38) 43(44) 0.98     
  SNRI 18(31) 65(38) 76(46)   2(25) 32(34) 125(43)   36(40) 86(42) 37(38)       

 TCA 5(8) 13(8) 8(5)  3(38) 5(5) 18(6)  6(7) 14(7) 6(6)      
  Other 4(7) 20(12) 10(6)   1(12) 10(11) 23(8)   8(9) 19(9) 7(7)       

 ECT 3(5) 9(5) 5(3)  0(0) 8(8) 9(3)  4(4) 8(4) 5(5)      
Missing at follow-up [n (%)] M1 2(3) 8(5) 11(7) 0.55 2(25) 3(3) 16(5) 0.030* 2(2) 10(5) 9(9) 0.10     

 M3 18(31) 48(28) 58(35) 0.35 1(12) 29(31) 94(32) 0.48 28(31) 66(32) 30(31) 0.97     
  M6 24(41) 81(47) 79(48) 0.60 4(50) 42(44) 138(47) 0.86 34(38) 102(50) 48(49) 0.15     
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IV. Discussion 

IV.1. Summary of findings 

The main results in the context of ATD treatment are shown in Figure 5. 

 

Figure 5: Research findings in the context of antidepressant drug treatment 

The principal findings of the thesis project are shown in their biological contexts with respect to 

antidepressant drug treatment for MDD. The postsynaptic neuron (orange) receives input from 

presynaptic neurons, including serotonergic (purple) and glutamatergic (yellow) neurons. Glutamate 

(yellow dot) is removed from the synapse by EAAT3 located on glial cells (dark yellow). Significant 

associations (green zones) between clinical improvement following antidepressant treatment and 

genetic variation in four genes coding for ERICH3 (ERICH3), MAO (MAOA), β-arrestin 1 (ARRB1), 

and EAAT3 (SLC1A1) were identified. 

↑: higher; 5-HIAA: 5-hydroxyindoleacetic acid; 5-HT: serotonin; 5-HTT: serotonin transporter; 

EAAT3: Excitatory amino acid transporter 3; Glu: glutamate; MAO: monoamine oxidase; MDD: 

Major Depressive Disorder; R: receptor; VMAT: vesicular monoamine transporter 
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The overall objective of this thesis project was to use novel strategies to investigate 

the association between genetic variation within candidate genes and clinical outcomes, as 

well as metabolite levels, following ATD treatment in depressed individuals. 

The first objective aimed to replicate the association of the ERICH3 

rs11580409(A>C) polymorphism with clinical outcomes and plasma 5-HT levels. CC 

homozygotes had a significantly improved HDRS score and response rate compared to A 

allele carriers after 6 months of ATD treatment. However, we did not observe an association 

between the rs11580409 polymorphism and plasma 5-HT levels. 

The second objective was to investigate the association of genetic variation within the 

MAO-encoding genes, MAOA and MAOB, with clinical outcomes following ATD treatment 

and the plasma 5-HIAA/5-HT ratio as an estimate of peripheral MAO activity. We observed 

that the A allele of the MAOA rs979605(A>G) polymorphism was associated with greater 

HDRS score improvements in A allele-carrying males compared to AA homozygous females 

after 6 months of treatment. Although the 5-HIAA/5-HT ratio was not associated with 

clinical outcomes, CC/C females/males carrying the MAOB rs1799836(T>C) polymorphism 

had lower plasma 5-HIAA/5-HT ratios compared to TT/T females/males. 

The third objective aimed to examine the association of genetic variation in ARRB1 

with clinical outcomes following ATD treatment. We used functional databases to prioritize 

frequent genetic variants with likely functional consequences for analysis using mixed-effects 

models, and gene burden methods to analyze the association of rare genetic variation. We 

observed that the ARRB1 rs553664(G>A) and rs536852(A>G) genetic polymorphisms—with 

potential consequences on transcription factor binding—were significantly associated with 

HDRS score changes and remission rates, especially after 6 months of ATD treatment, while 

rare genetic variant accumulation was associated with poorer clinical outcomes. 

Lastly, the final objective sought to analyze the entirety of the METADAP gene panel 

to find which genes were most strongly associated with clinical outcomes following ATD 

treatment. Using the biological constraint method, G2PSR, we observed that SLC1A1 was 

most strongly associated with clinical measures including the HDRS. We then observed that 

the number of C alleles of the SLC1A1 rs301435(T>C) genetic polymorphism was associated 

with poorer clinical improvement following ATD treatment. 
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IV.2. Is it still worth exploring factors of monoamine neurotransmission? 

The association of depleted monoamine neurotransmitter levels with depressive 

symptoms, as well as the ability of early ATDs to enhance monoamine neurotransmission, 

pointed to a role for monoamines in the pathophysiology of depression (Malhi and Mann, 

2018; Otte et al., 2016). Indeed, the efficacy of first-line ATD treatments such as SSRIs 

support the role for 5-HT in the pathophysiology of MDD (Jauhar et al., 2023). Still, response 

to ATD treatment remains modest. Although simplistic with regards to the adaptive effects of 

ATDs (Hyman and Nestler, 1996; Malhi and Mann, 2018; Otte et al., 2016), this variability in 

response suggests other factors may influence the effect of ATDs. Those with potential 

modulatory effects on monoamine neurotransmission thus remain interesting therapeutic 

targets in the treatment of MDD with ATDs.  

IV.2.1. Monoamine neurotransmitter transport—a role for ERICH3? 

The function of ERICH3 was unknown at the time of its identification in a PMx-

informed PGx study of plasma 5-HT levels. Fortunately, the association of ERICH3 genetic 

variation with decreased serotonin levels, especially the rs11580409(A>C) polymorphism, 

offered some insight (Gupta et al., 2016). Indeed, functional analyses revealed several 

interesting associations. 

First, ERICH3 depletion in neuroblastoma cells via knockdown or knockout was 

associated with decreased 5-HT levels without altering the expression of serotonin pathway 

enzymes. Second, ERICH3 interacts with vesicle proteins, as observed in samples obtained 

from neuroblastoma cells, and may participate in the transport of monoamine 

neurotransmitters. Third, the rs11580409(A>C) polymorphism, which causes a leucine-to-

valine substitution at position 1056 of ERICH3, was associated with proteasome-mediated 

decreases in ERICH3 levels in HEK-293T/17 cells. Fourth, rs11580409 was also associated 

with decreased plasma 5-HT levels, as observed in plasma samples of depressed patients. 

Interestingly, however, rs11580409 was also associated with improved ATD treatment 

response (Gupta et al., 2016; Liu et al., 2020) [see Figure 6 (page 116)].  

The novel characterization of ERICH3 as a potential factor in monoamine 

neurotransmission, as well as the intriguing association of rs11580409 with ATD treatment 

response, highlights the still incomplete picture of (1) monoamine neurotransmission and, by 

extension, (2) the mechanism of action of ATDs and how they relieve depressive symptoms. 

Since ATDs remain only modestly effective, it also argues for continued exploration to 

complete this picture. 
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Figure 6: Proposed role of ERICH3 and consequence of the rs11580409 genetic polymorphism 

Under normal conditions (blue path) ERICH3 is proposed to function in the trafficking of monoamine 

neurotransmitters by interacting with monoamine-transporting vesicles, allowing for the release of 5-

HT (blue dots) into the synapse. The rs11580409(A>C) genetic polymorphism is associated with 

decreased (1) ERICH3 and (2) plasma 5-HT levels, while decreased ERICH3 levels are associated 

with decreased 5-HT levels. At neuronal synapses, the rs11580409 genetic polymorphism may cause 

decreases in presynaptic ERICH3 levels, decreased ERICH3-mediated 5-HT trafficking and, 

consequently, decreased synaptic 5-HT levels (orange path). However, rs11580409 is also associated 

with improved response to ATD treatment in depressed patients. Its synaptic consequences and how it 

may promote improved response to ATD treatment remain to be elucidated. 

5-HT: serotonin; ATD: antidepressant drug 

 

In our analysis of the ERICH3 rs11580409 polymorphism, we observed that CC 

homozygotes had significantly better clinical outcomes compared to A allele carriers 

following 6 months of ATD treatment. The inclusion of the time × rs11580409 interaction 

helped to identify the specificity of this association. Compared to other cohorts that examined 

rs11580409 in a similar context, this observation followed a much longer duration of ATD 

treatment. Continued studies may help explain this discrepancy, as well as why the 



Page 116 of 145 

 

rs11580409 polymorphism was not significantly associated with response to ATD treatment 

in the PGRN-AMPS cohort in which it was originally identified (Gupta et al., 2016). 

One of the biggest criticisms of significant findings in candidate studies is their lack 

of replication in larger and more highly powered GWAS, which suggests to some that these 

findings are false positives (Border and Keller, 2017). Indeed, robust efforts exploring the 

association between several depressed phenotypes and genetic variation in historical 

candidate genes—as well as interactions with various environmental factors—failed to 

identify any significant associations (Border et al., 2019). A similar exploration remains to be 

performed for clinical outcomes following ATD treatment in depressed individuals. Still, 

replication remains an important goal in genetic association studies (Kraft et al., 2009), and 

functionally relevant findings seem less likely to be due to chance alone. For example, the 

association between genetic variation within FKBP5 and MDD has been independently 

replicated, linked to FKBP5 protein expression, and associated with environmental factors 

influencing its epigenetic regulation (Moore, 2017; Zannas et al., 2016). Similarly, ERICH3 

and the rs11580409 polymorphism are suggested to be functionally relevant to the action of 

ATDs. Even if the association of rs11580409 with ATD response never reaches genome-wide 

significance (Gupta et al., 2016; Liu et al., 2020), the fact that this association (1) has been 

replicated and (2) proceeds in the same direction argues that rs11580409 may be relevant to 

clinical improvement following ATD treatment in depressed individuals. Overall, genome-

wide and candidate approaches are both likely to remain valuable for discovery and 

replication in genetic association studies analyzing the response to ATD treatment in MDD. 

IV.2.2. Monoamine neurotransmitter metabolism and MAO 

With respect to the modulation of presynaptic monoamine neurotransmitter levels and 

the response to ATD treatment, MAO is an interesting target for several reasons. First, 

MAO—especially and canonically MAOA—metabolizes the monoamine neurotransmitters 

(Uzbekov, 2021). Second, MAO expression and activity vary widely across the body, with 

brain MAOA and MAOB expression occurring primarily in catecholaminergic (e.g., 

dopaminergic and noradrenergic) neurons and histaminergic and serotonergic neurons, 

respectively—the latter being where 5-HT is produced and stored (Jones and Raghanti, 2021; 

Shoji et al., 2023). Beyond the gut, most peripheral 5-HT is stored in platelets (Colle et al., 

2020), where only MAOB is expressed (Jansson et al., 2005). Since blood is a commonly 

analyzed biological material (Malsagova et al., 2020), measures of peripheral MAO activity 

may thus be representative of MAOB activity alone. The use of fibroblasts, which express 

MAOA (Hotamisligil and Breakefield, 1991; Pintar and Breakefield, 1982), may be useful to 
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examine peripheral MAOA activity in depression (Mesdom et al., 2020). Third, high levels of 

estrogen and progesterone, important hormones in the sexual and reproductive development 

of females, are also associated with lower and higher MAOA activity, respectively (Klaiber 

et al., 1979; Yonkers et al., 1992). Estrogen may influence MAOA expression through its 

interaction with Sp1, a transcription factor with known binding sites in both MAOA and 

MAOB promoters (Jones and Raghanti, 2021; Tipton et al., 2004). SRY, another transcription 

factor whose encoding gene is located on the Y chromosome, can also bind to the MAOA 

promoter and, through its interaction with Sp1, activate MAOA transcription (Wu et al., 

2009). Male- and female-specific factors that influence MAOA activity may thus indirectly 

influence monoamine neurotransmission. 

Finally, the location of MAOA and MAOB on the X chromosome poses unique 

analytical challenges since its XCI status is debated (Carrel and Willard, 2005; Stabellini et 

al., 2009; Tukiainen et al., 2017). Previous analyses of the association between MAOA 

genetic variation and the response following ATD treatment either did not adjust for X-linked 

biological factors (Müller et al., 2002; Peters et al., 2004; Tzeng et al., 2009; Yoshida et al., 

2002) or were performed in male and female populations separately (Bi et al., 2021; Cusin et 

al., 2002; Domschke et al., 2008; Tadić et al., 2007a; Yu et al., 2005), likely resulting in a 

loss of power (Clayton, 2009). Only one study analyzing the MAOA rs6323(G>T) 

polymorphism included the sex × genotype interaction (Leuchter et al., 2009). However, this 

interaction was not significant, though the main effect of rs6323 was. Still, this study 

analyzed the association of rs6323 with placebo response, whose mechanism of action likely 

differs from that of ATD treatment (Leuchter et al., 2002). 

The significant association of the sex × MAOA rs979605 genotype interaction with 

the HDRS score we observed may indicate either (1) a difference in the effect of the 

rs979605 polymorphism according to sex or (2) that the rs979605 polymorphism is in a 

region of escape from XCI (Song et al., 2021). Although we did not observe a significant 

association of the rs979605 polymorphism with the HDRS score in male and female 

subpopulations separately—likely due to a loss in power—the model coefficient was negative 

in males and positive in females, supporting the former hypothesis. This relationship needs to 

be further investigated. Indeed, our association study may support a sex-dependent 

association, but a dosage effect in females cannot be ruled out by our findings.  

Sex-specific factors in depression and/or the response to its treatment with ATDs are 

plausible following several observations, including: (1) the higher prevalence of MDD in 

females compared to males (World Health Organization, 2017); (2) biological differences 
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between depressed males and females (e.g., estrogen levels, as discussed above) and at the 

genomic (Silveira et al., 2023) and transcriptomic levels (Labonté et al., 2017; Maitra et al., 

2023); (3) the disproportionate prevalence of other neurological disorders between males and 

females, including anxiety, attention-deficit hyperactivity disorder, substance abuse disorders 

and autism spectrum disorder (Hübel et al., 2019; Jones and Raghanti, 2021). With respect to 

these latter two, sex-specific associations with MAOA genetic variation have also been 

observed (Fite et al., 2020; Verma et al., 2014). First, the rs6323 T allele (correlated with the 

rs979605 G allele) was associated with a higher risk of autism spectrum disorder in males, 

but not females; in silico analyses also suggested that the rs1137070 C allele (correlated with 

the rs979605 G allele) may delete a binding site for GATA-2, a transcription factor that 

interacts with SRY (Verma et al., 2014). Second, a sex-specific gene × environment 

interaction was observed in association with polysubstance use—often intimately linked with 

MDD (Quello et al., 2005). Among university students with a history of childhood abuse, 

males carrying the low-activity allele of the MAOA upstream variable number tandem repeat 

(located within the MAOA promotor) and females homozygous for the high-activity allele 

reported the greatest amount of substances consumed (Fite et al., 2020).  

Along with the possible influence of sex-specific factors (e.g., hormones, XCI, Y-

linked SRY), these observations argue for likely sex differences in psychiatric disease—

including MDD—and the consideration of more nuanced analyses of X-linked genetic 

variation. The inclusion of the sex × genotype interaction, for example, may yield more 

meaningful results and help point towards potential dosage effects, sex-specific associations, 

or main effects (Chen et al., 2021; Song et al., 2021). For example, in addition to the 

association between the HDRS score and the sex × rs979605 genotype interaction, we 

observed a nominally significant (i.e., P<0.05) main effect for the MAOB rs1799836 

polymorphism after controlling for X-linked factors. This nominal association between 

rs1799836 and HDRS score changes, its significant association with the plasma 5-HIAA/5-

HT ratio in our sample, and its previous association with response following ATD treatment 

(Tadić et al., 2007b), suggest that it may also warrant further investigation. Importantly, these 

findings point to the utility of this method in identifying both sex-specific associations and 

main effects in the analysis of X-linked genetic variation. With respect to genetic variation in 

other X-linked genes of the METADAP gene panel, including GRIA3—for which genetic 

variation is associated with depressive phenotypes and treatment outcomes (de Sousa et al., 

2017)—and NLGN3, the inclusion of the sex × genotype interaction may help reveal similar 

associations.  
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IV.2.3. Is mediating the response to ATD treatment one of the many roles of β-

arrestin 1? 

Compared to the majority of the METADAP panel, the genetic data for ARRB1 was 

expansive owing to its whole-gene sequencing. By using the functional database, 

RegulomeDB (Boyle et al., 2012), we limited the number of analytical targets by prioritizing 

genetic variants with likely functional consequences, a procedure that has been previously 

used with success (Hong et al., 2018; Huo et al., 2019; Lee et al., 2015). We identified two 

significant genetic associations but were unable to validate whether these genetic variants 

affect ARRB1 expression since ARRB1 RNA and β-arrestin 1 protein concentrations were not 

available. In addition to the functional validation of these genetic variants, our results require 

independent replication. Importantly, the interaction between β-arrestin 1 and monoamine 

neurotransmitter receptors and the potential of biased signaling should be explored in these 

contexts as well (Bond et al., 2019). 

Although RegulomeDB aided our analysis, its use over other databases, as well as our 

selection criteria (i.e., RegulomeDB rank of 1 or 2), may not always be appropriate. Indeed, 

the effect of genetic variation may vary in different contexts, including disease and treatment, 

which may not be captured—at least presently—by these databases. Additionally, some 

genetic variants associated with ATD treatment response would not have been prioritized 

using our strategy, including genetic variants with known effects on encoded protein levels 

such as rs1360780 of FKBP5 (RegulomeDB: rs1360780) and rs11580409 of ERICH3 

(RegulomeDB: rs11580409). As such, it remains possible that we filtered out ARRB1 genetic 

variation potentially associated with clinical outcomes following ATD treatment. 

Importantly, the association of ARRB1 with clinical outcomes in our G2PSR analysis may 

point to this possibility, as it remains unlikely that rs553664 and rs536852 alone, among a 

total of 67 analyzed genetic variants, account for this association. 

Our findings also suggest that the accumulation of rare ARRB1 genetic variation is 

associated with worse response to ATD treatment. Although rare genetic variation has been 

examined in association with MDD risk (Cheng et al., 2022), its association with the response 

to ATD treatment in the context of MDD remains largely unexplored. Still, associations at 

both gene and pathway levels have been observed (Fabbri et al., 2018). However, the effect 

of rare OR4K2 genetic variation was in opposite directions in the two analyzed cohorts (i.e., 

the GENDEP and STAR*D cohorts), while the observed enrichment of rare missense genetic 

variation in the GO:0005694 chromosome pathway remains broad. Nevertheless, genes 

related to neurogenesis within this pathway and their association with ATD treatment were 

https://regulomedb.org/regulome-search?regions=chr6%3A35607570-35607571&genome=hg19/thumbnail=valis
https://regulomedb.org/regulome-summary/?regions=rs12067338%0D%0Ars10789397%0D%0Ars3911349%0D%0Ars1838131%0D%0Ars1443372%0D%0Ars59201609%0D%0Ars56710753%0D%0Ars79751579%0D%0Ars111411411%0D%0Ars113701238%0D%0Ars114142718%0D%0Ars2344504%0D%0Ars4650275%0D%0Ars7548647%0D%0Ars3845351%0D%0Ars6699857%0D%0Ars11210484%0D%0Ars10890134%0D%0Ars60724654%0D%0Ars12728662%0D%0Ars12723334%0D%0Ars11580409%0D%0Ars4082886%0D%0Ars696692%0D%0Ars696701%0D%0Ars699848%0D%0Ars699852%0D%0Ars699853%0D%0Ars699856%0D%0Ars609073%0D%0Ars686329&genome=hg19&maf=0.01
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discussed, but require validation (Fabbri et al., 2018). Whether genetic variation is rare or 

common also frequently depends on ethnicity. Indeed, this is the case for functional genetic 

variation of PK-related genes like CYP2D6, which, when rare in European populations, is 

often common in Asian populations (van Westrhenen et al., 2020).  

For rare genetic variation, causality, direction, and magnitude are important factors to 

consider. Our analysis of rare ARRB1 genetic variation suggests that the effect of its 

accumulation acts overall towards worse clinical improvement, however the question of 

causality and magnitude remain unanswered. Indeed, we did not investigate which rare 

genetic variants—whether only a few or many, and to what degree—were influencing this 

association with clinical outcomes to ATD treatment. Functional analyses may help respond 

to these questions, but, given the volume of rare genetic variation analyzed, would likely be 

too burdensome and costly. Our findings should be replicated before considering such 

investigations, but do support the continued study of rare genetic variation and its association 

with clinical improvement following ATD treatment.  

IV.3. Glutamatergic signaling and ATD response—should we be excited? 

Our findings, and many others, suggest that the monoaminergic system remains a 

suitable target for the continued analysis of treatment outcomes following ATD treatment in 

MDD. We also suggest that various factors may moderate these associations, including time 

and sex. Still, our analysis of the whole METADAP gene panel suggested a strong 

association between clinical outcomes following ATD treatment and genetic variation within 

SLC1A1, encoding the neuronal glutamate transporter, Excitatory Amino Acid Transporter 3 

(EAAT3), which plays a role in glutamatergic signaling (Brandl et al., 2012; Lai, 2013). This 

finding thus joins other evidence implicating the glutamatergic system in MDD and the 

response to its treatment with ATDs (Sanacora et al., 2012; Sarawagi et al., 2021), including 

genetic associations with polymorphisms located within other genes of the glutamatergic 

system such as N-methyl-D-aspartate (NMDA), AMPA, and kainate receptor subunits (de 

Sousa et al., 2017).  

However, genes encoding other glutamatergic system-related proteins were not 

strongly associated with clinical measures of ATD response alongside SLC1A1. This result 

may be due to the small size of our dataset compared to the previous application of G2PSR to 

the analysis of Alzheimer’s disease (Deprez et al., 2022). Additionally, the analyzed genes 

were (1) heavily skewed towards containing fewer genetic variants and (2) candidate genes of 

MDD and ATD treatment outcomes, which may have enriched the number of relevant genes 

and thus negatively impacted performance (Deprez et al., 2022). Moreover, G2PSR is best 
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for the analysis of additive genetic effects, which may influence its ability to capture 

associations better characterized by a dominant or recessive genetic model, as well as the 

influence of any moderating factors, as we observed between MAOA and sex and ARRB1 and 

ERICH3 and time. As such, genes encoding components of the glutamatergic system—and 

beyond—may benefit from more nuanced analyses that consider different genetic models and 

interactions. 

IV.4. Strengths 

The analyses described in this thesis project benefit from several strengths. First, 

although smaller compared to other cohorts of depressed patients receiving ATD treatment, 

notably the STAR*D, the size of our sample remains large. Indeed, statistical power was high 

enough to identify significant genetic associations with reasonable confidence and to draw 

general conclusions from these findings. Second, the multicentric design of METADAP 

allows for a small degree of generalizability across depressed populations, though recruitment 

was greater at some sites compared to others. Third, the naturalistic design of METADAP 

resembles clinical practice more than controlled trials, allowing for a greater degree of 

generalizability. Although it also introduces potential confounding factors with respect to the 

different mechanisms of action of different ATDs, we attempted to adjust for this in our 

analyses. Fourth, and despite the likely highly variable symptomology between patients, 

METADAP represents a diagnostically homogeneous sample of individuals suffering from a 

severe depressive episode in the context of MDD. Lastly, compared to most other cohorts of 

depressed individuals receiving ATD treatment, the 6-month treatment duration in 

METADAP allows for analysis following a much longer treatment period, which can provide 

more insight into observed associations.  

IV.5. Limitations 

The analyses described in this thesis project are subject to several limitations. First, 

they are only association studies and thus do not offer any degree of causality when 

considering their biological contexts. Second, the rate of missing data due to dropouts, 

medication changes, unauthorized drug use, the presence of exclusion criteria, or death, 

increased with follow-up, nearly reaching 50% by the final timepoint. While we attempted to 

control for this in our analyses, the robustness of our results can still be challenged by the 

presence of these missing data. Third, metabolite concentrations were assayed from 

peripheral blood samples, which may not necessarily reflect concentrations in the central 

nervous system. This may especially be the case for 5-HT, which does not cross the blood–

brain barrier (El-Merahbi et al., 2015). Fourth, METADAP comprises a mostly Caucasian 
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(>90%) sample of depressed individuals, which limits the generalizability of findings. 

Indeed, allele frequencies—and thus genetic associations—can vary greatly between 

ethnicities. Whether similar associations are observable in other ethnicities requires further 

examination. Fifth, treatment compliance was not considered in our analyses, which may 

have influenced our observations. Lastly, it remains plausible that the observed 

improvements in depressive symptoms may be confounded by one or several other factors, 

including the placebo effect, the effect of concurrent psychotherapy, the effect of any number 

of environmental factors, or the effect of other factors. 

IV.6. Perspectives 

IV.6.1. Does context matter? 

Various context-specific associations between genetic variation and the response to 

ATD treatment have been described, including those that are ATD class-dependent (Colle et 

al., 2015), sex-dependent—both at a genome-wide level (Silveira et al., 2023) and in our 

analysis of the MAOA rs979605 polymorphism—and time-dependent, as suggested by our 

analyses of the ERICH3 rs11580409 genetic polymorphism and genetic variation of ARRB1. 

Other context-dependent associations may exist and benefit from more nuanced analyses. As 

such, moderators of genetic associations should continue to be explored. 

IV.6.2. Full METADAP gene panel analysis of other variables 

We demonstrated the utility of G2PSR in the analysis of clinical measures following 

ATD treatment. G2PSR can be applied to analyze genetic associations with any quantitative 

data. In METADAP, this includes the body mass index, which relates back to the principal 

objective of the METADAP study: to examine the impact of ATD treatment on the 

development of metabolic syndromes (Corruble et al., 2015). 

Although limited in scope compared to the PMx-informed PGx analyses performed 

by the Mayo Clinic (Gupta et al., 2016; Ji et al., 2011; Liu et al., 2018), it might be interesting 

to see if genetic variation within genes of the METADAP gene panel might be associated 

with plasma concentrations of the metabolites assayed by the BIOCRATES AbsoluteIDQ® 

p180 kit in METADAP. For example, recent analyses in METADAP suggest that acetyl-L-

carnitine and acylcarnitine levels are associated with clinical outcomes following ATD 

treatment (Ait Tayeb et al., 2023, 2021). 

IV.6.3. Is MDD precise enough for precision medicine? 

The use of precision medicine—finding the “right” treatment for a patient—remains 

largely unsuccessful in the treatment of psychiatric disease (Sullivan and Geschwind, 2019). 

Despite hundreds of biological associations, few biomarkers—if any—are robust enough to 
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predict the response to ATD treatment. This is likely partly explained by the heterogeneity of 

MDD, including its many different clinical subtypes (Goldberg, 2011) with potentially little 

overlap between their underlying biological mechanisms (Cai et al., 2020). Several 

observations suggest the genetic analysis of MDD and its treatment with ATDs may benefit 

from more specificity.  

First, biological associations vary between depressive subtypes like atypical and 

melancholic depression, notably with measures of HPA-axis, metabolic, and inflammatory 

dysregulation (Penninx et al., 2013). Second, stronger genetic associations have been 

identified in more homogenous populations (Cai et al., 2015), which argues for the 

application of similar strategies to other depressed populations. Third, there is extreme 

variability in the response to ATD treatment when analyzing total depression scale scores—

the most common means to examine clinical improvement of depressive symptoms (Maslej et 

al., 2021)—that may be reduced by more symptomatic (e.g., clinical subtypes) and biological 

(e.g., biomarkers) specificity (Eiko I Fried and Nesse, 2015; Eiko I. Fried and Nesse, 2015).  

Although a greater demand with respect to time, staff, and resources would be 

required to successfully recruit, diagnose, treat, follow, and analyze such a population, 

decades of conflicting results and research suggest that it may be worth the effort. However, 

the generalizability of findings may challenge the likely cost required. It seems unlikely that 

such an analysis would reveal any significant associations in METADAP given its already 

smaller sample size compared to cohorts like the STAR*D. Still, METADAP could perhaps 

help contribute to a broader yet more precise analysis as part of a consortium. 
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V. Conclusion 

This thesis project aimed to leverage different and novel strategies in the exploration 

of the association between biological data—notably genetic variation in several candidate 

genes—and the response following ATD treatment in individuals suffering from a depressive 

episode in the context of MDD.  

In our analyses of clinical outcomes following ATD treatment in depressed patients, 

we replicated the association of the ERICH3 rs11580409 genetic polymorphism, suggested 

that the association of the MAOA rs979605 genetic polymorphism with clinical improvement 

may differ between males and females, observed associations with rare genetic variant 

accumulation and potentially functional genetic variants of ARRB1, and identified SLC1A1 as 

a potential candidate gene for continued study. 

These results require independent replication and functional validation in the case of 

genetic variation within ARRB1, MAOA, and SLC1A1. Still, these findings suggest that 

genetic variation in genes encoding biological factors linked to classical paradigms of 

monoamine neurotransmission and glutamatergic signaling may influence the response to 

ATD treatment in the context of MDD. Furthermore, these genetic variants may prove useful 

in the development of novel pharmacological treatments or in guiding therapeutic strategies 

for the treatment of MDD.  
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