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Gens du pays, c’est votre tour
De vous laisser parler d’amour

Gilles Vignault, 1975

nous te ferons, Terre de Québec
lit des résurrections
et des mille fulgurances de nos métamorphoses
de nos levains où lève le futur
de nos volontés sans concessions
les hommes entendront ton pouls dans l’histoire
c’est nous ondulant dans l’automne d’octobre
c’est le bruit roux de chevreuils d’automne
l’avenir dégagé

l’avenir engagé
Gaston Miron, 1970, l’Hexagone
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Contraste

Et ronronnait le réfrigérateur
Dans le silence du matin

Les deux petits enfants
Et leur grand-père
Ouvrirent sa porte

Il y avait là
Dans le réfrigérateur

La moitié d’un Saint-Honoré
Ce gâteau à la crème

Entouré de choux à la crème
Et recouvert de miel

Il y avait là des confitures
De la confiture de rhubarbe
De la confiture de cassis

De la confiture de framboise
Et même de la gelée de coings
Mère de toutes les confitures

Il y avait là
Deux morceaux de fromage

Une motte de beurre
Des œufs

Du beurre d’arachide
Et la moitié

D’un gigot d’agneau

Les deux petits enfants
Qui étaient ravissants

Étaient ravis

Le vieux grand-père
Était un vieux grognon

Il n’était ni ravi ni ravissant

Il referma la porte du réfrigérateur
« Qu’allons-nous manger ? »
Dit le vieux grand-père

Camille Bronsard,
. Au jour J du mois M de l’an A,
. Les carnets de Dame Plume, 2011
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1976

Tu es au carrefour des Cultures anciennes

Tu as vu
Le tombeau de Khéops

Celui d’Agamemnon celui de Clytemnestre

Tu as vu
Les pierres du défi de maintes acropoles
Les marbres raffinés de maintes agoras

Et du mont Palatin
tu as vu

Les pierres du défi de Rome l’Éternelle

Séduit par Andrinople
Ébloui par Grenade

Tu as vu
Les étoiles mourir

Sur les blancs minarets des mosquées de Sinan
Et le soleil mourir

Sur les murs cramoisis du divin Alhambra

L’Histoire est passée par ici
Elle qui ne passe pas chez toi
Elle qui ne veut pas de toi

Terrassier sous Khéops
Potier sous Périclès
Eunuque sous Soliman

Toi tu veux un pays que chacun te refuse
Tu habites aujourd’hui une terre sans promesse
Tu voudrais un destin

pour ton peuple et pour toi

Esclave
Esclave d’âge en âge
Tu appelles ta Revanche

Tu recherches l’Esprit qui vibrait en ces terres

Tu ne peux rien sauver de ce peuple qui meurt
Au choc le plus léger ton empreinte s’efface
Tu ne peux rien sauver de ta vie qui s’envole
Par ce peuple qui meurt tu ne peux te survivre

Antigone mourante en un désert futur
Tu ne peux qu’amuser la galerie française
Funambule immobile entre des pics sublimes
Tu ne peux qu’épater ceux qui ont réussi
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Renié par tes dieux dont triomphe Athéna
Tu ne peux plus changer ton échec en victoire
Condamné au succès par tous les dieux anciens
Tu ne peux réussir sans être mercenaire

Seul et désemparé tu reviens en ces lieux
Et promènes sans fin ta lamentable errance
Ton désespoir est laid tu maudis tous les dieux

Tu recherches l’Esprit qui vibrait en ces terres

Il ne peut rien pour toi
Ta quête est sans objet

Tu es seul
ironiquement apatride
comiquement cénobite
superbement citoyen du monde

Tu réalises tous les rêves fous

Ceux qui ont réussi les ont rêvés pour toi

Tu es seul
et tu penses à ton coin de terre

À ton peuple lassé pourtant si près du but
Doucement
Tristement
Bêtement
Dans une euthanasie finement programmée

Tu es seul et tu sais que tu ne peux déchoir

Condamné au succès il te faut comploter
Contre les dieux contre les faits contre l’Histoire
Condamné au succès tu ne peux que lutter
Avec des plans nouveaux et des trames nouvelles

Tu maudissais l’Histoire
Trouves-y une faille

Tu dois vaincre l’Esprit qui vibrait en ces terres

Camille Bronsard,
. Au jour J du mois M de l’an A,
. Les carnets de Dame Plume, 2011
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Résumé xvii

Schémas numériques pour les équations dispersives non linéaires : analyse à faible régu-
larité, cadre aléatoire et préservation de symétries
Randomness, structure preservation, and low-regularity numerical approximations for nonlinear disper-
sive equations

Résumé

Le travail présenté dans cette thèse relève du domaine de l’analyse numérique et s’appuie sur des outils issus de l’étude
des équations aux dérivées partielles (EDP). Nous nous concentrons sur les discrétisations temporelles des équations
dispersives non linéaires. L’objectif est de réduire les hypothèses de régularité nécessaires lors de la conception et de
l’analyse des méthodes numériques, afin de traiter les dynamiques à faible régularité.
La partie I de la thèse introduit de nouveaux schémas à faible régularité, adaptés à des domaines bornés génériques. Le
chapitre 2 présente des résultats de convergence au premier et au second ordre pour l’approximation de l’équation de
Gross-Pitaevskii, lorsque la donnée initiale et le potentiel sont peu réguliers. Le chapitre 3 généralise la construction de
ces schémas aux ordres supérieurs, et pour une classe générale d’équations d’évolution non linéaires.
La partie II est constituée du chapitre 4, qui génère des constructions d’ordre élevé dans le cadre de conditions initiales
aléatoires.
Finalement, la partie III se consacre à l’étude en temps long d’équations dispersives, et de leurs invariants, en considérant
des schémas préservant leur structure. Elle débute avec le chapitre 5, qui introduit un nouvel intégrateur symétrique pour
l’équation de Schrödinger non linéaire, et démontre des résultats de convergence à des taux fractionnaires, en fonction de
la régularité de Sobolev de la donnée initiale. Par la suite, le chapitre 6 étend cette construction symétrique aux ordres
supérieurs et pour la résolution numérique d’une classe générale d’équations dispersives. Des simulations numériques
montrent que ces nouveaux schémas symétriques présentent d’excellentes propriétés de préservation de la structure.
Les extensions aux ordres supérieurs développées aux chapitres 3, 4, et 6 se fondent sur de nouvelles techniques d’arbres
décorés, inspirées par le champ des EDP stochastiques singulières, via la théorie des structures de régularité.

Mots clés : équations dispersives nonlinéaires, faible régularité, schémas préservant la structure, arbres décorés

Abstract

The work presented in this thesis belongs to the field of numerical analysis, and builds on tools stemming from the study
of partial differential equations (PDEs). We focus on time discretizations to nonlinear dispersive equations. The aim is to
reduce the smoothness assumptions on the design and analysis of numerical methods, in order to treat low-regularity
dynamics.
Part I of the thesis develops novel low-regularity schemes, suited for general bounded domains. Chapter 2 presents first
and second order convergence results for the Gross-Pitaevskii equation, when both the initial data and the potential are
non-smooth. Chapter 3 generalizes the construction of these schemes to higher order and to a general class of nonlinear
evolution equations with potentials.
Part II of the thesis consists of Chapter 4, which considers higher-order constructions for randomized initial conditions.
Part III of the thesis considers the long-time properties and invariants of the equation, and deals with structure-preserving
schemes. We first introduce in Chapter 5 a novel symmetric time integrator for the nonlinear Schrödinger equation.
We give fractional convergence rates as a function of the Sobolev regularity of the initial data. Chapter 6 extends the
latter work by constructing higher order symmetric integrators for a general class of dispersive equations. All these new
symmetric schemes exhibit excellent structure preservation and convergence properties, which are witnessed in numerical
experiments.
The higher order extensions of Chapters 3, 4, 6 follow new techniques based on decorated tree series, inspired by singular
stochastic PDEs via the theory of Regularity Structures.

Keywords: nonlinear dispersive equations, low-regularity, structure preserving schemes, decorated trees

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter 1

Introduction

The study of nonlinear partial differential equations (PDEs), and more specifically those modeling non-
smooth phenomena, arising in nonlinear optics, shallow water waves, and wave turbulence, is at the heart of
an intense international activity. While linear problems or smooth solutions are generally well understood, a
reliable description of nonlinear and non-smooth phenomena remains an important challenge in computational
mathematics today. This is especially the case when studying nonlinear dispersive equations, since one cannot
expect the smoothing effects that are present in parabolic equations. The lack of smoothness in the solution
leads to large errors in numerical simulations, massive computational costs and ultimately causes the failure of
classical schemes. Yet many interesting physical phenomena exhibit non-smooth behavior. An essential task is
thus to develop and study suitable numerical schemes for approximating such non-smooth behavior. To this end,
we will be interested in constructing and analyzing numerical approximations to the following class of dispersive
equations {

∂tu(t, x)− Lu(t, x) = p
(
u(t, x)

)
, (t, x) ∈ R× Td, d ∈ {1, 2, 3}

u(0, x) = u0(x),
(1.1)

where p
(
u(t, x)

)
is a polynomial in u(t, x), its conjugate ū(t, x), and their spatial derivatives, see (6.5) for more

detail. We ask L to be a linear operator which generates a strongly continuous group {etL}t∈R of contractions
on L2, and require L to involve only polynomials in the frequencies when mapped in Fourier space. Namely,
we denote P (k) the Fourier multiplier of L and require P (k) to be polynomial in k. We give two prototypical
examples of nonlinear dispersive equations belonging to the above class (1.1).

Example 1 A classical model in quantum mechanics and a natural starting point for the study of dispersive
equations is the (cubic) nonlinear Schrödinger equation (NLS), which corresponds to taking L = i∆, P (k) =
−i|k|2, and p(u) = −i|u|2u:

∂tu(t, x)− i∆u(t, x) = −i|u(t, x)|2u(t, x). (1.2)

Example 2 Another example is the Korteweg–de Vries equation (KdV), which serves as a model for waves in
shallow waters, and corresponds to the case L = −∂3x, P (k) = ik3, and p(u) = 1

2∂x
(
u2
)
:

∂tu(t, x) + ∂3xu(t, x) =
1

2
∂x
(
u2(t, x)

)
. (1.3)

Throughout this manuscript I have been interested in developing new techniques to obtain computational
schemes for approximating in time low regularity solutions to such equations, with an emphasis on what can
be rigorously proven to guarantee their reliability. Numerically approximating low regularity solutions is a
challenge since classical approximation techniques require smoothness. As an illustration, in the case of the NLS
equation (1.2), both classical finite differences or splitting methods require at leastH2-solutions for L2-convergence
at first order, and H4-solutions for L2-convergence at second order [Lub08, BBD02, SS84, BDDLV21, HP17]. On
the other hand, the equation is locally well-posed (LWP) for solutions in Hα(Td), with α ≥ 0, α > 0, and α > 1/2
for d = 1, 2 and 3 respectively. A question I have investigated is how to reduce the gap between the degree of
regularity required by the numerical approximation and the regularity needed for the local well-posedness theory.

1



2 CHAPTER 1. Introduction

The numerical challenges of discretizing such equations are in part governed by the theoretical challenges in
proving their well-posedness. We quote Daniel Tataru [Tat04] introducing well-posedness results for the wave
map equation :

The initial work in this field was mostly devoted to the local study of problems with reasonably smooth initial data. Often
this reduces to analyzing linear problems. The well-posedness questions becomes harder to answer when one considers
either problems with less regular data or solutions which exist for a larger time. Then one needs to gain a better and

better understanding of the nonlinear wave interactions.

The same can be said in the discrete setting. The goal of this manuscript is to deepen our understanding on both
aspects, by constructing and analyzing new schemes which converge under less regular data and which have a good
long-time behavior. Parts I and II of this manuscript focus on obtaining schemes that converge under less regular data, in
deterministic and randomized settings. Part III deals with long-time behavior of the schemes.

Remark 1.0.1 (From semi-discrete to fully discrete approximations) Throughout this manuscript we will focus
on building and analyzing novel approximations in time. Going from the semi-discretization in time to the fully discrete
problem is an important step. We refer for instance to the works [LW21, OY22, CLR20, LMS21, LW21, BMW23, BW23b]
which explore fully discrete low-regularity settings.

We begin with a comparison between classical approximation techniques and novel low-regularity approaches.

1.1 A scheme at first order: classical versus low-regularity approaches
A large toolbox of numerical schemes for dispersive equations has been developed, based on different discretization

techniques. Exponential integrators and Lawson methods rely on discretizing Duhamel’s formula, otherwise called the
variation-of-constants formula. Finite difference schemes directly discretize the underlying equation (1.1) via explicit
or implicit Taylor approximations. Splitting methods are based upon splitting the full equation into a series of simpler
subproblems. The above classical schemes often allow for a precise and efficient approximation, but are designed for
smooth solutions, requiring high regularity assumptions. To illustrate this, we will construct and compare first order
time-approximations to the class of dispersive equations (1.1). We start by writing Duhamel’s formula for u(t):

u(t) = etLu0 +

∫ t

0

e(t−s)Lp
(
u(s)

)
ds (1.4)

and iterate Duhamel’s formula for u(s) inside p(u(s)) to obtain the next iterate

u(t) = etLu0 +

∫ t

0

e(t−s)Lp(esLu0)ds+

∫ t

0

∫ s

0

. . . ds1ds. (1.5)

Namely, the above equality (1.5) follows by Taylor expanding the nonlinearity p appearing in (1.4) around the linear flow:
p
(
u(s)

)
= p(esLu0) +

∫ s
0
. . . ds1, with an integral remainder. We search an approximation over one time step t = τ . In

order to obtain a first order approximation in time, we neglect the double integral in (1.5), which corresponds to the
second order term:

u(τ) = eτLu0 +

∫ τ

0

e(τ−s)Lp(esLu0)ds+O(τ2). (1.6)

If we suppose that p(u) is locally Lipschitz, as defined in (2.11), neglecting the O(τ2)-term does not require any additional
regularity, see for example (2.25). As we are considering time approximations, the main challenge is to replace the
integrand

e−sLp(esLu0) (1.7)

by an approximation which can be integrated explicitly on [0, τ ]. Classical methods are based upon Taylor expanding in
time the exponentials appearing in the above equation (1.7) as follows: esLu = 1 +O(sLu). Hence, they are based upon
linear frequency approximations. We give the example of a first order exponential integrator.

Example 3 (The Euler exponential method) A first order exponential integrator consists in Taylor expanding the
exponential appearing inside the nonlinearity :

e−sLp(esLu0) ≈ e−sLp(u0). (1.8)
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The scheme after one time-step, which expresses un+1 in terms of un, is then obtained by integrating exactly the remaining
term e(τ−s)L:

un+1 = eτLun + τϕ1(τL)p(un) with ϕ1(z) =
ez − 1

z
. (1.9)

It remains to quantify the local error induced by the approximation (1.8). For the NLS equation (1.2), following the
reference [HO10], the local error has the following explicit form:

|u|4u− 2|u|2∆u+ u2∆u. (1.10)

First order convergence of this method thus requires two additional derivatives on the solution, and more specifically
requires H2-solutions when measuring the error in L2. If the solution is however not sufficiently smooth, the local error
becomes unbounded and the exponential integrator fails to converge at first order, see Figure 1.1.

A new discretization technique was introduced in the works [HS17b, OS18] in the case of the KdV equation (1.3) and
the NLS equation (1.2). The idea is based on a new nonlinear approach, and a refined analysis made in Fourier space.
Instead of linearizing the frequency interactions in the central oscillatory term (1.7), the nonlinear frequency interactions
between the linear flow e−sL and the nonlinear factor p(esLu0) are incorporated into the numerical discretization. This
allows for the convergence of novel time discretizations under lower regularity assumptions on the solution.

In the following section we illustrate the new discretization technique of [OS18] for the NLS equation (1.2), and
compare it with classical approaches.

1.1.1 Illustration on the nonlinear Schrödinger equation
We propose in this section a method of construction introduced in [AB23b] for the NLS equation (1.2), which offers a

framework for the derivation of different classes of schemes: the previous scheme of [OS18] built at low-regularity, newly
designed ones presented in this manuscript, and classical integrators. We recall that p(u) = −i|u|2u and let tn = nτ , with
τ the time step.

We start by making a change of variables. Instead of working with the equation (1.2) in u, we twist the variables with
respect to the leading differential operator L = i∆:

eit∆v = u, (1.11)

and work with the equation in v:

∂tv = e−it∆p(eit∆v), v(0) = u0, (1.12)

as well as its integral form (obtained by integrating on [tn, tn + s]) :

v(tn + s) = v(tn) + e−itn∆

∫ s

0

e−is1∆p(ei(tn+s1)∆v(tn + s1))ds1. (1.13)

This change of variables is a well-known approach in the theoretical analysis of dispersive equations in low regularity spaces
[Bou93], in rough path theory [Gub12], as well as in numerical analysis for constructing Lawson methods [Law67, HLO20]
and resonance-based schemes [HS17b, OS18].

Remark 1.1.1 (The advantage of twisting the variable) The equation (1.2) for u is driven by the differential
operator i∆, an unbounded operator on L2. This is not the case for the equation (1.12) in v, which is written in terms of
the nonlinearity and the free Schrödinger group, a bounded operator in L2. The numerical advantage thus lies in the fact
that the approximation

v(tn + s) ≈ v(tn), |s| ≤ τ, (1.14)

does not require additional regularity on the solution v. Indeed, it follows from equation (1.13) that for σ > d/2

‖v(tn + s)− v(tn)‖Hσ ≤
∫ s

0

‖p(ei(tn+s1)∆v(tn + s1))‖Hσds1 ≤
(

sup
0≤s1≤s

‖v(tn + s1)‖3Hσ
)
s.

The same analysis would yield in the untwisted variable the approximation u(tn + s) ≈ eis∆u(tn), |s| ≤ τ . Obtaining the
approximation u(tn + s) ≈ u(tn) requires Taylor expanding at first order the linear flow eis∆, and hence two additional
derivative on the solution.
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Next, we map Duhamel’s formula (1.13) in Fourier space, with s = τ the time step. Expanding v in Fourier
series v(t, x) =

∑
k∈Z vk(t)eikx, allows to express the action of the linear Schrödinger flow on v, e±it∆v(t, x) =∑

k∈Z vk(t)e∓itk
2

eikx. We note that the upcoming derivation can analogously be obtained in higher dimensions with
k = (k1, · · · , kd) ∈ Zd. The k-th Fourier coefficient of v(tn+1) reads

vk(tn+1) = vk(tn)− i
∑

k=−k1+k2+k3

eitnR(k)

∫ τ

0

eisR(k)vk1(tn + s)vk2(tn + s)vk3(tn + s)ds, (1.15)

where we collected all the frequency interactions into the resonance structure R(k):

R(k) = k2 + k2
1 − k2

2 − k2
3 = 2k2

1 − 2k1(k2 + k3) + 2k2k3, k = −k1 + k2 + k3. (1.16)

The goal is to approximate in time the integrand in equation (1.15). The idea behind the novel nonlinear approach in
[OS18], is to base the approximation on the specific form of the resonance structure (1.16). We illustrate this approach
with the general decomposition presented in [AB23b], which improves on the scheme of [OS18]. Namely, we decompose
the integrand in (1.15) into three factors:

Iτ =

∫ τ

0

eisRdom(k)eisRlow(k)g(s)ds (1.17)

with

R(k) = Rdom(k) +Rlow(k), g(s) = vk1(tn + s)vk2(tn + s)vk3(tn + s), (1.18)
Rdom = 2k2

1, Rlow = −2k1(k2 + k3) + 2k2k3.

The choice of the above decomposition (1.17) is dictated by the regularity assumptions needed to approximate each of the
factors. Using Duhamel’s formula (1.13) we can approximate g(s) at its left end point: g(s) ≈ g(0) with a local error in
O(s) without additional regularity requirements, see equation (1.14). It remains to treat the oscillatory term:

eisRdom(k)eisRlow(k)g(0), (1.19)

which corresponds to the term (1.7), when mapped in Fourier space. A second approximation step is necessary to obtain
a practical implementation of the scheme, see Remark (1.1.2). We observe that approximating the factor eisRlow(k) asks
for less regularity than approximating eisRdom(k). Indeed, the terms klkj (for l 6= j) appearing in Rlow(k) correspond to
products of first order derivatives. Hence, by denoting v = v(tn), a formal first-order Taylor expansion yields

eisRlow = 1 +O(sRlow), with Rlowg(0) ∼ −2(|∇v|2v̄ + 2v∇v · ∇v̄), (1.20)

after mapping back from frequency to spatial variables. If we tried to approximate the dominant factor eisRdom(k), as 2k2
1

corresponds to second order derivatives in Fourier space, we would require more regularity:

eisRdom = 1 +O(sRdom), with Rdomg(0) ∼ 2v2∆v̄. (1.21)

Therefore, we choose to Taylor expand the lower term (1.20), making the approximation R(k) ≈ Rdom(k), and integrate
exactly the dominant term:

Iτ ≈
∫ τ

0

eisRdom(k)ds g(0) =
e2iτk2

1 − 1

2ik2
1

g(0),

in order to obtain a scheme whose local error requires the least regularity. We finally map back in physical space, and in
the untwisted variables. We thereby obtain the so-called first-order resonance-based integrator

un+1 = eiτ∆un − iτeiτ∆((un)2ϕ1(−2iτ∆)un
)
, ϕ1(z) =

ez − 1

z
. (1.22)

The local error of the scheme is governed by the approximation made in (1.20) and is of the form:

− 2(|∇v|2v̄ + 2v∇v · ∇v̄), (1.23)

which only requires the boundedness of one, instead of two, additional derivatives on the solution. For a discussion on the
practical implementation of the above scheme we again refer to Remark 1.1.2, and for the terminology resonance-based
integrator to Remark 1.1.3.

Remark 1.1.2 (An interplay between efficient implementation and proximity to the solution) Ideally, once
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the first approximation step g(s) ≈ g(0) is performed, one would hope to integrate the remaining oscillations (1.19)
exactly in time (on [0, τ ]). While this can be done analytically:∫ τ

0

eiR(k)sds =
eiτR(k) − 1

iR(k)
, R(k) = 2k2

1 − 2k1(k2 + k3) + 2k2k3, (1.24)

it does not yield a practical implementation, as it results in a generalized convolution (of Coifman-Meyer type [CM75])
which cannot be mapped back to physical space, due to the factor

(
2k2

1 − 2k1(k2 + k3) + 2k2k3

)−1
v̄k1vk2vk3 . Hence, the

computations would need to be fully made in Fourier space. Carrying this out in higher spatial dimensions d would cause
large memory and computational efforts of order O(|K|d·`), where K denotes the highest frequency in the discretization
and ` is the number of factors in the nonlinearity. For practical computations, we want to be able to express the
discretization also in physical space in order to use the Fast Fourier Transform (FFT) which is of computational effort
of order O(|K|dlog|K|d). Therefore, we choose an approximation of the integrand (1.19) which allows for a practical
implementation (by not performing exact integration), while optimizing the local error to require the least regularity. The
latter dictates the choice of the decomposition (1.18). If one was not concerned with the lack of regularity of the solution,
but for example the conservation of a certain quantity of interest, then the choice of the frequency decomposition (1.18)
could be taken differently.

Remark 1.1.3 (The scheme entitled “resonance-based integrator”) The terminology resonance-based integrator
comes from the fact that the scheme is based upon the resonance structure (1.16) of the underlying PDE. Another name
used is Fourier integrator. Further on, we will discuss extensions to these results which are suited on more general
domains. These integrators will then be termed low regularity integrators.

We would like to address a common misconception. The construction of these resonance-based integrators are not
based on the resonant case R(k) = 0. From a numerical point of view, the resonant case R(k) = 0 is trivial given that there
are no oscillations to approximate; the discretization of Duhamel’s integral would simply amount to τp(un). However, the
case R(k) 6= 0 is more subtle as one needs to capture the oscillations eisR(k) also in the numerical approximation. We
note that interestingly, the difficulties are reversed when working in the theoretical analysis of dispersive equations, since
in the resonant case R(k) = 0 we do not gain the decay 1

R(k)
in the frequencies when integrating (see equation (1.24)).

The above scheme (1.22) was first obtained by [OS18], using slightly different steps. The authors of [OS18] do not
pass directly in Fourier space – as in (1.15) – and first approximate v(tn + s1) ≈ v(tn) in Duhamel’s integral (1.13), as
this does not require additional regularity (see (1.14)). However, making this first approximation (v(tn + s) ≈ v(tn) or in
Fourier space g(s) ≈ g(0)) breaks the symmetric structure of the underlying PDE (1.2) and leads to loss of structure
preservation. We will see in Section 1.6 that to obtain schemes which have good structure-preserving properties we needs
to make a different approximation to v(tn + s) (or in Fourier g(s)) and should consider the general form (1.17). This
approach was first taken in [AB23b].

We refer to Figure 1.1a where first order convergence of the resonance-based scheme (1.22) in L2 norm and for H1

solutions is observed in numerical experiments. In Section 1.2.1 rigorous convergence results of the scheme are discussed.
We next compare this resonance-based discretization with classical time integrators.

Comparison with classical approximation techniques. The Euler exponential method corresponds to making the
approximation R(k) ≈ k2 recovering the scheme (1.9) with local error (1.10).

Another quite popular method of approximation are splitting methods ([MQ02, Fao12, BBD02, Lub08]). We recall
that splitting methods consists in separating the linear L = i∆ and nonlinear part p(u) = −i|u|2u and composing the
exact flows of the differential equations:

∂tu = i∆u, and ∂tu = −i|u|2u. (1.25)

The first-order Lie splitting scheme is then given by:

un+1/2 = e−iτ |u
n|2un,

un+1 = eiτ∆un+1/2,
(1.26)

with the explicit local error

2
(
2|∇u|2u+ ū(∇u · ∇u) + u2∆ū

)
,

see for example [Lub08, Section 4.2]. Because of the last term u2∆ū in the above formula, the Lie splitting method
requires two additional derivatives on the solution, as does the Euler exponential method.
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Figure 1.1 – Convergence plots taken from [AB23b], for classical integrators (green, pink, purple) versus integrators suited for
low-regularity solutions (light blue, dark blue, yellow). The Euler exponential method (1.9) in purple, and the first order Lie splitting
(1.26) in pink do not converge at first order in Plot 1.1a. The second order Strang splitting in green oscillates erratically in both
plots, due to the lack of regularity. The first order resonance-based scheme in light blue (Osterman & Schratz o1) is given by (1.22)
and was derived in [OS18]. Its extension to second order (Res based o2, dark blue) is derived for instance in [BS22]. The symmetric
scheme in yellow (Alama Bronsard) is given by (1.49) and introduced in Section 1.6.1.

To understand the difference behind this splitting approximation 1.26 and the resonance-based approach (1.17), we
formally Taylor expand the nonlinear part in (1.26): e−iτ |u|

2

= 1 − iτ |u|2 + O(τ2). This does not require additional
regularity assumptions since the error term in O(τ2) only involves a polynomial of u. The local error analysis is then
dominated by the remainder

u(tn+1)−
(
eiτ∆u(tn)− iτeiτ∆(|u(tn)|2u(tn)

))
. (1.27)

In the frequency variables, the above corresponds to taking R(k) ≈ 0 (and g(s) ≈ g(0)), thereby neglecting all the
oscillations in (1.19). Equivalently, by recalling Duhamel’s integral (1.6) written in the spatial variables, the splitting
method corresponds to the approximation

e−sLp(esLu0) ≈ p(u0), (1.28)

which treats the problem as a linear one. Such linearized frequency approximations are computational very convenient,
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since the oscillations in (1.28) no longer appear in the approximation. However, the method does not resolve the nonlinear
frequency interactions of the system and treats the resolution of the linear i∆ and the nonlinear term p(u) independently.

In conclusion, these classical approximation techniques do not take into account the interactions between the frequencies
from the linear and nonlinear term. The idea behind the resonance-based schemes is to do so, while maintaining a
scheme that can be efficiently implemented at the same computational cost as classical schemes. In the course of this
manuscript, we will build on this nonlinear approach to obtain both novel low-regularity approximations and better
structure preserving schemes.

The next section is devoted to a discussion on prior rigorous convergence results and on the spaces in which they are
obtained, both for time integrators as well as finite difference methods in time.

1.2 Explicit convergence rates
An important part of this manuscript (i.e. Chapters 2 and 5) deals with obtaining explicit convergence rates of order

τν , which are quantified as a function of the Sobolev regularity of the solution, u ∈ C([0, T ], Hα), and the Sobolev norm
Hσ in which we measure the error. We let ν > 0 and α ≥ σ ≥ 0 and consider the error:

‖u(tn)− un‖Hσ ≤ CT

(
sup
[0,T ]

‖u(t)‖Hα
)
τν , 0 ≤ tn = nτ ≤ T. (1.29)

Throughout this thesis we denote CT (·) a generic constant which depends continuously on its arguments, and exponentially
on the final time T . These error analysis results are thereby local in time, see Remark 1.6.2. Unless stated otherwise we
set ourselves on Td, with d ∈ {1, 2, 3}. We present two different perspectives when exploring the interplay between ν, α
and σ:

1. Full order of convergence. We fix the desired order of convergence ν = m ∈ N, and search for the optimal regularity
α = α(d, σ, ν) which is needed for the convergence of the method to order ν. The required regularity α(d, σ, ν) depends
on the spatial dimension d, the norm Hσ, and the order of convergence ν. This approach is the most common one in
the literature, and Chapter 2 presents results of this type.

2. Fractional order of convergence. We fix the Hσ-norm, and assume the regularity u ∈ C([0, T ], Hα). One cannot hope
to obtain full order of convergence when the boundedness of the local error term requires higher regularity assumptions
than what is assumed on the solution u(t). Fractional convergence rates are then expected, with the rate as a function
of the regularity α. This approach is more general, since we recover the full-order convergence result, when enough
regularity is assumed. The results of Chapter 5 go in this direction.

The choice of the regularity parameters α and σ strongly influences the complexity of the analysis to obtain a
convergence result of type (1.29). We distinguish three categories, from easiest to most challenging :

— Case σ > d/2. We need α ≥ σ and hence also α > d/2. In this case we have that Hσ ↪→ L∞, and by using the
Kato-Ponce estimate it follows that Hσ forms an algebra: ‖uv‖Hσ ≤ Cσ‖u‖Hσ‖v‖Hσ . Both the local error and
stability analysis follow easily for a polynomial nonlinearity, and applying Lady Windermere’s fan argument allows to
conclude global convergence, see Chapter 2.

— Case 0 ≤ σ ≤ d/2 and α > d/2. We have u(t) ∈ L∞, however the space Hσ does not form an algebra, and hence
one needs refined bilinear estimates (see 2.10, 5.14, 5.15). In particular, for the stability of the scheme the following
estimate is crucial for bounding the nonlinear terms:

||wz||Hσ ≤ Cσ,d||w|| d
2

+ε||z||Hσ , 0 ≤ σ ≤ d/2, ε > 0. (1.30)

Using a refined global error analysis, one can still push the error analysis down to Hσ through a Lady-Windermere’s
fan argument, by first proving fractional convergence of the scheme in a suitable higher order Sobolev space. This is
presented in Chapters 2 and 5.

— Case 0 ≤ σ ≤ d/2 and 0 < α ≤ d/2. Given that an estimate of the form (1.30) is out of reach in this rough setting, we
cannot obtain the global convergence by combining a local error and stability analysis through Lady Windermere’s
fan argument. As in the theoretical analysis of PDEs at low regularity, in order to consider very rough solutions
u(t) ∈ Hα with α ≤ d/2, one needs to call upon more refined tools such as Strichartz estimates and Bourgain spaces
[Bou93, BGT04, Tao06].

The above cases are particularly relevant when the nonlinearity is a polynomial in u and ū, such as for the NLS
equation (1.2), which is discussed next.

In the following Sections 1.2.1 and 1.2.2, we discuss the state of the art regarding convergence results for the NLS and
KdV equations, before introducing new research directions in Section 1.3, which are explored in the rest of the manuscript.
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1.2.1 Comparing convergence results for the nonlinear Schrödinger equation
Resonance-based schemes. We expect resonance-based schemes to have the following convergence rates:

Convergence in Hσ at order τν for u0 ∈ Hα, with α = σ + ν and σ > d/2.

We refer to [OS18] in the case 0 < ν ≤ 1, and [OWY22] in the case ν = 2. In these results the analysis is restrained to
the torus using Fourier series and the frequency decomposition (1.19).

In the case 0 ≤ σ ≤ d/2 more regularity assumptions are needed and we refer to the work [AB23a] presented in
Chapter 2, which treats the cases σ ≥ 0, ν = 1, 2 and α > d/2.

Finally, the authors of [ORS22b] introduce discrete Bourgain spaces allowing them to consider the rough case of
0 < α ≤ 1/2 on the one-dimensional torus T. They show fractional convergence in L2 of order τν for u0 ∈ Hα(T) with
0 < α ≤ 1 and ν < 1.

When set on the one-dimensional torus T, several recent results build on the approach of making a decomposi-
tion in Fourier space and use the resonance structure (1.16), either for coupling the time integrator with a spectral
spatial discretization, or for designing schemes under even lower regularity assumptions, see [WY22, LW21, OY22, CLL23].

Splitting and exponential integrators. In general, the order of convergence of these integrators behaves as follows:

Convergence in Hσ of order τν for u0 ∈ Hα, with α = σ + 2ν and σ ≥ 0.

In the case u0 ∈ Hα with α > d/2, we refer to the works of [BBD02, Lub08, Gau11, Fao12, Tha12, ESS16] for convergence
of Lie and Strang splitting methods, and to [Duj09, HO10, HLO20] for exponential integrators. In the more subtle case
α ≤ d/2, we refer to [ORS22a] and [JO23], which show fractional rates up to first order with σ = 0, ν = α

2
, and 0 < α ≤ 2,

of a filtered version of the Lie splitting method.
Finite difference approximations in time. For an overview on these methods (with a comparison to splitting techniques)

we refer to [ABB13]. The convergence of these methods requires at least as much regularity as splitting or exponential
methods. For example, second-order convergence of a leap-frog and relaxation type finite difference schemes are obtained
in [SS84] and [BDDLV21], respectively. They require at least four additional derivatives on the solution, as is the case of
exponential and splitting methods.

Type Reference Domain Order ν Error norm σ Relation α−σ
ν

Resonance based
and low-regularity
schemes

[OS18] Td ∈ (0, 1] > d/2 1
[OWY22] Td 2 > d/2 1
Chapter 2 Ω ⊂ Rd 1 & 2 > d/2 1
Chapter 2 Ω ⊂ Rd 1 & 2 ∈ [0, d/2) 1 + (d/2− σ)/2ν

Splitting or
Exponential
Integrators

[BBD02] R2 1 & 2 0 2
[Lub08] R3 2 0 2

[Tha12], etc. Rd ∈ N 0 2

Finite differences [BDDLV21] Rd 2 > d/2 2

Table 1.1 – Convergence results of the form (1.29) for the NLS equation (1.2). The interplay between the error norm σ, the
convergence rate γ, and the regularity assumption α, is expressed by the value of α−σ

ν
, that is, by the additional regularity

requirement per order of convergence.

To give some perspective, we take a step back from the NLS equation and compare the regularity requirements for
the approximation to the KdV equation (1.3), which is posed in dimension d = 1.

1.2.2 Comparing convergence results for the Korteweg-de Vries equation
Two effects are present in the KdV equation: Burger’s nonlinearity ∂x(u2), which set alone forms shocks in finite

time, and Airy’s dispersive term ∂3
x, whose linear evolution ∂tu + ∂3

xu = 0 preserves all Sobolev norms. In the error
analysis, the challenge lays in the stability bound due to the derivative appearing in the nonlinearity. Indeed, given that
the nonlinearity is not locally Lipschitz, the bilinear estimates of the form (1.30) do not suffice to obtain stability.
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Type Reference Order ν Error norm σ Relation α−σ
ν

Resonance
based
schemes or
Fourier
integrators

[HS17b] 1 1 2
[WZ21] 2 ≥ 0 2
[WZ22b] 1 > 1/2 1
[WZ22b] 2 ≥ 0 3/2

[LW22] ∈ (0, 1] 0 1

Splitting or
Exponential
Integrators

[RS22] ∈ [0, 1] 0 3
[HKRT11] 2 ≥ 8 9/2

[HLR13] 2 ≥ 1 5/2

Fully discrete
schemes

[CLR20] ∈ [1/14, 1] 0 6/min(1, ν + 1/2)

[OS20] 1 0 3

Table 1.2 – Convergence results of the form (1.29) for the KdV equation (1.3).

Resonance-based schemes: For the KdV equation, mapping Duhamel’s iterate in Fourier space as in (1.15), we obtain

R(k) = k3
1 + k3

2 − k3 = −3kk1k2, k = k1 + k2. (1.31)

The first resonance-based scheme was introduced for the KdV equation in the work [HS17b], where the design of first and
second order schemes is presented. A convergence analysis using energy estimates allows to show first-order convergence
in H1 for solutions in H3, thereby requiring two additional derivatives. Constructing the first-order resonance-based
scheme for the KdV equation is simpler than for the NLS equation, as one can integrate exactly all of the resonance
structure R(k) into the numerical discretisation, as opposed to the NLS equation, see Remark 1.1.2. On the other hand,
the stability analysis, and hence the global error analysis, is more intricate. The authors of [WZ21] offer a convergence
result for the second-order resonance based scheme of [HS17b], in the case ν = 2, α = σ + 4, and σ ≥ 0.

A further improvement on these results is given in [WZ22b] which introduces new first and second order integrators
converging in the case ν = 1, α = σ + 1, σ > 1/2 and ν = 2, α = σ + 3, σ ≥ 0, respectively. A first order (unfiltered)
integrator requiring even less regularity is then analyzed in [LW22] with ν = α, 0 < α ≤ 1, σ = 0.

Splitting and exponential integrators: For filtered versions of the Lie splitting and Euler exponential methods the
authors of [RS22] shows the following fractional convergence result:

Convergence in Hσ of order τν , for u0 ∈ Hα, with α = σ + 3ν and ν ≤ 1.

For an analysis at second order of the Strang splitting method we cite [HKRT11] and [HLR13], which show convergence
in the case ν = 2, α = σ + 5, σ ≥ 1, under the assumption that the nonlinear part, i.e., Burgers equation ∂tu = − 1

2
∂xu

2,
is solved exactly. Applying the same analysis on the Lie splitting method would yield first-order convergence (ν = 1) for
α = σ + 3, coinciding with the result of [RS22].

Fully-discrete schemes when coupled with a finite difference method in space. We refer to [CLR20], where a fully
discrete convergence analysis of a finite difference (FD) scheme for the KdV equation with explicit rates up to first order
is introduces for the first time. The authors discretize this equation with a Rusanov scheme for the nonlinear part, which
corresponds to introducing a linear and explicit diffusion effect. This allows them to handle the derivative in the Burger’s
nonlinearity and to show first-order convergence in L2(R) for u0 ∈ H6(R), together with fractional convergence rates up
to first order in the case ν ≤ 1, 3/4 ≤ α ≤ 6, σ = 0 (when the dispersive term ∂3

x is treated in an implicit manner). They
work on the real line R and obtain convergence rates for non-smooth initial data (down to α = 3/4) by making use of the
dispersive smoothing effects of the underlying equation on R.

We also mention the work of [OS20] which couples the space-discretization used in [CLR20], based on the Rusanov
correction for the Burgers nonlinearity, with an exponential integrator in time. They show first order convergence
of the explicit scheme in L2 for u0 ∈ H3, and with the CFL condition τ = O(h). We notice that coupling the FD
Rusanov discretization in space with an exponential integrator in time ([OS20]) requires less regularity than if a FD time
approximation is considered ([CLR20]).
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1.3 Branching out in new directions

Following this introduction to resonance-based integrators, many questions remain.

1. General domains. The construction of these resonance-based schemes entirely relies on decomposing the solution
on its Fourier basis, and thereby on imposing periodic boundary conditions. A first natural question is whether one
can generalize the construction of these schemes from the torus Td to more general domains, such as smooth bounded
domains Ω ⊂ Rd with homogeneous Dirichlet boundary conditions.

2. Higher order. Up to now we have only constructed the first order resonance-based scheme (1.22), and discussed
results of order at most two. A next question is whether we can push the design up to (arbitrarily) high order.

3. Unifying approach. These resonance-based schemes are built on the resonance structure of the underlying equation,
see (1.16) for NLS and (1.31) for KdV. Can one build an algorithmic procedure to construct these schemes for a class
of equations, such as for the class (1.1), without the need of analyzing one equation at a time?

4. Structure preservation. Finally, we are interested in obtaining schemes which exhibit good long-time behavior,
preserving – up to a certain extent – the conserved quantities of the equation on the discrete level. The resonance-based
scheme (1.22) unfortunately does not have good structure-preserving properties. Is it possible to construct schemes at
low-regularity which also preserves the geometric structure of the equation?

This manuscript is divided into three parts, that address the above topics.
Part I answers questions regarding topics 1, 2 and 3, by offering in Chapter 3, an algorithmic way to construct

higher-order schemes to a class of nonlinear evolution equations (with potentials) set on general domains. This is based on
the article [ABBS22b]. This latter work generalizes the construction of the schemes made in the article [AB23a] presented
in Chapter 2, which designs and analyses schemes for the Gross-Pitaevskii equation in low-regularity regimes.

Part II pursues in the direction of topics 2 and 3 in a randomized setting, inspired by the works in probabilistic
well-posedness and in Wave Turbulence theory. The single work [ABBS22a] is presented in Chapter 4.

Part III focusses on topic 4 and introduces schemes which are advantageous both in non-smooth and smooth settings.
We first introduce in Chapter 5 the work [AB23b] which presents a novel time integrator for the NLS equation (1.2).
The integrator is symmetric, provably converges at low-regularity, and exhibits in numerical experiments remarkable
long-time near-preservation of the mass and energy, without any CFL type conditions. This chapter also adresses topic 1.
We then present the work [ABBMS23] which combines the topics 2, 3, and 4, by generalizing the latter work to the class
of dispersive equations (1.1) up to high orders. In numerical simulations, we witness better structure preserving proper-
ties of these new symmetric integrators compared to classical splitting schemes, even in the smooth setting of C∞-solutions.

We begin with the state of the art regarding Part I of this manuscript, and more specifically topic 1.

1.4 A brief introduction to Part I

1.4.1 Beyond periodic boundary conditions

Our starting point is the work [RS21], which overcomes the necessity of Fourier-based expansions, and hence of
periodic boundary conditions, by introducing new filtering techniques and a functional setting based on semi-group theory.
The authors introduce a framework allowing for the construction and analysis of first and second order low-regularity
integrators on more general domains and to the following class of nonlinear evolution equations:{

∂tu− Lu = f(u, u), (t, x) ∈ R× Ω,

u(0, x) = u0(x), x ∈ Ω,
(1.32)

with Ω either equal to the full space Rd, the torus Td, or a smooth bounded domain Ω ⊂ Rd. In the case of a smooth
bounded domain, the problem is equipped with homogeneous boundary conditions, which are encoded in the choice of the
domain of the operator L. The main assumptions on L are the following:

i) L is a linear operator defined on a Hilbert space X of complex valued functions u ∈ C;
ii) L generates a strongly continuous semigroup {etL}t≥0 of contractions on X;
iii) A = −L+ L generates a group {etA}t∈R of unitary operators on X;
iv) L and L commute: [L,L] = 0.

Example 4 Admissible operators L include the heat operator ∆, the Schrödinger operator i∆, the half wave operator
i|∇|, and the Klein-Gordon and wave type operators i

√
−∆ +m2, with mass m ≥ 0.
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In addition, it is assumed that the nonlinearity f is tensorized under the form

f(v, w) = B(F (v) ·G(w)), F, G : C→ CJ , (1.33)

where B is a linear operator. It is also assumed that f is locally Lipschitz and maps a ball into itself, as defined for
example in equations (5.18).

The class of evolution equations (1.32) encompasses the class of dispersive equations (1.1). Indeed, with the above
framework, the authors of [RS21] can deal in a unified way with parabolic, hyperbolic, dispersive as well as mixed type
equations. However, an important class of equations is missing, namely equations with a potential. The goal of the work
[AB23a] presented in Chapter 2, is to close this gap and propose a novel low regularity integrator for the Gross Pitaevskii
(GP) equation,

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× Ω, (1.34)

with a non-smooth potential V (x). In this work first and second order integrators are constructed and are proven to
converge at integer order ν = m ∈ {1, 2}, under low-regularity assumptions both on the solution u(t) and on the potential
V . We denote by un = Φτm(un−1) the low-regularity integrators of order m, given at equation (2.5) and (2.7) respectively.
Set on the d-dimensional torus Td, the convergence result reads as follows:

Theorem 1.4.1 (Theorems 2.1.1 and 2.1.2) Let d ∈ {1, 2, 3}, σ ≥ 0, T > 0, m ∈ {1, 2} and

α :=

{
m+ σ, if σ > d

2
,

m+ σ
2

+ d
4
, if 0 ≤ σ < d

2
.

For every u0 ∈ Hα and V ∈ Hα, there exists τmin > 0 and CT > 0 such that for every τ ≤ τmin:

||u(tn)− un||Hσ ≤ CT τm, 0 ≤ tn = nτ ≤ T. σ

α

•
d/2

•m+ d
2

•m+ d
4

•
0

For simplicity, the error analysis was made on the torus Td. Nevertheless, the tools involved are inspired by the
filtering techniques of [RS21], which do not use Fourier-based expansions and hence can be extended to more general
domains. We refer to the work [AB23b], presented in Part III of this manuscript, which introduces a functional framework
yielding convergence result both on the torus and on smooth bounded domains with homogeneous Dirichlet boundary
conditions. Finally, for an explanation on the filtering techniques used, we refer to equation (5.31) and Section 2.3.2.

The work of Chapter 2 motivated the second result of this manuscript, presented in Chapter 3, which generalizes
the construction of low-regularity schemes up to arbitrary order and for a class of nonlinear evolution equations with
potentials.

In the next section we discuss topics 2 and 3, and present the results of Chapter 3.

1.4.2 Higher order approximations
In order to obtain more precise approximations, which are also computationally efficient, one needs to construct

higher order methods. Developing such methods requires involved nontrivial calculations, especially when made at low
regularity or in high dimensions, and is very laborious when the schemes are constructed one equation at a time.

Based on iterating Duhamel’s formula (1.4) once, we constructed in Section 1.1 the first order resonance-based
integrator (1.22) as well as the Euler exponential method (1.9). In order to obtain higher-order schemes one needs to
include the approximation to higher-order Duhamel iterates:

u(t) = etLu0 +

∫ t

0

e(t−s1)Lp(es1Lu0)ds1

+

∫ t

0

e(t−s1)L
[
p′(es1Lu0)

∫ s1

0

e(s1−s2)Lp(es2Lu0)ds2

]
ds1 + . . .

(1.35)

In the above we approximated p at u(sj) by its Taylor expansion about the linear flow esjLu0, j ∈ N:

p(u(sj)) = p(esjLu0) + p′(esjLu0)

∫ sj

0

e(sj−sj+1)Lp(esj+1Lu0)dsj+1 + . . .

We note that Taylor expanding p(u(sj)) in the time variable was avoided, as this would require additional regularity on
the solution.

We let r + 1 be the desired order of the scheme. To obtain a scheme of order r + 1, we need to consider the terms in
the above formula (1.35) that contain up to r + 1 integrals in time, and approximate them suitably.
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We start by discussing higher-order approximations to the class of dispersive equations (1.1). For an approximation
at low-regularity using resonance-based schemes, the idea is to map the Duhamel iterates into Fourier space. The k-th
Fourier coefficient of u(t) is denote by:

uk(t) = etP (k)uk(0) + etP (k)

∫ t

0

e−s1P (k)pk(es1P (k)uk(0))ds1

+ etP (k)

∫ t

0

e−s1P (k)

[
p′k(es1P (k)uk(0))es1P (k)

∫ s1

0

e−s2P (k)pk(es2P (k)uk(0))ds2

]
ds1 + . . .

(1.36)

where the Fourier multiplier of L is denoted by P (k). For instance, for the Schrödinger equation we have L = i∆ and
P (k) = −ik2. With a slight abuse of notation, we denoted by k all of the frequencies in Fourier, instead of k1, k2, k3, etc.

At higher order, the resonance structure of the iterated integrals becomes very intricate, and it is a complicated task
to choose a suitable resonance-based discretization. In the following, we discuss new techniques allowing for higher order
constructions.

Decorated trees

We first present the work [BS22], which introduces an algorithmic approach to building resonance-based schemes
up to arbitrary order and to the class of dispersive equations (1.1) on the d-dimensional torus. Generally speaking, the
work [BS22] develops an algebraic framework – inspired by those in SPDEs via regularity structures [CK99, Hai14] – to
systematize a new analytical idea. Namely, they encode the scheme using combinatorial structure called decorated trees,
allowing to systematize the approximation of the Duhamel iterates. We divide the idea behind the work [BS22] into two
steps:

a.) On the continuous level. We encode each of the Duhamel iterates in (1.36) by a decorated tree. In the case of the
NLS equation (1.2), we have:

uk(t) = etP (k)︸ ︷︷ ︸
Π

( k )
(t)

uk(0) + etP (k)

∫ t

0

e−s1P (k)pk(es1P (k)uk(0))ds1︸ ︷︷ ︸
Π

(

D�������� ����� �

Remark �.� One can notice that some of the notations are similar to the one used
in [�] which took a direct inspiration from the algebraic structures developed for
singular SPDEs in [�]. There are some di�erences on the decorations used because
we focus on a more general set up no longer specific to dispersive equation:
• The conjugate operator was encoded in [�] with edge decorations in {�1, 1}

which allow the computation of the frequency interaction. Now, we have a larger
set of operator by having a bigger set L+ with elements such as o like in the
NLS example. One has Lo = L= L(o,�1) where the last identity corresponds
to the old notation coming from [�].

• Another change on the edge decorations is that in [�] certain edges correspond to
some integral in time other not. This excludes the parabolic case. If we rewrite
an integral of the form

R t
0 e(t�s)L · · · ds into etL

R t
0 e�sL · · · ds then it does not

make sense when L= �. We recall one decorated tree coming from [�]:

k1

k2
k3

⌘ e�itk2 � i

Z t

0
eisk2

⇣
eisk2

1e�isk2
2e�isk2

3

⌘
ds, k = �k1 + k2 + k3.

where the leaves are decorated by the frequencies k1, k2, k3 and the inner nodes
are decorated by k. The blue edge encodes an integral in time �i

R t
0 eisk2 · · · ds.

If we consider the same integral not in Fourier mode, one can rewrite it as

⌘ �i

Z t

0
e(t�s)L

✓⇣
esLv

⌘2⇣
e�sLv

⌘◆
ds,

where the blue dot corresponds to v and the blue edge now encode an integral
of the form

R t
0 e(t�s)L · · · ds. In fact, this coding is su�cent for NLS but not

for the general case we have in mind that contain drivers and non-polynomial
non-linearities.

• We add new decorations at the nodes coming from the drivers Vl of (�.�). The
initial conditions are associated to the drivers we are using. as an example with
a non-linearity of the form f (u)g(u)Vl after inserting u = esLv, one gets the
following term by applying (�.�) and keeping only the first term:

⇣
eisLf (v)

⌘⇣
esLg(v)

⌘
⌘ = X0

Then, if we integrate by �i
R t
0 e(t�s)L · · · ds encoded by a brown edge, we obtain

the integral (�.��).

Example � We consider the Gross–Pitaevskii as a second example. The main
di�erence is the adjunction of a new potantial V . The equation takes the form:

i@tu + �u = |u|2u + uV, u0 = v (�.�)

)
(t)

+ etP (k)

∫ t

0

e−s1P (k)

[
p′k(es1P (k)uk(0))es1P (k)

∫ s1

0

e−s2P (k)pk(es2P (k)uk(0))ds2

]
ds1︸ ︷︷ ︸

Π

(

E������� ��

= B̄2(D1(T1)) + B̄2(1)Ar(D̂(1,0)(T1)) + B̄2(X)Ar(D̂(1,1)(T1))

B̄2(D1(T1)) � B̄2(1)Ār(D̂(1,0)(T1)) + B̄2(X)Ār(D̂(1,1)(T1))

Then the only non-zero term is

Ār(D̂(1,1)(T1)) = 1

We want to approximate the next iterated integrals

I2(v3, v2, ⇠) =

Z ⇠

0
e�i⇠1�

h⇣
ei⇠1�v

⌘⇣
e�i⇠1�v

⌘⇣
ei⇠1�I1(v2, v, ⇠1)

⌘i
d⇠1

I3(v3, v2, ⇠) =

Z ⇠

0
e�i⇠1�

⇣
ei⇠1�v

⌘2⇣
e�i⇠1�I1(v2, v, ⇠1)

⌘�
d⇠1.

(�.�)

The Fourier coe�cient of these iterated integral can be described using the following
decorated trees:

T2 =

k1

k2 k4

k3

k5

, T3 =

k1

k2 k4

k3

k5

, T 1
2 =

k1

k
k5

T 2
2 =

k2

k3
k4

,

�Dr(T2) = Dr(T2) ⌦ 1 +
X

mr

Xm

m!
⌦ D̂(r,m)(T2) + T 2

1 ⌦ T 2
2 ,

where k = �k2 + k3 + k4.

�T3 = T3 ⌦ 1 + 1 ⌦ T3 +

k1
k̄

k5

⌦
k2

k3
k4

,

where k̄ = k2 � k3 � k4.
Then, by definition,

R(T2) = (�k1 � k2 + k3 + k4 + k5)2 + k2
1 + k2

2 � k2
3 � k2

4 � k2
5,

Rdom(T2) = 2k2
1 + 2k2

2

R(T3) = (k1 + k2 � k3 � k4 + k5)2 � k2
1 � k2

2 + k2
3 + k2

4 � k2
5,

Rdom(T3) = 2k2
3 + 2k2

4.

Now, we focus on T2 for the next computations.

I2(v3, v2, ⇠) =

Z ⌧

0
e�i⇠�

���ei⇠�v
���
2
ei⇠�I1(v2, v, ⇠)

�
d⇠

=
X

�k1+(�k2+k3+k4)+k5=k

v̂k1 v̂k2 v̂k3 v̂k4 v̂k5(⇧T2)(⌧ ) eik⌧

(⇧T2)(⌧ ) =

Z ⌧

0
ei⇠(k2+k2

1�k2
5�(�k2+k3+k4)2)

Z ⇠

0
eiRdom(T1)⇠1eiRlow(T1)⇠1d⇠1d⇠

(�.�)

)
(t)

+ . . .

where Π maps decorated trees to Duhamel iterates. The edges encode the operators in Duhamel’s formula. Namely,

the brown edge
k

encodes the linear flow etP (k), and the blue edge encodes the time integral
∫ t

0
e−s1P (k)... ds1. A

dotted edge corresponds to taking the complex conjugate of the expressions. For example, we have

Π(
k

)(t) = etP (k), Π(
k

)(t) = e−tP (k).

Lastly, the node decoration encodes the frequencies. This approach of encoding Duhamel’s iterates in Fourier using
decorated trees is also widely used in the theoretical study of dispersive equations. We discuss this further in
Section 1.5.
The character Π, called a pre-model or Feynman rule, separates the algebraic level from the analytical one, and allows
to expand the solution as a tree series expansion. We let r + 1 denote the order of the scheme, and Vrk the set of trees
of size r + 1, encoding an iterated integral with up to r + 1 integrals. We can expand the solution (truncated at order
r + 1) as the following Butcher-type tree series:

urk(t) =
∑
T∈Vr

k

Υp(T )

S(T )
Π(T )(t), (1.37)

where S(T ) ∈ N is the symmetry factor associated to the tree T , Υp(T ) is the elementary differential which depends
on uk(0) and encodes the coefficient appearing in the iteration of Duhamel’s formulation, and Π(T )(t) represents a
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Fourier iterated integral. In their article, the authors denote the above expansion (1.37) by Urk (t, u0). Lastly, we give
an example of the set Vrk : for a first order scheme we fix r = 0 and obtain

V0
k = {T0, T1}, with T0 =

k

, T1 =

k1 k3

k2

. (1.38)

The above tree based formalism is inspired by the works of [BCCH20] and [Hai14]. There, this formalism is used
to derive a general framework for solving a large class of singular SPDEs in subcritical-regimes, via the theory of
Regularity Structures.

b.) On the discrete level. The second step is to approximate each Duhamel integral Π(T )(τ), where τ denotes the time
step. The approximation of each Duhamel integral is made using the resonance-based approach detailed previously (see
Section 1.1.1). The discretization is automated via a notion of high and lower parts (1.18) dictated by the resonance
structure R(k) of the underlying equation. This automatization is led by the approximation operator

Πr,n : Vrk → approximate iterated integral,

which is a resonance-based approximation of Π. Namely, given a decorated tree T , Πr,n(T ) is a resonance-based
approximation of the iterated integral encoded by the tree T . The index n corresponds to a formal a priori assumption
on the regularity required on the initial data, and allows to make simple Taylor expansions when sufficient regularity is
assumed. The mapping Πr,n expresses in Fourier space the numerical scheme after one time step, denoted by Un,rk (τ),
as the following tree series:

Un,rk (τ) =
∑
T∈Vr

k

Υp(T )

S(T )
Πn,r(T )(τ). (1.39)

The main theorem of the work [BS22] is the following formal local error expansion, which sums all the the local error
made by the approximation of each iterated integral:

Un,rk (τ)− urk(τ) =
∑
T∈Vr

k

O‖·‖
(
τr+2Lrlow(T, n)Υp(T )

)
, (1.40)

where Lrlow involves all lower order frequency interactions neglected during the resonance-based approximation. The
global order of the scheme is r + 1, and hence the local error is of order r + 2. We now give the author’s definition of the
big-O notation in (1.40) to express the local error term.

Definition 1.4.1 Let Φτ (u0) = u1 ≈ u(τ) denote the numerical solution at time t = τ . We write

u(τ)− Φτ (u0) = O‖·‖(τmL̃u0) (1.41)

if in a suitable norm ‖ · ‖, it holds that

‖u(τ)− Φτ (u0)‖ ≤ C(T, d)τm sup
0≤t≤τ

‖q
(
L̃u(t)

)
‖, (1.42)

for some polynomial q, differential operator L̃, and constant C independent of τ .

If (1.41) holds, it is said that the numerical solution u1 approximates the exact solution u(t) at time t = τ with a local
error of order O‖·‖(τmL̃u0).

Example 5 (First order scheme for NLS) For the first order low-regularity approximation to the NLS equation, we
fix r = 0 and n = 1 in equation (1.39). The scheme after one time step is given by

U1,0
k (τ) = e−iτk

2

uk(0)− iτe−iτk
2 ∑
k=−k1+k2+k3

ūk1(0)uk2(0)uk3(0)ϕ1(2iτk2
1),

and coincides with the first order resonance-based scheme (1.22). The only approximation made is on the integral Π(T1),
where T1 is given in (1.38). Moreover, L0

low(T1, n = 1) is given in Fourier by Rlow = −2k1(k2 + k3) + 2k2k3, and can be
mapped in physical space to (1.23). In [BS22, Corollary 5.1] the authors write that the local error is of order O‖·‖(τ2|∇|u),
meaning that one obtains a local error of order τ2 in a suitable norm ‖ · ‖, if one can bound the term (1.23) in this norm.
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The choice of the norm ‖ · ‖ dictates the regularity assumptions needed on the solution to obtain global convergence,
see Remark 1.4.2. Fixing the regularity index n to one, allows to construct a scheme whose local error only involves
differential operators of order one. By taking n = 2, one recovers the classical Euler exponential method (1.9), whose
local error is of order O‖·‖(τ2∆u), involving differential operators of order two.

Obtaining the formal local error term (1.40) is an important first step towards obtaining convergence of the scheme.
However, to obtain a global convergence result, one needs to fix the space and norm ‖ · ‖ in which to work with, rigorously
bound the local error term in this norm (as in (1.42)) and couple this with a stability argument to conclude. Deducing
the global error from the local error is in general non trivial for PDE problems. The two articles [AB23a, AB23b] deal
with this rigorous analysis, and are presented in Chapters 2 and 5 respectively.

Remark 1.4.2 (Rigorous regularity assumptions) The choice of norm taken in Definition 1.4.1 is important and
determines the regularity needed to bound the local error term (1.42), and hence for the convergence of the scheme.
We illustrate this on the first order approximation to the NLS equation, by taking two different choices of norms and
quantifying the regularity assumptions thereby required.

When measuring in L2-norm: one needs to bound the local error term (1.23) in L2, which by using classical Sobolev
embedding require u0 ∈ H1+ d

4 . Indeed, for each of the terms in (1.23), we have that for d ≤ 3:

‖u∇u · ∇u‖L2 ≤ Cd‖u‖L∞‖∇u‖2L4 ≤ Cd‖u‖
H
d
2

+ε‖∇u‖
2

H
d
4
≤ Cd‖u‖3

H
1+ d

4
,

where we used the Sobolev embeddings H
d
4 ↪→ L4 and Hσ ↪→ L∞, σ > d/2.

We make the important point that even though the formal local error term in [BS22, Corollary 5.1] reads O‖·‖(τ2|∇|u),
one cannot bound this local error term in L2 while only asking for H1-solutions. This is due to the polynomial q appearing
in (1.42).

When measuring in Hσ, σ > d/2: using the fact that the space is an algebra we can bound the local error term (1.23)
for u0 ∈ Hσ+1:

‖u∇u · ∇u‖Hσ ≤ Cd‖u‖Hσ‖∇u‖2Hσ ≤ Cd‖u‖3Hσ+1 .

This analysis is made more generally in Hσ-norm for σ ≥ 0 in Chapter 2, where first and second order convergence results
are obtained.

We finish by discussing a limitation of the work [BS22]. Given that their algorithm heavily relies on expansions
made in Fourier space, the method is restricted to spatial domains which are periodic and to dispersive equations with
polynomial nonlinearities. We overcome this limitation in the work [ABBS22b], presented next. We introduce a nested
commutator structure to pull out the oscillatory phases, which replaces and generalizes the Fourier-based constructions.
This work extends the tools presented in Section 1.4.1 to higher-order.

Introducing Chapter 3

In this chapter, we use an algebraic framework, to systematically derive low-regularity integrators on the general
domains of Section 1.4.1. We consider the approximation, up to arbitrary order, to the following class of evolution
equations: {

∂tu(t, x)− Lu(t, x) =
∑

l fl
(
u(t, x), u(t, x)

)
Vl(x), (t, x) ∈ R× Ω, Ω ⊆ Rd,

u(0, x) = u0(x).
(1.43)

Here, L and fl satisfy the same hypotheses as L and f in equation (1.32) of Section 1.4.1. We reconize the GP equation
(1.34) in the case where V0 = 1, V1 = V, f0(u, ū) = ūu2, f1(u, ū) = u. The above class of evolution equations is more
general than both (1.1) and (1.32).

In order to obtain higher-order approximations we consider the Duhamel’s iterates (1.35) where we replace the
nonlinearity p(u) by

∑
l fl(u, u)Vl. We obtain a scheme by discretizing each iterated integral, as detailed below.

a.) On the continuous level. This time we encode by decorated trees the Duhamel iterates (1.35) in the physical variables.
We generalize the decorated trees in [BS22] which relied on Fourier-based expansions, to consider more general domains
and equations. We let the brown edge encode the integral of the linear flow :∫ t

0

e(t−s)L · · · ds = .

Each node of the tree encodes a term in the nonlinearity, and the decoration on the l-th node encodes the potential Vl

(and possible monomials). For example, for the GP equation there are two nodes corresponding to the two nonlinear
terms (fl, l = {0, 1}):

≡ (eis∆u2
0)(e−is∆u0) , ≡ (eis∆u0)V.
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Incoming edges to a node induce derivatives on fl, allowing to encode Duhamel iterates with more than one integral
in time. This allows to iteratively define a set of trees T r encoding – through the mapping Π – each Duhamel iterate
consisting of r + 1 integrals in time. We can thus express u(t) truncated at order r + 1, as the tree series expansion:

ur(t) = etLu0 +
∑
T∈T r

Π(T )(t).

We note that the symmetry factor S(T ) and elementary differential Υp(T ) previously appearing in (1.37), are directly
included in Π(T ), see Remark 3.3.1.

b.) On the discrete level. We define a new operator Πr
A mapping a decorated tree in T r to an approximate Duhamel

iterate. The map Πr
A is a discretized version of Π. The desired order of the scheme is r+ 1 and A is a given domain of

regularity of u0 and (Vl)l, reflecting the a priori regularity assumed on the initial data and the potentials. The role of
A was played by the index n in the periodic setting, see (1.39). The operator Πr

A discretizes the Duhamel iterates at
low-regularity by filtering out the dominant parts, integrating them exactly, and approximating the lower order parts
through commutator based expansions. The numerical scheme UrA, after one time step, is given by:

UrA(τ) = eτLu0 +
∑
T∈T r

Πr
A(T )(τ),

For the sake of clarity, we have not included in the above discussion a technical preliminary step, which extracts the
linear flow etLu0 from inside the nonlinearity p(etLu0). This step gives a unified form of the Duhamel iterates, allowing
to encode them using decorated trees, see Section 3.4. A comparison between the decorated trees used in [BS22] and
those from the present work is given in Remark 3.2.4.

The main theorem is a formal local error expansion, measuring the error made when approximating each Duhamel
iterate over one time step.

Theorem 1.4.2 (Theorem 3.4.3 in a simplified notation)

UrA(τ)− ur(τ) =
∑
T∈T r

O‖·‖
(
τr+2Lrlow(T,A)

)
where the operator Lrlow(T,A), embeds the necessary regularity on the solution.

The above accounts for the local error made by the approximation in step b. In the end, we need to sum the above
error terms with the error from the truncation made in step a. If the nonlinearity considered does not involve derivatives,
step b is the dominant one and dictates the needed regularity, for a discussion on the subject see Remark 1.5.1.

We stress the fact that these higher-order techniques only guarantee a formal local error bound as above, where the
big-O notation is to be understood in the sense of Definition 1.4.1. In order to obtain convergence of the scheme, a
separate and careful analysis needs to be made: first for estimating the local error in an appropriate functional space, and
secondly to obtain stability of the scheme.

For an example of this algorithmic approach, we refer to Section 3.5.1 where classical and low-regularity first and
second order integrators for the GP equation are obtained, together with their formal local error expansion. To obtain a
rigorous convergence result of these schemes, we once again refer to the results of Chapter 2.

We finish this section with a short historic note. The idea of using a tree-series based expansions to express the
numerical scheme was heavily studied in the context of ODEs in the 70s by the pioneering works of [But72, HW74]. More
precisely, it was used for the characterization of Runge-Kutta methods via Butcher series (B-series), see the reviews
[But16, HLW10]. The algebraic framework used at this time was a foundation first for Gubinelli’s approach to Rough
Path Theory [Gub04, Gub10], and afterwards to Hairer’s theory of regularity structures [Hai14], a generalization of Rough
Paths. Nowadays, these ideas are making their way back to the study of numerical schemes, but for PDEs instead of
ODEs.

1.5 A brief introduction to Part II
In the previous Section 1.4.2 we discussed the design to higher order of new families of numerical schemes for

deterministic PDEs, suited for low-regularity initial data. Typical examples of low regularity functions are given by
realizations of random fields. In the work [ABBS22a] presented in Chapter 4, we enter a probabilistic setting by considering
a randomized initial condition:

u(0, x) = vη(x) =
∑
k∈Zd

ckηke
ikx, (1.44)
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where the ηk are independent standard complex Gaussian random variables. The above expression is a Gaussian
randomization of a deterministic function

∑
k cke

ikx. The choice of how one measures the numerical discretization in a
stochastic setting can take a probabilistic form and be formulated in different ways. In Chapter 4, we choose to quantify
the convergence rate of approximations of the second moment E(|uk(t, vη)|2) of the k-th Fourier coefficient uk of the
solution u to the class of dispersive equations (1.1). We construct approximations of arbitrarily high order to the second
moment E(|uk(t, vη)|2), based upon the tree series expansions discussed in Section 1.4.2. Working with gaussian random
variables and integer moments of polynomial nonlinearities of these random variables is a crucial choice that allows us to
use Wick formulas and their rich algebraic structure to set up the framework. We now outline the main steps involved in
Chapter 4.

Following equation (1.37), one can express the time continuous solution, truncated at order r + 1, as a tree series
expansion:

urk(τ, vη) = etP (k)ηkck + etP (k)

∫ τ

0

e−s1P (k)pk(es1P (k)ηkck)ds1 + · · · =
∑
T∈Vr

k

Υp(T )

S(T )
Π(T )(τ),

where we have taken t = τ , the time step. We can thus make a first approximation, with local error in O(τr+2), of the
second moment E

(
|uk(τ, vη)|2

)
using the truncated solution urk :

E
(
|uk(τ, vη)|2

)
≈ Q≤r+1E

(
|urk(τ, vη)|2

)
, (1.45)

where Q≤r+1 keeps only the terms of order at most r + 1, i.e. in O(τm), with m ≤ r + 1. When computing the product
|urk(τ, vη)|2, a number of terms involve products of an odd number of noise variables, that have null expectation. The
other terms are even polynomials in the noise variables, whose expectation is described by Wick’s formula, which states
that for centered gaussian variables the expectation of the product of an even number of gaussians is given by the product
of the expectations of their two-by-two product, summed over all possible pairings. For example, if u satisfies the NLS
equation (1.2), one term we would want to approximate is the expectation E

(
Υp(T0)Π(T0)Υp(T1)Π(T1)

)
, where T0 and

T1 correspond to the terms of order zero and one in Duhamel’s formula, see (1.38). Given that the trees T0 and T1 have
in total four leaves, the expectation contains terms of the form:

E(η̄kη̄k1ηk2ηk3) = E(η̄kη̄k1)E(ηk2ηk3) + E(η̄kηk2)E(η̄k1ηk3) + E(η̄kηk3)E(η̄k1ηk2)

= δk,−k1δk2,−k3 + δk,k2δk1,k3 + δk,k3δk1,k2 .

The first line in the above uses Wick’s formula, while the second line exploits the properties of the random variables (ηk)k.
We see that the above yields a nontrivial value under the following conditions on the frequencies: (k, k2) = (−k1,−k3)
or (k, k1) = (k2, k3) or (k, k1) = (k3, k2). We can capture these conditions diagrammatically through Feynman-type
diagrams:

k

k1 k3

k2

k

k1 k3

k2

k

k1 k3

k2

.

We see that computing the expectation amounts, through Wick’s formula, to pairing the leaves of the trees. We introduce
for this purpose a new combinatorial structure called paired decorated forests, which are composed of two decorated trees
whose decorations on the leaves come in pair. The expansion for E

(
|uk(t, vη)|2

)
, following the first approximation (1.45),

can then be rewritten in terms of these paired decorated forests:

E
(
|uk(τ, vη)|2

)
≈ Q≤r+1E

(
|urk(τ, vη)|2

)
=

∑
T1·T2∈Grk

Ῡp(T1)Υp(T2)

S(T1)S(T2)
Π̄(T1)(τ) Π(T2)(τ).

The set Grk consists of all paired forests F = T1 · T2 whose encoding as Duhamel iterates Π̄(T1)(τ) Π(T2)(τ) contains at
most r + 1 integrals in time.

As discussed in steps b.) of Section 1.4.2, by replacing the continuous mapping Π by a discrete analogue Πn,r we
obtain a tree-series expansion of our numerical approximation after one time step, which we denote by V n,rk (τ):

V n,rk (τ) =
∑

F=T1·T2∈Grk

Ῡp(T1) Υp(T2)

S(T1)S(T2)
Q≤r+1

(
Π̄n,rT1Πn,rT2

)
(τ). (1.46)
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The operator Πn,r is the same as the one used in the expansion (1.39) and allows for a resonance-based approximation to
the Duhamel iterates. Together with the design (1.46) of higher-order approximation to the second moment Vk(τ) =
E
(
|uk(τ, vη)|2

)
, we derive the following formal local error:

V n,rk (τ)− Vk(τ) =
∑

T1·T2∈Grk

O‖·‖
(
τr+2Lrlow(T1 · T2, n)Ῡp(T1)Υp(T2)

)
, (1.47)

where the operator Lrlow(T1 · T2, n) embeds the necessary regularity on the solution.

Remark 1.5.1 (An additional term in the local error) We note that the above equation (1.47) takes into account
the second approximation step (1.46), by summing up the local errors made by Πn,r to Π, during the resonance-based
approximation to each Duhamel iterate. The first approximation step made at equation (1.45) can also require additional
regularity on the initial data. In most cases, the second approximation step made by Πn,r requires the most regularity.
This is however not the case for instance for the KdV equation (1.3), where the leading error term stems from the first
approximation (1.45). In this case one needs to look at the general form of the local error, by taking into account both
approximation steps as follows:

V n,rk (τ)− Vk(τ) =
∑

T1·T2∈Grk

O‖·‖
(
τr+2Lrlow(T1 · T2, n)Ῡp(T1)Υp(T2)

)
+O‖·‖

(
τr+2|∇|α(r+2)(k)E(p̃k(u(t), vη))

)
,

for some polynomial p̃. We refer to the proof of Theorem 4.4.3 for details.

While the derivation of the formal local error term (1.47) is a first important step, the next step is to rigorously prove
convergence of the method through global error bounds. Contrary to the deterministic setting, no convergence results
have been obtained in the probabilistic setting (1.44) with i.i.d. gaussian random initial conditions. In the theoretical
analysis of PDEs, many interesting results have been established in this probabilistic setting in the last decade, see for
instance [CO12, NS15] for NLS type equations, [BT08] for the cubic wave equation, [Bri20] for the derivative nonlinear
wave equation, [NPS13] for the periodic Navier-Stokes equations, and more generally [BOP19] for a survey on recent
developments in probabilistic Cauchy theory. These papers study nonlinear PDEs with random initial data in singular
regimes, and establish probabilistic well-posedness results at much lower regularity regimes than what can be attained in
the deterministic setting, reaching down to scaling-supercritical regularities. A question of personal interest for the future
is whether one can devise discrete counterparts to these probabilisitic PDE techniques to obtain improved convergence
results.

Finally, this numerical probabilistic work uses tools which are similar to the ones used in the theory of wave
turbulence for the rigorous derivation of wave kinetic equations, where the quantity E

(
|uk(t, vη)|2

)
plays an important

role. These recent works in wave turbulence theory also use decorated trees and construct Feynman diagrams through
Wick’s formula to express the second moment E

(
|uk(t, vη)|2

)
as a tree series expansion. We refer for instance to

[BGHS21, ACG21, DH23, DNY22, LS11] in the context of NLSEs and to [HRST22, ST21] for KdV-type systems. This
active field has numerous applications in physics and applied sciences (e.g. oceanography and atmospheric sciences) and
seeks a statistical description of the out-of-equilibrium dynamics of equations, ranging from the NLSE to water waves or
Vlasov-Maxwell, see [ZF67]. The fundamental equation of wave turbulence theory, called the wave kinetic equation or the
Kolmogorov-Zakharov equation, is used on a daily basis for wave forecasting.

The author would like to mention that the main motivation in considering the randomized initial condition (1.44) and
the approximation to the second moment E

(
|uk(t, vη)|2

)
, came from listening to talks at a semester workshop at the

ICERM and through the Simons Collaboration on Wave Turbulence, regrouping in part the probabilistic Cauchy theory
and wave turbulence theory communities.

1.6 A brief introduction to Part III
Algorithms preserving the structure of the underlying equation constitute an important part of computational

mathematics, see [HLW10, Fao12]. However, in general they heavily rely on highly regular solutions. For instance, for the
NLS equation (1.2), we mentioned in Section 1.2.1 finite difference schemes [Bes04, BDDLV21, SS84] which preserve the
mass and energy, as well as the Strang splitting methods [Lub08, BBD02] which preserves the mass and nearly preserves
the energy, see Remark 1.6.1. Yet, all of these schemes require at least H4 solutions for second order convergence in L2.

The goal of Part III is to extend the novel nonlinear approach and low-regularity approximation techniques presented
in Part I, to the construction of symmetric schemes for dispersive equations. The schemes we obtain show very good
long-time behavior in numerical experiments both in the smooth and non-smooth setting. Surprisingly, even in the
smooth setting, our schemes surpass the long time energy preservation properties of classical splitting methods.
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1.6.1 A symmetric scheme for the nonlinear Schrödinger equation, suited for non-
smooth solutions

We start by presenting the work [AB23b] on the NLS equation (1.2) contained in Chapter 5. The NLS equation is
time reversible, meaning that u(−t, x) is again solution of (1.2), and preserves the mass

‖u(t)‖2L2 =

∫
|u(t, x)|2dx = ‖u0‖2L2

and the energy

E(t) =
1

2

∫
|∇u(t, x)|2dx+

1

4

∫
|u(t, x)|4dx = E(0)

of the solution over its interval of existence in time.
Part III builds on the observation that low regularity schemes discussed in earlier sections do not preserve the

invariants of the underlying equation, such as the mass and energy for the NLS equation, see Figures 5.2 and 5.3. In
Chapter 5, we construct and rigorously analyze a novel scheme with strong geometric structure at low regularity, allowing
for a reliable symmetric approximation to the NLS equation. Namely, the scheme preserves the time-reversibility of the
equation and numerical simulations show good near-preservation of the mass and energy over long times. Moreover,
we witness experimentally that the new symmetric low-regularity scheme has better long time near-preservation of the
energy than classical splitting schemes. We refer to Figure 1.2 where we plot the error in the energy over time, first for a
smooth initial condition u0 ∈ C∞, then in the case of a rougher initial condition u0 ∈ H2. We notice that the first order
resonance-based scheme (blue) does not preserve the energy, even over short times. In Figure 1.2a the Lie and Strang
splitting (pink and green) approximatively preserves the energy up until a point (t ∼ 30), while in the rougher case of
Figure 1.2b, the energy explodes after much shorter times. This behavior is rigorously studied in the work of [Fao12]
where the author shows that a CFL condition is necessary to guarantee long-time approximate energy preservation for
splitting methods, see also Remark 1.6.1. Namely, if we fix the time step τ and increase the highest Fourier frequency K,
thereby going from an ODE to the (desired) PDE setting, the energy ceases to be preserved at some point. In comparison,
the new symmetric low-regularity scheme (yellow triangle) does not suffer from a comparable CFL condition, and performs
well for both smooth and low-regularity solutions. We refer to Figures 6.5a and 6.6a for simulations over longer times
(t = 4000).

Remark 1.6.1 (Near energy preservation of splitting methods for the NLS equation under a CFL condition) aaaa
Splitting methods preserve the symplectic structure and L2 norm of the solution, however they do not preserve exactly
the energy on the discrete level. Indeed, under suitable assumptions, the numerical approximation can be shown to solve
(almost) exactly a modified PDE at each time step. This results in the existence of a modified energy which is preserved
along the numerical flow, where – among other assumptions – for smooth solutions and under a CFL condition, it can
be shown that the modified energy is close to the exact energy. More specifically, the CFL condition imposes that the
time step size τ has to be chosen such that τ . K−2 where K denotes the highest frequency in the discretization, see
[Fao12]. This step size restriction is not only a theoretical technicality, but also observed in numerical experiments, see
Figure 1.2. We also refer to a number of important works where the near-preservation of the energy over exponentially
long times is shown using modulated Fourier expansions (see [CHL08, GL10b, GL10a]) or normal form techniques
([FGP10a, FGP10b, FG11]).

We now portray the idea behind the construction of this symmetric scheme. We recall that a scheme is said to be
symmetric or time reversible if it remains unchanged under the transformations τ → −τ and n↔ n+ 1.

We once again start from Duhamel’s integral mapped in Fourier space (1.15), whose integrand is decomposed in
(1.17) into the three factors: eisRdom(k)eisRlow(k)g(s), with R(k) = Rdom(k) +Rlow(k) given in (1.18). To construct the
first-order resonance-based scheme (1.22) we simply Taylor expanded both g(s) and eisRlow(k) about the left end point:
eisRlow(k)g(s) ≈ g(0). This however breaks the symmetric structure of the underlying PDE and leads to schemes which
are not structure preserving. We thus look for a symmetric approximation of both the non-oscillatory g(s) and lower part
eisRlow(k). In Chapter 5 we choose the following symmetric approximation: h(s) ≈ h(0)1[0,τ/2] + h(τ)1(τ/2,τ ], which in
our context yields

Iτ =

∫ τ

0

eisRdom(k) eisRlow(k)g(s)︸ ︷︷ ︸
≈g(0)1[0,τ/2]+e

iτRlow(k)g(τ)1(τ/2,τ]

ds. (1.48)

By integrating exactly the dominant part eisRdom(k), mapping back to physical space and in the untwisted variable, we
obtain the symmetric scheme:

un+1 = Φ−1
−τ/2 ◦ Φτ/2(un) = eiτ∆un − i τ

2
eiτ∆((un)2ϕ1(−iτ∆)un

)
− i τ

2

(
(un+1)2ϕ1(iτ∆)un+1

)
, (1.49)
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where Φτ is the first order resonance-based scheme (1.22) constructed in the introduction. In fact, the symmetric
approximation (1.48) is chosen because it coincides with the symmetrization of the first order resonance-based scheme Φτ .
For other choices of symmetric approximations, we refer to Section 1.6.2 and to Chapter 6.
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(a) C∞ data.

0 5 10 15 20 25 30 35 40 45 50

t

10-10

10-8

10-6

10-4

10-2

100

102

R
el
.
er
ro
r
in

en
er
g
y

Ostermann & Schratz
New midpoint -rst order (3.14)
New midpoint second order (3.15)
Bruned & Schratz
Alama Bronsard
Lie
Strang

(b) H2 data.

Figure 1.2 – Error in the Hamiltonian for smooth and non-smooth initial data with t = nτ ∈ [0, 50], τ = 0.02 and K = 1024. The
plots are taken from the work [ABBMS23], see Section 6.5.2 for further numerical experiments.

A notable difference between this symmetric scheme and previous low-regularity schemes is its implicit nature. We
refer to Figure 5.4 which shows that the computational cost of the symmetric scheme is comparable to that of the
asymmetric second order resonance-based scheme. Namely, its improved convergence properties make up for the extra
cost of solving the implicit system (1.49) at each time step.

A desired property of symmetric schemes is that they are of even order. This however is only true under sufficient
regularity assumptions of the solution. Chapter 5 focuses on obtaining the minimal regularity assumptions needed for
convergence of the scheme from first to second order. The error analysis presented is suited both for periodic domains
Ω = Td and smooth bounded domains Ω ⊂ Rd with homogeneous Dirichlet boundary conditions. We choose to work in
the fractional space

Xσ(Ω) = D((−∆)σ/2), ||u||2Xσ = ||u||2L2 + ||(−∆)σ/2u||2L2 .

In particular Xσ(Td) = Hσ(Td), and in the more subtle case of a smooth bounded domain, the space Xσ(Ω) embeds
both the regularity and the necessary boundary conditions. In this case, one is lead to characterize domains of fractional
powers of the Dirichlet Laplacian, via complex interpolation spaces, see Section 5.2. We obtain the following convergence
result:
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‖u(nτ)− un‖L2 ≤ CT (sup[0,T ] ‖u(t)‖Xα)τ1+γ , 0 ≤ nτ ≤ T, γ ∈ [0, 1],

γ

α

•
d/4

•1 + d/2

•1 + d/4

•3

•
1

•
0

where the regularity α is minimized through well-chosen bilinear estimates. The admissible values of α and γ are
represented by the blue zone on the above right picture. The detailed theorems are given in Section 5.1.2, and the bilinear
estimates in Section 5.2.2. We refer to Figure 1.1 where convergence plots are made for H1 and H2 initial data. We
observe that the symmetric scheme (yellow) has a better error constant than the previous resonance-based schemes (light
and dark blue), the exponential integrator (purple), and the Lie splitting method (pink).

We give a brief overview of current local in time results that build new bridges between structure preserving methods
and low-regularity approaches. In [WY22], a first-order Fourier integrator is introduced for the NLS equation (1.2) set on
the 1-dimensional torus T, which almost conserves the mass. For the cubic Klein-Gordon equation set on T, an explicit
symmetric three time-step low-regularity integrator was obtained by [WZ22a], using Gautschi-type methods. The authors
of [MS23] introduce a framework for building novel symplectic resonance-based integrators, encompassing both the KdV
equation and the 1-dimensional NLS equation. A symmetrized resonance-based integrator for the Schrödinger map (SM)
is obtained in [BMS22], where they relate the SM flow to the NLS equation set on 1-d torus T via the Hasimoto transform.
Finally, the recent work [BW23a] establishes a second-order explicit and symmetric three-time step method for the GP
equation (1.34) with a low-regularity potential V , using Gautchi-type exponential wave integrators.

Remark 1.6.2 (From short to long time scales) All of these convergence results allow to rigorously prove the
reliability of a numerical discretization over short times [0, T ], as the error constant CT usually depends exponentially on
the final time T . Pushing the analysis to obtain error estimates over longer times, or even uniformly in time, is thus a
highly nontrivial problem.

A first step was made by the authors of [CS22b]. Using scattering theory in order to obtain quantitative time decay
estimates, they show uniform in time error estimates for the NLS equation on the full space Rd, for a Lie splitting
discretization. Their convergence analysis is, however, limited to Rd as it heavily relies on dispersive effects, which do not
hold on the torus Td or more generally on compact domains. The step from the full space to the compact setting is – as
in the continuous setting – nontrivial since in the latter dispersion does not translate into decay. Nevertheless, compact
domains are computationally very interesting as spatial discretizations of nonlinear PDEs are in general performed in
truncated domains. Hence, obtaining results uniformly in time which can also be implemented on the discrete level is a
very interesting open problem.

To prove well-posedness on the theoretical level, a common approach is to either start by showing LWP over a small
time-interval [0, T ], or global well-posedness with small initial data ‖u0‖ < ε. On the numerical level, we have previously
discussed the first case; the second case is explored at low-regularity in [FMS23].

The work of Chapter 5 initiated the fruitful collaboration [ABBMS23] presented in Chapter 6, which we discuss next.

1.6.2 Symmetric higher-order extensions
Chapter 6 extends the construction of the symmetric low-regularity integrator (1.49) to higher order and for the class

of dispersive equations (1.1), when set on the torus Td.
We first recall Duhamel’s formula (1.4), which, in the twisted variables (1.11) and mapped in Fourier, corresponds to

vk(t) = vk(0) +

∫ t

0

e−s1P (k)pk
(
es1P (k)vk(s1)

)
ds1. (1.50)

Previously, to obtain higher-order schemes we iterated Duhamel’s formula about the linear flow esjLu0, yielding (1.35)
and (1.36) in Fourier space. In the twisted variable, this amounts to iterating the above equation (1.50) about the left-end
point vk(0). Namely, we substitute vk(s1) = vk(0) +

∫ s1
0
· · · ds2 in the above equation, then use a Taylor expansion in pk

about es1P (k)vk(0).
In the previous Section 1.6.1, we saw that making this asymmetric approximation about the left end point vk(s) ≈ vk(0)

(or equivalently g(s) ≈ g(0) in (1.48)) leads to schemes which are not structure preserving. The solution we propose
is to make a symmetric approximation of the non-oscillatory part g(s) (and hence vk(s)), such as the approximation
vk(s) ≈ vk(0)1[0,τ/2] + vk(τ)1(τ/2,τ ], which puts equal weights on both end points s = 0 and s = τ . Hence, the first step
towards obtaining higher order symmetric schemes is to iterate Duhamel’s formula in vk(sj) in a symmetric fashion, by
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putting equal weights on Duhamel’s formulas centered about 0 and τ :

vk(sj) = vk(0) +

∫ sj

0

e−sj+1P (k)pk
(
esj+1P (k)vk(sj+1)

)
dsj+1,

vk(sj) = vk(τ) +

∫ τ

sj

e−sj+1P (k)pk
(
esj+1P (k)vk(sj+1)

)
dsj+1.

In Chapter 6, we first take the mid-point rule as our symmetric approximation:

vk(sj) =
vk(0) + vk(τ)

2
+O(τ), sj ∈ [0, τ ]. (1.51)

We let r + 1 denote the order of the scheme. We iterate the above equation (1.51) inside Duhamel’s formula (1.50) and
obtain an expansion of the continuous solution (written in the untwisted variables) and up to order r + 1 as a tree series

urmid,k(t) =
∑
T∈Vr

k

Υp
mid(T )

S(T )
Πmid(T )(t). (1.52)

The above series is of the same form as the tree-series expansion (1.37), the only difference lies in the definition of the
character Π and coefficient Υp. Here, we encode the symmetric iterations of Duhamel’s formula in Πmid and Υp

mid, whereas
Π and Υp encoded Duhamel’s iterates centered about zero (see (1.36) or (1.50)). Note that in Chapter 6 everything is
directly written in the untwisted variables. It is however much more intuitive to start by working in the twisted variables,
and to make the decomposition (1.15) and (1.17), as presented above.

The next step is to discretize at low-regularity each Duhamel iterate Πmid(T )(τ) in a symmetric fashion. This is to be
compared with Section 1.6.1: up to this point we have approximated g(s) in (1.48), and we are now ready to approximate
the lower part eisRlow(k). We introduce the operator Πn,r

mid, which based on the frequency decomposition R(k) (and on
the a priori degree of regularity of the solution n), gives a symmetric low-regularity approximation of the remaining
oscillatory factors, based on polynomial interpolation. After one time step the scheme takes the form

Un,rmid,k(τ) =
∑
T∈Vr

k

Υp
mid(T )

S(T )
Πn,r

mid(T )(τ), (1.53)

together with the formal local error expansion:

Un,rmid,k(τ)− urmid,k(τ) =
∑
T∈Vr

k

O‖·‖
(
τr+2Lrlow(T, n)Υp

mid(T )
)
. (1.54)

This is to be compared with the tree series (1.39) and local error (1.40).
Throughout this iterative procedure of building the scheme, we choose the mid-point rule as our symmetric approxi-

mation, and obtain the class (1.53). We are also interested in obtaining a more general class of symmetric approximations
encompassing the class (1.53), the previously built symmetric integrators (such as (1.49)), as well as new symmetric
integrators. In Section 6.3.2 we derive a forest formula, which characterizes a large class of symmetric schemes. We
derive a general formula (6.14) parametrizing resonance-based and classical integrators and deduce conditions on the
coefficients of this formula to obtain a symmetric scheme, see Proposition 6.52 and Section 6.4.2. While the forest formula
(6.14) comprises a large class of integrators, it is not defined in a recursive manner, hence obtaining a closed formula for
the local error terms (such as (1.54)) is not obvious. The advantage of fixing a symmetric approximation (such as the
mid-point rule (1.51)) and constructing the iterative procedure (1.52) on each tree T , is that one has a derivation of the
local error terms (1.54) at hand.

We refer to Figure 1.2 where new symmetric integrators (light yellow and purple) are tested numerically, and show
good near-preservation of the energy without CFL conditions.

Remark 1.6.3 (Symmetric versus symplectic schemes) The idea behind the chapters 5 and 6 is heavily based
upon the decompositions (1.17) and (1.18). We first iterate Duhamel’s formula in the nonlinearity in a symmetric fashion,
give a symmetric approximation to the lower order parts and integrate the dominant part exactly. This yields symmetric
schemes. To obtain symplectic resonance-based schemes, a different decomposition of the oscillatory terms eisR(k) must be
done to ensure that the approximation originates in another Hamiltonian system with the same symplectic structure and
conservation of normalization. A suitable decomposition of the frequencies R(k) was recently obtained by the authors of
[MS23] in the case of the KdV equation and the 1-dimensional NLS equation (see also Remark 6.2.5).

Prospects: Part III makes a first step towards obtaining reliable long-time approximations to dispersive equations,
both in smooth and non-smooth regimes. An interesting next step is to see what can be rigorously proven on the
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near-preservation of the mass and the energy over long times, as observed in the numerical experiments of Section 6.5.2.
Further developing these low-regularity and structure preserving techniques should enhance our understanding of the

global behavior of dispersive equations, such as the existence of global solutions or quantization effects.
In contrast, for PDEs whose solution is not defined globally in time, finding reliable descriptions of blow-up phenomena,

and hence describing the formation of singularities faithfully, remains a grand challenge. We refer to the major theoretical
breakthroughs in this direction in the context of the NLS equation [MRS10, MRRS22]. Another interesting application
is the detection of dispersive blow-ups [BS93, BS10, BPSS14], which are point-wise blow-ups preserving the global
well-posedness of the solution. These mathematical phenomena may be relevant in explaining the formation of rogue
waves in shallow and deep waters [KPS08, CHA11].
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Chapter 2

Error analysis of a class of semi-discrete schemes
for solving the Gross-Pitaevskii equation at low
regularity

This chapter is based on the article [AB23a] published in the Journal of Computational and Applied Mathematics.

Abstract. We analyze a class of time discretizations for solving the nonlinear Schrödinger equation with non-smooth
potential and at low-regularity on an arbitrary Lipschitz domain Ω ⊂ Rd, d ≤ 3. We show that these schemes, together
with their optimal local error structure, allow for convergence under lower regularity assumptions on both the solution
and the potential than is required by classical methods, such as splitting or exponential integrator methods. Moreover,
we show first and second order convergence in the case of periodic boundary conditions, in any fractional positive Sobolev
space Hr, r ≥ 0, beyond the more typical L2 or Hσ(σ > d

2
) -error analysis. Numerical experiments illustrate our results.

2.1 Introduction
We consider the Gross-Pitaevskii (GP) equation

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× Ω (2.1)

with Ω ⊂ Rd, d ≤ 3, and an initial condition
u|t=0 = u0. (2.2)

When ∂Ω 6= 6#, we assign boundary conditions which will be encoded in the choice of the domain of the operator L = i∆.
We recall that the linear operator L = i∆ generates a group {etL}t∈R of unitary operators on L2(Ω). We will deal with
mild solutions of the initial value problem (2.1) and (2.2) which are given by Duhamel’s formula;

u(t) = eit∆u0 +

∫ t

0

ei(t−ζ)∆f(u, ū, V )(ζ, x)dζ (2.3)

where we denote the nonlinearity by

f(u, ū, V )(t, x) = −i(V (x)u(t, x) + u2(t, x)ū(t, x)). (2.4)

Throughout this article we will be interested in studying numerical schemes which approximate the time dynamics
of (2.1) at low-regularity, by means of appropriate approximations of Duhamel’s formula. Namely, we are interested in
providing a reliable approximation of (2.1) (or equivalently of (2.3)) when the initial data u0 and the potential V are
non-smooth, in the sense that they belong to Sobolev spaces of low order.

One setting for the Gross-Pitaevskii equation is to describe the dynamics of Bose-Einstein condensates in a potential
trap. In many physically relevant situations the potential is assumed to be rough or disordered, and hence the study of
equation (2.1) in this non-smooth or low-regularity framework is of physical interest ([NBP13], [WWW+98]).

Recently much progress has been made in the development of low-regularity approximations to nonlinear evolution
equations. First, in the case of periodic boundary conditions a class of schemes called Fourier integrators [ORS21] or
resonance based schemes [BS22] were introduced to approximate the time dynamics of dispersive equations such as NLS,
KdV, and Klein-Gordon (see [HS17b], [OS18] , [CS22a]). Recently, higher order extensions of these resonance based

25
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schemes were introduced in [BS22] for approximating in a unified fashion a large class of dispersive equations with
periodic boundary conditions. These resonance based schemes were shown to converge in a more general setting, namely
under lower regularity assumptions, than classical methods required (see [OS18], [ORS21] and references therein for a
comparative analysis). The name of these schemes is due to their construction which revolves around Fourier based
expansions of the solution and of the resonance structure of the equation. We explain the idea behind these resonance
based schemes in detail in Section 2.3.1. These ideas were then extended in [RS21] to treat more general domains Ω ⊂ Rd
and boundary conditions and allow to deal with a class of parabolic, hyperbolic and dispersive equations in a unified
fashion. The resulting schemes were termed low-regularity integrators, or Duhamel’s integrators (see [RS21]). A next
natural step in this study of low-regularity approximations to nonlinear PDEs is to introduce a potential term uV with
minimal regularity assumptions on the solution u and the potential V . The goal of this article is to study first and second
low-regularity schemes for equation (2.1), with an emphasis on the error analysis. In Chapter 3 we present a general
framework for deriving low-regularity schemes up to arbitrary order, using new techniques based on decorated trees series
analysis to extend the construction of the schemes presented in this article.

In this article we study a class of low-regularity integrators to solve the Gross-Pitaevskii equation (2.1) on an arbitrary
domain Ω ⊂ Rd. In the case where the domain is a torus Td, we state and prove first and second order convergence in any
fractional positive Sobolev space Hr, under moderate regularity assumptions on both the solution u and the potential V .
These are stronger convergence results than the more typical L2 or Hσ (σ > d

2
) -convergence analysis, and apply to the

nonlinear Schrödinger equation as an immediate consequence.

2.1.1 First-order low regularity integrator
In Section 2.3.2 we construct the following first order low-regularity integrator on Ω. For n ≥ 0, we define,

un+1 = Φτ1(un) := eiτ∆(un − iτ(unϕ1(−iτ∆)V + (un)2ϕ1(−2iτ∆)ūn)
)
, where u0 = u0, (2.5)

and ϕ1(z) = ez−1
z

is a bounded operator on iR. The construction of this scheme does not rely on Fourier based techniques,
and hence one can couple the above time discretization not only with spectral methods but with more general types of
spatial discretizations. Indeed, on general domains one can call upon Krylov space methods for the approximation of the
matrix exponential eit∆, and the action of the ϕ1(·) functions (see [GRT18] and [HO10]). The fully discrete analysis on a
smooth bounded domain with homogeneous Dirichlet conditions and with a finite elements space discretization, is the
objective of future work.

We prove in Section 2.3.4 the following first order convergence result for the scheme (2.5), in the case of periodic
boundary conditions. For the local-wellposedness result of (2.1) and (2.2) we refer to Theorem 2.2.1 given in Section 2.2.

Theorem 2.1.1 Let T > 0, r ≥ 0, and

r1 :=

{
1 + r, if r > d

2
,

1 + r
2

+ d
4
, if 0 ≤ r < d

2
.

(2.6)

For every u0 ∈ Hr1(Td) and V ∈ Hr1(Td), let u ∈ C([0, T ], Hr1(Td)) be the unique solution of (2.1). Then there exists
τmin > 0 and CT > 0 such that for every time step size τ ≤ τmin the numerical solution un given in equation (2.5) has the
following error bound:

‖un − u(nτ)‖Hr ≤ CT τ, 0 ≤ nτ ≤ T.

Before moving on to the second order scheme and its convergence result we make a few remarks on the regularity
assumptions made in the above theorem. A consequence of Theorem 2.1.1 is that for any initial data and potential in
Hr+1(Ω) where r > d

2
and Ω = Td (or on the full space Ω = Rd) we have the following global error estimate:

max
1≤nτ≤T

‖un − u(nτ)‖Hr ≤ C(sup
[0,T ]

||u(t)||Hr+1 , ||V ||Hr+1)τ.

Namely we only ask one additional Sobolev derivative on the initial data u0 and the potential V in order to obtain
first-order convergence of our low-regularity scheme (2.5). This is due to the favorable local error structures that these
low-regularity schemes inherit. See ([OS18], [BS22], [RS21]), and references therein for an in depth comparative analysis
of these low-regularity schemes with classical methods such as splitting methods, or exponential integrator methods.

Secondly, in the case 0 < r < d
2
the convergence analysis in Hr-norm of a time discretization of equation (2.1) has not

to our knowledge previously been studied, and these are the first convergence results in this regime. A direct consequence
of the above theorem is that in the critical case r = d

2
, we obtain first order convergence in H

d
2 with r1 = 1 + d

2
+ ε, for

arbitrarily small ε > 0.
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Finally, when r = 0, we consider the regularity assumptions required for an L2-error analysis, and compare them with
the existing L2 convergence results for the Gross-Pitaevskii equation (2.1). When r = 0, Theorem 2.1.1 states,

||un − u(nτ)||L2 ≤ C(sup
[0,T ]

||u(t)||
H

1+ d
4
, ||V ||

H
1+ d

4
)τ, 0 ≤ nτ ≤ T.

To our knowledge, this is the first convergence result of this type with low-regularity assumptions on both the solution u(t)
and the potential V . Indeed, in the literature L2-convergence results have been established for smooth potentials. See, for
example [JL00], where the authors showed first-order convergence of a Lie splitting scheme for the linear Schrödinger
equation with a potential term uV where they require V to be a C5-smooth potential. The authors of [HP17] were able
to show first-order convergence to (2.1) of a Crank-Nicholson scheme for a rough, discontinuous potential V , which is of
physical relevance in the context of Bose-Einstein condensates. Namely, for V = Vd + Vs, where Vs ∈ C∞0 (Ω) is smooth
perturbation of a disordered potential Vd ∈ L∞(Ω), the authors obtained first order convergence of their scheme under
-among other assumptions- ut ∈ L2(0, T ;H2(Ω)), [HP17, Theorem 4.1]. Further, as detailed in [HP17, Appendix A],
due to the roughness of Vd the highest regularity assumption one can hope for on the solution is u(t) ∈ H2(Ω), and
this regularity is required for their error analysis. In contrast to these results Theorem 2.1.1 permits low-regularity
assumptions simultaneously on both u(t) and V . Finally, we refer to [RS21, Corollary 20] where the authors show first
order convergence in L2(Ω) of a low-regularity scheme for the nonlinear Schrödinger equation (NLS) while analogously
asking for 1 + d

4
Sobolev regularity on the initial data.

2.1.2 Second-order low regularity integrator
In [Section 2.4, Corollary 2.4.3] we derive the following second order low-regularity integrator on Ω. For n ≥ 0, we

define,

un+1 = Φτ2(un) := eiτ∆un − iτeiτ∆(unϕ1(−iτ∆)V + (un)2ϕ1(−2iτ∆)ūn
)

(2.7)

− iτ
(

(eiτ∆un)ϕ2(−iτ∆)(eiτ∆V ) + (eiτ∆un)2ϕ2(−2iτ∆)eiτ∆ūn
)

+ iτeiτ∆(unϕ2(−iτ∆)V + (un)2ϕ2(−2iτ∆)ūn
)

− τ2

2
eiτ∆(|un|4un + 3un|un|2V − |un|2unV̄ + unV 2),

where ϕ2(z) = ez−ϕ1(z)
z

is a bounded operator on iR. We present in [Section 2.4.2, Corollary 2.4.8] yet another derivation
of a low-regularity second order scheme for (2.1). We also offer in Chapter 3 a similar low-regularity scheme as above,
using a different construction based on tree series analysis. As for the first order scheme, the above time discretization
can be coupled with various spatial discretizations such as with finite elements.

We prove in Section 2.4.4 the following second order convergence result for the scheme (2.7), in the case of periodic
boundary conditions.

Theorem 2.1.2 Let T > 0, r ≥ 0, and

r2 :=

{
2 + r, if r > d

2
,

2 + r
2

+ d
4
, if 0 ≤ r < d

2
.

(2.8)

For every u0 ∈ Hr2(Td) and V ∈ Hr2(Td), let u ∈ C([0, T ], Hr2(Td)) be the unique solution of (2.1). Then there exists
τmin > 0 and CT > 0 such that for every time step size τ ≤ τmin the numerical solution given in equation (2.7) has the
following error bound:

max
1≤n≤N

‖un − u(nτ)‖Hr ≤ CT τ2. (2.9)

We comment on the regularity assumptions made in the above theorem. First, in the (smooth) regime r > d
2
, we ask

only for two additional derivatives on the initial data u0 and the potential V . A preceding second order convergence
result has been established for the NLS equation by [OWY22] in this regime. Indeed, using a resonance-based approach
the authors [OWY22] showed second order convergence in Hr, for r > d

2
, and u0 ∈ Hr+2, of a low-regularity scheme for

NLS (given by equation (2.7) with V = 0). Secondly, to our knowledge this is the first convergence result in Hr of a
second order time discretization of equation (2.1) in the intermediate regime 0 < r < d

2
. In the critical case r = d

2
, second

order convergence directly follows from the above theorem with r2 = 2 + d
2

+ ε and ε > 0 arbitrarily small. Finally, we
compare once again our result to the L2-convergence results obtained in the literature; we mention the authors [JL00]
who show second order convergence of a Strang splitting scheme for a C5-smooth potential. Whereas, the authors [HP17]
obtain second order convergence of a Crank-Nicholson scheme for a smooth potential V and -among other assumptions-
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for utt ∈ L2(0, T ;H2(Ω)). As mentioned previously, we emphasize that in contrast to previous results we establish
convergence under low-regularity assumptions on both u and V .

2.1.3 Outline of the paper
We motivate the construction of the first order low-regularity integrator in Section 2.3.1 by first deriving the scheme

in the periodic setting. We then generalize to the construction of the low-regularity scheme for an arbitrary domain
Ω ⊂ Rd. In Section 2.4 we introduce the second order low-regularity integrator and discuss stability issues which arise.
We then propose two different approaches to guarantee the stability of our proposed scheme. Section 2.3 and 2.4 also
include the local and global error analysis of the first and second low-regularity integrators. Finally, in Section 2.5 we
present numerical experiments underlining our theoretical findings. In the next section we briefly introduce some notation
and nonlinear estimates which are crucial for the local and global error analysis.

2.2 Notation and nonlinear estimates
We begin by establishing some notation used in the paper, starting by the definition of the norm used throughout the

error analysis sections. Our analysis will be made in the periodic fractional Sobolev space,

Hr(Td) := {u =
∑
k∈Zd

uk
eikx√
(2π)d

∈ L2(Td) : |u|2r ,
∑
k∈Zd

|k|2r|uk|2 < +∞}

which is endowed with the norm

||u||2Hr = ||u||2L2(Td) + ||(−∆)r/2u||2L2(Td)

=
∑
k∈Zd

(1 + |k|2r)|uk|2,

where uk = 1√
(2π)d

∫
Td ue

−ikxdx.

Throughout the remainder of this section we fix σ > d
2
, and we restrict the class of initial data and potential to belong

to the Sobolev space Hσ. We now present some nonlinear estimates which will be fundamental for our analysis. We
separate our Hr-error analysis into two cases: 0 ≤ r ≤ d

2
, and r > d

2
. In the case where 0 ≤ r ≤ d

2
we have,

||vw||Hr . ||v||Hσ ||w||Hr , (2.10)

while in the regime r > d
2
the above holds with σ = r (see for example [HS17a, equation (2.49)]). For completeness,

we provide a proof of the above inequality (2.10) in the Appendix for both regimes of r. These estimates will be used
frequently throughout the error analysis sections (see Sections 2.3.3, 2.3.4, 2.4.3, 2.4.4).

One can easily deduce from the inequality (2.10) the following estimates on the nonlinearity (2.4);

||f(w, w̄, V )||Hr ≤ Cr,σ(||w||Hσ , ||V ||Hσ )||w||Hr
||f(w, w̄, V )− f(v, v̄, V )||Hr ≤ Cr,σ(||w||Hσ , ||v||Hσ , ||V ||Hσ )||w − v||Hr ,

(2.11)

where Cr,σ(||u||, ||v||, ||w||) denotes a generic constant which depends on the bounded arguments ||u||, ||v||, and ||w||. In
the regime r > d

2
the above holds with σ = r.

Remark 2.2.1 In order to deal with less smooth initial data u0 ∈ Hr, r ≤ d
2
one cannot make use of the bilinear

estimate (2.10) and one would need to call upon more subtle tools to show appropriate fractional convergence of the
scheme. Several works have been made when working on Ω = T or Ω = Rd where low-regularity estimates for very rough
data u0 ∈ Hr, r ≤ d

2
could be obtained by using tools from dispersive PDE such as discrete Strichartz estimates, or

Bourgain spaces, see [ORS21], [ORS22b]. This refined error analysis is out of scope for this paper.

We finish this subsection by stating the following local well-posedness result of a solution to (2.1) and (2.2) of the form
(2.3). Indeed, using the estimates (2.11), one obtains from a classical Banach fixed point argument the following result:

Theorem 2.2.1 Let σ0 >
d
2
. Given any u0 ∈ Hσ0(Td), and V ∈ Hσ0(Td) there exists T > 0 and a unique solution

u ∈ C([0, T ], Hσ0(Td)) to (2.1).
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2.3 First order scheme and analysis

In this section we start by giving the main ideas behind the construction of the first order low-regularity scheme
(see [RS21]). We propose a novel low-regularity integrator for the approximation of Duhamel’s formula (2.3). We will
approximate equation (2.3) at the time step tn + τ , where τ is the time step size. By iterating Duhamel’s formula (2.3),
we obtain the first order iteration

u(tn + τ) = eiτ∆[u(tn)− iJ1(τ,∆, u(tn))] +R1,0(τ, u) (2.12)

where the principal oscillatory integral (at first order) is given by

J1(τ,∆, v) =

∫ τ

0

e−iζ∆[V (x)(eiζ∆v) + (eiζ∆v)2(e−iζ∆v̄)]dζ (2.13)

and the remainder

R1,0(τ, u) =

∫ τ

0

ei(τ−ζ)∆[f(u(tn + ζ), ū(tn + ζ), V )− f(eiζ∆u(tn), e−iζ∆ū(tn), V )]dζ.

We will construct a suitable discretization of the integral (2.13) to allow for a low-regularity approximation to the first
order Duhamel iterate (2.12). The idea is to filter out the dominant parts, which we denote by Ldom, of the nonlinear
frequency interactions within the integral (2.13) and embed them in the discretization. The lower-order parts will be
approximated and incorporated in the local error analysis.

First, to illustrate the underlying idea and to provide intuition behind the construction of these low-regularity
integrators we start by analyzing the case of periodic boundary conditions Ω = T, with V a periodic potential. The ideas
presented in the next section were first introduced by the authors [OS18] for solving a class of semilinear Schrödinger
equations. After presenting the periodic case in a formal way, we rigorously detail in Section 2.3.2 the construction of the
first order scheme in the more general case of an arbitrary domain Ω ⊂ Rd.

2.3.1 Case of periodic boundary conditions: Ω = T

Assuming that v ∈ L2, we can expand v in Fourier series v =
∑
k∈Z v̂ke

ikx. This allows us to express the action of
the Schrödinger flow on v, e±it∆v(x) =

∑
k∈Z v̂ke

∓itk2

eikx. Similarly assuming V ∈ L2 we have V (x) =
∑
l∈Z V̂le

ilx. In
Fourier space, the oscillatory integral (2.13) is then given by,

J1(τ,∆, v) =
∑

l1+l2=l

V̂l1 v̂l2e
ilx

∫ τ

0

eiζR2(l)dζ +
∑

−k1+k2+k3=k

¯̂vk1 v̂k2 v̂k3e
ikx

∫ τ

0

eiζR1(k)dζ (2.14)

with the resonance structure,

R1(k) = 2k2
1 − 2k1(k2 + k3) + 2k2k3, and R2(l) = l21 + 2l1l2. (2.15)

Ideally we would like to integrate all the nonlinear frequency interactions (2.15) exactly and embed them in the
discretization. This, however, would result in a generalized convolution (of Coifman-Meyer type [CM75]), which cannot
be rewritten in physical space. Hence, the computations would need to be fully made in Fourier space. Carrying this out
in higher spatial dimensions d would cause large memory and computational efforts of order O(|K|d·`), where K denotes
the highest frequency in the discretization and ` is the number of factors in the nonlinearity. For practical computations,
we want to be able to express the discretization also in physical space in order to use the Fast Fourier Transform (FFT)
which is of computational effort of order O(|K|dlog|K|d). Therefore, we choose in the following an approximation of the
integral (2.14) which allows for a practical implementation (by not performing exact integration), while optimizing the
local error in the sense of regularity. We detail this procedure below.

We can extract the dominant and lower-order parts from the resonance structures (2.15) by recalling that 2k2
1 and l21

correspond to second order derivatives in Fourier while the terms kmkj (for m 6= j) correspond to product of first order
derivatives. We choose,

R1(k) = Ldom,1(k1) + Llow,1(k1, k2, k3), R2(l) = Ldom,2(l1) + Llow,2(l1, l2)
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with

Ldom,1(k1) = 2k2
1, Llow,1(k1, k2, k3) = −2k1(k2 + k3) + 2k2k3, and

Ldom,2(l1) = l21, Llow,2(l1, l2) = 2l1l2.

From the above and from equation (2.14), by a simple Taylor’s expansion on the lower-order parts we (formally) allow for
the following approximation of the oscillatory integral in Fourier space,

J1(τ,∆, v) =
∑

l1+l2=l

V̂l1 v̂l2e
ilx

∫ τ

0

eiζLdom,2(l1)eiζLlow,2(l1,l2)dζ

+
∑

−k1+k2+k3=k

¯̂vk1 v̂k2 v̂k3e
ikx

∫ τ

0

eiζLdom,1(k1)eiζLlow,1(k1,k2,k3)dζ

=
∑

l1+l2=l

V̂l1 v̂l2e
ilx

∫ τ

0

eiζLdom,2(l1)(1 +O(ζLlow,2(l1, l2))
)
dζ

+
∑

−k1+k2+k3=k

¯̂vk1 v̂k2 v̂k3e
ikx

∫ τ

0

eiζLdom,1(k1)(1 +O(ζLlow,1(k1, k2, k3))
)
dζ.

Mapping back into physical space we thus have

Ldom,1(v) = −2∆v, Llow,1(v) = 2(2|∇v|2v − |∇v|2v̄),

Ldom,2(v) = −∆v, Llow,2(v, V ) = −2∇V∇v,

and

J1(τ,∆, v) =

∫ τ

0

[eiζLdom,2V ]v + [eiζLdom,1 v̄]v2 +O(ζ(Llow,2(v, V ) + Llow,1(v)))dζ (2.16)

= τ [vϕ1(iτLdom,2)V + v2ϕ1(iτLdom,1)v̄] +O
(
τ2(Llow,2(v, V ) + Llow,1(v))

)
.

Hence, for a small time step τ , by plugging the above expression of J1 in the iterate (2.12) and ignoring the lower-order
terms yields the first-order resonance based discretization

un+1 = eiτ∆[un − iτ(unϕ1(−iτ∆)V + (un)2ϕ1(−2iτ∆)ūn)]. (2.17)

The above scheme (2.17) has a favorable local error structure; namely from equation (2.16) we see that (formally) this
discretization only ask for first order derivatives on the initial data and potential.

We now place ourselves in the general framework Ω ⊂ Rd, and make use of filtering techniques to recover the first
order low-regularity approximation (2.17) in this general setting. The ideas presented in the next section are inspired by
the work of [RS21].

2.3.2 General boundary conditions: Ω ⊂ Rd

The goal of this section is to construct a first order discretization of the oscillatory integral (2.13) when working on a
general domain Ω, and which allows for the improved local error structure (2.16) established in the preceding section.
This is achieved by introducing a properly chosen filtered function which will filter out the dominant oscillatory terms
Ldom,1,Ldom,2 explicitly found in the preceding section.

First, we recall the definition of the commutator-type term C[H,L] for H(v1, · · · , vn), n ≥ 1, a function and L a
linear operator:

C[H,L](v1, · · · , vn) = −L(H(v1, · · · , vn)) +

n∑
i=1

DiH(v1, · · · , vn) · Lvi.

We make an important note that the above differs from the well known Lie commutator used for the error analysis of
classical methods, such as for splitting methods (see for example [HLW10], [JL00]).

We define the filtered function by

N (τ, s, ζ,∆, v) = e−is∆[eis∆e−iζ∆V (eis∆v) + (eis∆v)2(eis∆e−2iζ∆v̄)]. (2.18)
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The principal oscillations (2.13) can be expressed with the aid of the filter function N as

J1(τ,∆, v) =

∫ τ

0

N (τ, ζ, ζ,∆, v)dζ.

By the fundamental theorem of calculus we have

J1(τ,∆, v) =

∫ τ

0

N (τ, 0, ζ, v)dζ +

∫ τ

0

∫ ζ

0

∂sN (τ, s, ζ, v)dsdζ (2.19)

where
N (τ, 0, ζ, v) = [eiζLdom,2V ]v + [eiζLdom,1 v̄]v2 (2.20)

and
∂sN (τ, s, ζ, v) = e−is∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄, eis∆e−iζ∆V ),

C[f, i∆](u, v, w) = −2i(∇w · ∇u+ |∇u|2v +∇(u2) · ∇v). (2.21)

Hence, we recover the discretization of the oscillatory integral (2.13) together with an improved local error structure of
the form (2.16);

J1(τ,∆, v) = τ [vϕ1(iτLdom,2)V + v2ϕ1(iτLdom,1)v̄] +R1,1(τ)

where

R1,1(τ) =

∫ τ

0

∫ ζ

0

e−is∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄, eis∆e−iζ∆V )dsdζ.

Corollary 2.3.1 The exact solution u of (2.1) can be expanded as

u(tn + τ) = eiτ∆[u(tn)− iτ(u(tn)ϕ1(−iτ∆)V + (u(tn))2ϕ1(−2iτ∆)ū(tn))] +R1(τ, tn)

where the remainder is given by

R1(τ, tn) =

∫ τ

0

ei(τ−ζ)∆[f(u(tn + ζ), ū(tn + ζ), V )− f(eiζ∆u(tn), e−iζ∆ū(tn), V )]dζ

+

∫ τ

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆u(tn), eis∆e−2iζ∆ū(tn), eis∆e−iζ∆V )dsdζ.

(2.22)

The first order low-regularity scheme (2.5) follows from the above Corollary 2.3.1 by neglecting the remainder R1(τ, tn).
We next show the first-order error estimates for the scheme (2.5) by first estimating it’s favorable commutator-type local
error structure.

2.3.3 Local error estimates

Proposition 2.3.2 Let T > 0, r ≥ 0, and r1 as in Theorem 2.1.1, namely

r1 =

{
1 + r, if r > d

2
,

1 + r
2

+ d
4
, if 0 ≤ r ≤ d

2
.

Assume there exists CT > 0 such that

sup
[0,T ]

||u(t)||Hr1 ≤ CT , and ||V ||Hr1 ≤ CT , (2.23)

then there exists MT > 0 such that for every τ ∈ (0, 1],

||R1(τ, tn)||Hr ≤MT τ
2, 0 ≤ tn ≤ T, (2.24)

where tn = nτ and R1(τ, tn) is given in equation (2.22).

Proof. We write the error term R1(τ, tn), defined in equation (2.22), as the sum of two terms, R1(τ, tn) = G1(τ, tn) +
G2(τ, tn). We begin by estimating the first term G1(τ, tn). Using the inequalities (2.11) on f , and the boundedness of
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eit∆ on Sobolev spaces we have that for all r ≥ 0 and some σ > d
2
,

||G1(τ, tn)||Hr ≤ τ sup
ζ∈[0,τ ]

||f(u(tn + ζ), ū(tn + ζ), V )− f(eiζ∆u(tn), e−iζ∆ū(tn), V )||Hr

≤ τCr,σ(sup
[0,T ]

||u(t)||Hσ , ||V ||Hσ ) sup
ζ∈[0,τ ]

||u(tn + ζ)− eiζ∆u(tn)||Hr

≤ τCr,σ(sup
[0,T ]

||u(t)||Hσ , ||V ||Hσ ) sup
ζ∈[0,τ ]

||
∫ ζ

0

ei(ζ−s)∆f(u(tn + s), ū(tn + s), V )ds||Hr

≤ τ2Cr,σ(sup
[0,T ]

||u(t)||Hσ , ||V ||Hσ ) sup
s∈[0,τ ]

||f(u(tn + s), ū(tn + s), V )||Hr

≤ Cr,σ(sup
[0,T ]

||u(t)||Hσ , sup
[0,T ]

||u(t)||Hr , ||V ||Hσ )τ2,

(2.25)

where we use Duhamel’s formula to go from the third to the fourth line. First, in the regime r > d
2
, the above holds with

σ = r. Using the fact that r1 > r yields the desired bound ||G1(τ, tn)||Hr ≤ CT τ2 in this regime. When r < d
2
, we will

construct an appropriate σ > d
2
which will be used throughout the remainder of the proof when making the analysis in

this non-smooth regime.
Let 0 < ε < 1

4
, and let

σ0 =
d

2
+
ε

2
. (2.26)

For d ≤ 3, we have that d
2

+ ε < 1 + d
4
, and hence σ0 satisfies

d

2
< σ0 <

d

2
+ ε < 1 +

d

4
. (2.27)

Consequently, by recalling the definition (2.6) of r1, we have that r1 > σ0 when r < d
2
. Hence, in the regime r < d

2
, since

r1 > σ0 we obtain the desired bound ||G1(τ, tn)||Hr ≤ CT τ2 by taking σ = σ0 in equation (2.25).

We now estimate the second term G2(τ, tn) in the remainder (2.22), using the explicit expression of the commutator
(2.21) and the nonlinear estimate (2.10). In the regime r > d

2
, we have r1 = r + 1 and

||C[f, i∆](u, v, w)||Hr ≤ Cr(||∇w · ∇u||Hr + |||∇u|2v||Hr + 2||u∇u · ∇v||Hr )

≤ Cr(||u||r+1, ||v||r+1, ||w||r+1)

≤ Cr(||u||r1 , ||v||r1 , ||w||r1).

When 0 ≤ r < d
2
, we will make use of the bilinear estimate

‖uv‖Hr ≤ Cr,d‖u‖
H
r
2

+ d
4
‖v‖

H
r
2

+ d
4
, (2.28)

which is a particular case of [Hör97, Theorem 8.3.1]. It follows from the above estimate (2.28) and the inequality (2.10)
with σ = σ0 as defined in (2.26) that

||C[f, i∆](u, v, w)||Hr ≤ Cr,d(||∇w||
H
r
2

+ d
4
, ||∇u||

H
r
2

+ d
4
, ||v||Hσ0 , ||u||Hσ0 , ||∇v||

H
r
2

+ d
4

)

≤ Cr,d(‖w‖
H

1+ r
2

+ d
4
, ‖u‖

H
1+ r

2
+ d

4
, ‖v‖

H
1+ r

2
+ d

4
).

Hence, by definition (2.6) of r1, given any r ∈ R+ \ { d
2
}, we have shown the following bound,

||C[f, i∆](u, v, w)||Hr ≤ Cr,d(||u||r1 , ||v||r1 , ||w||r1). (2.29)

Further, since eis∆ is an isometry on Sobolev spaces we obtain the following estimate of G2 in Hr norm,

||G2(τ, tn)||Hr ≤ Cr,d(sup
[0,T ]

||u(t)||Hr1 , ||V ||Hr1 )τ2, r ∈ R+ \ {d
2
}.

The local error estimate is hence demonstrated.

Remark 2.3.3 By following the proof of Proposition 2.3.2 one can ask for less Sobolev regularity on the potential V ,
while asking for more regularity on the solution u(t). Indeed, for example, by making the analysis in the L2-norm, one
can ask for V ∈ H1, and u(t) ∈ H1+ d

2
+ε, with ε > 0 arbitrarily small.
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2.3.4 Global error estimates
Using the local error estimates established in the preceding section we show global first order convergence of our

scheme (2.5) under the favorable regularity assumptions on the initial condition and the potential established previously.

Proof of Theorem 2.1.1. Let en = un−u(tn), where un = Φτ1(un−1) is given in equation (2.5). We begin by decomposing
the error term as follows,

||en+1||Hr ≤ ||Φτ1(u(tn))− u(tn+1)||Hr + ||Φτ1(un)− Φτ1(u(tn))||Hr . (2.30)

The first term of the above expression is given by the local error R1(τ, tn) defined at equation (2.22), and which is of
order τ2 by Proposition 2.3.2. We wish to establish a stability estimate of the numerical flow Φτ1 to bound the second
term in equation (2.30), and to conclude by a Lady Windermere’s fan argument ([HLW10]).

By using the estimate and (2.10), together with the fact that eiξ∆ and ϕ1(iξ∆) are bounded on Sobolev spaces (for
all ξ ∈ R), it easily follows from the definition of our scheme (2.5) that for all r ≥ 0,

||Φτ1(u(tn))− Φτ1(un)||Hr ≤ eLnτ ||en||Hr , Ln := C(||un||Hσ , ||u(tn)||Hσ , ||V ||Hσ ), (2.31)

where for r > d
2
we have σ = r, and for r ≤ d

2
, we have σ > d

2
.

Using Proposition 2.3.2, and the estimate (2.31) a bound of the error term (2.30) is given by,

||en+1||Hr ≤MT τ
2 + eLnτ ||en||Hr , e0 = 0, r 6= d

2
. (2.32)

The global error estimate then easily follows by induction on the above inequality (2.32) once the following uniform bound
is obtained:

sup
nτ≤T

||un||Hσ < +∞, (2.33)

for sufficiently small time step τ , which depends on the final time T and the norm of the initial condition ‖u0‖Hσ . In the
remainder of the proof we establish the bound (2.33) for appropriate choices of σ depending on the Hr-norm considered.

In the regime r > d
2
we take σ = r, and the result follows by the classical Lady Windermere’s fan argument ([HLW10]).

Indeed, the uniform bound (2.33) easily follows for sufficiently small τ by a bootstrap argument on the estimate (2.32).
Using a refined global error analysis one can push down the error analysis to the Hr-norm for 0 ≤ r < d

2
. We take

σ = σ0 where σ0 is given in equation (2.26). In order to show the uniform bound (2.33) we establish fractional convergence
of the scheme (2.5) in the higher order Sobolev space Hσ0 . Namely, we show that there exists δ > 0 such that the
following estimate holds

||en+1||Hσ0 ≤MT τ
1+δ + eLnτ ||en||Hσ0 . (2.34)

where Ln = C(||un||Hσ0 , ||u(tn)||Hσ0 , ||V ||Hσ0 ). Using the decomposition (2.30), and the bound (2.31) with r = σ0, we
are left to show the following local error estimate,

||R1(τ, tn)||Hσ0 ≤MT τ
1+δ, (2.35)

in order to obtain the bound (2.34). We obtain the bound (2.35) by an interpolation argument. We first show a bound on
the remainder R1(τ, tn) in Hr1 -norm. By using Duhamel’s formula and by construction of our numerical scheme (2.5) we
have

R1(τ, tn) =

∫ τ

0

ei(τ−s)∆f(u(tn) + s, u(tn) + s, V )ds− iτeiτ∆(u(tn)ϕ1(−iτ∆)V + (u(tn))2ϕ1(−2iτ∆)ū(tn)
)
.

One can estimate each of the above terms separately using the first estimate in equation (2.11) with r = σ = r1. Indeed,
this yields

||R1(τ, tn)||Hr1 ≤ Cr1(||u(tn)||Hr1 , ||V ||Hr1 )τ (2.36)
≤ Cr1,T τ,

Finally, since r1 > σ0 > r there exists θ ∈ (0, 1) such that

||R1(τ, tn)||Hσ0 ≤ ||R1(τ, tn)||θHr1 ||R1(τ, tn)||1−θHr .

Using the local error estimates (2.24) and (2.36) we have

||R1(τ, tn)||Hσ0 ≤MT τ
2−θ

where 2 − θ > 0. Hence we have shown the bounds (2.35) and (2.34) with δ = 1 − θ. This yields the desired bound
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(2.33) with σ = σ0, and for sufficiently small τ , by a classical bootstrap argument on equation (2.34). The first order
convergence of the scheme (2.5) follows by induction using the global bound (2.32), with σ = σ0.

2.4 Second order scheme and analysis
The idea to derive a higher order scheme is to iterate Duhamel’s formula (2.3), and to Taylor expand f around eiτ∆v,

where we let v = u0. For a second order scheme this yields the following expansion,

u(τ) = eiτ∆

[
v − iJ1(τ,∆, v)− i

∫ τ

0

e−iζ1∆[D1f(eiζ1∆v, e−iζ1∆v̄, V ) · eiζ1∆J1(ζ1,∆, v)]dζ1 (2.37)

+i

∫ τ

0

e−iζ1∆[D2f(eiζ1∆v, e−iζ1∆v̄, V ) · e−iζ1∆J1(ζ1,∆, v)]dζ1

]
+O(τ3)

where
D1f(v, v̄, V ) = −i(V + 2vv̄), and D2f(v, v̄, V ) = −iv2, (2.38)

and where we Taylor expanded f around eiτ∆v up to second order in order to obtain a remainder of order three. Next,
the aim is to derive a second order approximation to the integrals appearing in the above expansion (2.37).

First, we treat the iterated integrals appearing in the above expression, namely the third and fourth term in equation
(2.37). By a standard Taylor expansion we linearize the exponentials appearing in these iterated integrals. For both
v, V ∈ H2, this yields

−ieiζ1∆J1(ζ1,∆, v) = ζ1f(v, v̄, V ) +O(ζ2
1 (∆v + ∆V )).

Using the above we make the following second order approximation of the iterated integrals in equation (2.37);

−i
∫ τ

0

e−iζ1∆[D1f(eiζ1∆v, e−iζ1∆v̄, V ) · eiζ1∆J1(ζ1,∆, v)]dζ1 =

∫ τ

0

ζ1D1f(v, v̄, V ) · f(v, v̄, V )dζ1 (2.39)

+O
(
τ3(∆v + ∆V )

)
,

i

∫ τ

0

e−iζ1∆[D2f(eiζ1∆v, e−iζ1∆v̄, V ) · e−iζ1∆J1(ζ1,∆, v)]dζ1 =

∫ τ

0

ζ1D2f(v, v̄, V ) · f(v, v̄, V )dζ1

+O
(
τ3(∆v + ∆V )

)
.

The above calculations motivate the choice of the expansion for u stated in the following lemma.

Lemma 2.4.1 Let v = u0. At second order u can be expanded as

u(τ) = u2(τ) +R2,0(τ)

with

u2(τ) = eiτ∆v − ieiτ∆J1(τ,∆, v)− τ2

2
eiτ∆(|v|4v + 3v|v|2V − |v|2vV̄ + vV 2),

and

R2,0(τ) =

∫ τ

0

ei(τ−ζ1)∆[f(u(ζ1), ū(ζ1), V )− f(eiζ1v, e−iζ1 v̄, V )]dζ1

+ eiτ∆

∫ τ

0

ζ1(|v|4v + 3v|v|2V − |v|2vV̄ + vV 2)dζ1.

Proof. The result immediately follows by recalling the definition of the principal oscillations (2.13), and Duhamel’s
formula (2.3). Moreover, we note that by simple calculations one has

D1f(v, v̄, V ) · f(v, v̄, V ) = −(V 2v + 3v2v̄V + 2v3v̄2), D2f(v, v̄, V ) · f(v, v̄, V ) = V̄ v̄v2 + v3v̄2,

and hence by equation (2.38) we have,

D1f(v, v̄, V ) · f(v, v̄, V ) +D2f(v, v̄, V ) · f(v, v̄, V ) = −(|v|4v + 3v|v|2V − |v|2vV̄ + vV 2). (2.40)

The above calculations together with equations (2.37) and (2.39) motivates the inclusion of the last term in the expansion
of u2(τ).

It remains to establish a low-regularity second order approximation to the principal oscillatory integral (2.13). We first
recall from Section 2.3.2 that in order to derive a low-regularity approximation of J1 at first order we used the filtered
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function (2.18) and its first order Taylor expansion (2.19). Analogously, to obtain a second order approximation of J1 we
Taylor expand equation (2.18) around s = 0 up to second order, and include the first two terms of this expansion into our
scheme. This yields,

N (τ, ζ, ζ,∆, v) = N (τ, 0, ζ,∆, v) + ζ∂sN (τ, 0, ζ,∆, v) +

∫ ζ

0

∫ s

0

∂2
s1N (τ, s1, ζ,∆, v)ds1ds. (2.41)

Equivalently, using the filtered function (2.18), the above expression is written as

e−iζ∆f(eiζ∆v, e−iζ∆v̄, V ) = f(v, e−2iζ∆v̄, e−iζ∆V ) + ζC[f, i∆](v, e−2iζ∆v̄, e−iζ∆V ) (2.42)

+

∫ ζ

0

∫ s

0

e−is1∆C2[f, i∆](eis1∆v, eis1∆e−2iζ∆v̄, eis1∆e−iζ∆V )ds1ds

where the local error structure is governed by the second-order commutator type term

C2[f, i∆](u, v, w) := C[C[f, i∆], i∆](u, v, w) (2.43)

=

d∑
l=1

(∂2
l u∂

2
l w) + (2u+ v)(∂2

l u∂
2
l v) + (∂lv)2∂2

l u+ 2(∂lu)2∂2
l v + ∂lv∂lu(2∂2

l u+ ∂2
l v).

In practical computations we need to address the stability issues caused by including into the scheme the second term
C[f, i∆](v, e−2iζ∆v̄e−iζ∆V ) which has the form (2.21), since it involves spatial derivatives. Different approaches can be
made to treat this issue and guarantee the stability of the scheme and in what follows we offer two different approaches.
The first approach is based on [RS21] and consists in first introducing a stabilization in the Taylor series expansion
(2.41) based on finite difference approximations. The second approach relies on directly embedding the commutator term
appearing in equation (2.42) into the discretization, and then stabilizes the scheme a posteriori by the use of a properly
chosen filter function.

2.4.1 A first approach to guarantee stability

A first approach consists in stabilizing the second term of equation (2.41). This may be done by introducing the
following finite difference approximation of ∂sN (τ, 0, ζ,∆, v):

∂sN (τ, 0, ζ,∆, v) =
1

τ
(N (τ, τ, ζ,∆, v)−N (τ, 0, ζ,∆, v)) +O(τ∂2

sN (τ, η, ζ,∆, v)) (2.44)

for some η ∈ [0, τ ], and where

∂2
sN (τ, η, ζ,∆, v) = e−iη∆C2[f, i∆](eiη∆v, eiη∆e−2iζ∆v̄, eiη∆e−iζ∆V ). (2.45)

The above expansion comes into play in the following lemma, where we obtain a stable second order approximation of the
principal oscillation J1.

Lemma 2.4.2 At second order the principal oscillations can be expanded by

J1(τ,∆, v) = τ
(
vϕ1(−iτ∆)V + v2ϕ1(−2iτ∆)v̄

)
+ τe−iτ∆

(
(eiτ∆v)ϕ2(−iτ∆)(eiτ∆V ) + (eiτ∆v)2ϕ2(−2iτ∆)(eiτ∆v̄)

)
− τ
(
vϕ2(−iτ∆)V + v2ϕ2(−2iτ∆)v̄

)
+ iR1

2,1(τ)

where ϕ2(z) = 1
z
(ez − ϕ1(z)) and the remainder is given by

R1
2,1(τ) =

∫ τ

0

∫ ζ

0

∫ s

0

e−is1∆C2[f, i∆](eis1∆v, eis1∆e−2iζ∆v̄, eis1∆e−iζ∆V )ds1dsdζ (2.46)

+

∫ τ

0

ζ

∫ 1

0

∫ τs

0

e−is1∆C2[f, i∆](eis1∆v, eis1∆e−2iζ∆v̄, eis1∆e−iζ∆V )ds1dsdζ.

Proof. Using the filtered function (2.18), and plugging the finite difference (2.44) into the Taylor expansion (2.41) we
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obtain

J1(τ,∆, v) =

∫ τ

0

N (τ, ζ, ζ,∆, v)dζ

=

∫ τ

0

N (τ, 0, ζ,∆, v)dζ +
1

τ

∫ τ

0

ζ(N (τ, τ, ζ,∆, v)−N (τ, 0, ζ,∆, v))dζ

+

∫ τ

0

ζ

∫ 1

0

∫ τs

0

∂2
s1N (τ, s1, ζ,∆, v)ds1dsdζ +

∫ τ

0

∫ ζ

0

∫ s

0

∂2
s1N (τ, s1, ζ,∆, v)ds1dsdζ.

Using the filtered function (2.18), equation (2.45) and the definition (2.46) of R1
2,1(τ) it follows from the above that,

J1(τ,∆, v) =

∫ τ

0

([e−iζ∆V ]v + [e−2iζ∆v̄]v2)dζ

+
1

τ
e−iτ∆

∫ τ

0

ζ([e−iζ∆eiτ∆V ](eiτ∆v) + [e−2iζ∆eiτ∆v̄](eiτ∆v)2)dζ

− 1

τ

∫ τ

0

ζ([e−iζ∆V ]v + [e−2iζ∆v̄]v2)dζ + iR1
2,1(τ)

= τ
(
vϕ1(−iτ∆)V + v2ϕ1(−2iτ∆)v̄

)
+ τe−iτ∆

(
(eiτ∆v)ϕ2(−iτ∆)(eiτ∆V ) + (eiτ∆v)2ϕ2(−2iτ∆)(eiτ∆v̄)

)
− τ
(
vϕ2(−iτ∆)V + v2ϕ2(−2iτ∆)v̄

)
+ iR1

2,1(τ)

which concludes the proof.

By merging the two preceding lemmas 2.4.1 and 2.4.2, we obtain the following second order low-regularity scheme for
(2.1).

Corollary 2.4.3 The exact solution u of (2.1) can be expanded as

u(tn + τ) = eiτ∆u(tn)− iτeiτ∆(u(tn)ϕ1(−iτ∆)V + u(tn)2ϕ1(−2iτ∆)ū(tn)
)

(2.47)

− iτ
(

(eiτ∆u(tn))ϕ2(−iτ∆)(eiτ∆V ) + (eiτ∆u(tn))2ϕ2(−2iτ∆)eiτ∆ū(tn)
)

+ iτeiτ∆(u(tn)ϕ2(−iτ∆)V + u(tn)2ϕ2(−2iτ∆)ū(tn)
)

− τ2

2
eiτ∆(|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)

+R1
2(τ, tn)

where the remainder is given by

R1
2(τ, tn) =

∫ τ

0

ei(τ−ζ)∆[f(u(tn + ζ), ū(tn + ζ), V )− f(eiζu(tn), e−iζ ū(tn), V )]dζ

+ eiτ∆

∫ τ

0

ζ
(
|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)dζ

+

∫ τ

0

∫ ζ

0

∫ s

0

ei(τ−s1)∆C2[f, i∆](eis1∆u(tn), eis1∆e−2iζ∆ū(tn), eis1∆e−iζ∆V )ds1dsdζ

+

∫ τ

0

ζ

∫ 1

0

∫ τs

0

ei(τ−s1)∆C2[f, i∆](eis1∆u(tn), eis1∆e−2iζ∆ū(tn), eis1∆e−iζ∆V )ds1dsdζ.

(2.48)

and where the explicit expression for the commutator is given in equation (2.43).

2.4.2 A second approach to guarantee stability

We next present a second approach to the second order approximation of the principal oscillations J1. In contrast to
the preceding section we will first write the approximation in terms of the commutator, then stabilize the scheme by the
use of a properly chosen filter function.
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Lemma 2.4.4 To second order the principal oscillations can be expanded by

J1(τ,∆, v) = τ
(
vϕ1(−iτ∆)V + v2ϕ1(−2iτ∆)v̄

)
+ τ2C[f, i∆](v, ϕ2(−2iτ∆)v̄, ϕ2(−iτ∆)V )

+ iR2
2,1(τ)

(2.49)

where the remainder is given by,

R2
2,1(τ) =

∫ τ

0

∫ ζ

0

∫ s

0

e−is1∆C2[f, i∆](eis1∆v, eis1∆e−2iζ∆v̄, eis1∆e−iζ∆V )ds1dsdζ. (2.50)

Proof. Using the definition of the principal oscillations (2.13) and equation (2.42) one has the following expansion,

J1(τ,∆, v) =

∫ τ

0

f(v, e−2iζ∆v̄, e−iζ∆V )dζ +

∫ τ

0

ζC[f, i∆](v, e−2iζ∆v̄, e−iζ∆V )dζ

+

∫ τ

0

∫ ζ

0

∫ s

0

e−is1∆C2[f, i∆](eis1∆v, eis1∆e−2iζ∆v̄, eis1∆e−iζ∆V )ds1dsdζ

= τ
(
vϕ1(−iτ∆)V + v2ϕ1(−2iτ∆)v̄

)
+ τ2C[f, i∆](v, ϕ2(−2iτ∆)v̄, ϕ2(−iτ∆)V )

+ iR2
2,1(τ).

where the second term could be integrated exactly using the structure of the commutator (2.21) and of the nonlinearity
(2.4)

The following lemma provides the second order low regularity integrator up to this step.

Lemma 2.4.5 The exact solution u of (2.1) can be expanded as

u(tn + τ) = eiτ∆u(tn)− iτeiτ∆(u(tn)ϕ1(−iτ∆)V + u(tn)2ϕ1(−2iτ∆)ū(tn)
)

(2.51)

− iτ2eiτ∆C[f, i∆](u(tn), ϕ2(−2iτ∆)ū(tn), ϕ2(−iτ∆)V )

− τ2

2
eiτ∆(|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)

+R2
2,2(τ, tn)

where the remainder is given by

R2
2,2(τ) =

∫ τ

0

ei(τ−ζ)∆[f(u(tn + ζ), ū(tn + ζ), V )− f(eiζu(tn), e−iζ ū(tn), V )]dζ

+ eiτ∆

∫ τ

0

ζ(|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)dζ

+

∫ τ

0

∫ ζ

0

∫ s

0

ei(τ−s1)∆C2[f, i∆](eis1∆u(tn), eis1∆e−2iζ∆ū(tn), eis1∆e−iζ∆V )ds1dsdζ.

To stabilize the term appearing in the second line of equation (2.51), which is of the form τ2C[f, i∆](v, v̄, V ), we introduce
an appropriate filter operator which we denote by Ψ. More precisely, we will construct a filter operator of the form

Ψ = ψ(iτ |∇|),

where ψ is a suitably chosen filter function which allows to stabilize the scheme while introducing an error term which
only requires H2-regularity on the initial data and potential. Namely, we require the filter function ψ to introduce the
same optimal local error of O(τ3∆(v+ V )) as is introduced by the low-regularity second order scheme up to this step (see
equations (2.39), (2.43) and Section 2.4.3 for the thorough analysis). We refer to [HLW10] for an introduction to filter
functions in the ODE setting. We now present two sufficient assumptions on the filter operator which once established,
guarantees the stability of the low-regularity scheme (2.51).

Assumption 1. The filter operator Ψ = ψ(iτ |∇|), satisfies the following bound

||τΨ[C[f, i∆](v, v̄, V )]||r ≤ Cr,d,V ||v||mr (2.52)

for some m = m(f) ∈ N and r = r(d) ≥ 0.
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Assumption 2. The filter operator Ψ = ψ(iτ |∇|) satisfies the following expansion

Ψ[C[f, i∆](v, v̄, V )] = C[f, i∆](v, v̄, V ) +O(τ |∇|2(v + V )). (2.53)

The condition in Assumption 1 guarantees the stability of the scheme in the Hr-norm, while the condition in Assumption
2 preserves the optimal local error structure of O(τ3|∇|2(v + V )) with the inclusion of the filter function ψ. This is an
essential ingredient for the local and global error analysis of the scheme.

Remark 2.4.6 The stability estimate (2.52) relies on the algebraic structure of the underlying space. In the following
stability analysis we will restrict our attention to sufficiently smooth Sobolev spaces Hr with r > d

2
+ 1. This allows us to

exploit the following classical bilinear estimate,

||vw||s0 ≤ C||v||s0 ||w||s0 ,

where s0 = r − 1. An analysis in a lower order Sobolev space would require the use of more refined estimates on the
commutator term using the generalized Leibniz rule (see [BCD11, Chapter 2]). This analysis is not detailed here, since
we tackle the error analysis of the second order scheme (2.47), based upon the first approach (see Section 2.4.1).

A choice of filter operator which is well adapted for the second order scheme (2.51) is the following.

Lemma 2.4.7 The filter operator

Ψ = ϕ1(iτ |∇|) :=
eiτ |∇| − 1

iτ |∇| (2.54)

satisfies Assumption 1 and 2 with r > d
2

+ 1.

Proof. We first show how the filter function (2.54) satisfies Assumption 1 and hence guarantees the stability of the
second order low-regularity scheme. By definition of the ϕ1 function and using the explicit form of the commutator (2.21)
together with the bilinear estimate we have,

||τϕ1(iτ |∇|)C[f, i∆](v, v̄, V )||r ≤ ||(eiτ |∇| − 1)|∇|−1C[f, i∆](v, v̄, V )||r
≤ 4||∇V · ∇v + |∇v|2v̄ + 2v∇v · ∇v̄||r−1

≤ Cr,d(||∇V ||r−1||∇v||r−1 + ||∇v||2r−1||v||r−1

+ 2||v||r−1||∇v||2r−1)

≤ Cr,d(||V ||r||v||r + 3||v||3r)

≤ Cr,d,V (||v||r + ||v||3r).

Furthermore, by a simple Taylor’s expansion we have that,

ϕ1(iτ |∇|) = 1 +O(τ |∇|). (2.55)

It then follows by the form of the commutator (2.21) that the filter function (2.54) satisfies Assumption 2. Indeed, from
the above equation we have,

ϕ1(iτ∇)C[f, i∆](v, v̄, V ) = C[f, i∆](v, v̄, V ) +O(τ |∇|C[f, i∆](v, v̄, V )),

where by equation (2.21) we have that formally O(τ |∇|C[f, i∆](v, v̄, V )) = O(τ |∇|2(v + V )). Hence, formally we see that
the inclusion of the filter function (2.54) preserves the optimal local error, by only requiring two additional derivatives on
the initial datum and the potential (see Proposition 2.4.9, in the regime r > d

2
).

The following Corollary provides a stable second order low-regularity scheme for (2.1), by using the filter function (2.54).

Corollary 2.4.8 The exact solution u of (2.1) can be expanded as

u(tn + τ) = eiτ∆u(tn)− iτeiτ∆(u(tn)ϕ1(−iτ∆)V + u(tn)2ϕ1(−2iτ∆)ū(tn)
)

− iτ2eiτ∆ϕ1(iτ∇)[C[f, i∆](u(tn), ϕ2(−2iτ∆)ū(tn), ϕ2(−iτ∆)V )]

− τ2

2
eiτ∆(|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)

+R2
2(τ, tn).

(2.56)
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where

R2
2(τ, tn) =

∫ τ

0

ei(τ−ζ)∆[f(u(tn + ζ), ū(tn + ζ), V )− f(eiζu(tn), e−iζ ū(tn), V )]dζ

+ eiτ∆

∫ τ

0

ζ(|u(tn)|4u(tn) + 3u(tn)|u(tn)|2V − |u(tn)|2u(tn)V̄ + u(tn)V 2)dζ

+

∫ τ

0

∫ ζ

0

∫ s

0

ei(τ−s1)∆C2[f, i∆](eis1∆u(tn), eis1∆e−2iζ∆ū(tn), eis1∆e−iζ∆V )ds1dsdζ

− iτ2eiτ∆(I − ϕ1(iτ∇))[C[f, i∆](u(tn), ϕ2(−2iτ∆)ū(tn), ϕ2(−iτ∆)V )].

2.4.3 Local error estimates

In this section we prove that the second order scheme (2.47) introduces a local error of order three under favorable
regularity assumptions of the initial datum and potential. As was the case for the error analysis of the first-order scheme
(Section 2.3.3), we make the analysis in Hr-norm where the regularity assumptions on v and V will depend on the regime
of r considered.

Proposition 2.4.9 Let T > 0, r ≥ 0, and r2 as in Theorem 2.1.2, namely

r2 =

{
2 + r, if r > d

2
,

2 + r
2

+ d
4
, if 0 ≤ r < d

2
.

Assume there exists CT > 0 such that

sup
[0,T ]

||u(t)||Hr2 ≤ CT , and ||V ||Hr2 ≤ CT ,

then there exists MT > 0 such that for every τ ∈ (0, 1]

||R1
2(τ, tn)||Hr ≤MT τ

3, 0 ≤ tn ≤ T,

where tn = nτ , and R1
2(τ, tn) is given in equation (2.48).

Proof. We write the error term R1
2(τ, tn), as the sum of four terms, R1

2(τ, tn) = E1(τ, tn) +E2(τ, tn) +E3(τ, tn) +E4(τ, tn).
We start by establishing the third order estimate for the two last terms E3 and E4. These bounds are obtained using
the same arguments as those made to bound the term G2 in the proof of Proposition 2.3.2, by noticing that r2 = r1 + 1.
Indeed, from the explicit expression of the second-order commutator (2.43) and using the inequality (2.10), we obtain
that for r > d

2
,

||C2[f, i∆](u, v, w)||Hr ≤ Cr(||w||Hr+2 , ||u||Hr+2 , ||v||Hr+2), (2.57)

and for 0 ≤ r < d
2
and l = 1, . . . , d,

||C2[f, i∆](u, v, w)||Hr ≤Cr,d(‖∂2
l w‖

H
r
2

+ d
4
, ‖∂2

l u‖
H
r
2

+ d
4
, ‖∂2

l v‖
H
r
2

+ d
4
, ‖u‖Hσ0 , ‖v‖Hσ0 , ‖∂2

l u‖Hr , ‖∂2
l v‖Hr ,

‖∂lv‖Hσ0 , ‖∂lu‖Hσ0 )

≤ Cr,d(‖w‖
H

2+ r
2

+ d
4
, ‖u‖

H
2+ r

2
+ d

4
, ‖v‖

H
2+ r

2
+ d

4
, ‖u‖H2+r , ‖v‖H2+r , ‖u‖H1+σ0 , ‖v‖H1+σ0 )

≤ Cr,d(‖w‖
H

2+ r
2

+ d
4
, ‖u‖

H
2+ r

2
+ d

4
, ‖v‖

H
2+ r

2
+ d

4
),

where we once again used the bilinear estimates (2.28) and (2.10) with σ = σ0 in the first line, and in the third line the
definition (2.26) of σ0 and the fact that r < r

2
+ d

4
when r < d

2
.

Next, we show that the sum of the remaining terms, (E1 +E2)(τ, tn), of equation (2.48) is of third order. We have that
r2 > 2, and hence u(t), V ∈ H2. Thereby, by Taylor expanding the exponential appearing inside the Duhamel’s integral
(2.3) we obtain the following expansion : u(tn + ζ) = eiζ∆u(tn) + ζfn + R̃(ζ, tn) where fn = f(u(tn), ū(tn), V ) and

R̃(ζ, tn) =

∫ ζ

0

ei(ζ−s)∆f(u(tn + s), ū(tn + s), V )ds− ζfn. (2.58)



40 CHAPTER 2. Error analysis of a class of semi-discrete schemes for the Gross-Pitaevskii equation

Using the above expansion for u we rewrite the error term (E1 + E2)(τ, tn) as,

(E1 + E2)(τ, tn) =

∫ τ

0

ei(τ−ζ)∆[f
(
eiζ∆u(tn) + ζfn + R̃(ζ, tn), e−iζ∆ū(tn) + ζfn + R̃(ζ, tn), V

)
(2.59)

− f(eiζ∆u(tn), e−iζ∆ū(tn), V )]dζ

− eiτ∆

∫ τ

0

ζ(D1f
n · fn +D2f

n · fn)dζ,

where D1f
n · fn +D2f

n · fn is given by equation (2.40). For notational convenience we let a1 := eiζ∆u(tn) + ζfn. The
idea in order to show that the above error term (2.59) is of third-order revolves around making three suitable Taylor
expansions. By Taylor expanding f around (a1, ā1, V ) and (eiζ∆u(tn), e−iζ∆ū(tn), V ) respectively we obtain,

f
(
a1 + R̃(ζ, tn), ā1 + R̃(ζ, tn), V

)
= f(a1, ā1, V ) + E1(ζ), (2.60)

f(a1, ā1, V ) = f
(
eiζ∆u(tn), e−iζ∆ū(tn), V

)
+ E2(ζ),

where

E1(ζ) =

∫ 1

0

D1f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn), V

)
· R̃(ζ, tn) (2.61)

+D2f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn), V

)
· R̃(ζ, tn)dθ,

E2(ζ) = ζ

∫ 1

0

[D1f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn, V

)
· fn (2.62)

+D2f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn, V

)
· fn]dθ.

Hence, plugging equation (2.60) into equation (2.59) yields,

(E1 + E2)(τ, tn) =

∫ τ

0

ei(τ−ζ)∆E1(ζ)dζ + eiτ∆

∫ τ

0

e−iζ∆E2(ζ)dζ − eiτ∆

∫ τ

0

ζ(D1f
n · fn +D2f

n · fn)dζ. (2.63)

In order to show that the first term in the above equation is of third-order we show the bound ||E1(ζ)||r ≤ CT ζ
2. By

equation (2.61) and by using the bilinear inequality (2.10) we have that for all r ≥ 0 and some σ > d
2
,

||E1(ζ)||r ≤ sup
θ∈]0,1[

(
||D1f

(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn), V

)
||σ

+ ||D2f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn), V

)
||σ
)
||R̃(ζ, tn)||r

≤ Cr
(
||V ||σ, sup

t∈[0,T ]

||u(t)||σ, sup
(ζ,t)∈[0,τ ]×[0,T ]

||R̃(ζ, t)||σ
)
||R̃(ζ, tn)||r

(2.64)

where the last inequality follows by using the explicit form of the derivatives (2.38), the first estimation of equation (2.11),
and the fact that eiζ∆ is an isometry on Sobolev spaces. When r > d

2
, the above holds for σ = r. Next, we show that,

sup
(ζ,t)∈[0,τ ]×[0,T ]

||R̃(ζ, t)||σ0 < +∞, and ||R̃(ζ, tn)||r ≤ CT ζ2, (2.65)

where σ0 is given by equation (2.26). We obtain the first bound by using the first estimate of equation (2.11) on f with
r = σ0,

sup
(ζ,t)∈[0,τ ]×[0,T ]

||R̃(ζ, t)||σ0 ≤ τCσ0( sup
t∈[0,T ]

||u(t)||σ0 , ||V ||σ0) < +∞.

Next, we obtain the second estimate in equation (2.65) using the Fundamental Theorem of Calculus. By letting



2.5. Numerical Experiments 41

u = u(tn + s1) we have,

R̃(ζ, tn) =

∫ ζ

0

∫ s

0

∂s1

(
ei(ζ−s1)∆f(u, ū, V )

)
ds1ds+ ζeiζ∆fn − ζfn (2.66)

=

∫ ζ

0

∫ s

0

ei(ζ−s1)∆

(
i∆f(u, ū, V ) +D1f(u, ū, V )(i∆u+ f(u, ū, V ))

+D2f(u, ū, V )(−i∆u+ f(u, ū, V ))

)
ds1ds+ iζ2ϕ1(iζ∆)∆f(u, ū, V ),

where to obtain the second line we used equation (2.1), and for the last term we used the definition of the ϕ1 operator.
The second estimate of equation (2.65) then follows immediately from equation (2.66) by observing that,

||∆f(v, v̄, V )||r + ||Dif(v, v̄, V )∆u||r ≤ Cr(||v||r2 , ||V ||r2), i = 1, 2.

It remains to show that the difference of the second and third term in equation (2.63) is of third-order. Formally, this
directly follows by making a Taylor expansion of eiζ∆u(tn) + θζfn around ζ = 0: eiζ∆u(tn) + θζfn = u(tn) +O(ζ∆u(tn)).
By using the same application of the Fundamental Theorem of Calculus as done in equation (2.66) one obtains this third
order bound. This concludes the proof.

2.4.4 Global error estimate
Using the local error estimates established in the preceding section together with a stability argument we show global

second order convergence of our low regularity integrator under the regularity assumptions established in Proposition
2.4.9.

Proof of Theorem 2.1.2. We let un+1 = Φτ
2(un) be the numerical scheme defined in equation (2.7). The outline of the

proof of this second-order convergence result follows exactly the same lines as the first order convergence result given
in Theorem 2.1.1. Indeed, in the case where r > d

2
the global error estimate follows by a classical Lady Windermere’s

argument ([HLW10]). In the regime r < d
2
, by exploiting the same interpolation argument as made in the proof of

Theorem 2.1.1, and by using definition (2.48) of R1
2 we have that there exists an δ > 0 such that

||R1
2(τ, tn)||Hσ0 ≤MT τ

1+δ,

where σ0 is defined in equation (2.26). From the above we obtain the bound (2.34) and hence the apriori Hσ0 -bound on
the iterates: supnτ≤T ||un||Hσ0 < +∞, for τ sufficiently small. Using the local error analysis given in Proposition 2.4.9
we obtain second order convergence of the scheme (2.7) by performing an inductive argument with

||en+1||Hr ≤MT τ
3 + eLnτ ||en||Hr , e0 = 0, (2.67)

since sup
nτ≤T

Ln ≤ CT,r(||un||Hσ0 ) < +∞. This concludes the proof.

2.5 Numerical Experiments
In this section we provide some numerical experiments to support our theoretical convergence results. We consider

the Gross-Pitaevskii equation (2.1) with an initial data of the form

u0(x) =
∑
k∈Z

(1 + |k|)−ϑ−
1
2 ake

ikx, (2.68)

where the coefficients (ak)k∈Z are chosen as uniformly distributed random complex numbers in [0, 1] + i[0, 1], using the
mathlab function rand. The parameter ϑ ≥ 0 dictates the regularity assumption on the above function (2.68), namely it
insures that u0 ∈ Hϑ−ε. We choose the potential V to have the same form (2.68), as the initial condition.

For the space discretization, we couple the first and second order low-regularity time integrators (2.5) and (2.7) with
a standard Fourier pseudo-spectral method. We take the largest Fourier mode as K = 210, yielding a spatial mesh size of
∆x = 0.0061.

In order to test our convergence result, we choose to measure the error in the (discrete) L2, H
1
2 , and H1 norms. For

each of these three norms we plot the first and second order low regularity integrators given in equations (2.5) and (2.7)
for u0, V ∈ Hr1 and u0, V ∈ Hr2 respectively (see equations (2.6) and (2.8)). The error at time T = 1 are given in Figure
(2.1). The results of our numerical experiments agree with the corresponding theoretical convergence results: we observed
first and second order convergence for the regularity assumptions given in Theorem 2.1.1 and 2.1.2. We recall that in the
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Figure 2.1 – Convergence plots for three different norms, taken from the article [AB23a]. The slopes of the continuous lines are
one and two, respectively. Plot (a) : first and second order scheme with ϑ = 5/4 (pink and yellow), and for the second-order scheme
with ϑ = 9/4 (green). Plot (b): first and second order scheme with ϑ = 3

2
(red and yellow), and for the second order scheme with

ϑ = 5/2 (blue). Plot (c): first and resp. second order schemes with ϑ = 2 (orange and yellow) and second order with ϑ = 3 (purple).

critical case r = 1
2
, we have rj = j + 1

2
+ ε, j = 1, 2, where ε > 0 can be taken arbitrarily small. Moreover, as expected,

the yellow lines in Figure 2.1 show how the second order scheme exhibits order reduction for the less regular data and
potential u0, V ∈ Hr1 . Nevertheless, it successfully converges to second order for u0, V ∈ Hr2 . We lastly note that the
observed convergence is slightly better than predicted by Theorem 2.1.1 and 2.1.2 (see as well the work of [OS18]).
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Appendix
In this section we derive the bilinear Hr-estimates, for r > 0, as stated in Section 2.2. Namely we show the estimate

(2.10) in both regimes r > d
2
, and 0 < r ≤ d

2
. We note that the case r = 0 of the L2-norm follows easily by the Sobolev

embedding Hσ ↪→ L∞, σ > d
2
.

The notation and tools we use are based upon Littlewood-Paley Theory (see [BCD11, Chapter 2]). We will apply this
machinery to our study on the torus Td. Given any tempered distribution u, the Littlewood-Paley theory provides the
following decomposition,

u =
∑
k≥−1

∆ku, F(∆ku)(ξ) = ϕk(ξ)û(ξ),
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where ϕk(ξ) = ϕ(ξ/2k), for k ≥ 0, ϕ−1 = χ, and ϕ, χ satisfy the assertions in [BCD11, Proposition 2.10], namely they
form a dyadic partition of unity. In the above and in the remainder of this section we use the fact that, as is the case
when working on Rd, one can make use of the Fourier transform on Td, where in the periodic case we have that ξ ∈ Zd.

Using the above Littlewood-Paley decomposition, we introduce Bony’s decomposition in order to express the product
of two tempered distributions uv as the following sum of three terms,

uv = Tu(v) + Tv(u) +R(u, v) (2.69)

where Tu(v) =
∑
j

Sj−1u∆jv, Sj−1u =
∑
i≤j−2

∆iu, and the remainder R(u, v) =
∑
|k−j|≤1

∆ku∆jv.

In what follows we shall make use of the embedding Hr ↪→ B
r− d

2
∞,∞, for non homogeneous Besov spaces, (see [BCD11,

Proposition 2.71]).
We are now ready to demonstrate the estimate (2.10) in the regime 0 < r ≤ d

2
. Let ε > 0. First by [BCD11,

Proposition 2.85] together with the embedding H
d
2 ↪→ B0

∞,∞, we have the following estimate of the remainder,

||R(u, v)||Hr ≤ Cr,d||v||Hr ||u||
H
d
2
, r > 0.

Next, by using the first estimate of [BCD11, Theorem 2.82] together with the embedding H
d
2

+ε ↪→ L∞ we have the
following estimate on the paraproduct of v by u,

||Tuv||Hr ≤ ||u||
H
d
2

+ε ||v||Hr , r > 0.

Using the second estimate of [BCD11, Theorem 2.82] we obtain that for any 0 < r ≤ d
2
the following estimate of the

paraproduct of u by v holds,

||Tvu||Hr ≤

{
||u||

H
d
2
||v||Hr , for 0 < r < d

2
,

||u||
H
d
2

+ε ||v||
H
d
2
, if r = d

2
,

where we used the embedding Hr ↪→ B
r−d/2
∞,∞ , and respectively H

d
2
−ε ↪→ B−ε∞,∞ in the case r = d

2
. Therefore, when

0 < r ≤ d
2
, by collecting the above bounds, together with the decomposition (2.69), we recover the estimate (2.10):

||uv||Hr ≤ Cr,d||u|| d
2

+ε||v||Hr .

Finally, we show the estimate (2.10) in the regime r > d
2
, with σ = r. By [BCD11, Corollary 2.86] we have,

||uv||Hr ≤
Cr+1

r
(||u||L∞ ||v||Hr + ||u||Hr ||v||L∞), r > 0.

Hence, given any r > d
2
, using the embedding Hr ↪→ L∞, we obtain the claimed estimate (2.10), with σ = r.



44 Error analysis of a class of semi-discrete schemes for the Gross-Pitaevskii equation



Chapter 3

Low regularity integrators via decorated trees

This chapter is based on the article [ABBS22b].

Abstract. We introduce a general framework of low regularity integrators which allows us to approximate the time
dynamics of a large class of equations, including parabolic and hyperbolic problems, as well as dispersive equations, up
to arbitrary high order on general domains. The structure of the local error of the new schemes is driven by nested
commutators which in general require (much) lower regularity assumptions than classical methods do. Our main idea lies
in embedding the central oscillations of the nonlinear PDE into the numerical discretisation. The latter is achieved by
a novel decorated tree formalism inspired by singular SPDEs with Regularity Structures and allows us to control the
nonlinear interactions in the system up to arbitrary high order on the infinite dimensional (continuous) as well as finite
dimensional (discrete) level.

3.1 Introduction
We consider a general class of evolution equations under the form

∂tuo − Louo =
∑
l∈L−

Ψl
o(u

l
o)Vl(x), (t, x) ∈ R× Ω, o ∈ L+, (3.1)

where L−,L+ are finite sets, Ω ⊆ Rd, ul
o = (uo)o∈Lo,l+

and Lo,l+ ⊂ L+. For every (o, l) ∈ L+ × L−, Lo denotes a linear

(possibly) unbounded operator, Ψl
o represents the nonlinearity and Vl the potential or noise. The precise assumptions on

the operator Lo, the nonlinearity Ψl
o and the potential Vl are stated in Section 3.1.1 below. We add initial conditions

uo(0) = vo and when ∂Ω 6= 6# suitable boundary conditions which will be encoded in the domain of the operator Lo.
Evolution equations of type (3.1) are meanwhile extensively studied in numerical analysis literature and a large

variety of discretisation techniques for their time resolution was proposed, reaching, e.g., from splitting methods over
exponential integrators up to Runge–Kutta and Lawson type schemes [Fao12, HNW93, HLW10, HO10, HLO20, Hol10,
LR04, MQ02, SSC18]. While such classical discretisation techniques provide a good approximation to smooth solutions,
they often drastically break down at low regularity: Rough data and high oscillations in general cause severe loss of
convergence which leads to huge computational costs hindering in many situations reliable approximations. Nonlinear
partial differential equations (PDEs) at low regularity are at large an ongoing challenge in numerical analysis.

In this work we introduce a general framework of low regularity integrators which allows us to approximate the
time dynamics of (3.1) up to arbitrary high order under lower regularity assumptions than classical methods, such as
Runge–Kutta, splitting, exponential integrators or Lawson schemes, require. Our new framework greatly enhances the
low regularity framework recently introduced in [BS22] which is restricted to dispersive equations with periodic boundary
conditions and polynomial nonlinearities u`um. Within our new framework we in particular overcome periodic boundary
conditions and cover a much larger class of equations, including for instance parabolic, and hyperbolic problems, as well
as dispersive equations. Furthermore, our model (3.1) allows for noise or potentials and non polynomial nonlinearities.

In order to bypass the limitations of [BS22] we introduce novel commutator structures. Such commutators were
previously used in [RS21] for the derivation of first- and second-order low regularity integrators for a simplified version
of (3.1) (in particular without potential, i.e., Vl ≡ 1). At low order the central oscillations in (3.1) can quite easily be
computed and their dominant parts can be extracted “by hand" (see [RS21]). This is however no longer the case at
higher order: The control of the underlying oscillations of (3.1) up to arbitrary high order involves a scale of nested,
iterated oscillatory integrals depending on the nonlinear interaction between the leading differential operator Lo and the
nonlinearity

∑
l∈L− Ψl

o(u
l
o)Vl(x) which is in particular challenging on the finite dimensional (discrete) level.

45
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In order to overcome this, our key idea lies in developing a new class of decorated trees. This formalism is crucial as it
allows us to encode the oscillatory systems of iterated integrals on the continuous as well as on the discrete level. We
control the local error at each order with suitable nested commutators. The decorated trees used in this work are inspired
by [BS22]. We develop a new framework overcoming the limitations of the formalism developed in [BS22] which heavily
relied on Fourier expansion techniques, periodic boundary conditions and polynomial nonlinearities. Our decorated
trees are close in spirit to the ones used in singular SPDEs in [BCCH20] where decorations on the nodes encode the
drivers/potentials of the equation (3.1). This work is the second example after [BS22] where Regularity Structures
decorated trees introduced in [Hai14, BHZ19] appear in context of numerical analysis which stresses their robustness.
Another key difference with [BS22] lies in the fact that our setting does not allow for a Hopf algebra to conduct the local
error analysis. The latter seems limited to Fourier space and the control of the corresponding Fourier modes. The lack of
a Hopf algebra in this work is, however, not surprising as we push forward low regularity integrators to the much more
general setting (3.1). As we are no longer in the Fourier case, the resonance analysis has to be replaced by a new splitting
on the operators directly in Physical space given in Definition 3.3.2. This new idea is crucial for implementing a low
regularity scheme and allows to bypass the limitation of the Fourier analysis when one can only consider operators that
are polynomial in the frequencies in Fourier space.

Our main result is the new general low regularity scheme presented in Definition 3.4.2 with its error structure given
in Theorem 3.4.3. The approximation relies crucially on the formulae given in Definition 3.3.2. We will illustrate our
framework on the concrete examples of the Gross–Pitaevskii and the Sine–Gordon equation in full detail in Section 3.5.
In the next subsection, we illustre the main ideas of our scheme on a parabolic equation.

3.1.1 Linearization and decorated trees
Before introducing our linearization techniques based on decorated trees, let us first specify the assumptions on the

nonlinearity Ψ and on the leading operator Lo appearing in (3.1).

Assumption 1 (nonlinearity Ψ) In the following we assume that the nonlinearity Ψl
o(u

l
o) is tensorized under the form

Ψl
o(u

l
o) = Bl

o

 ∏
o∈Ll,o

+

f l
o,o(uo)

, f l
o,o : C→ CJ , (3.2)

where
(
Bl
o

)
(o,l)∈L+×L−

is a family of (linear) operators and we use the notation
∏
iX

(i) =
∑
k≤J

∏
iX

(i)
k where X(i) ∈ CJ .

Assumption 2 (leading operator Lo) The linear operator Lo shall be defined on a Hilbert space X of complex valued
functions u ∈ C with norm denoted by ‖ · ‖ and domain D(Lo). To make sense of the exponential functions, we in addition
assume that Lo generates a strongly continuous semigroup {etLo}t≥0 of contractions on X.

We illustrate the main idea of our general scheme via a simple example that contains already some important challenges
which could not be overcome in previous works [BS22, RS21]. Let us consider the abstract parabolic equation:

∂tu−∆u = f(u)V, u0 = v, (t, x) ∈ R× Ω (3.3)

with Ω ⊆ Rd sufficiently smooth. In the case of ∂Ω 6= 6# we assume suitable boundary conditions encoded in D(∆) and
shall denote by V a potential or noise.

The starting point of our new class of schemes is based on Duhamel’s formula for (3.3) which is given by

u(t) = et∆v +

∫ t

0

e(t−ξ)∆f(u(ξ))V dξ. (3.4)

Classical methods are in general based on Taylor series expansions of u(ξ) (the solution of (3.3) at time t = ξ) around the
initial value u0 = v in the sense that for small ξ we have at first order that

u(ξ) = v +O(ξu′). (3.5)

This classical Taylor series expansion, however, requires regularity in the solution since from the PDE (3.3) we have

O(ξu′) = O(ξ∆u).

Hence, the numerical scheme will only converge to order one for sufficiently smooth solutions

u ∈ D(∆).
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The situation is even worse for higher order methods which are in general based on higher order Taylor series expansions
of the solution

u(ξ) = v + ξu′(0) +
ξ2

2
u′′(0) + . . .+

ξr

r!
u(r)(0) +O(ξr+1u(r+1)). (3.6)

By using the PDE (3.3) we have at leading order

O(ξr+1u(r+1)) = O
(
ξr+1∆r+1u

)
.

Hence, it follows that at order r + 1 the necessary regularity assumptions on the solutions is increased to

u ∈ D(∆r+1). (3.7)

Remark 3.1.1 Note that (3.7) does not only require sufficiently smooth solutions (i.e., that the ∂2(r+1)th derivative is
bounded), but also additional compatibility conditions on the boundary whenever ∂Ω 6= 6#. For example, for a second
order approximation, namely when r = 1, the classical Taylor expansion (3.6) requires

u ∈ D(∆2) = {f ∈ D(∆) ; ∆f ∈ D(∆)}.

In case of Ω a bounded smooth open set of Rd equipped with homogeneous Dirichlet boundary conditions this means that

u ∈ D(∆2) =
{
f ∈ (H2 ∩H1

0 )(Ω) ; ∆f ∈ (H2 ∩H1
0 )(Ω)

}
. (3.8)

Hence, zero trace of the solution u and ∆u on the boundary is imposed.

In this manuscript we want to overcome these high regularity assumptions by developing a new class of schemes with
improved local error structures. It is essential to note that if we want to develop such a class of (high order) methods
under low(er) regularity assumptions

u ∈ Y ⊃ D(∆r+1)

we cannot base our new schemes on classical Taylor series expansions of type (3.6).
Our idea to overcome the regularity assumptions (3.7) lies in embedding the central oscillations of the PDE into the

numerical discretisation, while only approximating the lower order terms. More precisely, iterating Duhamel’s formula
(see also [BS22, RS21]) we have thanks to (3.4) at time t = ξ that

u(ξ) = eξLv +O(ξ)

where the central oscillations are captured in the term

eξLv

and the remainder O(ξ) does not involve any derivatives on the solution. In detail one has for u(ξ) = eξ∆v +A(ξ) that

f(u(ξ)) =
∑
k≤r

A(ξ)k

k!
f (k)(eξ∆v) +O(A(ξ)r+1) (3.9)

where we truncate the expansion at r which is associated to the order of the scheme one wants to achieve. The remainder
A(t) will corresponds in practice (after a suitable approximation) to a finite sum of iterated integrals only involving
bounded operators.

Plugging (3.9) into (3.4), we obtain the following expansion of the exact solution

u(t) = et∆v +
∑
k≤r

∫ t

0

e(t−ξ)∆A(ξ)k

k!
f (k)(eξ∆v)V dξ +O(tr+2), (3.10)

where the central oscillations are embedded in the interaction of

e(t−ξ)∆ and f (k)(eξ∆v)

and the remainder O(tr+2) does, in contrast to classical approximation techniques (3.6), not involve any derivatives on
the solution.
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The main challenge lies in controlling the oscillatory integrals in (3.10)

∑
k≤r

∫ t

0

e(t−ξ)∆A(ξ)k

k!
f (k)(eξ∆v)V dξ (3.11)

on the discrete level. Note that a classical Taylor series expansion of the oscillations eξ∆ would again lead to the high
regularity assumptions (3.7). Our key idea to overcome this lies in embedding the central oscillations in (3.11) explicitly
into our numerical discretization. In order to do so, in a first step we have to linearise the terms f (k)(eξ∆v). This will
allow us to filter out the dominant oscillations while controlling the approximation error by commutators C[·, ·] with an
improved error structure introduced as follows:

Definition 3.1.2 For a function H(v1, ..., vn), n ≥ 1 and a linear operator L we set

C[H,L](v1, ..., vn) = −L(H(v1, ..., vn)) +

n∑
i=1

DiH(v1, ..., vn) · Lvi

where DiH stands for the partial differential of H with respect to the variable vi. We define the iterated commutator
Ck[H,L] recursively by

Ck+1[H,L] = Ck[C[H,L],L], C0[H,L] = H.

Let us illustrate this definition with our example (3.3). With the above notation (and L = ∆) one has for sufficiently
smooth f :

f(eξ∆v) =

r∑
`=0

ξ`

`!
eξ∆C`[f,∆](v) +O(ξr+1Cr+1[f,∆](v)). (3.12)

This linearisation produces an error of the form
Cr+1[f,∆](v)

which in general requires less regularity and less compatibility conditions on the boundary than does a classical Taylor-series
expansion of the propagator eξ∆. Indeed, up to order r we have

eξ∆ =
∑
k≤r

ξk

k!
∆k +O(ξr+1∆r+1), (3.13)

whereby
D
(
Cr+1[f,∆]

)
⊃ D(∆k+1).

Hence, the commutator expansion (3.12) requires less regularity assumptions and compatibility conditions than classical
Taylor expansion of the the propagator eξ∆. We illustrate this through an example in the following two remarks. This
observation also holds true in the general setting (3.1).

Remark 3.1.3 In general it holds that
D(C[f,L]) ⊃ D(L).

Let us for instance recall the example given in [RS21, Sec. 2.1] where L = ∆ on the torus Td and f(u) = u2. Then one
has D(L) = H2 (the classical Sobolev space) and

C[f,L](v) = −
d∑
k=1

(∂kv)2.

If we choose to measure the error in L2, in order to bound the above expression we need (∂kv)2 ∈ L2. This follows for
v ∈ H1+ d

4 by using the injection H1+ d
4 ↪→ L4. Hence we have v ∈ H1+ d

4 ⊂ D(C[f,L]). For an analysis in Hs-norm with
s ≥ 0 we refer to [AB23a].

We note that the above also holds true when working on a bounded domain of Rd, equipped with homogeneous
Dirichlet boundary conditions. Indeed, the same argument as above holds with D(∆) = (H2 ∩ H1

0 )(Ω), and where
v ∈ (H1+ d

4 ∩H1
0 )(Ω) ⊂ D(C[f,∆]).

Remark 3.1.4 The commutator term Cr+1[f,∆](v) in general asks for less regularity and compatibility conditions at
the boundary than the classical Taylor’s expansion (3.13). Indeed, in case of homogeneous Dirichlet boundary conditions
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for example when r = 1, the commutator term C2[f,∆](v) involves derivatives of at most second order. Namely, formally
we have C2[f,∆](v) = O(∆v), which requires v ∈ D(∆) = (H2 ∩H1

0 )(Ω). A. classical second-order Taylor’s expansion
on the other hand asks for v ∈ D(∆2), which does not only requires v to have zero trace on the boundary, but also its
second derivatives (see also Remark 3.1.1).

Let us now turn back to presenting the main idea of our new schemes on the example (3.3): Plugging (3.12) into
(3.10), we get

u(t) = et∆v +
∑
k,`≤r

∫ t

0

e(t−ξ)∆A(ξ)k

k!

ξ`

`!

(
eξ∆C`[f (k),∆](v)

)
V dξ (3.14)

+O(tr+2Cr+1[f (k),∆](v))

where the leading error term is driven by the commutator

O(tr+2Cr+1[f (k),∆](v)).

In general, the latter is more important (i.e., worse in terms of regularity assumptions) than the ones introduce by the
approximation of A(t) (cf. (3.9)) which is a polynomial in the initial condition v involving only bounded operators.
Also, one can mention that in general Lo is more singular than the Bl

o, where the (linear) operators Bl
o are given by the

structure of the nonlinearity (3.2).
From the approximation (3.14), we can collect iterated integrals for building an approximate solution wr(v, t) up to

order r. For example, when r = 2, we get

w2(v, t) = et∆v +

∫ t

0

e(t−ξ)∆
(
eξ∆f(v)

)
V dξ (3.15)

+

∫ t

0

ξe(t−ξ)∆
(
eξ∆C[f,∆](v)

)
V dξ

+

∫ t

0

e(t−ξ)∆
(∫ ξ

0

e(ξ−ξ1)∆
(
eξ1∆f(v)

)
V dξ1

)(
eξ∆f (1)(v)

)
V dξ.

Remark 3.1.5 The remaining challenge lies in embedding the central oscillations triggered by

e(t−ξ)∆
(
eξ∆f(v)

)
V, e(t−ξ)∆

(
eξ∆C[f,∆](v)

)
V,

e(t−ξ)∆
(∫ ξ

0

e(ξ−ξ1)∆
(
eξ1∆f(v)

)
V dξ1

)(
eξ∆f (1)(v)

)
V

into the numerical discretisation.

For this purpose we will introduce a recursive map Π defined on a set of trees T to encode these iterated integrals.
The set T will be decorated trees whose formalism has been introduced in [BHZ19] and has been extensively used in
[BCCH20] for giving wellposedness results for a large class of Stochastic partial differential equations (SPDEs). After the
recent work [BS22], it is the second time that one uses this formalism also in context of Numerical Analysis. The iterated
integrals for w2 are given by trees of size two (having at most two edges) T 2:

T 2 =
{
, ,

}
.

Brown edges encode integrals of the form
∫ t

0
e(t−ξ)∆ · · · dξ, white nodes the nonlinearity eξ∆f(v)V and the nodes marked

with a cross correspond to ξ
(
eξ∆C[f,∆](v)

)
V . Incoming edges to a grey dot induce derivatives on f which will allow us

to encode the third term in (3.15).
Our decorated trees strongly differ from the ones introduced in [BS22]: The scheme introduced in [BS22] heavily relies

on Fourier series expansion techniques and is therefore restricted to periodic boundary conditions. In particular, the tree
structure in [BS22] is based on Fourier decorations. The latter allowed us to easily filter out the dominant frequency
interactions in the system based on the underlying structure of resonances of the PDE. In order to handle the general
setting (3.1), and in particular deal with non periodic boundary conditions and non polynomial nonlinearities, we can,
however, not make use of the previously proposed resonance analysis. Instead, we have to introduce new tools based on
the analysis of the operator interactions and an extensive use of the commutator based approximation (3.12). Let us
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illustrate this analysis on the first iterated integral that we denote by
(

Π

)
(t). It takes the following form

(
Π

)
(t) =

∫ t

0

e(t−ξ)∆
2∏
i=1

eξLiuidξ,

L1 = ∆, u1 = f(v), L2 = 0, u2 = V.

The first step is to distribute e(t−ξ)∆ on the product
∏2
i=1 e

ξLiui:

e(t−ξ)∆

(
2∏
i=1

eξLiui

)
=

2∏
i=1

eξLi+(t−ξ)∆ui (3.16)

+
∑

1≤k≤r

(t− ξ)k

k!
Ck[(et∆M{1})(e(t−ξ)∆M{2}),∆](u1, u2)

+O
(
tr+1Cr+1[M{1,2},∆](u1, u2)

)
where we have used the following notations: Let (ui)i∈I and (vj)j∈J be two finite sets of functions and L1 and L2 two
linear operators. Then we set

(L1MIL2MJ)(ui∈I , vj∈J) := L1

(∏
i∈I

ui

)
L2

(∏
j∈J

uj

)

and

C[MI ,L1](ui∈I) := −L1MI(ui∈I) +
∑
j∈I

MI(...,L1uj , ...).

Remark 3.1.6 We can notice that the term e−ξ∆ does, however, not make sense (recall that ξ ≥ 0). In the dispersive
setting of [BS22], one did not have such an issue (as for instance eiξ∆ is well defined for all ξ ∈ R) and hence one could
perform the resonance analysis only on the terms depending on ξ. In our general setting (3.1) we have to be more careful
and take the oscillations of the full operator e(t−ξ)∆ into account.

The second step is to identify the dominant part in the operators Li−∆ in (3.16). For this purpose we set Ai = Li−∆
and introduce the splitting

Ai = aiLdom +Ailow, D(Ldom) ⊂ D(Ailow)

where ai ∈ {0, 1}. The purpose of this splitting lies in the fact that in the construction of our schemes we will separate the
dominant from the lower order oscillations and only embed the dominant parts exactly into our numerical discretization,
while Taylor expanding the lower order parts. Note that in the above example one for instance has that

A1 = 0, A2 = −∆,

and hence, a1 = 0, a2 = 1, Ailow = 0 for i ∈ {1, 2} and Ldom = −∆. In this simple case one does not need any further
approximation and one can write the following approximation at order r:(

Πr

)
(t) =

∑
0≤k≤r

∫ t

0

(t− ξ)k

k!
Ck[(et∆M{1})(e(t−ξ)∆M{2}),∆](u1, u2)dξ.

Remark 3.1.7 In most applications, one does not have to go through the second step of the approximation like the
example shown above. The second step is needed for linear combination of operators like ∂2

x + ∂x. One may have to
approximate the following iterated integral (with notation ∆ = ∂2

x):∫ t

0

e(t−ξ)∆
(
eξ(∆+∂x)v2

)
V dξ.

This integral is coming from a system of the form:

∂tu1 −∆u1 = u2V, u1(0) = v1, (3.17)
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∂tu2 −∆u2 − ∂xu2 = 0, u2(0) = v2.

Then, from (3.16), we get

∑
1≤k≤r

(t− ξ)k

k!
Ck[(et∆+ξ∂xM{1})(e(t−ξ)∆M{2}),∆](v2, V ).

Now, A1
low = ∂x and one has to Taylor-expand the term eξ∂x . This leads to the following approximation:∫ t

0

e(t−ξ)∆
(
eξ(∆+∂x)v2

)
V dξ =

∫ t

0

∑
0≤k+`≤r

(t− ξ)k

k!

ξ`

`!

Ck[(et∆M{1})(e(t−ξ)∆M{2}),∆](∂`xv2, V )dξ

+
∑

k+`=r+1

O
(
tr+2Ck[M{1,2},∆](∂`xv2, V )

)
.

In the next section, we will present our main strategy in the general setting (3.1).

3.1.2 Main strategy of the general numerical scheme
Duhamel’s formulation of (3.1) is given by

uo(τ) = eτLovo +

∫ τ

0

e(τ−ξ)Lo
∑
l∈L−

Ψl
o(u

l
o)Vldξ. (3.18)

By iterating this formulation together with (3.12) and (3.9), we get iterated integrals that can be represented via decorated
trees. Let r + 1 be the order of the scheme, we first truncate this expansion and get the following approximation of the
solution:

wro(v̂, τ) = eτLovo +
∑
T∈Vr

(ΠT )(v̂, τ) (3.19)

where v̂ = (v,V), v = (vo)o∈L+ , V = (Vl)l∈L− , Vr is a finite set of decorated trees, and (ΠT )(v̂, τ) represents the iterated
integral associated to T . The exponent r in Vr means that we consider only trees of size r which are the trees producing
an iterated integral with r integrals. Proposition 3.4.1 shows that wro solves (3.18) with an error involving Cr+1[f,Lo] with
f a function coming from the coefficients Ψo. The main improvement lies in the error structure: The error Cr+1[f,Lo] is
in general better than Lro in the sense of requiring lower regularity assumptions on the solution.

The main difficulty boils down to developing for every T ∈ Vr a suitable approximation to the iterated integrals
(ΠT )(v̂, τ) with the aim of minimising the local error structure (in the sense of regularity), see also Remark 3.1.5. In order
to achieve this, the key idea lies in commutator based approximations (3.12) which replace the resonance analysis given in
[BS22]. The approximation of (ΠT ) is given by a new map on decorated trees denoted by Πr

A where r + 1 is the order of
the scheme and A is a domain corresponding to the a priori assumed regularity of v̂. Our general scheme takes the form

wro,A(v̂, τ) = eτLovo +
∑
T∈Vr

(Πr
AT )(v̂, τ) (3.20)

where the map Πr
AT is a low regularity approximation of order r of the map ΠT in (3.19) in the sense that

(ΠT −Πr
AT )(v̂, τ) = O

(
τr+2Lrlow(T, v̂, A)

)
. (3.21)

Here Lrlow(T, v̂, A) involves nested commutators that require in general less regularity than powers of the full operator Lro
(see also Remark 3.1.3). The scheme (3.20) and the local error approximations (3.21) are the main results of this work
(see Theorem 3.4.3). The approximation Πr

A is constructed from a character ΠA defined on the vector space H spanned
by decorated forests taking values in a space C that will depend on the operators Lo and v̂. We add a decoration r at the
root with the meaning that we will consider an approximation of order r. This is performed by the symbol Dr that gives
ΠADr(T ) = Πr

AT .
As in [BS22], we define the map ΠA recursively from an operator K. This operator computes a suitable approximation

(matching the regularity of the solution) of the integrals introduced by the iteration of Duhamel’s formula. Here the main
difference is that we perform the analysis directly on the operator without going into Fourier space. We single out the
dominant parts of the operators we are dealing with. These dominant parts are integrated exactly and only the lower
order terms are approximated which allows for an improved local error structure compared to classical approaches.
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For the local error analysis, a structure of Hopf algebra and comodule was used in [BS22] for singling out oscillations.
It was based on a variant of the Butcher-Connes-Kreimer coproduct [But72, CK99, CK00] inspired by [BHZ19]. This
structure can be seen as a deformation of the Butcher-Connes-Kreimer coproduct (see [BM23]). The central object
used as in Quantum Field Theory for the local error analysis in [BS22] was a Birkhoff factorisation similar to the one
presenting in [BHZ19] for recentering iterated integrals. This is put into perspective in the work [BEF20]. The context of
commutators is much more involved than the one in Fourier space. We therefore do not use such a construction but
rather the recursive formulae for computing the local error. It is given in Definition 3.3.8. Via Proposition 3.3.7, we
illustrate what are the dominant operators involved in the computation of the local error.

3.1.3 Outline of the paper
Let us give a short review of the content of this paper. In Section 3.2, we introduce the general algebraic framework

by first defining a suitable vector space of decorated trees T̂ and decorated forests Ĥ. Next, we set how to compute the
dominant part of a set of operators (see Definition 3.2.1). We define then the dominant operators associated to a decorated
forest (see Definition 3.2.3). Then, we introduced new spaces of decorated trees T that we call approximated decorated
trees. They carry an extra decoration r at the root and they represent approximation at order r of the corresponding
iterated integrals. We also introduced new decorated forests based on the same construction.

In Section 3.3, we construct the approximation of the iterated integrals given by the character Π : Ĥ → C (see (3.38))
through the character ΠA : H → C (see (3.42)) where A is a domain that is the regularity of v̂. This is the regularity
assumed a priori before writing the scheme. The approximation ΠA relies on a recursive construction where the operator
K given in Definition 3.3.2 is heavily used. The local error analysis which is the error estimate on the difference between Π
and its approximation ΠA is given in Theorem 3.3.9. It is built upon a recursive definition (see Definition 3.3.8) involving
Taylor remainders of ΠA with commutators. They are given in Lemma 3.3.6. Proposition 3.3.7 gives the structures of the
dominant operators appearing in the local error analysis. In Section 3.4, we introduce truncated series of decorated trees
that solves up to order r equation 3.1 (see Proposition 3.4.1). Then, from this series built upon the character Π, one can
write the general scheme (see Definition 3.57) which boils down to replace Π by its approximation ΠA. In the end, we
compute its local error structure (see Theorem 3.4.3) based on the local error between Π and ΠA for each decorated tree
that appears in the expansion of the scheme.

In Section 3.5, we illustrate the general framework on various applications. The main example is the Gross-Pitaevskii
(GP) equation that includes both a potential and a rough initial data. With our general framework we derive a first and
second order scheme for GP and carry out precisely its local error analysis. We also discuss adapted filter operators for
the stability of the low regularity scheme in Section 3.5.2. The last example of this section is the Klein and Sine-Gordon
equations which illustrated our framework for non-polynomial nonlinearities.
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the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 850941). Y. B. gratefully
acknowledges funding support from the European Research Council (ERC) through the ERC Starting Grant Low
Regularity Dynamics via Decorated Trees (LoRDeT), grant agreement No. 101075208. Y. B. thanks the Max Planck
Institute for Mathematics in the Sciences (MiS) in Leipzig for supporting his research via a long stay in Leipzig from
January to June 2022 where part of this work was written.

3.2 Decorated trees
In this section, we introduce the formalism of decorated trees that is used for describing the iterated integrals stemming

from the iteration of the Duhamel’s formula (3.18) of our main equation (3.1). Decorations on the nodes will encode
monomials ξk and potentials Vl that appear in the equation whereas decorations on the edges encode the various integrals
in time. The two spaces of importance are T̂ (resp. Ĥ) space of decorated trees (resp. forests). They correspond to
iterated integrals without approximations. We define on these combinatorial objects the dominant operators that are used
for the discretisation (see Definition 3.2.3). In the end, we consider the spaces T and H obtained by adding decorations
at the root. This decoration gives the order at which we want to approximate these iterated integrals.

3.2.1 Definitions and dominant operators
We assume a finite set L which has the following splitting L = L+ tL−. We consider a family of differential operators

(Lo)o∈L+ indexed by L+ and a family of potentials (Vl)l∈L− indexed by L−. We suppose given (Lo,l+ )(o,l)∈L+×L− a
collection of subsets of L+. We define the set of decorated trees T̂ as elements of the form T n,f

e = (T, n, f, e) where

— T is a non-planar rooted tree with root %T , node set NT and edge set ET . We denote the leaves of T by LT .
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— the map e : ET → L+ are edge decorations. An edge decorated by o ∈ L+ will encode an integral of the form∫ t
0
e(t−s)Lo ...ds.

— the map n : NT → N are node decorations. They correspond to monomials of the form ξk, k ∈ N that appear in
iterated integrals.

— the map f : NT → L− are node decorations encoding the various potentials Vl.

When the node decoration n is omitted, we will denote the decorated trees as T f
e . This set of decorated trees is denoted

by T̂0. We say that T̄ f̄
ē is a decorated subtree of T f

e ∈ T̂0 if T̄ is a subtree of T and the restriction of the decorations e and
f of T to T̄ are given by ē and f̄. We denote by P̂ the set of planted trees T n,f

e that are decorated trees with only one edge
connected to the root and with no decorations at the root. Similarly when the node decoration n is omitted we denote
this set P̂0. We denote by Ĥ (and resp. Ĥ0) the (unordered) forests composed of trees in P̂ (and resp. P̂0) (including the
empty forest denoted by 1). Their linear spans are denoted by Ĥ (and resp. Ĥ0).

In order to represent these decorated trees, we introduce a symbolic notation. An edge decorated by o ∈ L+ is denoted
by Io. The symbol Io(·) : T̂ → Ĥ is viewed as the operation that connects the root of a decorated tree to a new root
with no decorations via an edge decorated by o. Any decorate tree T admits the following decomposition:

T = λ`l

m∏
i=1

Ioi(Ti) (3.22)

where the Ti are decorated trees, λ`l corresponds to the decorations at the root with ` ∈ N and l ∈ L−. The product
in (3.22) is viewed as the forest product. This decomposition means that every decorated tree can be identified with a
forest

∏m
i=1 Ioi(Ti) and a decoration λ`l . When ` = 0, we will use the shorthand notation: λ0

l = λl. Below, we provide an
example of such decorated trees:

λ`0l0 Io1(λ`1l1 )Io2(λ`2l2 )Io3(λ`3l3 ) =

o1 o2 o3

(`1, l1) (`2, l2) (`3, l3)

(`0, l0) (3.23)

Iterated integrals will be associated to these decorated trees. In order to approximate them numerically we will have to
resolve the underlying oscillations by extracting the dominant parts of the leading operators. In the next definition, we
introduce these dominant parts.

Definition 3.2.1 Let Ai, i ∈ {1, ...,m} be a finite set of operators with domains D(Ai) in the sense that Ai : D(Ai) ⊆
X → X. We define Pdom({A1, ...,Am}) as follows: We first consider I ⊂ {1, ...,m} such that Ai, i ∈ I are of smaller
domain in the sense that:

D(Ai) = D(Aj), i, j ∈ I, D(Ai) ( D(A`), ` ∈ {1, ...,m} \ I, i ∈ I.

If there exists an operator Ldom such that for every i ∈ I

Ai = Ldom +Ailow. (3.24)

where Ldom satisfies D(Ldom) ( D(Ailow), then we set

Pdom({A1, ...,Am}) = Ldom.

Otherwise, it is equal to 0.

Remark 3.2.2 The identity (3.24) has to be understood as a decomposition between lower and upper part of the
operators Ai. What is important in order to have a non-zero dominant part is to have a factorisation with some operator
Ldom. It is similar to the approach in Fourier space presented in [BS22, Def. 2.2] when one was looking at the form of the
higher monomials of polynomials in the frequencies.

Example 6 We illustrate the previous definition with {0,L}, where L has the domain D(L) 6= X. Then

Pdom({0,L}) = L

and for {0,−L,L}, one has

Pdom({0,−L,L}) = 0.
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The latter follows as D(−L) = D(L) and the coefficients in front of L are different (1 and −1).

Given a decorated tree, we want to compute its dominant part and lower part using the map Pdom. We suppose given
a space of operators O√ in X and we denote by OS the collection of finite sets of operators belonging to O√. Given two

sets A1 and A2, we denote their union by A1 ∪ A2. Given a finite set of operators A and an operator L, we define L⊕A
as the set where L is added to each component of A:

L ⊕A = ∪Lo∈A{L+ Lo}.

The term A	 L is computed as follows for each component Lo of A. If the dominant part of Lo is equal to L, in the
sense that one has the following decomposition:

Lo = L+ L̄ (3.25)

with D(L) ( D(L̄), then we replace Lo by L̄. Otherwise, we keep Lo. We define max(L,A) as the operation that replaces
each element Lo satisfying (3.25) by L otherwise we replace it by 0. Equipped with these notations, we are able to state
the main definition for computing the dominant part associated to a decorated tree:

Definition 3.2.3 We recursively define Rodom : T̂0 → OS, Rdom : P̂0 → OS, Rlow : P̂0 → OS and Ldom : P̂0 → O√ as:

Rodom(λl

∏
i

Ioi(Ti)) = {Lō, ō ∈ Lo,l+ } ∪
⋃
i

Rdom(Ioi(Ti)),

Ldom(Io(T )) = Pdom(−Lo ⊕Rodom(T )),

Rdom(Io(T )) = Lo ⊕max(Ldom,−Lo ⊕Rodom(T )),

Rlow(Io(T )) = (id	 Pdom)(−Lo ⊕Rodom(T )).

We extend these maps to T̂ and P̂ by ignoring the node decorations n.

Example 7 We illustrate the previous abstract definitions on some trees stemming from the cubic nonlinear Schrödinger
equation

i∂tu+ ∆u = |u|2u, u0 = v (3.26)

set on Rd, 1 ≤ d ≤ 3. For the equation (3.26), we have two variables which are u and ū. Thus, we rewrite (3.26) in the
following form:

∂tuo − Louo = −i(uo)2uō, uo(0) = vo

∂tuō − Lōuō = i(uō)
2uo, uō(0) = vō

(3.27)

where one has Lo = i∆, L+ = {o, ō}, L− = {0}, Lo,0+ = Lō,0+ = {o, ō} with V0 = 1, B0
o = B0

ō = id, Lo = L, Lō = −L and
X = L2(Rd), D(L) = H2, uo = u, uō = u, vo = v, vō = v. The nonlinearities are given by: f0

o,o(u) = −iu2, f0
o,ō(ū) = ū,

f0
ō,ō(ū) = +iū2 and f0

ō,o(u) = u. Let us recall the meaning of the subscripts in f0
o,ō: The 0 corresponds to the driver V0,

ō that it appears in the equation for u and the last subscript says that f0
o,ō depends only on the variable u. Next we

consider the following decorated tree

T = Io(λ0) = (3.28)

which encodes the iterated integral:

−i
∫ t

0

e(t−s)L
((
esLv2

)(
e−sLv̄

))
ds. (3.29)

The brown edge stands for the integral in time
∫ t

0
e(t−s)L...ds. The white dot associated to the potential V0 encodes the

product −i
(
esLv2

)(
e−sLv̄

)
. Indeed, it is connected via an edge associated to L, so we know that we have to consider the

nonlinearity associated to V0 in the equation for u. One gets from the definition of Lo,0+

Rodom( ) = {−L,L}.

Then applying the previous definitions (see Definition 3.2.3), one gets

−L⊕Rodom( ) = {−2L, 0}, Ldom(T ) = Pdom({−2L, 0}) = −2L,
Rdom(T ) = L ⊕max(Ldom,−L⊕ {−L,L}) = {−L,L}
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Rlow(T ) = (id	 Pdom)({−2L, 0}) = {−2L, 0} 	 −2L = {0}.

Remark 3.2.4 One can notice that some of the notations that we have introduced are similar to the one used in [BS22]
which took a direct inspiration from the algebraic structures developed for singular SPDEs in [BHZ19, BCCH20]. Our
decorations are however different to [BS22], because we focus on a more general set up no longer restricted to periodic
dispersive equations:

— The conjugate operator was encoded in [BS22] with edge decorations in {−1, 1} which allows the computation of the
frequency interactions. Now, we have a larger set of operators by having a bigger set L+ with elements such as o like
in the NLS example. One has Lo = L = L(o,−1) where the last identity corresponds to the old notation coming from
[BS22].

— Another change on the edge decorations is that in [BS22] certain edges correspond to some integrals in time others
not. This excludes the parabolic case. If we rewrite an integral of the form

∫ t
0
e(t−s)L · · · ds into etL

∫ t
0
e−sL · · · ds then

it does not make sense when L = ∆. We recall one decorated tree coming from [BS22]:

k1

k2
k3

≡ −ie−itk
2
∫ t

0

eisk
2
(
eisk

2
1e−isk

2
2e−isk

2
3

)
ds, (3.30)

where k = −k1 + k2 + k3, the leaves are decorated by the frequencies k1, k2, k3 and the inner nodes are decorated by
k. The blue edge encodes an integral in time −i

∫ t
0
eisk

2

· · · ds, the brown edges are used for a factor e−isk
2

and the
dashed brown edges are for eisk

2

. If we consider the same integral not in Fourier mode, one can rewrite it as

≡ −i
∫ t

0

e(t−s)L
((

esLv
)2(

e−sLv
))

ds (3.31)

where L = i∆, the blue dot corresponds to v and the blue edge now encodes an integral of the form
∫ t

0
e(t−s)L · · · ds.

In (3.31), we have to incorporate the initial data v and v̄ in the definition while they are implicit when the integral is
written in Fourier space in (3.30) (one has just to multiply the integral with ¯̂vk1 v̂k2 v̂k3). In fact, the coding given
by (3.31) is sufficient for cubic NLS, but not for the general case we have in mind that contains potentials and
non-polynomial nonlinearities.

— We add new decorations at the nodes stemming from the drivers Vl of (3.1). The initial conditions are associated to
the drivers and the equations we are using via the sets Lo,l+ . Let us take for example a nonlinearity of the form

f(u)g(u)Vl.

Then, after inserting the approximation u(s) = esLv +A(s), one gets thanks to (3.12)(
esLf(v)

)(
esLg(v)

)
V0 ≡ = λ0. (3.32)

Next if we integrate by
∫ t

0
e(t−s)L · · · ds encoded by a brown edge, we obtain the following integral when f(u) = u2

and g(ū) = ū:

Io(λ0) = ≡ −i
∫ τ

0

ei(τ−s)∆
((
eis∆v2

)(
e−is∆v̄

))
ds (3.33)

The main difference between (3.31) and (3.33) is (eis∆v)2 which is replaced by eis∆v2. We are dealing in (3.33) with
integrals that contain less factors of the form eis∆v.

Example 8 As a second example, let us consider the Gross–Pitaevskii equation. The main difference with the cubic
NLS equation (3.26) is the adjunction of a potential V . The equation takes the form:

i∂tu+ ∆u = |u|2u+ uV, u0 = v (3.34)

set on Rd, d ≤ 3. Now, one has L− = {0, 1}, Lo,1+ = {o}, Lo,1+ = {o} with V1 = V . The other sets remain the same, and
are defined in Example 7. The new nonlinearities coming from the added potential term are given by: f1

o,o(u) = −iu and
f1
ō,ō(ū) = iū. Hence, together with the nonlinearities defined in (3.26), we indeed recover the nonlinear terms of (3.34)
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from the general form (3.1) : ∑
l∈L−

Ψl
o(u

l
o)Vl(x) = Ψ0

o(u
0
o)V0(x) + Ψ1

o(u
1
o)V1(x)

= f0
o,o(uo)f

0
o,ō(uō) + f1

o,o(uo)V

= −i(uo)2uō − iuoV,

where we recall that we set B1
o = B1

ō = id. We rewrite equation (3.34) into

∂tuo − Louo = −i(uo)2uō − iuoV, uo(0) = vo

∂tuō − Lōuō = i(uō)
2uo + iuōV, uō(0) = vō

(3.35)

where for simplicity we have assumed a real potential V = V . The central iterated integrals up to second order then take
the form

Io(λ1) = ≡ −i
∫ t

0

e(t−s)L
((
esLv

)
V
)
ds

Io(λ1) = ≡ i
∫ t

0

e(s−t)L
((
e−sLv

)
V
)
ds

Io(λ0Io(λ1)) =

≡ −
∫ t

0

e(t−s)L
((∫ s

0

e(s−r)L
((
erLv

)
V
)
dr

)(
esLv

)(
e−sLv̄

))
ds.

Io(λ0Iō(λ1)) =

≡
∫ t

0

e(t−s)L
((∫ s

0

e(r−s)L
((
e−rLv

)
V
)
dr

)(
esLv2

))
ds,

where we have used a blue dot for encoding the potential V . A full list of these trees is given in the Section 3.5.1.

3.2.2 Approximated decorated trees

We denote by T the set of decorated trees T n,f
e,r = (T, n, f, e, r) where

— T n,f
e ∈ T̂ .

— The decoration of the root is given by r ∈ Z, r ≥ −1 such that

r + 1 ≥ deg(T n,f
e ) (3.36)

where deg is defined recursively by

deg(1) = 0, deg(λ`l

m∏
i=1

Ioi(Ti)) = `+ 1 + max(deg(T1), ..., deg(Tm)).

We call T approximated decorated trees following the terminology introduced in [BS22]. Indeed, the decoration r at the
root means that we consider an approximation at order r of the iterated integrals associated to the same trees without
this decoration. The quantity deg(T n

e ) is the maximum number of edges and node decorations n lying on the same path
from one leaf to the root.

We denote by P the planted trees satisfying the same condition as T . The forests formed of these trees are given by
H and their linear span by H. They are of the form Iro (T ). The map Iro (·) : T̂ → H is defined as the same as for Io(·)
except now that the root is decorated by r and it could be zero if the inequality (3.36) is not satisfied. It can be naturally
extended into a map from T into H by removing the r decoration at the root of the tree that is grafted onto a new root.
We define the map Dr : P̂ → H which adds the decoration r and performs the projection along the identity (3.36). It is
given by

Dr(1) = 1{0≤r+1}, Dr(Io(T )) = Iro (T ) (3.37)
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We extend this map to T by:

Dr(λ`l
m∏
i=1

Ioi(Ti)) = λ`l

m∏
i=1

Ir−`oi (Ti)

where the term on the right hand-side is identified with λ`l
∏m
i=1 Ioi(Ti) where the decoration r is added to its root with

the projection given by (3.36).

3.3 Approximations of iterated integrals

In this section, we introduce the iterated integrals associated to decorated trees via a character Π : Ĥ → C, a
multiplicative map for the forest product. We approximate this map via a new character ΠA : H → C defined on
approximated decorated forests with A a domain to which v̂ belongs to. The crucial part of the recursive definition of
ΠA is given by an operator K that filter out the dominant part of the operators. It expands only the lower order parts
into a Taylor series expansion while integrating exactly the dominant part (see Definition 3.3.2). The definition of these
operators is similar to the one in Fourier given in [BS22]. Then, in the second part of this section, we conduct the local
error analysis by comparing Π with ΠA with the main result given in Theorem 3.3.9. The main argument for establishing
this bound is a recursive definition (see Definition 3.3.8) which involves several Taylor remainders (see Lemma 3.3.6).
These remainders are stemming from the various approximations performed by the map K. Such a description is analogue
to the Fourier case that can provide a further expansion of the local error analysis via a Birkhoff factorisation involving a
Butcher-Connes-Kreimer coproduct. We do not have such a characterisation for our scheme. However in Proposition 3.3.7
we are able to show how dominant operators are involved in the local error analysis. This was previously observed in the
Fourier case.

3.3.1 Characters on decorated forests

We first introduce the linear space C in which the iterated integrals associated to Duhamel’s formula (3.18) live. Any
element f ∈ C is such that for every τ ∈ R+, one has that f(·, τ) is an operator on v̂. We define a character Π on Ĥ
taking values in C. It is given for T ∈ T̂ and F1, F2 ∈ Ĥ by

(ΠIo(T ))(v̂, τ) =

∫ τ

0

e(τ−ξ)Lo(Π̃oT )(v̂, ξ)dξ, (3.38)

(ΠF1F2)(v̂, ξ) = (ΠF1)(v̂, ξ) (ΠF2)(v̂, ξ)

where F1F2 is the forest product and Π̃o is given on a decorated tree T = λkl
∏n
i=1 Ioi(Ti) by(

Π̃o λ
k
l

n∏
i=1

Ioi(Ti)

)
(v̂, ξ) = Bl

o

(
ΥΨo

root[T ]

Sroot(T )
Vl ξ

kΠ

(
n∏
i=1

Ioi(Ti)

))
(v̂, ξ) (3.39)

where Sroot(T ) is the symmetry factor associated to the root of the decorated tree T and the (linear) operators Bl
o are

given by the structure of the nonlinearity (3.2). The symmetry factor is defined by setting Sroot(1) = 1 and

Sroot

(
λkl
∏
i,j

(Ioi(Ti,j))
βi,j

)
= k!

∏
i,j

βi,j ! (3.40)

with Ti,j 6= Ti,` for j 6= `. The coefficient ΥΨo
root[T ] in (3.38) is given by

ΥΨo
root[T ](v, ξ) = (∂kDo1 · · ·DonΨ̂l

o)(v, ξ) (3.41)

where for Ψl
o(u

l
o) = Bl

o

(∏
o∈Ll,o

+
f l
o,o(uo)

)
we have

Ψ̂l
o(v, ξ) =

∏
o∈Ll,o

+

eξLof l
o,o(vo).

The various derivatives ∂,Do follow the Leibniz rule and are given by:

DoiC
`
[
Dk
oif

l
o,oi ,Loi

]
= C`

[
Dk+1
oi f l

o,oi ,Loi
]
,
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∂C`
[
Dk
oif

l
o,oi ,Loi

]
= C`+1

[
Dk
oif

l
o,oi ,Loi

]
,

where Doi stands for the derivative with respect to voi . One has Doif(voj ) = 0 for oi 6= oj and by convention we set
Doi(e

ξLoi voi) = 1. The derivative ∂o adds a commutator depending on Loi to f l
o,oi .

Remark 3.3.1 The subscript o in Π̃o is needed in the definition for identifying which nonlinearity has to be used in the
coefficient ΥΨo

root[T ]. This is also a crucial difference with [BS22] where the coefficients ΥΨo
root[T ] are detached from the

definition of the iterated integral. This is possible due to the fact that one only works in Fourier space in [BS22]. We have
used the subscript root to stress that ΥΨo

root[T ] computes a coefficient of T taking into account only its edges connected
to its root. This is in contrast with the classical elementary differential for B-series where all the nodes of the tree are
considered for computing it. In fact, the rest of the coefficient is computed recursively via an iteration of Π in (3.39).

Example 9 We continue Example 8 on the Gross-Pitaevskii equation and illustrate the definition of Π, Π̃o. One has(
Π̃oλ0

)
(v̂, ξ) =

(
−ieξLv2

)(
e−ξLv̄

)
,
(

Π̃ōλ0

)
(v̂, ξ) =

(
ie−ξLv̄2

)(
eξLv

)
,(

Π̃oλ1

)
(v̂, ξ) =

(
−ieξLv

)
V,

(
Π̃ōλ1

)
(v̂, ξ) =

(
ie−ξLv

)
V,

since

Sroot(λ0) = Sroot(λ1) = 1, V0 = 1, V1 = V, B0
o = B1

o = id,

ΥΨo
root[λ0](v, ξ) =

(
−ieξLv2

)(
e−ξLv̄

)
, ΥΨō

root[λ0](v, ξ) =
(
ie−ξLv̄2

)(
eξLv

)
,

ΥΨo
root[λ1](v, ξ) = −ieξLv, ΥΨo

root[λ1](v, ξ) = ie−ξLv.

Hence,

(ΠIo(λ0))(v̂, τ) =

∫ τ

0

e(τ−ξ)Lo(Π̃oλ0)(v̂, ξ)dξ

= −i
∫ τ

0

e(τ−ξ)Lo
(
eξLv2

)(
e−ξLv̄

)
dξ.

Then again, using the definition of the characters Π, and Π̃o in (3.38) , we obtain(
Π̃oλ

1
0

)
(v̂, ξ) =

ΥΨo
root[λ

1
0]

Sroot(λ1
0)

(v, ξ)V0ξ

= −iξ
(
eξLC[u2,L](v)

)(
e−ξLv̄

)
,

since,

ΥΨo
root[λ

1
0](v, ξ) = (∂1Ψ̂0

o)(v, ξ)

= ∂1[(eξLf0
o,o(vo))(e

−ξLf0
o,ō(vō))]

= −i
(
eξLC[u2,L](v)

)(
e−ξLv̄

)
and Sroot(λ

1
0) = 1.

Let A be a given domain of regularity of v̂ that corresponds to the regularity we assume a priori on the initial data
and the potentials. We introduce an approximation of Π via a new character ΠA defined on H, by:

(ΠAIro (T ))(v̂, ξ) = Kro,A((Π̃o,ADr−1(T ))(v̂, ·))(ξ)(
Π̃o,A λ

k
l

n∏
i=1

Iroi(Ti)

)
(v̂, ξ) = Bl

o

(
ΥΨo

root[T ]

Sroot(T )
Vl ξ

k
n∏
i=1

(
ΠAIroi(Ti)

))
(v̂, ξ)

(3.42)

where T = λkl
∏n
i=1 Ioi(Ti) and the operator Kro,A is given in Defintion 3.3.2. As one can notice the approximation follows

the recursive definition of Π and Π̃o. The main difference occurs when one replaces the integral in time given in (3.38) by
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the operator Kro,A. This operator is used to give an approximation of order r + 1 to the following integral:∫ t

0

e(t−s)LoB

(
s`

m∏
i=1

esLiui

)
ds (3.43)

where B, Li are some operators and the ui depend on v̂. The approximation should take into account the various
interactions between the operators Lo and Li. In the sequel, we will use the following shorthand notations:

Πr
A = ΠADr, Π̃r

o,A = Π̃o,ADr

where now Πr
A and Π̃o,A are defined on Ĥ and P̂ .

Definition 3.3.2 Let us consider a function F of the form

F (v̂, ξ) = ξ`B

(∏
i∈J

eξLiui(v̂)

)

where B is a linear operator, the operators Li satisfy Assumption (2), and J is a finite set. We suppose that the ui are
smooth functions of v̂, and we assume a given domain A for which we have v̂ ∈ A. Let r > 0, o ∈ L+ and the operator
Lo associated to the decoration o. We assume that B commutes with Lo. Given (ki)i∈J with ki ∈ N, we define

Gn,(ki)i∈J : v̂→ LnoB

(∏
i∈J

Lkii ui(v̂)

)
.

Note that the domain of G depends on the space X and it’s associated norm. Now we distinguish two cases:

— If A ⊆ D(Gn,(ki)i∈J ) for all (ki)i∈J and n be such that,
∑
i ki + n ≤ r − ` + 1 we can carry out a Taylor-series

expansion of all the operators and set:

Kro,A(F (v̂, ·))(τ) (3.44)

=
∑

∑
i ki+n≤r−`

∫ τ

0

(τ − ξ)nξ
∑
i∈J ki+`

n!
∏
i∈J ki!

LnoB

(∏
i∈J

Lkii ui(v̂)

)
dξ.

— Otherwise, we set

Ai = Li − Lo, Ldom = Pdom({A1, · · · ,Am}).

Then, if Ldom 6= 0, let I ⊂ J such that for every i ∈ I, one has

Ai = Ldom +Ailow, D(Ldom) ⊂ D(Ailow),

and for i ∈ J \ I

Ai = Ailow, D(Ldom) ⊂ D(Ai).

One can rewrite F as

F (·, ξ) = ξ`B

(∏
i∈I

eξ(Lo+Ldom+Ailow)ui

) ∏
i∈J\I

eξ(Lo+Ailow)ui

. (3.45)

We assume that the operators that appear in (3.45) commute and generate a continuous semigroup. If this is not the
case, one needs to apply the approximation (3.44). We have to distinguish two cases:

(i) If Ldom 6= 0 then

Kro,A(F )(τ) =

∫ τ

0

∑
q≤r−`

∑
q=n+m+p+

∑
i∈J ki

(τ − ξ)mξ`+
∑
i∈J ki

p!m!n!
∏
i∈J ki!

(3.46)

B
(
Cm[

(
eτLoCn[MJ\I , τLo]

)(
eξLdom+τLoCp[MI , ξLdom + τLo]

)
,Lo]

(((Ailow)kiui)i∈J)
)
dξ.
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(ii) If Ldom = 0 then

Kro,A(F )(τ) =

∫ τ

0

∑
q≤r−`

∑
q=n+m+

∑
i∈J ki

(τ − ξ)mξ
∑
i∈J ki

m!n!
∏
i∈J ki!

(3.47)

B
(
Cm[

(
eτLoCn[MJ , τLo]

)
,Lo](((Ai)kiui)i∈J)

)
dξ.

Remark 3.3.3 In general, one has to face more complicated products to approximate. They are of the form:

F (v̂, ξ) = ξ`B

∏
i∈K

Bi

∏
j∈Ji

eξLjui,j(v̂)


Such a product will not appear in the Gross-Pitaevski equation neither for the first order of Sine-Gordon. In that case,
one can perform the same analysis computing domimant and lower parts. To be in the cases (i) and (ii), there must exist
some I ⊂ K such that one has to get the following factorisation:

F (v̂, ξ) = ξ`B

∏
i∈I

Bi

∏
j∈Ji

eξ(Lo+Ldom+Ajlow)ui,j


 ∏
i∈K\I

Bi

∏
j∈Ji

eξ(Lo+Ajlow)ui,j


Then, one has just to replace the productsM by new ones taking into account the operators Bi:∏

i∈I

Bi(MJi),
∏

i∈K\I

Bi(MJi)

instead ofMI andMK\I . If F happens not to have this form one performs the full Taylor expansion as in (3.44).

Remark 3.3.4 The {ki}i∈J appear after having Taylor expanded the lower order parts of the operators. Let us mention
that this step is necessary in a coupled system with two differential operators L1 and L2 that differ from a lower differential
operator see equation (3.17).

Remark 3.3.5 The previous approximation is optimized according to an a priori given domain A. For solutions and
potentials regular enough, for example when the following inclusions hold: A ⊂ D(Lo) or/and A ⊂ D(Ldom), then in
these cases, one can perform Taylor expansions (see (3.44)) in order to simplify the scheme. This approach is deeply
used in Section 3.5.1 for the construction of the second order low-regularity scheme for Gross-Pitaevskii, and in Sections
3.5.1 and 3.5.3 to construct a simplified first-order scheme for the Gross-Pitaevskii and Sine-Gordon equation when we
assume more regularity on the solution and/or potential. Moreover, given that the boundary conditions are encoded in
the domain of the operator Lo and Ldom, we also define the domain A with the prescribed boundary conditions.

Example 10 We illustrate Definition 3.3.2 on a tree coming from the NLS equation with A = (H2(Ω))2, v̂ = (v, v̄),
where for simplicity we assume that Ω = Rd.

(ΠAIro (λ0))(v̂, ξ) = Kro,A((Π̃o,ADr−1(λ0))(v̂, ·))(ξ)(
Π̃o,ADr−1(λ0)

)
(v̂, ξ) =

(
−ieξLv2

)(
e−ξLv̄

)
.

Then using the notations in Definition 3.3.2, one gets

F (v̂, ξ) =
∏

i∈{1,2}

eξLiui(v̂), u1(v̂) = −iv2, u2(v̂) = v̄,

L1 = L, L2 = −L.

We can now compute the operator interactions as follows

A1 = L1 − L = 0, A2 = L2 − L = −2L
Ldom = Pdom({A1,A2}) = Pdom({0,−2L}) = −2L, A1

low = A2
low = 0.
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We have Ldom = −2L 6= 0, therefore we apply the first point (i) of Definition 3.3.2:

Kro,A(F )(τ) =

∫ τ

0

∑
q≤r−`

∑
q=n+m+p

(τ − ξ)m

p!m!n!
∏
i∈J ki!

Cm[
(
eτLoCn[MJ\I , τLo]

)(
eξLdom+τLoCp[MI , ξLdom + τLo]

)
,Lo]

((ui)i∈J) dξ.

We have I = {2} and J = {1, 2}, therefore for every n, p 6= 0

Cn[MJ\I , τLo] = Cp[MI , ξLdom + τLo] = 0.

Hence, from the above computations and by considering the case where r = 1 (i.e., a second order scheme) we obtain
the following,

K1
o,A(F )(τ) = B + C

B =

∫ τ

0

(τ − ξ)C[
(
eτLoM{1}

)(
eξLdom+τLoM{2}

)
,Lo](u1, u2) dξ

C =

∫ τ

0

(
eτLou1

)(
eξLdom+τLou2

)
dξ.

In the end, one has (
ΠAI1

o (λ0)
)
(v̂, τ) = −i

∫ τ

0

(
eτLv2

)(
e(τ−2ξ)Lv

)
dξ

+

∫ τ

0

(τ − ξ)C[
(
eτLM{1}

)(
e(τ−2ξ)LM{2}

)
,L](−iv2, v) dξ.

3.3.2 Local error analysis for approximated iterated integrals

Before comparing the character Π with ΠA, one has to understand the error introduced by the approximation operator
K. This depends on the various cases in Definition 3.3.2.

Lemma 3.3.6 We keep the notations of Definition 3.3.2. We suppose that r ≥ ` then one has∫ τ

0

e(τ−ξ)LoF (v̂, ξ)dξ −Kro,A(F (v̂, ·))(τ) = O(τr+2Rro,A(F )(v̂, ·)(τ)) (3.48)

where Rro,A(F ) takes the following values:

(i) If we are using the approximation (3.44), we get the following error:

Rro,A(F ) =
∑

∑
i ki+n=r−`+1

LnoB

(∏
i∈J

Lkii ui

)
.

(ii) If Ldom 6= 0 then

Rro,A(F ) =
∑

∑
i∈J ki+m+n+p=r−`+1

B
(
Cm[

(
Cn[MJ\I ,Lo]

)
(Cp[MI ,Ldom + Lo]),Lo](((Ailow)kiui)i∈J)

)
.

(iii) If Ldom = 0 then

Rro,A(F ) =
∑

∑
i∈J ki+m+n+p=r−`+1

B
(
Cm[Cn[MJ ,Lo],Lo](((Ai)kiui)i∈J)

)
.

Proof. The proof reduces to applying several times Taylor expansions and using identity (3.12).
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Example 11 We want to compute the second order error term for the tree Io(λ0) illustrating point (ii) of Lemma 3.3.6.
From Example 10, we are in the case where D(Ldom) = D(Lo) and we have

R1
o,A(Π̃o,Aλ0)(v̂) =

∑
m+n+p=2

Cm[
(
Cn[MJ\I ,Lo]

)
(Cp[MI ,Ldom + Lo]),Lo](−iv2, v̄)

where I = {2} and J = {1, 2} and where the only non-zero term in the above is when (m,n, p) = (2, 0, 0). Hence, we have,

R1
o,A(Π̃o,Aλ0)(v̂) = C2[M{1,2},Lo](−iv2, v̄).

The next proposition follows the steps of [BS22, Prop. 3.9]. It singles out the dominant parts of the oscillations and
shows that approximated iterated integrals are connected with Definition 3.2.3. This decomposition was also connected to
the Birkoff factorisaton given in [BS22]. It provides information about the dominant operators that will be involved in
the local error analysis. In the next proposition, we assume that Bl

o = id. In the general case, one can write a similar
statement using Remark 3.3.3.

Proposition 3.3.7 For every tree Iro (T ) ∈ H, one has the following decomposition:

(ΠAIro (T ))(v̂, ξ) =
∑

T̄⊂Io(T )

∏
L∈Rdom(T̄ )

(
eiξLBr

(
T, T̄ ,L

)
(v̂, ξ)

)
+
(
eiξLoBr(T,1,Lo)(v̂, ξ)

)(
eiξLoCr(T,1,Lo)(v̂, ξ)

) (3.49)

where the sum is over all subtrees T̄ 6= 1 that have at least one edge and that contain the root of Io(T ). The Br
(
T, T̄ ,L

)
(v̂, ξ),

Br(T,1,Lo)(v̂, ξ) and Cr(T,1,Lo)(v̂, ξ) are polynomials in ξ and the Rdom(T̄ ) are given in Definition 3.2.3.

Proof. We proceed by induction on the size of T and we suppose that T = λ`l
∏
i Ioi(Ti) where one can apply the induction

hypothesis on each Ioi(Ti). One has from (3.42)

(ΠAIro (T ))(v̂, ξ) = Kro,A
(

Π̃o,A

(
D(r−1)(T )

)
(v̂, ·)

)
(ξ)

and

Π̃o,A

(
D(r−1)(T )

)
(v̂, ξ) =

ΥΨo
root[T ]

Sroot(T )
(v, ξ)Vl ξ

`
∏
i

(
ΠAI(r−1−`)

oi (Ti)
)

(v̂, ξ).

By applying the induction hypothesis on the Ioi(Ti), one has the following decomposition

Π̃o,A

(
D(r−1)(T )

)
(v̂, ξ) =

ΥΨo
root[T ]

Sroot(T )
(v, ξ)Vl

∏
i

∑
T̄i⊂Ioi (Ti)∏

L∈Rdom(T̄i)

(
eiξLBr−1−`(Ti, T̄i,L)(v̂, ξ))

+
(
eiξLoiBr(Ti,1,Loi)(v̂, ξ)

)(
eiξLoiCr(Ti,1,Loi)(v̂, ξ)

)
where the Br

(
Ti, T̄i,L

)
(v̂, ξ), Br(Ti,1,Loi)(v̂, ξ) and Cr(Ti,1,Loi)(v̂, ξ) are polynomials in ξ. As a consequence of

Definition 3.3.2, the map Kro,A applied to the term coming from a subforest T̄ = λ`l
∏
i T̄i, integrates exactly in the end a

term of the form ∫ ξ

0

(
eξLoP (v̂, s)

)(
esLdom(Io(T̄ ))+ξLoQ(v̂, s)

)
ds

where P (v̂, s) and Q(v̂, s) are polynomials in s. Then, by computing this integral, we obtain two terms of the form(
esLoP1(v̂, s)

)(
eisLdom(Io(T̄ ))Q1(v̂, s)

)
,
(
esLoP2(v̂, s)

)(
esLoQ2(v̂, s)

)
where P1, Q1 and P2 are also polynomials in s. The first term corresponds to the subtree Io(T̄ ) and the second term
corresponds to 1. Therefore, the structure of (3.49) is preserved.
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The next definition computes the local error using the recursive construction of the decorated trees. It follows the same
structure as in [BS22], the main difference being that now ΥΨo

root has to be added to this definition.

Definition 3.3.8 Let r ∈ Z and a domain A of v̂. We recursively define Lrlow(·, v̂, A) and Lr,olow(·, v̂, A), o ∈ L+ as

Lrlow(T, v̂, A) = 1, r < 0, Lrlow(1, v̂, A) = 1.

Else for T = λ`l
∏
i Iai(Ti), one has

Lr,olow(λ`l
∏
i

Iai(Ti), v̂, A) = (3.50)

Bl
o

(
ΥΨo

root[T ]

Sroot(T )
(v, 0)Vl

(∑
i

Lr−`low (Iai(Ti), v̂, A)

))
.

And

Lrlow(Io(T ), v̂, A) = Lr−1,o
low (T, v̂, A) +Rro,A

((
Π̃r−1
o,A T

)
(v̂, ·)

)
, (3.51)

where Rro,A is defined in Lemma 3.3.6

Example 12 We continue Example 11. For the decorated tree T = Io(λ0), one obtains:

L1
low(T, v̂, A) = L0

low(λ0, v̂, A) +R1
o,A

((
Π̃0
o,AT

)
(v̂, ·)

)
= −iv2v̄ + C2[M{1,2},Lo](−iv2, v̄).

One notices that the first term asks less regularity on v in comparison to the second.

The next theorem shows that the characters ΠA and Π̃o,A are good approximations of Π and Π̃o with a local error given
by Definition 3.3.8. We follow the same steps as in the proof of [BS22, Thm 3.17].

Theorem 3.3.9 For T = λ`l
∏
i Iai(Ti) one has,(

Π̃oT − Π̃o,ADr(T )
)

(v̂, τ) = O
(
τr+2Lr,olow(T, v̂, A)

)
(3.52)

and for T = Io(T̄ ), one gets

(ΠT −ΠADr(T ))(v̂, τ) = O
(
τr+2Lrlow(T, v̂, A)

)
. (3.53)

Proof. We proceed by induction by using the recursive definition (3.42) of ΠA and Π̃o,A. First, one gets

(Π−ΠA)(1)(v̂, τ) = 0 = O
(
τr+2Lrlow(1, v̂, A)

)
.

Then for T = λ`l
∏
i Iai(Ti) and every o ∈ L+, one has

(
Π̃o − Π̃r

o,A

)
(T )(v̂, τ) = τ `Bl

o

(
ΥΨo

root[T ]

Sroot(T )
(v, τ)Vl

∑
i

(
Π−Πr−`

A

)
(Iai(Ti))(v̂, τ)

∏
j 6=i

(
Πr−`
A + Π

)
(Iaj (Tj))(v̂, τ)

.
Then by applying the induction hypothesis (3.53) to each Iai(Ti), one gets

(
Π̃o − Π̃r

o,A

)
(T )(v̂, τ) = O

(
τr+2Bl

o

(
ΥΨo

root[T ]

Sroot(T )
(v, 0)Vl

∑
i

Lr−`low (Iai(Ti), v̂, A)

))

= O

(
τr+2Lrlow(λ`l

∏
i

Iai(Ti), v̂, A)

)
.
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For T = Io(T̄ ), one has

(Π−Πr
A)(T )(v̂, τ) =

∫ τ

0

eξLo(Π̃o − Π̃r−1
o,A )(T̄ )(v̂, ξ)dξ

+

∫ τ

0

eξLo(Π̃r−1
o,A T̄ )(v̂, ξ)dξ −Kro((Π̃r−1

o,A T )(v̂, ·))(τ)

=

∫ τ

0

O
(
ξr+1Lr−1,o

low (T̄ , v̂, A)
)
dξ +O(τr+2Rro,A

((
Π̃r−1
o,A T̄

)
(v̂, ·)

)
)

= O
(
τr+2Lrlow(T, v̂, A)

)
.

where the term Rro,A

((
Π̃r−1
o,A T̄

)
(v̂, ·)

)
is obtained by applying Lemma 3.3.6.

3.4 Low regularity numerical scheme
The writing of our low regularity numerical scheme follows two steps. The first one is to write a truncated decorated

trees series that will solve the Duhamel’s formula up to order r (see Proposition 3.4.1). This series is formed of iterated
integrals produced by the character Π. Then, one replaces Π by ΠA to get the scheme. Such steps were already used in
[BS22]. Let us mention that the first step is more involved here due to the fact that we work with a more general setting.

3.4.1 Exact solution up to order r

Recall the mild solution of (3.1) given by Duhamel’s formula

uo(t) = etLovo +
∑
l∈L−

∫ t

0

e(t−ξ)LoΨl
o(u

l
o)Vldξ, (3.54)

where the nonlinearity Ψl
o(u

l
o) is given by

Ψl
o(u

l
o) = Bl

o

 ∏
o∈Ll,o

+

f l
o,o(uo)

.
In the following we want to construct a scheme with a local error of order

O(τr+2).

Therefore, before describing our numerical scheme, we need to remove the trees which are already of size O(τr+2). Indeed,
a simple recursion shows that one has for every tree Io(T )

(ΠIo(T ))(v̂, τ) = O(p(T, v̂)τn+(T )) (3.55)

where p(T, v̂) is a polynomial in the variables v̂ that does not contain any operators (Lo)o∈L+ and at most |NT | operators
B. The map n+ is defined on T n,f

e as

n+(T n,f
e ) =

∑
v∈NT

n(v) + |ET |

which corresponds to the number of integrations in time and polynomial decorations. We define the space of decorated
trees T ro ⊂ To as

T ro = {Io(T ), T ∈ T r}, T r = {T ∈ T , n+(T ) ≤ r, (ΠIo(T )) 6= 0}.

The condition (ΠIo(T )) 6= 0 guarantees that we consider only trees which have been generated by iterations of Duhamel’s
formula 3.54. In the following we consider

wro(v̂, τ) = eτLovo +
∑
T∈T r

(ΠIo(T ))(v̂, τ) (3.56)

which solves (3.54) up to order r + 1 in the following sense:
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Proposition 3.4.1 One has that

wro(v̂, t) = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoΨl
o(w

l,r
o )(v̂, ξ)Vldξ +O(τr+2)

where wl,r
o denotes the term (wrō)ō∈Ll,o

+
and the remainder O(τr+2) involves commutators under the form:

Cr[f,Lo]

(however, not full powers of Lro) with f a function coming from the coefficients Ψo.

Proof. Let B be given by

B = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoΨl
o(w

l,r
o )(v̂, ξ)Vldξ

= eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoBl
o

 ∏
ō∈Ll,o

+

f l
o,ō(w

r
ō(v̂, ξ))

Vldξ.

Then, we have

wro(v̂, ξ) = eξLovo +Rr,o(v̂, ξ), Rr,o(v̂, ξ) =
∑
T∈T r

(ΠIo(T ))(v̂, ξ).

By performing Taylor expansions around the point eξLovo, one gets:

B = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoBl
o

∑
∑
ō kō≤r

1∏
ō kō!∏

ō∈Ll,o
+

Rkōr,ō(v̂, ξ)f
l,(kō)
o,ō (eξLōvō)Vldξ +O(τr+2)

where the sum
∑
ō and the product

∏
ō run over ō ∈ Ll,o

+ . The error O(τr+2) depends on the derivatives of f l
o,ō and on a

polynomial in v̂ using the bound (3.55). The next step of the approximation is to pull out the term eξLōvō:

f
l,(kō)
o,ō (eξLōvō) = eξLōf(vō) +

r∑
`ō=1

ξ`ō

`ō!
eξLōC`ō [f

l,(kō)
o,ō ,Lō](vō)

+O(ξr+1Cr+1[f
l,(kō)
o,ō ,Lō](vō)).

The remainder coming from this approximation is the leading error. It involves Lo with an iterated commutator. For
the next computations, we will omit this error and write all the identities up to some terms which are neglectable in
comparison to this error. Inserting the previous expansion into A and neglecting the terms which are of order bigger than
O(τr+2), we get:

B = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)Lo
∑

∑
ō `ō+

∑
ō,i n+(Tō,i)≤r

ξ
∑
ō `ō∏

ō kō!`ō!

Bl
o

 ∏
ō∈Ll,o

+

kō∏
i=1

(ΠIō(Tō,i))(v̂, ξ)
(
eξLōC`ō [f

l,(kō)
o,ō ,Lō](vō)

)
Vl

dξ
where the Tō,i are decorated trees and

∑
ō,i n+(Tō,i) is a shorthand notation for

∑
ō∈Ll,o

+

∑
kō

kō∑
i=1

n+(Tō,i).
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Then, if we fix the product
∏kō
i=1 Iō(Tō,i), one has:

kō∏
i=1

Iō(Tō,i) =
∏
i

Iō(T̃ō,i)kō,i

where the T̃ō,i are distincts and
∑
i kō,i = kō. This term appears in B with the following combinatorial coefficient:

kō!∏
i kō,i!

.

Let us notice

Sroot

(
λkl
∏
ō,i

Iō(T̃ō,i)kō,i
)

= k!
∏
ō,i

kō,i!

and ∑
∑
ō `ō=`

∏
ō∈Ll,o

+

1

`ō!

(
eξLōC`ō [f

l,(kō)
o,ō ,Lō](vō)

)
=
∂`
`!

∏
ō∈Ll,o

+

(
eξLōf

l,(kō)
o,ō (vō)

)
.

In this identity, we exploit the Leibniz rule for the derivative ∂. It can be understood as a variant of Faa di Bruno formula
see [BCCH20, Lem. A.1]. We can rewrite B into

B = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoBl
o

 ∑
`+
∑
ō,i n+(T̃ō,i)≤r

ξ`

`!
∂`

∏
ō∈Lo,l+

∏
i

1

kō,i!

(
ΠIō(T̃ō,i)kō,i

)
(v̂, ξ)

(
eξLōf

l,(kō)
o,ō (vō)

)
Vl

dξ

= eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)LoBl
o

 ∑
`+
∑
ō,i n+(T̃ō,i)≤r

ξ`

Sroot

(
λ`l
∏
ō,i Iō(T̃ō,i)kō,i

)
∏

ō∈Ll,o
+

∏
i

(
ΠIō(T̃ō,i)kō,i

)
(v̂, ξ)ΥΨo

root

(
λ`l
∏
ō,i

Iō(T̃ō,i)kō,i
)

(v, ξ)Vl

dξ.
Then,

B = eτLovo +
∑
l∈L−

∫ τ

0

e(τ−ξ)Lo
∑

`+
∑
ō,i n+(T̃ō,i)≤r

(
Π̃oλ

`
l

∏
ō,i

Iō(T̃ō,i)kō,i
)

(v̂, ξ)dξ

= eτLovo +
∑
T∈T r

∫ τ

0

e(τ−ξ)Lo
(

Π̃oT
)

(v̂, ξ)dξ

= eτLovo +
∑
T∈T r

(ΠIo(T ))(v̂, τ) = wro(v̂, τ)

which concludes the proof.

3.4.2 Numerical scheme and local error analysis
Now, we are able to describe the general numerical scheme:

Definition 3.4.2 (The general numerical scheme) For fixed r ∈ N and a domain A, we define the general numerical
scheme as:

uro,A(v̂, τ) = eτLovo +
∑

T∈T r+1

Πr
A(Io(T ))(v̂, τ). (3.57)
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The numerical scheme (3.57) approximates the exact solution locally up to order r + 2. More precisely, the following
theorem holds.

Theorem 3.4.3 (Local error) The numerical scheme (3.57) with initial value vo = uo(0) approximates the exact
solution uo up to a local error of type

uro,A(v̂, τ)− uo(v̂, τ) =
∑

T∈T r+1

O
(
τr+2Lrlow(Io(T ), v̂, A)

)
where the operator Lrlow(Io(T ), v̂, A), given in Definition 3.3.8, embeds the necessary regularity of the solution.

Proof. We recall that the exact solution uo up to order r is given by

wro(v̂, τ) = eτLovo +
∑
T∈T r

(ΠIo(T ))(v̂, τ)

which satisfies from Proposition 3.4.1

uo(τ)− wro(τ) = O
(
τr+2p(v̂, (Lo)o∈L+)

)
(3.58)

for some polynomial p such that every Lo appear under the form Cr+1[f,Lo]. Thanks to Theorem 3.3.9 we furthermore
obtain that

uro,A(v̂, τ)− wro(v̂, τ) =
∑
T∈T r

(Π−Πr
A)(Io(T ))(v̂, τ) (3.59)

=
∑
T∈T r

O
(
τr+2Lrlow(Io(T ), v̂, A)

)
.

Next we write

uro,A(v̂, τ)− uo(v̂, τ) = uro,A(v̂, τ)− wro(v̂, τ) + wro(v̂, τ)− uo(v̂, τ)

where by the definition of Lrlow(T, v̂, A) we easily see that the approximation error (3.59) is dominant compared to (3.58).
Indeed, we will have also commutators of the form Cr+1[f,Lo] and Cr+1[f,Ldom] due to Proposition 3.3.7. The extra
regularity needed is coming from the Taylor expansion of the lower part in Definition 3.3.2.

Remark 3.4.4 Theorem 3.4.3 provides a local error estimate (order of consistency) for the low regularity schemes (3.57).
With the aid of stability one can easily obtain a global error estimate with the aid of Lady Windamere’s fan argument
[HLW10]. However, the necessary stability estimates in general rely on the algebraic structure of the underlying space.

In case of parabolic problems the parabolic smoothing property can be used to obtain global error estimates in low
regularity spaces. With the aid of semi group theory the regularity assumptions on the solution may be even pushed
down further thanks to the point wise smoothing properties. The situation of dispersive PDEs is more involved. In the
stability analysis in Sobolev spaces Hr one classically exploits bilinear estimates of type

‖vw‖r ≤ cr,d‖v‖r‖w‖r.

The latter only hold for r > d/2 and thus restricts the analysis to sufficiently smooth Sobolev spaces Hr with r > d/2. To
obtain (sharp) L2 global error estimates one needs to exploit discrete Strichartz estimates and discrete Bourgain spaces in
the periodic setting, see, e.g., [IZ09, ORS21, ORS22b]. The main difficulty thereby lies in the fact that their continuous
counterparts are not point wise in time.

A general global error analysis in the general setting presented is out of the scope of this paper. Nevertheless, in the
case of the Gross-Pitaevskii equation first and second order convergence is obtained in [AB23a].

3.5 Examples

In this section we illustrate our general framework (see Definition 3.57) and its local error analysis (see Theorem 3.4.3)
on two examples: The Gross–Pitaevskii equation (see Section 3.5.1) and the Sine–Gordon equation (see Section 3.5.3).
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3.5.1 The Gross–Pitaevskii equation

As a first example let us consider the Gross–Pitaevskii (GP) equation

i∂tu(t, x) + ∆u(t, x) = V (x)u(t, x) + |u(t, x)|2u(t, x) (t, x) ∈ R× Ω (3.60)

on a sufficiently smooth domain Ω ⊂ Rd in dimension d ≤ 3, and an initial condition

u|t=0 = u0. (3.61)

We prescribe homogeneous Dirichlet boundary conditions,

u(t, ·)|∂Ω = 0, V (·)|∂Ω = 0,

where Ω is a smooth open set with compact boundary. We define the operator L = i∆ on the Hilbert space L2(Ω). Its
domain is given by

D(∆) = D(L) = (H2 ∩H1
0 )(Ω) (3.62)

where H2(Ω), H1
0 (Ω) denote the classical Sobolev spaces.

One setting of the Gross-Pitaevskii equation is to describe the dynamics of Bose-Einstein condensates in a potential
trap. In many physically relevant situations the potential is rough or disordered ([HP17], [NBP13], [WWW+98]) which
motivates the study of the low-regularity framework.

First order low regularity integrator for Gross–Pitaevskii

Corollary 3.5.1 At first order our general low regularity scheme (3.57) for the Gross–Pitaevskii equation (3.60) takes
the form

un+1 = ΦτGP(un) = eiτ∆un − iτ
[
(eiτ∆un)(eiτ∆ϕ1(−iτ∆)V ) (3.63)

+(eiτ∆(un)2)(eiτ∆ϕ1(−2iτ∆)un)
]

where the filter function ϕ1 is defined as ϕ1(σ) = eσ−1
σ

. The scheme (3.63) is locally of order O(τ2|∇|(u+ V )).
In case of more regular solutions and potential the above low regularity scheme can be simplified to

un+1 = eiτ∆un − iτ
(
unV + (un)2un

)
, (3.64)

which is locally of order O(τ2∆(u+ V )).

Proof. We choose r = 0 in Definition 3.4.2 in order to obtain a local error of order one. We recall from Example 8 that
for the Gross-Pitaevskii equation we have that Lo = i∆, V0 = 1, V1 = V , L+ = {o, ō}, uo = u, uō = ū, vo = v and vō = v̄.
From equation (3.57) it then follows that the first-order scheme is of the form,

u0
o,A(v̂, τ) = eiτ∆v +

∑
T∈T 1

Π0
A(Io(T ))(v̂, τ), (3.65)

where v̂ = (v, v̄, V ) and where on has

T 1 = {T0, T1 }, T0 = λ0 = , T1 = λ1 = .

We recall from (3.28) that

Io(λ0) =

encodes the iterated integral

(ΠIo(λ0))(v̂, τ) = −i
∫ τ

0

ei(τ−s)∆
((
eis∆v2

)(
e−is∆v̄

))
ds (3.66)

and that

Io(λ1) =
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encodes the iterated integral

(ΠIo(λ0))(v̂, τ) = −i
∫ τ

0

ei(τ−s)∆
((
eis∆v

)
V
)
ds. (3.67)

In order to compute the approximation (3.65), we refer to equation (3.42) where the approximated character Πr
A is

defined. We have, for i = 0, 1, that

(Π0
AIo(λi))(v̂, τ) = K0

o,A(Π̃o,AD−1(λi)(v̂, ·))(τ)

= K0
o,A

(
ΥΨo

root[λi]

Sroot(λi)
(v̂, ·)Vi

)
(τ)

where to obtain the second line we used the definition 3.37 of D−1, namely that D−1(λi) = λi. By recalling the
computations made in Example 9 one has,

Sroot(λ0) = Sroot(λ1) = 1,

ΥΨo
root[λ0](v, ξ) =

(
−ieiξ∆v2

)(
e−iξ∆v̄

)
, ΥΨo

root[λ1](v, ξ) = −ieiξ∆v,

where v = (v, v̄) and we recall that we set Bl
o = id for (o, l) ∈ L+ × L− when studying the equation (3.60). Hence, by

collecting the above computations one has,

Π0
A(Io(λ0))(v̂, τ) = K0

o,A

(
F 1(v̂, ·))

)
(τ), (3.68)

Π0
A(Io(λ1))(v̂, τ) = K0

o,A

(
F 2(v̂, ·)

)
(τ)

where
F 1(v̂, ξ) := −i(eiξ∆v2)(e−iξ∆v̄) (3.69)

and
F 2(v̂, ξ) := −i(eiξ∆v)V. (3.70)

We are left to apply Definition 3.3.2 of the operator K0
o,A on (3.69) and (3.70) which will yield a first-order approximation

of the integrals (3.66) and (3.67). The approximation of these integrals, and hence the structure of the scheme, will
depend on the regularity assumptions on the initial data v and the potential V . We first show the construction of the first
order scheme (3.63), which requires H1-regularity on v and V . Hence, by taking into account the boundary conditions,
we fix A = H1

0 (Ω)3 and construct a first order scheme for (v, v̄, V ) ∈ A (see also Remark 3.3.5 for further details on the
choice of A).

The case of A = (H1
0 (Ω))3:

We first note that given our regularity assumptions we have that v, V 6∈ D(Lo) = H2(Ω)∩H1
0 (Ω). Hence, our approximation

cannot consist of merely applying Taylor-expansions (3.44) of all the operators, since it would require H2 regularity on
the initial data and on the potential. Indeed, given that r, ` = 0 we have that

∪n+
∑
i∈J ki≤1D(Gn,(ki)i∈J ) ⊆ (H2(Ω))3

which implies that we do not have that A ⊆ D(Gn,(ki)i∈J ), for all n+
∑
i∈J ki ≤ 1. In order to make an approximation

of order one of the integrals (3.68) while only requiring H1(Ω) regularity on the initial data and potential we will apply
the first point (i) of Definition 3.3.2.

We start by dealing with F 1, namely the first order approximation of the integral (3.66).
1. Computation of Π0

A(Io(λ0))(v̂, τ). Using the notations in Definition 3.3.2 we compute the operator interactions, as is
done in example 10 to obtain the following,

L1 = i∆, L2 = −L1, J = {1, 2}, and hence, A1 = 0, A∈ = −2i∆.

This implies that

Ldom = A∈ = −2i∆, I = {2},

and that

A1
low = A1 = 0, A2

low = A2 − Ldom = 0.
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We note that following (3.45) we indeed recover the same initial expression (3.79) of F 1:

F 1(v̂, ξ) = (e−iξ∆ua2)(eiξ∆ua1), ua1 = −iv2, ua2 = v̄.

We are now ready to compute K0
o,A(F 1) using equation (3.46). Given the form of F 1, and the order of the scheme we

enter the case where l = 0 and r = 0 respectively. This implies that q = 0 = n = m = p. Hence, K0
o,A(F 1) takes the

following simple form,

K0
o,A(F 1(v̂, ·))(τ) =

∫ τ

0

(eiτ∆M{1})(e−2iξ∆+iτ∆M{2})(−iv2, v̄)dξ (3.71)

= −i
∫ τ

0

(eiτ∆v2)(e−2iξ∆+iτ∆v̄)dξ.

By integrating exactly the above expression using the ϕ1 function, and by (3.68) we have hence shown that,

Π0
A(Io(λ0))(v̂, τ) = −iτ(eiτ∆v2)(eiτ∆ϕ1(−2iτ∆)v̄). (3.72)

2. Computation of Π0
A(Io(λ1))(v̂, τ). Similarly, we apply definition 3.3.2 to compute K0

o,A(F 2). Given the expression
(3.70) of F 2, one has

L1 = i∆, L2 = 0, J = {1, 2}, ub1 = −iv, ub2 = V, and hence,
A1 = 0, A∈ = −i∆.

This implies that

Ldom = A∈ = −i∆, I = {2},

and that

A1
low = A1 = 0, A2

low = A2 − Ldom = 0.

Then, again by equation (3.46) we have

K0
o,A(F 2)(τ) =

∫ τ

0

(eiτ∆M{1})(ei(τ−ξ)∆M{2})(−iv, V )dξ

= −i
∫ τ

0

(eiτ∆v)(ei(τ−ξ)∆V )dξ

= −iτ(eiτ∆v)(eiτ∆ϕ1(−iτ∆)V ).

Hence, we have

Π0
A(Io(λ1))(v̂, τ) = −iτ(eiτ∆v)(eiτ∆ϕ1(−iτ∆)V ).

Plugging the above computation into (3.65) yields the first order scheme (3.63).

The case of A = (H2 ∩H1
0 )(Ω)3:

Given that A = D(Lo)3, we apply the Taylor expansion (3.44) with r = ` = 0, to obtain:

K0
o,A

(
(ΥΨo

root[λ0] + ΥΨo
root[λ1])(v, ·)

)
(τ) =

∫ τ

0

Πi∈{1,2}u
a
i dξ +

∫ τ

0

Πi∈{1,2}u
b
idξ

= −iτ(v2v + vV ),

which thanks to (3.65) yields the first order scheme (3.64).
Local error analysis. Using the recursive formula in Definition 3.3.8, one gets for T ∈ {λ0, λ1}

L0
low(Io(T ), v̂, A) = L−1,o

low (T, v̂, A) +R0
o,A

((
ΠAI0

o (T )
)
(v̂, ·)

)
.

Then by (3.50), we get for l ∈ {0, 1}

L−1,o
low (λl, v̂, A) =

ΥΨo
root[T ]

Sroot(λi)
(v, 0)Vl
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which gives

L−1,o
low (λ1, v̂, A) = −ivV, L−1,o

low (λ0, v̂, A) = −iv2v̄.

It remains to compute R0
o,A((ΠAT )) whose value will depend on A. We start with the case A = (H1

0 (Ω))3. From our
previous computations for the scheme, one has to apply (ii) from Lemma 3.3.6 that gives using notations of the proof of
Corollary 3.5.1

Rro,A((Π̃o,Aλ0)(v̂, ·)) =
∑

∑
i∈J ki+m+n+p=r−`+1

Cm[
(
Cn[MJ\I ,Lo]

)
(Cp[MI ,Ldom + Lo]),Lo](((Ailow)kiuai )i∈J).

Here, r = ` = ki = 0, so it remains m+ n+ p = 1. As I and J \ I are singleton, there is only one non zero value given by
m = 1. In the end, one obtains

R0
o,A((Π̃o,Aλ0)(v̂, ·)) = C[M{1,2}, i∆](−iv2, v̄).

With a similar computation, one gets

R0
o,A((Π̃o,Aλ1)(v̂, ·)) = C[M{1,2}, i∆](−iv, V ).

In both cases, one sees that these terms ask first order derivatives on v and V . Indeed using Definition 3.1.2 of the
commutator we have,

C[M{1,2}, i∆](w, z) = −2i∇w · ∇z. (3.73)

Next, for A = (H2 ∩H1
0 )(Ω)3, one has to use (i) from Lemma 3.3.6, namely

Rro,A((Π̃o,Aλ0)(v̂, ·)) =
∑

∑
i ki+n=r−`+1

Lno

(∏
i∈J

Lkii u
a
i

)

Here, r = ` = 0, there for one obtains three terms:

R0
o,A((Π̃o,Aλ0)(v̂, ·)) = ∆

(
v2v̄
)

+ ∆(v2)v̄ − v2∆v̄

A similar computation shows

R0
o,A((Π̃o,Aλ1)(v̂, ·)) = ∆(vV ) + ∆(v)V + v∆V

which allows us to conclude.

Remark 3.5.2 (Error improvement) Classical approximation techniques, such as splitting or exponential integrator
methods (see, e.g., [CG12, JL00, Lub08]) introduce a local error structure of type O(∆u(t),∆V ) and hence requires the
solution and potential (u(t), V ) ∈ D(∆)2 = (H2 ∩H1

0 )(Ω)2 (see also (3.62)). The scheme (3.64) together with its local
error coincides with a first order scheme obtained via exponential integrator methods. The local error of the low regularity
GP integrator (3.63) on the other hand only requires the boundedness of first instead of second order spatial derivatives of
the potential V and solution u. The first-order scheme (3.63) coincides with the first order scheme obtained in [AB23a],
where the author proves first order convergence in Hs-norm while asking for low-regularity assumptions on the solution.

Second order Duhamel integrator for Gross–Pitaevskii

We first recall from equation (3.15) in our first example, that by following the Taylor expansion (3.9) and linearization
(3.12) steps, we seek to provide a second order low-regularity approximation to the following iterated integrals:

w2(v, τ) = eiτ∆v − i
∫ τ

0

ei(τ−ξ)∆
(

(eiξ∆v2)(e−iξ∆v̄) + (eiξ∆v)V
)
dξ (3.74)

− i
∫ τ

0

ξei(τ−ξ)∆
(

(eiξ∆C[u2, i∆](v))(e−iξ∆v̄)
)
dξ

−
∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆v2)(e−iξ1∆v̄)

+(eiξ1∆v)V
)
dξ1
)

(2(eiξ∆v)(e−iξ∆v̄) + V )
)
dξ
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+

∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

e−i(ξ−ξ1)∆
(

(e−iξ1∆v̄2)(eiξ1∆v)

+(e−iξ1∆v̄)V̄
)
dξ1
)

(eiξ∆v2)
)
dξ.

Corollary 3.5.3 At second order our general low regularity scheme (3.57) for the Gross-Pitaevskii equation (3.60) takes
the form,

un+1 = eiτ∆un − iτ
(

(eiτ∆(un)2)(eiτ∆ϕ1(−2iτ∆)un) (3.75)

+(eiτ∆un)(eiτ∆ϕ1(−iτ∆)V )
)

− iτ2C[(eiτ∆M{1})(eiτ∆(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))M{2}), i∆]((un)2, ūn)

− iτ2C[(eiτ∆M{1})(eiτ∆(ϕ1(−iτ∆)− ϕ2(−iτ∆))M{2}), i∆](un, V )

− iτ2
(
eiτ∆C[u2, i∆](un)

)(
eiτ∆ϕ2(−2iτ∆)ūn

)
− τ2

2
(un|un|4 + 3un|un|2V − |un|2unV̄ + unV 2)

= ΦτGP2(un),

where the filter function ϕ2 is defined as ϕ2(σ) = eσ−ϕ1(σ)
σ

. The scheme (3.75) is locally of order O(τ3∆(u+ V )).

Remark 3.5.4 In case of more regular solution and potential the second order scheme (3.75) can be simplified, recovering
for sufficiently smooth solutions and potential (u(t), V ) ∈ D(∆2)2 classical schemes (see also Remark 3.5.5 below).

Proof. We choose r = 1 in Definition 3.4.2 in order to obtain a local error of order two. From equation (3.57) it then
follows that the second-order scheme is of the form,

u1(v̂, τ) = eiτ∆v +
∑
T∈T 2

Π1
A(Io(T ))(v̂, τ), (3.76)

where v̂ = (v,V) and where are interested in the decorated trees Io(T ) where T belongs to T 2 defined by,

T 2 = {T0, ..., T8 }, T0 = λ0 = , T1 = λ1 = , T2 = λ1
0 = ,

T3 = λ0Io(λ0) = , T4 = λ0Io(λ1) = , T5 = λ1Io(λ0) = ,

T6 = λ1Io(λ1) = , T7 = λ0Io(λ0) = , T8 = λ0Io(λ1) = .

As stated previously, the approximation of the above integrals, and hence the structure of the scheme, will depend
on the regularity assumptions of the initial data v and the potential V . Here, we show the construction of a second
order scheme which requires H2-regularity on v and V . Hence, by taking into account the boundary conditions, we fix
A = (H2(Ω) ∩H1

0 (Ω))3 and construct a second order scheme for (v, v̄, V ) ∈ A.
1. Computation of Π1

A(Io(λ0))(v̂, τ).
We recall that Io(λ0) encodes the first integral (3.66). Next, we make the following remark; given our regularity
assumptions (v, v̄, V ) ∈ A , we have that v, V 6∈ D(L2

o) ⊂ H4(Ω). Hence, our approximation cannot consist of merely
applying Taylor-expansions (3.44) of all the operators, since it would require H4 regularity on the initial data and on the
potential, together with the according boundary conditions. Indeed, given that r = 1 and ` = 0 we have that

∪n+
∑
i∈J ki≤2D(Gn,(ki)i∈J ) ⊆ (H4(Ω))3

which implies that we do not have that A ⊆ D(Gn,(ki)i∈J ), for all n+
∑
i∈J ki ≤ 2. In order to make an approximation

of order two of the integrals (3.68) while only requiring H2(Ω) regularity on the inital data we will apply the first point
(i) of Definition 3.3.2, as done in Example 10. Indeed, following the results established in Example 10 we have:

(
ΠAI1

o (λ0)
)
(v̂, ξ) = −i

∫ τ

0

(
eiτ∆v2

)(
ei(τ−2ξ)∆v

)
dξ

+

∫ τ

0

(τ − ξ)C[
(
eiτ∆M{1}

)(
ei(τ−2ξ)∆M{2}

)
, i∆](−iv2, v) dξ

= −i[τ(eiτ∆v2)(eiτ∆ϕ1(−2iτ∆)v̄)



3.5. Examples 73

+ τ2C[(eiτ∆M{1})(eiτ∆(ϕ1(−2iτ∆)

− ϕ2(−2iτ∆))M{2}), i∆](v2, v̄)]

2. Computation of Π1
A(Io(λ1))(v̂, τ).

We recall that Io(λ1) encodes the second integral (3.67). Using the same arguments as in the above together with the
computations of Π0

A(Io(λ1))(v̂, τ) made in the proof of Corollary 3.5.1, it follows that,(
ΠAI1

o (λ1)
)
(v̂, ξ) = −i

(
τ(eiτ∆v)(eiτ∆ϕ1(−iτ∆)V )

+τ2C[(eiτ∆M{1})(eiτ∆(ϕ1(−iτ∆)

−ϕ2(−iτ∆))M{2}), i∆](v, V )
)
.

3. Computation of Π1
A

(
Io(λ1

0)
)
(v̂, τ).

We have that

Io(λ1
0) =

encodes the iterated integral

−i
∫ τ

0

ξei(τ−ξ)∆
(

(eiξ∆C[u2, i∆](v))(e−iξ∆v̄)
)
dξ

Using the computation made in example (9) we have,

(Π1
AIo(λ1

0))(v̂, τ) = K1
o,A((Π̃o,AD0(λ1

0))(v̂, ·))(τ)

= K1
o,A

(
ΥΨo

root[λ
1
0]

Sroot(λ1
0)

(v, ξ)V0ξ

)
(τ)

= K1
o,A

(
ξ
(
eξLC[u2,∆](v)

)(
e−ξLv̄

))
(τ).

To apply Definition 3.3.2 we let u1 = C[u2,∆](v), and u2 = v̄. The operator interactions are the same as those computed
previously. We are in the case where r = 1 = `, hence q = 0 = m = n = p. From Definition 3.3.2 part i., it then follows
that, (

Π0
AIo(λ1

0)
)
(v̂, τ) =

∫ τ

0

ξ[(eiτ∆M{1})(e−2iξ∆+iτ∆M{2})](u1, u2)dξ

= −iτ2
(
eiτ∆C[u2, i∆](v)

)(
eiτ∆ϕ2(−2iτ∆)v̄

)
4. Computation of Π1

A(Io(T3))(v̂, τ).
We have that

Io(T3) =

encodes the iterated integral

−
∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆v2)(e−iξ1∆v̄)
)
dξ1

)
2(eiξ∆v)(e−iξ∆v̄)

)
dξ,

By definition of the projection operator Dr and (3.3.2) we have,

Π1
A(Io(T3))(v̂, τ) = K1

o,A(Π̃o,AD0(λ0Io(λ0))(v̂, ·))(τ) (3.77)

= K1
o,A(Π̃o,A(λ0I0

o (λ0)))(v̂, τ)

= K1
o,A

(
ΥΨo

root[T3]

Sroot(T3)
(v, ξ)V0(ΠAI0

o (λ0))(v̂, ξ)

)
(τ)

where V0 = 1. Hence, in order to compute the above approximation we are left to compute Sroot(T3), ΥΨo
root[T3], and

(ΠAI0
o (λ0))(v̂, ξ). First, by definition (3.40) of Sroot(T3) we have that i = 1 = j and β1,1 = 1, where o1 = o. Hence, we
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have that Sroot(T3) = 1. Second, by definition (3.41) of ΥΨo
root[T ] we have that,

ΥΨo
root[T3](v, ξ) = (DoΨ̂

0
o)(v, ξ)

= Do
(

(eiξ∆(−iv2
o))(e−iξ∆vō)

)
= −2i(eiξ∆v)(e−iξv̄)

since vo = v, and vō = v̄. Finally, following the computations made at the beginning of example 10 we have,(
ΠAI0

o (λ0)
)
(v̂, ξ) = K0

o,A(F (v̂, ·))(ξ)

where

F (v, ξ) =
∏

i∈{1,2}

eξLiui, u1 = −iv2, u2 = v̄, L1 = i∆, L2 = −i∆

In our current setting we have that r = 0 = ` and hence D(Lr−`+1
o ) = D(∆). Given the regularity assumptions on

v, namely that v ∈ H2 ∩H1
0 , it follows that v ∈ D(∆). Following (3.44) we can then Taylor expand all the operators

appearing in the integral which yields the following approximation,

(
ΠAI0

o (λ0)
)
(v̂, ξ) = K0

o,A(F (v̂, ·))(ξ) =

∫ ξ

0

∏
i∈{1,2}

uidξ = −iξv2v̄.

Hence, plugging the above computations in (3.77) yields,

Π1
A(Io(T3))(v, τ) = −2K1

o,A

(
ξ(eiξ∆v)(e−iξ∆v̄)v2v̄

)
(τ) (3.78)

= −2K1
o,A

(
F̃ (v̂, ξ)

)
(τ)

where

F̃ (v̂, ξ) = ξ`
∏

i∈{1,2,3}

eξLiui, L1 = i∆, L2 = −i∆, L3 = 0, (3.79)

u1 = v u2 = v̄, u3 = v2v̄ and ` = 1.

In our current setting we have that r = 1 = ` and hence D(Lr−`+1
o ) = D(∆). Given that v ∈ D(∆), by following (3.44)

we can once again Taylor expand the remaining operators inside the integral which yields the following approximation,

K1
o,A

(
F̃ (v̂, ξ)

)
(τ) =

∫ τ

0

ξ
∏

i∈{1,2,3}

uidξ =
τ2

2
v|v|4,

by definition of the (ui)i=1,...,4. Hence, from (3.78) it follows that,

Π1
A(Io(T3))(v̂, τ) = −τ2v|v|4.

5. Computation of Π1
A(Io(T4))(v̂, τ), Π1

A(Io(T5))(v̂, τ), and Π1
A(Io(T6))(v̂, τ).

We have that

Io(T4) = , Io(T5) = , Io(T6) = .

respectively encode

−
∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆v)V
)
dξ1

)
2(eiξ∆v)(e−iξ∆v̄)

)
dξ,

−
∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆v2)(e−iξ1∆v̄)
)
dξ1

)
V

)
dξ,
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−
∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆v)V
)
dξ1

)
V

)
dξ,

namely the remaining integrals in the third line of (3.74). These computation follow exactly the same lines as for the
computation of Π1

A(Io(T3)). Namely, given our regularity assumptions we can apply the Taylor based expansion (3.44),
to obtain, (

Π1
A(Io(T4)) + Π1

A(Io(T5))
)
(v̂, τ) = −2

∫ τ

0

ξ
∏

i∈{1,2,3,4}

uai dξ −
∫ τ

0

ξ
∏

i∈{1,2,3}

ubi

= −τ2|v|2vV +−τ
2

2
V v2v̄,

= −3τ2

2
|v|2vV,

and

Π1
A(Io(T6))(v̂, τ) = −

∫ τ

0

ξ
∏

i∈{1,2,3}

uci = −τ
2

2
V 2v,

where (ua1 , u
a
2 , u

a
3 , u

a
4) = (v, V, v, v̄), (ub1, u

b
2, u

b
3, ) = (V, v2, v̄), and (uc1, u

c
2, u

c
3 = (V, v, V ).

6. Computation of Π1
A(Io(T7))(v̂, τ).

We have that,

Io(T7) =

encodes the iterated integral∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

e−i(ξ−ξ1)∆
(

(e−iξ1∆v̄2)(eiξ1∆v)
)
dξ1

)
(eiξ∆v2)

)
dξ.

Similar to the computations done in (3.77) it follows that,(
Π1
AIo(T7)

)
(v̂, τ) = K1

o,A(Π̃o,AD0(λ0Iō(λ0))(v̂, ·))(τ) (3.80)

= K1
o,A(Π̃o,A(λ0I0

ō (λ0))(v̂, ·))(τ)

= K1
o,A

(
ΥΨo

root[T7]

Sroot(T7)
(v, ·)(ΠAI0

ō (λ0))(v̂, ·)

)
(τ).

We are left to calculate ΥΨo
root[T7], Sroot(T7), and (ΠAI0

ō (λ0)))(v̂, ξ). First, by definition (3.40) of Sroot(T7) we have that
i = 1 = j and β1,1 = 1, where o1 = ō. Hence, we have that Sroot(T7) = 1. Secondly, by definition (3.41) of ΥΨo

root[T ] we
have that,

ΥΨo
root[T7] = (DōΨ̂

0
o)(v, ξ)

= −iDō
(

(eiξ∆(v2
o))(e−iξ∆vō)

)
= −i(eiξ∆v2)

since vo = v, and vō = v̄. Thirdly, by following definition (3.3.2) we have,

(ΠAI0
ōλ0)(v̂, ξ) = K0

ō,A((Π̃ō,Aλ0)(v̂, ·))(ξ) = K0
ō,A

(
ΥΨō

root[λ0]

Sroot(λ0)
(v̂, ·)

)
(ξ)

where by equation (3.40) we have that Sroot(λ0) = 1 and by equation (3.41) it follows that,

ΥΨō
root[λ0](v, ζ) =

∏
o∈L0,ō

+

eζLof0
ō,o(vo) = (eiζ∆f0

ō,o(v))(e−iζ∆f0
ō,ō(v̄))

= (eiζ∆v)(e−iζ∆(iv̄2)).
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Collecting the above computations, we have,(
ΠAI0

ō (λ0)
)
(v̂, ξ) = K0

ō,A(F (v̂, ·))(ξ)

where

F (v̂, ξ) =
∏

i∈{1,2}

eξLiui, u1 = v, u2 = iv̄2, L1 = i∆, L2 = −i∆,

and where we consider the operator Lō = −i∆ associated to the decoration ō ∈ L+. Given that v ∈ D(∆), by following
(3.44) we can once again Taylor expand the operators inside the integral which yields the following approximation,

(
ΠAI0

ō (λ0)
)
(v̂, ξ) = K0

ō,A(F (v̂, ·))(ξ) =

∫ ξ

0

∏
i∈{1,2}

uidξ = iξvv̄2.

Hence, by collecting the above computations it follows from (3.80) that,(
Π1
AIo(T7)

)
(v̂, τ) = K1

o,A

(
ξ(eiξ∆v2)vv̄2

)
(τ) = K1

o,A

(
F̃ (v̂, ·)

)
(τ),

where

F̃ (v̂, ξ) = ξ`
∏

i∈{1,2,3}

eξLiui, L1 = i∆, L2 = L3 = 0,

u1 = v2, u2 = v, u3 = v̄2 and ` = 1.

Given that v ∈ D(∆), by following (3.44) we can once again Taylor expand the remaining operators inside the integral
which yields the following approximation,

(
Π1
AIo(T7)

)
(v̂, τ) = K1

o,A

(
F̃ (v̂, ξ)

)
(τ) =

∫ τ

0

ξ
∏

i∈{1,2,3}

uidξ =
τ2

2
v|v|4,

7. Computation of Π1
A(Io(T8))(v̂, τ).

We have that,

Io(T8) =

encodes the iterated integral ∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

e−i(ξ−ξ1)∆
(

(e−iξ1∆v̄)V̄
)
dξ1

)
(eiξ∆v2)

)
dξ.

By using the same arguments as made in the above computation of the iterated integral Io(T7), namely by following the
Taylor expansion (3.44), we obtain

Π1
A(Io(T8))(v̂, τ) =

∫ τ

0

ξ
∏

i∈{1,2,3}

uidξ =
τ2

2
v|v|2V̄ ,

where u1 = v̄, u2 = V̄ , and u3 = v2. Collecting the above computation together with equation (3.76) yields the second
order low-regularity scheme given in (3.75).

Local error analysis. The error for the trees I1
o (λ0) and I1

o (λ1) follows the same computations as for the first order.
One has to go one step further in the Taylor approximation:

R1
o,A((Π̃o,Aλ0)(v̂, ·)) = C2[M{1,2}, i∆](−iv2, v̄)

R1
o,A((Π̃o,Aλ1)(v̂, ·)) = C2[M{1,2}, i∆](−iv, V ).

In the end, we obtain the following contribution to the local error. This produce the following second order commutators:

L1
low(Io(λ0), v̂, A) = −iv2v̄ + C2[M{1,2}, i∆](−iv2, v̄)
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L1
low(Io(λ1), v̂, A) = −ivV + C2[M{1,2}, i∆](−iv, V ),

where using the Leibniz rule it follows from Definition 3.1.2 that these second order commutators ask for two spacial
derivatives on v and V .

Next, the decorated tree Io(λ1
0) contains a polynomial decoration meaning that one has ξ inside the integral. Therefore,

applying Definition 3.3.8, one gets

L1
low(Io(λ1

0), v̂, A) = L0,o
low(λ1

0, v̂, A) +Rro,A

((
Π̃o,Aλ

1
0

)
(v̂, ·)

)
,

where

Lr,olow(λ1
0, A) =

ΥΨo
root[λ

1
0]

Sroot(λ1
0)

(v, 0)V0 = C[u2, i∆](−iv)v̄

R1
o,A

((
Π̃o,Aλ

1
0

)
(v̂, ·)

)
= C[C[M{1,2},∆](M{1},M{1})M{2}, i∆](−iv, v̄).

It remains to compute the local error for trees with two edges such as T3 = Io(λ0Io(λ0)). We proceed with a full
derivation for this decorated trees. Two edges mean that we have to go for one extra level of recursivity. One has

L1
low(T3, v̂, A) = L0,o

low(λ0Io(λ0), v̂, A) +R1
o,A

((
Π̃0
o,Aλ0Io(λ0)

)
(v̂, ·)

)
. (3.81)

Then, for the first term, one gets

L0,o
low(λ0Io(λ0), v̂, A) =

ΥΨo
root[λ0Io(λ0)]

Sroot(λ0Io(λ0))
(v, 0)V0 L0

low(Io(λ0), v̂, A).

Given that A = (H2 ∩H1
0 )(Ω)3, one has from the local error analysis of the first order scheme:

L0
low(Io(λ0), v̂, A) = −iv2v̄ + ∆

(
v2v̄
)

+ ∆(v2)v̄ − v2∆v̄.

Therefore, one gets

L0,o
low(λ0Io(λ0), v̂, A) = −v3v̄2 − ivv̄∆

(
v2v̄
)
− iv∆(v2)v̄2 + iv3v̄∆v̄.

For the second term of (3.81), we Taylor-expand the operators that give:

R1
o,A

((
Π̃0
o,Aλ0Io(λ0)

)
(v̂, ·)

)
= −i∆

(
v3v̄2)− i(∆v)v2v̄2 + i(∆v̄)v3v̄.

In fact for the approximation of Io(λ0Io(λ0)), one uses the classical exponential integrators by Taylor-expanding all the
operators. We do not ask too much regularity due to the size of the trees which involves two integrations in time. For the
other trees Io(Ti), i ∈ {4, 5, 6, 7, 8}, one can proceed with the same computations and get an error of the same order.

Remark 3.5.5 (Error improvement) Note that classical approximation techniques, such as splitting or exponential
integrator methods (see, e.g., [CG12, JL00, Lub08]) introduce a local error of type O(∆2v,∆2V ) and hence require
solution and potential in

D(∆2) =
{
f ∈ (H2 ∩H1

0 )(Ω) ; ∆f ∈ (H2 ∩H1
0 )(Ω)

}
.

The local error of the second order low regularity GP integrator (3.75) on the other hand only requires the boundedness of
second instead of fourth order spatial derivatives of the potential V and solution u, as well as only the classical boundary
conditions that the trace vanishes, i.e., H1

0 (Ω).

Note that the second order low regularity scheme (3.75) involves commutators of the form C[f, i∆](un, un, V ) which
in general involve spatial derivatives. Indeed, using Definition 3.1.2, one has

C[f, i∆](v, v̄, V ) = −i∆(f(v, v̄, V )) +D1f(v, v̄, V ) · i∆v (3.82)
+D2f(v, v̄, V ) · i∆v̄ +D3f(v, v̄, V ) · i∆V.

For practical computations we need to address the stability issues caused by the inclusion of these commutator terms in
the numerical schemes. Different approaches can be made to treat this issue and guarantee the stability of the scheme.
One way to overcome the stability issue lies in imposing a CFL condition on the fully discrete scheme, introducing a
restriction on the ratio between time step size τ and spatial step size ∆x. In this paper we will not impose any CFL type
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condition, but stabilize the scheme a posteriori by the use of properly chosen filter operators Ψ. More precisely, instead of
considering the second order low regularity integrator (3.75) for the discretisation of the GP equation, we consider its
stabilised counterpart

un+1 = eiτ∆un − iτ
(

(eiτ∆(un)2)(eiτ∆ϕ1(−2iτ∆)un) (3.83)

+(eiτ∆un)(eiτ∆ϕ1(−iτ∆)V )
)

− iτ2ΨC[(eiτ∆M{1})(eiτ∆(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))M{2}), i∆]((un)2, ūn)

− iτ2ΨC[(eiτ∆M{1})(eiτ∆(ϕ1(−iτ∆)− ϕ2(−iτ∆))M{2}), i∆](un, V )

− iτ2
(
eiτ∆ΨC[u2, i∆](un)

)(
eiτ∆ϕ2(−2iτ∆)ūn

)
− τ2

2
(un|un|4 + 3un|un|2V − |un|2unV̄ + unV 2)

= ΦτGP2STAB(un),

where we have inserted the filter operator Ψ in front of all commutator terms. This filter function allows us the stabilization
of the scheme. In the following section we briefly discuss the appropriate choice of filter function (which allows us to
stabilize the scheme without worsening the local error structure) and outline an example. For a general introduction to
filter functions in case of ODEs we refer to [HLW10].

3.5.2 Filter functions, commutators and stabilisation
To illustrate the appropriate choice for the filter operator Ψ we place ourselves in the following general framework: to

construct a stable scheme at order p = r + 1, we wish to stabilize a term of the form

τpCp−1[f, i∆](v, v̄, V ).

In case of the second order scheme for (3.60), the commutator terms are of first order and hence involve first order
derivatives (with according boundary conditions), see (3.82), (3.73) and the Remark 3.1.3. This motivates the following
choice we make on the filter operator: we denote the filter operator by

Ψ = ψ(iτ |∇|),

where
|∇| := (−∆)1/2

is self-adjoint on the domain D(|∇|) = H1
0 (Ω) and ψ denotes a suitably chosen filter function which allows us to

(a) stabilize the scheme such that the numerical flow is locally Lipschitz continuous (see Assumption 3 below), while still
(b) allowing approximations at low regularity (see Assumption 4 below).

Here it is important to note that the main purpose of our new framework lies in reducing the regularity assumptions.
Hence, we do not want to introduce a “bad” (classical) error term through the stabilization, otherwise we could use
directly classical Taylor series expansion techniques in the construction of our schemes. Thus, we require the filter function
ψ to introduce the same optimal local error O(τp+1|∇|p(v + V )) as is introduced by our low-regularity schemes (see
Section 3.4.2).

The two necessary assumptions on the filter operator Ψ = ψ(iτ |∇|) at arbitrary order p reads as follows:

Assumption 3 Let us denote by X the space endowed with norm ‖ · ‖ in which we carry out the error analysis. Then
the filter function Ψ should satisfy the following estimate

‖τp−1Ψ[Cp−1[f, i∆](v, v̄, V )]‖ ≤ C||v||σ

for some σ = σ(f, p) > 0.

Assumption 3 guarantees the stability of the scheme, such that (for the appropriate choice of X) we have local Lipschitz
continuity of the numerical flow Φτ .

Assumption 4 The filter operator Ψ = ψ(iτ |∇|) shall satisfy the following low regularity expansion

Ψ[Cp−1[f, i∆](v, v̄, V )] = Cp−1[f, i∆](v, v̄, V ) +O(τ |∇|p(v + V )). (3.84)
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Assumption 4 preserves the optimal local error structure O(τp+1|∇|p(v + V )) of our schemes. This is essential as the
inclusion of the filter function should not require more regularity than we assumed in the construction of our low regularity
framework.

An example of a possible choice of a filter function in order to stabilize the second order scheme (3.75) is given in the
following example.

Example 13 (Filter functions for the GP equation) A possible choice of filter function for the second order low
regularity integrator (3.83) is given by

Ψ = ψ(iτ |∇|) = ϕ1(iτ |∇|) = (iτ |∇|)−1(eiτ |∇| − 1), (3.85)

where we recall that |∇| = (−∆)1/2 is a self-adjoint operator on the D(|∇|) = H1
0 (Ω). For a detailed analysis made

on the torus which justifies the above choice of filter operator to stabilize a low-regularity scheme involving a first order
commutator see [AB23a].

For a higher p-th order method we will encounter higher order commutators of the form

τpCp−1[f, i∆](un, un, V )

in our schemes. In order to stabilize the latter we need to introduce a higher order filter operator Ψp. For this purpose,
we first note that using the Leibnitz formula, the commutator term Cp−1[f, i∆](v, v̄, V ) can be written as a combination
of terms involving at most p− 1 derivatives of v and V .

As an example, in the case p = 2, C[f, i∆](v, v̄, V ) has the explicit form (3.82). Hence the role of Ψp lies in stabilizing
terms which involve the differential operator |∇|p−1. This motivates the higher order filter operator

Ψp = ϕ1(iτ |∇|)...ϕ1(iτ |∇|)︸ ︷︷ ︸
p− 1 times

. (3.86)

Note that at first glance another (cheaper) choice of high order filter function would be Ψ̃(iτ |∇|) := ϕ1(iτ |∇|p−1).
The latter, however, introduces a local error of order O(τ |∇|2(p−1)) which at order p ≥ 3 is not optimal in the sense of
our low regularity approximations. Namely, this (cheaper) choice of filter function does not satisfy Assumption 4.

3.5.3 Klein– and Sine–Gordon equations
As a second example we consider a problem with real non-polynomial nonlinearity: the nonlinear Klein–Gordon (KG)

equation
∂ttz −∆z +m2z = g(z), (t, x) ∈ R× Ω,

z(0) = u0, ∂tz(0) = u1,
(3.87)

where for simplicity we assume non zero mass m 6= 0 and real-valued solutions z(t, x) ∈ R. Nevertheless, our framework
can also allow for the complex setting z(t, x) ∈ C and for the case m = 0 for wave equations.

First, in order to apply our abstract framework (3.1) to the nonlinear Klein-Gordon model (3.87) we rewrite (3.87) as
a first-order complex system. For this purpose we define

〈∇〉m =
√
−∆ +m2

and assume that our domain Ω (equipped with appropriate boundary conditions) is chosen such that 〈∇〉m is well defined
and invertible. For instance in the case of periodic boundary conditions the operator 〈∇〉m can be expressed as the
Fourier multiplier

(〈∇〉m)k∈Zd =
√

(k1 + . . .+ kd)2 +m2,

and is a well defined invertible operator on the space H1(Td), given that m 6= 0. While on a sufficiently smooth bounded
domain Ω ⊂ Rd equipped with homogeneous Dirichlet boundary conditions, using pseudo-spectral methods we have that
the operator 〈∇〉m : (H2 ∩H1

0 )(Ω)→ L2(Ω) is essentially self-adjoint; its closure is self-adjoint on the domain

D(〈∇〉m) = H1
0 (Ω).

See [RS80] for a full discussion on the study of unbounded operators, spectral theorems for self-adjoint operators (pg.
263) and of the notion of closable operators (pg. 250). Next we introduce the transformation

u = z − i〈∇〉−1
m ∂tz, (3.88)
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which allows one to rewrite the Klein-Gordon equation (3.87) as the following first order complex system

i∂tu = −〈∇〉mu+ 〈∇〉−1
m g

(
( 1

2
(u+ u)

)
, (3.89)

and where by (3.88) we have that

z =
1

2
(u+ u) = Re(u).

A natural space to study wave type equations of the form (3.87) is for (z, ∂tz) ∈ H1 × L2. In terms of u, from the
transformation (3.88), we see that a natural space to measure the error in when studying equation (3.89) is H1.

In order to illustrate our general theory to the case of a non-polynomial nonlinearity, we choose to study the
Sine–Gordon equation. The Sine–Gordon equation corresponds to the following choice of nonlinearity

g(z) = − sin z,

which by equation (3.89) yields the first-order complex Sine–Gordon equation:

∂tu− i〈∇〉mu = i〈∇〉−1
m

(
sin( 1

2
u) cos( 1

2
ū) + cos( 1

2
u) sin( 1

2
ū)
)
. (3.90)

We now apply our general framework to the above Sine–Gordon equation. The above equation (3.90) is of the form
(3.1) with

L− = {0, 1}, L+ = Lo,0+ = Lo,1+ = Lō,0+ = Lō,1+ = {o, ō}, V0 = V1 = 1

Lo = i〈∇〉m, Lō = −Lo, uo = v, uō = v̄

f0
o,o(u) = sin( 1

2
u), f0

o,ō(ū) = cos( 1
2
ū), f1

o,o(u) = cos( 1
2
u), f1

o,ō(ū) = sin( 1
2
ū),

f0
ō,o(u) = cos( 1

2
u), f0

ō,ō(u) = sin( 1
2
ū), f1

ō,o(u) = sin( 1
2
u), f1

ō,ō(ū) = cos( 1
2
ū).

Using the above we have that for (`, l) ∈ {o, ō} × {0, 1} the nonlinearity is given by

Ψl
`(u

l
`) = i〈∇〉−1

m

(
f l
`,o(u)f l

`,ō(ū)
)
. (3.91)

Before introducing the first order analysis for (3.90), we make the following comparative remark. The decorated trees
which will be introduced in the following section for the first order analysis of (3.90) will resemble the ones introduced
for the analysis of the Gross–Pitaevskii equation (see Section 3.5.1). The main difference is that the nodes will encode
different nonlinearities, given that the nonlinearities associated to V0 and V1 for the Sine-Gordon equation are different
from the ones for the Gross-Pitaevskii equation. In addition, the Sine-Gordon nonlinearity (3.91) includes the linear
operator B0

o = B1
o = i〈∇〉−1

m . See Section 3.5.1 where for the study of the Gross-Pitaevskii equation we had the more
simple case where B0

o = B1
o = id.

First order Duhamel integrator for Sine–Gordon

We seek to provide a first order low-regularity approximation to the following oscillatory integral:

w0
o(v̂, τ) = eiτ〈∇〉mv + i〈∇〉−1

m

∫ τ

0

ei(τ−ξ)〈∇〉m

( (eiξ〈∇〉m sin( 1
2
v))(e−iξ〈∇〉m cos( 1

2
v̄))+(eiξ〈∇〉m cos( 1

2
v))(e−iξ〈∇〉m sin( 1

2
v̄))
)
dξ.

The first order low regularity integrator for the Sine–Gordon equation is given in the following corollary.

Corollary 3.5.6 At first order our general low regularity scheme (3.57) for the Sine-Gordon equation (3.90) takes the
form

un+1 = eiτ〈∇〉mun + iτ〈∇〉−1
m [ (3.92)(

eiτ〈∇〉m sin( 1
2
un)
)(
eiτ〈∇〉m

(
ϕ1

(
− 2iτ〈∇〉m

)
cos( 1

2
ūn)
))

+
(
eiτ〈∇〉m cos( 1

2
un)
)(
eiτ〈∇〉m

(
ϕ1

(
− 2iτ〈∇〉m

)
sin( 1

2
ūn)
))]

with local error
O
(
τ2C[〈∇〉−1

m M{1,2}, i〈∇〉m](u, ū)
)
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In case of more regular solutions, we have the following simplified first-order scheme,

un+1 = eiτ〈∇〉mun + iτ〈∇〉−1
m

(
sin( 1

2
un) cos( 1

2
ūn) (3.93)

+ cos( 1
2
un) sin( 1

2
ūn)
)

with a local error of order O
(
τ2〈∇〉−1

m ((〈∇〉mu)ū)
)
.

Remark 3.5.7 (Remark on the imposed regularity) In general the local error of type

O
(
τ2C[〈∇〉−1

m M{1,2}, i〈∇〉m](u, u)
)

asks for less regularity assumptions than the local error O
(
τ2〈∇〉−1

m ((〈∇〉mu)ū)
)
, due to the structure of the commutator

(see Definition 3.1.2). Indeed, we portray this in the following example, where we measure the error in the space H1(Td).
First, using the commutator estimate established in [RS21, Lemma 27], we have

||C[〈∇〉−1
m M{1,2}, i〈∇〉m](u, u)||H1 . ||C[M{1,2}, i〈∇〉m](u, u)||L2

. ||u||2
H

1
2

+ d
4
.

Namely we have that the commutator term asks for solutions in H
1
2

+ d
4 (Td).

Secondly, using the classical bilinear estimate:

||uv||L2(Ω) . ||u||L2(Ω)||v||
H
d
2

+ε
(Ω)
, ε > 0,

which follows by the Sobolev injection H
d
2

+ε ↪→ L∞, we have,

||〈∇〉−1
m ((〈∇〉mu)ū)||H1(Ω) . ||(〈∇〉mu)ū||L2(Ω)

. ||〈∇〉mu||L2(Ω)||u||
H
d
2

+ε
(Ω)
.

It follows from the above that the classical local error term asks for solutions in (H1 ∩H
d
2

+ε)(Td) when working on the
torus, while when working on a bounded domain equipped with Dirichlet boundary conditions it asks for solutions in
(H1

0∩H
d
2

+ε)(Ω). Hence, the commutator-term asks for less regularity than the classical local error term. For example, when
d = 1, the low-regularity scheme asks for H

3
4 (T)-solutions, whereas the classical scheme asks for u(t) ∈ D(〈∇〉m) = H1(T).

Proof. The trees we are considering are T 1 = {T0, T1}, where following the framework given in (3.32) we have that,

Bo

( ∏
o∈L0,o

+

eξLof0
o,o(vo)

)
V0 = i〈∇〉−1

m

((
eiξ〈∇〉mu1

)(
e−iξ〈∇〉mu2

))

≡ = λ0 = T0,

Bo

( ∏
o∈L1,o

+

eξLof1
o,o(vo)

)
V1 = i〈∇〉−1

m

((
eiξ〈∇〉mu3

)(
e−iξ〈∇〉mu4

))

≡ = λ1 = T1,

where v = (v, v̄) and u1 = sin( 1
2
v), u2 = cos( 1

2
v), u3 = cos( 1

2
v), u4 = sin( 1

2
v). From equation (3.57) it then follows that

the first-order scheme is of the form,

u0(v̂, τ) = eiτ∆v +
∑
T∈T 1

Π0
A(Io(T ))(v̂, τ), (3.94)

where v = (v, v̄). We have, for i = 0, 1, that

Π0
AIo(λi)(v̂, τ) = K0

o,A(Π̃o,AD−1(λi)(v̂, ·))(τ) = K0
o,A

(
ΥΨo

root[λi]

Sroot(λi)
(v, ξ)

)
(τ)
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where one has,

Sroot(λ0) = Sroot(λ1) = 1,

ΥΨo
root[λ0](v, ξ) = i〈∇〉−1

m

((
eiξ〈∇〉m sin( 1

2
v)
)(

e−iξ〈∇〉m cos( 1
2
v)
))

,

ΥΨo
root[λ1](v, ξ) = i〈∇〉−1

m

((
eiξ〈∇〉m cos( 1

2
v)
)(

e−iξ〈∇〉m sin( 1
2
v)
))

.

1. When A ⊃ (H1 ∩H
d
2

+ε)(Td)2 or A ⊃ (H1
0 ∩H

d
2

+ε)(Ω)2.
Given that r, ` = 0, and v 6∈ D(G), we do not have enough regularity to simply apply the Taylor-expansion (3.44). Instead
we perform a low-regularity based approximation of the integrals and apply the first point (i) of Definition 3.3.2. From
definition (3.3.2) it then follows that

L1 = Lo = i〈∇〉m, L2 = −i〈∇〉m, Ldom = −2i〈∇〉m

with Bo = 〈∇〉−1
m , and hence we have,

K0
o,A

(
ΥΨo

root[λ0](v, ·)
)

(τ) = iτ〈∇〉−1
m

(
eiτ〈∇〉mu1

)(
eiτ〈∇〉m

(
ϕ1

(
− 2iτ〈∇〉m

)
u2

))
K0
o,A

(
ΥΨo

root[λ1](v, ·)
)

(τ) = iτ〈∇〉−1
m

(
eiτ〈∇〉mu3

)(
eiτ〈∇〉m

(
ϕ1

(
− 2iτ〈∇〉m

)
u4

))
.

Plugging the above in (3.94) yields the first order low-regularity scheme (3.92) for the Sine-Gordon equation.

2. When A = (H1 ∩H
d
2

+ε)(Td)2 or A = (H1
0 ∩H

d
2

+ε)(Ω)2

In this case we apply the Taylor expansion (3.44) with r = ` = 0, to obtain:

K0
o,A

(
(ΥΨo

root[λ0] + ΥΨo
root[λ1])(v, ·)

)
(τ)

= i〈∇〉−1
m

(∫ τ

0

u1u2dξ +

∫ τ

0

u3u4dξ

)
= iτ〈∇〉−1

m (sin( 1
2
v) cos( 1

2
v) + cos( 1

2
v) sin( 1

2
v),

which thanks to (3.94) yields the first order scheme (3.93).
Local error analysis: We follow the same steps as for the proof of Corollary 3.5.1. Using the recursive formula in
Definition 3.3.8, one gets for T ∈ {λ0, λ1}

L0
low(Io(T ), v̂, A) = L−1,o

low (T, v̂, A) +R0
o,A

((
Π̃o,AT

)
(v̂, ·)

)
.

Then by (3.50), we get for l ∈ {0, 1}

L−1,o
low (λl, v̂, A) =

ΥΨo
root[T ]

Sroot(T )
(v, 0)Vl

which gives

L−1,o
low (λ0, v̂, A) = i〈∇〉−1

m

((
eiξ〈∇〉m sin( 1

2
v)
)(

e−iξ〈∇〉m cos( 1
2
v)
))

,

L−1,o
low (λ1, v̂, A) = i〈∇〉−1

m

((
eiξ〈∇〉m cos( 1

2
v)
)(

e−iξ〈∇〉m sin( 1
2
v)
))

.

It remains to compute R0
o,A((ΠAT )) whose values will depend on A. For A ⊃ (H1∩H

d
2

+ε)(Td)2 or A ⊃ (H1
0 ∩H

d
2

+ε)(Ω)2

one gets

R0
o,A((Π̃o,Aλ0)(v̂, ·)) = C[i〈∇〉−1

m M{1,2}, i〈∇〉m](sin( 1
2
v), cos( 1

2
v))

R0
o,A((Π̃o,Aλ1)(v̂, ·)) = C[i〈∇〉−1

m M{1,2}, i〈∇〉m](cos( 1
2
v), sin( 1

2
v)).
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For A = (H1 ∩H
d
2

+ε)(Td)2 or A = (H1
0 ∩H

d
2

+ε)(Ω)2, one Taylor-expands the operators which give:

R0
o,A((Π̃o,Aλ0)(v̂, ·)) = − sin( 1

2
v) cos( 1

2
v)− 〈∇〉−1

m

((
〈∇〉m sin( 1

2
v)
) (

cos( 1
2
v)
))

+ 〈∇〉−1
m

(
sin( 1

2
v)
(
〈∇〉m cos( 1

2
v)
))

R0
o,A((Π̃o,Aλ1)(v̂, ·)) = − cos( 1

2
v) sin( 1

2
v)− 〈∇〉−1

m

((
〈∇〉m cos( 1

2
v)
) (

sin( 1
2
v)
))

+ 〈∇〉−1
m

(
cos( 1

2
v)
(
〈∇〉m sin( 1

2
v)
))

which concludes the proof.

Remark 3.5.8 Similarly to Corollary 3.5.6 our general framework (3.4.2) also allows for low regularity approximations
at higher order for Klein–Gordon equations.



84 CHAPTER 3. Low regularity integrators via decorated trees



Part II

The setting of a randomized initial condition





Chapter 4

Approximations of dispersive PDEs in the
presence of low-regularity randomness

This chapter is based on the article [ABBS22a] accepted in Foundations of Computational Mathematics.

Abstract. We introduce a new class of numerical schemes which allow for low regularity approximations to the
expectation E(|uk(t, vη)|2), where uk denotes the k-th Fourier coefficient of the solution u of the dispersive equation
and vη(x) the associated random initial data. This quantity plays an important role in physics, in particular in the
study of wave turbulence where one needs to adopt a statistical approach in order to obtain deep insight into the generic
long-time behaviour of solutions to dispersive equations. Our new class of schemes is based on Wick’s theorem and
Feynman diagrams together with a resonance based discretisation [BS22] set in a more general context: we introduce a
novel combinatorial structure called paired decorated forests which are two decorated trees whose decorations on the
leaves come in pair. The character of the scheme draws its inspiration from the treatment of singular stochastic partial
differential equations via Regularity Structures. In contrast to classical approaches, we do not discretize the PDE itself,
but rather its expectation. This allows us to heavily exploit the optimal resonance structure and underlying gain in
regularity on the finite dimensional (discrete) level.

4.1 Introduction
We consider nonlinear dispersive equations

i∂tu(t, x) + L(∇)u(t, x) = |∇|αp(u(t, x), u(t, x)), (t, x) ∈ R×Td (4.1)

with random initial data:
u(0, x) = vη(x) =

∑
k∈Zd

vkηke
ikx, (4.2)

where vk = v−k and (ηk)k∈Zd is a family of random variables satisfying

E(ηkη−`) = δk,`. (4.3)

For the condition (4.3) to be satisfied we require η0 to be a real normalized centered Gaussian, (ηk)k>0 to be standard
complex Gaussians, (ηk)k≥0 to be independent and to satisfy ηk = η−k. We first note that the above setting is for real
initial conditions. In the complex case, we simply need to take (ηk)k∈Zd to be independent standard complex Gaussians
which satisfy E(ηkη`) = δk,`, and refer to the Remark 4.1.1. Working with Gaussian random variables allows us to use
Wick’s formula for computing the second moment of uk(τ, vη). Nevertheless, one can go beyond the Gaussian realm. For
a discussion on the subject we refer to Remark 4.1.2.

Furthermore, we assume in (4.1) a polynomial nonlinearity p. Moreover, we suppose that there exists a deterministic
time T > 0 such that the structure of (4.1) implies at least almost-sure local wellposedness of the problem in an appropriate
functional space on the finite time interval ]0, T ]. This is a non-trivial assumption since naturally the time of existence is
random and not necessarily almost surely bounded from below by a positive time T . We refer to the works on probabilistic
Cauchy theory given for instance by [BT08, BT13, SX16, CO12, NS15, CGI22] in the case of nonlinear Schrödinger and
wave equations. With the above assumption we have that the solution u admits up until time T a second moment
restricted on the almost surely set of its definition. In order to keep notations simple, we will omit such a set in the sequel.
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The differential operators L(∇) and |∇|α shall cast in Fourier space into the form

L(∇)(k) = kσ +
∑

γ:|γ|<σ

aγ
∏
j

k
γj
j , |∇|α(k) =

∑
γ:|γ|≤α

d∏
j=1

|kj |γj (4.4)

for some α ∈ R, σ ∈ N, γ ∈ Zd and |γ| =
∑
i γi, where for k = (k1, . . . , kd) ∈ Zd and m = (m1, . . . ,md) ∈ Zd we set

kσ = kσ1 + . . .+ kσd , k ·m = k1m1 + . . .+ kdmd.

Concrete examples are discussed in Section 4.5, including the cubic nonlinear Schrödinger (NLS) equation

i∂tu+ L(∇)u = |u|2u, L(∇) = ∆, α = 0, p(u, ū) = |u|2u (4.5)

and the Korteweg–de Vries (KdV) equation

i∂tu+ L(∇)u = i
1

2
∂xu

2, L(∇) = i∂3
x, α = 1, p(u, ū) = i

1

2
u2. (4.6)

Note that one could deal with non-polynomial nonlinearities, and work on more general domains than the periodic one,
by combining the present work with the general framework established in [ABBS22b]. Indeed, by introducing nested
commutator structures the work [ABBS22b] overcomes the necessity of periodic boundary conditions and polynomial
nonlinearities, see also [RS21, AB23a]. One can use the iterated integrals produced in [ABBS22b] and then proceed in
Fourier space as in the present work. Doing all the computations in physical space will require a description of the second
moment of the random initial data directly in physical space; however, such a randomisation is in general mostly described
in Fourier space.

The aim of this paper is to introduce a new class of schemes which, by denoting by τ the time step, allows for a low
regularity approximation to

E(|uk(t, vη)|2). (4.7)

Here, E denotes the expectation and uk the k-th Fourier coefficient of the solution u of (4.1) with corresponding initial
data vη defined at equation (4.2). The quantity (4.7) plays an important role in physics, in particular in the study of
wave turbulence. A fundamental question in the latter is to derive a rigorous justification of the wave kinetic equation
(WKE), an equation which describes the effective dynamics of an interacting wave system in the thermodynamic limit.
This yields deep insight into the generic long-time behaviour of solutions to dispersive equations. In order to derive this
equation one starts with a random initial value and work on a large box of size L. Then under suitable scaling laws which
depend on the strength µ of the non-linearity, and the size L of the box, one can show that in the limit of large L and
small µ the effective dynamic of E(|uk(t, vη)|2) is given by the WKE over sufficiently long time scales.

A rigorous derivation of the WKE for NLS is performed in [DH21, DH23, ACG21] via a diagrammatic expansion. A
similar rigorous derivation result for a high dimensional (d ≥ 14) discrete KdV-type equation was achieved in [ST21]
using also Feynman diagrams, in order to derive its associated wave kinetic equation at the kinetic time under a suitable
scaling law. All these works are based on the iteration of Duhamel’s formula for (4.1):

u(τ, vη) = eiτL(∇)vη − i|∇|αeiτL(∇)

∫ τ

0

e−iξL(∇)p(u(ξ, vη), ū(ξ, vη))dξ (4.8)

which in Fourier space cast into the form

uk(τ, vη) = eiτL(∇)(k)ηkvk − i|∇|α(k)eiτL(∇)(k) (4.9)∫ τ

0

e−iξL(∇)(k)pk(u(ξ, vη), ū(ξ, vη))dξ,

where pk is given for p(u, ū) = |u|2u by

pk(u, ū) =
∑

k=−k1+k2+k3

ūk1uk2uk3 .

Iterations of (4.9) produces a tree series, see also [Chr07, Gub12, GKO13] where the series is made explicit for some
specific equations. This expansion can also be described via random tensors introduced in [DNY22]. From this tree series,
one can compute E(|uk(τ, vη)|2) using Wick’s theorem and Feynman diagrams [DH21, DH23].

The theoretical works mentioned above on the study of wave turbulence, together with the idea of a resonance based
discretisation [BS22], set the inspiration for this work. From an algebraic point of view we, however, have to work in a
much more general context considering trees with more decorations than introduced in [BS22], with a new combinatorial
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structure called paired decorated forests. This will allow us to approximate a large class of dispersive PDEs with one
general scheme, without the need of treating each and every equation separately.

In contrast to classical approaches, we do not discretize the PDE itself, but rather its expectation. This allows us to
heavily exploit the optimal resonance structure and underlying gain in regularity on the discrete level. More precisely, the
iteration of Duhamel’s formulation (4.8) of (4.1) can be expressed using decorated trees, see [BS22]. Namely, it follows
from [BS22, Section 1.2] that the k−th Fourier coefficient of the approximated solution at order r is given by

urk(τ, vη) =
∑
T∈Vr

k

Υp(T )(vη)

S(T )
(ΠT )(τ) (4.10)

where Vrk is a set of decorated trees which incorporate the frequency k, S(T ) is the symmetry factor associated to the tree
T , Υp(T ) is the coefficient appearing in the iteration of Duhamel’s formulation and (ΠT )(τ) represents a Fourier iterated
integral. The exponent p corresponds to the nonlinearity appearing in the right hand side of (4.1). The exponent r in Vrk
means that we consider only trees of size at most r+ 1, these are the trees corresponding to an iterated integral of depth at
most r+ 1. These quantities are described in detail in Section 4.4. Generally speaking, the sum (4.10) is the truncation at
order r of the infinite series describing formally the solution of (4.1). The low regularity scheme for (4.1) is then obtained
by replacing each oscillatory integral (ΠT )(τ) appearing in the finite sum (4.10) by a low regularity approximation that
embeds the resonance structure into the numerical discretization. We will denote the latter low-regularity approximation
operator by Πn,r. Here, r corresponds to the order of the discretization and n is a formal a priori regularity assumed on
the initial data vη. Namely, we assume that we can differentiate vη, n-times. The general scheme then takes the form:

Urk (τ, vη) =
∑
T∈Vr

k

Υp(T )(vη)

S(T )
(Πn,rT )(τ). (4.11)

The local error structure for each approximated iterated integral is given by

(ΠT −Πn,rT )(τ) = O
(
τr+2Lrlow(T, n)

)
, (4.12)

where Lrlow involves only lower order derivatives. The form of the scheme draws its inspiration from the treatment of
singular stochastic partial differential equations (SPDEs) via Regularity Structures in [Hai14, BHZ19, BCCH20, BHZ20].
These decorated trees expansions are generalization of the B-series widely used for ordinary differential equations, we
refer to [But72, CCO08, HLW10, MKL13]. In the end, one obtains an approximation of u under much lower regularity
assumptions than classical methods (e.g., splitting methods, exponential integrators [CG12, Fao12, HLW10, HO10, Hol10,
Law67, Lub08, LR04, MQ02, SSC18]) require, which in general introduce the local error

O
(
τr+2Lr(T, n)

)
(4.13)

involving the full high order differential operator Lr. Indeed, we have that D(Llow) ⊃ D(L), meaning that the local
error structure (4.12) allows us to deal with a rougher class of solutions than the classical error bound (4.13). The
underlying idea behind these low-regularity approximations was initiated by the work of [OS18], and then generalized
by [BS22, ABBS22b] to higher order methods, allowing for approximations to large classes of equations. Although
the error bound (4.12) derived here are formal, one can obtain rigorous low-regularity error bounds using a classical
Sobolev space setting (see [RS21, AB23a]), as well as sharp L2 error estimates by using discrete Strichartz estimates and
discrete Bourgain spaces (see [IZ09, ORS21, ORS22b, RS22, JORS23]). Let us mention that the local error analysis can
be nicely understood via a Birkhoff factorisation of the character Πn,r (see [BS22, BEF20]) that involves a deformed
Butcher-Connes-Kreimer coproduct (see [But72, CK99, CK00, BS22, BM23]). In the present work, we give a recursive
description with various Taylor remainders in Definition 4.3.5. This formulation is similar to [ABBS22b] where the Birkhoff
factorisation is not available. The Birkhoff factorisation can also be used in our work for a more precise description
of the Taylor remainders. We also believe that it could have an impact on the general description of symmetries for
low regularity schemes. For the moment, only symmetric and symplectic schemes have been work out by hand (see
[AB23b, MS23]). Lastly, we note that the scheme (4.11) has been generalized to non-polynomial nonlinearities and to
parabolic equations in [ABBS22b] with the use of nested commutators first introduced in [RS21].

A natural route to obtain a low regularity approximation to E(|uk(τ, vη)|2) would be to first compute the low
regularity approximation Un,rk (τ, vη) given in (4.11) to uk(τ, vη), and then to evaluate its expectation E(|Un,rk (τ, vη)|2)
while removing the terms of higher order. By doing so, we would, however, ignore the enhanced resonance structure and
gain in regularity introduced by applying the expectation E. In order to exploit the latter on the discrete level, we will
directly compute a low regularity approximation to the second moment of urk, where u

r
k is defined in (4.10), and is the

truncation at order r of the tree series describing uk. Namely, we are interested in computing the following series:

V rk (τ, v) = Q≤r+1E(|urk(τ, vη)|2) (4.14)
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=
∑

F=T1·T2∈Grk

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)

(
Π̄T1

)
(τ) (ΠT2)(τ)

where Q≤r+1 keeps only the terms of order less than or equal to τr+1, and mF is a combinatorial coefficient associated to
F . Namely, mF counts the number of pairings that produce F . It remains to describe the set Grk. For this purpose we
introduce a new combinatorial structure called paired decorated forest which are two decorated trees whose decorations
on the leaves come in pair. This pairing among the leaves come from the use of Wick’s theorem for products of Gaussian
random variables that appear in the computation of V rk . Similar structures have been used in the theoretical analysis
of dispersive PDEs [DH21, DH23, ACG21, ST21] as well as in stochastic differential equations and exotic B-series
[LV20, Bro22] . The set Grk consists of all paired forests F = T1 · T2 of size at most r + 1, meaning that the term(
Π̄T1

)
(τ) (ΠT2)(τ) contains at most r + 1 integrals in time. T1 and T2 are the two paired trees and · denotes the forest

product. Further, in the above series we have used the following short hand notation:

Ῡp(T1)(v) = Υp(T1)(v),
(
Π̄T1

)
(τ) = (ΠT1)(τ),

which stands for the complex conjugate, and will be abundantly used throughout the reminder of this article. Notice
that the above sum (4.14) is not symmetric, meaning that both

(
Π̄T1

)
(τ) (ΠT2)(τ) and

(
Π̄T2

)
(τ) (ΠT1)(τ) appear when

T1 6= T2. We then proceed with the discretization in time of (4.14) as is done in [BS22]: we replace (ΠTi)(τ) by their
resonance based approximations (Πn,rTi) which yields the following tree series:

V n,rk (τ, v) =
∑

F=T1·T2∈Grk

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)
(4.15)

Q≤r+1

(
Π̄n,rT1Πn,rT2

)
(τ).

The local error structure is given by(
Π̄T1ΠT2 −Q≤r+1Πn,rT1Π̄n,rT2

)
(τ) = O

(
τr+2Lrlow(T1 · T2, n)

)
. (4.16)

The definition of Lrlow(T1 · T2, n) is, however, much more involved than in the work of [BS22]. Indeed, given that we
consider decorated forests F = T1 · T2, whose leaves (which encodes the frequency) come in pairs, we have that the same
frequencies can appear in both the decorated tree T1 and that of T2. Hence, unlike in the work of [BS22], the set of
frequencies appearing on the leaves of T1 and T2 are not disjoint, and in consequence a new framework needs to be
considered. Moreover, since our calculations are made with these pairings T1 · T2, cancellations appear when computing
the variance (4.7) and the schemes obtained in this work are of simpler form than those obtained in the work of [BS22].

Our main result is the general class of schemes given by (4.15) together with the correct combinatorial structures on
paired decorated forests, which yields a low-regularity approximation of (4.7). Our construction is based upon Wick’s
formula (see Proposition 4.4.1) and is presented in Proposition 4.4.2. The local error structure (4.12) is then given
in Theorem 4.4.3. Theorem 4.4.3 is heavily based on Theorem 4.3.6 which introduces a new recursive definition of
Lrlow(T1 · T2, n) (see Definition 4.3.5) which differs from the one presented in [BS22].

The new scheme (4.15) is an attempt to implement the low regularity integrators introduced in [BS22] when randomness
is introduced at the level of the initial data. We expect that the scheme described in [BS22, ABBS22b] will be able to
enhance the error structure of classical methods for (dispersive) stochastic PDEs (see, e.g. [BC23, Deb11, LPS14] and
the references therein) for low regularity initial data where randomness is added via a stochastic forcing.

Remark 4.1.1 Our assumption on the initial data in (4.3) enforces the initial data to be real. Our scheme is fairly
general and works for both real or complex initial data. In the case of a complex initial data the authors [DH23, DH21]
use the following assumption. Let (ηk)k∈Zd be a family of independent identically distributed complex random variables
(centered standard Gaussian variables or uniform distributions on the unit circle) satisfying: For all k, ` ∈ Zd

E(|ηk|2) = 1, E(ηkη`) = 0.

In the Gaussian case see also [CG19]. The second identity in the above simplifies a lot the interactions that need to be
considered for building up the Feynman diagrams. Indeed, only the terms E(ηkη`) from Wick’s theorem are potentially
non-zero. These terms are the easiest to treat requiring no extra regularity, (see Section 4.1.1 and (4.22) where the pairing
T0 · T1,1 is no longer possible, it is the pairing that asks more regularity in the discretisation, see (4.26)).

Remark 4.1.2 In (4.14), the summation is performed on paired decorated forests of the form T1 · T2. The fact that we
have only two trees and not more correspond to the computation of the second moment. For the p-th moment, one will
get p paired decorated trees where the leaves will come in pairs. In both cases second moment or higher moments, one
uses Wick’s theorem applied to product of Gaussian random variables for computing the pairings. One can potentially
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go beyond the Gaussian realm by using cumulants for computing the moments of a given random variable. This was
extensively used in the context of singular SPDEs (see [CH16] for a general convergence result of renormalised models and
[EH21, BN22] for recent works in the discrete setting). In our context, one can imagine to have trees where the leaves are
split into different sets of cardinality bigger than two. The scheme will be robust to this case.

Before introducing our general framework we will in the next section illustrate our main idea on an example taken
from NLS.

4.1.1 Example
Let us consider the equation:

i∂tu+ ∆u = |u|2u, u(0, x) = vη(x) =
∑
k∈Zd

vkηke
ikx (4.17)

set on the d dimensional torus. We will discuss the approximation of E
(
|uk(τ, vη)|2

)
to first order. We rewrite (4.17)

using Duhamel’s formula:

u(τ, vη) = eiτ∆vη − ieiτ∆

∫ τ

0

e−iξ∆
(
u(ξ, vη)u(ξ, vη)2

)
dξ.

One obtains the following equation for the Fourier coefficient uk(τ, vη):

uk(τ, vη) = e−iτk
2

ηkvk −
∑

k1,k2,k3∈Zd
−k1+k2+k3=k

ie−iτk
2

∫ τ

0

eiξk
2

uk1(ξ, vη)uk2(ξ, vη)uk3(ξ, vη)dξ,

(4.18)

where the linear operator eiτ∆ (resp. e−iτ∆) is sent to e−iτk
2

(resp. eiτk
2

) in Fourier space. The splitting of k into
k1, k2, k3 comes from the fact that moving to Fourier space, products become convolution products on the frequencies.
We fix r = 0 and iterate (4.18) by replacing ukj (τ, v

η) by

ukj (τ, v
η) = e−iτk

2
j ηkjvkj +O(τ),

with j ∈ {1, 2, 3}. We obtain the following first order approximation of the k-th Fourier coefficient uk(τ, vη):

uk(τ, vη) = e−iτk
2

ηkvk −
∑

k1,k2,k3∈Zd
−k1+k2+k3=k

ie−iτk
2

∫ τ

0

eiξk
2

(eiξk
2
1ηk1vk1)(e−iξk

2
2ηk2vk2)(e−iξk

2
3ηk3vk3)dξ +O(τ2).

We encode the above Duhamel iterates using the tree series (4.10). Namely, on the continuous level, from (4.10) we have

u0
k(τ, vη) = u0

k,1(τ, vη) + u0
k,2(τ, vη),

u0
k,1(τ, vη) =

Υp(T0)(vη)

S(T0)
(ΠT0)(τ),

u1
k,2(τ, vη) =

∑
k1,k2,k3∈Zd
−k1+k2+k3=k

Υp(T1)(vη)

S(T1)
(ΠT1)(τ),

(4.19)

where

T0 =
k

, T1 =

k1 k3

k2

, S(T0) = 1, S(T1) = 2, (4.20)
Υp(T0)(vη) = ηkvk, Υp(T1)(vη) = 2η̄k1 v̄k1ηk2vk2ηk3vk3 ,
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(ΠT0)(τ) = e−iτk
2

, (ΠT1)(τ) = −ie−iτk
2
∫ τ

0

eiξk
2

eiξk
2
1e−iξk

2
2e−iξk

2
3dξ.

For the decorated trees written above, we have used the following coding: an edge (resp. ) corresponds to a factor
e−itk

2

(resp. eitk
2

), while an edge (resp. ) corresponds to an integral −i
∫ τ

0
eiξk

2

· · · dξ (resp. −i
∫ τ

0
e−iξk

2

· · · dξ). The
dash dotted line introduces a minus sign. The decorations on the leaves correspond to the frequencies that add up in the
intern node with a minus sign if one faces a dash edge. In T1, the two inner nodes are decorated by k = −k1 + k2 + k3

where −k1 comes from the edge . The definition of the symmetry factor S(T ) and the coefficients Υp(T ) are defined
in Section (4.4). The symmetry factor corresponds to the number of internal symmetries of the tree taking the edge
decorations into account but not the node decorations, which explains why S(T1) = 2.

By construction, u0
k is a first order truncated approximation of uk, and it follows from (4.19) that

E(|u0
k(τ, vη)|2) = E

(
(u0
k,1(τ, vη) + u1

k,2(τ, vη))(u0
k,1(τ, vη) + u1

k,2(τ, vη))
)

= E(|u0
k,1(τ, vη)|2) + 2ReE

(
u0
k,1(τ, vη)u1

k,2(τ, vη)
)

+O(τ2).

The main idea is then that we can express on the continuous level the above expansion using the tree series (4.14), and
on the discrete level by the tree series (4.15). We show how this is done by detailing the computation of the term

E
(
u0
k,1(τ, vη)u1

k,2(τ, vη)
)
.

It follows from (4.20) that we need to consider

E
(

Υp(T0)(vη)Υp(T1)(vη)
)

= 2v̄kv̄k1vk2vk3E(η̄kη̄k1ηk2ηk3). (4.21)

Further, we have,

E(η̄kη̄k1ηk2ηk3) = E(η̄kη̄k1)E(ηk2ηk3) + E(η̄kηk2)E(η̄k1ηk3)

+ E(η̄kηk3)E(η̄k1ηk2)

= δk,k̄1
δk2,k̄3

+ δk,k2δk1,k3 + δk,k3δk1,k2

where we have used Wick’s formula (see Proposition 4.4.1) for products of Gaussian random variables. The different δ·,·
correspond to different pairings and fix completely the frequencies on the leaves. We will introduce a new combinatorial
object for describing these pairing called decorated paired forests. Below, we represent the various pairings coming from
(4.21):

T0 =
k

, T1,1 =

k̄ k̄1

k1

T1,2 =

k1 k1

k

T1,3 =

k1 k

k1

(4.22)
Fi = T0 · T1,i, i ∈ {1, 2, 3}

where k̄1 = −k1 and · denotes the forest product. The Fi are decorated forests. One can observe that F2 and F3 are
similar due to the symmetry of the decorated tree T1. Hence, we only need to consider one of the decorated forests during
the computations, we choose to consider F2. Further, it follows in an analogous fashion from (4.19) and (4.20) that there
is a single nontrivial pairing when computing E

(
|u0
k,1(τ, vη)|2

)
, and that the decorated forest

F0 = T0 · T0

encodes this pairing and consequently the term E
(
|u0
k,1(τ, vη)|2

)
. Therefore, the set G0

k is defined as:

G0
k = {T0 · T0, T0 · T1,1, T0 · T1,2, k1 ∈ Zd}.

These decorated forests encode products of iterated integrals, where each iterated integral is encoded by a decorated tree
of the form (4.22). Namely, we have

(Π̄T0)(τ) (ΠT1,1)(τ) = eiτk
2
(
−ie−iτk

2
∫ τ

0

eiξk
2

eiξk
2

e−iξk
2
2e−iξk

2
2dξ

)
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= −i
∫ τ

0

e2iξ(k2−k2
2)dξ,

(Π̄T0)(τ) (ΠT1,2)(τ) = eiτk
2
(
−ie−iτk

2
∫ τ

0

eiξk
2

eiξk
2
1e−iξk

2

e−iξk
2
1dξ

)
= −iτ.

One observes that for F2, due to cancellations in the frequencies, one can perform exact integration in time, and no
approximation step is required. The term which requires to be approximated and which asks for some regularity on the
initial data is the integral encoded by F1. We now discuss how the approximations are made, and how it leads us to the
tree series (4.15).

Let us first proceed by describing the idea behind the approximation of ΠT1. The main idea of the general resonance
based scheme introduced in [BS22] is to split the frequencies in the integrand into the dominant and lower parts:

L = k2 + k2
1 − k2

2 − k2
3 = Ldom + Llow (4.23)

Ldom = 2k2
1, Llow = −k1(k2 + k3) + k2k3

such that (cf. (4.20))

(ΠT1)(τ) = −ie−iτk
2
∫ τ

0

eiξLdomeiξLlowdξ. (4.24)

The idea of the splitting (4.23) lies in the observation that k2
1 asks for two derivatives on the initial data while the

cross-terms given in Llow require only one. Moreover, the term eiξLdom can be integrated out exactly and mapped back
into physical space. In order to gain regularity, we will thus only Taylor-expand the lower order part eiξLlow in (4.24)
while integrating the dominant part eiξLdom exactly. This provides the following discretisation:

(ΠT1)(τ) = −ie−iτk
2
∫ τ

0

e2iξk2
1 (1 +O(ξLlow))dξ

= (Π1,0T1)(τ) +O(τ2Llow)

(Π1,0T1)(τ) = −ie−iτk
2
∫ τ

0

e2iξk2
1dξ

where the index 0 correspond to the order of the approximation inside the time integral and the index 1 embeds that we
ask a priori one derivative on the initial data. If we assume more regularity, such as for instance two derivatives, one can
perform the full Taylor expansion and obtains:

(ΠT1)(τ) = (Π2,0T1)(τ) +O(τ2L), (Π2,0T1)(τ) = −iτe−iτk
2

.

We would like to proceed in the same manner for the approximation of (ΠT1,1)(τ). However, we have to choose the
splitting as follows:

L = 2k2 − 2k2
2, Llow = L, Ldom = 0. (4.25)

This is due to the fact that 1
k2−k2

1
cannot be mapped back into Physical space and hence, we would recover a scheme

which needs to be computed fully in Fourier space and where we could not make use of the Fast Fourier Transform (FFT).
This would not allow for a practical implementation of the scheme and would lead to high computational and memory
costs, in particular in higher spatial dimensions d ≥ 3. This motivates our choice of dominant and lower order parts (4.25)
and leads to the discretization

(ΠT1,1)(τ) = (Π1,0T1,1)(τ) +O(τ2L), (Π1,0T1,1)(τ) = −iτe−iτk
2

. (4.26)

The discretization (c.f. (4.15)) is then given by:(
Π̄1,0T0

)
(τ)

(
Π1,0T1,j

)
(τ) = −iτ.

The term

E
(
u0
k,1(τ, vη)u1

k,2(τ, vη)
)



94 CHAPTER 4. Approximations of dispersive PDEs in the presence of low-regularity randomness

is then well approximated by

Ῡp(T0)(vη)

S(T0)

 ∑
k1∈Zd

Υp(T1,1)(vη)

S(T1,1)
Q≤1

(
Π̄T0

)
(τ)(ΠT1,1)(τ)

+2
∑
k1∈Zd

Υp(T1,2)(vη)

S(T1,2)
Q≤1

(
Π̄T0

)
(τ)(ΠT1,2)(τ)


= −3iτ |vk|2

∑
k1∈Zd

|vk1 |
2

and introduces the following local error

O(τ2
∑
k1∈Zd

(
k2 − k2

1

)
|vk|2|vk1 |

2).

We notice that a term of the form k2|vk|2 corresponds (up to a sign) to the Fourier coefficient of ∇v ∗ ∇ṽ where ∗ is
the space convolution, and ṽ(x) = v(−x). Therefore, in contrast to [BS22], a full Taylor expansion does not ask more
than one derivative in space on the initial data. In fact, T0 · T1,1 is the term in G0

k to compute which requires the most
regularity on the initial data, namely a factor of k2 for a first order approximation, and which corresponds in the end to
only one derivative due to the previously mentioned convolution structure. In most of the examples in this paper, we end
up by considering only full Taylor expansions, as is made in (4.26). This is however not always the case in a general
setting. We give an example of a system of PDEs where a more careful resonance analysis (c.f. (4.23)) is needed to obtain
an approximation at low regularity. Let us for instance consider the following system:

i∂tu+ ∆u = |u|2u, u(0) = v1, (4.27)
∂tv + ∂pxv = |u|2u, v(0) = v2.

Then depending on the value of p, we may need a resonance based approach. Iterating Duhamel’s formula, we get the
following oscillatory integrals:

I =

∫ τ

0

e−ξ(ik)pe−iξk
2
1eiξk

2
2eiξk

2
3dξ, k = −k1 + k2 + k3.

If we assume that p ≥ 3, then kp is clearly the dominant term. Let us compare the local errors depending on the choice of
approximation. Using a resonance based discretisation we obtain that

— Resonance scheme:

I =

∫ τ

0

e−ξ(ik)pdξ +O(ξ2P1), P1 = −k2
1 + k2

2 + k2
3

whereas a classical discretisation leads to

— Classical integrators:

I = ξ +O(ξ2P2), P2 = kp − k2
1 + k2

2 + k2
3.

As soon as p ≥ 3, we ask for at least three derivatives on the initial data for a classical integrator (due to the error term
O(ξ2P2)) while only requiring two derivatives for the resonance based scheme (thanks to the improved local error term
O(ξ2P1)).

4.1.2 Outline of the paper
Let us give a short review of the content of this paper. In Section 4.2, we introduce the combinatorial structures

needed for describing oscillatory integrals coming from the iteration of the Duhamel’s formula (4.9). We recall the
framework introduced in [BS22] by first defining a suitable vector space of decorated trees T̂ and decorated forests Ĥ.
Then, we consider approximated decorated trees and forest which carry an extra decoration r at the root. It corresponds
to the order of the approximation of the oscillatory integrals. The main novelty in this section are paired decorated
forests which are specific decorated forests with extra constraints. They reflect the computation of the second moment of
oscillatory integrals: pairing among the leaves of two trees correspond to the Wick formula applied to product of Gaussian
random variables.
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In Section 4.3, we construct the approximation of the iterated integrals given by the character Π : Ĥ → C (see (4.33))
through the character Πn : H → C (see (4.34)) where n is the a priori regularity assumed on the initial data v. The
approximation Πn is given via a recursive construction involving the operator K given in Definition 4.3.1. In the definition,
we are performing a full Taylor expansion which can be used in the examples mentioned in this paper. It also provides
the optimal regularity. In the general case, the resonance approach could be needed. The local error analysis which is
the error estimate on the difference between Π and its approximation Πn is given in Theorem 4.3.6. It is computed via
a recursive definition (see Definition 4.3.5) with Taylor remainders of Πn given in Lemma 4.3.4. Let us mention that
Definition 4.3.5 is more involved as the one given in [BS22], as the pairing among the leaves required to be more precise
in the estimation of the local error.

In Section 4.4, we introduce truncated series of decorated trees that solve up to order r equation (4.1). Then, we
compute the second moment of this series in Proposition 4.4.2 by using Wick’s formula (see Proposition 4.4.1). This is
where we rely on paired decorated forests for describing the new series obtained. From this series, we built another paired
decorated forests series by replacing the character Π by its approximation Πn. Then, we can write the general scheme
(4.49). In the end, we compute its local error structure (see Theorem 4.4.3) based on the local error between Π and Πn

for each paired decorated forest that appears in the expansion of the scheme.
In Section 4.5, we illustrate our general framework on two fundamental examples: the nonlinear Schrodinger (NLS)

and the Korteweg–de Vries (KdV) equation.
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4.2 Decorated tree based structures for oscillatory iterated integrals
In this section, we introduce the combinatorial structure for describing oscillatory integrals that stem from Duhamel’s

formula (4.9). We follow the formalism of decorated trees given in [BS22] which has been used for a low regularity
approximation of (4.1). In order to describe E(|uk(t, vη)|2) we need to introduce a new structure: paired decorated
forests which are decorated forests in the sense of [BS22] satisfying extra constraints on the decorations that encode some
pairings. These pairings are coming from the Wick formula used for computing E(|uk(t, vη)|2). Such paired structures
have been used in wave turbulence theory in more specific set-ups (see [DH21, DH23, ACG21, ST21]).

4.2.1 Decorated trees
We recall briefly the structure of decorated trees introduced in [BS22, Sec. 2]. We assume a finite set L and frequencies

k1, ..., km ∈ Zd. The set L parametrizes a set of differential operators with constant coefficients, whose symbols are given
by the polynomials (Pt)t∈L. We define the set of decorated trees T̂ as elements of the form T n,o

e = (T, n, o, e) where

— T is a non-planar rooted tree with root %T , node set NT and edge set ET . We denote the leaves of T by LT . T must
also be a planted tree which means that there is only one edge connecting the root to the rest of the tree.

— the map e : ET → L× {0, 1} encodes edge decorations. The set {0, 1} encodes the action of taking the conjugate, and
determines the sign of the frequencies at the top of this edge. Namely, we have that 1 corresponds to a conjugate and
to multiplying by (−1) the frequency on the node above and adjacent to this edge.

— the map n : NT \ {%T } → N encodes node decorations. For every inner node v, this map encodes a monomial of the
form ξn(v) where ξ is a time variable.

— the map o : NT \ {%T } → Zd also encodes node decorations. These decorations are frequencies that satisfy for every
inner node u:

(−1)p(eu)o(u) =
∑

e=(u,v)∈ET

(−1)p(e)o(v) (4.28)

where e(e) = (t(e), p(e)) and eu is the edge outgoing u of the form (v, u) . From this definition, one can see that the
node decorations at the leaves (o(u))u∈LT determine the decoration of the inner nodes. One can call this identity
Kirchoff’s law. We assume that the node decorations at the leaves are linear combinations of the ki with coefficients
in {−1, 0, 1}. In applications, the leaves decoration are either ki or −ki, the term −ki is coming from a pairing with
the Wick formula.

— we assume that the root of T has no decoration.
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When the node decoration n is zero, we will denote the decorated trees T n,o
e as T o

e = (T, o, e). The set of decorated
trees satisfying such a condition is denoted by T̂0. We set Ĥ (resp. Ĥ0) the (unordered) forests composed of trees in T̂
(resp. T̂0) with linear spans Ĥ and Ĥ0. The forest product is denoted by ·, the empty forest by 1. Elements in T̂ are
abstract representation of iterated time integrals and elements in Ĥ are product of them.

We now introduce how one can represent uniquely decorated trees by using symbolic notations. We denote by Io, an
edge decorated by o = (t, p) ∈ L× {0, 1}. We introduce the operator Io(λ`k·) : Ĥ → Ĥ that merges all the roots of the
trees composing the forest into one node decorated by (`, k) ∈ N×Zd. The new decorated tree is then grafted via an edge
decorated by o onto a new root with no decoration. If the condition (4.28) is not satisfied on the argument then Io(λ`k·)
gives zero. If ` = 0, then the term λ`k is denoted by λk as a short hand notation for λ0

k. We have choosen to put no
decorations at the root in order to define the operator Io(λ`k·). that will assign the decoration k. For us, these decorated
trees represent oscillatory iterated integrals and there is no need for having a decoration at the root for encoding them.

The forest product between Io1(λ`1k1
F1) and Io2(λ`2k2

F2) is given by:

Io1(λ`1k1
F1)Io2(λ`2k2

F2) := Io1(λ`1k1
F1) · Io2(λ`2k2

F2).

Any decorated tree T is uniquely represented as

T = Io(λ`kF ), F ∈ Ĥ.

Given an iterated integral, its size is given by the number of integrations in time. Therefore, we suppose given a subset
L+ of L that encodes edge decorations which correspond to time integrals that we have to approximate.

Example 14 We illustrate the definitions introduced above with decorated trees coming from the NLS equation. We
consider the following decorated tree:

T = I(t1,0)

(
λkI(t2,0)

(
λkI(t1,1)(λk1)I(t1,0)(λk2)I(t1,0)(λk3)

))
=

k1 k3

k2

,

where k = −k1 + k2 + k3, L = {t1, t2}, L+ = {t2}, Pt1(λ) = −λ2 and Pt2(λ) = λ2. For the graphical notation, we put the
frequencies decorations only on the leaves that determine those on the inner nodes. An edge (resp. ) corresponds to a
decoration (t1, 0) (resp. (t1, 1)) and the operator associated is eitPt1 (k) = e−itk

2

(resp. e−itPt1 (k) = eitk
2

), while an edge
(resp. ) corresponds to a decoration (t2, 0) (resp. (t2, 1)) associated to the integral −i

∫ τ
0
eiξPt2

(k) · · · dξ = −i
∫ τ

0
eiξk

2

· · · dξ
(resp. −i

∫ τ
0
e−iξPt2

(k) · · · dξ = −i
∫ τ

0
e−iξk

2

· · · dξ). Therefore, T is an abstract version of the following integral:

−ie−iτk
2
∫ τ

0

eiξk
2

eiξk
2
1e−iξk

2
2e−iξk

2
3dξ.

The next combinatorial structure, we recall from [BS22] is abstract versions of a discretization of an oscillatory integral.
We denote by T the set of decorated trees T n,o

e,r = (T, n, o, e, r) where

— T n,o
e ∈ T̂

— The decoration of the root is given by r ∈ Z, r ≥ −1 such that

r + 1 ≥ deg(T n,o
e ) (4.29)

where deg is defined recursively by

deg(1) = 0, deg(F1 · F2) = max(deg(F1),deg(F2)),

deg(I(t,p)(λ
`
kF1)) = `+ 1{t∈L+} + deg(F1)

where F1, F2 are forests composed of trees in T . The quantity deg(T n,o
e ) is the maximum number of edges with type

in L+, corresponding to time integrations, and of node decorations n lying on the same path from one leaf to the root.

We call decorated trees in T approximated decorated trees. We allow in the definition of the approximated decorated
trees a new decoration at the root r, which corresponds to the order of the approximation. We now define the symbol
Iro (λ`k·) : H → H, which plays the same role as the previously defined symbol Iro (λ`k·), with the added adjunction of the
decoration r which constrains the time-approximations to be of order r. We now define a projection operator Dr which
depends on the order r of the approximation and which is used during the construction of the numerical schemes in order
to only retain the terms of order at most r. We define the map Dr : Ĥ → H which assigns to the root of a decorated tree
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a decoration r and performs the projection along the identity (4.29). It is given by

Dr(1) = 1{0≤r+1}, Dr
(
Io(λ`kF )

)
= Iro (λ`kF ) (4.30)

and we extend it multiplicatively to any forest in Ĥ.

Example 15 We illustrate the action of the map Dr on the decorated tree T introduced in Example 14. First, we notice
that:

deg(T ) = 1, Dr(T ) = 0, r > 1.

Graphically, we just add r at the root:

Dr(T ) =
r

k1 k3

k2

.

4.2.2 Paired decorated forests
Our aim is to discretise the second moment of urk(τ, vη) which can be expanded as a tree series. By applying the Wick

product, one gets products of iterated integrals whose initial data vη are paired. At the level of the trees, this correspond
to a pairing on the leaves. Therefore, one has to introduce a more rigid structure for encoding these new terms. We
define Ĝ as the set of paired decorated forests F such that:

— F is a forest containing solely two trees denoted by T and T̄ .
— One has the following assumptions on the decoration o:

(−1)p(e%T )o(uT ) = (−1)p(e%T̄
)o(uT̄ ) (4.31)

where uT (resp. uT̄ ) are the nodes in T (resp. T̄ ) connected to %T (resp. %T̄ ). The decoration p(e%T ) corresponds to
the second decoration component on the edge e%T connecting the root %T to uT .

— For any leaf u ∈ LF , there exists exactly one leaf v ∈ LF such that

(−1)p(eu)o(u) = (−1)p(ev)+1o(v), if {u, v} ⊂ LT or {u, v} ⊂ LT̄

(−1)p(eu)o(u) = (−1)p(ev)o(v), otherwise
(4.32)

where eu (resp. ev) is the edge connecting u (resp. v) to the rest of the tree, and p(e) ∈ {0, 1} is the second component
of the edge decoration associated to e.

Approximated paired decorated forests F are described by

F = Dr(F̄ ), r ∈ Z, F̄ ∈ Ĝ.

We denote this set as G and by Grk decorated paired forests having at most r edges with type in L+ and both sides of the
identity (4.31) are equal either to k or −k.

Example 16 We provide an example of paired decorated forests:

F = T1 · T2, T1 =
k

, T2 =

k1 k

k1

Let u denote the single leaf in the tree T1, and let ũ, ṽ, v denote the leaves, from left to right, in the tree T2. We have
that o(eu) = o(ev) = k, and o(eũ) = k1 = o(eṽ). Moreover, p(eu) = p(eṽ) = p(ev) = 0 and p(eũ) = 1 since the edge eũ is a
dotted brown edge, which encodes that the frequency is preceded by a negative sign. Hence, from (4.32) we read:

(−1)1k1 = (−1)1k1, (−1)0k = (−1)0k.
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For the first condition (4.31), one has p(e%T1
) = 0 and p(e%T2

) = 0. Therefore, one similarly obtains

(−1)0k = (−1)0k.

Remark 4.2.1 In the above definition, paired decorated forests are formed of only two trees with pairings among
the leaves. The pairings among the leaves reflect the computation of the second moment of products of Gaussian
random variables, dictated by Wick’s theorem. One can easily generalise this definition depending on one needs. Indeed,
first instead of computing second order moments, one can look at higher order moments, namely moments of order
2p, and consider forests consisting of 2p trees. The pairing on the leaves between the 2p trees would follow the same
condition (4.31). Secondly, one can consider non-Gaussian random initial conditions together with the use of cumulants
to compute second moments, see Remark 4.1.2. In this case, the above definition can be replaced by pairings between
bigger clusters of leaves and one has to change (4.32) accordingly, by including more than two leaves.

4.3 Discretizing oscillatory iterated integrals

In this section, we recall the definition of the map Π : Ĥ → C that interprets decorated forests as oscillatory integrals
and its low regularity discretization Πn introduced both in [BS22]. The main simplification in comparison to the resonance
method exposed is the definition of Kk,ro2 which is now performing the full Taylor expansion. This is due to the convolution
structures observed in the computation of E(|uk(τ, vη)|2) (see remark 4.3.2). This will be enough for the examples treated
in this paper but in general a resonance analysis could be needed. The local error analysis relies on the error introduced by
the operator Kk,ro2 via Lemma 4.3.4. This error is propagated through a recursive definition of the error namely Lrlow(F, n).
This step is more involved in comparison to [BS22] . Indeed, the error introduced by the approximation of a product of
iterated integrals needs a more careful treatment, see the new formulation in Definition 4.3.5.

We adopt in this section the following notations: an element of L+ (resp, L+ × {0, 1}) is denoted by t2 (resp. o2) and
an element of L \ L+ (resp. L \ L+ × {0, 1}) is denoted by t1 (resp. o1). We define C as the space of functions of the form
z 7→

∑
j Qj(z)e

izPj(k1,...,km) where the Qj(z) are polynomials in z and the Pj are polynomials in k1, ..., kn ∈ Zd. The
Qj may also depend on k1, ..., km. Equipped with the pointwise product C is an algebra. Iterated integrals and their
discretisation will be characters from decorated forests into C. For a character g : Ĥ → C, one has:

g(F · F̄ ) = g(F )g(F̄ ), F, F̄ ∈ Ĥ.

We define the character Π : Ĥ → C by

Π
(
F · F̄

)
(τ) = (ΠF )(τ)(ΠF̄ )(τ),

Π
(
Io1(λ`kF )

)
(τ) = eiτPo1 (k)τ `(ΠF )(τ),

Π
(
Io2(λ`kF )

)
(τ) = −i|∇|α(k)

∫ τ

0

eiξPo2 (k)ξ`(ΠF )(ξ)dξ,

(4.33)

where F, F̄ ∈ Ĥ. We have used the short hand notation Po1 given for o1 = (t1, p1) by:

Po1(k) = (−1)p1Pt1((−1)p1k).

For the discretisation, we consider a new family of characters defined now on H and parametrized by n ∈ N:

Πn(F · F̄ )(τ) = (ΠnF )(τ)
(
ΠnF̄

)
(τ), (Πnλ`)(τ) = τ `,(

ΠnIro1(λ`kF )
)

(τ) = τ `eiτPo1 (k)
(

ΠnDr−`(F )
)

(τ),(
ΠnIro2(λ`kF )

)
(τ) = Kk,ro2

(
Πn
(
λ`Dr−`−1(F )

)
, n
)

(τ).

(4.34)

In the sequel, we will use the short hand notations:

Πn,r = ΠnDr, (Π̄T )(τ) = (ΠT )(τ), (Π̄n,rT )(τ) = (Πn,rT )(τ).

We provide the definition of the approximation operator K below, when one performs the full Taylor expansion of the
oscillatory integrals.

Definition 4.3.1 Assume that G : ξ 7→ ξqeiξP (k1,...,km) where P is a polynomial in the frequencies k1, ..., km and let
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o2 = (t2, p) ∈ L+ × {0, 1} and r ∈ N. Let k be a linear map in k1, ..., km using coefficients in {−1, 0, 1}. We set

Kk,ro2 (G,n)(τ) = −i|∇|α(k)
∑
`≤r−q

τ `+q+1

`!(`+ q + 1)
(iPo2(k) + iP (k1, ..., km))`. (4.35)

Remark 4.3.2 The definition (4.35) for K is quite simple and encodes the approximation of the oscillatory integral

−i|∇|α(k)

∫ τ

0

eiξPo2 (k)G(ξ)dξ

by a full Taylor expansion of the operator appearing in the integrand. This approximation does not require a careful
resonance based analysis as was the case in [BS22, Def. 3.1]. This is due to the fact that we are not approximating uk(τ)
but its second moment E(|uk(τ, vη)|2). Therefore, our local error terms involve products of two Fourier coefficients. This
allows us to repartition half of the regularity on each of the Fourier coefficients, thereby obtaining a similar low-regularity
local error structure as in [BS22] without requiring a more delicate analysis. Indeed, to each of the frequencies k1, ..., km
we now consider terms of the form v2

ki
, |vki | or v̄kivki , instead of vki or v̄ki . The new quadratic terms can be interpreted as

convolutions or are better summable. In the case of the convolution, the two following terms ask for the same regularity:

k2v2
k ≡ ∂xv ∗ ∂xv, kvk ≡ ∂xv

where ∗ is the spatial convolution. One can see the difference between the discretization presented here and the one in
[BS22] by considering the following oscillatory integral coming from NLS:

I =

∫ τ

0

e−iξk
2

e−iξk
2
1eiξk

2
2eiξk

2
3dξ, k = −k1 + k2 + k3.

The idea of the resonance analysis is to split the integrand into the dominant and lower order parts (cf.(4.23))

L = k2 + k2
1 − k2

2 − k2
3 = Ldom + Llow

Ldom = 2k2
1, Llow = −k1(k2 + k3) + k2k3

and to Taylor expand only the term of lower degree eiξLlow . This yields the following discretisation

I =

∫ τ

0

e−2iξk2
1 (1 +O(ξP1))dξ, P1 = k1(k2 + k3)− k2k3

with

I =

∫ τ

0

e−2iξk2
1dξ +O(τ2P1).

In contrast, a full classical Taylor expansion gives

I =

∫ τ

0

e−2iξk2
1dξ +O(τ2P2), P2 = −2k2

1 + k1(k2 + k3)− k2k3.

The difference between the two approximations is that the second one asks for two derivatives instead of one. In our
setting, the latter is, however, absorbed by the convolution of initial data.

Remark 4.3.3 For many equations, the main difference between resonance based and classical integrators lies in the
gain of one derivative (at order one). Therefore, there is no need to carry out a resonance based discretization for
E(|uk(τ, vη)|2) due to the improved resonance structure of the latter. Resonance based schemes are, however, needed if
the gap between dominant and lower parts of the resonance is bigger. Then, the full definition [BS22, Def. 3.1] is required.
This can happen when one looks at systems of dispersive PDEs as for instance system (4.27).

Example 17 With the aid of (4.33), one can compute recursively the following oscillatory integrals arising in the cubic
NLS equation (4.5)

(Π
k2

)(τ) = (ΠI(t1,0)(λk2))(τ) = e−iτk
2
2 ,

(Π
k1

)(τ) = (ΠI(t1,1)(λk1))(τ) = eiτk
2
1 ,
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(Π
k1

k2
k3

)(τ) = (Π
k1

)(τ) (Π
k2

)(τ) (Π
k3

)(τ) = eiτ(k2
1−k

2
2−k

2
3),

(Π

k1

k2
k3

)(τ) = −i
∫ τ

0

eis(−k1+k2+k3)2eis(k
2
1−k

2
2−k

2
3)ds.

For a second-order order approximation of the above integral, one has the following discretisation which in the end asks
for two derivatives on the initial data,

(Π2,1

k1

k2
k3

)(τ) = −iτ + 2τ2(k2
1 − k1(k2 + k3) + k2k3

)
.

We recall [BS22, Lemma 3.3] for a function G as given in Definition 4.3.1.

Lemma 4.3.4 We keep the notations of Definition 4.3.1. We suppose that q ≤ r then one has

−i|∇|α(k)

∫ τ

0

ξqeiξ(Po2 (k)+P (k1,...,km))dξ −Kk,ro2 (G,n)(τ) = O(τr+2Rk,ro2,n(G))

where Rk,ro2,n(G) depends on n, α and the frequencies k1, ..., km. When Kk,ro2 performs a full Taylor expansions, it is given
by

(Po2(k) + P (k1, ..., km))r+1−qkα. (4.36)

Otherwise, one considers the resonance analysis and decomposes Po2 + P into

Po2 + P = Ldom + Llow

and one has

Rk,ro2,n(G) = kn̄, n̄ = max(n, α+ deg(Lr−q+1
low )).

We define inductively the term (Π·)0 on decorated forests:

Π
(
F · F̄

)
0

= (ΠF )0(ΠF̄ )0, Π
(
Io1(λ`kF )

)
0

= (ΠF )0,

Π
(
Io2(λ`kF )

)
0

= |∇|α(k)(ΠF )0.

For every decorated forest, there exists cF independent of the frequencies k1, ..., km such that:

|(ΠF )(τ)| ≤ cF τ n̂+(F )(ΠF )0

where n̂+(F ) = n+(F ) +
∑
u∈NF

n(u), n+(F ) gives the number of edges with decoration o2 = (t2, p2) with t2 ∈ L+. In
the sequel, we will use the following notation: Πn,r = ΠnDr. Given a decorated forest, we set (Πn,rF )` to be the term of
order τ ` in (Πn,rF )(τ) in the sense that one has:

Q≤r+1(Πn,rF )(τ) =
∑

n̂+(F )≤`≤r+1

(Πn,rF )`(τ)τ `

where each (Πn,rF )`(τ) is bounded, by denoting the bound by (Πn,rF )`, we have ∀τ, (Πn,rF )`(τ) ≤ (Πr,nF )`.

Definition 4.3.5 Let n ∈ N, r ∈ Z. We recursively define Lrlow(·, n) as

Lrlow(F, n) = 1, r < 0.

Else

Lrlow(1, n) = 1, Lrlow(Io1(λ`kF ), n) = Lr−`low (F, n)

Lrlow(F1 · F2, n) = (ΠF2)0 L
r−n̂+(F2)
low (F1, n)

+
∑

`≤r+1−n̂+(F2)

(Πn,r−n̂+(F2)F1)`Lr−`low (F2, n)
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Lrlow(Io2(λ`kF ), n) = kαLr−`−1
low (F, n) +Rk,ro2,n(ξ`(Πn,r−`−1F )(ξ)).

Example 18 We illustrate Definition 4.3.5 on the following paired trees stemming from the NLS equation:

F2 = T1 · T2, T1 = Io1(λk) =
k

, T2 =

k̄ k2

k̄2

, (4.37)

where k̄ = −k. We have,

L0
low(T1 · T2, 1) = (ΠT2)0L−1

low(T1, 1) + (Π1,−1T1)0L0
low(T2, 1), (4.38)

where Π1,−1 = Π1D−1 = Π1, (Π1,−1T1)0 = e−iτk
2

, L−1
low(T1, 1) = 1 and (ΠT2)0 = 1. Next, we have

L0
low(T2, 1) = L0

low(G2, 1) +Rk,0o2,1(Π1,−1G2),

with T2 = Io1(λkIo2(λkG2)), and G2 = Iō1(λ−k)Io1(λ−k2)Io1(λk2). A quick computation allow to check that L0
low(G2, 1)

is bounded by

L0
low(Iō1(λ−k), 1) + L0

low(Io1(λ−k2), 1) + L0
low(Io1(λk2), 1)

and one has:

L0
low(Iō1(λ−k), 1) = L0

low(Io1(λ−k2), 1) = L0
low(Io1(λk2), 1) = L0

low(1, 1) = 1.

As in [BS22, Thm. 3.17], we get the following error for our approximation under the assumption:

Q≤r+1Πn,r = Q≤r+1Πn,r′ , r ≤ r′. (4.39)

Theorem 4.3.6 For every forests F1 and F2, one has,

(Π(F1 · F2)−Q≤r+1Πn,r(F1 · F2))(τ) = O
(
τr+2Lrlow(F1 · F2, n)

)
(4.40)

where Π is defined in (4.33), Πn is given in (4.34) and Πn,r = ΠnDr satisfying (4.39).

Proof. The proof follows the same steps given in [BS22, Thm. 3.17]. However, one has to be more precise for dealing
with products as now frequencies k1, ..., km can appear several times. We proceed with the following decomposition:

Π(F1 · F2)(τ)−Q≤r+1Πn,r(F1 · F2)(τ)

=
(

ΠF1 −Q≤r+1−n̂+(F2)Π
n,r−n̂+(F2)F1

)
(τ)(ΠF2)(τ)

+Q≤r+1−n̂+(F2)

(
Πn,r−n̂+(F2)F1

)
(τ)(ΠF2)(τ)−Q≤r+1Πn,r(F1 · F2)(τ)

=
(

ΠF1 −Q≤r+1−n̂+(F2)Π
n,r−n̂+(F2)F1

)
(τ)(ΠF2)(τ)

+
∑

`≤r+1−n̂+(F2)

τ `(Πn,rF1)`(τ)
(

ΠF2 −Q≤r+1−`Π
n,r−`F2

)
(τ)

where we have used the following identities

Q≤r+1−n̂+(F2)

(
Πn,r−n̂+(F2)F1

)
(τ) =

∑
`≤r+1−n̂+(F2)

τ `(Πn,r−n̂+(F2)F1)`(τ)

Q≤r+1(Πn,r(F1 · F2))(τ) =
∑

`≤r+1−n̂+(F2)

τ `(Πn,rF1)`(τ)Q≤r+1−`(Π
n,r−`F2)(τ)

and the fact that by Assumption (4.39), one has:

(Πn,r−n̂+(F2)F1)`(τ) = (Πn,rF1)`(τ).
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Then, we apply recursively the bounds on F1 and F2 to get:(
ΠF1 −Q≤r+1−n̂+(F2)Π

n,r−n̂+(F2)F1

)
(τ) = O

(
τr−n̂+(F2)+2Lr−n̂+(F2)

low (F1, n)
)

(
ΠF2 −Q≤r+1−`Π

n,r−`F2

)
(τ) = O

(
τr−`+2Lr−`low (F2, n)

)
which allows us to conclude. It remains to treat the case when F = Io2(λ`kF̄ ). In that case, one has:

(Π−Πn,r)(F )(τ) = −i|∇|α(k)

∫ τ

0

ξ`eiξPo2 (k)(Π−Πn,r−1−`)(F̄ )(ξ)dξ

− i|∇|α(k)

∫ τ

0

ξ`eiξPo2 (k)(Πn,r−1−`F̄ )(ξ)dξ −Kk,ro2 (ξ`(Πn,r−1−`F̄ )(ξ))(τ)

=

∫ τ

0

O
(
ξr+1kαLr−1−`

low (F̄ , n)
)
dξ +O(τr+2Rk,ro2,n

(
ξ`(Πn,r−1−`F̄ )(ξ)

)
)

= O
(
τr+2Lrlow(F, n)

)
.

where the term Rk,ro2,n
(
ξ`(Πn,r−1−`F̄ )(ξ)

)
is obtained by applying Lemma 4.3.4.

Remark 4.3.7 An immediate consequence of Theorem 4.3.6, is that for a paired decorated forest F = T1 · T2, one has(
Π̄T1ΠT2 −Q≤r+1Π̄n,rT1Πn,rT2

)
(τ) = O

(
τr+2Lrlow(T1 · T2, n)

)
(4.41)

Remark 4.3.8 Assumption 4.39 is satisfied by the examples covered in this work as we use mainly full Taylor expansions
for describing the numerical scheme. In full generality, Assumption 4.39 does, however, not hold true (see also Remark
4.3.3) and one has to work with a two-parameter family in order to describe the local error. The identity (4.40) becomes:

(Π(F1 · F2)−Q≤mΠn,r(F1 · F2))(τ) = O
(
τr+2Lr,mlow (F1 · F2, n)

)
, m ≤ r + 1

where Lr,mlow (F1 ·F2, n) can be defined in a recursive way as in Definition 4.3.5. The main change occurs in the approximation
of a decorated tree given by Lemma 4.3.4. It is changed into

− i|∇|α(k)

∫ τ

0

ξ`eiξPo2 (k)(Πn,r−1−`F̄ )(ξ)dξ −Q≤mKk,ro2 (ξ`(Πn,r−1−`F̄ )(ξ))(τ)

= O(τm+1Rk,r,mo2,n

(
ξ`(Πn,r−1−`F̄ )(ξ)

)
)

The new quantity Rk,r,mo2,n is the new building block for recursively defining Lr,mlow .

4.4 Low regularity scheme
The mild solution of (4.1) is given by Duhamel’s formula

u(τ, vη) = eiτL(∇)vη − i|∇|αeiτL(∇)

∫ τ

0

e−iξL(∇)p(u(ξ), ū(ξ))dξ. (4.42)

In the sequel, we will focus on nonlinearities of type

p(u, ū) = uN ūM . (4.43)

It has been proven in [BS22, Prop. 4.3] that the following tree series expansion is the k-th Fourier coefficient of a solution
of (4.42) up to order r + 1:

urk(τ, vη) =
∑

T∈T̂ r,k0 (R)

Υp(T )(vη)

S(T )
(ΠT )(τ) (4.44)

where

— For a decorated tree Te = (T, e) with only edge decorations, we define the symmetry factor S(Te) inductively by
S(1) =1, while if T is of the form ∏

i,j

I(tti ,pi)
(Ti,j)

βi,j ,
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with Ti,j 6= Ti,` for j 6= `, then

S(T ) :=
(∏
i,j

S(Ti,j)
βi,jβi,j !

)
. (4.45)

We extend this definition to any tree T n,o
e in T by setting:

S(T n,o
e ) :=S(Te).

— Then, we define the map Υp(T )(v) for

T = I(t1,a)

(
λkI(t2,a)(λk

n∏
i=1

I(t1,0)(λkiTi)

m∏
j=1

I(t1,1)(λk̃j T̃j))

)
, a ∈ {0, 1}

by

Υp(T )(v) :=∂nv ∂
m
v̄ pa(v, v̄)

n∏
i=1

Υp(I(t1,0)(λkiTi))(v) (4.46)

m∏
j=1

Υp(I(t1,1)(λk̃j T̃j))(v)

and

Υp(I(t1,0)(λk))(v) :=vk, Υp(I(t1,1)(λk))(v) :=v̄k.

Above, we have used the notation:

p0(v, v̄) = p(v, v̄), p1(v, v̄) = p(v, v̄)

In the sequel, we will use the following short hand notation:

Υp(T )(v) = Ῡp(T )(v).

— We set

T̂0(R) = {I(t1,0)(λkI(t2,0)(λk

N∏
i=1

Ti

M∏
j=1

T̃j)), I(t1,0)(λk)

Ti ∈ T̂0(R), T̃j ∈ ¯̂T0(R), k ∈ Zd}

¯̂T0(R) = {I(t1,1)(λkI(t2,1)(λk

N∏
i=1

Ti

M∏
j=1

T̃j)), I(t1,1)(λk)

Ti ∈ ¯̂T0(R), T̃j ∈ ¯̂T0(R), k ∈ Zd}.

For a fixed k ∈ Zd, we denote the set T̂ k0 (R) (resp. ¯̂T k0 (R)) as the subset of T̂0(R) (resp. ¯̂T0(R)) whose decorated trees
have decorations on the node connected to the root given by k. For r ∈ Z, r ≥ −1, we set:

T̂ r,k0 (R) = {T o
e ∈ T̂ k0 (R) , n+(T o

e ) ≤ r + 1}.

In the previous space, we disregard iterated integrals which have more than r+1 integrals and will be of order O(τr+2).
We denote by Gr,k0 (R) ⊂ Grk the paired decorated forests F = T1 · T2 such that T1, T2 ∈ T̂ r,k0 (R) and n+(F ) ≤ r + 1.

We want to compute the second moment of the truncated sum (4.44) and then provide a discretisation. Before doing so,
let us recall Wick’s theorem on the higher order moments of Gaussian random variables that is needed.

Proposition 4.4.1 Let I be a finite set and (Xi)i∈I a collection of centred jointly Gaussian random variables. Then

E

(∏
i∈I

Xi

)
=

∑
P∈P(I)

∏
{i,j}∈P

E(XiXj)

where P(I) are partitions of I with two elements of I in each block of the partition.
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Proposition 4.4.2 One has:

Q≤r+1E(|urk(τ, vη)|2) =
∑

F=T1·T2∈G
r,k
0 (R)

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)(
Π̄T1

)
(τ) (ΠT2)(τ).

where the mF belongs to N.

Proof. We first notice that:

E(|urk(τ, vη)|2) =
∑

T1,T2∈T̂
r,k
0 (R)

E
(

Ῡp(T1)(vη) Υp(T2)(vη)

S(T1)S(T2)

)
(4.47)

(
Π̄T1

)
(τ) (ΠT2)(τ)

Now, we use the fact that for each decorated tree T , one has

Υp(T )(vη) = Υp(T )(v)
∏
u∈LT

ηuko(u)

where ηuko(u)
is given by

ηuko(u)
= ηko(u)

, if p(eu) = 1, ηuko(u)
= ηko(u)

, if p(eu) = 0,

where p(eu) is the second decoration on the edge eu connecting the leaf u to the rest of the tree T . Then, using the Wick
theorem, one gets:

E
(
Ῡp(T1)(vη) Υp(T2)(vη)

)
=

∑
P∈P(LT1

tLT2
)

∏
{u,v}∈P

E(η̃uko(u)
η̃vko(v)

)Ῡp(T1)(v) Υp(T2)(v).

where

η̃vko(v)
=

η
v
ko(v)

, if v ∈ LT1 ,

ηvko(v)
, if v ∈ LT2 ,

We obtain

E(η̃uko(u)
η̃vko(v)

) =

δ(−1)p(eu)o(u)+(−1)p(ev)o(v),0, if {u, v} ⊂ LT1 or {u, v} ⊂ LT2 ,

δ(−1)p(eu)+1o(u)+(−1)p(ev)o(v),0, otherwise.
(4.48)

that fixes the condition (4.32). The map δ`1,`2 is given by

δ`1,`2 = 1 if `1 + `2 = 0, and 0 otherwise.

The coefficients mF reflects the number of pairings that can give the same F which allows us to conclude.

From Proposition 4.4.2, our general scheme is given by:

V n,rk (τ, v) =
∑

F=T1·T2∈G
r,k
0 (R)

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)
(4.49)

Q≤r+1

(
Π̄n,rT1Πn,rT2

)
(τ)

The second moment of the k-th Fourier coefficient uk of the solution of (4.42) is given by: Vk = E(|uk|2).

Theorem 4.4.3 (Local error) The numerical scheme (4.49) with initial value v = u(0) approximates the exact second
moment Vk(τ, v) up to a local error of type

V n,rk (τ, v)− Vk(τ, v) =
∑

T1·T2∈G
r,k
0 (R)

O
(
τr+2Lrlow(T1 · T2, n)Ῡp(T1)(v)Υp(T2)(v)

)
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+O
(
τr+2|∇|α(r+2)(k)E(p̃k(u(t), vη))

)
for some polynomial p̃k and 0 ≤ t ≤ τ and where the operator Lrlow(T1 · T2, n), given in Definition 4.3.5, embeds the
necessary regularity of the solution.

Proof. The second moment of the k-th Fourier coefficient of the solution up to order r is given by

V rk (τ, v) =
∑

F=T1·T2∈G
r,k
0 (R)

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)

(
Π̄T1ΠT2

)
(τ)

which satisfies

Vk(τ, v)− V rk (τ, v) = O
(
τr+2|∇|α(r+2)(k)E(p̃k(u(t), vη))

)
(4.50)

for some polynomial p̃k and 0 ≤ t ≤ τ . Thanks to Theorem 4.3.6, we furthermore obtain that

V n,rk (τ, v)− V rk (τ, v)

=
∑

F=T1·T2∈G
r,k
0 (R)

mF
Ῡp(T1)Υp(T2)

S(T1)S(T2)
(v)

(
Π̄T1ΠT2 −Q≤r+1Π̄n,rT1Πn,rT2

)
(τ)

=
∑

T1·T2∈G
r,k
0 (R)

O
(
τr+2Lrlow(T1 · T2, n)Ῡp(T1)(v)Υp(T2)(v)

)
.

(4.51)

Next we write

V n,rk (τ, v)− Vk(τ, v) = V n,rk (τ, v)− V rk (τ, v) + V rk (τ, v)− Vk(τ, v)

where by the definition of Lrlow(T1 ·T2, n) we easily see that the approximation error (4.51) is in general dominant compared
to (4.50) (see KdV at order one for a counter-example in Section 4.5.2).

We note that generally the terms Lrlow(T1 · T2, n) are the leading terms in the local error analysis.

4.5 Applications
In this section we detail our general numerical scheme (4.49) together with its error analysis (see Theorem 4.4.3) on

two concrete examples: The cubic Schrödinger equation (see Section 4.5.1) and the Korteweg–de Vries equation (see
Section 4.5.2).

4.5.1 Nonlinear Schrödinger
As a first example let us consider the nonlinear Schrödinger (NLS) equation

i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) (t, x) ∈ R×Td (4.52)

together with an initial condition of the form (4.2). The NLS equation (4.52) fits into the general form (4.1) with

L(∇) = ∆, α = 0, and p(u, u) = |u|2u.

We set L = {t1, t2}, Pt1 = −X2 and Pt2 = X2. An edge decorated by (t1, 0) is denoted by , while an edge decorated by
(t1, 1) is denoted by . Similarly, an edge decorated by (t2, 0) is denoted by , and by an edge decorated by (t2, 1).

First order scheme

We start by expanding the solution as a power series expansion generated by its Duhamel’s iterates (see (4.8)). For a
first order approximation we have,

u(τ, vη) = u1(τ, vη) + u2(τ, vη) +O(τ2), (4.53)
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where um(τ, vη) denotes the m-th Duhamel iterate. Namely we have,

u1(τ, vη) = eiτ∆vη, u2(τ, vη) = eiτ∆

∫ τ

0

e−iζ∆(eiζ∆vη)2(e−iζ∆vη)dζ.

Using (4.10) one can expand the k-th Fourier coefficient uk of the above truncated solution (4.53), and of its conjugate,
as a sum over all decorated ternary trees of size at most one. As such, using (4.14), we can express a first order truncated
approximation of E(|uk(τ, vη)|2) as a sum over paired couples of decorated trees. We now explain how these pairings are
made, and construct the set of paired couples G0

k.

For a first order approximation we fix r = 0, and wish to construct an approximation of E
(
|uk(τ, vη)|2

)
with a local

error of second order. We have

E
(
|uk(τ, vη)|2

)
= E

(
(uk,1(τ, vη) + uk,2(τ, vη))

(
uk,1(τ, vη) + uk,2(τ, vη)

))
+O(τ2)

= E
(
|uk,1(τ, vη)|2

)
+ 2Re

(
E
(
uk,1(τ, vη)uk,2(τ, vη)

))
+O(τ2).

(4.54)

Each of the above terms involves expectations of products of Gaussians. Hence, their computations revolve around
applications of Wick’s formula, which we have encoded using a decorated tree formalism at equation (4.32). We start by
dealing with the first term E

(
uk,1(τ, vη)uk,2(τ, vη)

)
. In order for this expectation not to be a trivial one we require the

frequencies to be equal. Namely, the couple of paired tree stemming from this pairing is

F1 = T1 · T1, T1 = I(t1,0)(λk) =
k

. (4.55)

We now deal with the computation of the second term E
(
uk,1(τ, vη)uk,2(τ, vη)

)
. In this case, there are two possible

pairings of the frequencies that satisfy equation (4.32), and which yield a nontrivial computation of this second term. See
the Example 4.1.1 for more details. The couple of paired trees stemming from these two pairings are:

F2 = T1 · T2, T2 =

k̄ k2

k̄2

, (4.56)

where k̄ = −k and in symbolic notation we have

T2 = I(t1,0)λk
(
I(t2,0)

(
λkI(t1,1)(λ−k)I(t1,0)(λ−k2)I(t1,0)(λk2)

))
. (4.57)

Finally the third pairing to consider is,

F3 = T1 · T3, T3 =

k2 k

k2

, (4.58)

where in symbolic notation we have,

T3 = I(t1,0)λk
(
I(t2,0)

(
λkI(t1,1)(λk2)I(t1,0)(λk2)I(t1,0)(λk)

))
.
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There is another possible pairing which is equivalent to F3, and is given by,

F̃3 = T1 · T3, T3 =

k2 k2

k

. (4.59)

The above pairing will yield the same quantity to approximate as the pairing of F3, since the resonance structure obtained
through both pairings are identical: the resonance structure is zero. Hence, we only consider the paired decorated forest
F3. We keep track of this by setting mF3 = 2, while mF1 = 1 = mF2 . In conclusion, the set of couples of paired decorated
forests is given by

G0,k
0 = {T1 · T1, T1 · T2, T1 · T3}

We are now ready to introduce the first order low-regularity approximation to the second order moments of uk(τ, vη),
solution of (4.52) with initial data (4.2).

Corollary 4.5.1 At first order our general low regularity scheme (4.15) takes the form:

V 1,0
k (τ, v) = vkvk, (4.60)

and is locally of order O(τ2|∇|v). The above is the Fourier coefficient associated to the following scheme written in
physical space:

u`+1 = u` ∗ ũ` (4.61)

where ũ`(x) = u`(−x).

Proof. We read from equation (4.15) that the first-order scheme has the general form,

V 1,0
k (τ, v) =

∑
F=T ·T̃∈G0,k

0 (R)

mF
Ῡp(T )(v) Υp(T̃ )(v)

S(T )S(T̃ )
(4.62)

Q≤1

(
(Π̄1,0T )(Π1,0T̃ )

)
(τ), .

Furthermore, we have that,

Υp(T1)(v) = vk, Υp(T2)(v) = 2vkvk2vk2 = Υp(T3)(v), (4.63)
S(T1) = 1, S(T2) = 2 = S(T3).

Hence, the first-order scheme (4.62) takes the form

V 1,0
k (τ, v) = vkvkQ≤1(Π̄1,0(T1))(Π1,0(T1)) (4.64)

+ 2Re

vkvk ∑
k2∈Zd

|vk2 |
2Q≤1

(
Π̄1,0(T1)

(
Π1,0(T2) + 2Π1,0(T3)

))
(τ)

.
We are left to calculate the first-order approximations, encoded in the definition of the character Π1,0, of each of our
decorated trees appearing in the couples defined in G0,k

0 (R). From (4.55) and by Definition 4.34, given that P(t1,0)(k) = −k2

and P(t1,1)(k) = k2 we have,

(Π1,0T1)(τ) = eiτP(t1,0)(k) = e−iτk
2

, (Π̄1,0T1)(τ) = eiτP(t1,1)(k) = eiτk
2

. (4.65)

Henceforth, for notational convenience we will denote o1 = (t1, 0), o1 = (t1, 1), and o2 = (t2, 0). Then again by Definition
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4.34 and (4.57) it follows that, (
Π1,0T2

)
(τ)

= e−iτk
2(

Π1,0Io2(λkIō1(λ−k)Io1(λ−k2)Io1(λk2))
)
(τ)

= e−iτk
2

Kk,0o2
(
(Πn,−1Iō1(λ−k))(ξ)(Πn,−1Io1(λ−k2)(ξ)

(Πn,−1Io1(λk2))(ξ)
)
(τ)

= e−iτk
2

Kk,0o2 (eiξ(k
2−2k2

2), 1)(τ)

= −iτe−iτk
2

,

(4.66)

where we applied Definition 4.3.1 with q = ` = 0, P (k1, ..., kn) = k2 − 2k2
2 , and Po2(k) = k2. We note that the resonance

structure obtain via this pairing is given by

P (k1, ..., kn) + Po2(k) = 2(k2 − k2
2). (4.67)

Similarly we have,

(Π1,0T3)(τ) = e−iτk
2(

Π1,0Io2(λkIō1(λk2)Io1(λk2)Io1(λk))
)
(τ) (4.68)

= e−iτk
2

Kk,0o2 (eiξ(k
2
2−k

2
2−k

2), 1)(τ)

= −iτe−iτk
2

,

where we notice that the resonance structure for the integral ΠT3 is zero:

P (k1, ..., kn) + Po2(k) = k2 + (k2
2 − k2

2 − k2) = 0. (4.69)

Hence exact integration takes place, and no approximation is necessary when applying the approximation operator Ko2
on the integral corresponding to T3. Collecting the above computations, and plugging it in the expansion (4.64) yields
the low-regularity scheme (4.60).

Local Error: It remains to show the first order local error bound: O(τ2|∇|v). By Theorem 4.4.3 we have

V n,0k (τ, v)− Vk(τ, v) =
∑

T ·T̃∈G0,k
0 (R)

O(τ2L0
low(T · T̃ , 1)Ῡp(T )(v)Υp(T̃ )(v)).

We now calculate L0
low(T · T̃ , 1), for every pair T · T̃ ∈ G0,k

0 (R). First, we consider the pair F1 = T1 · T1, where we have
n+(T1) = 0 and hence where no time discretization is necessary. By Definition 4.3.5 of Lrlow we have,

L0
low(T1 · T1, 1) = (ΠT1)0L0

low(T1, 1) + (Π1,0T1)0L0
low(T1, 1) (4.70)

+ (Π1,0T1)1L−1
low(T1, 1),

where L0
low(T1, 1) = L−1

low(T1, 1) = 1. Furthermore, we have (ΠT1)0 = 1 and e−iτk
2

= (Π1,0T1)0, and finally (Π1,0T1)1 = 0

since T1 corresponds to a term of only zero-th order. Hence, from (4.70) it follows that L0
low(T1 · T1, 1) = 2e−iτk

2

and as
seen previously Υp(T1) = vk.

Next we consider the pair F2 = T1 · T2, where n+(T2) = 1. Again by Definition 4.3.5 of Lrlow we have,

L0
low(T1 · T2, 1) = (ΠT2)0L−1

low(T1, 1) + (Π1,−1T1)0L0
low(T2, 1), (4.71)

where Π1,−1 = Π1D−1 = Π1, (Π1T1)0 = e−iτk
2

, and (ΠT2)0 = 1. Next, we have

L0
low(T2, 1) = L0

low(G2, 1) +Rk,0o2,1(Π1G2),

with T2 = Io1(λkIo2(λkG2)), and G2 = Iō1(λ−k)Io1(λ−k2)Io1(λk2). Given that we are performing a full Taylor
approximation (4.3.1) of ΠT2, we have that the local error Rk,0o2,1(Π1G2) is given by (4.36). Given the resonance factor
(4.67) it follows that Rk,0o2,1(Π1G2) = Rk,0o2,1(eiξ(k

2−2k2
2)) = 2(k2 − k2

2). Lastly, L0
low(G2, 1) consists of linear combinations

involving the propagator e±iτk
2

, and not of a polynomial of the frequencies (k1, ..., kn). This is due to the fact that
G2 only consists of terms of zero-th order, and hence these computations are similar to those already made for T1 · T1.
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Therefore, L0
low(T2, 1) = O(

∑
k2∈Zd(k2 − k2

2)), and by (4.71),

L0
low(T1 · T2, 1)Ῡp(T1)Υp(T2) = O(

∑
k2∈Zd

(k2 − k2
2)vkvk|vk2 |

2). (4.72)

In physical space this yields an error of O(τ2(∇v ∗ ∇ṽ)‖v‖2L2 + (v ∗ ṽ)‖∇v‖2L2).
Finally, the computations for the pair F3 = T1 · T3 is a simpler case of the above analysis for the pair F2. Indeed, with

the pairing of F3 the resonance factor (4.69) is zero and hence, no local error is induced by this term: exact integration
takes place. Therefore, the local error is given by (4.84) in Fourier space, and in physical space asks for O(τ |∇|v), namely
requires only one spacial derivative on the initial data thanks to the use of convolutions.

Second order schemes

For a second order approximation we have,

E
(
|uk(τ, vη)|2

)
= E

(
(uk,1(τ, vη) + uk,2(τ, vη) + uk,3(τ, vη))(

uk,1(τ, vη) + uk,2(τ, vη) + uk,3(τ, vη)
))

+O(τ3)

= E
(
|uk,1(τ, vη)|2

)
+ 2ReE

(
uk,1(τ, vη)uk,2(τ, vη)

)
+ 2ReE

(
uk,1(τ, vη)uk,3(τ, vη)

)
+ E

(
|uk,2(τ, vη)|2

)
+O(τ3),

where uk,3 is the k-th coefficient of the term :

u3(τ, vη) = −
∫ τ

0

ei(τ−ξ)∆
(∫ ξ

0

ei(ξ−ξ1)∆
(

(eiξ1∆vη)2(e−iξ1∆vη)
)
dξ1

(2(eiξ∆vη)(e−iξ∆vη))
)
dξ

+

∫ τ

0

ei(τ−ξ)∆
((∫ ξ

0

e−i(ξ−ξ1)∆(e−iξ1∆vη)2(eiξ1∆vη)dξ1
)

(eiξ∆vη)2

)
dξ

:= u3,1(τ, vη) + u3,2(τ, vη),

(4.73)

and where u3,1(τ, vη) and u3,2(τ, vη) are encoded in Fourier by the following two decorated trees respectively:

k4

k1 k2

k3

k5

,

k4

k1 k2

k3

k5

.

Using Wick’s formula we can once again obtain the possible pairings which come at play when wanting to compute
each of the above terms. This determines the set of decorated pair of trees G1,k

0 (R), of size at most two, which we detail
below.

From the previous Section 4.5.1, we have that the pair of decorated trees which encodes the first term E(|uk,1(τ, vη)|2)
is given by F1 = T1 · T1, defined in (4.55). Similarly, we have that the second term E[uk,1(τ, vη)uk,2(τ, vη)] is encoded
by the pairings F2 = T1 · T2 and F3 = T1 · T3, defined in (4.56) and (4.58) respectively. Next, we consider the possible
pairings we need to take into account for the computation of E[uk,1(τ, vη)uk,3(τ, vη)], where u3 is the sum of two second
order terms given in (4.73). We start by considering the different pairings between the frequencies of uk,1 and uk,3,1,
those for uk,3,2 will then follow. We can classify the different pairings into five groups, which we call the (five) principal
pairings. This classification is based upon two factors:

(a) first, whether the frequency pairing is made internally within the same layer/integral in the tree,
(b) secondly, whether the pairing is made between frequencies of the same or opposite sign.

We start by looking at the pairings which consist of at least one pairing of two frequencies made internally within the
same integral. There are then two possibilities to consider, which depend on the sign of the frequency pairing. Namely,
we have that a pairing between two frequencies of opposite sign will result in a null resonance factor, as was the case in
(4.69) for F3, and a pairing between two frequencies of the same sign will results in a resonance structure of the form
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(4.67), namely as a difference of the squares of the frequencies. Hence, there are solely four cases of pairings which we
need to consider:

— First, the case when the pairings are all of opposite signs: {k1 = k2, k4 = k5, k = k3} ∪ {k1 = k3, k2 = k, k4 =
k5} ∪ {k1 = k2, k3 = k4, k = k5} ∪ {k1 = k3, k2 = k4, k = k5}. Without loss of generality we take the first pairing in
the union above as the representative of this class, which we include in the set G1,k

0 (R):

F4 = T1 · T4, T1 =
k

, T4 =

k4

k2 k

k2

k4

. (4.74)

— Secondly, the case where frequencies of opposite signs are paired in the inner-integral (or tree), whereas frequencies of
the same signs are paired in the outer-integral (or tree): {k1 = k2, k3 = −k5, k = −k4},∪{k1 = k3, k2 = −k5, k = −k4}.
We once again take the first pairing in the union above as the representative of this class, which we include in the set
G1,k

0 (R):

F5 = T1 · T5, T1 =
k

, T5 =

k̄

k2 k4

k2

k̄4

.

— Thirdly, the case where frequencies of the same signs are paired within the inner-integral (or tree), whereas frequencies of
opposite signs are paired in the outer-integral (or tree): {k2 = −k3, k = −k1, k4 = k5}∪{k2 = −k3, k4 = −k1, k = k5}.
We take the first pairing in the union above as the representative of this class:

F6 = T1 · T6, T1 =
k

, T6 =

k4

k̄ k̄2

k2

k4

.

— Fourthly, we are left with the case where the internal pairings are of the same sign. The only pairing which corresponds
to this case is given by: {k2 = −k3, k1 = k5, k = −k4} .

F7 = T1 · T7, T1 =
k

, T7 =

k̄

k5 k̄2

k2

k5

.

Lastly, going back to point (a.) in the above we are left to consider pairings which are all external, meaning that there
are no pairings of two frequencies made internally within the same integral. Hence, no simplification will be made at
the level of the resonance structure of each of the integrals. This defines the last class to be considered. There are six
possibilities of such pairings: {k = −k1, k2 = k4, k3 = −k5} ∪ {k = −k1, k2 = −k5, k3 = k4} ∪ {k = k2, k1 = −k4, k3 =
−k5} ∪ {k = k2, k1 = k5, k3 = k4} ∪ {k = k3, k2 = −k5, k1 = −k4} ∪ {k = k3, k2 = k4, k1 = k5}. We take the first pairing
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in the union above as the representative of this class:

F8 = T1 · T8, T1 =
k

, T8 =

k2

k̄ k̄4

k2

k4

.

Analogously, one can make the analysis for the pairings of uk,1 and uk,3,2 to obtain that five representatives are given
by: Fi = T1 · Ti, for i ∈ {9, ..., 13}, where

T9 =

k

k2 k4

k2

k4

, T10 =

k4

k2 k̄

k2

k̄4

, T11 =

k4

k̄4 k̄2

k2

k

,

T12 =

k4

k k̄2

k2

k̄4

, T13 =

k2

k k4

k2

k4

.

Finally, also using the same case analysis as made previously, we can construct the possible pairings between uk,1 and
uk,1 in order to compute the last term E(|uk,1(τ, vη)|2). We have the same case figures as seen previously: six possible
external pairings, four different possible pairings which are internal and of opposite signs, by symmetry four possibilities
of pairings which are internal and one of opposite and the other of the same signs, and finally one possible internal pairing
of the same signs. A representative of each of the above four class is given by: Fi = T̃i · Ti, for i ∈ {14, ..., 17}, where

T̃14 =

k1 k

k1

, T14 =

k2 k

k2

= T3, T̃15 =

k1 k̄

k1

, T15 =

k k̄2

k2

= T2,

T̃16 =

k k1

k̄1

, T16 =

k k̄2

k2

= T15, T̃17 =

k1 k3

k2

= T17.

We denote by mFi , i ∈ [4, 17] the multiplicative constant representing the number of elements in the class who’s
representative is Fi. Namely, it follows from the above analysis that

mFi = 6, for i ∈ {8, 13, 17},

mFi = 2, for i ∈ {5, 10, 6, 11},

mFi = 1, for i ∈ {7, 12, 16},

mFi = 4, for i ∈ {4, 9, 14, 15}.

(4.75)

In conclusion, we have that the set of representatives of approximated paired forests is given by: G1,k
0 (R) =

{Fi}i={1,...,17}. We now present a second order low-regularity approximation to the second order moments of uk(τ, vη),
solution of (4.52) with initial data (4.2).
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Corollary 4.5.2 At second order our general low regularity scheme (4.15) takes the form:

V 2,1
k (τ, v) = vkvk + 2τ2vkvk

|k|2 ∑
k2∈Zd

|vk2 |
2 −

∑
k2∈Zd

|k2|2|vk2 |
2


− 6τ2

(
6vkvk

( ∑
k2∈Zd

|vk2 |
2)2 − ∑

k1,k2,k3∈Zd
−k1+k2+k3=k

|vk1 |
2|vk2 |

2|vk3 |
2
)
.

(4.76)

The scheme (4.76) is locally of order O(τ3|∇|2v). The above is the Fourier coefficient associated to the following scheme
written in physical space:

u`+1 = u` ∗ ũ` + 2τ2
(

(∇u` ∗ ∇ũ`)‖u`‖2L2

−(u` ∗ ũ`)‖∇u`‖2L2

)
− 6τ2

(
6(u` ∗ ũ`)‖u`‖4L2 − (u` ∗ ũ`)3

)
,

(4.77)

where ũ`(x) = u`(−x).

Remark 4.5.3 (Stabilisation technique) We note that in contrast to the first-order scheme (4.61) the second-order
scheme (4.77) involves spatial derivatives on the numerical solution such as for instance in the term ∇u` ∗ ∇ũ`. These
derivatives cause instability in the discretisation. For practical implementations, one needs to stabilize the scheme
in order for it to converge. Different approaches can be taken to stabilize the above scheme, which do not require a
Courant-Friedrichs-Lewy (CFL) type condition on the step sizes. Here we propose an approach based on the a posteriori
inclusion of well chosen filter functions. We refer to the works of [ABBS22b, AB23a] for more details regarding these
questions of stability and of the suitable choice of filter functions used to yield stable schemes with optimal local error. We
also refer to [HLW10] for a general introduction to filter function in the case of oscillatory ordinary differential equations.

In this work we introduce the following filter function

sinc2
(
τ

1
2 |∇|

)
which in in Fourier space takes the form,

Ψ(iτ |k|2) = sinc2
(
τ

1
2 |k|

)
=

1

(iτ
1
2 |k|)2

(
eiτ

1
2 |k|/2 − e−iτ

1
2 |k|/2

)2

. (4.78)

In order to stabilise our scheme (4.77) we pre-multiply both critical terms in the second line of (4.60) with the filter
function (4.78) in the corresponding frequencies k and k2 respectively. This yields the following stabilised version of (4.76)

V 2,1
k (τ, v) = vkvk

+ 2τ2vkvk

Ψ(iτ |k|2)|k|2
∑
k2∈Zd

|vk2 |
2 −

∑
k2∈Zd

Ψ(iτ |k2|2)|k2|2|vk2 |
2

+ ...
(4.79)

We have that
Ψ(iτ |k|2) = 1 +O(τ |k|2)

and hence the stabilised scheme (4.79) preserves the low regularity error structure of O(τ |∇|2u). This is essential for the
local error analysis of the scheme. Furthermore, thanks to the observation that∣∣Ψ(iτ |k|2)τ

∣∣k|2| ≤ 1 for all k ∈ Zd

Ψ renders a stabilised version of the scheme (4.77) in physical space given by:

u`+1 = u` ∗ ũ`

− 2τ

(
((eiτ

1
2 |∇|/2 − e−iτ

1
2 |∇|/2)u` ∗ (eiτ

1
2 |∇|/2 − e−iτ

1
2 |∇|/2)ũ`)‖u`‖2L2

−(u` ∗ ũ`)‖(eiτ
1
2 |∇|/2 − e−iτ

1
2 |∇|/2)u`‖2L2

)
− 6τ2

(
6(u` ∗ ũ`)‖u`‖4L2 − (u` ∗ ũ`)3

)
.
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Remark 4.5.4 (Practical implementation) In order to allow for a practical implementation of our schemes we want
to be able to express the discretization both in physical and Fourier space. This allows us to use the Fast Fourier
Transform (FFT) whose computational cost is of order O(|K|dlog(|K|d)), where K denotes the highest frequency in the
discretization and d is the dimension. Namely, we compute the action of the filter functions on the solution in frequency
space, while computing the product of functions in physical space.

Remark 4.5.5 In (4.77), the scheme V n,rk is written in physical space. In fact, one can wonder if it is possible to get a
general statement such as [BS22, Prop. 3.18] which shows that low regualrity schemes can always be rewritten in physical
space. It is not clear how to prove such a statement in full generality when exact integrations are performed instead of a
full Taylor expansion. Indeed, the core of the proof [BS22, Prop. 3.18] relies on [BS22, Assumption 1] which is no longer
true in our case: Frenquencies on the leaves are no longer disjoint. We will have to be more cautious in the scheme and
probably Taylor expand a bit more as exact integrations will not allow to move back to physical space. It is a challenging
open question. In the case of the present work, we are mostly doing Taylor expansions. They guarantee that we are able
to go back to physical space.

Proof. We are considering a second order scheme and hence, we enter the case where r = 1. Furthermore, we ask for two
derivatives on the initial data, and hence we take the regularity parameter n to take on the value of 2. We read from
equation (4.15) that the second-order scheme has the general form,

V 2,1
k (τ, v) =

∑
F=T1·T2∈G

1,k
0 (R)

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T )S(T2)

Q≤2

(
(Π̄2,1(T1))(Π2,1(T2))

)
(τ),

(4.80)

where {mF }F∈G1,k
0 (R)

are given in (4.75), and where in the same spirit of (4.63) we have that for all i ∈ {4, ..., 13},

Υp(T4)(v) = 2Υp(I(t1,1)(λk4))(v)Υp(T3)(v)Υp(I(t1,0)(λk4))(v)

= 2vk4(2vk2vk2vk)vk4

= 4|vk4 |
2|vk2 |

2vk

= Υp(Ti)(v),

and for i ∈ {4, ..., 8}, S(Ti) = 2 while for i ∈ {9, ..., 13}, S(Ti) = 4. Furthermore, we have that for i ∈ {14, ..., 17},

Ῡp(T̃i)(v)Υp(Ti)(v) = 4|vk1 |
2|vk2 |

2|vk3 |
2, S(Ti)

2 = 4.

Hence, the second order scheme (4.80) takes the form

V 2,1
k (τ, v) = vkvk

+ 2Re

vkvk ∑
k2∈Zd

|vk2 |
2Q≤2

(
Π̄2,1(T1)

(
Π2,1(T2) + 2Π2,1(T3)

))
(τ)


+ 2Re

vkvk ∑
k2,k4∈Zd

|vk2 |
2|vk4 |

2

( ∑
4≤i≤13

mFiQ≤2

(
Π̄2,1(T1)Π2,1(Ti)

))
(τ)


+ vkvk

∑
k1,k2∈Zd

|vk1 |
2|vk2 |

2

( ∑
14≤i≤16

mFiQ≤2

(
Π̄2,1(T̃i)Π

2,1(Ti)
))

(τ)

+
∑

k1,k2,k3∈Zd
−k1+k2+k3=k

|vk1 |
2|vk2 |

2|vk3 |
2

(
mF17Q≤2

(
Π̄2,1(T17)Π2,1(T17)

))
(τ).

(4.81)

1. Computation of Q≤2

(
Π̄2,1(T1)

(
Π2,1(T2) + 2Π2,1(T3)

)
: We apply Definition 4.34 to each of the three decorated trees.
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— Computation of Π̄2,1(T1): Given that (4.55) is a zero-th order term, as in (4.65) we have,

(Π̄2,1T1)(τ) = eiτk
2

.

— Computation of Π2,1(T2): It follows from the definition (4.56) and (4.57) of T2 that,

(Π2,1T2)(τ) = e−iτk
2

Kk,1o2
(
(Π2,0Iō1(λ−k))(ξ)

(Π2,0Io1(λ−k2)(ξ)(Π2,0Io1(λk2))(ξ)
)
(τ)

= e−iτk
2

Kk,1o2 (eiξ(k
2−2k2

2), 2)(τ)

= −iτe−iτk
2

+ τ2e−iτk
2

(k2 − k2
2),

(4.82)

where we applied Definition 4.3.1 with ` = 1. Namely, up to one additional order then made in (4.66) for the first
order analysis.

— Computation of Π2,1(T3): As for the calculations made in (4.68), given that the resonance structure (4.69) of the
integrand in Π(T3) is zero it follows that,

(Π2,1T3)(τ) = −iτe−iτk
2

. (4.83)

Hence, having only at most second order terms in the above calculations, Q≤2 does not play a role and we have:

Q≤2

(
Π̄2,1(T1)

(
Π2,1(T2) + 2Π2,1(T3)

)
(τ) = Π̄2,1(T1)

(
Π2,1(T2) + 2Π2,1(T3))(τ)

= −3iτ + τ2(k2 − k2
2).

Given that we take the real part of the above approximation, only the second term in the above will contribute to the
scheme.
2. Computation of Q≤2

(
Π̄2,1(T1)Π2,1(Ti)

)
, for i ∈ {4, ..., 13}:

— Computation of
(
Π̄2,1(T1)Π2,1(T4)

)
: We recall that T4 is given by (4.74) and in symbolic notation we have,

T4 = Io1
(
λk
(
Io2(λk(Iō1(λk4)T3Io1(λk4)))

))
,

where T3 is given in (4.58). Hence, it follows that

(Π2,1T4)(τ) = e−iτk
2

Kk,1o2
(
(Π2,0Iō1(λk4))(ξ)(Π2,0T3)(ξ)(Π2,0Io1(λk4))(ξ)

)
(τ)

= e−iτk
2

Kk,1o2
(
−iξeiξ(k

2
4−k

2−k2
4)
)

(τ)

= −ie−iτk
2

Kk,1o2 (ξe−iξk
2

, 2)(τ)

= −τ
2

2
e−iτk

2

,

where in the second line we used that (Π2,0T3)(ξ) = −iξe−iξk
2

, which comes from (4.68), obtained during the first
order analysis. We note that when calculating K in the last line, the resonance structure is as expected equal to zero.

— Computation of Π2,1(Ti), for i ∈ {5, ..., 13}: These computations follow exactly the same line as in the above case. We
have, (Π2,1Ti)(τ) = − τ

2

2
e−iτk

2

.
The only difference lies in the expression of the resonance factor which will either be of the form (4.67), be equal to
zero (as was the case in the above), or finally in the case of an external pairing (Π(Ti), i ∈ {8, 13}) of the form (4.23).
Nevertheless, given that we can make the full Taylor approximation (4.3.1) when approximating the each integral, the
approximation of Π2,1(Ti), i ∈ {4, ..., 13} are the same, the difference lies in the local error produced.

Therefore, Q≤2

(
Π̄2,1(T1)Π2,1(Ti)

)
(τ) = − τ

2

2
.

3. Computation of Q≤2

(
Π̄2,1(Ti)Π

2,1(Ti)
)
(τ), for i ∈ {14, ..., 17}:

— Computation of Π̄2,1(T14)Π2,1(T14). Given that T14 has the same null resonance structure as T3, it follows as in (4.83)
that (Π2,1T14)(τ) = −iτe−iτk

2

and hence,

(Π̄2,1T14Π2,1T14)(τ) = τ2.

For the remaining computations the truncation operator Q≤2 will be essential to incorporate the terms of correct
order into the scheme.
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— Computation of Qr≤2Π̄2,1(T̃15)Π2,1(T15), Qr≤2Π̄2,1(T̃16)Π2,1(T16),
and Qr≤2Π̄2,1(T̃17)Π2,1(T17). First, we have that Π(T15) and Π(T16) have the same resonance structure as ΠT2, and
hence following the calculations in (4.82) it follows that,

(ΠT15)(τ) = (ΠT16)(τ) = −iτe−iτk
2

+ τ2e−iτk
2

(k2 − k2
2).

Furthermore, we have that Π̄(T̃15) has a null resonance structure and hence it follows that (Π̄T̃15)(τ) = iτeiτk
2

and,

Qr≤2(Π̄2,1T̃15Π2,1T15)(τ) = Qr≤2

(
τ2 + iτ3(k2 − k2

2)
)

= τ2.

Similarly, we have

Qr≤2(Π̄2,1T̃16Π2,1T16)(τ) = τ2 = Qr≤2(Π̄2,1T̃17Π2,1T17)(τ),

where the third and fourth order terms are truncated by the operator Q≤2.

Plugging the results obtained in the above computations into (4.81) yields the second order low regularity scheme (4.76),
which is given in physical space by (4.77).

Local Error: It remains to show the claimed third order local error bound: O(τ3|∇|2v). We follow along the same
lines made for the first order local error analysis in Section 4.5.1. By Theorem 4.4.3 we have

V 2,1
k (τ, v)− Vk(τ, v) =

∑
T1·T2∈G

1,k
0 (R)

O(τ3L1
low(T1 · T2, 2)Ῡp(T1)(v)Υp(T2)(v)).

We are left to calculate L1
low(T1 · T2, 2), for T1 · T2 ∈ G1,k

0 (R). We are interested in the integrals ΠT , ΠT̃ which have
non-zero resonance structure, since oscillatory integrals who’s resonance structure is zero are integrated exactly, and
hence do not contribute to the local error analysis of the scheme.

— Computation of L1
low(T1 · T2, 2), where ΠT2 has the non-zero resonance structure (4.67). Following the analysis made

in (4.71) for this pairing we have,

Rk,1o2,1(Πn=2G2) = Rk,1o2,2(eiξ(k
2−2k2

1)) =
(
2(k2 − k2

1)
)2
,

where we applied definition (4.36) up to an additional order. Therefore, it follows from the previously made steps
(4.71) that

L1
low(T1 · T2, 2)Ῡp(T1)Υp(T2) = O(

∑
k1∈Zd

(k2 − k2
1)2vkvk|vk1 |

2). (4.84)

In physical space this yields an error of the form

O
(
τ3
(

(|∇|2v ∗ |∇|2ṽ)‖v‖2L2 + (4.85)

(v ∗ ṽ)‖|∇|2v‖2L2 + (|∇|v ∗ |∇|ṽ)‖|∇|v‖2L2

))
.

The computations for the remaining pairings F ∈ G1,k
0 (R) can be made in an analogous fashion and can be shown to

produce an error term of the form O(τ3|∇|v). In consequence, their approximation requires less regularity on the initial
data than that for the above pairing T1 · T2. We conclude from the above expression (4.85) that the local error in physical
space is of the form O(τ3|∇|2v), which requires two derivatives on the initial data.

Remark 4.5.6 Recently new low-regularity integrators ([AB23b]) and resonance-based discretisations ([FMS23, MS23])
have been introduced, which preserve better the underlying structure of the solution over long-times, and which exhibits
improved error constants at low-regularity. Encapsulating the idea behind the construction of these low-regularity
structure-preserving schemes into the general framework presented in this article would be of interest in the future. This
could yield better insight on the long-time behaviour of the solution on a numerical level.
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4.5.2 KdV

Let us next consider the Korteweg–de Vries (KdV) equation

∂tu+ ∂3
xu =

1

2
∂xu

2, (t, x) ∈ R×T (4.86)

with a random initial value u(0) = v of the form (4.2). The KdV equation (4.86) fits into the general framework (4.1) with

L(∇) = i∂3
x, α = 1, and p(u, u) = p(u) = i

1

2
u2.

One has L = {t1, t2}, Pt1 = −λ3 and Pt2 = λ3 . Then, we denoted by an edge decorated by (t1, 0) and by an
edge decorated by (t2, 0). The general framework (4.49) derived in Section 4.4 builds the foundation of the first- and
second-order schemes presented below for the KdV equation (4.86).

Corollary 4.5.7 For the KdV equation (4.86) the general scheme (4.44) takes at first order the form

u`+1 = u` ∗ ũ` (4.87)

with a local error of order O
(
τ2∂xu

)
and at second-order

u`+1 = u` ∗ ũ` + τ2∂2
x(u` ∗ ũ`)2

+
τ2

2
∂x
(
u` ∗ ũ`

)
(
∑
k1∈Zd

k1|u`k1
|2)− τ2

2

(
∂xu

` ∗ ∂xũ`
)

((u`0)2 + (u`0)2)
(4.88)

with a local error of order O
(
τ3∂2

xu
)
, and where ũ`(x) = u`(−x).

Remark 4.5.8 (Stability) In view of a practical implementation of the second order scheme (4.88) for KdV, we address
the need to stabilize the three terms in the above scheme involving spatial derivatives on the numerical solution. As in
the Remark 4.5.3, for the stabilisation of the second order scheme for NLS, we introduce three filter functions which we
premultiply in front of each of the last three critical term appearing in the scheme (4.88). We introduce the following
three filter functions in Fourier space,

Ψ1(k) = ϕ1(−iτ |k|2) =
1− e−iτ |k|

2

iτk2
,

Ψ2(k, k1) =
1

(iτ
1
2 |k|)(iτ 1

2 |k1|)

(
eiτ

1
2 |k|/2 − e−iτ

1
2 |k|/2

)(
eiτ

1
2 |k1|/2 − e−iτ

1
2 |k1|/2

)
,

Ψ3(k) = sinc2(τ
1
2 |k|),

where Ψ3(k) is the same filter function used for the stabilization of the second order scheme for NLS (see equation (4.78)).
We have that

Ψj(k) = 1 +O(τ |k|2), |Ψj(k)τ |k|2| ≤ 1, j ∈ {1, 3}, k ∈ Z,

Ψ2(k, k1) = 1 +O(τ(|k|2 + |k1|2)), |Ψ2(k, k1)τ |k||k1|| ≤ 1, k, k1 ∈ Z.

Namely, these three filter functions preserve the low regularity error structure of O(τ∂2
xu), and provides the following

stabilized version of the scheme (4.88) which is given in physical space by,

u`+1 = u` ∗ ũ` − iτ(eiτ∂
2
x − 1)(u` ∗ ũ`)2

− τ

2

(
(eτ

1
2 ∂x/2 − e−τ

1
2 ∂x/2)(u` ∗ ũ`)

)( ∑
k1∈Zd

(eτ
1
2 |k1|/2 − e−τ

1
2 |k1|/2)|u`k1

|2
)

+
τ

2

(
(eτ

1
2 ∂x/2 − e−τ

1
2 ∂x/2)u` ∗ (eτ

1
2 ∂x/2 − e−τ

1
2 ∂x/2)ũ`

)
((u`0)2 + (u`0)2).

Proof. We proceed as for the Nonlinear Schrödinger equation. The construction of the schemes is again based on the
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general framework (4.44). We consider for r = 0, 1 the expansion,

V n,rk (τ, v) =
∑

F=T1·T2∈G
r,k
0 (R)

mF
Ῡp(T1)(v) Υp(T2)(v)

S(T1)S(T2)
(4.89)

Q≤r+1

(
Π̄n,rT1Πn,rT2

)
(τ).

For the first-order scheme (r = 0) we need only to consider the single paired decorated forest:

G0,k
0 (R) = {T0 · T0}, T0 =

k

. (4.90)

Indeed, we recall the first order expansion (4.54), where for the KdV equation we have,

u1(τ, vη) = e−τ∂
3
xvη, u2(τ, vη) = e−τ∂

3
x

∫ τ

0

eζ∂
3
x∂x(e−ζ∂

3
xvη)2dζ.

Given that for the KdV equation the term E[uk,1(τ, vη)uk,2(τ, vη)] consists of a product of three Gaussians, we have that
this term is equal to zero. Hence, the only term to compute in the expansion (4.54) is

E[uk,1(τ, vη)uk,1(τ, vη)],

and the pairing to consider is (4.90).

A straightforward calculation yields,

S(T0) = 1, Υp(T0)(v) = vk, mT0·T0 = 1,

and

(Πn,0T0)(τ) = e−iτk
3

.

In the end, the first order scheme takes on the simple form:

V n,0k (τ, v) = |vk|2.

One can notice that the only approximation error made comes from the first-order truncation of the tree series (4.49).
Namely, by noting that α = 1, it follows from (4.50) that (V n,0k − Vk)(τ, v) = O(τ2k2vkv̄k). Therefore, in physical space
the local error is of order O(τ2(∂xv ∗ ∂xṽ)), which solely requires one additional derivative on the initial data.

For a second order scheme, one has to compute more terms. The set of paired decorated forests is given by:

G1,k
0 (R) = {T0 · T0, T1 · T1, T0 · T2, T0 · T3, ki ∈ Zd},

T1 =

k1 k2

, T2 =

k1 k̄1

k

, T3 =

k 0

0

.

A straightforward computation gives:

S(T1) = 2, S(T2) = S(T3) = 2, Υp(T1)(v) = vk1vk2 ,

Υp(T2)(v) = |vk1 |
2vk, Υp(T3)(v) = v2

0vk

mT1·T1 = 2, mT0·T2 = 1, mT0·T3 = 2.

Further, due to cancellations in the resonance, the integrals encoded by the trees T2 and T3 have a null resonance structure,
and hence it follows that

(Πn,1T0)(τ) = e−iτk
3

, (Πn,1T2)(τ) = −τ
2

2
k1ke

−iτk3

,

(Πn,1T3)(τ) = −τ
2

2
k2e−iτk

3

.
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For the computation of (Πn,1T1)(τ), we proceed by a full Taylor expansion which yields(
Πn,1T1

)
(τ) = e−iτk

3

Kk,1(t2,1)

(
eiξ(−k

3
1−k

3
2), n

)
(τ)

= e−iτk
3
(
iτk +

3

2
τ2k1k2k

2

)
,

where we used the fact that the resonance structure is given by,

P(t2,0)(k)− k3
1 − k3

2 = k3 − k3
1 − k3

2 = 3k1k2(k1 + k2) = 3k1k2k.

Then, by taking the product and making the truncation, we obtain:

Q≤2

(
Π̄n,1T1

)
(τ)
(
Πn,1T1

)
(τ) = Q≤2

(
(−iτk +

3

2
τ2k1k2k

2)(iτk +
3

2
τ2k1k2k

2)

)
= τ2k2.

The local error introduced is of order O(τ3k4) which corresponds to two derivatives due to the convolution structure. In
the end, the scheme in Fourier space is given by:

V n,1k (τ, v) = |vk|2 + τ2k2
∑

k=k1+k2

|vk1 |
2|vk2 |

2

−
∑
k1∈Zd

τ2

2
k1k|vk1 |

2|vk|2 −
τ2

2
k2|vk|2(v2

0 + v0
2).

By writing the above scheme in physical space we recover the scheme (4.88), which induces a local error of O(τ3∂2
xv).
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Chapter 5

A symmetric low-regularity integrator for the
nonlinear Schrödinger equation

This chapter is based on the article [AB23b] published in the IMA Journal of Numerical Analysis.

Abstract. We introduce and analyze a symmetric low-regularity scheme for the nonlinear Schrödinger (NLS) equation
beyond classical Fourier-based techniques. We show fractional convergence of the scheme in L2-norm, from first up to
second order, both on the torus Td and on a smooth bounded domain Ω ⊂ Rd, d ≤ 3, equipped with homogeneous Dirichlet
boundary condition. The new scheme allows for a symmetric approximation to the NLS equation in a more general setting
than classical splitting, exponential integrators, and low-regularity schemes (i.e. under lower regularity assumptions, on
more general domains, and with fractional rates). We motivate and illustrate our findings through numerical experiments,
where we witness better structure preserving properties and an improved error-constant in low-regularity regimes.

5.1 Introduction
We consider the nonlinear Schrödinger (NLS) equation,

i∂tu(t, x) = −∆u(t, x) + |u(t, x)|2u(t, x), (t, x) ∈ R× Ω (5.1)

with Ω ⊂ Rd or Ω = Td, d ≤ 3, and an initial condition

u|t=0 = u0. (5.2)

When ∂Ω 6= 6#, we assume that Ω is a smooth bounded domain and we assign homogeneous boundary conditions which
will be encoded in the choice of the domain of the operator i∆. In the convergence analysis we will consider either
periodic or homogeneous Dirichlet boundary conditions. Nevertheless, one could also consider different types of boundary
conditions such as homogeneous Neumann boundary conditions by defining the functional spaces accordingly (see Section
5.2).

Throughout this article we will be interested in providing a reliable approximation of (5.1) when the initial data u0

are non-smooth, in the sense that they belong to Sobolev spaces of low order. Namely, we will be interested in studying
numerical schemes which approximate the time dynamics of (5.1) at low regularity. The numerical study of low-regularity
approximations to nonlinear evolution equations has gained lots of attention in the past years, and numerous contributions
have been made in this direction. The first results were established on the torus for the Korteweg-De Vries (KdV)
equation and then the NLS equation with the pioneering works of [HS17b] and [OS18]. These results could be further
greatly extended, see for instance [WZ22b, NWZ22, RS22, LW22] and [ORS22b, WY22, LW21, OWY22] for the KdV
and NLS equations respectively. More types of dispersive equations could be dealt with, including for example the Dirac
equation [SWZ21] or the “good” Boussinesq equation ([LS23]), and a general framework for constructing low-regularity
approximations up to arbitrary order and for a class of dispersive equations on the torus was obtained in [BS22].

The construction of these time integrators (called resonance-based schemes, exponential-type low-regularity integrators,
or Fourier integrators) strongly depended on Fourier-based expansions, and hence were restricted to periodic boundary
conditions. Recently, this restriction was withdrawn to treat more general domains Ω ⊂ Rd and boundary conditions, as
well as more general nonlinearities (see [RS21, AB23a, ABBS22b, BLW23, LMS21]).

The general aim of low-regularity integrators is that they converge under lower regularity assumptions, contrarily
to classical methods (see [ABBS22b] for a comparative analysis on general smooth domains). Their major drawback is

121



122 CHAPTER 5. A symmetric low-regularity integrator for the nonlinear Schrödinger equation

that they do not preserve the geometric structure of the underlying system. The NLS equation (5.1) is time reversible,
meaning that u(−t, x) is again solution of (5.1), and both the density and the energy are conserved quantities:{

‖u(t)‖L2 = ‖u0‖L2 ,
E(t) = E0,

t ∈ I, (5.3)

where I is the interval of existence of the solution, and where for H1-solutions we have

E(t) =
1

2

∫
|∇u|2(t, x)dx+

1

4

∫
|u|4(t, x)dx.

Hence, when designing a numerical scheme it is natural to take into account both of these conserved quantities, and
to retain (as much as possible) these properties also on the discrete level by introducing so-called structure preserving
schemes, see [HLW10] for an extensive introduction on the subject. The latter has received great interest thanks to their
good long-time near-preservation of the actions of the integrable properties of the equation, and have been successfully
studied in the past for the approximation of the NLS equation (5.1). Examples of such schemes are splitting schemes
([Lub08], [Fao12]), relaxation finite difference type schemes ([Bes04]), symmetric exponential integrators ([CCO08]) or
Crank-Nicolson Galerkin methods ([HP17]), just to name a couple of them. For an overview of symmetric methods for
NLS see [CCO08, Fao12, ABB13]. While these classical structure preserving schemes provide excellent approximations
to smooth solutions in general even up to long times, they often break down and lead to severe loss of convergence for
non-smooth solutions. Low-regularity integrators which are suited for non-smooth solutions on the other hand do not
preserve the structure of the underlying equation. The natural question which thus arises is: What about low-regularity
structure preserving schemes for solving the NLS equation (5.1)? Only very little is known in this direction, see the
work of [MS22] on the KdV equation, [WZ22a] on the cubic Klein-Gordon equation, and [BMS22] on the isotropic
Landau–Lifschitz equation. Also worth to be mentioned is the work of [WY22] which introduces for the first time a
first-order Fourier integrator for the NLS equation (5.1) set on T which almost conserves the mass.

In this article, we introduce a symmetric low-regularity integrator for solving the NLS equation (5.1) which allows for
low-regularity approximation while maintaining good long-time preservation of the two conserved properties (5.3) on the
discrete level. We carry-out a rigorous convergence analysis in L2(Ω) on smooth domains Ω ⊂ Rd and obtain improved
error estimates at low-regularity compared to classical symmetric methods. Our numerical findings not only show better
structure preservation properties but also show a much better error constant at low-regularity than previously proposed
methods (see Figure 5.1).

In the finite dimensional ODE setting it is well-known that symmetric methods are of even order. In the context of
PDEs this is a much more delicate question as convergence is met only when sufficient regularity assumptions are imposed
on the solution. Thanks to the gain of symmetry, we show second order L2-convergence of the symmetric scheme under
less regularity assumptions than what is required by classical symmetric schemes ([Lub08, Bes04, BDDLV21, HP17]),
while asking for slightly more regularity than asymmetric second-order low-regularity schemes ([AB23a]) which however
do not preserve the structure of the system (see Figures 5.2 and 5.3). Optimal first order low-regularity convergence rates
could be obtained. See Section 5.1.2 for a detailed discussion on the subject.

The scheme we present here is based on the first-order low-regularity scheme first introduced in [OS18] which is given
by,

Φτ (un) := eiτ∆(un − iτ(un)2ϕ1(−2iτ∆)un
)
, u0 = u0, (5.4)

where ϕ1(z) = ez−1
z

, and τ is the time step. In order to symmetrize the above scheme we introduce the adjoint method
as the map

Φ̂τ = Φ−1
−τ ,

and compute (see [HLW10])
Φ̂τ/2 ◦ Φτ/2.

This yields the following implicit symmetric low-regularity scheme,

un+1 = ϕτ (un) = eiτ∆un − i τ
2
eiτ∆((un)2ϕ1(−iτ∆)un

)
− i τ

2

(
(un+1)2ϕ1(iτ∆)un+1

)
(5.5)

= eiτ∆un + ψ
τ/2
E (un) + ψ

τ/2
I (un+1)

= eiτ∆un + Ψτ (un, un+1),

which satisfies the discrete analogue of the time-reversible property of (5.1).
We highlight the properties which the scheme (5.5) inherits through numerical experiments, where we couple the

time-integrators with the standard Fourier pseudo-spectral method which encodes periodic boundary conditions. The case
of homogeneous Dirichlet boundary conditions remains very similar, yet for completeness we also include a convergence
plot in this case where we expand the solution as a sine series expansion. First, in the case of periodic boundary
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conditions, we observe in Figures 5.1a and 5.1b the favorable convergence properties of the scheme (5.5) for H1 and
H2 data respectively. We notice that the error constant of the symmetric scheme is much better than the asymmetric
first-order low-regularity integrator (Low-reg 1), and is also better than the asymmetric second-order low-regularity
integrator (Low-reg 2). Figure 5.1c similarly shows the favorable convergence behavior when considering homogeneous
Dirichlet boundary conditions. Secondly, we study in Figures 5.2 and 5.3 the structure preserving properties of the new
symmetric low-regularity integrator (5.5) against previous asymmetric low-regularity integrators. We witness that the
asymmetric first and second-order low-regularity integrators (Low-reg 1, Low-reg 2) are unable to preserve the density
and energy (see (5.3)), whereas the symmetric integrator (5.5) appears to nearly-preserve both conserved properties
over long-times. We note that in the finite dimensional ODE setting a general theory for symmetric methods applied to
integrable reversible systems has been established in [HLW10] allowing for long-time near-conservation of first-integrals.
In the infinite dimensional case the understanding of the long-time behavior of numerical solutions is an ongoing challenge
in the field of geometric integration and few results are known, see for example [Fao12, FGP10a, GL10b, CHL08]. We
expect that it would be possible to prove long-time near-preservation of the density and energy of the scheme (5.5) by
using the results of [HLW10], and by benefitting of an analysis using modulated Fourier expansions (see [CHL08, GL10b])
or using normal form techniques ([FGP10a, BG22]) to show near-conservation of the energy. This delicate analysis is out
of scope for this paper, where here we focus on the low-regularity error estimates on the solution itself. Finally, we refer
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Figure 5.1 – Convergence plot for data in H1 (Figure (a)) and data in H2 (Figure (b) and (c)) of the asymmetric first and
second-order low-regularity integrators (pink, dark blue), the symmetric method (5.5) (red), the classical Lie splitting, Strang
splitting, and Euler Exponential method (light blue, yellow, and green). We observe order reduction of the classical Euler Exponential
and Lie and Strang splitting methods (Figure (a), H1(T)-data), and of the Strang splitting method (Figure (b), H2(T)-data, and
Figure (c), H2([0, 1])-data). Figures (a) and (b) are with periodic boundary conditions, while Figure (c) is with homogeneous
Dirichlet boundary conditions. The slopes of the continuous black lines are one and two, respectively. We took the final time T = 1,
and the number of Fourier modes K = 211. The figure is taken from [AB23b].
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Figure 5.2 – Plot (a) : We graph the L2-norm ‖u(t)‖L2(T) up until time T = 50 of three low-regularity integrators. The asymmetric
first and second-order low-regularity integrators (pink, blue), and the new symmetric low-regularity integrator (red). We also graph
the exact value ‖u0‖L2(T) (black). Plot (b): We only graph the asymmetric second-order low-regularity integrators (blue), and the
symmetric low-regularity integrator (red) together with the exact L2-norm of the initial value (black). We fixed the number of
Fourier modes K = 29, the time step τ = 0.05, and took an initial data u0 ∈ H2. The figures is taken from [AB23b].
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Figure 5.3 – Plot (a) : We graph the relative energy E(t)/E(t0) (see (5.3)) up to T = 50 of the same three low-regularity
integrators as in Figures 5.2a and 5.2b. Plot (b): We only graph the relative energy of the asymmetric second order low-regularity
integrators (blue), and the symmetric low-regularity integrator (red). We again fixed the number of Fourier modes K = 29, the time
step τ = 0.05, and took an initial data u0 ∈ H2.

to Figure 5.4 for a broad indication of the relative computational cost of each of the three low-regularity integrators, and
discuss the added cost of implementing the symmetric implicit scheme (5.5). We observe that the asymmetric second-order
low-regularity integrator (Low-reg 2) costs in CPU-time approximately the same as the symmetric integrator (5.5).
Whereas when comparing with the asymmetric first-order scheme (Low-reg 1) we have that the improved convergence
properties of the scheme (5.5) make up for the extra cost of solving the implicit system (5.5) at every time step.

This numerical study motivates the use of the scheme (5.5), which conserves better the underlying geometric structure
of the equation, exhibits a better error constant, and can be implemented at relatively low additional cost despite its
implicit nature.

Remark 5.1.1 (Implicit versus explicit low-regularity schemes) We make the important remark that unlike the
previous (asymmetric) low-regularity integrators [OS18, BS22, ORS21, ORS22b, RS21, AB23a, ABBS22b] the above
symmetrized scheme (5.5) is an implicit one. We have witnessed that the implicit nature of the scheme does not adversely
affect the computational cost of the method (see Figure 5.4). Nevertheless, one could query on the necessity of the



5.1. Introduction 125

0 0.2 0.4 0.6 0.8 1 1.2 1.4

CPU-time (sec)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L2 -e
rro

r a
t t

im
e 

T=
1

CPU-time comparison

Low-reg 1
Low-reg 2
Symmetric low-reg

Figure 5.4 – We plot the CPU time versus the L2-error. Namely, we compare the computational cost for running the first and
second-order low-regularity scheme (pink, dark blue), with the low-regularity symmetric integrator (5.5) (red). We took the same
parameter values as in Figure 5.1. The figure is taken from [AB23b].

implicit nature of the symmetric low-regularity scheme. In the case of second-order wave-type equations, instead of
considering implicit symmetrized schemes one could study explicit three-time step symmetric schemes using Gautschi-type
methods. Indeed, for the cubic Klein-Gordon equation set on T, an explicit symmetric three time-step low-regularity
integrator could be obtained by [WZ22a]. While this approach is suited to second order equations, by combining the
work of [WZ22a] together with the uniformly accurate low-regularity integrator [CS22a] adapted to the non-relativistic
regime, an interesting open problem would be to obtain in the non-relativistic limit an explicit symmetric three time-step
low-regularity approximation to the NLS equation (5.1).

Having motivated the scheme (5.5) we now provide the underlying idea behind its construction. To provide a better
intuition to the reader we will work in the twisted variable and place ourselves on the torus Ω = T in order to make use of
Fourier-based expansions (see also [OS18]).

5.1.1 Derivation of the scheme
We switch to the twisted variable v = e−it∆u. We observe that v satisfies

i∂tv = e−it∆(|eit∆v|2eit∆v), v0 = u0.

Equivalently, by integrating the above and mapping Duhamel’s formula in Fourier space we have

v(tn+1) = v(tn)− i
∑

k=−k1+k2+k3

eikxeitn(k2+k2
1−k

2
2−k

2
3)Iτ , (5.6)

where the oscillatory integral is given by

Iτ =

∫ τ

0

eiω1sh(s)ds, (5.7)

and h(s) = eiω2sg(s), ω1 = 2k2
1, ω2 = k2 − k2

1 − k2
2 − k2

3 = −2k1(k2 + k3) + k2k3 and

g(s) = vk1(tn + s)vk2(tn + s)vk3(tn + s).

The central question revolves around making a suitable choice of discretization of the oscillatory integral Iτ , with the
aim of minimizing the regularity assumption required by this approximation. The underlying idea behind the construction
of the previous (asymmetric) low-regularity integrators (or resonance-based schemes) is to choose an approximation of the
integral Iτ which allows for a practical implementation (by not performing exact integration), while optimizing the local
error in the sense of regularity. Namely, by recalling that 2k2

1 corresponds to second order derivatives in Fourier space
while the terms kmkj (for m 6= j) correspond to product of first order derivatives, the idea is to separate the dominant
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(ω1) and lower-order (ω2) frequencies. The lower-order and non-oscillatory part h(s) is then approximated by a Taylor
series expansion centered at s = 0,

h(s) = h(0) +O(sw2g),

and the dominant part eiω1s is integrated exactly. This yields the first-order low-regularity scheme (5.4) with a local
error of O(τ2∂xv). At low regularity this is more advantageous than classical techniques (such as exponential integrators
[HO10] or splitting methods [Lub08]) which do not embed the dominant frequency interactions into the scheme and
obtain a local error of O(τ2∂2

xv).
The key idea behind obtaining the symmetric scheme (5.1) is to make a different Taylored discretization of the

lower-order and non-oscillatory part h(s). Namely, we again integrate exactly and embed the dominant part eiω1s into
the numerical scheme, while this time approximating the non-dominant part in the following symmetric fashion,

h(s) ≈ h(0)1[0,τ/2] + h(τ)1(τ/2,τ ], s ∈ [0, τ ], (5.8)

where 1A is the indicator function on the set A. By plugging this approximation for h into the oscillatory integral (5.7)
yields two terms: an explicit and an implicit one. The explicit term is given by,∫ τ/2

0

eiω1sh(0)ds = τ
eiω1τ/2 − 1

iω1τ
vnk1

(tn)vnk2
(tn)vnk3

(tn) =
τ

2
ϕ1(ik2

1τ)vnk1
(tn)vnk2

(tn)vnk3
(tn).

Using the definition of the twisted variable, equation (5.6), and by mapping the above back to physical space yields the
explicit nonlinear term ψ

τ/2
E (un) in the scheme (5.5). Similarly, one obtains the nonlinear implicit term in (5.5) by using

the definitions ω1 = 2k2
1, ω2 = k2 − k2

1 − k2
2 − k2

3 and noticing that

h(τ) = eik
2τ
((
e−ik

2
2τvnk2

(tn+1)
)(
e−ik

2
3τvnk3

(tn+1)
)(
e−ik

2
1τvnk1

(tn+1)
))

and ∫ τ

τ/2

eiω1sh(τ)ds =eik
2τ

((
e−ik

2
2τvnk2

(tn+1)
)(
e−ik

2
3τvnk3

(tn+1)
)∫ τ/2

0

e2ik2
1(τ−s)ds

(
e−ik

2
1τvnk1

(tn+1)
))

=eik
2τ
((
e−ik

2
2τvnk2

(tn+1)
)(
e−ik

2
3τvnk3

(tn+1)
)τ

2
ϕ1(−iτk2

1)
(
e+ik2

1τvnk1
(tn+1)

))
.

We note that a general approach to obtain the approximation (5.8) is to first give a symmetric approximation to the
non-oscillatory part g(s) by iterating Duhamel’s formula inside vk(tn + s) in a symmetric fashion. Namely, vk(tn + s)
is approximated on [0, τ

2
] by the linear term in the Duhamel formula centered about s = 0 (yielding the approximation

g(0), see (5.6)). While on ( τ
2
, τ ], vk(tn + s) is approximated by the linear term in the Duhamel formula centered about

s = τ (yielding the approximation g(τ)). We then proceed by approximating the lower-order oscillatory part eiω2s in a
symmetric fashion. In order to obtain higher-order symmetric low-regularity approximations, we would iterate inside g(s)
both of these Duhamel expansions (centered about s = 0 on [0, τ

2
] and about s = τ on ( τ

2
, τ ]) up to higher order. The

construction of higher-order low-regularity symmetric integrators will be dealt with in future work.

Remark 5.1.2 (Third order local error bound) We make an important point related to the third-order local error
structure of the scheme (5.5). Thanks to the symmetry of the scheme (5.5) we can expect to have second-order convergence
under suitable regularity assumptions on the solution. From the above calculations in Fourier one easily observes that we
naturally need three additional derivatives in order to obtain a third-order local error bound of the scheme (5.5). Indeed,
by Taylor expanding around the midpoint one observes that the error induced by the discretization (5.8) of Iτ requires
the boundedness of a term of the form,∫ 0

−τ
eiω1( s+τ

2
)
(
eiω2( s+τ

2
) − 1

)
dsg(0) (5.9)

+

∫ τ

0

eiω1( s+τ
2

)
(
eiω2( s+τ

2
) − eiω2τ

)
dsg(0).

For the above to yield a third order term one needs to bound a term of order O(τ3ω1ω2v̄k1vk2vk3) which corresponds
in physical space to asking for three additional derivatives on v̄. This is to be compared with classical (symmetric)
schemes which usually have a local error of O(τ3∂4

xv) (see for example [Lub08] for splitting schemes), and to asymmetric
resonance-based schemes which merely asks for O(τ3∂2

xv), ([BS22, OWY22]).

While we motivated this symmetric low-regularity integrator on a periodic domain, we show that it also allows for a
low-regularity approximation on general smooth domains by establishing its convergence at low-regularity (see Section
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5.1.2). Throughout the remainder of this article we will work on general smooth domains Ω ⊂ Rd and make use of
semi-group theory to derive our scheme and establish our convergence result on general domains (see Section 5.4). This
differs from the first structure preserving low-regularity integrators [MS22, BMS22] which are restricted to periodic
boundary conditions.

We now enter the main bulk of this paper, which answers the question of what can be rigorously proven on the
L2-convergence of the scheme (5.5) when set on a general smooth domain.

We state and prove L2-fractional convergence results, from first to second order, both on the torus Td and on a smooth
bounded domain Ω ⊂ Rd, under moderate regularity assumptions on the solution u. These are stronger convergence
results than the more typical Hσ(Td) (σ > d

2
) -convergence analysis, which is restricted to an analysis in smooth Sobolev

spaces and to periodic boundary conditions. We state our results in the next subsection.

5.1.2 Result
Theorem 5.1.1 (Ω = Td) Let T > 0, d ≤ 3, and u0 ∈ Hα(Td) with α ∈ [1 + d

4
, 3]. Let u ∈ C([0, T ], Hα(Td)) be the

unique solution of (5.1). Then there exist τmin > 0 depending on T and on ‖u0‖Hα , and CT a positive function depending
on T and sup[0,T ] ‖u(t)‖Hα , such that for every time step size τ ≤ τmin the numerical solution un given in equation (5.5)
has the following error bound:

‖u(nτ)− un‖L2 ≤ CT (sup
[0,T ]

‖u(t)‖Hα)τ1+γ , 0 ≤ nτ ≤ T, (5.10)

for α and γ ∈ [0, 1] which satisfy 
α > 1 + d

2
and 0 ≤ γ ≤ α−1

2
,

α = 1 + d
2
and 0 ≤ γ < d

4
,

α < 1 + d
2
and 0 ≤ γ ≤ α− 1− d

4
.

(5.11)

We now consider the case where Ω is a smooth bounded domain. Given that in this case the space Xs (see Section 5.2) in
which the solution belongs depends not only on Sobolev regularity but also on compatibility conditions which the solution
must satisfy on the boundary, we divide the statement of our results depending on the compatibility conditions imposed
on u|∂Ω, (and on the order of convergence).

Theorem 5.1.2 (Ω ⊂ Rd smooth bounded domain) Let Ω be a smooth bounded domain of Rd. We consider the NLS
equation (5.1), equipped with homogeneous Dirichlet boundary conditions. Given any T > 0, and d ≤ 3, there exists
τmin > 0 depending on T and the norm of the initial data such that we have the following:

1. Given any u0 ∈ (H1+d/4 ∩H1
0 )(Ω) we have first-order convergence of the symmetric scheme (5.5),

‖un − u(nτ)‖L2 ≤ CT τ,

for all τ ≤ τmin, and 0 ≤ nτ ≤ T .
2. More generally, given any u0 ∈ (Hα ∩H1

0 )(Ω) with α ∈ [1 + d
4
, 2] we have the fractional convergence estimates (5.10)

for α and γ which satisfies (5.26). In particular, we have

‖u(nτ)− un‖L2 ≤ CT


τ1+α−1

2 if 1 + d
2
< α ≤ 2,

τ1+ d
4
−ε for α = 1 + d

2
,

τα−d/4, for 1 + d
4
≤ α < 1 + d

2
,

for 0 ≤ nτ ≤ T , τ ≤ τmin, and for any ε > 0.
3. By allowing for more compatibility condition on the boundary we have the following second-order convergence result

for an initial data u0 ∈ X3 = {u ∈ H3(Ω) : u|∂Ω = 0,∆u|∂Ω = 0 in L2(∂Ω)},

‖un − u(nτ)‖L2 ≤ CT τ2,

for all τ ≤ τmin, and 0 ≤ nτ ≤ T .

We start by making a few remarks on Theorem 5.1.1, set on the torus Td. Let us first mention that the symmetric
low-regularity integrator (5.5) requires less regularity assumptions than classical symmetric schemes (see [ESS16, Lub08,
BDDLV21, HP17]). Indeed, for example the authors [ESS16] require H2 solutions to obtain first order convergence of a
Lie splitting scheme for NLS, and the author [Lub08] requires H4-solutions for second-order convergence of a Strang
splitting method, whereas we require H1+ d

4 and H3 to obtain first and resp. second order convergence.
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We compare this result to previous convergence results of explicit low-regularity integrators for the NLS equation
(5.1), which are not symmetric and hence do not have good structure preservation properties (see Figures 5.2, 5.3). To
the best of our knowledge, this is the first fractional convergence results of a low-regularity schemes to be obtained from
first to second order. We compare our full first and second-order convergence result with the work of [AB23a], which also
obtains first order convergence in L2(Td) for solutions u(t) ∈ H1+d/4(Td). For the second order convergence in L2 of
their asymmetric second-order low-regularity integrator the author [AB23a] asks for solutions u(t) ∈ H2+d/4, whereas the
symmetric low-regularity integrator (5.5) requires a bit more regularity, namely H3 solutions. Moreover, convergence
of order τ1+γ in Hr-norm, r > d/2, for u0 ∈ H2γ+r+1(Td) easily follows from the proof of Theorem 5.1.1. This is to
be compared with asymmetric resonance-based schemes which would typically ask for u0 ∈ Hγ+r+1(Td), r > d

2
. See

[OS18, OWY22] for a first and resp. second order analysis. We refer to Remark 5.1.2 which discusses the necessity of
requiring three additional derivatives on the solution to obtain second-order convergence of the scheme (5.5).

We finish by comparing our result with the work of [BMS22], which introduced a symmetrized low-regularity integrator
for the Schrödinger map (SM), where they relate the SM flow to the NLS equation set on 1-d torus T via the Hasimoto
transform. The analysis of their scheme is however restricted to the 1-d torus, and to first order convergence in smooth
Sobolev spaces Hr(T), r > 1/2. The results we present here go beyond the more typical Hr(T) error analysis (r > 1

2
),

by pushing down the error analysis to L2 for first and up to second order convergence. Furthermore, we do not restrict
ourselves to Fourier-based techniques, and hence to periodic boundary conditions, as is testified by Theorem 5.1.2. Using
the techniques presented in this article, one can also obtain a symmetric low-regularity approximation to the Schrödinger
map in a more general setting than [BMS22].

We now comment upon Theorem 5.1.2. To our knowledge, this is the first convergence result which goes beyond the
first-order convergence analysis of a low-regularity integrator when set on a smooth bounded domain Ω ⊂ Rd. We refer to
[RS21, Corollary 20] where the authors show first order convergence in L2(Ω) of the asymmetric low-regularity scheme
(5.4) while analogously asking for (H1+ d

4 ∩H1
0 )(Ω) solutions.

We also compare our result to the work of [HP17] which introduces a mass and energy conserving variant of the
Crank-Nicolson method as its time-discretization. They show first order convergence on a smooth bounded domain
Ω ⊂ Rd under -among other assumptions- ut ∈ L2(0, T ;H2(Ω)), and obtain second order convergence under -among other
assumptions- utt ∈ L2(0, T ;H2(Ω)), while assuming u ∈ C([0, T ], H2(Ω)) throughout their analysis. In contrast to the
above classical results Theorem 5.1.2 permits less regularity assumptions on u(t), namely less than H2-solutions for first
order, and less than H4-solutions for second order. We note that the analysis presented here works analogously when
adding a potential term uV to equation (5.1), as is considered in [HP17]. One would need to ask for the same regularity
assumption (and boundary conditions) on V as is required on u in the above theorem. This follows exactly as done in
[AB23a]. The case of a rougher potential (V ∈ L∞(Ω)) is dealt in the works of [HP17, BW23b, BMW23, MWZ24].

We also mention that for the 1-d NLS equation with Neumann boundary conditions a low-regularity integrator
has been introduced by [BLW23], where using harmonic analysis techniques they could prove up to almost first order
convergence with H1-data.

5.1.3 Outline of the paper
In Section 5.2 we set the scene and introduce the spaces and norms, together with crucial nonlinear estimates, which

we will work with throughout the error analysis section. In Section 5.3 we analyze the implicit nature of the scheme; we
show that it is well-defined and establish a crucial a priori estimate on the numerical solution. Finally, in Section 5.4 we
prove the fractional global error estimates presented in Theorems 5.1.1 and 5.1.2. First, in Section 5.4.1 the fractional
local error bounds are obtained, followed by Section 5.4.2 where the stability estimate is shown, and from which the
convergence results then naturally follow.

5.2 Norms, spaces, and nonlinear estimates
The norm and space used during the error analysis will depend on the domain Ω and boundary conditions imposed.

We will treat the case where Ω = Td with periodic boundary conditions, and the case of homogeneous Dirichlet boundary
conditions when placed on a smooth bounded domain of Rd. In the case where Ω = Td the domain of the operator
L = −∆ is D(L) = H2(Td), whereas for Dirichlet boundary conditions we have that D(L) = (H2 ∩H1

0 )(Ω). We can
define powers of L, Ls, for s ≥ 0 using the spectral resolution, and define the space Xs(Ω) = D(Ls/2) as the domain of
the operator Ls/2, where X0(Ω) = L2(Ω). We define the norm on Xs(Ω) by the usual graph norm

‖u‖2s = ‖u‖2 + ‖Ls/2u‖2, s ≥ 0,

where ‖u‖ = ‖u‖L2 is the L2(Ω)-norm. We will be interested in characterizing the space Xs(Ω) depending on the domain
Ω at study.
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5.2.1 The case of periodic boundary conditions

In the case of periodic boundary conditions we have that

Xs(Td) = Hs(Td) :=

u =
∑
k∈Zd

uk
eikx√
(2π)d

∈ L2(Td) : |u|2s ,
∑
k∈Zd

|k|2s|uk|2 <∞


with equivalence of norms

‖u‖2s = ‖u‖2L2(Td) + ‖(−∆)s/2u‖2L2(Td) =
∑
k∈Zd

(1 + |k|2s)|uk|2 = ‖u‖2Hs ,

where uk =
1√

(2π)d

∫
Td
ue−ikxdx.

5.2.2 The case of Dirichlet boundary conditions

We will be interested in characterizing the domain Xs(Ω) for s ∈ [0, 2] ∪ N (see Theorem 5.1.2).

In the case where s = m ∈ N we have the following characterization (see [Tho07, Lemma 3.1])

Xm = {u ∈ Hm(Ω) : ∆ju = 0 in L2(∂Ω) for j < m/2},

with equivalence of the norms on Hm(Ω) and Xm for functions in Xm.

To treat the case where s is not an integer we first introduce the following fractional Sobolev-type spaces known
as the Sobolev-Slobodetskij, Gagliardo or Aronszajn space. Given any s > 0 of the form s = m + σ, with m ∈ N and
σ ∈ (0, 1), we define

Hs(Ω) = {u ∈ Hm(Ω) : Dαu ∈ Hσ(Ω) for any α s.t. |α| = m},
endowed with the norm

‖u‖2Hs =

m∑
|α|=0

‖Dαu‖2 +
∑
|α|=m

|Dαu|2Hσ .

For s = m an integer the space Hs(Ω) coincides with the usual Sobolev space Hm(Ω), and for σ ∈ (0, 1) we have

Hσ(Ω) =

{
u ∈ L2(Ω) : |u|2Hσ :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2σ
dxdy <∞

}
.

We note that all of the fractional Sobolev spaces which we introduce here can also be defined by using interpolation
theory. Indeed, the above space is an intermediary Banach space between L2(Ω) and H1(Ω), and can be defined by
interpolation as

Hσ(Ω) = [L2(Ω), H1(Ω)]σ,

see [BSV15, Appendix 1] and [Yag09]. Finally, for s ∈ (1/2, 2] we define

Hs
D(Ω) = {u ∈ Hs(Ω) : u|∂Ω = 0 in L2(∂Ω)},

it follows from the above that D(L) = H2
D(Ω). We can now express Xs in terms of Sobolev spaces for s ∈ [0, 2]\ 1

2
(see

[Yag09, Theorem 16.12]),

Xs(Ω) =

{
Hs(Ω) if 0 ≤ s < 1

2

Hs
D(Ω) if 1

2
< s ≤ 2

,

with norm equivalence
C−1||u||Hs ≤ ‖u‖s ≤ C||u||Hs , u ∈ Xs, (5.12)

for some constant C > 0. In the special case where s = 1/2 we have that X1/2 = H
1/2
00 is the intermediate space defined

by

H
1/2
00 (Ω) := {u ∈ H1/2(Ω) : |u|2

H
1/2
00

:=

∫
Ω

u2(x)

dist(x, ∂Ω)
dx <∞},

with equivalence of norms on X1/2 as in (5.12), see [APR18, Prop 2.2].
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Bilinear and nonlinear estimates

In this section we introduce bilinear estimates that are fundamental for the global error analysis, which we now
motivate. The results we present in this article go beyond the more typical Hs error analysis (s > d

2
), by pushing down

the analysis to L2 and obtaining fractional rates of convergence, from first up to second order. In particular, to obtain
these fractional rates when γ < d/4, we need to work in the low-order Sobolev spaces H2γ (see Section 5.4). In order to
obtain sharp low-regularity error estimates in theses spaces we call upon three bilinear estimates (see equations (5.14),
(5.15), and (5.16) below) which are taylored to require the least regularity assumptions on u when bounding the local
error terms (see also Remark 5.2.1).

Let γ ≥ 0 and ε > 0. Throughout the error analysis we will use the following bilinear estimates, depending on the
values of γ. In the regime γ > d/4 we call upon the classical bilinear estimate

‖uv‖H2γ . ‖u‖H2γ‖v‖H2γ , for γ >
d

4
, (5.13)

whereas in the regime γ ∈ [0, d/4) we exploit the following three bilinear estimates,

‖uv‖ . ‖u‖
H
d
4

+γ‖v‖
H
d
4
−γ for 0 ≤ γ < d

4
, (5.14)

‖uv‖H2γ . ‖u‖
H
d
4

+γ‖v‖
H
d
4

+γ for 0 ≤ γ < d

4
, (5.15)

and
‖uv‖H2γ . ‖u‖

H
d
2

+ε‖v‖H2γ for 0 ≤ γ ≤ d

4
, (5.16)

for any ε > 0. The above estimates are particular cases of [Hör97, Theorem 8.3.1], valid either on Rd or Td. Furthermore,
for a smooth bounded domain Ω ⊂ Rd, Stein’s extension theorem ([AF03, p.154]) guarantees the existence of a total
extension operator, bounded both from L2(Ω) to L2(Rd) and from Hm(Ω) to Hm(Rd), for any m ∈ N. By interpolation,
this operator is bounded from Hs(Ω) to Hs(Rd) for any s ≤ m (see [AF03, p. 208]). The estimates (5.13), (5.14), (5.15)
and (5.16) consequently hold on Ω by extending u and v to Rd, applying the estimates on their extensions, and restricting
their product to Ω.

Remark 5.2.1 (Bilinear estimates in low-order Sobolev spaces H2γ , γ < d/4) A natural bilinear estimate which
is essential for an analysis in the spaces H2γ , γ < d/4, is the estimate (5.16). This estimate is an analogue of the
estimate (5.13) in the smooth case where γ > d/4. These two estimates allow to start and fall back on the same space
H2γ . However, the estimate (5.16) requires more regularity on u than on v ( d

2
+ ε > 2γ, for γ < d/4), and asks for

H
d
2

+ε-regularity on the solution. One can obtain more optimal bounds which require less regularity assumptions by
equally distributing the regularity on u and on v. Indeed, by assuming that u and v have the same regularity, applying
the estimate (5.15) requires d

4
+ γ additional derivatives, which is better than d

2
+ ε for γ < d/4. While the estimate

(5.14) is used when v requires 2γ derivatives more than u, and balances the regularity requirement to again ask for d
4

+ γ
on both u and v (see Proposition 5.4.2).

We now consider the nonlinearity, which we denote by

f(u, ū)(t, x) = −iu2(t, x)ū(t, x). (5.17)

One can easily deduce from the inequalities (5.13) and (5.16) together with the equivalence of norms on Xs the following
estimates on the nonlinearity (5.17)

‖f(w, w̄)‖s ≤ cs,σ‖w‖2σ‖w‖s ≤ Cs,σ(‖w‖σ)‖w‖s

‖f(v, v̄)− f(w, w̄)‖s ≤ cs,σ‖v − w‖s
∑2
k=0 ‖v‖

k
σ‖w‖2−kσ ≤ Cs,σ(‖v‖σ, ‖w‖σ)‖v − w‖s

, (5.18)

where σ = d
2

+ ε, cs,σ > 0, and Cs,σ(‖u‖, ‖v‖) denotes a generic constant which depends continuously on the bounded
arguments ‖u‖ and ‖v‖. In the regime s > d

2
the above holds with σ = s.

Remark 5.2.2 (An analysis for very rough solutions) The main ingredient throughout the error analysis section
of this article rests upon the crucial bilinear estimates given above, and restricts the solution to belong to the Sobolev
space Hs, s > d/2. In order to consider very rough solutions u ∈ Hs, s ≤ d/2 one needs to call upon more refined tools
such as discrete Bourgain spaces when working on the torus ([ORS22b]), and discrete Strichartz estimates when working
on the full space ([ORS21]). This delicate error-analysis is out of scope for this paper.
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Lastly, as we are interested in obtaining fractional error estimates we will call upon the following estimate several
times throughout the error analysis section. For γ ∈ [0, 1], we have,∥∥∥∥ (eit∆ − 1)

(−t∆)γ
u

∥∥∥∥ ≤ 21−γ‖u‖. (5.19)

The above estimate easily follows from the usual bound

|eix − 1| ≤ 21−γ |x|γ , γ ∈ [0, 1],

and using the discrete spectral decomposition of the operator L = −∆.
We finish this section by stating the definition of a commutator-type term, which is used in order to obtain low-

regularity error estimates (see Section 5.4.1). For H(v1, · · · , vn), n ≥ 1, a function and L a linear operator, we define the
commutator-type term C[H,L] as

C[H,L](v1, · · · , vn) = −L(H(v1, · · · , vn)) +

n∑
j=1

∂vjH(v1, · · · , vn) · Lvj .

In our setting, H(v1, v2) = f(v1, v2) = −iv2
1v2 is the nonlinearity given in (5.17), L = i∆, and hence

∂v1f(v1, v2) = −2iv1v2 and ∂v2f(v1, v2) = −iv2
1 (5.20)

and
C[f, i∆](v1, v2) = −∆(v2

1v2) + 2v1v2∆v1 + v2
1∆v2 = −2(|∇v1|2v2 + 2v1∇v1 · ∇v2). (5.21)

5.3 The implicit nature of the scheme
In this section we deal with the question of solving the nonlinear equation (5.5) at a given time step. We also provide

an a priori bound on the numerical solution ϕτ (v) in terms of v, which is crucial for the convergence analysis. We recall
from Figure 5.4 that the implicit nature of the scheme does not adversely affect the computational cost of the method.

In the following, we fix v ∈ Xσ for some σ > d/2. We note that v will play the role of the element un in the scheme
(5.5). We then introduce the map

z 7→ S(z) = eiτ∆v + ψ
τ/2
E (v) + ψ

τ/2
I (z),

and wish to prove that it admits a unique fixed point given by ϕτ (v).
We start by introducing some useful estimates on the map S.

Proposition 5.3.1 Given any σ > d/2 we have

‖S(z1)− S(z2)‖σ ≤ τM(‖z1‖σ, ‖z2‖σ)‖z1 − z2‖σ, and ‖S(eiτ∆z1)− eiτ∆z1‖σ ≤ τM̃(‖z1‖σ),

where M(‖z1‖, ‖z2‖) and M̃(‖z1‖) denote generic constants which depend continuously on their arguments ‖z1‖ and ‖z2‖.

Proof of Proposition 5.3.1. The proof follows directly from the definition of the map S, the scheme (5.5) and of the
estimate (5.18).

The following theorem shows that the implicit scheme (5.5) is well-defined, and admits an a priori bound.

Theorem 5.3.1 Let R > 0 and σ > d/2. There exists τR > 0 such that, for all τ ≤ τR and v ∈ Xσ with ‖v‖σ ≤ R, we
have that ϕτ (v) defined in (5.5) is given by

ϕτ (v)
Hσ

= lim
j→+∞

Sj(eiτ∆v). (5.22)

Moreover, under the same conditions, we have
‖ϕτ (v)‖σ ≤ 2R. (5.23)

Proof of Theorem 5.3.1. For notational convenience we let xj = Sj(x0), with x0 = eiτ∆v. We first show by induction
that for sufficiently small τ we have the bound

‖xj‖σ ≤ 2R, j ≥ 0. (5.24)
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We choose τR > 0 such that τRM(2R, 2R) ≤ 1/2 and τRM̃(R) ≤ R/2, with M and M̃ from Proposition 5.3.1. We assume
that ‖xj‖σ ≤ 2R, ∀j ≤ J . It follows that for τ ≤ τR we have,

‖xJ+1 − x0‖σ ≤
J∑
j=1

||S(xj)− S(xj−1)||σ + ‖S(x0)− x0‖σ

≤
J∑
j=0

(
j∏

k=1

τM(‖xk‖σ, ‖xk−1‖σ)

)
‖S(x0)− x0‖σ

≤ R

2

J∑
j=0

1

2j

≤ R.

By recalling that, by assumption, ‖x0‖ = ‖v‖ ≤ R, we conclude from the above that

‖xJ+1‖σ ≤ 2R,

and hence by induction bound (5.24) holds.
It then follows that for all τ ≤ τR, (xj)j∈N is a Cauchy sequence. Indeed, for m > p we have

‖xm − xp‖σ ≤
m−1∑
j=p

‖S(xj)− S(xj−1)‖σ ≤
R

2

∞∑
j=p

1

2j
−→
p→∞

0.

This implies that the sequence (xj)j∈N converges in Xσ to the unique fixed-point ϕτ (v) of S, and the characterization
(5.22) follows. Finally, by passing to the limit in (5.24) we obtain the desired a priori bound (5.23) on ϕτ (v), which
concludes the proof.

5.4 Error Analysis

In this section we will prove the following proposition.

Proposition 5.4.1 Let T > 0, and γ ∈ [0, 1]\{ d
4
}. Then there exists τmin > 0 such that for every time step τ ≤ τmin the

numerical solution un given in equation (5.5) has the following error bound:

‖u(nτ)− un‖L2 ≤ CT (sup
[0,T ]

‖u(t)‖Hα)τ1+γ , 0 ≤ nτ ≤ T, (5.25)

where α is given by {
α = 2γ + 1 if d

4
< γ ≤ 1

α = γ + 1 + d
4

if 0 ≤ γ < d
4

, (5.26)

and where τmin depends on T and on ‖u0‖Hα , and CT is a positive function of its argument, depending on T .

Given a fixed convergence rate this proposition expresses the regularity assumptions needed in order to obtain this
rate, while on the other hand given a fixed regularity assumption on the initial data Theorems 5.1.1 and 5.1.2 express the
convergence rates one can attain with the method (5.5). We now link these results.

Proof of Theorem 5.1.1 and Theorem 5.1.2. By writing the convergence rate γ in terms of the regularity assumptions
needed on the solution, it directly follows from the above proposition that the convergence rate (5.10) holds for α and γ
which satisfy: {

1 + d
2
< α ≤ 3, γ = α−1

2

1 + d
4
≤ α < 1 + d

2
, γ = α− 1− d

4
.

(5.27)

The proof of Theorem 5.1.1 then follows by using the fact that if (5.10) holds for some α̃ ∈ [1 + d
4
, 3], γ̃ ∈ [0, 1], then

the error bound also holds for any α ≥ α̃, and γ ≤ γ̃. In particular, we recover the case α = 1 + d
2
in Theorem 5.1.1 by

applying the second line in (5.27) with (α̃, γ̃) = (1 + d
2
− ε, d

4
− ε) to obtain convergence for 0 ≤ γ < d

4
. See Figure 5.5

which illustrates graphically the convergence result.
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γ

α

•
d/4

•1 + d/2

•1 + d/4

•3

•
1

•
0

Figure 5.5 – Illustration of the interplay between the regularity parameter α and the convergence rate parameter
γ in the convergence result stated in Proposition (5.4.1) and Theorem 5.1.1. We plot the regularity assumption
(u(t) ∈ Hα) needed in order to obtain convergence of order τ1+γ .

The proof of Theorem 5.1.2 follows in the same manner, with the added constraint of the boundary conditions.
Namely, we require u ∈ C([0, T ], Xs) and s = 2γ + 1 or γ + 1 + d/4, where the boundary conditions are imposed in the
definition of the space Xs. See Section 5.2 for the definition of the spaces Xs.

In order to prove Proposition 5.4.1 we combine local error bounds together with a stability argument to conclude
via a Lady Windermere’s fan argument. We start by showing the local error bound of order τ2+γ with the regularity
assumptions stated in Proposition 5.4.1.

5.4.1 Local error analysis

We decompose the local error term as follows,

u(tn + τ)− ϕτ
(
u(tn)

)
=

∫ τ

0

ei(τ−s)∆f
(
u(tn + s), ū(tn + s)

)
ds− ψτ/2E

(
u(tn)

)
− ψτ/2I

(
ϕτ
(
u(tn)

))
= R1(τ, tn) +R2(τ, tn) +R3(τ, tn),

with

R1(τ, tn) =

(∫ τ/2

0

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2E

(
u(tn)

))
(5.28)

+

(∫ τ

τ/2

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2I

(
eiτ∆u(tn)

))
,

R2(τ, tn) = ψ
τ/2
I

(
eiτ∆u(tn)

)
− ψτ/2I

(
ϕτ
(
u(tn)

))
, (5.29)

and

R3(τ, tn) =

∫ τ

0

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s)

)
− f

(
eis∆u(tn), e−is∆ū(tn)

))
ds.

We start by estimating the first error term R1(τ, tn). This term is the one which asks for the most regularity, and
hence dictates the regularity assumptions required on the solution, and thereby the initial data. We then proceed by
estimating each of the terms R2(τ, tn) and R3(τ, tn), to obtain a cancelation in their sum thanks to the symmetry of the
scheme, yielding the desired local error estimate.
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Proposition 5.4.2 The error term R1(τ, tn) satisfies the following bound,

‖R1(τ, tn)‖ ≤

 CT
(

supt∈[0,T ] ‖u(t)‖X2γ+1

)
τ2+γ if γ > d

4

CT
(

supt∈[0,T ] ‖u(t)‖
X
γ+1+ d

4

)
τ2+γ if 0 ≤ γ < d

4

, (5.30)

for 0 ≤ tn ≤ T .

Proof of Proposition 5.4.2. We define the filtered function as

N (τ, s, ζ,∆, v) = −iei(τ−s)∆[(eis∆v)2(eis∆e−2iζ∆v̄)]

= ei(τ−s)∆f(eis∆v, ei(s−2ζ)∆v̄)
(5.31)

which plays a fundamental role in the derivation and analysis of our scheme on general domains. In the above expression
we duplicate the time variable into s and ζ, pulling out a factor eis∆ in front of the conjugate term ei(s−2ζ)∆v̄. Taylor
expanding in the variable s yields the right cancellation with the factor ei(τ−s)∆ to recover, after integrating in the
variable ζ, the explicit term ψ

τ/2
E (v) in the scheme (5.5), as is detailed below. Similar filtering techniques are used in

[RS21, AB23a, ABBS22b].

Let v = u(tn). By Taylor expanding the filtering function (5.31) around s = 0, we obtain that the first term in (5.28)
satisfies ∫ τ/2

0

ei(τ−ζ)∆f(eiζ∆v, e−iζ∆v̄)dζ =

∫ τ/2

0

N (τ, ζ, ζ,∆, v)dζ (5.32)

=

∫ τ/2

0

N (τ, 0, ζ,∆, v)dζ +

∫ τ/2

0

∫ ζ

0

∂sN (τ, s, ζ,∆, v)dsdζ

= ψ
τ/2
E (v) +

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, ei(s−2ζ)∆v̄)dsdζ,

where to obtain the last line we used the definition of the ϕ1 function (see (5.4)) to obtain that∫ τ/2

0

e−2iζ∆dζ =
τ

2

e−iτ∆ − 1

−iτ∆
=
τ

2
ϕ1(−iτ∆)

and the definition of commutator term C[f, i∆](u, v) given in (5.21).

Similarly, using the filtering function (5.31), we can treat the second line in (5.28) by Taylor expanding around s = τ .
This yields

∫ τ

τ/2

ei(τ−ζ)∆f(eiζ∆v, e−iζ∆v̄)dζ =

∫ τ

τ/2

N (τ, ζ, ζ,∆, v)dζ

=

∫ τ

τ/2

N (τ, τ, ζ,∆, v)dζ −
∫ τ

τ/2

∫ τ

ζ

∂sN (τ, s, ζ,∆, v)dsdζ

= ψ
τ/2
I (eiτ∆v)−

∫ τ

τ/2

∫ τ

ζ

ei(τ−s)∆C[f, i∆](eis∆v, ei(s−2ζ)∆v̄)dsdζ,

(5.33)

where to go from the second line in the above to the third we used that∫ τ

τ/2

N (τ, τ, ζ,∆, v)dζ = −i(eiτ∆v)2

((∫ τ

τ/2

e−2iζ∆dζ

)
eiτ∆v̄

)

= −i(eiτ∆v)2

((∫ τ/2

0

e−2i(τ−ζ)∆dζ

)
eiτ∆v̄

)
= −i τ

2
(eiτ∆v)2ϕ1(iτ∆)(e−iτ∆v̄),

= ψ
τ/2
I (eiτ∆v).

By definition of R1(τ, tn) and by using (5.32) and (5.33) we have that
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R1(τ, tn) =

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)dsdζ

−
∫ τ

τ/2

∫ τ

ζ

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)dsdζ

=

∫ τ/2

0

∫ ζ

0

ei(τ−s)∆C[f, i∆](eis∆v, eis∆e−2iζ∆v̄)

− eis∆C[f, i∆](ei(τ−s)∆v, ei(τ−s)∆e−2i(τ−ζ)∆v̄)dsdζ.

(5.34)

Note that the local error structure lead by the commutator-type terms in the above expression requires less regularity
assumptions than what is required by classical methods, such as exponential integrators of splitting methods (see
[HO10, Lub08]). Indeed, from the explicit form (5.21) of the commutator term we see that this error term requires only
one additional derivative on the initial datum rather than two (see also [AB23a, ABBS22b]).

We now show that thanks to the symmetry of the scheme, we obtain a cancelation in the second-order error term
(5.34) yielding (up to) a third-order remainder. For notational convenience we let w1(s) = eis∆v, w2(s, ζ) = ei(s−2ζ)∆v̄,
z1(s) = ei(τ−s)∆v, and z2(s, ζ) = ei(2ζ−τ−s)∆v̄ and we denote the integrand by

Rr(τ, s, ζ, v) = ei(τ−s)∆C[f, i∆](w1(s), w2(s, ζ))− eis∆C[f, i∆](z1(s), z2(s, ζ)). (5.35)

It follows from the above equations (5.34) and (5.35) that

‖R1(τ, tn)‖ ≤ τ2

4
sup

s,ζ∈[0,τ/2]

‖Rr(τ, s, ζ, v)‖.

It remains to show that

sup
s,ζ∈[0,τ/2]

‖Rr(τ, s, ζ, v)‖ ≤

{
C(‖v‖2γ+1)τγ if γ > d/4

C(‖v‖γ+1+ d
4

)τγ if γ < d/4
. (5.36)

We first approximate the exponentials appearing in front of both commutator terms in (5.35) to obtain the following first
approximation result on Rr.

Lemma 5.4.3 We have

Rr(τ, s, ζ, v) = R1
r(τ, s, ζ, v) +R2

r(τ, s, ζ, v),

with
R1
r(τ, s, ζ, v) = (ei(τ−s)∆ − 1)C[f, i∆](w1(s), w2(s, ζ))− (eis∆ − 1)C[f, i∆](z1(s), z2(s, ζ))

and
R2
r(τ, s, ζ, v) = C[f, i∆](w1(s), w2(s, ζ))− C[f, i∆](z1(s), z2(s, ζ)),

which satisfy

sup
s,ζ∈[0,τ/2]

‖Rir(τ, s, ζ, τ, v)‖ ≤

{
C(‖v‖2γ+1)τγ if γ > d/4,

C(‖v‖γ+1+ d
4

)τγ if γ < d/4,
(5.37)

for i = 1, 2.

Proof of Lemma 5.4.3. We write the error term R1
r as

R1
r(s, ζ, τ, v, v̄) =(τ − s)γ

(
ei(τ−s)∆ − 1

(τ − s)γ(−∆)γ

)
(−∆)γC[f, i∆](w1(s), w2(s, ζ))

− sγ
(
eis∆ − 1

sγ(−∆)γ

)
(−∆)γC[f, i∆](z1(s), z2(s, ζ)).

(5.38)

Using the bound given in equation (5.19), and the boundedness of eit∆ on Sobolev spaces, it follows from equation (5.38)
that we are left to provide a bound on C[f, i∆](v, v̄) of the form

‖C[f, i∆](v, v̄)‖2γ ≤

{
C(‖v‖2γ+1) if γ > d/4

C(‖v‖γ+1+ d
4

) if γ < d/4
. (5.39)

From the definition of the commutator (5.21), and by using the equivalence of norms ‖ · ‖s and ‖ · ‖Hs on Xs (see
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Section 5.2), it follows that for d/4 < γ ≤ 1

‖|∇v|2v̄‖2γ . ‖|∇v|2v̄‖H2γ

. ‖v‖H2γ‖∇v · ∇v‖H2γ

. ‖v‖H2γ‖v‖2H2γ+1

. C(‖v‖2γ+1),

where we used the estimate (5.13). Similarly, in the case 0 ≤ γ < d/4 we have

‖|∇v|2v̄‖2γ . ‖v‖Hd/2+ε‖∇v · ∇v‖H2γ

. ‖v‖Hd/2+ε‖v‖2
H
γ+1+ d

4

. C(‖v‖γ+1+ d
4

),

where to obtain the first line we used estimate (5.16), to go from the first to the second line we used the estimate (5.15)
and concluded using the fact that d/2 + ε < γ + 1 + d

4
together with the equivalence of norms on Xγ+1+ d

4 .

We can bound the second term in the commutator-type term (5.21) in the same manner to obtain the desired bound
(5.39). The estimate (5.37) on R1

r follows immediately.

We now deal with the approximation of the second error term R2
r by approximating each of the exponentials appearing

in the arguments of the commutator terms, namely on w1, w2, z1 and z2. Given the form of the commutator (5.21) and of
w1, w2, z1, z2, each term to approximate will either be of the form∥∥∥w∇((eiξ∆ − 1)u) · ∇z

∥∥∥ (5.40)

or ∥∥∥((eiξ∆ − 1)w
)
∇u · ∇z

∥∥∥ (5.41)

for ξ ∈ [0, τ ], and where we use the boundedness of eit∆ on Sobolev spaces (t ∈ R). We can approximate (5.40) as follows,
given any ε > 0,

∥∥∥w∇((eiξ∆ − 1)u) · ∇z
∥∥∥ . ξγ

‖w‖H2γ

∥∥∥∇(−∆)γ
(

(eiξ∆−1)
(−ξ∆)γ

u
)∥∥∥‖∇z‖H2γ if γ > d/4

‖w‖
H
d
2

+ε

∥∥∥∇(−∆)γ
(

(eiξ∆−1)
(−ξ∆)γ

u
)∥∥∥

H
d
4
−γ‖∇z‖H d

4
+γ if γ < d/4

≤ ξγ
C(‖w‖2γ , ‖u‖2γ+1, ‖z‖2γ+1) if γ > d/4

C(‖w‖ d
2

+ε, ‖u‖γ+1+ d
4
, ‖z‖γ+1+ d

4
) if γ < d/4

,

where we used the Sobolev embedding Hσ ↪→ L∞, for σ > d
2
, and the estimate (5.14) to obtain the first inequality. To

obtain the second line in the above we used the equivalence of norms, thanks to the fact that u, v, w belong to X2γ+1 or
Xγ+1+d/4 respectively, as well as the estimate (5.19). Hence, given that d

2
+ ε < γ + 1 + d

4
, the term above satisfies the

desired bound of the form (5.37).

Furthermore, for the expression (5.41) we have,

∥∥∥((eiξ∆ − 1)w
)
∇u · ∇z

∥∥∥ . ξγ


∥∥∥(−∆)γ (eiξ∆−1)

(−ξ∆)γ
w
∥∥∥‖∇u · ∇z‖H2γ if γ > d/4

∥∥∥(−∆)γ (eiξ∆−1)
(−ξ∆)γ

w
∥∥∥
H

1+ d
4
−γ‖∇u · ∇z‖H2γ if γ < d/4

. ξγ


∥∥∥(−∆)γ (eiξ∆−1)

(−ξ∆)γ
w
∥∥∥‖∇u‖H2γ‖∇z‖H2γ if γ > d/4

∥∥∥(−∆)γ (eiξ∆−1)
(−ξ∆)γ

w
∥∥∥
H

1+ d
4
−γ‖∇u‖H d

4
+γ‖∇z‖

H
d
4

+γ if γ < d/4

≤ ξγ
{
C(‖w‖2γ , ‖u‖2γ+1, ‖z‖2γ+1) if γ > d/4

C(‖w‖γ+1+ d
4
, ‖u‖γ+1+ d

4
, ‖z‖γ+1+ d

4
) if γ < d/4,

where to obtain the first line we used the Sobolev embeddingHσ ↪→ L∞, σ > d
2
, and the estimate ‖uz‖ . ‖u‖

H
1+ d

4
−γ‖z‖H2γ ,

γ ∈ [0, 1], (see [Hör97, Theorem 8.3.1]). In order to obtain the second line in the above we again used the estimates
(5.13) and (5.15), and to obtain the third line we used the equivalence of norms on the spaces Xs together with the
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estimate (5.19).
By approximating each of the exponentials in the commutator terms defining R2

r and by collecting the error terms
which are either of the form (5.40) or (5.41) we recuperate the desired τγ bound in (5.37).

We can conclude from Lemma 5.4.3 that we have the desired bound (5.36), and hence the bound (5.30) on R1(τ, tn).

We now continue with the bound on the two remaining terms (R2 +R3)(τ, tn), which asks for less regularity assumptions
than the boundedness of R1(τ, tn), as shown below.

Proposition 5.4.4 For γ ∈ [0, 1], we have the following fractional bound,

‖(R2 +R3)(τ, tn)‖ ≤ C

(
sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ

)
τ2+γ , (5.42)

given any σ > d
2
. In particular we have the bound,

‖(R2 +R3)(τ, tn)‖ ≤

CT,γ
(

supt∈[0,T ] ‖u(t)‖2γ+1

)
τ2+γ , if γ > d

4

CT,γ
(

supt∈[0,T ] ‖u(t)‖γ+1+ d
4

)
τ2+γ , if 0 ≤ γ < d

4

, (5.43)

for 0 ≤ tn ≤ T .

Proof of Proposition 5.4.4. First, we rewrite the error term R3(τ, tn) by making suitable Taylor expansions on f . We
start by expanding u(tn + ζ) locally up to second order :

u(tn + ζ) = eiζ∆u(tn) + ζfn + R̃(ζ, tn) (5.44)

where fn = f(u(tn), ū(tn)) and

R̃(ζ, tn) =

∫ ζ

0

ei(ζ−s)∆f(u(tn + s), ū(tn + s))ds− ζfn. (5.45)

Using the above expansion for u we rewrite the error term as

R3(τ, tn) =

∫ τ

0

ei(τ−ζ)∆
(
f
(
eiζ∆u(tn) + ζfn + R̃(ζ, tn), e−iζ∆ū(tn) + ζfn + R̃(ζ, tn)

)
(5.46)

− f
(
eiζ∆u(tn), e−iζ∆ū(tn)

))
dζ.

For notational convenience we let a1 := eiζ∆u(tn)+ζfn. By Taylor expanding f around (a1, ā1) and (eiζ∆u(tn), e−iζ∆ū(tn))
respectively we obtain,

f
(
a1 + R̃(ζ, tn), ā1 + R̃(ζ, tn)

)
= f(a1, ā1) + E1(ζ) (5.47)

f(a1, ā1) = f
(
eiζ∆u(tn), e−iζ∆ū(tn)

)
+ E2(ζ)

where

E1(ζ) =

∫ 1

0

∂v1f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
· R̃(ζ, tn) (5.48)

+ ∂v2f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
· R̃(ζ, tn)dθ

E2(ζ) = ζ

∫ 1

0

[∂v1f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn

)
· fn (5.49)

+ ∂v2f
(
eiζ∆u(tn) + θζfn, e−iζ∆ū(tn) + θζfn

)
· fn]dθ,
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and ∂v1f together with ∂v2f are given in (5.20). Hence, plugging the above into equation (5.46) yields,

R3(τ, tn) =

∫ τ

0

ei(τ−ζ)∆E1(ζ)dζ +

∫ τ

0

ei(τ−ζ)∆E2(ζ)dζ (5.50)

=E1(τ, tn) + E2(τ, tn).

We first deal with the term in the decomposition above which is of highest order and hence is the simplest to bound,
namely the third order term E1(τ, tn). In view of obtaining the bound (5.42) on (R2 +R3)(τ, tn), we first show that
E1(τ, tn) satisfies this bound.

Lemma 5.4.5 We have the following fractional bound on E1(τ, tn),

‖E1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ ,

for any γ ∈ [0, 1], and σ > d/2.

Proof. It follows from (5.48) that in order to obtain the above bound we need to show that

‖E1(ζ)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ .

By equation (5.48) and by using the Sobolev embedding Hσ ↪→ L∞ we have that for all σ > d
2
,

‖E1(ζ)‖ ≤ sup
θ∈]0,1[

(
‖∂v1f

(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
‖σ

+ ‖∂v2f
(
a1 + θR̃(ζ, tn), ā1 + θR̃(ζ, tn)

)
‖σ
)
‖R̃(ζ, tn)‖

≤ C
(

sup
t∈[0,T ]

‖u(t)‖σ, sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ
)
‖R̃(ζ, tn)‖,

(5.51)

where the last inequality follows by using the explicit form of the derivatives (5.20), the bilinear inequality (5.13), the first
estimate of equation (5.18), and the fact that eiζ∆ is an isometry on Sobolev spaces. Next, we show that

sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ <∞, and ‖R̃(ζ, tn)‖ ≤ CT (sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ . (5.52)

We obtain the first bound by using the first estimate of equation (5.18) on f with r = σ,

sup
(ζ,t)∈[0,τ ]×[0,T ]

‖R̃(ζ, t)‖σ ≤ τC( sup
t∈[0,T ]

‖u(t)‖σ) < +∞.

Next, we obtain the second fractional estimate of equation (5.52) by making the following decomposition,

R̃(ζ, tn) = R̃1(ζ, tn) + R̃2(ζ, tn), (5.53)

with

R̃1(ζ, tn) =

∫ ζ

0

(ζ − s)γ (ei(ζ−s)∆ − 1)

(−(ζ − s)∆)γ
(−∆)γf(u(tn + s), ū(tn + s))ds

and

R̃2(ζ, tn) =

∫ ζ

0

f(u(tn + s), u(tn + s))ds− ζfn.

Using the fractional bound (5.19) and the nonlinear estimate (5.18) we have that R̃1(ζ, tn) is bounded by

‖R̃1(ζ, tn)‖ ≤ ζ1+γC( sup
t∈[0,T ]

‖u(t)‖σ, sup
t∈[0,T ]

‖u(t)‖2γ).

Next, by iterating Duhamel’s formula in the first term of R̃2(ζ, tn) we obtain the following expansion for R̃2(ζ, tn),

R̃2(ζ, tn) = R̃2,1(ζ, tn) + R̃2,2(ζ, tn), (5.54)

where

R̃2,1(ζ, tn) =

∫ ζ

0

f(eis∆u(tn), e−is∆ū(tn))ds− ζfn,
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R̃2,2(ζ, tn) =

∫ ζ

0

∫ 1

0

∂v1f
(
eis∆u(tn) + θR̃r2,2(s), e−is∆ū(tn) + θR̃r2,2(ζ)

)
· R̃r2,2(s)

+ ∂v2f
(
eis∆u(tn) + θR̃r2,2(s), e−is∆ū(tn) + θR̃r2,2(s)

)
· R̃r2,2(s)dθds,

and R̃r2,2(s) =
∫ s

0
ei(s−s1)∆f(u(tn + s1), ū(tn + s1))ds1.

Using the nonlinear estimate (5.18), one easily obtains the bound

‖R̃2,2(ζ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)ζ2,

and hence in particular the ζ1+γ bound for γ ∈ [0, 1].
In order to deal with the first term in the decomposition (5.54), we Taylor expand the exponentials appearing in

R̃2,1(ζ, tn) which yields,

R̃2,1(ζ, tn) =

∫ ζ

0

∫ 1

0

∂v1f
(
u(tn) + θ(eis∆ − 1)u(tn), ū(tn) + θ(e−is∆ − 1)ū(tn)

)
· R̃r2,1(s)

+ ∂v2f
(
u(tn) + θ(eis∆ − 1)u(tn), ū(tn) + θ(e−is∆ − 1)ū(tn)

)
· R̃r2,1(s)dθds,

with R̃r2,1(s) = sγ (eis∆−1)
(−s∆)γ

(−∆)γu(tn). Using the fractional estimate (5.19) we obtain the bound

‖R̃r2,1(s)‖ ≤ CT (sup
[0,T ]

‖u(t)‖2γ)sγ .

Therefore, by using the usual bilinear inequality (5.13) we achieve the desired bound on R̃2,1;

‖R̃2,1(ζ)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)ζ1+γ ,

which concludes the proof of Lemma 5.4.5.

Now that we have dealt with the third order term E1(tn, τ) in the decomposition (5.50) of R3(tn, τ), we are left to
consider the term E2(tn, τ), together with the term R2(tn, τ) defined at equation (5.29). First, we rewrite E2(tn, τ) as a
second order term with a third order remainder. The goal being that this second order term cancels with the second
order part of the term R2(tn, τ), thereby only leaving third order remainders.

By using the definition of ∂v1f and ∂v2f given in (5.20) we have that

E2(ζ) = −iζ
∫ 1

0

[2(eiζ∆u(tn) + θζfn)(e−iζ∆ū(tn) + θζfn)fn + (eiζ∆u(tn) + θζfn)2fn]dθ.

We can separate the first order terms in the above with the higher order ones to obtain the following decomposition for
E2(ζ),

E2(ζ) = Ẽ2(ζ) + Er2(ζ),

with
Ẽ2(ζ) = −iζ

(
2(eiζ∆u(tn))(e−iζ∆ū(tn))fn + (eiζ∆u(tn))2fn

)
,

and where one can easily show using the nonlinear estimate (5.18) with r = σ that Er2(ζ) has the following bound:
‖Er2(ζ)‖ ≤ CT (sup[0,T ] ‖u(t)‖σ)ζ2.

We let
Ẽ2(τ, tn) =

∫ τ

0

ei(τ−ζ)∆Ẽ2(ζ)dζ and Ẽr2 (τ, tn) =

∫ τ

0

ei(τ−ζ)∆Ẽr2(ζ)dζ,

where the error term produced has the bound ‖Ẽr2 (τ, tn)‖ ≤ C(sup[0,T ] ‖u(t)‖σ)τ3, which in particular satisfies the τ2+γ

bound for γ ∈ [0, 1].
It remains to show that the sum of the remaining terms to bound (R2 + Ẽ2)(τ, tn) also satisfy the τ2+γ bound given

in equation (5.42). In view of this, one last approximation step is made on the term Ẽ2(τ, tn) before estimating its sum
with the term R2(τ, tn). By Taylor expanding around ζ = τ the function ζ 7→ ei(τ−ζ)∆(Ẽ2(ζ)/ζ) we obtain the following
approximation of Ẽ2,

Ẽ2(τ, tn) = Ẽ2,1(τ, tn) + Ẽr2,1(τ, tn),
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with

Ẽ2,1(τ, tn) = −i τ
2

2

(
2(eiτ∆u(tn))(e−iτ∆ū(tn))fn + (eiτ∆u(tn))2fn

)
, (5.55)

and where Ẽr2,1(τ) satisfies
‖Ẽr2,1(τ)‖ ≤ C(sup

[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ .

The above estimate follows from the definition of Ẽ2, the estimate (5.19), and the expansion

eiτ∆v + (eiζ∆ − eiτ∆)v = eiτ∆v +

(
ζγ

(eiζ∆ − 1)

(−ζ∆)γ
+ τγ

(1− eiτ∆)

(−τ∆)γ

)
(−∆)γv.

The first estimate (5.42) of Proposition 5.4.4 then follows directly once the following lemma is established.

Lemma 5.4.6 The remaining error terms have the following bound,

‖R2(τ, tn) + Ẽ2,1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ2+γ , (5.56)

for any σ > d/2.

Proof. We perform a very similar analysis as was done on the term R3(τ, tn) to the term R2(τ, tn) to show that it can be
decomposed as a second and third order term. We then conclude by showing that this second order part coincides with
the second order term −Ẽ2,1(τ, tn).

First, we expand ϕτ (u(tn)) as follows,

ϕτ (u(tn)) = eiτ∆u(tn) + τfn +R1(τ, tn), (5.57)

where
R1(τ, tn) = Ψτ (u(tn), ϕτ (u(tn)))− τfn,

and Ψτ is the nonlinear part of the numerical scheme (5.5). We show the same bounds in Xσ and L2 given in equation
(5.52) on the error term R1(τ, tn). First, using the estimate (5.18) with r = σ we have that

sup
t∈[0,T ]

‖R1(τ, t)‖σ ≤ τC(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖ϕτ (u(t))‖σ) ≤ C(sup
[0,T ]

‖u(t)‖σ) <∞,

where we use the bound
‖ϕτ (u(t))‖σ ≤ 2‖u(t)‖σ, (5.58)

which follows from equation (5.23). We note that in what follows we will always use the above a priori bound (5.58)
when bounding the term ϕτ (u(tn)), and hence will not show its explicit dependance. In order to obtain the L2-bound on
R1(τ, tn) we use the following expansion

R1(τ, tn) = −i τ
2
eiτ∆

(
(u(tn))2ϕ1(−iτ∆)u(tn)

)
− i τ

2

((
eiτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn)))

)2

ϕ1(iτ∆)
(
e−iτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn)))

))
− τfn (5.59)

where we used equation (5.5) and simply inserted into the term Ψτ (u(tn), ϕτ (u(tn))) the definition of the scheme

ϕτ (u(tn)) = eiτ∆u(tn) + Ψτ (u(tn), ϕτ (u(tn))).

By expanding about eiτ∆u(tn) the second term in (5.59), and then by approximating the remaining exponentials using
the usual fractional estimate (5.19), we obtain that the first-order terms cancel leaving the following bound on R1(τ, tn),

‖R1(τ, tn)‖ ≤τ1+γC(sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ) + τC( sup
nτ≤T

‖Ψτ (u(tn), ϕτ (u(tn)))‖σ)

≤τ1+γC(sup
[0,T ]

‖u(t)‖2γ , sup
[0,T ]

‖u(t)‖σ),

where in order to obtain the second line we used the estimate

‖Ψτ (u(tn), ϕτ (u(tn)))‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)τ.
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We make note that in order to approximate the ϕ1 functions appearing in (5.59) we use the following expansion

τϕ1(iτ∆)v =

∫ τ

0

eis∆dsv = τv +

∫ τ

0

(eis∆ − 1)

(−s∆)γ
sγds(−∆)γv. (5.60)

We conclude from the above calculations that the error term R1(τ, tn) satisfies the Xσ and L2 bounds,

sup
t∈[0,T ]

‖R1(τ, t)‖σ <∞ and ‖R1(τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ)τ1+γ . (5.61)

We now return to the definition (5.29) of R2(τ, tn) and to the expansion (5.57). By letting b1 = eiτ∆u(tn) + τfn we
have

ψ
τ/2
I

(
b1 +R1(τ, tn)

)
= ψ

τ/2
I (b1) + E3(τ, tn)

ψ
τ/2
I (b1) = ψ

τ/2
I (eiτ∆u(tn)) + E4(τ, tn),

(5.62)

where using the estimates in equation (5.61) and the definition of ψτ/2I it follows that

‖E3(τ, tn)‖ ≤ τ2+γC(sup
[0,T ]

‖u(t)‖σ, sup
[0,T ]

‖u(t)‖2γ).

Furthermore, it follows from equation (5.62) that by isolating the second order terms with the higher order ones we have
the following expansion for E4(τ, tn),

E4(τ, tn) = −i τ
2

2

(
2fn(eiτ∆u(tn))(ϕ1(iτ∆)(e−iτ∆u(tn))) (5.63)

+ (eiτ∆u(tn))2ϕ1(iτ∆)fn
)

+ Er4 (τ, tn),

where from a simple calculation one obtains that Er4 (τ, tn) satisfies

‖Er4 (τ, tn)‖ ≤ C(sup
[0,T ]

‖u(t)‖σ)τ3 ≤ CT τ2+γ .

By approximating the ϕ1 functions in (5.63) following the expansion given in equation (5.60), and by using once again
the fractional estimate (5.19) we conclude from the above equations together with definition (5.55) of Ẽ2,1 that the bound
(5.56) is met. This concludes the proof of Lemma 5.4.6.

The proof of the above lemma concludes the proof of the first estimate (5.42) on (R2 +R3)(τ, tn) of Proposition 5.4.4.
The second estimate (5.43) of Proposition 5.4.4 follows directly from the first estimate (5.42) by noticing that for

some small ε > 0 and with σ = d/2 + ε, we have that 2γ and σ are smaller than 2γ + 1 for γ > d/4, and are also smaller
than γ + 1 + d/4 for d ≤ 3 (and γ ∈ [0, 1]).

Remark 5.4.7 Another way of writing the local error terms is as follows,

u(tn + τ)− ϕτ
(
u(tn)

)
= R(τ, tn) + R̃(τ, tn), (5.64)

with

R(τ, tn) =

∫ τ/2

0

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s)

)
− f

(
eis∆u(tn), e−is∆ū(tn)

))
ds

+

∫ τ

τ/2

ei(τ−s)∆
(
f
(
u(tn + s), ū(tn + s))− f

(
ei(s−τ)∆u(tn+1), e−i(s−τ)∆ū(tn+1)

))
ds

and

R̃(τ, tn) =

(∫ τ/2

0

ei(τ−s)∆f
(
eis∆u(tn), e−is∆ū(tn)

)
ds− ψτ/2E

(
u(tn)

))

+

(∫ τ

τ/2

ei(τ−s)∆f
(
ei(s−τ)∆u(tn+1), e−i(s−τ)∆ū(tn+1)

)
ds− ψτ/2I

(
ϕτ
(
u(tn)

)))
.

The above error decomposition uses the fact that on [0, τ
2

] we center the approximation at the left-end point and on ( τ
2
, τ ]
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at the right-end point. Hence, on each interval respectively we iterate the Duhamel expansions

u(tn + s) = eis∆u(tn) +

∫ s

0

ei(s−s1)∆f
(
u(tn + s1), ū(tn + s1)

)
ds1, s ∈ [0,

τ

2
],

u(tn + s) = ei(s−τ)∆u(tn+1)−
∫ τ

s

ei(s−s1)∆f
(
u(tn + s1), ū(tn + s1)

)
ds1, s ∈ (

τ

2
, τ ].

Using the tools in Section 5.4.1 one can bound the local error terms (5.64) in an analogous manner.

5.4.2 Stability

Theorem 5.4.1 Let R > 0, s ≥ 0. There exists τR > 0 and σ > d/2 such that for any τ ≤ τR and w, v ∈ Xσ, such that
‖w‖σ ≤ R and ‖v‖σ ≤ R we have,

‖ϕτ (v)− ϕτ (w)‖s ≤ eτCR‖v − w‖s,
where CR denotes a generic constant depending on R (and on s).

Proof of Theorem 5.4.1. Using the second estimate in equation (5.18) we have

‖ϕτ (v)− ϕτ (w)‖s ≤ (1 + τCs(‖v‖σ, ‖w‖σ))‖v − w‖s + τCs(‖ϕτ (v)‖σ, ‖ϕτ (w)‖σ)‖ϕτ (v)− ϕτ (w)‖s,

with σ = d/2 + ε if s ≤ d/2 and σ = s if s > d/2. By Theorem 5.3.1 we have that there exists τR > 0 such that for all
τ ≤ τR we have the bounds: ‖ϕτ (v)‖σ ≤ 2R and ‖ϕτ (w)‖σ ≤ 2R. Hence, it follows from the above that,

‖ϕτ (v)− ϕτ (w)‖s ≤
(1 + τCs(R,R))

(1− τCs(2R, 2R))
‖v − w‖s ≤ eτCR‖v − w‖s,

for some CR > 0.

It remains to combine the stability argument presented in Section 5.4.2 together with the local error bounds of Section
5.4.1 to prove the global convergence result stated in Proposition 5.4.1.

Proof of Proposition 5.4.1. We let en = un − u(tn), with e0 = 0. First, thanks to Proposition 5.4.2 and 5.4.4 we have
the local error bound in L2 required for the global convergence analysis, where the regularity requirements on u have
been optimized depending on the fractional order of convergence desired. In order to apply the stability bound stated in
Theorem 5.4.1 and to conclude with a Lady Windermere’s fan type argument, one needs to show the following uniform
bound on the numerical solution,

‖un‖σ ≤MT , ∀nτ ≤ T, (5.65)

for some σ > d/2 and MT > 0.
We let σ = d/2 + ε, for some small ε > 0. To obtain the bound (5.65) we show that there exists δ > 0, a constant

CRn = CT (‖un‖σ) depending on ‖un‖σ and on sup[0,T ] ‖u(t)‖σ, and some τRn > 0 also depending on ‖un‖σ such that
the following global error bound is met,

‖en+1‖σ ≤ ‖ϕτ (u(tn))− u(tn+1)‖σ + ‖ϕτ (un)− ϕτ (u(tn))‖σ ≤ CT,γτ1+δ + eτCRn ‖en‖σ (5.66)

for all τ ≤ τRn . One can obtain the second term in the above estimate for τ ≤ τRn , where τRn depends on ‖un‖σ and on
sup[0,T ] ‖u(t)‖σ, by applying Theorem 5.4.1 with s = σ. Hence, it remains to obtain the first term in the above estimate,
which corresponds to the local error bound in Xσ. Namely, by letting R(τ, tn) = u(tn+1)− ϕτ (u(tn)) we show that there
exists δ > 0 such that

‖R(τ, tn)‖σ ≤ CT,γτ1+δ, (5.67)

where CT,γ is a constant depending on T and on the regularity assumptions on u (which in turn depend on γ, the
fractional order of convergence required). We establish the above local error estimate (5.67) by using the following
interpolation bound,

||R(τ, tn)||σ ≤

 ‖R(τ, tn)‖θ‖R(τ, tn)‖1−θ2γ+1 if γ > d
4

‖R(τ, tn)‖θ̃‖R(τ, tn)‖1−θ̃
γ+1+ d

4

if 0 ≤ γ < d
4

, (5.68)

where (θ, θ̃) ∈ (0, 1)2 satisfies σ = (1− θ)(2γ + 1) = (1− θ̃)(γ + 1 + d/4). We have already established the L2-bound on
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R(τ, tn) in Section 5.4.1, which is given by,

‖R(τ, tn)‖ ≤ τ2+γ

 CT,γ
(

supt∈[0,T ] ‖u(t)‖2γ+1

)
if γ > d

4

CT,γ
(

supt∈[0,T ] ‖u(t)‖γ+1+ d
4

)
if 0 ≤ γ < d

4

. (5.69)

To obtain the X2γ+1 and Xγ+1+ d
4 bound on R(τ, tn) we simply express the local error using Duhamel’s formula and the

scheme (5.5),

R(τ, tn) =

∫ τ

0

ei(τ−s)∆f(u(tn + s), u(tn + s))ds− i τ
2
eiτ∆((u(tn))2ϕ1(−iτ∆)ū(tn)

)
− i τ

2

(
(ϕτ (u(tn)))2ϕ1(iτ∆)ϕτ (u(tn)

)
.

One can bound each of the above terms separately using the first estimate in equation (5.18) with s = 2γ + 1 and
s = γ + 1 + d

4
together with equation (5.23) (with R = sup[0,T ] ‖u(t)‖s) to obtain that there exists some τ̃0 > 0 depending

on u0 and T such that for all τ ≤ τ̃0

||R(τ, tn)||s ≤ C(sup
[0,T ]

||u(t)||s)τ ≤ CT,sτ. (5.70)

We conclude that the bound (5.67) follows from equation (5.68) (with δ = (1 + γ)θ for γ > d/4 and δ = (1 + γ)θ̃ for
γ < d/4), and where the constant CT,γ is given in equation (5.69) by the L2 local error bound. We then proceed by
induction on (5.66) to obtain that there exists a τ0 > 0 which depends on T and u0 for which the uniform bound (5.65) is
true for all τ ≤ τ0.

Finally, by taking s = 0, σ = d/2 + ε, and R = max{MT , sup[0,T ] ‖u(t)‖σ} in Theorem 5.4.1 yields the existence of a
τR which depends on T and u0 such that for all τ ≤ τR,

‖en+1‖ ≤ CT,γτ2+γ + eτCR‖en‖, nτ ≤ T,

where CT,γ is given in equation (5.69). The global error bound of Proposition 5.4.1 follows by iterating the above estimate
and taking τmin = min{τ0, τR}, which concludes the proof.
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Chapter 6

Symmetric resonance based integrators and forest
formulae

This chapter is based on the article [ABBMS23], and the numerical simulations presented here are taken from that
article.

Abstract. In the present work we introduce a unified framework that allows for the very first systematic construction
of symmetric resonance-based integrators to approximate a wide class of nonlinear dispersive equations at low-regularity.
The inclusion of symmetries in the construction of resonance-based schemes presents serious challenges and induces a need
for a significant extension of prior approaches to allow for sufficient number of degrees of freedom in the resulting schemes
while preserving the favorable low-regularity convergence properties of prior constructions. Motivated by recent work
[BS22], we achieve this by introducing a novel formalism based on forest formulae that allows us to encode a wider range
of possibilities of iterating Duhamel’s formula and interpolatory approximations of lower order parts in the construction of
these time-stepping methods. The forest formulae allow for a simple characterisation of symmetric schemes and provides
a fascinating algebraic structure in its own right which echo those used in Quantum Field Theory for renormalising
Feynman diagrams and those used for the renormalisation of singular SPDEs via the theory of Regularity Structures.
Our constructions lead to the development of several new symmetric resonance-based integrators that exhibit remarkable
structure preservation and convergence properties which are witnessed in numerical experiments.

6.1 Introduction
We consider a general class of dispersive differential equations of the form

i∂tu(t, x) + L
(
∇, 1

ε

)
u(t, x) = |∇|αp(u(t, x), u(t, x)),

u(0, x) = v(x),
(6.1)

equipped with periodic boundary conditions x ∈ Td. Throughout, we assume that p is a polynomial nonlinearity, and
that the structure of (6.1) implies at least local well-posedness of the problem on a finite time interval ]0, T ], T <∞, in
an appropriate functional space. This class of equations captures a number of physically important models, including the
Korteweg de Vries (KdV) equation

∂tu− iL(∇)u =
1

2
∂xu

2, L(∇) = i∂3
x, |∇|α = ∂x, x ∈ T, (6.2)

and the nonlinear Schrödinger (NLS) equation,

i∂tu+ L(∇)u = |u|2u, L(∇) = ∆, x ∈ Td. (6.3)

Like those two examples many physical equations in this class possess conservation laws, or are indeed integrable systems
(for example the KdV equation is a completely integrable parity-time invariant system). It is known that symmetric
numerical schemes have favourable long-time behaviour when applied to such reversible integrable systems, such as linear
(slow) growth in error as a function of the integration time, and near conservation of first integrals over long times
[HL04, HLW10, BG94]. At the same time the numerical approximation of the Cauchy problem in low-regularity regimes
requires the design of designated methods, amongst which resonance-based schemes have seen significant success over
recent years. Firstly developed for specific equations, including the KdV equation [HS17b, WZ22b, LW22], the NLS
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equation [OS18, OWY22, AB23b, ORS21, ORS22b, WY22, BLW23], the Gross–Pitaevskii equation [AB23a] and the
Navier–Stokes equations [NS15], more recent work has started to establish a more general framework for resonance based
low-regularity integrators [ABBS22b, ABBS22a, RS22]. The key idea of these schemes lies in embedding the underlying
structure of resonances - triggered by the nonlinear frequency interactions between the leading differential operator
L
(
∇, 1

ε

)
and the nonlinearity p(u(t, x), u(t, x)) - into the numerical discretisation. These nonlinear interactions are in

general neglected by classical approximation techniques such as Runge-Kutta methods, splitting methods or exponential
integrators. While for smooth solutions these nonlinear interactions are indeed negligible, they do play a central role at
low regularity and high oscillations. The accurate resolution of these interactions has been achieved in broad generality
only in the recent few years in [BS22, RS21, ABBS22b]. Yet, while the design of such schemes has seen a wide range of
developments, prior work has focussed mostly on explicit schemes with desired convergence properties. A few recent results
[BMS22, AB23b, FMS23, MS22] have introduced first or second order implicit symmetric integrators at low-regularity
fitting the particular structure of the equation with better conservation properties. Nevertheless, a central question
remained unanswered: Can we systematically construct structure preserving resonance based schemes up to arbitrary
order which preserve central symmetries of the underlying continuous equation?

For ordinary differential equations (ODEs) the theory of structure preservation in numerical schemes is thoroughly
established [HLW10], specifically there is a extensive amount of literature on the characterisation of symmetric and
symplectic Runge–Kutta methods [Kul03, SS88, IZ00] and, more broadly, B-series methods [BS94, CM07]; on the
favourable long-time behaviour of such methods when applied for finite-dimensional integrable reversible systems and
Hamiltonian systems [HL04, HLW10, BG94] respectively; and even on the limitations on types of structure that can be
preserved with B-series methods [IQT07]. Even though the long-time analysis of such methods in the case of PDEs is
much less straightforward [Fao12, GL10b], these favourable structure preservation properties have motived the study of
symmetric methods for PDEs, for example in the classification of symmetric splitting methods [MQ02] and symmetric
exponential integrators [CCO08].

In general, resonance based schemes are not structure preserving and do not preserve the symmetries in the system.
We can consider for example the second order resonance based scheme introduced by [BS22, Section 5.1.2], referred to
henceforth as ‘Bruned & Schratz 2022’, and given by

un+1 = eiτ∆un − iτeiτ∆
(

(un)2(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))un
)

− iτ
(
eiτ∆un

)2

ϕ2(−2iτ∆)(eiτ∆un)− τ2

2
eiτ∆

(
|un|4un

)
,

(6.4)

where ϕ1(σ) = eσ−1
σ

and ϕ2(σ) = eσ−ϕ1(σ)
σ

. Symmetry of a numerical scheme is defined by considering its adjoint method:
For a given method un 7→ un+1 = Φτ (un) its adjoint method is defined as Φ̂τ := Φ−1

−τ .

Definition 1 (See for example Definition V.1.4 in [HLW10]) The method Φτ is called symmetric if Φτ = Φ̂τ .

The scheme (6.4) is not symmetric in the sense of definition (1) because the adjoint method is given by

un+1 = eiτ∆un − iτ
((
un+1)2(ϕ1(2iτ∆)− ϕ2(2iτ∆))un+1

)
− iτeiτ∆

((
e−iτ∆un+1

)2

ϕ2(2iτ∆)(e−iτ∆un+1)

)
+
τ2

2

(∣∣un+1
∣∣4un+1

)
,

which is implicit as opposed to the original scheme (6.4), which is explicit.
The derivation of new schemes which are structure preserving and at the same time allow for low-regularity

approximations was first addressed in the specific case of the KdV, the Klein-Gordon (KG), the NLS equation and the
isotropic Landau–Lifschitz equation in the recent work of [MS23], [WZ22a], [AB23b] and [BMS22] respectively. A further
symmetric low-regularity integrator with good long time behaviour was introduced in [FMS23]; see also [MS23] for the
construction of symplectic resonance-based schemes. Let us also highlight the work [WY22] which was the first low
regularity method which allowed for high order mass conservation (for fixed time). However, all these results are yet again
tailored to the particular structure of the equation, and bespoke calculations made on individual resonance structure of
the equation at hand. Furthermore, they are restricted to second order and not always optimal in the sense of regularity.

This motivates the study of systematic constructions of symmetric resonance based schemes that we address in the
present work. In particular, we develop a unified framework of symmetric resonance based schemes which preserve central
symmetries of the system (6.1) while allowing for good approximation in the regimes treated by [BS22]. We extend the
resonance decorated trees approach introduced in [BS22] to a richer framework by exploring different ways of iterating
Duhamel’s formula, capturing the dominant parts while interpolating the lower parts of the resonances in a symmetric
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manner. This gives a range of new numerical schemes with more degrees of freedom than the original framework from
[BS22]. Our new framework allows us to recover previously constructed low-regularity symmetric schemes such as [AB23b],
but also introduce new symmetric low regularity schemes which are optimal in the sense of regularity - in the spirit of
[BS22]. An example of such a method introduced in the present work is (6.63) matching the regularity obtained for the
non-symmetric scheme given in [BS22]. In addition, as opposed to the previous works [BS22, ABBS22a, ABBS22b] the
schemes we introduce here do not need to be accompanied by well-chosen filter functions in order to obtain stability of
the scheme. Indeed, our construction based on interpolation rather than Taylor series expansion of the non-dominant
parts of the nonlinear frequency interactions directly leads to stable schemes, see also [RS21, AB23a].

Our main result is the new general resonance based scheme presented in Definition (6.3.9), with its error structure
given in Theorem (6.3.15), the latter of which is a consequence of [BS22]. We show that this scheme is symmetric in
Theorem (6.4.3) and that it is contained within a forest formula in Theorem (6.3.11). Our general framework is illustrated
on concrete examples in Section (6.4.3) and simulations show the better structure preserving properties as well as the
convergence properties of the scheme. This was only possible through a significant extension of the algebraic structures
proposed in [BS22] by introducing a new forest formula in Theorem (6.3.6). This formula is used for finding new symmetric
schemes and have their own interest by providing a new parametrisation of low regularity schemes allowing for implicitness
in the schemes and thus resembling more closely the formulation of classical schemes such as Runge–Kutta methods or
exponential integrators. We derive conditions on the coefficients of these formulae for having a symmetric scheme, see
Proposition (6.4.7).

Remark 6.1.1 Up to now we were faced with a choice between structure preservation and low-regularity approximation
properties. This is exhibited in Figure (6.1) where we study the cubic NLS equation and compare the preservation of
energy of the Strang splitting (a symmetric splitting method) against previous resonance based integrators (Bruned &
Schratz 2022 [BS22]) for smooth C∞ and H2 data.
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(a) Smooth data, u0 ∈ C∞ and M = 64.
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(b) Low regularity data, u0 ∈ H2 and M = 64.

Figure 6.1 – Long-time relative error in the energy of the NLS equation with time-step τ = 0.02.
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The Strang splitting almost preserves the energy over long times for smooth solutions, but suffers from numerical
energy blow up for rougher data. The resonance based integrator Bruned & Schratz 2022 [BS22] on the other hand only
achieves approximate energy preservation up to short times (for both smooth and rougher data). Our novel resonance
based midpoint method (6.63) bridges this gap allowing for numerical long-time approximate energy conservation even at
low regularity, see Figure (6.1b).

Let us now take a closer look at smooth solutions, where we find a surprising additional characteristic of our new
scheme (6.63). Note that long-time structure preservation properties apply only subject to a CFL condition for Strang
splitting methods applied to the NLS equation. More precisely the time step size τ has to be chosen such that τ .M−2

where M is the number of degrees of freedom in the spatial discretisation, see for instance [Fao12] and references therein
for a detailed discussion. This step size restriction is not only a theoretical technicality, but also observed in numerical
experiments. The long-time energy preservation in the Strang splitting drastically breaks down if we start to increase the
number of Fourier modes M , i.e., move from “ODE to PDE”, see Figure (6.1a) versus Figure (6.2), where we double the
Fourier modes in our discretisation. A very interesting feature of our new resonance-based constructions appears to be
that in numerical experiments the long-time behaviour of the method seemingly does not depend on the number M of
spatial modes used.
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(a) Long time interval t ∈ [0, 4000], smooth data u0 ∈ C∞ and M = 256.
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(b) Zoom on time interval t ∈ [0, 40], smooth data u0 ∈ C∞ and M = 256.

Figure 6.2 – Long-time relative error in the energy of the NLS equation with time-step τ = 0.02.

In summary, the long-time dynamics shown in Figures (6.1)-(6.3) is representative of the behaviour of these methods
and is observed in a large number of numerical experiments. Namely, we have that the Strang splitting is able to
approximately preserve the energy over long times only for a small number of spatial discretisation points and for smooth
initial data (M � τ−1/2). In contrast, our proposed symmetric low-regularity integrators can achieve this feat even for
low regularity solutions and with a large number of spatial discretisation points.

Outline of the article
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(a) Long time interval t ∈ [0, 4000], low-regularity data u0 ∈ H2 and M = 256.
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(b) Zoom on time interval t ∈ [0, 40], low-regularity data u0 ∈ H2 and M = 256.

Figure 6.3 – Long-time relative error in the energy of the NLS equation with time-step τ = 0.02.

The remainder of this manuscript is structured as follows. To begin with, in section (6.2), we outline the main ideas in
the construction of symmetric resonance based schemes, before formalising those ideas more rigorously in the subsequent
sections. In particular, in section (6.3) we firstly recall the decorated tree framework introduced in [BS22] for non-
symmetric resonance based schemes. We then generalise this framework in order to capture a broader class of resonance
based integrators allowing for polynomial interpolation of lower order parts in the approximation (cf. section (6.3.1)).
This leads to a general framework taking the form of a forest formula that can capture a wide class of implicit and explicit
resonance based schemes and which is introduced in section (6.3.2). This forest formula motivates our consideration of a
particular way of iterating Duhamel’s formula to generate a subclass of resonance based schemes described by this general
framework in section (6.3.3) which turns out to be sufficiently general to allow us to find symmetric resonance based
schemes of arbitrary order in this class. In section (6.4) we then describe how symmetric interpolation in the construction
from section (6.3.3) leads to symmetric schemes before classifying all symmetric schemes captured by the general forest
formula in section (6.4.2). We conclude the section with examples of the new symmetric resonance based integrators
that can be found using our novel framework in section (6.4.3). In section (6.5), we provide numerical experiments
demonstrating the favorable practical performance of the new symmetric resonance based schemes that we were able to
develop using our formalism.
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6.2 Main ideas of the derivation of symmetric resonance based schemes

Before diving into a more abstract construction of the algebraic structures describing our novel resonance based
schemes let us begin by outlining the main assumptions on the type of equation we consider as well as the blueprint for
the construction of implicit (and specifically symmetric) resonance based integrators for equations of the form (6.1).

Assumptions

We impose periodic boundary conditions, i.e. x ∈ Td. We assume that the differential operator L is real and that the
differential operators L(∇) and |∇|α shall cast in Fourier space into the form

L(∇)(k) = kσ +
∑

γ:|γ|<σ

aγ
∏
j

k
γj
j , |∇|α(k) =

∑
γ:|γ|≤α

d∏
j=1

k
γj
j (6.5)

for some α ∈ R, σ ∈ N, γ ∈ Zd and |γ| =
∑
i γi, where for k = (k1, . . . , kd) ∈ Zd and m = (m1, . . . ,md) ∈ Zd we set

kσ = kσ1 + . . .+ kσd , k ·m = k1m1 + . . .+ kdmd.

Construction of implicit resonance based schemes

We first rewrite (6.1) in Duhamel’s form

u(t, x) = eitLv(0, x)− ieitL
∫ t

0

e−isL|∇|αp(u(s, x), ū(s, x))ds

where we have used L = L
(
∇, 1

ε

)
as a short hand notation. Then, if we move to Fourier space by denoting uk and vk the

k-th Fourier coefficients of u and v, one obtains:

uk(t) = eitL(k)vk(0)− ieitL(k)

∫ t

0

e−isL(k)|∇|α(k)pk(u(s, x), ū(s, x))ds (6.6)

where L(k) and |∇|α(k) are the differential operators L and |∇|α mapped in Fourier space. The term pk(u(s, x), ū(s, x))
stands for the Fourier transform of the product. For example, in the case of NLS we have α = 0, L = ∆, and p(u, ū) = u2ū.
The equation (6.6) becomes

uk(t) = e−itk
2

vk(0)− ie−itk
2
∫ t

0

eisk
2

 ∑
k=−k1+k2+k3

ūk1(s)uk2(s)uk3(s)

ds.
The product |u|2u becomes a convolution on the coefficients in Fourier space, where we note that the minus pre-multiplying
k1 is due to the conjugate. We have also used the fact that the Fourier transform of eit∆ is e−itk

2

. The first step in
the construction of resonance based schemes consists in iterating (6.6) inside the nonlinearity which produces a sum of
oscillatory integrals that can be described by decorated trees as introduced in [BS22]. Namely, in [BS22] we iterate only
with (6.6) which corresponds to a left end point iteration, meaning that given a time step τ , we always take the left
end point approximation in the linear part exp(−itk2)vk(0) on the interval [0, τ ]. Hence, in general we do not obtain a
symmetric scheme. Indeed, one has the possibility to write Duhamel’s formula around any point in the interval [0, τ ]. In
particular, if we set for s ∈ [0, τ ]

I(k, u, s, t) = ei(t−s)L(k)uk(s) (6.7)

− ieitL(k)

∫ t

s

e−is̃L(k)|∇|α(k)pk(u(s̃, x), ū(s̃, x))ds̃

then we have the identity:

uk(t) = I(k, u, v, s, t).

From the identity (6.7), we will obtain implicit schemes. We can take a weighted sum of the various Duhamel’s iterations
(6.7) ultimately to arrive at schemes with a large number of additional degrees of freedom. The sum that we will use for a
large part of this paper is the midpoint rule, that is:

uk(t) =
1

2
(I(k, u, 0, t) + I(k, u, τ, t)). (6.8)
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For example, to construct a symmetric resonance based scheme of a desired order we can start the first iteration for uk(τ)
with the left end point Duhamel’s formula and then we iterate the midpoint rule (6.8). We can express this iteration in
terms of the following tree series

Urmid,k(τ) = eiτLuk(0) +
∑
T∈Vr

k

Υp
mid(T )(u, τ)

S(T )
(ΠmidT )(τ) (6.9)

where Vrk is a set of decorated trees of size at most r + 1 which incorporate the frequency k. These trees encode via
(ΠmidT )(τ), iterated integrals of depth at most r + 1. The coefficient S(T ) is the symmetry factor associated to the tree
T and Υp

mid(T )(u, τ) is the coefficient appearing in the iteration of Duhamel’s formulation depending on the nonlinearity
p. The coefficients Υp

mid(T )(u, τ) depend on τ as with our midpoint iteration, we finish always on terms of the form:

1

2

(
eisLukj (0) + ei(s−τ)Lukj (τ)

)
= eisL

1

2

(
ukj (0) + e−iτLukj (τ)

)
.

It is natural to absorb the term eisL in the definition of (ΠmidT )(τ) and

1

2

(
ukj (0) + e−iτLukj (τ)

)
into the definition of Υp

mid(T )(u, τ). These aforementioned quantities are described in detail in Section (6.3.3). The sum
(6.9) can be viewed as a first numerical approximation by keeping only the iterated integrals of order below r of the
infinite series describing formally the solution of (6.1). In Proposition (6.4.1), we show that (6.9) is a symmetric scheme.

In order for the scheme to have a suitable local error when applied to low-regularity solutions, it is necessary to replace
each oscillatory integral (ΠmidT )(τ) appearing in the finite sum (6.9) by a low regularity approximation that embeds the
resonance structure into the numerical discretization. Our novel approach is to try and perform this approximation in a
symmetric manner. Let us explain briefly how it works. Suppose we aim to discretise an oscillatory integral of the form∫ t

0

eisLds, L = Ldom + Llow,

where we have split the operator into a dominant part Ldom that we will integrate exactly and a lower part Ldom that we
will approximate (cf. section (6.3.1) for a definition of these quantities). A typical example arising in the case of NLS is

L = k2 + k2
1 − k2

2 − k2
3, Ldom = 2k2

1 Llow = −2k1(k2 + k3) + 2k2k3,

where k = −k1 + k2 + k3. We see that the exact integration of∫ t

0

eisLdomds =
e2isk2

1 − 1

2ik2
1

can be mapped back to physical space as 1/k2 corresponds to ∆−1. This property of being able to write the scheme in
physical space is crucial for efficient numerical implementation: If we have an expression in physical space the differential
operators can be computed quickly in frequency space using the Fast Fourier Transform (FFT) while any polynomial-type
nonlinear term can be computed quickly in physical space since it corresponds to a local operation on the function values
on a grid. Now, it remains to approximate the lower part. For this task, we use a polynomial interpolation with m+ 1
points on [0, τ ] denoted by ajτ . We note that the error incurred by this polynomial interpolation will be one of the
determining factors of the convergence order of our overall numerical scheme, and thus we highlight that this interpolation
can be done to any given order. We take r + 1 distinct interpolation points 0 ≤ a0 < a1 < · · · < ar ≤ 1 which are
symmetrically distributed such that aj = 1− ar−j , j = 0, . . . , r. Let us denote the corresponding nodal polynomials by
pj,r such that

pj,r(amτ) = δj,m.

Then, we define the following approximation

p̃r(f, ξ) =

r∑
j=0

f(aj)pj,r(ξ), f(aj) = eiajτLlow .
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We have the following local error

f(ξ)− p̃r(f, ξ) = O(

r∏
j=0

(ξ − ajτ)(iLlow)r+1) (6.10)

which requires less regularity than if we had chosen to base our approximation on L instead of Llow as classical schemes
do.

In order to arrive at a numerical scheme, we will in the following introduce the low-regularity symmetric approximation
operator of Πmid denoted by by Πn,r

mid. Here, r corresponds to the order of the discretization and n is the a priori regularity
assumed on the initial data v. Namely, we assume v ∈ Hn, where Hn is a Sobolev space. The general scheme then takes
the form:

Un,rmid,k(τ, u) =
∑
T∈Vr

k

Υp
mid(T )(u, τ)

S(T )
(Πn,r

midT )(τ). (6.11)

We will show in Theorem (6.4.3) that this scheme is symmetric. The local error structure for each approximated iterated
integral is given by

(ΠmidT −Πn,r
midT )(τ) = O

(
τr+2Lrlow(T, n)

)
, (6.12)

where Lrlow involves only lower order derivatives. Its proof is exactly the same as in [BS22]. The local error does
not depend on the choice of Duhamel’s iteration and polynomial interpolations. The form of the scheme draws its
inspiration from the treatment of singular stochastic partial differential equations (SPDEs) via Regularity Structures in
[Hai14, BHZ19, BCCH20, BHZ20]. These decorated tree expansions are generalization of the B-series widely used for
ordinary differential equations, we refer to [But72, CCO08, HLW10, MKL13] and tree series used for dispersive equations
[Chr07, GKO13, Gub12, LO13, HLO20]. In the end, one obtains an approximation of u under much lower regularity
assumptions than classical methods (e.g., splitting methods, exponential integrators [CG12, Fao12, HLW10, HO10, Hol10,
Law67, Lub08, LR04, MQ02, SSC18]) require, which in general introduce the local error

O
(
τr+2Lr(T, n)

)
(6.13)

involving the full high order differential operator Lr. Indeed, denoting by D( · ) the domain of a given operator, we have
that D(Llow) ⊃ D(L), meaning that the local error structure (6.12) allows us to deal with a rougher class of solutions
than the classical error bound (6.13). Let us mention that the local error analysis can be nicely understood via a Birkhoff
factorisation of the character Πn,r

mid (see [BS22, BEF20]) that involves a deformed Butcher-Connes-Kreimer coproduct (see
[But72, CK99, CK00, BS22, BM23]). In the present work, we push further the algebraic perspective by writing several
forest formulae that can be used to represent a larger class of low regularity schemes. These forest formulae take the
following form:

u`+1
k = eiτLu`k + eiτL

∑
T∈Ṽr

k

∑
a∈[0,1]ẼT

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(Tej ) Υp
χ(T )(u`+χvkv

, v ∈ LT , τ)

S(T )
.

(6.14)

Below, we give a brief description of the notation of this forest formula before introducing each term in full detail in
section (6.3). Here, L si the full operator of (6.1), Ṽrk is a finite set of decorated trees, ẼT denotes the edges of T that
correspond to a time integration. These time integrals are discretised with a low regularity approximation. Therefore, we
have to use a map a on these edges that specifies which interpolation points have been used. This corresponds to the
following term ∏

e∈ẼTj

eiτaeFlow(Tej )

Here Flow(T ej ) denote the lower part of the various discretisations where T ej is included into Tj . The set LT are the
leaves of T associated to some uku and the map χ specifies if they are evaluated at the right (u`ku) or left end point
(u`+1
ku

). The coefficients Υp
χ(T )(u`+χvkv

, v ∈ LT , τ) depend on the structure of the equation and the way one iterates
Duhamel’s formula. One essential choice of this forest formula is the splitting of T into a forest T0 · ... · Tm where the
Ti are decorated trees. This allows us to encode all the lower parts of the resonances Flow(T ej ) and all their dominant
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parts Fdom(Tj) that appear in the low regularity discretisation. As we shall see below, this forest splitting is a crucial
novelty necessary for the construction and classification of symmetric low-regularity integrators. For the splitting, one
can use a Butcher-Connes-Kreimer coproduct (see Section (6.3.2)) or a deformed Butcher-Connes-Kreimer coproduct
used for the local error analysis. In our applications so far, the forest formula without deformation is enough for finding
symmetric schemes hence this is the one presented in this article. We derive a condition on the coefficients ba,χ,T,T0·...·Tm in
Proposition(6.4.7) that allows to find symmetric schemes. The coefficents ba,χ,T,T0·...·Tm do not depend on the frequencies
that are node decorations of the trees T, Tj . One can see them only as functions of the dominant parts of the various
operators encountered during the discretisation. The term CT is a structure term depending on the frequencies that
encode the various operators that appear in the iterated integral given by T . We conclude this section with a few remarks
concerning the structures introduced and the properties of the resulting low-regularity schemes.

Remark 6.2.1 The forest formula appear in the BPHZ algorithm [BP57, Hep69, Zim69] for renormalising Feynman
diagrams and was later used for renormalising singular SPDEs in [BHZ19, CH16] with an extension of the algebraic
structure.

Remark 6.2.2 The scheme (6.11) has been generalized to non-polynomial nonlinearities and to parabolic equations in
[ABBS22b] with the use of nested commutators first introduced in [RS21]. The Birkhoff factorisation discovered in [BS22]
is not available in this case. It is also not obvious to translate forest formulae into this context. Indeed, due to the fact
that the formula is written in Fourier space, there is no order on the operators written in Fourier space. This is not the
case in physical space. But one can repeat the construction of the scheme Un,rk in this context and this scheme should be
symmetric as the recursive proofs in Section (6.4.1) seem robust to this case.

Remark 6.2.3 The schemes presented in [BS22] have been adapted to a probabilistic setting by proposing a low regularity
approximation [ABBS22a] of the second moment of the Fourier coefficient of the solution, i.e. E(|u(vη, τ)|2) where vη is a
random initial data. In this context, one has to work with paired decorated trees. It possible to write symmetric schemes
for approximating this second moment using our approach. Also, one can set up an equivalent forest formula on these
paired decorated trees. One open direction is to understand the connection between the algebraic tools developed for
these numerical schemes and the tools used for the rigorous derivation of the wave kinetic equation (WKE) for NLS is
performed in [DH21, DH23, ACG21]

Remark 6.2.4 The central novelty of the present work is the structured understanding of implicit and, in particular,
symmetric low-regularity integrators. The local error bounds we use in this paper often rely on the previous local error
derivations first introduced in [BS22]. Indeed, the scheme Un,rk (τ, u) is of the form (6.14) but the local error analysis
comes from the fact that it is defined recursively via the character Πn,r

mid and therefore the tools from [BS22] are available.
If one found a new scheme by choosing the coefficients ba,χ,T,T0·...·Tm , it is not clear how to get directly the local error
analysis and check that the scheme is optimal in terms of regularity.

We also make the important remark that given that we derive schemes which are of implicit nature, an additional
fixed-point argument needs to be performed on the numerical flow in order to rigorously buckle the local error bounds, we
refer to the works of [MS22, AB23b] where this analysis is made in detail.

Remark 6.2.5 On this forest formula, we have identified symmetric schemes and, in addition, we have provided a
general recursive mechanism to derive symmetric schemes for a large class of PDEs. One can wonder if such an approach
could be repeated for other symmetries. Indeed, we believe that our techniques are fairly general. The degrees of freedom
offered by different Duhamel’s iterations and interpolations should allow us to capture other symmetries at low regualrity
using variants of the recursive scheme Un,rk (τ, u). One degree of freedom which has not been used in full generality is the
splitting of the operator into dominant and lower part :

L = Ldom + Llow.

Right now, it is governed by Definition 6.3.1 that guarantees to get a resonance-based scheme and a scheme which can
be written in physical space. For symplectic schemes, one expects to have symmetries between the frequencies of Ldom

and those Llow. One should have the possibility of refining this splitting for encapsulating some symmetries as has been
done for the 1D NLSE and the KdV equation in recent work [MS23]. The rest of the construction of the scheme remains
unchanged. Consequently, a natural line of future research is the study of such symmetries (%-reversibility, preservation of
quadratic invariants, etc.) directly on a structured tree or forest expansion of the numerical schemes comparable to the
use of B-series in the study of structure preservation properties of methods for ODEs. We believe that the forest formulae
presented in the current work take a first step in this direction.
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Remark 6.2.6 Let us close this section with an interesting, but crucial observation: In the context of ODEs it is well
known that symmetric methods are of even order (cf. [HLW10, Theorem IX.2.2]). In general this is, however, not the
case for PDEs as the rate of convergence depends intrinsically on the regularity of the solution, and hence convergence at
even order only holds if sufficient regularity requirements are met by the solution. For instance, the resonance based
midpoint method for the NLS equation takes the form (see Section (6.4.3) below for its derivation)

un+1 = eiτ∆un

− i τ
16
eiτ∆

(
(un + e−iτ∆un+1)2ϕ1(−2iτ∆)

(
un + eiτ∆un+1

))
− i τ

16

(
(eiτ∆un + un+1)2ϕ1(2iτ∆)

(
e−iτ∆un + un+1

))
.

(6.15)

This scheme is symmetric and first order with optimal local error structure in the sense of [BS22], as its first order local
error structure O(τ2∇u) does not require more regularity on the solution than the asymmetric first order resonance based
schemes of [BS22, OS18]. As the scheme (6.15) is symmetric it is, for C∞ solutions, naturally of even order, hence, not
only of order one, but also of order two. However, a closer look shows that its second order convergence is only attained
for sufficiently regular solutions: With a similar error analysis as introduced in [AB23b] one can show that at second
order the symmetric scheme (6.15) introduces a local error of type O(τ3∇∆u) which requires the boundedness of three
additional derivatives in order to attain second order convergence. For initial data in lower order spaces than H3, one can
obtain fractional convergence of order less than two, see [AB23b]. We make the additional remark that in view of [BS22],
requiring a local error of O(τ3∇∆u) is not optimal in the sense of regularity. Indeed, we recall that the second-order
non-symmetric resonance based integrators [BS22] obeys the favourable error structure O(τ3∆u), hence asking for one
less derivative on the solution.

6.3 Decorated trees and generalised resonance based schemes
The main object of this manuscript is to formalise the construction of symmetric resonance based schemes as outlined

in section (6.2). To achieve this we resort to a new, generalised tree formalism which has already seen (in much simpler
version) significant success in the construction of explicit (asymmetric) resonance based schemes (cf. [BS22]). In the
present section we will begin by recalling some of the main definitions in this framework before generalising the construction
to incorporate the possibility of implicit low-regularity integrators before ultimately culminating in a forest formula (6.31)
which captures a broad class of resonance based numerical schemes in such way that we can later characterise those
schemes in this class which are symmetric in the sense of definition (1).

We recall briefly the structure of decorated trees introduced in [BS22, Sec. 2]. Let L a finite set and frequencies
k1, ..., km ∈ Zd. We suppose we are given a fixed time step τ > 0. The set L parametrizes a set of differential operators
with constant coefficients, whose symbols are given by the polynomials (Pt)t∈L. These operators are given in Fourier
space and therefore the polynomials will be evaluated in the frequencies ki. We define the set of decorated trees T̂ as
elements of the form T n,o

e = (T, n, o, e) where

— T is a non-planar rooted tree with root %T , node set NT and edge set ET . We denote the leaves of T by LT . T must
also be a planted tree which means that there is only one edge connecting the root to the rest of the tree.

— the map e : ET → L × {0, 1} are edge decorations. The set {0, 1} encodes the action of taking the conjugate, and
determines the sign of the frequencies at the top of this edge. Namely, we have that 1 corresponds to a conjugate and
to multiplying by (−1) the frequency on the node above and adjacent to this edge.

— the map n : NT \ {%T } → N2 are node decorations. For every inner node v, this map encodes a monomial of the form
ξn1(v)τn2(v) where ξ is a free time variable belonging to [0, τ ]. This is a novelty from [BS22] where we do not have
factors in τ . We need it as in the sequel, we will consider integrals of the form

∫ ξ
τ
...ds.

— the map o : NT \ {%T } → Zd are node decorations. These decorations are frequencies that satisfy for every inner node
u:

(−1)p(eu)o(u) =
∑

e=(u,v)∈ET

(−1)p(e)o(v) (6.16)

where e(e) = (t(e), p(e)) is the edge decoration of e with t(e) ∈ L and p(e) ∈ {0, 1} and eu is the unique edge outgoing
from u which is part of the path connecting u to the root. We denote this edge by (v, u). From this definition, one
can see that the node decorations at the leaves (o(u))u∈LT determine the decoration of the inner nodes. One can call
this identity Kirchhoff’s law. We assume that the node decorations at the leaves are linear combinations of the ki
with coefficients in {−1, 0, 1}.

— we assume that the root of T has no decoration.

When the node decoration n is zero, we will denote the decorated trees T n,o
e as T o

e = (T, o, e). The set of decorated
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trees satisfying such a condition is denoted by T̂0. We set Ĥ (resp. Ĥ0) the (unordered) forests composed of trees in T̂
(resp. T̂0) with linear spans Ĥ and Ĥ0. The forest product is denoted by ·, the empty forest by 1. Elements in T̂ are
abstract representation of iterated time integrals and elements in Ĥ are a product of them.

We now introduce how one can represent uniquely decorated trees by using symbolic notations. We denote by Io,
an edge decorated by o = (t, p) ∈ L× {0, 1}. We introduce the operator Io(λ`k·) : Ĥ → Ĥ that merges all the roots of
the trees composing the forest into one node decorated by (`, k) ∈ N2 × Zd. The new decorated tree is then grafted
onto a new root with no decoration. If the condition (6.16) is not satisfied on the argument then Io(λ`k·) gives zero. If
` = 0, then the term λ`k is denoted by λk as a short hand notation for λ0

k. The forest product between Io1(λ`1k1
F1) and

Io2(λ`2k2
F2) is given by:

Io1(λ`1k1
F1)Io2(λ`2k2

F2) := Io1(λ`1k1
F1) · Io2(λ`2k2

F2).

The right hand side of the previous equality could be understood as a set where we can repeat elements and the forest
product is the disjoint union of these sets. Any decorated tree T is uniquely represented as

T = Io(λ`kF ), F ∈ Ĥ.

Given an iterated integral, its size is given by the number of integrations in time. Therefore, we suppose we are given a
subset L+ of L that encodes edge decorations which correspond to time integrals that we have to approximate.

Example 19 We illustrate the definitions introduced above with decorated trees coming from the NLS equation. We
consider the following decorated tree:

T = I(t1,0)

(
λkI(t2,0)

(
λkI(t1,1)(λk1)I(t1,0)(λk2)I(t1,0)(λk3)

))
=

k1 k3

k2

,

where k = −k1 + k2 + k3, L = {t1, t2}, L+ = {t2}, Pt1(λ) = −λ2 and Pt2(λ) = λ2. We put the frequency decorations only
on the leaves as those on the inner nodes are uniquely determined by them. In the table below, we explain the coding of
the edges

Edge Decoration Operator
(t1, 0) eitPt1 (k) = e−itk

2

(t1, 1) e−itPt1 (k) = eitk
2

(t2, 0) −i
∫ t

0
eiξPt2

(k) · · · dξ = −i
∫ t

0
eiξk

2

· · · dξ
(t2, 1) −i

∫ t
0
e−iξPt2

(k) · · · dξ = −i
∫ t

0
e−iξk

2

· · · dξ

In the end, T is an abstract version of the following integral:

−ie−itk
2
∫ t

0

eiξk
2

eiξk
2
1e−iξk

2
2e−iξk

2
3dξ.

The next combinatorial structure which we recall from [BS22] encodes abstract versions of a discretization of an
oscillatory integral. We denote by T the set of decorated trees T n,o

e,r = (T, n, o, e, r) where

— T n,o
e ∈ T̂ .

— The decoration of the root is given by r ∈ Z, r ≥ −1 such that

r + 1 ≥ deg(T n,o
e ) (6.17)

where deg is defined recursively by

deg(1) = 0, deg(F1 · F2) = max(deg(F1),deg(F2)),

deg(I(t,p)(λ
`
kF1)) = |`|+ 1{t∈L+} + deg(F1)

where ` = (`1, `2), |`| = `1 + `2, F1, F2 are forests composed of trees in T . The quantity deg(T n,o
e ) is the maximum

number of edges with type in L+, corresponding to time integrations, and of node decorations n lying on the same
path from one leaf to the root.

We call decorated trees in T approximated decorated trees. The order of the approximation is encoded by a new decoration
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at the root r. We denote by H the vector space spanned by forests composed of trees in T and λ`, ` ∈ N2 where λ` is the
tree with one node decorated by `. When the decoration ` is equal to zero we identify this tree with the empty forest:
λ0 = 1. We now define the symbol Iro (λ`k·) : H → H, as the same as Io(λ`k·), with the added adjunction of the decoration
r which constrains the time-approximations to be of order r. It is given by:

Iro (λ`k(
∏
j

λmj
∏
i

Irioi (λ
`i
ki
Fi))) :=Iro (λ

`+
∑
j mj

k (
∏
i

Ioi(λ
`i
ki
Fi))).

We define a projection operator Dr which depends on r and which is used during the construction of the numerical
schemes in order to only retain the terms of order at most r. We define the map Dr : Ĥ → H which assigns r to the root
of a decorated tree. This implies a projection along the identity (6.17). It is given by

Dr(1) = 1{0≤r+1}, Dr
(
Io(λ`kF )

)
= Iro (λ`kF ) (6.18)

and we extend it multiplicatively to any forest in Ĥ.

Example 20 We illustrate the action of the map Dr on the decorated tree T introduced in Example (19). One has:

deg(T ) = 1, Dr(T ) = 0, r > 1, Dr(T ) =
r

k1 k3

k2

6.3.1 Dominant part and polynomial interpolation
Let us now introduce the operations used when approximating integrals represented by tree formalism as described

above. We first recall [BS22, Def.2.2] that select higher degree terms in a polynomial of the frequencies.

Definition 6.3.1 Let P (k1, ..., kn) a polynomial in the ki. If the highest-degree monomials of P are of the form

a

n∑
i=1

(aiki)
m, ai ∈ {0, 1}, a ∈ Z,

then we define Pdom(P ) as

Pdom(P ) = a

(
n∑
i=1

aiki

)m
. (6.19)

Otherwise, it is zero.

This definition is used for splitting an operator between a lower part and a dominant part. Indeed, if we consider the
polynomial

P (k1, k2, k3) = k2 + k2
1 − k2

2 − k3
3, k = −k1 + k2 + k3.

coming from the NLS equation, we observe that P can be rewritten into the form:

P (k1, k2, k3) = 2k2
1 − 2k1(k2 + k3) + 2k2k3.

Then, we set

Ldom = Pdom(P ) = 2k2
1, Llow = (id− Pdom)(P ).

We note that Ldom asks for boundedness of two derivatives due to the factor k2
1 and Llow only one because the latter

consists only of cross products kikj , i 6= j. Another main reason for this splitting is to be able to map back to physical
space the following integral: ∫ t

0

eisLdomds =
eitLdom − 1

iLdom
.
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We observe that it is essential to map back to physical space the term 1
Ldom

equal to 1
2k2

1
. Such a term is given by ∆−1 in

physical space.
The next definition extracted from [BS22, Def. 2.6] allows us to compute recursively the various frequency interactions

by extracting dominant and lower parts. Such a definition is required for the local error analysis and the forest formula
given in the sequel.

Definition 6.3.2 We recursively define Fdom,Flow : Ĥ0 → R[Zd] as:

Fdom(1) = 0 Fdom(F · F̄ ) = Fdom(F ) + Fdom(F̄ )

Fdom

(
I(t,p)(λkF )

)
=

{
Pdom

(
P(t,p)(k) + Fdom(F )

)
, if t ∈ L+,

P(t,p)(k) + Fdom(F ), otherwise

Flow

(
I(t,p)(λkF )

)
= (id− Pdom)

(
P(t,p)(k) + Fdom(F )

)
,

where we recall that L+ is a subset of L that encodes edge decorations which correspond to time integrals. We extend
these two maps to Ĥ by ignoring the node decorations n.

In a nutshell the above recursive definition means that in the set L \ L+, i.e. operators that do not correspond to
integration, we collect all frequency contributions, and in the set L+, i.e. operators that correspond to integration, we
extract the dominant frequencies of the full integrand.

Example 21 We illustrate the previous definition on a simple decorated tree coming from the NLS equation.

T =

k1

k2
k3

= I(t2,0)(λkF ), F = I(t1,1)(λk1)I(t1,0)(λk2)I(t1,0)(λk3).

with k = −k1 + k2 + k3. One has

Fdom(T ) = Pdom

(
P(t2,0)(k) + Fdom(F )

)
because t2 ∈ L+. Then, we use the fact that

P(t2,0)(k) = k2, P(t1,0)(k) = −k2, P(t1,1)(k) = k2

and

Fdom(F ) = Fdom(I(t1,1)(λk1)) + Fdom(I(t1,0)(λk2)) + Fdom(I(t1,0)(λk3))

= P(t2,1)(k1) + P(t2,0)(k2) + P(t2,0)(k3)

= k2
1 − k2

2 − k2
3.

Therefore,

Fdom(T ) = Pdom

(
k2 + k2

1 − k2
2 − k2

3

)
= Pdom

(
2k2

1 − 2k1(k2 + k3) + 2k2k3

)
= 2k2

1

One observes that the projection Pdom projects to zero the cross terms kikj with i 6= j.

A central novel idea which we introduce in our present work is that we proceed to interpolate the exponential of the
lower part of the operator in place of a direct Taylor series expansion. The advantage of this procedure is firstly that it
allows us to immediately arrive at stable schemes without the need for filter functions (the spectrum of iPlow = iP − iPdom

typically lies on the imaginary axis so terms involving the exponential of the operator are all bounded). Secondly, through
this interpolation process we are able to arrive at numerical schemes whose adjoint has the same functional form which is
essential in the construction of symmetric methods. Classical Taylor expansion for the lower part gives:

eiξLlow =
∑
`≤r

ξ`

`!
(iLlow)` +O(ξr+1(iLlow)r+1)



158 CHAPTER 6. Symmetric resonance based integrators and forest formulae

Now, for reasons of stability, we would like to use a polynomial interpolation that will give the same local error analysis.
We suppose given r + 1 distinct interpolation points 0 ≤ a0 < a1 < · · · < ar ≤ 1 associated to the polynomials pj,r(·, τ)
such that

pj,r(amτ, τ) = δj,m.

Then, we define the following approximation

p̃r(f, ξ) =

r∑
j=0

f(ajτ)pj,r(ξ, τ), f(ajτ) = eiajτLlow , j = 0, . . . , r,

where we have suppressed the implicit τ -dependency of p̃r(f, ξ) for notational simplicity. One has the following local error

f(ξ)− p̃r(f, ξ) = O

(
r∏
j=0

(ξ − ajτ)(iLlow)r+1

)
. (6.20)

In the sequel, we will write the polynomial interpolation as:

p̃r(f, ξ) =

r∑
j=0

p̂j,r(f, τ)ξj (6.21)

where the p̂j,r(f, τ) are bounded in τ because they correspond to linear combinations of terms of the form exp(iajτLlow).
We provide below one example with two points 0 and τ

p̃1(f, ξ) = 1 +
s

τ

(
eisLlow − 1

)
, (6.22)

and

p̂0,1(f, τ) = 1, p̂1,1(f, τ) =
eisLlow − 1

τ
,

p0,1(f, ξ) =
τ − s
τ

, p1,1(f, ξ) =
s

τ
eisLlow .

When r = 0 we can, for example, pick

p0(f, ξ) = p̂0,0(f, τ) = p0,0(f, ξ) = f
(τ

2

)
.

In practice, we will also consider

p̂0,0(f, ξ) =
f(0) + f(ξ)

2
.

The next definition is a slight modification of [BS22, Def. 3.1] where Taylor expansions around zero are replaced by
an interpolation on the interval [0, τ ] and we take into account monomials in τ for the discretisation.

Definition 6.3.3 Assume that G : ξ 7→ τmξqeiξP (k1,...,kn) where P is a polynomial in the frequencies k1, ..., kn and let
o2 = (t2, p) ∈ L+ × {0, 1} and r ∈ N. Let k be a linear combination of k1, ..., kn using coefficients in {−1, 0, 1} and

Ldom = Pdom(Po2(k) + P ), Llow = Plow(Po2(k) + P )

f(ξ) = eiξLdom , g(ξ) = eiξLlow , g̃(ξ) = eiξ(Po2 (k)+P).

Then, we define for n ∈ N, r ≥ q, r̃ = r − q −m and n̄ = deg
(
Lr+1

dom

)
+ α

Kk,ro2 (G,n)(s) =


− i|∇|α(k)

∑
`≤r̃

p̂`,r̃(g̃, τ)

∫ s

0

τmξq+`dξ, if n ≥ n̄,

− i|∇|α(k)
∑
`≤r̃

τmp̂`,r̃(g, τ) Ψr
n,q(Ldom, `)(s), otherwise.

(6.23)
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Thereby we set for (r − q −m− `+ 1) deg(Ldom) + `deg(Llow) + α > n

Ψr
n,q(Ldom, `)(s) =

∫ s

0

ξq+`f(ξ)dξ. (6.24)

Otherwise,

Ψr
n,q(Ldom, `)(s) =

∑
j≤r̂

p̂j,r̂(f, τ)

∫ s

0

ξq+`+jdξ. (6.25)

Here r̂ = r − q −m− `, deg(Ldom) and deg(Llow) denote the degree of the polynomial Ldom and Llow, respectively and
|∇|α(k) =

∏
α=
∑
γj<deg(L) k

γj
j . If r < q +m, the map Kk,ro2 (G,n)(s) is equal to zero.

We perform an example to illustrate the polynomial interpolation.

Example 22 We consider Pt2(λ) = −λ2, p = 0, α = 0, k = −k1 + k2 + k3 and

G(ξ) = ξeiξ(k
2
1−k

2
2−k

2
3).

With the notation of Definition (6.3.3) we observe that

Ldom = 2k2
1, Llow = −2k1(k2 + k3) + 2k2k3,

Furthermore, we observe as deg(Ldom) = 2, deg(Llow) = 1 and q = 1 that

(r − q − `+ 1) deg(Ldom) + `deg(Llow) > n if 2r − n > `. (6.26)

We consider the polynomial interpolation given in (6.22) and focus on some cases

— Case r = 1 and n = 1 : We obtain

Kk,1o2 (G,n)(s) = −ip̂0,0(f, τ)Ψ1
n,1(Ldom, 0)(s)

= −ip̂0,0(f, τ)

∫ s

0

ξf(ξ)dξ

=
1

2ik2
1

(
se2isk2

1 − e2isk2
1 − 1

2ik2
1

)(
1 + eisLlow

2

)
as condition (6.26) takes for ` = 0 the form 2− n > 0.

— Case r = 2 and n = 2: We have that

Kk,2α (G,n)(s) = −i
(
p̂0,1(g, τ)Ψ2

n,1(Ldom, 0)(s) + p̂1,1(g, τ)Ψ2
n,1(Ldom, 1)(s)

)
and condition (6.26) takes the form 4− n > `.
If ` = 1 we thus obtain

Ψ2
n,1(Ldom, 1)(s) =

∫ s

0

ξ2f(ξ)dξ =
s2

2ik2
2

(
e2isk2

1 − 2Ψ1
1,1(Ldom, 0)

)
.

If ` = 0, on the other hand, condition (6.26) holds. Henceforth, we have that

Ψ2
n,1(Ldom, 0)(s) =

∫ s

0

ξf(ξ)dξ.

Following a similar proof as for [BS22, Lem. 3.3] by using (6.20), one gets

Lemma 6.3.4 We keep the notations of Definition (6.3.3). We suppose that q +m ≤ r then one has for s ∈ [0, τ ]

− i|∇|α(k)

∫ s

0

τmξqeiξ(Ldom+Llow)dξ −Kk,ro2 (G,n)(s) = O(τr+2kn̄) (6.27)

where n̄ = max(n,deg(Lr−q−m+1
low ) + α).
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6.3.2 A forest formula for resonance based schemes

We recall the characters defined now on H and parametrised by n ∈ N where n here the a priori regularity assumed
on the initial value, that is v ∈ Hn where Hn is the periodic Sobolev space of order n. These characters give a low
regularity discretisation of some iterated integrals:

Πn(F · F̄ )(s, τ) = (ΠnF )(s, τ)
(
ΠnF̄

)
(s, τ), (Πnλ`)(s, τ) = s`1τ `2 ,

(ΠnIro1(λ`kF ))(s, τ) = s`1τ `2eisPo1 (k)(ΠnDr−|`|(F ))(s, τ),(
ΠnIro2(λ`kF )

)
(s, τ) = Kk,ro2

(
Πn
(
λ`Dr−|`|−1(F )

)
(·, τ), n

)
(s).

(6.28)

where o2 = (t2, p2) with t2 ∈ L+ and o1 = (t1, p1) with t1 ∈ L \ L+ and ` = (`1, `2) ∈ N2. We will use frequently the
notations oi in the sequel. The main difference with [BS22] is the use of the polynomial interpolation in Definition (6.3.3).
In the next theorem, we state a forest formula for the resonance scheme in the sense that we exhibit a general formula for
the terms (Πn,rF )(t) where Πn,r is short hand notation for ΠnDr. This new forest formula is a significant extension
of contributions in [BS22] since it incorporates not just the aforementioned polynomial interpolants but also allows for
implicit discretisations in the unknown v. We first need to introduce some notations that are needed for its formulation.
We denote by ẼT the edges of T associated to an integration in time. They carry a decoration of the type o2

ẼT = {e ∈ ET | e(e) ∈ L+ × {0, 1}}.

The notation T e means that we consider the planted tree above the edge e in T . This tree has its root connected to the
rest of its nodes by the edge e. By F0 · T1... · Tm ⊂ F , we mean that the forest

F0 · T1... · Tm ⊂ F (6.29)

is a splitting of F where :

— The Ti are planted trees with the edge connecting the root decorated by an edge decoration of type o2.
— F0 is a forest either empty or taking the form:

F0 =

m0∏
j=1

T0,j

where the T0,j are subtrees at the root of some trees appearing in the decomposition of the forest F into product of
planted trees.

Example 23 We provide an example of the forests such that F0 · T1... · Tm ⊂ F . Let us consider F to be the following
decorated trees coming from the NLS equation

T =

k4

k1 k3

k2

k5

, T̄ =

k4

k1 k3

k2

k5

Because T starts with a brown edge that is an edge decorated by (t1, 0), F0 is not empty. Below, we list all the possible
splitting respecting this rule and also that the Ti with i ≥ 1 must be planted trees with a blue edge (decorated by (t2, 0))
at their root.

k

·

k4

k1 k3

k2

k5

,
k

·

k4

`
k5

·

k1

k2
k3

,

k4

`
k5

·

k1

k2
k3

,

k4

k1 k3

k2

k5

where ` = −k1 + k2 + k3 and k = −k4 + `+ k5. We also give below the decomposition for the decorated tree T̄ . Notice
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that now T̄0 could be empty.

1 ·

k4

k1 k3

k2

k5

, 1 ·

k4

`
k5

·

k1

k2
k3

,

k4

`
k5

·

k1

k2
k3

,

k4

k1 k3

k2

k5

We can obtain these terms by iterating a Butcher-Connes-Kreimer type copoduct ∆BCK : Ĥ0 → Ĥ0⊗Ĥ0, a simple version
of the one introduced in [BS22]. It is defined recursively by

∆BCKIo1(λ`kF ) =
(
Io1(λ`k·) ⊗ id

)
∆BCKF,

∆BCKIo2(λ`kF ) =
(
Io2(λ`k·) ⊗ id

)
∆BCKF + 1⊗ Io2(λ`kF ).

and then extended multiplicatively for the forest product. Below, we provide some examples of computations:

∆BCK

k4

k1 k3

k2

k5

=

k4

k1 k3

k2

k5

⊗ 1 + 1⊗

k4

k1 k3

k2

k5

+

k4

`
k5

⊗

k1

k2
k3

∆BCK

k1

k2
k3

=

k1

k2
k3

⊗ 1 + 1⊗

k1

k2
k3

Below, we introduce recursive maps ψBCK and ψ̃BCK that can compute the splitting describe above with the coproduct
∆BCK:

ψBCK =
(

id⊗ ψ̃BCK

)
∆BCK,

ψ̃BCK =M
(
ψ̃BCK ⊗ P1

)
∆BCK, ψ̃BCK(1) = 1

(6.30)

whereM is the forest product and P1 = id− 1∗ is is the augmentation projector. Here 1∗ is the co-unit which is non-zero
and equal to one only on the empty forest. The projector P1 forces at least one cut at each iteration and therefore the
recursion is well-defined. If we apply ψ to T , we obtain a linear combination of the terms of the form T0⊗ T1 · ... · Tm that
corresponds exactly to the splitting described above. We do not get a forest in the end but a term with a tensor product.
This is for distinguishing the root as it is needed in our splitting. As an example of computation of those maps, one has

ψ̃(

k1

k2
k3

) =

k1

k2
k3

ψ̃(

k4

k1 k3

k2

k5

) =

k4

k1 k3

k2

k5

+ ψ̃


k4

`
k5

 ·
k1

k2
k3

=

k4

k1 k3

k2

k5

+

k4

`
k5

·

k1

k2
k3

Theorem 6.3.5 For every forest F ∈ Ĥ0, (Πn,rF )(t, τ) takes the form:

∑
a∈[0,1]ẼF

∑
F0·T1...·Tm⊂F

CF e
itFdom(F0)

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(Tej )

ba,F,F0·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄))

(6.31)
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with the convention T0 = F0. The coefficients CF depend only on the node decorations of F . The coefficients b are
polynomial in t and are non zero only for a finite number of values of a. They are uniformly bounded in τ . Moreover,
they do not depend on the node decorations of the Ti, F0 and F that correspond to the frequencies.

We recall that in the above notation the parameters n and r in (Πn,rF )(t, τ) denote the regularity requirements and
maximum length of trees in the approximation respectively.

Proof. We proceed by induction on the size of the forest F . For the empty forest, the sum is equal to one by convention
and

(Πn,r1)(t, τ) = 1.

Let F1, F2 two decorated forests with F = F1 · F2 for which we have (6.31). We apply the induction hypothesis and get

(Πn,rF )(s, τ) = (Πn,rF1)(s, τ)(Πn,rF2)(s, τ)

=
∑

a1∈[0,1]
ẼF1

∑
a2∈[0,1]

ẼF2

∑
F1,0·T1,1...·T1,m1

⊂F1

∑
F2,0·T2,1...·T2,m2

⊂F2

CF1CF2

eit(Fdom(F1,0)+Fdom(F2,0))
m1∏
j=0

∏
e∈ẼT1,j

eiτa1,eFlow(Te1,j) ×
m2∏
j=0

∏
e∈ẼT2,j

eiτa2,eFlow(Te2,j)

ba1,F1,F1,0·...·T1,m1
× ba2,F2,F2,0·...·T2,m2

.

By using Definition (6.3.2), we have

Fdom(F1,0) + Fdom(F2,0) = Fdom(F0), F0 = F1,0 · F2,0.

Then, we can perform the disjoint sum of a1 and a1:

a = a1 + a2

by extending a1 (resp. a2) on the edges of F2 (resp. F1) by zero. Then, a is defined on the edges of F . We can gather
the sum on the forests by: ∑

F1,0·T1,1...·T1,m1
⊂F1

∑
F2,0·T2,1...·T2,m2

⊂F2

=
∑

F0·T1,1...·T1,m1
·T2,1...·T2,m2

⊂F

=
∑

F0·T1...·Tm⊂F

and we can also set

ba,F,F0·...·T1·...·Tm = ba1,F1,F1,0·...·T1,m1
× ba2,F2,F2,0·...·T2,m2

CF = CF1 × CF2

and see that the properties of the coefficient b are preserved by multiplication. Indeed, we have a bijection between
partitions of F = F1 ·F2 into a product of trees and the forest product of partitions of Fi. For a tree of the form Io1(λ`kF ),
one has

(ΠnIro1(λ`kF ))(t, τ) = t`1τ `2eitPo1 (k)(Πn,r−`F )(t, τ).

We multiply the formula for F obtained by the induction hypothesis by eitPo1 (k):

∑
a∈[0,1]ẼF

∑
F0·T1...·Tm⊂F

CF e
it(Fdom(F0)+Po1 (k))

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(Tej )

t`ba,F,F0·...·Tm(t, τ, iτFdom(Tj), iτFdom(T0,j̄)).

From Definition (6.3.2), we have

Fdom(F0) + Po1(k) = Fdom(Io1(λ`kF0)).
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Moreover, for Io1(λ`kF ), the forest at the root must be of the form Io1(λ`kF0). For the coefficients b, we have

t`1τ `2ba,F,F0·...·Tm = ba,Io1 (λ`
k
F ),Io1 (λ`

k
F0)·...·Tm , CIo1 (λ`

k
F ) = CF

It remains to prove the forest formula for a tree of the form Io2(λ`kF ). We have(
ΠnIro2(λ`kF )

)
(t, τ) = Kk,ro2

(
Πn
(
λ`Dr−|`|−1(F )

)
(·, τ), n

)
(t).

We apply the induction hypothesis on Πn,r−|`|−1. Then, the proof boils down to understand how the operator Kk,ro2 acts
on the forest formula. This operator computes first the dominant part of the oscillation. It is given for a fixed forest
F0 · T1... · Tm ⊂ F by

Pdom(Po2(k) + Fdom(F0)) = Fdom(Io2(λ`kF0)).

If this dominant part is integrated exactly, we obtain a factor of the form

eitFdom(Io2 (λ`kF0)).

This will correspond to forests Io2(λ`kF0) · ... · Tm. In this exact integration, we have terms without this factor which
corresponds to the forest 1 · Io2(λ`kF0) · ... · Tm as the forest connected to the root could be the empty forest. For the
lower part given by

(id− Pdom)(Po2(k) + Fdom(F )) = Flow(Io2(λ`kF0))

we perform an interpolation that produces terms of the form

eiτaFlow(Io2 (λ`kF0))), a ∈ [0, 1].

The operator Kk,ro2 depends on n which is the a priori regularity assumed on the initial data. With this information, if n
is sufficiently big, we can perform a full Taylor expansion via an interpolation that will produce terms of the form:

eiτaFlow(Io2 (λ`kF0)))eiτa
′Fdom(Io2 (λ`kF0))), a, a′ ∈ [0, 1].

These terms will be associated to a forest of the form 1 · Io2(λ`kF0) · ... · Tm. The factor eiτa
′Fdom(Io2 (λ`kF0))) will be

inside the coeffcients b. The interpolation also produces monomials in t and τ which implies the polynomial structure of
the coefficients b in t. Also, it produces coefficients bounded in τ such as the p̂j,r(f, τ) given in (6.21). The choice of
the a ∈ [0, 1] are fixed by the interpolation method and one uses only a finite number of them which implies that the
coefficients b are non-zero on a finite set of the a. Finally, we have

CIo2 (λ`
k
F ) = −i|∇|α(k)CF .

Theorem 6.3.6 For every decorated tree T = Io2(λkF ), (Πn,rT )(τ, τ) takes the form:

∑
a∈[0,1]ẼF

∑
T0·T1...·Tm⊂T

CT

m∏
j=0

∏
e∈ẼTj

eiτaeFlow(Tej )ba,T,T0·...·Tm(τ, iτFdom(Tj)) (6.32)

where the coefficients b are polynomial in τ with bounded coefficient in τ and are non zero for finite values of a. Moreover,
they do not depend on the nodes decorations of the Ti, F0 and F that correspond to the frequencies.

Proof. The proof works mostly in the same way as for Theorem (6.3.5) but with t = τ . The main difference is that when
we apply the operator Kk,ro2 , we put factors of the form eitFdom(Io2 (λkF0)) in the coefficients b.

6.3.3 Midpoint general resonance based schemes
In this section, we introduce new resonance based schemes where we iterate Duhamel’s formula in slightly different

manner. The iteration chosen follows the mid point rule. These schemes turn out to be a subclass of the general forest
formula (6.45). In this subclass it is also possible to work with a fairly general framework more closely aligned with
[BS22] which allows for an automatic handle on the local error of these schemes. In particular, in order to incorporate
the midpoint iterations and subsequent lower part interpolations we need to add more edge decorations on the trees
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representing the iterated integrals. For example, we can consider decorated trees of the form T n,o
e,χ = (T, n, o, e, χ) where

χ : ET → D. Here D is a finite set and encodes the following information for an edge e ∈ NT decorated by (t, p) :

— For t /∈ L+, the edge e is associated with a term of the form eiP(t,p)(kv). Then, χ(e) corresponds of a way of iterating
Duhamel’s formula not only using the leftmost point of the interval but a weighted sum of iterations on various points
in [0, τ ].

— For t ∈ L+, the edge e is associated with a term of the form
∫ t
aτ
eiP(t,p)(kv) · · · ds where a ∈ [0, 1] and it corresponds

to a different Duhamel’s iteration. Now, χ(e) gives a choice of a polynomial interpolation for the lower part of the
resonance in the discretisation.

For reasons of presentation we focus on the midpoint rule, however, we could also follow other types of Duhamel iterations.
Moreover, in this subclass we take the polynomial interpolation to be fixed.

To illustrate the central idea of a different way of iterating Duhamel’s formula, let us first consider the Nonlinear
Schrödinger equation. The usual iteration is given by

u(tn + s) = eiτ∆u(tn)− ieiτ∆

∫ τ

0

e−is∆
(
|u(tn + s)|2u(tn + s)

)
ds.

In Fourier space, we obtain

uk(tn + τ) = e−iτk
2

uk(tn) (6.33)

− ie−iτk
2 ∑
k=−k1+k2+k3

∫ τ

0

eisk
2

ûk1(tn + s)uk2(tn + s)uk3(tn + s)ds.

We can now choose to iterate this expression using two possible ways:

uk(tn + s) = e−isk
2

uk(tn) (6.34)

− ie−isk
2 ∑
k=−k1+k2+k3

∫ s

0

eis̃k
2

uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃.

and

uk(tn + s) = e−i(s−τ)k2

uk(tn + τ) (6.35)

− ie−isk
2 ∑
k=−k1+k2+k3

∫ s

τ

eis̃k
2

uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃.

The iteration (6.34) corresponds to the left end point of the interval [0, τ ] while (6.35) is the right end point. We now
have a choice over each term in (6.33) if we want the iteration of Duhamel’s formula to begin with (6.34) or (6.35). The
average of the two iterations gives the midpoint rule.

There are quite a lot of degrees of freedom as one can choose various linear combinations of Duhamel’s formulae in
different points. Let us mention that the tree structure is not modified if one changes the iteration but the definition of Π
has to reflect this new formulation. The midpoint rule oscillatory integrals are given by

Πmid

(
F · F̄

)
(s, τ) = (ΠmidF )(s, τ)

(
ΠmidF̄

)
(s, τ),

(ΠmidIo1(λkF ))(s, τ) =
1

2
eisPo1 (k)((Πmid,1F )(s, τ) + (Πmid,2F )(s, τ)),

(Πmid,1Io2(λkF ))(s, τ) = −i|∇|α(k)

∫ s

τ

eiξPo2 (k)(ΠmidF )(ξ, τ)dξ,

(Πmid,2Io2(λkF ))(s, τ) = −i|∇|α(k)

∫ s

0

eiξPo2 (k)(ΠmidF )(ξ, τ)dξ.

(6.36)

We notice that, in this definition, we have to keep track of the time step τ in order to remember the interval [0, τ ]. In
this definition, we have assumed that the Duhamel iteration corresponds to edges decorated by t1. Moreover, we have
supposed that F is not empty for (ΠmidIo1(λkF ))(s, τ) and s 6= τ . If F is empty, we set

(ΠmidIo1(λk1))(s, τ) = eisPo1 (k). (6.37)

If τ = s, we set

(ΠmidIo1(λkF ))(τ, τ) = (ΠmidIo1(λkF ))(τ) = eiτPo1 (k)(Πmid,2F )(τ, τ). (6.38)
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The last two specific cases are necessary for building up the scheme. Indeed, (6.37) corresponds to the leaves of our
trees or when we terminate on an initial data uki . Here, we will apply the midpoint rule in the sequel (see (6.41) in the
definition of Υp

mid(T )(v, τ))

1

2
ukj (0) + e−iτPo1 (kj) 1

2
ukj (τ).

The second condition (6.38) corresponds to the fact that the first is not the midpoint rule approximation as we do not
need to perform it as τ = s.

Remark 6.3.7 This approach also works for the more general scheme given in [ABBS22b]. The main difference is that
now Υp

mid(T )(v, τ) defined in the sequel is part of the definition of Πmid.

The scheme Πn,r
mid is defined as the same as for Πmid but now we discretise the time integrals:(

Πn,r
mid,jIo2(λkF )

)
(s, τ) = Kk,ro2,j(Π

n,r
mid(F )(·, τ), n)(s, τ), j ∈ {1, 2}

where the map Kk,ro2,1(·)(s, τ) uses the exact integration
∫ τ
s
...dξ and Kk,ro2,2 the one given by

∫ s
0
...dξ. We first introduce

some notations:

Definition 2 — For a decorated tree Te = (T, e) with only edge decorations, we define the symmetry factor S(Te)
inductively by S(1) =1, while if T is of the form∏

i,j

I(tti ,pi)
(Ti,j)

βi,j ,

with Ti,j 6= Ti,` for j 6= `, then

S(T ) :=
(∏
i,j

S(Ti,j)
βi,jβi,j !

)
. (6.39)

We extend this definition to any tree T n,o
e in T by setting:

S(T n,o
e ) :=S(Te).

Let us stress that the symmetric factor depends only on the edges decorations but not on the nodes decorations given by
the frequencies.

— Then, we define the map Υp
mid(T )(v, τ) for

T = I(t1,a)

(
λkI(t2,a)(λk

n∏
i=1

I(t1,0)(λkiTi)

m∏
j=1

I(t1,1)(λk̃j T̃j))

)
, a ∈ {0, 1}

by

Υp
mid(T )(v, τ) :=∂nv ∂

m
v̄ pa(v, v̄)

n∏
i=1

Υp
mid(I(t1,0)(λkiTi))(v, τ) (6.40)

m∏
j=1

Υp
mid(I(t1,1)(λk̃j T̃j))(v, τ)

and

Υp
mid(I(t1,0)(λk))(v, τ) :=

1

2
vk(0) +

1

2
e−iPo1 (k)τvk(τ)

Υp
mid(I(t1,1)(λk))(v, τ) :=

1

2
v̄k(0) +

1

2
eiPo1 (k)τ v̄k(τ).

(6.41)

Above, we have used the notation:

p0(v, v̄) = p(v, v̄), p1(v, v̄) = p(v, v̄)

In the sequel, we will use the following short hand notation:

Υp
mid(T )(v, τ) = Ῡp

mid(T )(v, τ).
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— We set

T̂0(R) = {I(t1,0)(λkI(t2,0)(λk

N∏
i=1

Ti

M∏
j=1

T̃j)), I(t1,0)(λk)

Ti ∈ T̂0(R), T̃j ∈ ¯̂T0(R), k ∈ Zd}

¯̂T0(R) = {I(t1,1)(λkI(t2,1)(λk

N∏
i=1

Ti

M∏
j=1

T̃j)), I(t1,1)(λk)

Ti ∈ ¯̂T0(R), T̃j ∈ T̂0(R), k ∈ Zd}

T̂2(R) = {I(t2,0)(λk

N∏
i=1

Ti

M∏
j=1

T̃j), Ti ∈ T̂0(R), T̃j ∈ ¯̂T0(R), k ∈ Zd}

For a fixed k ∈ Zd, we denote the set T̂ k0 (R) (resp. ¯̂T k0 (R) and T̂ k2 (R)) as the subset of T̂0(R) (resp. ¯̂T0(R) and
¯̂T k2 (R)) whose decorated trees have decorations on the node connected to the root given by k. For r ∈ Z, r ≥ −1, we
set:

T̂ r,k0 (R) = {T o
e ∈ T̂ k0 (R) , n+(T o

e ) ≤ r + 1}.

In the previous space, we disregard iterated integrals which have more than r+ 1 integrals and will be of order O(τr+2).
The set T̂ r,k2 (R) is defined as the same from T̂ k2 (R). In the sequel, we will use the short hand notation for T ∈ T̂ k2 (R):

Υp
mid(T )(v, τ) = Υp

mid(I(t1,0)(λkT ))(v, τ).

This truncation leads exactly to the current local error behaviour as shown in the following proposition which forms the
basis of our local error analysis in Theorem (6.3.15).

Proposition 6.3.8 The tree series given by

Urmid,k(τ, v) =
∑

T∈T̂ r,k0 (R)

Υp
mid(T )(v, τ)

S(T )
(ΠmidT )(τ) (6.42)

where o1 = (t1, 0), is the k-th Fourier coefficient of a solution of (6.33) with the midpoint rule expansion up to order r+ 1.

Proof. The proof follows the same lines as the one given in [BS22, Prop. 4.3].

We are now able to define the main resonance based scheme:

Definition 6.3.9 The midpoint resonance based scheme is given by:

Un,rmid,k(τ, v) =
∑

T∈T̂ r,k0 (R)

Υp
mid(T )(v, τ)

S(T )
(Πn,r

midT )(τ) (6.43)

It is obtained by replacing the character Πr
mid by Πn,r

mid in (6.42).

The new scheme (6.43) can be described by the same type of forest formula introduced before.

Proposition 6.3.10 For every forest F , (Πn,r
midF )(t, τ) is of the form of (6.31). For every decorated tree T = Io1(λkIo2(λkF )),

(Πn,r
midT )(τ) is of the form (6.32).

Proof. The proof follow by induction as in Theorem-(6.3.5) and Theorem (6.3.6).

Before stating our main result connecting the midpoint resonance based schemes to our earlier forest formula, we need to
introduce a new map

Υp
χ(T )(un+χv

kv
, v ∈ LT , τ)

defined as the same as Υp
mid(T )(v, τ) except that for the leaves we use

e−iχuτPoeu (ku)un+χu
ku

, (6.44)

where eu is the outgoing edge of u in T and oeu corresponds to the edge decoration of eu. The map Υp
χ(T ) allows to

parametrise implicit schemes as the scheme given by the midpoint rule.
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Theorem 6.3.11 The low regularity scheme Un,rmid,k is of the form:

un+1
k = eiτPo1 (k)unk + eiτPo1 (k)

∑
T∈T̂ r,k2 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(Tej ) Υp
χ(T )(un+χv

kv
, v ∈ LT , τ)

S(T )
,

(6.45)

where T̂ r,k2 (R) was introduced in Definition (2).

Proof. First, we notice that

Un,rmid,k(τ, v) = eiτPo1 (k)unk + eiτPo1 (k)
∑

T∈T̂ r,k2 (R)

Υp
mid(T )(v, τ)

S(T )
(Πn,r

midT )(τ).

Then, the result is just a consequence of Theorem (6.3.6) applied to each of the (Πn,r
midT )(τ). Indeed, one multiplies the

coefficents for a decorated trees (6.32) with Υp
mid(T )(v, τ).

For the local error, we can adapt [BS22, Def. 3.11].

Definition 6.3.12 Let n ∈ N, r ∈ Z. We recursively define Lrlow(·, n) as

Lrlow(F, n) = 1, r < 0.

Else, when r ≥ 0, we let:

Lrlow(1, n) = 1, Lrlow(F · F̄ , n) = Lrlow(F, n) + Lrlow(F̄ , n)

Lrlow(Io1(λ`kF ), n) = Lr−|`|low (F, n)

Lrlow(Io2(λ`kF ), n) = kαLr−|`|−1
low (F, n) + 1{r−|`|≥0}

∑
j

kn̄j

where

n̄j = max
m

(
n,deg

(
P

(F
(1)
j ,F

(2)
j ,m)

Flow(I(t2,p)(λ
`
kF

(1)
j ))r−|`|+1−m + α

))
with

∆Dr−|`|−1(F ) =
∑
j

F
(1)
j ⊗ F (2)

j ,

An(F
(2)
j )Bn

(
F

(1)
j

)
(ξ, τ) =

∑
|m|≤r−|`|−1

P
(F

(1)
j ,F

(2)
j ,m)

Q
(F

(1)
j ,F

(2)
j ,m)

ξm1τm2

and Flow is defined in Definition (6.3.2).

Remark 6.3.13 The main difference between the definition above and [BS22, Def. 3.11] is the fact that we deal with
monomials of the form sm1τm2 due to the fact that τ appears in the exact integrations. These modifications are minor
from the original structure as the formalism is robust from moving from decorations on the edges in N to N2.

With the previous definition, one is able to give the local error of the approximations of the oscillatory integrals and for
the schemes. The proofs are exactly the same as in [BS22, Section 3.3].

Theorem 6.3.14 For every T ∈ T one has,

(ΠmidT −Πn,r
midT )(τ) = O

(
τr+2Lrlow(T, n)

)
.

The numerical scheme (6.42) approximates the exact solution locally up to order r + 2. More precisely, the following
Theorem holds:
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Theorem 6.3.15 (Local error) The numerical scheme (6.42) with initial value v = u(0) approximates the exact
solution Uk(τ, v) up to a local error of type

Un,rmid,k(τ, v)− Uk(τ, v) =
∑

T∈T̃ r,k0 (R)

O
(
τr+2Lrlow(T, n)Υp

mid(λkT )(v, τ)
)

where the operator Lrlow(T, n), given in Definition (6.3.12), embeds the necessary regularity of the solution.

Remark 6.3.16 The local error of the resonance based low regularity schemes does not depend on the choice of the
polynomial interpolation and the iteration of Duhamel’s formula but only on the structure of the resonances.

Remark 6.3.17 As in [BS22, Prop. 3.18], one can always map back to physical space the scheme Un,rmid,k. This due to
the fact that the structure of the resonances and their exact integration is the same in this context.

6.4 Symmetric schemes
Having introduced the general forest formula (6.31) and the general subclass of midpoint general resonance based

schemes, we now seek to answer the central question of this manuscript: “Which schemes in these classes are symmetric
in the sense of definition (1)?” For this we take two routes: Firstly, for the subclass of midpoint general resonance based
schemes it turns out that symmetry of the interpolation nodes is sufficient for the symmetry of the schemes. Secondly, for
schemes captured by the forest formula (6.31) we can study the form of their adjoint method and find conditions on
the coefficients of these schemes under which the methods are symmetric. We recall the adjoint method of a numerical
scheme vn+1 = Φτv

n is defined by Φ̂τ := Φ−1
−τ and the method is said to be symmetric if Φ̂τ = Φτ . We can find the

adjoint method of a scheme simply by the operations n↔ n+ 1 and τ ↔ −τ . The swapping of n and n+ 1 corresponds
in our case to changing vk(0) into vk(τ). We define Υ̃p

mid(T )(v, τ) as the same as Υp
mid(T )(v, τ) exept that we exchange

vk(0) and vk(τ) in the definition:

Υ̃p
mid(I(t1,0)(λk))(v, τ) :=

1

2
vk(τ) +

1

2
eiPo1 (k)τvk(0)

Υ̃p
mid(I(t1,1)(λk))(v, τ) :=

1

2
v̄k(τ) +

1

2
e−iPo1 (k)τ v̄k(0).

6.4.1 Symmetric interpolation
We prove in the next proposition that the Duhamel’s midpoint iteration truncated up to order r+ 1 gives a symmetric

scheme. The proof uses the recursive construction of the iterated integrals.

Proposition 6.4.1 The scheme defined by (6.42) is symmetric.

Proof. We first observe that the scheme is given by

uk(τ) = eiτPo1 (k)uk(0) +
∑

T∈T̂ r,k0 (R)\{I(t1,0)(λk1)}

Υp
mid(T )(u, τ)

S(T )
(ΠmidT )(τ).

Now we swap n and n+ 1, and we also send τ onto −τ , we obtain

uk(τ) = eiτPo1 (k)uk(0)− eiτPo1 (k)
∑

T∈T̂ r,k0 (R)\{I(t1,0)(λk1)}

Υ̃p
mid(T )(u,−τ)

S(T )
(ΠmidT )(−τ).

Then, one has to show that two sums coincide for proving that the scheme is symmetric. We prove that this is the case
for each term of the sum namely, one has:

−e−iτPo1 (k) Υ̃p
mid(T )(u,−τ)

S(T )
(ΠmidT )(−τ) =

Υp
mid(T )(u, τ)

S(T )
(ΠmidT )(τ). (6.46)

We proceed by induction on the construction of the trees for showing (6.46). Decorated trees in T̂ r,k0 (R) \ {I(t1,0)(λk1)}
are necessarily of the form

T = I(t1,0)(λkI(t2,0)(λkF )).



6.4. Symmetric schemes 169

We notice that

(ΠmidT )(−τ) = −i|∇|α(k)eiτP(t1,0)(k)

∫ −τ
0

e−isP(t1,0)(k)(ΠF )mid(s,−τ)ds.

By performing the change of variable s = s+ τ , one gets

(ΠmidT )(−τ) = i|∇|α(k)

∫ τ

0

eisP(t1,0)(k)(ΠmidF )(s− τ,−τ)ds.

It remains to show that

Υ̃p
mid(Tj)(u,−τ)

S(Tj)
(ΠmidTj)(s− τ,−τ) =

Υp
mid(Tj)(u, τ)

S(Tj)
(ΠmidTj)(s, τ),

where Tj = Io1(λkjFj) is a decorated tree appearing in the decomposition of F into a product of planted trees. If Fj = 1,
with loss of generality, we suppose that o1 = (t1, 0), then

Υp
mid(Tj)(u, τ)

S(Tj)
(ΠmidTj)(s, τ) =

(
1

2
e−iτPo1 (kj)ukj (τ) +

1

2
ukj (0)

)
eisPo1 (kj)

=
1

2
ei(s−τ)Po1 (kj)ukj (τ) +

1

2
eisPo1 (kj)ukj (0)

and

Υ̃p
mid(Tj)(u,−τ)

S(Tj)
(ΠmidTj)(s− τ,−τ) =

(
1

2
eiτPo1 (kj)ukj (0) +

1

2
ukj (τ)

)
ei(s−τ)Po1 (kj)

=
1

2
ei(s−τ)Po1 (kj)ukj (τ) +

1

2
eisPo1 (kj)ukj (0).

For (t1, 1), we proceed analogously with the conjugate. For a more general Fj , we have:

(ΠmidTj)(s− τ,−τ) =
1

2
ei(s−τ)Po1 (kj)((Πmid,1Fj)(s− τ,−τ) + (Πmid,2Fj)(s− τ, 0)).

Then Fj is of the form Io2(λkj F̂j). Thus, we have(
Πmid,1Io2(λkj F̂j)

)
(s− τ,−τ) = −i|∇|α(kj)

∫ s−τ

−τ
eiξPo2 (kj)(ΠmidF̂j)(ξ,−τ)dξ,

= −i|∇|α(kj)

∫ s

0

ei(ξ−τ)Po2 (kj)(ΠmidF̂j)(ξ − τ,−τ)dξ

and (
Πmid,2Io2(λkj F̂j)

)
(s− τ, 0) = −i|∇|α(kj)

∫ s−τ

0

eiξPo2 (k)(ΠmidF̂j)(ξ,−τ)dξ

= −i|∇|α(kj)

∫ s

τ

ei(ξ−τ)Po2 (k)(ΠmidF̂j)(ξ − τ,−τ)dξ.

We conclude by applying the induction hypothesis on F̂j that is

Υ̃p
mid(Fj)(u,−τ)

S(Fj)
(ΠmidF̂j)(s− τ,−τ) =

Υp
mid(Fj)(u, τ)

S(Fj)
(ΠmidF̂j)(s, τ).

We recall the scheme given by the midpoint rule (6.43)

Un,rmid,k(τ, v) =
∑

T∈T̂ r,k0 (R)

Υp
mid(T )(v, τ)

S(T )
(Πn,r

midT )(τ). (6.47)

The terms (Πn,r
midT )(τ) are constructed in a similar way as (ΠmidT )(τ). The main difference happens for the computation

of the time integrals. Indeed, (Πn,r
midT )(τ) performs an approximation with a polynomial interpolation and we need to do

it in a symmetric way. We need the following lemma on the polynomial interpolation in order to guarantee this property:
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Lemma 6.4.2 If the interpolation nodes aj ∈ [0, 1], j = 0, . . . , r are symmetrically distributed, i.e. aj = 1− ar−j , j =
0, . . . , r, then

p̃r(s− τ,−τ) =

r∑
j=0

e−iajτLlowpj(s− τ,−τ) = e−iτLlow p̃r(s, τ), (6.48)

where we have used the short hand notation

p̃r(s, τ) := p̃r(exp(isLlow), τ).

Proof. To begin with, for any j = 0, . . . , r we have by definition of the interpolating polynomials p̃r(s, τ) and p̃r(s,−τ)

p̃r(ajτ, τ) = eiajτLlow , p̃r(−ajτ,−τ) = eiajτLlow .

Thus in particular we have

p̃r(ajτ − τ,−τ) = p̃r(−ar−jτ,−τ) = eiar−jτLlow

= eiτLlowe−iajτLlow = eiτLlow p̃r(ajτ, τ),

for each j = 0, . . . , r. Thus, for any given τ , p̃r(s− τ,−τ) and e−iτLlow p̃r(s, τ) are two polynomials in s of degree ≤ r
which match at r + 1 distinct points, so they are identical.

Theorem 6.4.3 The scheme given by (6.43) is symmetric.

Proof. The proof works in the same manner as for Proposition (6.4.1). The main difference is the use of the operator
Kk,ro2,j . We suppose that

Υ̃p
mid(Fj)(u,−τ)

S(Fj)
(Πn,r

midF̂j)(s− τ,−τ) =
Υp

mid(Fj)(u, τ)

S(Fj)
(Πn,r

midF̂j)(s, τ) (6.49)

and we consider (
Πn,r

mid,1Io2(λkj F̂j)
)

(s− τ,−τ) = Kkj ,ro2,1

(
(Πn,r

midF̂j)(·,−τ), n
)

(s− τ,−τ).

From (6.49), we know that Πn,r
midF̂j is of the form

(Πn,r
midF̂j)(s, τ) = ei(s−τ)Fdom(F̂j)A(s− τ) + eisFdom(F̂j)A(s).

Now, when we apply the operator Kk,ro2,j , we get among various cases the exact integration

r∑
`=0

∫ s−τ

−τ
eiξLdome−iajτLlowp`,r(ξ,−τ)

(
eiτFdom(F̂j)A(ξ + τ) +A(ξ)

)
dξ

=

r∑
`=0

∫ s

0

ei(ξ−τ)Ldome−iajτLlowp`,r(ξ − τ,−τ)
(
eiτFdom(F̂j)A(ξ) +A(ξ − τ)

)
dξ

=

∫ s

0

ei(ξ−τ)Ldome−iτLlow p̃r(s, τ)
(
eiτFdom(F̂j)A(ξ) +A(ξ − τ)

)
dξ

where from the second to the third line, we have used the assumption (6.48) and we have

Ldom + Llow = Po2(kj) + Fdom(F̂j).

Therefore, we obtain in the end

e−iτPo2 (kj)

∫ s

0

eiξLdom p̃r(s, τ)
(
A(ξ) + e−iτFdom(F̂j)A(ξ − τ)

)
dξ

which allows us to conclude the symmetry of the method.

6.4.2 Conditions for symmetry
Based on the general expression of the scheme (6.45) we can arrive at sufficient conditions for the methods to be

symmetric. The following observation is crucial:
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Lemma 6.4.4 Let T a decorated tree in T̂ k0 (R) as introduced in (6.29). We have

Fdom(T ) +
∑
e∈ẼT

Flow(T e) =
∑
v∈LT

Poev (kv)

where ev is the outgoing edge of v in T and oev corresponds to the edge decoration of ev. The kv are the leaves decorations
corresponding to the frequencices. The dominant part Fdom(T ) and the lower parts Flow(T e) depend on them.

Before proving this statement let us briefly exhibit the meaning based on a simple example already introduced in
Example (21).

Example 24 We consider the simple decorated tree from the NLSE

T = I(t1,0)(λkT̃ ) =

k1

k2
k3

,

with k = −k1 + k2 + k3 we use the fact that

P(t1,0)(k) = −k2, P(t1,1)(k) = k2

to find ∑
v∈LT

Poev (kv) = P(t1,1)(k1) + P(t1,0)(k2) + P(t1,0)(k3) = k2
1 − k2

2 − k2
3.

Moreover we have already established in Example (21) that

Fdom(T ) = Fdom(T̃ ) + P(t1,0)(k) = 2k2
1 − k2

On the other hand, we have

Flow(T̃ ) = k2 − k2
1 − k2

2 − k2
3

and the set ẼT is composed of only one edge which is the only blue edge in T . We have T e = T̃ . In the end

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = Fdom(T ) + Flow(T )

= 2k2
1 − k2 + k2 − k2

1 − k2
2 − k2

3

= k2
1 − k2

2 − k2
3

=
∑
v∈LT

Poev (kv).

Proof of Lemma (6.4.5). We proceed by induction on the size of the trees. If T is of the form I(t1,a)(λk1) then

Fdom(I(t1,a)(λk1)) = P(t1,a)(k)

which allows us to conclude the desired result since ẼT is empty and this tree has only one leaf giving a contribution
P(t1,a)(k). If T is of the form I(t1,a)(λkI(t2,a)(λkF )) then

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = P(t1,a)(k) + Fdom(I(t2,a)(λkF ))

+ Flow(I(t2,a)(λkF )) +
∑

e∈ẼT \{ē}

Flow(T e)

where ē denotes the edge such that T ē = I(t2,a)(λkF ). Now, we use Definition (6.3.2) to notice that

Fdom(I(t2,a)(λkF )) + Flow(I(t2,a)(λkF )) = P(t2,a)(k) + Fdom(F ).

By definition, we have also

P(t2,a)(k) + P(t1,a)(k) = 0. (6.50)
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We got in the end

Fdom(T ) +
∑
e∈ẼT

Flow(T e) = Fdom(F ) +
∑

e∈ẼT \{ē}

Flow(T e)

= Fdom(F ) +
∑
e∈ẼF

Flow(F e).

We continue the induction by observing that F is a product of trees in T̃ r,k0 (R). We apply the induction hypothesis on
each of these trees and use the fact that Fdom is additive for the forest product in order to conclude.

Lemma 6.4.5 Let T0 · T1... · Tm ⊂ I(t2,0)(λkF ) ∈ T̂ k2 (R) be a splitting of F as introduced in (6.29). Then we have

m∑
j=0

Fdom(Tj) +
∑
e∈ẼTj

Flow(T ej )

 =
∑
v∈LF

Poev (kv) + P(t2,0)(k). (6.51)

Proof. This is a consequence of Lemma (6.4.4) applied to each of the Tj . In the end, we do not get all the leaves of the
Tj but only the ones in F because the root of the Tj (j ≥ 0) is associated with a leaf in a Ti. Indeed, this introduced a
cancellation of the type (6.50).

Example 25 Let us consider the following forest

F = k4 ·

k1 k3

k2

· k5

such that T = I(t2,0)(λkF ) is identified with

T =

k4

k1 k3

k2

k5

with k = −k1 − k4 + k2 + k3 + k5. We consider the following forest splitting of T , with T0 · T1 ⊂ T :

T0 =

k4

`
k5

, T1 =

k1

k2
k3

with k = k4 − `− k5 and ` = −k1 + k2 + k3. Let us compute both sides of the identity (6.51) for this forest splitting:
Beginning with the left hand side where we have

Fdom(T0) = 2k2
4.

Moreover, since the tree has just one single blue edge the sum simplifies and we find∑
e∈ẼT0

Flow(T0) = Flow(T e0 ) = −k2
4 − k2

5 − `2 + k2,

and, similarly for T1 we have

Fdom(T1) = 2k2
1,∑

e∈ẼT1

Flow(T e1 ) = −k2
1 − k2

2 − k2
3 + `2.
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For the right hand side on the other hand we obtain∑
v∈LF

Poev (kv) = k2
4 + k2

1 − k2
2 − k2

3 − k2
5,

P(t2,0)(k) = −k2.

Combining all of the above expressions clearly shows that the identity (6.51) is indeed satisfied in the present example.

Remark 6.4.6 The appearance of the term P(t2,0)(k) in (6.51) is due to the fact that here we consider forest splittings
of trees inside T̂ k2 (R). Had we instead chosen to work with trees inside T̂ k0 (R) this term would disappear from the above
identity. Essentially, like in the previous proof, if we want to express the sum of the dominant and lower order parts in a
forest splitting we can take advantage of cancellations of the form (6.50), meaning as soon as a blue dotted and brown
solid edge are adjacent this leads to cancellation of the contribution from the nodal decoration in the overall identity.
This means the only terms left are those which cannot be paired with an edge of conjugate colour, in particular the root
and all the leaves of the resulting tree.

Proposition 6.4.7 If the coefficients b, satisfy the following simple relation

−

(
m∏
j=0

ezj

)
ba,χ,T,T0·...·Tm(−τ,−zj) = b1−a,1−χ,T,T0·...·Tm(τ, zj) (6.52)

for every a ∈ [0, 1]ẼF , χ ∈ {0, 1}LT and any splitting T0 · T1... · Tm ⊂ T , then the method (6.45) is symmetric.

Proof. Let us consider the adjoint method Φ̂n→n+1 = Φ−1
n+1→n, which can be expressed as follows

un+1
k = eiτPo1 (k)unk −

∑
T∈T̂ r,k2 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

ba,χ,T,T0·...·Tm(τ, iτFdom(Tj), j ∈ {0, ...,m})∏
e∈ẼTj

eiτaeFlow(Tej ) Υp
χ(T )(un+χv

kv
, v ∈ LT ), τ

S(T )
.

By using Lemma (6.4.5), we have

un+1
k = eiτPo1 (k)unk − eiτPo1 (k)

∑
T∈T̃ r,k0 (R)

∑
a∈[0,1]ẼF

∑
χ∈{0,1}LT

∑
T0·T1...·Tm⊂T

CT

(
m∏
j=0

eiτFdom(Tj)

)
ba,χ,T,T0·...·Tm(−τ,−iτFdom(Tj), j ∈ {0, ...,m})

∏
e∈ẼTj

eiτ(1−ae)Flow(Tej ) Υp
χ(T )(un+1−χv

kv
, v ∈ LT , τ)

S(T )

∏
v∈LT

e−iτPoev (kv).

(6.53)

Here we have used the fact that

Υp
χ(T )(un+1−χv

kv
, v ∈ LT , τ)

∏
v∈LT

e−iτPoev (kv) = Υp
χ(T )(un+χv

kv
, v ∈ LT , τ)

which can be proved easily by induction on T using the recursive definition of Υp
χ. We have also used the identity

Po1(k) = −P(t2,0)(k).

By comparing (6.45) and (6.53) we immediately obtain the conditions (6.52) for symmetry.

6.4.3 Examples
In this section we illustrate the general framework introduced previously on two examples: the nonlinear Schrödinger

equation (see Section (6.4.3)) and the Korteweg-de Vries equation (see Section (6.4.3)).
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The Nonlinear Schrödinger equation

As a first example let us consider the cubic nonlinear Schrödinger (NLS) equation

i∂tu(t, x) + ∆u(t, x) = |u(t, x)|2u(t, x) (t, x) ∈ R× Td (6.54)

with an initial condition
u|t=0 = u0. (6.55)

We start with the construction of a first-order symmetric low-regularity scheme for (6.54) and illustrate how our general
framework covers both the previous explicit low-regularity schemes [BS22], [ABBS22b] and the case of symmetric low-
regularity schemes for NLS which was recently introduced and then studied in [AB23b] and [FMS23]. We then exhibit
our new symmetric midpoint rule framework (6.43), which in particular allows for a symmetric second order scheme which
is optimal in the sense of regularity.

Note that the Schrödinger equation (6.54) fits into the general framework (6.1) with

L
(
∇, 1

ε

)
= ∆, α = 0 and p(u, u) = u2u.

Here L = {t1, t2}, Pt1 = −λ2 and Pt2 = λ2, and the structure constant CT = 1 for all T ∈ T̂ r,k0 (R), for any r ∈ N.
Then, we denote by an edge decorated by (t1, 0), an edge denoted by (t1, 1) by an edge decorated by (t2, 0) and by
an edge decorated by (t2, 1). The set T̂ 0,k

0 (R) is given by:

T̂ 0,k
0 (R) =

{
T0, T1, ki ∈ Zd

}
, T0 =

k

, T1 =

k1

k2
k3

, (6.56)

and T̂ 1,k
0 (R) is given by:

T̂ 1,k
0 (R) =

{
T0, T1, T2, T3, ki ∈ Zd

}
, T2 =

k4

k1 k3

k2

k5

, T3 =

k4

k1 k3

k2

k5

. (6.57)

If we take all coefficients equal to zero whenever T is not given by

T =

k1

k2
k3

,

and we consider only the forest F = T , then the general formula (6.45) reduces to a single term of the form:

un+1
k = e−iτk

2

unk + e−iτk
2 ∑
a∈[0,1]

∑
χ∈{0,1}LT

ba,χ(τ, iτFdom(T ))

eiτaFlow(T ) Υp
χ(T )(un+χv

kv
, v ∈ LT )

S(T )
.

Note here |LT | = 3 so we can equivalently write the above expression in the following form in Fourier coordinates. Indeed,
by noting that Fdom(T ) = 2k2

1, Flow(T ) = 2k2k3 − 2k1k2 − 2k1k3 we have

un+1
k = e−iτk

2

unk + e−iτk
2 ∑
k=−k1+k2+k3

∑
a∈[0,1]

∑
χ∈{0,1}3

ba,χ(τ, 2iτk2
1)

eiτa2(k2k3−k1k2−k1k3)v̂n+χ1
k1

v̂n+χ2
k2

v̂n+χ3
k3

.

(6.58)

First of all we note that the first order integrator developed in [OS18] falls in this category: Take b0,(0,0,0)(τ, z) = −iτϕ1(z)
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and all other coefficients to zero then we find

un+1
k = e−iτk

2

unk − ie−iτk
2 ∑
k=−k1+k2+k3

τϕ1(2iτk2
1)unk1

unk2
unk3

,

which is exactly equal to the integrator introduced in [OS18, (4)]. In physical space the above scheme is given by

un+1 = ΦτNLS,1(un) =eiτ∆un − ieiτ∆((un)2ϕ1(−2iτ∆)un
)
, (6.59)

where the filter function ϕ1 is defined as ϕ1(σ) = eσ−1
σ

.
Let us now consider symmetric schemes. Following Proposition (6.4.7) the scheme (6.45) is symmetric if the following

equality is satisfied for all a ∈ [0, 1], χ ∈ {0, 1}3:

−ezba,χ(−τ,−z) = b1−a,1−χ(τ, z). (6.60)

Intuitively speaking the above equations provide a sufficient condition relating the coefficients ba,χ and b1−a,1−χ therefore
allowing us to find symmetric schemes if we specify one of the two for each value of a, χ. There are a large class of first
order schemes in this form, but perhaps one of the simplest ones is the following symmetrised version of the integrator
from [OS18] which was recently introduced in [AB23b]: Take b0,(0,0,0)(τ, z) = i/2τϕ1(z/2), then by (6.60) we should
choose b1,(1,1,1)(τ, z) = i/2τϕ1(−z/2). We take all other coefficients equal to zero, which results precisely in the following
integrator:

un+1 = ΦτNLS,2(un) =eiτ∆un − i τ
2
eiτ∆((un)2ϕ1(−iτ∆)un

)
− i τ

2

(
(un+1)2ϕ1(iτ∆)un+1

)
.

(6.61)

Note this is not the only symmetric first order integrator that can be found in this way. For example we could have
taken

b0,(1,0,0)(τ, z) = i/2τϕ1(z/2), b1,(0,1,1)(τ, z) = i/2τϕ1(−z/2),

and all other coefficients zero.
Next we choose the coefficients

ba,(χ1,χ2,χ3)(τ, z) = −i τ
16
ϕ1(z)

for every a, χj ∈ {0, 1}. The other coefficients are set to be zero which leads to the following symmetric scheme (6.54)

un+1 = ΦτNLS,3(un) (6.62)

= eiτ∆un − i τ
16
eiτ∆

(
(un + e−iτ∆un+1)2ϕ1(−2iτ∆)

(
un + eiτ∆un+1

))
− i τ

16

(
(eiτ∆un + un+1)2ϕ1(2iτ∆)

(
e−iτ∆un + un+1

))
.

The above scheme can also be recursively derived by the general framework of the midpoint rule (6.43) and therefore
allows for higher order symmetric counterparts which are optimal in the sense of regularity. Our characterisation of
symmetric schemes in Proposition (6.4.7) immediately confirm this method to be symmetric, since for all a, χ we have

−ezba,χ(−τ,−z) = −i τ
16
ezϕ1(−z) = −i τ

16

1− ez

−z = ϕ1(z)b1−a,1−χ(τ, z).

Proposition 6.4.8 The scheme (6.62) can be derived from the general tree series expansion (6.43).

Proof. At first order it follows from (6.43) that we have

Urk (τ, u) =
∑

T∈T̂ 0,k
0 (R)

Υp
mid(T )(u, τ)

S(T )
(Πn,r

midT0)(τ)

=
Υp

mid(T0)(u, τ)

S(T0)
(Πn,r

midT0)(τ) +
∑

k=−k1+k2+k3

Υp
mid(T1)(u, τ)

S(T1)
(Πn,r

midT1)(τ)
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From the definition of the symmetry factor, one has

S(T0) = 1, S(T1) = 2

for S(T1) the factor two is due to the fact that we have two solid brown edges attached to the same node in T1. Moreover,
we have:

Υp
mid(T0)(u, τ) = u`k

Υ̂p
mid(T0)(u, τ) =

1

2
(eiτk

2

u`+1
k + u`k)

where we have used ` instead of n such that to not create confusion with Πn,r. By multiplicativity, for the following tree:

T̃1 = k1

k2
k3 ,

we have

Υp
mid(T1)(u, τ) = Υ̂p

mid(T̃1)(u, τ)

= 2
1

2
(e−iτk

2
1 ū`+1

k1
+ ū`k1

)
1

2
(eiτk

2
2u`+1

k2
+ u`k2

)
1

2
(eiτk

2
3u`+1

k3
+ u`k3

)

On the other hand, we have

(Πn,r
midT0)(τ) = e−iτk

2

, (Πn,r
midT̃1)(s, τ) = ei(k

2
1−k

2
2−k

2
3),

Then,

(Πn,r
midT1)(τ) = e−iτk

2

Kk,ro2 ((Πn,r−1
mid T̃1)(·, τ), n)(τ)

We compute the scheme for n = 1 and r = 0. We obtain the following term:

Kk,ro2 ((Πn,r−1
mid T̃1)(·, τ), n)(τ) = −i

∫ τ

0

eisLdomds

(
1 + eiτLlow

2

)
where

Ldom = 2k2
1, Llow = k2 − k2

1 − k2
2 − k2

3.

In the end, we have

(Πn,r
midT1)(τ) = −iτϕ1(2iτk2

1)

(
e−iτk

2

+ e−iτ(k2
1+k2

2+k2
3)

2

)
.

We note that

ϕ1(2iτk2
1)e−2iτk2

1 = ϕ1(−2iτk2
1).

Therefore, we have

∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ)

S(T1)
(Πn,r

midT1)(τ) = −i
∑

k=−k1+k2+k3

e−iτk
2

2
τϕ1(2iτk2

1)

1

2
(e−iτk

2
1 ū`+1

k1
+ ū`k1

)
1

2
(eiτk

2
2u`+1

k2
+ u`k2

)
1

2
(eiτk

2
3u`+1

k3
+ u`k3

)

+ τ
ϕ1(−2iτk2

1)

2

1

2
(ū`+1
k1

+ eiτk
2
1 ū`k1

)
1

2
(u`+1
k2

+ e−iτk
2
2u`k2

)
1

2
(u`+1
k3

+ e−iτk
2
3u`k3

).

In physical space this leads to the first order symmetric low regularity integrator for the NLS equation (6.62).

Remark 6.4.9 The derivation of the scheme (6.62) from the general midpoint Duhamel iterations exhibits an interesting
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recipe for resonance based schemes that are constructed for equations of the form

i∂tu(t, x) + L
(
∇, 1

ε

)
u(t, x) = |∇|αp(u(t, x), u(t, x)),

u(0, x) = v(x).

Indeed, suppose we have already obtained an explicit first-order resonance based scheme for the above equation (cf.
[OS18, HS17b] etc.) of the general form

un+1 = Φτ (un),

where Φτ is a general nonlinear map representing the time step, then this can be easily converted to a second order
symmetric method simply by considering instead

un+1 = Φτ

e−iτL
(
∇, 1
ε

)
un+1 + un

2

.
Remark 6.4.10 In similar vein to Proposition (6.4.8) we could derive the scheme (6.61) from a generalised tree series
expansion. However, instead of using a midpoint iteration of Duhamel’s formula as introduced in Section (6.3.3) we would
have to iterate in the following way: By averaging (6.34) and (6.35) we find

uk(tn + s) =
e−isk

2

uk(tn) + e−i(s−τ)k2

uk(tn + τ)

2

− i

2
e−isk

2 ∑
k=−k1+k2+k3

∫ s

0

eis̃k
2

uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃︸ ︷︷ ︸
=:I1

− i

2
e−isk

2 ∑
k=−k1+k2+k3

∫ s

τ

eis̃k
2

uk1(tn + s̃)uk2(tn + s̃)uk3(tn + s̃)ds̃︸ ︷︷ ︸
=:I2

.

Instead of iterating this midpoint expression throughout all appearances of uj(tn + s̃) in the above expression (as we do
for the Duhamel midpoint iterates) we could just as well choose to iterate the left endpoint Duhamel formula (6.34) in
the terms from I1 and the right endpoint Duhamel formula (6.35) in the terms from I2. Repeating this process can be
captured with a decorated tree series in analogous manner to the midpoint iterations and truncating such an expansion
again leads to symmetric low-regularity schemes, including (after one such iteration and truncation of all terms involving
at least double integrals) the scheme (6.61).

Proposition 6.4.11 The schemes (6.59), (6.61) and (6.62) have a local error of order O(τ2∇u).

Proof. First, for the explicit scheme (6.59) the local error directly follows from Theorem (6.3.15) and can be computed
using Definition (6.3.12) as it is performed in the proof of [BS22, Cor. 5.1]. In order to obtain the local error bounds of
the implicit schemes (6.61), (6.62) one needs to apply Theorem (6.3.15) and to combine it with a fixed-point argument on
the numerical flow. To go further, the first order convergence of these schemes follow by combining the local error bound
with a stability argument, we refer to the works [MS22, AB23b] which perform this analysis in full detail.

Remark 6.4.12 The symmetric scheme (6.61) was first rigorously analysed in [AB23b]. In particular it was shown in
[AB23b] that the local error of the scheme is of order O(τ2∇u), which is optimal in regard of the regularity assumptions.
Indeed, the scheme (6.61) does not require more regularity on the solution than previously constructed asymmetric low
regularity integrators such as (6.59) introduced in [OS18, BS22]. As the scheme (6.61) is symmetric it is naturally also of
second order; however, not under optimal regularity assumptions (see also Remark (6.2.6)). More precisely, by exploiting
the tools presented in [AB23b] one can show that the scheme (6.61) (as well as (6.62)) is of second order with a local
error of order O(τ3∇∆u). This error structure imposes more regularity on the solution than asymmetric low-regularity
integrators such as the ones proposed in [BS22] which only require the boundedness of two additional derivatives instead
of three due to the local error of the form O(τ3∆u).

Our new symmetric midpoint rule framework (6.43) allows for a symmetric second order scheme which is optimal in
the sense of regularity, i.e., has a local error structure of the form O(τ3∆u), see the scheme (6.63) below.

Proposition 6.4.13 The second order scheme coming from (6.43) is given by:

un+1 = ϕτNLS,4(un) = eiτ∆un (6.63)
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− i τ
8
eiτ∆

(
(un + e−iτ∆un+1)2(ϕ1(−2iτ∆)− ϕ2(−2iτ∆))

(
un + eiτ∆un+1

))
− i τ

8

(
(eiτ∆un + un+1)2ϕ2(−2iτ∆)

(
eiτ∆un + e2iτ∆un+1

))
with a local error structure of the form O(τ3∆u) and ϕ2(σ) = eσ−ϕ1(σ)

σ
.

Remark 6.4.14 In practice the computational effort required to compute un+1 in (6.63) is not significantly larger than
the solution of (6.15) or other previous symmetric low-regularity methods for the NLSE. In particular, a similar analysis
to that presented in [AB23b, Section 3], [BMS22, Appendix A] and [MS23] shows that the implicit equations can be
solved efficiently using fixed point iterations, and that the number of iterations required is independent of the number of
spatial discretisation points.

Remark 6.4.15 One can find the coefficients b for the scheme (6.63) such that it is of the form given by (6.45).

Proof of Proposition (6.4.13). For the scheme of order two (r = 1) and n = 2, one has to consider:

Un,1k (τ, u) =
∑

T∈T̂ 1,k
0 (R)

Υp
mid(T )(u, τ)

S(T )
(Πn,1

midT0)(τ)

=
Υp

mid(T0)(u, τ)

S(T0)
(Πn,1

midT0)(τ) +
∑

k=−k1+k2+k3

Υp
mid(T1)(u, τ)

S(T1)
(Πn,1

midT1)(τ)

+
∑

k=−k1+k2+k3−k4+k5

Υp
mid(T2)(u, τ)

S(T2)

(
Πn,1

midT2

)
(τ)

+
∑

k1−k2−k3+k4+k5=k

Υp
mid(T3)(u, τ)

S(T3)

(
Πn,1

midT3

)
(τ).

From the definition of the symmetry factor, we have

S(T2) = 1× 2 = 2, S(T3) = 2× 2 = 4,

for S(T2) the factor one corresponds to the fact that for the node on top of the first blue edges the symmetry factor is
one. Indeed, the trees on top of the brown edges are different: a leaf decorated by k5 is different from a tree having three
leaves. Moreover, we have:

Υp
mid(Tj)(u, τ) = Υp(Tj)(

1

2
(eiτk

2

un+1 + un)), j ∈ {2, 3},

where

Υp(T2)(u) = 4ūk1uk2uk3 ūk4uk5 , Υp(T3)(u) = 4uk1 ūk2 ūk3uk4uk5 .

The factor 4 in both expressions comes from the two brown edges that appear twice inside the decorated trees T2 and T3.
For the term (Π2,1

midT1)(τ), we proceed with interpolation at two nodes (a0 = 0, a1 = 1):

p2(s, τ) = 1 +
s

τ

(
eisLlow − 1

)
,

where

Ldom = 2k2
1, Llow = k2 − k2

1 − k2
2 − k2

3.

We obtain

Kk,1o2 ((Π2,0
midT̃1)(·, τ), 2)(τ) = −i

∫ τ

0

eisLdomds− i
∫ τ

0

seisLdomds

(
eiτLlow − 1

τ

)
− iτϕ1(2iτk2

1)− iτϕ2(2iτk2
1)
(
eik

2−k2
1−k

2
2−k

2
3 − 1

)
.

Therefore, ∑
k=−k1+k2+k3

Υp
mid(T1)(u, τ)

S(T1)
(Π2,1

midT1)(τ)
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=
(
−iτϕ1(2iτk2

1)− iτϕ2(2iτk2
1)
(
eik

2−k2
1−k

2
2−k

2
3 − 1

))
× (e−iτk

2
1 ūn+1

k1
+ ūnk1

)
1

2
(eiτk

2
2un+1

k2
+ unk2

)
1

2
(eiτk

2
3un+1

k3
+ unk3

)

For the decorated tree T2, we have (
Π2,1

midT2

)
(τ) = e−iτk

2

Kk,1o2
(
(Π2,0

midF2)(·, τ), 2
)
(0, τ) (6.64)

where

F2 = I(t1,1)(λk4)I(t1,0)(λk5)T1.

Then,

(Π2,0
midI(t1,1)(λk4)I(t1,0)(λk5))(s, τ) = eis(k

2
4−k

2
5)

and for k̃ = −k1 + k2 + k3

(Π2,0
midT1)(s, τ) =

1

2
e−isk̃

2
(
Kk̃,0o2 ((Π2,−1

mid T̃1)(·, τ), 2)(s, τ)

+Kk̃,0o2 ((Π2,−1
mid T̃1)(·, τ), 2)(s, 0)

)
,

Now, because of n = 2, we perform a direct interpolation of the full operator which gives

Kk̃,0o2 ((Π2,−1
mid T̃1)(·, τ), 2)(s, τ) = −i

∫ s

τ

ds

(
1 + eiτ(k̃2+k2

1−k
2
2−k

2
3)

2

)
.

We obtain

(Π2,0
midT1)(s, τ) = −i (2s− τ)

2
e−isk̃

2

(
1 + eiτ(k̃2+k2

1−k
2
2−k

2
3)

2

)
.

Therefore, we find

(Π2,0
midF2)(s, τ) = −i (2s− τ)

2
eis(k

2
4−k

2
5−k̃

2)

(
1 + eiτ(k̃2+k2

1−k
2
2−k

2
3)

2

)

and by performing again an interpolation of the full operator:(
Π2,1

midT2

)
(τ) = −

∫ τ

0

(2s− τ)

2
ds

e−iτk
2

(
1 + eiτ(k2+k2

4−k
2
5−k̃

2)

2

)(
1 + eiτ(k̃2+k2

1−k
2
2−k

2
3)

2

)
= 0

because we have ∫ τ

0

(2s− τ)

2
ds = 0.

A similar computation shows that (
Π2,1

midT3

)
(τ) = 0.

The local error analysis follows from the proof of [BS22, Cor. 5.3].

Example 26 To illustrate how the general formula can be used to express more general higher order resonance based
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schemes, let us consider the following low-regularity integrator

un+1 = eiτ∆u− i τ
2
eiτ∆

(
(un)2(ϕ1(−iτ∆)− ϕ2(−iτ∆))un

)
− i τ

2

((
un+1)2(ϕ1(iτ∆)− ϕ2(iτ∆))un+1

)
− i τ

2
ei
τ
2

∆
(
ei
τ
2

∆un
)2

ϕ2(−iτ∆)ei
τ
2

∆un

− i τ
2
ei
τ
2

∆
(
e−i

τ
2

∆un+1
)2

ϕ2(iτ∆)e−i
τ
2

∆un+1

− τ2

8
|un|4e−iτ∆un+1 +

τ2

8

∣∣un+1
∣∣4eiτ∆un

(6.65)

which is motivated from [BS22, (5.16)] and has a local error of the form O(τ3∆). We will see that this scheme is in the
form of the general formula (6.45) with r = 1. Indeed, we already saw at the beginning of this section that

T̂ 1,k
0 (R) =

{
T0, T1, T2, T3, ki ∈ Zd

}
where Ti, i = 0, 1, 2, 3, were defined in (6.56) and (6.57). In the interest of brevity we will not derive all the coefficients b
in the expression of (6.65) in the form (6.45). Instead let us focus on the coefficients arising from the contribution to
(6.45) arising from T = T̂2 where T̂2 is obtained by removing the brown edge attached to the root. To understand this we
first recall the forest splittings of this choice of T from Example (23):

1 ·

k4

k1 k3

k2

k5

, 1 ·

k4

`
k5

·

k1

k2
k3

,

k4

`
k5

·

k1

k2
k3

,

k4

k1 k3

k2

k5

Let us now consider the contribution from the second of these splittings, T̃0 · T̃1 · T̃2 with

T̃0 = 1, T̃1 =

k4

`
k5

, T̃2 =

k1

k2
k3

where from Kirchhoff’s law we have k = −k4 + l + k5 and l = −k1 + k2 + k3. The dominant and lower order operators
arising in these splittings are given by

Fdom(T̃0) = 0,Flow(T̃0) = 0

Fdom(T̃1) = 2k2
4,Flow(T̃1) = k2 − k2

4 − l2 − k2
5 = 2(−k4l − k4k5 + lk5)

Fdom(T̃2) = 2k2
1,Flow(T̃2) = l2 − k2

1 − k2
2 − k2

3 = 2(−k1k2 − k1k3 + k2k3),

Moreover we have |ẼT | (there are only two blue edges in T corresponding to time-integration) and |LT | = 5 (T has 5
leaves), and given the above splitting, |ẼT̃0

| = 0, |ẼT̃1
| = |ẼT̃2

| = 1. Thus the contribution from this term to the overall
sum in (6.45) is of the form (recall that CT = 1 for all T in the NLSE case)∑

a∈[0,1]2

∑
χ∈{0,1}5

ba,χ,T,T̃0·T̃1·T̃2
(τ, iτFdom(T̃0), iτFdom(T̃1), iτFdom(T̃2))

eiτa1Flow(T̃1)eiτa2Flow(T̃2) Υp
χ(T )(un+χv

kv
, v ∈ LT , τ)

S(T )

From the derivation in the proof of Proposition (6.4.13) and (6.44) we have that

Υp
χ(T )(un+χv

kv
, v ∈ LT , τ)

S(T )

= 2e−iτχ1k
2
1uχ1

k1
eiτχ2k

2
2uχ2

k2
eiτχ3k

2
3uχ3

k3
e−iτχ4k

2
4uχ4

k4
eiτχ5k

2
5uχ5

k5
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Thus the contribution to (6.45) equals∑
a∈[0,1]2

∑
χ∈{0,1}5

ba,χ,T,T̃0·T̃1·T̃2
(τ, 0, 2iτk2

4, 2iτk
2
1)

eiτa1(k2−k2
4−(−k1+k2+k3)2−k2

5)eiτa2((−k1+k2+k3)2−k2
1−k

2
2−k

2
3)

2e−iτχ1k
2
1uχ1

k1
eiτχ2k

2
2uχ2

k2
eiτχ3k

2
3uχ3

k3
e−iτχ4k

2
4uχ4

k4
eiτχ5k

2
5uχ5

k5

Let us now show that the quintic terms in (6.65) arise precisely from these contributions: Indeed suppose we choose

b0,(0,0,0,0,1),T,T̃0·T̃1·T̃2
(τ, z0, z1, z2) = −τ

2

16
, (6.66)

b(1,1),(1,0,0,0,0),T,T̃0·T̃1·T̃2
(τ, z0, z1, z2) = −ez0+z1+z2 τ

2

16
(6.67)

and all other coefficients b in the above expression equal to zero then we arrive precisely at the contributions of the form

−τ
2

8
|un|4e−iτ∆un+1 +

τ2

8

∣∣un+1
∣∣4eiτ∆un

in the overall scheme, corresponding to the quintic terms in (6.65). The remaining terms in the scheme can be expressed
similarly from contributions from lower rank trees T0, T1. Moreover, we note that the coefficients as given by (6.66) clearly
satisfy (6.52) and that the same holds for the coefficients of lower order contributions, thus confirming that the scheme
(6.65) is symmetric.

The Korteweg–de Vries equation

The Korteweg–de Vries (KdV) equation is given by

∂tu+ ∂3
xu =

1

2
∂xu

2 (6.68)

It fits into the general framework with

L
(
∇, 1

ε

)
= i∂3

x, α = 1 and p(u, u) = p(u) = i
1

2
u2.

Here L = {t1, t2}, Pt1 = −λ3 and Pt2 = λ3. Moreover, in this case the structure constant CT reflects the presence of
the Burger’s nonlinearity in the iterations of Duhamel’s formula, which means

CT =
∏

e=(v,u)∈ẼT
u∈NT \{%T }

(−1)p(e)io(u)

where we recall e(e) = (t(e), p(e)) is the edge decoration of e with t(e) ∈ L and p(e) ∈ {0, 1}. Note by Kirchhoff’s law the
above definition is invariant under the choice of node u or v for an edge e = (u, v) in the product, so long as the node is
an interior one. Then, we denoted by an edge decorated by (t1, 0) and by an edge decorated by (t2, 0). Following the
formalism given in [BHZ19], we can provide the rules that generate the trees obtained by iterating Duhamel’s formula:

R( ) = {( , )} , R( ) = {( ), ()} .

The general framework (6.42) derived in Section (6.3.3) builds the foundation of the first- and second-order resonance
based schemes presented below for the KdV equation (6.68). The structure of the schemes depends on the regularity of
the solution.

Corollary 6.4.16 For the KdV equation (6.68) the general midpoint scheme (6.42) takes at first order the form

u`+1 = e−τ∂
3
xu` +

1

24

(
e−τ∂

3
x∂−1

x u` + ∂−1
x u`+1

)2

− 1

24
e−τ∂

3
x

(
∂−1
x u` + eτ∂

3
x∂−1

x u`+1
)2

(6.69)

with a local error of order O
(
τ2∂2

xu
)
at first-order and with a local error of order O

(
τ3∂4

xu
)
at second order.
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Remark 6.4.17 Note that this schemes has been obtained in [MS23]. It was shown that this scheme is of even order for
higher regularity in H4 (see [MS22, Thm 5.2]). By embedding this scheme into our general framework, we know that it
has the same local error analysis as the second-order scheme introduced in [BS22].

u`+1 = e−τ∂
3
xu` +

1

6

(
e−τ∂

3
x∂−1

x u`
)2

− 1

6
e−τ∂

3
x

(
∂−1
x u`

)2

+
τ2

4
e−τ∂

3
xΨ
(
iτ∂2

x

)(
∂x
(
u`∂x(u`u`)

)) (6.70)

with a local error of order O
(
τ3∂4

xu
)
and a suitable filter function Ψ satisfying

Ψ = Ψ
(
iτ∂2

x

)
, Ψ(0) = 1, ‖τΨ

(
iτ∂2

x

)
∂2
x‖r ≤ 1.

Proof. The proof follows the line of argumentation to the analysis for the Schrödinger equation. For the first-order
scheme, we have

Un,0k (τ, v) =
Υp

mid(T0)(τ, v)

S(T0)
Πn,0

mid(T0)(τ) (6.71)

+
∑

k=k1+k2

Υp
mid(T1)(τ, v)

S(T1)
Πn,0

mid(T1)(τ).

where the trees of interest are

T̂ 0,k
0 (R) = {T0, T1, ki ∈ Zd}, T0 =

k

and T1 =

k1 k2

and in symbolic notation takes the form

T1 = I(t1,0)(I(t2,0)(λkF1)) F1 = I(t1,0)(λk1)I(t1,0)(λk2) with k = k1 + k2.

For the first term we readily obtain that

Υp
mid(T0)(τ, v)

S(T0)
Πn,0

mid(T0)(τ) = e−iτk
3

v̂k.

It remains to compute the second term. Note that thanks to (6.28) we have that

Πn,0(T1)(τ) = e−iτk
3

Πn,0(I(t2,0)(λkF1))(τ) (6.72)

= e−iτk
3

Kk,0(t2,0)

(
Πn,−1(F1), n

)
(τ)

= e−iτk
3

Kk,0(t2,0)

(
eiξ(−k

3
1−k

3
2), n

)
(τ).

where we have used for the third line

(Πn,−1F1)(τ) = (Πn,−1I(t1,0)(λk1))(τ)(Πn,−1I(t1,0)(λk2))(τ) = e−iτk
3
1e−iτk

3
2 .

Next we observe that

P(t2,0)(k)− k3
1 − k3

2 = k3 − k3
1 − k3

2 = 3k1k2(k1 + k2)

such that

1

P(t2,0)(k)− k3
1 − k3

2

can be mapped back to physical space. Therefore, we set

Ldom = P(t2,0)(k)− k3
1 − k3

2 = 3k1k2(k1 + k2)
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and integrate all frequencies exactly. This implies

Πn,0(T1)(τ) = e−iτk
3 i(k1 + k2)

3ik1k2(k1 + k2)

(
eiτ(k3−k3

1−k
3
2) − 1

)
=

1

3k1k2

(
e−iτ(k3

1+k3
2) − e−iτk

3
)
.

Together with (6.71) this yields the scheme (6.69). For the second-order scheme, we first notice that

Πn,0
mid(T0)(τ) = Πn,1

mid(T0)(τ), Πn,0
mid(T1)(τ) = Πn,1

mid(T1)(τ).

Indeed, for the tree T1, we perform an exact integration without any discretisation. Then, we need to take into account
the following trees

T̂ 1,k
0 (R) = {T0, T1, T2, ki ∈ Zd}, T2 =

k1 k2

k3

Then we can proceed as in the second-order schemes for the Schrödinger equation to show its contribution is zero that is

Π4,1
mid(T2)(τ) = 0.

6.5 Numerical Experiments
We now test the practical performance of our new symmetric schemes in practical experiments evaluating both their

low-regularity convergence properties and their ability to correctly preserve constants of motion in the relevant equations.
In fitting with our above construction our spatial discretisation is a Fourier spectral method throughout with M modes. In
order to understand the low-regularity convergence properties of our methods we follow [OS18] and consider the following
types of initial data:

1. Smooth inital data,

u0(x) =
cos(x)

2 + sin(x)
. (6.73)

2. Low-regularity initial data u0 ∈ Hϑ, for some ϑ > 0, of the following form. Firstly we choose a vector sampled from a
uniform distribution Um ∼ U([0, 1] + i[0, 1]),m = −M/2 + 1, . . . ,M/2 and then we define

u0(x) := U0 +

M/2∑
m=−M/2+1

m6=0

eimx|m|−ϑUm. (6.74)

Both choices of initial data are rescaled such that u0 7→ u0/‖u0‖L2 .

6.5.1 The Korteweg–de Vries equation
We consider the resonance based midpoint rule (6.69) introduced in [MS23] which our midpoint iterates (section (6.3.3))

are able to recover. This rule has excellent low-regularity convergence properties and at the same time is able to conserve
momentum and energy of the KdV equation over long times even in the low-regularity regime. We refer to the numerical
simulations made in [MS23] where the favourable properties of this method are displayed.

6.5.2 The Nonlinear Schrödinger equation
In the upcoming numerical experiments we compare the performance of our new symmetric integrators ((6.62) and

(6.63)), to the following state-of-the-art reference schemes for the NLSE:

— The Strang splitting [MQ02], as an example of a classical symmetric numerical technique;
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— The first and second order resonance based integrators introduced by Ostermann & Schratz [OS18] and Bruned &
Schratz [BS22, Section 5.1.2] respectively, as examples of asymmetric low-regularity schemes;

— The symmetrised low-regularity integrator introduced by Alama Bronsard [AB23b], as an example of previous structure
preserving low-regularity schemes.

In the following numerical experiments we focus on the 1d case, i.e. the NLSE formulated on T, but our methods equally
apply to higher dimensional settings where their favourable performance can also be observed.

In the first instance we consider the long-time structure preservation properties of our newly designed symmetric
low-regularity integrators. For this we consider two first integrals of the cubic NLSE, the normalisation

I
[NLSE]
0 [u] =

∫
T
|u|2dx,

and the energy

I
[NLSE]
1 [u] =

∫
T
|∇u|2 +

1

2
|u|4dx.

Symmetric numerical schemes are typically unable to preserve such conservation laws exactly, however it is known for
the ODE case [HLW10, Chapter XI] (and also observed numerically for the PDE case, for example in [CCO08]) that
symmetric methods can exhibit very good approximate long-time preservation of such first integrals. In the following
numerical experiments we test this behaviour by looking at the error in these quantities for a fixed time step τ = 0.02 and
highest frequency M = 1024, over a long time interval, much larger than O(1/τ). Firstly, in figure (6.4) we observe that
the normalisation appears to be preserved really well, in particular (the example is representative of a host of numerical
experiments for various time steps which we performed) the preservation is much better than previous asymmetric
resonance based schemes. We note that the Strang splitting conserves quadratic first integrals, i.e. the normalisation, to
machine accuracy and thus undoubtedly outperforms our schemes on the level of normalisation preservation.

Our next numerical result for the NLSE, presented in Figure (6.6)&(6.5), shows the error in the NLSE energy over
a long time interval, for a fixed time step τ = 0.02. Albeit rigorous theory exists for the ODE case [HLW10], there is
again no theoretical guarantee for the long-time preservation of the energy under symmetric methods. Indeed in practical
experiments it can be seen that symmetric schemes are able to clearly outperform asymmetric integrators in the long-time
approximate energy preservation. For the Strang splitting this behaviour was rigorously analysed in [Fao12] where a
CFL condition was necessary to guarantee long-time approximate energy preservation beyond the realms of forward error
analysis. This CFL condition is indeed observed even for smooth data in our experiments. Perhaps somewhat surprisingly
our new symmetric resonance based scheme do not appear to suffer from comparable CFL conditions and, as expected,
perform well for both smooth and low-regularity solutions.

Finally, we performed experiments to confirm that the low-regularity convergence properties of our symmetric schemes
are at least as good as in prior asymmetric methods. In the following numerical experiments our reference solutions
were computed with M = 214 Fourier modes and a time step τ = 10−6 with the symmetrised method from [AB23b]. In
Figures (6.7) & (6.8) we choose to measure the error in H1-norm, and observe the convergence properties of our methods
for initial data of various levels of regularity. In all of these experiments the number of spatial discretisation modes was
taken to be M = 1024 and the initial data chosen according to (6.74) & (6.73). In Figure (6.7) we observe that our new
methods have exactly the predicted convergence properties at those levels of regularity: The integrator (6.62) is optimal
for first order convergence in the sense of regularity, meaning it converges at first order in H1 with H2 data, while the
integrator (6.63) is optimally convergent in the sense of regularity up to second order meaning it converges at O(τ) in H1

for data in H2 and at O(τ2) in H1 for data in H3. For smaller values of τ the error forms a plateau around 10−4 and
10−7 in Figures 6.7a and 6.7b respectively. This is due to the error made by the pseudo-spectral space discretisation,
which decreases as the regularity of the initial data is increased. The behaviour of the splitting methods observed in these
experiments matches exactly with the convergence analysis given by [Lub08, BBD02] and suffers from significant order
reduction in low-regularity regimes.
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(b) H2 data.

Figure 6.4 – Error in the normalisation ‖un‖L2 , for time step τ = 0.02, M = 1024, and long-time interval
t = nτ ∈ [0, 4000].
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(a) Long-time interval t = nτ ∈ [0, 4000].
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(b) Magnification of t = nτ ∈ [0, 50].

Figure 6.5 – Error in the Hamiltonian, for time step τ = 0.02, M = 1024 and C∞ data.
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(a) Long-time interval t = nτ ∈ [0, 4000].
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(b) Magnification of t = nτ ∈ [0, 50].

Figure 6.6 – Error in the Hamiltonian, for time step τ = 0.02, M = 1024, and H2 data.
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(a) H2-initial data, ϑ = 2 in (6.74).
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(b) H3-initial data, ϑ = 3 in (6.74).

Figure 6.7 – H1-error at T = 1 as a function of the timestep τ for low-regularity initial data.

10-4 10-3 10-2

=

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

H
1
-e

rr
or

at
T

=
1

Ostermann & Schratz
New midpoint -rst order (3.14)
New midpoint second order (3.15)
Bruned & Schratz
Alama Bronsard
Lie
Strang
O(=); O(= 2)

(a) H4-initial data, ϑ = 4 in (6.74).

10-4 10-3 10-2

=

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

H
1
-e

rr
or

at
T

=
1

Ostermann & Schratz
New midpoint -rst order (3.14)
New midpoint second order (3.15)
Bruned & Schratz
Alama Bronsard
Lie
Strang
O(=); O(= 2)

(b) C∞-initial data (6.73).

Figure 6.8 – H1-error at T = 1 as a function of the timestep τ for more regular initial data.
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