N
N

N

HAL

open science

Reinforcement learning and optimization for energy
efficient 5G slicing with Quality of Service guarantees
Maxime Elkael

» To cite this version:

Maxime Elkael. Reinforcement learning and optimization for energy efficient 5G slicing with Quality
of Service guarantees. Computer Science [cs|. Institut Polytechnique de Paris, 2023. English. NNT:

2023IPPASO015 . tel-04616418

HAL Id: tel-04616418
https://theses.hal.science/tel-04616418

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04616418
https://hal.archives-ouvertes.fr

SudParis
P4 4

2. IP PARIS

POLYTECHNIQUE Reinforcement Learning and

D0 LIS Optimization for an Energy and
Resource Efficient 5G slicing

These de doctorat de I'Institut Polytechnique de Paris
préparée a Télécom SudParis

Ecole doctorale n°626
Spécialité de doctorat : Mathématiques et Informatique

: 2023IPPASO15

NNT

Thése présentée et soutenue a Evry, le 19 décembre 2023 par

Maxime Elkael

Composition du Jury :

Tristan Cazenave

Professeur, Université Paris-Dauphine Rapporteur

Adlen Ksentini

Professeur, Eurecom Rapporteur
Emmanuel Hyon

Maitre de Conférence, Université Paris-Nanterre Examinateur
Nancy Perrot

Cheffe de Projet, Orange Labs Examinatrice
Stefano Secci

Professeur, Centre National des Arts et Métiers Président
Véronique Véque

Professeure, Université Paris-Saclay Examinatrice

Hind Castel-Taleb

Professeure, Télécom SudParis Directrice de thése
Andrea Araldo

Maitre de Conférence, Télécom SudParis Co-Directeur de thése
Badii Jouaber

Professeur, Télécom SudParis Co-Directeur de t

fe
-
O
O
O
g,
©
g
©
)
O
- -
I—

Résumé

Cette thése traite des problémes d’allocation des ressources dans les réseaux
5@G, en utilisant le network slicing. Le network slicing est un corpus de
techniques basées sur la virtualisation et la softwarisation du réseau qui
permettent a l'opérateur de fournir différentes quantités de ressources a
différents clients. Notre objectif est d’améliorer 'efficacité énergétique et
la consommation de ressources des réseaux 5G, tout en respectant des con-
traintes de Qualité de Service. Pour ce faire, nous formulons et résolvons
des problémes d’optimisation dans les différents domaines du réseau : nous
nous intéressons d’abord au placement dans le réseau coeur. Pour résoudre
le probléme, une nouvelle approche combinant la recherche Monte Carlo
et la recherche par voisinage est formulée. Nous montrons qu’il surpasse
les approches de 1’état de 'art pour le probléme de placement du réseau
coeur. Ensuite, nous mettons 'accent sur D'efficacité énergétique en pro-
posant un framework holistique pour l’allocation de ressources efficaces
en énergie dans les réseaux 5G partagés entre les opérateurs de réseaux
physiques (PNO) et les opérateurs de réseaux mobiles virtuels (MVNO).
Ce framework tient compte a la fois du placement des composants logi-
ciels, du routage des demandes des utilisateurs et du dimensionnement des
ressources, tout en respectant les accords de niveau de service (SLA) basés
sur des contraintes de latence et de fiabilité. Grace a la génération de
colonnes, nous obtenons des solutions exactes, démontrant des économies
d’énergie remarquables allant jusqu’a 50% dans des réseaux réels, par rap-
port aux algorithmes de placement ou de minimisation des ressources ex-
istants. Enfin, nous abordons le probléme de l'optimisation de ’énergie
dans les réseaux Integrated Access and Backhaul (IAB), un élément clé
des déploiements denses de la 5G. S’appuyant sur le framework du réseau
d’acceés ouvert Open RAN (O-RAN), notre modéle minimise les noeuds
IAB actifs tout en garantissant une capacité minimale pour I’équipement
de l'utilisateur (UE). Formulé comme un programme non linéaire binaire
et résolu a I’aide du solveur Gurobi, cette approche réduit la consommation
d’énergie du RAN de 47%, tout en maintenant la qualité de service pour
les UEs. Dans I'ensemble, cette thése contribue a faire progresser le slic-
ing et 'optimisation énergétique du réseau 5G, en fournissant de nouveaux
algorithmes pour des parties différentes et complémentaires du réseau 5G.

Abstract

This thesis addresses resource allocation problems in 5G networks, lever-
aging network slicing. Network slicing is the set of techniques based on
virtualization and network softwarization which allows the network oper-
ator to provide different amounts of resources to different tenants. Our
objective is to improve the energy-efficiency and resource consumption of
5G networks, while guaranteeing Quality of Service constraints. To do so,
we formulate and solve optimization problems at the different domains of
the network: we are first concerned with the placement of slices in the core
network. To solve the problem, a new approach combining Monte Carlo
Search and Neighborhood Search is formulated. We show it beats state-
of-the-art approaches for the core network placement problem. Then, we
shift the focus to energy efficiency by proposing a holistic framework for
energy-efficient resource allocation in 5G networks shared between Phys-
ical Network Operators (PNOs) and Mobile Virtual Network Operators
(MVNOs). This framework jointly considers software component place-
ment, user request routing, and resource dimensioning while meeting Ser-
vice Level Agreements (SLAs) based on latency and reliability constraints.
Through Column Generation, we obtain exact solutions, demonstrating re-
markable energy savings of up to 50% in real networks compared to existing
placement or resource minimization algorithms. Finally, we delve into the
realm of energy optimization in Integrated Access and Backhaul (IAB) net-
works, a key component of dense 5G deployments. Leveraging the Open
Radio Access Network (O-RAN) framework, our model minimizes active
IAB nodes while ensuring a minimum capacity for User Equipment (UE).
Formulated as a binary nonlinear program and solved using the Gurobi
solver, this approach reduces RAN energy consumption by 47%, while
maintaining Quality-Of-Service for UEs. Overall, this thesis contributes
to advancing 5G network slicing, virtualization, and energy optimization,
providing novel algorithms for different and complementary parts of the
5G network.

Contents

1__Introductionl 13
L1 Motivationl 13
(.2 Contributions| 15

(1.2.1 Virtual network embedding for Core Network Slice |

| Placement| L. 15

(1.2.2 Edge slice placement| 15
[1.2.3 Integrated Access and Backhaul| 16
(1.3 Thesis organizationl 17

2 Background| 19
2.1 Introductionlo 19
2.2 Infrastructure of the Networkl 19

2.2.1 Core Networkl 20
2.2.2 Radio Access Networkl 23
[2.2.3 Transport Network| 25
[2.3 New Service and Networking paradigms|. 26
[2.3.1 Mobile kdge Computingl 26
[2.3.2 Network Shcingl 28
[2.3.3 Integrated Access and Backhaull 29
[2.4 "lopologyZoo Dataset| 30
2.5 Conclusion|. 31

B C N K Shice Pl i [N K Embed=]

[ding Problem| 33
3.1 Introductionl 33

[3.1.1 Summary of chapter contributions|. 34
[3.2 Pre-existing methods tor VNE| 35
[3.2.1 Mathematical programmingl 36
[3.2.2 Graph neural networks| 36
[3.2.3 Heuristics and meta-heuristic techniques| 36
[3.2.4 Reinforcement learning approaches| 37
B.3 VNEmodell 38
[3.3.1 Graph theoretic notation| 39

7

8 CONTENTS

[3.3.2 Problem constraints 40
[3.3.3 Online VNE description| 40

13.4 VNE as a Markov-Decision Process (MDP)[. 41
[3.4.1 MDP description| 41
B.4.1.1 Flements of the MDP | 42

[3.4.2 System’s evolution| 43
B.421 Reward Functionl 43

[3.4.2.2 Objective function| 44

[3.4.3 Characteristics of the MDP and implications on res- |

I olutionl 45
(3.0 Contributions for online VNI 46
3.0.1 NRPA and NEPAI. 46
[3.5.1.1 Review of Nested Rollout Policy Adapta- |

| tion (NRPA) 46
[3.5.1.2 Virtual links placement| 49

[3.5.1.3 Heuristic weight mitialization 50

[3.5.1.4 Neighborhood Enhanced Policy Adaptation |

(NEPA)| 54

[3.5.1.5 Main steps of NEPA| 55

[3.5.1.6 "Theoretical analysis| Y

[3.5.1.7 Dimensionality reduction and pre-treatment| 60

[3.0.2 Numerical Results| 61
[3.5.2.1 Compared methods|. 61

[3.5.2.2 Results on synthetic physical topologies| . . 63

[3.5.2.3 Real Topologies|. 65

[3.5.2.4 Specific case: Pertectly solvable scenarios|. . 69

3.6 Conclusion and remarks 71
4 Edge Network Slice Placement and Dimensionning| 75
4.1 Introductionlo 75
(4.2 Background|o 78
[4.2.1 Other pre-existing methods and models for edge place- |

I mentl 78
[4.2.2 Background on used method: column generation|. . . 79
“22.1 Introductionl 79

[4.2.2.2 Solving Linear Programs with the Simplex |

algorithm| 80

K4.2.2.3 Solving Linear Programs (LPs) with CG| . . 82

1224 Branch-and-Boundl 82

U225 Branch-and-Price00 83

[4.2.3 Background on Shortest path problems| 84
4.2.3.1 Multi-objective SP problem (MOSPP) . . . 84

1.2.3.2 Resource-constrained SP (RCSP)| 85

CONTENTS 9

1.2.3.3 SP with forbidden paths (SPFPP)[. 85
[4.2.4 Background on proving NP-Hardness of a problem|. . 86
[4.3 Contribution 1: Multi-objective multi-constrained shortest |

| path problem with forbidden paths| 88
[4.3.1 Considered problem|. 88
[4.3.2 Algorithm| 89
[4.3.3 Computational experiments| 90

4.4 Contribution 2: kEdge Service placement| 93
{4.4.1 Graph model and assumptions|. 93
{4.4.2 Integer Programming Problem formulation| 97
[4.4.3 Proposed Solution| 99

[4.4.3.1 Simplification to a MILP|. 100
[4.4.3.2 Making the MILP more tractablel 101
U433 Column Generation-based solutionl 101
(.4.3.4 Branching rulel 103
[4.4.4 Performance Evaluation and Comparison| 104
445 Proofd 110

[4.5 Contribution 3: Understanding what makes energy mini- |

| mization harder 119
14.5.1 Energy Minimization Flow Problem (EMF) 119
U.o.2 Proof of NP-Hardnessl 119

4.6 Conclusionl. 122
[> Radio Access Network: Integrated Access and Backhaul |
R g 125
.1 Introductionlo 125
[>.2 Background on IAB networks| 126
[b.3 Contributionl. 127
[5.3.1 System Model and Optimization|. 127
[>.3.1.1 Graph formulation| 127

[>.3.1.2 Optimization problem| 128

[5.3.2 Performance Evaluation Setup|. 132
[>.3.2.1 Placement of gNBs and Uks|. 132

©.3.2.2 Access and Backhaul channel models 133

[>.3.2.3 "Time-varying |UE| density model| 134

.33 Results. 134
[>.3.3.1 Energy Consumption|. 135

[>.3.3.2 Capacity] 136

£333 Runtime 139

10 CONTENTS

[6 General Conclusion and Perspectives| 141
6.1 Conclusionl. 141
6.2 Future Directionsl 142

[A Large version of figures| 147

(B Comparison of results for NEPA with and without the Al- |

[ternative Reward Function Based on Degrees| 153

[C Ablation study of NEPA components| 157

[D Statistics on network topologies| 161

Acknowledgement

Completing this thesis would have been impossible without the expertise
and support of my advisors, Hind, Andrea and Badii. Thank you to all of
you for your invaluable and challenging insights as well as your availabil-
ity. Thank you also for having enabled me to grow and expand my views
during the PhD journey. I hope we will keep going with those fruitful and
friendly collaborations in the next years. I also want to thank David and
Massinissa from Davidson Consulting, who have also been key to decid-
ing directions and making this thesis possible. I would particularly like to
thank Massinissa warmly, as I always enjoyed discussing research matters
and directions with him.

I would also like to dedicate a very warm acknowledgement to the
members of the jury: Tristan Cazenave, Adlen Ksentini, Emmanuel Hyon,
Nancy Perot, Stefano Secci and Véronique Véque for accepting to judge my
work on this very special day. I would particularly like to thank Tristan
and Stefano, who also accepted to take part to my mid-term defense almost
two years ago. Your insights have been key in orienting the second half of
my PhD work. I also want to dedicate a special thank to Emmanuel. It
was a real pleasure to give my first lessons under your supervision. Thank
you for being so friendly, I also really enjoyed our research discussions and
wish we will be able to keep going with them in the future.

My PhD would not have been the same without the team at WinesLab
who hosted me for 6 months this year. Many thanks to my advisor Salvo,
as well as Tommaso. I am also immensely grateful to Andrea, without
whom this research visit would not have been possible. This is especially
important for me as the people at WinesLab will enable me to keep going
with energy-efficiency research in the near future.

This acknowledgment would also not be the same without all the friends
I made along the way. Many thanks to all the very nice folks I met both in
Palaiseau, Evry and Boston. I am not listing all of you for fear of forgetting
someone. [t was always nice to hang out with you in the office and struggle
together with our papers.

Finally, many thanks to my family: my mom, my dad, my sister and
Helena for all the support, love and care you have always provided me. I
also cannot forget the support provided by Hélyette, Patrick and Emilie.

11

Chapter 1

Introduction

1.1 Motivation

The rapid proliferation of mobile devices and the growing demand for high-
data-rate applications with stringent Quality-Of-Service (QoS) have lead
to the need for a new mobile network standard, the fifth-generation (5G)
mobile networks. Because of their promise for higher throughput and lower
delay, combined with their programmbility, these networks are seen as
enablers for a wide range of new applications, such as augmented real-
ity, autonomous vehicles, and the Internet of Things (IoT). In particular,
paradigms such as network slicing, mobile edge computing, and Integrated
Access and Backhaul are seen as key technologies to tailor the network to
those varied usecases. Network slicing is the possibility of instantiating
and scaling customized virtualized networks (deemed slices) on demand.
Edge computing is the idea of placing computational resources at the edge,
directly next to the users. Integrated Access and Backhaul is the use of
millimeter waves for backhauling in the Radio Access Network (RAN), in-
stead of traditional optics fiber

However, the unprecedented surge in data traffic, coupled with the diverse
requirements of the afforementionned novel applications, presents signifi-
cant challenges to mobile network operators and service providers: those
different services have different Quality-of-Service requirements that some-
times contradict one another. For example, serving autonomous vehicle
networks requires very stringent delays (in the range of 7ms) and reliabil-
ity (in the magnitude of 99.999%) [1I], while video streaming services are
less concerned with those metrics but require higher throughput. This can
create a conflict because, for example, serving high throughput to those
services might mean using a lot of the network bandwidth, hence increas-
ing the delay of the other applications if they are not properly isolated. On
the other hand, another key challenge is to make the network consume less

13

energy. This is known to represent 60% [2] of the total OPEX of network
operators, and furthermore, cellular networks are known to represent up to
3.5% of the global carbon footprint [3].

In this context, the new programmability of 5G networks is a big oppor-
tunity for adressing both challenges: traditional cellular networks were
primarily designed with the goal of providing ubiquitous coverage and high
data rates. However, this approach often leads to inefficiencies in energy
utilization, as network resources are allocated uniformly across all users
and services, regardless of their specific needs. As 5G networks embrace
a more flexible and adaptive infrastructure, there arises a unique opportu-
nity to optimize energy consumption. This same adaptability is also key in
satisfying the variety of services 5G has to support: instead of a one-size-
fits-all networking paradigm, we can allocate the right amount of resources
at the right place.

This shift also comes at the cost of complexity: since traditional networks
didn’t rely on customizability too much, it was sufficient to use the same
simple policies or heuristics in all parts of the network. This is not possible
if we want to tailor the resource usage to the varied, dynamic usecases we
described. Hence, a key question is how to design algorithms which take
all those aspects into account, in all parts of the network. Furthermore,
the solutions should be both fast and optimal or near-optimal. For this
reason, it is required to come up with efficient algorithms. Namely, in
this thesis, most of the problems will be modeled within the framework of
graph theory [4], and in particular most problems come down to flavors of
multicommodity flow problems [5] [f], e.g. the problem of routing a set of
goods (in our case, data traffic) over a network. To solve these problems,
we shall focus on Reinforcement Learning (RL) approaches, as they have
been shown in the last few years to be able to generalize well and provide
fast solutions to hard problems. Then, we also resort to Integer Linear
Programming (ILP) based solutions, since off-the-shelf mature solvers are
available to solve such problems to optimality, even if they are theoretically
intractable.

Due to the complexity and heterogeneity of the network, combined with
the variety of the usecases and the different constraints they present, it is
not easy to design a single end-to-end solution to the problems. In the core
network, the main issue is purely resource usage. At the edge, instead,
meeting low delays is equally important, since if the edge experiences high
delay, the benefits of edge computing are negated. On the Radio Acess
Network, the optimization is much more confined to what happens at a
single base-station level than to the bigger picture of a full graph. For

those reasons, in this thesis, we make the choice of designing optimization
algorithms by progressively getting closer to the user: we start by designing
optimization for the core network, then go down the edge network, includ-
ing base stations. Finally, we get even closer to users by designing radio
backhauling techniques for the RAN.

1.2 Contributions

We divide our contributions in three parts, corresponding to one chapter
each.

1.2.1 Virtual network embedding for Core Network
Slice Placement

In Chapter [3] we solve the core network slice placement problem, i.e., we
have slices arriving over time which ask for resources in order to serve their
users. In particular, this chapter is interested in the core network part of
these slices, i.e. a set of Virtualized Network Functions, which consume a
certain amount of CPU, along with links between these functions, which
need a certain amount of bandwidth. In particular, our goal in that chapter
is to maximize the number of slices we manage to place. We first model
the problem as a graph placement problem, which we then formulate as a
Markov Decision Process (MDP). We then solve this MDP using the Nested
Rollout Policy Adaptation (NRPA) algorithm, which is an existing Monte
Carlo Search algorithm. We observe that running neighborhood search on
all the solutions found by NRPA would be too costly. Hence, we study
the structure of NRPA in order to run Neighborhood Search only on the
promising solutions, which enables us to get the most out of Neighborhood
Search without sacrificing speed. We call the resulting algorithm Neigh-
borhood Enhanced Policy Adaptation (NEPA). This method enables us to
increase the acceptation probability of core network slices of up to around
30% compared to the state-of-the-art.

1.2.2 Edge slice placement

In Chapter[d we focus on the placement of slices at the Edge. The problem
is modeled as a non-linear integer program where we try to minimize the
energy consumption and respect quality-of-service constraints (end-to-end
delay, including processing delay on the computational nodes, which are
modeled using queuing theory). Then, we linearize the problem and then
leverage column-generation, which is a specialized technique for solving
ILPs with a large number of variables. This technique consists in solving

the problem by iteratively adding variables that are promising. To do so, it
is required to solve an optimization problem called the pricing problem. In
our case, we prove that the pricing problem is equivalent to a bi-objective
shortest paths problem with forbidden paths. Hence, we propose a new
algorithm to solve this problem. Using those tools, we obtain an exact
algorithm for the edge slice placement problem. We show that our method
enables us to divide by up to almost two the amount of energy consumed by
the network compared to using classic approaches which optimize for the
amount of bandwidth used. However, these gains come at the cost of run-
time, as our approach is inherently slow. For this reason, we theoretically
investigate the hardness of the energy optimization problem. We show in
particular that a simplified version of the classic bandwidth-optimization
problem, which is polynomial, becomes NP-hard if considering energy op-
timization. This partly explains why our algorithm is slower.

1.2.3 Integrated Access and Backhaul

In Chapter |5, we design an algorithm for energy-efficient Integrated Access
and Backhaul (IAB) topologies. The idea of IAB is to leverage millime-
ter wave-based radios for backhauling: we focus on cases where there are
several base stations in one zone, but a single one has an optical fiber con-
nected to a remote core network. Hence, we have to find a topology to
connect all the users, to the core network, all through the radio spectrum.
Furthermore, we seek a topology which minimizes the energy consumed by
the network, which, in our case, depends on the amount of nodes that are
turned on. We also focus on finding a tree topology, as it is one of the
specific cases defined by 3GPP. We then formulate this problem as a non-
linear mixed integer problem. Since the formulation cannot be solved using
off-the-shelf solvers due to the non-linearity, we prove that there exists an
equivalent linear reformulation. The proof is based on the observation that
since we are looking for a tree topology, minimizing the number of nodes
is equivalent to minimizing its number of edges. We then evaluate our al-
gorithm based on a real dataset giving us a 3D scan of an area of Milan,
which we feed to an existing approach for placing IAB nodes. Once the
nodes are placed, we also feed the dataset to a raytracing channel model
in order to obtain realistic bandwidth capacities. The algorithm is then
compared to several simple baselines, and we show that our algorithm is
the only one which ensures the energy consumption is low while making
sure the users are served a certain minimum amount of bandwidth. We
reduce the energy consumption by up to 47%.

1.3 Thesis organization

The thesis is organized as follows:

e In the present Chapter, we introduce the thesis

e In Chapter 2| we review the architecture of the 5G network as well as
the main networking paradigms which support it.

e In Chapter|3|we focus on the placement of slices in the Core Network.
We model the problem as the Virtual Network Embedding (VNE)
problem, where the goal is to place Virtual Networks (i.e. slices)
on a physical network infrastructure, so as to minimize the resource
utilization. We leverage RL, in particular of the Monte-Carlo-Tree-
Search type to solve the problem. This chapter led to two publications

[7118].

- ELKAEL, Maxime, AIT ABA, Massinissa, ARALDO, Andrea, CASTEL-TALEB,
Hind, JOUABER Badii. Monkey business: Reinforcement learning meets
netghborhood search for virtual network embedding. Computer Networks,
2022, vol. 216, p. 109204.

- ELKAEL, Mazime, CASTEL-TALEB, Hind, JOUABER, Badii, ARALDO, An-
drea, AIT ABA, Massinissa, Improved monte carlo tree search for virtual
network embedding. In : 2021 IEEE /6th Conference on Local Computer Net-
works (LCN). IEEE, 2021. p. 605-612.

e In Chapter 4] we focus on the placement of slices at the Edge. The
problem is modeled as a non-linear integer program where we try
to minimize the energy consumption and respect quality-of-service
constraints. We linearize the problem and then leverage column-
generation, which is a specialized technique for solving ILPs with a
large number of variables. This chapter led to one publication [9],
and two currently in preparation

— ELKAEL Mazime, ARALDO, Andrea, D’ORO, Salvatore, CASTEL-TALEB, Hind,
AIT-ABA, Massinissa, JOUABER, Badii, Joint placement, routing and di-
mensioning at the network edge for energy minimization. In Globecom
2023.

— ELKAEL Mazime, ARALDO Andrea, CASTEL-TALEB, Hind, JOUABER, Badii,
An Ezact Algorithm to Solve Multi-objective, Multi-Constrained Short-
est Path Problems with Forbidden Paths, in preparation

— ELKAEL Mazime, ARALDO, Andrea, D’ORO, Salvatore, CASTEL-TALEB, Hind,
AIT-ABA, Massinissa, JOUABER, Badii, Joint placement, routing and di-
mensioning at the network edge for energy minimization: extended jour-
nal version, in preparation

e In Chapter[5] we design an algorithm for energy-efficient radio-backhauling
topologies. The solution is based on ILP and this chapter led to one
publication [I0] along with one journal extension that currently is in
preparation.

— GEMMI, Gabriele, ELKAEL, Maxime, POLESE, Michele, MACCARI, Leonardo,
CASTEL-TALEB, Hind, MELODIA, Tommaso, Joint Routing and Energy
Optimization for Integrated Access and Backhaul networks. In Globecom
2023.

— GEMMI, Gabriele, ELKAEL, Mazime, POLESE, Michele, MACCARI, Leonardo,
CASTEL-TALEB, Hind, MELODIA, Tommaso, Joint Routing and Energy
Optimization for Integrated Access and Backhaul networks: extended
journal version, in preparation

e Finally, in the last Chapter we give our Concluding remarks and
Future Directions.

Chapter 2

Background

2.1 Introduction

The currently developping 5G network is expected to go beyond 4G by
providing performances (in terms of throughput, delay and reliability) an
order of magnitude higher than that of LTE. These new characteristics
will enable new usecases such as autonoumous vehicles, drone swarms, Vir-
tual/Augmented reality or connected industry. However, this comes with
challenges: each usecase has different requirements in terms of quality-of-
service, particularly delay and reliability: for example, it is not acceptable
to lose too many packets in an autonomous vehicles network, as it would
put safety at risk.

Hence, these new networks come with the challenge of making the dif-
ferents usecases work in isolation, while satisfying all of their requirements.
For this reason, the 5G network comes with a new architecture which is
more flexible than LTE, making it more suitable for supporting the variety
of usecases.

Hence, in this section, we describe the 5G Network’s components as well
as the key concepts we shall use throughout the thesis, basing ourselves on
the current litterature as well as on the architecture standardized by 3GPP.
We shall detail the different parts and the main components of the network,
as we will later design optimization algorithms around them. This section
is organized as follows: section details the architecture of the network,
the section explains the concept of network slicing, and finally, [2.3.3]
details what the Integrated Access and Backhaul network is.

2.2 Infrastructure of the Network

We start with a description of the 5G network considered in the thesis.
We shall divide our explanation in three parts. First, we describe the core

19

network, which is the part of the network that is dedicated to all the man-
agement aspects of the network, e.g. authentication, security, billing, rout-
ing, and making gateways to other networks (mainly, internet). We then
interst ourselves to the Radio Access Network (RAN), which ensures the
connection with User Equipments (UEs) e.g. phones and the core network,
by the means electromagnetic waves. We shall then describe the features of
the transport network, which connects the core and the RAN. Finally, we
shall describe Mobile Edge Computing (MEC), as it is envisionned as a key
architecture for meeting the reliability and delay requirements standardized
in HG.

2.2.1 Core Network

In order to highligh the features of the 5G core network, let us start by going
through those of the 4G /LTE network, which is called the Evolved Packet
Core (EPC). In 4G, the EPC (represented in Figure is comprised of 4

main elements which we call network functions:

e The Home Subscriber Server (HSS) is a database providing the sub-
scriber details to the other network functions, e.g. it contains the user
profiles and keeps track of the security authorization, authentication
details and location of the users.

e The Mobile Management Entity (MME) is tasked with handling au-
thentication and authorization processes for user devices attempting
to access the network. It manages user context, tracks the location
of devices through their attach and detach procedures, and facili-
tates the seamless handover of devices between different base stations.
The MME also coordinates the establishment and termination of user
sessions, working in conjunction with other network elements like the
Serving Gateway (SGW) and Packet Data Network Gateway (PGW).
Additionally, the MME plays a critical role in mobility management
by maintaining information about active user sessions and their re-
spective locations, ensuring efficient routing and optimized resource
allocation. Through these functions, the 4G MME contributes sig-
nificantly to the overall reliability, security, and performance of LTE
networks.

e The Serving Gateway (SGW) functions as the interface between the
radio access network and the core network. It handles tasks such
as packet routing and forwarding. Additionally, the SGW performs
tasks related to charging, such as collecting and reporting usage in-
formation for billing purposes.

----- Control Plane (CP)
User Plane (UP)

Evolved Packet Core

D_A\’\\ eNodep k===~ _ i

Figure 2.1: Evolved Packet Core Architecture, figure from [I1]

e The Packet Data Network Gateway (PGW) assigns IP addresses to
user devices, manages Quality of Service (QoS) policies, and performs
deep packet inspection to enforce security measures like firewalling
and filtering. The PGW also makes the connection between the 4G
network and other networks, e.g., mainly, the internet

At the commercial level, the 4G is typically implemented in proprietary
hardware. It can also be done in software, but in any case, most of the
work is done by the MME. This leads to software implementations such
as SRSRan [I2] or OpenAirInterface [I3] where all parts of the core are a
single, monolithic unit. The direct consequence is that even if implemented
in software, the 4G core network is not adaptable to the different services
and requirements we mentionned earlier, as all services have to be served
in a very similar way by the same piece of software. This problem is even
more pregnant with hardware implementations, as they are black boxes
which the operator cannot customize

This is the key aspects adressed in the design of the 5G core network.
Namely, instead of being a monolithic software (where most of the work
happens in the MME), the core network is broken up in more network func-
tions, each with a tinier scope. As shown in Figure the architecture
is that of a logical bus, e.g. all control plane functions can communicate
with one another, and elements of the core can be included or excluded de-
pending on the usecase at hand. Let us now desribe the different services
involved.

e The Access and Mobility Management Function (AMF) performs the
initial device registration, authentication, session establishment, and
mobility management as devices move. It interacts with UEs and
other network functions to establish and maintain connections, man-
age handovers, and ensure mobility transitions.

e The Session Management Function (SMF) is responsible for establish-
ing, maintaining, and terminating Packet Data Unit (PDU) sessions

for UEs. Establishing a PDU session means to setup the path from
the UE and the core.

The Network Repository Function (NRF) serves as a central repos-
itory for network function and service information. It maintains a
registry of available network functions, their capabilities, and their
associated service profiles. This information is used by other net-
work functions to dynamically locate and interact with the required
services as per the specific requirements of UEs and applications.
Having such a repository allows network operators to adapt to chang-
ing service demands and optimize network performance by switching
components and optimization algorithms when needed. Its key role
is also to maintain an up-to-date, accurate representation of the net-
work topology and available services.

The Network Exposure Function (NEF) enables controlled and secure
exposure of network capabilities and services to authorized external
entities. Facilitates the interaction between third-party applications,
services, and the 5G network, acting as a gateway for external entities
to access network functions, service information, and subscriber data,
while maintaining strict authorization and privacy controls.

The Authentication Server Function (AUSF) manages user authenti-
cation and security functions. It is responsible for verifying the iden-
tity of UEs during the initial network attachment and subsequent
connection establishment processes. The AUSF also has the role of
deriving, distributing and managing cryptographic keys.

The Policy Control Function (PCF) manages network-wide policies
for quality of service (QoS), traffic prioritization, and resource allo-
cation. It translates policy decisions (or intents) into actionable in-
structions that influence data flow and network behavior. The PCF
dynamically adapts policies to optimize network performance based
on factors like network congestion, user preferences, and service re-
quirement.

The Unified Data Management (UDM) is responsible for managing
and storing subscriber-related data and profiles. It is the 5G equiva-

lent of the HSS.

The Application Function (AF) is responsible for interacting with ap-
plications and services on the application layer. Its main role is to
manage and enforce application-specific policies and quality of service
(QoS) parameters. It receives information about the application’s

Nnef i Nnrf Npef i Nudm i Naf
Nausf ! N.mﬂ! Nsmf !

N1 N4

N2
N3 NE
s = n

Figure 2.2: 5G Core Architecture, figure from [14]

requirements, such as QoS expectations and data priority, and com-
municates these requirements to the other network functions (mainly
the PCF). The AF acts as an interface between applications and the
network, influencing how network resources are allocated and utilized
to support the needs of various applications.

e Finally, the User Plane Function (UPF), serves as a gateway to the
Data Network (DN), e.g. external networks. The UPF replaces the
PGW and SGW in 4G.

With the past cellular technologies, these network functions would have
been implemented in hardware. However, the new trend (adopted in 5QG)
is to leverage Network Function Virtualization (NFV), a concept which con-
siss in using virtualization technologies to decouple network functions from
proprietary hardware, allowing them to be executed as software instances.
This is done with the goal of providing operators with more flexibility and
the ability to dynamically instantiate these functions. Hence, those net-
work functions are typically implemented as software container or virtual
machines . This enables the operator to instantiate, duplicate, scale and re-
move the functions as needed, depending on the load and the user profiles.
This implies those functions can be instantiated on decentralized systems,
such as datacenters. Those characteristics motivate the need for placement
algorithms for the core network, as, depending on the usecase, some of
these functions might not be necessary, or they might have to be config-
ured in a specific way. Parameters such as the amount of bandwidth used
to interconnect them, the computational resources they have to obtain or
the isolation requirements would lead to varying placement choices which
we study in this thesis.

2.2.2 Radio Access Network

Let us now focus on the Radio Access Network (RAN). The RAN is the
part of the network which directly interacts with the UEs through elec-
tromagnetic waves. 5G Also introduces key novelties at the RAN level in

order to enable new usecases. These novelties, implemented in the Base
Station (BS) are:

e Higher Frequency Bands: 5G introduces the use of higher frequency
bands, including millimeter-wave (mmWave) frequencies, which en-
able wider bandwidths for faster data transmission. This results in
significantly higher data rates and lower latency compared to previous
generations.

e Massive MIMO: 5G RAN utilizes Massive Multiple-Input Multiple-
Output (MIMO) technology, which involves deploying a large number
of antennas at both the base station and user equipment. This tech-
nology enhances spatial multiplexing, allowing multiple data streams
to be transmitted simultaneously to multiple users, improving both
capacity and coverage.

e Beamforming: Beamforming technology is heavily utilized in 5G RAN.
It focuses the transmission and reception of signals in specific direc-
tions. This avoids having to emit in an omni-directional way, which
yields to more interferences and less spectral efficiency. This is also
of key importance for mmWave, since those signals typically require
to have line-of-sight between the BS and the UE.

e More flexible physical layer protocols: in 4G, parameters of the phys-
ical layer such as numerology and signaling delays are much less cus-
tomizable. Changing such parameters enables the operator to adapt
to the current usecase. For example, increasing the signaling delays
(e.g. reducing the frequency at which the base-station emits con-
trol messages) might enable the base-station to get into sleep modes
more often, which reduces energy consumption, at the cost of reactiv-
ity when users show up. This would typically be done in a low-usage
scenario where reliability constraints are not too stringent (for exam-
ple in a business neighborhood at night).

Besides those, the 5G RAN’s architecture also provides a major shift from
a proprietary hardware-based implementation to more open software com-
ponents, similar to what the 5G core provides compared to the 4G EPC.
The enabler of this change is Open RAN, it specifies standardized inter-
faces between the different components of the RAN. This has the same
advantage as in the core: the operator can swap components in and out at
will, and modify or parameterize them according to its usecases. The main
elements of the Open RAN, which are shown in Figure [2.3] are:

e The Radio Unit (RU), which communicates with the UEs through its
antennas

Orchestration & Automation (ANO,ONAP)

Configuration i RAN Intelligent Controller (RIC) Non-Real Time

|A1

i Application Layer RAN Intelligent Controller (RIC) Near-Real Time

3 party Radio Connection Mobility QoS Interference Trained
Application Management Management Management | Management Model

RAN Database

Antenna |

E2

Multi RAT CU C-plane CU U-plane
Control Unit (CU) E1
Higher Layer [SDAP

Protocol Stack

PDCP-C PDCP-U

NFVI Platform NFVI Platform

Figure 2.3: Open RAN architecture, figure from [I5]

e The Distributed Unit (DU) processes the signal. It performs func-
tions such as encoding, decoding, modulation, and demodulation. In
short, it takes care of all the operations required to transform the
analog signal into the digital domain. It also manages radio resource
allocation and scheduling. Typically, the DU is located close to the
RU, and can either be implemented in hardware or in software. Note
that having a centralized DU for several RUs can be of interest since
it allows to improve performances of the network (for example, hav-
ing information on the waveform sent by several RUs enables the DU
to do more advanced interference cancellation). This however comes
with the tradeoff of using more computational power.

e The Control Unit (CU) is responsible for managing and controlling
multiple Distributed Units (DUs). It handles higher-level functions
such as coordination, network management, and resource allocation
across different DUs. The CU is typically located in a centralized
data center or cloud environment.

e The RAN intelligent controllers (which can either be real-time, near
real-time or non real-time, depending on the tasks they have to man-
age) are software controllers which interact with the CU and DU:
they recieve the state of the network (through interfaces such as the
E2 interface shown in Figure and send back controls, such as or-
ders on how to allocate radio resources, modified RAN parameters, or
new slicing policies (more on this will be explained in section .

2.2.3 Transport Network

We now have introduced all the components that can be hosted on servers
of the network: the different components of the core, the CU, the DU and

the RICs. We shall now describe the Transport Network (TN) considered
in this thesis, which is in charge of interconnecting those elements. Note
it also connects the RU and the DU, although the RU is not a software
element.

In a similar fashion as the rest of the network, the TN should be adapt-
able, manageable and parameterizable, so as to adapt to specific usecases.
For this reason, in this thesis, we shall consider that the TN is based on
the Software Defined Networks (SDN) [16] paradigm.

At its root, the TN is made up of switches and routers. Without SDN,
such network elements used routing protocols such as OSPF [17] or IGRP
[18] which are designed to work well in a variety of situation, and typically
in a decentralized manner: the protocols were hardcoded in the routers, so
they were easy to setup, at the cost of being parameterizable and modifi-
able.

Instead, the idea of SDN is to use a protocol such as OpenFlow [19].
Such a protocol considers that the network has a centralized controler,
which can send routing tables to the SDN routers. Those routers then
use the tables to determine actions depending on the incoming data. For
example, the controller could tell a given router to send a packet through
interface A if it comes from IP X using TCP, through interface B if it comes
from IP Y, and through interface C otherwise. This simple concept enables
the operator to perform advanced operations such as reserving bandwidth
on a path for a link between two given elements or to prioritize some type
of traffic.

2.3 New Service and Networking paradigms

We now introduce the two main networking paradigms which are seen as
the enablers for hosting different services and making them use the same
infrastructure. Namely, they are network slicing, and Integrated Access
and Backhaul (IAB). We also introduce the new service paradigm of Mobile
Edge Computing.

2.3.1 Mobile Edge Computing

We start with Mobile Edge Computing (MEC). MEC, also sometimes
deemed Fog Computing, is a networking paradigm that arose after the ad-
vent of cloud computing. With cloud computing, the idea was to abstract
away the servers and the hardware on which the software runs. Instead,
the software can be encapsulated in containers, which are given to cloud
providers. It is then possible to scale the resources allocated to containers
when necessary. This scaling can either be vertical, e.g. by increasing the

Data path from ¢—p Data path from
UE to Cloud Service UE to MEC Service

A/"’\
........ — : App Media

@ (o3 N K Ext | Service
0 ore Networ xterna
@ (CN) Network clead
@ Mobile Edge Cloud
— .- @ (MEC)
AR App Medi

iyt
]

Radio Access Ed c Net K Int " Data Cent

Network (RAN) ge ore Networl nterne ata Center

Figure 2.4: Example 5G network with MEC, figure from [20]

portion of resources of a single server allocated to the container, or hori-
zontal e.g. by duplicating the container on several other servers.

The drawback of cloud computing is that in order to perform this scal-
ing in a virtually infinite way, containers have to be placed in datacenters,
which can be far away from the users. Hence, for very stringent usecases
such as some of the ones we want to address, using cloud computing can
induce too much delay or bandwidth consumption.

For this reason, MEC was introduced. The proposition of MEC is to place
the part of the network which is the most constrained (in terms of delay)
closer to the user. The benefit is that the propagation delay is lower. It
also reduces the amount of bandwidth consumed because shorter paths
are used. In particular, MEC is often concerned with placing applications
closer to the user. For example, if a video service requires delays of less
than 5ms, it is interesting to place the video encoding application along
with a database of the most watched videos on a server close to the user
and not in a datacenter. Note that due to the 5G architecture, this requires
a container-based architecture: the application server is external to the 5G
network and hence any request to it needs to go through a UPF. Hence,
we have to be able to move, duplicate and scale the UPF to support MEC.

These benefits come at the cost of a complexified network: hosting ser-
vices directly in the mobile network, close to the users means that the TN
has to be augmented with servers. These servers can be used to host appli-
cations from third-party service providers as well as core network functions
such as the UPF. It is also feasible to host the CU or the DU on those
same servers. We illustrate the concept of MEC and a potential network
in Figure 2.4

Virtual ? ’I‘\ o—]
Network 1 *— [
|

Virtual
Network 2

Infrastructure — (1) @™

Access network Core network

Physical : i gé‘ IE @ e \J “

Network function virtualization and network slicing

Figure 2.5: Example sliced network, figure from [21]

2.3.2 Network Slicing

We turn to the other main concept which can help support a variety of
usecases, namely, network slicing (NS). NS involves the creation of multiple
virtualized network instances or "slices" within a single physical network
infrastructure. Each network slice is essentially a dedicated and isolated
portion of the network tailored to specific requirements, applications, or
user groups.

The key idea behind network slicing is to optimize the use of resources
and provide customized services to different types of users or applications.
Instead of having a one-size-fits-all network architecture, network slicing
allows network operators to allocate resources and configure network pa-
rameters on a per-slice basis. This enables them to meet the varying perfor-
mance, latency, capacity, and security demands of different services. The
three 3GPP-defined classes are enhanced mobile broadband (eMMB — high
speed and capacity for media usecases such as AR/VR and high definition
video), massive machine-type communications (mMTC — large number of
devices with low energy and data rate), and ultra-reliable low-latency com-
munications (uURLLC — extremely high reliability, in the order of 99.999%
and low delay, in the order of 1 to hms).

The concept of network slicing is illustrated in Figure Let us now
detail how network slicing can concretely happen in the different parts of
the network:

e In the CN, the network functions are hosted either in virtual machines
or in containers. One can use an orchestrator such as Kubernetes
[22], in order to scale (vertically or horizontally) and duplicate those
containers. In this case, the sliced resources (e.g. the resources shared

by the slices) are the resources of the server: CPU, memory, network
card bandwidth, etc.

e In the RAN, the resources are the radio resources. Recall each RU
functions by using a certain portion of the electromagnetic spectrum
for communication with the UEs. 3GPP has defined Physical Re-
source Blocks (PRBs) as the minimum unit of spectrum to be allo-
cated to each slice. Each PRB represents a certain portion of the
spectrum. The exact amount is specific to the parameters of the RU.

e In the TN, the sliced resources are the bandwidth of each link between
two routers.

The last element needed for implementing slicing is to be able to identify
to which slice each packet belongs. The 5G standard implements this with
PDU sessions: upon connecting itself, a UE establishes a PDU session with
the SMF. When it does so, it provides the id of the slice it connects to.
Then, if this matches one of the authorized slices for the user, stored in
the UDM, then the connection is established. Then, the traffic has to be
treated in a differentiated manner depending on the slice id. 3GPP does
not indicate specification for handling traffic at the RAN. However, one
possible implementation, which was chosen for some RAN slicing platforms
such as SCOPE [23], is to forward all the traffic from/to the UE in the
RAN through dedicated buffers for this slice, making sure that each UE
uses dedicated resources. On the rest of the transport network from the
RAN to the core network (and the other way around), the same concept
of buffers can be implemented on each SDN router on the way.

Finally, note that in practice, the concept of network slicing is tightly
related to that of MEC: in order to reach the stringent constraints imposed
on each slice, it can be necessary to leverage edge computing in order to
reduce delay, provide more throughput and use less resources for the service
of some of the slices (particularly the most constrained ones, e.g. uRLLC).

2.3.3 Integrated Access and Backhaul

Finally, we introduce the third new 5G networking paradigm for which we
shall design optimization algorithms in this thesis. This concept is called
Integrated Access and Backhaul (IAB). IAB was coined as a solution for
deployment in extremely dense areas such as a crowded city center or a
football stadium. In such places, it is required to serve an enormous amount
of users at the peak of frequentation, and less so in less crowded moments.

One solution to this problem is to add more base-stations in the area.
However, this can be difficult because of the cost of installing such equip-
ments, particularly of laying new optical fiber cables. For this reason, IAB

;<))

Figure 2.6: Example IAB network, figure from [24]

is a cost-efficient alternative in which only a single or a few base-stations
in the area (called the IAB donors) are linked to an optical fiber. The rest
of the nodes (called the other IAB nodes) do not have an optical fiber,
instead, they rely on radio communication to communicate with the rest
of the network and send data up to the core network. This means an IAB
network is built in a similar fashion as a mesh wireless network: one can
build and modify a network topology in which the TAB nodes connect to
one another, with the goal of reaching the TAB donor. In this way, it is
possible to connect the IAB nodes to the rest of the network (this is some-
times called "backhauling") without laying optical fibers. The concept of
IAB solves the issue of handling peaks of traffic, as it makes it feasible
to deploy temporary base-stations, or to deploy much cheaper permanent
base-stations, which can only be turned on to handle those peaks of traffic.
Furthermore, in remote areas, such as mountains, it is not always feasible
to deploy optical fibers. This is another usecase for TAB.

The key technological advances on which TAB relies are millimeter waves
and massive MIMO, as they make it possible to send the huge amount
of data required to perform backhauling, as well as beamforming, which
ensures that it is possible to emit from one BS to the other in a very
directional way, avoiding interferences and improving throughput. Finally,
note IAB is enabled by the 5G architecture, as it relies on the disaggregation
of the 5G RAN which we presented earlier: the IAB donor comprises a CU,
while the other nodes only have a DU. We illustrate the concept of IAB
with a small example network in Figure [2.6

2.4 TopologyZoo Dataset
Throughout this thesis, we shall evaluate the proposed algorithms exper-

imentally. One particular dataset, namely, the TopologyZoo dataset [25],
will be used throughout several chapters to build testing instances for the

problems/algorithms at hand. The reason we chose this specific dataset is
that it is a manually curated set of real-life networks. While it is not a
dataset of 5G mobile networks, it is the closest to real-life mobile networks
publicly available. In particular, this dataset contains varied topologies in
terms of sizes (from a few nodes to up to 850 nodes), scale (from city-wide
to continent-wide networks, including regional and country-wide networks).
The dataset includes topologies from a wide range of domains, such as data
center networks, wireless networks, or research networks.

Topology Zoo does not have a single, centralized source. Instead, it
aggregates topologies from different papers and projects. Researchers and
network operators contribute their network topologies to the dataset to
make it publicly available to the broader networking community. This
dataset has been used in various research studies to evaluate network al-
gorithms, protocols, and performance in different network environments.
Researchers often rely on it to conduct simulations and experiments to test
the scalability, robustness, and efficiency of various networking solutions.

The networks of the Topology Zoo dataset have the notable property
that 80% of them are planar [26], e.g. they can be drawn such that no
two edges cross each other. This seemingly simple property makes a lot of
problems simpler in such graphs. For example, the shortest path problem
[27], the graph coloring problem [28] or the Multicommodity-Flow problem
[29] all become easier if the graph is planar.

2.5 Conclusion

In this chapter, we have detailed the main characteristics of the 5G network
that we will keep in mind for the rest of this thesis. Mainly, we have seen
that the 5G network can be split into three main domains, e.g. the RAN,
the edge and the core, and that each of these domains are being increas-
ingly softwarized. The stance we adopt in the remainder of the thesis is
to mostly abstract away the details of the implementation of the network:
while we are mindful of the overall architecture when modeling the network,
our goal is to design general algorithms based on graph-theoretic models
that are applicable in the current cases as well as slight variations in terms
of architecture or even type of network. Hence, we do not detail how our
algorithms play with specific network functions, schedulers, etc, although
we sometimes reference them to motivate our models. Furthermore, when
modeling, it is hard to draw a strict line between the transport, the core,
the RAN and the edge network: since the transport network interconnects
all the elements of the 5G network, when we perform optimization ded-
icated to one of the components, it often implies that we have to chose
how to route the traffic between the different network elements. This is

typically a decision that is implemented on the transport network, e.g. by
programming SDN switches. For this reason, the approaches described aim
at optimizing for either the core, the edge or the RAN, but also always take
the transport network into account.

Chapter 3

Core Network Slice Placement:
Virtual Network Embedding
Problem

3.1 Introduction

In this chapter, we shall focus on the placement of core network slices
(CNSs): clients give the operator CNS (therafter also called virtual net-
work) requests in the form of interconnected NFs (i.e. a graph), and the
operator tries to embed them onto the physical infrastructure (i.e. to pro-
vide enough CPU for each virtual node and enough bandwidth for each
virtual link between those nodes), by accepting as many CNSs as possible,
so as to maximize the operator’s gain. This problem is known as Vir-
tual Network Embedding[30] (VNE) problem which has been extensively
studied in the recent years[31][32][33]. The VNE being NP-hard and inap-
proximable [34][35], running an exact algorithm is not an option in most
cases. Various methods have been studied for this problem, among which
many are heuristic algorithms based on Linear programming[31], ranking
algorithms[32] or reinforcement learning (RL) methods [36][37]. The con-
tribution in this chapter is that we design a RL based VNE algorithm, as
this type of approaches enable to construct heuristics in an autonomous
manner, based on experience and learning while solving the on-line ver-
sion of the problem, where CNSs arrive and leave the system over time.
Research on RL methods is still lacking, as current neural networks based
methods either have hard constraints on the network topologies [38] or re-
quire very large amount of computing resources for training [37]. On the
other hand, Monte Carlo based methods such as [36] still have large room
for improvement, as we show in this work. These shortcomings of other RL
approaches are further developed in section 2.

33

3.1.1 Summary of chapter contributions

The new state-of-the-art RL algorithm we develop is called Neighborhood
Enhanced Policy Adaptation (NEPA). It combines reinforcement learn-
ing techniques with neighborhood search. To our knowledge this is the
first time the Monte-Carlo Tree Search (MCTS) based Nested Rollout Pol-
icy Adaptation (NRPA) algorithm is complemented with a neighborhood
search technique for any problem, enabling it to beat several state-of-the-
art algorithms. The MCTS approach (called Maven-S) from [36] uses UCT
(Upper Confidence bound for Trees)[39], which is adapted to stochastic
problems. On the other hand, NRPA is specifically adapted to determin-
istic optimization problems. In our case, we do not know the CNSs in ad-
vance making the arrival process stochastic; however, once a CNS arrives
it is fully observable, and so is the physical network, making NRPA more
adapted to tackle the placement of CNSs, given the current state of the
network. NRPA learns through exploring the NF placement possibilities of
the CNS at random while learning weights for biasing future explorations,
which enables it to focus on regions of the search space that have been
the most rewarding so far while still maintaining a good level of explo-
ration. These characteristics make it a very efficient algorithm for solving
the VNE. However we show it can be further enhanced when combining
it with neighborhood search. The key idea is that NRPA bases its search
on the tree structure of the search space, which is good for quickly finding
good solutions. However it can limit exploration of new, better branch once
the algorithm has converged. Neighborhood search enables us to exploit
knowledge of those good solutions for jumping to better branches of the
search tree (similar to how monkeys jump from branch to branch) and con-
tinue the search from there, which enables better future exploration. We
also propose a heuristic for initialization of the weights, and we show our
numerical results, showing an improvement in the CNS acceptance prob-
ability on real and synthetic networks compared to other methods, and
therefore an increase in financial gains for an operator. Our contributions
in this chapter are then the following :

o We assess whether an exact ILP approach can be made faster by only
using a subset of the candidate paths

e We combine NRPA with neighborhood search and our heuristic weight
initialization, deriving the Neighborhood Enhanced Policy Adapta-
tion (NEPA) algorithm for the virtual network embedding problem
which outperforms state-of-the-art methods in both acceptance and
revenue-to-cost ratio on all tested instances, including both synthetic
and real topologies. Our approach is particularly effective on real
topologies, on which it can even triple the number of accepted CNSs

compared to some of the previous algorithms. We also investigate
the topological features of those real topologies and explain how our
algorithm can exploit them. Note that NRPA had never been used
for the VNE problem.

e We publish a large set of testing scenarios for the community to exper-
iment with, patching a lack of publicly available instances for quicker
experimentation and comparisons (126 instances).

e We publish our implementations of several algorithms publicly (in-
cluding NRPA, NEPA and algorithms from [40][36]), since during this
work, we found most algorithms lacked a well-documented implemen-
tation.

e To our knowledge, we are the first to explore the combination of
NRPA with neighborhood search for any problem. We believe the
idea can be exploited in other application where NRPA has been
successful and where good neighborhood search algorithms are known
such as the Travelling Salesman Problem (TSP)[41] or the Vehicle
Routing Problem (VRP)[42]

e Finally, we assess whether the results of NEPA for the VNE can
be improved by utilizing the reward function described in [43] (see

Appendix .

e All the afforementioned results are generated on instances compris-
ing synthetic random topologies as often done in the litterature, as
well as real networks and perfectly solvable instances, which are syn-
thetic instances better suited to quantify how good our algorithm
does compared to an optimal solution.

e We shall see that on all those types of instances, NEPA performs bet-
ter than the other algorithms from the litterature in terms of number
of accepted CNSs and operator’s revenue.

The chapter is organized as follows : Section [3.1] introduced our work,
section presents our literature review of the VNE, then section |3.3

presents our model. We describe NEPA in section [3.5] section presents
our numerical experiments, and in section |3.6| we summarize our work and
we propose extensions and future perspectives.

3.2 Pre-existing methods for VNE

Several methods have already been proposed for the VNE problem.

3.2.1 Mathematical programming

Famously, some work has been done for exact VNE using Mathematical
programming. In [44], the authors propose an ILP formulation. This has
the advantage to give guaranteed optimal solutions. However, since the
VNE is NP-hard, such an approach would not be able to cope with even
medium CNSs with a reasonable execution time. Hence, a lot of work in
the literature focus on heuristic algorithms. In [3I], two heuristics based on
linear programming and rounding (either randomized or deterministic) are
derived. These give good results in terms of acceptance and revenue-to-cost
ratio, although most other approaches manage to beat them ([36][40][37]).
These two rounding heuristics also sometimes suffer from relatively high
runtimes, as [37] shows they run up to 13 times slower than the approach
from [36] for worse results, and that for some cases the approaches are
even unable to run due to a lack of computational resources. In [45], an
ILP heuristic is derived by reducing the number of candidate paths to a
small amount, which enables the solver to find a solution quicker. However
since it is ILP-based the algorithm is still non-polynomial. Our approach
addresses these issues by proposing a solution which both runs quickly (sub-
second runtime) and provides high quality (state-of-the art) embeddings.

3.2.2 Graph neural networks

Some recent papers [46][47] process the problem with a deep neural network
for performing the embedding (note that in this section we do not consider
approaches using neural networks in conjunction with RL). In [46], the
graph is clustered with a graph neural network, which then helps guide the
embedding procedure. On the other hand, [47] pre-processes the network
in order to reduce the state-space, making the problem more manageable
for other algorithms. Overall, [47] addresses a slightly different problem
than we do, since the paper is concerned with feeding a VNE algorithm
(such as ours) with hints for solving the VNE, and both could be used
in conjunction. On the other hand, [46] is concerned with the VNE, and
although it has good results, the runtime is a significant problem as it is
exponential in the number of nodes. The authors patch this issue with the
use of a GPU. However, our experiments show that although the runtime
is manageable, it is still higher than all other algorithms we tested (in the
order of three times more).

3.2.3 Heuristics and meta-heuristic techniques

There is also a wealth of meta-heuristic algorithms for the VNE. This
includes genetic algorithms [48] and ant colony optimization [49]. However
the most popular class of meta-heuristic approach for the VNE is particle

swarm optimization (PSO), with several well performing algorithms such
as [40], [50] or [51]. These PSO approaches work by initializing "particles"
as a swarm of random solutions which move in the space of candidate
solutions. They find new solutions by oportunistically combining the best
solutions found so far with current solutions.

Regarding heuristics, in [52], authors propose a metric for evaluating a
nodes’ resource capacity /demand and then match highly demanding virtual
nodes to highly available physical nodes. A similar idea is used in [32] where
it is combined with the Pagerank algorithm for ranking nodes.

These heuristic and meta-heuristic approaches show relatively good per-
formances that we aim to beat in this chapter. Especially, to our knowledge,
none of them exploits the fact that solutions can be improved by keeping
virtual nodes close to one another. In that regard, our work could inspire
enhanced versions of the cited algorithms.

3.2.4 Reinforcement learning approaches

The family of approaches that interests us the most is reinforcement learn-
ing. First of all [36] showed how to use the Monte Carlo Tree Search
algorithm (MCTS) [39] for the VNE problem. MCTS intelligently explores
the space of possible placement solutions in order to find the best, but its
exploration is based on multi-armed bandit theory, which assumes stochas-
tic rewards. Instead, the outcome of a given embedding is deterministic
and our method more effectively exploits determinism. Both can be con-
sidered online methods, since they can immediately take decisions on any
CNS arrivals.

By contrast, offline methods accumulate knowledge during an extensive
learning (training) stage, which is then reused for a near-instantaneous
high-quality embedding. Recently, DeepVine [38] used a deep neural net-
work in order to learn embedding. This approach learns from graphs that
are turned into images, enabling easy use of convolutional neural network
(CNN) architectures. Although successful, this method makes strong as-
sumptions about the input graphs: CNNs rely on the networks to be grid-
shaped. Another method is [37] where the neural neural network is fed
directly with graphs. In this article, they use the A3C (Asynchronous Ad-
vantage Actor-Critic) algorithm for learning, which has been successful for
other RL tasks. These approaches rely on function approximators (namely,
neural networks) coupled with model-free RL techniques. This use of neu-
ral networks enables them to deal with big state-spaces, but comes at the
cost of having no convergence guarantees to an optimal embedding or even
an approximation. On the other hand, online methods like ours can be
tweaked to guarantee that given enough time, they could converge to the
optimal solution. They are also able to handle similar state-spaces com-

Notation Description
gV, €) Physical network with nodes V and links E

x x
57: t(”vtzé) zt" CNS with nodes V?, links £%, arrival and departure dates tZ and 3

v var td
CPU,, CPU capacity of physical node v;
BWay,; v; BW capacity of physical link (v;,v;)
cruy. Occupied CPU of physical node v;
BWy, 4 Occupied BW of physical link (v;, v;)
crUS, CPU demanded by virtual node v}

1
BW:;i@ P BW demanded by virtual link (v7, vj
A
BWﬁN,j Bandwidth used by CNS x on physical link (v;,v;)
C’PUﬁi CPU used by CNS x on physical node v;
Set of possible actions in MDP

s(k) State of MDP at step k
ay Action chosen in MDP at step k
P Policy function (associates a State-action couple with its weight)
Pm Path mapping (set of physical paths, each one associated with a virtual edge)

Table 3.1: Notation

pared to neural-network based methods.

The huge computation needed to perform a very costly a-priori training
(e.g., training for 72h on 24 for parallel instances of the problem [37]) may
make these offline methods [37][38] infeasible in practical situations. In par-
ticular when applying embedding on different scenarios (or with different
conditions or constraints), the huge offline learning phase must start from
scratch. It is also an open question whether or not in a real world scenario
we will have enough samples in order to enable such algorithms to learn.
The advantage of online methods is instead their ability to immediately
adapt and take decisions on new instances of the problem.

For these reasons we improve upon the state-of-the-art online meth-
ods [36] [7], providing convergence at regime toward the optimal embed-
ding, sample efficiency and better empirical performance.

3.3 VNE model

The physical network belongs to an operator. At any point in time, the
operator has a full knowledge of the state of the network, i.e. the amount
of resources available, the CNSs it hosts and the resources they use. The
operator receives CNS requests from its clients over time. These requests
are descriptions of a virtual network they would like to embed on the net-
work, including resources required and topology. The goal of the operator
is to place the incoming CNSs on its network in order to maximize a given
objective (CNS acceptance rate in our case).

3.3.1 Graph theoretic notation

The VNE problem can be formally described as a graph embedding prob-
lem:

e the physical network is represented as an undirected graph G(V, &),
where V is the set of n physical nodes, vy,..., v;, ..., v,, that
represent several physical machines where virtual network functions
can be hosted, and £ is the set of the physical edges between the
nodes. So we have:

— Each physical node v; is characterized by a CPU capacity, C PU,,
and an occupied CPU quantity, C'PUJ . Without loss of gener-
ality, one could extend this model by considering a vector of
different resources instead of a single value. For example the
first component of the vector could be CPU and the second one
could be RAM.

— On the other hand, each physical edge (v;,v;) € £ is weighted by
a maximum bandwidth amount, BW,, .. and an occupied band-
width amount BWy . In case BW,,,, = 0, then we consider
that there is no edge between v; and v;.

e We denote by H*(V*, E7,t%,15) the undirected graph describing the

v Yar

2" CNS with the resources needed:

— Each virtual node of the CNS, v{ € V* carries a CPU demand,
cpUd,

— Bach virtual link (vf,vf) € £° carries a bandwidth demand,
BWZ,

x x
vy V]

— Since we are in a dynamical system, each CNS also has a time
of arrival ¢7 and a time of departure 3.

Observe that as CNSs are placed or leaving, the physical occupied
resources, C'PU; and BW v change over time. The problem is to
map each virtual node on a physical node and each virtual link on
a physical path between the two hosts of its extremities, taking into
account the available resources. We do not consider delays in this
chapter. However, it would totally be feasible to extend our results
to a model where each physical edge has a maximum delay and where
each virtual edge requires a maximum delay to respect. We discuss
in section 4.2 the changes required to make our solution work in this
case.

3.3.2 Problem constraints

If at a certain instant time instant the 2!* CNS request arrives, placement
decisions must satisfy the following constraints:

e Each placed virtual node should have enough CPU, e.g. if we choose
v; hosts virtual node v} we should have CPU{ < CPU,, — CPU},

(where C'PU,, — CPU;, represents available CPU on node v;)

e For virtual link (v;,,v5) all physical links (v;,v;) it uses should be
chosen so BW.

< BWy,.; — BW;, . (where BW,, ,, — BWp
represents the available bandwidth between nodes v; and v;) such
that these links form a path between the physical nodes hosting v?,
and vy).

7'Uw

e If two virtual nodes belong to the same CNS, they can’t be placed on
the same physical node. This constraint is present in most previous
works on the VNE[30], 31} B2]. It ensures reliability by preventing a
significant portion of a CNS from going off if a single physical node
is down. To our knowledge, the optimal trade-off between sharing
physical nodes (thus economizing bandwidth) and redundancy has
not been well studied. Our approach, as most of the others cited,
could work with no change for a relaxation of this constraint. For
example, if we had to tackle the Virtual Network Function (VNF)
placement problem [53], we could apply our algorithm by relaxing
this last constraint and adding a new one which would limit the node
placement possibilities based on node types (e.g. for example physical
UPFs could only host virtual UPFs). On the other hand, in NFV,| it
can happen that two functions must be placed on the same physical
node. Since those two functions would always be placed on the same
node, this case can be modeled by aggregating the two functions as a
single virtual node, requiring the sum of the CPU of the two functions.
The virtual links of the new aggregated virtual node would be the
virtual links of both the original virtual nodes.

3.3.3 Online VNE description
An example of a CNS is shown in Figure We solve the VNE online :

e when a CNS z arrives at time ¢7, we directly try to embed it. If a
feasible solution is found, the CNS is placed on the physical network,
consuming the corresponding CPU and bandwidth resources, i.e. up-
dating the corresponding CPU; and BW oy If no solution is found,

the CNS leaves the system and is dropped.

Figure 3.1: CNS (white nodes) embedded on physical network (gray nodes).
Link demands and remaining capacities are boxed, used physical links are
in red. CPU demands and capacities are non-boxed.

e When time ¢j is reached, the CNS leaves the physical network and
resources are freed.

The full system time is continuous and gives us the arrival and departure
dates for CNSs (¢7 and ¢7 refer to this scale) we assume the VNE is instanta-
neous: in the same instant the CNS request arrives, and the corresponding
placement problem is solved, instantaneously, and the CNS is either placed
or discarded.

3.4 VNE as a Markov-Decision Process (MDP)

For each virtual node to be placed, we select a physical node via RL (Re-
inforcement learning). In order to learn an optimized sequence of decisions
for virtual resource placement via RL, one needs to frame the VNE problem
as a Markov Decision Process (MDP)[54].

A MDP is a system made up of two elements: the agent (the network
operator in our case) and the environment (the description of the CNS to
place and of the state of the physical network in our case i.e. the amount
of resources available and occupied).

3.4.1 MDP description

Observe that our MDP works as a sequence of steps, each step correspond-
ing to the decision of placing a virtual node onto a physical node. Note
that these steps do not have any time-dimension, they can be considered
to be all taken instantaneously. Also observe that our MDP is fully de-
terministic: all transitions and all rewards (which we will define later) are
deterministic and computable in advance.

In our particular setting, we consider the optimization problem where
we have to place a single CNS at a time. This means that as soon as

N Compute ter-

(5(0), ag) = me(l)A a1) =0 R(s(k*" = 1), agena_1) s(kend) - minal reward

s(0) ag w ap Qpend_1 7 (optimize link
placement)

Figure 3.2: Example sequences of actions in the MDP. Dashed arrows are
transitions not occurring in the MDP (no action choice). See larger version
in Appendix EI

one CNS requests arrives, an MDP is initialized in order to decide the
embedding of each virtual node and link it demands.

We assume that the agent only decides where to place each virtual node.
After all virtual nodes of a certain CNS have been placed, we calculate link
placement with a shortest path heuristic (see algorithm . Therefore, we
adopt MDP only for virtual node placement.

3.4.1.1 Elements of the MDP

Let s(k) = (sq(k),sp(k)) be a state of the MDP, it is composed of two
components :

e s,(k) is the set of virtual nodes yet to be embedded at step k.

e s,(k) represents, at step k, the occupation of the physical nodes by
the virtual nodes. It is a vector with |V| elements where s,(k)[i] = j
if virtual node vy from CNS x is hosted on physical node v;. If v;
hosts no node from the current CNS; s;(k)[i] = 0 (we assume indexes
of virtual nodes are strictly positive integers).

For the incoming CNS z, we consider the virtual nodes vi € V* one by
one. The order in which we iterate through virtual nodes can be chosen
arbitrarilyﬂ and we take an action ¢ which corresponds to placing it on a
physical node v;. Therefore, the set of possible actions A = {1,...,n}
corresponds to the physical nodes of V. Choosing action ¢ would mean

! Arbitrarily here means any order could be chosen and there would always be a
resulting valid MDP. However some orders might be more suitable than others for reso-
lution. We discuss the node ordering we choose during resolution at the end of section
4.6

placing the current virtual node on v;. We also consider A(s(k)) C A the
set of legal actions from state s(k), which will be specified later.

3.4.2 System’s evolution

The main steps of the system evolution are described as follows, as well as
in Figure (3.2

a. At step 0, s(0) = (V*,u), where u is a vector of |V| components all
equal to 0.

b. At step k£ > 0, from the state s(k), let vf be the first virtual node of

Sq(k). Then A(s(k)) is the set of actions j € A such that CPU;Z?S
CPU,; — CPU; and sy(k)[j] = 0.
Assume the chosen action from A(s(k)) is ay = i. Then the virtual
node v is embedded on physical node v; and we have a transition to
the state s(k+1) = (sa(k) —{v]'}, sp(k) +b;) where b; is a vector with
the " component equal to index 1 of virtual node v{ and all other
components equal to 0.

The embedding process continues at each step until we reach the final state
at a certain step £, where A(s(k"?)) = (). At this point, two situations
can occur:

e Either the node embedding is a success, so the set of virtual nodes
is 5,(k°*) = (). The second part of the state holds a vector s;,(k"?)
indicating which physical nodes are used by each virtual node of the
CNS. So the final state is (0,), where «/[i] = [if virtual node v} is
hosted by physical node v; .

e Or the embedding fails, which means that for a virtual node, there
is no suitable physical node to host it i.e. s,(k"?) # (). In this case,
the entire CNS is rejected.

If node embedding is successful, the link embedding is calculated using al-
gorithm [5| which is a shortest path heuristic. Then, if link embedding is
successful too, we need to update the physical network to acknowledge for
the used resources, i.e. update C'PU; and BW v for all physical nodes
v; and physical links v;, v; used by the CNS. On the other hand, if one of
the two phases fails, the CNS is discarded.

3.4.2.1 Reward Function

We now define the reward obtained by the agent over the course of its
actions. Let us first define the revenue of the operator r* (representing

the revenue gained thanks to a client paying for CNS x) and the cost ¢*
(the cost induced by operating the physical resources allocated to host the
CNS) for a successfully placed CNS z as:

= Y BW&L.+ > CPUL (3.1)
1777 m
Vi v EVT YoZ, eV
¢"= > BW,,+ > CPU,, (3.2)
V(vi,vj)eé' V’U'L’EV

where for CNS z, BW;_’UJ, is the bandwidth used on physical link (v;, v;) and
CPU "zl the CPU used on physical node v;. In other words, service providers
pay proportionally to the resource demands by their CNSs. The cost of
operation of a CNS is proportional to the physical resources consumed.

We define the immediate reward function of our MDP as:

= if s,(k + 1) = 0 and node and link
R(s(k),ay) = mapping are successful

0 otherwise

(3.3)

Examples of sequences of actions in the MDP are shown in figure (3.2}
in which the circular states correspond to the states of the MDP, where
the decisions are taken by the agent. The sequence at the top diagram
corresponds to a successful embedding (after node and link placement),
while the bottom one returns a failure. Note that since rewards happens
during transitions, the last reward is R(s(k“™ — 1), ajena_1) as it happens
during the last transition, from s(k“* — 1) to s(k"?).

3.4.2.2 Objective function

From the initial state s(0), we consider a sequence of k" actions : seq = ay,
ay, ...,Qpendi_y. We define the total reward from the state s(0) for seq as

follows :
kend -1

RI(s(0)) = Y R(s(k), ax) (3.4)
k=0
Then the objective function is:

max R*“(s(0)) (3.5)

seq

And the agent seeks to find the best sequence of actions:

seq” = arg max R**(s(0)) (3.6)

seq

and the corresponding reward:

R*(5(0)) = R*7 (s(0)) (3.7)

Notice that in practice, all rewards except the last one are equal to 0 due
to equation (3). With this definition of reward, the agent, i.e., the network
operator always tries to choose valid embeddings, since any valid embed-
ding has a non-zero revenue-to-cost ratio. It also favors embeddings that
use the least possible amount of resources, since the reward increases as
> BWZ’U], decreases. An intuitive way to frame this is that the re-
V(v)€E
V\Ear(i)encourages the choice of embeddings that lead to placing virtual links
on short physical paths, effectively trying to place the CNS on a cluster
of physical nodes. We do this based on the idea that if a CNS uses the
least possible amount of resources, then it will leave more resources avail-
able for future CNSs, thus enabling us to improve the acceptance ratio
on the full scenario. Note that, at best, each virtual link is mapped on a
physical link of length 1. Note also that for a successfully embedded CNS,
> CPU: = X C’PUggl, hence the best achievable reward is 1 and, the
v, €V vk eYPT
closer the reward is to 0, the worse the embedding is in terms of resource us-
age (with 0 being the worst reward, reserved for failed embeddings). There-
fore, this reward function quantifies the quality of an embedding regardless

of the size of the CNS. This has clear advantages over the reward function

used in [36] which is 7 —c, with 7!, =a > BW5¢7U@+ﬂ S CcprUd

YoF pTEVe Yoz Ve "
where «, 3 are weight parameters which have to be tweaked. In [36] they use
parameters of 1 which provides an upper bound of 0 and no lower bound,
making it harder to compare the quality of embeddings for different CNS
sizes. In the general case they do not provide any bound. This is particu-
larly unfortunate for the MCTS algorithm they use, as it is based on the
upper confidence bounds algorithm UCB-1, which provides its theoretical
guarantees only for a reward bounded between 0 and 1.

3.4.3 Characteristics of the MDP and implications on
resolution

Since the MDP transition model for a given CNS is completely known in
advance and deterministic, one could be tempted to use a method such as
dynamic programming to solve the problem. However, it would be unre-
alistic due to the number of states: there are % final states (which
corresponds to the number of possible repetition-free permutations of |V|
physical nodes of size |V*|), each requiring to calculate link placement. For
a ONS of size 12 placed on a 50 nodes network , we have 5 x 10 possible
terminal states.

Also note virtual nodes are taken in an arbitrary order, hence a given final
placement is reachable only using a single sequence of actions. This implies
the MDP has a tree topology (see Figure which illustrates the full tree

of states for a toy example placement). We argue our algorithm should take
this structure into account for exploration and exploitation. Particularly,
we will see that existing MCTS methods (MaVEN-S from [36] and NRPA)
are interesting since they take advantage of the MDP’s tree structure for
finding good solutions. However this can lead to local optima once the
algorithm has converged. The main motivation of our work is to escape
these optima by "jumping" to unexplored branches of the tree that we can
guarantee are better than the best solutions found. We will show this can
be done by getting around the tree topology and sometimes exploring the
solution space in a different manner.

Next, we present our online learning algorithm (NEPA) which improves
CNS acceptance ratio, with reduced computation time by implementing
this idea. As our result section will show, we only need to explore a few
hundred complete sequences of actions for our algorithm.

3.5 Contributions for online VNE

3.5.1 NRPA and NEPA

The algorithm we propose in this paper is called NEPA. It is based on
NRPA, adding weight initialization and neighborhood-search based refine-
ment. For the sake of clarity, instead of directly presenting NEPA, we first
present NRPA and weight initialization.

3.5.1.1 Review of Nested Rollout Policy Adaptation (NRPA)

The NRPA[56] algorithm is a Monte Carlo Search algorithm that aims at
finding near-optimal solutions in deterministic environments. It is perfectly
suited for our problem as in our model a given action from a certain state
always leads deterministically to the same state. This setup is similar to
the puzzle games which NRPA solves remarkably well (with a world record
for Morpion Solitaire) [56]. We describe NRPA in Algorithm [2 The idea
of this algorithm is to consider the MDP as a tree that we have to explore
("search tree"). This is coherent with our model because we treat virtual
nodes to place in an ordered manner, hence there is only a single way to
reach a given final or inetrmediate state. NRPA explores the search tree
with recursive calls to the search function, where [is the level (or the depth)
of the search and N is the number of of recursive calls per level. This search
function is defined as such:

e At level 0 a search call does a random simulation of legal actions in
the MDP. It returns the reward obtained during that run of the MDP
along with the sequence of actions used and the virtual link placement
solution (i.e. the path mapping P,,, calculated using Algorithm [f)).

S@ = ({37, (1,0,%,0])

seq = [1,3]

R%¢4 — 0

s(3) = ({0, [1,0,3,2]}

seq = [1,4, 3]

R5€9 — 10+9+14+1+2 0.94

10+9+14+1+42X2

(Calculated using Alg. 5)

S = (37, 0,0, 51D

seq = [4,3]

R%°9 = 0

9
107120

s(3) = ({0,[2,0,3,1]}
seq = [4,1,3]

R%€9 — 10494144142 _ 1
- 10+9+14+1+2 —

(Calculated using Alg. 5)

Figure 3.3: Example MDP for a toy example.
deterministic and MDP has a tree topology.

Observe transitions are

initial policy final sequence

Level 1=2

Level I=1

Level 1=0

Gomtation) | e
R =089

R<0 =078

Figure 3.4: Example execution of NRPA for 1=2. Dashed arrows represent
the policy going from one function to the other, while plain arrows represent
sequences returned between functions. A function needs to get values from
all its predecessor before executing. See Appendix [A] for large version.
Figure reproduced from [55].

If we refer to figure (3.3 we can see a random simulation as a complete
descent from the root of the tree to a leaf (i.e. final) state. The return
values from that descent are the corresponding seq and R*“9.

o At level [# 0 the algorithm makes N NRPA calls of level [— 1.
It then returns the best sequence returned by these "children" calls
to its caller function, which is either a level [+ 1 NRPA call or the
main function. In the latter case the returned sequence is the best
sequence found over every simulations tried so far (called seq***') and
the NRPA algorithm terminates.

e Then, the control flow returns to the main function (algorithm ,
which updates the resources.

The NRPA search function is combined with a policy learning procedure
(see Algorithm [3|: Adapt procedure for NRPA).

3.5.1.1.1 Policy improvement The principle is that during each sim-
ulation, we choose the sequence of actions seq in a biased manner that leads
to final states close to the best final state found so far, RseqbeSt, which has
been reached through sequence of actions seq®®*!. This random sampling
enables us to focus on sequences of actions that resemble seq®st.

We shall now give the details through which we learn and then bias the
simulations :

e We define a policy matrix, P which associates each possible tuple
(s(k), ar) with a real weight P[s(k),ax] from which probabilities are
calculated during simulation.

e Given a certain initial state s(0) = (s,(0), s5(0)) and a policy matrix
P, the algorithm will try a sequence of random actions dictated by
the probabilities calculated from P.

After each NRPA call, the weights of actions of the best sequence found
seq’®st are incremented with respect to the state where they should be
chosen, i.e. P[s(i),a;] is incremented for all a; € seq®' (see Algorithm
3). Then, during the simulation, when we are in state s(k) and need to
select the action a; = ¢ randomly, we draw using Gibbs sampling, i.e.
with probability —<RLlE¢).] 7. A visualization of those steps is depicted

exp >, Pls(k),j
1<j<| A

in figure [3.4] where the recursive nature of the algorithm is particularly
noticeable.

3.5.1.2 Virtual links placement

Algorithm 5| is used for placing virtual links after the node placement is
decided. It is used during each call to the simulation procedure (Algorithm
). The idea is to treat virtual links one by one by descending bandwidth
demands, embedding them on the shortest path (in terms of hops) that
has enough bandwidth. Note this is not an exact algorithm and it could
be replaced with other methods of link embedding. We do not use an
exact method because the underlying problem of placing virtual links is
an instance of the unsplittable flow problem which is itself NP-Hard [57].
One alternative could be to relax the problem and allow "path-splitting",
making the problem solvable by linear programming [58]. It might be of
interest and has been used for the VNE (see for example [36]), with the
relaxed version consistently improving performance metrics at the cost of
a larger computation time (in the order of 40 times for their small cases).
However it is unclear whether such an algorithm would be implementable in
practice, due to scalability issues as well as the need to reorder packets on
arrival, incurring potential additional delay and CPU processing times. For
these reasons, the case of path-splitting is outside the scope of this chapter.
Also, we remark our link placement algorithm can be easily adapted to
the case of VNE with delay constraints. In such a case, we would need,
for each virtual link, to find the shortest path (in terms of hops) which
respects the delay constraint from the virtual link. For this purpose we
could use a constrained shortest path algorithm such as the state-of-the-
art WC-EBBA* algorithm from Ahmadi et al. [59]. While this approach
is fast in practice, in theory it is non-polynomial which might hinder the
complexity of link placement. However we note since we look for a shortest
path in terms of hops, it corresponds to a case where all links are of the
same length. In this setting, Johnson and Garey [60] argue the problem
is polynomial but we were unable to find a reference for an algorithm.
Furthermore, we note one could use any of the edge weighting approaches
of the literature such as the ones tailored for optical networks from Zhang
et al. [6I]. If this was required, we would replace our hop-based shortest
path algorithm with a method that takes weights into account such as

Dijkstra’s.

Both those extensions would slow down our algorithm due to the added
complexity, however we note this would be the case for all other approaches
compared when extended to these cases in the same way.

To conclude with NRPA, we give in Algorithm/[I] the main procedure
which describes the calls of the different algorithms related to NRPA for a
CNS placement.

3.5.1.3 Heuristic weight initialization

In standard NRPA, when one encounters an unseen state s(k), all its poten-
tial following states s'(k + 1), reached from s(k) by choosing action a; are
initialized with a weight P[s(k), ax] = 0. However, this leads to exploring
completely at random without exploiting knowledge of the problem. We
propose to bias the weight initialization towards more interesting actions,
drawing inspiration from [42]. Our heuristic for weight initialization (which
is called the first time we encounter a given state, i.e. in the simulation
function) assumes that good embeddings tend to cluster virtual nodes, i.e.
to place virtual nodes of the same CNS in close-by physical nodes, which
reduces the mean length of the virtual links. When a new state-action
couple (s(k), ax) is encountered, we initialize its weight with:

-3 d(i’ak)X1§3b(k)[i])’ if sp(k) £ 0
Pls(k),ap) = 4 1%n 2, MEBUD (3.8)
otherwise

S|

where 1(s,(k)[7]) is equal to 1 if s,(k)[i] is non-zero (meaning that some
virtual node from current CNS is associated to physical node v;) and zero
otherwise. The function d(i,j) returns the distance (in terms of hops)
between physical node 7 and j. Note this distance does not take bandwidth
into account, making the function computable in advance before starting
NRPA, which makes the complexity of weight initialization negligible. In
other words we penalise the physical nodes that are far from the ones
used up to the current state to embed the current CNS. Figure 3.5 gives an
example of such an initialization when the NRPA algorithm first encounters
the state ({3}, [0, 0, 1, 0, 2])}. Note that candidate physical nodes that
are close to previously placed virtual nodes get a higher weight, since we
assume they tend to be more interesting choices. We show an example of
such a weight initialization in Figure Notice that the highest weight
corresponds to placing virtual node 3 on physical node 2, which leads to
using the least resources.

e ar, =2 | ({}, [0, 3, 1,0, 2])

1
.' action state value

Next Potential next Initial weight

ar=4 | ({},[0,0,1,8,2)) | —TEATICED _ 15
_dB3.2)+d(52) _
: -

%‘9 ar=1| ({1 [8,0,1,0,2) | ~LBLHOD _ o5

Figure 3.5: Example of state weight heuristic initialization when first choos-
ing action from state ({3}, [0, 0, 1, 0, 2|)

Algorithm 1 MAIN placement procedure

Input: G(V, &) : Physical network, H*(V*, E¥) : CNS to place
Output: G(V,) : Physical network, seq”*" : best node placement, P

1:

e e

link mapping corresponding to seq®®*

Choose level parameter [(and level I’ for NEPA) and number of iterations
per level N
Initialize policy P as all Os
Derive initial state s(0) from G and H*
if we call NRPA then
R5ed ™" segbest PUest « NRPA(I, N, P, s(0), £7,G)
end if
if we call NEPA then
Rsed™™" segbest PUest « NEPA(I, N, P, s(0), £%,G, 1)
end ifbest

if R*¢7"" >0 then
Update occupied resources of G with the placed CNS

. end if

: return G, seq

best best
es 7Pm

Algorithm 2 NRPA Algorithm

Input: [: Search level , N: max iterations, P : Policy, s(0): Initial state,
E*: Virtual links, G(V, £): Physical network

best . .
Output: R**": Best score, seq®*': best sequence of actions to achieve

it, P**": link mapping corresponding to seq
1: if [=0 then
2 return SIMULATION(s(0), P, £%, G)
3: end if
4: Rsed™™ oo
5: seqP®t < ()
6
7
8
9

. Phest)
: for N iterations do

R*°1 seq, Py, + NRPA(I —1,N, P,s(0),E%,G)
if R*e1""" < R%°4 then

best

10: R «— R

11: seq?®st « seq

12: Plest P,

13: end if

14: P+ ADAPT(P, seq®t)
15: end for

best
. se best best
16: return R*7 " seq"*", P,;

Algorithm 3 ADAPT procedure for NRPA

Input: P: Policy matrix, seq : sequence of actions

Output: Update of P biased towards drawing actions from seq
1: Phew < P
2: for k= {0,...,|seq — 1|} do

3: v’ < first node of s, (k)
4: Prew(s(k),ar] +=1 // ay is the k™ action of seq
5: for m € A(s(k)) do
Pls(k),m

6: Preals(9), m] == exp(—— B y)

jed (s(k))
7 end for
8: s(k+1) < (sa(k) — {v]}, sp(k) + bay,)
9: end for

10: return Peqw

Algorithm 4 SIMULATION procedure

Input: s(0): Initial State, P: Policy matrix, £%: Set of virtual links, G:

Physical network

Output: seq: sequence of actions, R*“: the reward it yielded, P,,: path

1:

10:
11:

mapping found by Alg. [f] for seq
seq+ 0, k<« 0
while A(s(k)) # 0 do
vf < first node of s, (k)
Deduce A(s(k)) for vf
ay < random-choice(A(s(k)))
// draws action from A(s(k)) with probability Ze;(p(P[s(k)’a’“])

exp(P[s(k).j])
GEAG(K))

s(k 4+ 1) + (sa(k) — {0}, 560k) + by
seq + seqJ ax
P
end while
R#*1 P, < VLINK(E", seq,G)
return R%¢Y, seq, P,

Algorithm 5 VLINK (virtual link placement) procedure

Input: Set of virtual links £, sequence of actions seq, Physical network

g

Output: R*? : Reward yielded by seq, Py, = {Pug oz, V(0] v]) € E7} -

1:
2:
3:

9:
10:
11:
12:

set of physical path used by each virtual link
while £% # () do
Pick (vf,v) € €7, the most demanding link.
Find the shortest path Pviz,v; between the physical nodes hosting
vy and vj, minding only physical links with available bandwidth (at
least equal to BW%WJ;)
if Pyg,vﬂ? 7é @ then
Upd]ate the physical links occupied by Pvfw;s
Pm A Pm U Pfuf,v]z.
else
return 0, ()
end if
end while
compute R**
return R*, P,

Level 1=2 (\—l : (&)
max; -
Level 1=1 | - =
oo ' :
ax) —s(max;
: |
Level 1=0 Simulation) | (Simulation
R =053 R =0.78 R =0.89 64

Figure 3.6: Example execution of NEPA for 1-2, I’=2. Dashed arrows
represent the policy going from one function to the other, while plain arrows
represent sequences returned between functions. A function needs to get
values from all its predecessor before executing. See Appendix [A] for large
version. Figure inspired from [55].

3.5.1.4 Neighborhood Enhanced Policy Adaptation (NEPA)

Observe that once NRPA has found a reasonably good seq®®*, the weights
of the intermediate state leading to it (i.e. the weights on the path from
the root of the tree to the best final state found) will start increasing.
This means if a random simulation deviates from seq”* early on, it will
then draw actions from a state which is considered almost unexplored, and
where the knowledge of seq®®*! is not used. For example, in Fig. if the
best sequence found so far is [1, 4, 3] and at first step the chosen action is
4, it would be desirable to exploit the knowledge that in the best sequence
found, virtual node 3 goes on physical node 3, as it is true in [1, 4, 3]. In
our toy example, this would imply that the algorithm would have a higher
chance to find the optimal sequence, [4, 1, 3]. However, with NRPA this is
not how things go: if we descend to an unexplored part of the tree, there
is no way to reuse the information gained from the known best sequence.
This is the reason we introduce NEPA, which we call a monkey business
algorithm: our goal is to improve NRPA by enabling it to use its knowledge
of seq®st for finding better branches, similar to how monkeys jump from
one branch to another. When monkeys explore the jungle, they swing from
branch to branch, they go faster than if they went back down each time they
want to move. Similarly, NEPA swings from branch to branch to explore
the MDP while NRPA has to go down every time it wants to explore a new
zone of the search space.

One possible solution for this could be to increase weights of all states
resembling those found by executing seq®®**. However, this would incur
significant cost due to the factorial number of total states, potentially re-
quiring to design approximate methods or workarounds that are outside of
the scope of this paper.

Instead, we observe NRPA often finds good embeddings that would
be very easy to improve upon by changing the placement of only a small
subset of nodes. We also observe that improving such embeddings could

be interesting for discovering better sequences of actions that resemble
seq®®st but would not necessarily be discoverable through NRPA’s weight
mechanism (such as in our example above). Our key idea is that we can
improve upon seq®** through neighborhood search, finding a new, better
sequence without taking the tree structure of the MDP into account. Then,
once this improved sequence has been found, we reinject it into NRPA to
use as its new seq®®**, which it can further improve.

In this section, we devise our method for discovering such sequences
while keeping the computational complexity reasonable. We call the re-
sulting algorithm Neighborhood Enhanced Policy Adaptation (NEPA) as
it combines NRPA with neighborhood search for improving good solutions.
The idea of NEPA is to choose a level I" of search at which the solutions
should be improved. Then, when the NEPA search reaches level I’, each
solution found (which correspond to the best solution of each level I — 1
call) is refined through the neighborhood search procedure described in
Algorithm [6]

We define the neighborhood of a final state s(k"?) (corresponding to
an embedding solution of the virtual nodes on the physical network), as the
set of final obtained by moving a virtual node to another physical nodes.

3.5.1.5 Main steps of NEPA

We describe in Algorithm [7]the main steps of NEPA algorithm. It is similar
to the NRPA algorithm except that if we reach a level [= I, then we choose
to refine the solution by searching a neighboring solution as described in
the following algorithm:

a. Algorithm [6] first finds the nodes with the largest potential improve-
ment among the already placed virtual nodes (i.e. we choose a single
node v% to move). We find it by calculating:

> BW o d(vg,,vf)
vpeEVET P
vy = 2 3.9
score(vy)) Jeg (0T (3.9)

for each virtual node vy,, where d(vy,,vy) is a function returning the
length of the physical path used by virtual link (v}, v5) and deg(v};,) is
the degree of virtual node vy,. The virtual node v§ which maximizes
this metric is considered as the most promising for improvement,
since it is the one which consumes the most bandwidth compared to

its number of neighbors.

b. The refining procedure is then to try several candidate physical nodes
that could be better suited to host the selected virtual node v%, in
terms of reducing resource consumption. For each candidate, we

remap the virtual node on them (which corresponds to flipping values
in the state vector), then remap its adjacent virtual links. After all
candidate physical nodes have been tried, the new placement of v is
then the one that leads to a maximum reward (see eq (3)).

To control the execution time of the algorithm, we introduce two parame-
ters:

e X : is the number of times that the process is repeated, note that the
process is also stopped if a full trial does not lead to any improvement.
Typically a criterion can be to do no more than |[V*| tries. This
ensures the runtime is reasonable while spending more time on larger
CNSs, since they tend to be harder to place.

e K is the number of candidate physical nodes. For choosing candi-
dates, the simplest thing would be to try all possible physical nodes.
However this would lead to poor scalability. Instead, we use our
weight initialisation function and define our K candidates as the K
nodes with the highest distance score. For example, in Fig.
which shows a refinement iteration with K = 2, the two candidates
for hosting virtual node 3 are physical nodes 4 and 2 because they are
the two nodes that are the closest to physical nodes 3 and 5, which
host the other virtual nodes.

After the refinement, the resulting placement is treated like a normal state
by NEPA, i.e. if it is the best found so far, its weight is incremented. In
this sense, NEPA (Alg. [7) maintains the structure of NRPA (Algorithm [2).
Note that in practice, NRPA could potentially have found any sequence of
actions (i.e. node placement) found by NEPA. However, the virtual link
embedding corresponding could be different since NRPA places only using
Algorithm [5] while in the case of refinements, NEPA uses Algorithm [6] which
can find a different link embedding for the sequence than what Algorithm
[could have found. This is particularly important since in practice, we
observe that some sequences found by Algorithm [6] have no valid solution
if using only Algorithm [5] Hence, when using NEPA, it is necessary to save
not only the best sequence of actions, but also the link embedding result in
case it needs to be restored after execution for future use. This is typically
done at the end of Algorithm [6] by saving the link embedding solution in a
global data structure.

NEPA requires only very little modifications to NRPA (see algorithm
@, which is particularly noticeable in figure as it illustrates the way
NEPA makes its function calls recursively for I’ = 2. Also note how few
refine calls there are compared to the number of max operations.

Our method enables us to discover better solutions that would not be
easy to find once standard NRPA has converged: once NRPA has found a

local optimum, the probabilities of choosing the states of the best sequence
found in NRPA will go towards 1, meaning exploration could become poor
while there is no point exploiting the same region anymore. With NEPA,
since we change the best sequence found so far, we open the opportunity
of exploring completely new, but better parts of the search space. A single
change in the first few actions can lead to discovering a whole new part
of the state-space where most states are undiscovered, leading to a highly
explorative phase with a very good sequence as a starting point (which
we newly found through the refinement procedure). Hence NEPA exploits
its neighborhood search mechanism in order to help NRPA escape local
optima.

3.5.1.6 Theoretical analysis

In this section, we give a theoretical analysis of NEPA and NRPA. We
start by outlining the limits of NRPA and the convergence results that
make NEPA a good solution for improving it. Then, we investigate the
computational and memory complexity of the algorithms.

3.5.1.6.1 Computational Complexity

Proposition 1. The NRPA algorithm has a computational complexity of
O(|V] x NY) for sparse physical and virtual graphs.

Let T(N,l) be the function associating the algorithms’ parameters
(number of iterations per level N and search level 1) with the number of
simulations executed (i.e. the number of calls to Alg. 3). We shall prove
T(N,1) = N' by induction on [: For [= 0 the relationship is verified. We
now assume that our hypothesis is verified, i.e. T(N,l) = N'. We will now
show that this implies T'(N,[+ 1) = N+,

T(N,l+1)=N xT(N,l) = N x N' = N'** (3.10)

This proves T(N,l) = N'. By the same argument, one could show that
the same NRPA search would perform N' adaptations of its policy (i.e. N'
calls to Alg. 2).

Algorithms [3] and [4] are really similar and treat a sequence of length
|V?|. For each element of the sequence, both algorithms loop through the
list of legal moves. At worst, at each step, all physical nodes that have
not already been chosen are legal. In such a case, the complexity of both
nested loops would be O(|V*| x|V|). In order to compute the rewards in the
simulation procedure, we place virtual links of the embedding found. This
is done using algorithm 5} A breadth-first search (BFS), used in Alg. 4 for
finding shortest path, has a complexity of O(|V| + |£|) which we perform

@
OO

Virtual Link Path c]li\rzr\lf
1,2) (3,5) 5
(2,3) (1,4), (4,2), (2,5) 10
(1,3) (3,:4), (4,1) 10
Initial solution to refine
-0
Virtual Node Score
1 5><1+210><2 — 125
9 5><1+210><3 —175
3 10><242rlo><3 — o5
Calc. degree scores,
Virtual node 3 moves
T
- -0
Sum of BW used: Sum of BW used:
5X14+10x1+10x1=25 5xXx14+10x2+10x1=35

Try K =2 closest (acc. to Eq. (3.8))
candidate physical nodes 4 and 2

Figure 3.7: Example iteration of Refine with K=2. The placement chosen
after the iteration is in the box. We assume all nodes have enough CPU
and all links have enough BW. The chosen solution has the lowest amount
of bandwidth used as reward only depends on it (CPU demands and uses
are the same for a given CNS)

E? times in Alg. 4. The complexity of the simulation procedure (Alg. 3) is
then O((|V| + |€]) x |E*]). Furthermore, at worst we have || = w
and |E7] = %, so the complexity of the link embedding phase is
OV x [V*I2).

It can then be concluded that the complexity of the NRPA algorithm
(Alg. 1) is O(|&%| x |E] x NY) = O(|V*|? x |[V|*> x N'). Note that we
used the simplest possible embedding function for links. If one swaps it
out for a more elaborate function, such as an exact method[62], one taking
congestion[63], delays[64] or survivability[65] into account, the complexity
would typically increase. We expect such a costlier function to be used in
a more realistic setting. Also note that in a typical scenario, both physical
network and virtual networks are sparse, i.e. |V|> >> |&| and |V*]? >>
|E7| hence the complexity of BEFS can be assumed to be reduced to O(|V|)
and the complexity of NRPA to be O(|V*| x | V|- N'). Furthermore in most
cases |V| >> |V?| and it further reduces to O(|V| x N?).

Proposition 2. When X goes to infinite, the refinement Algorithm [has
to execute at most O(diam(G)I€°1) iterations of the main loop (lines 4 to

25).

Proof. We observe that, because of lines 22-23, a new iteration can only
start if the reward has improved. Hence, the maximum number of iterations
the for loop of lines 4-25 can do is bounded by the number of possible values
the reward function can take. Intuitively, the worst case scenario is to start
with the smallest non-zero reward and to improve it by the smallest possible
amount at each iteration, until we reach the maximum value of the reward.

We note the number of possible values for the reward, 2—; depends on
the possible values for the bandwidth consumption, > BWZ,UJ, (as

V(vi,v5)€E

r® and Y, CPU, do not change from one solution to the other). The
v; €V
bandwidth consumption of a single virtual edge itself depends only on the

length of the physical path it uses. This path is of minimum length 1
and its maximum length is the diameter of G, diam(G). Since it is the
case for each paths, at most there are diam(G)¢* possible values for the
reward function. Hence, when X = oo the refinement algorithm becomes
non-polynomial with respect to |E7]. O

For this reason, in the next proposition we analyze the complexity for
bounded values of X.

Proposition 3. The NEPA algorithm has a computational complexity of
O(|V| x (N + N' x K x X)) when physical and virtual graphs are sparse,
where K is the number of candidates per refinement, X is the maximum
number of times we try to refine the solution and 1" is the level where re-
finements are performed.

Proof. First, note that the number of simulations does not change com-
pared to NRPA and is still N'. It follows that the total number of opera-
tions performed by the simulation part of the algorithm is O(|V| x N') as
in NRPA.

The complexity of NEPA is then O(|V| x N+ Z) where Z is the number of
operations incurred by all the refinement steps. At each refinement step,
we perform X x K BFS searches of complexity |£]. The total number of
operations performed by refinements is then Z = O(N" x K x X x |[&|).
In the case of a sparse graph, this number is Z = O(N" x K x X x |V|).
The total computational cost of NEPA is then

O(JV| x N' 4+ N x K x X x |V|) = O(|]V| x (N' + N" x K x X)) (3.11)

Overall, NEPA has a greater theoretical complexity than NRPA. However,
numerical results from Appendix [C] show that NEPA is far more effective
than NRPA when they are given equal time. O

3.5.1.6.2 Memory Complexity

Proposition 4. The NRPA and NEPA algorithms have a memory com-
plezity of O(|V?| x N

Proof. First, in the worst case, each simulation procedure call can lead
to finding |V*| new unexplored states, each of which requires to store a
float representing its weight in the policy. If every state found in every
simulation call is seen only once, we have to store N' x |V?| floats since
as seen in the previous proofs, we call the simulation procedure N' times.
The other source of memory consumption in NRPA is the storage of the
sequences, seq and seq®. Those are both of length [V*|. Since NRPA
calls itself recursively, we also have to count the sequences stored by its
infant calls. There are at worst | such infants since the recursive call depth
is of 1 and there is only one call of a given level active at the same time, and
once a call returns it frees the memory. Hence the memory consumption
of the stored sequences is O(l x |V*]). The total memory complexity of
NRPA is O(|V®| x N +1 x |[V*]) = O(|V?| x N'). For NEPA the memory
complexity remains the same as NRPA because the refinement procedure
does not incur a significant memory usage, as it only requires memory to
store the best solution (a virtual network which requires O(]V*|) memory
in case of a sparse graph).]

3.5.1.7 Dimensionality reduction and pre-treatment

In practice, we make a slight modification to the MDP model in order
to make the NEPA search more effective. First, we note that for a given
couple of virtual node v} and physical node v;, if the maximum amount of

bandwidth required by links adjacent to v{" exceeds the maximum available
bandwidth of links adjacent to v;, then we know one of the adjacent links of
v¥ would be impossible to embed if v{" was placed on v;. Hence, we reduce
the size of the action space by removing such actions before running NRPA.
Similarly, if the sum of the bandwidth adjacent to v exceeds the sum of
bandwidths available on links adjacent to v;, then we know it would not be
possible to place all virtual links if v was placed on v;, hence we remove
this action from the set of possible actions for placing v{. Finally, before
the placement, we sort the nodes according to the number of physical nodes
that could host them. This draws on the idea that if a node has only few
possibilities for placement, we should treat it first, otherwise there would be
a high chance of blocking the possible host with another virtual node placed
before. By doing this, we avoid exploring some unfeasible placements.

3.5.2 Numerical Results

In this section we extensively compare NEPA with several other methods
from the state-of-the-art, demonstrating the superiority of its performance
consistently on various scenarios. We first compare on synthetic physical
networks generated randomly. Then, algorithms are tested with real phys-
ical networks from the topologyZoo dataset. Finally, in order to assess
the performance of each tested algorithm on large problems against the
theoretical optimum, we compare on a set of Perfectly Solvable Scenarios
[66], which are constructed so the optimal is known but is very hard to
achieve. This step is often overlooked in the literature but we argue it is
of key importance in order to assess the quality of each algorithm. Note
we make sure the range of CPU and Bandwidth capacities fit reality: for
CPUs, a typical server CPU (such as intel Xeon) would have between 8 and
56 cores (for example Xeon Platinum 9282). Also note that some server
motherboards can host 2 CPUs (for example ASUS WS C621E). For eth-
ernet links, it is common to find bandwidths in the order of 50-100 Gbps,
see for example [67].

3.5.2.1 Compared methods

All our experiments are run with an Ubuntu machine with a 16-core In-
tel Xeon Gold 5222s machine with 32 GB RAM, except for GraphVine
which requires to be executed on another machine equipped with a GPU
(see below). We compare our proposed method NEPA with the following
methods:

e MaVEN-S [36] is a Monte Carlo Tree Search based algorithm which
uses a model equivalent to ours for modeling the VNE and the same
shortest path algorithm for final reward calculation. It makes sense

to compare it with our method as it is similarly based on randomly
simulating node placements but uses a different exploration strategy.
This strategy, called Upper Confidence Bound for Trees explores the
MDP as a tree of states (rooted in the initial state). It chooses
where to descend in the tree by balancing exploration of new states
and exploitation of known states, with the objective to minimize the
regret of exploring new states given the expectated reward yielded by
known states.

e UEPSO [(] is a particle swarm optimization (PSO) based meta-
heuristic algorithm that shows good performance for the VNE.

e GraphVine [46] is a recently proposed method that exploits graph
neural networks for selecting the physical nodes on which to place the
virtual nodes. Note that GraphVine, like us, learns online, different
from other neural network approaches such as [37], which requires an
extensive offline training first, tied to the physical network. For this
reason, a comparison with these other approaches would not be fair.
This is why we prefer to compare with [46] instead.

For the sake of clarity, we keep in this section only the comparison with
the state-of-the-art methods (mentioned above). We postpone the abla-
tion study of NEPA (and its improvement over NRPA) to Appendix |C}
which shows the benefits brought to NEPA by weight initialization and
neighborhood-based refinements. We implemented all these methods in
the Julia programming language and made the code available as open
source[68], except for GraphVine for which we use the publicly available
Python/Pytorch implementation. In order to compare in the fairest man-
ner possible, we run the following experiments:

e We run NEPA with parameters N =5 and [= 3.

e MaVEN-S is executed with a computational budget (i.e. the total
number of link placement attemps it executes per CNSs) of 445 link
placements per CNS. Note we tried to run it for longer times (up to
670 iterations per CNS) without a significant improvement of results.

e Since UEPSO is a non-recursive algorithm, it is easier to stop it at
any moment and get a valid placement. Hence here, we simply stop
UEPSO after a certain amount of time equal to the mean time taken
by NEPA.

e Finally we run GraphVine with the default implementation, as it is a
quite different algorithm which does not rely on repeated simulations
and since it can exploit a GPU. However with our original machine,
we note that it is the slowest to run. As shown in [46], the algorithm

is better suited for using a GPU. For that reason, we run it on an-
other computer which has a GPU (as it gave the best runtime). This
machine uses an nvidia A3000 and an Intel i7-11850H CPU.

Runtimes are depicted in Figure [3.8 We run each of the described ex-
periments 10 times with different random seeds, except for GraphVine for
which we run it only once due to the high computational cost. Note that we
compute 99% confidence intervals of acceptance and revenue-to-cost ratio
for MaVEN-S, UEPSO and NEPA. Some figures do not display them be-
cause they are too narrow to be visible on figures. (i.e. confidence interval
in the order of less than £ 0.01 for acceptance and revenue-to-cost ratio).

3.5.2.2 Results on synthetic physical topologies

We start our experiments with a sensitivity analysis. For this part, we
generate scenarios with default parameters and we vary each of these one
by one in order to assess the results on a representative set of cases. Default
parameters are reported in Table We choose to generate our CNSs and
virtual networks with the Waxman generation algorithm as it is commonly
used in the VNE literature [36][33]. We choose to generate 500 CNSs
per scenario as we validated experimentally this gave enough time for the
system to stabilize in terms of acceptance ratio. We then vary parameters
in the following ways :

e We generate CNSs with varying Poisson arrival rates between \ =
0.02 and A = 0.08 arrivals per second. (results in Fig. 3.9.1/3.9.5)

e We generate CNSs with sizes (number of virtual nodes) with mini-
mum size 744 and maximum size 13+ for i € [0,9]. (results in Fig.

3.9.2/3.9.6)

e We modify the physical network from the default scenario by remov-
ing bandwidth and CPU capacities in increments of 5 from links and
nodes of the physical network, making resources scarcer. Since ini-
tially the resource capacities (CPU and BW) are chosen uniformly
at random between 50 and 100, their mean value is about 75. Since
we remove from all nodes and links, the mean number of resources
for the different scenarios is 70, 65, 60, down to 45. (results in Fig.
3.9.3/3.9.7)

e We generate 10 different physical networks and CNS sets for each
physical network size of 50, 60, 70, 80, 90, 100 nodes. In those sce-
narios, we use the default parameters, but with A\ = 0.04 and CNS
sizes as specified in Table We scale the size of CNSs with respect
to the physical network size since our early experiments showed that

Parameter

Default Value

CNS arrival rate A

0.02

CNS departure rate u

0.005

CNS generator

Waxman (a = 0.5,8 = 0.2)

Number of CNSs

500

Min [V 7] 7

Max [V 7] 13

V 75

E 273
CPU demands (number of cores) 1-50
BW demands (Gbps) 1-50
Physical CPU capacities (number of cores per node) | 50 - 100
Physical BW capacities (Gbps per link) 50 - 100

Table 3.2: Default scenario generation parameters

Number of physical nodes of | Number of virtual nodes
50 7-13

60 8-14

70 9-15

80 10-16

90 11-17

100 12-18

if the CNS sizes were the same for all physical networks tested, it re-
sulted in too easy scenarios for larger physical networks, where most
algorithms reached performances close to 100% acceptance rate, mak-

Table 3.3: Mean number of nodes of virtual networks for each size of phys-
ical network tested

ing the comparison pointless. (results in Fig. 3.9.4/3.9.8).

Figure shows that on every tested scenario, NEPA beats all other al-
gorithms by a large margin, consistently beating MCTS of around 50% of
acceptance and the best of other contenders (which are close to each other,
above MCTS) by 15%, regardless of the case. In terms of revenue-to-cost
ratio, it is striking to note that NEPA beats other algorithms by an even
larger margin than for acceptance. This means NEPA tends to use less
physical resources, which is the reason why it achieves a better acceptance.
This suggests that reducing the overall consumption of each CNS enables

GraphVine
NEPA
UEPSO
MaVEN-S

0.0 0.2 0.4 0.6 0.8

1.0 1.2 1.4

Runtime per virtual network (seconds)

Figure 3.8: Mean runtime per CNS for each algorithm (calulated by aver-
aging runtime per CNS on all runs of varying A\ scenarios)

us to leave more resources for future incoming CNSs, making it possible to
place them.

For variable size physical networks (figure [3.94), we observe again that
NEPA beats other contenders by a large margin, since it accepts up to 60%
more than MaVEN-S, and consistently beats it by 20 points of acceptance.
It is remarkable to note how regular the patterns are in the acceptance
plots, especially given that results are averaged for different topologies (re-
call that in the variable size experiment, for each seed, we generate a differ-
ent random topology). The difference between algorithms is almost always
the same regardless of sizes and difficulty of the instance, with NEPA as a
clear winner. Regarding revenue-to-cost ratios, we note that all algorithms
except NEPA have average ratios between 0.5-0.6. NEPA beats them by
a large margin, since it is the only one to consistently reach 0.7 to 0.75 of
revenue-to-cost ratio, showing again the effectiveness of the neighborhood
based refinement in increasing the quality of the solutions found.

3.5.2.3 Real Topologies

We try all algorithms with real topologies from the TopologyZoo [25]
dataset as physical networks. We choose to use topologies that have be-
tween 60 and 200 nodes and are connected. This leaves us with 26 topolo-
gies with |V| between 60 and 197. We use bandwidth capacities chosen
randomly between 250 and 300 Gbps and CPU capacities between 50 and
100 cores. CNSs are generated with our standard scheme but with A = 0.04
arrivals per second.

The results depicted in Figures and show that NEPA is a lot
more effective than UEPSO and MCTS. We achieve improvements of at
least one order of magnitude in terms of acceptance compared to these algo-
rithms with our best result being to more-than-triple their acceptance ratio
on the Syrin topology by using NEPA. GraphVine interestingly performs
much better on those topologies than on random ones, however NEPA still
is the best in terms of acceptance rate with only few experiments where
GraphVine manages to reach a similar acceptance as NEPA, and only 2
where it beats our algorithm by a thin margin. In terms of revenue-to-cost
ratios, results are on par with acceptance, since again NEPA beats other
algorithms (GraphVine aside) by an order of magnitude. We note that on
some instances, GraphVine has a worse revenue-to-cost ratio than NEPA
but still matches it in terms of acceptance (CogentCo, GtsCe, Pern, ...).
This observation implies that although improving revenue-to-cost ratio is a
key factor in order to reach a higher acceptance, it is not the only param-
eter to look for, since an approach can have a worse revenue-to-cost ratio
but a better long term acceptance ratio.

Overall, our results suggest that NEPA is the best suited method com-

1.0
—«— MaVEN-S

o -+~ UEPSO
0.8 —e— NEPA
; —=- GraphVine
2
©
0.6
Q
|9}
[}
<

0.41

0.02 0.04 0.06 0.08

Arrival rate A

3.9.1 Acceptances for varying arrival

rate ()
1.0
0.8
0.6
0.4
45 50 55 60 65 70

Mean number of resources

3.9.3 Acceptances (varying CPU &
BW capacities)

1.04
L
-
c
— 0.84
%)
o
S -
S .
1 1~ T
g 0.6 \‘{? M
5 Il Tl S-Sy =g - =g
o
* 0.4

0.02 0.04 0.06 0.08

Arrival rate A

3.9.5 Revenue-to-cost ratio for

varying A
1.0
0.8 /
e *w-v”“—hw,“/*’_ﬁ-“
Mﬁ___'
0.4
45 50 55 = - 70

Mean number of resources

3.9.7 Revenue-to-cost ratio (varying
CPU & BW capacities)

1.01

0.8

0.6

0.4

10 12 14 16 18
Mean number of nodes

3.9.2 Acceptances for varying CNS
size

1.01

0.8

0.6

0.4

50 60 70 80 90
Size of physical network |V|

3.9.4 Mean acceptance ratios for
varying physical network sizes

1.01

0.8

0.6

0.4

10 12 14 16 18
Mean number of nodes

3.9.6 Revenue-to-cost ratio for varying
CNS size

1.0

0.8

0.6

0.4

50 60 70 80 90
Size of physical network |V|

100

3.9.8 Revenue-to-cost ratio (varying
network sizes)

Figure 3.9: Results for sensitivity analysis experiments

0n

BRI I I I RIIIITITIITIIR. U1K
R TRTPHTT
RASSARRNY

s MU
PRI TR
RSRRRRRRRRRSNY

R A AR G A RGN A A!
RCEREERH

TT0Z33UaNEMIA

TT0ZIRUIARMIA

AR R IR IR I IIRIII IR IIIRIIIIIIIIEE. 3111750
R R P TR e
ARRANSRRRRRRRRY

R R R AR AR IR SR T IR E IR IR
RRRSRANRRSRRY

aiedsn

TRIIRIIIIIIIIIRIIFIIIFIHRIIIIIL. 1590p2Y
FuAUBAURLAURALBLOMS|
ANSSRSRSSNSS

RIIIIIIIIIXKIIXIIIIRRIIIEL. 21538pY
T T
TR

IR I I I IR IIIIIIIIIIIIITIIIIR. o2
ONONOHONONGNONONONONCNONONONONENOND) PINEIRL
AR AR RARRARRS|

TRRIIIIIIIIIIIIFIIIIERIIITIA. piereL
iGN GH IO HONONTNGHEND
ARRARRARRARRRY

TR I IIIIIIIIIIIIIIIIRII XXX IIXKIIIIRIIY. 031u2600)
B e e I S T

TRXXIIIIIIIIIIKIIXIIIIIREIILIL. 0513603
T

L
TRRERRARRARRRY

ARSREERIARRAREARR

uo)

uol

et acnct v e R 2951
IONCWON OO OO OO N ON! 9519 2519
RSARRRRRARNARRARNARS RRARSRRNARNARY
OO A T TR R SRR 0363190 RO ISR 0361190
R O L M Y B L N T e
RRIRNRRRRINRRRRRRRRNRY ARRSRRIRNRANNANSSY
|9:9:0.0:0. 00,0 0.0 0.0.0. 0.0 0.0:0. 00,0 0.0 00,0 0.0 0.0:0. 0.0 0.0.0.0:0.0.0.0.0. B s} L0 0:0.0.0.0.0:0.0.0.0. 0.0, 0. 0.0 0.0.0.0:0.0.0.0.0:0.0.0.0.0.0. B[Lo}
AN AN S ARG AU AR RG] R A AR A EAGRGAG

ERARRSRRNRRRR TR RN

RRXXIRK L LRXLLLZRLIERLLLLRS,. Snqwinjod
R P O el
EAUSRRNARNRRNANSSY|

RO AT SRS LIXIISTRIIS. S1quinjod
PR A R

SRR R A IR T LI TIIRIIT LTI, 21n01a1u]
e GG RO R e AG R SRe LR A GRETY
RS SEEERRRERERERY

TR TSR ET IR, a1n0s03u]
A]
ISR

. See Appendix [A] for large vers

auRl

RRIXXRE L LRI LLLIZLSRLLLLLRS 20l
NN NN RGN O NN G N NERGNEN
LSRR

lance

ze- aums TR AR KR LL LT LLLILLLLLLLLLA NS
iRk AU AU AN B 4 AU MU ANEW A ISR MRk AU AU AN SR AN UBNANS
ARSENTERKANTANSY TRERSARKONRANTORRERTY
7% S Lnossi * nossi
ARRNRNNRRNNNNSN ANSSARININRRRNNANA
T S S SIS TS 12U 0] weseeresseeeesesesese SLILILD)
N SN BN NN N EWOM GNEME BN BN KN IXENON BN BN ON XM ONOMENENENEN N
RRSSRRARRSRRARNSIRY TRRUSRRARUSRRARRRRRSRRY
T S S TS oune’] B S S X SISl oU1e]
iAURURUAUR UnURURUAUALAURUALAUAUAURUAURAURURUALA
RRENTERCERTERNCERCAR AR TAN TR
T 3 uiad
G WONG X GNONON NG NOND| (N ONGHGN O ANO HOXOXONONONCNGNO RS
RSSNRRNIINRY AL LILLLI LIRSS

O MG SR D KO AEAE O
SARURNSARRR

j0us3 B KRRyt 10US
A L e L B e B
CERSSRERRSRRCRRRRSRREER

e e e et w;:.
D L e | ozeuun
PSRRIy

T K KOSy 1T0zhauILN
A P e R
TSR E R

[
[

B R AR R RRRRRL \nousy
XCXONCNONONO NN ONOHONONONG] viRusy.
RNRRNRRARRNRANRY

B AR AL o
0K OO NONONONON DN DN ON OO NONO NON DN E NN | visusy
FRRRRARRRNRARRRARRNRARRANRS,

R IA R AR AR RIRRAL. 1au1
HuhaaunsnuneAanaces I 3
[RRRNSRRNRNARY

. Jau
e R R A R R e 5
RARRARARRARNARRRIRARRARRAR

B3R Graphvine
B Graphvine

R I P IIIIIIIIIFIIEL. 1071021109
R R R e e e
ERSRRARRARRARRRRNARNS

e :m
R R R P T ey Toeroeveo
ARRARTRIRRAREIRRARRANRARNANSS

>
Qo
=
<]
—_
L
=
—_
o
<}
—
<
w0
=
=)
n
]
/~
%)
-4
—
o
E
EARSRNRARNAANAS| +
5}
=}
—
<
O
o=
w0
>
=
o,
—
<
)
—_
)
o
L
(]
=}
<
)
[oN
<]
Q
5]
<

hortest-path length var

e R
1 CM B WO MWW OB M MW DM A MM P il
RARRRRRERRARRNRRARRNY

T ISR 2 pousonu)
e T T T e e e e pousEl
ERRRRRRRARRARRARRNRRARIARRN

UEPSO

PORRRIIIIIIIIXRRIIIFFRIXL. 10uL1104
ARG RGN RO RCAURAERARY
TRECRRRRAIRS

UEPSO

TR RIS RIS AT IISRISIIIIIAL, 1011110,
A2 ACAEAEAEAGREAL ARG AL AL ARG AIAGAGAGAGACAGAG| o
AR AR R AR RRRRR AR

e e R
MOMONONOHONONONONONIHONONONE) Aein
R RRRRRRY

e RO
[ITHONONCHONONONENONONONONONOHONONONOHOND NONDHONDN | Hein
R R R R R R RR R

10l 227 mavens
081 777 MaVeEN-s

© < © o = m

S

08
02
0.0
07
02
01
0.0

S S s S S
ones ssuerderry onje1 3503-01-3nuBASY

Figure 3.10
increasing s
of the figure.

See Ap-

Revenue-to-cost ratios on real physical networks.

pendix El for large version of the figure.

Figure 3.11

Mean dist. Diam. Std. dev. of shortest path length | Clustering coeff.
Correlation 0.72 0.65 0.71 -0.17
p-value 3x 107> 3x 107 5x 107° 0.38

Table 3.4: Correlation between graph topological statistics and improve-
ment ratio from NRPA to NEPA for real topologies.

pared to state of the art algorithms when it comes to placing CNSs on real-
world networks. We note however that although the GraphVine method
struggled on random topologies, it is competitive when it comes to real
networks, although not as good as NEPA overall. We think it would be
a great area of future research to try to combine both methods, as NEPA
might be able to leverage the addition of GraphVine’s neural network for
reusing information learned accross experiences. Results also suggests that
the topology of the physical network has a great influence on the perfor-
mances of each algorithms.

Starting from that observation, we investigate the key topological fea-
tures that enable NEPA to peform so much better in those cases. Our data
exploration reveals that real topologies tend to have a larger diameter and
mean shortest path length (e.g overall longer paths) than generated ones.
They also tend to have a lower link density (i.e. they have "less" edges).
We depict statistics for these topologies compared to generated ones in
in Appendix [D| The difference between real and synthetic topologies
questions the appropriateness of the widely used in the literature Waxman
Generator for VNE studies.

Furthermore, there is often a larger standard deviation in the length of
shortest paths (i.e. distances) in real topologies than in synthetic ones. We
notice that the differences between NEPA (which uses distance information
a lot) and other algorithms is the most important for real topologies where
the standard deviation in shortest path length is the largest. For exam-
ple with Syrin, where acceptance rises from 0.18 - 0.23 for MaVEN-S and
UEPSO to 0.77 with NEPA, and where the shortest path length standard
deviation is 6.77. We observe the same pattern with VtlWavenet2011, Us-
Carrie, RedBeste, Cogentco or TataNId. On the other hand, when standard
deviation is low (Ulaknet, Internode, Sinet, Forthnet, ...), we notice that
the differences between algorithms are much lower, as the information to be
leveraged from distances is less important, since choosing a "bad" place-
ment would result in a smaller augmentation of the cost. Note however
that NEPA still beats all other algorithms in those cases, although it is
by a thinner margin. We quantify the advantage NEPA gets from exploit-
ing distance information (i.e. using weight initialization and refinement)
by calculating the augmentation ratio between the acceptance of NEPA
and the acceptance of NRPA-W (which is depicted in Appendix for

each real-topology scenario. We choose to compare against NRPA-W as

it is the same algorithm, but with no help from distance-based informa-
tion during node placement. We then calculate the correlation between the
augmentation ratio and different topological measures for results on the
real-world topologies.

Those correlation results (obtained using Pearson correlation coeffi-
cient) are depicted in Table We find strong positive correlations of 0.65,
0.71 and 0.72 respectively for diameter, standard deviation of distances and
mean distance, meaning distance information is particularly important to
exploit when the physical network has a high standard deviation in the
distribution of distances, such as in many of the real networks studied.
This explains why our algorithm can perform so much better on these in-
stances. This is relatively intuitive to understand: these cases correspond
to instances where there are a lot of chances to make "high-cost mistakes",
e.g. where a single virtual link could incur & lot of cost by being placed on
two physical nodes that are far from one another. Our distance-based tech-
niques explicitly mitigate this by ensuring virtual nodes are placed close to
one another, which results in an even greater performance boost on those
cases. Also notice that in this paragraph our analysis was focused on stan-
dard deviation but applies to the other distance related metrics, as mean
distance, diameter and standard deviation all have a correlation between
one another of 0.99, according to our measurements.

3.5.2.4 Specific case: Perfectly solvable scenarios

In this section, we evaluate each algorithm on perfectly solvable scenarios
(PSS). A PSSis a kind of scenario proposed by Fischer [66] that is generated
such that there are only CNS arrivals and no departure, and such that
it is possible to place all CNSs. The scenario is generated so the only
solutions where all CNSs are placed leave 0 remaining resources. Hence it
is a very hard, but theoretically feasible scenario (i.e. 100% of acceptance
is reachable).

We argue evaluating algorithms on such scenarios is an important but
often overlooked practice in the literature. Indeed, it is generally infeasible
to evaluate the suboptimality gap as computing the exact placement would
be computationally too expensive. We generate 10 PSS scenarios, using the
additive algorithm from [66] . The generation is done by first generating
CNSs, then "adding" them in order to form the physical network. The
"addition" step is done by treating each virtual node iteratively, either
reusing an already created physical node or creating a new one for the
current virtual node (the choice is made probabilistically). Then, once all
physical nodes have been created, they are linked so that if two nodes host
neighboring virtual nodes, bandwidth is added to the link between them
equal to the requirement of the corresponding virtual link.

Instance | PSSO | PSS1 | PSS2 | PSS3 | PSS4 | PSS5 | PSS6 | PSS7 | PSS8 | PSS9
V] 67 86 73 94 111 104 124 121 135 150
[V 7-10 8-11 9-12 10-13 | 11-14 | 12-15 | 13-16 | 14-17 | 15-18 | 16-19

Table 3.5: Number of nodes for physical and virtual networks of PSS sce-
narios

g
o

777, MaVEN-S UEPSO gxy GraphVine [NEPA

4
@

Acceptance
I o
IS o

Revenue-to-cost ratio

o
N}

Z: g3 7
0.0
PSSO PSSl PSS2 PSS3 PSS4 PSS5 PSS6 PSS7 PSS8 PSS9

Figure 3.12: Acceptance and revenue-to-cost ratios for perfectly solvable
scenarios

Each scenario PSSi is generated from a batch of 100 random CNSs of
random size 7+ to 10+ and a probability of reusing existing nodes of 0.93.
This parameter was chosen empirically as it enabled us to generate graphs
of sizes similar to those we experimented with in the previous section, as
shown in Table Our experiments show the same kind of results (shown
in figure as for the previous part, 7.e. that NEPA outperforms all
other methods by an order of magnitude (consistently beating the second
best method, UEPSO by accepting up to 35% more CNSs in PSS9), both
in terms of acceptance and revenue-to-cost ratio. However, it is striking to
note that we never achieve a result of 100% of acceptance (the best one is
NEPA on PSSO - the smallest case - with 69%), even though the revenue-to-
cost ratio gets really close to 1 (up to 0.965 in the first scenario). This means
that although we achieve an almost perfect online optimization objective,
resources on the physical network are badly used, leaving a lot of "holes"
which are unusable. We believe this shows the need for the VNE community
to investigate better reward functions which could assess the quality of a
solution with other metrics than pure resource usage (with the goal to define
whether a virtual network "fits" its embedding or not). In that regard, a
recent article [43] made a first step in that direction by proposing to enrich
the reward function with degree information, which slightly helps improving
acceptance depending on the algorithm used. However, the results shown
in Appendix |Bl demonstrate this reward function has no significant impact
on the results of the NEPA placement, suggesting it is ineffective when
the algorithm is already very good. Another possibility would be to place
virtual networks in batches, which might enable us to combine placements
better, at the cost of a higher computational complexity.

3.6 Conclusion and remarks

Our results illustrate that the widely adopted idea of optimizing placement
for reduced bandwidth [36] [37] [52] [46] consumption in order to let more
resources for future virtual networks works well. We show that pushing this
logic a step further by explicitly reducing the consumption of the found so-
lution enables our algorithm to reach even better results. The main hurdle
with the refinement step is the computational cost, which we overcome
by selecting promising solutions to refine instead of trying to refine any
solution. The NRPA algorithm is easily adaptable into NEPA due to its
recursive nature. It is an open question whether other algorithms such as
UEPSO could be modified in order to similarly select promising states to
be refined, which would enable them to keep the computational cost low
while finding better embeddings.

We shall now focus on the differences between MaVEN-S (which we call
a mean-based approach) and NRPA and NEPA (which we call max-based
approaches), in an effort to try to explain why max-based approaches per-
form so much better than the MCTS-based MaVEN-S algorithm (refer to
Appendix [C] which shows the ablation study of NEPA, also demonstrat-
ing that NRPA without the improvements brought by NEPA outperforms
MaVEN-S), while both types of algorithms are Monte Carlo Search algo-
rithms that try to balance exploration and exploitation of the tree formed
by the MDP underlying our embedding problem.

In figure 3.13] we illustrate with a toy example the potential results
obtained after executing 6 random simulations (with a policy that could
either be given by NRPA/NEPA’s policy matrix or by MaVEN-S’s tree).
The tree represents the MDP, with the final values obtained through sim-
ulations at its leaves. This tree will serve us to illustrate the key difference
between algorithms: max-based approaches assume that the best solutions
lie near the single best solution found so far, hence they will explore regions
of the search tree even with low expected value as long as they contain the
best solution found so far. On the other hand, MCTS is designed to explore
the states with the best expected (mean) value. Hence, on the tree from
figure MaVEN-S, would exploit more the states of the bottom sub-
tree, since their mean value would be of 0.53, while max-based approaches
would go for the top sub-tree since the maximum known value is of 0.9,
even though the mean value would only be of 0.47.

We argue this is desirable for the VNE problem we solve, because opti-
mizing for the mean expected reward is typically suited for problems where
there is uncertainty, 7.e. where taking one action from a given state can
yield to several different states. This is not the case for the VNE, where
a choice of action from a given state always yields to the same state: the
model is a deterministic MDP. Hence it makes more sense to choose ac-

tions only according to the best sequence found so far and not according
to the best mean value. This is what max-based approaches do since they
optimize considering the best sequence found, as opposed to mean-based
MaVEN-S, which partly explains why MaVEN-S is outperformed.

Rewards measured ~ MCTS exploitation ~ NRPA exploitation

MDP of placement (represented as a tree of states) during simulation criterion criterion

Pttt 0.2 Fo---- 2
- 1 1
Pt E 0 3 Expected 1 Maxreward:
‘‘‘‘‘ ! : reward: 0.47 1 0.9 1
~~~~~ 1 1
~~~~~ H 0.9 |
~J
-
.- r——=--- b
,,,,, ' 0.6 X X
_____ ! 1 Expected Max reward:
<2 ! 0.4 1 reward: 0.53 1 0.6
~~~~~~ ' 1 1
~~~~~~~ ' 0.6 to----"

Figure 3.13: Toy example of MDP exploration choices

This property of NRPA, combined with neighborhood search (applied
in a frugal way to only the most promising embeddings) and a good heuris-
tic initialization of the weights of the algorithm are the key components
which enable us to formulate the NEPA algorithm, which gives state-of-
the-art results on commonly used synthetic benchmarks as well as on real
network topologies, while keeping the running time comparable to earlier
algorithms. Experiments on real topologies show that since it exploits dis-
tances between placed nodes, NEPA brings acceptance and revenue-to-cost
improvements of an order of magnitude compared other meta-heuristic and
Monte Carlo search algorithms. It also beats a state-of-the-art graph neu-
ral network based approach (GraphVine). On random topologies, which
are the most explored in the VNE literature, we also showed that NEPA
is the most robust of the tested approaches since it always reaches the
best acceptance and revenue-to-cost ratio. These results will help in solv-
ing the resource allocations problems in future 5G networks, but also help
the VNE community better evaluate its algorithms, since we characterized
how topological features can induce enormous differences between results
from different methods. In the future, we would like to demonstrate how
to use NEPA on other combinatorial problems where good neighborhood
search policies are also available, such as the TSP and the VRP. We also
plan on incorporating offline learning by reusing the learned weights from
past NEPA runs in order to learn better how to initialize future weights as
currently these data are not used once the placement is decided. In that
regard, a combination with GraphVine would be particularly appealing.
Implementing NEPA on a real 5G network is also planned in the near fu-
ture. Finally, we contribute to the VNE community by making our set of
instances and of implementations available online [6§].

Algorithm 6 REFINE procedure

Input: K: Max number of physical nodes candidates, X:Number of i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>