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ABSTRACT

Companies and research groups are increasingly aiming to deploy mobile robots to perform
various navigation tasks in environments shared with humans. Early attempts used classi-
cal navigation algorithms which consider humans as mere obstacles to be avoided, leading
to undesirable robot behaviour. The field of Social Navigation aims to design algorithms
that account for various social factors such as personal space, social norms, or predictability
and smoothness of the motion. Despite these improvements, there are still issues with the
acceptance of current approaches, and the complete set of variables that a social navigation
algorithm should account for is not known. Humans also tend to attribute social intentions,
attitudes or affect to the way in which a robot moves.

In this thesis, we explore the following questions: Which features of the robot’s motion
elicit different attributions of social attitudes? How can we design a navigation algorithm
that provides control over these features? What is the impact of the social perception of
the robot on how people interact with it and evaluate it? To work towards answering these
questions, we propose to design a social navigation algorithm that can adapt the robot’s
motion according to its impact on human social perception, based on an understanding of
human perception of mobile robots acquired through experimental studies.

Our first contribution is a model describing the mapping between variations of robot
motions and human social and physical perception of the robot. We start from the basic
elements of locomotion and visual appearance, using analogies to vocal prosody to guide
the selection of variables constituting our corpus of robot motions. Through a series of
online and in-person perception experiments we find that each corpus variable significantly
impacts participant’s social and physical perception of the robot, providing us with a first
definition of movement prosody which our algorithm must be able to control.

Our second contribution is the design, implementation, and validation of a social nav-
igation algorithm that provides precise control over the corpus motion variables. We pro-
pose a local planning algorithm that uses specially designed constraints to ensure that the
variations in the robot’s velocity, acceleration, and their timing are controlled in accordance
with our motion corpus variables, even when changes in the dynamic environment require
re-planning the trajectory. The planner is integrated into a navigation architecture, and
we show its ability to execute navigation tasks while maintaining the desired movement
prosody.

Our third contribution is a real-world study of the impact of movement prosody on
human perception, behaviour, and performance ratings of the robot. Unlike the initial per-
ception tests, the robot is deployed fully autonomously with our algorithm in a campus hall,
where it approaches people to hand out flyers. The robot uses different sets of prosody con-
straints that our model predicted to be associated with confident or hesitant attitudes. The
results suggest that the effect of the variations of the robot’s motion on participant per-
ception differed from our perception experiments. Analysis of interviews provide us with
insights into other aspects of the robot’s behaviour and motion which impacted partici-
pants’ perceptions, opening the path to future work to iteratively refine the understanding
of movement prosody and the navigation algorithm.
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RESUME

Les entreprises et les équipes de recherche cherchent a déployer des robots mobiles pour ef-
fectuer diverses taches de navigation dans des environnements partagés avec des humains.
Les premieres approches étaient basées sur des algorithmes de navigation classiques qui
considérent les humains comme de simples obstacles, ce qui entraine un comportement in-
désirable des robots. Le domaine de la navigation sociale vise a concevoir des algorithmes
qui tiennent compte de facteurs sociaux tels que I’espace personnel, les normes sociales
ou la prévisibilité et la fluidité du mouvement. Malgré ces améliorations, des problémes
subsistent quant a ’acceptation des robots, et I’ensemble des variables qui devraient étre
contrdlées par un algorithme de navigation sociale n’est pas connu. D’autre part, les hu-
mains ont tendance a attribuer des intentions sociales, attitudes ou affects a la maniére dont
un robot se déplace.

Cette these aborde les questions suivantes : Quelles caractéristiques du mouvement
du robot suscitent différentes attributions d’attitudes sociales ? Comment pouvons-nous
concevoir un algorithme de navigation qui permette de controler ces caractéristiques ? Quel
est I'impact de la perception sociale du robot sur la fagon dont les gens interagissent avec lui
et 'évaluent ? Pour répondre a ces questions, nous proposons de concevoir un algorithme
de navigation sociale capable d’adapter le mouvement du robot en fonction de son impact
sur la perception sociale humaine, sur la base d’'une compréhension de la perception des
robots mobiles acquise grace a des études expérimentales.

Notre premiere contribution est un modele décrivant la correspondance entre les vari-
ations des mouvements du robot et la perception sociale et physique du robot par les hu-
mains. Nous procédons a partir des éléments de base de la locomotion et de ’apparence
visuelle, et par analogie avec la prosodie vocale pour guider la sélection des variables con-
stituant notre corpus de mouvements de robots. Une série d’expériences de perception en
ligne et en personne montre que chaque variable du corpus a un impact significatif sur la
perception sociale et physique, ce qui nous donne une premiere définition de la prosodie du
mouvement que notre algorithme doit étre capable de contrdler.

Notre deuxiéme contribution est la conception, 'implémentation et la validation d’un
algorithme de navigation sociale permettant de contréler précisément les variables de mou-
vement du corpus. Nous proposons un algorithme de planification locale qui utilise des con-
traintes spécialement congues pour s’assurer que les variations de la vitesse et de 'accélération
du robot sont contrdlées conformément aux variables de notre corpus, méme en environ-
nement dynamique nécessitant une re-planification de la trajectoire. Le planificateur est
intégré dans une architecture de navigation, et nous montrons sa capacité a exécuter des
taches de navigation tout en maintenant la prosodie de mouvement souhaitée.

Notre troisiéme contribution est une étude en situation réelle de I'impact de la prosodie
de mouvement sur la perception du robot par les participants, ainsi que leur comportement
et leur évaluation des performances du robot. Le robot est déployé de maniére autonome
dans un batiment ou il effectue une tache de distribution de prospectus. Le robot utilise
différents ensembles de contraintes prosodiques qui, selon notre modele, sont associés a
la perception d’attitude de confiance ou d’hésitation. Les résultats suggerent que les vari-
ations du mouvement du robot n’ont pas eu le méme effet sur la perception du robot que
lors de nos expériences de perception. L’analyse des entretiens nous donne un apercu des
autres aspects du comportement et du mouvement du robot qui ont eu un impact sur les
perceptions des participants, ce qui ouvre la voie a de futurs travaux visant a améliorer de



maniere itérative la compréhension de la prosodie du mouvement ainsi que I’algorithme de
navigation.
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INTRODUCTION

1.1 Context

Mobile robots are being studied and developed as potential solutions to perform tasks in
human populated environments, ranging from public spaces such as supermarkets and train
stations as in Figure 1.1, to spaces with vulnerable people such as hospitals (Kivrak et al.,
2020), care-homes, or individual homes (Cosar et al., 2020).

Mobile robots deployed during field tests tend to be met with mixed reactions from
the humans with which they share the environment, who may accept or reject the robot
through mechanisms which are not yet fully understood (Hebesberger et al., 2017; Mutlu
& Forlizzi, 2008). On the one hand, the technical complexity and capabilities of a smart
device and a robot are quite similar, so one may expect robots to be treated and perceived
similarly to machines. On the other hand, some studies point to humans feeling some level
of empathy towards robots (Menne & Schwab, 2018; Rosenthal-von der Piitten et al., 2014),
and some soldiers have been burying their bomb disposal robots (Carpenter, 2013). At the
same time, many researchers and companies seek to deploy mobile robots into human en-
vironments to accomplish useful tasks, but they often struggle to explain people’s reactions
to their robots’ behavior. It seems that even when the robot simply navigates without any
intention of the robot’s designers for it to interact socially, people may interpret its ac-
tions in terms of attitudes or intentions. As discussed in a recent Social Navigation (SN)
survey (Mavrogiannis et al., 2023), while progress has been made towards understanding
some aspects of what makes a robot’s navigation acceptable such as people’s preference for
robots that comply with personal space boundaries, we still lack a unified theory of social
navigation. This lack may be due to the vastness of the domain and fragmented literature
focusing on specific sub-problems and motion variables. This results in an inability to de-
termine how a human’s social perception and interpretation of a robot’s actions is affected
by different motion styles obtained through combinations of motion variables.

Social Navigation works tend to perform experiments where participants interact with
a robot exhibiting a state of the art, complex robot behavior resulting from navigation al-

\kw&ﬁ%’s__‘ri&a B

Figure 1.1: Left: Bossa Nova shelf scanning robot in a supermarket. Right: Hease robot in
a train station.
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gorithms combined with the rest of the robot’s physical and software design (Carton et
al.,, 2017; Gil et al., 2021; Kamezaki et al., 2019). Questionnaires and interviews allow re-
searchers to perform an evaluation of the complex behavior in terms of its acceptability and
ability to accomplish a specific task optimally (Mavrogiannis et al., 2019). This top-down
approach enables the evaluation of a given algorithm in a given context, however it makes
it difficult to determine which specific aspects of the robot’s navigation were responsible
for each aspect of the evaluation. Furthermore, most social navigation studies use comfort,
naturalness, smoothness, perceived safety and, more recently, legibility (Kruse et al., 2013)
as their social evaluation metrics, which is different from evaluating how people interpret
robot motion as conveying social attitudes or intentions.

Other works in the field of Human-Robot Interaction (HRI) have explored other inter-
action modalities such as voice (McGinn & Torre, 2019), gestures (Augustine et al., 2020;
Saldien et al., 2014; Zhou & Dragan, 2018), positioning (Brandl et al., 2016), as well as a few
works on navigation parameters such as (Saerbeck & Bartneck, 2010). These studies have
allowed researchers to determine that each of these modalities play a role in HRI, how-
ever most of them consider each modality separately, which makes it difficult to determine
whether there are interactions between them when combined into a human’s perception of
arobot. Studies that consider combinations of modalities typically do not include navigation
as one of them (Dautenhahn et al., 2009).

1.2 Research questions and methodology

It seems likely that people’s social interpretations of robot motions as conveying intentions
or attitudes may play a role in the acceptance and evaluation of the robot. Therefore, in
order to properly integrate mobile robots into their various roles and tasks, we need to be
able to control how they interact with people and how they are perceived. Current social
navigation algorithms cannot be configured to generate motions which are perceived as
conveying different social attitudes or intentions, and it is unclear which aspects of the
robot’s motion should be controlled to do so. Hence, in this thesis we address the following
research question: "How can we design a social navigation algorithm that enables
the robot’s motion to be adapted based on its impact on human social perception
of the robot?". We approach this question by splitting it into three successive research
goals.

When initiating the design of a social navigation algorithm, common approaches in-
clude adding an extra component to an existing navigation algorithm inspired by existing
social sciences models of humans, such as avoiding personal space as defined by proxemics,
or directly using machine learning approaches to imitate human navigation without mod-
elling the underlying social mechanisms. Our first research goal is to understand which
aspects of the robot’s motion are involved in shaping how people perceive social
attitudes. With these approaches, it is difficult to gain a principled understanding of the
links between motion variables and social perceptions since the algorithms employed may
limit which variables can be controlled, and to what extent they can be controlled. Fur-
thermore, existing datasets of human navigation do not provide annotations of perceived
social attitudes. We propose to start by exploring the space of navigation variables
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independently from any existing algorithm. We start by defining a set of physical mo-
tion variables a priori, based on analogies to vocal prosody, which are combined to create
a corpus of robot motions. Perception experiments conducted online (and in person once
conditions allowed) enable us to establish how each of the variables relate to participant’s
social and physical perceptions of the robot, defining what we call "movement prosody".

Once we have determined which motion variables are relevant for altering a person’s
social perception of the robot, we use this knowledge to determine the requirements for
our social navigation algorithm. Our second goal is to propose a social navigation algo-
rithm that explicitly provides control over the motion variables which were found
to affect people’s social perception of the robot. Social navigation algorithms are gen-
erally built to generate a single, specific style of motion aiming to be comfortable, natural,
smooth and legible while ensuring safety in dynamic environments. Expressive motion
generation approaches focus on generating multiple styles of motion, usually to express
emotion, however these approaches are either purely communicative, hard-coded motions
and do not simultaneously accomplish a practical task, or the algorithms do not account
for how to maintain a consistent style in dynamic environments. We aim to develop an
algorithm that can be configured to generate motions which accurately reproduce
a specific movement prosody to elicit the corresponding perception of attitude,
while operating safely in dynamic environments. Studies on vocal prosody in human
interaction show that small, subtle variations of the speech signal dynamics are responsi-
ble for altering perceptions of attitudes. Gesture and gaze dynamics have been shown to
vary together with vocal prosody, which suggests that accurate and temporally consistent
control over the robot’s motion is also required. Usually, existing approaches incorporate
mechanisms that bias the trajectory generation towards motions that exhibit the desired
properties, while allowing trade-offs with the robot’s practical task performance. In con-
trast, we consider that the control over the robot’s movement prosody should be
given priority, even if it impacts task performance.

Evaluating the navigation algorithm is essential to understand how the different types
of movement prosody impact humans. Some social navigation algorithms are evaluated in
simulations using metrics such as the number of collisions with pedestrians, infringement
on personal spaces, as well as practical metrics such as path length. This does not allow to
measure whether the algorithm successfully generated the desired social perception, and
does not allow observation of possible reactions people may have to the robot. In-person
experiments are also common, however they are often conducted in somewhat artificial lab
conditions where participants are recruited in advance, and are aware that the goal of the
study is to observe their motion. When compared with studies which involve tasks which
are closer to real use cases, and pretext tasks to avoid participants suspecting the true goal
of the study, different results have been observed. We aim to evaluate the robot in an
in-the-wild study, where participants spontaneously interact with the robot which
is given a credible pretext task and role. In order to capture participants’ potentially
subtle reactions, we require a method to capture synchronized data from the robot’s on-
board sensors, as well as externally placed sensors in the environment. We also require
an interview design that is coherent with the pretext task in order to gather participants
impressions of the robot without biasing their answers.
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1.3 Contributions

Our first contribution is the construction of a model linking motion and appearance vari-
ables of our mobile robot to a set of perceptual scales using adjectives describing social
attitudes and physical qualities. We propose a set of motion and appearance variables that
cover the range of feasible motions and appearances of our mobile robot. The motion vari-
ables are derived from analogies with the vocal features known to be involved in voice
prosody, and consist of robot acceleration and velocities, timing and sequences of accel-
erations and decelerations, as well as smooth, saccadic or incremental accelerations. The
motion variables are systematically combined to form a corpus of motions which are per-
formed on our mobile robot and recorded to create a video corpus'. The corpus is used
in a series of three perception experiments where participants choose which adjective on
either end of ten perceptual scales best describes their impression of the robot, for many
combinations of robot motion variables. The results indicate that all of the corpus motion
variables had significant effects on how people perceived the robot in terms of qualifiers
such as aggressive or gentle, sturdy or frail, confident or hesitant. The corpus motions serve
as a basis for our algorithm design.

Our second contribution is a local planning algorithm capable of generating robot mo-
tions that correspond to the desired human perception, while accomplishing a practical
navigation task. We formulate the problem as a constrained trajectory optimization, where
the robot should minimize distance to its goal while satisfying specially designed and highly
restrictive constraints. These constraints force the motions to exhibit the desired movement
prosody, in order to maintain a consistent social perception of the robot. The algorithm is
designed to be able to maintain consistent prosody while dynamically re-planning its tra-
jectory to deal with dynamic environments, and a prosody constraint hierarchy enables the
robot to maintain partial satisfaction of the prosody constraints even in complex situations.
The approach is implemented and validated on a real mobile robot, and shown to enable
the robot to accurately reproduce the motion characteristics from our corpus.

Our final contribution is a human-robot interaction experiment where the robot inter-
acts with naive participants in a university campus building. We implemented a complete
software architecture around our proposed navigation algorithm, adding modules perform-
ing person detection and tracking, localization, and a high-level decision state machine to
implement a flyer distribution robot. The experiment compares participant’s reactions to
the robot using our algorithm configured to convey a confident or hesitant attitude through
its movement prosody. Through a semi-structured interview and observation of partici-
pants behaviour, we study whether the movement prosody employed by the robot while
approaching a person can impact their behaviour, their rating of its performance, and how
they perceive the robot. The statistical analysis of the results showed that although par-
ticipants did not perceive the predicted hesitant motion as hesitant, there were some small
differences in how participants behaved compared to the confident motion. Interestingly,
participant responses during the interviews suggest that other aspects of the robot’s be-
haviour may have had a greater effect on the hesitant/confident perception, suggesting

'Examples of the corpus videos: https://youtu.be/EiH801PjlOw. Full video corpus, and project page: https:
//osf .io/5csrg/
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Figure 1.2: Proposed concept for a movement-prosody aware navigation architecture. Solid
lines depict the parts of the architecture tackled in this PhD, dashed lines depict future work.

future directions for refining the model of movement prosody.

Together, these contributions make it possible for a robot designer or researcher to
choose how the robot’s motion should be generated based on the desired social and physi-
cal perception of the robot, and to understand how these perceptions may relate to people’s
physical reactions to the robot as well as their evaluation of its performance. While these
contributions can be used as such, we also envision them as part of a broader project to
work towards an architecture enabling co-adaptation between the robot and person’s mo-
tion. This architecture concept is depicted in Figure 1.2. The purple and red boxes represent
the first and second contributions of this thesis, i.e. the model allowing us to map from the
adjectives used as qualifiers to describe the robot’s movement prosody to physical mo-
tion variables, and the navigation algorithm which can be configured to produce motions
which accurately follow the desired movement prosody in dynamic environments. In the
envisioned architecture, rather than manually selecting the list of qualifiers which describe
the impression generated by the robot, they would be determined based on some model
describing how the robot should adapt to the person, for example by imitating the person’s
prosody, or adopting a complementary prosody (blue box). Naturally, this would require
a perception algorithm to determine which type of prosody the person is displaying based
on the robot’s onboard sensor data (green box).

1.4 Outline

The thesis outline follows the order of the contributions.
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« The second chapter presents relevant material from related works in the areas of
social navigation algorithms, expressive motion generation algorithms, evaluation
methods for robot motion, and aspects of human communication and interaction.

« The third chapter presents the robot platform and describes the construction of our
robot motion corpus. It also presents the three perception experiments’ design and
results, thereby providing the design requirements for our algorithm. This chapter
shares passages with our journal paper in Interaction Studies (Scales et al., 2023),
which reported preliminary experiment results based on fewer participants. The the-
sis chapter presents more advanced statistical modelling of the effects of the corpus
motion variables on participants’ perceptions of the robot.

« The fourth chapter presents our approach to build the social navigation algorithm.
It presents the general navigation problem formulation, followed by our approach to
transform the fixed-length corpus motions into prosody constraints for the trajec-
tory optimization. It then discusses how we ensure the algorithm can consistently
apply the prosody constraints even while re-planning to account for dynamic en-
vironments, and lastly presents our use of a constraint hierarchy to ensure partial
prosody compliance even in adverse navigation conditions.

« The fifth chapter begins by presenting our ROS implementation, and discussing im-
portant implementation details which render accurate control of the robot’s motion
feasible. It then presents a qualitative validation of our implementation, demonstrat-
ing our algorithm’s ability to generate motions which comply with the prosody con-
straints in dynamic environments.

« The sixth chapter presents the ecological validation experiment. It discusses the rea-
soning behind the experiment design and the choice of the two robot attitudes to
be tested. It presents the experimental results with respect to participants ratings of
the robot’s performance, how the confident and hesitant movement prosody settings
were perceived, and how participants behaved depending on the prosody setting.

+ The seventh and final chapter summarizes the contributions of the thesis, and presents
directions for future works.

1.5 Publications

In this section we list our publications in chronological order, summarizing their relation
to the thesis and their contributions.

Our first publication is a conference paper published at ICRA 2020, which presents a
general navigation architecture in which the local planner’s cost function can be altered
at run-time to implement different navigation tasks. We use our algorithm to study how
the parameterization of the robot’s relative position with respect to the human impacts
the human-robot interaction during a person-following task. In-person experiments were
conducted in lab conditions and ecological conditions to compare the participant behaviour.
Although there was no difference between robot positioning in the lab conditions, we found



Introduction

that in ecological conditions participants interpreted the robot’s attempt to position itself at
their side as an error, as if the robot could no longer detect them. This work was conducted
during the author’s master’s thesis. The algorithm presented in chapter 4 is a significant
extension of the algorithm presented in the paper.

Scales, P., Aycard, O., & Aubergé, V. (2020). Studying navigation as a form of interaction:
A design approach for social robot navigation methods. 2020 IEEE International Conference
on Robotics and Automation (ICRA), 6965-6972. https://doi.org/10.1109/ICRA40945.2020.
9197037

Our second publication is a conference paper which presents an algorithm dealing with
global indoor localization of a mobile robot, which is often a prerequisite for HRI experi-
ments such as those presented in chapter 6. We use images of the ceiling taken from the
robot, since the ceiling features are mostly visible even when the robot is surrounded by
people. We use convolutional neural networks to learn the correspondence between ceil-
ing images and the robot’s position and orientation. We obtained good localization perfor-
mance with an average error of 0.21m and 0.1rad, including in large open spaces where
methods based on laser range finders tend to fail. This work was conducted as part of a short
summer internship while the first two authors were completing their master’s degree.

Scales, P., Rimel, M., & Aycard, O. (2021). Visual-based Global Localization from Ceiling
Images using Convolutional Neural Networks. 16th International Conference on Computer
Vision Theory and Applications, 927-934. https://doi.org/10.5220/0010248409270934

Our third publication is a workshop paper presented at Affective Robots for Wellbeing
(ACII 2022). The paper presents early results from the perception experiments of chapter 3
which showed how the robot’s motion could be interpreted as conveying social attitudes,
as well as alter human’s physical perceptions of it. We discuss the relevance of being able
to influence a person’s social and physical perception of the robot for applications in the
field of care by discussing the concept of frail robots for tender care.

Scales, P., Aubergé, V., & Aycard, O. (2022). Socio-expressive robot navigation: How
motion profiles can convey frailty and confidence. 2022 10th International Conference on
Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 1-8. https:
//doi.org/10.1109/ACITW57231.2022.10086013

Our fourth publication is a long journal paper published in Interaction Studies which ex-
pands on the third publication. This paper gives an in-depth description our global method-
ology to study navigation variables from the ground-up by taking inspiration from the study
of vocal prosody. It describes our concept of movement prosody, provides details about the
motion corpus design and the perceptual scales, in addition to presenting the perception ex-
periment results for the model linking motion variables to social and physical perceptions
of the robot. Chapter 3 is largely based on this paper, with the addition of a new statistical
analysis of the second online perception experiment with a larger participant pool.


https://doi.org/10.1109/ICRA40945.2020.9197037
https://doi.org/10.1109/ICRA40945.2020.9197037
https://doi.org/10.5220/0010248409270934
https://doi.org/10.1109/ACIIW57231.2022.10086013
https://doi.org/10.1109/ACIIW57231.2022.10086013
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Scales, P., Aubergé, V., & Aycard, O. (2023). From vocal prosody to movement prosody,
from hri to understanding humans. Interaction Studies, 24(1), 131-168. https://doi.org/https:
//doi.org/10.1075/is.22010.sca

1.6 Impact of covid-19 on the thesis methodology

In this section, we would like to point out the extent to which the covid-19 pandemic im-
pacted the methodology of this thesis, particularly the work related to our first contribu-
tion of understanding and modeling movement prosody, which is the starting point for the
whole thesis. Our original plan was to perform experiments following a similar methodol-
ogy to our prior work conducted during the author’s master’s thesis, focused on in-person
ecological experiments (the master’s thesis methodology, algorithm, and experiments were
published at ICRA 2020 (Scales et al., 2020)). We designed a large ecological experiment in
a smart-home living lab in order to study how pairs of people interacted (either face to face
or with one person using a teleoperated robot) while performing navigation tasks, accord-
ing to their social relation. This would have allowed us to study whether motion patterns
emerged, indicating which variables would be involved in social perception. The covid-
19 pandemic began as we were finalising technical preparations after having spent several
months on the experiment design, rendering all access to the living lab and robot impossible
for months. A second, simpler in-person experiment was designed, but this experiment also
had to be abandoned. Further details concerning these experiments are given in Appendix
C. To avoid further setbacks, we proposed the online perception experiments presented in
chapter 3. This is not simply a change of presentation modalities from in-person to online:
it also affects what we are able to study. The person is not performing any kind of realistic
task and they are not taking part in an embodied interaction with a robot or other person
where their relation may evolve over time. Instead of studying a dynamic interaction pro-
cess, we had to settle for studying one-sided social perception. This is why we spent a lot
of time continuing to try to find a way to run an in-person study before switching to the
online approach.


https://doi.org/https://doi.org/10.1075/is.22010.sca
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CHAPTER 2

2.1 Introduction

This chapter begins by giving some background on relevant fields in the first three sections.
The first section gives an overview of the problem of mobile robot navigation, and how the
field of social navigation emerged in order to handle the presence of humans around the
robot, remarking that the primary goal of social navigation is to work towards defining
a natural, comfortable, legible navigation. In the second section, we first briefly discuss
human interaction principles, highlighting that humans interpret non-verbal actions as
conveying elements of intention or affect. We then discuss works in human robot inter-
action, discussing to what extent similar principles have been observed in modalities other
than navigation. In the third section we present works in the field of expressive robot mo-
tion generation which seeks to explicitly induce certain perceptions of robots through their
motion, pointing out that these works are aimed at expressing robot emotions or practical
intentions rather than express socio-affects or attitudes that can be interpreted as being
directed towards another person.

In the last three sections, we discuss specific aspects of how researchers approach the de-
sign and evaluation of social navigation and expressive motion algorithms. The fourth sec-
tion discusses how researchers determine which aspects of the robot’s motion they should
control. The fifth section discusses how the algorithms perform the control of the motion
according to the selected social or expressive features. The last section discusses which
kinds of human perceptions researchers are usually interested in evaluating, and gives some
background for our choice of evaluation method.

2.2 Background: from traditional to social mobile robot

navigation

The problem of navigation can be summarized as determining how to drive a robot from its
current position to some goal position, while avoiding collisions. Additionally, we aim to do
this in a way that is efficient, by minimizing the path length, travel time, or energy. These
objectives are those typically considered in traditional navigation approaches. When per-
forming navigation in environments shared with humans, these objectives result in robot
motion that people do not consider desirable, such as the robot passing very close to hu-
mans. In this section, we present an overview of traditional approaches to mobile robot
navigation, and of how the problem and corresponding approaches have changed in order
to handle deployment in environments which are shared with humans.

2.2.1 Traditional navigation

In this section, we give a quick overview of traditional approaches to solve the navigation
problem, which are typically composed of two stages, global planning and local planning
(Siciliano & Khatib, 2016). Global planning is a slower process that plans the entire path
at a purely geometric level. Local planning uses the global path as guidance in order to
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quickly compute a trajectory (consisting of path and timing) over a fixed time horizon in
real-time that accounts for the current state of the environment based on sensor data, and
that accurately reflects the robot’s motion capabilities.

The global planning stage requires a representation of the robot’s environment (e.g. a
map), and computes a feasible path that connects the robot’s initial position to the goal,
typically making some simplifying assumptions on the robot’s shape and motion charac-
teristics in order to make the problem tractable. The output of such as step is usually a
purely geometric path, defined as a sequence of robot configurations. One approach is to
represent the static environment as an occupancy grid, over which A* (Hart et al., 1968)
or other search-based algorithms can be run to find the shortest path. Such approaches
are resolution-complete, and are easy to compute when the dimension of the search space
is low. Another approach consists of sampling the configuration space, with algorithms
such as Probabilistic Road Maps (PRM) (Kavraki et al., 1996) and Rapidly exploring Ran-
dom Trees (RRT) (Karaman & Frazzoli, 2011), where a configuration (x, y, #) is drawn at
random, and checked for collision. If it is not in collision, it is added to the roadmap or
tree, eventually finding a connection from start to goal, given enough samples. These were
designed to avoid the exponential complexity of search as the number of dimensions grows,
and they are probabilistically complete. In mobile robotics, global planning approaches are
generally used to plan paths which only consider the robot’s position and orientation, and
assuming perfect knowledge of the environment. In practice, such paths may be infeasible
due to the robot’s kinematics, such as the differential constraint for non-holonomic mobile
robots, or due to changes in the environment. Our interest is in studying and controlling
the subtleties of mobile robot motion, rather than high-level path planning considerations,
hence in this thesis we do not focus on global planning.

Local planning bridges the gap between the high-level global plan and the motor con-
trol commands sent to the mobile base. Local planners take sensor readings and the global
path as input, and plan a trajectory that attempts to follow the global path, while avoiding
obstacles and complying with the robot’s kinematics constraints. The Dynamic Window
Avoidance (DWA) (Fox et al., 1997) is a classical example, where the robot’s dynamically
feasible control input space is sampled in order to find a circular arc trajectory over some
short (1 or 2 seconds) time horizon that is collision free, and minimizes a cost function driv-
ing the robot towards its local goal. Such early approaches to local planning typically only
consider the immediate state of the robot, or a short prediction horizon. This tends to result
in sub-optimal, short-sighted motion, which later approaches alleviate by leveraging more
powerful computing hardware and more advanced algorithms in order to plan over longer
horizons, such as in the Timed Elastic Band approach (Rosmann et al., 2015), where the
online trajectory planning problem is formulated as an optimization problem, and solved
within a Model Predictive Control (MPC) framework. Local planning methods which are
tightly linked to the robot’s low-level motor controller present themselves as a good way
to explore and control the mobile robot’s motion in order to study their impact on humans,
hence this thesis aims at providing local planning algorithms with a way to modulate their
trajectories according to how they will be perceived by humans.
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2.2.2 Social Navigation

As robotics progressed, researchers began exploring applications where the robots are de-
ployed around humans, and must navigate. This added two types of complications com-
pared to traditional navigation applications and requirements.

Firstly, there were new challenges in terms of the complexity of the spatial and temporal
problem of moving in such environments which can contain a large number of humans in
motion, like when navigating through a crowd of people. The future motion of people is
not known, and initial approaches with conservative estimates of the distribution of future
motions tended to run into the Freezing Robot Problem (FRP) as described in (Trautman &
Krause, 2010). They suggested that the missing element was to consider that people perform
joint collision avoidance, rather than acting as individual agents, and proposed to model
these interactions with interacting gaussian processes. Many works in the field of social
navigation have a focus on this complex algorithmic problem of multi-agent cooperative
navigation planning in real-time, with close ties to the field of human motion prediction.

Secondly, there were new so-called social challenges, given that treating humans as
mere dynamic obstacles was found to result in negative effects on humans. Tasks that
were seemingly "solved" by traditional navigation had to be reconsidered, as humans judged
robot motions based on criteria other than their efficiency. For example, navigating through
an environment could not be reduced to finding the shortest or fastest path from A to B, as
researchers found that people preferred the robot to keep some distance away from them,
leading to many works implementing a personal space around humans based on the con-
cept of proxemics by Edward T. Hall (Hall et al., 1968). Another interesting aspect is the dis-
tinction between the actual safety of the robot navigation system and the perceived safety.
Studies showed that certain robot motions could be perceived as unsafe, even though the
roboticists knew the algorithm was safe (Pacchierotti et al., 2005), highlighting once again
the necessity of considering human interpretations of the robot’s actions. Other important
aspects that have been considered include the legibility of the robot’s motion, which im-
pacts how accurately a person can infer where the robot will go in the near future based on
its prior motion. Smoothness and naturalness of motion is also considered key, resulting
in approaches that attempt to minimize jerk (the time derivative of acceleration), or more
generally aim to replicate human motion characteristics.

Social navigation is often synonymous with the task of a robot navigating through a
crowd, where its goal is not to engage in explicit interaction with people. However the
definition of the term is still somewhat unclear, as discussed in a recent survey (Francis et
al., 2023). Works which focus on other aspects of navigation such as approaching a person,
joining a queue or group of people, following or guiding a person can also be considered as
parts of social navigation, where the interaction with a person is part of the task. As pointed
out in an early survey of social navigation works (Kruse et al., 2013), when the robot should
navigate in a crowd, the main objective is to avoid discomfort for the surrounding humans,
by making sure the navigation is perceived as comfortable, safe, natural and sociable (e.g.
respects social norms such as staying on the right hand side of a corridor).

To summarize, the overall goal of social navigation research is to model the ideal or
most acceptable form of navigation, and implement algorithms that are able to generate
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such motions in complex dynamic, uncertain environments. Several factors are considered
as contributing to the overall acceptability (comfort, naturalness, social norm compliance,
legibility, perceived safety), however it is assumed that the desired outcome is to maximize
all of these factors. Making an analogy to the vocal modality, we might say that this goal is
similar to the goal of designing a speech synthesis system with a natural, clear, and maybe
polite prosody, similar to smart assistants such as Amazon Echo. In our work, we instead
aim to explore how subtle variations in motion may allow exploration of other dimensions
of human perception of the robot, namely in terms of attitudes and physical characteristics.
Instead of there being a single ideal style of motion, there may be different motion styles
that are interpreted in various ways by humans, which are then considered as acceptable
or not.

2.3 Background: communication and interaction

Simply because it is deployed in a human-populated environment, a mobile robot’s actions
and motion will be perceived, analysed, and judged by humans. In this section, we present
an overview of studies of communication and interaction, first of all between humans, and
secondly between humans and robots. We first discuss how humans form impressions of
others through many different interaction modalities, with a particular focus on how vocal
prosody has been shown to convey a person’s attitudes towards others. We then discuss to
what extent similar interactions have been studied in the field of human-robot interaction,
and how the concept of subtle prosody could be extended to the motion and navigation
modalities.

2.3.1 Human-human interaction

When interacting with each other, people perceive, interpret and generate behaviours across
their whole body. Consciously or not, we use mechanisms such as eye contact (Argyle &
Dean, 1965), body language (Scheflen & Scheflen, 1972), perception of interpersonal dis-
tance (White, 1975), proxemics (Hall et al., 1968), as well as vocal prosody (Gobl & Ni Cha-
saide, 2003) in order to communicate. Among these fields of study, proxemics has been
widely used as inspiration in robot social navigation works since it describes how people
maintain different distances with one another while interacting, depending on their cul-
ture and relationship. However, other aspects of locomotion and navigation such as the
temporal dynamics of motion, and overall quality of body motion are not the focus of prox-
emics. We do not have models describing how a person’s navigation dynamcis influences
interpretations of their attitudes towards others.

Humans tend to interpret information across several modalities in a holistic manner,
rather than treating each modality separately. People have been found to make strong
associations between audio cues and shape cues (Magnani et al., 2017), as well as combining
perceptual information from speech and lip movement when seeing and hearing a person
speak (McGurk effect) (McGurk & MacDonald, 1976). It is therefore interesting to consider
works which model the expression of attitudes in other communication modalities. The
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vocal modality has received particular attention given that it’s primary use is precisely
to communicate (as opposed to gaze or navigation which are primarily of practical use).
In speech, most of the communication channel’s bandwidth is used in order to convey
semantic meaning. But even when using exactly the same words, we can still modify how
we say them by using the remaining bandwidth and degrees of freedom of the vocal signal
such as changing pitch, rhythm, tone, or vocal effort. The variations of the "how" of speech
are what constitute vocal prosody.

Studies have shown that vocal prosody variations could change the perceived affective
state of the speaker (Schroder, 2003), and that different vocalizations of the same word
could give it different meanings (Campbell, 2004) in an interaction. In addition to the afore-
mentioned functions, vocal prosody can convey our attitude towards other people such as
being polite or authoritative, aggressive or gentle, as well as give indications of our social
role. Works by Aubergé and colleagues have studied how attitudes are expressed in vocal
prosody (Shochi, 2008), as well as how people perceive them (Lu, 2015), finding that subtle
variations in the dynamics of the voice are involved. The evolution of vocal prosody over
time is hypothesized to be an essential part of how humans form relationships with one an-
other creating a "socio-affective glu" (Sasa, 2018) between people, which captures the state
of their relation.

In summary, humans use several modalities when interacting with others in order to
communicate social and relational information. Although we do not have models linking
kinematic and navigation parameters to the perception of attitudes, vocal prosody has re-
ceived particular attention with studies showing that fairly subtle variations of the speech
signal over time can convey one’s attitude towards another person, and subsequently influ-
ence the interaction and their relation. In the following section we explore whether similar
observations can be made within HRI, presenting studies which suggest that the notion of
prosody could be extended to the whole body, not just voice.

2.3.2 Human-robot interaction

When people interact with robots, they tend to interpret the robot’s actions as they would
those of a social agent. This is reminiscent of the Computers Are Social Actors (CASA)
paradigm (Reeves & Nass, 1996) which suggests that people treat computers and new me-
dia like social agents. Since the early days of deploying robots in human environments,
researchers have explored whether or not similar verbal and non-verbal communication
could be effectively employed on robots, leveraging human’s tendency to already interpret
robot actions as communicative. Studies have also been conducted on empathy towards
robots (Rosenthal-von der Pitten et al.,, 2014). Many aspects of human interaction have
been studied, and found to be important in human-robot interaction. Some examples of
interaction modalities include intention (Sciutti et al., 2015), gaze (Mumm & Mutlu, 2011),
engagement (Vaufreydaz et al., 2016), robot initiative (Munzer et al., 2017), reaction to touch
stimuli (Shiomi et al., 2018). Typically, researchers motivate the incorporation of such com-
munication as being beneficial for efficient human-robot collaboration, making the robot
more interesting to interact with, more likeable. Researchers have also explored robot sim-
ulation of emotions as a tool to convey the robot’s internal state and aid interaction.
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Prior works of Aubergé and colleagues have extended the exploration of vocal prosody
and the concept of socio-affective glu to human-robot interaction (Sasa & Aubergé, 2017;
Tsvetanova et al., 2017), studying how vocal prosody can impact how the human behaves
and interacts with a robot. In these works, robots are used as a means to explore what kind
of impact robot usage of vocal prosody could have on a person’s own vocal prosody, as well
as on their overall behaviour during interactions with the robot. In addition to studying vo-
cal prosody, (Sasa & Aubergé, 2017) observed that the changes in participant’s vocal prosody
over the course of an hour-long interaction with the robot were aligned with changes in
their spatial behaviour, gaze, and voice quality (Tsvetanova et al., 2017). In another study
(Girard-Rivier et al., 2016), participants were required to perform gestures directed towards
a small mobile robot, and again their gestures were changed over the course of the interac-
tion in a way that was consistent with the gradually more glu-ing vocal prosody emitted by
the robot. In both works, participants are asked to self-annotate their interaction data after
the experiment, and tend to use vocabulary to describe the robot that progressively moves
from descriptions of an object to descriptions of an agent, or a subject, hinting again at the
ties to the evolution of how the person perceives their relation with the robot. These works
suggest that there could be a holistic prosody of the whole body, rather than only vocal
prosody, which is what leads us to study what we call "prosody of movement" in mobile
robots. In line with these prior works on vocal prosody, we are interested in determining
how subtle variations in movement can be perceived as the robot having different attitudes
towards people, as well as how they may be perceived as expressing different physical qual-
ities of the robot, for example the expression of frailty or sturdiness.

Prosody has also been explored in HRI through studies on emotional music prosody
(Savery et al., 2021) to generate emotionally expressive non-verbal audio, as well as gestures
in (Savery et al., 2019). The influence on perceptions of a robot using voice and hand-over
gestures with varying prosody was also studied in (Di Cesare et al., 2017), indicating that
this concept may carry over to other modalities. Therefore, in addition to navigation factors,
we also consider other dimensions that intervene in the perceptual experience of being near
a mobile robot by studying visual appearance factors (presence and shape of eyes, head
position, and stability of the robot base) as well as auditive factors through the presence
or absence of motor noise. In a recent study parallel to our work (Lastrico et al., 2022), the
authors studied how a robot arm’s style of motion influenced a human participant’s own
motion. The robot picked up a glass in a "careful” or "not careful” manner, and performed a
hand-over motion to give it to the participant. Participants were able to recognize whether
the robot was being careful, and their own reaching motion mimicked the features of the
robot’s, i.e. slower and longer motions when the robot was careful. Once again this supports
the idea that subtle motion variations of robot can be interpreted in terms of socio-affects.

In summary, human interaction takes place through multi-modal communication chan-
nels, within which subtle variations can express different attitudes towards others. When
interacting with robots, humans consider similar factors, and perceive robots as social en-
tities. Previous works have demonstrated that people’s verbal and non-verbal behaviour
with respect to a robot can be altered by the robot’s own behaviour, more specifically its
vocal prosody. In addition, these changes have been related back to participants’ impres-
sion of their relation with the robot. While there have been HRI studies on proxemics and
some basic movement dimensions with mobile robots, for the most part they do not study
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how exactly different features of motion are tied to perceptions of attitudes, nor to how
people consider their relation to the robot.

2.4 Background: expressive motion generation

In this section, we provide an overview of the area of expressive motion generation for
robots. This field spans over various robot embodiments, and is not limited to mobile robots.
In fact, its origins lie in computer graphics and animation rather than robotics, where the
goal is to synthesize motion in different styles that can be interpreted in terms of emotions
or intentions. For example, a character or robot could move in a way which is perceived as
happy or sad. We first discuss works where the only reason for the robot to move is in order
to express something. Second, we discuss recent works in expressive robot motion which
aim to generate motions that accomplish a given practical task while also being expressive.

2.4.1 Expressivity as the only goal

Some works in robotics aim to use movement to convey emotions, affect, or style. A large
part of such works are more focused on gestures, postures (Beck et al., 2012), or facial
expressions, but some studies have been performed with robot motion. In many works, the
sole purpose of the expressive motion is to convey the emotion (Chan et al., 2021; Mizoguchi
et al., 1997; Song & Yamada, 2018; Yoshioka et al., 2015). Often, the display of emotions is
motivated as a means for the robot to convey its internal state to the human, which has
been shown to improve performance in human-robot collaboration settings (Breazeal et
al., 2005). Other than emotions, people have also studied how to express practical, goal-
directed intentions like where the robot will go (Szafir et al., 2014), as well as expression
of affect (Saerbeck & Bartneck, 2010). In general, these motions are designed offline, and
played back when the desired expression should be generated.

Our work’s general goal is somewhat similar in the sense that we explore how move-
ment can elicit various interpretations from humans, rather than simply being "natural".
However, we are interested in combining this expressivity with useful, task-oriented robot
navigation in dynamic environments, rather than fixed, hard-coded motions.

2.4.2 Functional expressive motion

In this section, we discuss a more recent development where instead of expressive motions
being generated with the sole task of communicating an emotion or an intent, they are
generated in order to accomplish a practical task on a robot simultaneously. For further
reading, we refer the readers to a recent review (Venture & Kuli¢, 2019).

Within such works, an additional distinction can be made. In some works, the re-
searchers study trajectories which are generated offline, or designed specifically in order
to be evaluated in their study. In (Van Otterdijk et al., 2021), short trajectories were hand-
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designed for a Pepper mobile robot, and combined with light displays and postures to con-
vey sad, neutral or happy emotions while approaching a person to deliver a message. In
(Vannucci et al., 2019), the authors explored whether a humanoid robot handing over an ob-
ject could convey an aggressive or gentle attitude through its arm motion, or vocal prosody.
The arm motion was designed by using motion capture to record a trained actor perform-
ing the handover action, and then re-mapping to the iCub robot and editing the motion
to ensure it seemed to conserve similar characteristics to the acted motion. Participants
were able to interpret the two styles when watching videos, as well as in an in-person in-
teraction. These studies help to explore human perception of robot motion, but it is usually
unclear which part of the motion captures the expressivity, and which part is purely tied
to the task. It is unclear how one would design an algorithm to generate motions across
different instances of the same tasks, or across different tasks.

More recently, researchers have started to explore ways of incorporating expressivity
into algorithms which can plan and execution motions for arbitrary tasks. In some works,
the features which make the trajectory expressive are explicitly known, such as (Hagane &
Venture, 2022; Zhou & Dragan, 2018) for robot arms, and (Knight, 2016) for a mobile robot.
In (Zhou & Dragan, 2018), an actress is asked to perform pick and place-like actions in a
sad, happy, or hesitant style. The authors select features which seem to differ between the
motions, and transfer them to a robot arm: average horizontal distance from end effector
to base, average end effector height, average angle between vertical axis and end effector
orientation, and speed along the path. Using humans performing expressive motions as an
example is an interesting approach, however there are issues relating to the unclear map-
ping between human morphology and the robot’s actuators. There may also be issues as to
whether or not acted motions display identical prosody to spontaneous motions. In order
to integrate these characteristics of motion into the robot arm’s motion generation, the au-
thors formulate the trajectory generation as an optimization problem where a function that
captures the cost of a given trajectory should be minimized. The cost function is composed
of terms relating to the robot’s practical motion task (bring the end-effector of the arm to a
given position in space) as well as terms expressing the style of motion, as described above.
A learning based approach is used in (Sripathy et al., 2022) to train a generative deep neural
network to generate trajectories for a bipedal mobile robot corresponding to emotions de-
fined in the PAD (Pleasure Arousal Dominance) space. Due to the deep learning approach,
the mapping between the desired expressivity and trajectory features which are manipu-
lated is not explicitly available, and in order to gain insight into which specific features
cause a trajectory to be perceived in a given way, further analysis is required. With such
a learning-based approach, we do not directly obtain an understanding of which motion
features map to which expressive dimensions.

These works are interesting because their goal is to build algorithms that can be con-
figured differently to generate motions with different features, based on which emotion or
affect should be expressed. However, only a few recent works are exploring the intersection
of functional and expressive motion, and few of them are applied to mobile robots. Further-
more, our goal is to generate motions that express attitudes towards other people, as opposed
to emotions which only describe a single person’s internal state rather than the relation.
In addition, these algorithms are usually only evaluated in static environments where dy-
namic re-planning of the motion is not necessary. Therefore, it remains unclear whether
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deploying these approaches in the context of navigation in dynamic human environments
would result in accurate representation of the desired expressivity.

2.5 Determining motion features to be explored

In this section, we discuss how researchers determine which characteristics are important
in social navigation, and therefore which kind of motion the robot should perform.

In some social navigation approaches researchers use learning based techniques, ei-
ther to mimic human navigation (Luber et al.,, 2012) or to learn strategies for navigation
in crowded environments (Chen et al., 2017; Xu et al., 2023). In such cases, the motion
features are not explicitly available. More importantly, the assumption when fitting algo-
rithms to datasets is that the goal is to generate motions that represent the average human.
In our case, we want to generate motions that convey certain attitudes, for which we would
require labelling of attitudes in the datasets, making these approaches unsuitable for us.

The first method is to develop a full Social Navigation algorithm, either based on machine-
learning methods which aim to imitate human navigation (Chen et al., 2017; Ramirez et al.,
2016), or by manually observing and modeling human behaviour such as in (Kitagawa et al.,
2021). Another approach is to implement existing models of human behaviour such as the
Social Force Model (Shiomi et al., 2014). Spatial and proximity factors are the most com-
monly addressed in earlier works (Rios-Martinez et al., 2015), often being derived from the
concept of proxemics (Hall et al., 1968). The algorithm can then be used to control a real
or simulated robot, in order to conduct experiments. In (Honour et al., 2021) participants
viewed top-down animations of robot trajectories generated via a Socially Aware Naviga-
tion (SAN) planner and a traditional planner, in order to compare them. This methodology
enables the evaluation of one algorithm, or comparisons between algorithms, but it be-
comes difficult to determine how each aspect of the trajectories impacts the overall HRI
and perception of the robot by humans. In addition, there aren’t existing models of how
humans perceive attitudes based on the whole-body locomotion. There are some works
on posture, and some works on static distances with proxemics, but there aren’t any mod-
els that can give us a relationship between the shape or velocity along a trajectory and
perceptions of attitudes towards people.

In (Mavrogiannis et al., 2019), participants performed a navigation task while sharing
the workspace with a mobile robot using one of three navigation methods (two algorithms,
one teleoperated). The authors computed metrics on the robot’s trajectories: average accel-
eration, average energy (defined as the integral of the squared velocity), minimum robot-
human distance, path irregularity, efficiency, and topological complexity. Describing the
navigation resulting from applying each algorithm may help to understand which vari-
ables are important, and what their impact is, but these metrics are relatively global values
describing an average measure of the trajectory as a whole. When considering the inverse
problem of how to generate a motion that induces a specific perception of the robot, this
becomes an issue since the metrics might not uniquely control all of the robot’s degrees of
freedom.
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Other works such as (Sorrentino et al., 2021) take an existing algorithm and alter some
of its controllable variables. In this work, participants walked across a room, passing by a
robot moving in the opposite direction. The robot avoided the collision using three differ-
ent minimum obstacle distances and maximal velocities. This facilitates the understanding
of the impact of a given parameter which varies systematically within this experiment,
but comparisons with other algorithms will still be difficult if there are interaction effects
between the controllable variables and non-controllable variables. When generated by an
existing algorithm, can be hard if the algorithm approach in and as of itself already entails
certain trajectory characteristics, for example with a longer or shorter planning horizon,
different obstacle avoidance could be generated.

Lastly, some works opt to employ hand-crafted trajectories based on a small number of
variables, such as curvature and acceleration (Saerbeck & Bartneck, 2010) or acceleration
styles (Schulz et al., 2020), tested in basic navigation scenarios. This approach tends to
provide a clearer idea of the impact of a given navigation variable, since only the variables of
interest are directly manipulated. However each study only deals with one or two variables,
once again lacking the power to thoroughly explore interactions between variables.

We propose to first assess which motion variables are important by using hand-crafted
motions built through a systematic combination of the different variable values. To propose
the set of variables to be studied, we make analogies to the variables known to impact voice
prosody dynamics which are known to impact social interaction (Campbell & Mokhtari,
2003; Gobl & Ni Chasaide, 2003; Sasa & Aubergé, 2017; Tsvetanova et al., 2017). The selec-
tion and range of the variables reflect our robot’s mechanical constraints and capabilities.
Using systematically designed motions aids the understanding of the dimensions at play by
using them in perception experiments. Among the initially proposed variables, only those
that are found to have an impact on the person’s perception of the robot will be kept, and
used to guide the design of our social navigation algorithm.

2.6 Integrating social and expressive features into robot

motion algorithms

In this section, we discuss in more detail how works in the fields of functional expressive
motion generation and social navigation integrate the various trajectory features into the
generation process. We also point out similarities in the choices of algorithmic frameworks
between the two fields.

The goal of both of these fields is to generate motion that accomplishes a physical task,
while taking into account a variety of metrics which account for human presence in the
environment, as opposed to traditional navigation which aims to minimize time, or path
length. This is reflected by recent works from social navigation and functional expressive
motion generation turning towards similar methods by encoding the desired trajectory fea-
tures into cost functions and/or constraints, followed by a search or optimization algorithm
to generate trajectories which best match the social or expressive features. These objectives
are often in conflict with each-other. The typical approach is to adopt a scalarization ap-
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proach to treat the multi-objective problem as a single-objective problem, usually by com-
puting a weighted average of cost terms (Mavrogiannis et al., 2023). This requires tuning
the weights to obtain the desired behaviour, balancing the different social and expressive
objectives, as well as the task objectives such as making progress towards a navigation goal.

In (Sisbot et al., 2007) the authors propose two costs, modelling visibility of the robot
by the human, and a proxemics-inspired personal space. They propose either a weighted
average, or taking the maximum out of the two costs. This choice depends on the task and
balance between criteria, and the weights should be tuned according to the properties of
the task. In a more recent work, (Khambhaita & Alami, 2020) present an approach which
jointly plans cooperative trajectories for a single human and the robot, accounting for met-
rics such as the expected time to collision with the person, modulating robot velocity when
near the person, and legibility of the trajectory. Other aspects have been modeled such
as preferring deceleration rather than changing path shape to negotiate crossing a person
(Kruse et al., 2012), maintaining a desired position and velocity while accompanying a per-
son (Repiso et al., 2017), avoiding intrusion into group formations and the information pro-
cessing space in front of people (Rios-Martinez et al., 2012). Similarly for expressive motion,
(Zhou & Dragan, 2018) uses a weighted sum of costs, however they also explore the use of
learned weights based on participant perception of emotion in the robot arm’s trajectories,
avoiding the manual tuning process. Some features are shared across several works, the
most common being personal space around people derived from proxemics (Rios-Martinez
et al., 2015), however most works consist precisely of proposing their own novel cost or
constraint, leading to each work using different subsets of cost terms.

While trade-offs between traditional task performance metrics and social or expressive
features are inevitable, the issue with these approaches is that there is limited control over
how the trade-off is performed. In some works, this trade-off is enforced more explicitly,
such as (Hagane & Venture, 2022) where the expressive features for a robot arm can only
be expressed through degrees of freedom which have absolutely no effect on the practical
task. On the contrary, in (Park, 2016), the authors first develop a smooth parameterized
control law for their autonomous wheelchair such that it produces graceful motion. Their
trajectory planner optimizes over the parameter space defined by the control law, thus
enforcing a given style of motion, regardless of the impact on task performance.

Formulating the problem as a trajectory optimization provides a general framework
consisting of cost functions and constraints that can be combined to model complex navi-
gation styles. Given the flexibility of the method, we also adopt the trajectory optimization
problem formulation. It is crucial that our algorithm generates motions which are very
accurately matched to those which we will use to construct our model of human percep-
tion of robot motion. For this reason rather than modeling the desired motion through the
cost function, which would make the desired prosody features subject to trade-offs with
other cost terms modeling the functional task to be achieved, we propose to design specific
prosody constraints to enforce the desired properties of motion. In this sense our approach
is inspired by (Park, 2016), since we also restrict the valid trajectory space a-priori accord-
ing to the desired style of motion. The constraints must take into account the consistency
of the robot’s motion style over time, requiring them to factor in the robot’s past motion,
as well as it’s ability to plan a future trajectory with appropriate movement prosody.
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2.7 Evaluation of robot motion

Social Navigation studies that deal with evaluating user’s perceptions of robots employ a
variety of methods, one of which is to use established questionnaires such as the Godspeed
Questionnaire Series (GQS) (Bartneck et al., 2009) in (Mavrogiannis et al., 2019; Sorrentino
et al., 2021), Negative Attitudes towards Robots Scale (NARS) (Nomura et al., 2006), Per-
ceived Social Intelligence scale (PSI) (Barchard et al., 2020) in (Honour et al., 2021), or Robot
Social Attributes Scale (RoSAS) (Carpinella et al., 2017). The items on such scales are often
derived from existing theories and paradigms in social sciences.

In contrast, we base our selection of items on adjectives originating from previous stud-
ies investigating human vocal and gesture prosody generated during interactions with a
robot (Guillaume et al., 2015; Sasa & Aubergé, 2016). The adjectives used in our scales are
derived from the participant’s self-annotations of their own interaction data. Each scale op-
poses two adjectives, some related to the physical impression of the motion, others related
to perceptions of intentions or attitudes. The adjectives represent vernacular terms that a
person may use in their everyday life, as opposed to terms derived from a scientific theory
with a specific interpretation within its field. In a sense, these adjectives on the perceptual
scales are the tools we give the participants in order for them to be able to describe the im-
pression they have of the robot. This is inspired by the impressionistic paradigm, which has
been used in prior works to study associations across modalities such as between sounds
and shapes in the "kiki, bouba" experiment (Drumm, 2012), or between vocal prosody and
colors in one of the series of works by Sagisaka et al. (Watanabe et al., 2014).

Some SN works focus on the efficiency of the method (often applied to navigating
through dense crowds) rather than its impact on people’s perceptions of robots (see (Mavro-
giannis et al., 2023) for a recent survey). Other works evaluate the impact of their navi-
gation algorithms using concepts such as acceptability, naturalness, comfort, likability or
human-likeness (Kruse et al., 2013). These concepts are important in HRI, however they are
general concepts that we believe may depend on more specific perceptions such as those
we propose to study. Instead of a given style of navigation being inherently acceptable or
unacceptable, we explore how a style induces perceptions of robot attitudes which may
explain subsequent judgments on whether the navigation is acceptable within a given task
and human-robot relation.

2.8 Summary and motivation for our approach

In this section, we summarise the various aspects discussed in the state of the art, and
give our motivation for our overall approach and contributions. The general approach to
design social navigation algorithms is to modify an existing navigation algorithm so that it
improves people’s evaluation of comfort, naturalness, legibility, and perceived safety. The
assumption seems to be that there exists a single ideal navigation style that would maximize
all of these criteria. Studies in HRI suggest that people often consider robots as subjects or
agents, interpreting their actions in social terms by attributing intentions and attitudes to
them. Prior studies have shown that subtle variations in vocal prosody can convey different
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attitudes. Similar effects have been observed in a HRI context where a robot’s vocal prosody
altered the person’s own behaviour and prosody, as well as their impression of the robot.
Studies have also shown that human perception and production of social communicative
cues is holistic, and that the dynamics of gestures evolves in a similar manner to vocal
prosody during an interaction. These elements lead us to hypothesize that subtle variations
in the robot’s navigation might also be interpreted as conveying social attitudes towards
the surrounding humans, which could in turn impact human’s evaluation of the robot.

Unlike vocal prosody, we do not have existing models relating motion variables to per-
ceptions of attitudes. Therefore, we cannot apply the typical approach of transferring
knowledge from known human interaction concepts. This motivates our first contribu-
tion, which is to build a model relating robot motion variables to perceptions of attitudes.
Navigation’s impact on people is usually evaluated after the algorithm is developed, which
may make it difficult to precisely understand which variables cause which perception. In
contrast, we first study motion variables independently of any existing algorithm through
perception experiments discussed in Chapter 3.

Only once we have established which variables are important in movement prosody
do we turn towards constructing an algorithm that can control them. A common method
for social navigation and expressive motion algorithms consists of formulating trajectory
generation as a constrained optimization problem. Social or expressive aspects are typically
encoded as terms in the cost function, alongside terms related to the robot’s practical motion
task, which can lead to trade-offs between the terms. Even if these trade-offs only result in
small variations of the style of robot motion, studies on vocal and gesture prosody suggest
that it is precisely in the small details that social and relational information is carried. We
propose to prioritize the trajectory’s compliance with the desired movement prosody over
the objective navigation task performance so that the human perception of the robot stays
consistent, including when operating in dynamic environments, as discussed in Chapter 4.

Many evaluations of social navigation algorithms are performed in lab studies, where
participants are aware of the goal of the experiment, and placed in environments which
do not resemble realistic deployment conditions. This can lead to different participant be-
haviour and impressions of the robot when compared with more ecological experimental
conditions. We integrate our navigation algorithm into a complete architecture in order to
run an in the wild study, where participants spontaneously interact with the mobile robot
which is given a realistic pretext task and role. We combine observational measures of
participants’ reactions with semi-structured interviews to determine what impact different
movement prosody had on their behaviour as well as impressions and performance rating
of the robot. This experiment is presented in Chapter 6.
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3.1 Introduction

Our first research goal is to generate a formal understanding of which properties of a mo-
bile robot’s navigation may be responsible for eliciting different social perceptions of the
robot by humans. Rather than firstly implementing a full social navigation algorithm and
only subsequently evaluating it, we propose to take a bottom-up approach by methodically
constructing a corpus of robot motions to be used in perception experiments. In addition to
motion variables, we also incorporate other aspects of the robot which change the person’s
perceptual experience of the robot when it navigates near them, motivated by the holis-
tic nature of human perception and production of social cues. Once we have formalized
the links between the physical characteristics of motion and appearance and human social
perception, we may use this information to better understand how humans perceive robots,

In order to study the impact of the movement dynamics, appearance, and body motion
of the robot on people’s perceptions of it, we propose to design a robot motion corpus.
The corpus consists of robot motions representing broad classes of motion and appearance
characteristics, along with videos of the robot performing the motions. The motion and
appearance parameters we include are velocities, accelerations, types of movements, head
movements, chassis types, eye shapes as well as the presence or absence of motor noise.
By designing a corpus of robot motion and appearance and conducting a perception exper-
iment, we hope to help fill a gap in the literature in Social Navigation and Human-Robot
Interaction research since, to the best of our knowledge, this kind of corpus and experiment
aimed at holistically studying the impact of both low-level motion parameters and related
visual and audio cues on HRI has yet to be published.

Designing a corpus of reference motions can help to avoid a common pitfall in Social
Navigation which is the dependence on a specific robot platform or navigation algorithm,
which makes comparisons between works difficult. To the best of our knowledge, this cor-
pus is the first of its kind. Other researchers may choose to implement the same motions
on their own robotic platform, which could help to further study the influence of different
robot platforms on HRI. Furthermore, the video corpus allows researchers to conduct stud-
ies using exactly the same stimuli, which could help reproducibility of HRI studies (Irfan
et al.,, 2018), and provide insights into the degree of cultural differences in HRI by run-
ning studies with participants from different countries. Our video corpus represents a wide
range of robot motions, as well as various robot characteristics and motions which are not
directly related to navigation. This allows us to study the relations between various per-
ceptual stimuli and also to avoid ceiling effects, where one aspect of the robot’s motion or
appearance may dominate or nullify the effects of other aspects.

We believe the social navigation and HRI communities would benefit from holistically
considering the appearance of the robot alongside its navigation style. By appearance, we
refer to the robot’s general aspect (mechanical, bio-evoking, human, animal, cultural refer-
ences), as well as elements such as its size, color, texture, and structural appearance (sturdy
vs. frail). In our motion corpus, we focus on the navigation variables for a given robot
(RobAIR “RobAIR mobile robot, designed and built by FabMASTIC, Grenoble”, 2021), on
which we also have the ability to vary the frail-sturdy appearance dimension, the shape of
its eyes, and orientation of its head. Therefore, these appearance variables are also included
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in the corpus and combined with the navigation variables.
The structure of the chapter is as follows:

In section 3.2 we present the mobile robot platform which we use in this thesis. We give
an overview of its physical design, hardware and sensors, and most crucially, its movement
capabilities.

In section 3.3 we present our motion corpus construction which involves combining
different values of variables affecting the motion and appearance of the robot. We start
by presenting each of the motion variables and describing how each of them contributes
to defining the robot’s velocity profile. Then, we present the appearance variables and
motivate their inclusion in the corpus.

In section 3.4 we discuss the creation of a video corpus, consisting of videos of the robot
performing a simple straight line trajectory while subject to the different combination of
corpus variable values. First, we discuss the relevance of online video studies in human
robot interaction, pointing out the risk of losing some of the visual information depending
on what kind of motions are filmed, as well as how the filming is performed. We then detail
our process for ensuring that the videos capture the robot’s subtle differences in motion
and appearance as faithfully as possible.

In section 3.5 we present three perception experiments conducted using our corpus in
order to determine the relationship between the corpus variables and people’s perception
of social attitudes or socio-affects of the robot, as well as physical qualities of the robot. We
begin by presenting the perceptual scales which are used to evaluate participants’ percep-
tions. Then, each experiment is presented, along with statistical analyses and interpretation
of the results allowing us to establish which corpus variables had an impact on social and
physical perception of the robot, as well as which perceptual scales were impacted. These
results constitute a first model of the proposed concept of movement prosody, defining how
the manner in which a robot performs a navigation task can convey social and relational
meaning.

In section 3.6 we discuss the implications of the experiment results before concluding
in section 3.7 by establishing which physical characteristics of the robot’s velocity profile
our navigation algorithm should be able to control in order to alter how it will be perceived
by humans, leading into the next chapter.

The work presented in this chapter has been published as a journal paper in Interaction
Studies (Scales et al., 2023), with a less detailed preliminary analysis of the results of the
second online experiment.

The video corpus consisting of the 450 video files used in our perception experiments
is made publicly available' so that other researchers may use it in their own studies. It was
also the object of an APP deposit (French Agence pour la Protection des Programmes), under
the name BotEmoMove Database®.

!Examples of the corpus videos can be found at the following link: https://youtu.be/EiH801PjlOw. The
full video corpus can be downloaded on the project page: https://osf.io/5csrg/
?Base de données BotEmoMove, APP4IDDN.FR.001.400027.000.S.A.2022.000.42000
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In order to conduct the online experiments, we used a website developed internally at
our university as part of previous students’ work (Clarisse Bayol and Ambre Davat). This
allowed us to have total control over how the stimuli were presented. In the context of
this thesis, the author adapted the website to support video playback, as well as allowing
the main study questions to be loaded from csv files so that non-programmers can easily
change the questions without needing to modify code. This version of the online test tool
was also deposited at the APP .

3.2 Robot platform

In this section, we present the RobAIR wheeled mobile robot platform which is used through-
out the thesis, shown in Figure 3.1. The RobAIR platform (“RobAIR mobile robot, designed

and built by FabMASTIC, Grenoble”, 2021) is developed by the FabMASTIC fab lab at the

Université Grenoble Alpes, where it serves both as a platform for teaching robotics, student

projects, as well as for research.

3.2.1 Construction

The robot is 1.20m high, and has a diameter of 0.50m at its widest point, at the base. The
body is constructed out of hard plastic flower-pot covers, providing the tapered shape to
the body. The base deck is made out of plexiglass, and the whole structure is rigid. In
the context of this thesis, the caster wheel mounting was slightly modified so that when
tightened there would be absolutely no sway or give in the robot structure, making the base
very stable. The mounting also enables to restore variable amounts of sway by loosening
the caster wheels, making the robot base unstable. On its head, the robot has programmable
LED light strips which can be programmed to display different eye shapes. Both of these
features were used in the design of our motion and appearance corpus.

3.2.2 Hardware and sensors

The robot is equipped with two Hokuyo URG-04LX-UG01 2D Laser Range Finders (LRF)
mounted horizontally, facing forward, with a range of 5.6m in ideal conditions and a 240
field of view. One sensor is mounted at ankle-height 0.10m above the ground and positioned
0.35m along the robot’s forward axis, and another is mounted on the robot "head" at 1.20m,
centered. These sensors are used to detect obstacles as well as for detecting people based
on the detection of legs and chests. The sensor acquisition frequency is of 10hz, and the
scanning time is 100ms. The motor kit is a devantech RD03 24v, with an MD49 motor
driver board. The MD49 is used to control the voltage sent to the EMG49 motors, and read
the encoder counts to provide odometry information to estimate the robot’s motion.

In addition to the LRFs used for autonomous navigation, the robot has a wide-angle fish-

3Online perception experiment tool: APP#IDDN.FR.001.400026.000.S.A.2022.000.42000
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Figure 3.1: Left: RobAIR mobile robot. Right: RobAIR base.
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eye camera positioned on its "forehead". Other sensors have been added in order to acquire
higher quality and different types of data during human-robot interaction experiments.
Two high quality Steinberg microphones are installed into the "head", allowing binaural
capture of high-quality audio. In the context of this thesis, an Intel Realsense D415 color
and depth camera was added to the head in order to capture higher quality images of the
person’s face and upper body when the person is near, or whole-body when they are far.

3.2.3 Motion capabilities

The robot has a differential drive configuration, with two driving wheels positioned at the
center of the base, and two non-driven caster wheels at the front and back to keep the
robot upright. This imposes constraints on the robot’s motion, since it cannot instanta-
neously translate in a direction other than the one it is facing (so-called non-holonomic
constraint (Siciliano & Khatib, 2016)). The EMG49 motors allow the robot to translate at a
maximum velocity of 0.8m.s™!, and accelerate at 2.667m.s2 in the highest acceleration
setting, meaning it can reach its top speed in only 0.3s. The MD49 only allows velocity
control of the motors, and provides various settings to limit the robot’s maximal acceler-
ation. In the context of this thesis, the acceleration limit was set to the highest possible
value to enable us to utilise the full range of the motor’s capabilities. When implementing
control algorithms in the acceleration space, we made sure the acceleration values were
within the bounds achievable by the motors when translating the requested acceleration to
the corresponding velocity command.

3.3 Robot motion corpus design

In this section, we present the seven variables of our robot motion corpus. In the first
subsection, we describe the three variables used to define velocity profiles i.e. curves giving
the velocity of the mobile robot over time. In the second subsection, we describe the four
variables related to the visual appearance and audio aspects of the mobile robot.

3.3.1 Velocity profile design

The primary goal of the corpus is to enable the study of a robot’s motion and kinematics
parameters’ impact on people. Velocity profiles specify the robot’s movement, and are built
by combining the values of three corpus variables: the motion sequence, kinematics type
and variant. The motion sequence determines what we could call the general "shape" of
the motion, in terms of speeding up, slowing down, maintaining speed. The kinematics
type determines how abruptly the changes in velocity occur, and how fast the robot moves
i.e. the slopes and maximum value of the velocity profile. These dimensions are related to
the amount of kinetic energy required to perform the motion, hence the kinematics types
represent different energy levels. The variant determines the fine details of the robot’s
motion, in order to add certain characteristics to it, such as smooth or saccadic.
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In the following subsections, we present the variables which define the velocity profiles,
and discuss the factors which had to be accounted for in the design process. These factors
arose through five successive cycles of implementing and filming various motions on the
robot and testing them on a few people in order to determine how the motions looked to a
human bystander and on video.

Motion sequences

A motion sequence is a succession of motion phases, which can be acceleration phases,
constant velocity phases, or deceleration phases. This essentially describes the type of
motion performed by the robot. There are several choices for how to design the motion in
each phase, mostly in terms of the shape of the velocity curve over time, which could be
linear, exponential, logarithmic, sigmoidal, or other types of curves. The impact of using
a given type of curve on people’s perceptions of the robot has very rarely been studied
(see (Schulz et al., 2020) for a comparison of linear and slow-in, slow-out velocity profiles).
Ideally, we would compare the effect of different curve types, however in this study we
limit ourselves to linear curves. We chose to use linear curves since they are the simplest
type of curve, both to implement and to analyze.

The six motion sequences are illustrated in Fig. 3.2. Within the space of all feasible
kinds of motions, we aimed to identify the basic building blocks that are representative of
most mobile robot motions. The building blocks are:

1. accelerating from a standstill;

2. decelerating to a halt;

3. accelerating, constant velocity, then decelerating;

4. accelerating from a slower velocity;

5. decelerating to a slower velocity;

6. decelerating, constant velocity, then accelerating;

7. accelerating then immediately decelerating;

8. decelerating then immediately accelerating;

9. accelerating from a standstill, then constant velocity;

10. constant velocity, then decelerating to a halt.

Once we had established the building blocks, we determined six motion sequences (A,
B, C, D, E, F) which contain the building blocks. Motion sequences A and C are designed to
introduce a notion of "pausing" between acceleration and deceleration phases, by inserting
small plateaus of constant velocity. The length of these plateaus (300ms) was chosen as an
analogy to other communication aspects such as duration of a syllable, or of a sign in sign
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Figure 3.2: Illustrations of the effect of the six motion sequence values (solid lines), and
ten building blocks (dashed lines) on the overall velocity profile. The motion sequence
only determines the broad shape of the profile in terms of the ordering of accelerations
and decelerations. The slope and maximum values of the profiles are determined by the
kinematics type, and the fine details are determined by the variant.

language. We chose a value within this order of magnitude while also making sure that it
was long enough to be perceptible when viewing the robot’s motion. Motion sequences C
and D incorporate a low-velocity phase half-way through the sequence, which may evoke
a form of hesitation, as studied in the area of gestures in HRI (Moon et al., 2013).

Of course, choices have to be made regarding the duration of the acceleration and de-
celeration phases, which we will detail in the following part.

Kinematic types

We use the term kinematic type to refer to the bounds which are set on the robot’s velocity
and acceleration. Velocity and variations of velocity over time (acceleration) are the most
basic descriptors of movement, that still allow us to capture a wide enough range of robot
motion. Jerk (the time-derivative of acceleration) could be interesting to study, but it is
a more advanced notion, and is typically non-trivial to account for in most current social
navigation algorithms, so we do not explicitly control or study it in our work. The relevance
of acceleration as a factor which influences people’s perceptions of robots was stated in
(Saerbeck & Bartneck, 2010), which studied the impact of acceleration and curvature on
people’s attributions of emotions and affects to two different robots.

Our goal was to choose three sets of values of the velocities (v;,;, and v,,,4,) and accel-
erations a for the three values of the kinematic type variable. Given these kinematics types
are intended to correspond to low, medium or high-energy motion styles, we chose to pair
velocities and accelerations in a coherent way. For example, if we choose a low accelera-
tion value, we combine it with slow v,,,;, and v,,,,. Pairing a low acceleration value with a
fast V4, could be feasible, but it introduces more subtleties when trying to compare two
kinematics types in terms of the energy required to perform them.
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The decision to use three kinematics types was made firstly for practical reasons, given
that using more would imply a much larger corpus. Secondly, in this first study we aim to
capture the extreme cases, which should provide us with the most contrast. The low and
high energy types are the extreme values, and the medium type serves as a reference point
between the extreme values.

In order to select the exact values to specify each kinematics type, there are several as-
pects one needs to balance and compromise on. Firstly, we have to account for the robot’s
physical capabilities. Naively using the robot’s maximal velocity (0.8m.s~') and accelera-
tion (2.6m.572) as the high-energy type means the robot reaches its maximal speed within
just 0.3s, far too short to be properly perceived. Other aspects we had to balance were:

1. robot’s physical motor limits;
2. minimum perceivable duration of acceleration;

3. duration of the whole motion (impact of exposure time of a stimuli on people’s per-
ception);

4. maintain similar duration of acceleration phase;
5. distance traveled (camera field of view and room limitations);
6. distinctness of minimal and maximal velocities;

7. distinctness of kinematic types.

Given all the constraints above, we selected an acceleration time from v,,,;,, t0 V4, Of
1.0s, so the acceleration phases to or from a zero velocity were between 1.25s and 1.5s,
depending on the kinematics type. This gives the motion sufficient length to be properly
perceived by the viewer, while also allowing for a clear difference between the three kine-
matics types. The final values describing the kinematics types are shown in Table 3.1.

Table 3.1: Kinematics types parameters

Parameter Low Medium High

a 0.2m.s72 | 0.35m.s~2 | 0.5m.s~2
Umin 0.05m.s! | 0.15m.s7 | 0.25m.s~!
Urnaz 0.25m.s~! | 0.50m.s7 | 0.75m.s~ !
0 to Vyaz 1.25s 1.42s 1.5s

Umin 10 Upmaz | 1.0s 1.0s 1.0s
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Variants

We designed two variants (incremental and saccade, illustrated in Fig.3.3), which modify
the shape of the velocity profile locally. Once again, the design process for these variants
has its roots in analogies to speech production variations which can be used intentionally
by people, or originate from health issues or as a consequence of physical characteristics.
When people manipulate their speech, it can become a means for them to alter the way
other people perceive them.

In this study we aim to evoke two speech variations, hesitant speech and jittery speech.
Hesitant speech could be observed when one is unsure of oneself, or not very confident,
whereas jittery speech could be associated with frailness due to old age or health issues.
Similar characteristics can be observed in people’s gestures, and locomotion, which we aim
to reproduce.

The saccade variant is an attempt to imitate jitter by introducing continuous shaking
or stuttering of the robot by rapidly increasing and decreasing the velocity commands to
the motors. There were two main conflicting aspects that had to be balanced: on the one
hand, the resemblance to the type of dynamics observed in speech or human motion; and
on the other hand, the reproducibility of the motion. Applying random perturbations to
the velocity profile results in slightly more "natural” jitter, but it also means the motion
sequence and kinematics type may become unrecognizable. In order to combat this effect,
we perturbed the velocity commands in a deterministic, periodic fashion. Essentially, we
determine a period and amplitude of the oscillations of the perturbed velocity profile around
the value of the original profile. In our case, the period is 0.2s, and the amplitude is fixed to
different values according to the kinematics type (low: 0.044m.s~!, medium: 0.090m.s},
high: 0.120m.s™1).

The incremental variant is an attempt to imitate hesitation by introducing increments
into the acceleration and deceleration phases, meaning that an acceleration phase which
is typically a single, constant acceleration applied for one second becomes a succession
of three acceleration phases of a third of a second, interleaved by two constant velocity
plateaus of 300ms. These plateaus are a means of conveying pauses in the motion, in a
similar fashion to motion sequences A and C, hence the same duration being used. Re-
garding the number of plateaus, we chose to use two plateaus simply because it allows
each acceleration phase to be long enough to be perceptible, while provoking a big enough
difference when compared to the original velocity profile.

When neither the increment nor saccade variants are applied to the profile, the motion
phases conserve their original piecewise linear shape as in Figure 3.2, which corresponds
to the smooth variant.

In this subsection, we presented the corpus variables which define the velocity of the
robot during its movement. In the next subsection, we present the corpus variables which
define the audio and visual aspects of the robot.
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Figure 3.3: Velocity profiles resulting from combining the incremental (top) or saccade (bot-
tom) variants with motion sequence A, and medium kinematics type.
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3.3.2 Beyond velocity: robot appearance and body dynamics

Although our aim is to study the impact of motion parameters on human’s perceptions, we
need to keep in mind that other visual factors, as well as the sounds produced by the robot
could also have an impact.

People communicate and perceive things holistically, by using and considering several
modalities of expression. Therefore, if some variables other than the robot’s kinematics also
affect people’s perceptions (which seems to be the case already for some of them studied
independently like gaze (Fischer et al., 2016) or appearance (Magnani et al., 2017)), then
their effect will be present in the results. This could become an issue if a variable has
a ceiling effect, which would make it difficult or impossible to observe the effects of the
motion variables we are interested in. We don’t know if there are ceiling effects, because
velocity, acceleration, hesitations, saccades, eyes, head motion, profile type, stability, and
sound have not been studied together yet. Hence, we also manipulate other variables related
to the robot’s appearance, body motion, and sound to be able to detect and minimize any
kind of bias or ceiling effect impacting people’s perceptions.

Frail or robust robot

Typically, robots are designed with robustness in mind, which leads to robots which are
stable, with well-mounted parts that do not shake even when the robot is under strain. The
apparent physical stability and sturdiness of the mobile robot is an aspect which is rarely
investigated, yet it may have an impact on how people perceive the robot’s motion. We
used two different robots to film our corpus, one typical stable robot and one modified,
unstable robot. We modified an existing robot by loosening the front and back balancing
wheel assemblies, and by loosely mounting its head on its body. The result is that the whole
robot sways back and forth when changing speeds, especially when using the high-energy
kinematics type, and its head shakes when using the saccade variant. This gives the robot
body a different style of movement dynamics.

Eye shape and head movements

When robot designers include characteristics associated to living beings in their robot, it
can impact how much people tend to anthropomorphize it, or how people interpret or
perceive the robot’s actions. Additionally, the exact shape of the eyes can also convey
meaning. We use three eye variants for this corpus: switched off, round, and squinting.
The round eye shape is part of the robot’s design after a study where it was rated as the
most "neutral" eye shape. The squinting eye shape was designed for this corpus in order to
convey a colder, more unsettling feeling.

Gaze is a relevant means of interaction for living beings, and studies such as (Breazeal
et al., 2005) have also shown it has an important role in HRI, due to its relation to attention,
and its implicit signaling of the robot’s perception capabilities. Gaze direction can also
be tied to navigation and has been used to make motion more legible, as was studied in

34



MODELLING HUMAN PERCEPTION OF SOCIO-AFFECTS AND ATTITUDES IN MOBILE ROBOT
LOCOMOTION

(Fischer et al., 2016). For these reasons, we complemented the eye shape variants with four
head settings: two settings where the head is stationary (facing straight, or facing the side,
towards the camera) and two where the head moves during the robot’s motion (from the
straight position to the side, and vice-versa).

Audio recording

Most motors used in mobile robot locomotion are noisy, so any variation in the robot’s
motion also carries an audio signal. In some cases, navigation and control parameters do
not cause a significant visual difference, but the change is still clearly audible through the
motor noise. Other than motor noise, the chassis and other parts of the robot can also
produce sounds which can give information about the structure of the robot. If the robot
makes creaking and knocking sounds whenever it moves a bit too suddenly, we might
deduce that the robot is not very well built. These types of sounds are called consequential
sounds and have recently been the object of studies in HRI such as (Tennent et al., 2017)
or (Robinson et al., 2021). In both studies, different sounds lead participants to perceive
the robot’s motion differently, highlighting the necessity of taking sound into account even
when studying other dimensions of HRI.

The exposure to the sound produced by the mobile robot can therefore convey infor-
mation, or be interpreted in various ways by the viewers, even if these sounds are simply
direct consequences of the physical properties of the robot. Recording the sound of the
mobile robot was therefore necessary, and could be used to contrast people’s perception of
the same motion when played back with or without the sound.

3.3.3 Summary of corpus variables

In Table 3.2, we summarize the variables we manipulated in order to obtain each video of
the corpus, as well as the different values they can take. The sound variable is adjusted
as a post-processing step: we record a given stimuli with sound, duplicate the video and
mute one of them to obtain the silent version. In practice, we were unable to include all
combinations of the values of these variables due to several limiting factors. Firstly, the
stable robot’s head was unable to rotate, meaning it was only filmed using the straight
head setting. Secondly, due to time constraints on the corpus acquisition, we decided to
remove certain combinations of variables: the saccades and incremental variants were not
combined with round or squinting eye shapes. The resulting corpus contains 450 videos,
for a total of 900 combinations of values of the seven corpus variables once we include the
sound variable.

In the next subsection, we present the steps taken to ensure that we captured the robot’s
motion and appearance as faithfully as possible.
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Table 3.2: Robot motion corpus variables.

Corpus variable  Set of variable values

Motion sequence {A,B,C, D E F}

vMa(r);[;%rlles Kinematics type  {low, medium, high}
Profile variant {smooth, saccades, increment }
Base type {stable, unstable}

Appearance Eye shape {none, round, squint}

variables Head setting {straight, side, straight_to_side, side_to_straight}
Sound {with, without}

"Motion variables" affect the robot’s velocity profile. "Appearance variables" encompasses variables
related to visual and auditory perception of the robot.

3.4 Video corpus acquisition

In the previous subsection, we detailed the design of the robot’s motions and appearance
variables which constitute the corpus. In this subsection, we detail the considerations and
precautions we took in order to produce a high-quality, exploitable corpus of videos. Var-
ious prior works have used video-based stimuli for HRI experiments involving moving
robots (Carton et al., 2017; Chan et al., 2021; Knight et al., 2016; Torre et al., 2021), some
of which validated their results on subsequent in-person experiments (Moon et al., 2013;
Reinhardt et al., 2021). A recent study compared video and in-person experimental settings
in the context of gestures with similar results, suggesting video studies may be appropri-
ate (Honig & Oron-Gilad, 2020). Some of the variables explored in our corpus result in
very slight visual differences in the robot’s motion, such as the high-frequency stuttering
and shaking induced by the saccade variant, or the swaying of the whole robot body when
using the unstable base. For these reasons, we took extra precautions in order to capture
the robot’s movements as precisely as possible, and to make sure that they are well repre-
sented in the videos. We also aim to avoid any differences in the recording conditions that
could introduce unwanted biases. All along the motion corpus design and recording, we
consulted two experts (a professional videographer and a photographer) to discuss which
parameters should be controlled in order to capture the robot’s motion and appearance as
precisely and truthfully as possible.

3.4.1 Robot movement consistency and framing

In order to minimize differences between two videos showing the same velocity profile, we
implemented a method which allows us to execute a selected velocity profile automatically
on the mobile robot. The profiles are represented as sequences of acceleration values, each
associated to the corresponding duration over which it should be applied. This approach
is described in more detail in our formalization of our navigation algorithm in chapter 4
(section 4.4). This also reduces the chance for errors during the corpus filming which is
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already a tedious and time-consuming process. In addition, the whole control stack from
the velocity profile control code down to the low-level motor controller was analyzed and
modified when necessary in order to ensure the robot’s motion was as faithful as possible
to the velocity profile.

Regarding the camera framing, filming the robot moving towards the camera would
give the impression of moving towards the viewer. In the end, we decided against it due to
the unclear effect of the lack of depth perception resulting from the use of non-stereo video.
Filming a robot motion parallel with the image plane should conserve as much information
about the robot’s motion as possible, unlike some prior video-based studies which required
motion with components which are perpendicular to the image plane (Carton et al., 2017;
Knight et al., 2016; Torre et al., 2021). The robot’s initial position was also considered, as it
may have a priming effect on people’s anticipation and interpretation of the robot’s motion.
For example, if the robot starts very far on the right hand side of the frame, facing right,
people could assume the robot will not travel very fast or far. In order to mitigate this, the
robot starting point was selected such that the total motion to be performed was centered
in the camera’s framing. The exact position depends on the motion sequence, kinematics
type, and variants; so in the interest of time, the initial positions were approximate and the
motions were not always exactly centered.

3.4.2 Environment characteristics

Regarding the background, it is necessary to make sure that it is mostly uniform in order
to avoid visual distractions, although when trying to capture movement it can help to have
reference points such as vertical lines in order to better perceive the velocity of the robot.
The background color should provide a high contrast with the robot’s color. The type of
ground on which the robot moves should also be considered in combination with the robot’s
drive assembly, given that any discontinuities in the ground could have repercussions on
the robot’s motion, and hence, visual appearance. Naturally, there should also be enough
space in the environment to perform the longest velocity profile (six meters in our case).
We also made sure there were no visible obstacles in the robot’s direction of travel, since
one could anticipate that the robot will start to slow down before reaching the obstacle.

The experts also highlighted the importance of lighting conditions to get the clearest
possible picture of the robot, which is dependent both on the natural and artificial lighting
of the room. In our case, strong natural light provided better lighting conditions than indoor
artificial lighting, although this meant camera parameters had to be adjusted to compensate
for the changing light throughout the day. Good lighting allows the details to be visible,
and helps to clearly distinguish background from foreground.

3.4.3 Camera configuration and parameters

Initial filming tests revealed that smartphones are limited in terms of the field of view, and
action cameras cause too much distortion with their fish-eye lenses. The experts informed
us that the high-framerate recording action cameras provide is also not necessary for our
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application. We also raised the question of shutter speed, which is tied to the amount of
motion blur in an image, but given the speeds of the robot we were dealing with, standard
shutter speed settings would suffice. The most important parameters were:

1. lighting conditions to avoid shadows;
2. high resolution to capture details;

3. stability of the camera.

One of the experts performed the final video recordings using a high-quality camera
(Canon EOS 5D Mark IV) and advised us on the final framing, positioning, and lighting con-
ditions. The camera and appropriate lenses and settings allowed us to frame wide enough
to capture the full movements, while maintaining a good size of the robot in the frame, and
high quality capture.

During the filming sessions, routine checks were made to ensure a consistent image
over all 450 videos, despite the varying lighting conditions. One adjustment had to be
made to the exposure settings of the camera in order for the robot’s LED eyes to be clearly
distinguishable. The resulting setting (under-exposure) was a compromise between image
quality and visibility of the eyes. The exposure also had to be adjusted to compensate for the
changing lighting conditions. We provide additional details regarding the camera, lenses,
settings, and subsequent video post-processing, encoding, and formats in Appendix A.

3.5 Perception experiments

In order to analyze the effect of each variable of the corpus on the way in which a mobile
robot is perceived we ran a series of three experiments; two online experiments where
participants viewed videos of the robot and one embodied experiment, where the robot
moved towards the participant, stopping at a pre-determined distance.

The goal of the online experiments was to collect participant’s perceptions of the robot
for the whole corpus, in order to establish a first baseline regarding which variables had
significant influences on how participants perceived the robot. The goal of the embodied
experiment was to attempt to replicate the findings of the online experiments for a subset
of the corpus containing the variables which were found to be the most influential. All
three experiments use similar methodologies.

3.5.1 Perceptual scales

In Table 3.3, we present the ten semantic differential scales which were used in all exper-
iments in order to gather participants’ social and physical impressions of the robot. Part
of the scales represent attitudes towards others, such as Authoritative-Polite, Aggressive-
Gentle, Inspires-Doesn’t inspire confidence, Nice-Disagreeable, Tender-Insensitive. Evalu-
ating these perceptions involves a directed attitude. Confident-Hesitant is more related to
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the robot’s own affective state. The remaining scales capture physical perceptions of the
robot, with Sturdy-Frail, Strong-Weak, Smooth-Abrupt, Rigid-Supple. The scales were cho-
sen based on words that participants in prior HRI studies had used to self-annotate their
own recorded interaction data after a long experiment with a small butler robot (Guillaume
etal., 2015; Sasa & Aubergé, 2016). The experiments were all conducted in French, hence the
adjectives were translated to their closest vernacular equivalent in English for presentation
here.

Table 3.3: Perceptual scales (original french wording in italic)

Adjective 1 ‘ Adjective 2
Aggressive Gentle

Agressif Doux
Authoritative Polite

Autoritaire Poli

Seems Confident Doubtful, Hesitant
A lair confiant en lui-méme Doute, Hesitant
Inspires confidence Doesn’t inspire confidence
Inspire confiance N’inspire pas confiance
Nice Disagreeable
Sympathique Antipathique
Sturdy Frail

Solide Fragile

Strong Weak

Fort Faible

Smooth Abrupt

Lisse Rude

Rigid Supple

Rigide Souple

Tender Insensitive

Tendre Insensible

3.5.2 First online experiment: likert scale

The corpus of 900 stimuli was split into groups of 45 videos within which each value of
each variable was represented. Thus, each participant viewed and rated all 45 videos of
a given group, meaning they would see all values of all variables several times, but not
all combinations. The order of the videos was randomized for each participant, and the
number of participants for each video group was roughly balanced. Participants viewed
each video once before rating it and moving on to the next. At the end of the experiment,
participants could choose to leave a free-form comment. In the first online experiment,
the rating scales were presented to participants as 5-point likert scales, where the middle
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option signifies that neither of the adjectives correspond to their perception of the robot.
Figure 3.4 shows how the videos and scales were presented on our website. The 900 stimuli
were split into 20 groups, half with sound, and half without, meaning the sound variable
was a between-subjects variable.

e imag.fr R

Video 1/45

aggressif doux solide fragile
autoritaire poli fort faible
a l'air confiant en lui-méme doute, hésitant lisse rude
inspire confiance n'inspire pas confiance rigide souple
sympathique antipathique tendre insensible

Continuer

Figure 3.4: Online perception experiment website. This figure shows the second online
experiment with binary choice. Presentation is identical for the first online experiment,
except there are five response levels instead of two.

A total of n = 42 participants completed the first online perception experiment. Par-
ticipants of all ages were recruited via university mailing lists, experiment recruiting lists,
and social media. The first step in our analysis was to determine whether certain corpus
variables or certain scales showed wide ranges of responses, or clear-cut bias to one of the
opposing adjectives. For each value of each corpus variable, we computed the distribution
of participants responses on all videos using that value, shown in Fig.3.5. With 42 partici-
pants, each of the 900 unique combinations of values of variables is only rated four times
at most. However in the analysis of this first online experiment we do not study unique
combinations of values, but rather all combinations that include a given value for a given
variable such as all videos using the high kinematics type. In this arrangement, there are at
least 300 ratings of videos using each value of each variable of the corpus. The responses
followed normal distributions, generally with high mass around the center value as seen in
Fig.3.5. For some scales, different values for certain corpus variables led to distributions that
were shifted towards one of the adjectives such as the saccade variant shifting responses
towards the doubtful/hesitant side of the confident-doubtful/hesitant scale. For all scales, a
high percentage of the responses were on the neutral level (neither one nor the other end of
a scale, column label 0), with half of the scales having 30 to 40% of neutral responses, and
the other half having 40 to 45% of neutral responses. Distributions for participants who
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had sound had an average of 15 + 5% fewer neutral responses than those without sound.

We performed chi-square association tests to determine if there were dependencies be-
tween each motion variable and scale pairing. The resulting chi-square statistic and signif-
icance levels are reported in Table 3.4, with 46 out of the 70 pairings showing a significant
dependence (p < 0.05). The significance levels are based on the adjusted p-values after
Bonferroni correction, to account for multiple hypothesis testing.

Table 3.4: Chi-square association test results between corpus variables and perceptual
scales, for the first online experiment. Reported as chi-square statistic, significance *p <
0.05, **p < 0.01, **p < 0.001.

Aggressive Authoritative Confident Inspires Conf Nice

Gentle Polite Doubtful  Does not Disagreeable
Kinematics (2) 235 *** 198 *** 106 *** n.s. n.s.
Sequence (5)  n.s. n.s. 221 *** 78 *** n.s.
Variant (2) 47 *** 33 ** 246 *** 178 *** 37 ***
Eyes (2) 53 69 *** 145 *** 76 *** 118 ***
Head (3) n.s. n.s. 39 ** n.s. n.s.
Base (1) n.s. n.s. 55 *** 47 *** n.s.
Sound (1) 68 *** 60 *** 107 *** 76 *** 25 **
Sturdy Strong Smooth Rigid Tender
Frail Weak Abrupt Supple Insensitive
Kinematics (2) 50 *** 96 *** 59 *** 48 *** 44 ***
Sequence (5) 102 *** 90 *** 49" n.s. n.s.
Variant (2) 306 *** 203 *** 97 *** n.s. n.s.
Eyes (2) 113 *** 107 *** 33 ** n.s. 75 ***
Head (3) 35" n.s. n.s. n.s. n.s.
Base (1) 104 *** 53 *** n.s. n.s. n.s.
Sound (1) 115 *** 46 *** 86 *** 82 *** 47 ***

The results of the association tests suggest that people’s perceptions of a mobile robot
along these ten perceptual scales may be dependent on several of the motion corpus vari-
ables, most notably the kinematics and variant (x?(2) > 33, p < 0.01 for 8 out of 10 scales).
The absence of sound leading to more neutral responses could indicate that the sound was
informative, and did affect people’s responses.

The high proportion of neutral responses across most scales and variables could indicate
one of two situations:

1. neutral perception: the participant finds neither of the adjectives fitting to describe
their perception of the robot;
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Aggressive (-) | Authoritative (-) | Condifent (-) Inspires conf. (-) Kind (-)
Gentle (+) Polite (+) Hesitant (+) | Doesn't insp. (+) | Disagreeable (+)
2-10 1 2}-2-10 1 2§J-2-10 1 2}4-2-10 1 2}J-2-10 1 2
high 18 29 23 19 34 23 15 9
Kinematics | medium 7 25 30 24 36 20 14 8
low 19 28 27 34 24 14 7
A 28 30 24 35 21 13 7
B 25 30 22 36 23 15 9
Motion c 20 23 27 35 24 7
Sequence |D 12 24 33 30 31
E 28 14 36 16
F 28 20 35 21
smooth 30 19 35 19
Variant saccade 20 30 31 27
increment 25 30 36 28
none 26 27 35 24
Eyes round 29 20 32 16
squint 27 16 35 23
straight 13 27 23 13} 7 24 37 18
Head side 14 25 23 19 24 31 26
side to straight 10 25 27 16 20 36 26
straight toside ] 7 19 39 23 12 30 20 32 24
Base unstable 34
stable 15 22 15
sound
Sound no sound ’ ig = gj 186
Sturdy () Strong (-) Smooth () Rigid (-) Tender (-)
Frail (+) Weak (+) Abrupt (+) Supple(+) Insensitive (+)
2-10 1 2}-2-10 1 2}Jj-2-10 1 2}-2-10 1 2}J-2-10 1 2
high 12 31 27 20 13 34 34 15 14 20 37 22 19 36 33 10 13 19 19
Kinematics | medium 26 33 23 12 26 40 21 7 |13 25 15 14 33 39 12 14 15 13
low 24 34 28 10 21 38 27 10§15 27 13 11 26 16 22 13 13
A 30 31 24 97 28 37 21 7|13 25 16 16 28 12 19 17 15
B 26 35 23 11 28 39 22 13 26 17 13 34 38 13 15 17 14
Motion C 27 29 28 12 26 38 21 1014 22 18 12 33 39 12 20 15 16
Sequence D 17 31 30 18 19 35 29 1312 17 20 1016 33 36 12 15 18 14
E 15 33 29 16 7 |13 33 36 13 17 27 40 12 16 32 35 15 15 14 18
F 10 30 34 20 11 30 37 18 14 27 39 16 16 30 38 14 16 16 12
smooth 10 34 36 17 9 33 39 15 15 28 13 13 32 39 14 18 15 14
Variant saccade 13 21 34 29 15 29 33 1911 14 39 24 12§20 33 34 10 12 21 17
increment 21 29 33 10 21 39 25 8 |14 23 20 14 30 40 14 16 15 15
none 22 29 28 14 22 36 25 1113 21 19 16 31 38 12 15 16 16
Eyes round 9 34 36 17 9 30-16 16 30 40 12 12 29 39 16 26 9 10
squint 11 35 35 16 10 39 36 12 13 27 14 14 36 36 12 13 21 17
straight 11 28 31 21 8 10 27 37 20 15 26 15 15 32 38 13 14 16 16
Head side 24 31 26 14 26 37 21 9 |15 25 15 13 31- 13 20 12 12
side to straight 28 34 24 10 27 38 22 8|12 23 19 14 31 40 13 15 19 15
straighttoside | 7 27 31 24 11 29 37 20 7 |14 20 19 18 32 34 13 20 16 16
Base unstable 25 30 26 12 26 37 23 9|13 23 17 14 32 38 13 17 15 15
stable 15 34 37 12 12 34 39 12 17 28 38 14 16 31 37 13 12 14 19 15
sound sound 9 30 21 27 13} 8 29 31 23 9§17 2532 20 7 |19 35 30 15 13 19 18
no sound 25 19 717 25 18 11 23 12 10 28 11 21 13 11

Figure 3.5: Response distributions in percentages for the likert scale online experiment.
Columns represent response levels for each perceptual scale. Rows represent corpus vari-
able values by which the video ratings are grouped to compute the percentage of responses.

42



MODELLING HUMAN PERCEPTION OF SOCIO-AFFECTS AND ATTITUDES IN MOBILE ROBOT
LOCOMOTION

2. uncertainty: the participant feels unsure of their answer, and prefers to give a neutral
response rather than answer in a way that they perceive as random.

This was reflected in several participants’ comments, stating that they felt like it was
difficult to answer, or that they answered randomly. While the association tests did report
statistical significance of the dependencies, further investigation into the underlying cause
of the neutral responses could give a better idea of the robustness of the associations. We
designed the second perception experiment in order to explore this phenomena.

3.5.3 Second online experiment: binary choice

We designed a second online experiment which was similar to the first in most aspects, but
with a few key changes aimed at extracting more useful responses from participants. In
this experiment, the rating scales were presented to participants as simple binary choices
between the two adjectives, rather than a 5-point likert scale. This was done so that par-
ticipants could not answer with a neutral response, as many did in the first experiment.
If participants actually have consistent inclinations towards certain perceptions for given
variables, then forcing them to pick a side of the scale may result in higher mass of re-
sponses on one end of the scale. However if the perception of participants is truly not
impacted by the variable, the responses may become more random, and the mass equally
spread to either side of the scale. The forced choice design of this experiment allows us to
determine which of these two situations occurs. Regarding the set of stimuli, we chose to
use only the half of the stimuli which had sound for two reasons. Firstly, the presence of
sound is more realistic since our robot cannot be made silent (and neither can most robots).
Secondly, the first experiment results suggested that removing the sound only made par-
ticipants’ answers more neutral, losing part of the information about the robot’s motion.
This change reduced the total number of videos to 450, split into 10 groups.

Response distributions and scale correlations

A total of n = 101 participants completed the second online perception experiment. Par-
ticipants of all ages were recruited via university mailing lists, experiment recruiting lists,
and social media. When observing the distributions of responses, the trends of the first
experiment tended to be confirmed. Distributions with an existing bias towards one side
of a scale were shifted further towards that side, and distributions with little to no bias re-
mained similar (see Fig.3.6%). For example, in the first experiment 51% of the stimuli using
low kinematics were perceived as gentle, 10% as aggressive, and the remaining 39% as nei-
ther (neutral response), so the responses were biased towards the gentle perception. In the
second experiment with the forced binary choice, a similar tendency is observed: 88% were
perceived as gentle, and the remaining 12% as aggressive. If some participants were truly
undecided and answered the forced choice question at random, we could have expected the
response distribution to even out, rather than become more extreme.

*This table is available on our project page https://osf.io/5csrg/ which will be updated as the project
continues.
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Aggressive (-) | Authoritative (-)] Condifent (-) |Inspires conf. (-) Kind (-)

Gentle (+) Polite (+) Hesitant (+) |Doesn't insp. (+)|Disagreeable (+

- + - + - + - + - +

high 59 41 56 44 63 37 39 61 43 57

Kinematics| medium 33 67 34 66 50 50 43 57 53 47
low 58 W83 .c0. o e0. | 51 a9 | es.. .34

A 33 67 33 67 53 47 45 55 52 48

B 33 67 30 70 47 53 45 55 57 43

Motion C 35 65 35 65 36 64 37 63 53 47

Sequence | D 34 66 34 66 29 71 33 67 52 48

E 39 61 44 56 74 26 52 48 52 48
F 3466 ) 39 6 | | 67....33. ). 53...47.. ). S6....... 44

smooth 32 68 36 64 62 38 53 47 58 42

Variant saccade 47 53 41 59 26 74 21 79 44 56
increment__} 30 70 | . 3070 | 4357 ). a1 .59 .. 5347

none 36 64 34 66 43 57 38 62 51 49

Eyes round 26 74 32 68 63 37 59 41 66 34
squint .38 .62 | 44 56 | 64 36 ) so 50 | 51 49

straight 37 63 35 65 46 54 41 59 52 48

Head side 35 65 34 66 48 52 44 56 53 47

side to straight 35 65 36 64 51 49 43 57 55 45
straighttoside] 34 66 | 36 64 | 49 51 | a4 se | 5446

Base unstable 35 65 35 65 48 52 43 57 54 46

stable 32 68 38 62 62 38 51 49 55 45

Sturdy (-) Strong (-) Smooth (-) Rigid (-) Tender (-)
Frail (+) Weak (+) Abrupt (+) Supple(+) Insensitive (+)

- + - + - + - + - +

high 61 39 62 38 53 47 75 25 27 73

Kinematics| medium 49 51 46 54 61 39 68 32 37 63
low .7 28 ). 34 66 ). 75 25 ). 3 45 ). 47 33 .

A 53 47 50 50 66 34 64 36 38 62

B 44 56 42 58 63 37 64 36 41 59

Motion C 44 56 41 59 60 40 64 36 36 64

Sequence |D 36 64 33 67 58 42 71 29 36 64

E 66 34 61 39 64 36 68 32 33 67
F .60 40 | 5644 | | 67...33. ). 65....35. ). . 38 .62

smooth 62 38 57 43 68 32 62 38 40 60

Variant saccade 22 78 25 75 47 53 78 22 29 71
increment | 44 56 | 41 se | | I 66....34.) 36 .. 64

none 42 58 40 60 59 41 69 31 34 66

Eyes round 62 38 56 44 74 26 58 42 51 49
squint 653 ] 6139 ). 6436 ). . 65......35. ). 34,66

straight 44 56 43 57 61 39 66 34 36 64

Head side 48 52 46 54 61 39 65 35 39 61

side to straight 51 49 47 53 63 37 66 34 37 63
straighttoside] 46 54 | 4357 ) 6238 ) . 67.....33. ). 3862

Base unstable 47 53 45 55 62 38 66 34 38 62

stable 65 35 57 43 68 32 66 34 36 64

- <=30% <40% >60% |>=70% >=80%

Figure 3.6: Response distributions in percentages for the binary choice online experiment.
Columns represent response levels for each perceptual scale. Rows represent corpus vari-
able values by which the video ratings are grouped to compute the percentage of responses.
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Some of the perceptual scale response distributions seem to be affected in a similar
manner by the corpus variable levels, such as the impact of high and low kinematics on the
aggressive-gentle and authoritative-polite scales. We computed the tetrachoric correlation
(Kirk, 1973) between the responses for each perceptual scale, which is a type of correla-
tion measure suited to binary variables. The correlations are shown in Fig.3.7. In addition,
we performed hierarchical clustering on the scale correlation values in order to cluster
scales with similar correlation patterns together. The scales in the correlation matrix are
ordered according to these clusters, placing similar scales near each-other. The clusters can
be more easily represented with the dendrogram in Fig.3.8. The rigid-supple, aggressive-
gentle, and authoritative-polite scales all show similar patterns of moderate inverse corre-
lation (between —0.61 and —0.35) with kind-disagreeable, inspires-doesn’t inspire confi-
dence, tender-insensitive, and smooth-abrupt. The highest correlations are sturdy-frail and
strong-weak (0.86), aggressive-gentle and authoritative-polite (0.82), confident-hesitant
and sturdy-frail (0.74), kind-disagreeable and tender-insensitive (0.73). On the other hand,
some scales have very low correlation, such as strong-weak and tender-insensitive (—0.02).

Aggressive-Gentle .

Rigid-Supple 0.42 0.37
Strong-Weak 0.07 0.3 0.41

Sturdy-Frail 0.03 0.16 0.26

value

0.5
Confident-Hesitant -0.01 0.16 0.26

0.0

0.5

Tender-Insensitive -0.48 -0.47 -0.45 -

Kind-Disagreeable

-0.35 -0.51 -0.39
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Figure 3.7: Correlations between the responses along each perceptual scale. Scales with
similar correlation structures are grouped based on hierarchical clustering.

While the table of response distributions grouped by corpus variable values presented
in Fig.3.6 is useful to uncover the more obvious trends in the data, it fails to represent the
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Figure 3.8: Dendrogram representing the hierarchical clustering of perceptual scales ac-
cording to their correlations. The height between branching points indicates the dissimi-
larity between the clusters.
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fact that the number of responses for each variable value is not balanced. Furthermore, it
does not provide us with any information about possible interactions between the motion
corpus variables. Similarly, the chi-square analysis performed for the first experiments only
allows us to test the statistical significance of the scale dependencies on the corpus variables,
without giving us an understanding of the magnitude of the effects of the variables on
the perceptual scales. Lastly, when we consider each participant’s average response on a
given scale, we find that different participants have different baseline perceptions of the
robot. As an example, we show the histogram of the participants’ averaged responses on
the aggressive-gentle scale in Fig.3.9. While a majority of participants perceived the robot
as gentle with probability 0.6, the range of average values goes from 0.2 to 1.0. These issues
could be addressed by using statistical methods which account for imbalanced data, as well
as for the fact that responses from the same participant may be correlated. We now present
our approach for the statistical modelling of the data.

ha
=]

Frequency

=]

0.25 0.50 0.75 1.00
Aggressive-Gentle

Figure 3.9: Histogram showing the frequency of per-participant averaged responses on
the aggressive-gentle scale. The average is computed over all the participant’s responses,
showing their overall bias towards either side of the scale, regardless of the values of the
motion variables.

Statistical model selection

We chose to fit a statistical model to the data, rather than only performing hypothesis
tests. The model should capture how the different values of the six motion corpus variables
affect participant’s binary responses on the perceptual scales. We chose to use a logistic
regression approach, fitting one model for each perceptual scale. More specifically, we
chose to fit mixed effects logistic regression models (for details on mixed effect models, we
refer the reader to (Winter, 2019)). Mixed models are able to account for the fact that the
responses are not truly independent, since participants each provide 45 responses. A mixed
effect model is defined by the choice of fixed effects as in classical logistic regression, as well
as random effects, which capture dependencies or hierarchies within the data, such as our
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repeated measures design. We used the same model structure for all 10 perceptual scales,
where each of the corpus variables is treated as a categorical fixed effect, and the participant
id is used as a random effect. Once the model is fitted, the regression coefficients for the
fixed effects will allow us to interpret not only the direction of the effect of a given value
of a corpus variable on the perceptual scale, but also its magnitude, in terms of how much
the probability of responding on either end of the scale changes. In addition, the model
estimates an intercept term for each participant accounting for the fact that each participant
may have a different baseline perception of the robot. The models were implemented using
the R programming language, using the /me4 package (Bates et al., 2015). The participants’
responses on each scale were coded as 0 when they responded with the first (leftmost)
adjective of the scale, and 1 for the second (rightmost) adjective, meaning the logistic model
is modelling the probability of the participant choosing the second (rightmost) adjective of
the scale. In R syntax, the model structure can be given as follows:

scale ~ kinematics + sequence + variant + eyes + base + head + (1]id) (3.1)

The model in equation 3.1 models the effect of each variable individually, i.e. it is as-
sumed that the effect of one variable does not depend on the value of another variable. We
could also construct a model which accounts for this possibility by including interaction
terms. In order to decide whether or not to include interaction terms, we fitted models with
and without pairwise interaction terms on a training subset comprised of 80% of the re-
sponse data, and evaluated the model’s predictions on the remaining 20% comprising our
test set. Following (Baayen, 2008), in order to assess the models we used the Area Under
Curve (AUC) of the Receiver Operator Characteristic (ROC) curve (Fawcett, 2006). This
value ranges from 0 to 1, and can be interpreted as the probability with which the logistic
regression model will assign a higher probability to a randomly chosen positive instance
than to a randomly chosen negative instance. AUC' = (.5 represents a random classifier,
AUC = 1 a classifier which is always correct, and an AUC of 0.8 or higher is considered as
an indication that the model has good predictive capability (Baayen, 2008). The resulting
AUC values are shown in Table 3.5 for the predictions made using only the fixed effect
coefficients and the global average intercept (without random effects), as well as for pre-
dictions made using each subject’s intercept value (with random effects). In practice, in our
human-robot interaction scenario we may encounter situations where the robot already
knows the person, in which case we might have prior data on their perception of the robot,
allowing us to leverage the random effect for that person to get a more accurate predic-
tion. We might also encounter situations where the robot has never interacted with that
person before, so we can only rely on the global average intercept value, meaning we do
not leverage the random effect for prediction. When evaluating the models on the training
data, the models with pairwise interactions had slightly better accuracy than the models
without interactions, however this trend was reversed in the results on the test data shown
in Table3.5, suggesting that the interaction models may be overfitting. We decided to per-
form the rest of our analysis using the models without interaction terms, as formulated in
equation 3.1.
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Table 3.5: Model comparison using the AUC metric computed on a test dataset made up of
20% of the observations, which were not used to fit the models. Comparisons are shown
for each scale between different models (with/without interaction terms) and between pre-
diction methods (with/without per-participant random effects (r.e.)).

Pairwise interaction model No interaction model

Without re. With re. Without re. With re.
Aggressive-Gentle 0.772 0.809 0.783 0.819
Authoritative-Polite 0.750 0.812 0.746 0.814
Confident-Hesitant 0.795 0.823 0.792 0.819
Inspires conf.-Doesn’t  0.657 0.730 0.693 0.755
Kind-Disagreeable 0.627 0.781 0.623 0.782
Sturdy-Frail 0.762 0.837 0.771 0.844
Strong—Weak 0.733 0.819 0.745 0.831
Smooth-Abrupt 0.658 0.785 0.654 0.788
Rigid-Supple 0.620 0.779 0.626 0.789
Tender-Insensitive 0.634 0.801 0.635 0.805
Average 0.701 0.798 0.707 0.805

Mixed effect logistic regression results

Results of the modelling for the aggressive-gentle scale are reported in Table 3.6. The first
column lists the fixed effects along with their levels. The second column gives the regression
coefficients which represent changes in the log odds:

log odds = z0g(1L) (3.2)
- P

where p denotes the probability of an event occurring, which in our case is the proba-
bility of the participant selecting the second word of the perceptual scale. One may notice
that there are no coefficients given for the first level of each corpus variable. This is because
those levels are used as the reference levels with respect to which the changes in log odds
are expressed. The intercept coefficient given in the first row corresponds to the log odds
when all of the variables are set to their reference levels. In order to use the model to predict
the log odds for other variable combinations, we add the log odds values for each variable
that we change. A coefficient value of 0 indicates that the corresponding variable level has
no effect on the log odds of the outcome. Positive (resp. negative) log odds correspond
to higher (resp. lower) probabilities of the participant responding with the second word
of the scale. For example, the reference level for the kinematics variable is high, and the
positive coeflicient for the low level indicates that changing from high to low increases the
log odds of observing a gentle response on the aggressive-gentle scale by +2.8. If all other
variables are at their reference levels, then the log odds for that combination of of vari-
ables is obtained by summing the intercept and the low kinematics coefficient: 0.07 + 2.8.
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Participant-specific predictions require adding the participant’s random intercept to the
computation. The third column gives 95% confidence intervals for the coefficients, and the
fourth column gives p-values resulting from Wald tests against the null hypothesis that the
coeflicients are zero.

Table 3.6: GLMM logistic regression coeflicients for the aggressive-gentle scale.

Variable log(OR)! 95%CI' p-value
Intercept 0.07 -0.28, 0.41 >0.9
Kinematics

high — —

low 2.8 2.6, 3.0 <0.001

medium 1.3 1.1, 1.5 <0.001
Sequence

A _ —

B 0.02 -0.24, 0.27 >0.9

C -0.09 -0.34, 0.16 >0.9

D -0.07 -0.32,0.19 >0.9

E -0.37 -0.62,-0.12 0.042

F -0.05 -0.30, 0.21 >0.9
Variant

increment — —

saccade -1.0 -1.2,-0.78 <0.001

smooth -0.10 -0.33,0.13 >0.9
Eyes

none — —

round 0.36 0.13, 0.60 0.031

squint -0.39 -0.62,-0.17 0.009
Base

stable — —

unstable -0.26 -0.49, -0.03 0.2
Head

straight — —

side 0.10 -0.13, 0.33 >0.9

turn_side 0.16 -0.07, 0.39 >0.9

turn_straight 0.10 -0.13, 0.33 >0.9

Id.sd__(Intercept) 0.96

IOR = Odds Ratio, CI = Confidence Interval

The model coefficients presented above can be used to compute predictions of the prob-
ability of a given response along the aggressive-gentle scale, given the combination of val-
ues selected for each corpus variable. These predictions can be made at the population
level, or for individual participants by leveraging the random effects. In this thesis, we are
mostly interested in interpreting the models to understand the relative effects of each cor-
pus variable on participants’ perceptions. For this reason we do not discuss the regression
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coefficients themselves, and the nine other GLMM models are made available in Appendix
D. The models are used in our next analysis step to generate more interpretable statistics.
We propose to study the effect of each variable by computing marginal means using the
model predictions, as discussed in the following section.

Contrasts between corpus variable values

The log odds scale is practical for fitting the models and computing predictions, however
it is not a very intuitive scale to interpret the results. Instead, we would like to perform a
transformation to the probability scale. Because the transformation from log odds ratios
to probabilities is non-linear, the interpretation of the model coefficients on the probability
scale becomes dependent on the per-participant random effects. Instead, we would like
to be able to reason about the data at the population level rather than conditioned on each
participant. One way of interpreting the results of such mixed effect logistic regression is to
compute the estimated marginal means (EMM), based on the model predictions (S. R. Searle
& Milliken, 1980). These means represent the average of predicted values of the response
variable for each level of the corpus variables. Averaging is performed across all levels of
all other variables. The difference with the observed means reported in Fig.3.6 is that the
estimated means are computed using our mixed models, which account for the imbalance
in the combinations of variables in our corpus. In order to establish the relative effects
of the different levels of the corpus variables on each scale, we construct contrasts that
compare each level’s EMM with the average over all levels. We perform the EMM and
contrast computation using the emmeans R package (Lenth, 2023).

Table 3.7 presents the marginal effects of each value of each corpus variable on the
perceptual scales. The marginal effects are reported as percentage points, indicating the
increase or decrease in the probability of participants selecting the second adjective of the
scale when that level of a corpus variable is used, compared to the overall mean. For ex-
ample using the high kinematics is estimated to decrease the probability of gentle being
selected over aggressive, or equivalently, increase the chance of people perceiving the robot
as aggressive by 28 percentage points compared to the overall mean. The statistical signif-
icance of the difference between the EMM for a given level and the average EMM over all
levels was tested using z-tests. A Holm-Bonferroni correction (Holm, 1979) was applied to
the p-values to adjust for multiple comparisons.

In order to interpret the results we will focus on the contrasts which have larger absolute
values, indicating that the associated variable value causes large changes in the probability
(expressed in the table as percentage points (pp)) with which a person will associate the
robot with either adjective of the associated scale. The contrast values range from —28pp
(high kinematics effect on aggressive-gentle), to +-27pp (sequence D effect on confident-
hesitant), with all values in between, including some null contrasts (sequence C effect on
aggressive-gentle). While the statistical significance tests indicate which contrasts are un-
likely to be due to random sampling, one could argue that statistically significant contrasts
with small absolute values might not be of practical significance, such as the contrasts for
the stable/unstable base variable’s effect on the aggressive-gentle scale (+3pp). In the fol-
lowing paragraphs, we will therefore only consider the contrasts which are both statistically
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Table 3.7: Marginal effects of the corpus variables on the perceptual scales, in percentage
points (pp). *p < 0.05, **p < 0.01, **p < 0.001.

- Aggressive Authoritative Confident Inspires Conf. Nice

+  Gentle Polite Hesitant  Does not Disagreeable
Kin. high -28 *** -24 7 -17 *** 7 15 ***
Kin. low 24 *** 22 15 *** -8 *** -15 ***
Kin. medium 4 *** 3 2 1 1
Sequence A 2 4 -3 -1 2
Sequence B 2 7 5% -1 -4
Sequence C 0 2 19 *** 9 *** 1
Sequence D 1 2 27 " 13 ***
Sequence E -6 " -10 *** -28 "7 -9 T 3
Sequence F 1 -5 -217 -11 7 -3
Var. increment 8 *** 6 *** -1 -4 -3
Var. saccade -14 7 -8 227 20 10 ***
Var. smooth 6 3 -21 7 -16 *** -6 "
Eyes none 1 5% 4 3" 3"
Eyes round 7 5% -1 -7 -11
Eyes squint -8 -10 *** -3 4* 8 ***
Stable 3" -2 -11 7 -6 *** -2
Unstable -3 2 11 6 *** 2

- Sturdy Strong Smooth Rigid Tender

+  Frail Weak Abrupt Supple Insensitive
Kin. high -15 *** -20 *** 13 *** -9 13 ***
Kin. low 12 *** 17 *** -4 *** 12 *** -13
Kin. medium 3~ 3" 1 -2 0
Sequence A -3 -3 -4 2 -1
Sequence B 9 *x 7 0 3 -6 "
Sequence C 10 *** 9 *xx
Sequence D 20 *** 18 *** 7 -5
Sequence E -22 7 -19 ¥ -2 -2 6"
Sequence F -14 -12 7 -5 % 1 -2
Var. increment -4 * -2 -4 7 3" -4
Var. saccade 27 *** 20 *** 15 *** -9 6"
Var. smooth -24 " -18 *** -10 *** 6 *** -3
Eyes none 3 4* 1 -1 6 ***
Eyes round 1 1 -7 4* -14
Eyes squint -3 -6 " 6™ -3 g "
Stable -16 *** -11 -4 *** 0 0
Unstable 16 *** 117 4 0 0
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significant and have absolute values greater than 10pp°. Before discussing the interpreta-
tion of the table, we note that the head rotation variable is not represented in the table
given that the only significant effects were on the sturdy-frail scale, with contrasts 5pp,
and —bpp for straight and turn straight values (both p < 0.05). All other contrasts for the
head variable were smaller, mostly less than 3pp.

Some general observations can be made with respect to the motion corpus variables and
scales. Firstly, all of the corpus variables (rows) have effects greater than 10pp on several
perceptual scales, suggesting that they are all relevant variables to be implemented in our
navigation algorithm. Secondly, all of the scales (columns) have effects greater than 10pp
related to several corpus variables, suggesting that the scales are relevant for studying the
impact of robot motion and appearance. We propose to study the columns of Table 3.7 to
outline which variables values have the most impact on each perceptual scale. For each
scale we list the main variable contrasts in decreasing order of their absolute value. We
discuss scales with similar contrast structures together.

The aggressive-gentle and authoritative-polite scales are mostly affected by the kine-
matics type and variant. Low kinematics and smooth or increment variants increase the
probability of gentle and polite perception, whereas high kinematics and saccade variant
increase the probability of aggressive and authoritative.

The confident-hesitant, sturdy-frail and strong-weak scales are mostly affected by the
variant and the motion sequence, followed by the kinematics, and base stability. The sac-
cade variant, motion sequences with hesitations (C and D), low kinematics and unstable
base increase the probability of hesitant, frail, and weak perception. The smooth variant,
longer motion sequences (E and F), high kinematics and stable base increase the probability
of confident, sturdy, and strong perception.

The inspires confidence-doesn’t inspire confidence scale is similar to the previous group
of scales, although the absolute values of the contrasts are all smaller, suggesting the cor-
pus variables do not have as much impact on this scale, or that it is more ambiguous for
participants. Another difference is the inversion of the signs for the kinematics contrast.

The nice-disagreeable and tender-insensitive scales are mostly affected by the kinemat-
ics and eyes. Low kinematics and round eyes increase the probability of nice and tender
perception, while high kinematics and squinting or absence of eyes increase the probability
of disagreeable and insensitive.

The smooth-abrupt and rigid-supple scales are both mostly affected by kinematics and
variant, and the contrasts are comparable especially if we invert either one of the scales so
that smooth and supple have the same sign. Low kinematics and smooth variant increase
the probability of smooth and supple perception, whereas high kinematics and saccade
variant increase the probability of abrupt and rigid.

>This threshold on the percentage points is chosen arbitrarily to focus the discussion on the most impactful
variables, it does not mean that the variable values with low contrasts can be ignored. To precisely determine
how a full combination of corpus variables will be perceived, one should use the fitted logistic regression
models to compute the appropriate prediction.
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Summary

Similarly to the first online experiment, several participants commented about the difficulty
in responding due to videos seeming similar or even identical, and mentioned answering
at random on occasion. Despite this, all of the motion corpus variables except the head
rotation had statistically significant effects on how participants perceived the robot. Many
individual variables altered the average probability with which participants would choose
either adjective of the perceptual scales by 10, 20, or even almost 30 percentage points.
Our comparison of regression models both with and without interaction terms showed
little difference between the models’ performance, with the simpler model having slightly
better performance.

When considering the influence of each corpus variable (see Table 3.7), some variables
stand out. The kinematics and variant variables both have consistently large effects on ev-
ery perceptual scale, mostly greater than 10pp, and greater than 20pp for two to three scales.
These are followed by the motion sequence variable with effects greater than 10pp on four
scales, and the base stability and eyes with three and two scales greater than 10pp, respec-
tively. The head variable had little to no effect on any of the scales. These results strongly
suggest that all of the motion corpus variables with significant effects on perception should
be implemented into our navigation algorithm.

The correlation and clustering results suggest that some perceptions of socio-affects
cannot easily be distinguished by using the corpus variables, such as aggressive-gentle and
authoritative-polite. Given their high correlation, if our aim is to convey a gentle yet au-
thoritative affect it seems that we would need to use other modalities than those explored in
this study. On the other hand, these results also show us which scales seem to be indepen-
dent with respect to changes in the corpus variables. Strong-weak and tender-insensitive
show very little correlation and can be altered by using distinct corpus variables, suggest-
ing it is possible to parameterize the robot for strong and tender perception, or weak and
insensitive.

In addition to gaining an understanding of the direction and magnitude of the influ-
ence of the corpus variables on human perception, we were able to fit mixed effect logistic
regression models which we can use to perform predictions for how a given combination
of all the corpus variables may be perceived, either at the population level (averaged over
participants) or for individual participants. One should however keep in mind that these
models were based on online experiments exclusively. Despite our best efforts to film the
motion corpus videos in a way that conserved as many details of the robot’s motion as pos-
sible, it remains important to assess the impact of these motions in a physical, embodied
experiment where participants are sharing their space with the mobile robot. We therefore
designed a third experiment, which we present in the following section.

3.5.4 Embodied Experiment

The goal of the in-person experiment was to determine whether the effect of the motion
corpus variables on participants’ perception would be similar to the online experiments
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when placed in an embodied interaction. Participants were informed of the general goal
of the study prior to the experiment. Participants were asked to stand at a fixed position
facing the robot as it moved towards them using one of the combinations of variables. The
distance at which a mobile robot stops when approaching a person has been investigated,
usually to determine what people consider as an acceptable distance (Brandl et al., 2016).
In order to control for potential effects of different stopping distances, we ensured that the
robot would always stop at a distance of 50cm from the person by using the same hard-
coded velocity profiles as were used to film the video corpus. The experiment setup is
shown in Figure 3.10.

Figure 3.10: In-person lab condition experiment setup. Left: View from behind the robot.
Right: view facing the robot. Participants stood with their feet on the white line.

We chose to focus on three variables, using two values for each: the kinematics type
(low/high), variant (smooth/saccade), and head position (straight/side). The kinematics and
variant variables were selected since they had the most influence on participant’s responses
in the second online experiment. The head position variable was selected since we aimed
to test the hypothesis that gaze would be more influential in an embodied interaction. Each
participant saw all combinations of values, resulting in 8 stimuli. The base variable was set
to unstable, in order to make the saccade variant more visible; eyes were set to round in
order to better indicate gaze direction, and the motion sequence was set to one of the shorter
sequences (A) since it induced the least variability on the distance to the participant upon
stopping (£5c¢m). In addition, sequence A was the only one to have no significant impact
on any of the scales in the second online experiment, hence being perceived as relatively
neutral (see Table 3.7).

A total of n = 22 participants completed the embodied experiment, consisting of stu-
dents recruited from our university, half of which were in the field of computer science
and applied mathematics. The response distributions are shown in Figure 3.11. Once
again, there are some strong contrasts for many of the scale and variable pairings, espe-
cially kinematics for Aggressive-Gentle and Authoritative-Polite, variant for Sturdy-Frail
and Confident-Hesitant.

We adopt the same analysis method as for the first online experiment using chi-square
association tests, and applying Bonferroni corrections to the p-values, reported in Table
3.8. Associations were found between most of the scales and the kinematics and variant
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Aggressive (-) | Authoritative (-) | Condifent (-) Inspires conf. (-) Kind (-)
Gentle (+) Polite (+) Hesitant (+) Doesn't insp. (+) | Disagreeable (+)
+ - + - + - + - +
high 22 30 31 69 33 67
Kinematics [ low 39 61
smooth 42 58 45 55
Variant saccade } 58 2 1. 4. EENIN 26
straight 47 53 45 55 55 45
Head side 53 47 47 53 55 45
Sturdy (-) Strong (-) Smooth (-) Rigid (-) Tender (-)
Frail (+) Weak (+) Abrupt (+) Supple(+) Insensitive (+)
- + - + - + - + - +
high 61 39 24 33 67 -TT-
Kinematics | low 49 51 36 64 68 32 49 51 | 67 33 |
smooth 27 - 27 57 43 53 47
Variant | saccade | 28 oo s | oos Lim N as | s e ]
straight 56 44 59 41 53 47 59 41 52 48
Head side 55 45 53 47 48 52 69 31 40 60

B <- 50 <a0% >60%  >=70% > 80%

Figure 3.11: Response distributions in percentages for the embodied, in-person experiment.
Columns represent response levels for each perceptual scale. Rows represent corpus vari-
able values by which the stimuli ratings are grouped to compute the percentage of re-
sponses.

variables (x*(1) > 18,p < 0.001). As in the second online experiment, no association
was found between the head variable and any of the scales. The four most significant
dependencies were Aggressive-Gentle on kinematics (x*(1) = 87), Sturdy-Frail on variant
(x%(1) = 51), Authoritative-Polite on kinematics (x?(1) = 74), and Confident-Doubtful on
variant (x%(1) = 57), all with p < 0.001. Some differences can be observed with respect to
the second experiment results for the kinematics and variant corpus variables. In the second
online experiment, the kinematics variable had significant impact on all scales whereas in
the embodied experiment, the effect on the Inspires-Doesn’t inspire confidence scale is not
significant. The variant also has fewer statistically significant associations. The values
for which we observe changes seem to be those which did not have a large effect on the
response probability in the second online experiment.

The hypothesis that gaze would have an influence in the in-person experiment is not
supported. While the results of the embodied experiment are not directly comparable to
the online experiments, the stronger associations between motion corpus variables are con-
served across the online and in-person experiments for the most part.
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Table 3.8: Chi-square association test results between a subset of corpus variables and all
perceptual scales for the embodied, in-person experiment. Reported as chi-square statistic,
significance *p < 0.05, **p < 0.01, **p < 0.001.

Aggressive Authoritative Confident Inspires Conf Nice

Gentle Polite Doubtful  Does not Disagreeable
Kinematics (1) 87 *** 74 *** 18 *** n.s. 47 ***
Variant (1) n.s. n.s. 57 *** 25 *** n.s.
Head (1) n.s. n.s. n.s. n.s. n.s.

Sturdy Strong Smooth Rigid Tender

Frail Weak Abrupt Supple Insensitive
Kinematics (1) n.s. 28 *** 227 18 *** 31
Variant (1) 51 *** 19 *** 35 *** n.s. n.s.
Head (1) n.s. n.s. n.s. n.s. n.s.

3.6 Discussion

3.6.1 Limitations

A first limitation of this study is that while the second online experiment analysis does pro-
vide us with estimations for how much various robot parameterizations can alter the prob-
ability of it being perceived in a certain way, we do not have any measure of the magnitude
of the perception. The forced choice format of the second online experiment was chosen
specifically to force people into selecting either end of the scale rather than responding at
the neutral level as in the first experiment, and the results seem to indicate that for most
scales and most corpus variables the response distributions showed clear effects. It may be
worthwhile to provide more freedom of responses in future experiments, for example using
continuous sliders for the scales rather than binary or likert responses.

Secondly, our corpus videos show a robot moving in an empty environment without any
interaction with a person, whereas one could include a form of interaction with a person,
given we are studying HRI. This decision was taken since our first goal is to isolate the
physical navigation primitives from other factors that impact interaction. We hypothesize
that in addition to the physical properties of motion, the relation between the robot and
the person also plays a role in how a robot is perceived, and how we interact with it. If
we impose a relation by framing a specific type of interaction in the experiments, it would
be difficult to analyze whether a person’s reaction to the robot was induced by motion and
appearance primitives or by the relation.
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3.6.2 Implications

Our results show that the impressionistic adjectives used in our perceptual scales are use-
ful in aiding participants to distinguish and characterize various elements of movement
prosody in robot navigation. Furthermore, the typology of variables proposed in the corpus
can be used to establish socio-affective traits of expressive navigation which exhibit signif-
icant contrasts between one-another. As such, even if a given type of motion was chosen
solely on the basis of practical considerations, our work suggests that it will be perceived
and interpreted by humans as socio-affective expression, therefore impacting HRI. Thus, it
is essential to take into account the fact that navigating intrinsically entails communicating
with the human. To achieve this, we must understand and control what types of naviga-
tion profiles should be used to generate elements of interaction, whose communicative and
ethical effects also require further rigorous study.

One of our perceptual scales is based on the concept of frailty, which has already been
found to have significant impacts on the people interacting with a frail robot. In a prior
work (Sasa & Aubergé, 2016), isolated elderly people interacted with a small butler robot
by giving it voice commands. During the experiment the authors discovered by serendipity
that when the robot showed signs of frailty by making mistakes (bumping into a wall while
moving), participants became more attached and changed their attitude towards the robot
by starting to take care of the robot. Similarly, in (Matsumoto, 2021) the authors compared
a typical robot to a fragile robot which broke, requiring participants to fix it; finding that
participants reported feeling more attached to the fragile robot, as well as finding it more
pleasant, less boring, and more interesting. The interest of this is not so much that partici-
pants are attached, but rather that because they are attached, they tend to be more active in
their interactions with the robot, often helping it, which may have positive effects on the
person’s physical and mental health when compared to passively receiving care (Takenaka,
2005; Tanaka, 1997). As such, the impact of the impressions generated by robot navigation
variables seems to go far beyond the issues of user preference, usability or comfort.

3.7 Conclusion

In this chapter, we proposed an incremental bottom-up approach to the understanding of
how fundamental properties of appearance and navigation impact a person’s perception of
a mobile robot. We constructed a novel holistic robot motion corpus in order to study the
impact of navigation and audio-visual cues on people’s perceptions of robots, in contrast to
the more specialized studies of previous works. The variables contained in the corpus are
hypothesized to be involved in what we define as movement prosody, a concept we derive
by analogy with vocal prosody. The corpus was used in two online perception experiments
(n = 42, n = 101) and one in-person experiment (n = 22). Participants rated a robot
performing a navigation task along ten perceptual scales opposing adjectives describing
physical aspects as well as perceived intentions and attitudes of the robot. A statistical
analysis of the dependencies between each variable and scale showed that all scales had
significant dependencies on several corpus variables, and most corpus variables impacted
several scales. This includes variables related to the robot’s navigation such as its max-
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imal velocity, acceleration, smoothness, pauses and hesitations. These results show that
this experimental methodology can bring some insights into people’s perception of mobile
robots, and more generally, how humans process cues from various modalities in order to
build their perception of an agent.

The analysis of the effects of the motion corpus variables demonstrated that all of the
variables directly involved in the robot’s motion (kinematics type, variant, and motion se-
quence) impacted participants’ perception of the robot. In addition, all of the values taken
by these variables affected perceptions in different manners. This leads us to conclude that
our navigation algorithm should be designed in such a way that it can produce motions
which are representative of the velocity profiles resulting from the combinations of these
variables. The algorithm should be able to produce motions at different velocities and accel-
eration rates to model the kinematics types, different temporal sequences of accelerations
and decelerations, including pauses and hesitations for the motion sequences, and lastly
different motion qualities such as smooth linear accelerations, jerky, saccadic motion, or
incremental acceleration for the variants. It should enable the robot to produce motion
that conserves the defining characteristics of all the values of the motion sequence, vari-
ant and kinematics corpus variables. The design and implementation of such a navigation
algorithm is the topic of the following chapters.
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4.1 Introduction

In the previous chapter we established that people perceive a mobile robot in different ways
according to various physical motion characteristics. More specifically, a corpus of velocity
profiles for executing straight-line motions was constructed by combining different values
of three motion variables called the kinematics type, motion sequence, and variant. These
variables all had statistically significant effects on people’s attribution of social attitudes
and physical qualities to the mobile robot. The different combinations of values of these
corpus variables represent different styles of movement prosody, (by analogy with vocal
prosody), in the sense that variations in the velocity profile induced by changing the corpus
variables can convey social and relational meaning, rather than simply being functionally
different ways of moving the robot from A to B. Each combination of variables defines a
unique velocity profile in the corpus, meaning the distance covered by executing a given
profile is fixed. Our goal is to use the corpus profiles as a starting point to enable arbi-
trary distances to be travelled in dynamic environments, while maintaining a consistent
movement prosody.

We propose to design a social navigation algorithm which can be parameterized to en-
able the robot to plan and execute trajectories which have the same prosody properties as
the various corpus profiles. The algorithm should provide accurate control over the robot’s
motion, even when operating in dynamic environments. By changing which combination of
corpus variable values the algorithm uses, we change how the robot is perceived by people.
This ability to change the robot’s movement prosody while navigating autonomously can
enable further experimentation to understand the impact of different movement prosody
in more varied scenarios where pre-programmed motion would be inadequate. It may also
help address issues with the acceptance of social navigation algorithms by enabling control
over the social perception of the robot by humans.

In section 4.2, we review approaches to social navigation and functional expressive mo-
tion generation which share similar goals of altering the manner in which a robot motion
task is performed. Although the motion characteristics and the aspects of people’s per-
ception they study are different to those we consider, we conclude that the trajectory op-
timization framework adopted by such works is also suitable for our problem, due to the
flexibility provided by formulating specific constraints to shape the robot’s trajectories.

In section 4.3, we briefly present the navigation algorithm proposed in the author’s
master’s thesis (published at ICRA 2020 (Scales et al., 2020)). We discuss the difference in
the goals and design of the algorithms, and describe how the algorithm presented in this
chapter significantly extends the previous algorithm. Most notably, the control provided
over the robot’s motion was limited, for similar reasons to existing navigation approaches
which also use cost functions to define the robot’s motion characteristics.

In the following sections, we derive our algorithm by starting from a simple problem
formulation consisting of reproducing the original fixed-length velocity profiles in static
environments, and gradually adding complexity in order to arrive at our final algorithm.

In section 4.4 we describe a solution for executing the original corpus velocity profiles
when filming the video corpus, which allows us to introduce the formalization of the profile
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representation. We then explain how planning a profile can be formulated as a constrained
trajectory optimization problem, and motivate the need for specific prosody constraints to
ensure the planned trajectories retain the correct motion characteristics.

In section 4.5 we address the problem of planning and executing prosody-compliant
trajectories with arbitrary distance in a static environment. We discuss which parts of the
profiles should be constrained, and which should be allowed to change. We then formulate
prosody constraints for each motion corpus variable which restrict the planned trajectories
so that they exhibit the correct properties. We present our algorithm to plan the trajec-
tory by solving the optimization problem subject to the prosody constraints, as well as the
control algorithm to execute the plan.

In section 4.6 we extend our algorithm to handle dynamic environments which may
cause the initial trajectory plan to become invalid due to the presence of dynamic obstacles,
or if the goal position changes, for example when following or moving towards a person.
We adopt a receding-horizon control approach which integrates planning into the control
loop by re-planning the trajectory based on updated information from the environment.
We discuss the impact of this approach on the ability to maintain consistent prosody in
the robot’s motion, and propose new prosody constraints that account for the continuous
re-planning. The updated control algorithm which includes the planning step is presented.

Section 4.7 addresses cases where the planner is unable to find a solution that satisfies
all of the constraints, which is a more common occurrence than in typical social navigation
algorithms due to our very restrictive prosody constraints. We first discuss how accurate
modelling of delays and latency in the robot architecture can eliminate some of such cases.
We then present a constraint hierarchy approach that allows specific constraints to be re-
laxed to attempt to find a plan that partially satisfies the prosody constraints. We then
present the final iteration of our control and planning algorithm.

In section 4.8 we discuss the limitations of our approach as well as possible extensions,
before concluding in section 4.9.

4.2 Existing approaches for integrating expressivity or

style in robot motion generation

The motion corpus variables evaluated in our perception studies alter the velocity profiles
of the robot in ways which are sometimes quite subtle. In this section, we discuss how
optimization-based approaches for social navigation and expressive motion shape the tra-
jectories according to the features which are relevant for social compliance or expressivity.
We then motivate our approach of formulating precise and very restrictive features forming
a trajectory space which is as close as possible to our motion corpus profiles.

Works in the field of Social Navigation (Mavrogiannis et al., 2023) typically concern
themselves with enabling mobile robots to navigate in complex environments (Vega et al.,
2019), around many (potentially dynamic) pedestrians (Henderson & Ngo, 2021), and mod-
elling uncertainty of surrounding pedestrian motion (Kollmitz et al., 2015). Many works
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formulate social navigation in the framework of trajectory optimization due to the flexible
specification of the robot’s behaviour which can be achieved by carefully designing the cost
function to be optimized and the constraints. In (Khambhaita & Alami, 2020) a joint opti-
mization of the robot and human’s trajectories is performed over a cost function encoding
various social aspects, such as penalizing low time to collision values and penalizing high
velocity near humans. Social navigation approaches tend to focus on ensuring the robot
plans safe, comfortable and natural motion, following the definitions in (Kruse et al., 2013).
The goal pursued by such approaches is different to ours since we aim to generate motions
that induce different social perceptions off the robot’s attitude towards others, as well as
different physical perceptions.

Recent works in expressive motion generation for robots have increasingly been tar-
geted at not only generating a movement that is perceived as manifesting various emotions,
affects, or internal states of the robot, but also performing a practical task at the same time
(see (Venture & Kuli¢, 2019) for a review). Some of the more recent approaches also make
use of the trajectory optimization problem formulation, encoding the expressive features
into the cost function, although these approaches are mostly applied to different robot em-
bodiments such as humanoids or manipulator arms. In (Zhou & Dragan, 2018) the authors
explore how to generate sad, happy, and hesitant motions on a robotic arm. The costs for
each feature are linearly combined along with a cost encoding the robot arm’s motion task
to form the cost function. Although these more recent works use trajectory optimization
approaches, they typically only study the capacity of the algorithms to generate appropriate
motions in static environments.

Trajectory optimization approaches are common both in functional expressive motion
generation works, as well as in social navigation works. In order toExisting approaches tend
to either enforce that the primary task performance should not be altered by expressive or
social factors (Hagane & Venture, 2022), or apply expressive or social features via the cost
function (Khambhaita & Alami, 2020; Repiso et al., 2017; Zhou & Dragan, 2018). The cost
functions are constructed from several cost terms, of which there can be many when the
robot is supposed to address complex navigation scenarios (social norms, legibiltiy, prox-
emics, motion task specification). Using the cost function to encode social or expressive
features in addition to the task turns the optimization problem to a multi-objective prob-
lem, however multi-objective optimization methods which determine the pareto front of
solutions are still often too slow for real-time deployment. Instead, the problem is often
handled by converting the problem to a single-objective problem by scalarizing the cost
which is expressed as a weighted sum of cost terms. Tuning the weights adjusts the rela-
tive importance of costs, and requires trial and error to determine a weighting that provides
the desired trade-off between the different cost terms. In dynamic environments, situations
may arise where several trajectories have identical total cost distributed differently across
each term. For example, the ideal path which struck the desired balance between task
execution and social or expressive costs may become infeasible due to the environment’s
configuration, meaning the remaining space of feasible trajectories will sacrifice either task
performance or social and expressive features.

In our work, the movement prosody features have been found to generate social and
affective perceptions of the robot, hence we believe it is crucial that the robot’s motion stays
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consistent in its expression of prosody. We aim to generate robot motions which conserve
the features of the corpus velocity profiles with as much detail as possible. For example the
difference between different motion sequences can boil down to the presence or absence of
a short (300ms) constant velocity phase placed between an acceleration and deceleration,
and generating motions that capture the smooth variant relies on being able to produce
stable velocity commands over time, despite being computed online, with noisy sensor data,
and in dynamic environments where frequent re-planning of trajectories is necessary. We
take the position that movement prosody should be kept consistent as much as possible
given its role in human’s perceptions of robots. In order to avoid ambiguous perceptions
of the robot due to cost function tuning and trade-offs, we formulate the prosody features
as hard constraints in the optimization problem, ensuring consistent prosody across the
future planned trajectory and with respect to the robot’s past motions. Using constraints
will restrict the trajectory solution space, potentially degrading task performance, but our
priority is for the motion to accurately correspond to the motions which were evaluated in
the perception studies.

4.3 Previous work

In this section, we give an overview of the algorithm developed during the author’s master’s
thesis, and discuss how the algorithm presented in this chapter extends it. For details, we
refer the reader to the corresponding publication at ICRA (Scales et al., 2020).

4.3.1 Overview

The goal of the previous work was to design a navigation algorithm which would be flexible,
in that it should be possible to parameterize it to perform different tasks, and also provide
accurate control over the robot’s motion during navigation. Such a flexible algorithm could
enable studying the effect of various kinds of navigation on people. We focused on studying
the navigation task of person following, since it inherently involves spatial interaction with
a person. In existing works, we noticed that the robot’s following position with respect to
the person was usually chosen empirically, or left as a design decision. We chose to study
the effect of different robot positioning on how humans behaved when navigating with the
robot.

To design the algorithm, we took inspiration from two existing works, which both used
cost functions to specify the robot’s behaviour, each with their own advantages and draw-
backs. In (Morales Saiki et al., 2012), the authors proposed to perform planning in the joint
person-robot state space, simultaneously planning for what the person and robot should
do together, as opposed to the more classical approach of first observing or predicting the
person’s position, and subsequently planning the robot’s motion. The robot and person had
their own cost functions, which the planner jointly optimized to determine which position
in space the robot should move towards within a short time horizon of 2s. This is interest-
ing since it allows to computationally model the fact that the robot’s actions may influence
the human’s actions. The cost function included terms which encoded a preferred velocity
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and acceleration value for the robot, in addition to terms guiding the robot towards the
specified position next to the person. A separate trajectory following algorithm was used
in order to control the robot to move towards the optimal position resulting from the plan-
ning step. Instead, we take inspiration from the integrated planning and control approach
of (Park, 2016), planning in the space defined by the robot’s control inputs (linear and an-
gular velocity), which allows us to directly use the output of the planner to control the
robot. We also proposed to enable the weights of the cost function terms to be dynamically
adjusted, which we used to specify the robot’s following position.

This algorithm was implemented on the RobAIR robot, and deployed in experiments
where the robot followed people side by side, or behind them as they were asked to go
to a goal location. We conducted experiments in lab and ecological settings. In the lab
setting experiment (Figure 4.1) participants were told how the robot would position itself,
and were not affected by the robot’s positioning. The algorithm enabled the robot to follow
people accurately in both configurations. In the ecological experiment there were no issues
when the robot was configured to follow behind people. However, when attempting to
position itself to the person’s right, participants would start to also move right, deviating
from the path to the goal, and causing the robot to compensate and turn further right. When
observing participant behaviour and from their comments after the experiment, it seems
that they thought the robot had lost track of them, and they did not realise it was trying to
follow by their side.

!
!
i
[

Figure 4.1: Snapshot from a lab-setting experiment from our person-following work (Scales
et al., 2020). Left: visualisation of the joint person-robot planning. The position resulting
from applying the optimal control is marked in light blue. Right: onboard and external
views.
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4.3.2 Differences with the algorithm developed during the PhD

The previous algorithm was designed to enable flexible control over the robot’s motion
characteristics, however it only used the cost function to control the relative position of
the robot. In this thesis, we aim to control the overall style of movement in such a way that
it is coherent through time, even when the robot is operating in dynamic environments.
Furthermore, as with other navigation algorithms using several cost function objectives to
shape the motion, our previous algorithm was difficult to tune, especially when objectives
were conflicting. In this thesis, we propose a different control parameterization as well as
many novel constraints that allow separation of the movement style from the task influence.
We also propose a method to gracefully mitigate situations where the planner is unable to
find a solution, which was lacking in our prior algorithm. Lastly, our previous algorithm
only planned one control input, which was assumed to be held constant over the next two
seconds. In this thesis, we require an algorithm that plans over several control inputs while
considering the history of past motions, in order to replicate the motion characteristics
studied in chapter 3.

4.4 Fixed distance corpus profiles and problem formu-

lation

In this section, we first introduce the notation which will be used to describe the velocity
profiles, and explain how the robot’s motion is controlled when executing the fixed dis-
tance velocity profiles from the corpus. Then, we present a generic trajectory optimization
problem formulation which would allow us to plan trajectories over arbitrary distances,
and point out the necessity for prosody-specific constraints in order to ensure the resulting
trajectory conserves the characteristics of the corpus motion variables.

4.4.1 Representation of corpus profiles

The corpus profiles were constructed by selecting the combination of values for three vari-
ables: the motion sequence, kinematics type, and variant. Figure 4.2 represents how each
of these variables alters the shape of the corpus velocity profile. The motion sequence
determines whether accelerations should be immediately followed by a pause (i.e. a short
constant velocity phase), and whether the robot should perform a hesitation (i.e. slow down
and accelerate again rather than maintaining a constant velocity). The kinematics type con-
trols the acceleration value (i.e. the slope of the velocity profile) and the maximum velocity.
The variant controls the smoothness and stepping of the velocity profile.

In Figure 4.3, we give an example of how a corpus velocity profile can be represented as a
sequence U = {ug, u1...un_1 } of N motion phases, where uy, = [ay, t]. A motion phase uy,
consists of the slope of the velocity profile (acceleration) ay, and a duration ¢; over which
the acceleration is applied. In conjunction with an initial position z( along the robot’s
forward axis, and initial linear velocity vy, these values define the robot’s trajectory in
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Medium kinematics, smooth variant.

Motion Sequence A 'f Motion Sequence B Motion Sequence C t Motion Sequence D t’
(pause, no hesitation) (no pause, no hesutatuon) (pause, hesitation) (no pause, hesitation)

Change
Kinematics type

Change
Variant v

~Y

Motion Sequence B
With increment variant

t

Motion Sequence B
With high kinematics

Motion Sequence B t Motion Sequence B
With low kinematics With saccade variant

—

Figure 4.2: Illustration of the construction of the velocity profiles by combining the mo-
tion corpus variables. Top: all motion sequences represented with medium kinematics and
smooth variant. Bottom: profiles resulting from applying different kinematics or variants
to motion sequence B. In total, 4 * 3 * 3 = 36 profiles can be obtained by combining the 4
motion sequences with 3 kinematics and 3 variants.
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t(s)

Figure 4.3: Representation of a corpus velocity profile using motion sequence B (no pauses,
no hesitations) and the smooth variant as a sequence U of N = 2 motion phases u( and u;.
Values of vy, and ay;, depend on the selected kinematics type (medium, low, high), and
dictate the slope and maximum of the velocity profile.

space and time, and are related through the forward kinematics equation 4.1. This equation
is simplified with respect to the full differential drive forward kinematics, since we do not
control the angular velocity of the robot.

1
L1 =T + Uktk + —akti

2 (4.1)

Vk1 =VUk + agty

When recording the motion corpus, we simply select a given combination of motion
variables (kinematics type, motion sequence, variant), defining the sequence of motion
phases U. This sequence is used as input to a basic control loop which loops over each
motion phase u; € U. Given a motion phase uy, the controller sends an acceleration com-
mand equal to a; to the low-level motor controller. After a time ¢, has elapsed, the con-
troller moves on to the next motion phase, sending the acceleration command a1, until
all motion phases of the sequence have been completed.

Since each combination of corpus variables uniquely defines the velocity profile, the
distance travelled by the robot for a given type of movement prosody is fixed. For exam-
ple, the profile using motion sequence B in Figure 4.3, using medium kinematics (az;, =
Amedium = 0.35M.572%, Upin = Umediwm = 0.5m.s71), results in ty = #; = 2 = 1.428s,
meaning the profile makes the robot cover a distance equal to ay;, * t3 = 0.714m. In or-
der to change the distance travelled, we need to introduce some degrees of freedom back
into the velocity profile, either through the acceleration values, motion phase duration, or
adding more motion phases such as a constant velocity phase, and select the optimal values
that minimize distance to the goal. This amounts to a trajectory optimization problem, and

we now present a generic formulation using our notations for the velocity profiles.
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4.4.2 Basic trajectory optimization formulation

Our goal is to build an algorithm that allows us to control the robot’s translation accelera-
tion such that it can move to a goal located in front of the robot at some arbitrary distance
in a straight line, or in other words, only performing pure translation motions. We choose
to focus only on the translation degree of freedom for simplicity, and also because our study
of the robot’s movement prosody was only performed on straight-line motions. Neverthe-
less, the principles we develop in this chapter could be transferred to the control of the
robot’s rotational acceleration once we develop our understanding of role of rotations or
path shape in shaping people’s perceptions of the robot.

Moving a robot towards a goal point while accounting for the robot’s mechanical ac-
tuation limits can be cast as a discrete-time constrained minimization problem, where we
optimize the sequence of control inputs U = {ug, u;...uy_1 } such that the robot minimizes
its distance to a goal position x,. A control input u; = [ay, tx] corresponds to a motion
phase, parameterized by a constant acceleration a;, and a duration ¢;, over which the accel-
eration is applied. The durations ¢, take discrete values, ¢, = n * dt, n € N, where dt is a
constant determining the shortest possible control input duration. The state xj = [z}, v]
of the robot is comprised of the robot’s position along the z axis, and its linear velocity v.
The control uy, affects the state xy as described in the kinematics equation 4.1.

If t) is unbounded, then the space of possible trajectories is infinite. A common approach
is perform the trajectory optimization over a finite time 7}, (Tedrake, 2023), where 7T}, is
chosen to be long enough to enable the trajectory plan to cover the entire motion from the
robot’s initial position to the goal'. In our problem formulation the duration of a trajectory
plan is determined by the sum of the control input durations, so to enforce a finite time
horizon we introduce a constraint ZkN;Ol ty =T,

In this first formalization, we assume that the environment is static, and that there are
no obstacles between the robot and the goal. The only constraints which act on the system
are the physical limits of the motors, leading to upper and lower bounds on the accelerations
and an upper bound on the velocity. We consider only positive translation velocities since
our robot is not equipped with any rear-facing sensors, thus imposing a lower bound on
the velocity. The resulting problem formulation is given in Equation 4.2.

U . UN—1

N-1
min Y [|a,|f?
k=0
subject to:  Vk € {0,1..N —1},0 < vy, < Vppas
Vi € {0,1..N — 1}, —amar < ag < oz

N-1
Z te =Ty,
k=0

(4.2)

Solving this optimization problem would produce triangular or trapezoidal velocity pro-

'This arbitrary limit on the duration of the trajectory plan will be revisited more accurately when we
convert the problem to a receding horizon control approach in section 4.6
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files depending on the distance to be travelled. In our motion corpus, velocity profiles that
use the saccade and increment variants, or hesitation and pause motion sequences are not
purely trapezoidal or triangular and cannot be generated using this approach since they do
not represent the optimal trajectory, e.g. hesitations introduce a deceleration in the middle
of the motion, which increases the time taken to arrive at the goal position. The accelera-
tion and maximal velocity values may also be different when compared to those associated
with the three kinematics types.

In order to shape the trajectories produced by the optimization, we propose to modify
the constraints such that they restrict the set of valid control sequences based on the values
of the motion corpus variables. For example, the most straightforward corpus variable to
account for would be the acceleration values enforced by the kinematics type, by restricting
the acceleration ay, to take values from the finite set {—ayin, 0, axin }-

The issue with simply applying new constraints until the optimization solutions exactly
replicate the corpus profiles is that any given combination of the motion corpus values is
only represented by one profile, meaning only one distance can be travelled with a given
prosody parameterization. If we directly use only the exact velocity profiles from our cor-
pus, the robot’s initial distance to the goal would have to perfectly match the distance
associated with a given corpus profile. Instead of using the corpus motion profiles as exact
references, we require a means to relax some of the dimensions of the velocity profiles such
that they can be adapted to different distances, which we discuss in the next section.

4.5 Extending the motion corpus profiles to arbitrary

distances for offline trajectory optimization

In this section, we first discuss our proposal for adapting the original motion corpus pro-
files to longer or shorter distances while preserving their distinct characteristics. Then, we
derive constraints which can be incorporated into a trajectory optimization scheme in or-
der to constrain the solution space to motions which match a given set of motion corpus
parameters. Lastly, we present an algorithm to plan variable distance, prosody compliant
trajectories in an offline fashion, followed by open-loop control to execute the planned
trajectory.

4.5.1 Adding flexibility to corpus profiles

In our corpus, a given combination of motion parameters generated a unique velocity pro-
file resulting from the parameters’ control over acceleration, peak velocity, and timing.
Executing a given velocity profile results in the robot performing a unique trajectory in
space and time, with a given length. In order to build a general navigation algorithm, we
require a formulation of motion where the distance travelled is a free variable (altering the
distance should not alter the impression generated by the robot). In other words, we want to
transform the corpus profiles corresponding to a combination of parameters into a class of
profiles which maintains as many characteristics of the original profiles as possible. While
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adding more flexibility to the corpus velocity profiles, we must carefully consider whether
it increases the chances for overlap and confusion between different parameter combina-
tions. We keep the piecewise linear curve representation of the corpus profiles, given that
using other functions might lead to different impressions. With these limits, changing the
distance travelled by following a given velocity profile can be achieved by altering variables
of the profile, each of which is already involved in the definition of the corpus profiles:

1. acceleration and maximum velocity (kinematics type);
2. successions of accelerations and decelerations (motion sequence and variant);

3. length of maximum velocity phase (motion sequence).

Ideally, another perception experiment would be performed with distance as one of
the variables in order to study which of these modifications best preserves the mapping
between motions and impressions. Conducting such an experiment with our methodology
would require extending the corpus design, filming new videos, and running more online
and in-person studies. Instead, in the following paragraphs we consider the impact of each
of the modifications listed above, subsequently selecting the one that best preserves the
original characteristics of the velocity profiles, and maximizes the distinctness of profiles
using different parameter combinations.

Acceleration and maximum velocity

The acceleration value used for the slope of the velocity profile and the maximum velocity
of the profile could each be changed to lengthen or shorten the distance travelled. However,
both of these parameters are already constrained to precise values in the corpus by their
role in defining the kinematics type parameter. In addition, altering the acceleration could
lead to different kinematics types sharing identical motions given a distance to travel. This
is problematic since the kinematics type was found to have an impact on all of our ten
perceptual scales. Altering the maximal velocity without changing the acceleration value
would preserve the distinctness of motions, but the maximal velocity is bounded by the
robot’s motors, so further modifications should be made to enable longer motions.

Alternating acceleration and deceleration

Another solution to alter distance traveled would be to perform successions of accelerations
and decelerations. This would preserve the kinematics type and allow a given profile to be
lengthened, but it doesn’t provide a way to reduce profile length, meaning the robot would
be incapable of performing short motions. Furthermore, the motion sequence and variant
parameters of our corpus already define successions of accelerations and decelerations with
motion sequences C and D, as well as the saccade and increment variant. Using this degree
of freedom to alter the distance could lead to confusions between these corpus variables,
which were also found to impact all of the perceptual scales.
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Length of maximum velocity phase

The last solution is to modify how long the maximum velocity is maintained. This param-
eter is partially controlled in our original corpus by the motion sequence. The difference
between motion sequences A, C and B, D is the introduction of pauses between acceler-
ation and deceleration phases for sequences A and C, modeled as short (3001ms) constant
velocity phases. Extending the maximum velocity phase to increase distance would mostly
preserve the distinctness of each parameter combination, except when the distance to be
traveled requires a maximum velocity phase with a length similar to that of our pauses. Few
differences were observed between the impressions generated by motion sequences with
or without pauses, and the similarity incurred by changing the maximum velocity phase
length only occurs for a relatively small subset of situations. Lengthening the maximum
velocity phase does not allow shorter motions, hence we combine this with the lowering of
the maximum velocity described previously. The transformations applied to alter the dis-
tance travelled when using motion sequences without hesitations is represented in Figure
4.4. For profiles using hesitations, there are several ways to add constant velocity phases
to extend the motion, which we discuss in the next paragraph.

Adapting motion sequences

For some of the corpus profiles, there could be several ways to introduce constant velocity
phases in order to lengthen a profile. Profiles using hesitation motion sequences (sequences
C and D) make the robot slow down and accelerate back up to maximum velocity in the
middle of the profile. One option to extend the profile would be repeating the slowing and
accelerating motion in quick succession, however this would resemble profiles using the
saccade variant. Instead, we chose to perform one slow-down and acceleration as soon
as the maximal velocity is reached, followed by maintaining the maximal velocity. The
slowing down pattern is repeated after a given time interval ¢;, with more time elapsed
between two hesitations than the length of the hesitation pattern.

Motion sequences A and C introduce the notion of pauses. We define pausing as always
ensuring there is a constant velocity phase of length greater or equal to the pause length
tpause Detween an acceleration and deceleration phase. This means that shortening a pause
profile conserves the same 300ms constant velocity phase, while reducing the value of
the maximum velocity. Lengthening a pause profile is achieved by extending the constant
velocity phase length. An issue arises when applying this procedure to profiles using both
pauses and hesitations, since there are several constant velocity phases that could each
be extended. We propose to extend only the last constant velocity phase, ensuring that
the hesitation pattern occurs just after reaching the maximal velocity, and that its shape is
preserved.

Adapting variants

Allowing the maximum velocity to be lower also raises the question of adapting the in-
crement variant. A straightforward option would be to linearly scale the profile according
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Figure 4.4: Illustration of the transformation of a corpus velocity profile to travel shorter or

longer distances. Top: transformation for profiles without pauses or hesitations (sequence

B). Bottom: transformation for profiles with pauses, and without hesitations (sequence A).

When shortening profiles with pauses, we must conserve the short constant velocity phase

representing the pause, even when performing shorter motions.
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to the phase duration, altering the pause lengths and each acceleration length. We prefer
instead to preserve the durations of the interleaved acceleration and pause phases, given
they were chosen in order to be perceptible by humans. Also, linear scaling would have
made a short incremental acceleration phase quite similar to a saccade acceleration, only
with short interleaved accelerations and constant velocity phases rather than accelerations
and decelerations. In the motion corpus profiles, the increment variant introduced two con-
stant velocity phases into each acceleration and deceleration phase, separating them into
three increments. All velocity profiles reached their maximum velocity vy;, given by the
kinematics type, hence the increment length was always the same. In order to adapt the
increments to variable distances we propose to simply use the same velocity profile as the
corpus and allow the robot to interrupt the acceleration at any point in the profile. In other
words, the constant velocity phases are inserted whenever the robot’s velocity reaches one
of the pre-determined increment velocities: Vine jow = 1/3Vkin OF Vine nigh = 2/3Vkin. This
simple approach may introduce a short stuttering motion when planning motions with
given lengths. Alternatives which could be explored in further studies include altering the
number of increments or the increment pause length based on the distance to be travelled,
to remove such edge cases that introduce stutters. There remains a trade-off for accelera-
tions which are too short to enable the insertion of an increment, resulting in an identical
velocity profile to a smooth variant acceleration.

4.5.2 Variable distance prosody constraint formalization

In the previous subsection, we discussed the various ways in which the original corpus
velocity profiles could be altered in order to handle arbitrary distances. We concluded that
in order to perform shorter motions the profile’s maximum velocity would be lowered, and
for longer motions we introduce a variable length constant velocity phase at the maximum
velocity. The resulting trajectory space gives enough flexibility to perform straight-line
point-to-point motion. In this subsection, we formalize constraints which model each of
the motion corpus prosody parameters, such that a trajectory which motion phases satisfy
the constraint is representative of the corresponding motion corpus parameter value.

Integration of motion sequences

The corpus defined six motion sequences denoted A through F. We do not consider se-
quences E and F in our trajectory generation since they are truncated versions of sequence
A (E and F velocity profiles depicted the robot accelerating and maintaining maximum ve-
locity, or maintaining maximum velocity, then decelerating). The four remaining sequences
represent the possible combinations of two concepts: pauses and hesitations. Pauses are
used in sequences A and C, and hesitations are used in sequences C and D.

Trajectories using pause motion sequences (i.e. sequences A or C) require that an
acceleration or deceleration phase a;_; # 0 should be followed by a constant velocity
phase a;, = 0 with a duration ¢, greater or equal to the pause length ¢,,,sc = 300ms. This
constraint is expressed in Equation 4.3, in such a way that it describes what should not
occur: if the previous phase is not a constant velocity phase, and the current phase is not
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the same acceleration as the previous, and the current phase is not a constant velocity phase
as long or longer than a pause, then this trajectory does not satisfy the pause constraint.

PauseConstraint(U) <Vk € [1, N — 1],

(4.3)
_‘(akfl 7& 0 A ay 7& ag—1 N\ _‘<ak = 0Nt > tpause))

Trajectories using hesitation motion sequences (i.e. sequences C or D) incorporate
a deceleration from the current velocity down to some lower velocity, followed by the op-
posite acceleration, both with duration ¢;. This hesitation should occur once immediately
after the end of an acceleration phase, and then at regular time intervals ¢; jnterva along
the trajectory. Therefore, the application of motion sequences is achieved by defining con-
straints on the possible ordering of motion phases within a trajectory. First, we impose
that an acceleration phase should be followed by a hesitation deceleration phase. Since the
second part of a hesitation is itself an acceleration phase, this constraint would make the
robot perform successive decelerations and accelerations indefinitely. We need to distin-
guish normal acceleration phases from those that constitute a hesitation phase. In order to
achieve this, we introduce an additional variable into the robot’s state indicating the type
of the motion phase: type, € {normal, hesitation, pause,increment}. By checking the
type of the phase, we can enforce that only a normal acceleration which is not part of a
hesitation sequence should be followed by a hesitation deceleration. Second, we impose
that a hesitation deceleration should be inserted once the required time since the previous
hesitation sequence has elapsed. In order to keep track of the time since the last hesitation,
we introduce another state variable Zg;,cc nesit, Which is set to zero whenever a hesitation
is performed, and incremented as time passes. These two situations are those in which a
hesitation deceleration should be performed, and are formalized in Equation 4.4. A hes-
itation acceleration phase should be planned immediately after a hesitation deceleration
phase, as expressed in Equation 4.5. Both of these constraints combined allow us to enforce
the hesitation motion sequence (Equation 4.6).

HesitationDeceleration(U) <Vk € [1, N — 1],

(ak—l = Qin V tsince_hesit > th_interval) (44)

A\ _'(ak = —Ukin A\ tk = th)

HesitationAcceleration(U) <Vk € [1, N — 1],
(ak—1 = —agin N typex_1 = hesitation) (4.5)
A _\(ak = Qkin A tk = th)

HesitationConstraint(U) <»—HesitationDeceleration(U)

4.6
N = Hesitation Acceleration(U) (4.6)

The previous constraint formulation is valid only when we are not using the pause
motion sequence in combination with hesitations. When using the pause and hesitation
sequences together the result should be that after an acceleration, first a pause phase is
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performed, and then the hesitation deceleration. In order to address the issue, the hesi-
tation constraint takes on different formulations depending on whether or not the pause
constraint is active. If pauses and hesitations are active simultaneously, the pause con-
straints impose a pause phase after any acceleration or deceleration. Hence, we modify
the constraints, requiring the hesitation deceleration to take place only after pause phases
which follow a normal acceleration (Equation 4.7), and hesitation acceleration to take place
only after pause phases which follow a hesitation deceleration (Equation 4.8).

PauseHesitationDeceleration(U) <> Vk € [1, N — 1],

((ax—_2 = agin N typex_o # hesitation A typey_1 = pause) 47)
V tsince_hesit 2 th_interval) .

N ﬁ(ak = —Ukin A\ tk = th)

PauseHesitationAcceleration(U) <> Vk € [1, N — 1],
((ak—o = —agin N typex_o = hesitation A typer_1 = pause) (4.8)
A =(ag = agin Nt = tp)

Integration of variants

A trajectory using the smooth variant should result in acceleration and deceleration phases
longer than a given minimal duration .01, Such that the trajectory does not resemble the
saccade variant. We simply implement a lower bound constraint on the length of motion
phases tgmo0tn = 300ms (Equation 4.9). By applying this definition of the smooth variant,
we are also limiting the robot’s ability to perform short motions which would require an ac-
celeration and deceleration with shorter phase lengths. If instead we decide that such short
motions should be considered valid smooth motions, the constraints could be modified to
allow short two-phase trajectories if they start and end at zero velocity.

SmoothConstraint(U) <>Vk € [0, N — 1], t; >= tsmooth (4.9)

The increment variant requires acceleration phases to be split into increments, such
that the robot performs a constant velocity phase of duration ¢,4,s. = 300ms when reach-
ing certain velocities which are multiples of vincrement = %stoppmgTime(vkm, arin) (see
Figure 4.7). The first part of the constraint (Equation 4.10) enforces that all acceleration or
deceleration phases should end at one of the increment velocities. The second part of the
constraint enforces that all acceleration and deceleration phases must be followed either
by a pause phase, or by their opposite phase (Equation 4.11), i.e. an acceleration or deceler-
ation phase cannot be extended, since it would violate the first constraint. The increment
constraint is expressed by combining these two conditions in equation 4.12.

ValidVelocity(U) <>Vk € [0, N — 1],

4 . (4.10)
Uk = 1 * Ujncrements ¢ € N
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BreakAccelerationPhase(U) <>Vk € [1, N — 1],

ap—1# 0 (4.11)
A ((Clk =0A tk = tpause) V A = —ak_l)

IncrementConstraint(U) <>V alidV elocity(U)

A BreakAccelerationPhase(U) (4.12)
The saccade variant differs from the other prosody variables, since we do not formalize
it as a constraint in the optimization problem, but rather as a post-processing step. In order
to generate a velocity profile resembling the saccade variant, we can simply add oscillations
generated by a triangular wave function around the velocity profile obtained by planning
under the smooth variant constraint. In our motion corpus, the oscillation of the velocity
signal has a high frequency and low amplitude, since the aim of this variant is to reproduce
stuttering or shaking. Although it would be possible to formulate these oscillations as
constraints on the motion phases we chose not to, since it would require a large number of
motion phases leading to a large computation time. It would also tie the saccade frequency
to the planner update rate and time discretization dt. Instead, we make the assumption that
adding oscillations with small amplitudes and high frequencies will not affect the validity
of the planned trajectory. In order to plan saccade variant trajectories, we plan under the
smooth variant constraint. As the acceleration command computed by our algorithm is
sent to the low-level motor controller, a time-varying offset given by a triangular wave
is added. We use a period 7 = 0.02s, and an amplitude dependant on the kinematics
type: A_low = 0.02m.s™%, A_medium = 0.05m.s~2, A_high = 0.07m.s~2. The period
and amplitudes were empirically tuned so that they provide visually similar saccades as
those implemented in the motion corpus videos, despite the differences in control update
frequency?.

Integration of kinematics types

The kinematics type specifies an acceleration value, or in other words, the slope of the ve-
locity profile in acceleration and deceleration phases. When a kinematics type is specified,
the robot must accelerate using that specific value. One could think of this as a constraint
on the space of control inputs uy of the robot, or a constraint on the set of admissible tra-
jectories. We constrain the values of the accelerations such that they are either zero (for
constant velocity phases), or equal to the acceleration specified by the kinematics type. The
value of ay;, is determined by the kinematics type (high, medium, or low).

KinematicsAcceleration(U) <Vk € [0, N — 1],

(4.13)
ai € {—akin, 0, ajin}

2Saccades for the corpus video profiles were generated at a finer resolution due to the higher update rate
of the hard-coded profile controller which ran at 20H z. Our planner operates at 10H z, hence the triangle
wave period of 0.02s.
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In addition to an acceleration value, the kinematics type also specifies a maximum veloc-
ity that the robot should not exceed. This is simply expressed with an inequality constraint
U < Upin. The kinematics type also captures the amount of energy used for a motion, hence
the velocity should approach vy, when possible. For example, accelerating to vy < Ui,
performing a constant velocity phase, and decelerating should not occur. The same dis-
tance could be covered by a longer acceleration and deceleration, increasing the velocity at
which the constant velocity phase is executed (or removing the need for it entirely, depend-
ing on the distance to be travelled). The most obvious constraint to apply is that constant
velocity phases should only be planned at the maximum velocity (Equation 4.14). This is
sufficient if the pause and increment constraints are not active. In order to allow prosody
styles that specify both a kinematics type and use pauses or increments, the kinematics
constraint should allow constant velocity phases at velocities lower than the desired vy,
as long as the constant velocity phase is simply a short pause or increment with ¢, < ?,44se
(Equation 4.15). The velocity and acceleration constraints are combined to form the overall
kinematics constraint expressed in Equation 4.14.

KinematicsVelocity(U) «<Vk € [0, N — 1]
0 < vk < Vkin (4.14)
A\ _\(ak = 0 A Vi Q_f {Ukim 0})

KinematicsVelocityPauses(U) <>Vk € [0, N — 1]
0 < vk < Vgin (4.15)
_'<ak =0A Vg ¢ {Ukina O} A tk > tpause)

KinematicsConstraint(U) < KinematicsAcceleration(U)

4.16
A KinematicsV elocity(U) (4.16)

4.5.3 Offline trajectory planning with open-loop control

Problem formulation for variable distance prosody-compliant optimization

The new problem formulation given in Equation 4.17 retains the same control variables
and cost function as the previous formulation. In this formulation, we have replaced the
constraints which only limited the robot’s acceleration and velocity according to the me-
chanical limits of the motors with the prosody constraints formulated previously. The set of
constraints derived in the previous section is denoted as PC\,y f1ine, summarized in Table 4.1.
Each constraint enforces trajectory properties which are specific to a given corpus variable
value. In order for the trajectory planning to produce plans that reflect the desired move-
ment prosody, we must select a subset of the constraints from PC|,y fi;n,. which corresponds
to our chosen movement prosody. For example, in order to plan trajectories according to
the corpus variable values of pause motion sequence, high kinematics and smooth variant,
we define the subset PCletive = { Pause, Kinematics, Smooth}, and set ag;, = apign and
Ukin = Uhigh to specify which kinematics type should be applied.
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Table 4.1: Constraints forming the set PC, f1in. used for offline planning.

Constraint Equation

Pause 43
Hesitation 4.6
Smooth 4.9

Increment 4.12
Kinematics 4.16

N-1
min Z ||339H2
UuQg...UN_—-1 =0

(4.17)

PCactive C PCOffliTL67

subject to: N1
{ k=0 ty = Th .

Trajectory planning

In order to solve the optimization problem, given the set of control inputs is finite (a; and
t are both discrete bounded variables) a simple approach would be to generate all possible
trajectories similarly to the classical Dynamic Window Approach (DWA) (Fox et al., 1997).
This approach is only feasible with small search spaces, the size of which depends on the
time discretization dt chosen for ¢. Given several of our prosody constraints impose bounds
on the phase durations, dt should be chosen accordingly. We must be able to plan a pause
phase with duration t;, = n*dt = tpause = 300ms, so dt should be smaller or equal to ¢,,4yse,
and be a divisor of ?p,,s.. The choice of dt will also impact the flexibility of the trajectories
generated by the planner, hence its ability to accurately reach a target position in space, or a
target velocity. For instance, using dt = 300ms would mean that when the robot is moving
at v = 1.0m.s™?, increasing the length of a constant velocity phase by one dt extends the
distance travelled by dist = 0.3m. A shorter dt would increase the search space for the
length of motion phases, hence we choose dt = 100ms as a compromise between these
aspects.

Even with a reasonable choice of dt, the search space is still quite large. To reduce it,
we can exploit the restrictive nature of our prosody constraints to discard candidate tra-
jectories as soon as they violate one of the prosody constraints. We approach the problem
as building a tree of possible trajectories starting from the robot’s current state, iteratively
adding phases in a depth-first fashion. A node corresponds to a state xy, an edge corre-
sponds to a motion phase uy, and a path of depth IV corresponds to a trajectory. The root
node corresponds to the robot’s initial state. The set of possible control inputs for the kth
phase is given as uy € A X T, where A = {ayin, 0, —ax;, } is the set of acceleration values
determined by the kinematics type, and 7 = {dt, 2dt, ...t,;q. } is the set of possible phase
durations. The maximum phase duration ¢,,,, is computed by subtracting the durations
of previous phases and the minimum duration of the following phases from the planning
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Algorithm 1: Prosody-aware trajectory planning

Input: z,, goal point. X;nit, initial state. PCctive C PCop fline, set of active
prosody constraints. A set of phase accelerations. 7 set of phase durations.
N, number of motion phases.
Output: U* = {ug,u; ..., un_1}, phases of the optimal trajectory.
Notations:
Xk = [Tk, Ug], kth robot state.
uy = [ag, tx], kth motion phase.
T trajectory tree.
Algorithm:
1 T < CreateTree(Xinit)
2 Xk < Xinit
3 while —~Traversal Finished(T) do

4 if T.Depth(xx) < N then

5 foru, € Ax T do

6 X1 < ForwardSimulation(xy, ug) (Eq. 4.1)

7 is_valid <— CheckConstraints(PCyf fiine, Uk—1, Uk, Xk, Xk+1)
8 if is_valid then

0 | T.AddChild(xy, ug, Xic41)
10 Xy, Up—1 < T.DepthFirst NextNode

1 U* < BvaluateTrajectories(x,,T)
12 return  U*
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horizon duration 7}, (Equation 4.18).

k
tmae = Th — Y _ti — (N — k)dt (4.18)
=0

Pseudo-code for our algorithm is given in Algorithm 1. In order to expand the tree
we select a control uy € A x T (line 5), and compute the state xj,; that would result
from executing uy (ForwardSimulation function, line 6). We then verify whether this
extension of the trajectory satisfies the constraints using the CheckConstraints function
(line 7). This function evaluates each constraint in problem 4.17, returning a boolean value
indicating whether the edge corresponding to control u; is valid. If adding the edge to
the tree causes the corresponding trajectory to violate any of the constraints, the edge is
discarded. If the edge complies with the constraints, we add the node corresponding to the
state Xy, 1 to the tree (lines 8-9). This process is repeated for all controls uy, after which we
select the next node from which to expand the tree in a depth-first fashion (line 10).

The tree expansion stops once all branches have been terminated, either due to violating
a constraint, or due to reaching the maximum depth N. The result is a tree where each leaf
node represents the last state of a fully prosody-compliant trajectory. Finding the optimal
trajectory among these amounts to searching the tree for the lowest cost root-to-leaf path.
This is performed by the function FvaluateTrajectories which evaluates every trajectory
according to the cost function from problem 4.17, and returns the one with minimum cost.
In this section, we deal with the case of static environments without obstacles, so this tra-
jectory planning process is only performed once. The optimal sequence of control inputs
U™ is then used as input to the open-loop control algorithm described in the next paragraph,
which executes the control inputs with appropriate timing.

Open-loop control

Algorithm 2 describes the overall process to execute a prosody compliant trajectory in an
open loop fashion. It uses the planning algorithm 1 as a subroutine. The input to the
control algorithm is the goal position z, given in the robot’s local coordinate frame, as well
as a selection of prosody constraints PCj.;.. We plan the trajectory using algorithm 1
to solve the optimization problem given in Equation 4.17, obtaining the optimal trajectory
U*. We then simply iterate over the controls {ug, u;...uy_1}, sending the corresponding
acceleration command a; to the motors, and waiting for the duration ¢; of the motion phase
to elapse before sending the next command. In this approach, planning only occurs once,
and is separated from the control. No feedback about the environment is used once the
robot begins executing the planned trajectory.

This problem formulation has allowed us to introduce our notations and general pro-
cess, showing how constraints can be formulated to structure the trajectory planning so
that only trajectories that exhibit the desired movement prosody properties can be exe-
cuted. We limited ourselves to static, known environments, where there are no obstacles
between the robot and the goal position. We also assumed an ideal system with no inac-
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Algorithm 2: Open-loop control

Input: z,, goal point.
PCof tiine set of prosody constraints.
Output: a;, acceleration command sent to the motors.
Notations:
Xo = [, ], initial state of the robot.
u; = [ay, t;], motion phase executed at time t.
U* = {ug,u; ...,uy_1}, sequence of motion phases describing the trajectory to be
executed.
Algorithm:
1 U* <= PlanTrajectory(Xo, 4, PCoffiine) (alg. 1)
2 fork € [0, N — 1] do
3 at, ty < ExtractControl(U*, k)
4 SendM otorCommand(ay)
5 | DelayUntil(t + t;)

curacies in sensing or motion control. These are far from the real deployment situations,
hence the approach should be further extended to handle more complex situations. We are
interested in deploying the robot in human populated, dynamic environments where the
future state of the environment and other agents is either unknown or difficult to predict
long-term. In such environments, pre-computing a trajectory and executing it in an open
loop fashion could fail. Likewise, the goal itself may not be a static point in the environ-
ment, but a moving person, leading to similar issues. In the following section, we discuss
how we extend the optimization problem formulation, constraints, and algorithm in order
to handle dynamic environments.

4.6 Recedinghorizon control for dynamic environments

Mobile robots destined to operate around humans are bound to encounter dynamic envi-
ronments where the future motion of other agents will only be partially known through
predictions with varying degrees of accuracy. In addition, no matter how accurate the for-
ward model of the robot’s kinematics or dynamics is, there can always be some mismatch
with the true motion of the robot due to factors such as wheel slip or hardware failures. For
these reasons, a common approach is to re-plan trajectories frequently to adapt the robot’s
motion to changes in the environment and to mitigate inaccuracies in the robot’s model. We
follow this approach, thus aiming to design an online local planning module that generates
trajectories at a fast update rate over a short time horizon. First, we describe how adding
a re-planning mechanism can allow us to perform prosody-compliant motions in dynamic
environments in some cases, as well as its shortcomings due to the inadequate prosody con-
straint formulation. Second, we propose extensions to the previous prosody constraints in
order to adapt them to a re-planning approach. Thirdly, we update the problem formulation
and algorithm to incorporate re-planning and the new constraints.
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4.6.1 Impact of re-planning on prosody compliance

The previous problem formulation assumed that the environment was perfectly known,
allowing a trajectory to be planned once, and executed "blindly", in an open loop fashion.
In reality, mobile robots will have incomplete knowledge of their environment, in part due
to the finite range of their sensors, and limited prediction accuracy for other agents in the
environment. Re-planning the trajectory frequently can allow the trajectory to be updated
based on new sensor data, new predictions, and the true state of the robot. An illustrative
example is depicted in Figure 4.5, where a sudden motion of a person requires re-planning
in order to avoid colliding while maintaining consistent movement prosody. In order to be
useful, re-planning should be performed at a high frequency, which often prohibits plan-
ning an entire trajectory from the robot’s current position to the goal. Instead, a common
approach is to plan a trajectory that minimizes the cost function over a finite time horizon
T'. This kind of approach is employed in some classical local planning algorithms such as
Dynamic Window Avoidance (DWA) (Fox et al., 1997) which plans a trajectory consisting
of only a single control input over a short horizon at each planning cycle. A DWA approach
would not be suited in our case, since our prosody constraints are defined over several con-
trol inputs, requiring trajectories to be planned over several control inputs. DWA can be
seen as a special case of receding horizon control approaches, which typically optimize over
horizons consisting of multiple control inputs. Instead of selecting a single control input,
we select a sequence of actions covering the whole horizon. This is a more accurate rep-
resentation of the flexibility of the robot’s motion which alleviates the issues with DWA,
at the cost of a higher computational complexity. The first control action of the trajectory
is then executed on the robot over the period of the planning cycle update, after which a
new trajectory is re-planned in a receding horizon fashion. The result is that when a pre-
viously valid trajectory plan becomes invalidated due to a change in the environment, the
frequent re-planning allows us to find a new valid trajectory that also satisfies the prosody
constraints.

In the next paragraph, we discuss the choice of the horizon length 7". This choice is
especially important in our algorithm since our prosody constraints often require certain
fixed-duration motion phases to be applied (such as when using pause or hesitation con-
straints), thus requiring the horizon to be long enough to accommodate them.

Safety, terminal constraint, and planning horizon

In order to check if a trajectory collides with an obstacle or person, we assume we have
access to the distance to the closest obstacle along the robot’s x axis, denoted d,s. Using
this information, we formulate a simple collision constraint (Equation 4.19) by checking
whether the closest obstacle is at least dg iticai = 0.05m further away than the robot’s
future planned positions z along the x axis of motion.

CollisionCritical(U) <Vk € [0, N — 1],

(4.19)
dobs — Tg > dcritical
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Figure 4.5: Illustration of a situation requiring re-planning. Left: initial plan to move the
robot (grey) towards the goal (x). Right: a person (green) suddenly decides to move, crossing
the robot’s path. Without any safety mechanism there would be a collision. With an emer-
gency stop we would no longer comply with the kinematics prosody constraint. Instead,
we can re-plan a new trajectory which is shorter, hence avoiding collision and satisfying
the kinematics prosody. Solid line: past motion. Dashed lines: valid plans (black), invalid
plan (red).

This constraint by itself cannot guarantee that collisions will be prevented, even in
static environments, since it’s effectiveness depends on the time horizon 7}, over which the
trajectory is planned, and the robot’s stopping time. For example, a trajectory consisting
of maintaining a constant velocity might be collision-free but very close to an obstacle at
one timestep, and then become invalid at then next timestep as the robot gets closer to the
obstacle. If the 7T}, is not larger than the robot’s stopping time, the robot cannot decelerate
in time to avoid a collision. Therefore, when using receding horizon control approaches it is
typical to determine the minimum horizon length in accordance with the robot’s stopping
time under the maximum deceleration of which the hardware is capable. Some approaches
combine this with a terminal constraint (Mayne et al., 2000) which can be used to force the
robot to be at rest at the end of the planning horizon, thus providing passive safety (Zheng,
2022). We adopt a terminal constraint that enforces that the robot’s velocity at the last state
of a planned trajectory should be zero (Equation 4.20).

TerminalConstraint(U) <> vy_1 =0 (4.20)

Although using a terminal constraint improves safety, it may modify trajectory plans in
other ways, depending on 7},. Since the terminal constraint requires the robot to be stopped
at the end of the trajectory which has a finite duration, it limits the maximum velocity at
which the robot can travel based on the robot’s stopping time. Many of the prosody con-
straints extend the robot’s stopping time by altering the maximal deceleration (kinematics
constraint), adding additional motion phases (hesitation, pause and increment constraints).
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Therefore, if T}, is not changed to account for the additional stopping distance introduced
by our prosody constraints, then the robot would not be able to satisty the kinematics con-
straints requiring the robot to plan trajectories that reach the specified velocity v;,. Our
aim is for the robot to be able to comply with the prosody constraints as much as possible,
hence we determine the minimum horizon length according to the stopping time subject
to the prosody constraints. Given that we always plan under the prosody constraints, the
effect of the terminal constraint becomes that it ensures the robot can stop by the end of
the horizon, while satisfying the prosody constraints.

In addition to the horizon length 7}, we must consider the parameter /N, which is the
number of motion phases contained in the horizon. For example, with N = 2 it is impossi-
ble to plan a trajectory using the pause constraint, since this requires three motion phases
(acceleration, constant velocity, deceleration) to form the trapezoidal profile. Longer hori-
zon times allow the planner to handle more complex navigation tasks, however the accuracy
of the prediction of future motion of the robot and dynamic elements of the environment
as well as the perception range for obstacles provide upper bounds on the horizon time,
and the computational complexity also grows with the number of phases in the horizon.
We choose to use the minimum horizon length and number of motion phases that allows
prosody compliant motions to be planned. For example, when planning motions with the
smooth or saccade variants, no pauses and no hesitations, a horizon consisting of two mo-
tion phases, and a length corresponding to the time required for an acceleration to maximal
velocity followed by a deceleration to a stop.

Inadequacy of static prosody constraints for re-planning

Incorporating re-planning into our existing problem formulation can help to handle some
situations in dynamic environments. For example, consider the robot has started executing
a motion using the high kinematics and pause constraints, in order to move towards a per-
son standing still. The robot has already performed an acceleration to the maximal velocity,
and its current plan is to perform a long constant velocity phase, followed by a decelera-
tion to stop at the goal near the person U; = {[0m.s72,600ms] , [0.5m.s™2, 1500ms]}. If
the person decides to start moving closer to the robot at ¢ + 1, the plan computed at the
next cycle can account for the shorter distance to be travelled by reducing the duration
of the constant velocity phase, while still complying with both the kinematics and pause
constraints. However if the goal distance gets close enough, the planner may plan to im-
mediately decelerate. When considered in isolation, there is nothing wrong with such a
plan: according to the pause constraints, we should not plan an acceleration followed by
a deceleration. However in this instance, the plan does not even contain an acceleration,
so it is valid. In this situation, if we want the robot’s motion execution to comply with the
prosody, we would like to express that a deceleration phase should not be planned because
the previously executed phase was an acceleration. Similarly, if the robot had already
performed a small portion of a pause phase then simply checking the previous phase’s ac-
celeration value would not be enough, we would also need to check if the pause phase had
been maintained for long enough. In more general terms, the planned trajectory should
not only be internally consistent with the prosody constraints, but also be consistent with
respect to the past motion of the robot.
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4.6.2 Prosody constraint adaptation to re-planning

In this section, we present the new constraint formulations for the motion prosody param-
eters that are affected by the re-planning mechanism. Constraints which are not mentioned
in this section maintain the same formulation as previously.

Many of the constraints require a way to ensure a motion phase is executed for some
minimum duration, such as the pause constraint imposing constant velocity phases to have
a duration of 300ms. When re-planning, there will be moments in the robot’s motion when
it has performed only part of the desired motion phase, requiring the first phase of the plan
to complete the remaining duration of that phase. For example, if the robot has only been
performing a constant velocity phase for 200ms, then the first motion phase of the trajectory
is constrained to be an acceleration phase of at least 100ms. We introduce a new variable
which keeps track of the cumulative duration of a motion phase denoted by t_cumuly,
defined in Equation 4.21.

J
t_cumuly, = Zti’ s.t. Vi€ ljk],a;=ag (4.21)
i=k

In the following sections, we show how the motion history captured by ¢_cumul is used
in order to formulate more complex prosody constraints that enable the robot to maintain
consistency with respect to the past motion when re-planning.

Motion sequences

The first change to the pause constraint is that it also applies to the first phase of the tra-
jectory, checking if the previously executed phase a,,., was an acceleration or deceleration
(Equation 4.22). The second change is the addition of a constraint to make sure that if a
pause started, the next phase should complete it (Equation 4.23). The updated pause con-
straint for re-planning is given in Equation 4.24.

PauseAfterAccel(U) <>Vk € [0, N — 1],

(4.22)
_‘(akfl 7é O A ag 7é ag—1 N\ _‘(ak =0At, > Zfpause))

UnfinishedPause(U) <>Vk € [0, N — 1],
(ak—l =0, A\tp—1 < tpause) (423)

A —|(ak =0A t_cumulk == tpause)

PauseConstraint(U) <> PauseA fter Accel(U)

- (4.24)
A =Un finishedPause(U)

Similarly to other constraints, the previous hesitation constraints should now also be
applied to the first phase. We also need to modify the constraints in several ways: a hes-
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itation acceleration should only be planned once the hesitation deceleration has finished
entirely; and instead of requiring a non-hesitation acceleration to be followed by a hesita-
tion deceleration, we simply require that it should not be followed by a constant velocity
phase or a non-hesitation deceleration. This has the effect of allowing a previously executed
acceleration to be continued. We also add new constraints so that partially executed hes-
itation phases are completed by the next motion phase, similarly to the unfinished pauses
in prior constraints (Equation 4.27 and Equation 4.28).

HesitationDeceleration(U) <> Vk € [0, N — 1],
(ak’—l = Qkin \ tsince_hesit Z th_interval) (425)
VAN ((CLk = —Akin VAN tk 7é th) V ap — 0)

HesitationAcceleration(U) <> Vk € [0, N — 1],
(ak—1 = —agin A typer_1 = hesitation N\ t_cumuly_; = t) (4.26)
N ﬁ(CLk» = Qkin AN tk = th)

HesitationUn finishedDecel(U) <> Yk € [0, N — 1],
(ak—1 = —agin A typer_1 = hesitation N t_cumuly_; < t) (4.27)

A =(ag = —agip N t_cumuly, = ty,)

HesitationUn finishedAccel(U) <+ Vk € [0, N — 1],
(ar—1 = agin A typer_1 = hesitation A\ t_cumuly_1 < ty) (4.28)

A =(ag = agin N t_cumuly, = ty,)

HesitationConstraint(U) <»—HesitationDeceleration(U)
N —HesitationAcceleration(U)
A —HesitationUn finishedDecel (U)
N —HesitationUn finished Accel(U)

(4.29)

Variants

If we only consider the immediate state of the robot at the time of re-planning, the motion
phases which are part of the plan will be consistent with each other, and comply with
the smooth variant, but this might not be the case when we consider the consistency with
respect to the previously executed motion (an illustrative example is provided in Figure 4.6).
We re-formulate the smooth constraint to use the cumulative time, such that if the robot
has started an acceleration phase, it should continue it. The revised constraint is given in
Equation 4.30.

Smooth(U) <>Vk € [0, N — 1], t_cumuly > tsmootn (4.30)
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Figure 4.6: lllustration of the dependence of the planned trajectory on past motion. Dashed
lines: planned trajectory. Green line: past motion for which the plan is consistent with
the smooth variant. Red: past motions for which the plan violates the smooth variant by
introducing a small stutter.

The increment constraint requires insertion of constant velocity phases similar to the
pause constraint, as seen in Figure 4.7, so we add the same constraint to ensure that a
partially executed pause is finished by the next motion phase (Equation 4.23. This constraint
is added to the two previous increment constraints derived in the previous section (Equation
4.32). The constraint enforcing that accelerations should be followed by pauses remains
similar, except now it should be applied over a wider range, including the check between
the previously executed acceleration ay,., (i.e. when k = —1), and the first acceleration of
the plan a( (Equation 4.31).

BreakAccelerationPhase(U) <>Vk € [0, N — 1],

ap_1 # 0 (4.31)
A ((ak =0A Iy = tpause) Voag = _ak—1>

IncrementConstraint(U) <>V alidV elocity(U)
A BreakAccelerationPhase(U) (4.32)
A =Un finishedPause(U)

4.6.3 Algorithm for prosody compliant receding horizon control in
dynamic environments

In this section, we show how the re-planning is incorporated into our algorithm. Changes
are made to the planner update loop, by re-planning the trajectory at each update cycle
instead of only once. The planner operates at a fixed update frequency with a period of
dt = 100ms. The trajectory optimization formulation given in Equation 4.33 is similar
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Figure 4.7: Illustration of the validity of motion phase sequences with respect to different

past motions, using the increment variant. Dashed lines: planned trajectory. Green line:

past motion for which the plan is consistent with the increment variant. Red: past motions

for which the plan violates the increment variant.

Table 4.2: Constraints forming the set PC).cp,, used for re-planning in receding horizon

control.
Constraint Equation
Pause 4.24
Hesitation 4.29
Smooth 4.30
Increment 4.32
Kinematics 4.16

to the prior formulation, with the key difference being that it uses the new prosody con-
straints presented in section 4.6.2. The active prosody constraint set PCl ;e is a subset
of PCcpian defined in Table 4.2, which includes the updated prosody constraints enabling
consistent movement prosody to be maintained while re-planning. Additionally, the col-
lision constraint is included to ensure the trajectories do not cause collisions. Lastly, the
duration of the trajectory is constrained to a shorter time horizon 7}, chosen such that it is
longer than the robot’s stopping distance subject to the prosody constraints, to ensure the
ability of the planner to find safe prosody-compliant trajectories.

Q- UN —1

N—1
min ) [[a|?
k=0

PCactive C PCreplana

N-1, _

subject to: k=0 *k o
CollisionCritical  (4.19),
TerminalConstraint (4.20).
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Receding horizon control loop

Our online local planner using a receding horizon control approach is presented in Algo-
rithm 3, which replaces the open-loop trajectory execution presented in Algorithm 2. This
version implements closed-loop control by using information from perception modules to
re-plan the trajectory at every control cycle (i.e. with a period dt = 100ms) (line 7). This al-
gorithm uses two forms of environment feedback, the first being the distance to the closest
obstacle along the robot’s x axis denoted ds, and the second being the position of the goal
x4, which may be based on the position of a person given by a person tracking module, or
a point in the environment given by a global path planner (line 3). The collision constraint
(Equation 4.19) ensures that for all motion phases in the trajectory U, the distance between
the robot and obstacle is never less than d,;.q.;, which we set to 0.05m. Updating the goal
position z, continuously enables the robot to adapt to mobile goals (e.g. approaching a
moving person), or to compensate for inaccuracies in the robot’s motion. As part of the
perception update, we also update the variables which are used to check specific prosody
constraints. The variable £nce nesit is updated according to whether the phase executed at
time ¢ was a hesitation, and ¢y, is incremented if the phases at times ¢ and ¢ — dt are of
the same type (line 3).

We introduce the possibility of updating the set PC,;ye of prosody constraints cur-
rently being applied, via a basic user interface (lines 5-6). We only update this set when
the robot is not moving, since instantaneously altering the constraints while in motion can
make the problem infeasible. This issue of switching between prosody styles is discussed
further in section 4.8.2. Given the state of the robot and the environment at time ¢, we solve
the optimization problem given in 4.33. The first difference to the previous problem formu-
lation is that the prosody constraints are those that account for the dynamic re-planning,
derived in section 4.6.2, and summarized in Table 4.2. These constraints require access to
the motion phase executed during the previous timestep, denoted u;_4;. The second differ-
ence is the addition of the collision constraint. These changes only affect the inputs to the
trajectory planning step, so we can keep using Algorithm 1, passing it the new constraints
and the appropriate variables required to evaluate them.

Once the optimal trajectory is found, we send an acceleration command a; correspond-
ing to the acceleration ag of the first motion phase ug. ug is stored as u; in order to be
passed as input to the optimization problem as u;_4 at the next planning cycle® so that the
prosody constraints requiring access to the past robot motion can be evaluated.

>Note: passing the optimal trajectory from a prior timestep may resemble a typical warm-start procedure,
however we remind the reader that this is not how we use this information. Instead, the prior motion phase
is used explicitly in our prosody constraints to ensure temporal consistency of the prosody style.
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Algorithm 3: Prosody-aware receding horizon control

1

2

3

4

5

10

11

Input: d,,, distance to closest obstacle. 4, goal position.
PCloctive C PChepian set of active prosody constraints.
Output: a,, acceleration command sent to the motors.
Notations:
X¢ = [z, ], state of the robot at the start of the current cycle.
u; = |ay, t;], motion phase executed after the trajectory optimization has been
performed.
U = {up,uy ...,uy_1}, set of motion phases describing the trajectory.
Algorithm:
Up, Up—qy, X, Xe—at < InitializeToZero()
while True do
dobs 1, Tgt, X¢ < UpdatePerception()
temp_PC <+ Receive ProsodyConstraints()
if Stopped(x) then
L PCepian < temp_PC

U*, X* < PlanTrajectory(Xs, dobst, Tg,ts Ui—dt, PCactive) (alg. 1)
at, ty < ExtractControl(U*,0)

SendM otorCommand(ay)

Ug—qr < Uy

DelayUntil(t + dt)
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4.7 Conserving partial prosody compliance when encoun-

tering an infeasible optimization problem

In the previous section, we discussed how adopting a receding horizon control approach al-
lowed the planner to handle certain instances of trajectories become invalid due to changes
in the environment by solving an updated optimization problem accounting for the new en-
vironment state, and finding a new prosody-compliant trajectory. In a similar fashion, re-
planning can mitigate inaccuracies in our kinematics model and environment model caused
by unmodeled delays in perception, planning, and motor control. Nevertheless, there may
be situations where the environment’s configuration, or the rate of change is such that there
are no valid prosody-compliant trajectories, in which case re-planning would fail. These
problems are not specific to our planner, but they are more likely to occur given the heavily
restricted space of prosody-compliant trajectories. In this section we discuss extensions to
our prosody-compliant local planner which aim to address these issues by explicitly ac-
counting for perception, computing, and actuation delays in the system, and by building a
hierarchy of constraints to allow the planner to plan trajectories which partially satisfy the
prosody constraints when it is impossible to fully satisfy them. We first provide examples
of the problematic situations, and explain the conceptual solutions. Then, we show how
the solutions are integrated into our planning algorithm.

4.7.1 Mitigation of infeasible optimization through the use of a con-
straint hierarchy

Enabling partial prosody compliance to handle unpredictable environments

In some situations, simply re-planning frequently is not enough to avoid problems. For
instance, Figure 4.8 illustrates an example of a situation where the robot using the hes-
itant constraint has performed an acceleration phase, and started preforming the hesita-
tion deceleration. The previous plan consisted of completing the hesitation by finishing
the deceleration, accelerating back to the maximal velocity, and finally decelerating to a
stop at some desired distance from a person. As the robot approaches, the person may de-
cide to start moving in some arbitrary direction which could not have been predicted, or a
previously occluded person may become visible by the robot’s onboard sensors, suddenly
rendering the previous plan infeasible due to a collision risk. If the previous trajectory
plan was already the shortest possible trajectory given the prosody constraints, then the
algorithm proposed in the previous section would fail to produce a valid plan. We could
implement some fallback solutions such as performing a kind of emergency braking by
disregarding all prosody constraints and stopping as fast as the motors allow. This may
shorten the trajectory enough to avoid collision, but it would also significantly alter the
robot’s movement prosody. Depending on which prosody constraints are being applied,
the difference in length between a full prosody compliant trajectory and the emergency
braking trajectory may be large (potentially several meters when using hesitation or incre-
ment constraints). More interestingly, there can be large differences even between different
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Figure 4.8: Trajectory re-planning alternatives after the original hesitation trajectory plan
(red, dashed lines) becomes invalid due to an obstacle. Solid line: motion executed prior
to the current planning cycle. Orange dashed line: emergency braking; black dashed line:
deceleration satisfying the kinematics constraint, but not the hesitation constraint.

prosody constraints, for example trajectories that only comply with a kinematics constraint
can be much shorter than those complying with kinematics and increment, pause, or hes-
itation constraints. Therefore, we would like to have the ability to plan a trajectory which
sacrifices compliance with some of the prosody constraints in order to avoid collisions, but
maintains compliance with a subset of the prosody constraints to limit the change in move-
ment prosody. An example of such an intermediate solution is depicted by the black dashed
lines in Figure 4.8.

When dealing with conflicting tasks or objectives, a common approach in robotics is to
define a form of priority or ordering so that less important objectives are only optimized
as long as they do not interfere with more important objectives (Siciliano & Slotine, 1991).
We take inspiration from this idea and propose to order our prosody constraints according
to L — 1 levels in a hierarchy according to their priority. When searching for the optimal
trajectory, the planner should always guarantee that the constraints at level [ are satisfied
before attempting to satisfy constraints at level [ + 1, meaning constraints at level [ have
higher priority than those at level [ + 1. Using our previous example, avoiding collision and
complying with the kinematics type have the highest priority, so they are assigned to level
1. Complying with the hesitation constraint has lower priority, and is therefore assigned
to level 2. The priority level of a trajectory is the level of the lowest priority constraint it
satisfies, while also satisfying all higher level constraintsi.e. P;,,; = [ means that it satisfies
all constraints in levels [1, ...[]. The planner can then use this hierarchy by first searching
for trajectories with priority level [ = L — 1. If and only if no such trajectory exists, the
planner can remove the constraints at level [, thus searching for trajectories with priority
level [ — 1, i.e. that satisfy fewer levels of the constraint hierarchy. In simple navigation sit-
uations, the trajectory optimization is identical to the previous approach where all prosody
constraints should always be satisfied. However in complex situations where the full set
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Table 4.3: Constraint hierarchy

Priority level | Constraints

1 (highest) CollisionCritical, TerminalConstraint, KinematicsType
2 Smooth, Increment, Hesitation, Pause
3 (lowest) CollisionIdeal

of constraints makes the problem infeasible, this approach allows the planner to search for
trajectories which satisfy at least some of the constraints, rather than immediately resort-
ing to an emergency stop which violates most if not all of the prosody constraints. The
constraint hierarchy is shown in Table 4.3.

With our approach, we cannot express the idea of planning trajectories that minimize
the divergence from a constraint that cannot be satisfied. For example, if no trajectory is
able to satisfy the kinematics velocity constraint imposing ay = 0 = vi, = Uk, We may
wish to instead execute the trajectory with the closest velocity. With our basic formulation,
if the velocity constraint cannot be satisfied then trajectories may be planned without any
regard to their maximum velocity. A possible solution would be to instead apply lexico-
graphic optimization techniques, where we formulate costs that are sequentially optimized
according to a similar hierarchical structure, as was used for bipedal robot locomotion in
(Ciocca, 2020) in order to handle the conflicting safety costs of avoiding collisions with
people and maintaining balance.

This approach may also be useful if we determine that certain prosody parameters have
more importance than others. By separating the prosody constraints into different priority
levels, one could more smoothly transition from the full prosody trajectory planning to
pure collision avoidance. Whether or not partial application of our prosody constraints is
relevant with respect to how the robot is perceived by people requires further study.

Collision margin tolerance to mitigate sensor and actuation latency

Even in situations where the environment is static, our prior algorithm may fail to execute
prosody compliant motions due to inaccuracies in the robot’s actuation model and latency
induced by computation time leading to states where the optimization with a strict colli-
sion constraint becomes infeasible. In the previous algorithm, the trajectory optimization
is performed by assuming all computations happen instantaneously, and that the optimal
control will be applied immediately. These delays can introduce errors into the system if
they are left unaccounted for, and this issue is somewhat exacerbated by our use of a heav-
ily constrained trajectory space, and necessity of fine control over the robot’s motion. Such
small inconsistencies may not be accounted for in many social navigation works, however
we take inspiration from the autonomous wheelchair navigation presented in (Park, 2016)
where they found that compensating for such timing issues was important to generate their
desired quality of motion. Modeling the latency of the lower level motor control and phys-
ical motor response is non-trivial, and there will always be some level of uncertainty we
cannot account for, such as in the robot’s state estimation and sensor data.
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If there remains even a small amount of error in the projection of the trajectory length,
we may encounter situations similar to that expressed in the previous section where a pre-
viously valid trajectory is later found to cross just under the minimum collision distance
threshold, leaving the planner with no valid trajectories. One solution would be to intro-
duce a notion of collision tolerance margin, whereby the planner aims to stay some distance
away from obstacles so that executing a trajectory with a slightly inaccurate length would
not result in a collision. We can utilise the constraint hierarchy to achieve such an effect
by formulating two collision constraints. The first imposes a distance d,tjcq; = 0.05m and
has high priority. The second constraint imposes a larger distance d;4.,; = 0.2m, and has a
lower priority than the prosody constraints. The effect is that the planner will first consider
trajectories that stay further than d; 4., from obstacles and comply with the prosody con-
straints. If the planner is unable to find a trajectory with d,ps > d;geq;, then it is able to plan
prosody-compliant trajectories where d; iticar < dobs < digear- The difference between the
distance thresholds for these constraints represents an estimate of the uncertainty on the
trajectory distance. The ideal obstacle distance constraint is given in Equation (Equation
4.34).

CollisionIdeal(U) <>Vk € [0, N — 1],

(4.34)
dobs — T > dideal

4.7.2 Final algorithm for prosody compliant local navigation in dy-

namic environments

In the following sections, we show how the constraint hierarchy and latency compensa-
tion mechanisms are integrated into our receding horizon local planner. We first describe
how the trajectory optimization is modified to include the constraint hierarchy. Then, we
describe how the planning update cycle is modified to include the sensor and computation
delay compensation.

Trajectory planning with a constraint hierarchy

The final version of our trajectory planning algorithm (algorithm 4) incorporates the con-
straint hierarchy mechanism. In the previous planning algorithm (alg. 1), a motion phase
edge uy was only added to the trajectory tree if it satisfied all constraints. When using a
constraint hierarchy, we do not initially know which level of constraints will be satisfiable.
On line 9, we check the new motion phase edge uj, using the CheckConstraints function,
which instead of a boolean value now returns P, indicating the priority level satisfied
by the motion phase. With our three-level constraint hierarchy (Table 4.3), Fpp4sc = 3 in-
dicates all levels were satisfied, whereas P45 = 1 indicates that only the highest priority
level was satisfied. Using this information, we determine the priority level of the trajectory
denoted P, which corresponds to the lowest common priority level satisfied by all its
motion phases up to the current node (line 10).

As we perform the search, we will gradually discover trajectories that satisfy different
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levels of the constraint hierarchy, so we keep track of the lowest priority level P, satisfied
by a complete trajectory since the start of the planning process (updated in lines 13-14). If
we have already found a trajectory satisfying the constraints up to and including level /,
then we can stop adding edges to trajectories which satisfy fewer levels of the hierarchy
(lines 11 — 12). Pyes is updated when a trajectory has been completely planned, i.e. if
the edge u; was the Nth motion phase (lines 13-14). Once the tree of feasible trajectories
has been built, the FvaluateTrajectories function (line 16) only considers trajectories that
have the same priority level as the best trajectory, ensuring that compliance with movement
prosody is maintained even if there exist trajectories which would have had lower cost but
that violate the prosody constraints.

The set of prosody constraints from which we select PC.4, is unchanged with respect
to the previous section (i.e. they are still those in the set PC.p., shown in Table 4.2).
However, we introduce the additional collision constraint (Collisionldeal, Equation 4.34),
which assists in compensating for small model inaccuracies.

Receding horizon control with latency compensation

Algorithm 5 details the full planning cycle in our receding-horizon controller. Modifica-
tions have been made to the planning cycle in order to more accurately plan trajectories
by explicitly taking into account sensor and perception latency and computation time de-
lays. In order to maintain a constant control update frequency, the acceleration command
computed at a given planning cycle is stored and applied only at the start of the next plan-
ning cycle (line 4). This is explicitly accounted for by computing estimates of the robot
and obstacle states at the start of the next cycle, which are used as the initial states for the
optimization problem (lines 5-7). The robot state at ¢ 4 dt is estimated given its current
state z; and the acceleration it will apply during the current planning cycle a;. Obstacle
positions are also projected towards their estimated positions at time ¢ + d¢, purely based
on the robot’s ego-motion, since in this work we do not use any prediction of dynamic
obstacle motion.

Given the projected states of the robot and the environment at time ¢+ d¢, as well as the
information regarding the motion phase to be executed between time ¢ and ¢ + dt, we solve
the optimization problem 4.33, subject to the prosody constraints specified in PCl;,e (line
11). We detail this optimization in the following subsection. The acceleration command of
the first control of the solution is stored in order to be executed at time ¢ + dt, and passed
as input to the optimization problem at the next planning cycle.
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Algorithm 4: Trajectory planning with prosody constraint hierarchy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Input: d,,, distance to the closest obstacle along the robot’s x axis. x4, goal point.
ug_1, previous motion phase. xy, initial state. H, constraint hierarchy (Tab.
4.3). PCqctive C PCepian, set of prosody constraints.
Output: U* = {ug, u; ..., uy_1}, motion phases of the optimal trajectory.
Notations:
Xk = [Tk, Uk, Lsince_hesits teumut)s kth robot state.
uy = [ag, tx], kth motion phase.
d.s, distance to closest obstacle.
Prests Peurr, Pphase, priority levels in the constraint hierarchy H.
A = {agin, 0, —ayin }, set of acceleration values.
T = {dt,2dt, ...t ;4 }, set of phase durations (Eq. 4.18).
T trajectory tree.
Algorithm:
T + CreateTree(xg)
Xy < Xo
Py < mazx(H)
Pyest < min(H)
while —T'raversal Finished(T) do
if T.Depth(xx) < N then
foru, € Ax 7T do
X1 < ForwardSimulation(xy, uy) (Eq. 4.1)
Pohase < CheckConstraints(PChyetive, Aobs, Wk—1, Uk, Xk, Xk+1)
Prrr < min(Pourr, Pyhase)
if P.,r > Py then
| T.AddChild(xy, g, X1, Peurr)

if LastPhase(uy) then
t Pbest < max(-Pcurm Pbest)

| Xk, Up—1, Pewrr T.DepthFirstNextNode(xy)

U* + EvaluateTrajectories(zy, T, Pyest)
return U*
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Algorithm 5: Prosody-aware receding horizon control with latency compensa-

tion

1

2

3

4

5
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10

11

12
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14

Input: d,s, 74, distance to closest obstacle and goal position, at time ¢.
PCloctive C PChrepian set of prosody constraints.
Output: a,, acceleration command sent to the motors.
Notations:
X¢ = |24, vy, state of the robot at the start of the current cycle.
u; = |ay, t;], motion phase computed during the previous cycle, executed from the
start of the current cycle.
U* = {up,u; ...,uy_1}, motion phases of the optimal trajectory.
Algorithm:
Ug, Ug—qp, Vg <— InitializeToZero()
X < Xo
while True do
SendM otorCommand(ay)
Aobs t—delay> Tg,t—delays Xt—delay, delay < Update Perception,)
dobs,t, Tgr < Compensate Delay(dops,i—deiays Tg,t—delay: Gt—dt, Xe—dt, delay)
obs,t+dt> Tg,+dt> Xerde < Project Forward(dops,t, Tg., ar, Xy, dt)
temp_PC <+ Receive ProsodyConstraints()
if vy 4 = 0 then
L PCepian < temp_PC

U* < PlanTrajectoryHierarch(X¢ at, Aobs,t4-dt ) Tg,t+dts Ut PCctive) (alg. 4)
Up—dr < Uy

uy < ExtractControl(U*)

DelayUntil(t + dt)

100



DESIGNING A LOCAL NAVIGATION ALGORITHM PARAMETERIZED BY MOVEMENT PROSODY

4.8 Discussion

4.8.1 Tradeoff between prosody and flexibility

We made a methodological choice to build our robot’s motion design from the ground up,
starting from a heavily constrained trajectory space which only utilises a very small sub-
set of the capabilities of the robot’s hardware and flexibility of motion in space. We note
that this is an active choice made to ensure that we have control over each of the motion
characteristics studied in our corpus, and not just a result of a computational or algorithmic
limitation. The result is that using this trajectory space to generate motions will limit what
the robot is able to accomplish in terms of navigation, however we have some knowledge
of how these restricted motions impact people’s perceptions of the robot.

The degree of the flexibility tradeoff is tied to our current model of human perception of
the robot. It seems likely that the relationship between the physical motion characteristics
and human perception are more complex than what we have modeled, and especially may
be dynamic with respect to other factors. As a simple example, the kinematics type dictates
that the robot should move at a given maximum velocity, which we found to be related to
the aggressive and gentle qualifiers. In an open environment this might make sense, but
if the task of the robot is to follow a person moving at some speed which is slower then
the one set by the kinematics type, our current trajectory space would force the robot to
either continue moving past the person at its kinematics velocity, or successively brake and
accelerate in a periodic fashion, since we do not allow a constant velocity different to the
kinematics velocity. Intuitively, one would think that the robot should adapt its speed to the
person’s in some way, in which case one of the motion characteristics giving some control
over the aggressive or gentle perception is lost. Perhaps the distance between the person
and the robot, or some other variable replaces the use of the velocity in its expression of
this dimension. Further studies along these lines might allow us to formulate our trajectory
space differently, thus restoring some flexibility to the navigation without losing the control
over the impression the robot’s motion generates.

4.8.2 Switching between prosody styles

In the previous sections we presented constraints that, when combined, can alter the tra-
jectory space explored when solving the control problem in order to produce motion corre-
sponding to a given prosody style derived from our motion corpus. For example, if we de-
cide that the robot should be perceived as gentle, our perception experiment results indicate
that we should use the low-energy kinematics type, which is modelled by the constraints
described above. Our goal in future work is for the desired impression generated by the
robot to be decided and changed over time according to the robot’s interaction with the
person. In its current formulation, our approach assumes the prosody constraints are de-
cided once, and fixed with respect to time, which does not allow modelling something like
changing from aggressive to gentle prosody. Immediately changing the constraints from
one timestep to the next may result in discontinuities in the velocity profile, or even in an
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infeasible problem. For example, if the robot was applying the high kinematics constraints
at time ¢ and we change the constraints to the low kinematics at time ¢ + 1, the problem will
have no prosody-compliant solutions if the robot’s velocity was greater than the maximum
imposed velocity of the low kinematics type.

In our constraints’ current form, it is possible to change them when the robot is at
rest without rendering the problem infeasible, but requiring the robot to stop to alter its
movement prosody may be too restrictive if the interaction dynamics require fast and/or
continuous adjustment of the prosody. The mechanisms of how the robot’s prosody should
be altered over time remain unclear, but in any case the fact that they will change should
be accounted for in the formulation of the control problem. Using the same example as
above, we could make the bounds on the robot’s acceleration and velocities change for
each timestep such that the planner can plan a deceleration so that it’s velocity at the next
timestep is lower: vji! = v!. — al. x dt, where ai, = f(i) is adjusted in some way
when transitioning between two kinematics types (linear interpolation, for example). An-
other layer of complexity is added when considering that even such a gradual adjustment of
one constraint may still lead to other prosody constraints being violated, such as the pause
constraint. If the robot was in the middle of executing a pause phase when we initiate the
change to a lower kinematics type, should it finish the pause phase before transitioning?
Should it interrupt the pause phase, which would amount to violating the pause constraint?
Problems will also arise if the robot is in the middle of a deceleration phase since transition-
ing to a kinematics type with lower deceleration would extend the stopping distance, and
may render a prosody-compliant trajectory infeasible. Questions such as how to perform
a prosody transition, when it is possible to do so, and how to integrate it into the forward
prediction horizon should be explored in future research.

4.8.3 Constraint hierarchy

In this work, we use a simple mechanism for ordering constraints where we first attempt to
plan trajectories that comply with all of the prosody constraints. If none are found, the space
of possible trajectories is immediately opened up to include all collision-free trajectories.
This means that even a slight violation of one constraint may drastically change the robot’s
motion. Using the existing approach we may separate different prosody constraints such as
kinematics and variant constraints into different priority levels, hence allow a more gradual
change, but the problem still remains that there is no mechanism to push the trajectories
back to a space where it is once again possible to comply with the prosody constraints. Part
of the issue here is the modelling of prosody, which in its current state does not provide
information on whether the relationship between the variables of the prosody constraints
and perception of people is linear, or has some harsh discontinuities which may mean that
simply attempting to minimize constraint violations may or may not make sense.
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4.8.4 Trajectory optimization method

For complex optimization problems with a large number of variables, many types of op-
timization algorithms and solvers can be applied. In many cases the solvers are designed
to exploit certain types of problem structure arising from the forms of the cost function,
system dynamics and constraints (such as linearity or convexity). Gradient-based meth-
ods also require the cost function to be differentiable, and may require the transformation
of constraints into penalty functions integrated into the cost. Adapting our problem for-
mulation to use such solvers requires care due to the somewhat unusual combination of
constraint types. The kinematics constraint requires the acceleration variable to take its
values in a finite set, rather than being a continuous variable as is typically the case in
most robotics problems. The hesitation constraints are time-dependant, requiring a differ-
ent state space formulation. Many of our constraints depend on past control inputs. We
also make use of a constraint hierarchy, which is not available in all solvers. In addition,
the problem formulation for the constraints and the control parameterization only reflects
our current understanding of movement prosody, which will evolve as further experiments
are performed. Lastly, in this work we use a basic navigation task which is easily modeled
by a cost function with a standard quadratic form, but the cost function and constraints
for general social navigation are likely to be much more complex, integrating many as-
pects of social navigation explored in other works such as time to collision(Khambhaita &
Alami, 2020) or legibility of the trajectory(Dragan et al., 2013). In order to use our prosody
constraints and control parameterization in more complex tasks, it may be interesting to
investigate the use of sampling-based optimization methods which typically require fewer
assumptions about the problem structure, such as STOMP (Kalakrishnan et al., 2011), or the
more recent MPPI (Williams et al., 2016). For these reasons, we leave the adaptation of our
problem formulation to typical optimization framework requirements as future work.

4.9 Conclusion

In this chapter we presented an algorithm which integrates planning and control together
in a receding horizon fashion, which enables the robot to perform simple navigation tasks,
while providing precise control over how the task is performed. We first propose a method
to transform the fixed-length trajectories studied in our perception experiments into vari-
able distance representations which allow for planning useful motions. We then present the
navigation problem formalization as a constrained minimization problem, driving the robot
towards a goal position subject to constraints that ensure that the robot’s space of valid
trajectories is defined in accordance with the trajectories explored in the perception exper-
iments. The first problem formulation considers static environments where the trajectory
can simply be planned once, and then executed blindly without feedback or re-planning.
The constraints required to ensure the trajectory’s compliance with the desired movement
prosody in such situations are relatively simple.

Subsequently, we discuss how the constraints must be re-designed in order to address
the more complex problem formulation considering dynamic environments which are not
fully observable or predictable. The key idea is that the constraints must be extended to
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take into account the robot’s past motion history in addition to its current state in order
to ensure consistency of the executed motion over time. Lastly, due to the highly restric-
tive constraints there may be situations where they cannot all be satisfied simultaneously,
which could lead to a planning failure and subsequent motion which completely breaks the
desired movement prosody. We provide examples of such situations, and propose a con-
straint hierarchy approach to enable the algorithm to gradually disable prosody constraints
until it finds a valid plan. This enables the robot’s motion to at least partially comply with
the desired movement prosody, even in complex situations.

In the following chapter, we discuss the implementation of the algorithm on our mobile
robot, and perform an experimental validation of the algorithm’s ability to plan and execute
prosody-compliant motions.
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5.1 Introduction

In the previous chapter we presented a local planning and control algorithm which was
designed to provide explicit control over the motion variables which were found to signif-
icantly impact humans’ social perception of the mobile robot. This chapter is composed of
two parts. Firstly, we discuss the implementation of the algorithm on a real mobile robot,
using the ROS middleware. We detail aspects of the implementation which are critical to
ensuring our integrated planning and control approach can successfully plan and execute
prosody-compliant motions. Secondly, we present our experimental validation of the algo-
rithm, by demonstrating that the robot is able to reproduce the desired movement prosody
based on the selection of prosody constraints which are used. We study situations in static
and dynamic environments that test each of the mechanisms introduced in chapter 4.

5.2 Implementation

In the previous chapter, we described an algorithm to generate trajectories which comply
with various movement prosody parameters online in a receding horizon fashion. In this
section, we discuss key aspects of the practical implementation of our algorithm which
are essential in order to achieve an accurate reproduction of the desired motion prosody
characteristics. In some cases, the difference between two sets of prosody parameters is
very subtle, thus requiring fine-grained control over the exact values and timing of the
motor commands in order to ensure consistent expression of a given prosody. We first
discuss the ROS (Robot Operating System) framework, and its impact on implementation
choices. Then, the remaining sub-sections discuss subtle implementation details related to
timing of control commands, and delays induced by sensing and computation. These details
are necessary due to our strict requirements for the accuracy of the motion generation.

5.2.1 ROS Architecture

ROS (Quigley et al., 2009) is a widely-used middleware that provides a framework, tools,
and packages for robotics software. Computation is structured in terms of nodes (processes)
which communicate via topics by message-passing. Typically, a node will implement a spe-
cific subset of the robot’s software stack. An overview of our architecture is given in Figure
5.1. The main node is the prosody-based receding horizon control node, which implements
the receding horizon control approach presented in section 4.7. The node implements al-
gorithm 2 which re-plans trajectories dynamically using algorithm 1.

The control node requires a goal position to drive towards which is provided by another
node. This may be a simple command sent via a user interface to manually drive the robot to
a given position, or a command sent from a high-level planner. In our diagram, we illustrate
the case where the goal is given by a perception node which implements person detection
and tracking, enabling the robot to drive towards a person. The person-tracking node is an
existing node, which we give an overview of in section 5.2.2. The receding horizon control
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Figure 5.1: High-level architecture of our system. ROS nodes are represented with rounded
boxes, hardware devices are represented with dashed boxes.

node also requires the lidar scan in order to perform the collision checking for each of the
generated trajectories, which we detail in section 5.2.3.

The control node also receives the set of prosody constraints which should be applied to
the trajectory generation, as well as the constraint parameters such as ain, Vkin, tpause- I
our current implementation, these are updated through a user interface built using the ROS
dynamic reconfigure functionality, allowing us to save and load various configurations of
the prosody constraints corresponding to the attitudes and intentions perceived by people.
By separating the user interface node from the control node, we facilitate the implementa-
tion of future work where the set of active prosody constraints and their parameters will
be modified online based on a computational model of the person-robot relation. The al-
gorithm presented in the previous chapter outputs accelerations, however the low-level
motor control board on the RobAIR robot only accepts velocity commands. Based on the
current linear velocity, the control node computes the velocity command that matches the
requested acceleration, and outputs the target linear velocity that the robot should reach
at the end of the next planning cycle. Extending our control algorithm to plan angular ac-
celerations would result in the control node also outputting an angular velocity, which the
hardware interface node transforms into left and right wheel velocities via the differential
drive kinematics model. Finally, these wheel velocity commands are used as input to a PID
velocity regulator which controls the voltage sent to each wheel.

5.2.2 Perception module: person detection and tracking
We use an existing perception module for person detection and tracking, developed in our
lab. The module takes the two lidar scans and odometry values as input, and outputs the

position of the tracked person. The bottom lidar is used to detect legs, and the top lidar
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is used to detect chests. The module requires the robot to be stationary for the detection
phase. The main steps of the detection algorithm are to perform clustering of the points
of the laser scan, followed by discarding clusters which are mostly static by comparing
consecutive scans. Then, we find clusters in the bottom laser scan that have a similar size
to legs, and clusters in the top laser scan with similar size to chests. Constraints on the
correspondence between leg positions and chest positions allow us to determine whether
there is a person. Once the person is detected, the robot may move, and tracking begins.
Chest and leg candidates are generated as in the detector, and the role of the tracker is to
associate one of the candidates to the person it is tracking. The tracker can operate even if
one of the lasers cannot associate legs or a chest to the tracked person.

5.2.3 Prosody-based receding horizon control details

Horizon length

We chose the horizon length to be equal to the stopping time of the robot when using the
high kinematics type, plus one dt, and use two motion phases. This ensures that we are able
to plan a deceleration from the maximum velocity, thus satisfying the terminal constraint
that the robot should be stopped at the end of each trajectory. The additional dt allows
the first phase of the trajectory to take any value. This is the minimum necessary horizon
length and number of motion phases in order to be able to safely plan trajectories up to
the maximal velocity of the robot. This is sufficient for certain prosody constraint sets,
such as smooth variant, without pauses, hesitations or increments. Adding any prosody
constraints that force trajectories to be longer requires a longer horizon and more motion
phases, which exponentially increases the possible combinations of motion phases, and
therefore computation time. Instead of allowing the planner to use more motion phases
for all trajectories, we instead alter the horizon length and number of motion phases on
a per-trajectory basis. For example, when using the pause constraint, each acceleration
is required to be followed by a constant velocity phase of at least 300ms. If the previous
motion phase in the trajectory currently being generated was an acceleration, we insert
such a phase at that point in the trajectory, and assign a longer horizon and extra motion
phase to the corresponding node in the trajectory tree. The effect is that the planner will be
able to plan a trajectory consisting of an acceleration, pause, and deceleration, allowing the
robot to plan a prosody-compliant motion, while still generating shorter trajectories with
only two motion phases, in case the prosody-compliant trajectory is infeasible. In other
words, we add flexibility to the trajectories which comply with prosody constraints, and
plan simpler, shorter trajectories which are collision-free as fallbacks.

Trajectory distance resolution

Due to discretization of the phase lengths and the restriction to a single deceleration value,
the robot can only plan trajectories that stop at discrete sets of positions in the environment.
The resolution of the grid formed by possible stopping locations is related to the maximum

velocity reached by the robot during its motion. For example, when moving at 0.8m.s™?,
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the robot can plan to decelerate immediately, or plan a short constant velocity phase with
a duration of one dt, extending its motion by 8cm. Whichever one of these is closer to the
goal position will be selected for execution. During its deceleration, the additional distance
travelled by performing a single dt constant velocity phase decreases. It is possible that at
some point, interrupting the continuous deceleration with a small constant velocity phase
would result in the robot stopping closer to the desired goal location. Depending on the
prosody constraints, such a trajectory may be discarded. However there remains the issue
that once the robot stops, none of the prosody constraints will prevent it from planning a
very short additional motion, since we want the robot to be able to perform small changes
in position. In order to avoid such artifacts, we force the robot to keep decelerating, only
allowing it to plan other motions if the goal position has changed, or the obstacle which was
blocking it has moved. This ensures that a continuous deceleration will not be interrupted
simply due to the time discretization, and the robot will not plan an additional short motion
after having stopped. In our implementation, we use a constant threshold of 0.35m for the
amount of displacement of the goal or obstacle required to allow the forced deceleration
constraint to be lifted.

Collision checking

We implement a simple approach to check whether a given robot position is in collision
by approximating the robot’s footprint as a circle of radius 7,50t = 0.35m. The lidar scan
consists of 724 points spread over its 240° field of view which we downsample to 362 points
by keeping the nearest point of each pair of points in the original scan. We exhaustively
check the distance dj;; between each scan point and the robot’s position. This process is
repeated for each node in the trajectory, after transforming the scan points into the coor-
dinate frame of the robot at its projected position. With this implementation and given the
large number of nodes generated by our planning approach, collision checking represents
roughly 70% of the total computation time. This could be vastly improved by representing
the lidar scan as a bounding volume hierarchy, resulting in logarithmic time complexity (in
the number of lidar points) rather than linear. One may also use the ROS costmap package
which builds an occupancy grid representation of the space around the robot, however in
our brief tests we were unable to configure it to simultaneously provide a resolution of less
than 5¢m, over the full 5m range of our lidar, while meeting our performance requirement
of running at 10Az.

A trajectory is considered to be in collision if there exists a node at which at least one
scan point has dpit < Trobot + dmargin- Amargin 1S @ constant safety margin which we set
to 0.1m. This condition implements the higher priority collision constraint in our con-
straint hierarchy. The lower priority collision constraint uses a more conservative condi-
tion dpit < Trobot + Amargin + diolerance Where diojerance = 0.1m. This value was selected
by accounting for the lidar sensor’s measurement uncertainty, as well as the error in the
forward prediction model. Once the tolerance is calibrated appropriately’, it ensures that
the execution of prosody-compliant trajectories is possible in static environments.

!Note that the collision tolerance may interfere with the ability to reach a goal point if it is located near
an obstacle. Hence, one must also consider the trajectory resolution when designing the collision tolerance.
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Latency compensation

We now discuss the impact of our node update frequencies and computation delays on the
accuracy of motion planning. Our ROS nodes all run at a fixed frequency of 10hz, which
is the same as the acquisition frequency of the lidar sensor. The only exception is the low-
level hardware interface node running on an Arduino Mega, running at 40hz. The node
update cycles are not synchronized, so in the worst case our control node may receive a
lidar scan which was sent almost 100ms ago by the lidar driver. Additional delays are
introduced further upstream by the lidar driver computation, serial communication with
the lidar and most importantly, the actual scanning time of the lidar, which is also 100ms.
All things considered, in the worst case the control node could be planning based on data
which is up to 200ms old which, even with our robot’s relatively slow maximum velocity of
0.8m.s~! equates to an offset of 0.16m. In addition to the perception delay, the time taken
to determine the optimal control action, and transmit the command through the hardware
interface and serial communication to the motors also introduce an offset. Since we send
the velocity command at the start of the next planning cycle, the control node introduces
a constant delay of 100ms, and we estimate the remaining delay through the low level
controller to be roughly 50ms.

In a typical mobile robotics application, these delays would simply lead to some inaccu-
racies in the robot’s positioning and ability to stop at an exact distance from obstacles. Since
typical control approaches allow the full use of the robot’s motor capabilities, the planner
could compensate for the overshoot by decelerating more. Once the planner reaches the
maximum deceleration, the robot will simply keep decelerating with the same consistent
deceleration profile. As long as one chooses the minimum imposed collision tolerance to
be higher than the distance travelled at maximum velocity over the latency duration, the
robot will not collide with anything. In our case, the planner will attempt to plan using the
full prosody constraints, but it cannot perform slight adjustments to the deceleration value
to compensate for unaccounted delays. Instead, the planner can either search for a trajec-
tory that violates the prosody constraints or, if that fails, it will perform an emergency stop
applying the maximal robot deceleration, completely violating the prosody style. Thus, for
our application it is important to minimize the impact of these delays.

Firstly, we handle the delays related to the lidar data. The lidar device provides a times-
tamp fqcquisition giving the time of the acquisition of the first hit of the scan. When receiving
the scan in the control node, we compute the age of the lidar data d¢,,. based on the dif-
ference between the timestamp and current time. The lidar points are then transformed by
integrating the robot’s velocity over the last dt,4. seconds. Secondly, we handle the delays
related to the control computation time. Here, the lidar points are transformed based on
the velocity which will be applied from the present time to the start of the next planning
cycle.

In this section, we presented the ROS implementation of our algortihm, as well as its
integration with the robot hardware and perception modules. We detailed aspects of the
implementation which are important in order to maintain accurate control over the robot’s
motion so that it produces the expected motion characteristics. In the next section, we
demonstrate that our algorithm and implementation on the real mobile robot successfully
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produces motion which conserves the distinctness of the different movement prosody types
defined by the motion corpus variables from chapter 3.

5.3 Implementation validation

In this section, we demonstrate the ability of our integrated planning and control algo-
rithm to produce trajectories which accurately reproduce the different types of movement
prosody defined by the combination of corpus variables. We first demonstrate the per-
formance in open spaces, thereby testing the definition of the prosody constraints. We
then demonstrate the performance in situations where there are obstacles, testing the re-
planning, constraint hierarchy, and latency compensation mechanisms.

5.3.1 Generation of prosody-compliant motions in open space

In this section, we demonstrate our planner’s ability to plan simple motions towards an
unobstructed goal position, while complying with the prosody constraints. Plots of the
velocity commands from our planner show that they are stable and consistent with the
desired prosody. We also plot the raw encoder-based velocity estimation, showing that the
commanded velocities are indeed achievable by our robot platform, thanks to our planner
and prosody constraints taking the robot’s mechanical limits into account. Unless stated
otherwise, the prosody used in these examples are the medium kinematics, smooth variant,
no pauses, no hesitations.

Kinematics

The three kinematics types (low, medium, high) require different accelerations, and differ-
ent maximal velocities. We show examples of motions produced by running our planner
with each of the kinematics types. Figure 5.2 shows two motions planned with the medium
kinematics type over different distances. A short motion is shown in 5.2a, where the dis-
tance to be travelled is short enough that the robot does not reach the medium kinematics
limit of 0.49m.s™!, instead decelerating when reaching just 0.37m.s~!. In contrast, Figure
5.2b shows a longer motion, leaving the robot enough time to reach the limit of 0.49m.s™!,
at which point the kinematics velocity constraint renders further acceleration invalid. De-
celerating immediately would make the robot undershoot, and so the trajectory evaluation
leads the planner to select a trajectory which maintains the maximal velocity for a short
period of time before decelerating. In both cases, the slope of the commanded velocity pro-
file is constant, and corresponds to the acceleration of 0.35m.s2. In the figures, we also
show the raw estimate of velocity based on the integration of the motor’s encoder readings
over time, in order to demonstrate how the physical robot platform responds to the veloc-
ity commands. Overall, the measured velocity matches the commanded velocity, although
the unfiltered estimates are quite noisy despite the real motion being smooth. We chose
to show unfiltered sensor readings since they better demonstrate the motor’s fast response
time when the commanded velocity changes between different slopes, such as the transition
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from stopped to accelerating, or from accelerating to decelerating. The time offset between
the commanded and estimated velocities is the sum of the time for a command to be sent to
the hardware interface, for the motor controller to achieve the requested velocity, and for
the estimation to be computed and sent back to the main computer running our planner.
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Figure 5.2: Plot representing the full point-to-point motion to a goal point, using medium
kinematics. Past command velocities issued at 10hz (blue) and unfiltered encoder-based
odometry estimated at 40hz (red). Top: short motion. Bottom: long motion.

Figure 5.3 shows a short motion with the low kinematics. The goal point is close enough
that the robot only accelerates to 0.20m.s*, slightly below the low kinematics maximum
of 0.24m.s~ . The slope of the commanded velocity profile corresponds to the low kine-
matics acceleration of 0.2m.s72 as expected, and the estimated velocity also follows the
commanded velocity closely. The resulting motion can clearly be distinguished from the
medium kinematics shown previously.
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Figure 5.3: Plot representing the full point-to-point motion to a goal point, using low kine-
matics. Past command velocities issued at 10hz (blue) and unfiltered encoder-based odom-
etry estimated at 40hz (red).

Figure 5.4 shows a short motion with high kinematics. Again, the goal point is close
enough such that the robot does not need to accelerate to the maximum high kinematics ve-
locity of 0.72m.s™!. The robot accelerates to 0.65m.s~!, with an acceleration of 0.5m.s2
clearly distinguishing the motion from the low and medium kinematics.
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Figure 5.4: Plot representing the full point-to-point motion to a goal point, using high kine-
matics. Past command velocities issued at 10hz (blue) and unfiltered encoder-based odom-
etry estimated at 40hz (red).
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Pause constraint
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Figure 5.5: Plot representing the full point-to-point motion to a goal point. Past command
velocities issued at 10hz (blue) and unfiltered encoder-based odometry estimated at 40hz
(red), both given in m.s™!. Distance to the goal, estimated at 10hz2, in m (green). All quan-

tities are plotted w.r.t. time (s).

Figure 5.5 shows the plot of the robot’s velocity, and distance to the goal during a point-to-
point motion to a goal placed at 62cm from the robot, without obstacles. The active prosody
constraints are the medium kinematics type, smooth variant, and pauses. The plans gener-
ated by the controller result in a velocity profile that conforms to the prosody constraints,
a linear acceleration and deceleration phase, separated by a pause phase of 300ms, and
drives the robot towards the goal point. The controller induces a slight overshoot of the
goal position, passing the goal at ¢ = 2.6s and stopping at 11cm past the goal, despite the
fact that there exists a prosody-compliant trajectory accelerating to a slightly lower veloc-
ity that would have arrived closer to the goal. Our focus in this work is not on achieving
extremely precise positioning, however we briefly discuss the causes for the overshoot and
possible solutions. Firstly, our simple cost function formulation treats all nodes of the tra-
jectory equally, meaning that a trajectory that maintains higher velocity before reaching
the goal and overshoots slightly will in fact result in a lower overall cost than a trajectory
that maintains a lower velocity before the goal and does not overshoot. The introduction of
a terminal cost, adding a high cost to the deviation of the last position of the trajectory from
the goal position could compensate for this issue. Secondly, our latency and delay compen-
sation does not perfectly model all of the lower-level latency for communication with the
motors, which also introduces some inaccuracy. Lastly, the time-discretization of the mo-
tion phases implies that for certain goal positions there will always be some unavoidable

under or overshoot.
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In Figure 5.6, we show how the trajectory is planned over time for a pause sequence?.
The top part of the figures are graphs of the robot’s past linear velocity plotted with respect
to time. The lower parts of the figures are visualisations of the robot’s future linear velocity
according to its current plan (light blue), plotted with respect to the robot’s position rather
than time. Therefore, the horizontal position of the leftmost blue arrow corresponds to the
robot’s current position, and the vertical positions of arrows indicate the robot’s planned
velocity along the trajectory (higher being faster). In Figure 5.6a, the robot is stationary
and plans a prosody-compliant trajectory which utilises the whole planning horizon in
order to move the robot closer to the goal position to the right of the figure. The plan
includes a constant velocity phase between the acceleration and deceleration phase, due
to the application of the pause constraint. This first plan has an acceleration phase with
a duration of only 8dt¢, which does not reach maximum velocity due to the horizon time
being limited to 16dt. In Figure 5.6b, the robot has already accelerated to 0.3m.s~ !, and
is thus able to plan to continue accelerating to a higher velocity than its prior plan. The
plan is also able to reach a position slightly before the goal position. In Figure 5.6¢, the
robot has changed the first motion phase from an acceleration to a constant velocity phase
in order to perform the pause required by the prosody constraints. This plan reaches a
position almost exactly at the goal position. In Figure 5.6d, the robot has performed part
of the pause phase, and selects a trajectory that finishes the pause phase by planning the
first phase as a constant velocity over 1d¢, which results in a slight overshoot of the goal
position. This overshoot is due to some remaining mismatch in the forward prediction
and latency compensation, and the real robot system response. We note that immediately
decelerating would have led to the robot arriving closer to the goal, (hence, such a trajectory
has a lower cost), however this trajectory was not selected by the planner, since it would
violate the pause constraint. Figures 5.6e and 5.6f show the deceleration and final position
of the robot, respectively. The robot stops within the 20cm radius defined around the goal
position, which corresponds to the trajectory resolution.

?Video for Figure 5.6 (slower than realtime for clarity): https://cloud.univ-grenoble-alpes.fr/s/
f5G8kQR4rMx6MWi
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(c) Switching to pause phase. (d) Finishing pause phase.
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e) Mid-deceleration plan. (f) Stopped close to goal.

Figure 5.6: Top: past command velocities issued at 10h2 (blue) and unfiltered encoder-based
odometry estimated at 40hz (red)in m.s~!, plotted w.r.t. time (s). Bottom: visualisation of
the planned velocity w.r.t. position, arrows indicate discretization of the motion phases into
time intervals of length d¢ = 100ms. The robot goal position is at the center of the green
disk, with radius 20cm. One grid square represents one meter.

116



ALGORITHM IMPLEMENTATION AND VALIDATION

Increment and saccade variants

In this subsection, we demonstrate motions planned under the increment or saccade vari-
ant constraints. Figure 5.7 shows a long increment motion, allowing the robot to reach
the maximum velocity for the medium kinematics type. Figure 5.8, shows a short saccade
motion, without pauses.
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Figure 5.7: Point-to-point motion using the increment variant and medium kinematics.
Command velocities issued at 102 (blue) and unfiltered encoder-based odometry estimated
at 40hz (red).
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Figure 5.8: Point-to-point motion using the saccade variant and medium kinematics. Com-
mand velocities issued at 10hz (blue) and unfiltered encoder-based odometry estimated at

40hz (red).
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5.3.2 Generation of prosody-compliant motions with static and dy-
namic obstacles

In this section, we demonstrate the impact of the constraint hierarchy and latency com-
pensation on our planner. We first show how both mechanisms allow us to plan consistent
prosody-compliant trajectories despite sensor noise and latency. Second, we show how the
constraint hierarchy enables safe re-planning to avoid collisions, while maintaining part of
the movement prosody.

Reducing and compensating model mismatch

Without applying latency compensation for perception and computation time, the mis-
match between the forward planning and real system can render previous plans infeasible.
Due to the strict prosody constraints, this often results in the planner resorting to using an
emergency braking which completely disregards all prosody constraints. We show such an
example in Figure 5.9, where the initial plan for a smooth deceleration phase with medium
kinematics is interrupted’. Since the planner cannot find any other collision-free trajecto-
ries, a deceleration which violates the kinematics constraint is planned. After reducing its
velocity, the planner is once again able to find a prosody compliant trajectory, and plans an
additional short acceleration and deceleration motion. The resulting motion of the robot
is significantly different from the desired single smooth deceleration phase which was ini-
tially planned. When applying the latency compensation as well as the two-level collision
constraint hierarchy, the robot is able to plan and execute a prosody-compliant motion®*,
as illustrated in Figure 5.10. The latency compensation allows us to reduce the model mis-
match between the trajectory planning and real execution, and the collision constraint hi-
erarchy compensates for the remaining mismatch.

*Video for Figure 5.9 (slower than realtime for clarity): https://cloud.univ-grenoble-alpes.fr/s/
swNs5HyW7fmGFZH

*Video for Figure 5.10 (slower than realtime for clarity): https://cloud.univ-grenoble-alpes.fr/s/
b2iAA2mGibXbENd
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(e) An additional motion is planned. (f) Motion violates the prosody.

Figure 5.9: Failure to execute prosody-compliant motion in the presence of a static obstacle,
without the latency compensation and two-level collision constraint hierarchy. Top: past
command velocities (blue) and odometry (red) in m.s~!, plotted w.r.t. time (s). Bottom:
visualisation of the planned velocity w.r.t. position. The robot goal position is at the center
of the green disk. White points represent objects in the environment detected by the 2D
lidar on the robot’s base.
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Figure 5.10: Successful planning of prosody-compliant motion in the presence of a static
obstacle, using the latency compensation and two-level collision constraint hierarchy. Top:
past command velocities issued at 10hz (blue) and odometry estimated at 40hz (red) in
m.s~1, plotted w.r.t. time (s). Bottom: visualisation of the planned velocity w.r.t. position.
The robot goal position is at the center of the green disk, with radius 20cm.
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Collision avoidance and prosody tradeoff

In situations where people or other dynamic agents in the environment have unpredictable
behaviour, we must consider the tradeoff between respecting all prosody constraints, or
avoiding collisions. Note that we are still discussing only linear motions, hence avoidance
here entails adapting the length of the trajectory, not rotating away. In our current con-
straint hierarchy formulation, we attempt to maintain all prosody constraints, but allow
the planner to violate some of them in order to find collision-free trajectories. We use the
hesitant prosody constraint as an example, since executing a hesitation significantly ex-
tends the length of a motion when compared to an immediate deceleration phase which
only satisfies the kinematics constraint. Figure 5.11 shows a typical execution of a non-
obstructed point-to-point motion using the medium kinematics and hesitant prosody, with
a short hesitation duration of 6dt (600ms).
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Figure 5.11: Point-to-point motion using hesitations and medium kinematics. Command
velocities issued at 10hz (blue) and unfiltered encoder-based odometry estimated at 40hz
(red).

In Figure 5.12 we demonstrate the planner’s response to a person suddenly stepping in
front of the robot, just as it begins its hesitation®. In order to fully comply with the prosody
constraints, the planner should plan to finish the hesitation deceleration phase, accelerate
back to the peak velocity, and only then decelerate. Such a trajectory would result in a
collision with the person, hence there are no collision-free prosody-compliant trajectories.
Due to the constraint hierarchy approach, the planner checks trajectories that violate the
hesitation constraint, but satisfy the collision avoidance. The planner determines that an
immediate deceleration would avoid collision with the person, and selects that trajectory for
execution (Figure 5.12c). The robot is able to stop while complying with the high kinematics
constraint, partially complying with its set of prosody constraints. If we had not used a

*Videos for Figure 5.12:
(slower than realtime for clarity): https://cloud.univ-grenoble-alpes.fr/s/F86zTYwojJtmfDd
(realtime) https://cloud.univ-grenoble-alpes.fr/s/ECkGkGCnPDqRfSm
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constraint hierarchy, and only considered trajectories which always satisfy all constraints,
the planner would have resorted to performing an emergency braking with much harsher
deceleration, violating both the hesitation constraint and the kinematics constraint.
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(c) Person steps in front at the moment when

the robot sho