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manuscrit ont été précieusement enrichies par vos relectures, corrections et remarques.
Mme. Anabela Da SILVA et M. Frédéric SZCZAP qui ont accepté d’être les examinateurs
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Abstract

Optical sensors (cameras, lidars, and radars) are commonly used for perception in
automated vehicles. The primary function of these systems is to detect obstacles in
order to avoid them. However, adverse weather conditions such as rain or fog can disrupt
these information streams, impacting the performance and safety level of autonomous
vehicles. The Cerema, through its ”PAVIN Fog&Rain” platform, conducts evaluations
of these sensors under controlled rain and fog conditions. In order to perform testing
in a vitual environment allowing to consider a large variety of scenarios, what can
be achieved by developing a digital twin of the platform, it is necessary to develop a
robust model of electromagnetic wave propagation in fog whose outputs are close to
experimental meaasurements made in the platform. To achieve this modeling, a thorough
understanding of the fog droplet size distribution is required. In this thesis, we are
devising a method to identify this distribution using radiance data measured in the
Cerema’s Rain&Fog PAVIN platform.
In this work, radiance propagation modeling is based on the Lorenz-Mie theory. Our

goal is to reconstruct the particle size distribution, denoted as N , by inversely solving the
radiative transfer equation from radiation measurements at several wavelengths. This
approach enables the identification of fog’s optical characteristics through the evaluation
of coefficients in the radiative transfer equation, including the extinction coefficient,
absorption coefficient, scattering coefficient, and the phase function. Indeed, using the
Lorenz-Mie theory allows to express these coefficients in terms of the distribution N .
The radiative transfer equation (RTE) was originally introduced in astrophysics, nuclear
reactors, and atmospheric science. In our work, we focus on the 1D stationary radiative
transfer equation, which has a unique solution satisfying certain estimates.
Various authors have explored inverse problems related to radiative transfer equations.

The objective of the inverse problem is to reconstruct the absorption and scattering
coefficients, as well as the phase function from experimental data. This coefficient
reconstruction has been studied by several authors in two and three dimensions for both
stationary and non-stationary RTEs.
In our study, we introduce a minimization problem with an objective function that

enables the identification of the distribution N . This function quantifies the difference
between measured and radiative transfer model-evaluated radiance, with the distribution
N as input. We show that the objective function is continuous, differentiable, and strictly
convex, ensuring a unique solution for the minimization problem. We then apply the
Barzilai-Borwein algorithm to minimize this function by using a gradient descent based
method to solve our minimization problem: we will introduce an adjoint problem to
the RTE allowing us to easily calculate the cost function gradient. Comparisons with
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other minimization algorithms, such as CG-Polak-Ribière and CG-Daniel, have been
conducted. Our problem is formulated in two dimensions: x for spatial coordinates and µ
for the radiation direction. We approximate both the direct and adjoint problems using
the double Legendre polynomial basis decomposition, discretizing x while functionally
decomposing on a double Legendre polynomial basis for the µ variable. Code validations
have been performed using the explicit solutions provided by Dautray-Lions. Leveraging
the Lorenz-Mie theory, we have formulated the inversion problem for the 1D case,
validating against the explicit case (where the collision operator is null). Mathematical
analysis of the problem subsequently yielded specific results.
Optical characteristics of the medium are evaluated through the inversion of the

radiative transfer equation, yielding numerical reconstruction results in various scenarios
(direct measurements in front of the light source and inverse measurements of backward-
diffused luminance). At present, the droplet size distribution has been reconstructed using
synthetic measurements (model outputs) derived from a target granulometry distribution.
Simulations have been performed using artificial fog droplet size distributions from the
PAVIN platform at Cerema [1], natural distribution [2], and for distribution obtained
from the theoretical model as Shettle-Fen [3].
The identification results are obtained by using two different source types which are

the Lambertian source and the Collimated source. For both source types, we obtained a
good approximation of our DSDs. We also give numerical results of the DSDs identifi-
cation in the anisotropic case with the Henyey-Greenstein phase function and we do
not limit ourselves to the Lorenz-Mie phase function. In all these cases, we obtained a
good approximation of the droplet size distribution. Also, we studied in each case the
robustness of our identification method by adding several noise levels to our synthetic
measurements. The effect of the noise level on the extinction coefficient computed from
the approximated DSD and on the visibility is presented in some cases.
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Résumé étendu de la thèse

Pour les systèmes de véhicules automatisés, les conditions routières dégradées peuvent
poser de sérieuses difficultés. En effet, ces systèmes utilisent un réseau complexe de
capteurs optiques comme des caméras, des LiDARs, des RADARs pour comprendre leur
environnement et ajuster leur comportement de conduite. Le brouillard en particulier
présente plusieurs défis qui pourraient empêcher les voitures autonomes de fonctionner
comme prévu. Le brouillard diminue significativement les capacités visuelles des capteurs
tels que les caméras et les LiDARs. Pour cette raison, il pourrait être difficile pour ces
capteurs de reconnaitre les obstacles et les objets dans leur environnement. La capacité
du système autonome à prendre des décisions sécuritaires peut être limitée par la nature
incertaine ou partielle des informations reçues par les capteurs. Les signaux générés par
les capteurs RADAR et LiDAR peuvent être réfléchis, absorbés ou dispersés par les
gouttelettes d’eau en suspension dans l’air. Cela présente un danger pour la sécurité
routière, car cela peut entrainer des erreurs de détection, des résultats incorrects, voire
une perte totale de détection.
Le développement des véhicules autonomes nécessite l’intégration de nombreuses

technologies d’assistance à la conduite qui reposent sur des équipements optiques tels que
le RADAR, le LiDAR, les caméras, et d’autres. Ces technologies servent à des fins telles
que l’identification des obstacles, la détection des piétons, la reconnaissance des panneaux
de signalisation et l’ajustement de la trajectoire. Assurer la sécurité et la fiabilité de ces
dispositifs est une préoccupation majeure, car il est largement reconnu que des conditions
météorologiques dégradées telles que la pluie, la neige ou le brouillard peuvent perturber
leurs performances. Selon les différentes feuilles de route françaises ou européennes [4]
sur la mobilité automatisée, la simulation numérique est un outil pertinent à développer
pour évaluer la sécurité dans les situations les plus variées possibles, ce qui est difficile à
réaliser avec des tests réels. Les simulateurs actuels de capteurs perceptifs sont largement
basés sur des modèles simplifiés de l’interaction des rayons lumineux avec le brouillard,
ce qui remet en question le réalisme des simulations, pourtant crucial pour faire des
simulateurs des outils d’évaluation de la sécurité pour les véhicules automatisés.
La simulation des capteurs perceptifs automobiles dans des conditions de brouillard

doit tenir compte de la modélisation de la propagation des ondes électromagnétiques
à travers un milieu diffusant. Les caractéristiques optiques de ce milieu doivent être
connues pour simuler l’extinction du rayonnement.
Pour évaluer les capteurs perceptifs (caméra, RADAR, LiDAR) ou leurs simulateurs

en conditions météorologiques dégradées, la platforme PAVIN Brouilard&Pluie du
Cerema est mise à contribution dans de nombreuses études et projets. Cette évaluation
doit être garantie par une bonne connaissance de la microphysique des hydrométéores
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produits dans la plateforme, notamment pour le cas du brouillard. En effet, les différentes
longueurs d’onde dans lesquelles opèrent les capteurs perceptifs (du visible à l’infrarouge
thermique) conduisent à des propagations électromagnétiques sensibles à la taille des
gouttes de brouillard. Des capteurs analysant la distribution de la taille des gouttes
sont utilisés mais ils n’offrent des mesures que très locales et qui peuvent ne pas être
assez représentatives d’une distribution “moyenne” du milieu. Une approche pourrait
être d’évaluer des modèles de propagation d’ondes basés sur des mesures spectrales de
rayonnements issus d’une source de lumière placée dans la plateforme. Notre objectif
est de caractériser le brouillard produit par une DSD moyenne compatible à la fois
avec les mesures de rayonnement et la modélisation physique de la propagation. Ceci
constitue la définition de ce que nous entendons dans notre travail par identification de la
distribution de la taille des gouttes du brouillard (DSD), à savoir la recherche d’une DSD
compatible avec des mesures expérimentales interprétées par une modélisation donnée.
Nous proposons différentes modélisations et différents types de mesures. Par ailleurs,
nous évaluons cette identification par une quantification de la proximité des sorties de
modèle aux mesures (luminance, éclairement), ainsi que par celle de la proximité portant
sur des grandeurs calculées à partir de la DSD comme le coefficient d’extinction ou la
visibilité météorologique. La DSD pour le cas du brouillard est un paramètre clé qui
régit les caractéristiques optiques en fonction de la longueur d’onde du rayonnement [5].
Une DSD est une fonction N(r) (cm−3 µm−1) telle que N(r) dr représente le nombre de
gouttelettes d’eau contenues dans un volume de 1 cm3 dont les rayons appartiennent à
(r, r + dr). La théorie de Lorenz-Mie [6] est utilisée dans ce travail pour exprimer les
paramètres optiques grâce à la DSD.

D’autre part, dans les domaines de l’optique et de l’imagerie, la reconstruction
des propriétés optiques est un domaine important. Il consiste à extraire et étudier
les propriétés significatives d’un milieu ou d’une substance en fonction de la manière
dont ces propriétés interagissent avec la lumière. Plusieurs domaines, dont la médecine,
la science des matériaux, la télédétection, entre autres, utilisent la reconstruction des
propriétés optiques.

Fondamentalement, la reconstruction des propriétés optiques utilise les façons
spécifiques dont la lumière réagit avec divers matériaux. Cette interaction donne lieu
à des phénomènes tels que l’absorption, la diffusion, la réflexion et la transmission,
chacun fournissant des informations cruciales sur les propriétés du matériau. Il s’agit
pour l’essentiel d’identifier l’indice de réfraction, le coefficient d’absorption, le coefficient
de diffusion et le facteur d’anisotropie. Pour reconstruire les propriétés optiques, diverses
approches d’imagerie et spectroscopiques peuvent être appliquées. Ces approches utilisent
fréquemment des technologies avancées, telles que des spectromètres, des lasers, des
détecteurs et des algorithmes complexes d’analyse de données. Selon l’application, les
propriétés optiques peuvent être reconstruites en temps réel ou après traitement, et elles
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peuvent fournir des informations précieuses sur les tissus biologiques, les échantillons
environnementaux, les matériaux semi-conducteurs, et bien plus encore. La reconstruc-
tion des propriétés optiques a un énorme potentiel, mais elle présente également des
difficultés. Les méthodes de reconstruction des paramètres optiques sont utilisées dans
plusieurs domaines d’application [7, 8, 9, 10, 11, 12, 13].

Objectifs et méthodologie

La simulation des capteurs perceptifs dans le brouillard doit tenir compte de la
modélisation de la propagation des ondes électromagnétiques à travers un milieu in-
termédiaire. Les caractéristiques optiques de ce milieu doivent être connues afin de
simuler l’extinction du rayonnement. La distribution de la taille des gouttelettes pour
le cas du brouillard est un paramètre clé qui détermine ces caractéristiques optiques
en fonction de la longueur d’onde du rayonnement [14, 15, 5]. L’objectif de ce travail
est de proposer une méthode pour identifier cette distribution à partir de mesures de
rayonnement interprétées à l’aide de l’équation de transfert radiatif.

Dans ce travail de thèse, nous cherchons à identifier la distribution de taille des
gouttelettes avec des modèles pouvant impliquer un opérateur de collision et ne nous
limitant pas à la solution de Beer-Lambert. L’opérateur de collision représente les inter-
actions entre les particules du milieu et la radiation électromagnétique. Ces interactions
peuvent inclure l’absorption de photons par les particules du milieu, la diffusion de
la radiation par ces particules, ainsi que l’émission de photons par les particules du
milieu. Par conséquent, il est essentiel de développer des processus numériques pour
résoudre l’équation de transfert radiatif complète. Nous utilisons ensuite ces procédures
en utilisant une méthode basée sur la descente de gradient pour résoudre notre problème
de minimisation : nous introduirons un problème adjoint à l’équation de transfert ra-
diatif nous permettant de calculer facilement le gradient de la fonction de coût. Il est
important de noter que le temps de calcul de ces procédures dépend davantage des
paramètres de discrétisation pour résoudre l’équation de transfert radiative (ETR) et
son problème adjoint que du nombre de paramètres décrivant la distribution de taille
des gouttelettes. En effet, la méthode d’inversion que nous développons n’a pas besoin
de modéliser la DSD inconnue comme cela a été fait dans [16, 17, 18, 19, 20], où les
auteurs reconstruisent certains modèles de distributions de fréquences de volume (Loi
Log-Normale et lois gamma qui dépendent de deux paramètres) en utilisant la loi de
Beer-Lambert (sans le terme de diffusion). Avec notre méthode, nous sommes capables
de fixer un nombre souhaité de classes de rayon pour définir la DSD sans impact sur
le temps de calcul puisque nous utilisons une méthode de descente de gradient pour
laquelle le gradient de la fonction de coût est calculé grâce à un problème adjoint du
modèle de transfert radiatif dont la résolution numérique est très peu sensible au nombre
de classes de rayon. Pour les applications numériques, nous utilisons les 60 classes de
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rayon entre (0,15 µm-8,5 µm) de l’analyseur de particules PALAS Welas du Cerema.

Contributions de la thèse

Le résultat principal de ce manuscrit est l’identification des distributions de taille
des gouttelettes (DSD) du brouillard par des mesures de rayonnement dans la plage
de 350 nm à 2500 nm [21]. Pour le problème d’identification, une étude théorique et
numérique de l’équation de transfert radiatif stationnaire unidimensionnelle est réalisée
en utilisant la méthode de Yvon [22]. Nous prouvons la consistance du problème inverse,
puis nous effectuons des expériences numériques en utilisant des données synthétiques.
L’identification de la distribution N nous permet de calculer les propriétés optiques
en utilisant la théorie de Lorenz-Mie [6]. Nous avons élaboré une méthode qui permet
l’identification d’une large gamme de distributions rencontrées dans les brouillards na-
turels et ceux générés artificiellement dans la plateforme PAVIN. Dans cette étude, nous
avons évalué notre méthode sur des DSD acquises par des mesures dans des conditions
naturelles [23], des conditions artificielles [24], et via des modèles [3]. Les résultats
numériques suggèrent que la méthode permet l’identification de la DSD avec différents
modèles de transfert radiatif (Beer-Lambert, isotrope et opérateur de collision anisotrope).

Plan du manuscrit

Chapitre 1: Dans ce chapitre, nous commençons par introduire le cadre de la thèse
dans la Section 1.1. Dans la Section 1.2, nous donnons la motivation pour identifier
la distribution de la taille des gouttelettes et nous présentons également la plateforme
”PAVIN Fog&Rain”. Dans la Section 1.3, nous présentons la relation entre le brouillard
et la visibilité et nous rappelons les quatre classes de visibilité routière. Un protocole
de mesure de la visibilité est présenté dans la première partie de cette section. Dans
la deuxième partie de la Section 1.3, nous définissons le brouillard et nous donnons
quelques types de brouillard (le brouillard de radiation et le brouillard d’advection). Des
distributions de tailles de gouttelettes artificielles mesurées sur la plateforme PAVIN
au Cerema sont données pour différentes visibilités. Nous donnons également quelques
modèles théoriques de la distribution de la taille des gouttelettes. Nous terminons la
section avec la distribution réelle de la taille des gouttelettes mesurée lors de la campagne
Paris-Fog en 2007. Les principaux objectifs de cette thèse sont discutés, ainsi que notre
méthodologie de recherche dans la Section 1.4. Dans la Section 1.5, nous résumons
l’organisation de ce manuscrit. À la fin de ce chapitre, nous abordons les contributions
scientifiques dans la Section 1.6.

Chapitre 2: Ce chapitre commence avec la Section 2.1 qui offre un aperçu des recherches
antérieures sur la reconstruction directe des propriétés optiques pour diverses applications.
La Section 2.2 présente une revue de l’état actuel de la recherche sur l’identification
de la distribution des tailles de particules dans le brouillard. Cette section est divisée
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en deux parties. Dans la première partie, la méthode d’identification de la distribution
est présentée en utilisant l’équation LiDAR. La deuxième partie présente la méthode
d’identification en utilisant un modèle simplifié de l’équation de transfert radiatif, en
particulier le modèle de Beer-Lambert.

Chapitre 3: Dans ce chapitre, nous présentons une introduction générale au transfert
radiatif et à ses différents domaines d’application dans la Section 3.1. Dans la Section 3.2,
nous donnons la dérivation de l’équation de transfert radiatif et le processus d’absorption,
de diffusion et d’émission. Nous terminons cette section par le bilan de l’équation de
transfert radiatif dépendant du temps. Les différents types de fonctions de phase utilisés
dans l’équation de transfert radiatif (telles que les fonctions de Rayleigh, de Mie et de
Henyey-Greenstein) sont présentés dans la Section 3.3. Dans la Section 3.4, nous discutons
de la théorie de la diffusion de Lorenz-Mie. Cette théorie explique comment les ondes
électromagnétiques interagissent avec les petites particules. Nous donnons également
dans cette section l’expression des propriétés optiques en fonction de la distribution de
la taille des gouttelettes de brouillard. Dans la Section 3.5, nous rappelons l’existence
et l’unicité de la solution de l’équation de transport dépendante et indépendante du
temps donnée par plusieurs auteurs. Une estimation L∞ de la solution est également
donnée dans cette section. Nous terminons ce chapitre par la Section 3.6 qui récapitule
la formulation intégrale de la théorie du transport.

Chapitre 4: La Section 4.1 présente une introduction générale à l’équation de transfert
radiatif stationnaire unidimensionnelle et à son calcul à partir de l’équation de transfert
radiatif tridimensionnelle. Ensuite, dans la Section 4.2, nous passons en revue l’existence
et l’unicité de la solution de cette équation. Nous fournissons des solutions exactes dans
certains cas pour l’équation de transfert radiatif stationnaire dans la Section 4.3. Ces
cas sont utilisés par la suite pour vérifier nos approximations numériques. La Section 4.4
présente différentes méthodes utilisées par plusieurs auteurs pour approximer l’équation
de transfert radiatif. Nous étudions dans la Section 4.5 les approximations numériques
présentées dans la Section 4.4 avec une analyse de leur convergence sur les cas explicites
donnés dans la Section 4.3.

Chapitre 5: Ce chapitre commence avec la Section 5.1 qui présente les différentes
distributions des gouttelettes utilisées dans notre méthode de reconstruction. Dans la
Section 5.2, nous présentons également les problèmes inverses mal posés et la méthode
de décomposition en valeurs singulières (SVD) pour résoudre le problème mal posé, et
nous détaillons la DSD que nous utiliserons pour tester la méthode de reconstruction. Le
problème inverse basé sur la descente de gradient et la fonction de coût sont présentés,
ainsi que leurs propriétés, dans la Section 5.3. Nous donnons également dans cette
section l’expression du gradient de la fonction de coût en termes d’un problème adjoint à
l’équation de transfert radiatif (ETR), et nous rappelons l’algorithme de Barzilai-Borwein
pour minimiser la fonction de coût.
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Chapitre 6:Dans la Section 6.1, nous présentons les résultats numériques sur l’identification
de la distribution de taille des gouttelettes (DSD) avec une source lambertienne en util-
isant des mesures synthétiques (résultats de simulations avec de vraies DSD et certains
modèles de DSD en entrée) dans le cas de la modélisation de Beer-Lambert (sans diffusion
multiple), ainsi que dans les cas d’opérateurs de collision isotropes et anisotropes. Nous
étudions également dans cette section la robustesse de notre méthode d’identification en
ajoutant plusieurs niveaux de bruit à nos mesures synthétiques. Cette section se conclut
par une étude de l’effet du bruit sur le coefficient d’extinction calculé à partir de la
distribution approchée. De manière similaire à la Section 6.1, nous présentons dans la
Section 6.2 l’identification de la distribution de taille des gouttelettes en utilisant une
source collimatée, et une étude de robustesse est également présentée. Dans la Section 6.3,
nous présentons les résultats d’identification dans le cas anisotrope avec des sources
lambertienne et collimatée en utilisant la fonction de phase de Henyey-Greenstein.
Chapitre 7: La Section 7.1 offre une revue de l’équation de transfert radiatif stationnaire
tridimensionnelle et explique la méthode numérique utilisée pour l’approximer en utilisant
le simulateur SWEET développé au Cerema. La caractérisation de la source utilisée
dans nos mesures expérimentales sur la plateforme PAVIN est décrite dans la Section 7.2.
Nous terminons ce chapitre avec la Section 7.3, dans laquelle nous comparons les données
numériques obtenues grâce à l’utilisation du simulateur SWEET avec les données
expérimentales réalisées dans la plateforme PAVIN du Cerema.
Chapitre 8: Ce chapitre constitue une conclusion des travaux de la thèse et donne des
perspectives pour de nouveaux travaux.
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Nomenclature

D platform PAVIN length, m N0, N1 initial DSDs for the minimization algorithm

f positive function which explodes for small radii Qλ
abs

absorption efficiency

G number of measurement points Qλext extinction efficiency

Iλ radiation intensity, W m−2sr−1m−1 Qλsca scattering cross section

Jε cost function with the regularization term r particle radius, µm

J1 cost function without regularization term RC relative cost

k kth iteration RE relative error on DSD

L number of wavelengths U random variable with uniform law on (0, 1)

M
synth
λ

synthetic measurements, W m−2sr−1m−1 Vm meteorological visibility, m

N droplet size distribution (DSD), cm−3µm−1 x spatial position, m

N⋆ target droplet size distribution, cm−3µm−1

Greek Symbols

α aperture angle of sensor σλ
abs

absorption coefficient, m−1

δ Dirac function σλext extinction coefficient, m−1

ε regularization parameter σλsca scattering coefficient, m−1

η noise level τ optical thickness

θ′ position angle of the sensor Φλ scattering phase function

λ wavelength, nm ψλ Mie scattering phase function

µ cosine of polar angle θ

Subscripts/Superscripts

abs absorption sca scattering

ext extinction synth synthetic

xi



Contents

Acknowledgements i

Abstract iii
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Chapter 1

Introduction

The development and implementation of optical devices for Intelligent Transport Systems
(ITS) are heavily impacted by the optical characteristics of the road scene (including
atmosphere). The way that light interacts with the matter in the air (e.g. fog, rain, snow)
is directly influenced by optical characteristics such as light scattering, absorption, and
refraction. The knowledge of these characteristics in the context of ITS is essential for
the effective operation of many technologies employed in contemporary transportation.
In the development of automated vehicles, for instance, it is essential to correctly identify
the optical properties of the surrounding environment so that the sensors and cameras
can detect and recognize the road conditions, barriers and other vehicles. Using this
knowledge, one can then move safely while driving. Additionally, optical properties
are important in the construction of intelligent traffic management systems that use
real-time data to improve traffic flow, reduce congestion, and improve overall safety.
By applying our understanding of optical properties, ITS can transform transportation
by creating safer, more practical solutions that benefit both people and society as a whole.

In this chapter, we start by introducing the thesis framework in Section 1.1. In section
1.2 we give the motivation for identifying the droplet size distribution. We also present
the ”PAVIN Fog&Rain” platform. The major objectives of this thesis are discussed
together with our research methodology in Section 1.4. In Section 1.5, we conclude by
summarizing the organization of this manuscript.

1.1 Thesis Framework

The University of Clermont Auvergne has obtained the label ”initiatives of excellence”
(I-SITE) of the program ”investments of the future”, which aims to establish a limited
number of French universities to promote all their research and training activities
internationally.
The work done in this thesis is part of a research activity related to autonomous transports
for the Center of International Research on Innovation Transportation and Production
Systems (CIR-ITPS) in the domain of Intelligent Automated Transport, funded by the
I-Site CAP 20-25 Project. Additional information are available in the official website:
https://cap2025.fr/. The theme of Intelligent Automated Transport aims to increase
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1.2. Context and Motivation

the intelligence, functionality, and automation of robotic systems (mobile robots and
collaborative robots) by taking into account both their adaptability and ergonomics,
and the almost unavoidable interactions they have with humans.
Cerema, a public institution under the supervision of the Ministry of Ecological Transition
and Territorial Cohesion, supports the State and local authorities in the development,
deployment and evaluation of public policies for development, including transportation
systems. Additional information are available in the official website: https://www.
cerema.fr/fr. The activities of Cerema are organized around six complementary areas
of action aimed at assisting local stakeholders in the realization of their projects.
The research domain of this thesis is focused on ”Mobility” in the area of ”Intelligent
Transport Systems (ITS), Traffic, and Regulation: autonomous Vehicles”. This research
is done within the ITS research team of Cerema [25].
Regardless of the mode of transportation, the autonomous vehicle is upending existing
transportation structures. Experiments are frequently required due to the field of
intelligent transportation’s ongoing developments. Several autonomous transport projects
are being carried out for this purpose. For example, the SCOOP project [26] is a national
project to deploy a Cooperative Intelligent Transport Systems (C-ITS) technology system
that enables the exchange of information between vehicles and between vehicles and
infrastructure, with the aim of improving safety for road users and staff, developing new
services and preparing for the vehicles of the future. The C-ROADS project [27] is also
a continuation of the SCOOP projects, whose use cases were extended by integrating
urban situations and opening up technologies to new modes of communication between
vehicles and infrastructure and between vehicles. In this context, we also mention several
projects such as InDiD [28], SAM [29] or PRISSMA [30].

1.2 Context and Motivation

The progress in autonomous vehicle technology requires the integration of multiple
driving assistance technologies utilizing optical equipment such as RADAR (Radio
Detection and Ranging), LiDAR (Light Detection and Ranging), cameras, and other
sensors. These technologies play vital roles in tasks like obstacle identification, pedestrian
detection, recognizing traffic signs, and adjusting vehicle trajectory.
As mentioned in [31], LiDAR systems operate by measuring the time it takes for a pulsed
light emitted from a laser to travel to an emitter. The emitted light falls within the
infrared spectrum, specifically at wavelengths of 905 nm or 1550 nm which is specific to
the domain of application. The choice between these wavelengths is influenced by energy
considerations, as emissions at 905 nm require less energy than those at 1550 nm. This
difference in energy absorption is attributed to water in the atmosphere, which begins
absorbing energy beyond 1400 nm. In 2014, the authors in [32] studied the effect of
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1.2. Context and Motivation

adverse weather on LiDAR sensor performance. The 905 nm wavelength, constrained by
safety power limits, provides a detection range of approximately 100 meters. In contrast,
the 1550 nm wavelength extends the detection range to 200-300 meters.
RADAR systems [33], functioning as an electromagnetic sensor, are capable of detecting,
locating, tracking, and identifying various objects over long distances. Its operation
involves emitting electromagnetic radiation towards targets, evaluating the reflected
waves. Targets can include aircraft, ships, satellites, cars and even astronomical objects.
As well as detecting the presence, position and speed of these objects, RADAR can in
some cases provide details of their size and shape.
The development of fully autonomous vehicles is dependent on extensive sensor testing
and validation, which includes subjecting these sensors to a series of experiments that
simulate various extreme weather conditions. It is worth noting that the current state of
automotive sensors suggests that they may face difficulties in identifying objects under
such conditions. It is worth noting that the performance of the sensors may be limited in
certain weather conditions, which could pose a risk. Therefore, it is important to conduct
comprehensive studies of these sensors, particularly in adverse weather conditions.
Adverse weather conditions, such as snow, fog, and rain, provide a serious challenge for
drivers, especially automated systems. This becomes much more difficult when developing
software for self-driving cars, as it must be capable of adapting to a wide range of external
situations, reflecting how humans deal with similar challenges [34, 35, 31, 36].
The World Meteorological Organization (WMO) [37] defines fog (presented at the left
of Figure 1.1) as a suspension of very small, usually microscopic water droplets in the
air, reducing visibility at the Earth’s surface [38]. The term is used when the horizontal
visibility is reduced to less than 1 km. Furthermore, the WMO defines rain (presented
at the right of Figure 1.1) as precipitation of drops of water that falls from a cloud. The
number density and size distribution of raindrops vary considerably with the intensity
and nature of the precipitation.

Figure 1.1: Fog with visibility about 100 m (left). Illustration of the relative size of drops of
rain and of drizzle (right) [37].

The reduction in visibility depends on the structure of the fog, and especially on the
number density and size distribution of the droplets. The structure can vary considerably
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over time and space.
Due to the visibility reduction, fog can affect human activities in many fields like free-
space optical (FSO) communication, aviation or ground transportation [39, 40, 41]. In
this latter field, adverse weather conditions are issues for the development of intelligent
vehicle and autonomous driving since perceptive sensors like camera, RADAR and
LiDAR are largely employed [42, 43, 44, 45, 46, 47]. Hasirlioglu [48] conducted a study
of the influence of rain and fog on the detection of objects by camera, LiDAR and
RADAR. Fog and rain were simulated in real world. His results highlight that the
three sensors are affected by rain with more or less severity. Reduced contrast affects
camera images. The main effect of adverse weather conditions on camera is the loss
of contrast making it more difficult to identify or detect objects in the images. Also,
LiDAR has a poor detection range and also blocks visibility in powder snow, strong
fog, and heavy rain [49, 50]. Compared to LiDAR, the RADAR performs better in
adverse weather. As mentioned in [51], weather affects RADAR in two ways, which
are the attenuation and the backscattering. Attenuation decreases the signal’s received
strength, while backscattering increases interference at the receiver. In [52], the authors
demonstrate the complementary characteristics of cameras and RADARs, and Singh [53]
illustrate these characteristics in Figure 1.2.

Figure 1.2: Sensor characteristics (presented in [53]) of camera, RADAR, and LiDAR.

It is important to know the impact of fog on the artificial perception of autonomous
vehicles, particularly in challenging weather conditions, in order to guarantee the safety
and efficacy of these developing technologies. Researchers and engineers are exploring
solutions to enhance the robustness of perception systems in challenging conditions.
This will further improve the reliability and adaptability of autonomous vehicles when
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faced with various environmental challenges.
Many roadmaps [54, 4] of European and worldwide institutions responsible for trans-
portation public policies highlight the driving scenario approach to demonstrate the
safety of automated road transport systems, including scenarios based on realistic digital
simulation taking into account adverse weather conditions.
The main issue with the numerical simulation tools used concerns their realism, even
more so when they are used for autonomous driving safety assessment. The simulation
of automotive perceptive sensors in fog conditions must take into account the modelling
of the propagation of electromagnetic waves through a participating medium. For these
optical sensor simulators, we can recall the Ansys AVxcelerate simulator [55], which
provides physics-based accurate sensor simulation. It comes with a complete set of
parametric physics-based sensor models. There are also several other simulators such as
Electro-Optics Sensor Simulation [56], Mitsuba [57], AVSimulation [58], Carla Simulator
[59]. These simulators use different types of modelling. For example, in [38] the authors
present a comparison between a simple model using Koschmieder’s theory based on the
Beer-Lambert law (exponential attenuation of the light in fog w.r.t. the distance between
emitter and receiver) and the full modelling of the radiative transfer equation by using
Cerema’s SWEET simulator based on the Ray-tracing method [38]. This comparison is
illustrated in Figure 1.3 for night and day conditions.

Figure 1.3: Simulated images for the intra-urban scene with the Cerema SWEET simulator
[38] without fog (a) and with fog for visibility 20m (b) and with the Koschmieder model (c) in
the night condition (left), and in the day conditions (right).

In addition, the images in Figure 1.4 show a section of the French A75 highway, at
the Col de la Fageole point, without fog (a) and with fog (b) (see [60] for a detailed
description of the database). Figure 1.4 with fog can be compared to the simulated
images (Figure 1.3b in the left and right). Although the latter is not made in the same
scene, it still allows us to observe a similarity in the visual aspect of the fog in all these
images (i.e., blurry effects). This confirms the realism of the rendering performed by
SWEET.
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Figure 1.4: Real camera images taken from a section of the French A75 highway (at the Col
de la Fageole point) without fog (a) and with fog (for visibility 156 m, (b)), both images are
in grayscale (see [60]).

As shown in [38], more relevant modelings are needed to capture the contrast attenuation
in foggy conditions close to the ones observed in real conditions, which is all the more
true when the fog is dense. It is then necessary to take into account the in-scattering
term (collision operator) which represents the interactions between the particles of the
medium and electromagnetic radiation. These interactions may include the absorption
of photons by the particles of the medium, the scattering of radiation by these particles,
as well as the emission of photons by the particles of the medium.

Figure 1.5: Pixel lines (in red) and contrast polygons (in blue/green) for the urban simulated
scene (a) and the real one from a section of the French A75 highway (at the Col de la Fageole
point) (b).

In addition, the authors in [38] analyze the evolution of the pixel lines. In the bottom of
Figure 1.6, the peak in all the curves without fog (solid lines) represents the studied
object, marking the ground in the case of real camera images (Figure 1.5b) and the edge
of the sidewalk in the case of the intra-urban road simulated scene (Figure 1.5a). The
presence of fog in the scene was simulated by SWEET, and in the real road scene, it
attenuates the peak representing the object (ground markings, edge of the sidewalk)
and slightly lighten the scene around as can be seen through the curves in the broken
line of Figure 1.6 (left and right). However, in the case of the Koschmieder model, the
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behavior is completely different, and this again confirms that this model excessively
brightens the whole image as can be seen in the bottom of Figure 1.6.

Figure 1.6: Comparing the intensity of a pixel line for images coming from SWEET (left),
Koschmieder (middle) and real camera images (right) [38].

The simulation of perceptive sensors in fog conditions must take into account the
modelling of the propagation of electromagnetic waves through a participating medium.
The optical characteristics of this medium must be known in order to simulate the
extinction of the radiation. These optical characteristics are computed from the droplet
size distribution (DSD) by using the Lorenz-Mie scattering theory [6]. Then, the droplet
size distribution of fog is a key parameter that governs these optical characteristics
depending on the radiation wavelength [14, 15, 5]. A DSD is a function N(r) (cm−3

µm−1) such that N(r) dr represents the number of water droplets contained in a volume
of 1 cm3 whose radii belong to (r, r + dr). There is an extensive literature on modeled
or measured fog droplet size and other characteristics like liquid water content, total
concentration of drops, mean diameter [39, 61, 62, 63, 64, 65, 66, 62, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 24, 78]. All the experimental studies show that fog droplet size ranges
from a few tenths of a micron to a few tens of microns [79, 80, 39, 81, 40, 82, 83, 84].
Other studies attempt to characterize the droplet size distribution (DSD) by modeling
them. Two main categories of laws are used for fitting: shifted gamma laws [85, 86, 87, 88]
and log normal laws [89, 67].
To evaluate the impact of the adverse conditions on optical sensors, the French research
and technical center Cerema operates the European Rain and Fog PAVIN platform [90],
presented in Figure 1.7. In front of the control station, the track is divided into two
parts (a solid tunnel and a greenhouse with a removable opaque cover), allowing tests
to be conducted in both daylight and nighttime conditions, following a wide range of
scenarios.
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Figure 1.7: Overall structure of Cerema Adverse Weather platform [1].

The installation consists of a covered track that is 30 meters (see Table 1.1) long and is
specially constructed using a number of elements, including a rain and fog generator,
weather sensors, and reference vision sensors.

Fixed section (Tunnel) Greenhouse
Length 15 m 16 m
Wide 5.5 m 5.5 m
High 2.25 m 2.25 m

Table 1.1: Geometric characteristics of the Fog and Rain platform.

As presented in Figure 1.8, the optical sensors and cars can be exposed to controlled
artificial fog and rain [1, 62, 91, 5]. This platform allows to study human perception in
adverse conditions [92, 93], vision system capabilities in fog or rain conditions [94, 95,
96, 97, 98] or computer vision algorithms for object and weather detection [99, 100, 60].
Regarding the assessment of how adverse weather conditions affect the functionality of
vehicle perception systems, as mentionned in [90] , the first public work was conducted in
the context of the AWARE project ”All Weather All Roads Enhanced vision” from 2014
to 2017 which develop an ”all weather/conditions” visibility sensor, especially for use in
adverse conditions such as at night and in fog, in order to see the vehicle’s surroundings
and detect risks, as part of an effort to provide an affordable solution. Its applications
target the automotive and aerospace industries. This topic was then continued in the
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Figure 1.8: Representation of the evolution of optical sensors at the Cerema’s platform in
presence of fog.

DENSE project [101] ”aDverse wEather eNvironmental Sensing systEm”, launched in
2016, with the objective to eliminate one of the most pressing problems of automated
driving: the inability of current systems to sense their surroundings under all weather
conditions.
We summarize the types of studies that can be conducted in PAVIN platform:

1. Validation of sensors and products to be deployed outdoors.

2. Performance measurement of driver assistance systems/ ADAS (pedestrian and
obstacle detectors).

3. Performance measurement of innovative road signalling and lighting systems.

4. Study of driver perception in conditions of reduced visibility.

5. Development of new imaging technologies adapted to fog and rain conditions
(infrared, laser, RADAR).

6. Comparison between artificial vision systems and humans.

7. Design of 3D image and point cloud analysis and processing algorithms.

The reproducible weather conditions available in the PAVIN platform are:

1. Dense to light fog by dissipation (not stabilized), weather visibility 10 m to 1000
m.

2. Dense fog at a stabilized level; weather visibility from 10 m to 80 m.

3. There are two types of fog particle size: radiation (0.8 microns) and advection (0.8
to 8 microns), as shown in the top of Figure 1.10.
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4. Steady-state heavy rain: rain intensity from 20 mm/h (maximum duration is 100
minutes) to 180 mm/h (maximum duration is 9 minutes) as shown in the bottom
of Figure 1.9.

Figure 1.9: Rain intensity measured within the PAVIN platform (mm/h) [90].

Figure 1.10: Particle size distribution of the PAVIN platform fogs compared to different
models [24].

We give in Figure 1.11 various experimental tests of the sensor detection in the presence
of fog in day and night conditions [90]. From the figures in the middle of Figure 1.11, we
can observe how the presence of fog limits the visibility and the detection of obstacles.
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Figure 1.11: Some tests of sensor detection in both daylight and nighttime conditions in the
presence of fog.

1.3 Fog and visibility

The safety and vision of drivers on the roadways can be significantly impacted by the
road fog. It happens when the vision is lowered due to tiny water droplets suspended in
the air, which is unsafe for drivers. High-traffic locations, coastal regions, and lowlands
where humidity and cold temperatures are prevalent, can be particularly difficult due
to this weather phenomena. When air humidity and relatively low temperatures mix,
it frequently results in road fog. Fast cooling hot, humid air approaches its saturation
threshold, where moisture condenses into minute droplets of suspended water. This
procedure produces a dense haze that reduces vision, making driving challenging and
sometimes hazardous.
Road fog has several negative effects. As drivers have less time to respond to barriers,
other cars, and rapid changes in traffic, reduced vision dramatically raises the probability
of traffic accidents. In conclusion, road fog is a complicated meteorological phenomenon
that may have detrimental effects on the safety of the road.

1.3.1 Visibility

The meteorological visibility, noted by Vm (expressed in meters), is defined by the
World Meteorological Organization (WMO) [37] as the greatest distance at which a black
object of suitable dimensions can be seen and recognized against the horizon sky during
daylight or could be seen and recognized during the night if the general illumination
were raised to the normal daylight level.
Different methods to estimate the meteorological visibility distance have been developed
in the field of transportation. One family of methods estimates the contrast of objects in
the scene and assigns a distance, usually assuming the road is flat. Bush et Debes [102]
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use a wavelet transform to detect the highest edge in the image with a contrast above 5%
in a region of interest that encompasses the road pavement. A system for estimating the
meteorological visibility distance with the same principles is proposed by Zhao-Zheng
et al. [103], except that it uses the algorithm proposed by Hautière and al. [104] to
estimate the contrast. In the field of transport, various techniques have been devised to
estimate meteorological visibility distance. One type of approach involves measuring the
contrast of objects in a visual image and then determining distance, often under the
assumption of a level road surface. Bush and Debes [102] employs a wavelet transform
to identify the most prominent edge in the image, considering a contrast threshold of at
least 5% within a predefined region of interest that encompasses the road pavement. A
comparable methodology for estimating meteorological visibility distance, based on the
same principles, is presented by Zhao-Zheng and al. [103]. However, in their approach,
they utilize the contrast estimation algorithm introduced by Hautière and al. [104].
The visibility is written more commonly, for a contrast threshold of 5%:

forλ = 550nm, Vm = −
1
σλext
ln
( 5
100

)
=
3
σλext

, (1.1)

where σλext is the extinction coefficient.
In meteorology, the presence of fog is considered when meteorological visibility drops
below 1000 meters. In a road context, fog becomes critical when meteorological visibility
drops below 400 meters. In [105], four classes of road visibility are defined as presented
in Table 1.2.

Visibility class Meteorological visibility distance (Vm in meter)

Class 1 between 200 and 400 m
Class 2 between 100 and 200 m
Class 3 between 50 and 100 m
Class 4 less than 50 m

Table 1.2: Fog classes in a road context according to [105].

Based on these information, a road visibility sensor must affect to one of these four
visibility classes and detect the origin of the visibility reduction.
The meteorological visibility distance is measured by using different types of instruments,
which make it possible to detect fog by measuring the extinction coefficient, for example,
we have the transmissiometers and scatterometers. The PAVIN Fog&Rain Platform is
equipped with the transmissiometer DEGREANE HORIZON TR30 presented in Figure
1.12.
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1.3. Fog and visibility

Figure 1.12: The transmissiometer DEGREANE HORIZON TR30 used in the PAVIN Fog&Rain
Platform

Their basic principle consists of measuring the attenuation of a light beam as it passes
through a fluid over a given distance [37]. Transmissometers are used mainly in aeronauti-
cal meteorology, but they find applications in other fields, such as oceanography. Visibility
is calculated using the extinction coefficient over the known distance between the two
instruments. In general, transmissometers measuring visibility in the atmosphere using
a wavelength of about 550 nanometers, roughly in the middle of the visible spectrum.
The extinction coefficient σλext is given by using the Beer-Lambert law

I = I0e−σ
λ
ext d ⇐⇒ σλext = −

1
d
ln
(
I

I0

)
, (1.2)

where I0 is the emitting luminous flux and I is the luminous flux received at distance d.
Figure 1.13 represents the protocol to measure visibility by using the Beer-Lambert law.

Figure 1.13: Protocol to measure the visibility

1.3.2 Types of Fog

By definition, fog is the suspension in the atmosphere of very small water droplets
reducing visibility on the ground to less than one kilometer. Fog is actually a cloud
whose base touches the ground. The World Meteorological Organization (WMO) explains
several types of fog [37]. The two most common types of fog are the following:
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1. Radiation fog: Radiation fog usually forms at night, when the earth’s surface is
cooled by radiation and in turn cools the adjacent air which reaches its saturation
temperature. This type is made up of “small droplets”, with diameters distributed
around a mode between 1 and 10 µm.

2. Advection fog: Advection fog forms when relatively warm moist air moving over
a colder surface cools on contact with that surface until it reaches its saturation
temperature. This is the case, for example, when relatively warm moist air moves
over a cold sea (“sea fog”) or frozen or snow-covered ground. This type is made
up of “large droplets”, with diameters distributed around a mode between 10 and
20 µm.

Figure 1.14: Radiation fog (left) and Advection fog (right). Official website (WMO)

The Cerema, from its PAVIN Fog&Rain platform, can produce artificial fog. The fog
production process consists of spraying pressurized water from injector rails suspended
from the ceiling. The qualification of this equipment has made it possible to establish a
mode of the particle size distribution of the order of a micron in diameter whatever the
concentration [106].
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Figure 1.15: Droplet size distributions N for the artificial fog measured at PAVIN platform of
Cerema for different visibility.

We note that the droplet size distribution DSD is the number of water particles per cm3

for each radius r. The DSD is expressed in cm−3µm−1 as a function of the radius r of
water particles expressed in µm, and is denoted by N . We present in Figure 1.15 various
droplet size distributions measured in the PAVIN platform at Cerema [1].

Figure 1.16: Droplet size distributions for a real fog (Paris-Fog campaign [2])

There is another type of particle size distribution, we give in Figure 1.16 the particle size
distribution of natural fog. These distributions were measured during an episode of fog on
the night of March 13 to 14, 2007 on the French Palaiseau site (Paris-Fog campaign [2]).
Several comparisons between these distributions and artificial distributions measured in
PAVIN platform are already carried out in [24]. We observe that the natural distribution
of fog has forms similar to that of the distribution of the artificial fog presented in Figure
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1.15. In addition, for these two types of fog, it is noted that the greatest number of
concentration is for the particle of the radius varied between 0.3 µm and 0.6 µm.
Most studies dealing with the propagation of light in scattering media are based on
granulometric models [107], with one of the reasons being the extreme difficulty of
collecting experimental data. Among the various laws used to model the granulometric
distribution of a natural polydisperse medium [86, 87, 88, 89, 67], the modified gamma
distribution proposed by Deirmendjian [6] is the most widely applied to fog [108, 109]:

N(r) = c rβe−dr
γ

, r  0, (1.3)

where N(r) is the number of particles per radius class, and c, β, d, and γ are parameters
used to fit the model to observations. Shettle and Fenn [3] proposed a typology of
different types of fog into four classes for which they provide values for the parameters
in equation (1.3). Table 1.3 presents the coefficients given in [3] for modified Gamma
laws (1.3) to represent the particle size distributions of natural fog where rm represents
the peak position for each model.

Types of fog Model rm(µm) c β d γ

Advection fog 1 10 0.027 3 0.3 1
Advection fog 2 8 0.06592 3 0.375 1
Radiation fog 3 4 2.37305 6 1.5 1
Radiation fog 4 2 607.5 6 3.0 1

Table 1.3: Coefficients given in [3] for modified Gamma laws (1.3) to represent the particle
size distributions of natural fog.

Figure 1.17 represents the modified gamma law fog particle size models proposed by
Shettle and Fenn [3] and given in Table 1.3.

Figure 1.17: Modified gamma law fog particle size models proposed by Shettle and Fenn [3]

Shettle models always tend to overestimate the size of drops. These models are used
to characterize fog of large drops (highest concentration for drops of radius 2 and 4
micron). Natural and platform mists are quite close. Comparison in terms of extinction
for the wavelength 550 nm was made in [24].
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1.4 Objectives and Methodology

As already mentionned, the simulation of perceptive sensors in fog must take into account
the modelling of the propagation of electromagnetic waves through an intervening
medium. The optical characteristics of this medium must be known in order to simulate
the extinction of the radiation. The droplet size distribution for the fog case is a key
parameter that determines these optical characteristics depending on the radiation
wavelength [14, 15, 5].

The PAVIN Fog&Rain platform is a tool for evaluating perceptive sensor simulators
by performing physical tests of wave propagation based on radiation measurements. In
this platform, we already use particle size analyzers PALAS WELAS 2100, presented in
Figure 1.18, to measure the DSD. These measurements are very local (1 cm3) and may
not be representative at the whole platform scale (400 m3 of fog).

Figure 1.18: Aerosol Sensor welas 2100. Equipped with a small measurement volume and
are used for coincidence-free measurement with a maximum number concentrations of up to
500,000 particles/cm3. Measuring range: 0.2 – 10 µm / 0.3 – 17 µm / 0.6 – 40 µm.

Therefore, our objective is to identify representative droplet size distributions of fogs
produced in the platform thanks to radiance or irradiance measurements performed
in Cerema’s PAVIN platform. Figure 1.19 shows a diagram of experimental protocols
allowing to perform the identification: a spectrally continuous light source illuminates
the foggy medium and spectral measurements are made in forescattering (left) and
backscattering (right) situations.
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Figure 1.19: Diagram of the protocol for the experimental measurements.

The aim of this thesis works is then to propose a method for identifying the DSD
from radiation measurements interpreted using the one-dimensional stationary radiative
transfer equation. The reconstruction method is done by minimizing a cost function which
corresponds to the error between the measurements and the digital model output. We aim
to examine the identification of the DSD with radiative transfer models that can take into
account the in-scattering term and do not limit us to the basic Beer-Lambert solution as
mentioned by several authors. Consequently, it is essential to develop numerical processes
to solve the complete radiative transfer equation. Several finite difference methods are
used by several authors to approximate the one-dimensional stationary radiative transfer
equation. In our work, this equation is approximated by using a decomposition method
on the double Legendre basis and the optical properties are computed by using the
Lorenz-Mie scattering theory from the fog droplet size distribution. We then use these
procedures in a gradient descent-based method to solve our minimisation problem: we
will introduce an adjoint problem to the radiative transfer equation allowing us to
easily calculate the cost function gradient. It is important to note that the computation
time of these procedures depends more on the discretisation parameters to solve the
one-dimensional stationary radiative transfer equation and its adjoint problem than
the number of parameters describing the DSD: the inversion method we develop does
not need to model the unknown DSD as made in [16, 17, 18, 19, 20] where the authors
reconstruct some models of volume frequency distributions (Log-Normal and gamma laws
that depend on two parameters) by using Beer-Lambert law (without the in-scattering
term). With our method, we are able to fix a desired number of radius classes to define
the DSD without impact on the computing time since we use a gradient descent method
for which the gradient of the cost function is calculated thanks to an adjoint problem
of the radiative transfer model whose numerical resolution is very low sensitive to the
number of radius classes. For numerical applications, we use the 60 radius classes (0.15
µm-8.5 µm).
The main result of our works is the identification of the droplet size distributions

(noted also by retrieval of droplet size distributions) of fog by radiation measurements in
the range 350 nm - 2500 nm [21]. For the identification problem (or retrieval problem),
a theoretical and numerical study of the one-dimensional stationary radiative transfer
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equation was carried out by using the Yvon method [22] to solve the RTE (double
Legendre method). We prove the well-posedness of the underlying inverse problem of
the RTE and then we conduct some numerical experiments using synthetic data. The
identification of the distribution N enables us to calculate the optical properties using
the Lorenz-Mie theory [6]. We have devised a method that allows identification of a
broad range of distributions encountered in natural fogs and those artificially generated
in the PAVIN platform. In this study, we evaluated our method on DSD acquired through
measurements in natural conditions [23], artificial conditions [24], and via models [3].
The numerical results suggest that the method allows the identification of the DSD with
different models of 1D radiative transfer (Beer-Lambert, isotropic in-scattering operator
and anisotropic in-scattering operator).

1.5 Manuscript Plan

This thesis is structured as follows. A literature review on the optical properties and
the droplet size distribution identification are presented in Chapter 2. In Chapter 3, a
literature review is presented, covering the radiative transfer equation, its derivation,
and their field of application. Also, the Lorenz-Mie scattering theory, which enables the
expression of optical properties regarding fog droplet size distributions, is presented in
this Chapter. Next, a 1D case of the stationary radiative transfer equation is presented
in Chapter 4 with the existence and uniqueness of the solution and its theoretical
and numerical resolution. In Chapter 5, we detail the DSD we will use to test the
reconstruction method. Additionally, the gradient descent-based inverse problem and
the cost function are presented along with their properties. This chapter discusses the
expression of the cost function gradient in terms of an adjoint problem to the RTE.
The numerical results on the DSD identification using synthetic measurements (output
of simulations with real DSDs and some DSD models as input) in the Beer-Lambert
modelling case (without multiple scattering), isotropic, and anisotropic collision operator
cases are presented in Chapter 6. In Chapter 7, a detailed account of the experimental
procedure used for the measurements performed on the PAVIN platform is presented.
This chapter also presents a comparison between 3D numerical simulation of radiative
transfer equation and experimental data acquired in the PAVIN platform. The manuscript
is concluded in Chapter 8 with suggestions for future study subjects.
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• 29 June 2021, Poster à la journée scientifique de l’ecole doctorale des sciences pour
l’ingénieur, Clermont-Ferrand, France.

• 21-25 June 2021, SMAI 2021, 10 ième Biennale Française des Mathématiques
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Chapter 2

State of the art on the particle size
distribution identification

The identification (or the reconstruction) of particle size distribution of a participating
medium is an important step in many scientific domains, including physics, meteorology,
chemistry, and biology. We recall that our objective is to characterise the fog produced in
the PAVIN platform by an average DSD compatible with both radiation measurements
and a physical modelling of electromagnetic propagation. This is the definition of what
we mean in our work by fog droplet size distribution identification, i.e. the search for a
DSD compatible with experimental measurements interpreted by a given model. We can
note that this identification leads to the quantification of some medium’s characteristics
calculated from the DSD, such as the extinction coefficient or meteorological visibility,
or more generally optical properties expressed thanks to the particle size distribution by
using the Lorenz-Mie scattering theory. For many applications, these optical properties
allow to understand the fundamental characteristics of the systems under study, in order
e.g. to optimize industrial operations and to obtain greater understanding of natural
phenomena.
This chapter starts with Section 2.1, which provides an overview of previous research
on the direct reconstruction of optical properties for various applications. Section 2.2
presents a comprehensive review of the current state of research on identifying particle
size distribution in fog. In a first part, the identification of the distribution is presented
using the LiDAR equation. The second part concerned a simplified model of the radiative
transfer equation, specifically the Beer-Lambert model.

2.1 Review on the identification of optical properties

In the fields of optics and imaging, optical properties reconstruction is an important
area. It consists of the extraction and study of significant properties from a medium
or substance based on how those properties interact with light. Several fields, includ-
ing medicine, materials science, remote sensing, and others use the optical properties
reconstruction. Optical properties reconstruction enables to explore the composition,
structure, and behavior of things at both the micro and macro scales by using the laws
of light-matter interaction.
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Fundamentally, optical properties reconstruction makes use of the specific ways that
light reacts with various materials. This interaction results in phenomena like absorption,
scattering, reflection, and transmission, each of which provides crucial information about
the material’s properties. To reconstruct optical properties, a variety of imaging and
spectroscopic approaches can be applied. These approaches frequently use advanced
technology, including spectrometers, lasers, detectors, and complex data analysis al-
gorithms. Depending on the application, optical properties can be reconstructed in
real-time or after processing, and they can provide valuable information about biological
tissues, environmental samples, semiconductor materials, and more. Optical proper-
ties reconstruction has huge potential, but it also has difficulties. Research challenges
include the actual difficulty of light-matter interactions, the requirement for precise
measurements, and the creation of intricate mathematical models. But as the subject
continues to develop, thanks to improvements in technology, computational capability,
and multidisciplinary collaborations, we can investigate previously unknown parts of
materials and biological systems. The optical properties reconstruction is employed in
several application areas to learn more about the composition, structure, and optical
characteristics of the samples or objects under study [110, 7, 111, 8, 9, 10, 11, 12, 13].
In Figure 2.1, we give some fields of use for optical properties reconstruction.

Figure 2.1: Various applications for optical properties reconstruction

We now go into more detail concerning the ways optical characteristics are used in
various fields:

1. Meteorology [111]: The relationship between meteorology and optical property
conversion is crucial to improve the precision and reliability of remote sensing data
and derivative products used in several applications, including weather forecasting,
environmental monitoring, agriculture, and climate research.

2. Remote sensing [110]: Refers to the acquisition of information about an object
or area from a distance, typically using sensors on aircraft or satellites. Remote
sensing is the study of electromagnetic radiation’s interactions with the Earth’s
surface and atmosphere, particularly visible and near-infrared light, in the context
of optical characteristics.
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3. Astrophysics [112]: The reconstruction of optical properties is an important ap-
proach in astronomy that allows scientists to derive critical information about
objects based on the light that they produce, absorb, or disperse. Astrophysicists
can get a better knowledge of the universe’s nature and features by employing
various spectroscopic and detection techniques.

4. Optical tomography[11, 12]: This imaging technique uses light to create cross-
sectional pictures of a sample or object. To discover more about the sample’s
internal structures and optical properties, measurements and examinations of how
light interacts with the sample are required. Absorption and scattering are key
optical properties in this context.

In summary, the identification of optical properties is essential in optical tomography,
remote sensing, and biomedical imaging. These techniques exploit the interactions of
light with different materials and tissues to provide valuable insights and information in
their respective fields of application.
To reconstruct these properties, it is necessary to introduce the inverse problem of RTE,
which is studied by several authors [113, 114]. RTE is a fundamental radiometric equation
that defines how light propagates, reflects, and diffuses in a material. However, due to the
non-linear and ill-posed character of the problem, as well as uncertainty in the observed
data, inversion of the radiative transfer equation can be difficult. To achieve reliable
estimates of optical characteristics, inversion procedures frequently include complex
numerical techniques such as optimization methods, regularization algorithms, and light
scattering models. This type of equation was introduced in astrophysics, nuclear reactors,
and atmospheric science [115, 116, 117]. We are interested in the reconstruction of the
optical properties (scattering coefficient, absorption coefficient, and phase function) in a
time-independent case. Concerning the time-dependent case, we mention [118, 119, 120].
We present in Figures 2.2 various reconstruction methods for optical properties. Some
authors use an exact method to reconstruct these properties [121] based on the knowl-
edge of the Albedo operator which maps, for a given domain, the incoming flux to the
outgoing flux under some conditions based on these properties. In [121], the authors only
reconstruct the absorption and scattering coefficients in two dimensions, while in three
dimensions, they reconstruct all these properties. In dimension n  3, Bal and Jollivet
[122] investigated the stability of the reconstruction of the scattering and absorption
coefficients from the knowledge of the full Albedo operator.
There are authors who reconstruct these properties using numerical approximation
methods. We mention the work of Klose, Netz, Beuthan, and Hielscher [123], where
they evaluated the radiative transfer equation in two dimensions. The authors present
a number of tissue phantoms to investigate the sensitivity of the fluence (the integral
of radiance) calculated using the radiative transfer equation and compare it with ex-
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perimental measurements. In their work, they used the Henyey–Greenstein scattering
function (for the phase function). After several tests on various optical properties, the
authors observe that without an accurate knowledge of the anisotropy factor of the phase
function, the measured data cannot be properly predicted. After this study, the authors
have introduced the reconstruction of the absorption and scattering coefficients [124] by
assuming that the anisotropy factor of the phase function was known.

Figure 2.2: Representation of different reconstruction methods of optical properties.

Egger and Schlottbom [125] identify the scattering and absorption properties by assuming
that the phase function is known in three dimensions. These authors use the Tikhonov
regularization [126] in Banach spaces to provide a solution to this reconstruction problem.
We also mention [127, 128], where the authors reconstruct the optical properties by
assuming that one or two of these properties are known, and by using a reconstruction
algorithm based on the Levenberg-Marquardt regularization [129].
Finally, we mention [16, 130, 131, 132, 18], where the authors reconstruct some models of
volume frequency distributions (Rosin–Rammler R-R, Log normal laws L-N, and Normal
laws N-N) using Bouguer–Lambert law, I = I0eσext d, which expresses the attenuation of
the luminous flux I0 at the value of I as a function of the distance d and the extinction
coefficient σλext. Chapter 5 provides more information about the reconstruction of optical
properties by using the particle size distributions.
To obtain the optical properties, one can use the LiDAR inversion theory rather than the
radiative transfer inversion theory. For example, we mention the Klett-Fernald inversion
for the authors James Klett 1985 [133] and Fernald [134]. This method is based on
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an inversion of the LiDAR signal by considering each wavelength independently. This
type of inversion requires an a priori knowledge of the aerosols by imposing the LiDAR
ratio (ratio between the extinction coefficient and the backscattering coefficient of the
aerosol, which does not depend on its concentration but on its microphysics), as well
as a boundary condition, a range in which the optical properties of the molecules and
aerosols are known. The LiDAR ratio has units of steradians (sr) and can vary for
common atmospheric scatterers from as low as 5 to about 100 sr, depending on the
size distribution, shape, and chemical composition of the particles. [135, 136]. However,
these measurements are difficult in some cases and there is no system to obtain the
LiDAR ratio in the infrared.

2.2 Review on the identification of fog DSD

2.2.1 Identification by using LiDAR equation

As mentioned previously, some authors reconstruct the optical properties and then the
droplet size distribution by using the LiDAR equation and not directly the radiative
transfer equation. For example, we mention the Klett-Fernald inversion for the authors
James Klett 1985 [133], Fernald [134] and others [135, 137, 138, 139, 136]. This method
is based on a LiDAR signal inversion by considering each wavelength independent of the
others. Figure 2.3 represents a laser transmitter emitting light pulses in the atmosphere;
an optical assembly, usually a telescope, collects part of the scattered radiation, which,
after being filtered, is brought onto a photo-detector; the detected signal is then amplified,
digitized and processed to retrieve atmospheric parameters [140].

Figure 2.3: Basic schematics of a LiDAR system (see [140]).

The LiDAR power, denoted by P λ(x) (expressed in W), for a given wavelength λ
and at distance x is given by the following LiDAR equation:

P λ(x) = P λ0 E
λA

c

2
F (x)
x2

βλ(x) exp
[
−2

∫ x
0
αλ(z′)dz′

]
(2.1)
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where

1. P λ0 represents the initial energy of the pulses emitted;

2. Eλ is system efficacity;

3. A the surface area (in m2) of the optical reception system;

4. c is the speed of light in vacuum;

5. F (x) is the overlap function between the emitted laser beam and the reception
cone of the LiDAR at distance x (with a value between 0 and 1);

6. αλ(x) represents the extinction coefficient (or attenuation, in m−1) at x altitude
for a wavelength λ, it conditions the transmission of the atmosphere;

7. βλ(x) represents the backscatter coefficient (in m−1.sr−1) at altitude x for a
wavelength λ.

It should be noted that the extinction and backscattering coefficients are the sum
of particle contributions (noted p) and molecular (noted m) evolving differently with
wavelength and altitude: 

αλ(x) = αλp(x) + α
λ
m(x),

βλ(x) = βλp (x) + β
λ
m(x).

(2.2)

Klett and Fernald [133, 134] simplify this equation by assuming F (x) = x2. Then the
equation becomes

P λ(x) = Kλβλ(x) exp
[
−2

∫ x
0
αλ(x′)dz′

]
, (2.3)

where
Kλ = P λ0

c

2
EλA.

They proposed a resolution of this equation by making the hypothesis that α and β are
linked by the lidar ratio

Rλ =
αλ(x)
βλ(x)

, (2.4)

constant as a function of altitude and assumed known. According to the calculation
carried out in [141], the backscatter coefficient βλ(x) obtained by the following form:

βλp (x) =
P λ(x)x2 exp

[
−2

(
Rλ − Rλm

) ∫ x
0
βλm(x)dx

]
Kλ − 2Rλ

∫ x
0
P λ(x′)x′2 exp

[
−2

(
Rλ − Rλm

) ∫ x′
0
βλm (x

′′) dx′′
]
dx′
− βλm(x)

(2.5)
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where Rm is the ratio between extinction and molecular backscatter. This ratio is
constant and its equal to

Rm =
8π
3
.

Then, the extinction and backscatter coefficient are given by
αλm(x) = 1.17× 10−5 ×

(
λ

0.55

)4.09 ( 288 p
1013T

)
,

βλm(x) =
3
8 π

αλm(x),

(2.6)

where p, λ and T represent the pressure (in hectopascal ”hPa”), the wavelength (in µm)
and the temperature (in K), respectively. Then, by using (2.4)-(2.5), we can compute
the extinction αλp(x) and the backscatter β

λ
p (x) coefficient of particles.

After the reconstruction of the optical properties, Mueller-Quenzel [139] laid the foun-
dations of the inverse problem by showing numerically the feasibility of recovering
the distribution function of aerosol. For several years now, numerical studies have
been carried out on inversion algorithms, in particular by studying different regular-
ization methods. For additional details, interested readers can refer to the following
references [142, 143, 144].

2.2.2 Identification by using Beer-Lambert modelling

The Beer-Lambert law relates the attenuation of light to the properties of the
material through which the light is traveling. When a beam of parallel monochromatic
radiation light of intensity I0 passes through a suspension of particle system (thickness
x0) with a refraction index different from that of the dispersed medium, the scattering
and absorption will lead to an attenuation of the transmitted light intensity. According
to the Lambert–Beer law, the transmitted light intensity I is defined as follows [145]:

ln
(
I(λ)
I0(λ)

)
= −x0σext(N), (2.7)

where N denotes the particle size distribution. If the suspended particles are spherical,
and the multiple scattering and interaction effects are neglectable, the transmitted light
intensity I is expressed by the following integral equation:

ln
(
I(λ)
I0(λ)

)
= −x0 π

∫ rmax
rmin

Qλext(r) r
2N(r) dr, (2.8)

where Qλext represents the extinction efficiency at the wavelength λ for a particle ra-
dius r. Various authors retrieve the particle size distribution by using model as the

27



2.2. Review on the identification of fog DSD

Rosin–Rammer (R–R) distribution, the normal (N–N) distribution and the logarith-
mic normal (L–N) distribution. These distributions depend on two variables and are
expressed as follow [146, 147]:

fR−R(r) =
k1
D1
×
(2 r
D1

)k1−1
exp

(
−
(2 r
D1

)k1)
, (2.9)

fL−N(r) =
1

2
√
2πr ln k1

exp
(
−(ln(2 r)− lnD1)

2

2(ln k1)2

)
, (2.10)

fN−N(r) =
1√
2πk1
exp

(
−(2 r −D1)

2

2k21

)
, (2.11)

where r is the radius, D1 is the characteristic diameters of these distribution functions
and k1 the narrowness indices of the distribution.
The matrix equation describes the discrete form of (2.8), without loss of generality, is:

AN = F, (2.12)

where A = (alj)1¬l¬G, 1¬j¬R,

alj = −π xQλlext(rj) r2j ∆r,

and

F =
(
ln

(
Iλ1(x)
Iλ(0)

)
, · · ·, ln

(
IλG(x)
IλG(0)

))
, N = (N(r1), · · ·, N(rR)) .

To solve our identification problem, the authors in [148, 10, 130, 18] introduce an
objective function which is the L2-norm of the residual between the real measured data,
Fobs, and our forward modeled data, F . This objective function was minimized by using
Genetic Algorithms (GA) [17, 149], Fruit Fly Optimization Algorithm (FOA) [150], and
Particle Swarm Optimization (PSO) [151, 18]. Other algorithms are used, for example,
the conjugate gradient method (CG) [152].
A first look at (2.12) may make one believe that size distribution retrieval is simple since
typical methods for solving (2.12) are accessible [153]. This is true when the matrix A is
well-conditioned. Unfortunately, this is not the case with our problem. The fundamental
problem comes from the well-known ill-posedness of the original integral equation. The
ill-posedness is frequently defined by a condition number κ2(A) that is greatly more
than 1. Methods for solving this ill-posed linear problem are given by several authors
[154, 155, 156, 157, 158, 159, 160].
In this thesis, we introduce an inversion method aimed at reconstructing the particle
size distribution and, consequently, the optical properties via Mie theory. This approach
addresses ill-posed problems by incorporating a regularization term. Furthermore, our
inversion method is based on a complete modelling of the radiative transfer equation
including the collision operator. To the best of our knowledge, this approach is new and
has not been explored previously.
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Chapter 3

Review on the radiative transfer equa-
tion

In this chapter, we provide a general introduction to radiative transfer and its different
application domains in Section 3.1. In Section 3.2, we give the derivation of the radiative
transfer equation and the process of absorption, scattering, and emission. We end this
section with the equation balance of the time-dependent radiative transfer equation.
Different types of phase functions used in the radiative transfer equation (such as Rayleigh,
Mie, and Henyey-Greenstein phase function) are given in Section 3.3. In Section 3.5, we
recall the existence and uniqueness of the solution of both the time-dependent and time-
independent transport equation given by several authors. An L∞-estimate of the solution
is also given in this section. We end this chapter with Section 3.6 which recapitulates
the integral formulation of the transport theory.

3.1 General introduction

The radiative transfer is an important theory in physics and astronomy. The radiative
transfer equation explains the propagation of radiation through a material. Knowledge of
how photons transfer energy through many substances, including the Earth’s atmosphere,
stars, planets, and even space clouds, requires solving of this equation. The radiative
transfer equation is a valuable mathematical tool for modelling and predicting light-
matter interactions in these various situations. This equation finds applications in various
fields, including:

1. Meteorology and Climatology: This equation, by studying how sunlight is ab-
sorbed, reflected, and emitted into the Earth’s atmosphere, helps to understand
the mechanisms of atmospheric heating and cooling and their role in climate
change.

2. Astrophysics: The radiative transfer is a fundamental theory in astrophysics.
Radiation from an astrophysical object has been conducted by that object via
radiative transfer. In order to comprehend the interpretation of data with regards
to an object’s structure, temperature, dynamics, and composition, it is important
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3.2. Derivation of the radiative transfer equation

to have a clear understanding of the mechanics behind this radiative transfer
technique.

3. Medical and Environmental Research: The interaction between light and biological
tissues and the oceans is modeled using the radiative transfer equation. Under-
standing light scattering within the human body as well as keeping a focus on
environmental health and water quality can all benefit through it.

4. Optical Instrument Design: The radiative transfer has been used by engineers to
design optical devices such as telescopes, radiation sensors, and lasers, optimizing
the way light is guided, focused, and detected.

Understanding and applying the radiative transfer equation is crucial for the study of
the universe and resolving practical challenges in areas such as meteorology, astronomy,
and biomedical research. The radiative transfer equation is an important mathematical
tool for simulating and forecasting interactions between light and matter in various
domains.
The radiation theory was established between 1890 and 1905 through the works of
Khvolson in 1890 and Schuster in 1905. Thereafter, the radiative theory was revisited
in the context of astrophysics, notably by Chandrasekhar [116]. This book examines
radiative transfer theory and its applications in astrophysics, covering topics ranging
from scattering to the numerical solution of radiative transfer equations. In the realm of
astrophysics, we reference [161] as an explanation of light’s passage through interstellar
space, stars, and galaxies. Within the domain of neutron transport in nuclear reactors,
Case and Zweifel [115] highlighted a similar theoretical framework in 1967. At present,
the ETR theory (Energy Transport and Radiation) is extensively used to investigate
radiative transfers that involve thermally emitting substances within partially transparent
materials. Additionally, we would like to mention [162], where the authors provide a
basis in both the theoretical and practical aspects of radiative transfer. The transmission
of solar and infrared radiation through dense clouds, the aerosol layer, and the oceanic
mixed layer is demonstrated with the application of heuristic models of scattering and
absorption, as well as a methodical approach to formulating and solving the radiative
transfer equation.

3.2 Derivation of the radiative transfer equation

The fundamental principles of radiative transfer rest upon our comprehension of how
energy propagates via radiation across space and materials. Electromagnetic radiation
spans various wavelengths comprising gamma and X-rays, visible light, microwaves, and
radio waves. The radiance is a fundamental aspect of radiative transfer theory. This is
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3.2. Derivation of the radiative transfer equation

the power per unit area of radiation that either travels or is emitted in a given direction
u at a point s in R3 during a time period t. The unit sphere S2 (refer to Figure 3.1 (left))
defines the direction u.

S2 = { (cos θ, sin θ cosϕ, sin θ sinϕ), 0 ¬ θ ¬ π, ¬ 0 ¬ ϕ ¬ 2π}. (3.1)

The specific intensity (or radiance) is denoted by Iλ typically expressed in watts per
square meter per steradian (Wm−2sr−1), and is given by the formula:

I(t, s, u) =
dφ(t, s, u)

u⃗ · n⃗ dA dΩdv
, (3.2)

where dφ is the radiant energy passing through an infinitesimal area dA in an infinitesimal
solid angle dΩ centered around a direction in the frequency interval [v, v + dv] (see
Figure 3.1(right)).

Figure 3.1: The spherical coordinates (left) and the geometric representation to define the
intensity (right).

We also can define the radiative flux vector qλ, for a wavelength λ as a function of the
intensity and the relation is given as follows:

qλ(t, s) =
∫

S2
Iλ(t, s, u)u dΩ. (3.3)

3.2.1 Extinction process

In radiative transfer, the absorption process involves how radiation and matter
interact with each other leading to the transfer of energy from the radiation to the
material. Let I be the intensity flux in the direction u. We obtain, by noting that r = u ·s
is the abscissa in the direction of flow, the following relation:

∂Iλ
∂r
(t, r, u) = −σλabs Iλ(t, r, u). (3.4)
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3.2. Derivation of the radiative transfer equation

This intensity decreases because of the processes of absorption where σabs represents the
absorption coefficient.
The same relation is true in the case of extinction by scattering:

∂Iλ
∂r
(t, r, u) = −σλsca Iλ(t, r, u). (3.5)

Then, we can introduce the extinction coefficient by the following form:

σλext = σ
λ
abs + σ

λ
sca, (3.6)

and we introduce the Beer-Lambert law with the solution I = I0e−σ
λ
ext r, which expresses

the attenuation of the luminous flux I0 at the value of I as a function of the distance r
and the extinction coefficient σλext.
We note that the albedo a is defined from the relation between the extinction and
scattering coefficient. This relation is given as follows:

a =
σλsca
σλext

,

where σλext is defined in (3.6). From this relation, the albedo is therefore a quantity
between 0 and 1. We can say that if a = 1 the medium is totally scattering, and if a = 0
the medium is totally absorbent.

3.2.2 Transfer equation (Energy balance)

To give the radiative transfer equation balance, it is important to describe the
detail of the scattering process. Scattering is the process, by which a photon’s direction
changes when it interacts with matter. This process may lead light to scatter (isotropic
scattering) or be angle-dependent (anisotropic scattering) leading to specific directional
changes. Finally, transmission occurs when electromagnetic radiation passes through a
material without being absorbed or scattered.

Figure 3.2: Geometric representation to describe the RTE
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3.3. Different types of phase functions for the radiative transfer
equation

Figure 3.2 represents the system to describe the radiative transfer equation, an intensity
flux enters a surface dA at a point r with a direction u and crosses a distance dr while
continuing in the same direction u with a loss of energy due to the process of extinction
described in the previous part. Other intensity flux enters the surface dA with a direction
u′ and continues with a direction u. In this case, it is important to add the phase function
which describes the probability of this phenomenon. This phase function is denoted by
Φλ and normalized as follows

∀(u, u′) ∈ S2 × S2,
1
4 π

∫
S2
Φλ(u, u′)dΩ′ = 1. (3.7)

The isotropic case corresponds to a phase function Φλ constant equal to one. The increase
in flux due to scattering between r and r + dr is then written:

∂Iλ
∂r
(t, r, u) =

σλsca
4π

∫
S2
Iλ(t, r, v)Φλ(r, v, u) dv. (3.8)

In this case, and taking into account the extinction, the absorption and the scattering,
we obtain the following equation of radiative transfer equation:

1
c

∂Iλ
∂t
(t, r, u)+u.∇rIλ(t, r, u)+σλextIλ(t, r, u) =

σλsca
4π

∫
S2
Iλ(t, r, v)Φλ(r, v, u) dv+qλ(t, r, u),

(3.9)
where c is the light speed in the host medium, qλ is the source term, σλext = σ

λ
sca + σ

λ
abs

and σλsca denote the extinction coefficient and the scattering coefficient, respectively.

3.3 Different types of phase functions for the radia-
tive transfer equation

Phase functions play an important role in the radiative transfer equation because they
describe the angular distribution of radiation. The phase functions are used depending
on the context of the radiative transfer problem and the characteristics of the particles
or surfaces involved in the process. The choice of the appropriate phase function is
crucial to obtain accurate results when modeling radiative transfer in different media.
In the case of spherical particles (or an ensemble of randomly oriented non spherical
particles), the phase function then only depends on u ·u′, where u and u′ are two different
vectors. In addition, we can express the value of cosΘ as a function of the spherical
coordinate of u and u′ (see Figure 3.1 left). This relation is given by the following
equality:

cosΘ = µµ′ +
√
1− µ2

√
1 + µ′2 cos(ϕ− ϕ′), (3.10)

where µ = cos θ and µ′ = cos θ′.
In general, the phase function can be written in terms of the Legendre polynomial basis
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3.3. Different types of phase functions for the radiative transfer
equation

as follows:

Φ(cosΘ) =
K∑
k=0

αk Pk(cosΘ), (3.11)

where Pk represents the Legendre polynomial of order k and αk is the coefficient
determined according to the phase function. The determination of the integer K depends
on the anisotropy of the phase function.
We present in the following some types of phase functions commonly used in this equation

3.3.1 Henyey-Greenstein phase function

This phase function is often used in radiative transfer models to represent anisotropic
scatterong, that is, scatterong that preserves a certain preferred direction. It is charac-
terized by a single parameter, the anisotropy factor g, which determines the degree of
anisotropy of the scatterong.
The phase function that we want to represent has azimuthal symmetry: it is therefore a
function of the only scattering angle Θ or its cosine. The function is expressed as follows
[163]:

Φ(cosΘ) =
1
4π

1− g2

(1 + g2 − 2g cos(Θ)) 32
,

verifies the following condition

1
4π

∫
S2
Φ(u · u′) du′ = 1.

The anisotropy coefficient (or factor) g (dimensionless), is a measure of the amount of
forward direction retained after a single scattering event and has a probability density
with a single scattering direction as a parameter

g = ⟨cosΘ⟩ = 1
4 π

∫
S2
Φ(u · u′)u · u′du′.

For example, if we develop the Henyey-Greenstein phase function on the Legendre basis
as mentioned in equation (3.11), we obtain αk = gk. Figure 3.3 shows a polar diagram
of the Henyey-Greenstein phase function as a function of the polar angles for three
different anisotropic factors g.
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3.3. Different types of phase functions for the radiative transfer
equation

Figure 3.3: Diagram of polar Henyey-Greenstein phase function

In addition, the case g = 0 corresponds to isotropic scattering. The value g = −1
represents the strictly backscattering case and g = 1 represents the strictly forescattering
case.

3.3.2 Rayleigh phase function

This phase function is used to represent scattering by particles much smaller than the
incident radiation’s wavelength (a particle known as Rayleigh), it behaves like an elec-
tric dipole. In the case where the incident wave is unpolarized, the phase function is then:

Φ(cosΘ) =
3
4
(1 + cos2Θ),

where Θ is the scattering angle.
Figure 3.4 represents the Rayleigh scattering intensity for a particle where the incident
wave is coming from the left.

Figure 3.4: Rayleigh scattering intensity for a particle depending on the direction.
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3.4. Lorenz-Mie scattering theory

3.3.3 Lorenz-Mie phase function

The Lorenz-Mie phase function [164, 6, 165] is used to describe how light is scattered in
different directions by particles of sizes comparable to the wavelength of light. It is widely
used to model radiative transfer in media containing particles such as water droplets in
clouds, dust particles in the atmosphere, and particles of various types of materials. The
phase function of Mie is determined by the optical properties of the particle and the
wavelength of the incident light. Figure 3.5 represents the Mie scattering intensity for
small particles and for large particles where the incident wave is coming from the left.

Figure 3.5: Mie scattering intensity for small particles (left), and for large particles (right)
depending on the direction.

We detail the Lorenz-Mie scattering theory in the next section.

3.4 Lorenz-Mie scattering theory

The electromagnetic theory known as the ”Mie theory” was introduced in 1908 by a
German scientist Gustav Mie [164] and extended by Mie in 1912. This theory describes
the scattering of light by conducting or dielectric spherical particles when their size is
similar to the wavelength of the incident light. The interaction of light with particles
in a medium results in light scattering. The dispersion of light in various directions
can be influenced by these particles’ sizes. The physical mechanism by which spherical
particles scatter light is explained by Lorenz-Mie theory. The principal outcomes of
Lorenz-Mie theory are formulae for figuring out scattering cross-section, and extinction
coefficients based on variables like particle size, material refractive index, and wavelength
of incoming light.
The Lorenz-Mie theory is used in many different fields of science and engineering. It
has been used to analyze and explain many optical phenomena seen in many situations.
For example, this theory is used in astronomy to study the scattering of solar light
by atmospheric particles, in meteorology to explain cloud light scattering, in optics to
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3.4. Lorenz-Mie scattering theory

design particles for controlled light scattering, and in nanotechnology to characterize
nanoparticles and nanostructures. In conclusion, it is a fundamental theory for under-
standing how light interacts with particles of a similar size to its wavelength.
The Mie solution (also known as the Lorenz–Mie solution or Mie scattering) [164, 166]
solves the electromagnetic equations of Maxwell

∆ψ + k2m2ψ = 0,

by describing the elastic scattering of an electromagnetic wave by a spherical particle
with its diameter and its complex refractive index, m = n+ ik, with n and k denoting
the real and imaginary part of the refractive index, the latter being linked to absorption
properties. Figure 3.6 presents the refractive indices of pure water given by Segelstein
indices [167] as a function of the wavelengths.

Figure 3.6: Representation of the complex refractive index of pure water [167].

3.4.1 Particles in an absorbing medium

In light scattering solved by Lorenz-Mie theory, as shown in Figure 3.7, a monochromatic
plane wave with a wave vector k = 2π/λ propagates in a medium with a refractive index
m1. This incident wave encounters a sphere of radius r and refraction indices m. As a
result of the interaction, a wave is scattered by the sphere throughout space. Lorenz-Mie
theory allows us to compute the scattering properties of a single homogeneous, spherical
particle embedded in a homogeneous medium.
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3.4. Lorenz-Mie scattering theory

Figure 3.7: A diagram to present the notations used in the scattering by a sphere.

The scattering properties are computed using the scattering amplitude functions S1 and
S2, which describe the scattering of an electromagnetic wave from a spherical particle
[164, 165]:

S1(µ) =
+∞∑
n=1

2n+ 1
n(n+ 1)

(an(r, λ)πn(µ) + bn(r, λ)τn(µ)) , (3.12)

S2(µ) =
+∞∑
n=1

2n+ 1
n(n+ 1)

(bn(r, λ)πn(µ) + an(r, λ)τn(µ)) , (3.13)

where the function πn and τn are related to the Legendre polynomials Pn as follows [168]:

πn(µ) =
d

dµ
Pn(µ) ; τn(µ) = µπn(µ)− (1− µ2)

d

dµ
πn(µ). (3.14)

Equation (3.14) can be rewritten by the following recurrences:
π0(z) = 0, π1(z) = 1,

∀n  2 , πn(z) = z
2n− 1
n− 1

πn−1(z)−
n

n− 1
πn−2(z),τ0(z) = 0, τ1(z) = z,∀n  2 , τn(z) = z(τn(z)− τn−2(z))− (2n− 1)(1− z2) τn−1(z) + τn−2(z).

The Lorenz-Mie coefficients an and bn in equations (3.12) and (3.13) are complex numbers
which are composed of the spherical Bessel functions jn(z) and yn(z) in the following
way [166, 6]:

an(r, λ) =
ψ′n(y)ψn(x)−mψn(y)ψ′n(x)
ψ′n(y)ζn(x)−mψn(y) ζ ′n(x)

∀n  1, (3.15)

bn(r, λ) =
mψ′n(y)ψn(x)− ψn(y)ψ′n(x)
mψ′n(y) ζn(x)− ψn(y) ζ ′n(x)

∀n  1, (3.16)

where m is the complex refractive index of the medium, λ is the wavelength in the host
medium, and

x =
2π r
λ

, y =
2π rm
λ

,
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3.4. Lorenz-Mie scattering theory

r is the radius of a spherical particles and
ψn(z) = z jn(z) =

√
π z
2 jn+ 12

(z),

ζn(z) = z (jn(z)− i yn(z)) =
√
π z
2

(
jn+ 12
(z) + (−1)n i j−n− 12 (z)

)
.

(3.17)

The Lorenz-Mie coefficients can be rewritten by

an(r, λ) =
(An(y)
m
+ n
x
)Re(wn(x))−Re(wn−1(x))

(An(y)
m
+ n
x
)wn(x)− wn−1(x)

, (3.18)

bn(r, λ) =
(mAn(y) + nx )Re(wn(x))−Re(wn−1(x))
(mAn(y) + nx )wn(x)− wn−1(x)

, (3.19)

where


An(y) =

n

y
− y

n− y An−1(y)
,

A0(y) = cot(y).



wn(x) =
2n− 1
x

wn−1(x)− wn−1(x),

w0(x) = sin(x)− i cos(x),

w−1(x) = cos(x)− i sin(x).

(3.20)

3.4.2 Optical properties

The extinction and scattering coefficients are expressed in terms of the droplet size
distribution N as follows [169]:

σλext(N) =
∫ +∞
0

Qλext(r) π r
2N(r) dr ; σλsca(N) =

∫ +∞
0

Qλsca(r) π r
2N(r) dr.

(3.21)
Similarly, the phase function can be expressed by the following form:

σλsca(N)φλ(µ,N) =
∫ +∞
0

Qλsca(r)ψλ(r, µ) π r
2N(r) dr, (3.22)

where the scattering and extinction efficiencies are given by:

Qλsca(r) =
λ2

2 π2 r2

+∞∑
n=1

(2n+ 1)
(
|an(r, λ)|2 + |bn(r, λ)|2

)
, (3.23)

Qλext(r) =
λ2

2π2 r2

+∞∑
n=1

(2n+ 1)Re (an(r, λ) + bn(r, λ)) . (3.24)

For the Mie series presented in (3.12), (3.13), (3.23) and (3.24). Dave’s procedure [170]
consists of stopping summation when |an|2 + |bn|2 < 10−14. We denote by E the number
of terms in these series. Analysis of the convergence behavior of these series reveals that
it is only slightly influenced by refractive index and that E ∼ x. In order to get a more
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3.4. Lorenz-Mie scattering theory

precise estimate, we followed the suggestion of Khare [171] that E ∼ x+ cx1/3, where the
x1/3 term accounts for edge wave contributions. Upon generating a large amount of data
on E as a function of x using a convergence criterion like Dave’s [170], Wiscombe [172]
found that these data could be excellently fit by:

E(x) =


x+ 4x1/3 + 1 if 0.02 ¬ x ¬ 8,
x+ 4.05x1/3 + 2 if 8 < x ¬ 4200,
x+ 4x1/3 + 2 if 4200 < x ¬ 20000,

(3.25)

where E is the truncation function of the size parameter x = 2πr/λ.
The extinction efficiency Qext and the absorbing efficiency Qabs are represented as a
function of the particle radius r at the top of Figure 3.8 for different wavelengths (one
in the visible 0.55µm and three in infrared 8, 10, 12µm). At the bottom of Figure 3.8,
we represent these functions for different particle radii as a function of wavelengths on
the band [350nm, 2500nm]. The coefficient Qext is dimensionless and depends on the
droplet size and the wavelength varies between 0 and 4 and stabilizes around 2 for drops
with a radius of a few microns.

Figure 3.8: Extinction efficiency (top left) and absorption efficiency (top right) for four
wavelengths (one in the visible and three in the thermal infrared), as a function of the radius
of the sphere. Extinction efficiency (bottom left) and absorption efficiency (bottom right) for
four particle radii as a function of the wavelength in the band 350-2500 µm.

Also, ψλ, is the Lorenz-Mie phase function for a particle of radius r as presented in
Figure 3.9 where µ = cos θ.
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3.4. Lorenz-Mie scattering theory

Figure 3.9: Representation of the Lorenz-Mie scattering phase function ψλ.

This function is given by

ψλ(r, µ) =
λ2

2 π2 r2Qλsca(r)

(
|S1(µ)|2 + |S2(µ)|2

)
. (3.26)

We present in Figure 3.10 the Lorenz-Mie scattering phase functions for various particle
radii (0.5, 2.5, 5, 10 µm) and different wavelengths (0.55, 8, 12 µm). For the particle
of radius, r = 0.55µm, we do not observe a variation of the ψλ as a function of the
scattering angle for wavelengths in the infrared (8, 12 µm), which is not the case where
the particle radius increases.

Figure 3.10: Lorenz-Mie scattering phase functions for various particle sizes and for different
wavelengths.
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equation

In addition, for the visible wavelength 0.55 µm, we notice that as the particle size
increases, this function exhibits oscillations with respect to the scattering angle. Finally,
all of the curves in Figure 3.10 take into account the change in the complex refractive
index of water as a function of wavelength.

3.5 Existence and uniqueness of solution for the
transport equation

In this section, we analyze the time-dependent transport equation from a mathe-
matical perspective. We recall that the most known existence and uniqueness results
of this equation are obtained by Case-Zweifel [115] in 1967, Dautray-Lions [173], and
other authors [174, 175, 176]. We present in this section the existence and uniqueness of
solutions for two different types of boundary conditions which are homogeneous and
nonhomogeneous boundary conditions. We have other types of boundary conditions
such as the specular reflection condition, diffuse reflection condition, rotation condition,
and translation condition (See Duderstadt-Martin [177] and Bell-Glasstone [178] for
more information on these types of boundary conditions).
Before starting to present the results of the existence and uniqueness of the solution for
the RTE equation, we introduce some notations used in this section. Let X an open
domain in R3 where its boundary is denoted by ∂X, and V ∈ S2 where S2 is the unit
sphere. We define the following sets:



Γ = ∂X × V,
Γ0 = {(x, v) ∈ Γ, v⃗ · n⃗ = 0},
Γ− = {(x, v) ∈ Γ, v⃗ · n⃗ < 0},
Γ+ = {(x, v) ∈ Γ, v⃗ · n⃗ > 0}.

(3.27)

Γ− and Γ+ presented in (3.27) represent the set of points in phase space corresponding
to incoming and outgoing particles, respectively. We denote by n the unit normal vector
at the point x ∈ ∂X pointing outside X.
We also define the following Hilbert space:

∀1 ¬ p < +∞, W p ≡ W p(X × V ) := {u ∈ Lp(X, V ); v · ∇u ∈ Lp(X, V )}.
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equation

3.5.1 Time-dependent case

We are interested in this part in the solution of the solution to time-dependent
transport equation given by the following form:

∂u

∂t
(t, x, v) + v · ∇xu(t, x, v) + a(x, v)u(t, x, v) =

∫
V
u(t, x, v′) k(x, v, v′) dv′

+ q(t, x, v), in ]0, T [×X × V,
u(t, ., .)|Γ− = 0, t ∈]0, T [,

u(0, x, v) = u0, on X × V.

(3.28)

We recall in Theorem 3.1 the existence and uniqueness obtained by Dautray-Lions [173,
ChapterXXI, paragraph 2].

Theorem 3.1. [173, ChapterXXI]
Suppose that the data of problem (3.28) satisfy:

1. k is a positive function satisfying
∫
V
k(r, v′, v) dv ¬M1, ∀ (x, v′) ∈ X × V,∫

V
k(r, v, v′) dv′ ¬M2, ∀ (x, v) ∈ X × V,

(3.29)

where M1 and M2 are two constant positives;

2. a ∈ L∞(X × V ),

3. q ∈ Lp(]0, T [×X × V ) , p ∈ [1,+∞[,

4. u0 ∈ Lp(X × V ) , p ∈ [1,+∞[.

Then, problem (3.28) has a unique weak solution u in

Wp := {u ∈ Lp(]0, T [×X × V ); ∂u
∂t
+ v · ∇u ∈ Lp(]0, T [×X × V );

u(., ., 0) ∈ Lp(X × V ); u|Γ− ∈ L
p(]0, T [×Γ−)}.

In addition, if u0 verifies

v · ∇u0 ∈ Lp(X × V ), u0|Γ− = 0,

and q ∈ C1([0, T ];Lp(X × V )), Then u is a strong solution of problem (3.28) which
satisfies, ∀ t ∈ [0, T ],

u ∈ C1([0, T ];Lp(X × V )), v · ∇u ∈ C1([0, T ];Lp(X × V )), u(t, ., .)|Γ− = 0.

Proof. The Theorem and its proof are presented in a more general form notably [173,
ChapterXXI, paragraph 2].
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3.5.2 Time-independent case

Homogeneous boundary condition: We are interested in this part in the solution
of the time-independent transport equation where the source term q does not depend
on the time t given by the following form:

v · ∇xu(x, v) + a(x, v)u(x, v) =
∫
V
u(x, v′) k(x, v, v′) dµ(v′) + q(x, v), inX × V,

u|Γ− = 0.

(3.30)

Theorem 3.2. [173] Suppose that the data of problem (3.30) satisfies:

1. Assume that there exist two positive constants M1 and M2, such that the positive
function k satisfies

∫
V
k(r, v′, v) dv ¬M1, ∀ (x, v′) ∈ X × V,∫
V
k(r, v, v′) dv′ ¬M2, ∀ (x, v) ∈ X × V.

(3.31)

2. For α > 0, a and k satisfy (a.e in X × V )
a(x, v)−

∫
V
k(x, v′, v) dv′  α,

a(x, v)−
∫
V
k(x, v, v′) dv′  α.

(3.32)

3. a ∈ L∞(X × V ).

4. q ∈ Lp(X × V ) , p ∈ [1,+∞[.

Then, for any p ∈ [1,+∞[, problem (3.30) has a unique solution u in W p such that
u = 0 on Γ−.

Nonhomogeneous boundary condition: The time-independent transport equation
with a nonhomogeneous boundary condition is given by the following system:
v · ∇xu(x, v) + a(x, v)u(x, v) =

∫
V
u(x, v′) k(x, v, v′) dµ(v′) + q(x, v),∀ (x, v) ∈ X × V,

u|Γ− = g.

(3.33)

Proposition 3.1. [173] Suppose that the data of problem (3.33) satisfy:
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3.6. Integral formulation of the transport equation

1. a and k satisfy a.e in X × V

α a(x, v) 
∫
V
k(x, v′, v) dv where 0 ¬ α < 1,

2. a(x, v)  a0 > 0,

3. ∀ p ∈ [1,+∞[, q ∈ Lp(X × V ),

4. g ∈ L∞(Γ−).

Then, the problem (3.33) has a unique solution u in L∞(X × V ) which verifies the
following estimation:

∥u∥L∞(X×V ) ¬ C(∥q∥L∞(X×V ), ∥g∥L∞(Γ−)),

where C is a positive constant.

3.6 Integral formulation of the transport equation

In this section, we are interested in the computation of the integral formulation of
transport equations in both time-dependent and time-independent cases. Several authors
have worked on these types of formulations, such as Dautray-Lions [173], and G.Allaire
[176]. We present in this part the integral formulation obtained by G.Allaire [176].
In this section, we suppose also that a and k depend on time t and the following
assumptions are made:

0 ¬ a ∈ Cb(R+ ×X × Rn),

0 ¬ k ∈ Cb(R+ ×X × Rn × Rn),

sup
(t,x,v)∈R+×X×Rn

∫
Rn
k(t, x, v, v′) dv′ <∞.

(3.34)

We denote by τx,v the exit time of X in the direction −v starting from x ∈ X. τx,v is
given as follows

τx,v = inf{ t  0 / x− tv /∈ X̄}.

3.6.1 Integral formulation for time-dependent case

We are interested in this part in the integral formulation of the time-dependent
transport equation given by the following form:

∂u
∂t
(t, x, v) + v · ∇xu(t, x, v) + a(t, x, v)u(t, x, v) =

∫
V
u(t, x, v′) k(x, v, v′) dv′

+ q(t, x, v), in ]0, T [×X × V,
u(t, ., .)|Γ− = g, t ∈]0, T [,

u(0, x, v) = u0, on Γ−.

(3.35)
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3.6. Integral formulation of the transport equation

Definition 1. Let q ≡ q(t, x, v) be a continuous function on ]0, T [×Ω× Rn. A function
u ≡ u(t, x, v) that is continuous on ]0, T [×Ω× Rn is a generalized solution of the time-
dependent transport equation (3.35) if and only if, for all (t, x, v) ∈]0, T [×Ω× Rn, the
function

s 7→ u(t+ s, x+ sv, v)

is of class C1 for x+ sv ∈ Ω, and it satisfies, for all s ∈ R such that x+ sv ∈ Ω,
d

ds
u(t+ s, x+ sv, v) + a(t+ s, x+ sv, v)u(t+ s, x+ sv, v) = (Ku+ q)(t+ s, x+ sv, v),

where
Ku(t, x, v) =

∫
V
u(t, x, v′) k(t, x, v, v′) dv′.

We have the following results:

Theorem 3.3. Suppose that u0 ∈ Cb(X̄ × Rn) and g ∈ Cb([0, T ]× Γ−) such that

∀ (x, v) ∈ Γ−, g(0, x, v) = u0(x, v),

and q ∈ Cb([0, T ]× X̄ × Rn). Then, problem (3.35) admits a unique generalized solution
u ∈ Cb([0, T ] × X × Rn). In addition, for all (t, x, v) ∈ R+ × X × Rn, the integral
formulation verified by the solution u is given by:

u(t, x, v) = 1t¬τx,v u0(x− tv, v) exp
(
−
∫ t
0
a(s, (x+ (s− t)v, v) ds

)
+ 1t>τx,v g(t− τx,vv, x− τx,vx, v) exp

(
−
∫ t
t−τx,v

a(s, (x+ (s− t)v, v) ds
)

+
∫ t
max(t−τx,v ,0)

exp
(
−
∫ t
s
a(θ, x+ (θ − t)v, v) dθ

)
× (Ku+ q)(s, x+ (s− t)v, v) ds,

(3.36)
where

Ku(t, x, v) =
∫
V
k(t, x, v, v′)u(t, x, v′) dv′.

Theorem 3.4. Under the same hypotheses of the previous theorem, suppose that u is
the unique generalized solution of (3.35). Then

• If u0  0 on X̄, g  0 on [0, T ]× Γ−, and Q  0 on [0, T ]× X̄ × RN , then u  0 on
[0, T ]×X × Rn;

• In addition, ∀ (t, x, v) ∈ [0, T ]× X̄ × Rn,

u(t, x, v) ¬ max
(
∥u0∥L∞(X×Rn) , ∥g∥L∞([0,T ]×Γ−)

)
eDt + T∥q∥L∞([0,T ]×X×Rn)e

Dt,

where
D = sup

(t,x,v)∈R+×X×Rn
max

(∫
Rn
k(t, x, v, v′) dv′ − a(t, x, v), 0

)
.

The proofs of these theorems can be found in [176, Chapter 3].
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3.6. Integral formulation of the transport equation

3.6.2 Solution of time-independent transport equation

According to the results presented in the previous part, we give in this part the existence
and uniqueness of the time-independent case and a L∞-estimate obtained from the
L∞-estimate of the time-dependent case by using the Laplace transform.
The time-independent transport equation with a nonhomogeneous boundary condition
is given by the following system: (λ+ v · ∇x + a(x, v)) ũ(x, v) = Kũ(x, v) + q(x, v), (x, v) ∈ X × Rn,

ũ|Γ− = g,
(3.37)

where
Kũ(x, v) =

∫
Rn
k(x, v, v′)ũ(x, v′)dv′.

Theorem 3.5. [176, Chapter 3, Section 4]
Let

D = ∥max(K1− a, 0)∥L∞(X×Rn) .

For all λ > D, Problem (3.37) admits a unique solution which verifies:

∥ũ∥L∞(X×Rn) ¬
1

λ−D
max

(
∥q∥L∞(X×Rn), λ ∥g∥L∞(Γ−)

)
.

Proof. The problem expressed in system (3.37) can be derived from the time-dependent
problem by using the Laplace transform:

ũ(x, v) =
∫ +∞
0

e−λ tu(t, x, v) dt,

where

(
∂

∂t
+ v · ∇x + a(x, v)

)
u(t, x, v) = Ku(t, x, v), (t, x, v) ∈ R+ ×X × Rn,

uΓ− = λg,
u|t=0 = q,

By Theorem 3.4, this time-dependent problem admits a solution u and verifies a L∞-
estimate. Then, we obtain the existence and uniqueness of the solution ũ of the problem
(3.37).

As presented in this chapter, we discuss the Lorenz-Mie scattering theory that explains
how electromagnetic waves interact with small particles. We also give the expression of
optical properties according to the size distributions of the fog droplets. The existence
and uniqueness of the radiative transfer equation was presented with the different
estimates existing in the literature. In the following sections of the manuscript, our focus
is directed towards the examination of the existence and uniqueness of the solution as
provided by the referenced Theorem 3.5.
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Chapter 4

One-dimensional stationary radiative
transfer equation

This chapter is organized as follows. Section 4.1 presents a general introduction to
the one-dimensional stationary radiative transfer equation and its computation from
the 3D radiative transfer equation. Then, in section 4.2 we review the existence and
uniqueness of the solution of this equation. We provide exact solutions in some cases
for the stationary radiative transfer equation in section 4.3. These cases are used in the
sequel to check our numerical approximations. Section 4.4 presents different methods
used by several authors to approximate the radiative transfer equation. We study in
section 4.5 the numerical approximations presented in Section 4.4 with an analysis of
their convergence on the explicit cases given in Section 4.3.

4.1 General introduction

Slab modeling of radiative transfer refers to a simplified approach used in the field of
atmospheric and environmental science to analyze the interaction of radiation with a
medium (such as the Earth’s atmosphere) that can be approximated as a plane-parallel
slab. This approach can be particularly useful when dealing with scenarios where the
medium’s properties vary mainly in one direction (usually vertically) and do not change
significantly in the other directions. The basic concept involves dividing the medium into
thin horizontal layers or slabs, assuming that the radiative properties (like absorption,
scattering, and emission) within each layer are uniform. Each layer is then treated as an
individual unit, and the interactions of radiation with these layers are calculated and
modeled.
In the ”slab modelling”, the dependence of the intensity is w.r.t x only (x is the spatial
position), and not on y and z, denoted as r = (x, y, z). In order, for this modeling, to be
compatible with (2.5), it is sufficient to provide boundary conditions that satisfy the
assumption of independence with respect to y and z. Considering the spatial domain of
study (where the light source is positioned at x = 0):

X =
{
r = (x, y, z) ∈ R3, x  0

}
,
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4.1. General introduction

with the variables (x, θ, ϕ), the time-independent radiative transfer equation can be
written, for a given wavelength λ, as:

cos(θ)
∂Īλ
∂x
(x, θ, ϕ) = −σλext(N)Īλ(x, θ, ϕ)

+
σλsca(N)
4π

∫ π
θ′=0

∫ 2π
ϕ′=0

Īλ (x, θ′, ϕ′)φλ (cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′, N)) sin θ′dϕ′dθ′.
(4.1)

In this work, we will focus on an intensity average over the angles ϕ, defined as:

∀x  0,∀0 ¬ θ ¬ π, Iλ(x, θ) =
1
2π

∫ 2π
0

Īλ(x, θ, ϕ)dϕ. (4.2)

Then, we obtain:

cos(θ)
∂Iλ
∂x
(x, θ) + σλext(N)Iλ(x, θ) =

σλsca(N)
4π

1
2π

∫ π
0

∫ 2π
0

Iλ(x, θ′)

×
(∫ 2π
0

φλ (cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) , N) dϕ
)
sin θ′dϕ′dθ′.

(4.3)
Due to the 2π-periodicity of the cosine function and denoted by w = ϕ− ϕ′ we have:∫ 2π

0
φλ (cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′) , N) dϕ

=
∫ 2π
0

φλ (cos θ cos θ′ + sin θ sin θ′ cos(w), N) dw.
(4.4)

Then,

cos(θ)
∂Iλ
∂x
(x, θ) + σλext(N)Iλ(x, θ)

=
σλsca
2

∫ π
0
Iλ (x, θ′)

( 1
2π

∫ 2π
0

φλ (cos θ cos θ′ + sin θ sin θ′ cos(w), N) dw
)
sin θ′dθ′.

(4.5)
By introducing the variable µ = cos θ ∈ [−1, 1], with dµ = − sin θdθ, the previous
equation can be rewritten as:

µ
∂Iλ
∂x
(x, µ) + σλext(N)Iλ(x, µ) =

σλsca(N)
2

∫ 1
−1
Iλ (x, µ′) Φλ (µ, µ′, N) dµ′, (4.6)

where:

Φλ (µ, µ′, N) =
1
2π

∫ 2π
0

φλ

(
µµ′ +

√
1− µ2

√
1− µ′2 cos(w), N

)
dw. (4.7)

Then, we have the following equation for a wavelength λ:

µ
∂Iλ
∂x
(x, µ) + σλext(N)Iλ(x, µ) = KIλ(x, µ,N), (x, µ) ∈ [0,+∞)× [−1, 1], (4.8)
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4.2. Existence and uniqueness of solutions of the 1D stationary
radiative transfer equation

with the following boundary conditions:

I(0, µ) = I+(µ) for µ > 0 ; lim
x→+∞

I(x, µ) = 0 for µ < 0, (4.9)

where µ = cos(θ) denotes the cosine of the propagation angle, N ∈ L2(R+) is the droplet
size distribution, and

σλext(N) = σ
λ
abs(N) + σ

λ
sca(N),

KIλ(x, µ,N) =
σλsca(N)
2

∫ 1
−1
Φλ(µ, µ′, N) Iλ(x, µ′) dµ′,

∀ (µ, µ′) ∈ [−1, 1]2, Φλ(µ · µ′, N) ≡ Φλ(µ, µ′, N) =
1
2π

∫ 2π
0

φλ(µ · µ′, N) dω,

where, ∀ω ∈ [0, 2π], µ · µ′ = µµ′ +
√
1− µ2

√
1− µ′2 cos(ω)

(4.10)

The condition (3.7) in one-dimensional space becomes

∀µ ∈ [−1, 1], 1
2

∫ 1
−1
Φλ(µ, µ′, N) dµ′ = 1.

4.2 Existence and uniqueness of solutions of the 1D
stationary radiative transfer equation

In this section, we review the existence and uniqueness of the solution of stationary
radiative transfer equation obtained by Case-Zweifel [115]. We introduce the following
radiative transfer equation:

µ
∂I

∂x
(x, µ) + I(x, µ) = c

∫ 1
−1
Φ(µ · µ′, N) I(x, µ′) dµ′, (4.11)

We consider a region where a is constant and look for solutions of the homogeneous
equation there. These solutions will depend only on local properties. The idea is to
construct special solutions appropriate to various boundary conditions in terms of
superposition of the elementary solutions. We note that this problem is equivalent to
problem (4.8) by applied a = σsca(N)/σext(N) and the change of variable x̃ = σext(N)x.
Suppose that the phase function can be decomposed as follow:

Φ(µ · µ′, N) =
K∑
k=0

2k + 1
4π
Φk(N)Pk(µ · µ′), (4.12)

where Pk represents the Legendre polynomials defined for all µ ∈ [−1, 1] by the following
recurrence (see [168]):

P0(µ) = 1 , P1(µ) = µ,

∀ k  1, Pk+1(µ) =
(2k + 1)
(k + 1)

µPk(µ)−
k

(k + 1)
Pk−1(µ).

(4.13)
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4.2. Existence and uniqueness of solutions of the 1D stationary
radiative transfer equation

By combining the equation (4.12) in (4.11) and by using the addition theorem for
spherical harmonics (See Appendix A in [115]), we obtain the following equation:

µ
∂I

∂x
(x, µ) + I(x, µ) =

c

2

K∑
k=0

(2k + 1)Φk(N)Pk(µ)
∫ 1
−1
Pk(µ′) I(x, µ′) dµ′. (4.14)

Translational invariance suggests trying (See Appendix F in [115]):

I(x, µ) = e−x/ν ζν(µ).

In analogy with ordinary terminology, the authors call that ζν by the ”eigenfunctions”
and the corresponding ν ”eigenvalues” of the radiative transfer equation. Then using
(4.14), we get the following equation which verifies ζν :

(ν − µ)ζν(µ) =
cν

2

K∑
k=0

(2k + 1)Φk(N)Pk(µ)
∫ 1
−1
ζν(µ′)Pk(µ′) dµ′. (4.15)

Our goal now is to find a solution to the equation represented by (4.15). To do this,
we multiply the equation by the Legendre polynomial Pl and we integrate over [-1,1].
Equation becomes (4.15):∫ 1
−1
(ν−µ)ζν(µ)Pl(µ)dµ =

∫ 1
−1

cν

2

K∑
k=0

(2k+1)Φk(N)Pk(µ)Pl(µ)
(∫ 1
−1
ζν(µ′)Pk(µ′) dµ′

)
dµ.

(4.16)
We make the following notation:

ζν,k =
∫ 1
−1
ζν(µ)Pk(µ)dµ, (4.17)

and we note the following relations:
∫ 1
−1

Pk(µ)Pl(µ) dµ =
2
2l + 1

δlk,

µ Pl(µ) =
1
2l + 1

[(l + 1)Pl+1(µ) + lPl−1(µ)],
(4.18)

where δlk represents the Kronecker delta. Consequently, we derive the following relation-
ships: 

ν(1− cΦk(N))ζν,k −
k + 1
2k + 1

ζν,k+1 −
k

2k + 1
ζν,k−1 = 0,

ζν,0 = 1,

ζν,1 = ν(1− c),

ζν,2 =
3ν3

2
(1− cν1)(1− c)−

1
2
.

(4.19)

Now, by using equation (4.15) and (4.17), we obtain:

(ν − µ)ζν(µ) =
cν

2

K∑
k=0

(2k + 1)Φk(N)Pk(µ) ζν,k (4.20)
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4.2. Existence and uniqueness of solutions of the 1D stationary
radiative transfer equation

By injecting (4.19) in (4.20), the solution of (4.15) is given by:

ζν(µ) =
cν

2
PV

K∑
k=0

(2k + 1)Φk(N) ζν,k Pk(µ)

ν − µ
+ λ(ν) δ(ν − µ) if ν ∈ [−1, 1],

ζν(µ) =
cν

2
PV

K∑
k=0

(2k + 1)Φk(N) ζν,k Pk(µ)

ν − µ
else,

(4.21)

subject to the normalization condition∫ 1
−1
ζν(µ)dµ = 1.

PV in (4.21) indicates that principal values is to be understood when integrating an
expression involving ζν .
λ(ν) defined in (4.21) can always be chosen such that the equation (4.22) is satisfied

λ(ν) = 1− cν

2

K∑
k=0

(2k + 1)Φk(N)ζν,k
∫ 1
−1

Pk(µ)
ν − µ

dµ′. (4.22)

This equation is obtained by using the normalization condition.
According to these results of Case-Zweifel [115], the problem (4.8)-(4.9) has a unique
solution which decreases exponentially towards 0 as x tends to infinity. In the sequel,
we restrict the space domain to [0, D], as shown in Figure 4.1, and the radiative transfer
equation (4.8) posed in [0, D] is given by the following problem [179, 176]:µ

∂Iλ
∂x
(x, µ) + σλext(N)Iλ(x, µ) = (KIλ) (x, µ,N) + qλ(x, µ), (x, µ) ∈ X,

Iλ(0, µ) = I+λ (µ) for µ > 0 and Iλ(D,µ) = I−λ (µ) for µ < 0,
(4.23)

where X = [0, D]× ([−1, 0) ∪ (0, 1]). I−λ is the spectral radiance value at x = D which
is small if D is large enough. For the numerical applications, we will use I−λ = 0.

Figure 4.1: The geometry of the 1D slab for the investigated radiative transfer problem.
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4.3. Some explicit solutions of the 1D radiative transfer equation

Theorem 4.1. [176] Assume σλabs(N) > 0 and suppose that
σλsca(N)
2
Φλ ∈ Cb(([−1, 0) ∪

(0, 1])2 × R+) and

qλ ∈ L∞(X) , I+λ ∈ L∞((0, 1]), I−λ ∈ L∞([−1, 0)),

where Cb is the space of bounded continuous functions. The problem (4.23) has a unique
solution in Cb(X) which satisfies the following estimate

∥Iλ∥L∞(X) ¬ max
(
∥I−λ ∥L∞([−1,0)), ∥I+λ ∥L∞((0,1]),

1
σλabs(N)

∥qλ∥L∞(X)
)
. (4.24)

4.3 Some explicit solutions of the 1D radiative trans-
fer equation

In some cases, we provide exact solutions for the stationary radiative transfer
equation used in the sequel to check our numerical approximations.

4.3.1 Case without collision operator (KLλ ≡ 0) and qλ ≡ 0
We are interested in the following system, with σλext(N) > 0:µ

∂Lλ
∂x
(x, µ) + σλext(N)Iλ(x, µ) = 0, (x, µ) ∈ X,

Iλ(0, µ) = I+λ (µ), µ > 0 and Lλ(D,µ) = 0, µ < 0.
(4.25)

It is easy to show the solution of (4.25) is:

Iλ(x, µ) = I+λ (µ) e
−σλext(N)

x

µ1µ>0. (4.26)

4.3.2 Case without collision operator (KLλ ≡ 0) with a source
expressed by a Dirac function

We are interested in the following system, with σλext(N) > 0 and 0 < d < D real numbers:µ
∂Iλ
∂x
(x, µ) + σλext(N)Iλ(x, µ) = f(µ)δd(x), (x, µ) ∈ X

Iλ(0, µ) = 0, µ > 0 and Iλ(D,µ) = 0, µ < 0.
(4.27)

The solution of (4.27) is :

Iλ(x, µ) =
f(µ)
|µ|

e
−σλext(N)

(x− d)
µ 1(x−d)µ>0. (4.28)
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4.3. Some explicit solutions of the 1D radiative transfer equation

Proof of Equation (4.28).We multiply the first equation in (4.27) by exp(σλext(N)x/µ)
to obtain:

∂

∂x

(
exp(σλext(N)x/µ)Iλ

)
=
f(µ)
µ
exp(σλext(N)d/µ)δd(x),

which leads to the existence of a constant k(µ) such that:

Iλ(x, µ) = exp(−σλext(N)(x− d)/µ)
(
f(µ)
µ

Hd(x) +K(µ)
)
,

where Hd(x) = 1xd denotes the Heaviside function at d, the primitive of δd. If x > d,
Hd(x) = 1, and therefore:

∀µ < 0, Iλ(D,µ) = exp(−σλext(N)(D − d)/µ)
(
f(µ)
µ
+K(µ)

)
= 0,

which implies:

∀µ < 0, K(µ) = −f(µ)
µ

.

If x < d, Hd(x) = 0, and therefore:

∀µ > 0, Iλ(0, µ) = exp(−σλext(N)(−d)/µ)K(µ) = 0,

which implies:
∀µ > 0, K(µ) = 0.

Thus, we obtain Equation (4.28).

4.3.3 Case with phase function Φλ ≡ 1 and source term qλ

expressed by the Dirac function

We are interested in the problem discussed in paragraph 4 of [173] with 0 < c < 1:
µ
∂Iλ
∂τ
(τ, µ) + Iλ(τ, µ) =

c

2

∫ 1
−1
Iλ(τ, µ′)dµ′ +

1
2
δ(τ), τ ∈ R, µ ∈ [−1, 0) ∪ (0, 1],

Iλ(−∞, µ) = 0, µ > 0 ; Iλ(+∞, µ) = 0, µ < 0.
(4.29)

where c =
σsca
σext
is the albedo, and τ = σext x with x is the spatial position.

The solution is expressed by applying the Fourier transform to the variable µ, and by
using Cauchy’s theorem of complex analysis.

The expression of T (τ) :=
∫ 1
−1
Iλ(τ, µ) dµ, according to [173] is:

∀ τ > 0, T (τ) = ξ0
c

1− ξ20
ξ20 + c− 1

e−ξ0τ +
∫ +∞
1

e−tτ

2t
[(
1− c

2t log
t+1
t−1

)2
+
(
cπ
2t

)2] dt, (4.30)
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4.4. Numerical schemes to approximate the RTE.

where 0 < ξ0 ¬ 1 verifies iξ0 − c atan(iξ0) = 0. We give in table 4.1 some values of ξ0
according to c.

c 0.25 0.5 0.75 0.9
ξ0 9.993×10−1 9.575×10−1 7.755× 10−1 5.254×10−1

Table 4.1: Approximation of ξ0 for several values of c.

4.4 Numerical schemes to approximate the RTE.

In this section, we present some methods to approximate the radiative transfer
equation. The first method is based on the finite difference method as the ”Step scheme”
or ”Diamond scheme” [176], and the second on the decomposition in the double basis
of Legendre [22]. In the sequel of this work, we use the decomposition method and we
give some numerical verification in the case of explicit solution of the radiative transfer
equation.

4.4.1 Finite difference method

We present here a method called ’Step scheme’, which discretizes the problem by
representing functions by a finite number of values. To simplify the notation, we set
I ≡ Iλ.
The stationary radiative transfer equation with the boundary condition is given by the
following equation:

µ
∂I

∂x
(x, µ) + σext(N) I(x, µ) =

σsca(N)
2

∫ 1
−1
Φ(µ, µ′, N) I(x, µ′)dµ′, (x, µ) ∈ X,

I(0, µ) = I+(µ) if µ ∈ (0, 1],

I(D,µ) = I−(µ) if µ ∈ [−1, 0).
(4.31)

For problem (4.31) to be well-posed (see Theorem 4.1) we make the assumption that
the medium is sub-critical, that’s to say σabs = σext − σsca > 0.

Diamond scheme: We give the following discretizations:
xj+1/2 = j∆x , j ∈ {1, ...,M} , ∆x = D

M
,

−1 ¬ µ−K < µ−K+1 < ... < µ−1 < 0 < µ1 < .... < µK ¬ 1.
(4.32)

As presented in system 4.31, the right-hand side of equation contains an integral operator
(collision operator) involving the direction µ. When we have to discretize transport
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collision operators, it is necessary to evaluate integrals with respect to the speed µ. For
this we introduce weights ωk ∈ R and, for any function f , we approach the exact integral
by a Riemann sum ∫ 1

−1
f(µ) dµ ≈

K∑
k=−K,k ̸=0

ωk f(µk), (4.33)

where

ω−k = ωk  0, µ−k = −µk for all k.

The mesh in space is always defined by the points xj+1/2 defined in (4.74) and the
symmetric discretizations in speed µk where the index k varies in {−K, ...,−1}∪{1, ..., K}
but does not take the value 0 so that no speed µk is zero. The weights ωk are also
symmetric and positive and the quadrature formula is (4.33). For any index k we will
denote Ikj an approximation of I(xj, µk), for j ∈ {1, ...,M}, and Ikj+1/2 an approximation
of I(xj+1/2, µk), for j ∈ {0, ...,M}.
For j ∈ {1, ...,M} and all the indices k, the diamond scheme is given by

µk
Ikj+1/2 − Ikj−1/2

∆x
+ σext(N) Ikj =

σsca(N)
2

Īkj ,

Ikj =
Ikj+1/2 + I

k
j−1/2

2
,

j ∈ {1, ...,M} (4.34)

where Īkj is defined by

Īkj =
K∑

l=−K,l ̸=0
ωl Φl,k I lj. (4.35)

In general, we prefer to use a very simple iterative method, known as iteration on the
sources [176, Chapter 5, Section 2].
More precisely, we denote by n  0 the iteration number. We initialize the algorithm
(called iteration on the sources) by setting, for n = 0,

Īk,0j = 0, (4.36)

then at iteration n  1 we solve

µk
Ik,nj+1/2 − I

k,n
j−1/2

∆x
+σext(N)

Ik,nj+1/2 + I
k,n
j−1/2

2
=
σsca(N)
2

Īk,n−1j , j ∈ {1, ...,M} (4.37)

and the angular mean

Īk,n−1j =
K∑

l=−K,l ̸=0
ωl Φl,k

I l,n−1j+1/2 + I
l,n−1
j−1/2

2
, j ∈ {1, ...,M}. (4.38)

The resolution of (4.37)-(4.38) is very simple.

56



4.4. Numerical schemes to approximate the RTE.

• For µk > 0 one solves (4.37)-(4.38) according to the increasing values of j starting
from the boundary condition

Ik,11/2 = I
+(µk), (4.39)

and writing for j  1, k ∈ {1, ..., K}

Ik,nj+1/2 =
(2µk − σext(N)∆x) Ik,nj−1/2 + σsca(N)∆x Ī

k,n−1
j

(2µk + σext(N)∆x)
. (4.40)

• For µk < 0 one solves (4.37)-(4.38) according to the decreasing values of j starting
from the boundary condition

Ik,1N+1/2 = I
−(µk), (4.41)

and writing for j ¬M, k ∈ {−K, ...,−1}

Ik,nj+1/2 =
(−2µk − σext(N)∆x) Ik,nj−1/2 + σsca(N)∆x Ī

k,n−1
j

(−2µk + σext(N)∆x)
. (4.42)

Lemma 4.1. The sources iteration algorithm (4.40)-(4.42) converges, as n tends to
infinity, to the discrete solution of scheme (4.34).

Step scheme: We give the following discretizations:
xj = j∆x , j ∈ {1, ...,M} , ∆x = D

M
,

−1 ¬ µ−K < µ−K+1 < ... < µ−1 < 0 < µ1 < .... < µK ¬ 1.
(4.43)

We consider the “step” difference scheme which has the virtues of being extremely simple
and of always producing positive solutions.

µk
Ikj − Ikj−1
∆x

+ σext(N) Ikj =
σsca(N)
2

Īkj µk > 0,

µk
Ikj+1 − Ikj
∆x

+ σext(N) Ikj =
σsca(N)
2

Īkj µk < 0,

j ∈ {1, ...,M} (4.44)

where L̄kj is defined by

Īkj =
K∑

l=−K,l ̸=0
ωl Φl,k I lj. (4.45)

Once again we solve (4.44) for the increasing j when µk > 0 and for the decreasing
j when µk < 0. In general, by using the iteration on the sources [176, Chapter 5,
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Section 2]. More precisely, we denote by n  0 the iteration number. We initialize the
algorithm by setting, for n = 0,

Īk,0j = 0, (4.46)

then at iteration n  1:
• For µk > 0 one solves (4.44) according to the increasing values of j starting from the
boundary condition

Ik,n0 = I
+(µk) (boundary condition in x = 0),

and writing for j ∈ {1, ...,M}, k ∈ {1, ..., K}

Ik,nj =
2µkI

k,n
j−1 + σsca(N)∆x Ī

k,n−1
j

(2µk + 2σext(N)∆x)
, Īk,n−1j =

K∑
l=−K,l ̸=0

ωl Φl,k I
l,n−1
j . (4.47)

• For µk < 0 one solves (4.44) according to the decreasing values of j starting from the
boundary condition

Ik,nN+1 = I
−(µk) (boundary condition in x = D),

and writing for j ∈ {M, ..., 1}, k ∈ {−K, ...,−1}

Ik,nj =
−2µkIk,nj+1 + σsca(N)∆x Ī

k,n−1
j

(−2µk + 2σext(N)∆x)
, Īk,n−1j =

K∑
l=−K,l ̸=0

ωl Φl,k I
l,n−1
j . (4.48)

Lemma 4.2. The Step scheme (4.44) checks the principle of the maximum discreet
(without condition in the discretization steps). In addition, it is consistent and precise
to order 1 only.

We present in Figure 4.2 a comparison between the explicit and numerical solutions
of system (4.31) in the Beer-Lambert case (Section 4.3.1) with different values of σext.
This figure confirms that the numerical solution of the RTE is well approximated by
using the step scheme.
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4.4. Numerical schemes to approximate the RTE.

Figure 4.2: Numerical radiance by using the step scheme and the explicit radiance with respect
to x and µ with I+(µ) = 1, I−(µ) = 0, D = 1, ∆x = 10−3, and ∆µ = 10−3 for σsca = 0 and
different values of σext.

4.4.2 Decomposition in Legendre basis

As mentioned in the previous section, the one-dimensional stationary radiative transfer
equation is approximated using the finite difference method, which takes a lot of time
due to the decomposition on the spatial position and scattering angle. Therefore, in
this section, we present the approximation of the one-dimensional stationary radiative
transfer equation using Yvon’s method [22]. In order to use this method, we need to
decompose the phase function on the basis of Legendre polynomials. We recall that
the Legendre polynomials are defined for all µ ∈ [−1, 1] by the following recurrence
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(see [168]): 
P0(µ) = 1 , P1(µ) = µ,

∀n  1, Pn+1(µ) =
(2n+ 1)
(n+ 1)

µPn(µ)−
n

(n+ 1)
Pn−1(µ).

(4.49)

The sequence defined in (4.49) verifies the following orthogonal properties:

∀n  1, ∀ l  1,
∫ 1
−1
Pn(µ)Pl(µ) dµ =

2
2n+ 1

δnl. (4.50)

To solve the stationary radiative transfer equation, we use Yvon’s method [22] which is a
decomposition method based on the double basis of Legendre polynomials (Pn(2 ·−1))n0
for µ ∈ [−1, 0) and (Pn(2 · +1))n0 for µ ∈ (0, 1]. Yvon’s method consist in splitting
the Iλ into two functions, one ℓ+λ corresponds to photons having a µ > 0, the other ℓ

−
λ

corresponds to photons having a µ < 0, and consider each of these parts as a separate
function.
The intensity Iλ, for K Legendre polynomials, is decomposed as follows [22]:

Iλ(x, µ) =



K∑
j=0

(2j + 1)ℓ−λ,j(x,N)Pj(2µ+ 1) if µ < 0,

K∑
j=0

(2j + 1)ℓ+λ,j(x,N)Pj(2µ− 1) if µ > 0.

(4.51)

Suppose that the source term qλ in (4.8) is decomposed as follows:

qλ(x, µ) =
K∑
i=0

qλ,i(x)Pi(µ). (4.52)

In addition, the phase function Φλ is decomposed on Legendre polynomials basis as
follows (see Lemma A.1 in Appendix A.2):

Φλ(µ, µ′, N) =
K∑
k=0

Aλ,k(N)Pk(µ)Pk(µ′). (4.53)

By injecting (4.53), (4.51), and (4.52) into (4.23), we get two differential systems of size
K + 1 that verify the functions ℓ+λ,j, ℓ

−
λ,j (see Appendix A.3):

∀ 0 ¬ j ¬ K,
1
2

j

2j + 1
dℓ+λ,j−1
dx
(x,N) +

1
2
j + 1
2j + 1

dℓ+λ,j+1
dx
(x,N) +

1
2
dℓ+j
dx
(x,N) + σλext(N)ℓ

+
j (x,N)

=
1
2
σλsca(N)

K∑
n=0

(2n+ 1)
(
Γα,βj,n ℓ

−
λ,n(x,N) + Γ

α,α
j,n ℓ

+
n (x,N)

)
+
K∑
n=0

qλ,n(x)αn,j,

(4.54)
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−1
2

j

2j + 1
dℓ
−
λ,j−1

dx
(x,N)− 1

2
j + 1
2j + 1

dℓ
−
λ,j+1

dx
(x,N)− 1

2
dℓ−j
dx
(x,N) + σλext(N)ℓ

−
λ,j(x)

=
1
2
σλsca(N)

K∑
n=0

(2n+ 1)
(
Γβ,βj,n ℓ

−
λ,n(x,N) + Γ

β,α
j,n ℓ

+
λ,n(x,N)

)
+
K∑
n=0

qλ,n(D − x)βn,j,

(4.55)
where
∀x ∈ [0, D],

(
ℓ−λ,K+1

)′
(x,N) =

(
ℓ+λ,K+1

)′
(x,N) = 0,(

ℓ+λ,j(0, N)
))
0¬j¬K

and
(
ℓ−λ,j(D,N)

))
0¬j¬K

given (boundary condition),

ℓ
±
λ,k(·, N) = ℓ±λ,k(D − ·, N).

(4.56)

with, for all j  0,∀n  0, Γα,βj,n , and αn,j, βn,j are defined in (A.19)-(A.20) of Appendix
A.3.
Eventually, systems (4.54)-(4.55) read in a compact form as follows:
∀ 0 < x < D,


AL′λ(x) +B Lλ(x) = C1 Lλ(x) + C2 Lλ(D − x) + E(x),

Lλ(0) given,
(4.57)

with A,B,C1 and C2 some matrices of size 2(K + 1)× 2(K + 1), A tridiagonal and B
diagonal, E(x) a vector of size 2K + 2.



∀1 ¬ j ¬ K, A(j, j − 1) = −A(K + 1 + j,K + j) = 1
2

j

2j + 1
,

∀0 ¬ j ¬ K, A(j, j) = A(K + 1 + j,K + 1 + j) = 1
2
,

∀0 ¬ j ¬ K − 1, A(j, j + 1) = −A(K + 1 + j,K + j + 2) = 1
2
j + 1
2j + 1

,

(4.58)

∀0 ¬ j ¬ K, B(j, j) = B(K + 1 + j,K + 1 + j) = σλext(N), (4.59)

and ∀0 ¬ j, n ¬ K, 
C1(j, n) =

1
2
σλsca(N)Γ

α,α
j,n ,

C1(K + 1 + j, n) =
1
2
σλsca(N)Γ

β,β
j,n ,

(4.60)


C2(j, n) =

1
2
σλsca(N)Γ

α,β
j,n ,

C2(K + 1 + j, n) =
1
2
σλsca(N)Γ

β,α
j,n .

(4.61)
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E(x)(j) =
K∑
n=0

qλ,n(x)αn,j

E(x)(K + j + 1) =
K∑
n=0

qλ,n(D − x)αn,j.
(4.62)

In order to solve (4.57), we use the so-called ”source iteration method” [176, Chapter 5,
Section 2].

4.5 Numerical study of the 1D stationary radiative
transfer equation discretization

In this section, we study the numerical approximations presented in Section 4.3
with an analysis of their convergence on the explicit cases given in Section 4.3. We start
with a nondimensionalization step in order to reduce the number of parameters.

4.5.1 A nondimensionalization of the radiative transfer equa-
tion

The first step is to normalize in (4.23) the spatial domain [0, D] by [0, 1] thanks to the
change of variable x̃ = x/D (this change of variable is valid since we are operating
within slab modeling). Introducing the new functions:

Ĩ(x, µ) = I(x̃, µ), q̃λ(x, µ) = qλ(x̃, µ), σ̃λsca = Dσ
λ
sca, σ̃

λ
abs = Dσ

λ
abs, σ̃

λ
ext = Dσ

λ
ext, (4.63)

then Ĩ is the solution to:
µ
∂Ĩλ
∂x
(x, µ,N) + σ̃λext(N)Ĩλ(x, µ,N) = K̃Ĩλ(x, µ,N) + q̃λ(x, µ), (x, µ) ∈ X,

Ĩλ(0, µ,N) = I+λ (µ) for µ > 0 and Ĩλ(1, µ,N) = I−λ (µ) for µ < 0,
(4.64)

where X = [0, 1]× ([−1, 0) ∪ (0, 1]) and:

K̃Ĩλ(x, µ,N) =
σ̃λsca(N)
2

∫ 1
−1
Φλ(µ, µ′, N) Ĩλ(x, µ′, N) dµ′. (4.65)

In this section, we will focus our numerical experiments on a Lambertian source, leading
to put:

∀µ > 0, I+λ (µ) = 1. (4.66)

Moreover, we will use the following boundary condition in all the sequel:

∀µ < 0, I−λ (µ) = 0. (4.67)

To simplify the notations, all tildes will be removed.
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4.5.2 Convergence error w.r.t. Legendre series truncation and
spatial discretization

In our previous discussion of our numerical technique for approximating the solution
of the radiative transfer equation, we explained our representation of intensity using a
double Legendre basis. In Appendix A.2, we additionally displayed the decomposition
of the phase function using the Legendre basis. Figure 4.3 displays a comparison of the
phase function for varying numbers of Legendre polynomials, marked as K, as calculated
using Lorenz-Mie theory. This calculation relies on a droplet size distribution displayed
in Figures 1.15a. These findings are then compared with the phase function computed
utilizing MiePlot [180] (employing the identical droplet size distribution). MiePlot is a
software that uses Mie theory to simulate light scattering from spherical particles.
Figure 4.3a demonstrates that utilizing a decomposition with 50 Legendre polynomials
leads to substantial oscillations in the phase function for larger scattering angles. Nev-
ertheless, as showcased in Figures 4.3b, c, and d, these oscillations decrease gradually
with an increase in the number of Legendre polynomials.

Figure 4.3: Comparison of the Lorenz-Mie phase function with MiePlot [180] in function of
the wavelengths for : (a) K = 50, (b) K = 100, (c) K = 150, (d) K = 200.
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To illustrate the negligible impact of oscillations on our numerical approximation, we
have illustrated the concept in Figure 4.4. This figure depicts radiance measurements
featuring distinctive numbers of Legendre polynomials at a specified wavelength λl.
These measurements were executed at the x-axis, specifically x = 0.5, while referring to
this formulation:

Mλl(xi) =
∫ b
a
I⋆λl(xi, µ) dµ , ∀ 1 ¬ i ¬ G, 1 ¬ l ¬ L, (4.68)

where

a = cos
(
π

360

)
, b = 1 (forescattering measurement with 1o aperture angle). (4.69)

Figure 4.4 confirms that the oscillations observed in Figure 4.3a do not have a significant
impact on our measurement calculations. Specifically, for K = 50, our results closely
resemble the solutions obtained for K = 200.

Figure 4.4: The radiance measurements presented in equation (4.68) for different Legendre
polynomial numbers K in function of the wavelengths at a point x = 0.5.

The case of the Beer-Lambert solution (Section 4.3.1) is investigated here in order to
analyze the convergence of our numerical procedure of Section 4.4. Considering the
problem (4.64) with K̃ = 0, q̃λ = 0 and with boundary conditions (4.66)- (4.67), the
solution is then given by (4.26):

I(x, µ) =

 exp(−σextx/µ) if µ > 0,0 if µ < 0.
(4.70)

For a stepsize ∆x defining a partition

0 = x0 < x1 < · · · < xN = 1,
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and a K-terms in the Legendre series truncation, we denote by IK∆x the approximate
radiance of I obtained by the numerical method of Section 4.4. We consider the following
numerical error:

E(σext, K,∆x) = sup
0¬i¬N

∫ b
a

∣∣∣I(xi, µ)− IK∆x(xi, µ)∣∣∣ dµ∫ b
a
I(xi, µ)dµ

. (4.71)

For the numerical simulations, we will use a and b defined in equation (4.69). We plot
in Figure 4.5 the relative error (4.71) for the following values:

σext ∈ {6.25× 10−2m−1, 1.0m−1,4.0m−1, 16.0m−1}, K ∈ {10, 30, 50, 70, 90}, (4.72)
∆x ∈ {2−i, 5 ¬ i ¬ 18}. (4.73)

In addition, we note that we choose these values of σext for the problem posed on (0,1)
using the change of variable presented in Section 4.5.1.

Figure 4.5: Error (4.71) in the Beer-Lambert case with σext equal to 6.25× 10−2 (a) , 1.0 (b),
4.0 (c) and 16.0 (d).

We can observe in Figure 4.5 that the error decreases as the step ∆x decreases and
as the truncation threshold K increases. The sensitivity to K is nevertheless very low
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for high extinction coefficients. For the general case (K ̸= 0), we plot in Figure 4.6 the
relative error (4.71). The calculations are done with one of the DSD measured at PAVIN
platform. The ”exact” solution, which is unknown, is assumed to be given by IK∆x with
K = 100 and ∆x = 2−18 ≃ 3.8× 10−6.

Figure 4.6: Error (4.71) in the general case with σext equal to 6.25× 10−2 (a) , 1.0 (b), 4.0 (c)
and 16.0 (d).

We observe, from the Figures 4.5-4.6, that the relative error increases when the value of
the extinction coefficient increases. This increase in error comes from a relation which
expresses the convergence error of the numerical scheme as a function of the parameters
of the differential equation [181, 182] which are ∆x and σλext. To show that, we use the
Euler implicit scheme with the following discretizations:

xj+1 = j∆x , j ∈ {1, ...,M} , ∆x = D
M
,

0 < µ1 < .... < µK ¬ 1.
(4.74)

The approximated solution Lkj of Beer-Lambert problem can be written as follow:

Lkj+1 =
µk − σλext∆x

µk
Lkj . (4.75)
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In the other hand, by using the explicit solution (4.70), we have

L(xj+1, µk) =
µk − σext∆x

µk
L(xj, µk) +

(σext∆x)2

2µ2k
L(xj, µk). (4.76)

Let ej+1 = L(xj+1, µk)− Lkj+1, then

|ej+1| ¬ |ej|+
(σext∆x)2

2µ2k
¬ · · · ¬ |e0|+

D(σext)2

2µ2k
∆x,

but e0 = 0, then the error of the convergence is less than
D(σext)2

2µ2k
∆x.

Figure 4.7: Error (4.71) in the general case with backscattering measurements for σext equal
to 6.25× 10−2 (a) , 1.0 (b), 4.0 (c) and 16.0 (d).

Also, we plot in Figure 4.7, the relative error expressed in equation (4.71) for the

backscattering case with an aperture angle of 1◦ (with a = cos
(
π +

π

360

)
and b = −1)

We can observe in Figures 4.6-4.7 a higher sensitivity to K, especially if the stepsize ∆x
is small. We will keep in the sequel:

K = 50 and ∆x = 10−3 =⇒ E(σext, k,∆x) ¬ 10−2. (4.77)
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Furthermore, we plot in Figure 4.8 the numerical and explicit radiance with respect to
x and µ with ∆x = 10−3, and 50 Legendre polynomials, for the Beer-Lambert case and
the collision case (in this latter, the explicit solution is given by IK∆x with K = 100 and
∆x = 2−18 ≃ 3.8× 10−6).
Based on the numerical results derived in this section, we observe that our selection of
K = 50 Legendre polynomials with a ∆x = 10−3 effectively approximates the solution.

Figure 4.8: Numerical and explicit radiances with respect to x and µ with ∆x = 10−3, and 50
Legendre polynomials, for the Beer-Lambert case ((a) and (b)) and the collision case ((c) and
(d)).

Now, we apply our numerical scheme on the simple model (4.27) whose solution is given
by (4.28) with f(µ) = 1 and d = 1/2.
We plot in Figure 4.9(a) the numerical and explicit radiances with respect to x and µ
with ∆x = 10−3, and 50 Legendre polynomials for the problem (4.27) with σ = 4.0. We
can observe a very good agreement between numerical and explicit solutions.
In order to take into account a collision operator which appears in the adjoint problem,
we consider the Dautray-Lions solution (4.30) of problem (4.29). Since the Dautray-Lions
solution (4.30) does not give the radiance but its integral over µ, we consider the following
numerical error associated to the discretization of (4.29):

E(∆x,K, c) =

∫
R

∫ 1
−1

∣∣∣I(x, µ)− IK∆x(x, µ)∣∣∣ dµdx∫
R

∫ 1
−1
I(x, µ)dµdx

, (4.78)

where c is the parameter of the Dautray-Lions problem. We plot in Figure 4.9(b) the
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numerical and explicit function T (see 4.30) with respect to τ with ∆τ = 10−3, and 50
Legendre polynomials for the problem (4.29) with c = 0.5. In this case, we then find
E(2−16, 100, 0.5) ≈ 3.53× 10−2.

Figure 4.9: Numerical and explicit radiances with respect to x and µ with ∆x = 10−3, and 50
Legendre polynomials for the problem (4.27) with σ = 4.0 (a). Numerical and explicit function
T (see 4.30) w.r.t. τ with ∆τ = 10−3 and 50 Legendre polynomials for the problem (4.29) with
c = 0.5.
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Chapter 5

Droplet Size Distribution Identifica-
tion

This chapter is organized as follows. In Section 5.1, we detail the different types of DSD
used for our identification method. In section 5.2, we study the ill-posed inverse problems
and singular value decomposition (SVD) method for resolving the ill-posed problem.
The gradient descent-based inverse problem and the cost function are presented together
with their properties in Section 5.3. We also give in this section the expression of the
cost function gradient in terms of an adjoint problem to the RTE and we recall the
Barzilai-Borwein algorithm to minimize the cost function.

5.1 The DSD used in the identification method

We will test our identification method on different fog droplet size distributions, which
have been measured in the PAVIN platform or in natural conditions. We will also
consider some common DSD models. The measurements were carried out with the
PALAS WELAS particle size analyzer [24]. For numerical applications, all the DSD are
normalized in order to have:

τ ≡ Dσext = 4.0m−1 (on the domain (0, D = 1m)) ⇔ Vm = 0.75m. (5.1)

The DSD of artificial fog produced in the PAVIN platform are represented in Figure 5.1(a).
The DSD for a real fog (see Figure 5.1(b)) were acquired during an episode of fog in the
night of March 13 to 14, 2007 on the French Palaiseau site (Paris-Fog campaign [2]).
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5.1. The DSD used in the identification method

Figure 5.1: Droplet size distributions N (a) measured at Cerema PAVIN platform, (b) during
the Paris-Fog campaign and (c) coming from Shettle and Fenn models.

In order to take into account DSD with bigger droplets, we consider in Figure 5.1(c)
modified Gamma law based models of radiation fogs given by Shettle and Fen [3]) with
the following coefficients:

Model c β d γ rm(µm)

3 428.15 6 1.5 1 4
4 211317 6 3.0 1 2

Table 5.1: Coefficients given in [3] for modified Gamma laws (1.3).

where rm represents the peak position for each model.
To better show the reconstruction of the droplet size distributions, Figure 5.2 represents
a 3D plot for various distribution of PAVIN platform (presented in Figure 5.1a), as a
function of the radius of the particles. This figure will be compared, in the Chapter 6,
with the reconstructed images.
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5.2. Ill-posed problems and SVD method

Figure 5.2: 3D plot of 8 different droplet size distributions N measured at Cerema PAVIN
platform.

5.2 Ill-posed problems and SVD method

Most work on the reconstruction of this distribution is performed using a simple model
of the radiative transfer equation, which is the Beer-Lambert law (as mentioned in
Chapter 2). This model describes the light propagation assuming that there is no
scattering. In this case, the problem can be considered as a Fredholm integral of the
first kind:

F + e =
∫ rmax
rmin

A(r)N(r) dr, (5.2)

where F η = (1 + η U)F = F + e represents the data with a relative noise level η  0
and U a random variable with uniform law on (0, 1) and F represents the true data
corresponding to the target distribution N⋆. The difficulties in these types of problem are
generally the ill-conditioned nature of discrete linear system [183, 184]. An illustrative
example of Fredholm equation F = AN was introduced by Shaw [185]. In order to
comprehend and assess the ill-posed nature of this problem, we employ a significant
tool, namely Singular Value Decomposition (SVD).
By adding a vector e of data affected by measurement errors, problem (2.8) can be
written in matrix form as follows:

AN = F η = (1 + η U)F, (5.3)

where A = (alj)1¬l¬G, 1¬j¬R,

alj = −π xQλlext(rj) r2j ∆rj,

and

F =
(
ln

(
Lλ1(x)
Lλ(0)

)
, · · ·, ln

(
LλG(x)
LλG(0)

))
, N = (N(r1), · · ·, N(rR)) ,

For G = R = 60, we compare in Figure 5.3 the approximated distribution N obtained
by resolving the two problems AN = F for η = 0% (figure a) and AN = F η for η = 1%
(figure b).
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5.2. Ill-posed problems and SVD method

Figure 5.3: The approximated solution for η = 0% (a), for η = 1% (b).

It is clear that our attempt to estimate the distribution N has produced highly unsatis-
factory results, despite the low noise level of 1%. The fundamental issue in identifying
distribution N , specifically in the presence of noise, is due to the ill-posed nature of
our linear system. The extent to which small perturbations in the input data affect the
output is quantified by the condition number κ2(A) = ∥A∥2∥A−1∥2. A problem with a
small condition number is considered to be well-conditioned, whereas a problem with a
high condition number is considered to be ill-conditioned. In the extreme case, A is so
badly conditioned that it is almost singular (κ2(A) = +∞).
Theoretically, the relative error in the estimated solution is provided by an upper bound
by

∥N −Napp∥2
∥N∥2

¬ κ2(A)
∥F − F η∥2
∥F∥2

. (5.4)

We present in Table 5.2 the value of κ2(A) in function of matrix dimension. We observe
that the value of κ2(A) is always very large, which explains the ill-conditioned of our
problem.

Matrix dimensions (G×R) 10× 10 20× 20 40× 40 60× 60
κ2(A) 1.36× 106 6.68× 1010 1.35× 1015 1.75× 1016

Table 5.2: Condition number κ2(A) as a function of matrix dimensions.

To understand the ill-posed problem, several authors study the Singular value decompo-
sition (SVD) of the identification problem. The authors in [158] study an illustrative
example of Fredholm equation introduced by Shaw [185]. In our problem, we need to
study the singular value decomposition of matrix A in (5.3) obtained by using the
Lorenz-Mie theory [6]. According to the singular value decomposition, the matrix A can
be decomposed as follows:

A = USV T , U = [u1, ··, up] ∈ RG×G, V = [v1, ··, vR] ∈ RR×R,

S = diag[σ1, ··, σr, 0, ··, 0] ∈ RG×R,
(5.5)
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5.2. Ill-posed problems and SVD method

where r = rank(A), UTU = V TV = I, and σ1  σ2  ··  σr  0 called the singular
values of A, are the nonnegative square roots of the eigenvalues of ATA.
By using (5.3), we have Nηapp = A

−1F , and by using that A−1 = US−1V T , we obtain

Nηapp = A
−1F η =

r∑
n=1

uTn F
η

σn
vn =

r∑
n=1

uTn F

σn
vn +

r∑
n=1

uTn e

σn
vn = N0app +

r∑
n=1

uTn e

σn
vn, (5.6)

where un, vn are two columns of U and V , respectively. In this case, the condition number
κ2(A) = σ1σ−1r . To fully understand the influence of noise on the approximated solution
Napp, we plot the quantities σn, |uTn F | and |uTn F |/σn as a function of n, also known as
a Picard Plot [186].

Figure 5.4: SVD components of the identification problem, for η = 0% (a), for η = 1% (b).

For the unperturbed system (Figure 5.4a), we observe that the two curves of the singular
values and |uTn F | decrease very quickly as a function of n. For the perturbed system
(Figure 5.4b), we observe that the value of |uTn F η| decreases up to n = 35 and then
it continues with an almost constant value. In fact, it can be observed in Figure 5.4b
that there is an explosion in the value of |uTn F η|/σn leading to spurious solutions. This
explosion indicates that starting from n = 35, the value of uTn e/σn, where e is the error
that disturbs F , dominates the value of uTn F/σn.

Now, we present some identification results of distribution N by truncating the series
(5.6) where the values of uTn e/σn start to be dominant (n = 35 for the example in Figure
5.4). To evaluate the convergence, we compute the relative error between the target
distribution N⋆ and the approximated solution Napp:

RE =
∥Napp −N⋆∥L2(R+)
∥N⋆∥L2(R+)

× 100%.

Figure 5.5 shows the approximated solution of the distribution N in case of η = 1%
for different singular values number n. We observe that the best approximation uses
only 35 singular values (Figure 5.5b) with a relative error RE = 32%. For n = 37
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5.2. Ill-posed problems and SVD method

(Figure 5.5c) and 40 (Figure 5.5d), where the value of error dominates (see figure 5.4b),
our distribution N is poorly approximated.

Figure 5.5: The approximated solution for η = 1% and n = 30 (a), n = 35 (b), n = 37 (c) and
n = 40 (d).

Based on these findings, the solution Napp seems to be unstable. To solve this problem,
we add a regularization term that serves to improve our approximate solution. We
present in the following part a truncated SVD method [187, 188] with a regularization
term ε as a solution to the ill-posedness of our identification problem. This method is
based on the idea of truncating the series (2.2) where the values of uTn e/σn start to be
dominant.The TSVD solution is expresed by:

Nηapp = A
−1F η =

r∑
n=1

tn (ε)
uTn F

η

σn
vn, (5.7)

with tn(ε) called the filter factor [189, 186] is given by:

tn(ε) =

 1 if n ¬ ⌊ε−1⌋,
0 else,

(5.8)

where ε is the regularization parameter and ⌊·⌋ is the floor function.
For the results obtained in Figure 5.5, we find ε = 0.0334 (a), ε = 0.0286 (b), ε = 0.0271
(c) and ε = 0.025 (d).
In the following part, we present the reconstruction method of distribution N by using
a least squares method and by adding a regularization term to solve the ill-posedness.

75



5.3. Identification of the DSD by a least-squares optimization
method

5.3 Identification of the DSD by a least-squares op-
timization method

5.3.1 The cost function and the minimization problem

The measurements at wavelength λl, at a point xi of the x-axis is determined by:

M il ≡Mλl(xi) =
∫ b
a
I⋆λl(xi, µ) dµ , ∀ 1 ¬ i ¬ G, 1 ¬ l ¬ L, (5.9)

where L and G represent the numbers of measurement points and wavelengths, respec-
tively. The two parameters a and b are defined as follows:

a = cos
(
θ′ +

α

2

)
; b = cos(θ′) (5.10)

where α designates the aperture angle of the sensor, and θ′ is the position angle of the
sensor relative to the source (θ′ = 0◦ for forescattering measurements, and θ′ = 180◦ for
backscattering measurements).
I⋆λ(x, µ) is the “real” spectral radiance in the direction µ, at point x and for the wavelength
λ. For the numerical applications, we will use synthetic measurements obtained by (6.1)
and by:

I⋆λ(x, µ) = Iλ(x, µ,N
⋆), (5.11)

that is I⋆λ is the solution of the stationary radiative transfer equation (5.12) with a
known droplet size distribution N⋆ measured in the PAVIN platform, in natural foggy
conditions or coming from DSD modelling recalled in Section 2.2.

µ
∂Iλ
∂x
(x, µ) + σλext(N)Lλ(x, µ) =

σλsca(N)
2

∫ 1
−1
Φ(µ, µ′, N) Iλ(x, µ′)dµ′, (x, µ) ∈ X

Iλ(0, µ) = I+λ (µ) if µ ∈ (0, 1] and Iλ(D,µ) = I−λ (µ) if µ ∈ [−1, 0).
(5.12)

In order to identify the droplet size distribution N , we introduce for all ε > 0 the
following least-squares problem:

inf
N∈H(R+)

Jε(N), (5.13)

where
Jε(N) = J1(N) +

ε

2
∥
√
f N∥2H(R+), (5.14)

and

J1(N) =
1
2

G∑
i=1

L∑
l=1


∫ b
a
Iλl(xi, µ) dµ−Mλl(xi)

Mλl(xi)


2

, (5.15)
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where
H(R+) =

{
N ∈ L2(R+),

∫
R+
r2N2(r)dr < +∞

}
,

endowed with the inner product:

(N,N)H(R+) =
∫

R+
r2N(r)N(r) dr.

The cost function Jε(N) defined in (5.14) represents the difference between the measured
radiation Mλl(xi) and the radiation calculated by the radiative transfer equation Fλl(xi)
at point xi for a wavelength λl; I and G represent the number of measurement points
and wavelengths, respectively. The ε-term is a regularizing term as it ensures the
well-posedness of the problem. Moreover, as a priori knowledge about the droplet size
distribution N - almost zero for small radii - that we will identify, we introduce a positive
function f that confirms that our approximated distribution is zero for small and large
drops.

Theorem 5.1. For all ε > 0, the least squares problem (5.13)-(5.14) admits a unique
solution in H(R+).

Proof. According to the results presented in Appendix B, the cost function Jε defined
in (5.14) is continuous, differentiable, and strictly convex. Then our problem (5.13)-(5.14)
admits a unique minimum.

5.3.2 The cost function gradient and the adjoint problem of
the RTE

Here we show the differentiability of the cost function and express its gradient by using
the adjoint problem associated to the radiative transfer equation.

Proposition 5.1. For all ε > 0, the function Jε is differentiable and its directional
derivative in the direction N ∈ L2(R+) is given by the following form:

∀η > 0, N ∈ L2(R+), DJε(N) ·N := lim
η→0

Jε(N + ηN)− Jε(N)
η

= (∇Jε(N), N)H(R+),

where

∇Jε(N) = −π
G∑
l=1

[
QλlextWλl(N)

]
+
π

2

G∑
l=1

[
QλlscaRλl(N)

]
+ εfN, (5.16)

with for all wavelengths λ,

Wλ(N) =
∫ 1
−1

∫ D
0
pλ(x, µ) Iλ(x, µ) dx dµ, (5.17)

Rλ(N) =
1
2π

∫ 1
µ=−1

∫ D
0
pλ(x, µ)

(∫ 1
µ′=−1

Iλ(x, µ′)
(∫ 2π
0

ψλ(r, µ0)dω
)
dµ′

)
dx dµ.
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Iλ verifies (4.23), and pλ verifies the adjoint problem defined by
−µ ∂pλ

∂x
(x, µ) + σλext(N) pλ(x, µ) = Kpλ(x, µ,N) + qλ(x, µ,N), (x, µ) ∈ X

pλ(0, µ) = 0, µ < 0 and pλ(D,µ) = 0, µ > 0,

(5.18)

with

qλ(x, µ,N) =
G∑
i=1


∫ b
a
Iλ(xi, µ) dµ−Mλ(xi)

(Mλl(xi))2

 1(a,b)(µ) δxi(x). (5.19)

Proof. The directional derivative of the cost function (5.14) according to N is given by
the following form (see Appendix C):

DJε(N) ·N =−
L∑
l=1

[
σλlext(N)

∫ 1
−1

∫ D
0
pλl(x, µ) Iλl(x, µ) dx dµ

]

+
1
2

L∑
l=1

[
σλlsca(N)

∫ 1
1

∫ D
0
pλl(x, µ)

(∫ 1
−1
Iλl(x, µ

′)Φλl
(
µ, µ′, N

)
dµ′

)
dxdµ

]

+ ε
∫ +∞
0

r2 f(r)N(r)N(r) dr.

(5.20)
Moreover,

σλlsca(N) Φλ(µ, µ
′, N) =

1
2π

∫ 2π
0

σλlsca(N)φλ(µµ
′+
√
1− µ2

√
1− µ′2 cos(ω), N) dω, (5.21)

by (3.22), and noting that µ0 = µµ′ +
√
1− µ2

√
1− µ′2 cos(ω), we have

σλsca φλ(µ0, N) =
∫ +∞
0

Qλsca(r)ψλ(r, µ0) π r
2N(r) dr, (5.22)

then

σλlsca(N) Φλ(µ, µ
′, N) =

1
2π

∫ 2π
0

∫ +∞
0

Qλsca(r)ψλ(r, µ0)π r
2N(r) dr dω, (5.23)

where ψλ is defined in (3.26).
By injecting (3.21) and (5.23) in (5.20), we get

DJε(N) ·N =− π
G∑
l=1

[∫ +∞
0

Qλlext(r)Wλl(N) r
2N(r) dr

]

+
π

2

G∑
l=1

[∫ +∞
0

Qλlsca(r)Rλl(N)r
2N(r) dr

]
+ ε

∫ +∞
0

r2 f(r)N(r)N(r) dr,

(5.24)
then, we obtain the formula (5.16).

78



5.3. Identification of the DSD by a least-squares optimization
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To use the same approximation method for the adjoint problem (5.18), we make a change
of variable of x̃ = D − x to obtain a problem similar to the radiative transfer equation.
Then, we obtain

pλ(x, µ) =



K∑
k=0

(2 k + 1) d−λ,k(x,N)Pk(2µ+ 1) if µ < 0,

K∑
k=0

(2 k + 1) d+λ,k(x,N)Pk(2µ− 1) if µ > 0.

(5.25)

where d−λ,k and d
+
λ,k are two problems similar to (4.55) and (4.54).

5.3.3 Approximation of the gradient

By injecting (4.51) and (5.25) into (5.16), and by using the trapezoidal rule for the
integral in x, the gradient for K Legendre polynomials is given as follows:

∇Jε(N) ≈− π
G∑
l=1

QλlextWλl(N) +
π

2

G∑
l=1

QλlscaRλl(N) + ε f N, (5.26)

with ∀ 1 ¬ l ¬ G

Wλl(N) ≈
S∑
i=0

wi

 K∑
j=0

(2 j + 1)
(
d−λ,j(xi, N) l

−
λ,j(xi, N) + d

+
λ,j(xi, N) l

−
λ,j(xi, N)

) ,

Rλl(N) ≈
S∑
i=0

wi

 K∑
j=0

(2 j + 1)
(
d−λl,j(xi, N)Bλ,j(xi, N) + d

+
λ,j(xi, N)Cλ,j(xi, N)

) ,
where ωi is the weights, and ∀ 0 ¬ i ¬ S, ∀ 0 ¬ j ¬ K

Bλ,j(xi, N) ≈
K∑
n=0

(2n+ 1)(Γ̃β,βλ,j,n l
−
λ,j(xi, N) + Γ̃

α,β
λ,j,n l

+
λ,j(xi, N)),

Cλ,j(xi, N) ≈
K∑
n=0

(2n+ 1)(Γ̃α,βj,n l
−
λ,j(xi, N) + Γ̃

α,α
λ,j,n l

+
λ,j(xi, N)),

where l+λ,j, l
−
λ,j is defined in (4.54)-(4.55), and Γ̃

u,v
λ,j,n are defined by:

∀j  0, ∀n  0, Γ̃u,vλ,j,n ≡ Γ̃
u,v
λ,j,n(r) =

K∑
k=0

Ãλ,k(r)uk,j vk,n,

with Ãλ,k is defined in (A.7), and u, v are defined in (A.20) of Appendix A.3.
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5.3.4 Iterative minimization algorithm

The purpose of this part is to present the numerical algorithm to approximate the
solution of the previously studied minimization problem (5.13)-(5.14). We consider the
Barzilai-Borwein minimization algorithm [190]: N0, N1 given, N0 ̸= N1,

g0 = ∇Jε(N0) and g1 = ∇Jε(N1),
and for all n  1 

∆Nn−1 = Nn −Nn−1 ; ∆gn−1 = gn − gn−1,

Nn+1 = Nn −
(∆Nn−1,∆gn−1)H(R+)
(∆gn−1,∆gn−1)H(R+)

gn,

gn+1 = ∇Jε(Nn+1).

We also mention the conjugate gradient method [152], as CG-Polak-Ribiere method
[191] and CG-Daniel method [192] which is notably used by [124] in our context. The
CG-Polak-Ribiere and CG-Daniel methods are considered as:

N0 given,

g0 = ∇Jε(N0) and d0 = −g0,
and for all k  0:

tk = arg min
t∈R+

Jε(Nk + t dk),

Nk+1 = Nk + tk dk, tk ∈ R,

gk+1 = ∇Jε(Nk+1) and dk = −gk,

βPRk =
(gk+1 − gk, gk+1)H(R+)
(gk, gk)H(R+)

for CG-Polak-Ribiere,

or βDk =
(∇2Jε(Nk)dk, gk+1)H(R+)
(∇2Jε(Nk)dk, dk)H(R+)

for CG-Daniel,

dk+1 = −gk+1 + βPRk dk or dk+1 = −gk+1 + βDk dk.

(5.27)

As presented in this chapter, our minimization problem for the identification of the
droplet size distribution is ill-posed, necessitating the introduction of minimization
problems with regularization terms. Our minimization problem with the regularization
term is solved using the gradient descent method based on calculating the gradient of
the cost function with respect to the direct problem and an adjoint problem with a point
source term that depends on the measurement points taken. This minimization problem
is numerically solved by using the Barzilai-Borwein algorithm, with a comparison to
other algorithms. In the following chapter, we present in detail the different results of
particle size distribution identifications.
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Chapter 6

Numerical results of the Droplet Size
Distribution Identification

The chapter is structured as follows. In Section 6.1, we present the numerical results
on the DSD identification with a Lambertian source using synthetic measurements
(output of simulations with real DSDs and some DSDs models as input) in Beer-Lambert
modeling case (without multiple scattering), isotropic and anisotropic collision operator
cases. We also study in this section the robustness of our identification method by
adding several noise levels to our synthetic measurements. This section is concluded
with a study of the effect of the noise on the extinction coefficient that is calculated
from the approximated distribution. Similarly to section 6.1, we present in Section
6.2 the identification of droplet size distribution using a collimated source, along with
an examination of its robustness. In Section 6.3, we present the identification results
in the anisotropic case with both Lambertian and Collimated sources by using the
Henyey-Greenstein phase function.

6.1 Droplet size distribution identification results
with Lambertian source

In this part, we present some numerical identification of the distribution N by using
synthetic measurements. We investigate the reconstruction method for different radiative
transfer model and for the 3 types of DSD presented in Figure 5.1. The identification is
done in the following four cases:

1. Beer-Lambert case with forescattering measurements (θ′ = 0◦ and α = 1◦);

2. Isotropic collision operator case with forescattering measurements (θ′ = 0◦ and
α = 1◦);

3. Isotropic collision operator case with backscattering measurements (θ′ = 180◦ and
α = 1◦);

4. Anisotropic collision operator case with backscattering measurements (θ′ = 180◦

and α = 1◦).
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6.1. Droplet size distribution identification results with
Lambertian source

These four cases can serve as representative examples of real-world scenarios, each
having diverse applications. For instance, the application of the Beer-Lambert law in
identifying particle size distributions finds relevance in various fields such as environmen-
tal spectroscopy, atmospheric science, and remote sensing, as indicated by Huige [193].
Moreover, employing this law facilitates its application in water quality control, enabling
the determination of pollutant concentrations in water, including dyes and chemicals, as
noted by HE and al. [16, 130]. The isotropic case is applicable in optical tomography, as
highlighted in Egger and Schlottbom’s work [125]. Finally, we conclude by addressing the
anisotropic case, specifically the multi-scattering scenario, which represents the general
case where the collision operator is considered for backscattering measurements. This
general case can be extended to a simple Lidar case with a phase function dependent
only on a single scattering angle.
The measurement for wavelength λl and at a point xi of the x-axis is denoted byMλl(xi).
We will test our method on synthetic measurements on which we add a noise, that is,
given a target droplet size distribution N⋆, Mλl(xi) = (1 + η U)M

synth
λl
(xi) with:

M synthλl
(xi) =

∫ cos(θ′)
cos(θ′+α2 )

Iλl(xi, µ,N
⋆) dµ , ∀ 1 ¬ i ¬ G, 1 ¬ l ¬ L, (6.1)

where G and L denote respectively the number of measurement points and wavelengths,
η denotes the noise level added to the synthetic measurement M synth, U is a random
variable with uniform law on (0, 1).
The wavelengths, for λmin = 350 and λmax = 2500, are chosen according to the following
relationship:

∀ 1 ¬ l ¬ L, λl = λmin + (l − 1)
(λmax − λmin)

G− 1
nm. (6.2)

In order to study the convergence of the minimization algorithm, we calculate at each
iteration k the relative error RE of the minimizer and the relative cost RC

RE(k) = 100×
∥Nk −N⋆∥H(R+)
∥N⋆∥H(R+)

= 100×

(
R∑
i=1

[ri(Nk(ri)−N⋆(ri))]2
)1/2

(
R∑
i=1

(riN⋆(ri))2
)1/2 ,

RC(k) =
J1(Nk)
J1(N0)

,

where R denotes the number of sub-intervals which the particle size range [rmin, rmax]
is divided into; J1 is defined in (5.15), N⋆ is the target DSD and N0 is the initial
DSD for the minimization algorithm. This algorithm is initialized by the two vectors
N0 = (1, · · ·, 1) and N1 = N0 − 0.1∇Jε(N0) in all the numerical results shown in this
section.
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Lambertian source

We perform our simulations with a Lambertian source, where the radiance at x = 0
is constant and is independent of µ (i.e we take I(0, µ) = I+(µ) = 1 and I(D,µ) =
I−(µ) = 0). We fix two choices for the couple (ε, f(r)) depending on the locations of
the DSD’s peak. We refer to Table 6.1 for the (ε, f(r)) choices after some preliminar
experiments.

Conditions ε f(r)

DSD with a peak location rm < 1µm 10−14 1/r9

DSD with a peak location rm > 1µm 10−6 1/r4

Table 6.1: Choices of the (ε, f) parameters of the cost function.

6.1.1 Determination of the best minimization algorithm

We determine the descent algorithm having the best performances by a comparison
on the Beer-Lambert modelling case (see Section 4.3.1). Forescattering measurements
are carried out (θ′ = 0◦, α = 1◦). We recall, for all ε  0, the cost function:

Jε(N) =
1
2

G∑
i=1

L∑
l=1


∫ cos(θ′)
cos(θ′+α2 )

e−σ
λl
ext(N)

xi
µ dµ−Mλl(xi)

Mλl(xi)


2

+
ε

2
∥
√
fN∥2H(R+). (6.3)

In this case (Beer-Lambert explicit solution to the RTE), we can simply compute the
gradient of Jε:

DJε(N) ·N = −
L∑
l=1

σλlext(N)
(
G∑
i=1

xiB
λl(xi)

∫ cos(θ′)
cos(θ′+α2 )

1
µ
e−σ

λl
ext(N)

xi
µ dµ

)

+ ε
∫ +∞
0

r2f(r)N(r)N(r) dr, (6.4)

with

Bλl(xi) =


∫ cos(θ′)
cos(θ′+α2 )

e−σ
λl
ext(N)

xi
µ dµ−Mλl(xi)

(Mλl(xi))2

 , 1 ¬ i ¬ G ; 1 ¬ l ¬ L.
We then obtain:

∇Jε(N) = −π
L∑
l=1

Qλlext

(
G∑
i=1

xiB
λl(xi)

∫ cos(θ′)
cos(θ′+α2 )

1
µ
e−σ

λl
ext(N)

xi
µ dµ

)
+ ε f N. (6.5)

A Gauss’s integration formula is used to compute the integral in (6.5).
A comparison between the Barzilai-Borwein minimization algorithm and the two conju-
gate gradient algorithms CG-Polak Ribière and CG-Daniel [152] is shown in Figure 6.1
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for one of the DSD of Figure 5.1(a). In these results presented in Figure 6.2, we chose
G = 50 wavelengths and one measurements point x = 0.5.

Figure 6.1: Reconstructed DSDs obtained by Barzilai-Borwein, CG-Polak Ribiere and CG-
Daniel minimization algorithms after 30 000 iterations, and PAVIN platform target DSD with
θ′ = 0◦, α = 1◦, x = 0.5 and noise level η = 0%.

Methods J1(N) relative cost relative error times

Barzilai-Borwein 9.352×10−10 8.247×10−13 2.6 % 352 iterations/s
CG-Polak Ribiere 6.332 ×10−9 5.583×10−12 1.7 % 34 iterations/s
CG-Daniel 3.341×10−6 5.541×10−5 23% 25 iterations/s

Table 6.2: The cost J1, the relative cost RC, and the relative error RE, after 30,000 iterations
for various minimization algorithms with ε = 10−14 and f(r) = 1

r9 .

After 30,000 iterations, as indicated in Table 6.2, our approximated N using the Barzilai-
Borwein algorithm exhibits an error of 2.5% compared to N⋆ a notably smaller error
than the 23% error obtained with the CG-Daniel algorithm. The identification of N
with the CG-Polak Ribiere algorithm (with an error of 1.7%) closely approaches the
identification achieved with the Barzilai-Borwein algorithm. Figure 6.1 presents the
identification of the distribution N by the Barzilai-Borwein algorithm and other used
algorithms. We give in Figure 6.2, for the 50 wavelengths between 350 and 2500 nm
used in the identification, the relative error:

Eλ = 100×
∥L⋆λ − Laλ∥L∞(X)
∥L⋆λ∥L∞(X)

,

between the radiance L⋆λ calculated from N⋆, and the radiance Laλ calculated from the
approximated distribution by the Barzilai-Borwein algorithm.
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Figure 6.2: Relative error Eλ between the radiance calculated by N⋆ and by the approximated
N (obtained by BB algorithm) w.r.t. wavelength λ.

A minimal difference is noted between the spectral radiance calculated from the target
N⋆ and the approximated N . Furthermore, when considering computing time, the
Barzilai-Borwein method is better than both conjugate gradient methods. In the case
of CG-Polak-Ribière and CG-Daniel, we employ the Trichotomy method to estimate
the value of tn in equation (5.27), and this, consequently, has an impact on the overall
calculation time. In the subsequent analysis, we will employ the Barzilai-Borwein
algorithm for the identification of the distribution N .

6.1.2 Beer-Lambert case (see Section 2.2.2)

We present in this section the identification of the droplet size distribution by using the
Beer-Lambert modeling. We show in Figure 6.3 the approximated distribution for two
droplet size distributions presented in Figure 6.4. Table 6.3 presents the values of the
relative cost and the relative error of these tests after 30,000 iterations, which suggest
that the identification is satisfactory.
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Figure 6.3: Identification results obtained after 30,000 iterations with θ′ = 0◦, α = 1◦, x = 0.5
and the noise η = 0% for 2 PAVIN platform DSDs.

Tests J1(N) relative cost relative error

Test 1 (left) 2.735×10−10 1.968×10−13 2.3 %
Test 2 (right) 1.065×10−9 5.629×10−13 2.5 %

Table 6.3: The cost J1(N), the relative cost RC, and the relative error RE after 30 000 iterations
with ε = 10−14 and f(r) = 1

r9 corresponding to Figure 6.3.

To confirm the convergence of our identification method, we test the identification for
more DSDs presented in Figure 6.4 (left). Figure 6.4 (right) represents the approximated
distributions of these DSDs where we observe a good approximation of these distributions
in this case. According to the figures, we notice that the surface of the red spot decreases
(the red spot corresponds to the peaks of DSDs presented in 6.3) and is finally replaced
by shades of yellow and blue near the value of the red spot.

Figure 6.4: The target PAVIN DSDs (left) and the identification results obtained after 30,000
iterations with θ′ = 0◦, α = 1◦, x = 0.5 and the noise η = 0%.

Figure 6.5 shows the identification results for various droplet size distributions measured
on Paris-Fog campaign [2] (see Figure 5.1(b)). Table 6.4 presents the values of the
relative cost and the relative error of these tests after 100,000 iterations. These figures
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and this table suggest that the identification is satisfactory with an error ranging between
4,7% and 8%.

Figure 6.5: Identification results obtained after 100,000 iterations with θ′ = 0◦, α = 1◦, x = 0.5
and the noise η = 0% for 4 Paris-Fog DSDs.

Tests J1(N) relative cost relative error

Test 1 (top left) 2.0137×10−7 3.325×10−10 7.6 %
Test 2 (top right) 4.924×10−8 6.379×10−11 4.7 %
Test 3 (bottom left) 3.917×10−7 5.377×10−10 8 %
Test 4 (bottom right) 1.410×10−7 1.523×10−10 7 %

Table 6.4: The cost J1(N), the relative cost RC, and the relative error RE after 100,000
iterations with ε = 10−14 and f(r) = 1

r9 corresponding to Figure 6.5.

We now test the method on the Shettle and Fenn models of Table 5.1. The identification
results are presented in Figure 6.6. Table 6.5 shows the relative cost and the relative
error of the identifications presented in Figure 6.6. For these 2 models, we obtain a
good approximation with relative error 0.43% and 2.6%, respectively. According to these
tests, we can confirm that our identification method can be applied for the large drop
distribution and not only for small drop distribution.
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Figure 6.6: Identification results obtained after 10,000 iterations with θ′ = 0◦, α = 1◦, x = 0.5
and the noise η = 0% for Shettle and Fenn DSD models.

Tests J1(N) relative cost relative error

Model 3 (left) 4.723×10−9 4.680×10−8 0.43 %
Model 4 (right) 6.828×10−6 1.099×10−6 2.6 %

Table 6.5: The cost J1(N), the relative cost RC, and the relative errorRE after 10,000 iterations
with ε = 10−6 and f(r) = 1

r4 .

6.1.3 Isotropic collision operator case

We introduce here a collision operator in the radiative transfer modelling thanks to the
isotropic phase function Φλ ≡ 1 and we then apply the DSD reconstruction method.
Note that this case does not have a physical meaning since we prescribe a given phase
function when it should depend on the DSD. Nevertheless, it has the merit of testing
our method in a more complex case than the Beer-Lambert case allowing to consider
backscattering measurements. According to Table 6.6 and Figure 6.7, we observe a good
approximation of N⋆ with either forescattering or backscattering measurements with a
relative cost less than 10−7 and a relative error less than 5 %.

Measurement type J1(N) relative cost relative error time

Forescattering 4.980×10−7 7.514×10−8 3.4% 2 iterations/min
Backscattering 7.444×10−7 2.985×10−8 4.1% 2 iterations/min

Table 6.6: The cost J1(N), the relative cost RC, and the relative error RE after 2, 000 iterations
for forescattering and backscattering measurements in the isotropic case.
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Figure 6.7: Identification results obtained after 2 000 iterations with forescattering measure-
ments (left) and backscattering measurements (right) for a PAVIN platform DSD.

To confirm our identification method, we end this part with Figure 6.8, where we present
the identification of various PAVIN DSDs presented in Figure 5.2. We observe that these
distributions are well approximated and the peak (red spot) of these distributions is
reached.

Figure 6.8: Identification results obtained with forescattering measurements (left) and backscat-
tering measurements (right) for a PAVIN platform DSDs.

In this context, it is worth mentioning that the computation time is notably longer
compared to what is achieved in the Beer-Lambert case, where we used directly the
explicit solution. As an illustration, within a minute, the Beer-Lambert model enables
21,000 iterations, whereas the isotropic and anisotropic models allow only 2 iterations.
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The reason for an extra computation time stems from the approach used to reconstruct the
DSD. During each iteration of the Barzilai-Borwein algorithm, we perform calculations
for 50 direct radiative transfer problems presented in (4.23) (depend on the choice of
the number of the wavelength) and 50 adjoint problems presented in (5.18) associated
with the radiative transfer equation. These 100 problems are subsequently solved using
a fixed-point method as mentioned in Section 4.4.2.

6.1.4 Anisotropic collision operator case

In this part, we identify the distribution N in the anisotropic case when the phase
function in the collision operator is calculated from the distribution N . From our
numerical testing, the forescattering measurements do not properly identify the droplet
size distribution. However, backscattering measurements allow us to well reconstruct
the DSD. Figure 6.9 shows the identification of DSD in backscattering measurements
after 5,000 iterations. The peak on 0.5 µm is reached.

Figure 6.9: Identification results obtained after 5 000 iterations with backscattering measure-
ments (right) for a PAVIN platform DSD in the anisotropic case with J1 ≈ 1.212 × 10−6,
RC ≈ 5.143× 10−8, and RE ≈ 7.2%.

6.1.5 DSDs identification for different visibility

In this part, we explore the identification of droplet size distribution across different
visibility and optical thicknesses, with no restriction to an optical thickness of τ = 4.
Table 6.7 represents the results obtained for distribution reconstruction under various
visibility (0.25, 0.5, and 0.75 m), considering different modeling and measurement types.
The relative error analysis indicates that our distribution is well approximated in these
scenarios. Additionally, the table includes computed visibility values at the wavelength
of 550 nm, derived from both the target and the approximated distributions.
Some researchers [193], when reconstructing the droplet size distribution, compare the
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effective radius values obtained from the target and the approximated distribution. Table
6.7 provides the relative error between the target effective radius and the approximated
effective radius, computed using the following formula:

Eeff = 100×
|r⋆eff − r

app
eff |

r⋆eff
, (6.6)

where

r⋆eff =

∫ rmax
rmin

r3N⋆(r)dr∫ rmax
rmin

r2N⋆(r)dr
and rappeff =

∫ rmax
rmin

r3Napp(r)dr∫ rmax
rmin

r2Napp(r)dr
. (6.7)

Modelling Measurement type Vm(N⋆) RC RE Eeff Vm(Napp)

Isotropic Forescattering 0.25m 6.379×10−6 10.5% 1.16% 2.511×10−1m
Isotropic Forescattering 0.5m 1.128×10−7 5.7 % 0.3 % 5.017×10−1m
Isotropic Forescattering 0.75m 6.169×10−8 4 % 0.1 % 7.516×10−1m
Isotropic Backscattering 0.25m 9.806×10−5 10 % 1.4 % 2.505×10−1m
Isotropic Backscattering 0.5m 8.266×10−8 7 % 0.73% 4.998×10−1m
Isotropic Backscattering 0.75m 3.193×10−8 4.9 % 0.72% 7.495×10−1m
Anisotropic Backscattering 0.25m 4.155×10−5 10.8% 2.38% 2.498×10−1m
Anisotropic Backscattering 0.5m 3.151×10−5 10.5% 4.75% 5.002×10−1m
Anisotropic Backscattering 0.75m 5.143×10−8 7.2 % 1.42% 7.488×10−1m

Table 6.7: The relative cost RC, the relative error RE, relative effective radius Eeff , and the
visibility (for λ = 550nm) for different modellings, measurement types and noise level η = 0%
on the measurements.

6.1.6 Noise adding on the measurements

To study the robustness of the DSD identification method, we add to the measurements a
noise level of 1% and 3%. We gather in Figures 6.10 and 6.11 the reconstructed DSD with
different noises for the following cases: forescattering and Beer-Lambert case, forescat-
tering and backscattering measurements in isotropic conditions, and backscattering
measurements in anisotropic conditions.
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Figure 6.10: Identification results with noise adding (1% on the left, 3% on the right) in
forescattering and Beer-Lambert case (first line), in forescattering and isotropic case (second
line), backscattering and isotropic case (third line).
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Figure 6.11: Identification results with noise (1% on the left, 3% on the right) in backscattering
with anisotropic case.

Modelling Measurement type Noise η relative cost RE Eeff Vm(Napp)

Beer-Lambert Forescattering 0% 8.247×10−13 2.6% 0.062% 7.501×10−1m
Beer-Lambert Forescattering 1% 3.461×10−7 19% 11% 7.453×10−1m
Beer-Lambert Forescattering 3% 3.451×10−6 31% 28% 7.478×10−1m
Isotropic Forescattering 0% 6.169×10−8 4% 0.1% 7.516×10−1m
Isotropic Forescattering 1% 9.735×10−5 20% 0.75% 7.474×10−1m
Isotropic Forescattering 3% 9.959×10−4 32% 1.91% 7.402×10−1m
Isotropic Backscattering 0% 3.193×10−8 4.9% 0.72% 7.495×10−1m
Isotropic Backscattering 1% 2.304×10−5 21% 1.83% 7.597×10−1m
Isotropic Backscattering 3% 2.327×10−4 36% 4.30% 7.845×10−1m
Anisotropic Backscattering 0% 5.143×10−8 7.2% 1.12% 7.488×10−1m
Anisotropic Backscattering 1% 2.171×10−5 25% 1.27% 7.554×10−1m
Anisotropic Backscattering 3% 2.212×10−4 46% 3.46% 7.702×10−1m

Table 6.8: The relative cost RC, the relative error RE, relative effective radius Eeff , and the
approximated visibility (for λ = 550nm) for different modellings, measurement types and noise
levels on the measurements.

Table 6.8 details values of the relative cost RC, the relative error RE, and the value of
the visibility, for λ = 550 nm, obtained by the approximated DSD for different modellings,
measurement types and noise levels on the measurements. According to Figures 6.10-6.11,
the identification results are acceptable for 1% noise level: in particular, the peak at 0.5
µm is reached. For a noise level of 3%, the approximate distribution looks different from
the target distribution. We note that in our identification method with a noise level 0%,
we find an error between 3% and 7% on the approximated DSD which are errors similar
to those found by other authors [19, 20]. Even in the cases with noise of 1% and 3%, we
find that the errors are 25% and 30-46%, respectively.
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It would be useful to study how the noise level influences the extinction value. Figure 6.12
illustrates the relative error Ẽλη in extinction for the identification results obtained in the
Beer-Lambert case (forescattering), Isotropic case (forescattering and backscattering),
and the anisotropic case (forescattering). The relative error is calculated using the
following formula:

Ẽλη = 100×
|σλext(Nηapp)− σλext(N∗)|

σλext(N∗)
, (6.8)

where Nηapp represents the approximated distribution for the noise level η=0,1, and 3.
By examining Figure 6.12, we note that the maximum relative error for the identification
of DSD by adding 3% of noise is 1% for the Beer-Lambert case, 8.6% for the isotropic
case in forescattering, 4.6% for the isotropic case in backscattering, and 3% for the
anisotropic case.

Figure 6.12: The relative error Ẽλη on the extinction coefficient, obtained by (6.8), for the
identification results in the Beer-Lambert case for forescattering (top left), Isotropic case for
forescattering (top right), backscattering (bottom left), and the anisotropic case for backscat-
tering (bottom right).
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6.2 Droplet size distribution identification results
with collimated source

In this section, we perform the same tests with PAVIN fog distribution presented
in previous section but by using the irradiance measurements and a collimated source,
where the radiance at x = 0 is dependent of µ (i.e we take I(0, µ) = I+(µ) = δ1(µ) and
I(D,µ) = I−(µ) = 0).
In this case, the irradiance measurements can be approached by the following integral

∀ 1 ¬ i ¬ G, 1 ¬ l ¬ L, Mλl(xi) =
∫ b
a
µ I⋆λl(xi, µ) dµ, (6.9)

and the two coefficient a and b are given by the following form

a = cos
(
θ′ +

π

2

)
; b = cos(θ′), (6.10)

where θ′ = 0 for forescattering case and θ′ = 180 for the backscattering case. Then, our
inverse problem becomes similar to problem posed in (5.13) and (5.14) where

J1(N) =
1
2

G∑
i=1

L∑
l=1


∫ b
a
µ Iλl(xi, µ) dµ−Mλl(xi)

Mλl(xi)


2

. (6.11)

Jε is strictly convex, continuous and differentiable (the proof of these properties are
similar to the proof presented in Appendix B for the problem (5.14)). Then, our updated
problem admits a unique minimum. The gradient of Jε (5.16) in Proposition 5.1 stays
true where Iλ verifies (4.23), but pλ verifies the adjoint problem defined by
−µ ∂pλ

∂x
(x, µ) + σλext(N) pλ(x, µ) = Kpλ(x, µ,N) + qλ(x, µ,N), (x, µ) ∈ X

pλ(0, µ) = 0, µ < 0 and pλ(D,µ) = 0, µ > 0,

(6.12)

with

qλ(x, µ,N) =
G∑
i=1


∫ b
a
µ Iλ(xi, µ) dµ−Mλ(xi)

(Mλl(xi))2

 µ 1(a,b)(µ) δxi(x). (6.13)

As demonstrated in Figure 6.13, our identification results are deemed reliable when
the noise level is set at 1%, notably achieving a peak at 0.5 µm. However, when the
noise level is increased to 3%, the reconstruction starts to show noticeable changes.
Table 6.9 provides a comprehensive overview of the values for the cost function J1(N),
the relative cost RC, and the relative error RE for various modeling approaches, types
of measurements, and different levels of noise added to the measurements.
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Figure 6.13: Identification results for collimated source obtained with forescattering measure-
ments and Beer-Lambert modelling (top left) with forescattering measurements, isotropic
modelling (top right), backscattering measurements and isotropic modelling (bottom left) and
backscattering measurements and anisotropic modelling (bottom right) for a PAVIN platform
DSDs.
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Modelling Measurement type Noise η J1(N) relative cost relative error

Beer-Lambert Forescattering 0% 1.728×10−9 2.374×10−12 3.6 %
Beer-Lambert Forescattering 1% 9.488×10−4 1.842×10−6 16 %
Beer-Lambert Forescattering 3% 7.253×10−3 7.135×10−6 30 %
Isotropic Forescattering 0% 7.809×10−7 2.434×10−7 6 %
Isotropic Forescattering 1% 7.124×10−4 2.224×10−4 27 %
Isotropic Forescattering 3% 6.856×10−3 2.136×10−3 38 %
Isotropic Backscattering 0% 7.551×10−7 3.027×10−8 4 %
Isotropic Backscattering 1% 5.554×10−4 2.227×10−5 21 %
Isotropic Backscattering 3% 5.686×10−3 2.279×10−4 37 %
Anisotropic Backscattering 0% 3.529×10−6 1.413×10−7 10 %
Anisotropic Backscattering 1% 5.203×10−4 2.084×10−5 28 %
Anisotropic Backscattering 3% 5.258×10−3 2.106×10−4 38 %

Table 6.9: The cost J1(N), the relative cost RC and the relative error RE for different
modellings, measurement types and noise levels on the measurements with collimated source.

Similar to the identification obtained in the case of Lambertian source, we present in
Figure 6.14 the identification results of various DSDs obtained by using a Collimated
source without noise levels on our measurements. According to this figure, we observe
that our distribution is well approximated for the different modeling types.

Figure 6.14: The target PAVIN DSDs (left top), the identification results, by using a collimated
source, obtained with forescattering measurements, isotropic modelling (top right), backscat-
tering measurements and isotropic modelling (bottom left), and backscattering measurements
and anisotropic modelling (right bottom) for η=0%.
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The robustness of the reconstruction in the isotropic case obtained in Figure 6.14 are
also presented in Figure 6.15 for the noise level η=1% and 3%.

Figure 6.15: Identification results of various PAVIN DSDs, by using a collimated source, obtained
with forescattering measurements, isotropic modelling (left), backscattering measurements and
isotropic modelling (right) for η=1, and 3%.

6.3 Identification with Henyey-Greenstein phase func-
tion

In this section, we want to identify the DSDs by using the Henyey-Greenstein phase
function for the collision operator

(KI)λ =
σλsca(N)
2

∫ 1
−1
Φλ(µ, µ′, N) Iλ(x, µ′)dµ′. (6.14)

The Henyey-Greenstein model, as described in [163], has a phase function that is not
dependent on the droplet size distribution, unlike the Lorenz-Mie model. Instead, it
depends on the anisotropy factor g. For additional details on this phase function, see
Section 3.3.1 of Chapter 3.

Φ(cosΘ) =
1
4π

1− g2

(1 + g2 − 2g cos(Θ)) 32
, (6.15)

where Θ is the scattering angle.
We compare the phase function produced by Lorenz-Mie theory for one droplet size
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distribution in Figures 5.1a (with extinction coefficient σext = 4m−1) with the phase
function of Henyey-Greenstein for different values of g in Figures 6.16. We use MiePlot
[180] to compute the Lorenz-Mie phase function, which is a computer program for
scattering light from a sphere using Mie theory. We observe, from Figures 6.16, that
the Henyey-Greenstein for g = 0.9 is very close to the Mie phase function when the
scattering angle closed to 0, this is not the case for the large scattering angles. But
according to these curves, we can clearly see that the most important values of the phase
function are for the smallest angles.

Figure 6.16: Comparison between the phase function computed by Lorenz-Mie theory (by
using MiePlot [180]) for a one droplet size distribution in Figures 5.1a, and the phase function
of Henyey-Greenstein for different values of g by using equation (6.15).

To identify the droplet size distributions by using these phase functions, we need to
decompose them on a Legendre basis. For the decomposition of the Lorenz-Mie scattering
phase function, we can see Lemma A.1 in Appendix A.2. similarly, for the decomposition
of the Henyey-Greenstein phase function we can see equation (3.11) for Section 3.3 with
αk = gk. As mentioned in Section 4.5 of Chapter 4, to approximate the radiative transfer
equation, we used 50 Legendre polynomials. We present in Figure 6.17 a comparison
between the Lorenz-Mie phase function and the Henyey-Greenstein phase function
obtained by using the decomposition on K = 50 the Legendre polynomials.
We observe in Figure 6.17 that the phase function obtained by decomposition on Legendre
polynomials, both in Lorenz-Mie and Henyey-Greenstein, oscillate for large scattering
angles. In relation to the numerical approximation of the radiative transfer equation, it
is important to note that the oscillation does not have any impact on its values (see
Section 4.5 of Chapter 4).
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Figure 6.17: Comparison between the phase function computed by Lorenz-Mie theory by using
MiePlot [180] and the decomposition with K = 50 for a one droplet size distribution in Figures
5.1a, and the phase function of Henyey-Greenstein for g = 0.9 by using equation (6.15), and
by the decomposition with K = 50.

Figure 6.18 represents the approximation of one droplet size distribution by using the
Henyey-Greenstein phase function for an anisotropy factor g = 0.9 for different noise
level η. Furthermore, Table 6.10 details values of the relative cost RC, the relative
error RE obtained for different source types, measurement types and noise levels on the
measurements. These results obtained by using the Henyey-Greenstein phase function
for the two types of source and different noise level are similar to the results obtained
by using the Lorenz-Mie phase function presented in Tables 6.8-6.9.

Figure 6.18: The approximated of the PAVIN DSDs in the case of: Lambertian source by using
the radiance measurements (left), and Collimated source by using the irradiance measurements
(right) with the decomposed Henyey-Greensterin phase function with g = 0.9 for different
values of noise η.
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Measurements type Source type Noise η J1(N) relative cost relative error

Radiance measurements Lambertian 0% 1.535×10−6 6.151×10−6 8.3 %
Radiance measurements Lambertian 1% 5.055×10−4 2.025×10−5 23 %
Radiance measurements Lambertian 3% 5.356×10−3 2.145×10−4 36 %
Irradiance measurements Collimated 0% 1.233×10−6 4.938×10−8 8 %
Irradiance measurements Collimated 1% 5.133×10−4 2.055×10−5 24 %
Irradiance measurements Collimated 3% 5.290×10−3 2.118×10−4 37 %

Table 6.10: The cost J1(N), the relative cost RC, and the relative error RE with ε = 10−14

and f(r) = 1
r9 corresponding to Figure 6.18.

Figure 6.19: The approximation of the PAVIN DSDs for: Lambertian source by using the
radiance measurements (left), and Collimated source by using the irradiance measurements
(right) with the decomposed Henyey-Greensterin phase function with g = 0.9.

To be more general and to show the convergence of our identification method, we present
in Figure 6.19 the approximation of various droplet size distribution presented in Figure
5.2 by using the Henyey-Greenstein phase function for an anisotropy factor g = 0.9.
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6.3. Identification with Henyey-Greenstein phase function

Without a noise level, we observe a good approximation of the DSDs. For a noise η = 1%,
the red part (the peak of DSDs) begin to change but we obtain almost the same form of
the results obtained without noise level. For a noise η = 3%, we observe that the peak
is reached for some distributions, but less well than that with 1%.
According to the results presented in this chapter, we deduce that the droplet size distri-
bution identification method is tested for different model and measurements types. As we
have seen, the reconstruction of the DSD in the anisotropic case requires measurements
in backscattering. Additionally, the identification method is tested for different levels of
visibility (0.25 m, 0.5 m, 0.75 m). These visibility levels are tested using the normalized
problem in the spatial domain (0,1). Comparisons between the identification results of
the granulometric distribution using the Mie phase function and the Henyey-Greenstein
phase function have been obtained. In some cases, the robustness of our identification
method has been studied with different levels of noise on synthetic measurements. The
relative errors on our approximated distribution obtained are in the range of 30 to 40
%. Furthermore, the effect of different levels of noise on the value of various optical
parameters (e.g., extinction coefficient, visibility) is studied. These results show that the
relative errors on the extinction coefficient do not exceed 8 % for a noise level of 3 %
(where the relative error in the approximate distribution is almost 40 %). Additionally,
our identification method is tested for different types of distributions, such as the natural
fog distribution measured in the Paris fog campaign in Paris in 2007, and also on models
like the Shettle and Fenn model, which represents fog with large droplets.
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Chapter 7

Experimental measurements and 3D
numerical simulations

According to previous results presented in this thesis, the method of fog droplet size
distribution identification was made using a 1D model of the radiative transfer equation
and synthetic radiation measurements (as presented in Chapter 6). The next step
towards achieving a higher goal is the identification of the droplet size distribution
from experimental measurements collected in the PAVIN Fog&Rain platform of Cerema.
To achieve this objective, we must understand cases where our developed 1D model is
representative of the experiments. Recalling that the 1D slab model used in this work is
in fact a 3D model in which the propagation depends only on one space dimension, it
can be representative of experimental measurements in the case where measurements are
made with an infinite planar Lambertian light source or very close to a sufficiently large
source, which is difficult to access in the PAVIN platform of dimension 30×5.5×2.25 m
platform. The second possibility of applying our 1D identification method of the droplet
size distribution is to use a collimated source and to perform measurements around its
revolution axis. This latter option will be investigated in the future.
In the case where the source used is not large enough or collimated, which is the case of
the source used at the PAVIN platform of Cerema (the characteristics of this source
are given in detail in this chapter), we must go further from the identification of the
droplet size distribution by a 1D model and develop an identification model based on a
3D radiative transfer equation. To achieve this objective, we present in this chapter a
preliminary work based on comparisons of the 3D model simulated thanks to the SWEET
simulator developed at Cerema and experimental measurements. In these comparisons,
we used the droplet size distributions that are already measured in the platform PAVIN
by particle size analyzers PALAS WELAS 2100 [24] presented in Figure 1.18. These
comparisons are very preliminar and will serve as seminal works for further extensive
studies.

This chapter is organised as follows. Section 7.1 provides a review of the three-dimensional
stationary radiative transfer equation and explains the numerical method used to approx-
imate them using the SWEET simulator developed at Cerema. The characterisation of
the source used in our experimental measurements on the PAVIN platform is described
in section 7.2. We end this chapter with Section 7.3, in which we compare the numerical
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data procured through the use of the SWEET simulator with the experimental data
performed in PAVIN platform.

7.1 Introduction

Our aim is to compare numerical simulations of the 3D radiative transfer equation
with the experimental results obtained from the PAVIN platform. In the realm of three-
dimensional modeling, complexity arises as boundary conditions are no longer established
directly on the source and sensor. Instead, these conditions are applied to the walls,
floor and ceiling of the fog platform. Measurements with the spectroradiometer leads
to a reflectance below 4% for wavelengths ranging in [350 nm, 2500 nm]. This implies
that the wall’s albedo is zero, signifying complete absorption of light with no emission
(we do not work in the thermal domain). We recall, from Chapter 3, the following three
dimensional stationary radiative transfer equation.

u · ∇rIλ(r, u) + σλext(N)Iλ(r, u) =
σλsca(N)
4π

∫
S2
Iλ(r, v)Φλ(r, v, u) dv, (7.1)

where σλext and σ
λ
sca are the extinction and scattering coefficients defined in (3.21) and

Φλ is the phase function satisfying

∀(u, v) ∈ S2 × S2,
1
4π

∫
S2
Φλ(u, u′)dΩ′ = 1. (7.2)

The full Monte-Carlo simulator developed by Cerema, called SWEET [38] (Simulating
WEather for intElligent Transportation systems) to calculate and simulate irradiances
or radiances uses a Monte-Carlo method by Backward Ray-Tracing, i.e the photons are
launched from the sensor and are traced back to the light source by going up the light
path while taking into account the possible interactions with the water droplets present
in the medium. The SWEET simulator developed by Cerema is a research-oriented and
physically based simulator for internal use complementary to the Fog and Rain PAVIN
platform. It is written in C++, runs on Linux and Microsoft Windows and uses OpenCL
for GPU computing.
SWEET uses a Monte-Carlo method, specifically employing a backward approach, to
solve the Radiative Transfer Equation (RTE) in a medium that participates. This
technique is predicated on volumetric path tracing. To accomplish this, photons move
in the medium and their interactions with droplets of fog are simulated through a
stochastic process [194]. In detail, a photon is randomly sampled from the observation
point and traced along a random direction at the speed of light. The duration of the
trace is dictated by an exponential probabilistic law. If the photon reaches a light source,
the random trajectory ends. Otherwise, if it interacts with an object, the reflective
properties of the surface change the photon’s direction. If neither a source nor an object
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7.2. Representation of the source

is encountered, the phase function is used to sample a new direction, representing a
collision with a water droplet. This is combined with a new duration, and the process is
repeated iteratively until either a source or an absorbing material is encountered.
In this chapter, we are focused on calculating the irradiance Eλ, which is the integration
of radiance at r ∈ R3 for a given wavelength λ:

Eλ(r) =
∫ 2π
0

∫ π/2
0

Iλ(r, θ, ϕ) cos(θ) sin(θ) dθ dϕ. (7.3)

7.2 Representation of the source

In this section, we present the details of the source presented in Figure 7.1 (left) used for
the experimental measurements carried out on 21 March 2023 on the PAVIN Fog&Rain
platform at Cerema. The source used has a dimension of 36 cm × 36 cm and has been
calibrated.
In photometry, luminous flux or luminous power is the measure of the perceived power
of light. It differs from radiant flux, the measure of the total power of electromagnetic
radiation (including infrared, ultraviolet, and visible light), in that luminous flux is
adjusted to reflect the varying sensitivity of the human eye to different wavelengths
of light. The SI unit of luminous flux is the lumen (lm). One lumen is defined as the
luminous flux of light produced by a light source that emits one candela (cd) of luminous
intensity over a solid angle of one steradian (sr). The total luminous flux obtained by
our calibrated source is equal to 4003 lm with an efficiency of 80 lm/W. Also, we give in
Figure 7.1 (right), the intensity of the source as a function of the wavelengths between
450 nm and 900 nm for different distance values. These data was sent by ARDOP
Industrie [195].

Figure 7.1: Representation of the source used in our experimental measurements obtained from
ARDOP Industrie [195] (left), and the intensity in function of the wavelengths for different
distance was sent by ARDOP Industrie (right).

105



7.3. Comparison between experimental and numerical data

7.3 Comparison between experimental and numeri-
cal data

We will begin this section by describing the experimental methodology used to carry
out the measurements on the PAVIN platform of Cerema. The source of dimension
36 cm × 36 cm is positioned at the beginning of the platform. In addition, a PSR+
spectroradiometer (see Table 7.1) is positioned at a distance d from the source. The
distance can be changed along the platform. The PSR series spectroradiometers are
highly efficient portable devices, covering a very broad range of wavelengths from 320nm
to 2500nm. As explained in Figure 7.2, this spectroradiometer is equipped with a silicon
sensor for the UV-VIS-NIR range and two cooled InGaAs sensors for the SWIR range.
These InGaAs sensors enhance performance in SWIR bands 1 and 2 and greatly improve
the signal-to-noise ratio for optimal acquisition quality.

Figure 7.2: Diagram of the principle of operation of the spectroradiometer PSR+.

Model PSR+ Spectrum 350-2500 nm
Dimension 21.6×29.2×8.25 cm−3 Wavelength accuracy ±0.5nm bandwidth
weight 3.5 kg Radiance Max 1,5×10−4 W/cm2 /nm/sr

Table 7.1: Characterization of Cerema’s PSR+ spectroradiometer.
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7.3. Comparison between experimental and numerical data

Figure 7.3: Comparaison between experimental data and ARDOP data for different distances
without fog

To demonstrate the similarity between our experimental data and that sent by ARDOP,
Figure 7.3 displays our results alongside ARDOP’s original data. Now that it has been
confirmed that the experimental measurements are consistent with the data provided by
ARDOP for specific measurement points in non-foggy conditions, the next step is to
verify the experimental data using numerical simulations.
We will describe the process of modelling the platform and measuring instruments.
Initially, we need to create models in SketchUp software as shown in Figure 7.4, which
will be fed into a 3D simulator specifically designed by Amine Ben Daoued.

Figure 7.4: SketchUp modelling of the source (left), and of the PAVIN Fog&Rain platform
(right)

This simulator will use the Monte-Carlo method for backward ray-tracing to calculate
and simulate irradiances or radiances. The next step involves creating a model of the
platform in SketchUp by adding materials on the walls, which will be utilized later to

107



7.3. Comparison between experimental and numerical data

apply our boundary conditions.
To facilitate a comparison between the numerical outcomes obtained through the Monte-
Carlo algorithm and the experimental data, we evaluate a ratio based on measurement
points and wavelengths employed.
Let

C(x, λ) =
Experimental(x, λ)
Simulation(x, λ)

. (7.4)

For the case without fog, we present in Figure 7.5 the value of the ratio C as a function
of different distances x and wavelengths λ. Based on this figure, it can be inferred that
our numerical simulation closely matches the experimental measurements in non foggy
conditions, indicating the accuracy of our simulation.

Figure 7.5: The ratio C in the case without fog.

Figure 7.6: Experimental approach used to carry out the measurements on the PAVIN Fog&Rain
platform of Cerema
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7.3. Comparison between experimental and numerical data

Figure 7.7: The ratio C in the case with fog for different visibility.

Our current goal is to assess the performance of our simulator under varying visibility
conditions in fog. We conducted some tests according to the protocol depicted in Figure
7.6 in a case with fog. Figure 7.7 illustrates the C ratio, as defined in equation (7.4),
across different particle size distributions corresponding to various levels of visibility
presented in Figure 7.8.

Figure 7.8: Artificial fog droplet size distributions used in the SWEET simulator measured at
PAVIN platform of Cerema for different visibility.
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Figure 7.7 demonstrates that the ratio C approaches 1 when the visibility in fog is 40,
50, or 60 meters. Furthermore, it can be observed that for greater distances with low
visibility (as shown in the first three figures in Figure 7.7), there exists a disparity between
the numerical simulation and the experimental data. This results can be confirmed in
Figure 7.9 where we plotted mean on wavelength of C defined in (7.4).

Figure 7.9: The mean of ratio C in the case with fog in function of different extinction
coefficient.

According to the findings outlined in this chapter, it can be inferred that the results of
3D simulations closely align with experimental measurements conducted at the PAVIN
platform, with the exception of specific situations involving measurements taken at a
large distance from the source in conditions of dense fog.
These preliminary results are interesting since they show a roughly good agreement
between 3D SWEET simulator and experimental measurements. Nevertheless they
highlight some gaps which could be explained by the use of DSD measured locally
in the platform with the PALAS device. This observation reinforces the decision to
develop a droplet size distribution identification method based on a comprehensive
3D model of the radiative transfer equation. Moreover, it is essential to note that our
methodology in this study assumes a homogeneous fog in which the DSD is constant
over the whole platform and optical properties do not vary with spatial parameters.
This assumption could contribute to the variation observed between simulations and
experimental measurements is some cases. This highlights the motivation to expand the
3D model to take into account the optical properties that depend on spatial parameter.
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Chapter 8

Conclusions and perspectives

8.1 Conclusion

The droplet size distribution (DSD) in a fog or cloud has an impact on the optical
properties of the medium and its knowledge is therefore necessary to take into account
clouds or fogs in meteorological models for example. We developped this work of
identifying DSDs for another application than meteorology, namely the evaluation of
optical sensors such as cameras, RADARs or LiDARs in adverse weather conditions for
applications to intelligent transport systems.

We proposed an identification method based on radiation measurements at different
wavelengths in the 350 nm - 2500 nm spectral band and the inversion of radiative
transfer models. We assumed that the medium in which the measurements were made
could be considered as optically homogeneous and that the radiative transfer within it
could be modelled by a one-dimensional space equation. We then considered a complete
modelling of the radiative transfer equation by taking into account a collision operator
provided by the DSD via the Mie theory.

A least-squares method combined with the Barzilai Borwein algorithm has been
used to identify the droplet size distribution (DSD) from radiation measurements. The
minimization of the cost function required to calculate its gradient with respect to the
DSD, what was done thanks to the resolution of an adjoint problem to the radiative
transfer equation.

Inspired by Yvon’s works, a decomposition method on the double Legendre basis
has been used to approximate the stationary radiative transfer equation and its adjoint.
The numerical method has been evaluated and validated on several explicit solutions of
the stationary radiative transfer equation. In addition, an extensive numerical study
was carried out to determine the convergence errors in the proposed numerical methods.
A comparison between the Barzilai-Borwein algorithm and two algorithms based on the
conjugate gradient was performed. It concluded that the Barzilai-Borwein method was
more efficient than the other two and all numerical applications were performed with
this algorithm.

Various models describing fog DSDs (Shettel and Fenn) and real DSD measured
in natural conditions (Paris Fog campaign) or in artificial conditions (Cerema PAVIN
platform) are used to compute synthetic radiation measurements via Mie theory and
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the radiative transfer equation under different assumptions (Beer-Lambert modelling,
isotropic or anisotropic collision operator).
Afterwards, the identification of the DSDs was carried out using these three radiative

transfer modellings. In the Beer-Lambert case, the DSD reconstruction was successful
by using forescattering measurements. In case of a modelling with an isotropic collision
term, forescattering or backscattering measurements led to well reconstruct the DSD.
From our numerical experiments, the identification method in the anisotropic case
requires backscattering measurements. Furthermore, we test our identification method
using other type of sources such as collimated sources by performing the irradiance
measurements. We studied also the identification of DSD in the anisotopic case by
using the Henyey-Greenstein function where we obtained a good approximation of the
distributions.
We also explored in this thesis the robustness of the method by adding a several

noise levels on our synthetic measurements and constated that the DSD reconstruction
is very sensitive with respect to the noise adding on measurements. In some case, we
compare the values of approximated extinction coefficient computed in function of
wavelengths from the approximated DSD and the target extinction coefficient by using
the Lorenz-Mie formula.
Particle size distribution identifications constitute a wide area of research, and

numerous unresolved issues necessitate further exploration of light scattering theory and
particle size distribution inversion approaches.

8.2 Perspectives

The improvement of the identification process for droplet size distribution (DSD)
presents a promising direction for future exploration. This will involve investigating
advanced optimization techniques, innovative algorithms, and integrating data from a
range of sensor sources to enhance its precision and versatility.
Expanding the use of this methodology to other weather conditions, such as heavy

rainfall, snow, smoke or dust offers valuable insights into its durability in different
atmospheric contexts, allowing for crucial adjustments to enhance its wider applicability
to automated transportation safety purposes. It is important to notice that the real-time
identification of PSD could present a challenging objective for future works related to
application for algorithms embedded in vehicles. It will enable continuous analysis for
critical applications such as intelligent transport systems, which will require adaptations
to accommodate dynamic atmospheric conditions.
Adapting the methodology to other areas, including environmental remote sensing

or atmospheric monitoring, could be investigated. This evaluation of its versatility across
different contexts positions the developed methodology in our works as a transdisciplinary
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tool. Improvement of the methodology’s accuracy remains a key trajectory through
continual exploration of more sophisticated light scattering models, such as T-matrix
method extending the Mie theory.
We detail below more precise perspectives.

8.2.1 Experimental validation of the identification method

The most important aspect is to validate our method through experiments in real
conditions and not only, as made in this thesis, with synthetic measurements.
Field measurement campaigns would enable us to compare the results obtained

with our method to real data, thereby reinforcing the credibility of our approach. As
explained in Chapter 7, it would be necessary to perform experiments in the PAVIN
platform for which a 1D modelling is relevant: the use of a collimated source could be
useful in this way.
An other perspective is to pursue the works started in Chapter 7 concerning the

comparison between real measurements and numerical simulations using a 3D Monte-
Carlo method to approximate the RTE. The results show that 3D simulations performed
by the SWEET simulator are close to real measurements in several cases. All the
theoretical calculations made in Chapter 5 have to be adapted to the 3D case. The
computing time necessary for the identification process will be an important issue to
overcome. The measurements are local and then a Monte Carlo approach is relevant
to simulate the radiance at local points, contrarily to deterministic methods, but the
gradient expression of the cost function involves integral over the space domain of the
radiance and the adjoint state: this will increase considerably the computing time. It
will then be necessary to adopt particular numerical integration schemes in order to
reduce this time.

8.2.2 Application in other fields

Exploring other application areas for our method offers an opportunity to broaden
the impact and relevance of our work. For example, the application of the droplet size
distribution reconstruction could be expanded in the future to other environments, such as
dust, which is of interest for mobile agricultural robotics in the field of AgroTechnologies
where the environment is often challenging to control. A project is already underway at
Cerema in collaboration with the research unit Technologies and Information Systems for
Agrosystems (TSCF), affiliated with the INRAE Clermont Auvergne-Rhône-Alpes Center.
This unit conducts advanced research in key areas such as agriculture, environment, and
food. It is also involved in research, expertise, and testing activities focused on the safety
and performance of agro-equipment, contributing to improving safety in agriculture and
reducing agricultural-origin pollution.
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In addition, the work carried out in this thesis is under the hypothesis of non-
polarized light, future work will be launched at Cerema using the polarization of light
by the use of polarimetric camera. Light polarization is a property of light waves that
depicts the direction of their oscillations. A polarized light vibrates or oscillates in only
one direction. This is in contrast to a nonpolarized light that vibrates in many directions.
A polarized light may be plane-polarized, circularly polarized or elliptical-polarized
light based on the net direction of the vibrations. Experimental results have already
been obtained on the characterization of the backscattering of polarized light in foggy
environments, see e.g. [196, 197].
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Appendix A

Decomposition on the basis of Legen-
dre polynomial

A.1 Decomposition of S1 and S2 on the basis of Leg-
endre polynomial

In order to approximate the solution of the radiative transfer equation by using
the decomposition on the double of Legendre basis, it is necessary to compute the
decomposition of the Lorenz-Mie scattering phase functions defined in (3.26). In the
following section, we provide the decomposition of S1 and S2 as presented in equations
(3.12)-(3.13). It is important to note that the Legendre polynomials are defined for all
µ ∈ [−1, 1] and can be computed using the following recurrence (as described in [168]):


P0(µ) = 1 , P1(µ) = µ,

∀n  1, Pn+1(µ) =
(2n+ 1)
(n+ 1)

µPn(µ)−
n

(n+ 1)
Pn−1(µ).

(A.1)

To compute the decomposition

∀µ ∈ [−1, 1], S1(µ) =
+∞∑
i=0

αi Pi(µ) ; S2(µ) =
+∞∑
i=0

βi Pi(µ) (A.2)

of S1 and S2 on the basis of Legendre polynomial, we express the polynomials πn and
τn occurring in (3.12)- (3.13) in function of the Legendre polynomials (Pn)n0 and we
obtain the following decomposition:

π0 = 0, and ∀n  1, π2n =
n−1∑
k=0

(4k + 3)P2k+1, π2n−1 =
n−1∑
k=0

(4k + 1)P2k, (A.3)

τ0 = 0, τ1 = P1, τ2n = (2n)2−
n−1∑
k=0

(4k+1)P2k, τ2n−1 = (2n−1)2−
n−2∑
k=0

(4k+3)P2k+1. (A.4)
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By injecting (A.3),(A.4) in (3.12),(3.13), and (A.10), we obtain after some computations:

∀k  0,



α2k =
+∞∑
n=k∨2

p1(n, k) +
(3
2
a1 −
5
6
b2

)
δk0 +

10
3
b2δk1

α2k+1 =
+∞∑

n=(k+1)∨2
i1(n, k) +

(3
2
b1 +
5
2
a2

)
δk0

∀k  0,



β2k =
+∞∑
n=k∨2

p2(n, k) +
(3
2
b1 −
5
6
a2

)
δk0 +

10
3
a2δk1

β2k+1 =
+∞∑

n=(k+1)∨2
i2(n, k) +

(3
2
a1 +
5
2
b2

)
δk0

with for n  2 :

p1(n, k) = −
(4n+ 1)(4k + 1)
2n(2n+ 1)

b2n +
(4n− 1)(4k + 1)
2n(2n− 1)

a2n−1, 0 ¬ k ¬ n− 1

p1(n, n) =
4n+ 1
2n(2n+ 1)

(2n)2b2n
i1(n, k) = −

(4n+ 1)(4k + 3)
2n(2n+ 1)

a2n −
(4n− 1)(4k + 3)
2n(2n− 1)

b2n−1, 0 ¬ k ¬ n− 2

i1(n, n− 1) =
(4n+ 1)(4n− 1)
2n(2n+ 1)

a2n +
4n− 1
2n(2n− 1)

(2n− 1)2b2n−1
p2(n, k) = −

(4n+ 1)(4k + 1)
2n(2n+ 1)

a2n +
(4n− 1)(4k + 1)
2n(2n− 1)

b2n−1, 0 ¬ k ¬ n− 1

p2(n, n) =
4n+ 1
2n(2n+ 1)

(2n)2a2n
i2(n, k) = −

(4n+ 1)(4k + 3)
2n(2n+ 1)

b2n −
(4n− 1)(4k + 3)
2n(2n− 1)

a2n−1, 0 ¬ k ¬ n− 2

i2(n, n− 1) =
(4n+ 1)(4n− 1)
2n(2n+ 1)

b2n +
4n− 1
2n(2n− 1)

(2n− 1)2a2n−1.

A.2 Decomposition of the phase function on Legen-
dre basis

In this appendix, we present the decomposition of the phase function Φλ, defined
in (4.25) in Chapter 4, on Legendre polynomials basis [198].
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Lemma A.1. The phase function Φλ defined in (4.25) can be decomposed as follows:
∀ (µ, µ′) ∈ [−1, 1]2, ∀N ∈ L2(R+),

Φλ(µ, µ′, N) =
+∞∑
k=0

Aλ,k(N)Pk(µ)Pk(µ′), (A.5)

with

Aλ,k(N) =
1

σλsca(N)

∫ +∞
0

Qλsca(r)Ãλ,k(r) π r
2N(r) dr, (A.6)

and

∀ r > 0, Ãλ,k(r) =
λ2(2k + 1)
4 π2 r2Qλsca(r)

+∞∑
i=0

+∞∑
j=0

(αi αj + βi βj)
∫ 1
−1
Pi(µ)Pj(µ)Pk(µ) dµ, (A.7)

where α, β ∈ C are determined in Appendix A.1. α, β are the complex conjugates of α, β
and we have [199]:

∫ 1
−1
Pi(µ)Pj(µ)Pk(µ)dµ =


0 if i+ j < k or j + k < i or i+ j + k is odd

2
(2s− 2i)(2s− 2k)(2s− 2j)

(2s− 1)!

[
s!

(s− i)!(s− j)!(s− k)!

]
else,

with s = (i+ j + k)/2.

Proof. Let us assume that the functions S1 and S2 defined by

S1(µ) =
+∞∑
n=1

2n+ 1
n(n+ 1)

(an(r, λ)πn(µ) + bn(r, λ)τn(µ)) , (A.8)

S2(µ) =
+∞∑
n=1

2n+ 1
n(n+ 1)

(bn(r, λ)πn(µ) + an(r, λ)τn(µ)) , (A.9)

are decomposed on the Legendre basis (Pk)k0 as follows (see Appendix A.1):

∀µ ∈ [−1, 1], S1(µ) =
+∞∑
i=0

αi Pi(µ) ; S2(µ) =
+∞∑
i=0

βi Pi(µ). (A.10)

From (3.26) and by using equationA.10, we deduce that

ψλ(r, µ) =
λ2

2 π2 r2Qλsca(r)

+∞∑
i=0

+∞∑
j=0

(αi αj + βi βj)Pi(µ)Pj(µ)

=
+∞∑
k=0

Ãλ,k(r)Pk(µ).

(A.11)
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where Ã defined in A.7.
Moreover,

φλ(µ,N) =
1

σλsca(N)

∫ +∞
0

Qλsca(r)ψλ(r, µ) π r
2N(r) dr

=
1

σλsca(N)

∫ +∞
0

Qλsca(r)
(+∞∑
k=0

Ãλ,k(r)Pk(µ)
)
π r2N(r) dr

=
+∞∑
k=0

Aλ,k(N)Pk(µ),

(A.12)

where
Aλ,k(N) =

1
σλsca(N)

∫ +∞
0

Qλsca(r)Ãλ,k(r) π r
2N(r) dr. (A.13)

Then,

Φλ(µ, µ′, N) =
1
2π

∫ 2π
0

φλ(µµ′ +
√
1− µ2

√
1− µ′2 cos(ω), N) dω

=
1
2π

+∞∑
k=0

Aλ,k(N)
∫ 2π
0

Pk(µµ′ +
√
1− µ2

√
1− µ′2 cos(ω))dω,

(A.14)

using Legendre’s polynomial addition theorem [168]: for all n  1,
∀ (µ, µ′) ∈ [−1, 1]2,∀w ∈ [0, 2π],

Pn

(
µµ′ +

√
1− µ2

√
1− µ′2 cosw

)
= Pn(µ)Pn (µ′) + 2

n∑
m=1

(n−m)!
(n+m)!

Pmn (µ)P
m
n (µ

′) cos(mw). (A.15)

By integrating the equation (A.15) on [0,2π], we get:

∀ (µ, µ′) ∈ [−1, 1]2, 1
2 π

∫ 2π
0

Pn

(
µµ′ +

√
1− µ2

√
1− µ′2 cosw

)
dw = Pn(µ)Pn (µ′) .

Then, from (A.14) and the addition theorem for Legendre functions, we obtain:

Φλ(µ, µ′, N) =
+∞∑
k=0

Aλ,k(N)Pk(µ)Pk(µ′).

A.3 Decomposition of the intensity on a double Leg-
endre basis

To solve the stationary radiative transfer equation, we use Yvon’s method [22] which
is a decomposition method based on the double basis of Legendre polynomials. As
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A.3. Decomposition of the intensity on a double Legendre basis

mentioned in equation (4.51) of Chapter 3, the intensity Iλ, for K Legendre polynomials,
is decomposed as follows [22]:

Iλ(x, µ) =



K∑
j=0

(2j + 1)ℓ−λ,j(x,N)Pj(2µ+ 1) if µ < 0,

K∑
j=0

(2j + 1)ℓ+λ,j(x,N)Pj(2µ− 1) if µ > 0.

In this section, we search to compute the problems that verifies ℓ−λ and ℓ
+
λ . By injecting

the decomposition presented in (4.53), (4.51), and (4.52) into (4.23), we obtain

∞∑
n=0

(2n+ 1)
(
dℓ+n
dx
(x)µP+n (µ)

)
+ σλext(N)

∞∑
n=0

(2n+ 1)ℓ+n (x)P
+
n (µ)

=
σλsca(N)
4π

(∫ 0
−1

+∞∑
n=0

(2n+ 1)ℓ−n (x)P
−
n (µ

′)
+∞∑
k=0

Ak

∫ 2π
0

Pk(µµ′ +
√
1− µ2

√
1− µ′2 cosw)dwdµ′

+
∫ 1
0

+∞∑
n=0

(2n+ 1)ℓ+n (x)P
+
n (µ

′)
+∞∑
k=0

Ak

∫ 2π
0

Pk

(
µµ′ +

√
1− µ2

√
1− µ′2 cosw

)
dwdµ′

)

+
+∞∑
n=0

qλ,n Pn(µ).

Using Legendre’s polynomial addition theorem (A.15), we have:

∞∑
n=0

(2n+ 1)
(
dℓ+n
dx
(x)µP+n (µ)

)
+ σλext(N)

∞∑
n=0

(2n+ 1)ℓ+n (x)P
+
n (µ)

=
1
2
σλsca(N)

∞∑
n=0

∞∑
k=0

(2n+ 1)AkPk(µ)
(
ℓ−n (x) + ℓ

+
n (x)

)

×
(∫ 0
−1
Pk (µ′)P−n (µ

′) dµ′ +
∫ 1
0
Pk (µ′)P+n (µ

′) dµ′
)
+
+∞∑
n=0

qλ,n Pn(µ).

(A.16)

Using recurrence (4.49) and orthogonality relations (4.50), we obtain:

µP+n (µ) =
1
2

(
n

2n+ 1
P+n−1(µ) +

n+ 1
2n+ 1

P+n+1(µ) + P
+
n (µ)

)
, 0 < µ ¬ 1,

µP−n (µ) =
1
2

(
n

2n+ 1
P−n−1(µ) +

n+ 1
2n+ 1

P−n+1(µ)− P−n (µ)
)
, −1 ¬ µ < 1,∫ 1

0
µP+k (µ)P

+
n (µ)dµ =

1
2(2n+ 1)

(
n

2n− 1
δk,n−1 +

n+ 1
2n+ 3

δk,n+1 + δk,n
)
,∫ 0

−1
µP−k (µ)P

−
n (µ)dµ =

1
2(2n+ 1)

(
n

2n+ 1
δk,n−1 +

n+ 1
2n+ 3

δk,n+1 − δk,n
)
,∫ 1

0
P+k (µ)P

+
n (µ)dµ =

1
2n+ 1

δk,n,∫ 0
−1
P−k (µ)P

−
n (µ)dµ =

1
2n+ 1

δk,n.

(A.17)
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A.3. Decomposition of the intensity on a double Legendre basis

By multiplying equation (A.16) with P+j (µ) for all j  0, integrating over [0, 1], and
using formulas (A.17), we get:

1
2

j

2j + 1
dℓ+j−1
dx
(x) +

1
2
j + 1
2j + 1

dℓ+j+1
dx
(x) +

1
2
dℓ+j
dx
(x) + σλext(N)ℓ

+
j (x)

=
1
2
σλsca(N)

∞∑
n=0

(2n+ 1)
(
ℓ−n (x)

∞∑
k=0

Akαk,jβk,n + ℓ+n (x)
∞∑
k=0

Akαk,jαk,n

)
+
+∞∑
n=0

qλ,nαn,j.

This is equivalent to

1
2

j

2j + 1
dℓ+j−1
dx
(x) +

1
2
j + 1
2j + 1

dℓ+j+1
dx
(x) +

1
2
dℓ+j
dx
(x) + σλext(N)ℓ

+
j (x)

=
1
2
σλsca(N)

∞∑
n=0

(2n+ 1)
(
Γα,βj,n ℓ

−
n (x) + Γ

α,α
j,n ℓ

+
n (x)

)
+
+∞∑
n=0

qλ,nαn,j,

(A.18)

where

∀j  0,∀n  0,Γu,vλ,j,n ≡ Γ
u,v
λ,j,n(N) =

K∑
k=0

Aλ,k(N)uk,j vk,n, (A.19)

for any real families (up,q)p0,q0, (vp,q)p0,q0 while Aλ,k is defined in (A.6), and

∀k  0,∀n  k, αn,k =
∫ 1
0
Pn(µ)Pk(2µ− 1)dµ =

1
2

∫ 1
−1
Pn

(
y + 1
2

)
Pk(y)dy,

∀k  0,∀n  k, βn,k =
∫ 0
−1
Pn(µ)Pk(2µ+ 1)dµ =

1
2

∫ 1
−1
Pn

(
y − 1
2

)
Pk(y)dy.

(A.20)

By using (A.17), we can show that for all k  0 and n  k:

αn+1,k =
1
2
k + 1
2k + 1

2n+ 1
n+ 1

αn,k+1 +
1
2
2n+ 1
n+ 1

αn,k +
1
2

k

2k + 1
2n+ 1
n+ 1

αn,k−1 −
n

n+ 1
αn−1,k,

which makes αn,k computable through a recurrence on n, initialized with:
∀k  0, α0,k = δ0,k,

∀k  2, α1,k = 0, α1,1 =
1
6
, α1,0 =

1
2
,

α0,0 = 1, α1,0 =
1
2
, ∀n  2, αn,0 = −

n− 2
n+ 1

αn−2,0.

Similarly, we can show that for all k  0 and n  k:

βn+1,k =
1
2
k + 1
2k + 1

2n+ 1
n+ 1

βn,k+1 −
1
2
2n+ 1
n+ 1

βn,k +
1
2

k

2k + 1
2n+ 1
n+ 1

βn,k−1 −
n

n+ 1
αn−1,k,

which makes βn,k computable through a recurrence on n, initialized with:
∀k  0, β0,k = δ0,k,

∀k  2, β1,k = 0, β1,1 =
1
6
, β1,0 =

1
2
,

β0,0 = 1, β1,0 = −
1
2
, ∀n  2, βn,0 = −

n− 2
n+ 1

βn−2,0.
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A.3. Decomposition of the intensity on a double Legendre basis

However, it is worth noting that it is enough to compute the αn,k values and then use
the following symmetry property of Legendre polynomials (Pn(−µ) = (−1)nPn(µ) for
−1 ¬ µ ¬ 1):

∀k  0,∀n  k, βn,k = (−1)n+kαn,k.

The same calculations can be carried out for µ < 0, leading to a system analogous to
(A.18) for ℓ−. This gives to the following system to solve:

1
2

j

2j + 1
dℓ+λ,j−1
dx
(x,N) +

1
2
j + 1
2j + 1

dℓ+λ,j+1
dx
(x,N) +

1
2
dℓ+j
dx
(x,N) + σλext(N)ℓ

+
j (x,N)

=
1
2
σλsca(N)

K∑
n=0

(2n+ 1)
(
Γα,βj,n ℓ

−
λ,n(x,N) + Γ

α,α
j,n ℓ

+
n (x,N)

)
+
K∑
n=0

qλ,n(x)αn,j, 0 ¬ j ¬ K,

−1
2

j

2j + 1
dℓ
−
λ,j−1

dx
(x,N)− 1

2
j + 1
2j + 1

dℓ
−
λ,j+1

dx
(x,N)− 1

2
dℓ−j
dx
(x,N) + σλext(N)ℓ

−
λ,j(x)

=
1
2
σλsca(N)

K∑
n=0

(2n+ 1)
(
Γβ,βj,n ℓ

−
λ,n(x,N) + Γ

β,α
j,n ℓ

+
λ,n(x,N)

)
+
K∑
n=0

qλ,n(D − x)βn,j, 0 ¬ j ¬ K,

∀x ∈ [0, D],
(
ℓ−λ,K+1

)′
(x,N) =

(
ℓ+λ,K+1

)′
(x,N) = 0,(

ℓ+λ,j(0, N)
))
0¬j¬K

and
(
ℓ−λ,j(D,N)

))
0¬j¬K

given,

(A.21)
where we put ℓ

±
λ,k(·, N) = ℓ±λ,k(D − ·, N).
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Appendix B

Cost function properties

In this section, we examine the properties of the cost function Jε, which is defined
in equation (5.14) in Chapter 5 as:

Jε(N) = J1(N) +
ε

2
∥
√
f N∥2H(R+),

where

J1(N) =
1
2

G∑
i=1

L∑
l=1


∫ b
a
Iλl(xi, µ) dµ−Mλl(xi)

Mλl(xi)


2

.

Throughout this appendix, we denote by Iλ,1 and Iλ,2 two solutions of equation (5.12)
corresponding to N1 and N2, respectively.

B.1 Strict convexity of the cost function

Let us show that Jε (defined in (5.14)) is strictly convex, that is

∀ 0 < β < 1, ∀N1, N2 ∈ L2(R+), such that N1 ̸= N2,

Jε(β N1 + (1− β)N2) < β Jε(N1) + (1− β)Jε(N2).

We have

Jε(βN1 + (1− β)N2)

=
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
β Iλl,1(xi, µ) + (1− β) Iλl,2(xi, µ)dµ−Mλl(xi)

)2
+
ε

2

∫
R+
f(r) r2 (βN1 + (1− β)N2)2dr,

(B.1)

where Iλ,1 and Iλ,2 verify (4.23) for N1 and N2 , respectively.
However,

Mλl(xi) = βMλl(xi) + (1− β)Mλl(xi).

By using the inequality 2cd ¬ (c2 + d2), for c = A and d = B in the first term of the
right hand side of equation (B.1) where

A =
(∫ b
a
Iλl,1(xi, µ)dµ−Mλl(xi)

)
and B =

(∫ b
a
Iλl,2(xi, µ)dµ−Mλl(xi)

)
,
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B.2. Continuity of the cost function

and for c = N1 and d = N2 where c ̸= d in the second term of the right hand side of
equation (B.1), we can derive the following inequality:

Jε(βN1 + (1− β)N2)

<
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(
β2A2 + (1− β)2B2 + β(1− β)(A2 +B2)

)
+ β2

ε

2
∥
√
f N1∥2H(R+) + (1− β)2

ε

2
∥
√
f N2∥2H(R+)

+
ε

2
β (1− β)(∥

√
f N1∥2H(R+) + ∥

√
f N2∥2H(R+))

= β
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl,1(xi, µ)dµ−Mλl(xi)

)2
+ β

ε

2
∥
√
f N1∥2H(R+)

+ (1− β)1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl,2(xi, µ)dµ−Mλl(xi)

)2
+ (1− β)ε

2
∥
√
f N2∥2H(R+)

= β Jε(N1) + (1− β)Jε(N2).

B.2 Continuity of the cost function

Let us show that:

Jε(N1) −→ Jε(N2) when N1 −→ N2 inL2(R+).

We have

Jε(N1)− Jε(N2)

=
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl,1(xi, µ) dµ

)2
− 2Mλl(xi)

∫ b
a
Iλl,1(xi, µ) dµ+Mλl(xi)

2


− 1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl,2(xi, µ)dµ

)2
− 2Mλl(xi)

∫ b
a
Iλl,2(xi, µ)dµ+Mλl(xi))

2


+
ε

2

(
∥
√
f N1∥2H(R+) − ∥

√
f N2∥2H(R+)

)

=
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

[(∫ b
a
(Iλl,1 − Iλl,2)(xi, µ) dµ

)(∫ b
a
(Iλl,1 + Iλl,2)(xi, µ) dµ

)]

+
G∑
i=1

L∑
l=1

(
1

Mλl(xi)

∫ b
a
(Iλl,2 − Iλl,1)(xi, µ)dµ

)

+
ε

2

(
∥
√
f N1∥2H(R+) − ∥

√
f N2∥2H(R+)

)
.
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B.2. Continuity of the cost function

Then,

|Jε(N1)− Jε(N2)|

¬ 1
2

G∑
i=1

L∑
l=1

1
|M2λl(xi)|

[(∫ b
a
|(Iλl,1 − Iλl,2)(xi, µ)|dµ

)(∫ b
a
|(Iλl,1 + Iλl,2)(xi, µ)|dµ

)]

+
G∑
i=1

L∑
l=1

(
1

|Mλl(xi)|

∫ b
a
|(Iλl,2 − Iλl,1)(xi, µ)|dµ

)

+
ε

2

(∣∣∣∣∥√f N1∥2H(R+) − ∥√f N2∥2H(R+)∣∣∣∣) .
(B.2)

Let Iλ,1 and Iλ,2 be two solutions of (4.23) for N1 and N2 respectively. Then, Iλ,1 − Iλ,2
is solution of the following system

µ
∂(Iλ,1 − Iλ,2)

∂x
(x, µ) + σλext(N1) (Iλ,1 − Iλ,2)(x, µ)

=
∫ 1
−1
fλ,1(µ, µ′, N1) (Iλ,1 − Iλ,2)(x, µ′) dµ′ + q(x, µ),

(Iλ,1 − Iλ,2)(0, µ) = 0 if µ ∈ (0, 1],

(Iλ,1 − Iλ,2)(D,µ) = 0 if µ ∈ [−1, 0),
(B.3)

where qλ(x, µ) = qλ,1(x, µ) + qλ,2(x, µ), with

qλ,1(x, µ) = (σλext(N2)− σλext(N1)) Iλ,2(x, µ),

qλ,2(x, µ) =
∫ 1
−1
(fλ,1(µ, µ′, N1)− fλ,2(µ, µ′, N2)) Iλ,2 (x, µ′) dµ′.

According to Theorem 4.1, problem (B.3) admits a unique solution verifies the following
estimation:

∥Iλ,1 − Iλ,2∥L∞(X) ¬
1

σλabs(N1)
∥qλ∥L∞(X). (B.4)

Now we must determine the norm of qλ,1 and qλ,2.
For qλ,1:

∥qλ,1∥L∞(X) ¬ ∥σλext(N2)− σλext(N1)∥L∞(X) ∥Iλ,2∥L∞(X),

but σλext(N2) − σλext(N1) = π
∫ +∞
0

Qλext(r) r
2 (N1(r) − N2(r)) dr. Then, using Holder’s

inequality and (4.24), we obtain

∥qλ,1∥L∞(X) ¬ C ∥N1 −N2∥L2(R+) max
(
∥I−λ ∥L∞([−1,0)), ∥I+λ ∥L∞((0,1])

)
, (B.5)

124



B.3. Differentiability of the cost function

where C =
(∫ +∞
0

π2Qλext(r)
2 r4dr

)1/2
.

For q2:

|qλ,2(x, µ)| ¬
∫ 1
−1
|(fλ,1(µ, µ′, N1)− fλ,2(µ, µ′, N2)) Iλ,2 (x, µ′)| dµ′

¬
(∫ 1
−1
|(fλ,1(µ, µ′, N1)− fλ,2(µ, µ′, N2))| dµ′

)
Ĩλ,2(x),

with Ĩλ,2(x) = ∥Iλ,2(x, .)∥L∞([−1,1]).
But,

fλ,1(µ, µ′, N1)− fλ,2(µ, µ′, N2)

=
1
4

∫ +∞
0

(∫ 2π
0

r2Qλsca(r)ψλ(r, µµ
′ +

√
1− µ2

√
1− µ′2 cos(w))dw

)
(N1(r)−N2(r)) dr.

Then, using the notation µ0 = µµ′ +
√
1− µ2

√
1− µ′2 cos(w),∫ 1

−1
|fλ,1(µ, µ′, N1)− fλ,2(µ, µ′, N2)| dµ′

=
1
4

∫ +∞
0

(∫ 1
−1

∫ 2π
0

r2Qλsca(r)ψλ(r, µ0) dw dµ
′
)
(N1(r)−N2(r)) dr

¬ 1
4

(∫ +∞
0

∫ 1
−1

∫ 2π
0
|r2Qλsca(r)ψλ(r, µ0) dw dµ′|2 dr

) 1
2

∥N1 −N2∥L2(R+).

Then, we obtain the following estimation for qλ,2:

|qλ,2(x, µ)| ¬
1
4

(∫ +∞
0

∫ 1
−1

∫ 2π
0
|r2Qλsca(r)ψλ(r, µ0) dw dµ′|2 dr

) 1
2

∥N1 −N2∥L2(R+).

Finally (B.4) becomes

∥Iλ,1 − Iλ,2∥L∞(X)

¬ 1
σλabs(N1)

(
C max

(
∥I−λ ∥L∞([−1,0)), ∥I+λ ∥L∞((0,1])

)
+ ∥gλ∥L∞(X)

)
∥N1 −N2∥L2(R+),

where

gλ(x, µ) =
1
4
L̃λ,2(x)

(∫ +∞
0

∫ 1
−1

∫ 2π
0
|r2Qλsca(r)ψλ(r, µ0) dw dµ′|2 dr

) 1
2

.

Then Iλ,1 −→ Iλ,2 in L∞(R+) when N1 −→ N2 in L2(R+). By using equation (B.2),
we obtain Jε(N1) −→ Jε(N2).

B.3 Differentiability of the cost function

∀ η > 0, N andN ∈ L2(R+) we compute, with Nη = N + ηN , the following function

Jε(Nη) = Jε(N) + η Jε,1(N,N) + η2 Jε,2(N,N),
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B.3. Differentiability of the cost function

where Jε,1 and Jε,2 are two functions defined as follows:

Jε,1(N,N) =
G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ)dµ−Mλl(xi)

)(∫ b
a
Iλl(xi, µ)dµ

)

+ ε
∫

R+
f(r)r2NNdr,

(B.6)

and

Jε,2(N,N) =
1
2

G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ) dµ

)2
+
ε

2
∥
√
f N∥2H(R+), (B.7)

where Iλ satisfies problem (4.23) with qλ(x, µ) = 0 and Iλ satisfies

µ
∂Iλ
∂x
(x, µ) + σλext(N) Iλ(x, µ) =

∫ 1
−1
fλ(µ, µ′, N) Iλ(x, µ′) dµ′

+
∫ 1
−1
fλ(µ, µ′, N) Iλ(x, µ′) dµ′ − σλext(N) Iλ(x, µ),

Iλ(0, µ) = 0 if µ ∈ (0, 1], Iλ(D,µ) = 0 if µ ∈ [−1, 0).
(B.8)

From the fact that Iλ satisfies (4.23) for N and Nη respectively, the system (B.8) can
be derived by subtracting the two problems.
The function defined in (B.6) is linear w.r.t N :

Jε,1(N,N1 + βN2)

=
G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ)dµ−Mλl(xi)

)(∫ b
a
(Iλ,1 + βIλ,2)(xi, µ)dµ

)

+ ε
∫

R+
f(r) r2N(N1 + βN2)dr

=
G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ)dµ−Mλl(xi)

)(∫ b
a
Iλ,1(xi, µ)dµ

)

+ β
I∑
i=1

G∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ)dµ−Mλl(xi)

)(∫ b
a
Iλ,2(xi, µ)dµ

)

+ ε
∫

R+
f(r) r2N N1 dr + βε

∫
R+
f(r) r2N N2 dr

= Jε,1(N,N1) + β Jε,1(N,N2),

where Iλ,1, Iλ,2 satisfy (B.8) for N1 and N2, respectively.
For the continuity, we have from (B.6)

|Jε,1(N,N)| ¬
∣∣∣∣∣
G∑
i=1

L∑
l=1

1
M2λl(xi)

(∫ b
a
Iλl(xi, µ)dµ−Mλl(xi)

)∫ b
a
Iλl(xi, µ)dµ

∣∣∣∣∣
+ ε

∫
R+
|r2N N | dr.
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B.3. Differentiability of the cost function

By using Theorem 4.1, the following estimation for Iλ can be derived:

∥Iλ∥L∞(X) ¬
1

σλabs(N)
∥qλ∥L∞(X), (B.9)

with
qλ(x, µ) =

∫ 1
−1
fλ(µ, µ′, N) Iλ(x, µ′) dµ′ − σλext(N) Iλl(x, µ),

fλ(µ, µ′, N) =
1
4

∫ 2π
0

∫ +∞
0

Qλsca(r)ψλ(r, µµ
′ +

√
1− µ2

√
1− µ′2 cos(w)) r2N(r) dr dw.

Then,

|qλ(x, µ)| ¬
∫ 1
−1

∣∣∣fλ(µ, µ′, N) Iλ(x, µ′)∣∣∣ dµ′ − |σλext(N) Iλ(x, µ)|
¬
(∫ 1
−1

∣∣∣fλ(µ, µ′, N)∣∣∣ dµ′) Ĩλ(x) + π ∥Iλ∥L∞(X) ∫ +∞
0
|Qλext(r) r2N(r)| dr

¬
(∫ 1
−1

∣∣∣fλ(µ, µ′, N)∣∣∣ dµ′) Ĩλ(x) + C ∥Iλ∥L∞(X) ∥N∥L2(R+),
(B.10)

where C = π
(∫ +∞
0
|r2Qλext(r)|2 dr

) 1
2

.

But ∫ 1
−1
|fλ(µ, µ′, N)|dµ′ ¬

1
4

∫ +∞
0

(∫ 1
−1

∫ 2π
0

Qλsca(r)ψλ(r, µ0)dwdµ
′
)
r2N(r)dr

¬ 1
4

(∫ +∞
0

ϕλ(r, µ)2 dr
) 1
2

∥N∥L2(R+),

where

ϕλ(r, µ) =
∫ 1
−1

∫ 2π
0

r2Qλsca(r)ψλ(r, µ0)dw dµ
′ and µ0 = µµ′ +

√
1− µ2

√
1− µ′2 cos(w).

Then, from (B.10), we get

∥qλ∥L∞(X) ¬
(
∥gλ∥L∞(X) + C ∥Iλ∥L∞(X)

)
∥N∥L2(R+),

where

gλ(x, µ) =
(∫ +∞
0

ϕλ(r, µ)2 dr
) 1
2

Ĩλ(x).

Finally we obtain

∥Iλ∥L∞(X) ¬
1

σλabs(N)

(
∥gλ∥L∞(X) + C ∥Iλ∥L∞(X)

)
∥N∥L2(R+). (B.11)

By using equations (B.6)-(B.11), the continuity of Jε,1 w.r.t N can be inferred. Addi-
tionally, by using equation (B.11), we can obtain that:

lim
N→0

|Jε,2(N,N)|
∥N∥L2(R+)

= 0. (B.12)

where Jε,2 is defined in (B.7).
Then, by the linearity and the continuity of Jε,1, and by equation (B.12), we obtain the
differentiability of the cost function.
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Appendix C

Gradient of the cost function

The direction derivative of the cost function Jε defined in (5.14) according toN ∈ L2(R+)
is given by

DJε(N) ·N =
G∑
i=1

L∑
l=1

K(xi, λl)
(∫ b
a
Iλl(xi, µ,N)dµ

)
+ ε

∫
R+
r2 f(r)N(r)N(r) dr,

(C.1)
where

K(xi, λl) =


∫ b
a
Iλl(xi, µ) dµ−Mλl(xi)

Mλl(xi)2

 ,
and Iλ verifies the following problem



µ
∂Iλ
∂x
(x, µ) + σλext(N) Iλ(x, µ) + σ

λ
ext(N) Iλ(x, µ) =

∫ 1
−1
Iλ(x, µ′)fλ(µ, µ′, N)dµ′

+
∫ 1
−1
Iλ(x, µ′)fλ(µ, µ′, N)dµ′,

Iλ(0, µ) = 0 if µ ∈ (0, 1], and Iλ(D,µ) = 0 if µ ∈ [−1, 0).
(C.2)

where

fλ(µ, µ′, N) =
1
4

∫ 2π
0

∫ +∞
0

Qλsca(r)ψλ(r, µµ
′ +

√
1− µ2

√
1− µ′2 cos(w)) r2N(r) dr dw.

To obtain the gradient expression, we need to determine the first term of the right hand
side in (C.1) in function of the direct problem Iλ and the adjoint problem pλ. For that,
we multiply (5.18) by I(x, µ) and (C.2) by pλ(x, µ) and by integrating on X, we obtain

−
∫ 1
−1

∫ D
0
µ
∂pλ
∂x
(x, µ)Iλ(x, µ) dxdµ+

∫ 1
−1

∫ D
0
σλext(N) pλ(x, µ)L(x, µ)dxdµ

=
∫ 1
−1

∫ D
0
Iλ(x, µ)

∫ 1
−1
p(x, µ′)fλ(µ′, µ,N)dµ′dxdµ

+
∫ 1
−1

∫ D
0
Iλ(x, µ)

I∑
i=1

K(xi, λ)1(a,b)(µ) δxi(x) dx dµ

(C.3)
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and ∫ 1
−1

∫ D
0
µ pλ(x, µ)

∂Iλ
∂x
(x, µ) dx dµ+

∫ 1
−1

∫ D
0
σext(N) pλ(x, µ) Iλ(x, µ) dx dµ

+
∫ 1
−1

∫ D
0
σλext(N) pλ(x, µ) Iλ(x, µ) dx dµ

=
∫ 1
−1

∫ D
0
pλ(x, µ)

∫ 1
−1
Iλ(x, µ′)fλ(µ, µ′, N)dµ′ dx dµ

+
∫ 1
−1

∫ D
0
pλ(x, µ)

∫ 1
−1
Iλ(x, µ′)fλ(µ, µ′, N)dµ′ dx dµ

(C.4)

by using the integration by part and that∫ 1
−1

∫ D
0
pλ(x, µ)

∫ 1
−1
fλ(µ, µ′, N)Iλ(x, µ′)dµ′dxdµ =∫ 1

−1

∫ D
0
Iλ(x, µ)

∫ 1
−1
p(x, µ′)fλ(µ′, µ,N) dµ′dxdµ

∫ 1
−1

∫ D
0
Iλ(x, µ)

I∑
i=1

K(xi, λ) 1(a,b)(µ) δxi(x)dxdµ =
I∑
i=1

K(xi, λ)
∫ b
a
Iλ(xi, µ)dµ

and by comparing (C.3) and (C.4), we obtain

G∑
i=1

L∑
l=1

K(xi, λl)
∫ b
a
Iλl(xi, µ)dµ =

L∑
l=1

[
−
∫ 1
−1

∫ D
0
σλlext(N)pλl(x, µ, )Iλl(x, µ)dxdµ

]

+
L∑
l=1

[∫ 1
−1

∫ D
0
pλl(x, µ)

∫ 1
−1
Iλl(x, µ

′)fλl(µ, µ
′, N)dµ′dxdµ

]
.

(C.5)
Then, by (C.5) we obtain

DJε(N) ·N = ε
∫ +∞
0

r2 f(r)N N dr −
L∑
l=1

[∫ 1
−1

∫ D
0
pλl(x, µ)σ

λl
ext(N) Iλl(x, µ) dx dµ

]

+
L∑
l=1

[∫ 1
−1

∫ D
0
pλl(x, µ)

∫ 1
−1
Iλl(x, µ

′) fλl(µ, µ
′, N) dµ′ dx dµ

]
.

(C.6)
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[194] B. Lapeyre, É. Pardoux, R. Sentis, A. W. Craig, and F. Craig, “Introduction to
monte-carlo methods for transport and diffusion equations,” 2003.
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