
HAL Id: tel-04615716
https://theses.hal.science/tel-04615716

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical bounds for scheduling problems and their
application to asymptotic analysis and energy

consumption minimization
Redouane Elghazi

To cite this version:
Redouane Elghazi. Theoretical bounds for scheduling problems and their application to asymptotic
analysis and energy consumption minimization. Data Structures and Algorithms [cs.DS]. Université
Bourgogne Franche-Comté, 2023. English. �NNT : 2023UBFCD069�. �tel-04615716�

https://theses.hal.science/tel-04615716
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE FRANCHE-COMTE

PREPAREE A l’UNIVERSITE DE FRANCHE-COMTE

Ecole doctorale no 37

SCIENCES PHYSIQUES POUR L’INGENIEUR ET MICROTECHNIQUES

Doctorat d’Informatique

Par

Monsieur ELGHAZI Redouane

Theoretical bounds for scheduling problems and their application to asymptotic analysis and
energy consumption minimization

Bornes théoriques de problèmes d’ordonnancement et leurs applications à l’analyse asymptotique et la
minimisation de la consommation d’énergie

Thèse présentée et soutenue à Lyon, le 9 octobre 2023

Composition du jury :

Monsieur Olivier Beaumont Directeur de recherche, INRIA Bordeaux Sud-Ouest Examinateur
Madame Anne Benoit Mâıtresse de conférences, ENS de Lyon, LIP Co-encadrante de thèse
Monsieur Louis-Claude Canon Mâıtre de conférences, Université de Franche-Comté Co-directeur de thèse
Monsieur Georges Da Costa Professeur, Université de Toulouse Rapporteur
Monsieur Pierre-Cyrille Héam Professeur, Université de Franche-Comté Directeur de thèse
Madame Alix Munier-Kordon Professeur, Sorbonne Université Examinatrice
Monsieur Krzysztof Rzadca Associate Professor, Université de Varsovie Rapporteur

Acknowledgments

This section will be written in french as it mainly concerns french speaking people.

Cette thèse n’aurait pas été possible sans la présence, le soutien et l’aide de personnes qui
me sont chères, que ce soit pendant la durée de mon doctorat ou plus largement au cours de
mon voyage dans le monde merveilleux qu’est celui de l’informatique. Avant d’entrer dans le
vif du sujet, je prendrai donc quelques lignes pour les remercier.

En premier lieu et en place d’honneur, je tiens à remercier mes parents qui ont su me soutenir
dans tous mes projets et faire de moi la personne que je suis. À ma mère Zakia, j’ai encore
occasionnellement besoin de tes relectures mais je rédige de mieux en mieux grâce aux notions
de rigueur que tu m’as enseignées. À mon père Mjid, tu n’auras malheureusement pas eu le
temps de lire ma thèse, mais je suis sûr que tu en aurais été fier : tu m’as grandement influencé
dans mon parcours en sciences.

Ensuite, artisans directs des travaux de ce doctorat, je me dois de remercier mes 3 encadrants
Anne, Louis-Claude, et Pierre-Cyrille qui m’ont accompagné pendant ces 3 années de labeur.
Le doctorat est souvent considéré comme une période difficile, mais j’ai eu la chance d’être assez
bien accompagné pour toujours garder la tête hors de l’eau et rester sur les bons rails. Merci
Anne de m’avoir accompagné depuis mes premiers pas dans la recherche il y a presque 10 ans, je
n’aurais pas pu espérer meilleure mentore. Merci Louis-Claude pour toutes les bonnes pratiques
que tu m’as fait mettre en place, même si je n’ai pas encore pris toutes tes bonnes habitudes.
Et merci Pierre-Cyrille pour toutes les ficelles que tu as pu me montrer.

Merci aussi à l’ensemble de mon jury de thèse, en particulier à Georges Da Costa et Krzysztof
Rzadca qui ont relu ma thèse, mais aussi à Olivier Beaumont et Alix Munier-Kordon qui sont
venus jusqu’à Lyon pour m’écouter parler d’algorithmes d’approximation pendant une heure.
Merci tant pour vos retours constructifs que pour le regard bienveillant que vous avez pu porter
à ma thèse. Merci aussi pour les discussions que l’on a eues sur mon avenir dans la recherche,
qui me parâıt parfois si incertain.

Pour refermer le pan académique, je remercie tous les professeurs qui ont su me guider
en informatique, en mathématiques, ou dans des domaines que j’estime proches. Merci en
particulier à Yves Robert, Éric Thierry, Marie Monier, Malgosia Fender, et Philippe Aubé, qui
m’ont accompagné chacun à leur façon au cours des 15 dernières années.

Merci aux collègues que j’ai pu côtoyer au cours de ces trois années, qu’ils soient bisontins ou
lyonnais. Merci pour les moult repas et verres que nous avons pu partager, tantôt pour parler
de recherche, tantôt pour oublier la recherche.

Et enfin, merci à tous mes amis, notamment
Angèle, Alice, Löıs, Alizée, et Lilian avec qui j’ai passé tant de bonnes soirées,
Merwan, Émile, Colin, Enguerrand, Clément, Alexis, Lucas, et Athé avec qui j’ai passé
tant de bonnes nuits,
et Paul qui arrive toujours comme une fleur pour me souhaiter un bon matin.

Contents

1 Introduction 1

2 Asymptotic optimality of LPT 7
2.1 Introduction . 7
2.2 Related work . 8
2.3 Algorithms and complexity . 12

2.3.1 Algorithms . 12
2.3.2 Optimality for small instances . 13

2.4 Convergence results for integer compositions 15
2.4.1 Tasks random generation . 16
2.4.2 Probabilistic analysis for DW . 16
2.4.3 Analysis for DW,wmin . 21

2.5 Empirical study . 24
2.5.1 Experimental setting . 25
2.5.2 Rate tightness . 28
2.5.3 Uniform integer compositions . 28
2.5.4 Realistic workloads . 30

2.6 Conclusion . 32

3 List and shelf schedules for independent parallel tasks to minimize the
energy consumption with discrete or continuous speeds 33
3.1 Introduction . 34
3.2 Related work . 36
3.3 Model . 37

3.3.1 Platform . 38
3.3.2 Tasks . 39
3.3.3 Energy consumption . 39
3.3.4 Schedules . 40
3.3.5 Optimization problems . 41

3.4 Problem complexity . 41
3.4.1 Optimal algorithm for MinE-Mold-Indep 42
3.4.2 NP-completeness of MinE-Mold 42

3.5 Approximation ratios with discrete speeds 44

v

3.5.1 Processors with a single speed (si = s) 44
3.5.2 Processors with different speeds for each task 48

3.6 Approximation ratios with continuous speeds 50
3.6.1 Rigid case . 50
3.6.2 Moldable case . 52

3.7 Optimizing for a single shelf . 54
3.7.1 Preliminaries . 54
3.7.2 Optimal algorithm for MinE-OneShelf (discrete speeds) 54
3.7.3 Optimal algorithm for MinE-OneShelf-Cont (continuous speeds) 55

3.8 Empirical study . 58
3.8.1 Experimental setup . 58
3.8.2 Instance generation . 61
3.8.3 Results . 61
3.8.4 Impact of Pstat . 65
3.8.5 Comparison with the continuous relaxation 66

3.9 Conclusion . 67

4 Asymptotic performance and energy consumption of SLACK 71
4.1 Introduction . 71
4.2 Related work . 73
4.3 Framework . 73
4.4 A bound for SLACK . 75
4.5 Convergence speed of SLACK . 79

4.5.1 Convergence of the makespan . 79
4.5.2 Convergence of the energy consumption 80

4.6 Simulations . 85
4.6.1 Experimental setting . 85
4.6.2 Simulations: Study of δj and βj . 86
4.6.3 Simulations: Energy minimization 89

4.7 Conclusion . 89

5 Conclusion 93

vi

Chapter 1

Introduction

Over the last few decades, computing has allowed analyzing data that was previously
tedious to interpret or even aggregate. However, as the ambition of projects increases,
so does the amount of data and the resulting computation. For example, in biology,
the 1000 Genomes Project, which has been analyzing the human genome since its start
in 2008, counts several hundreds of terabytes of data [clarke2012]. In physics, gen-
erating the image of a supermassive black hole in 2019 consumed 100 million CPU
hours [peckham2022]. Finally, the emergence of machine learning and artificial intel-
ligence in science as well as in daily life also requires more and more CPU time as both
fields require pretreatment of large quantities of data. For instance, a recent study relied
on machine learning to show that plants emit sounds when under stress [khait2023].

As these large computations cannot fit on a single computer, they are usually dis-
patched on computing centers as tasks to be executed. The said computing centers
receive many tasks and must then assign each task to a specific machine, in a specific
order. This is known as scheduling the tasks and is a fundamental problem in computer
science. Choices made when scheduling the tasks can impact quantities such as the time
taken before delivering the result of the computations, or the energy consumed by the
execution of the tasks. When a scheduling problem is defined, the goal is usually to
minimize or maximize one of these quantities, which is called the objective function.
This is why scheduling problems are optimization problems. Although problems related
to task scheduling have been widely studied [feitelson1997], the fundamental nature of
this category of problems means that they vary as new computational challenges arise.
In particular, specific new tasks can require specific scheduling algorithms to perform
more efficiently.

Additionally, most problems related to task scheduling are NP-complete, as simply
finding a schedule of n tasks on m = 2 processors that minimizes the total execution time
is already an NP-complete problem, and it is even strongly NP-complete if the number
of processors is arbitrary [garey1979]. In this work, we focus on two rising challenges:
the ever growing amount of tasks to execute, and the growing concern around reducing
the energy we consume.

1

Asymptotic concerns. When the number of tasks grows large, the usual techniques
used to analyze an algorithm might not be relevant anymore. This is why we re-
visited the classical problem of scheduling n independent tasks with costs w1, . . . , wn
onto m identical processors. The goal here is to minimize the total execution time, or
makespan, usually denoted by Cmax. This problem is denoted P ||Cmax in Graham’s
notation [graham79a] and has been extensively studied in the literature.

One of the most usual approaches when studying an algorithm consists in deriving
an approximation ratio: an algorithm A is said to have an approximation ratio c, or to
be a c-approximation, if for any instance with optimal makespan OPT, the algorithm A
outputs a schedule with makespan at most c×OPT. This method is a very strong tool
when studying an algorithm under the general worst-case angle. However, this method is
not fit for the situation we study, as this value c can correspond to very specific instances,
which get rare or even disappear when n becomes sufficiently large. This is why, in order
to assess the performance of an algorithm, we instead studied the asymptotic value of
the result given by the algorithm from a probabilistic point of view.

Specifically, in the first part, we focused on the algorithm Longest Processing Time
(LPT), in which the longest task is greedily scheduled first. This algorithm is known
to be a (4

3 −
1

3m)-approximation [graham1969], but its empirical performance is much
better than this. With large numbers of tasks, LPT even appears to be almost optimal.

In the first part of my thesis, we studied the asymptotic performance of LPT under
different probability distributions, with a special focus on a distribution called the uni-
form integer composition. We did so from a very theoretical point of view through the
derivation of stochastic asymptotic bounds, but also from a more practical point of view
through the use of simulations.

Energy management. The dominant paradigm has been a constant race for com-
puting speed, in order to always handle more and more tasks. However, the rising
ecological concerns have started a shift of paradigm both for some researchers and for
some in the industry [georgiou2015, camus2017, dossantos2023].

In this context, we have decided to study a scheduling problem aiming at minimiz-
ing the energy consumed during the execution of the tasks, instead of minimizing the
makespan. The technique used to change the energy consumption is called Dynamic
Voltage and Frequency Scaling (DVFS), and it allows us to change the speed at
which a processor executes a task. With this technique, there are many models that
can yield the power of a processor, i.e., the energy it consumes per unit of time, as a
function of the speed s at which the processor is running. For example, polynomials
(P (s) = ∑

ai × si) can be used and allow for a model that is very general, but can be
hard to study. For some models of processors, a monomial (P (s) = a× sk, with k being
a constant) can be enough to efficiently model the power. We chose a model that is a
trade-off between these two models, where the power of the processor is composed of a
static power, incurring a linear term, and a dynamic power, incurring a term of higher
degree α. This is a classical model that has already been widely used in the literature,
as for instance in [bambagini2016].

2

Now, the objective function is not the makespan anymore, but it is instead the energy
consumption:

E =
m∑
j=1

∫ T

0
P (sj(t))dt ,

where P (sj(t)) is the power consumed by a processor using the speed that was allocated
to processor j at time t. This problem of energy minimization has two major differences
with the makespan minimization problem: there are new variables sj corresponding to
the speed of the processors at any time, and the objective function is not a linear function
of the variables anymore, since the power P is not a linear function of the speed s.

In the first energy minimization problem, we studied parallel tasks that are said
to be moldable. It means that for each task, the scheduling algorithm must choose a
number of processors that will execute the task concurrently. Executing a task with more
processors means that it will end earlier, but the parallelization might incur an overhead,
depending on the task. This overhead might come from communications between the
processors or from the fact that some parts of the task cannot be parallelized.

In this context of energy minimization, we studied two classes of schedules that are
already well-known for the makespan minimization problem: shelf schedules and list
schedules. The former class consists in executing consecutive “shelves” of tasks, where
a shelf is a set of at most m tasks started at the same time. The latter class consists
in choosing the next task to be executed according to a priority policy (e.g., Longest
Processing Time, or LPT, that was mentioned earlier).

In the second part of my thesis, we derived algorithms creating shelf and list sched-
ules in a context of energy minimization with moldable tasks. We then studied the
performance of these algorithms. We did so from a theoretical point of view through the
derivation of approximation ratios, but also from a more practical point of view through
the use of simulations.

Energy management in an asymptotic context. After having tackled both chal-
lenges, i.e., the ever-growing amount of tasks to execute and the growing concern around
reducing the energy we consume, we studied both problems at the same time. Indeed,
in real life, both problems are not disjoint, and reducing the energy consumption of a
schedule is still relevant when the number of tasks n grows large.

In this context, we studied tasks that are executed on only one processor each (i.e.,
sequential tasks), and instead of studying LPT, we studied a newer algorithm called
SLACK, which was proposed in 2020 by F. Della Croce and R. Scatamacchia [della2020].
This algorithm comes from the observation that if we have access to m tasks with similar
execution times, then allocating each of these m tasks to a different processor should
keep the m processors balanced. With this in mind, SLACK creates groups of m tasks
with execution times that are as close as possible, and then sequentially allocates the
groups of tasks, decreasing the imbalance between the processors as the different groups
are handled.

In the third part of my thesis, we derived algorithms creating schedules in a context
of energy minimization by adapting the policies of SLACK and LPT. We derived general

3

results to help in the theoretical study of the performance of an algorithm in terms of
energy consumption. We then applied these tools to SLACK to derive asymptotic bounds
and convergence. We finally studied the created algorithms from a more practical point
of view through the use of simulations.

Content of this thesis

This thesis is decomposed in three parts, each corresponding to an article published
during the course of my PhD with my supervisors Anne Benoit, Louis-Claude Canon,
and Pierre-Cyrille Héam.

Each part provides answers to some of the previously presented challenges, i.e., study-
ing sets of tasks with a size growing to infinity, or studying the energy consumption of a
schedule. In each case, after modeling the problem, there is first a study of the problem
from a theoretical point of view, and then a study of the problem from a more practical
point of view.

The content of the Chapter 2 has been published at Euro-Par 2021 [benoit2021].
An extension of this work is under review for a publication in the Journal of Scheduling.
We study the problem of the minimization of the makespan of a schedule with sequential
tasks, when the amount of tasks grows to infinity, and the execution times of the tasks
are sampled according to a specific distribution. More specifically, we first derive a new
convergence result when the distribution is the uniform integer composition: a total
work is distributed over the task costs as a composition, and each composition has the
same probability of occurrence. In this case, the times are not sampled independently.
Then, we perform an empirical analysis of five heuristics including LPT and SLACK,
comparing the algorithms one to each other, but also to the theoretical bound when
there are known results.

The content of the Chapter 3 has been published at SBAC-PAD 2021 [benoit2021shelf]
and extended in the Journal of Parallel and Distributed Computing [benoit2023list].
We study the problem of the minimization of the energy consumption of a schedule
with moldable tasks. More specifically, we first formalize the problem, which we call
MinE-Mold, with various model variants. Then, we show that if each processor can be
powered off or on independently from the others, then the problem can be solved in poly-
nomial time, and that else, the problem is NP-complete. In the NP-complete case, we
derive multiple approximation ratios for two classes of algorithms: list-based algorithms
and shelf-based algorithms. We then provide an optimal dynamic programming solution
of the sub-problem where all tasks are placed on a single shelf (i.e., when all tasks must
begin their execution at time t = 0), which can be useful for shelf-based algorithms.
Finally, we perform an empirical study, including three main highlights. The first high-
light is a comparison of the different algorithms we designed, both in terms of energy
consumed by the schedule and in terms of time complexity of the scheduling algorithm.
The second highlight is the fact that for most instances, running every processor at the
same fixed speed does not increase the energy consumption too much, if the speed is
correctly chosen. The final highlight is an assessment of the speeds available for two
existing processors, in terms of energy consumption.

4

The content of the Chapter 4 is to be published at Euro-Par 2023 [benoit2023asymptotic].
We study the problem of the minimization of either the makespan or the energy con-
sumption of a schedule with sequential tasks, when the amount of tasks grows to infinity,
and the execution times of the tasks are sampled according to a specific distribution.
We focused the analysis on the algorithm SLACK. We first derived a bound related
to the result of SLACK and explaining its good practical performance. We used this
bound for several results: we provided convergence rates for SLACK when minimizing
the makespan, and when minimizing the energy consumption. In the latter case, we also
provided a result for bounding the energy consumption of an algorithm, that does not
depend of the algorithm used. Finally, we ran simulations in order to compare SLACK
to LPT and to the theoretical bounds provided earlier.

5

Chapter 2

Asymptotic optimality of LPT

When independent tasks are to be scheduled onto identical processors, the typical goal is
to minimize the makespan. A simple and efficient heuristic consists in scheduling first the
task with the longest processing time (LPT heuristic), and to plan its execution as soon
as possible. While the performance of LPT has already been largely studied, in particular
its asymptotic performance, we revisit results and propose a novel analysis for the case
of tasks generated through uniform integer compositions. Also, we perform extensive
simulations to empirically assess the asymptotic performance of LPT, and compare it to
four other classical heuristics. The results show that the absolute error rapidly tends to
zero for several distributions of task costs, including distributions studied by theoretical
models, and realistic distributions coming from benchmarks.

2.1 Introduction

We revisit the classical problem of scheduling n independent tasks with costs w1, . . . , wn
onto m identical processors. The goal is to minimize the total execution time, or
makespan, usually denoted by Cmax. This problem, denoted P ||Cmax in Graham’s nota-
tion [graham79a], has been extensively studied in the literature, and greedy heuristics
turn out to have theoretical guarantees and to perform well in practice. In particular,
we focus on the Longest Processing Time (LPT) heuristic, where the longest task will
be scheduled first, on the processor where it can start the earliest. This heuristic is very
simple and has a low complexity, while exhibiting good worst-case performance with
an approximation ratio of 4

3 −
1

3m [graham1969], and excellent empirical performance.
With a large number of tasks, LPT appears to be almost optimal.

Since the worst-case performance exhibits cases where LPT is far from the optimal,
many different approaches have tried to fill the gap between this worst-case performance
and the excellent practical performance. The goal is to provide performance guarantees
of different kinds, for instance by studying the average-case complexity, some generic-
case complexity, or convergence results.

Hence, many convergence results have been proposed in the literature. They state
that LPT ends up providing an optimal solution when the number of tasks grows towards

7

infinity. Some of these results even provide asymptotic rates that quantify the speed with
which LPT tends to optimality. These results depend on assumptions on the probability
distribution of the costs of the tasks, and on the definition of distance to optimality.
However, the literature lacks a definitive answer on the convergence to optimality and
its rate when faced with difficult cost distributions. In particular, this work is the first
to consider dependent random costs with a constraint on the minimum cost.

First, Section 2.2 synthesizes the existing contributions and their limitations. Next,
we describe the five considered heuristics in Section 2.3, in particular a novel strategy,
SLACK, recently proposed in [della2020], and the Largest Differencing Method (LDM)
that provides a similar approximation ratio to LPT [michiels2003]. We also provide an
analysis of the complexity of LPT for small instances. Then, we revisit LPT and propose
an update to the already known asymptotic optimality results, both from a theoretical
perspective and from an empirical one. Our main contribution is twofold:

1. We derive a new convergence (in probability) result when the distribution of task
costs is generated using uniform integer compositions, hence leading to a novel
probabilistic analysis of the heuristics for this problem (Section 2.4);

2. We perform a thorough empirical analysis of the five heuristics, with an extended
range of settings to study particular distributions but also distributions coming
from real applications (Section 2.5).

Finally, conclusions and future work directions are discussed in Section 2.6.

2.2 Related work

Theoretical studies

There are several theoretical works studying the rate of convergence of LPT. [coffman1982]
analyze the average performance of LPT under the assumption that costs are uni-
formly distributed in the interval (0, 1]. They show that the ratio between the expected
makespan obtained with LPT and the expected optimal one with preemption is bounded
by O(1 + m2

n2), where m is the number of processors and n is the number of tasks.
[frenk1986] bound the absolute error (i.e., the difference between the achieved

makespan and the optimal one) of LPT using order statistics of the processing times when
the cost distribution has a cumulative distribution function of the form F (x) = xa with
0 < a < ∞. The results also stand when this constraint is relaxed into F (x) = Θ(xa).
They prove that the absolute error goes to 0 with speed O

(
(log log(n)

n) 1
a

)
as the number

of tasks n grows. For higher moments, of order q, a similar technique gives a speed of
O
(
(1
n)

a
q

)
.

[frenk1987] also study uniform machines (Q||Cmax) in the more general case where
costs follow a distribution with finite moment and the cumulative distribution function
is strictly increasing in a neighbourhood of 0. They show that LPT is asymptotically
optimal almost surely in terms of absolute error. When it is the second moment that

8

is finite instead, they show that LPT is asymptotically optimal in expectation. For the
more specific cases where the costs follow either a uniform distribution or a negative
exponential distribution, they provide additional convergence rates.

Another theoretical study is done by [loulou1984], providing a comparison between
LPT and a less sophisticated heuristic, RLP (Random List Processing), also called LS
(List Scheduling) in this thesis. This heuristic is simpler than LPT because the jobs are
considered in an arbitrary order instead of a sorted order. These algorithms are studied
under the assumption that the costs are independent and identically distributed (i.i.d.)
random variables with finite first moment. Under this assumption, the absolute error of
RLP with at least three processors and LPT are both stochastically bounded by a finite
random variable. The author also proves that the absolute error of LPT converges in
distribution to optimality with rate O(1/n1−ε).

[coffman1988] list various results and techniques that are useful for the study of
the problems of scheduling and bin packing. They consider both theoretical optimal
results, and heuristic algorithm results. LPT is one of the algorithms they study, in
terms of both relative error (LPT/OPT) and absolute error (LPT − OPT). They also
reuse the specific probability distribution used by [frenk1986] of the form F (x) = xa,
with 0 < a <∞. They present a heuristic adapted from a set-partitioning problem with
a better convergence on this distribution.

[piersma1996] consider the R||Cmax problem (with unrelated machines), and they
propose an LP relaxation of the problem, followed by a Lagrange relaxation. Assuming
that the processing times are i.i.d. random vectors of [0, 1]m, they prove that 1

nOPT con-
verges almost surely to a value θ that they give (it depends on the Lagrange relaxation).
Using a previous convergence result [frenk1986], they infer that the makespan of LPT
also converges a.s. to nθ.

[dempster1983] consider an objective function also depending on the machine cost,
and they propose a heuristic in two steps, where they first choose the machines to be
bought with knowledge of the distribution of the jobs, and then schedule the jobs on the
machines that were bought in the first step. For identical machines, assuming that the
processing times are i.i.d. random variables with finite second moment, they prove that
the relative error of their heuristic converges to 0 in expectation and probability when
the number of jobs goes to infinity. For uniform machines, they need more assumptions
to reach results.

Summary

Table 2.1 summarizes the main results that are known about LPT.

Beyond LPT

Even though LPT has interesting properties in terms of convergence, other heuristics
have been designed for the multiprocessor scheduling problem. For independent tasks
and makespan minimization, the problem is actually close to a bin-packing problem,

9

Problem Distribution Studied quantity Convergence/rate
[coffman1982] P ||Cmax U(0, 1) E[LPT]/E[OPT∗] 1 +O(m2/n2)

[frenk1986] P ||Cmax
F (x) = xa,
0 < a <∞ LPT−OPT

O((log log(n)/n) 1
a)

almost surely
(a.s.)

[frenk1986] P ||Cmax as above E[(LPT−OPT)q] O((1/n)
a
q)

[frenk1987] Q||Cmax finite 1st moment LPT−OPT a.s.

[frenk1987] Q||Cmax
finite 2nd
moment LPT−OPT in expectation

[frenk1987] Q||Cmax U(0, 1) or Exp(λ) LPT−OPT O(logn/n) a.s.
[frenk1987] Q||Cmax U(0, 1) E[LPT]−E[OPT] O(m2/n)

[loulou1984] P ||Cmax finite 1st moment LPT−OPT bounding finite
RV

[loulou1984] P ||Cmax U(0, 1) LPT−OPT O(1/n1−ε) in
dist.

[coffman1988] P ||Cmax U(0, 1) E[LPT−OPT] O(m/(n+ 1))
[piersma1996] R||Cmax U(0, 1) OPT nθ a.s.

Table 2.1: For each main result, the problem may consider uniform processors (P) or
processors with speeds (Q or R). A result on the absolute difference is stronger than
on the ratio. OPT is the optimal makespan, whereas OPT∗ is the optimal makespan
with preemption.

10

where one would like to create m bins of same size. Hence, the MULTIFIT heuris-
tic [coffman1978] builds on techniques used in bin-packing, and it provides an improved
worst-case bound.

Then, a COMBINE heuristic was proposed [lee1988], combining MULTIFIT and
LPT to get the best of these two heuristics. Another alternative, LISTFIT, was proposed
in [gupta2001], still with the goal to minimize the makespan on identical machines.

The Largest Differencing Method (LDM) of [karmarkar1982] has been proven to be
a (4

3 −
1

3m)-approximation [michiels2003] similarly to LPT, while outperforming LPT
and MULTIFIT from an average-case perspective [graham1969, coffman1978]. LDM
is also asymptotically optimal for the problem 2||Cmax when the tasks have uniform costs
in [0, 1], with LDM−OPT converging at rate n−Θ(logn) [yakir1996].

More recently, [della2020] revisit LPT to propose another heuristic, SLACK, by
splitting the sorted tasks in tuples of m consecutive tasks (recall that m is the number
of processors), and then sorting tuples by non-increasing order of the difference between
the largest and smallest task in the tuple. A list-scheduling strategy is then applied
with tasks sorted in this order. Moreover, LPT last step is enhanced to reach a better
worst-case approximation ratio.

Empirical studies

An empirical comparison of LISTFIT with MULTIFIT, COMBINE and LPT is proposed
in [gupta2001]. Several parameters are varied, in particular the number of machines,
number of jobs, and the minimum and maximum values of a uniform distribution for
processing times. No other distribution is considered. LISTFIT turns out to be robust
and returns better makespan values than previous heuristics.

[behera2012] consider the three heuristics MULTIFIT, COMBINE and LISTFIT,
and propose a comprehensive performance evaluation. While LISTFIT outperforms the
two other heuristics, this comes at a price of an increased time complexity. They do not
consider instances with more than 300 tasks, and no comparison with LPT is done.

An empirical evaluation of LPT was proposed in [laha2017], showing that LPT
consumes less computational time than the competitors (MULTIFIT, COMBINE, LIST-
FIT), but returns schedules with higher makespan values. However, here again, there is
no study of the convergence, and no comparison of LPT with other simpler algorithms.

Finally, an evaluation of SLACK is done in [della2020]: this variant of LPT turns
out to be much better than LPT on benchmark literature instances, and it remains
competitive with the COMBINE heuristic that is more costly and more difficult to
implement.

Beyond independent tasks

While we have been focusing so far on independent tasks, there have also been some
empirical analysis of list scheduling for general directed acyclic graphs (DAGs), i.e., with
dependencies. For instance, [cooper1998] evaluate various list schedulers on benchmark
codes, pointing out cases where a basic list-scheduling algorithm works well, and where

11

more sophisticated approaches are helpful. In this chapter, we focus on independent
tasks to study the convergence of LPT and other heuristics.

2.3 Algorithms and complexity

We first review the algorithms considered in this work in Section 2.3.1, before discussing
the complexity of LPT for small instances in Section 2.3.2.

2.3.1 Algorithms

We consider a total of five algorithms, most of them being list-scheduling algorithms. A
list-scheduling algorithm orders the tasks in some way, and then greedily assigns tasks
to the processor that has the lowest current finishing time (or makespan). Hence, tasks
are always started as soon as possible, and for independent tasks, there is no idle time
in the schedule.

We first recall four list-scheduling algorithms, which differ in the way they order the
tasks:

• LS: List Scheduling is the basic list-scheduling algorithm that does not order the
tasks, but rather considers them in an arbitrary order. The time complexity of LS
is O(n logm).

• LPT: Largest Processing Time orders the tasks from the largest to the smallest.
The time complexity of LPT is O(n logn).

• MD: Median Discriminated is an attempt to find an intermediate solution between
LPT and LS. The tasks are not completely sorted, but the median of the execution
times is computed so that the first n

2 processed tasks are larger than the median,
while the next n

2 are smaller. The time complexity of MD is O(n logm).

• SLACK: as defined by [della2020], it makes packs of m tasks and defines for each
of these packs the slack, which is the difference between the largest and the smallest
task of the pack. The packs are then sorted from the largest to the smallest slack,
and the tasks are sorted according to the order of the packs. The time complexity
of SLACK is O(n logn).

We also consider one algorithm that is not a list-scheduling algorithm: the Largest
Differencing Method (LDM) as defined in [karmarkar1982]. This algorithm creates
partial solutions and merges them greedily:

• The algorithm starts by creating n partial solutions (si)i ≤ n with solution i only
having task Ti on one processor;

• At each step, the algorithm selects the two partial solutions with highest difference
between the busiest processor and the least busy one;

12

• These two partial solutions are merged by matching the busiest processors of the
first instance with the least busy ones of the second instance;

• At the end, after n − 1 steps, there is only one remaining solution, which is a
complete solution.

The time complexity of LDM is O(nm logm). An example of execution of LDM is
given in Fig. 2.1, with seven tasks and three processors.

2.3.2 Optimality for small instances

In this section, we show that LPT returns an optimal solution for small instances. This
can be partially explained by the following well-known property.

Lemma 1. If there exists an optimal solution with at most two tasks per processor, then
LPT is optimal.

Proof. Let n = 2m − h, with h a non-negative integer. As there are at most two tasks
per processor in the optimal solution, there are h tasks alone on their processor. We can
swap these tasks with the h largest tasks without increasing Cmax. Since LPT starts by
scheduling these h largest tasks, they will also each be alone on a dedicated processor,
and we now consider the n − h = 2(m − h) remaining tasks to be scheduled on m − h
processors.

There exists an optimal solution with exactly two tasks on each of the remaining
m−h processors. By exchange argument, if two tasks ti ≤ tj are on the same processor,
and two other tasks tk ≤ tl are on another one, then we either have ti ≤ tk ≤ tl ≤ tj or
tk ≤ ti ≤ tj ≤ tl (if this is not possible, we can exchange the tasks without increasing the
makespan). From that, we get that the processor executing the longest of the 2(m− h)
tasks will also execute the smallest of these tasks. We then use the same argument for
the second largest task, and so on and so forth, to find that the solution given by LPT
is an optimal solution.

Note that this property becomes false as soon as we have more than two tasks on a
specific processor. With three tasks on a processor, we can already reach the worst case
of LPT [graham1969] (LPT

OPT = 4
3 −

1
3m) with the family of instances (Im)m>1 such that

the instance Im is defined as follows:

• There are m+ 1 processors;

• There are a total of n = 2(m+ 1) tasks:

– 2(m− 1) tasks with costs w2i−1 = w2i = m + i, i ∈ [1,m− 1] (costs ranging
from m+ 1 to 2m− 1, each duplicated);

– Three tasks with cost m each;
– One task with cost 3m.

13

P3
P2
P1

1 2 3 4 5 6 7 8 9 101112

47
38

336

P3
P2
P1

1 2 3 4 5 6 7 8 9

7
8

36

P3
P2
P1

1 2 3 4

3
3
4

P3
P2
P1

1 2 3 4

3
4

P3
P2
P1

1 2 3 4 5 6 7 8

6
7
8

P3
P2
P1

1 2 3 4 5 6 7 8

7
8

P3
P2
P1

1 2 3
3

P3
P2
P1

1 2 3
3

P3
P2
P1

1 2 3
3

P3
P2
P1

1 2 3 4
4

P3
P2
P1

1 2 3 4 5 6
6

P3
P2
P1

1 2 3 4 5 6
7

P3
P2
P1

1 2 3 4 5 6 7 8
8

Figure 2.1: Example of execution of LDM on an instance with seven tasks with costs
(3,3,3,4,6,7,8) and with three processors. There are seven initial solutions, that are then
merged (one step per line). The final solution has (7,4) on the first processor, (8,3) on
the second, and (6,3,3) on the last, with a makespan of 12 reached on processor 3. In
this case, LDM is optimal. 14

P3

P2

P1 T6

T3

T4

T5T1

T2

1 2 3 4 5 6 7

(a) LPT schedule (b) Optimal schedule

time

T6

T3 T4 T5

T1 T2

1 2 3 4 5 6

Figure 2.2: Counter example with m = 2, 3 tasks on a processor.

For instance Im, LPT achieves a makespan of 4m−1 by putting the task with cost 3m
alone, and then allocating two tasks per remaining processor, reaching a cost of 3m− 1
on each remaining processor. Finally, the remaining task with cost m is allocated to a
processor that already has a total cost of 3m− 1, reaching a makespan of 4m− 1.

For the same instance Im, a makespan of 3m can be achieved by putting the task
with cost 3m alone, the three tasks with cost m together, and pairing the 2(m − 1)
remaining tasks in pairs with cost 3m each.

Thus, the approximation ratio reached by LPT for this family of instances is LPT
OPT =

4
3 −

1
3m .

This is illustrated for m = 2 in Fig. 2.2, where the 2(m − 1) tasks are the two
identical tasks highlighted in blue. Since they are larger than the tasks of size m, LPT is
scheduling these first, while they should have been paired together on a same processor
in an optimal solution, retrieving the well-known worst case of 7

6 .

2.4 Convergence results for integer compositions

In this section, we derive new convergence results for the algorithms that were described
in Section 2.3.1. These results apply when the distribution of task costs is generated
following an integer composition method. In contrast to related work where the number
of tasks n is known beforehand, this consists in considering that the total amount of
work W is fixed (costs are thus dependent random variables). We detail how tasks are
generated among possible decompositions of this work (Section 2.4.1). We finally perform
the probabilistic analysis in two different settings, depending whether the minimum cost
of tasks is one (Section 2.4.2) or greater (Section 2.4.3).

The proofs of the results in this section are mainly based on combinatorics techniques.
The reader is referred to [Flajolet2009] for more information.

15

2.4.1 Tasks random generation

A W -composition is a finite sequence w1, . . . , wn of strictly positive integers such that
w1 + . . .+ wn = W .

Let DW be the uniform distribution over W -compositions and DW,wmin the uniform
distribution over W -compositions satisfying for each i, wi ≥ wmin. In particular, DW,1 =
DW . For instance, D4 is the uniform distribution over the eight elements (1, 1, 1, 1),
(1, 1, 2), (1, 2, 1), (1, 3), (2, 1, 1), (2, 2), (3, 1), (4); D4,2 is the uniform distribution over
(2, 2) and (4). Note that for D4, the probability that w1 = 1 is 1/2 and the probability
that w1 = 3 is 1/8.

In practice, random generation is performed using the recursive method [DBLP:journals/tcs/FlajoletZC94].
For a list L of task costs, we denote by LPT(L,m) the makespan Cmax returned

by LPT on m machines. We define as well LS(L,m), MD(L,m), SLACK(L,m), and
LDM(L,m) for the other heuristics. The optimal (minimum) Cmax that can be obtained
by any algorithm is similarly denoted OPT(L,m).

2.4.2 Probabilistic analysis for DW

Ratio for DW

In this setting, we know the total workload W , but the number of tasks n is not fixed
and there is no minimum task cost. Let L[W] = (w1, . . . , wn) be a sequence of positive
integers such that ∑n

i=1wi = W , hence a W -composition.
According to [graham1969],

LS(L[W],m)
OPT(L[W],m) ≤ 1 + (m− 1) wmax∑n

i=1wi

= 1 + (m− 1)wmax
W

,

where wmax = max1≤i≤n{wi}.
Following [Flajolet2009], for DW and for any y,

P (wmax ≥ 2 log2W + y) = O

(
e−2y

W

)
. (2.1)

Since by definition of OPT, OPT(L[W],m) ≤ LS(L[W],m), for any fixed m,

P
(LS(DW ,m)

OPT(DW ,m) ≤ 1 + 2(m− 1) log2(W)
W

)
−→

W→+∞
1.

It is also known, see [Flajolet2009], that for the distribution DW , E[wmax] ∼ log2W .
By linearity of expectations, the following result holds:

16

E

[LS(DW ,m)
OPT(DW ,m)

]
−→

W→+∞
1.

The results also hold for LPT, MD and SLACK, which are particular list-scheduling
heuristics. It also holds for LDM, as the algorithm has as invariant that the idle time
per processor is no more than the largest task of the schedule.

Absolute error for DW

The absolute error of a heuristic is the difference between its result and the optimal
result. A first obvious upper bound is that LS(L,m)−OPT (L,m) ≤ wmax (for any set
of tasks L), and previous results on wmax can be used to bound the error (but not to
prove that it tends to 0). Furthermore, we prove the following theorem:

Theorem 1. Algorithms LPT, SLACK, and LDM are optimal for DW , with probability
1 − O

(
1
W

)
. Under the same conditions and with the same probability, MD is near

optimal. For any fixed m, for L generated according to DW ,

P(LPT(L,m) = OPT(L,m)) = 1−O
(1
W

)
,

P(SLACK(L,m) = OPT(L,m)) = 1−O
(1
W

)
,

P(LDM(L,m) = OPT(L,m)) = 1−O
(1
W

)
,

and
P(MD(L,m) ≤ OPT(L,m) + 1) = 1−O

(1
W

)
.

To prove this theorem, let us first prove two lemmas. Let αW be the random variable
counting the number of wi’s equal to 1 in DW .

Lemma 2. For W ≥ 3,

E[αW] = W + 2
4 and Var[αW] = 5

16(W + 1).

Proof. There are 2W−1 compositions of W . The expected number of parts n is W+1
2 . The

number of 1-parts in a composition of W is given by the ordinary generating function
C(z, u) = 1

1−(z
1−z+(u−1)z) = 1−z

1−2z−z(1−z)(u−1) (see [Flajolet2009]).
Moreover, we have [Flajolet2009]:

E[αW] =
[zW]∂uC(z, u)|u=1

[zW]C(z, 1) =
[zW]∂uC(z, u)|u=1

2W−1 , (2.2)

and
E[α2

W] =
[zW]∂2

uC(z, u)|u=1
[zW]C(z, 1) +

[zW]∂uC(z, u)|u=1
[zW]C(z, 1) . (2.3)

17

Also, ∂uC(z, u) = z(1−z)2

(1−2z−(u−1)z(1−z))2 . Therefore ∂uC(z, u)|u=1 = z(1−z)2

(1−2z)2 = z
4 −

1
4 +

1
8(1−2z) + 1

8(2z−1)2 . Using Equation (2.2), we obtain for W ≥ 2,

E[αW] = W + 2
4 .

Now, ∂2
uC(z, u) = 2z2(1−z)3

(1−2z−z(1−z)(u−1))3 and ∂2
uC(z, u)|u=1 = 2z2(1−z)3

(1−2z)3 = z2

4 −
3z
8 −

1
8(1−2z) + 1

16(1−2z)2 + 1
16(1−2z)3 .

It follows that for W ≥ 3,

E[α2
W] = W (W + 1)

16 + W + 1
8 − 1

4 + W + 2
4 .

It follows that:
Var[αW] = E[α2

W]− E[αW]2 = 5
16(W + 1).

Lemma 3. Let AW be the event αW > W
8 and BW be the event wmax ≤ 2 log2W . For

DW , we have:
P(AW ∩BW) = 1−O

(1
W

)
.

Proof. We have:

P
(
αW ≤

W

8

)
= P

(
αW ≤

W + 2
4 − W + 4

8

)
≤ P

(
αW ≤

W + 2
4 − W + 4

8

)
+ P

(
αW ≥

W + 2
4 + W + 4

8

)
= P

(∣∣∣∣αW − W + 2
4

∣∣∣∣ ≥ W + 4
8

)
.

Now, using Lemma 2 and Chebyshev’s inequality, we obtain:

P
(
αW ≤

W

8

)
≤ 5

16
W + 1
(W+4

8)2 = 20 W + 1
(W + 4)2 = O(1

W
).

It follows that P(AW) = O(1
W). Furthermore, according to Equation (2.1), P(BW) =

O(1
W). Finally,

P(AW ∩BW) = 1− P(AW ∪BW)
≤ 1− P(AW)− P(BW)

= 1−O
(1
W

)
,

which concludes the proof.

18

We are now ready to prove Theorem 1.

Proof. By Lemma 3, one has with probability 1−O(1
W), αW = |{i | wi = 1}| > W

8 and
wmax ≤ 2 log2W .

Assume that L[W] satisfies these two properties, and let δ be the maximum difference
of loads between two processors when there remains dW8 e tasks to scheduled (scheduling
with LPT). One has δ ≤ wmax ≤ 2 log2W .

Now, the remaining tasks to be scheduled are unitary. Since the function mapping x
to x−16(m−1) log2 x is strictly increasing for x ≥ 1 and tends to infinity when x→ +∞,
there exists an integer W0 such that, for every W ≥W0, W

8 ≥ 16(m− 1) log2W .
Consequently, the remaining unitary tasks will be optimally scheduled, proving the

theorem for LPT.
For the SLACK algorithm, the proof is quite similar. By Lemma 3, one has with

probability 1 − O(1
W), αW > W

8 and wmax ≤ 2 log2W . In this case, there are at least
W

8(m+1) m-tuples appearing in the SLACK algorithm with a null slack and composed of
tasks of cost 1. Moreover each m-tuple has a maximal 2 log2W −1 slack (when the tuple
contains a maximal and a minimal wi). Therefore, for W large enough, the scheduling of
the W

8(m+1) tuples of unitary tasks fulfills any difference between the current processing
times of the machines. Note that we may still have some non-unitary tasks to schedule,
but since tuples are sorted by non-increasing slack, they would also be organized in
m-tuples with null stack.

For the LDM algorithm, the proof also uses Lemma 3. Recall that LDM creates
partial solutions, and at each step, the two partial solutions with the highest slack are
merged. By Lemma 3, one has with probability 1 − O(1

W), αW > W
8 (i.e., there are

initially at least W
8 unitary tasks) and wmax ≤ 2 log2W (i.e., the highest slack is at most

2 log2W at any time of the algorithm). Assume for the rest of the proof that this is the
case.

At some point in the execution of LDM, there is at most one main partial solution
with a slack strictly greater than 1, and there are at least W

8 partial solutions consisting
of a single unitary task. We will now prove that from this situation, we get a final
solution with a slack of at most 1.

Let Tmax be the makespan of the main partial solution, Tmin the execution time of the
least loaded processors in this partial solution, and mmin the number of such processors,
i.e., the number of processors that have the lowest load. Let I be the following bound
on the idle time of the main partial solution:

I = (m− 1)Tmax −mminTmin − (m− 1−mmin)(Tmin + 1).

When merging a partial solution of slack at least 2 with a single unitary task, the
quantity I decreases, as either Tmax − Tmin decreases, or it does not change and mmin
decreases. When merging a partial solution of slack at least 2 with a partial solution of
slack 1, I does not increase, as Tmax−Tmin does not increase, and the only way for mmin
to increase is for Tmin to increase while Tmax does not.

From the bound on wmax, we know the starting value of I is at most (m− 1)wmax =
(m− 1)2 log2W and we do at least W

8 merges with unitary tasks. For W large enough,

19

it either means that the main partial solution gets a slack of at most 1 at some point,
or I becomes negative. As I cannot be negative, it means that at some point the main
partial solution gets a slack that is less or equal to 1.

A solution with a slack of 0 or 1 is optimal, so this proves the theorem for LDM.
It remains to prove a similar result for MD but up to 1 to the optimal. Let ρW =

|{i | wi = 2}|. The bivariate generating function associate to ρW is

G(z, u) = 1− z
1− 2z + (u− 1)(1− z)z2 .

Since ∂uG(z, u)|u=1 = (1−z)2z2

(1−2z)2 = z∂uA(z, u)|u=1, we have, [zW]∂uG(z, u)|u=1 =
[zW−1]∂uA(z, u)|u=1. It follows that, for W ≥ 2, E[ρW] = W+1

8 .
Similarly ∂2

uG(z, u)|u=1 = z2∂2
uA(z, u), providing that, forW ≥ 3, E[ρ2

W] = (W−2)(W−1)
64 +

W−1
32 −

1
4 + W+1

8 . It follows that Var[ρW] = 9W−25
64 .

Using Chebyshev’s inequality as in Lemma 2, one can prove that P(ρW ≤ W
16) =

O(1
W). One can also prove similarly that P(αW ≤ 11W

64) = O(1
W).

Consequently, with probability 1 − O(1
W) one has αW > 11W

64 and ρW > W
16 and

wmax ≤ 2 log2W . Assume for the rest of the proof that this is the case.
Let n be the number of tasks. There are n− αW − ρW that are of cost greater than

or equal to 3. Therefore, n− αW − ρW ≤ W−αW−2ρW
3 . Consequently n− 2αW − 2ρW ≤

W−4αW−5ρW
3 ≤ W

3 (1− 11
16 −

5
16) ≤ 0. Since αW + ρW ≥ n

2 , the task of medium value has
either cost 1 or 2. If it is 1, then MD is optimal (with the same arguments as for LPT).
Otherwise, MD is up to 1 to the optimal.

Theorem 1 can be reformulated in a convergence in probability result:

Corollary 1. For every ε > 0, for the distributions DW ,

lim
W→+∞

P(|LPT(L,m)−OPT(L,m)| ≥ ε) = 0,

lim
W→+∞

P(|SLACK(L,m)−OPT(L,m)| ≥ ε) = 0,

lim
W→+∞

P(|LDM(L,m)−OPT(L,m)| ≥ ε) = 0,

and
lim

W→+∞
P(|MD(L,m)−OPT(L,m)| ≥ 1 + ε) = 0.

Proof. P(|LPT(L,m)−OPT(L,m)| ≥ ε) = P(LPT(L,m)−OPT(L,m) ≥ ε) ≤ P(LPT(L,m)−
OPT(L,m) > 0) = 1− P(LPT(L,m)−OPT(L,m) = 0) = O

(
1
W

)
. The proof is similar

for SLACK, LDM, and MD.

20

2.4.3 Analysis for DW,wmin

Let min1≤i≤n{wi} = wmin ≥ 2. Let αW,wmin be the number of wi’s equal to wmin in a
decomposition (w1, . . . , wn) satisfying ∑n

i=1wi = W and for all 1 ≤ i ≤ n, wi ≥ wmin.
The random variable αW,wmin is studied for the DW,wmin distribution. Let also γwmin,k be
the number of wi’s greater than or equal to k (with k ≥ wmin).

Theorem 2. Let m be a fixed number of machines. If L is generated according to
DW,wmin, we have:
P(|LPT(L,m)−OPT(L,m)| ≤ wmin) −→

W→+∞
1,

P(|SLACK(L,m)−OPT(L,m)| ≤ wmin) −→
W→+∞

1,
P(|LDM(L,m)−OPT(L,m)| ≤ wmin) −→

W→+∞
1 .

The proof is based on two lemmas.

Lemma 4. There exists a constant β > 0 such that E[αW,wmin] ∼
W→+∞

β(n+ 1).
Moreover, Var[αW,wmin] = o(W 2).

Proof. The ordinary generating function for compositions (w1, . . . , wn) satisfying∑n
i=1wi =

W and for all 1 ≤ i ≤ n, wi ≥ wmin is:

A(z) = 1
1− zwmin

1−z
= 1− z

1− z − zwmin
.

Let Q(z) = 1−z−zwmin. The polynomial Q is strictly decreasing on R+ and Q(0) = 1
and Q(1) = 1. Therefore, Q has a unique real root σ satisfying 0 < σ < 1. Consequently,
there exists a polynomial P with real coefficients such that Q(z) = (σ − z)P (z). More-
over, since limz→σ− Q(z) = 0+ and since Q has no multiple roots, P (σ) > 0.

It follows that A(z) ∼
z→σ

1−σ
(σ−z)P (σ) . Using transfer results [Flajolet2009], we obtain:

[zW] A(z) ∼
W→+∞

1− σ
σP (σ)σ

−W . (2.4)

The bivariate ordinary generating function for the number decompositions (w1, . . . , wn)
satisfying ∑n

i=1wi = W and for every i, wi ≥ wmin, and counting the number of wi’s
equal to wmin is

A(z, u) = 1
1− (zwmin

1−z − (u− 1)zwmin)

= 1− z
1− z − zwmin + (1− z)(u− 1)zwmin

.

It follows that

∂uA(z, u) = (1− z)2zwmin

(1− z − zwmin + (1− z)(u− 1)zwmin)2

21

and

∂uA(z, u)|u=1 = (1− z)2zwmin

(1− z − zwmin)2

= (1− z)2zwmin

(σ − z)2P (z)2 ∼z→σ
(1− σ)2σwmin

(σ − z)2P (σ)2 .

Therefore, using [Flajolet2009] again,

[zW] ∂uA(z, u)|u=1 ∼
W→+∞

(1− σ)2σwmin
σ2P (σ)2 σ−W (W + 1). (2.5)

Consequently, using [Flajolet2009] and Equations (2.4) and (2.5),

E[αW,wmin] ∼
W→+∞

(1− σ)2σwmin
σ2P (σ)2

σP (σ)
1− σ (W + 1)

= (1− σ)σwmin−1

P (σ) (W + 1) = β(W + 1),

with β = (1−σ)σwmin−1

P (σ) .
It remains to prove the result for the variance. One has

∂2
uA(z, u)|u=1 = 2(1− z)3z2r

(σ − z)3P (z)3 ∼z→σ
2(1− σ)3σ2r

(σ − z)3P (σ)3 .

Consequently,

[zW] ∂2
uA(z, u)|u=1 (2.6)

∼
W→+∞

2(1− σ)3σ2r

σ3P (σ)3
(W + 1)(W + 2)

2 σ−W . (2.7)

According to [Flajolet2009] and using Equation (2.4),

E[α2
W,wmin] ∼

W→+∞

2(1− σ)3σ2r

σ3P (σ)3
σP (σ)
1− σ

(W + 1)(W + 2)
2

+ β(W + 1)
∼

W→+∞
β2(W + 1)(W + 2).

We have proved that E[αW,wmin]
W −→

W→+∞
β and

E[α2
W,wmin

]
W 2 −→

W→+∞
β2. It follows that

Var[αW,wmin]
W 2 =

E[α2
W,wmin

]− E[αW,wmin]2

W 2 −→
W→+∞

0,

which concludes the proof.

22

Lemma 5. One has, for the DW,wmin distribution,

P(wmax ≥ log2
1/σ(W)) −→

W→+∞
0,

where σ is the unique real root of 1− z − zk = 0 (0 < σ < 1).

Proof. Let B(z, u) be the bivariate ordinary generating function of DW,wmin , with pa-
rameter the number γwmin,k.

One has B(z, u) = 1
1−(z

wmin
1−z +(u−1) zk

1−z)
= 1−z

1−z−zwmin+(u−1)zk . The proof lies on Markov

inequality. We will point out an upper bound of E[γwmin,k]. One has

E[γwmin,k] =
[zW] ∂uB(z, u)|u=1

[zW]B(z, 1) . (2.8)

Now, ∂uB(z, u)|u=1 = (1−z)zk
(1−z−zwmin)2 . Since 1−z

(1−z−zwmin)2 ∼
σ

1−σ
(z−σ)2P (σ)2 , using [Flajolet2009]

one has [zW] 1−z
(1−z−zwmin)2 ∼

W→+∞
1−σ

σ2P (σ)2σ
−W (W + 1), that can be reformulated into

[zW] 1−z
(1−z−zwmin)2 = 1−σ

σ2P (σ)2σ
−W (W + 1)(1 + ε(W)), with ε(W) → 0 when W → +∞.

Note too that ε(W) depends on wmin but not on k. It provides

[zW] ∂uB(z, u)|u=1 = [zW−k] 1− z
(1− z − zwmin)2 (2.9)

= 1− σ
σ2P (σ)2σ

−W+k(W − k + 1)(1 + ε(W − k)). (2.10)

Similarly, [zW] B(z, 1)|u=1 = [zW] 1−z
(1−z−zwmin)2 = 1−σ

σP (σ)σ
−W (1+ε′(W)), with ε′(W)→ 0

when W → +∞. Note that ε′(W) depends on wmin but not on k. Therefore, and
combining (2.8) and (2.10), we obtain

E[γwmin,k] = σk(W + 1− k)
σP (σ)

1 + ε(W − k)
1 + ε′(W) . (2.11)

With k = log2
1/σW , Equation (2.11) becomes

E[γwmin,k] =
σ

log2
1/σW (W + 1− log2

1/σW)
σP (σ)

×
1 + ε(W − log2

1/σW)
1 + ε′(W)

≤ W 1−log1/σW

σP (σ)
1 + ε(W − log2

1/σW)
1 + ε′(W) .

Since 0 < σ < 1, W 1−log1/σW −→ 0
W→+∞

.

23

To finish, using Markov inequality,

P(wmax ≥ log2
1/σ(W))) = P(γwmin,log2

1/σ(W) ≥ 1)

≤ E[γwmin,log2
1/σ(W)],

proving the lemma.

We are now ready to prove Theorem 2.

Proof. We only provide a sketch of the proof, which is similar to the one of Theorem 1.
Using Lemma 4 and Lemma 5, almost surely there is a linear number (relatively to W)
of tasks of cost wmin and the maximum cost of a task is bounded by log2

1/σ. Therefore,
applying LPT will provide a maximum load C such that C − W/m ≤ wmin. The
inequality OPT ≥ W/m concludes the proof. The proofs for SLACK and LDM follow
as for Theorem 1.

We do not have yet any theoretical results for MD for DW,wmin , but experimental
results explored in Section 2.5 are encouraging.

As for Theorem 1, one can deduce the following corollary from Theorem 2 (with a
similar proof).

Corollary 2. For every ε > 0, every wmin ≥ 2, for the distributions DW,wmin,

lim
W →+∞

P(|LPT(L,m)−OPT(L,m)| ≥ wmin + ε) = 0,

lim
W →+∞

P(|SLACK(L,m)−OPT(L,m)| ≥ wmin + ε) = 0,

and
lim

W →+∞
P(|LDM(L,m)−OPT(L,m)| ≥ wmin + ε) = 0.

2.5 Empirical study

The objective of this section is threefold: first, evaluate the tightness of the convergence
rate proposed in [frenk1986] (Section 2.5.2); then, assess the performance of the five
heuristics when generating costs with the integer composition approach (Section 2.5.3);
finally, quantifying the convergence for realistic instance (Section 2.5.4). We first detail
the experimental setting in Section 2.5.1. All the algorithms were implemented in Python
3, and the code is available on figshare1.

1https://doi.org/10.6084/m9.figshare.14755296

24

https://doi.org/10.6084/m9.figshare.14755296

0.00

0.25

0.50

0.75

1.00

1e-02 1e-01 1e+00 1e+01 1e+02
a (log)

Expected value
Standard deviaton

Figure 2.3: Expected value and standard deviation of a random variable with cumulative
distribution function F (x) = xa as a function of a with 0 < a <∞.

2.5.1 Experimental setting

Synthetic instances

We consider two kinds of synthetic instances:

1. i.i.d. execution times with cumulative distribution function F (x) = xa for some
a > 0. This distribution has an expected value of a

a+1 and a variance of a
(a+1)2·(a+2) .

These values can be seen as a function of a in Fig. 2.3. Note that for a = 1, this
is a uniform distribution U(0, 1).

2. The integer composition distribution considered in Section 2.4, that is to say a
uniform distribution on all possible ways to decompose a total amount of work
into integer values.

Realistic instances

We also compare the five algorithms of Section 2.3.1 using real logs from the Parallel
Workloads Archive, described in [feitelson2014] and available at https://www.cs.
huji.ac.il/labs/parallel/workload/. More specifically, we took the instances called
KIT ForHLR II2 with 114 355 tasks and NASA Ames iPSC/8603 with 18 239 tasks. The
profiles of the task costs in these instances are presented in Fig. 2.4.

In order to also get instances for which the number of tasks n could change, we build
new instances from these two instances. In the new instances, the tasks are i.i.d. random
variables with an empirical cumulative distribution function that is computed from the
distribution of the two original instances.

2https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
3https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html

25

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html

KIT ForHLR II NASA Ames iPSC/860 San Diego Supercomputer Center

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
0.00

0.25

0.50

0.75

1.00

Execution time (log)

Figure 2.4: Empirical cumulative distributions and histograms of task costs for the KIT
ForHLR II, NASA Ames iPSC/860 and Supercomputer Center (SDS) instances.

Optimality transform

When studying the absolute error of an algorithm, we consider the difference of its
makespan to the optimal one to measure the convergence when the number of tasks
n goes to infinity. The optimal makespan is computationally hard to get, so as a first
approach, we can take a lower bound instead of the actual optimal value. However, there
is a risk of actually measuring the quality of the lower bound instead of the quality of
the algorithm.

To address this problem, we transform the instances so that we know the optimal
makespan. This transformation is described as follows:

• We take an instance with n tasks;

• We perform a random List Scheduling on this instance;

• From this schedule, we add a total of at most m − 1 tasks so that all of the
processors finish at the same time;

• We randomize the order of the tasks to avoid adding a bias to the heuristics;

• We end up with an instance with at most n + m − 1 tasks such that the opti-
mal makespan equals the sum of the execution times divided by the number of
processors (OPT = W

m).

As we are interested in the asymptotic behavior of the algorithms, m is small
compared to n, and we expect this transformation to alter the task distribution only
marginally. Even if there are few such tasks, we still analyze how much they differ from
the original tasks of the instance, through an empirical study.

The distribution of the added tasks can be found in Fig. 2.5, along with the cumu-
lative distribution function of the tasks originally in the instance (i.e., F (x) = xa). We

26

m = 10 m = 30 m = 100

a
=

0
.5

a
=

1
a
=

2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Execution time

F (x) = xa Empirical CDF of the added tasks

Figure 2.5: Cumulative distribution function for the added tasks compared to the cumu-
lative distribution function of the original tasks, on instances of 500 tasks for F (x) = xa.

27

can see that for the three instances where a = 0.5, the two distributions do not resemble
each other much, with Kolmogorov-Smirnov statistics4 between 0.3 and 0.42. For the
instances with a = 1 (i.e., the uniform distribution), the added tasks resemble the orig-
inal tasks much more, with Kolmogorov-Smirnov statistics between 0.12 and 0.16, and
for the instances with a = 2, the similarity between the added tasks and the original
tasks varies a lot, with Kolmogorov-Smirnov statistics between 0.16 and 0.31.

2.5.2 Rate tightness

We experimentally verify the bound given in [frenk1986]: if the tasks are independent
and have cumulative distribution function F (x) = xa with a > 0, then the absolute error
is a O((log log(n)

n) 1
a) almost surely.

Fig. 2.6 depicts the absolute error of LPT and related heuristics (LS, MD, SLACK,
and LDM) for different values of n. The instance contains n −m + 1 costs generated
with the considered distribution and is then completed with the optimality transform.
Moreover, we plot C × (log log(n)

n) 1
a , where C is the lowest constant such that all of LPT

values are under the bound.
We can see that the bound seems to be rather tight for LPT, which confirms that

the convergence rate of [frenk1986] is strong. Also, we can see that the absolute error
of SLACK and LDM seems to converge to 0 at a similar rate as LPT, but with a lower
multiplicative constant. Their performances are very similar in most case, except for
both a high number of processors and a high value of a, in which case SLACK performs
better than LDM. On the other side, the absolute errors of LS and MD do not seem to
converge to 0 at all, but MD performs significantly better than LS.

2.5.3 Uniform integer compositions

Some experiments have been performed for the distributions described in Section 2.4: a
total workload W is fixed as well as a fixed number m of machines. Then, the list of
task costs is uniformly picked among all the possible lists for the distribution DW ; and
among all the possible lists with a minimum cost wmin for the distribution DW,wmin .

For DW , an instance has been generated for all W from 10 to 9999, for m = 10,
m = 30, and m = 100. Instances are not transformed to avoid changing the total work
W . Thus, we compare the makespan obtained by the heuristics to the lower bound on
the optimal value OPT: max(dWm e, wmax). In all cases (about 30 000), LPT and SLACK
always reach this bound, which indicates that they are both optimal and the bound is
tight with these instances. LDM was found to be suboptimal in only 2 cases, that is
to say 0.0067% of the cases. Results for LS and MD are reported in Table 2.2. The
average absolute error for MD is 0.35 for this experiment with a standard deviation of
0.6. Moreover MD is optimal in 67.6% of the samples and up to 1 from the optimum
in 98% of the samples. LS is optimal in 3.3% of the cases and the average error is 3.75
(s.d. 2.15).

4Presented by [berger2014], the Kolmogorov-Smirnov statistic of two distributions measures how

28

m = 10 m = 30 m = 100

a
=

0
.5

a
=

1
a
=

2

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Number of tasks n

C
m

a
x
−

O
P
T

C · (log log(n)
n

)
1
a Heuristic LDM LPT LS MD SLACK

Figure 2.6: Absolute error with a distribution of the form F (x) = xa with a > 0
(instances are transformed to obtain OPT). Smoothed lines are obtained by using a
rolling median with 45 values (each value is set to the median of the 22 values on the
left, the 22 on the right and the current one). The ribbons represent the rolling 0.1- and
0.9-quantiles.

29

abs. err. LS MD abs. err. LS MD
0 3.4 67.7 6 9.1 0.04
1 10.7 30.3 7 5.0 < 0.01
2 17.0 0.96 8 2.7 0
3 18.1 0.58 9 1.5 0
4 17.3 0.28 10 0.7 0
5 13.7 0.08 >10 0.6 0

Table 2.2: Distribution in percentages of the absolute errors observed for LS and MD
with W from 10 to 9999 and m ∈ {10, 30, 100}.

wmin LPT LS MD SLACK LDM

3 2 – 0.93 – 0.70 21 – 2.54 – 0.91 5 – 1.48 – 0.56 2 – 0.61 – 0.60 2 – 0.57 – 0.57
5 4 – 1.84 – 1.23 26 – 4.21 – 1.48 9 – 2.69 – 0.87 5 – 1.11 – 0.86 4 – 1.07 – 0.82
7 6 – 2.71 – 1.80 48 – 6.02 – 2.08 13 – 3.65 – 1.15 6 – 1.60 – 1.17 6 – 1.56 – 1.11
10 9 – 3.99 – 2.65 37 – 8.42 – 3.12 15 – 5.23 – 1.80 11 – 2.32 – 1.62 9 – 2.29 – 1.57

Table 2.3: Results on the difference between the Cmax computed by the heuristics and
a lower bound of the optimal makespan OPT. Each line is related to different DW,wmin .
The first number is the maximum difference observed for all the samples, the second one
is the average difference, and the last one is the standard deviation of this difference.
Each value is obtained with W from 10 to 9999 and for m ∈ {10, 30, 100}.

Similar tests have been done for DW,wmin withW ∈ {10, . . . , 9999}, wmin ∈ {3, 5, 7, 10}
and m ∈ {10, 30, 100} (see Table 2.3). We now focus on the difference δ between Cmax
and the lower bound. In each case, the maximal value of δ is reported, as well as its
average and standard deviation. Note that for each sample, both SLACK and LDM
ensure that δ < wmin, while SLACK and MD ensures it in more than 99% of cases.
The LS heuristic is less effective since for wmin = 3, only 42% of the samples satisfy
δ < wmin; 49% for wmin = 5, 53% for wmin = 7 and 58% for wmin = 10. Results for
the SLACK and LDM heuristics are very close, and better than LPT. Over the about
120 000 samples, SLACK is strictly better than LPT 68202 times, while LPT is strictly
better than SLACK only 1797 times. The difference can be up to 8 units of time. LDM
is strictly better than SLACK 3352 times, by up to 8 units of time, while SLACK is
better than LDM only 362, by up to only 2 units of time. LDM performs better than
both SLACK and LPT, but the cost for this performance is a higher execution time.

2.5.4 Realistic workloads

In Fig. 2.7, we present experiments similar to those with synthetic instances in Sec-
tion 2.5.2, but with the realistic instances.

As we can see when comparing LS and MD, treating the n
2 largest tasks first only

close the two distributions are (the lower the statistic is, the closer the distributions are).

30

m = 10 m = 30 m = 100

K
IT

N
A

SA
SD

SC

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

1

100

10000

1
10

100
1000

10000

1

100

10000

Number of tasks n

C
m

a
x
−

O
P
T

(l
og

)

Heuristic LDM LPT LS MD SLACK

Figure 2.7: Absolute error with costs derived from the KIT ForHLR II and NASA Ames
iPSC/860 instances (after optimality transformation). Smoothed lines are obtained by
using a rolling median with 45 values (each value is set to the median of the 22 values
on the left, the 22 on the right and the current one). The ribbons represent the rolling
0.1- and 0.9-quantiles.

31

marginally decreases the makespan of LS. We can also see that when n grows, the
absolute error of LPT seems to be on par with the one of SLACK. In [della2020],
SLACK was found to perform generally better than LPT for some synthetic instances.
For our realistic instances, it only seems to be true when the number of processors
remains small. SLACK and LDM have very similar performances, as their curves often
overlap.

2.6 Conclusion

Given various probability distributions, we have evaluated the performance of five heuris-
tics, among which the classical LPT heuristic, the more recent SLACK heuristic, and
the LDM heuristic. The literature already contains important theoretical results either
in the form of different kinds of stochastic convergence to optimality or with a conver-
gence rate. To the best of our knowledge, this work is the first to empirically assess the
tightness of a theoretical convergence rate for LPT, and to study the complexity of LPT
with a small number of tasks. Furthermore, we consider a novel definition of uniformity
for the cost distribution: for a given total work, any integer composition can be drawn
with the same probability, which leads to dependent random costs. This distribution
is further enhanced by considering a subset of the decompositions that constrains the
minimum cost. We prove the convergence in probability of LPT and four other heuristics
with these distributions as well. Finally, we empirically analyze the convergence with re-
alistic distributions obtained through traces. All these results contribute to understand
the excellent performance of LPT in practice.

Future work will consist in obtaining stronger convergence theoretical results. For
instance, existing results only consider that the number of tasks n tends to infinity. The
impact of a varying number of processors m could be explored.

Also, this work is the first attempt to consider dependent cost distributions, but
many such distributions exist and could be explored. For instance, the same application
consisting of a given set of tasks can be executed with different input size. The tasks
could thus often have the same profile to a given multiplying factor. Finally, the novel
distribution in this chapter presents a minimum cost. Existing convergence results for
independent distributions could probably be extended to consider costs with a similar
minimum value. For instance, the worst-case ratio for LPT is achieved with costs 1

3
and 1

2 . The uniform distribution U(1
3 ,

1
2) could thus present some challenges.

Data availability

The datasets and code generated during and/or analyzed during the study of this chap-
ter are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.
19317773.

32

https://doi.org/10.6084/m9.figshare.19317773
https://doi.org/10.6084/m9.figshare.19317773

Chapter 3

List and shelf schedules for
independent parallel tasks to
minimize the energy consumption
with discrete or continuous
speeds

Scheduling independent tasks on a parallel platform is a widely-studied problem, in par-
ticular when the goal is to minimize the total execution time, or makespan (P ||Cmax
problem in Graham’s notations). Also, many applications do not consist of sequential
tasks, but rather parallel tasks, either rigid, with a fixed degree of parallelism, or mold-
able, with a variable degree of parallelism (i.e., for which we can decide at the execution
on how many processors they are executed). Furthermore, since the energy consumption
of data centers is a growing concern, both from an environmental and economical point
of view, minimizing the energy consumption of a schedule is a main challenge to be
addressed. One can then decide, for each task, on how many processors it is executed,
and at which speed the processors are operated, with the goal to minimize the total
energy consumption. We further focus on co-schedules, where tasks are partitioned into
shelves, and we prove that the problem of minimizing the energy consumption remains
NP-complete when static energy is consumed during the whole duration of the applica-
tion. We are however able to provide an optimal algorithm for the schedule within one
shelf, i.e., for a set of tasks that start at the same time. Several approximation results
are derived, both with discrete and continuous speed models, and extensive simulations
are performed to show the performance of the proposed algorithms.

33

3.1 Introduction

We consider the problem of scheduling independent tasks. Even though this problem
has already been widely studied, in particular when aiming to minimize the total exe-
cution time (or makespan) for sequential tasks, there remain avenues for improvement
for variants of the problem. Using the Graham notations [Graham79], the typical
problem that is studied is P ||Cmax, i.e., the goal is to minimize the makespan when
scheduling independent sequential tasks on a set of identical processors. The deci-
sion version of this problem in its simplest form is already NP-complete (it is indeed
identical to 2-Partition [GareyJohnson] when considering two processors). However,
several well-known heuristics lead to very good approximation algorithms, as the clas-
sical Longest Processing Time (LPT) heuristic, or even some PTAS or FPTAS algo-
rithms [Hochbaum88].

The problem becomes more complicated when dealing with parallel tasks. Now,
each task i is a parallel task that executes concurrently on pi processors. The greedy
list scheduling algorithm that gives priority to longest jobs is then known to be a 2-
approximation when tasks are rigid (pi is given and fixed) [garey1975bounds].

In order to ease the scheduling, it can be useful to group tasks by shelves (or batches,
packs, levels, etc.), and then the shelves are scheduled one after the other. All the tasks
in a same shelf start their execution at the same time, and the next shelf starts only
when all tasks of the previous shelf are done. This is typically referred to as shelf-
scheduling or co-scheduling. Of course, one may then waste time, due to idle resources
if tasks do not all take the same time. However, such schedules are easy to implement
and they also may have some theoretical guarantees. Indeed, the list scheduling that
gives priority to longest jobs is known to be a 3-approximation when imposing the use
of shelves [turek1992approximate] (recall that it is a 2-approximation without this
restriction).

Such co-schedules are also very useful for moldable tasks, i.e., tasks whose degree of
parallelism pi can be chosen at execution. For such parallel moldable tasks, an easy way
to proceed is to execute tasks sequentially, each task using the whole platform. However,
it may be more efficient to group tasks by shelves, since the execution profile of a task
may lead to less efficiency when using many processors. While the general problem
is NP-hard, Aupy et al. [gopy2016] propose an optimal polynomial-time algorithm to
decide the processor assignment that minimizes the makespan when there are at most
two tasks in a shelf.

While most scheduling problems are focusing on makespan minimization, another
core problem is the energy consumption. In order to optimize this energy consump-
tion, modern processors can run at different speeds, and their power consumption
is then the sum of a static part (the cost for a processor to be turned on) and a
dynamic part, which is a strictly convex function of the processor speed. Indeed,
the execution of a given amount of work costs more power if a processor runs at a
higher speed [10.1109/IPDPS.2006.1639597]. More precisely, a processor running
at speed s dissipates a power of s3 Watts [280894, pruhsTCS, pow3, pow3IPDPS,

34

pow3ICPP], hence it consumes an energy of s3 × d Joules when operated during d
units of time. Faster speeds allow for a faster execution, but they also lead to a much
higher (supra-linear) power consumption. A more general model states that the power
can be in sα, where 2 ≤ α ≤ 3 [bambagini2016]. While minimizing the makespan
helps reducing the energy consumption, which increases with execution time, to the best
of our knowledge, no study has been aiming at minimizing the energy consumption for
shelf schedules.

For the static energy consumption, it depends on the time during which processors
are powered. We consider two models: in the independent model, each processor is
independently powered and can be turned off when not computing, hence the static
power is paid only while processors are running. However, in the simultaneous model,
the platform is turned on as long as one processor is running, hence the static power
must also be paid for idle processors.

Our main contributions are the following:
• We formalize the problem of scheduling independent moldable tasks to minimize

energy consumption (MinE-Mold problem) with various model variants.
• We prove that the problem can be solved in polynomial time when processors are

independently powered, while the problem becomes NP-complete with simultane-
ously powered processors.

• We establish multiple approximation ratios for both classical list scheduling algo-
rithms, and shelf-based schedules, both with a realistic model where speeds can
be chosen in a discrete set, and with the general model where speeds can take any
positive real value (continuous speeds).

• We provide an optimal dynamic programming algorithm to minimize the energy
consumption of a single shelf, both with the discrete and with the continuous
model. The goal is to decide on how many processors to execute each task of the
shelf, and at which speed to operate the task.

• We perform an empirical study and we show that, for most instances, a single
speed can be used for all tasks without increasing the energy consumption. Also,
as expected, shelf-based solutions consume more energy, but they are easier to
implement and solutions are derived with a much lower complexity. A comparison
with solutions using continuous speeds highlights that further energy savings could
be achieved by carefully choosing the processor’s speeds.

We first discuss related work in Section 3.2. Next, we detail the model (platform,
tasks, energy consumption) and schedules, and we introduce the target optimization
problems in Section 3.3. The complexity of the problems is established in Section 3.4.
Approximation ratios for MinE-Mold are derived in Section 3.5 with discrete speeds and
in Section 3.6 with continuous speeds. Optimal algorithms for a single shelf are provided
in Section 3.7. Finally, a comprehensive empirical study is proposed in Section 3.8. We
conclude and give hints for future research directions in Section 3.9.

35

3.2 Related work

Although the problem of minimizing the energy consumption of parallel platforms has
been extensively studied, few works propose guaranteed scheduling algorithms for mold-
able tasks. We first cover approximation algorithms for the problem of minimizing the
makespan because our approach relies on such results, even though we rather focus on
minimizing the energy consumption. We then discuss heuristics proposed for real-time
systems, which consider a model slightly different than ours. Finally, we present some
examples of moldable task applications.
Makespan minimization. For the rigid case where the number of processors re-
quired by each task is fixed, classical list scheduling algorithms, denoted by ListBased,
are widely used in the literature for makespan minimization. Tasks are ordered in a
priority list and are then scheduled by order of priority, as presented by Garey and Gra-
ham [garey1975bounds]: any time a processor is idle, the list is scanned in order and
the first task that can be executed is started. Another way to say it, the principle of
the algorithm is as follows: when resources are released, we see if a task can be started
right now. If it is the case, we start it. If several tasks can be started, we take the one
with the highest priority, given by an ordering of the tasks in a list. ListBased is a 2-
approximation for the makespan. More precisely, it is a 2×max(Wp , tmax)-approximation,
where W

p is the average work and tmax is the execution time of the longest task.
Coffman et al. [coffman1980] made a landmark paper proving the approximation

ratio of several shelf-based algorithms when considering rigid tasks only. They introduce
the problem as a two-dimensional packing problem and focus on asymptotic performance
bounds for the makespan. They show that the performance bounds of classic bin-packing
heuristics Next-Fit Decreasing and First-Fit Decreasing are 3 and 2.7, respectively.

In [krischnamurti1992], Krishnamurti et al. study a problem where processors
are partitioned, and each task is submitted to one such partition with the objective to
minimize the execution time. The number of partitions is bounded, which limits the
maximum number of simultaneous tasks.

In [turek1992approximate], Turek et al. study the multi-shelves problem, still for
makespan minimization. They first propose an allocation strategy for rigid tasks, and
then use this strategy on several “allocation candidates” for the moldable case. This first
strategy involves co-schedules, ShelfBased [turek1992approximate], where rigid
tasks are partitioned into shelves, and all the tasks in a same shelf begin their exe-
cution at the same time (this is equivalent to Next-Fit Decreasing). Tasks are sorted in
order of decreasing execution times. Then, tasks are inserted iteratively in the current
shelf until the next task cannot be inserted. At this point, a new shelf is created and
the process continues. A possible extension consists in allowing backfilling of previous
shelves. ShelfBased is a 3-approximation for the makespan. More precisely, it is a(

2W
p + tmax

)
-approximation. To deal with moldable tasks, the authors also present an

overall design [turek1992approximate] that works as follows. First, a task and a
number of processors are selected, and we assume that all tasks will complete before this
one. Then, the number of processor is chosen for all other tasks so that their work is

36

minimized. Finally, this instance is solved as if tasks were rigid (with a fixed number
of processors. All pairs of initial task and number of processors are tried. Turek et al.
also designed a 2.7-approximation for the multi-shelves problem, with a fixed number of
shelves [turek1992scheduling]. However, this algorithm is exponential in the number
of shelves.

Aupy et al. go beyond the problem of minimizing the makespan, by tackling the prob-
lem of optimizing the power consumption, the makespan and the reliability [aupy2012].
However, they consider dependent non-parallel tasks, which is a setting completely dif-
ferent from ours, since we focus on parallel tasks. They show that most problems are
NP-hard and propose heuristics.

Real-time systems. Finally, several works have been proposed in the context of real-
time systems with moldable tasks, power constraints and deadlines. The closest to the
problem that we target considers level-based scheduling (similar to shelves) with rigid or
moldable tasks [kong2011]. They propose heuristics that extend bin-packing ones such
as First-Fit Decreasing, Best-Fit Decreasing, etc. Most other works related to real-time
systems propose heuristics [xu2012, zahaf2017, litzinger2019]. In this thesis, we do
not consider deadlines and we investigate algorithms with guarantees.

Moldable Tasks. Most distributed algorithms have a time complexity that depends
on the number of processors and therefore correspond to moldable tasks. This is the
case for very classical algorithms such as the Fast Fourier Transform or the prod-
uct of matrices by Strassen’s method. For a more recent example, one can for in-
stance point out distributed algorithms for generating samples from a large tabular
[DBLP:journals/toms/SandersLHSD18]. In the context of biological applications,
E. Saule et al. have shown how to use moldable tasks to tackle the short sequence
mapping problem [DBLP:journals/jpdc/SauleBC12]. Other applicative examples of
moldable tasks on stream algorithms are developed in [DBLP:journals/vlsisp/KellerLK22].

Overall, we are not aware of any paper tackling directly the problem that we con-
sider in this chapter, namely the problem of scheduling independent moldable tasks to
minimize the energy consumption, under different model variants (shelf-based solutions,
discrete and continuous speeds, ...), and hence we were not able to directly compare our
proposed approach to any algorithm coming from related work.

3.3 Model

We first describe the platform model (Section 3.3.1), the task model (Section 3.3.2), the
energy model (Section 3.3.3), before formally defining general schedules, single-speed
schedules and co-schedules in Section 3.3.4. Finally, we introduce the target optimization
problems in Section 3.3.5. Table 3.1 summarizes the main notations used throughout
the chapter.

37

Notation Quantity
p Number of processors

Pstat Static Power
S Set of available speeds on the processors
Ti Task number i

wi,j Total work for the execution of task i on j processors
ti,j,s Execution time of task i on j processors at speed s
ti,j Execution time of task i on j processors at speed s = 1

ai,j,s Area of task i on j processors at speed s
λ A schedule

pi(λ) Number of processors allocated to task i in schedule λ
si(λ) Speed of the processors allocated to task i in schedule λ

tmax(λ) Execution time of the longest task in schedule λ
Cmax(λ) Makespan of schedule λ
W (λ) Sum of the work of all tasks in schedule λ

Tdyn(λ) Sum of the execution times of all tasks in schedule λ
Adyn(λ) Sum of the areas of all tasks in schedule λ
Astat(λ) Sum of the times during which processors are powered in schedule λ

Table 3.1: List of notations.

3.3.1 Platform

The target platform consists in p identical processors, whose frequency can be scaled
using DVFS (Dynamic Voltage and Frequency Scaling).

These processors have a static power Pstat and a set S = {s1, s2, . . . , sk} of possible
speeds (or frequencies). For convenience, we let smin = s1 and smax = sk be the minimum
and maximum speeds. Indeed, current processors have a set of predefined speeds (or
frequencies), which correspond to different voltages that the processor can be subjected
to [Okuma2001] (discrete model).

For the sake of completeness, we also consider the continuous model, where processors
may be operated at any speed (S = R∗+). While this model is unrealistic (even though the
number of available frequencies tends to be large in modern processors), it is theoretically
appealing [BKP07]. Also, a study of the problem without a constrained set of speeds
allows for a better understanding of how to choose the available speeds during the design
of a processor.

In our model, we don’t consider the possibility of switching frequencies during the
execution of a given task as it would never provide better solutions. The reason for that is
that, due to the convexity of the function describing the energy consumption, taking the
average speed of a task as its constant speed always incurs a lower energy consumption
for the same execution time. Two different tasks, however, can be executed at different
frequencies even if they are scheduled on a same processor. This remark would not
necessarily remain true if we were to remove the full clairvoyance on the execution times

38

of the tasks or if we were to add uncertainty to the energy model.

3.3.2 Tasks

We consider a set of n moldable tasks {T1, T2, . . . , Tn} with respective execution profiles
(wi,j)i∈J1,nK,j∈J1,pK, where wi,j is the total work required to execute Ti on j processors.
The work is the total number of elementary operations to be executed by the processors.
If executed at a speed of one, the time per processor is then ti,j = wi,j

j .
We assume that:

• ∀i, (ti,j)j is non-increasing in j (the more processors there are, the less time it will
take per processor);

• ∀i, (wi,j)j is non-decreasing in j (when using more processors, there is more over-
head due to the parallelization, which is a common assumption [blazewicz2001,
benoit17]).

The algorithms presented in this chapter do not require these two usual assumptions,
however having them simply allows us to get better time complexities. For example,
in the case where some allocations of processors are not possible for some tasks, the
corresponding processing time would be infinite and both assumptions could not hold.

Furthermore, for task Ti (1 ≤ i ≤ n),
• pi is the number of allocated processors;

• si is the speed of the processors during their execution;

• ti,pi,si = ti,pi
si

= wi,pi
si×pi is the execution time;

• ai,pi,si = ti,pi,si × pi = wi,pi
si

is the area of the rectangle representing this task.

3.3.3 Energy consumption

The energy consumption consists first of a static part, which corresponds to the power
consumed when processors are turned on. The static power is denoted Pstat, and the
corresponding static energy consumption on each processor is tstat×Pstat, where tstat is
the duration during which the processor is powered.

There is also a dynamic energy consumption, directly related to the speed s at which
the processor operates, and the time tdyn spent computing (which may be equal to or
smaller than the time tstat). Using a general model, the dynamic energy consumption is
tdyn × sα [bambagini2016], where α > 1 (in general, 2 ≤ α ≤ 3). Hence, for task Ti,
the dynamic energy consumption on each processor is ti,pi,si × sαi (since tdyn = ti,pi,si),
and the total dynamic energy consumption for the task is ai,pi,si × sαi (the same energy
is consumed by each of the pi processors operating task Ti).

The case where tstat = tdyn is the independent model, where each processor is inde-
pendently powered, and hence turned off when it is not computing. We also consider
the simultaneous model, where the whole platform remains powered as long as at least
one processor is executing (tstat = Cmax).

39

3.3.4 Schedules

Given a computational platform and a set of moldable tasks as described above, a
schedule λ is a function that maps each task Ti to a tuple (Mi, si, δi), where Mi is
the set of processors assigned to Ti (hence the number of processors assigned to the task
is pi = |Mi|), si is the speed of these processors to execute Ti, and δi ≥ 0 is the starting
time of Ti. Moreover, λ must verify the following conditions:

• There exists i such that δi = 0 (there is a task starting at time 0);

• If tasks Ti and Ti′ (1 ≤ i, i′ ≤ n and i 6= i′) are such that Mi ∩Mi′ 6= 0, then
[δi, δi + ti,pi,si]∩ [δi′ , δi′ + ti′,pi′ ,si′] = ∅ (a processor cannot be used for two different
tasks at the same time).

We also have the following aggregated quantities depending on a schedule λ:

• Cmax(λ) = maxi{δi + ti,pi,si} is the makespan (or total execution time);

• W (λ) = ∑n
i=1wi,pi is the cumulative work;

• Tdyn(λ) = ∑n
i=1 ti,pi,si is the cumulative execution time of all tasks;

• Adyn(λ) = ∑n
i=1 ai,pi,si is the cumulative execution time on all processors;

• Astat(λ) is the cumulative time on all processors during which they are powered. It
is either Adyn(λ) in the independent model, or it is p×Cmax(λ) in the simultaneous
model.

We can then express the total energy consumption of a schedule λ as:

E(λ) =
n∑
i=1

ai,pi,si × sαi +Astat(λ)× Pstat.

If there is no ambiguity on λ, we write Cmax for Cmax(λ); and similarly for related
quantities (W , Tdyn, Adyn, etc.).

Finally, we pay a particular attention to two classes of particular schedules:

• Single-speed schedules are schedules such that all the speeds are equal for all tasks,
i.e., for 1 ≤ i ≤ n, si = s ∈ S.

• Co-schedules are organized as shelves, as motivated in Section 3.1. A co-schedule
consists of a partition of the tasks into shelves and such that:

– If two tasks are in the same shelf, then they start their execution at the same
time;

– If two tasks are not in the same shelf, then one finishes its execution before
the other one starts.

40

Problem Processors per task Speeds Static area Astat Constraint
MinE-Mold-Indep Variable pi ∈ N Finite set S Astat = Adyn ∅
MinE-Mold Variable pi ∈ N Finite set S Astat = p× Cmax ∅
MinE-Rig Fixed pi ∈ N Finite set S Astat = p× Cmax ∅
MinE-Mold-Cont Variable pi ∈ N Interval Astat = p× Cmax ∅
MinE-Rig-Cont Fixed pi ∈ N Interval Astat = p× Cmax ∅

MinE-OneShelf Variable pi ∈ N Finite set S Astat = p× Cmax
n∑

i=1
pi ≤ p

Table 3.2: List of problems (multiple speeds).

3.3.5 Optimization problems

The general problem is MinE-Mold: Given n moldable tasks, their execution profiles
(wi,j), p processors and their speeds S, the goal is to find a schedule that minimizes
the total energy consumption. We focus mainly on the case with a set of discrete
speeds (discrete model) and simultaneously-powered processors (simultaneous model).
Variants with continuous speeds and/or independently-powered processors are referred
to by adding Cont or Indep to the problem name (hence, MinE-Mold-Cont-Indep is
the problem with both variants, while MinE-Mold-Indep is the problem with discrete
speeds and independently-powered processors).

We also consider the variant of the problem with rigid tasks, i.e., when the speed
si and the number of processors per task pi are fixed (MinE-Rig problem), again by
default with discrete speeds and the simultaneous model.

Moreover, we add SS to refer to the variant of any problem where the same speed
must be selected for each task (see single-speed schedules above).

Finally, since we are interested in co-schedules, we consider the more constrained
problem with a single shelf, i.e., all tasks must start at time 0 and be executed concur-
rently. The corresponding problem is MinE-OneShelf: Given a set of n tasks and p
processors, the goal is to minimize the energy consumption knowing that all tasks start
at time 0 (δi = 0 for 1 ≤ i ≤ n). Solving this particular problem will help us derive
efficient co-schedules for the general MinE-Mold problem. More precisely, a solution
to MinE-OneShelf is an assignment ((pi)i∈J1,nK, (si)i∈J1,nK) such that:

• ∀i ∈ J1, nK, task Ti is executed on pi ≥ 1 processors at speed si ∈ S;

•
n∑
i=1

pi ≤ p (at most p processors are used, since all tasks execute concurrently).

All problems (with the multiple speed variant) are summarized in Table 3.2.

3.4 Problem complexity

We start with the study of the independent model, and we derive that MinE-Mold-
Indep can be solved in polynomial time (Section 3.4.1). However, with the more realistic
simultaneous model, we prove that MinE-Mold is NP-complete (Section 3.4.2).

41

3.4.1 Optimal algorithm for MinE-Mold-Indep

In the independent model, the platform has multiple nodes that are independently pow-
ered, which means that each node can individually be turned down at any point of the
execution, and not consume any more energy. Therefore, the total energy consumption
is the sum of the individual energy consumption of each task. Hence, for each task,
we need to decide on how many processors it should be executed, and at which speed,
in order to minimize its energy consumption. Recall that we solely focus on energy
optimization, and hence we do not have any constraint on the total time to completion.

Since the (wi,j)’s are non-decreasing in j, we have ai,1,si ≤ ai,pi,si for all 1 ≤ pi ≤ p.
Therefore, ai,pi,si is minimized if a single processor is used (independently of the speed
that is chosen). Hence, we set pi = 1, i.e., the task is executed on a single processor (its
execution time may be long, but other processors will be turned off and less energy will
be consumed, since we have independently-powered processors).

We still need to decide at which speed to execute the task on its single processor.
Indeed, there is a tradeoff between executing the task fast to reduce the static energy
consumption of the task (the area ai,1,si , that decreases with si), and running at a slower
speed to reduce the dynamic energy consumption, which is in sαi and hence increases
with si. The total energy consumption of the task is ai,1,si×(sαi +Pstat), and ai,1,si = wi,1

si
.

The goal is therefore to find si that minimizes sα−1
i + Pstat

si
.

The optimal value of si (denoted by sopti) can then be easily found in O(|S|) if S is
a set of discrete speeds, by comparing the values for every possible speed si ∈ S. In the
continuous case, we remark that the function f : s 7→ sα−1

i + Pstat
si

is a convex function
that reaches its minimum at sopti = α

√
Pstat
α−1 , and hence it can be found in O(1).

We can therefore optimize the energy consumption of each task independently, and
execute the tasks one after the other. For each task, as shown above, we execute task i on
a single processor at speed sopti . Again, we focus solely on energy optimization, and the
time to completion might be very large in this case (a single processor is used). Of course,
one can also schedule the tasks on different processors and achieve the same energy
consumption with a smaller total execution time since nodes are independently powered.
Anyway, the optimal solution to this problem can therefore be found in polynomial time.

In the rest of this chapter, unless otherwise stated, we focus on simultaneously pow-
ered processors (i.e., Astat = p×Cmax). It then becomes crucial to use the whole platform
and minimize the execution time, since the platform remains powered during the whole
execution.

3.4.2 NP-completeness of MinE-Mold

When moving to the simultaneous model, it becomes crucial to also minimize the total
execution time, since the static energy is consumed during the whole execution. We
show that the MinE-Mold problem actually is NP-complete, even when a single speed
is available. For the continuous case (MinE-Mold-Cont), the problem is also NP-hard,
even though we do not know whether it is in NP or not because of the speeds in R∗+.

42

Theorem 3. The decision problems associated to MinE-Mold and MinE-Mold-SS are
NP-complete, and the decision problems associated to MinE-Mold-Cont and MinE-
Mold-Cont-SS are NP-hard.

Proof. We first prove that the decision problem associated to MinE-Mold is in NP: a
certificate is a schedule, i.e., the number of processors and the speed of each task, as
well as the starting time of each task, and it is easy to check in polynomial time whether
the bound on energy consumption is achieved. However, in the continuous case, the
speeds and starting time of tasks might not be in Q, and hence we do not know whether
MinE-Mold-Cont is in NP or not.

To prove the NP-hardness, we do a reduction from the problem of 3-Partition [GareyJohnson]:
Given 3n integers {a1, . . . , a3n} whose sum is nB = ∑3n

i=1 ai and with B
4 < ai <

B
2 for

1 ≤ i ≤ 3n, does there exist a partition of {1, . . . , 3n} into n subsets S1, . . . , Sn, such
that ∑i∈Sj ai = B for 1 ≤ j ≤ n?

Let I1 be an instance of 3-Partition. We create an instance I2 of MinE-Mold (or
MinE-Mold-Cont) with n processors, and 3n tasks that cannot be parallelized, i.e.,
their execution time is not improved when using more than one processor. Hence, task i
(1 ≤ i ≤ 3n) is such that ti,j = ai for 1 ≤ j ≤ n. Furthermore, we have Pstat = 2 and
α = 3. In the discrete version of the problem, there is a single speed S = {1}. Finally,
we set the bound on total energy consumption for I2 to 3nB.

First, note that it is always better to execute each task on a single processor. Indeed,
if a task is executed on more than one processor, it takes the same time to execute
but consumes additional energy. Second, in the continuous case, if a single task is
considered, it should be executed at speed sopti = α

√
Pstat
α−1 as shown in Section 3.4.1 for the

independent model, which corresponds to a speed of one since Pstat = 2 and α = 3. The
use of another speed leads to a higher energy consumption for this task. Hence, assuming
that each task is executed at speed 1 (both in the discrete and continuous cases), we
obtain a dynamic energy consumption of ai for task i, and a total dynamic energy
consumption of nB. The static energy consumption depends on the total execution time
t, and it is Pstat × t × n. If there is no idle time, and hence no waste of static energy,
the time t × n also corresponds to the total time spent executing the tasks as in the
independent model, which is nB as for the dynamic energy consumption. We are now
ready to prove the equivalence of solutions.

If I1 has a solution, we execute tasks of a same subset Sj onto processor j, for
1 ≤ j ≤ n. Each processor completes in time B, and the static energy consumption
is 2nB, hence a total energy consumption of 3nB (static energy plus dynamic energy).
Therefore, I2 has a solution.

If I2 has a solution, we define Sj as the set of tasks executed on processor j. Since
the energy consumption is not greater than 3nB, each task must be executed at speed 1
on a single processor, otherwise the sum of the energy consumption of each task (as in
the independent model) would exceed 3nB, and lead to a contradiction. Indeed, the
energy consumption with the simultaneous model is at least as high as the one with the
independent model as it may account for extra static energy consumption due to some

43

idle time of processors. Given that each task is executed at speed 1, the total dynamic
energy consumption is nB and the static energy consumption cannot exceed 2nB. This
means that the total execution time must be such that t ≤ B, and the sum of the ai’s
in each subset Sj cannot exceed B. Therefore, I1 has a solution, which concludes the
proof.

3.5 Approximation ratios with discrete speeds

To solve MinE-Mold, we extend a strategy [turek1992approximate] that transforms
a moldable instance into multiple rigid ones by fixing the number of processors (and pos-
sibly the speed) of each task. Then, each rigid instance is solved with a heuristic, for
example the ones that we mentioned earlier, ListBased (the classical list-based schedul-
ing where no processor is left idle if a task can be started, which is a 2-approximation
algorithm for the total execution time, or makespan) or ShelfBased (rigid tasks are
partitioned into shelves, and all the tasks in a same shelf begin their execution at the
same time, which is a 3-approximation algorithm for makespan).

We thus start by considering the rigid case (MinE-Rig problem) and derive approx-
imation results for energy consumption. Moreover, we first consider a simplified version
of the problem where all tasks have the same speed (Section 3.5.1), before moving to the
general case (Section 3.5.2). By convention, λOPT refers to the optimal schedule that
minimizes the energy consumption and λ• to the schedule at speed s• with a guaranteed
bound on the energy consumption. Moreover, for a rigid instance, λ∗ is the schedule
with minimum makespan and λA a schedule with a guaranteed bound on the makespan.

3.5.1 Processors with a single speed (si = s)

We first consider the case where the speed must be the same for all tasks, i.e., si = s for
1 ≤ i ≤ n. The energy simplifies as:

E =
n∑
i=1

ai,pi,si × sα +Astat × Pstat,

with α > 1.

Rigid case

We start with the rigid case, which means that, for 1 ≤ i ≤ n, the number of processors
pi for task i is fixed. Hence, the workload for task i is also known (wi,pi). Moreover,
for a given schedule λ, all the si’s are equal to sλ. The tuple λ(i) is hence denoted as
(Mi, sλ, δi).

Given any ρ > 0, we denote by ρλ the schedule associating to each task i the tuple
(Mi, ρ×sλ, δiρ), i.e., the speed is scaled by a factor ρ, and the starting times are adjusted
accordingly, without any modification in the processor allocation. One can easily check
that ρλ is also a rigid single-speed schedule.

44

Two schedules λ1 and λ2 are equivalent, denoted λ1 ∼ λ2, if there exists ρ > 0 such
that λ1 = ρλ2. The relation ∼ is an equivalence relation. The equivalence class of λ is
denoted [λ].

Recall that Cmax(λ) = Astat(λ)
p is the makespan: it is the total duration during which

the whole system is powered. For convenience, we define the following quantity:

K[λ] = sλ × Cmax(λ).

It is easy to see that this is a constant for the equivalence class of λ; indeed, given
any ρ > 0, Cmax(ρλ) = Cmax(λ)

ρ , and sρλ = ρ × sλ. This is used as makespan that is
normalized to the speed.

The goal of this section is to prove the following theorem. The idea consists in
considering algorithms with a given approximation ratio on the makespan and show
how these ratios extend to the energy minimization. In particular, we consider the same
allocation as the one returned by the approximation algorithm but with a speed that
minimizes the energy consumption.

Theorem 4. In the rigid single-speed context (MinE-Rig-SS) and assuming that there
exists an algorithm A that yields a c-approximation of the optimal makespan, we can
compute in polynomial time a schedule consuming at most c times the optimal energy.

Proof. In the rigid case, we have ∑n
i=1 ai,pi,si = ∑n

i=1
wi,pi
si

. The cumulative work W =∑n
i=1wi,pi is independent of the schedule λ. We can then write the energy consumption

of λ as:

E(λ) = W

sλ
× sαλ +Astat(λ)× Pstat (3.1)

= W × sα−1
λ + p× Cmax(λ)× Pstat. (3.2)

Let λOPT be a single-speed schedule minimizing the energy consumption. Let us
denote by λA the schedule returned byA. Let s• ∈ S be a speed for which minλ∈[λA]E(λ)
is attained. We analyze the schedule λ• defined by the same allocation as A, but with
the speed s•. Its makespan is Cmax(λ) = sλA

s•
× Cmax(λA).

Note that if λ∗ is a single-speed schedule minimizing the makespan, then Cmax(λA) ≤
c × Cmax(λ∗) because A yields a c-approximation of the optimal makespan. Therefore,
K[λA] ≤ c × K[λ∗] (necessarily sλA ≤ sλ∗ = smax). Moreover, for any single-speed
schedule λ, K[λ∗] ≤ K[λ], otherwise by running λ at speed smax, we would get a schedule
with a lower makespan than λ∗, which would contradicts the fact that λ∗ is optimal for
the makespan.

min
λ∈[λA]

E(λ•) = W × sα−1
• + sλA

s•
p× Cmax(λA)× Pstat Equation (3.2)

= W × sα−1
• + p×

K[λA]
s•
× Pstat definition of K[λA]

≤W × sα−1
λOPT + p×

K[λA]
sλOPT

× Pstat optimality of s∗[λA]

45

≤W × sα−1
λOPT + c× p×

K[λ∗]
sλOPT

× Pstat K[λA] ≤ c×K[λ∗]

≤W × sα−1
λOPT + c× p×

K[λOPT]
sλOPT

× Pstat K[λ∗] ≤ K[λOPT]

≤W × sα−1
λOPT + c× p× Cmax(λOPT)× Pstat definition of K[λOPT]

≤ c×Wsα−1
λOPT + c× p× Cmax(λOPT)× Pstat c ≥ 1

≤ c× E(λOPT), Equation (3.2)

thus proving the theorem.

Moldable case

The algorithm for MinE-Mold-SS (Algorithm 1) assumes first that a speed of one is
used. First, we select both a task Ti′ and the number of processors pi′ for this task.
Let tmax be the longest execution time among all tasks (assuming a speed of one). We
assume that this time is achieved with this task (i.e., tmax = ti′,pi′). There are np such
selections, and we explore them all. For each value of tmax (i.e., for each pair (Ti′ , pi′)),
we select the number of processors of each other task to be associated with the lowest
work such that ti,pi ≤ ti′,pi′ still holds. We then solve the rigid instance obtained by
fixing the number of processors for each task with ListBased-SS or ShelfBased-SS,
and we select the speed that minimizes the energy for the resulting schedule. The final
schedule is the one with minimum energy over the np explored possibilities.

Algorithm 1: Algorithm for MinE-Mold-SS
1 for (Ti′ , p′) ∈ {T1, . . . , Tn} × {1, . . . , p} do
2 tmax ← ti′,p′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi ← arg min1≤j≤p j × ti,j such that ti,pi ≤ tmax if it exists;
5 pi = 0 otherwise;
6 if all pi 6= 0 then
7 Apply a guaranteed algorithm A on the rigid instance

{(T1, p1), . . . , (Tn, pn)} at speed of 1, to get a schedule λ(Ti′ ,p′)• ;
8 Select the speed s• that minimizes the energy ;
9 return the schedule λ• with minimum energy among all the computed λ

(Ti′ ,p′)• ;

Intuitively, we analyze the approximation ratio of any moldable scheduling algorithm
with the following approach based on [turek1992approximate]:

• For a given tmax, we bound the cumulative work to be executed assuming any task
execution duration is bounded by tmax.

• We then bound the maximum makespan achievable with a guaranteed algorithm
for MinE-Rig-SS.

46

• Finally, we bound the maximum total energy consumption during this duration.
We can state the main result of this section.

Theorem 5. We assume that there exists a polynomial-time algorithm A for MinE-
Rig-SS that returns a schedule λA at a speed of one such that Cmax(λA) ≤ a× W (λA)

p +
b×tmax(λA) (resp. Cmax(λA) ≤ max

(
a× W (λA)

p , b× tmax(λA)
)

). In the moldable single-
speed context (MinE-Mold-SS), one can compute in polynomial time a schedule λ• that
consumes at most a+ b (resp. max(a, b)) times the optimal energy.

Proof. The proof is done for Cmax(λA) ≤ a × W (λA)
p + b × tmax(λA). The other case

(maximum of the two terms instead of sum) is similar.
For any task i and any number pi of processors, we denote by λi,pi the schedule

returned by A on the following rigid instance: for all i′, pi′ is the integer in {1, . . . , p}
minimizing wi′,pi′ under the constraint ti′,pi′ ≤ ti,pi . There are at most np different such
schedules and each one can be computed in polynomial time. For each schedule, the
selected speed is the one that minimizes the energy consumption. Let λ• be a schedule
of (λi,pi)i,pi (where each task is running at speed si,pi) with minimum energy consumption
(i.e., the schedule for which E(λ•) = min

i,pi
E(λi,pi)).

Let λOPT be a schedule minimizing the energy (for MinE-Mold-SS). Let iOPT denote
the longest task in the optimal schedule λOPT and piOPT denote the number of processors
for this longest task (i.e., tmax(λOPT) = tiOPT,p

iOPT). By construction of the λi,pi , one
has W (λg) ≤ W (λOPT) where λg = λiOPT,p

iOPT . By definition, tmax(λg) = tmax(λOPT).
Thus, at a speed of one, K[λg] = Cmax(λg) ≤ a× W (λg)

p + b× tmax(λg) ≤ a× W (λOPT)
p +

b× tmax(λOPT) ≤ (a+ b)×Cmax(λOPT) = (a+ b)×K[λOPT]. Finally, remark that a and b
are necessarily constants satisfying a+ b ≥ 1 because A would provide a schedule better
than the optimal otherwise.

We have:

E(λ•) ≤ E(λg) optimality of λ•
over all (λi,pi)i,pi

≤ E(sλOPT

sλg
λg) optimality of sg

≤W (λg)× sα−1
λOPT + p×

K[λg]

sλOPT
× Pstat Equation (3.2)

≤W (λOPT)× sα−1
λOPT + (a+ b)× p×

K[λOPT]
sλOPT

× Pstat approximation

ratio of A

≤ (a+ b)×W (λOPT)× sα−1
λOPT + (a+ b)× p×

K[λOPT]
sλOPT

× Pstat a+ b ≥ 1

≤ (a+ b)× E(λOPT) Equation (3.2),

which concludes the proof.

47

It has already been proved that ListBased-SS is an algorithm that outputs a sched-
ule λ at a speed of one such that Cmax(λ) ≤ max

(
2× W (λ)

p , 2× tmax(λ)
)

[garey1975bounds],
so by applying Theorem 5 with a maximum and a = 2 and b = 2, we show that List-
Based-SS is a 2-approximation algorithm for the energy.

As for ShelfBased-SS, it is an algorithm that outputs a schedule λ such that
Cmax(λ) ≤ 2 × W (λ)

p + tmax(λ) [turek1992approximate], so by applying Theorem 5
with a sum and a = 2 and b = 1 [turek1992approximate], we show that ShelfBased-
SS is thus a 3-approximation algorithm for the energy.

3.5.2 Processors with different speeds for each task

When generalizing to multiple speeds, the approach is close to the one used for the
single-speed problem where all tasks are executed at the same speed (see Algorithm 1);
the corresponding algorithm is detailed in Algorithm 2. Note that in the case where the
speeds of the tasks are already determined, the dynamic area Adyn is equivalent to the
work from [turek1992scheduling], which was denoted by W in Theorem 5.

Algorithm 2: Algorithm for MinE-Mold, with multiple speeds
1 for (Ti′ , p′, s′) ∈ {T1, . . . , Tn} × {1, . . . , p} × {s1, . . . , sk} do
2 tmax ← ti′,p′,s′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi, si ← arg min1≤j≤p,s∈S ai,j,s × sα + ai,j,s × Pstat such that ti,pi,si ≤ tmax

if it exists;
5 pi, si ← 0, 0 otherwise.
6 if all pi, si 6= 0, 0 then
7 Apply a guaranteed algorithm A on the rigid instance

{(T1, p1, s1), . . . , (Tn, pn, sn)} at speed of 1, to get a schedule λ(Ti′ ,p′,s′)• ;
8 return the schedule λ• with minimum energy among all the computed

λ
(Ti′ ,pi′ ,si′)• ;

Theorem 6. We assume that there exists a polynomial-time algorithm A for MinE-Rig-
SS that returns a schedule λA such that Cmax(λA) ≤ a× Adyn(λA)

p + b× tmax(λA) (resp.
Cmax(λA) ≤ max

(
a× Adyn(λA)

p , b× tmax(λA)
)

) with 1 ≤ a. In the general moldable
context (MinE-Mold), one can compute in polynomial time a schedule λ• that consumes
at most a+ b (resp. max(a, b+ 1)) times the optimal energy.

Proof. We consider in this proof the max case for A. The proof is similar for the sum.
For any task i, any number pi of processors and any speed si, we consider the

following rigid instance: for all i′, we select (pi′ , si′) ∈ {1, . . . , p} × S that minimizes the
energy consumption of task i, ai′,pi′ ,si′ × s

α
i′ + ai′,pi′ ,si′ × Pstat where ai′,pi′ ,si′ is the area

of the rectangle representing task i, under the constraint ti′,pi′ ,si′ ≤ ti,p′,s. The schedule

48

returned by A for this problem is denoted λi,p′,si . There are at most np|S| different
such schedules and each one can be computed in polynomial time. Let λ• be a schedule
among the (λi,pi,si)i,pi,si minimizing the energy.

Let λOPT be a schedule minimizing the energy (for MinE-Mold). Let iOPT, piOPT

and siOPT satisfy tmax(λOPT) = tiOPT,p
iOPT ,siOPT . For a schedule λ, set Ei(λ) = ai,pi,sis

α
i +

ai,pi,siPstat. By construction, one has:∑
i

Ei(λiOPT,p
iOPT ,siOPT) ≤

∑
i

Ei(λOPT). (3.3)

To simplify the notation, we denote λiOPT,p
iOPT ,siOPT by λg. Now,

E(λ•) ≤ E(λiOPT,p
iOPT ,siOPT) = E(λg)

≤
∑
i

ai,pi,si(λg)× sαi +Astat(λg)× Pstat definition of
the energy

≤
∑
i

ai,pi,si(λg)× sαi + p× Cmax(λg)× Pstat definition of
Astat

≤
∑
i

ai,pi,si(λg)× sαi + p×max
(
a× Adyn(λg)

p
, b× tmax(λg)

)
× Pstat approximation

ratio of A

Now, by distributivity, we have one of the two following possibilities:

E(λ•) ≤
∑
i

ai,pi,si(λg)× sαi + a×Adyn(λg)× Pstat left-hand side of the max

or
E(λ•) ≤

∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λg)× Pstat right-hand side of the max

We start with the left-hand side of the max:

LHS ∆=
∑
i

ai,pi,si(λg)× sαi + a×Adyn(λg)× Pstat

≤ a× (
∑
i

ai,pi,si(λg)× sαi +Adyn(λg)× Pstat) 1 ≤ a

≤ a×
∑
i

(ai,pi,si(λg)× sαi + ai,pi,si(λg)× Pstat) definition of Adyn

≤ a×
∑
i

Ei(λg) definition of Ei

≤ a×
∑
i

Ei(λOPT) Equation (3.3)

≤ a× E(λOPT)
∑

Ei ≤ E

Now, the right-hand side of the max:

RHS ∆=
∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λg)× Pstat

49

≤
∑
i

ai,pi,si(λg)× sαi + b× p× tmax(λOPT)× Pstat tmax(λg) = tmax(λOPT)

≤
∑
i

ai,pi,si(λg)× sαi + b×Astat(λOPT)× Pstat p× tmax ≤ Astat for any
given schedule

≤
∑
i

Ei(λg) + b×Astat(λOPT)× Pstat ai,pi,si(λg)× sαi ≤ Ei(λg)
from the definition of Ei

≤
∑
i

Ei(λg) + b× E(λOPT) Astat × Pstat ≤ E for any
given schedule

≤
∑
i

Ei(λOPT) + b× E(λOPT) Equation (3.3)

≤ E(λOPT) + b× E(λOPT)
∑

Ei ≤ E

≤ (b+ 1)× E(λOPT)

We finally reunite the two sides of the max:

E(λ•) ≤ max
(
a× E(λOPT), (b+ 1)× E(λOPT)

)
≤ max (a, b+ 1)× E(λOPT),

which concludes the proof.

In this case, the bound is 3 for both ListBased and ShelfBased algorithms.

3.6 Approximation ratios with continuous speeds

We propose a theoretical variation of the problem, where instead of choosing the speed
in a finite set of speeds S, we can choose any speed in R∗+. We call this continuous
problem MinE-Mold-Cont and MinE-Rig-Cont, depending on the nature of the
tasks. The motivation for this variation is that we can get stronger approximation
results through the introduction of continuous speeds. Through this, we hope to get a
better understanding of what makes a good processor speed, thus allowing us to better
choose the set of speeds S at the creation of a processor.

3.6.1 Rigid case

Similarly to the discrete case, we start by restricting to rigid tasks (MinE-Rig-Cont-SS
problem).

Theorem 7. In the rigid single-speed context with continuous speeds (MinE-Rig-Cont-
SS) and assuming that there exists an algorithm A that yields a c-approximation of the
optimal makespan, we can compute in polynomial time a schedule consuming at most
c1− 1

α times the optimal energy.

50

Proof. In the rigid case, we have ∑n
i=1 ai,pi,si = ∑n

i=1
wi,pi
si

. The cumulative work W =∑n
i=1wi,pi is independent of the schedule λ. With a single speed, we can hence write the

energy as:

E(λ) = W × sα−1
λ +Astat(λ)× Pstat (3.4)

= W × sα−1
λ + p× Cmax(λ)× Pstat. (3.5)

The problem can be split as two decisions to take:

• The choice of speed s;

• The actual scheduling, i.e., the choice of the time at which we start each task.

To show that these decisions can be taken one after the other, we start with a
preliminary lemma comparing the energy consumption of two schedules using the same
speed.

Lemma 6. Let λ1, λ2 be two single-speed schedules such that sλ1 = sλ2. If E(λ1) ≤
E(λ2), then for any ρ > 0, E(ρλ1) ≤ E(ρλ2).

Proof. Using Equation (3.2),

E(λ2)− E(λ1) = p× Pstat × (Cmax(λ2)− Cmax(λ1)).

Furthermore, Cmax(λ1) = ρ×Cmax(ρλ1) and Cmax(λ2) = ρ×Cmax(ρλ2). It follows that:

E(λ2)− E(λ1) = p× Pstat × ρ× (Cmax(ρλ2)− Cmax(ρλ1))
= ρ× (E(ρλ2)− E(ρλ1)),

hence proving the lemma.

Lemma 6 shows that the actual scheduling can be expressed as a two-steps mini-
mization problem: find a schedule λ0 minimizing the makespan for a given speed. Next,
find among [λ0] (using the notations defined in Section 3.5.1) a schedule (i.e., a speed)
minimizing the energy consumption.

For a given schedule λ0, we can compute the optimal speed s as the one that mini-
mizes

f(s) = W × sα−1 + p×
K[λ0]
s
× Pstat,

with K[λ] = sλ × Cmax(λ) as defined in Section 3.5.1. This optimal value of s is

sOPT
[λ0]

∆= α

√
p×K[λ0]

(α− 1)×W × Pstat.

Then, we can write
min
λ∈[λ0]

E(λ) = C × α

√
Kα−1

[λ0] ×W,

51

where C = α
√

(p× Pstat)α−1× (α
√
α− 1 + α

√
(α− 1)α−1) is a constant independent of λ0.

Consequently, we have

E(λOPT) = min
[λ0] ∼class

min
λ∈[λ0]

E(λ)

= min
[λ0] ∼class

C × α

√
Kα−1

[λ0] ×W

= C × α

√
Kα−1

[λ∗] ×W.

Now, let A be an algorithm that yields a c-approximation for the makespan. For
a given speed, the quantity K[λA] is proportional to the makespan, so this algorithm
outputs a schedule λA such that

K[λA] ≤ c×K[λ∗].

By running this schedule with speed

sOPT
[λA] = α

√
p×K[λ0]

(α− 1)×W × Pstat,

we have a schedule such that

EλA = C × α

√
Kα−1

[λA] ×W

≤ C × α

√(
c×K[λ∗]

)α−1
×W

≤ c
α−1
α × E(λOPT).

This proves the theorem: an algorithmA, that yields a c-approximation for the makespan
and that returns a schedule λA will yield a cα−1

α -approximation for the energy.

3.6.2 Moldable case

The overall design of the algorithm for MinE-Mold-Cont-SS is similar to the one of
the discrete case, see Algorithm 3.

We can state the main result of this section.

Theorem 8. We assume that there exists a polynomial-time algorithm A for MinE-
Rig-Cont-SS that returns a schedule λA at a speed of one such that Cmax(λA) ≤
a × W (λA)

p + b × tmax(λA) (resp. Cmax(λA) ≤ max
(
a× W (λA)

p , b× tmax(λA)
)

). In the
moldable single-speed context with continuous speeds (MinE-Mold-Cont-SS), one can
compute in polynomial time a schedule λ• that consumes at most (a + b)1− 1

α (resp.

max(a, b)1− 1
α) times the optimal energy, when running at speed s•

∆= α

√
p×K[λA]

(α−1)×W × Pstat.

52

Algorithm 3: Algorithm for MinE-Mold-Cont-SS
1 for (Ti′ , p′) ∈ {T1, . . . , Tn} × {1, . . . , p} do
2 tmax ← ti′,p′ ;
3 for Ti ∈ {T1, . . . , Tn} do
4 pi ← arg min1≤j≤p j × ti,j such that ti,pi ≤ tmax if it exists;
5 pi = 0 otherwise;
6 if all pi 6= 0 then
7 Apply a guaranteed algorithm A on the rigid instance

{(T1, p1), . . . , (Tn, pn)} at speed of 1, to get a schedule λ(Ti′ ,p′)• ;

8 Select the speed s•
∆= α

√
p×K[λ•]

(α−1)×W × Pstat for this schedule ;

9 return the schedule λ• with minimum energy among all computed λ
(Ti′ ,p′)• ;

Proof. We adapt the proof of Theorem 5 to continuous speeds for the case Cmax(λA) ≤
a× W (λA)

p + b× tmax(λA). The other case (maximum of the two terms instead of sum)
is similar.

For any task i and any number pi of processors, we denote by λi,pi the schedule
returned by A on the following rigid instance: for all i′, pi′ is the integer in {1, . . . , p}
minimizing wi′,pi′ under the constraint ti′,pi′ ≤ ti,pi . There are at most np different
such schedules and each one can be computed in polynomial time. For each schedule,
the selected speed is the one that minimizes the energy consumption. Let λ• be a

schedule of (λi,pi)i,pi (where each task is running at speed si,pi = α

√
K[λi,pi]

(α−1)×W × Pstat)
with minimum energy consumption.

Let λOPT be a schedule minimizing the energy (for MinE-Mold-Cont-SS). Let
iOPT and piOPT denote the task and the number of processors, such that tmax(λOPT) =
tiOPT,p

iOPT in the schedule λOPT that minimizes the energy consumption. By con-
struction of the λi,pi , one has W (λg) ≤ W (λOPT) where λg = λiOPT,p

iOPT . As in
the rigid context (proof of Theorem 7), we can express the energy for the respective
schedules as E(λg = C α

√
Kα−1

[λg] ×W (λg) and E(λOPT) = C α

√
Kα−1

[λOPT] ×W (λOPT) where
C = α

√
(p× Pstat)α−1 × (α

√
α− 1 + α

√
(α− 1)α−1).

Consequently E(λ•)
E(λOPT) ≤

E(λg)
E(λOPT) = α

√
Kα−1

[λg]

Kα−1
[λOPT]

. Now, we have

K[λg] ≤ a×
W (λg)
p

+ b× tmax(λg)

≤ a× W (λOPT)
p

+ b× tmax(λOPT)

≤ (a+ b)×K[λOPT]

53

From that, we finally get

E(λ•)
E(λOPT) ≤

α

√
(a+ b)α−1,

which concludes the proof.

Recall that ListBased-SS is an algorithm with a maximum and a = 2 and b =
2 [garey1975bounds], hence it is a 21− 1

α -approximation algorithm. ShelfBased-SS,
an algorithm with a sum and a = 2 and b = 1 [turek1992approximate], is thus a 31− 1

α -
approximation algorithm. For α = 3, these approximation ratios become respectively
3√4 ≈ 1.59 and 3√9 ≈ 2.08.

3.7 Optimizing for a single shelf

We propose to further optimize co-schedules by designing a polynomial-time algorithm
for the MinE-OneShelf problem, i.e., to optimize the execution of a single shelf, both
with discrete and continuous speeds. Formally, given a set of n tasks and p processors,
the goal is to find an assignment ((pi), (si))1≤i≤n that minimizes E = ∑n

i=1
(
pi× ti,dyn×

sαi + pi × ti,stat × Pstat
)
, where

• ti,dyn = ti,pi,si = ti,pi
si

, and
• ti,stat = max1≤i≤n ti,dyn (simultaneous model).

3.7.1 Preliminaries

Since the static energy spent depends on the total length of the shelf (i.e., max1≤i≤n ti,pi,si),
the algorithm proceeds by fixing the shelf length to Cmax, and aims at finding the op-
timal number of processors and speed for each task, such that the time bound Cmax is
respected and the total energy consumption is minimized.

Hence, for a single processor, given an amount of work w to complete and a length
of shelf of Cmax, we consider the function OptS(w,Cmax) that returns the optimal speed
such that w

s ≤ Cmax and the energy consumption w × sα−1 + Cmax × Pstat is min-
imized. Since the energy consumption is an increasing function of s for s ≥ 0, the
optimal speed is the smallest speed such that the shelf length is not exceeded. There-
fore, OptS(w,Cmax) = max(smin,

w
Cmax

) in the continuous case, and OptS(w,Cmax) =
min

{
s ∈ S | s ≥ w

Cmax

}
in the discrete case. In the case no such speed exists (this may

happen with discrete speeds), the function returns None. Note that this function can
be computed in Θ(1) in the continuous case, and in Θ(log(|S|)) in the discrete case by
doing a binary search within values of S.

3.7.2 Optimal algorithm for MinE-OneShelf (discrete speeds)

We first focus on the discrete case, i.e., S is the set of possible speeds. The idea is to
try every possible duration of the shelf: all possible durations are recorded in the set T ,

54

and then for a given duration Cmax ∈ T , we compute the solution for each set of tasks
T1, . . . , Ti, i ∈ J1, nK and each number of processors q ∈ J1, pK.

Let ei,q be the minimum energy consumed by task Ti on q processors, while not
exceeding time Cmax. It is computed by using the function OptS(ti,q, Cmax), since ti,q is
the amount of work on one processor if task Ti is executed on q processors.

We then proceed with a dynamic programming algorithm, to compute Ei,q, the
minimum energy consumption for the first i tasks, when using a total of q processors.
The goal is to compute En,p (using all tasks and all processors). Ei,q is recursively
defined for 1 ≤ i ≤ n and 1 ≤ q ≤ p as:

Ei,q = min
1≤k≤q−i+1

Ei−1,q−k + ei,k,

with E0,q = 0. If there are no tasks left, the energy consumption is null; otherwise we
try all possible numbers of processors k for task i, while keeping at least one processor
for each of the remaining tasks.

We then take the best possible solution amongst the different possible durations in
the set T , and Algorithm 4 provides the corresponding pseudo-code of this dynamic
programming algorithm.

Theorem 9. MinE-OneShelf can be solved optimally in polynomial time (discrete
model).

Proof. Let us prove by induction over i ∈ J0, nK that for all q ∈ J1, pK, Ei,q is the minimum
energy consumed to process the i first tasks with q processors.

Base case For all q ∈ J0, pK, the energy consumed to handle no task on q processors
is 0, meaning that the E0,q values for q ∈ J0, pK are correct.

Inductive step Let i ∈ J0, n − 1K, and we assume that ∀q ∈ J1, pK, Ei,q is correct.
The expression of Ei+1,q is min1≤k≤q−iEi,q−k + ei+1,k. If task Ti+1 is given k processors,
then the i first tasks will be handled by q−k processors. As the task i+1 must be given
a number of processors k ∈ J1, q − iK, the expression gives the correct value for Ei+1,q.

It means that En,p is correct, and therefore that the algorithm is also correct.
The number of total durations is at most np|S|, because we must choose a task,

the number of processors allocated for this task, and its speed. The complexity of the
algorithm is thus O(n2p3|S|).

3.7.3 Optimal algorithm for MinE-OneShelf-Cont (continuous speeds)

We now discuss the case of continuous speeds, hence S = R∗+. Similarly to the discrete
case, the idea is to fix the shelf duration and to solve the problem knowing that the
processors will be powered for the duration Cmax. Because of continuous speeds, we
cannot anymore explore all possible times Cmax, so we fix the duration to Cmax = 1,
and then prove that the optimal assignment is in fact the same for any Cmax, and the

55

Algorithm 4: Optimal algorithm for MinE-OneShelf (discrete model)
1 T ← ∅ ;
2 for i← 1 to n do
3 for q ← 1 to p do
4 for s ∈ S do
5 T ← T ∪ { ti,qs } ;
6 res←∞ ;
7 for Cmax ∈ T do
8 for i← 1 to n do
9 for q ← 1 to p do

10 si,q ← OptS(ti,q, Cmax) ;
11 if si,q = None then
12 ei,q ←∞ ;
13 else
14 ei,q ← qti,qs

α−1
i,q + qCmaxPstat ;

15 for q ← 0 to p do
16 E0,q ← 0 ;
17 for i← 1 to n do
18 for q ← i to p do
19 for k ← 1 to q − i+ 1 do
20 if Ei−1,q−i + ei,k < Ei,q then
21 Ei,q ← Ei−1,q−k + ei,k ;
22 if En,p < res then
23 res← En,p
24 return res ;

56

Algorithm 5: Optimal algorithm for MinE-OneShelf-Cont
1 for i← 1 to n do
2 for q ← 1 to p do
3 si,q ← OptS(ti,q, 1) ;
4 if si,q = None then
5 ei,q ←∞ ;
6 else
7 ei,q ← qti,qs

α−1
i,q + qPstat ;

8 for q ← 0 to p do
9 E0,q ← 0 ;

10 for i← 1 to n do
11 for q ← i to p do
12 for k ← 1 to q − i+ 1 do
13 if Ei−1,q−k + ei,k < Ei,q then
14 Ei,q ← Ei−1,q−k + ei,k ;
15 Cmax ← α−2

√
(α− 1)(En,p

pPstat
− 1);

16 return En,p−pPstat
Cα−1

max
+ pCmaxPstat ;

minimum energy is a function of Cmax. We finally take the value of Cmax that minimizes
the energy consumption, see Algorithm 5 and Theorem 10 for the proof of optimality.

Lemma 7. Let Edyn(Cmax) be the minimum possible dynamic energy consumption, with
the condition that each task must end before Cmax. Then, for any Cmax ∈ R∗+, we have:

Edyn(Cmax) = Edyn(1)
Cα−1

max
.

Proof. Recall that the dynamic energy consumption of an assignment ((pi), (si))1≤i≤n is
n∑
i=1

pi × ti,pi × sα−1
i .

Let t ∈ R∗+. If ((pi), (si))1≤i≤n is an optimal assignment for the case Cmax = 1,
with a total dynamic energy consumption of Edyn(1), then we can consider the same
assignment but with all speeds divided by t, to ensure that all tasks meet the deadline
Cmax = t: ((pi), (sit))1≤i≤n. The corresponding dynamic energy consumption is then
Edyn(1)
tα−1 , and hence the optimal solution Edyn(t) is such that Edyn(t) ≤ Edyn(1)

tα−1 .
Conversely, if we have an assignment for the problem with Cmax = t, with a dynamic

energy consumption of Edyn(t), then we take the same assignment but with all speeds
multiplied by t to obtain a valid solution to the problem with Cmax = 1, hence leading
to Edyn(t) ≥ Edyn(1)

tα−1 .
This concludes the proof of the lemma since Edyn(t) = Edyn(1)

tα−1 for any t ∈ R∗+.

Theorem 10. MinE-OneShelf-Cont can be solved optimally in polynomial time.

57

Problem Base ratio (A) Achieved bound Result
MinE-Mold-Indep OPT OPT Sec. 3.4.1
MinE-Rig-SS c c Th. 4 (Sec. 3.5.1)
MinE-Mold-SS aWp + btmax a+ b Th. 5 (Sec. 3.5.1)

max(aWp , btmax) max(a, b)
MinE-Mold aWp + btmax a+ b Th. 6 (Sec. 3.5.2)

max(aWp , btmax) max(a, b+ 1)
MinE-Rig-Cont-SS c c1− 1

α Th. 7 (Sec. 3.6.1)
MinE-Mold-Cont-SS aWp + btmax (a+ b)1− 1

α Th. 8 (Sec. 3.6.2)
max(aWp , btmax) max(a, b)1− 1

α

MinE-OneShelf Optimal Th. 9 (Sec. 3.7.2)
MinE-OneShelf-Cont Optimal Th. 10 (Sec. 3.7.3)

Table 3.3: Summary of theoretical results from Section 3.4to Section 3.7. The base ratio
is the approximation ratio on the makespan of the base algorithm A.

Proof. The proof for a fixed Cmax is the same as in the proof of Theorem 9, since we
use the same dynamic programming algorithm. Then, En,p = Edyn(1) + p×Pstat. From
Lemma 7, the optimal energy for a given Cmax is therefore E(Cmax) = Edyn(Cmax) +
Estat(Cmax) = En,p−p×Pstat

Cα−1
max

+ p × Cmax × Pstat, which is a convex function of Cmax

that reaches its minimum for Cmax = α−2
√

(α− 1)(En,p
p×Pstat − 1). The complexity of the

algorithm is O(np2).

The next section empirically assesses the theoretical results summarized in Table 3.3.

3.8 Empirical study

We first describe the experimental setup in Section 3.8.1. Then, we explain how instances
are generated in Section 3.8.2. The different heuristics are compared and analyzed in
Section 3.8.3, Also, we further study the impact of Pstat in Section 3.8.4, and the impact
of having a set discrete speeds instead of the continuous model in Section 3.8.5.

3.8.1 Experimental setup

All the algorithms we use rely on the global mechanism presented in Algorithm 1 (Sec-
tion 3.5.1 [turek1992approximate]) with a single speed (denoted with the suffix SS)
and Algorithm 2 with multiple speeds (without any suffixes). The core idea is that first
we transform a moldable instance into a rigid instance by fixing the number of pro-
cessors for each task. It is then combined with the strategies presented in Section 3.2:
ListBased and ShelfBased. The two algorithms ListBased and ShelfBased are

58

Algorithm 6: Algorithm ListBased for rigid tasks
{(T1, p1, s1), . . . , (Tn, pn, sn)}
1 λ← Empty schedule;
2 for j ∈ {1, . . . p} do
3 Cj ← 0;
4 T ← {T1, . . . , Tn};
5 P ← ∅;
6 Ccurrent ← 0;
7 while T 6= ∅ do
8 if ∃Ti ∈ T s.t. pi ≤ |P| then
9 i← minTi∈T i s.t. pi ≤ |P|;

10 λ← λ ∪ {Ti starting at time Ccurrent on pi processors from P};
11 for k ∈ {1, pi} do
12 Let j ∈ P;
13 Cj ← Ccurrent + ti,pi,si ;
14 P ← P\{j};
15 T ← T \{Ti};
16 else
17 j ← arg minj∈{1,...,p}\P Cj ;
18 Ccurrent ← Cj ;
19 while Ccurrent = minj∈{1,...,p}\P Cj do
20 j ← minj∈{1,...,p}\P Cj ;
21 P ← P ∪ {j};
22 return the schedule λ;

59

Algorithm 7: Algorithm ShelfBased for rigid tasks
{(T1, p1, s1), . . . , (Tn, pn, sn)}
1 Sort the tasks by non increasing execution time so that T1 has the longest

execution time and Tn the shortest;
2 λ← Empty schedule;
3 Ccurrent ← 0;
4 Cnext ← 0;
5 T ← {T1, . . . , Tn};
6 P ← ∅;
7 for Ti ∈ T by increasing i do
8 if pi > |P| then
9 Ccurrent ← Cnext;

10 Cnext ← Ccurrent + ti,pi,si ;
11 P ← {1, . . . , p};
12 λ← λ ∪ {Ti starting at time Ccurrent on pi processors from P};
13 for k ∈ {1, pi} do
14 P ← P\{j};
15 return the schedule λ;

detailed as Algorithms 6 and 7. Moreover, we also implemented two optimization algo-
rithms that can only be applied to an output of ShelfBased:

• OptiShelf, which optimizes each shelf once each task has been allocated to a shelf
using the algorithm from Section 3.7 (this may change the number of processors
used for each task). This optimization keeps the shelf structure, which can be an
advantage for instances where this structure is a constraint the final schedule is
subject to;

• De-shelf, which takes a ShelfBased solution and starts each task as soon as
possible by removing the shelf constraint while keeping the allocations and the
order in which the tasks are started.

For both of these optimizations, the energy consumption cannot be worse after the opti-
mization than before. It is technically possible to combine the two optimizations (running
OptiShelf and then De-shelf). We tried it for the sake of completeness, however this
did not provide any interesting results as OptiShelf’s optimization is heavily based on
the shelf structure, while De-shelf removes this shelf structure. Overall, this repre-
sents a total of eight heuristics (two list-based, two non-optimized shelf-based, and four
optimized versions of shelf-based).

To compare the different heuristics, we implemented them in C++17 compiled with
gcc 9.3.0 with optimization option -O3. We rely on Python 3.8.5 to generate the in-
stances and to analyze the results. The code of these experiments can be found on

60

Figshare1.

3.8.2 Instance generation

The characteristics of the processors were extracted from a realistic platform [moody10,
benoit16]:

Processor p Pstat α S

Intel Xscale 32 6
155 ≈ 3.9× 10−2 3 {0.15, 0.4, 0.6, 0.8, 1}

Transmeta Crusoe 32 44
57560 ≈ 7.6× 10−4 3 {0.45, 0.6, 0.8, 0.9, 1}

The number of tasks varies from 20 to 1000, with a step every 20 tasks. The workload
was generated with the two following task profiles (half from each type):

• Amdahl’s law [amdahl1967, sun2018]: wi,pi = wi,1 × β + wi,1×(1−β)
pi

;

• Power law [prasanna1996, hartstein2008, sun2018]: wi,pi = wi,1

pβi
.

In both cases, wi,1 and β are drawn from a uniform distribution U(0, 1).

3.8.3 Results

In order to evaluate the performance of the various heuristics and show whether they
return results close to the optimal, we compare the results with a lower bound that
consists in an optimal execution in the MinE-Mold-Indep case (Section 3.4.1). In that
case, the static energy is paid only while a task is executed, and any solution to MinE-
Mold will consume at least as much energy as this lower bound. For convenience, the
default version of a heuristic is the multiple-speed variant, and we refer to the single-
speed variant with the SS suffix.

Figures 3.1 and 3.2 present an overview of the results for all heuristics with n = 500
tasks, respectively on the Intel Xscale platform and on the Transmeta Crusoe platform.
We report both the ratio between the energy consumption of each heuristic with the lower
bound (the lower the better), and also the execution time of the C++ implementation of
the heuristics. A first remark is that single-speed and multiple-speed variants give very
similar results. Indeed, in practice, we could confirm that the multiple-speed heuristics
give the same speed to most tasks.

Figures 3.3 and 3.4 present a similar overview with a larger amount of tasks: n = 5000
tasks per instance. The difference in energy consumption between ListBased and
De-shelf becomes smaller as n increases, while the execution time of the algorithm
ListBased becomes much larger due to a higher order of growth.

Figures 3.5 and 3.6 present the scaling with n of all heuristics respectively on the
Intel Xscale platform and the Transmeta Crusoe platform. With a large number of tasks,

1https://doi.org/10.6084/m9.figshare.14854395

61

https://doi.org/10.6084/m9.figshare.14854395

the ratio with the lower bound becomes very close to 1 for all heuristics, at the price of
an increasing execution time.

In terms of energy consumption, the best performing algorithms are ListBased and
ListBased-SS (the lowest lines on the left charts). Then De-shelf and De-shelf-SS
have a performance that is close to the ones of our best algorithms. Finally ShelfBased,
ShelfBased-SS, OptiShelf and OptiShelf-SS have the worst performance among
our algorithms (the top lines on the left charts).

In terms of execution time of the algorithms, most of our algorithms give instanta-

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

1.000

1.005

1.010

1.015

1.020

1.025

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

10−3

10−2

10−1

100

101

E
x
ec

u
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

Figure 3.1: Output energy consumption and execution time to compute the solution
for all eight heuristics with n = 500 mixed power and Amdahl’s tasks and on the Intel
Xscale platform (p = 32 processors with Pstat = 6

155 , α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).
Each box aggregates 10 measurements.

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

1.0000

1.0001

1.0002

1.0003

1.0004

1.0005

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

10−3

10−2

10−1

100

101

E
x
ec

u
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

Figure 3.2: Output energy consumption and execution time to compute the solution for
all eight heuristics with n = 500 mixed power and Amdahl’s tasks and on the Transmeta
Crusoe (p = 32 processors with Pstat = 44

57560 , α = 3, S = {0.45, 0.6, 0.8, 0.9, 1}). Each
box aggregates 10 measurements.

62

neous results. The exceptions are ListBased, that has a superlinear complexity with
respect to the number of tasks, and both OptiShelf and OptiShelf-SS, that have a
linear complexity with respect to the number of tasks but with a high constant factor.

As there are many algorithms and plots are overlapping, we then compare them in
a more refined study, presenting more precisely how each algorithm behaves, along with
the advantages and drawbacks of these algorithms.

Among the base algorithms (ListBased-SS, ListBased, ShelfBased-SS and Shelf-
Based), we focus on two baseline algorithms:

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

10−1

100

101

102

103

E
x
ec

u
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

Figure 3.3: Output energy consumption and execution time to compute the solution for
all eight heuristics with n = 5000 mixed power and Amdahl’s tasks and on the Intel
Xscale platform (p = 32 processors with Pstat = 6

155 , α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).
Each box aggregates 10 measurements.

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

1.00000

1.00001

1.00002

1.00003

1.00004

1.00005

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Lis
tB

as
ed

-S
S

Lis
tB

as
ed

Sh
el

fB
as

ed
-S

S

Sh
el

fB
as

ed

D
e-

sh
el

f-
SS

D
e-

sh
el

f

O
pt

iS
he

lf
-S

S

O
pt

iS
he

lf

10−1

100

101

102

103

E
x
ec

u
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

Figure 3.4: Output energy consumption and execution time to compute the solution for
all eight heuristics with n = 5000 mixed power and Amdahl’s tasks and on the Transmeta
Crusoe (p = 32 processors with Pstat = 44

57560 , α = 3, S = {0.45, 0.6, 0.8, 0.9, 1}). Each
box aggregates 10 measurements.

63

0 500 1000 1500 2000
Number of tasks

1.00001

1.0001

1.001

1.01

1.1

2.0

R
at

io
b

et
w

ee
n

th
e

en
er

gy

fo
u

n
d

by
th

e
al

go
ri

th
m

an
d

th
e

co
m

p
u

te
d

lo
w

er
b

ou
n

d

0 500 1000 1500 2000
Number of tasks

0

20

40

60

80

100

120

140

160

E
xe

cu
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

ListBased-SS

ShelfBased-SS

ListBased

ShelfBased

De-shelf-SS

OptiShelf-SS

De-shelf

OptiShelf

Figure 3.5: Output energy and execution time to compute the solution for all algorithms
for instances with mixed power and Amdahl’s tasks and and on the Intel Xscale platform
(p = 32 processors with Pstat = 6

155 , α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}). The output
energy is given with a x 7→ log10(x− 1)-scale.

0 500 1000 1500 2000
Number of tasks

1.0
1.000001

1.00001

1.0001

1.001

1.01

R
at

io
b

et
w

ee
n

th
e

en
er

gy

fo
u

n
d

by
th

e
al

go
ri

th
m

an
d

th
e

co
m

p
u

te
d

lo
w

er
b

ou
n

d

0 500 1000 1500 2000
Number of tasks

0

20

40

60

80

100

E
xe

cu
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

ListBased-SS

ShelfBased-SS

ListBased

ShelfBased

De-shelf-SS

OptiShelf-SS

De-shelf

OptiShelf

Figure 3.6: Output energy and execution time to compute the solution for all algorithms
for instances with mixed power and Amdahl’s tasks and and on the Transmeta Crusoe
platform (p = 32 processors with Pstat = 44

57560 , α = 3, S = {0.45, 0.6, 0.8, 0.9, 1}). The
output energy is given with a x 7→ log10(x− 1)-scale.

64

• the base algorithm with the best output energy: ListBased;
• the base algorithm with the best execution time: ShelfBased-SS.
If we compare these two algorithms, ListBased and ShelfBased-SS, we can see

that ListBased provides schedules with a lower energy consumption than ShelfBased-
SS, but at the cost of a much larger execution time for the algorithm. When the number
of tasks n increases, the difference in terms of execution time increases, while the differ-
ence of energy consumption decreases. Note that ListBased could be implemented in
a faster way with a segment tree to compute which task can be started, making this op-
eration O(log p) instead of O(n). However, this complex data structure would probably
not be included in most implementations.

However, we can use the solution delivered by ShelfBased (with a single speed
for all tasks), and pass this solution through two possible optimizations: OptiShelf
or De-shelf. By comparing the results of the two approaches, we can see that both
optimizations increase the quality of the solution, but OptiShelf does it at the cost
of a very large increase in the execution time. However, the overhead of De-shelf is
small, which leads to solutions of better quality at a small cost.

Finally, we compare ListBased (with multiple speeds) to the optimized Shelf-
Based-SS (with a single speed) with De-shelf, which we found to be the best opti-
mization for ShelfBased. As we can see on Figures 3.5 and 3.6, for very small instances,
ListBased still performs better than ShelfBased with De-shelf. However, when n
grows larger, ShelfBased with De-shelf quickly performs as well as ListBased, but
with a lower time complexity.

Overall, by comparing the results we get with the processors Intel Xscale and Trans-
meta Crusoe, we see that, for all of the algorithms we provide, the schedules given for
the Transmeta Crusoe are closer to the lower bound. First, this can be explained by
the fact that the Transmeta Crusoe is a processor with a very low relative static power
(around 7.6× 10−4) while the relative static power of the Intel Xscale is higher (around
3.9 × 10−2). It means that there is less need to optimize the makespan, thus simplify-
ing the problem. We explore the impact of Pstat in Section 3.8.4. Another explanation
can be related to the difference of available speeds between the processors. We explore
the impact of available speeds in the Section 3.8.5 through an empirical study of the
continuous case.

3.8.4 Impact of Pstat
Figure 3.7 compares all the proposed algorithms when varying Pstat. We can observe
that for small values of Pstat, even the algorithms that were not so efficient before provide
good results. That is because, in this case, the idle time of the processors does not have
a high cost in terms of energy consumption. Thus, having a small total amount of work
W is more important than having a small makespan Cmax. Since all the algorithms try
at some point to minimize W in the same way, they end up by all providing similar
results.

However, when Pstat increases, the importance of minimizing the makespan Cmax
increases. The different algorithms provide different performance in terms of makespan,

65

Intel Xscale Transmeta Crusoe

10−5 10−3 10−1 101 103 105

Pstat

1.000

1.005

1.010

1.015

1.020

1.025

1.030

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

10−5 10−3 10−1 101 103 105

Pstat

1.000

1.005

1.010

1.015

1.020

1.025

1.030

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

ListBased-SS

ShelfBased-SS

ListBased

ShelfBased

De-shelf-SS

OptiShelf-SS

De-shelf

OptiShelf

Figure 3.7: Output energy consumption to compute the solution for a variety of algo-
rithms for instances with mixed power and Amdahl’s tasks and p = 32 processors (on
the left: with Intel Xscale α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1}; on the right: with
Transmeta Crusoe α = 3, and S = {0.45, 0.6, 0.8, 0.9, 1}). The vertical plain line corre-
sponds to the actual Pstat of the studied processor.

which explains the difference in performance: ListBased and optimized ShelfBased
algorithms provide much better solutions than simple ShelfBased algorithms.

3.8.5 Comparison with the continuous relaxation

Finally, we conduct experiments with the relaxed continuous version of the problem,
MinE-Mold-Cont, where the speed of the processors can be any positive number.
The previous lower bound does not apply for this relaxed problem because there is no
constraint on the minimum speed. The ratio between the energy consumption achieved
by the algorithm and the lower bound can thus be lower than 1. Note that we focus here
on single speed variants of the algorithms, where a single continuous speed will hence be
chosen.

Figure 3.8 compares all of the discrete speed algorithms we propose to the algorithm
ListBased-Cont we use for the relaxed problem. This algorithm gives a solution with
continuous speeds that consumes 15% less energy than the best result we can get with
the speeds available for the Intel Xscale. It means that with a better choice of speeds
when designing the processor, we can expect a 15% decrease in energy consumption with
our algorithms. For the Transmeta Crusoe processor, the energy gap is even bigger: with
a better choice of speeds, we can hope to gain more than 80% of energy.

Figure 3.9 compares the discrete-speed algorithm with the best results (ListBased-
SS) to the result we can get with continuous speeds, for different values of Pstat. In-
tuitively, all approaches are close to 1 when they rely on speeds that are close to the

66

discrete speeds of the studied processor: in these cases the speeds used by the continuous
speed algorithm are already available in the discrete speed model. When we get further
away from these cases, we see that allowing continuous speeds would allow for a much
better performance. It means that the design of the static power Pstat and the set of
available speeds S must be done concordantly. This design can be helped by theoretical
results, such as the ones we provide in this chapter, along with simulations such as the
ones we provide in this section.

When comparing the Intel Xscale, on the left, to the Transmeta Crusoe, on the right,
we see that the available speeds for the Intel Xscale correspond well to the effective Pstat
(the plain line). It is not the case for the Transmeta Crusoe: lower processor speeds
would improve the energy consumption.

3.9 Conclusion

With the growing concern regarding the energy consumption of current parallel plat-
forms, it is crucial to bound the worst-case performance. This work is the first to propose
such bounds on the energy consumption when scheduling moldable tasks. We highlight
the relation between the energy and the completion time (determined by the DVFS
mechanism) and rely on the numerous approximation algorithms that have already been
proposed to minimize the completion time. This leads to a general mechanism to bound
the energy consumption of such existing approximation algorithms for the completion
time. In particular, we show that a shelf-based approach is a 3-approximation (resp.

Intel Xscale Transmeta Crusoe

Lis
tB

as
ed

-S
S

Sh
el

fB
as

ed
-S

S

Lis
tB

as
ed

-c
on

t-
SS

Sh
el

fB
as

ed
-c

on
t-

SS

0.85

0.90

0.95

1.00

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Lis
tB

as
ed

-S
S

Sh
el

fB
as

ed
-S

S

Lis
tB

as
ed

-c
on

t-
SS

Sh
el

fB
as

ed
-c

on
t-

SS

0.2

0.4

0.6

0.8

1.0

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

Figure 3.8: Output energy consumption and execution time to compute the solution for
four heuristics with n = 500 mixed power and Amdahl’s tasks and p = 32 processors
(on the left: with Intel Xscale Pstat = 6

155 , α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1} in
the discrete cases; on the right: with Transmeta Crusoe Pstat = 44

57560 , α = 3, and
S = {0.45, 0.6, 0.8, 0.9, 1} in the discrete cases). Each box aggregates 10 measurements.

67

Intel Xscale Transmeta Crusoe

10−5 10−3 10−1 101 103 105

Pstat

0.0

0.2

0.4

0.6

0.8

1.0
R

at
io

b
et

w
ee

n
th

e
en

er
gy

fo
u

n
d

b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

10−5 10−3 10−1 101 103 105

Pstat

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
b

et
w

ee
n

th
e

en
er

gy
fo

u
n

d
b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

ListBased-SS ListBased-cont-SS ShelfBased-cont-SS

Figure 3.9: Output energy consumption to compute the solution with discrete and con-
tinuous speeds for instances with mixed power and Amdahl’s tasks and p = 32 processors
(on the left: with Intel Xscale α = 3, and S = {0.15, 0.4, 0.6, 0.8, 1} in the discrete cases;
on the right: with Transmeta Crusoe α = 3, and S = {0.45, 0.6, 0.8, 0.9, 1} in the discrete
cases). The vertical plain line corresponds to the actual Pstat of the studied processor.

2.08-approximation) algorithm for the energy consumption with discrete speeds (resp.
continuous speeds).

We also focus on the optimization of a single shelf by providing a polynomial-time
algorithm that can be used to improve existing solutions. Empirical results reveal that
such an approach, when combined with a fast optimization post-operation, is beneficial
in practice because of its low cost.

To complete this study, we could consider variations of the power model. In particu-
lar, we assume that changing frequencies with the DVFS mechanism does not incur any
energy cost or delay, which may not be accurate in practice. We additionally assume
that the set of available speeds is a constant, while we could consider it a function of
the number of processors in use (e.g., when all the processors are used, the highest fre-
quencies might not be usable). Also, we plan to experiment on more recent processors
whose range of frequencies suggest that it behaves closer to the continuous model. This
involves doing some measurements to obtain detailed data on the power consumption
of such processors and processing these measures, while only information on frequencies
is publicly available. Finally, the whole model revolves on the premise that the tasks
are computationally bound. In the case of memory bound applications, changing the
processor speeds does not change the execution time, which is a case that we have not
considered yet. The algorithms presented could be adapted to perform on mixes of
computationally bound and memory bound applications.

Overall, this work aims at providing the theoretical foundations to the problem.
Since current task systems do not yet have moldable task profiles that can be used,
we have focused on classical models that have already been largely considered in the

68

literature. As soon as moldable task profiles are available, it would be very interesting
to conduct experiments on real HPC systems.

69

Chapter 4

Asymptotic performance and
energy consumption of SLACK

4.1 Introduction

The problem of minimizing the computation time when scheduling n independent tasks
on m identical processors is at the basis of scheduling theory, and a building block
for solving many more complicated problems, hence it remains very important even
though it has already been widely studied. Using Graham’s notation [graham1979],
this problem is denoted P ||Cmax.

While the problem is NP-complete (equivalent to 2-partition with two processors, or
3-partition when the number of processors m is part of the input), an easy way to get
efficient solutions consist in ordering the n tasks according to some criterion, and then
perform a list schedule, i.e., schedule the next task of the list on the least loaded proces-
sor, hence never leaving a processor idle. A classic ordering is the one of LPT (Longest
Processing Time), which orders tasks from the longest to the smallest [graham1969].
This algorithm has proven to have good theoretical and even better practical perfor-
mance. In particular, its rate of convergence has been studied, and new results were
recently established when the distribution of task costs is generated using uniform inte-
ger compositions [benoit2021].

More recently, the SLACK heuristic was proposed in [della2020], showing promising
empirical performance compared to LPT. Its principle is based on grouping tasks of sim-
ilar execution times into packs, sorting the resulting packs by non-decreasing similarity
(the similarity of a pack denoting the maximum difference of execution times between
its tasks), and then scheduling the tasks in the order determined by the packs, following
a list schedule (assign the next task to the least loaded processor). The idea is that a
single pack cannot bring the imbalance of the processors too high, and the hope is that
the packs balance each other. The objective is that the tasks in the last scheduled packs
are very close to each other, hence they will not create a large imbalance at the end of the
schedule. While this SLACK algorithm benefits from favorable empirical performance,
fewer analyses have been conducted on its theoretical properties.

71

These heuristics were proposed in order to minimize the makespan, i.e., the maximum
execution time among the processors. Another core problem consists in minimizing the
energy consumption, as the energy consumption of current platforms is an ever-growing
concern, both for economical and ecological reasons. To optimize the energy consump-
tion, modern processors can run at different speeds, and their power consumption is then
the sum of a static part (the cost for a processor to be turned on) and a dynamic part,
which is a strictly convex function of the processor speed. More precisely, a processor
running at speed s dissipates a power of sα Watts, where 2 ≤ α ≤ 3 [bambagini2016].
Hence, a higher speed allows executing a task more rapidly, but at the price of a much
higher amount of energy consumed. Finding a schedule now consists in deciding on
which processor to execute each task and to decide at which speed the task is executed.

Therefore, we revisit this classic problem of scheduling n independent tasks onto m
identical processors, with the aim of deriving analytical results for SLACK, when the
goal is to minimize the makespan or the energy consumption. We study the performance
of SLACK from an asymptotical point of view, under the assumption that the execution
times of the tasks follow a given probability distribution. The study is building on
a comparison of the most heavily loaded machine compared to the least loaded one,
and hence it provides interesting insights both for the study of the classic makespan
objective function, and its translation to the energy consumption. The goal of this
chapter is therefore to answer two main questions left unresolved in the literature so far:
(i) provide a theoretical study to analyze the performance of SLACK, and (ii) consider
the energy consumption in the theoretical and empirical analysis of the algorithms. Our
main contributions are the following:

• A fundamental bound related to the result of SLACK (Section 4.4);
• A convergence rate for the makespan of SLACK when using uniform and exponen-

tial distributions, by applying the bound of Section 4.4 (Section 4.5.1);
• A general result for bounding the energy consumption (agnostic of the algorithm

and the task distribution) and its application to SLACK, by applying the bound
of Section 4.4 (Section 4.5.2);

• Simulations for comparison with the theoretical bounds that were computed for
SLACK and LPT (Section 4.6).

First, Section 4.2 summarizes the existing contributions related to either the energy
minimization problem or LPT and SLACK. Section 4.3 presents the problems and
algorithms (LPT and SLACK). Then, Section 4.4 presents a useful bound on the result
given by SLACK. Section 4.5 proposes applications of this bound: theoretical asymptotic
results related to the minimization of the makespan and the energy with SLACK. In the
case of the energy, Section 4.5.2 also gives a method to derive energy related guarantees
for any algorithm bounded similarly to SLACK in Section 4.4. Section 4.6 presents the
experimental results of the empirical study of LPT and SLACK. Finally, Section 4.7
concludes.

72

4.2 Related work

Lowering the energy consumption of computational tasks has been widely studied in the
last decades, be it in the context of High Performance Computing or in other contexts,
such as Cloud Computing. Many models have been proposed for the energy consumption
of CPUs. For instance, the energy consumption is scaling quadratically with the speed of
the CPU in [weiser1994], and there is a focus on the online evaluation of the expected
idle time. In [yao1995], the only assumption is that the energy consumption is a convex
function of the speed of the CPU, and clairvoyant online and offline solutions are pro-
posed to the problem. The heuristics presented in these two articles are then evaluated,
either empirically in [weiser1994], or with approximation ratios in [yao1995]. In our
work, we explore another way of evaluating algorithms, following the remark that with
large systems, stochastic asymptotic results should be relevant.

Recent surveys such as [czarnul2019] and [thakkar2020] compile various tech-
niques used for energy-efficient computing, including scheduling techniques. These tech-
niques may use either Dynamic Voltage and Frequency Scaling (DVFS), as in [lin2014],
where the frequency (and hence the speed) of processors may be chosen, or Dynamic
Power Management (DPM) as in [benini2000]. These studies propose algorithms, but
they mainly focus on an empirical evaluation of these algorithms, without theoretical
study.

As for scheduling algorithms that have low complexities (and therefore low energy
consumption), LPT has been a well known algorithm for decades and is known to pro-
vide good theoretical and practical performance while keeping a low time complexity
in O(n logn) [graham1969]. A more recent algorithm, SLACK, also remains with
an O(n logn) time complexity, while providing results that are sometimes better than
LPT [della2020, benoit2021].

There are multiple results about the asymptotic behavior of LPT under different
assumptions. Frenk and Rhinnooy Kan [frenk1986] and Coffman et al. [coffman1988]
study the difference between LPT and the optimal solution in the case where the ex-
ecution times of the tasks follow a probability distribution of cumulative distribution
function of the form F (x) = xα, where 0 < α < +∞. Loulou [loulou1984] and Piersma
and Romeijn [piersma1996] do not look at specific distributions, but instead they
study LPT under the assumption that the execution times are independent and identi-
cally distributed random variables. More recently, Benoit et al. [benoit2021] studied
the asymptotic optimality of SLACK and LPT under the assumption that the execution
times are generated using a distribution called the uniform integer composition.

4.3 Framework

The P ||Cmax problem is a classic scheduling problem, where n tasks have to be scheduled
on m identical machines, with the objective function of makespan minimization, i.e.,
minimize the execution time of the machine that completes last (Cmax). There are no
constraints on tasks, which can be assigned to any machine in any order. Each task has

73

a number of operations to perform, that we call its work and denote by wi, and the time
to execute the task is usually ti = wi, assuming that the machine executes one operation
per time unit (speed s = 1). The problem complexity is well known, and in particular
the associated decision problem is NP-complete as soon as m ≥ 2.

List scheduling and LPT. In order to solve this P ||Cmax problem, a simple but
effective heuristic algorithm consists in never letting a machine idle, i.e., as soon as a
task completes on a machine, a new task is assigned to this machine. This is called list
scheduling, and it can be implemented as in Algorithm 8, by keeping the load of each
machine in a vector −→W of length m initialized to (0, 0, . . . , 0). For each task, we assign
it to the currently least loaded machine, and the makespan is the maximum value of the
vector −→W at the end of the execution. Any list schedule (whatever the order of tasks)
is know to be a (2− 1

m)-approximation algorithm [graham1969]. A variant of the List
Scheduling heuristic consists in first sorting the list L by non-increasing task works, and
it is called Longest-Processing-Time-first (LPT for short). This can be used if all tasks
are known beforehand (offline scheduling), and it improves the approximation ratio of
the algorithm to (4

3 −
1

3m) [graham1969].

SLACK. In this chapter, we mainly focus on the SLACK algorithm, that was introduced
in [della2020] and consists in applying the List Scheduling heuristic with a particular
pretreatment on the list of tasks, as detailed in Algorithm 9. We first fill the list L to
have a number of elements r that is a multiple of m, by adding dummy tasks of work 0.
Then, tasks are sorted by non-increasing works and grouped by packs of m tasks, and
then the packs are themselves sorted by non-increasing difference between the work of
the longest task of the pack and the smallest one (αi’s). These differences are denoted
βk, where β1 ≥ β2 . . . ≥ βr/m. They correspond to the sorted αi’s.

Let us denote by ci(j) the load of processor j after i × m tasks (i.e., the i first
packs) have been scheduled. Hence, ci(j) = −→W [j] after i × m steps of the loop line 2
of Algorithm 8. One has for instance c0(j) = 0 for all j (initial load), and then
at each iteration i, we schedule one more pack with m tasks. We then define δi =
max0≤j,j′<m(|ci(j)− ci(j′)|), which is the maximum difference of load between two pro-
cessors after iteration i.

Note that these values βi and δi can be extended to any algorithm, in particular LPT,
by simply grouping tasks by packs of m tasks (in the order in which they are scheduled),

Algorithm 8: ListScheduling(L,m)
Require: List L of n positive floats (task works); Number of processors m.

1: Let −→W be a vector of length m initialized to −→W = (0, 0, . . . , 0); for w ∈ L in the
order they appear in the list do

2: Let j be the index of a minimal element of −→W ;
3:
−→
W [j] = −→W [j] + w;

4: return −→W ;

74

Algorithm 9: SLACK (L,m)
Require: List L of n positive floats (task works); Number of processors m ≤ n.

1: Add (−n mod m) elements of work 0 at the end of L;
2: r = n+ (−n mod m);
3: L′ = [x1, . . . , xr] is obtained by sorting L non-increasingly; for 0 ≤ i ≤ r

m − 1 do
4: Ki = [xim+1, xim+2, . . . , xim+m];
5: αi = xim+1 − xim+m;
6: Let H = [αi1 , . . . , αi r

m
] = [β1, . . . , β r

m
] be a non-increasing sequencing of the αi’s;

LSLACK is obtained by concatenating the Ki’s in the same order as the α’s in H.
7:
−→
W =ListScheduling(LSLACK,m);

and then checking differences between tasks of a same pack (βi), and differences in the
load of processors at each iteration, hence, after m tasks have been scheduled (δi).
From makespan to energy consumption. When the goal is to minimize the energy
consumption, we further consider that the frequency of the processors can be scaled using
DVFS (Dynamic Voltage and Frequency Scaling). Hence, these processors have a static
power Pstat, and can be operated at any speed (or frequency) s ∈ R∗+ [BKP07], while
we assumed so far that s = 1.

The execution time of task Ti at speed s then becomes ti,s = wi
s . In terms of energy

consumption, there is a static part, which corresponds to the power consumed when the
m processors are turned on, during a time Cmax, hence a total of m × Cmax × Pstat.
For each task Ti, there is also a dynamic energy consumption, directly related to the
speed s at which the processor operates the task. Using a general model, the dynamic
energy consumption is ti,s× sα [bambagini2016], where α > 1 (in general, 2 ≤ α ≤ 3).
Finally, the total energy consumption of a schedule of length Cmax, where Ti is operated
at speed si, is:

E = m× Cmax × Pstat +
n∑
i=1

ti,si × sαi .

For convenience, the main notations are summarized in Table 4.1.

4.4 A bound for SLACK

This section is dedicated to proving a fundamental bound related to the algorithm
SLACK.

Let X be a distribution with positive values. We denote by C(n,m,X) the random
variable of the makespan returned by the SLACK algorithm on m processors on a list of
n tasks that are independent random variables of distribution X . Let X1, . . . , Xn be n
independent random variables distributed according to X . Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n
be associated order statistics. Particularly X1:n is the minimum of the Xi’s and Xn:n the
maximum. Let Di = (Xi:n −Xi−1:n) for every 1 ≤ i ≤ n, with the convention X0:n = 0.
The Di’s are classically called spacings of adjacent order statistics. Let ∆X ,n be the

75

Symbol Definition
m number of processor
n number of tasks

{T1, . . . , Tn} the n tasks

wi
work of Ti (corresponding to the number of operations
required by the task)

ti = wi the execution time of Ti at speed 1
ti,s = wi

s execution time of Ti at speed s
m× Cmax × Pstat static energy consumption for a duration Cmax

ti,s × sα dynamic energy consumption of Ti at speed s

δi

largest difference between the total execution times of
two processors after having processed i×m tasks (first
i packs)

βi
largest difference between the execution time of any
two tasks in pack i

ci(j)
total execution time of processor j after i × m tasks
have been scheduled (first i packs)

Wj = ∑
alloc(i)=j

wi
total work (number of operations) on processor j;
alloc(i) is the processor on which Ti is allocated

Wmax = max
1≤j≤m

Wj maximal number of operations allocated to a processor
W = ∑

1≤i≤n
wi total number of operations to perform

−→
W = (W1, . . . ,Wm) the −→. notation is used for m-length vectors (not only

for W)
‖−→x ‖α = α

√∑
xαi classic α-norm of a vector

Table 4.1: Main Notations

random variable of the maximal value of Di’s, that is the maximal difference between
two consecutive Xi:n (and between 0 and X1:n).

Theorem 11. When using SLACK (Algorithm 9), max
1≤i,j≤m

(Wi −Wj) ≤ m∆X ,n.

Lemma 8. If at step j+ 1, we put two or more tasks on a processor, then each of these
tasks has an execution time at most δj.

Proof. Assume there is a processor a that receives two or more tasks at step j + 1. It
means that the processor b that initially had the highest execution time does not receive
any task, otherwise it would mean that we have distributed exactly one task to each
processor. We then get that before receiving its second task, the processor a has a lower
current execution time than processor b, which means that the first task allocated to
processor a at this step has an execution time at most the initial difference between

76

these two processors. So, this execution time is at most δj , and since the tasks are
sorted in a step, all the subsequent tasks added to the processor a this step also fulfill
this condition.

Lemma 9. For any processors a and b that both receive at least one task at step j+1, we
have |(cj(a) + τa,1)− (cj(b) + τb,1)| ≤ max(δj , βj), where τa,1 (resp. τb,1) is the execution
time of the first task received by a (resp. by b).

Proof. Assume without loss of generality that processor b receives its first task before
processor a. Then, we have cj(b) ≤ cj(a) and τa,1 ≤ τb,1. Let τdiff = τb,1− τa,1. We have:

|(cj(a) + τa,1)− (cj(b) + τb,1)| = |(cj(a)− cj(b))− τdiff |
≤ max((cj(a)− cj(b))− τdiff , τdiff − (cj(a)− cj(b))).

Since 0 ≤ τdiff and 0 ≤ (cj(a)− cj(b)) we have

|(cj(a) + τa,1)− (cj(b) + τb,1)| ≤ max((cj(a)− cj(b)), τdiff)
≤ max(δj , βj).

Lemma 10. For every j, δj+1 ≤ max(βj+1, δj).

Proof. Let pmin be the processor minimizing cj+1 and pmax be the processor maximizing
cj+1. Let τ̂m = cj(pmin) and τ̂M = cj(pmax) be their respective execution times before
adding the new tasks, and {τm,k}k≤Km and {τM,k}k≤KM are the execution times of the
tasks allocated to these processors during this step (sorted by non increasing execution
times).

By definition of pmin and pmax, δj+1 = cj+1(pmax) − cj+1(pmin) = (τ̂M +∑
τM,k) −

(τ̂m+∑ τm,k). We see different cases depending on the number of tasks on pmax, denoted
by KM .

• Case 1: KM = 0. In this case, the maximum processor has not changed and
has not received any task this step, so the difference between the processor pmax
and the other processors has only reduced at this step. So, we get δj+1 ≤ δj ≤
max(βj+1, δj).

• Case 2: KM = 1. In this case, we have:

δj+1 = (τ̂M + τM,1)− (τ̂m +
∑

τm,k)
≤ (τ̂M + τM,1)− (τ̂m + τm,1) tm,k ≥ 0
≤ |(τ̂M + τM,1)− (τ̂m + τm,1)| the quantity is already positive
≤ max(βj+1, δj) Lemma 9

77

• Case 3: KM > 1. By using Lemma 8, the last task added to processor pmax has
size at most δj . The last task of pmax would have been added to any processor
with lower execution time if possible, so at the end of step j+ 1, any processor has
a total execution time at least:

T ≥ (τ̂M +
∑

τM,k)− τM,KM

≥ (τ̂M +
∑

τM,k)− δj τM,KM ≤ δj

So we get:

δj+1 = (τ̂M +
∑

τM,k)− (τ̂m +
∑

τm,k)

≤ (τ̂M +
∑

τM,k)− ((τ̂M +
∑

τM,k)− δj)
≤ δj
≤ max(βj+1, δj)

So, in all cases, we get δj+1 ≤ max(βj+1, δj), proving the lemma.

Lemma 11. When using SLACK (Algorithm 9), for every j, δj ≤ β1.

Proof. The proof is done by induction on j. For the first iteration (j = 1), since the m
first considered tasks are each assigned to a different processor, we have:

δ1 = max
p,p′

(|c1(p)− c1(p′)|)

= max
k,k′∈[1,m]

(|xk+i1×r/m − xk′+i1×r/m|) replacing with the first tasks

= αi1 = β1.

Assume now that δj ≤ β1 for a j < r/m. Using Lemma 10, we can bound δj+1 ≤
max(βj+1, δj). Therefore, δj+1 ≤ max(βj+1, β1). Since β1 ≥ βj+1, we have δj+1 ≤ β1,
which concludes the proof.

We are now ready to prove Theorem 11.

Proof. We prove an upper bound for β1.

β1 = αi1

= max
1≤i≤m

(x1+i×r/m − xm+i×r/m)

= max
1≤i≤m

(
x1+i×r/m − xm+i×r/m −

m−1∑
i=2

x1+i×r/m +
∑

x1+i×r/m

)

= max
1≤i≤m

(
m−1∑
i=1

x1+i×r/m − x1+(i+1)×r/m

)
≤ (m− 1)× max

1≤i≤r−1
Xi+1:n −Xi:n

78

≤ (m− 1)×∆X ,n

We just proved that
β1 ≤ (m− 1)×∆X ,n. (4.1)

We conclude the proof by combining Equation (4.1) and Lemma 11 (since δn =
max

1≤i,j≤m
(Wi −Wj)).

4.5 Convergence speed of SLACK

In this section, we use the fundamental bound found in Section 4.4 to derive asymptotic
results on the optimality of SLACK, first in terms of makespan in Section 4.5.1, and
then in terms of energy consumption in Section 4.5.2.

4.5.1 Convergence of the makespan

This section is dedicated to prove asymptotic results on the optimality of SLACK. The
following main result is a direct application of Theorem 11:

Proposition 1. The makespan of SLACK differs from the optimal one by at most
m∆X ,n:

0 ≤ C(n,m,X)−OPT ≤ (m− 1)2

m
∆X ,n ≤ m∆X ,n.

Proof. Since OPT ≥ 1
m

∑r
i=1 xi, one has

m× C(n,m,X) ≤ (m− 1)× δn +
r∑
i=1

xi

≤ (m− 1)× δn +m×OPT.

Consequently (by Theorem 11),

0 ≤ C(n,m,X)−OPT ≤ (m− 1)2

m
∆X ,n ≤ m∆X ,n.

It is worth noting that for many bounded distributions, Proposition 1 will provide
results on the convergence of the absolute error (C(n,m,X)−OPT) when n goes to
infinity, as ∆X ,n is smaller when that execution times of the tasks gets denser.

Now, we will use known results on order spacings to obtain convergence results for
SLACK. It is proved in [https://doi.org/10.48550/arxiv.1909.06406], [Bairamov2010]
that

E
(
∆U [0,1],n

)
∼ lnn
n+ 1 , (4.2)

where U [0, 1] is the uniform distribution between 0 and 1.

79

From Proposition 1 and Equation (4.2), one has the following result, proving that
for a fixed m, the SLACK algorithm provides a scheduling that converges in expectation
to the optimal (for the makespan):

Corollary 3. For any fixed m ≥ 2,

0 ≤ E (C(n,m,U [0, 1]))− E (OPT) = O

(
m

lnn
n+ 1

)
.

A similar result can be obtained for the exponential distribution. It is shown
in [devroye1984exponential] that, almost surely,

lim sup
n→+∞

(∆E1,n

ln lnn

)
= 1, (4.3)

where E1 is the exponential distribution (with rate 1).
Using Proposition 1 and Equation (4.3), we then have the following result:

Corollary 4. For any fixed m ≥ 2, one has almost surely

0 ≤ lim sup
n→+∞

(
C(n,m, E1)−OPT

m ln lnn

)
≤ 1.

Corollary 4 does not show a convergence of the makespan of SLACK to the optimal,
but that, almost surely, the gap between their difference is under control since ln lnn
has a very slow growing speed.

4.5.2 Convergence of the energy consumption

Building upon the previous results bounding the δi’s for SLACK and analyzing its im-
pact on the makespan, we now move to the problem of minimizing the total energy
consumption E, where the speed of each processor can take any value in R∗+. The main
result, stated in Theorem 12, shows how to adapt a classic scheduling algorithm (without
speed and energy consideration) into an energy-oriented one. The quality of the solution
is bounded by a factor depending on the maximal difference δ between the execution
times of the last finishing processor and the first finishing processor.

We start with a preliminary lemma that further defines the shape of optimal solu-
tions: each processor has a constant speed and all processors finish at the same time.

Lemma 12. In an optimal solution, each processor has a constant speed, and all pro-
cessors finish at the same time.

Proof. We first prove that each processor has a constant speed, and then that all pro-
cessors finish at the same time.

80

Each processor has a constant speed. Let us assume that there is a processor that
does not have constant speed. It means that there are two consecutive amount of work
w1, w2 being processed at different speeds s1, s2. Let γ1 = 1

s1
, γ2 = 1

s2
, γ = w1×γ1+w2×γ2

w1+w2
.

Notice that γ is the weighted average of γ1 and γ2 (i.e., γ = t × γ1 + (1 − t) × γ2 with
t = w1

w1+w2
). By running both amounts of works at speed 1

γ , the total execution time does
not change, so the static energy does not change. By strict convexity of f(x) 7→ γ1−α

applied to γ1, γ2, and γ, we get that the dynamic energy decreases. So, the total energy
consumption decreases.

All processors finish at the same time. Let us assume that the processors do not
finish at the same time. Then, there is a processor finishing before at least one other
processor. We apply a factor c < 1 to all the speeds on this processor such that the Cmax
does not increase. The static energy does not change, but the dynamic energy decreases.
So the total energy consumption decreases.

Theorem 12. If an algorithm without speeds outputs a schedule with max(Wi−Wj) = δ,
then we can transform it in polynomial time, with the optimal choice of speeds, into a
schedule with E ≤ (1 + mδ

W)OPT, where OPT is the minimal energy consumption that
could be attained.

Proof. Using Lemma 12, if the assignment of tasks to processors is fixed, then we only
have to choose a constant σ such that processor j runs at speed σ×Wj

Wmax
. The energy we

get for a given σ is then:

EW1,...,Wm(σ) = Wmax
σ
×m× Pstat +

∑
j

Wj ×
Wmax
σ ×Wj

×
(
σ ×Wj

Wmax

)α
= 1
σ
×Wmax ×m× Pstat + σα−1 ×

∑
j

Wα
j

Wα−1
max

.

This energy consumption is minimized for σ = Wmax
α√m×Pstat∥∥−→W∥∥
α

α√α−1
.

Now, the minimal energy E(min)
W1,...,Wm

for this task assignment is:

E
(min)
W1,...,Wm

= (m× Pstat)
α−1
α ×

(
(α− 1)

1
α + (α− 1)

1−α
α

)
×
∥∥∥−→W∥∥∥

α
.

We now prove that over all valid −→W , this quantity is bounded by E
(min)
W
m
,...,W

m

. We do
so through induction over m.

We have: ∥∥∥∥∥
−−−−−−−−−−−→
W

m
,
W

m
, . . . ,

W

m

∥∥∥∥∥
α

= α
√
m
W

m
.

Let f(W,m) = min−→
W∈Rm|

∑
Wi=W

∥∥∥−→W∥∥∥
α
.

81

For m = 1, we have:

f(W, 1) = W = α
√
m
W

m
.

Now, we assume that for m ≥ 1, we have f(W,m) = α
√
mW

m .
By definition of f ,

f(W,m+ 1) = min
−→
W∈Rm+1|

i≤m+1∑
i=1

Wi=W

∥∥∥−→W∥∥∥
α
.

Therefore, fixing Wm+1 and by definition of the α-norm,

f(W,m+ 1) = min
w∈[0,W]

min
−→
W∈Rm+1|

i≤m∑
i=1

Wi=W−w and Wm+1=w

∥∥∥−→W∥∥∥
α

= min
w∈[0,W]

min−→
W∈Rm|

∑
Wi=W−w

α

√
wα +

∑
Wα
i

= α

√
min

w∈[0,W]
wα + min−→

W∈Rm|
∑

Wi=W−w

∑
Wα
i .

Now, by definition of f and using the induction hypotheses, we obtain:

f(W,m+ 1) = α

√
min

w∈[0,W]
wα + f(W − w,m)α

= α

√
min

w∈[0,W]
wα +m

(W − w)α
mα

=
α
√
m

m
α

√
min

w∈[0,W]
mα−1wα + (W − w)α.

We now need to study the variations of g(w) = mα−1wα + (W − w)α to find the
minimum value of f(W,m+ 1). We have:

g′(w) = α×mα−1 × wα−1 − α× (W − w)α−1,

so we have:

g′(w) < 0⇔ α×mα−1 × wα−1 − α× (W − w)α−1 < 0
⇔ α×mα−1 × wα−1 < α× (W − w)α−1.

Therefore, since α > 0, g′(w) < 0⇔ mα−1 × wα−1 < (W − w)α−1. Now, using that
x 7→ xα−1 is an increasing function,

g′(w) < 0⇔ m× w < W − w ⇔ w <
W

m+ 1 .

82

Meaning that the minimum value for g(w) is reached for w = W
m+1 , so we have:

f(W,m+ 1) = α
√
m+ 1 W

m+ 1 .

So we have that E(min)
W
m
,...,W

m

is a lower bound of the energy consumption of a schedule,
with:

E
(min)
W
m
,...,W

m

= (m× Pstat)
α−1
α ×

(
(α− 1)

1
α + (α− 1)

1−α
α

)
× α
√
m+ 1 W

m+ 1 .

In particular, as there exists a schedule with energy consumption OPT, we have:

OPT = E
(min)
WOPT

1 ,...,WOPT
m

that is minored by E(min)
W
m
,...,W

m

, meaning that:

P
α−1
α

stat ×
[
(α− 1)

1
α + (α− 1)

1−α
α

]
×W ≤ OPT.

As for the worst case, we know that minWj ≤ W
m . Let −−−−→Wworst be the vector max-

imizing the α-norm under the constraint that Wj −Wi ≤ δ. For this vector, we have
maxWj ≤ W

m + δ, so we get:
∥∥∥−−−−→Wworst

∥∥∥ ≤ α
√
m

(
W

m
+ δ

)
.

Now, if an algorithm A produces a schedule with energy EA such that Wj −Wi ≤ δ
for all i, j, then we have:

EA
EOPT

≤
W
m + δ
W
m

≤ W +m× δ
W

≤ 1 +m× δ

W
,

which concludes the proof.

Proposition 2. The energy consumption of SLACK differs from the optimal one by at
most m2∆X ,nOPT

W :

0 ≤ E(n,m,X)−OPT
OPT ≤ m2∆X ,n

W
.

Proof. Theorem 11 shows that for δ = (m− 1)×∆X ,n, we have max
1≤i,j≤n

(Wi −Wj) ≤ δ.
Now using Theorem 12 with this premise, we directly get the desired result.

83

Analogously to Proposition 1, Proposition 12 provides asymptotic results on SLACK
used for optimizing the energy consumption. Further results can be obtained both for
the uniform distribution in Corollary 5 and for the exponential distribution in Corol-
lary 6. Intuitively, the result shows that the relative difference between the energy
provided by the adapted SLACK algorithm and the optimal energy consumption con-
verges to 0 almost surely, when n→ +∞, with a speed at least m2 logn

n2 for the uniform
distribution and m2 log logn

n for an exponential distribution.
It is proved in [devroye1981uniform] that, almost surely,

lim sup
n→+∞

(
n∆U [0,1],n − lnn

2 logn

)
= 1.

Corollary 5. When using SLACK as a base scheduling algorithm with the speed strategy
exposed in Lemma 12 with uniform distribution for the tasks, one has almost surely

lim sup
n→+∞

(
ESLACK(n,m,U [0, 1])−OPT

OPT × n2

2(2 + ln 2)m2 logn

)
≤ 1.

Proof. First, we simply rewrite the result from [devroye1981uniform]:

lim sup
n→+∞

(
n∆U [0,1],n − lnn

2 logn

)
= 1 (4.4)

lim sup
n→+∞

(
n∆U [0,1],n

2 logn − lnn
2 logn

)
= 1 (4.5)

lim sup
n→+∞

(
n∆U [0,1],n

2 logn − ln 2
2

)
= 1 (4.6)

lim sup
n→+∞

(
n∆U [0,1],n

2 logn

)
= 1 + ln 2

2 (4.7)

lim sup
n→+∞

(
n∆U [0,1],n

(2 + ln 2) logn

)
= 1 (4.8)

Using Proposition 2, we have

ESLACK(n,m,U [0, 1])−OPT
OPT ≤

m2∆U [0,1],n
W

(4.9)

ESLACK(n,m,U [0, 1])−OPT
OPT × n2

2(2 + ln 2)m2 logn ≤
n

2W ×
n∆U [0,1],n

(2 + ln 2) logn (4.10)

Now using Equation 4.8, and the fact that lim n
2W = 1 almost surely with the law of

large numbers, we get that almost surely

lim sup
n→+∞

(
n

2W ×
n∆U [0,1],n

(2 + ln 2) logn

)
= 1 (4.11)

84

So using Equation (4.10), we get that almost surely

lim sup
n→+∞

(
ESLACK(n,m,U [0, 1])−OPT

OPT × n2

2(2 + ln 2)m2 logn

)
≤ 1. (4.12)

It is proved in [devroye1984exponential] that if E1 is the exponential distribution
of rate 1, then, almost surely,

lim sup
n→+∞

(∆E1,n

ln lnn

)
= 1.

As the rate λ of an exponential distribution is a scaling parameter, we get that if Eλ is
the exponential distribution of rate λ, then almost surely

lim sup
n→+∞

(
λ∆Eλ,n
ln lnn

)
= 1.

Corollary 6. When using SLACK as a base scheduling algorithm with the speed strategy
exposed in Lemma 12 with exponential distribution of rate λ for the tasks, for any fixed
m ≥ 2, one has almost surely

lim sup
n→+∞

(
ESLACK(n,m, Eλ)−OPT

OPT × n

m2 ln lnn

)
≤ 1.

The proof is very similar to the one of Corollary 5.

4.6 Simulations

We first present the simulation setting in Section 4.6.1, before studying the δj ’s and βj ’s
in Section 4.6.2, and the energy consumption in Section 4.6.3.

4.6.1 Experimental setting

All the following experiments have been conducted on Python 3.8.10. Two types of
instances have been used. Both instances have in common that the platform is composed
of m = 100 processors.

Theoretical instances have been generated using the random package. These in-
stances have been generated following commonly used random distributions: the uni-
form distribution, U [0, 1]; the exponential distribution of rate 1, E1; the distribution of
cumulative distribution function F (x) = xα where 0 < α < ∞ [frenk1986]. These
simple distributions correspond to the ones for which there exist convergence results in
the literature and they cover a wide range of situations.

85

Realistic instances have been generated using the experimental cumulative distribu-
tion functions of actual workloads [feitelson2014]. These real workloads can be found
on the Parallel Workload Archive from the website https://www.cs.huji.ac.il/labs/
parallel/workload/. We used three specific instances: KIT ForHLR II with 114,355
tasks; NASA Ames iPSC/860 with 18066 tasks; and San Diego Supercomputer Center
(SDSC) DataStar with 84907 tasks.

4.6.2 Simulations: Study of δj and βj

In this section, we describe the results of our simulations comparing the values of δj
and βj (the largest differences between the execution times of the processors and the
tasks, as defined in Section 4.3) over the execution of SLACK and LPT.

In Figures 4.1 and 4.2, we can see the evolution of the quantities studied in Section 4.4
when bounding the performance of SLACK. The quantities are:

• βj the difference between the largest and the shortest task of pack j (i.e., at step
j of the algorithm), it describes the imbalance between consecutive tasks during
the execution of the algorithms;

• δj the difference between the largest processor and the shortest processor after step
j of the algorithm (i.e., after allocating j ×m tasks), it describes the imbalance
between processors during the execution of the algorithms.

With these experiments, we can both investigate the relation we stated in Section 4.4,
and investigate the unexplained “wave pattern” presented in [benoit2021].

In the case of tasks drawn through a uniform distribution with Figure 4.1, we observe
that δj , the imbalance between processors, alternates between high and low values, in a
sort of wave pattern. With a new representation of the pattern, we now present more
elements explaining it. This pattern can be explained by the fact that the imbalance
created by m consecutive tasks is then canceled by the m following tasks, as they have
similar relative differences. Once the imbalance on the processors have decreased, the
next m tasks will restore a new but smaller imbalance.

For most other distributions, on Figure 4.2, SLACK and LPT perform similarly in
terms of makespan, which is characterized by the last value δ n

m
. Out of our six examples,

the only distribution for which SLACK performs significantly better than LPT is the
distribution with cumulative distribution function F (x) = x10, namely the one for which
there are a few small tasks but many large ones.

A closer look at the evolution of δj and βj gives more insights about the differences of
execution between SLACK and LPT, and allows us to understand why SLACK performs
better than LPT in some cases. Generally speaking, SLACK balances the different
processors more quickly than LPT, and then keeps them balanced. In the specific case
of F (x) = x10, LPT performs significantly worse than SLACK because there is a high
density of big tasks, and a low density of small tasks. It means that the big tasks are
easy to balance whereas the small tasks are very different from each other. LPT finishes

86

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/index.html

0 200 400 600 800 1000
Number of groups of tasks handled

10 3

2 × 10 4

3 × 10 4

4 × 10 4

6 × 10 4

M
ax

im
um

 ti
m

e
di

ffe
re

nc
es

be
tw

ee
n

ta
sk

s (
re

sp
. p

ro
ce

ss
or

s)

0 20 40 60 80 100
Number of groups of tasks handled

(zoom on the 100 first groups of tasks)

 for LPT for odd numbers
of groups of tasks
 for SLACK for odd numbers

of groups of tasks

 for LPT for even numbers
of groups of tasks
 for SLACK for even numbers

of groups of tasks

 for LPT
 for SLACK

Figure 4.1: Evolution of δj and βj (as defined in Section 4.3) during the execution of
SLACK and LPT with the uniform distribution U [0, 1] for the tasks. Each execution
is done with m = 100 processors and n = 100 000 tasks. The right graph is a zoomed
version of the 100 first values of δj and βj . Each point represents the average value of
δj (resp. βj) over 30 executions.

87

10 2

100

1

10 24

10 16

10 8

F(x) = x0.1

10 3

10 1

F(x) = x10

0 500 1000

100

102

104

empirical law
(KIT workload)

0 500 1000

100

102

104

empirical law
(NASA workload)

0 500 1000

101

104

107

empirical law
(SDSC workload)

0.0 0.2 0.4 0.6 0.8 1.0
Number of groups of tasks handled

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 ti
m

e
di

ffe
re

nc
es

be
tw

ee
n

ta
sk

s (
re

sp
. p

ro
ce

ss
or

s)

 for LPT for LPT for SLACK for SLACK

Figure 4.2: Evolution of δj and βj (as defined in Section 4.3) during the execution of
SLACK and LPT with various probability distributions for the tasks. Each execution is
done with m = 100 processors and n = 100 000 tasks. Each point represents the average
value of δj (resp. βj) over 30 executions.

88

its execution with small tasks that have a very high difference βj , whereas SLACK is
able to balance the processors using big tasks.

4.6.3 Simulations: Energy minimization

In this section, we describe the results of the simulations, evaluating the energy con-
sumed by the schedules of the algorithms derived from LPT and SLACK (as defined in
Section 4.3).

We do not directly consider the energy E found by an algorithm because the value
ofW can vary a lot depending on the instance. Instead, we consider the relative difference
between the energy found by the algorithm and a lower bound on OPT, i.e.,

E−EW
m ,...,Wm

EW
m ,...,Wm

.
We have shown in the proof of Theorem 12 that EW

m
,...,W

m
was indeed a lower bound on

OPT.
The main conclusion that we can get from Figures 4.3 and 4.4 is that LPT and

SLACK both perform very well on all created instances, both theoretical and realistic.
The schedule that the two algorithms output is at most a few percents away from the
optimal for very small instances, and the room for improvement rapidly decreases to less
than 10−8% for larger instances.

It can be noted that SLACK performs better than LPT on average, even if they are
both near optimal.

4.7 Conclusion

The optimization of parallel computing platforms, especially for energy purposes, is a
challenging societal issue. In this chapter, we focus on SLACK, a recent heuristic that
proves to be very efficient in practice for scheduling independent tasks on homogeneous
machines. We have given, to the best of our knowledge, the first asymptotic performance
results on the makespan for SLACK for tasks distributed randomly either uniformly or
according to an exponential distribution. We have also shown how to adapt the nu-
merous algorithms aiming at optimizing the makespan into algorithms dedicated to the
optimization of the energy consumption. Based on SLACK, we were able to derive
asymptotic energy performance results for both uniformly distributed tasks and expo-
nentially distributed tasks. All these results exploit a common bound based of the shift
between the most loaded and the least loaded processor during the execution of the
heuristics. The experimental part of the chapter proposes an empirical comparison of
these shifts for SLACK and LPT. Finally, the performance for the energy problem is
also studied experimentally, and both SLACK and LPT are shown to be near optimal
in terms of energy consumption. In the future, it would be interesting to explore other
energy cost models. It would also be interesting to study the bi-objective problem that
considers both the makespan and the energy consumption. Finally, monitoring the en-
ergy consumption of schedules on actual machines using the proposed algorithms should
be explored.

89

0.0 0.2 0.4 0.6 0.8 1.0
Number of tasks of the instance

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

di
ffe

re
nc

e
be

tw
ee

n
th

e
en

er
gy

 o
ut

pu
t b

y
th

e
al

go
rit

hm
 a

nd
 a

 lo
we

r b
ou

nd
 o

n
th

e
op

tim
al

0 2000 4000 6000 8000 10000

10 11

10 9

10 7

10 5

10 3

[0, 1]

0 2000 4000 6000 8000 10000

10 12

10 10

10 8

10 6

10 4

10 2

1

LPT SLACK

Figure 4.3: Relative difference between the energy found by SLACK or LPT with the
speed strategy described in Theorem 12 and a lower bound on OPT, with various the-
oretical probability distributions for the tasks. Each execution is done with m = 100
processors. Each point represents the average value of energy over 30 executions.

90

0.0 0.2 0.4 0.6 0.8 1.0
Number of tasks of the instance

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

di
ffe

re
nc

e
be

tw
ee

n
th

e
en

er
gy

 o
ut

pu
t b

y
th

e
al

go
rit

hm
 a

nd
 a

 lo
we

r b
ou

nd
 o

n
th

e
op

tim
al

5000 10000

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

empirical law
(KIT workload)

5000 10000

10 12

10 10

10 8

10 6

10 4

10 2

empirical law
(NASA workload)

5000 10000

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

empirical law
(SDSC workload)

LPT SLACK

Figure 4.4: Relative difference between the energy found by SLACK or LPT with the
speed strategy described in Theorem 12 and a lower bound on OPT, with various em-
pirical probability distributions for the tasks. For each number of tasks, the execution
is repeated 30 times with m = 100 processors. The thick lines represent the moving
median, while the ribbons extend to the moving minimum and maximum over 45 values.

91

Chapter 5

Conclusion

Summary of results

In this thesis, we have tackled several task scheduling problems. Each of these problems
considered either a number of tasks growing to infinity, the energy consumption of the
schedule, or both. When relevant, we modeled the problem, proved its hardness through
NP-completeness reductions, and proposed algorithms solving the problem. We have
proved theoretical bounds and results for some already existing algorithms and for the
proposed algorithms when there was no such result in the literature. For each problem,
we have run and presented extensive simulations. These simulations allowed us to com-
pare the theoretical bounds found to the actual performance of the algorithms. They
also allowed us to compare the different algorithms proposed for a problem.

Chapter 2, published at Euro-Par 2021 [benoit2021], studies the makespan mini-
mization problem with sequential tasks, when the amount of tasks grows to infinity, and
the execution times of the tasks are sampled according to a specific distribution. We
focused the study on two list-scheduling algorithms: LPT and SLACK. We first did a
summary of existing results related to the asymptotic results of LPT. When the execu-
tion times of the tasks follow a specific probability distribution, we derived probabilistic
results about the relative or absolute error of LPT when compared to OPT, depending
on the specific probability distribution. We then derived new asymptotic results for the
case when the execution times of the tasks follow the probability distribution, called
the uniform integer composition. This distribution is different from usual distributions
as the execution times of the tasks are not independent random variables, but still the
almost sure optimality of LPT and SLACK has been proven. We also simulated several
algorithms with various probability distributions, assessing the theoretical results that
already exist in the literature.

Chapter 3, published at SBAC-PAD 2021 [benoit2021shelf] and extended in the
Journal of Parallel and Distributed Computing [benoit2023list], focuses on the energy
consumption minimization problem with moldable tasks. We modeled this optimization
problem, providing its theoretical foundations. We studied two classes of schedules: list
schedules and shelf schedules. In both cases, we designed several algorithms. We proved

93

that these algorithms are approximation algorithms with approximation between 2.08
and 3. For the optimization of a single shelf, we proved that it was tractable by providing
an exact polynomial-time algorithm. Finally, we conducted extensive simulations to
assess the quality of the provided algorithms.

Chapter 4, to be published at Euro-Par 2023 [benoit2023asymptotic], considers
the makespan or energy consumption minimization problem with sequential tasks, when
the amount of tasks grows to infinity, and the execution times of the tasks are sampled
according to a specific distribution. We focused our study on algorithms based on
SLACK and LPT. We showed how to adapt these algorithms to the energy minimization
problems. We derived theoretical bounds for SLACK in the cases of both the makespan
and the energy consumption. The proof for these bounds rely on a fundamental bound
on the result of SLACK that is also proven in this chapter. We finally assessed these
theoretical results through extensive simulations.

Perspectives

Work extending the subjects treated in this thesis include perspectives related to the
first axis, i.e., to asymptotic stochastic considerations of scheduling problems and their
algorithms. New distributions could be considered for the execution times of the tasks.
For example, distributions that do not produce independent execution times could be
studied, similarly to the uniform integer composition. Distributions with a null density
near zero, could also be considered, as many existing results rely on the fact that the
distributions are real and produce execution times arbitrarily close to zero. For example,
the uniform distribution between a and b (e.g., U(a, b)) could be studied more exten-
sively. Another limitation of this thesis and, to the best of our knowledge, of existing
work is that only the number of tasks n grows to infinity, while the number of proces-
sors m is considered to be constant. It would be interesting but harder to consider a
growing number of processors, as the number of cores used by a recent supercomputer
can grow large. It would also probably be possible to extend existing results related to
the algorithm LPT to the newer algorithm SLACK.

There are also perspectives related to the second axis of the thesis, i.e., to the min-
imization of the energy consumption of a schedule. This thesis used a common energy
model that separates the energy consumption into a static component and a dynamic
component. However, other models exist, and it would be interesting to see which results
can be derived with stronger or different models. We can cite two examples such as the
polynomial model, where the energy consumption is assumed to be a polynomial func-
tion of the speed, and the convex function model, where the energy consumption is only
assumed to be a convex function of the speed. It is also worth noting that the processors
used in the simulations of this thesis are rather old. In order to do simulations with more
recent processors, it would be necessary to take measurements through experiments on
more recent HPC platforms. Finally, the problems studied here only consider one ob-
jective: either the makespan or the energy consumption. The reason is that the static
part of the energy consumption already ensures that the makespan does not grow too

94

large. With a different energy model, it could be interesting to tackle the bi-objective
problem, where both the makespan and the energy consumption are considered.

Finally, there are perspectives related to both axis. Every extension mentioned in
the two previous paragraphs can also be applied to the situation where both axis are
considered, as in Chapter 4. In both cases, we started with a rather simple model,
but more complicated models exist in the literature. For instance, it is possible to add
dependencies between tasks, in the form of a dependency graph describing which tasks
must be finished before starting a task. We could consider some forms of uncertainty
with execution times that are not perfectly known, or machines that might fail, requiring
resilient algorithms. Heterogeneous platforms could also be considered, with machines
that do not all behave in the same way. It would also be interesting to conduct experi-
ments on actual HPC machines, as the systematic experimentation process of this thesis
has been done through simulations. ‘

95

Titre : Bornes théoriques de problèmes d’ordonnancement et leurs applications à l’analyse
asymptotique et la minimisation de la consommation d’énergie

Mots clés : Ordonnancement, Algorithmes, Calcul haute performance, Probabilité, Consommation d’énergie

Résumé : Les problèmes d’ordonnancement
consistent à étudier comment affecter de façon au-
tomatique un ensemble de tâches à un ensemble de
ressources en optimisant un ou plusieurs critères,
comme par exemple le temps d’exécution total. En
fonction des contraintes que l’on peut imposer sur
les tâches, les ressources ainsi que sur les critères
d’optimisation, il existe des dizaines de problèmes
d’ordonnancement différents. Ces problèmes sont
le plus souvent NP-complets. On ne sait donc pas
trouver une solution garantie comme optimale en
un temps raisonnable dans l’état actuel des connais-
sances humaines. Les approches pratiques s’appuient
alors sur des heuristiques, qui consistent à trou-
ver une solution rapidement dont le critère optimisé
n’est pas nécessairement l’optimal mais qui en reste
proche.

Dans cette thèse nous nous intéressons aux
cas de tâches indépendantes et de ressources
(processeurs) identiques avec deux critères
d’optimisation : le temps d’exécution total pour finir
toutes les tâches et la consommation énergétique to-
tale, dans l’hypothèse où les processeurs peuvent

avoir des vitesses variables et contrôlables. Dans
ce cadre, nous étudions des heuristiques existantes
et nous en proposons de nouvelles avec deux angles
d’analyse théorique. D’une part nous fournissons des
bornes asymptotiques probabilistes de convergences,
dépendant de la distribution des tâches. Ces bornes
permettent de garantir, lorsqu’il y a un grand nom-
bre de tâches à réaliser, qu’avec une forte probabilité
les heuristiques fournissent des solutions presque
optimale. Ce type de résultat permet d’expliquer
théoriquement l’excellent comportement dans les
cas pratiques de l’heuristique LPT. D’autre part,
nous fournissons différents ratio d’approximation,
notamment dans le cas de l’énergie, prouvant que
des algorithmes efficaces ne dévient pas trop d’une
solution optimale qu’on ne sait pas calculer en temps
raisonnable. Ces résultats sont obtenus en partic-
uliers pour des tâches moldables, c’est-à-dire pouvant
être exécutées chacune sur un nombre quelconque
de processeurs. Nous proposons aussi des résultats
mixant les deux types d’approches pour l’heuristique
SLACK.

Title : Theoretical bounds for scheduling problems and their application to asymptotic
analysis and energy consumption minimization

Keywords : Scheduling, Algorithms, High Performance Computing, Probabilitie, Energy Consumption

Abstract : Scheduling problems consist in
studying how to assign a set of tasks automatically
to a set of resources by optimising some criteria,
such as the total execution time. Depending on
the constraints imposed on the tasks, resources and
optimisation criteria, there are dozens of different
scheduling problems. These problems are often NP-
complete, so we cannot find an optimal solution in
a reasonable time with our current level of knowl-
edge. The practical approaches are based on heuris-
tics, consisting in finding quickly a solution which is
not necessarily optimal, but which remains close to
the optimal.

In this thesis we are interested in the case of in-
dependent tasks and identical resources (processors)
with two optimization criteria: the total execution
time to finish all tasks and the and the total energy
consumed to execute all tasks, under the assump-
tion that the processors can have variable and con-

trollable speeds. In this context, we study existing
heuristics and propose new ones with two theoretical
angles. On the one one hand we provide probabilistic
asymptotic bounds for convergences, depending on
the theoretical distribution of tasks. These bounds
make it possible to guarantee, when there is a large
number of tasks that, with a high probability, the
heuristics provide near-optimal solutions. This type
of result theoretically explain the excellent behaviour
of the LPT heuristic. On the other hand, we provide
different approximation ratios, notably in the case of
the energy minimization, proving that efficient algo-
rithms do not deviate too much from optimal solu-
tions, which we do not know how to compute quickly
enough. These results are obtained in particular for
moldable tasks, i.e. tasks that can be executed on
any number of processors. We also propose results
combining the two types of approach for the SLACK
heuristic.

	1 Introduction
	2 Asymptotic optimality of LPT
	2.1 Introduction
	2.2 Related work
	2.3 Algorithms and complexity
	2.3.1 Algorithms
	2.3.2 Optimality for small instances

	2.4 Convergence results for integer compositions
	2.4.1 Tasks random generation
	2.4.2 Probabilistic analysis for DW
	2.4.3 Analysis for DW,wmin

	2.5 Empirical study
	2.5.1 Experimental setting
	2.5.2 Rate tightness
	2.5.3 Uniform integer compositions
	2.5.4 Realistic workloads

	2.6 Conclusion

	3 List and shelf schedules for independent parallel tasks to minimize the energy consumption with discrete or continuous speeds
	3.1 Introduction
	3.2 Related work
	3.3 Model
	3.3.1 Platform
	3.3.2 Tasks
	3.3.3 Energy consumption
	3.3.4 Schedules
	3.3.5 Optimization problems

	3.4 Problem complexity
	3.4.1 Optimal algorithm for MinE-Mold-Indep
	3.4.2 NP-completeness of MinE-Mold

	3.5 Approximation ratios with discrete speeds
	3.5.1 Processors with a single speed (si = s)
	3.5.2 Processors with different speeds for each task

	3.6 Approximation ratios with continuous speeds
	3.6.1 Rigid case
	3.6.2 Moldable case

	3.7 Optimizing for a single shelf
	3.7.1 Preliminaries
	3.7.2 Optimal algorithm for MinE-OneShelf (discrete speeds)
	3.7.3 Optimal algorithm for MinE-OneShelf-Cont (continuous speeds)

	3.8 Empirical study
	3.8.1 Experimental setup
	3.8.2 Instance generation
	3.8.3 Results
	3.8.4 Impact of Pstat
	3.8.5 Comparison with the continuous relaxation

	3.9 Conclusion

	4 Asymptotic performance and energy consumption of SLACK
	4.1 Introduction
	4.2 Related work
	4.3 Framework
	4.4 A bound for SLACK
	4.5 Convergence speed of SLACK
	4.5.1 Convergence of the makespan
	4.5.2 Convergence of the energy consumption

	4.6 Simulations
	4.6.1 Experimental setting
	4.6.2 Simulations: Study of j and j
	4.6.3 Simulations: Energy minimization

	4.7 Conclusion

	5 Conclusion

