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Titre: Apprentissage Machine pour la Réduction de Modèles
Mots clés: Apprentissage Machine, Modèles réduits, Séries temporelles,Systèmes dynamiques
Résumé:Les systèmes dynamiques sontgénéralement modélisés à l’aide d’équationsaux dérivées partielles (EDP). Ces modèlessont étroitement liés à la façon dont les sci-entifiques observent le monde et, en tantque tels, ils sont limités par notre com-préhension des systèmes étudiés. En ef-fet, des modèles tels que les équations deNavier-Stokes ne modélisent que les interac-tions locales dans un écoulement, et négli-gent les phénomènes sous-jacents qui con-trolent le système dans son ensemble. Celaconduit souvent à des coûts de calcul exces-sifs associés à la résolution numérique desEDP. Dans cette thèse, nous discutons dela manière dont les données dynamiquespeuvent être exploitées pour dériver demeilleurs espaces de représentation pourles systèmes physiques ainsi que des mod-èles simplifiés, appelés modèles réduits.Nous présentons d’abord quelques unesdes approches de réduction de modèle exis-tantes. Nous proposons ensuite d’exploiterles capacités d’approximation des réseaux
de neurones pour construire de nouvellesméthodes de réduction de modèles. Les

techniques introduites dans cette thèse re-posent sur le concept d’hybridation entrela modélisation physique et les méthodesd’apprentissage machine. Nous nous ap-puyons sur les propriétés des systèmes dy-namiques étudiés pour construire des mod-èles interprétables, précis et en accord avecla théorie afin de résoudre les problèmesde coûts de calcul associés à la modélisationphysique standard, tout en limitant la dépen-dance des modèles aux données. Nous pro-posons deux nouvelles approches, la méth-ode CD-ROM qui propose de construire desmodèles de fermeture les modèles réduitspar la méthode POD-Galerkin, et la méth-ode iLED, qui est une approche de mod-élisation entièrement basée sur les don-nées, construisant des modèles dynamiquesinterprétables à l’aide de réseaux de neu-rones. Chaque méthode est illustrée par desexpériences numériques sur des cas testsstandards tirés de la littérature comme lesécoulements en deux dimensions, ou lessystèmes chaotiques tels que l’équation deKuramoto-Sivashinsky.
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Title: Deep Learning for Reduced Order Modeling
Keywords: Deep Learning, Reduced Order Modeling, Time series, Dynamical systems
Abstract: Dynamical systems are generallymodeled using Partial Differential Equations(PDE). These models are intricately linked tothe way scientists observe the world and, assuch, they are limited by our understandingof the behavior of the systems under study.For example, models such as the Navier-Stokes equations only account for the localinteractions in fluid systems, and ignore theunderlying phenomena that drive the systemas a whole. This often leads to a poor un-derstanding of the dynamical problems un-der study and excessive computational costsassociated with the numerical resolution ofPDE-based models. In this thesis, we discussthe way dynamical data can be exploited toderive better representation spaces for phys-ical systems as well as computationally effi-cient models, called reduced order models.We discuss some of the existing reduced or-der modeling approaches. We then proposeto leverage the approximation power of neu-
ral networks to derive novel, improved re-

duced order modeling methods. The mod-eling techniques proposed in this thesis arebuilt around the concept of hybridization be-tween physical and data driven modeling.We leverage pre-existing knowledge of dy-namical systems into theoretically grounded,accurate, and interpretable dynamical mod-els to address the computational costs is-sues associated with standard physical mod-eling, while avoiding complete reliance ondata. We introduce two novel modeling ap-proaches, the CD-ROM method which pro-poses to construct neural closure models forthe well established POD-Galerkin method,and the iLED method, which is a fully datadriven modeling approach that extracts lowdimensional, interpretable dynamical mod-els from data using neural networks. Eachmethod is illustrated using standard casesfrom the literature such as two dimensionalfluid flows, and chaotic systems such as theKuramoto-Sivashinsky equations.
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CHAPTER 1

INTRODUCTION

At the beginning of the sixteenth century, Tommaso Masini, a collaborator ofLeonardo da Vinci, stood on the roof of a building near the city of Florence.After careful study of the works of the master, he had managed to build a pro-totype of the first machine that would take humanity to the skies and all thatremained to do was to demonstrate the capabilities of the machine. Takinga leap from the roof, he quickly realized that the machine was in fact unableto sustain his weight and fell to the ground, breaking his leg in the process.While commendable from a scientific standpoint, as this experiment could onlylead to the advancement of science, he might have judged the price too high.Issues such as this one are still common to this day where, instead of a col-league’s physical integrity, countless man-hours and large amounts of moneymust be expended to advance certain areas of science. One can think of instal-lations such as the Large Hadron Collider and the ITER nuclear fusion project,which stand as large-scale international undertakings, involving significant bud-get and personnel investments. Similarly, prototyping is employed sparingly insmaller-scale applications such as the development of aviation and energetictechnologies, because of very high costs.
Because of these limitations, scientists are now carrying out some of thesemore expensive experiments in-silico, using a number of numerical simulationmethods. Indeed, the majority of physical phenomenons can be representedthroughmathematical models taking the form of a Partial Differential Equation(PDE). These models rarely have known closed-form solutions, making themhard to use directly. Fortunately, they can be solved numerically to approximatethe behavior of a physical system without actually constructing it in-vivo.
Despite the significant advantages of this dematerialized approach to ex-perimentation, numerical simulation is too limited for some of today’s applica-tions. Indeed, most numerical simulation methods, such as the Finite Elements
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Method (FEM,[83]) rely on the resolution of high dimensional systems of equa-tions, requiring significant computing power, which in turn leads to significantfinancial expenditure. A large body of work has been dedicated to address-ing these cost issues, ranging from pure algorithmic optimization to simplifiedmodels.
As part of these efforts towards the optimization of numerical simulationmethods, approaches have been developed to reduce physical systems to asmall number of driving phenomena. With the goal of limiting the number ofdegrees of freedom of the systems considered, and thus the computationalcosts associated with their simulation. These methods are now considered toform a subfield of numerical simulation, called Reduced Order Modeling. Wewill show in this thesis that despite their computational advantages, the accu-racy of reduced order modeling methods is often limited: considering only thedominant features of a system can lead to large approximation errors.
The aim of this doctoral thesis is to design methods for the ameliorationof Reduced Order Modeling methods, improving their accuracy while retainingtheir low computational cost. Our ambition is to preserve the essential charac-teristics of applicability of the proposed methods such as interpretability, sta-bility, or generality. To this end, we propose different data-driven approachesto improve the accuracy of the reduced equations describing the underlyingphysics, ranging from approximating PDEs in reduced spaces to purely data-driven methods agnostic to the underlying physics.
We note that numerical simulation methods have been intricately linkedwith the field ofmachine learning since their inception. One can think of Bayesianmethods being routinely used in combination with numerical simulation toolsfor design optimization or the application of Kalman filters to the control ofphysical processes. The closure models used to simulate the Reynolds Aver-aged Navier Stokes equations that use data-driven methods to fit the modelparameters are another example.
More recently, with the rise of neural networks, this hybridization betweennumerical simulation andMachine Learning has become amajor topic of study.These novel models have been shown to be very flexible and able to extractcomplex correlations from data. Numerous applications to numerical simula-tion have been proposed in recent years, which we discuss at the beginning ofthis thesis.
In this work, we propose leveraging the approximation capabilities of neu-ral networks to improve reduced-order modeling methods. We chose to focuson the interpretability of the resulting models, which is critical in applicationswhere guarantees on themodel are required. Because neural networks are noteasily interpretable, we developed various approaches to improve this specificaspect.
To achieve our goal of interpretability, we leverage the theory of dynami-



3
cal systems to build theoretically sound, hybrid models. Our first proposal re-tains the established system equations and combines them with data-drivenclosures, much in the fashion of classical physical modeling methods such asthe Reynolds Averaged Navier-Stokes equations. We then propose a similarmethod able to extract fully data-drivenmodels from data using dynamical sys-tems theory to derive the form of the model and improve interpretability.
Main Contributions
The main contributions of this thesis lie in the proposal of two novel methodsfor the reduced-order modeling of physical systems :

• The CD-ROM method: The method focuses on the closure of the POD-Galerkin [37, 32] reduced order modeling method. We explore the loss ofinformation that is inherent to linear dimensionality reduction, and howit can be accounted for. We show that the method can be seamlesslyused in combination with standard ODE solvers, and adapted to challeng-ing dynamics. We demonstrate the method on various use cases usedto benchmark dynamical modeling problems, such as laminar fluid flowsand chaotic systems.
• The iLEDmethod: This second modeling approach leverages the nonlin-ear dimensionality reduction capabilities of neural networks to build in-terpretable dynamicalmodels. Althoughmuchmore data-driven than theCD-ROM method, we show that iLED is grounded in dynamical systemstheory, and highly interpretable compared to classical neural network ar-chitectures. As with the CD-ROM method, iLED is shown to perform wellon various numerical simulation problems.

Outline
This thesis is organized around the various scientific communications that havebeen produced over the course of the Ph.D. The second chapter provides anintroduction to the topic of reduced order modeling, where we introduce themost important complexities that comewith the simulation of physical systems,while the third chapter emphasizes the deep connections that exist with thefield of Machine Learning. Each following chapter is then based on a specificcommunication. We provide below a summary of each chapter:

• Chapter 2 introduces the problemofmodel order reduction. A brief sum-mary of classical numerical simulation is provided, followed by a reviewof the dominant dimensionality reduction approaches. We then discussthe advantages of these methods and the challenges they raise.
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• Chapter 3 introduces neural networks, powerful function approximators,which were used extensively in this thesis. Emphasis is put on the poten-tial of neural networks for dynamical modeling and the existing applica-tions in the literature that helped drive and improve our proposal.
• Chapter 4 is based on the following publication :
E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, and M. Schoenauer, “CD-ROM: complemented deep - reduced order model”, Computer Methodsin Applied Mechanics and Engineering 410, 115985 (2023). https://arxiv.
org/abs/2202.10746.
This publication describes a major contribution of the thesis, the CD-ROMmethod, which is the method we developed to complement the POD-Galerkin reducer order modeling method using neural networks. Thismethod proposes to learn a closure term for an imperfect reduced ordermodel that results from the projection of the governing Partial Differen-tial Equations. The final model is both accurate, based on the projectedphysical equations, and continuous in time.

• Chapter 5presents additional results obtainedwith the CD-ROMmethod.The first part of the chapter is based on the following short paper :
E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, T. Dairay, R. Meunier, M.Schoenauer (2022). "Continuous Methods: Adaptively intrusive reducedorder model closure", Workshop on continuous time methods for ma-chine learning ICML 2022, https://arxiv.org/abs/2211.16999.
This contribution is an extension of the CD-ROMmethod, where we showthat the method could be used to model strongly nonlinear dynamics.These problems are generally not straightforward tomodel using the PODGalerkin method as their linear projection doesn’t result in a simple, low-dimensional algebraic expression. With this work, we show that the CD-ROM method can be used to model these terms while retaining the re-
ducible part of the equations.
A study on the ability of the CD-ROM model to learn the driving frequen-cies of a system is then presented. Further underlining the interest of theproposed architecture.

• Chapter 6 is based on the following paper :
E. Menier, S. Kaltenbach, M. Yagoubi, M. Schoenauer, P. Koumoutsakos(2023). "interpretable Learning of Effective Dynamics for multiscale sys-tems", Submitted, https://arxiv.org/abs/2309.05812.

https://arxiv.org/abs/2202.10746
https://arxiv.org/abs/2202.10746
https://arxiv.org/abs/2211.16999
https://arxiv.org/abs/2309.05812
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In this paper, we propose a method that leverages the dimensionality re-duction capabilities of neural networks. The interest of nonlinear dimen-sionality reduction for dynamical systems is well established and also dis-cussed in Chapter 2. Starting from this observation, we discuss the way areduced-order modeling strategy can be constructed by extracting botha reduced manifold and a dynamical model from data using neural net-works. Emphasis is put on the derivation of a theoretically grounded dy-namical model in the reduced space of a neural autoencoder: In order todo so, we start from the well-studied Koopman operator [169] and lever-age its links with the theory of partially observed systems (Mori-Zwanzigformalism[6]) to obtain an ansatz for the dynamics of the reduced system.We show that our method can transform high dimensional, non-linearPDEs into simple quasi-linear ODEs in suitable cases, as well as providean interpretable framework for the study of chaotic systems.

• Chapter 7 presents additional studies that are outside the scope of thethesis, linked to the potentiality of using dynamical systems theory toinform the construction of Deep Learning architectures. The work pre-sented is mainly focused on generative modeling, and was presented inpart in the following workshop short paper:
E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, M. Schoenauer (2022)."Continuous Methods: Hamiltonian Domain Translation", Workshop oncontinuous timemethods formachine learning ICML 2022, https://arxiv.
org/abs/2207.03843.

• Chapter 8: Conclusion of the thesis.

https://arxiv.org/abs/2207.03843
https://arxiv.org/abs/2207.03843
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CHAPTER 2

REDUCED ORDER MODELING

Contents
2.1 Full order simulation . . . . . . . . . . . . . . . . . 7

2.1.1 First principles . . . . . . . . . . . . . . . . . . . . . 8
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2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 23

This Chapter focuses on the numerical simulation aspects of this thesis,while the next Chapter will provide the background related to neural networksand their power as flexible function approximators.In particular, this Chapter establishes the challenges facing current modelorder reduction methods and the previous proposals that have been made touse data-driven approaches to improve their approximation accuracy.

2.1 Full order simulation
Full order simulationdesignates the rangeofmethods basedon thehigh-dimensionaldiscretization of a Partial Differential Equation (PDE). This Section briefly intro-duces themethods used to solve these problems inmost scientific applications,as well as the drawbacks of this approach that limit its applicability for certaincritical problems.
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2.1.1 First principles
The vast majority of complex physical problems can be represented by modelsbuilt from first principles. That is to say, models that have been derived fromphysical and theoretical considerations and are expressed in the form of PartialDifferential Equations as follows:

∂u(x, t)

∂t
= G(u(x, t), t), x ∈ Ω, t ∈ [0, T ],

u(x, 0) = u0(x),

u(x, t) = fD(x, t), ∀x ∈ ∂ΩD,

∂u(x, t)

∂x
= fN (x, t), ∀x ∈ ∂ΩN .

(2.1)

Where u(x, t) is the state of the system, Ω the computational domain, ∂ΩDand ∂ΩN are parts of the domain’s boundary ∂Ω on which the boundary con-ditions fD(x) and fN (x) are defined and u0 is the initial condition. Dependingon the form of the operator G, this general formulation can be used to rep-resent the behavior of various physical problems such as quantum mechanicsproblems or structure simulation problems. To propose a more concrete intro-duction, wewill focus in this Chapter on the incompressibleNavier-Stokes equa-tions, which are one model of the behavior of fluid flows at low-speed regimes.
These equations are representative of awide variety of dynamical phenomenonsencountered in more complex cases, while remaining tractable in an experi-mental setting. For this reason, we used them extensively as a test bed for thisthesis. They are formulated as follows:

∂u

∂t
= −∇p+ 1

Re∆u− (u · ∇)u,

∇ · u = 0,
(2.2)

whereu corresponds to the velocity field, p is the pressure field and Re is theReynolds number, which is a parameter that corresponds to the degree of en-ergy dissipation in the system. This parameter directly controls the complexityof the dynamics, which increases with its value. These equations can be usedto simulate the behavior of most simple flow cases, such as the case of the flowaround a cylinder, which is widely used as a benchmark for reduced-ordermod-eling approaches. To provide a concrete example of the type of problems wefocused on, a schematic of this specific case is displayed in figure 2.1.
The simulation problem consists in computing (an approximation of) thesolution of Eq.(2.2).
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Figure 2.1: Computational domain of the cylinder flow. Typical boundary con-ditions for this problem are also displayed. U⃗∞ is the inflow velocity and σ thefluid stress tensor.

2.1.2 Problem Discretisation
The simulation problem can be solved using various discretization methods.We illustrate the procedure here with the Finite Elements Method (FEM), histor-ically the most popular approach, and the method that was used primarily inour work. Note that other approaches are possible (Finite Differences, SpectralElements, Finite Volumes ...), which might be more efficient depending on thesimulation problem considered. However, all these methods generally face thesame issues that are tackled in this work, and our results are compatible withmost choices of full order discretisation method.

The Finite Elements Method proposes to divide a PDE problem such as theone in Eq.(2.1) into a number of smaller sub-problems. This is achieved by dis-cretizing the computational domain Ω in a number of sub-domains, designatedas elements, creating a partition of the domain, aka a mesh. After constructingthemesh, an approximation space for the solution of the PDE is chosen by con-structing a set of basis functions ϕi. The solution u(x, t) is then expressed asfollows:

u(x, t) =

N∑
i=1

ci(t)ϕi(x). (2.3)
There are a lot of choices possible for the form of the basis functions ϕi, theyare commonly defined as piece-wise polynomial functions constructed to benon-zero on only a fraction of the mesh, typically a small number of elements.Figure 2.2 presents this idea of discretization, with a simple 1-dimensional do-main divided into five sub-domains, over which the basis functions ϕi are de-fined as piecewise linear.
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Figure 2.2: A 1-dimensional domain meshed into five sub-domains, over whichsix piecewise linear basis functions are defined.
The main advantage of this discretization approach is that it simplifies thecomputation of the spatial derivatives of the solution u. Indeed, leveragingEq.(2.3) as well as the linear nature of the derivative, we get:

∂u(x, t)

∂x
=

N∑
i=1

ci(t)
∂ϕi(x)

∂x
. (2.4)

Hence the computation of spatial derivatives now entirely depends on thechoice of approximation space, defined by the functions ϕi. This has the ef-fect of removing spatial derivatives from a continuous PDE problem. Similarly,partial temporal derivatives simplify as follows:
∂u(x, t)

∂t
=

N∑
i=1

dci(t)

dt
ϕi(x). (2.5)

These simplifications allow for the discretization of a continuous PDE prob-lem such as the incompressible Navier-Stokes equations (2.2) into a system ofOrdinary Differential Equations (ODEs) that determines the value of the coef-ficients ci. However, the direct discretization of the PDE in Eq.(2.1) can be tooconstraining, depending on the form of the operator G. The computation ofsecond-order derivatives such as dissipative terms imposes the use of high-order polynomial basis functions ϕi to ensure sufficient smoothness, which inturn leads to increased computational costs. Similarly, accounting for bound-ary conditions is not straightforward with this direct approach. Instead, a dis-cretization of the weak (or variational [83]) formulation of a PDE problem is of-ten solved, to alleviate the aforementioned issues. This approach allows for thecomputation of the best solution in the chosen approximation space, yieldinga discretized system of ODEs :
∂u

∂t
= NS(u)→ dci

dt
= ÑS(ci), (2.6)
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Figure 2.3: Vorticity field of the case of isotropic turbulence represented onmeshes of various precision. Coarse meshes are unable to represent small-scale phenomena and filter out critical information. Turbulence data obtained
from Biferale et al. [127].

where NS represents the right-hand side of the Navier Stokes equations(Eq. (2.2)) and ÑS is the discretized system of N equations computed from thevariational form of the Navier Stokes Equations.
Note that the goal of this Section is not to give a complete introduction to theFinite Elements method, but only to introduce some of the challenges faced byfull order simulation methods. An extensive body of work has been dedicatedto the Finite Elements method. We refer the reader to introductory books suchas Langtangen andMardal [83] for a detailed formal description of themethod.

2.1.3 Accuracy & Computational Cost
As described in previous Section, PDE problems can be expressed as a systemofordinary differential equations using numerical approaches such as the FiniteElements Method. It is important to note that the resolution of the discretiza-tion (size of the largest element) is critical to the accuracy of the approximatesolution. Indeed, a coarse discretization will be unable to represent complexphenomena, as illustrated in figure 2.3 with a 2D snapshot of a turbulent flowat different mesh resolutions. The figure illustrates the fact that, as the meshgrows coarser, details of the solution are filtered out. This is a significant issueas the inability of the mesh to represent the solution significantly degrades theaccuracy of the computation, andmight also lead to a diverging simulation. Be-cause first principles models such as the Navier-Stokes equations often repre-sent the balance of various quantities (e.g. mass or energy) in the system, theiraccurate representation is critical to the accurate computation of the dynamics.

A more formal expression of this idea is the Lax equivalence theorem [3],which states that for a well-posed linear PDE problem, convergence and stabil-ity of the numerical schemes are equivalent. Here, convergence refers to the
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fact that, as the time-step size goes to 0, the time-discretized solution convergesto the true solution. Meanwhile, stability refers to the eigenvalues of the linearoperator resulting from the discretization of the PDE, stating that successfulapplications of the operator to advance the initial condition in time will lead tobounded solutions. In the case of PDE problems, the stability condition relatesthe precision of the spatial discretization (∆x) with the temporal discretizationprecision (∆T ), ensuring that ∆x goes to 0 with ∆T . Equivalency between theseconditions, as stated by the Lax theorem, implies that the high precision dis-cretization of the problem is required to compute a highly accurate solution.
Thismeans that while full order simulationmethods allow for the simulationof exactmodels derived fromfirst principles, their accuracy is bounded to the

precision of the discretization used to solve the problem. Unfortunately,this parameter also controls the computational cost of solving the problem, asthe number of elements, and thus the number of equations to be solved in thediscretized system scales with the size of the mesh.

Figure 2.4: Mesh used for the simulation of the cylinder flow case.

This constraint imposes the use of high-dimensional meshes even for sim-ple problems such as the aforementioned case of the cylinder flow. The meshthat was used in some of our work is displayed in figure 2.4, it contains approx-imately 12000 elements. While this is already a high-dimensional problem, itis possible to solve it in a reasonable time on a normal computer. However,real-life cases such as turbulent flows over a plane wing involve phenomenaon scales separated by multiple orders of magnitude. Thus, these problemscan hardly be simulated using full order simulation methods as they requiremeshes involving billions of elements, making them excessively expensive tosolve, even on the largest computers available.
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Figure 2.5: The idea of dimensionality reduction. The solution points lie on alower dimensional (in red) manifold than the full space used to represent them.

2.2 Dimensionality Reduction
In the previous Section, we explained that while full order simulation methodsare very accurate, due to their ability to exploit exact models, they are limitedby the dimension of the discretization used to solve the problem. In this Sec-tion, we discuss the fact that the dimension of most simulation problems canbe drastically reduced through various dimensionality reduction methods. Adescription of the dominant methods is given in the following Paragraphs, ac-companied by a discussion of their advantages and drawbacks.
2.2.1 Intrinsic Dimension
Representing the state of a physical system on a very largemesh is necessary toensure the accuracy and convergence of full order simulations. However, thishigh-dimensional representation is used in direct opposition to the fact that thestates of most dynamical systems effectively evolve on very low-dimensionalmanifolds.This idea is represented in figure 2.5, which displays a high dimensionalspace, defined by the directions ϕi. This high-dimensional space contains alower-dimensional manifold, in red, which holds all the solution points of theproblem. This is explained by the fact that a reduced number of dominant phe-nomena generally drives dynamical systems. These dominant phenomena canbe viewed as supporting a low-dimensional manifold that optimally representsthe systems. Note that the reduced representation space on figure 2.5 is pre-sented as a linear sub-space for clarity. However, these reduced representationspaces generally correspond to non-linearmanifolds, which do not directly cor-respond to low dimensional Euclidean spaces.In fact, this idea is not limited to dynamical systems but can be framed in
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the context of data compression. We often find that data correlations can beexploited to represent a dataset of N variables using a reduced number r offeatures, with r << N . This is directly due to the lack of an optimal basis torepresent the data. An immediate parallel can for example, be drawn with theinadequacy of the pixel space to represent most image datasets.
This aspect is especially important when computational costs become criti-cal, as it can drastically reduce the number of equations to be solved. Indeed,such low intrinsic dimensions of a system means that its evolution can be re-stricted to the aforementioned low dimensional, or reduced, space. Unfortu-nately, these low dimensional representation spaces are not known a-priori,and have to be extracted from data. To this end, a wide range of methods havebeen proposed. In the following Paragraphs, we provide an overview of thedominant approaches in the literature, distinguishing between two families ofdimensionality reduction methods, linear and nonlinear approaches.

2.2.2 Linear reduction

Linear methods have been extensively studied because of their ease of useand generality. We also discuss in this Chapter their interest in terms of inter-pretability, as they can be seamlessly used in combination with physical equa-tions such as Eq. (2.1).
The linear methods discussed in this Section are based on the idea ofmodal

decomposition, that is to say, the decomposition of the state of a system intoa linear combination of a low number r of modes vi ∈ RN that represent thedata more efficiently than full order discretization methods. Once identified,the modes vi span a reduced sub-space of the high dimensional discretizationof the system, so that any discretized system state u(t) lying in this space canbe expressed using a reduced number of features ai ∈ R:

u(t) =

N∑
i=1

ci(t)ϕi,

=

r∑
i=1

ai(t)vi.

(2.7)

With this expression, the problem is reduced to the determination of a lowdimensional vector of coefficients a(t) = [a1(t), a2(t), . . . , ar(t)], which achievescomputational gainwhen r << N . To simplify notations, we adopt the followingmatrix-vector notation:
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u(t) = Va(t). (2.8)

Here,V = [v1,v2, . . . ,vr] ∈ RN×r is a rectangular matrix assembled by stacking
horizontally the modes vi, which we denote as the reduced basis. The prob-lem then becomes one of identifying a suitable reduced basis to represent thesolutions of a system. As mentioned in the previous Paragraphs, there exists anumber of methods to identify this basis. In the following, we give a descriptionof the most common methods, starting with the Proper Orthogonal Decompo-sition method.
Proper Orthogonal Decomposition

The proper orthogonal decomposition POD method ([8, 9]), also known as theprincipal component analysis PCAmethod1, is a well-established algorithm. It ispart of most machine learning toolkits and can be used for various applicationssuch as data visualization or, for our purposes, dimensionality reduction.The method proposes to extract a reduced basis of principal directions or
modes from previously acquired system data. The method starts from a num-ber of nt realizations of the discretized state of the system u(ti), arranged ina matrix S = {u(ti)|i = 1, . . . , nt}, called the snapshot matrix. Computing thesingular value decomposition SVD of thematrix S ∈ RN×nt yields three differentmatrices:

S = VΣWT. (2.9)
WhereV ∈ RN×nt andW ∈ Rnt×nt respectively hold the left and right eigen-vectors of the snapshot matrix. The diagonal matrix Σ ∈ Rnt×nt holds the sin-gular values of S, arranged such that σ1 ≥ σ2 ≥ . . . ≥ σnt ≥ 0.The columns of V are the time-invariant spatial modes defining a POD ba-sis. These PODmodes are orthonormal such that ⟨vi,vj⟩ = δij , with δij the Kro-necker delta and ⟨·, ·⟩ is here Euclidean: ⟨vi,vj⟩ = vT

i vj . Thesemodes are usefulfor dimensionality reduction because, for any r < nt, the sub-space spanned by
1The equivalence between PCA and POD holds up to implementation details specificto the field. PCA is used in general data mining contexts while POD was specificallyproposed to treat dynamical systems. However the principles behind both methodsare the same.
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the basis Vr = {v1,v2, . . . ,vr} optimally approximates the data S over the setof N × r matrices in the sense that it minimizes the reconstruction error Erdefined as:
Er = ∥S−VrV

T
r S∥F , ∀ r ∈ [1, . . . , nt] . (2.10)

This error can be related to the sum of the discarded singular values: E2
r =∑nt

k=r+1 σ
2
k. This implies that the information captured by the leading r modesin the POD basis can be quantified by looking at the following ratio:

R(r) =

∑r
k=1 σ

2
k∑nt

k=1 σ
2
k

. (2.11)
The POD method has several advantages over other dimensionality reduc-tion approaches, it is available in most data science packages and takes advan-tage of thoroughly optimized matrix manipulation algorithms. Moreover, the

criterion derived in the equation above allows for the a-priori estimation
of the accuracy of the reduced basis. Choosing r so that R(r) = 1 yields aperfectly accurate representation of the data in the snapshot matrix S. We alsonote that R(r) = 1 for r = min(nT , N), thus, in cases where the number ofsnapshots nT is lower than the dimension of the discretization (N ), as is oftenthe case in complex simulation problems, the POD method can be used as a
lossless reduction method. This criterion also provides a direct interpretationof the method. Indeed, the POD modes have a clear statistical meaning asthey directly relate to the optimal representation of the available data.Another advantage of the method is that it conserves linear invariants ofthe data. That is to say, any linear condition verified by the data samples u(t) isalso verified by the POD modes vi:

Bu(ti) = 0 =⇒ Bvi = 0. (2.12)
With B ∈ RN×N a matrix that encodes the linear relationships verified bythe data samples. This is explained by the fact that the POD modes vi lie in thespan of the columns of the matrix S, which correspond to the data samples.Thus, they can be expressed as a linear combination of the data samples:

vi =

nt∑
j=1

cvi,ju(tj),

=⇒ Bvi =

nt∑
j=1

cvi,j Bu(tj)︸ ︷︷ ︸
0

= 0.

(2.13)

Finally, we see that any linear combination of the POD modes u(t) = Va(t)also verifies the condition in Eq. (2.12). This means that certain physical con-
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straints such as the conservation ofmass for incompressible flows are encodedin the reduced basis:

∇ · u = 0. (2.14)
Because the samples u(ti) used to compute the POD basis V all verify theconservation ofmass, any reconstruction on the POD basis will also respect thisphysical constraint. Indeed, the divergence ∇· is a linear operator. This partic-ular point provides additional physical guarantees that can be hard to obtainwith other reduction methods. Because of these advantages, the method hasbeen used to study complex systems, such as fluid flows, formore than 30 years([31, 17]).The method does have significant drawbacks, however, most notably, opti-mality in the sense of the reconstruction error does not imply that the basis canefficiently capture the dynamics of the system. Concretely, small reconstruc-tion errors often have a significant impact on the dynamics of a system andcan compound over time, leading to inaccurate reduced order models (ROMs).This is discussed in more detail in Section 3.2, while the following Paragraphsdiscuss methods that might be better suited for the representation of systemdynamics.

DMD

Dynamicmodedecomposition orDMD ([42]) is a secondwell-establishedmethodfor the identification of dominant modes from system data. Where the PODmethod uses the L2 reconstruction error (Eq. (2.10)) to construct the modes.The DMD is rooted in Koopman theory, as it assumes a linear relationship be-tween temporally ordered data:
ut2 = Aut1 . (2.15)

With A a matrix whose eigenvectors are the DMD modes vj . Note that thelinear relationship in Eq. (2.15) is equivalent to expressing the time evolution ofthe solution u(t) as a superposition of the eigenvectors of the matrix A suchthat:
u(t) =

N∑
j=1

cje
λjtvj . (2.16)

With Re(λj) and Im(λj) the growth rate and frequency associated with theeigenvectors vj of the matrix A. With this result, we see that Dynamic ModeDecomposition identifies both a basis on which the state of the system of in-terest can be expressed and a representation of the system dynamics. Thisis an important aspect as it suggests that the modes identified by the DMD
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method might be better suited to support the dynamics than POD modes. Inother words, where the POD modes have statistical meaning in the sense thatthey optimally represent the data in the snapshotmatrix, theDMDmodeshave
dynamicalmeaning as they are associated with specific frequencies in the sys-tem data.The goal of the DMD method is the identification of the matrix A. Over theyears, multiple variants of the algorithm have been proposed. We refer thereader to Tu et al. [66] for a description of these variants and a discussion oftheir advantages and drawbacks while we describe the general method in thisParagraph. Themethod starts with pairs of data points {(uk,u

#
k )}, k = 1, . . . ,K,with an assumed linear relationship (as in Eq. (2.15)). Note that the case of tem-porally ordered data is a particular case of this more general framework, aswe can identify uk = ut1 and u# = ut2 . A major advantage of this generalformulation is that it can accommodate samples extracted from different tra-jectories, but representative of the same system. After assembling thematrices

U = {uk|k = 1, . . . ,K} and U# = {u#
k |k = 1, . . . ,K}, the following problem issolved:

U# = AU,

=⇒ A = U#U+.
(2.17)

With U+ the pseudo-inverse of the matrix U. Thus, the matrix A corre-sponds to the solution of a least-square regression problem. By computing itseigenvectors vj , the DMD modes are obtained.Contrary to the POD method, there is no clear metric to order and selectthe most relevant DMD modes. A number of criteria can be used to select areduced number r of DMDmodes vj to reduce the dimension of the system ofinterest. The modes can be selected based on their norm, although some careshould be given to the scaling of the modes ([66]). They can also be selectedaccording to their associated frequencies and growth rate to focus on differentaspects of the dynamics, i.e., high frequencies might be filtered out to focus onlarger scale phenomena in the system. Another approach proposed is to lookfor a sparse representation of the snapshots uk in the basis of the DMDmodes
vj to identify a reduced number of expressive modes ([62]).
Applications of linear reduction

Themethods derived above have become ubiquitous for the analysis of dynam-ical systems and they have extended and applied to a wide range of problems.Their ability to identify particular modes associated with clear interpretationshas led to them being used to gain insights into the physics of dynamical sys-tems ([155, 139, 55]). We will show later in the thesis that they can also be usedto build dynamical models and forecast the behavior of a system outside of the
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Figure 2.6: Left: Points lying on a two-dimensional manifold, embedded in athree-dimensional space. Right: Projection of the data on the leading two PODmodes.

conditions used to extract the linear basis of modes. Finally, we mention vari-ous extensions that have been proposed to apply linear reduction methods tocontrol problems. Methods such as the Balanced Proper Orthogonal Decompo-sition BPOD ([35]) were specifically designed to handle data obtained throughsparsemeasurements of a systemand account for the particularities of the con-trol of dynamical systems. We refer the reader to more thorough reviews onthe topic ([94, 68]) for more detailed discussions.

2.2.3 Non Linear reduction

Because of their simplicity and stability, linear methods are very efficient andwidely used for dimensionality reduction. However, they are overtaken in termsof efficiency by non-linear reduction methods. This is due to the fact that thestates of dynamical systems do not directly lie in well-organized linear sub-spaces as depicted in figure 2.5, but on non-linear manifolds which have a lowintrinsic dimension, but aren’t well captured by linear reduction methods.
To illustrate this phenomenon, we use the case of a simple 2D manifold ina three-dimensional space, depicted in figure 2.6 and show that linear dimen-sionality reduction through POD fails to capture the two-dimensional manifoldas the depth of the data points is lost and they are overlaid in the same placein the low-dimensional representation. This simple example outlines the limi-tations of linear dimensionality reduction, and the potential for improvementusing non-linear reduction methods.
Various methods have been developed over the years to re-arrange non-linear manifolds in low-dimensional sub-spaces. We introduce a few of them in
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the following to provide some insights into their potential and limitations2.
Locally Linear Embeddings

Locally Linear Embeddings are a nonlinear dimensionality reduction methodthat leverages the local flatness of the manifold to be identified. The methodassumes that small regions of the manifold can be seen as local linear spaces.This means that data points u can be expressed as linear combinations of theirneighbors:
ui =

K∑
j=1

wjuj . (2.18)
Where uj are the K nearest neighbors of the point ui. The method com-putes a set of K weights for every data point, under the constraint that eachset of weights wj sums to 1, which is equivalent to minimizing the following ob-jective:

J1,i = ∥
K∑
j=1

wj(uj − ui)∥2. (2.19)
These weights represent the local relationships between points on theman-ifold. These relationships can be expected to be conserved as best as possiblein any lower-dimensional representation space. Thus, the method looks forlow-dimensional coordinates Yi = f(ui) that minimise the following cost:

J2,i = ∥
K∑
j=1

Yi − wjYj∥2 (2.20)
This defines a quadratic form in the low dimensional coordinates Yi whichcan be minimized to obtain the coordinates of the data points in the latent, lowdimensional space. Figure 2.7 displays the results obtained with this methodon the simple two-dimensional manifold of figure 2.6.As shown in the figure, the LLE method is able to exploit the locally linearstructure of the manifold to compute global coordinates for each data point.The points are well organized in the two-dimensional latent space as the mani-fold is "unrolled".

Isomaps

Similar to locally linear embeddings, Isomaps are a non-linear dimensionalityreduction method that constructs a low dimensional embedding of each point
2Code for the examples shown in this Section is available at https://github.com/

emenier/manifolds

https://github.com/emenier/manifolds
https://github.com/emenier/manifolds
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Figure 2.7: Left: Points lying on a two-dimensional manifold, embedded in athree- dimensional space. Right: Two-dimensional embedding of the data, ob-tained with the LLE algorithm.

while respecting certain properties of the dataset. Isomaps are a form of MultiDimensional Scaling ([19]), while Locally Linear Embeddings leverage the localrelationships between data points to learn the shape of the datamanifold, MultiDimensional Scaling MDS looks for an embedding that conserves the distancesbetween each point in the dataset. That is to say, the coordinates (Yi) derivedthrough MDS minimize the following loss function, denoted as the Stress:
StressD(Y1, Y2, . . . , Yn) =

√ ∑
i ̸=j=1,...,N

(dij − ∥Yi − Yj∥)2. (2.21)
Where dij is the distance between the data points ui. The particularity ofIsomaps lies in the choice of distance metric dij . While MDS generally uses theEuclidean distance to compute the low dimensional embedding, Isomaps usethe geodesic distance on the data manifold. This distance can be estimated byconstructing a graph of the nearest neighbors of each data point and using ashortest path algorithm to approximate the shortest distance on the manifold.Once this distance is computed, the stress function is minimized to obtain thereduced embedding of the data. Figure 2.8 presents the results obtained withthe approach.
As with locally linear embeddings, a well-organized latent representation ofthe data is obtained, exploiting the relationships between the data points whileaccounting for the shape of the manifold. It can be argued that Isomaps tendto yield a better-organized representation of the data. However, this comes ata cost as the minimization of the stress (Eq. (2.21)) becomes expensive to carryout when applied to large datasets.
These two examples show that non-linear dimensionality reduction can per-form better than linear methods as it focuses on learning the shape of the
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Figure 2.8: Left: Points lying on a two-dimensional manifold, embedded in athree- dimensional space. Right: Two-dimensional embedding of the data, ob-tained with Isomaps. The conservation of the geodesic distance is also illus-trated in black with the shortest path between two points on the 3D manifoldpresented on the left, and the equivalent Euclidean distance in the reducedspace on the right.

underlying manifold. Note that there exist various other methods of nonlin-ear dimensionality reduction, such as t-distributed stochastic neighbor embed-dings (t-SNE, [41]), or diffusion maps ([34]) which have been applied in the con-text of dynamical systems ([102]). Kernel methods have also been used to ef-ficiently compute and exploit non-linear transformations of a system’s state([26]). Spectral sub-manifolds (SSM) are another promising research track forthe non-linear discovery of underlying manifolds. SSMs have also been appliedto dynamical modeling problems ([159, 81]).
Limitations

The last Paragraphs showed that nonlinear reduction methods can exploit thecurved nature of most data manifolds. They have been applied to dynamicalsystems modeling ([185, 102]) however, they have a number of limitations thatshould not be overlooked.
Whilewe showed that nonlinear reductionwas very efficient at capturing thelow dimensional relationships between data points, it is often unclear how theoriginal data can be reconstructed from the low-dimensional embeddings. Thiseffectively limits the efficiency of these methods in reduced order modeling ap-plications, as the goal is often to reconstruct the state of the system at selectedtime steps, or under certain conditions, which goes beyond the computation ofa low-dimensional representation. Previously cited methods often rely on thedevelopment of an additional model to reconstruct the full-order state of thesystem from its low dimensional representation. While this can be an effective
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approach, it implies additional modeling work, often combining methods thatwere not designed for this purpose.

2.3 Conclusion
This Chapter discussed the topic of dimensionality reduction for numerical sim-ulation. We showed that the full order simulation methods used to numericallysolve PDE problems were generally tied with excessive computational costs,partly due to their inability to account for the structure of the manifolds sup-porting the dynamics of the systemsunder study. We also discussed the variousapproaches that could be taken to identify these manifolds, in the hope of de-termining better representations, yielding additional insights in the dynamicsunder study and reducing the dimensionality of the problems to be solved.Most importantly, we showed that despite their numerous advantages, lin-ear reduction methods were generally unable to optimally represent low di-mensional representation spaces in the context of dynamical modeling. Thisaspect motivated the introduction of non-linear reduction methods, which alsocome with certain limitations. In the following Chapter, we introduce neuralnetworks, a type of machine learning algorithm that was used extensively inthis work, and discuss their advantages in the context of both nonlinear dimen-sionality reduction as well as dynamical modeling.
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This Chapter introduces neural networks, focusing on Deep Neural Net-works, which we chose to use to approximate the various operators and mapsthat form the basis of the methods proposed in this thesis. Indeed, neural net-works have several properties that make them a suitable choice for dynamicalmodeling. They are universal approximators, meaning that they can approxi-mate any continuous function provided they have a sufficient amount of train-able parameters (see Section 3.1.1), we note that increases inmodel expressivitydo not comewith exploding computational costs, as is the casewith approaches
25
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such as polynomial regression methods (see Section 3.2.1). They belong to theclass of differentiable programming methods [96], meaning that their gradi-ents can be evaluated using automatic differentiation, allowing for their usein combination with gradient-based optimization methods (see Section 3.1.2).This aspect also makes neural networks particularly suitable for the resolutionof PDE problems, as has been shown with certain approaches that propose todirectly learn the solutions of PDEs by minimizing the residual of the governingequations (see Section 3.2.2). The next Section first introduces the basic aspectsof building and training neural networks, while Section 3.2 describes some ofthe approaches that have been proposed to directly extract the dynamics ofphysical systems from data using Neural Networks.

3.1 Introduction to Deep Learning
Part of the family ofMachine Learningmethods, Artificial Neural Networks havebeen in development formore than 60 years, when one of the first studies train-ing a Multi Layer Perceptron (MLP) using stochastic gradient descent was pub-lished [7]. Unfortunately, the limited computing power available at the timeproved to be an obstacle to their widespread adoption, despite the develop-ment of seminal approaches. We can cite, for example, the use of Convolu-tional Neural Networks for handwritten digit recognition [16], the use of neuro-evolution for control [21], as well as the early application ofMLPs to physical sim-ulation problems [30]. It is not until very recently, with the development of heav-ily parallelized computation leveraging the capabilities of Graphical ProcessingUnits (GPU) that neural networks became the algorithm of choice for the han-dling of large datasets to learn complex tasks. The seminal work of Krizhevsky,Sutskever, and Hinton [49], which overtook every other method available at thetime on the famous ImageNet image recognition competition, is often cited asthe starting point of the widespread adoption of deep neural networks (DNNs)in the Machine Learning community.With the growing availability of computing power and their unmatched per-formance on most complex learning problems, the research interest in neuralnetworks has grown exponentially. This has led to the development of unprece-dented applications, especially in the field of Natural Language Processing withthe recently released Large Language Models. These models established theability of neural networks to leverage enormous amounts of data into creatingversatile human conversation engines [194, 195, 190]. In parallel, Neural Net-works are now being applied to most scientific problems with varying degreesof success, from robotics [196] to drug discovery [145].The study of Artificial Neural Networks, and in particular Deep Neural Net-works, is now designated as a standalone field, also called Deep Learning. Inthe following Paragraphs, we give an introduction to the building blocks of the
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most simple Deep Learning model, the Multi Layer Perceptron, which we usedextensively over the course of this thesis.
3.1.1 The Multi Layer Perceptron
The Multi Layer Perceptron is one of the most simple Deep Learning modelavailable, it is constructed as a succession of trainable operations, called layers:

Φθ(x) = ϕN,θ ◦ . . . ◦ ϕ3,θ ◦ ϕ2,θ ◦ ϕ1,θ(x). (3.1)
In the above expression, Φθ represents the complete network, x is the inputof the network, ϕi,θ are the layers, and θ represents the set of learnable param-eters, also called weights. In the case of a Multi Layer Perceptron, the layers areconstructed as so-called fully-connected layers, i.e., each ϕi,θ is the compositionof a nonlinear function and a trainable affine transformation of its inputs:

ϕi,θ(x) = σ(Ai,θx+Bi,θ) (3.2)
where Ai,θ ∈ Rdϕi+1

×dϕi is a trainable weight matrix and Bi,θ ∈ Rdϕi+1 a train-able weight vector designated as the bias. Finally, σ is a non-linear function,called the activation function that is defined at the construction of the neuralnetwork. Popular choices for σ are the sigmoid function, or the rectified linearunit (ReLU, [111, 173]), except for the last layer ϕN , where σ is generally definedas the identity.It has been shown that under mild conditions on the choice of σ, a neuralnetwork using only one hidden layer (i.e. Φ(x) = ϕ2◦ϕ1(x)) can approximate anycontinuous function, provided the width of the hidden layer dϕ1 is sufficientlylarge [22]. However, building arbitrarily deep networks by stacking more andmore layers has also been shown to increase the expressivity of neural net-works, without requiring exponentially high layer dimensions [104]. Thus, mostmulti layer perceptrons are constructed as a sequence of more than two rea-sonably wide layers, as shown in figure 3.1.
3.1.2 Backpropagation
The MLP introduced in the previous Section is a simple and flexible networkarchitecture that can be trained to approximate any continuous function fromdata. To do so, the set of weights θ = {(Ai, Bi)|i = 1, . . . , N} is iteratively modi-fied to minimize an objective function, called the loss function.This loss function can takemany forms depending on the task to be learned,as long as it is differentiable. To give a simple example, in a simple regressionframework, we are given data pairs (xi, yi) and we want to learn the map Φ :

Rdx 7→ Rdy between the inputs x and outputs y. This can be done by minimizingthe mean squared error (MSE) between the output of the neural network Φ(xi)
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Figure 3.1: Representation of a Multi Layer Perceptron (Φ(x)) with 3 hidden lay-ers.

and the true value yi. In this case, the loss function (L) takes the simple followingform:
L =

1

nx

nx∑
i=1

∥Φ(xi)− yi∥22. (3.3)
In deep learning, the above loss is generally optimized through some variantof the basic gradient descent algorithm: the parameters θ of the neural networkare iteratively adjusted in the opposite direction of the gradient of the loss Lwith respect to the parameters as follows:

θt+1 = θt − η
∂L
∂θ

(3.4)
where η ∈ R is the so-called learning rate that controls the gradient step size.Note that gradient descent is one of the simplest optimization strategies avail-able for this kind of problem and can lead to slow optimization as well as localoptima. Both issues that could be addressed using more complex approaches,such as second-order optimizationmethods. However, the particularity of neu-ral networks is that they rely on large amounts of trainable parameters, whichmakes the computation of second-order derivatives very expensive.
The evaluation of the gradient of the loss in Eq. (3.4) with respect to theparameters is made possible thanks to the particular form of the network, us-ing iteratively the chain rule for differentiation: this leads to the algorithm called

backpropagation, and canbe easily programmedusing reversemodeauto-differentiation.Introduced in Rumelhart, Hinton, and Williams [15] in the context of neural net-works, the backpropagation algorithm can be seen as an adaptation of an ad-joint optimization algorithm proposed earlier in Pontriagin et al. [4].
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Wegive belowa general derivation of the algorithm. It allows for the efficientcomputation of the gradient of the loss in Eq. (3.3) with respect to the set ofweights θ of the network:

dL
dθ

=
∂L
∂θ

+
∂L
∂zN

∂zN
∂θ

. (3.5)
The notation zi, i = 0, . . . N is introduced to denote the intermediate stateof the network. That is the output of each layer, with z0 = x and zN = Φ(x). Tocompute the gradient dL

dθ , the above equation has to be simplified as the term
∂zN
∂θ can be expensive to estimate directly. Indeed, it captures the impact of anyparameter change in the earlier layers on the output of the last layer. The ideaof the backpropagation algorithm is to avoid computing this term through theintroduction of a set of multipliers µi, i = 1, . . . , N :

J =L+
N∑
i=1

µTi (zi − ϕi(zi−1)︸ ︷︷ ︸
0

), (3.6)

=⇒ dJ
dθ

=
dL
dθ
. (3.7)

Through manipulations of Eq. (3.6), conditions on the values of the multipli-ers µi can be derived to avoid computing the intermediate gradients ∂zi
∂θ :

dJ
dθ

=
∂J
∂zN

∂zN
∂θ

+
N∑
1

µTi
∂zi
∂θ

−
N∑
1

µTi
∂ϕi(zi−1)

∂zi−1

∂zi−1

∂θ

−
N∑
1

µTi
∂ϕi(zi−1)

∂θ
+
∂L
∂θ
.

(3.8)

Taking out the Nth term of the first sum, and observing that ∂z0
∂θ = 0, yieldsthe following:

dJ
dθ

=

(
∂J
∂zN

+ µTN

)
∂zN
∂θ

+

N−1∑
1

(
µTi − µTi+1

∂ϕi+1(zi)

∂zi

)
∂zi
∂θ

−
N∑
1

µTi
∂ϕi(zi−1)

∂θ
+
∂L
∂θ
.

(3.9)
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With thesemanipulations, the conditions on the values of µi are clearly iden-tified:

µN = − ∂J
∂zN

T

, (3.10)
µi =

∂ϕi+1(zi)

∂zi

T

µi+1. (3.11)
The advantage of these conditions in the context of neural networks is thatthe jacobians ∂ϕi+1

∂zi
are easily computed as the layers ϕi are generally based onsimple expressions. In the case of Multi Layer Perceptrons, they simply corre-spond to a matrix multiplication followed by a non-linear function. Computingthe multipliers µi such that they verify the above conditions effectively cancelsout the intermediate states’ derivatives ∂zi

∂θ in the expression of the gradient (Eq.(3.9)). Finally, the gradient of the loss with respect to the network parametersis estimated from the values of the multipliers:
dL
dθ

= −
N∑
1

µTi
∂ϕi(zi−1)

∂θ
+
∂L
∂θ
. (3.12)

Once again, the structure of the network can be exploited to simplify theabove computation, as each layer ϕi is only dependent on a small subset of θ,meaning that the jacobian matrices ∂ϕi

∂θ are very sparse and don’t need to befully assembled. For illustration purposes, we provide a minimal implementa-tion example1.This algorithm can be extended to compute the gradient ofmuchmore com-plex network architectures. Significant effort has been devoted to the develop-ment of optimized and flexible frameworks that implement reverse-mode auto-matic differentiation, we cite for example TensorFlow [71], JAX [98], and Pytorch[122] which is the framework that was used extensively in this thesis.
3.1.3 Stochastic Gradient Descent
Neural Networks are able to handle large datasets during training because theywork extremelywell in combinationwith Stochastic Gradient Descent (SGD). Thebasic idea of SGD is to only evaluate the gradient of themodel on a random sub-set of the data at every step rather than the full dataset. This has the advantageof reducing the cost of each gradient step, as the above equations are only com-puted for a reduced number of data samples. More importanty, this reducesthe memory footprint of the algorithm. This approach introduces a degree ofnoisiness in the estimation of the gradient, which has been shown to in factimprove the efficiency of the gradient descent method.

1https://github.com/emenier/backpropagation

https://github.com/emenier/backpropagation
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Schemes have been developed to leverage the noisiness of the gradient tofurther improve the optimization of neural networks. Most of these schemesare based onmomentum, which in the simplest case corresponds to computinga running average of the gradient and using this average to compute the weightupdate:

mt = βmt−1 + (1− β) dL
dθt−1

, (3.13)
θt = θt−1 − ηmt. (3.14)

With η ∈ R the learning rate and β ∈ [0, 1] the rate of change of the mo-mentum mt. This type of scheme is now considered state of the art for theoptimization of neural networks, as it has been shown to find better optima,with better generalization properties, in the parameter spaces of neural net-works. One interpretation of the scheme in Eq.(3.13) is to see it as a filteringof the gradients’ trajectory. That is to say, high-frequency variations from onegradient step t to another (t + 1) are attenuated in the trajectory of mt as theycancel each other out. Meanwhile, dominating directions in the gradient fromone random batch of data samples to another are reinforced and lead to fasterdescent in these directions.Figure 3.2 presents the optimization path followed by the variants of theGradient Descent algorithm on a simple two-parameter case. The figure showsthat computing the gradient from the full dataset is wasteful as a stochastic esti-mation from two samples at each step yields similar performance. The interestof using momentum in combination with SGD is also displayed, as some of thenoisiness in the gradient is filtered out, leading to a much smoother optimiza-tion path2.Note that this momentum scheme is only presented as an illustration, asbetter refined variations of this concept are used in practice, we cite for exampleNesterov momentum [78] that is often used in combination with SGD. Otherschemes such as RMSProp [52] compute the second order momentum of thegradient to scale the gradient step at each iteration. The Adam optimizer [87]which was used extensively in this work uses both the first and second ordermomentum to compute the gradient update :

mt = βmt−1 + (1− β1)
dL

dθt−1
,

st = βmt−1 + (1− β2)
(

dL
dθt−1

)2

,

θt = θt−1 − η
mt√
st

dL
dθt−1

.

(3.15)

2SGD code example available at https://github.com/emenier/SGD

https://github.com/emenier/SGD


32 CHAPTER 3. NEURAL NETWORKS

Number of function evaluationsGradient Descent 1.5× 107SGD (and momentum) 3× 103

Figure 3.2: Example of various Gradient Descent strategies to fit the parametersof the Rosenbrock function (f(x, y) = (θ1 − x)2 + θ2(y − x2)2). Left: Gradientdescent on the full dataset. Middle: Stochastic Gradient Descent using mini-batches of two samples. Right: Stochastic Gradient Descent with momentumusing the samemini-batch size. The learning rate η and the number of gradientsteps taken are the same. Level sets of the loss function are shown in red.
Where st is the second order momentum of the gradient, and β1, β2 ∈ R areuser-defined parameters that control the rate of change of the first and secondorder momentum. With this formulation, the gradient is scaled at each itera-tion, where the simpler momentum scheme of Eq.(3.13) proposed to advancethe parameter in the direction of the first moment of the gradient. The ideabehind both methods remains similar, as they both leverage previous values ofthe gradient to alleviate the impact of the noisiness of the gradient inherent toSGD.

3.1.4 Inductive Bias
Before concluding this short introduction toDeep Learning, we discuss the topicof inductive bias. The multi layer perceptron architecture which we presentedin the above Paragraphs is the simplest existing Neural Network architecture.However, the basic concepts that are used to build and train this architecturehave been improved upon and extended to propose different architectures,better suited to specific learning tasks. Indeed, the fully connected layer which isthe basic building block of the MLP learns linear combinations of all the dimen-sions of the previous layers’ state. This is a very flexible approach as it doesn’tassume any specific relationships between features of the input. However, itcan lead to harder optimization, waste of compute, and doesn’t always yieldthe desired behavior.A simple example is the case of image data where spatially close features
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(pixels in this case) are strongly correlated and can be analyzed locally to extractinformation. Using fully connected layers on this type of data implies that thefull image is considered for every dimension of a layer’s output, which leads toan exponentially high number of parameters, and considers interactions be-tween far apart pixels which does not generally provide useful information.Even worse, this type of approach is very sensitive to translations of the input,meaning that shifting an image by a few pixels can drastically change the outputof the neural network if it is not carefully trained.

To address this issue, inductive biases can be embedded in the network ar-chitecture. In the case of Image data, convolutional layers were developed toefficiently extract local information from images [16]. These layers learn rela-tively small convolutional filters that learn to exploit local correlations in im-ages, leading to translation equivariant layers and much more efficient com-putations. Similarly, Recurrent Neural Networks (RNN) [23, 56] were developedto treat time series data through memory mechanisms. RNNs are discussed inmore detail in Section 3.2.1.
This idea of inductive bias has also been applied to the case of physical sim-ulations, where Graph Neural Networks, an architecture specially designed tohandle graph data, was applied to simulation problems [166]. Networks withequivariance properties with respect to certain groups, such as the group ofthree-dimensional rotations, have also been developed for the analysis andsimulation of molecular dynamics [168].

3.1.5 Neural networks for dimensionality reduction
Neural Networks can be used to learn continuous functions from data, whichhas led to their natural application to dimensionality reduction tasks. Indeed,the various methods presented in Section 2.2 share the same goal of learning amap Φ from data, such that z = Φ(u) with dz ≪ dx. Which is generally done byminimizing a suitable criterion to ensure the learned embedding respects theproperties of the original manifold.

For most of the nonlinear reduction methods introduced (Isomaps, LocallyLinear Embeddings..), the aforementioned criterion is based on the conser-vation of the local relationships between data points in the low dimensionalembedding. In the case of neural networks, the model is trained to recon-struct the data points, passed through a bottleneck layer ϕz of dimension dz.Thus, the network learns to optimize the intermediate representation ϕz(u) sothat it contains sufficiently enough information to reconstruct the original datapoints u, or a good approximation thereof. This architecture is called an Au-toencoder and is built with two different networks, the Encoder E which learnsthe map z = E(u), and the decoder D which learns the reconstruction of thedata u ≈ D(z).
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Figure 3.3: Illustration of an autoencoder used to learn themap from data sam-ples u to a low dimensional embedding z
Figure 3.3 illustrates the proposed architecture. It can be trained by directlyoptimizing the Mean Squared Error (MSE) between the data points u and theirreconstruction by the autoencoder ũ = D(E(u)):

L =
1

nu

nu∑
i=1

∥D(E(u))− u∥22. (3.16)
We illustrate the method using the same three-dimensional dataset pre-sented in Section 2.2.3. We show that the neural autoencoder is able to disentanglethe data samples through its layers to learn a two-dimensional representation.Moreover, we see in figure 3.4 that the learned low-dimensional representation

z is sufficient to reconstruct the original data manifold. Finally, the evolution ofthe data samples along the layers of the encoder network is also presented onthe figure.

3.2 Learning the Dynamics
In the previous Chapter, we showed that data can be used to identify low-dimensional representation spaces for the solutions of numerical simulations,in order to reduce the computational costs of numerically simulating systemsof interest.Unfortunately, this is not a trivial matter, as the dynamics of the low dimen-sional embeddings extracted from data can be hard to identify. Indeed, rep-
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Figure 3.4: Performance of a neural Autoencoder on the reduction of a three-dimensional data manifold. Top: Two dimensional embedding and reconstruc-tion of the data learned by the Autoencoder. Bottom: Evolution of the datasamples projected on the leading principal components of the encoded data ateach layer.

resentations unaware of the underlying manifold such as the Finite ElementsMethod were developed specifically so that they could be used to solve PartialDifferential Equations, which are often the onlymodel available for the accuratedescription of dynamical systems. Thus, changing the representation space toachieve dimensionality reduction complexifies the use of first-principle models,as reduced spaces are generally less suitable for the evaluation of PDEs.
In a more general setting, systems can not always be fully observed. For ex-ample, point-wise probes are often used for the experimental study of systemsto measure the state at given spatiotemporal points. Similarly, in larger-scaleapplications such as weather modeling, the state is only measured sparselyover the world. These factors limit the applicability of standard PDE model-ing methods and are sometimes addressed through expensive pre-processingsteps using data assimilation methods (see for example Foures et al. [59]).
Both these scenarios are very similar from a dynamical modeling point ofview as they are both related to the modeling of systems using only partial in-formation, for which models are not readily available. A possible solution toavoid expensive data assimilation approaches combined with high dimensionalmodels is to construct low dimensional models from the available system datadirectly.
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3.2.1 Fully data-driven models

The following Paragraphs introduce some of the methods used for the directidentification of dynamics from data. There exists a large range of methods de-signed for this task. We chose someof themainmethods used in reduced-ordermodeling contexts to introduce the principal challenges of the topic. Most no-tably, wewant to emphasize the varying degrees of interpretability and theoret-ical justifications of each method, underlining that different methods designedfor similar tasks can have strongly differing properties.

The Koopman operator and DMD

The theory of the Koopman operator provides an attractive theoretical frame-work for the construction of system dynamics, we present the main conceptsbelow and refer the reader to Brunton et al. [169], Lin et al. [161], and Lin andLu [160] for a complete and more formal derivation. The theory states that ob-servables of the state of a system defined here as g(u) : RN 7→ R are advancedin time linearly by an operator called the Koopman operator (K):

g(ut+1) = Kut. (3.17)
This formulation is advantageous, as the linear nature of the above systemmakes it extremely simple to simulate and analyze. Indeed, the time evolutionof the observables g(ut) can be computed without the expensive integration ofan ODE, as the solution of a linear system. We note that when g ≡ ψi with ψi aneigenfunction of the Koopman operator, we get:

ψi(un) = λni ψi(u). (3.18)
With λi the associated eigenvalues and n the number of time steps taken.Thus, it appears that the eigenfunctions of the Koopman operator form an ad-vantageous coordinate change, defining a space over which the dynamics arelinear. The issue with this formulation is that the operating space of the Koop-manoperator is potentially infinite-dimensional. Meaning that for the approachto be computationally tractable, the Koopmanoperator has to be approximatedand only part of its operating space considered.
For this purpose, it is practical to consider a set of observable functions

{gj(u)|j = 1, ..,∞}. It can be shown that under mild assumptions ([169] sec 2.3),each observable is expressed as a linear combination of the Koopman eigen-functions:
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gj =
∞∑
i=1

vj,iψi, (3.19)
=⇒ gj,t+1 =

∞∑
i=1

vj,iλiψi (3.20)
A set of observables gj can be constructed so that it forms a basis span-ning the operating space of the Koopman operator, meaning that the Koopmaneigenfunctions canbedecomposed in termsof the observablesψi =

∑∞
k=1wi,kgk.Injecting this result into Eq.(3.18), a linear system for the dynamics of the observ-ables gj :

gj,t+1 =

∞∑
i=1

λivj,i

∞∑
k=1

wi,kgk,t (3.21)
=⇒ gt+1 = Kgt. (3.22)

Where g = [g1, g2, . . .] corresponds to the observables arranged into a vec-tor, and K is a matrix representation of the Koopman operator. With this ad-vantageous matrix formulation, truncations of the basis of observables gj canbe considered to approximate the dynamics in the above equation in a finite-dimensional operating space.A simple approach to the approximation of these dynamics is called the Dy-namic Mode Decomposition algorithm, proposed in Schmid and Sesterhenn[42]. The algorithm defines the linear dynamics directly over the state of thesystem so that g(u) = u. This yields a linear system of equations:
ut+1 = Aut. (3.23)

WithA a truncation of the Koopman operator (K). Note that this algorithmwas already introduced in the context of dimensionality reduction in Section2.2.2, indeed, the algorithm provides both a relevant basis of modes on whichthe state of the system can be expressed through the computation of the righteigenvectors of A, and an advantageous formulation for the dynamics of thesystem. We note that this advantageous formulation can be exploited not onlyto forecast the state of a system in the future but also to analyze the system athand, through the spectral properties of the operatorA [55].This formulation is sufficient for the identification of the dynamics when ap-plied to linear or weakly nonlinear PDEs. In other cases, this approach loses itsefficiency for the forecasting of the state of the system, although its interest forthe identification of relevant dynamical modes remains. To adapt the methodto nonlinear dynamics, approaches have been proposed to construct efficientobservable bases g on which the dynamics can be represented linearly.
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The Extended-DMD [77] uses dictionary learningmethods to construct a ba-sis of observables g(u) = [f1(u), f2(u), . . . , fNf
(u)
] withNf generally well supe-rior to the dimension of u, on which the dynamics are represented linearly.Similarly, the Kernel-DMD [72] uses kernel methods to efficiently construct abasis of non-linear observables g. Both these methods select a number of non-linear transformations of the state u to construct the observable sub-space onwhich the approximate Koopman operator acts.

More recently, neural networks have been used to learn this dictionary ofobservables [88, 90, 106, 114, 187]. These methods leverage the ability of neu-ral networks to learn an efficient basis of functions on which the dynamics arelinear. These extensions of the DMDmethod help address the issue of the trun-cation of the operating space of the Koopman operator. Indeed, although it isimpossible to perfectly represent the dynamics of complex systems in a finite-dimensional space as a linearODE, given enough data, neural networks are ableto identify an efficient representation of the system, yielding a more accurateand interpretable representation of the dynamics.
Finally, we point out that in this Section, we have not discussed the topicof reduced order modeling using the Koopman operator. That is because thedimension of the coordinates vector g(u) is generally taken to be large, in accor-dance with the expectation that the Koopman operator is infinite-dimensional,which is in direct opposition with the idea of dimensionality reduction intro-duced in Section 2.2. However, we show in our work (see Chapter 6) that certaindynamical systems can be efficiently modeled in very low dimensional spacesas linear systems. Moreover, the theory of the Koopman operator introducedin this Section can be used to derive an ansatz for the dynamics of partiallyobserved systems, which is shown to be critical to the construction of theoreti-cally grounded dynamical systems. This particular topic is discussed in detail inchapter 6.

Sindy

The theory of the Koopman operator presents a very advantageous representa-tion of the dynamics of a system. However, it is sometimes intractable becauseof the assumption of linearity of the dynamics and the dimension of the oper-ating space of the Koopman operator. We introduce in this Section the SparseIdentification of Nonlinear Dynamics SINDy [79], as a method for the extractionof nonlinear dynamical models from data.
The SINDy algorithm is based on a simple dictionary-learning approach toapproximate the derivative of the system at hand. First, the system snapshots

ui = u(ti) are assembled in a matrix U = [u1,u2, . . . ,uns ], then, a dictionary
D(U) ∈ RdD×dns of candidate functions is constructed:
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D(U) =


u1 u2 . . . uns

u2
1 u2

2 . . . u2
nssin(u1) sin(u2) . . . sin(uns)

. . . . . . . . . . . .

 . (3.24)

The true value of the time derivative of each snapshot ui is then computed,either from the governing equations if they are known, or approximated throughfinite differences to obtain the matrix U̇ = [u̇1, u̇2, . . . , u̇ns ]. To obtain a repre-sentation of the dynamics in the dictionary of functions, a matrix of coefficients
C ∈ Rdu×dD to be learned is introduced, so that the time derivative is expressedas follows:

U̇ = CD(U). (3.25)
The goal of themethod is to identify a sparse representation of the dynamicsin the dictionary of functions D. Thus, the following optimization problem issolved:

C = argmin
Ĉ

∥U̇− ĈD(U)∥+ λ∥Ĉ∥1. (3.26)
With λ a coefficient controlling the importance of the sparsity-promotingterm in the above loss. Solving the above optimization problem yields a matrixof coefficients C, whose rows correspond to the coefficients of a linear com-bination of the functions in D(U) that approximates the dynamics of each di-mension of the state u.Note that the above procedure has few theoretical justifications as it onlytrains a model to predict the value of the time derivative extracted from data,which can be highly sensitive to noise and lead to inaccurate predictions. More-over, it has two major limitations that are intrinsic to dictionary learning. First,the choice of functions that make up the dictionary must be made a-priori,meaning there is no guarantee that the dictionary is expressive enough for thedynamics to be efficiently represented. The more important issue, however, isthat the number of functions in the dictionary scales exponentially with the di-mension of the state u. Indeed, combinations of each dimension of the statemust be added to the dictionary to capture systems as simple as the Lorenzattractor. This last factor makes it hard to construct a tractable dictionary thatretains expressivity for relatively high dimensional states.The approach does however have one major advantage which is its inter-pretability. Indeed, once trained, the SINDymodel canbe easily analyzed. Workssuch as Loiseau and Brunton [105] and Callaham, Brunton, and Loiseau [155]have shown that this interpretable aspect can be leveraged into physical con-straints on the structure of themodel, or used to gain insights into the behaviorof the system under study. Similar ideas have also been used to derive inter-pretable nonlinear closures, as in Kalur et al. [197].
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Recurrent Neural Networks

The Koopman operator, and to a lesser extent, the SINDy algorithm, both pro-vide principled ways to identify dynamical models from data that have the ad-vantage of being interpretable. Unfortunately, we have discussed how thesemodels are limited, either by their lack of expressivity, or by their computa-tional costs. We introduce in this Section Recurrent Neural Networks (RNNs) asa way to extract dynamical models from data, with very little a-priori constraintson the structure of the model.Recurrent Neural Networks are general neural network architectures thathave loops in the connectivity graph. They have been intensively used to han-dle sequential data. Twomain RNNarchitectures have emerged: the Long ShortTerm Memory (LSTM) proposed in 1995 [23], and the more recent and simplerGated Recurrent Unit GRU proposed in 2014 [56]. Both these approaches havebeen used extensively in most application fields of Deep Learning. In this Sec-tion, we focus on the LSTM network as it has been used in works that are rele-vant to this thesis [201, 184].The LSTM architecture was proposed as a model able to handle temporaldependencies in time series and retain information along its trajectory. Thus,it is able to capture non-markovian effects in the dynamics of a system. To doso, the LSTM advances an internal state in time, which can be seen as a mem-ory, using a series of gating mechanisms. We introduce the equations for theLSTM from a dynamical point of view, where the model is trained to predict thenext timestep ut+1 based on the current state ut, the memory ct and potentialexogenous inputs xt. The LSTM does so through the following equations:

ft = σ(Wfxt + Ufht + bf ), (3.27)
it = σ(Wixt + Uiht + bi), (3.28)
ot = σ(Woxt + Uoht + bo), (3.29)

c̃t+1 = tanh(Wcxt + Ucht + bc), (3.30)
ct+1 = ft ⊙ ct + it ⊙ c̃t+1, (3.31)
ut+1 = ot ⊙ tanh(ct+1) (3.32)

whereW_ andU_ areweightmatrices and b_ bias vectors, to be learned, while
σ is the sigmoid function. The logic behind the equations is based on gating, i.e.the three gates f , i,o, bounded between 0 and 1, are used to select the informa-tion in the various quantities handled by the LSTM to be passed forward in time.We see that the forget gate ft is used to select the information in the previousmemory state ct to be passed through; The input gate it meanwhile computesthe amount of the new tentative memory c̃ to be passed in memory; And the
output gate ot computes the next stateut+1 from thememory c. Note that this isa simplified version of the architecture, in practice, the model outputs a hidden



3.2. LEARNING THE DYNAMICS 41
state ht from which the output ut is computed. Moreover, multiple versionsof this architecture are generally stacked to increase expressivity, so that theoutput of each LSTM cell is fed as input to the cell above it.As discussed, this complex architecture is able to extract dynamic infor-mation from time series data. Its main advantage is its expressivity and scal-ability. Indeed, it is much more expressive than a simple linear model or arelatively large dictionary of functions. It is also able to transparently handlenon-Markovian effects in the model which is critical in certain reduced-ordermodeling applications (see Chapter 4). It should however be noted that LSTMnetworks have to be used as a black box. Indeed, it is extremely difficult togain insights into the model once it is trained, and there is no guarantee that itwill remain stable over long integration periods. Because of these drawbacks,their usability in critical industrial applications has remained limited. They con-stitute however an example of the advantage of Neural Networks over otherapproaches in terms of expressivity and tractability.As mentioned at the beginning of this Section, the above methods are notan exhaustive list of the fully data-driven methods that have been proposed toforecast the dynamics of physical systems. We cite, for example, approachesbased on cluster models [63], on graph neural networks [166], on reservoircomputing [128, 179, 180] or more recently, approaches based on transform-ers [193], which use machine learning to extract dynamical models from datadirectly. However, with the three above methods, we hope to have illustratedthe breadth of the field of data-driven dynamical modeling. We have tried tounderline the tradeoff between the interpretability and guarantees embeddedin the model architecture and its expressivity. In fact, most of the work pre-sented in this thesis is concerned with this specific point, as constructing ex-pressive models that retain certain properties in terms of interpretability andtheoretical validity is still verymuch an open problem. In the following Sections,we discuss this topic in more detail, introducing a range of methods developedto hybridize fully data-driven deep learning approaches with physical concepts.We then discuss the way reduced order models can sometimes be constructeddirectly from the governing equations to avoid using fully data-driven models.
3.2.2 On the importance of Hybridisation
As mentioned above, the construction of reliable and interpretable dynamicalmodels is at the center of this thesis. We have shown in the previous Sectionsthat fully data-driven methods can be used to obtain models that capture thedynamics embedded in system data. However, such approaches are limited byseveral factors:

• Expressivity: The choice of model to be trained can have limited expres-sivity and cannot fully capture the complexities of certain dynamical sys-
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tems.
• Generality: The validity range of fully data-driven models is a centraltopic inMachine Learning research as it is well recognized that the perfor-mance of such models rapidly degrades when getting outside their train-ing conditions. A large body of work has been dedicated to the issue,and despite the development of a wide range of methods to improve thegeneralization performance of data-driven models (regularization[5], en-sembling[27], dropout[65] . . . ), this topic still constitute a major limitingfactor to the use of Machine Learning approaches in critical applications.
• Data availability: Because of their complete reliance on the availabilityof data, fully data-drivenmodels require large amounts of data to gain anacceptable level of accuracy. In industrial applications, data is very oftenscarce, as systems can be expensive to simulate and evenmore expensiveto observe experimentally under various conditions (e.g., failures).
Various steps can be taken to address these limitations, such as embeddingphysical constraints in the structure of the model, or retaining part of the full-order PDEs that describe the dynamics of the system in the model. These ideasare related to the topic of inductive biases discussed in Section 3.1.4 as their goalis to embed the model with constraints that it should verify to avoid having tolearn them, simplify training and construct architectures that better fit the taskat hand.

3.2.3 Deep Learning and physics
The above considerations have led to a large body of work on the topic of hy-bridization between Deep Learning and physical models. We describe in thisSection a few methods that have been proposed in the general context of hy-bridization between Deep Learning and PDE simulation.
Implicit representation

Implicit methods, also calledmesh-freemethods, propose to represent the stateof a system as a neural network, i.e. the state of the system u(x, t) is not repre-sented as a linear combination of a number of basis functions as in the FiniteElements method, but rather as the value of a function chosen to be a neuralnetwork. These methods have the advantage of bypassing the issues inherentto high dimensional discretizations (see sec 2.1), but also provide a degree of
hybridization as they leverage the governing equations to train the neural net-work.Various approaches following this idea have been proposed, we cite for ex-ample Berg and Nyström [97] who used fully connected layers to approximate
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the solution of simulation problems on complex geometries and Sirignano andSpiliopoulos [110] who proved thatmulti-layer perceptrons can approximate thesolution of a large class of PDEs, provided they are wide enough. We also sum-marise below the well known physics informed neural networks approach (PINNs,[109, 92, 93, 124]). This method is based on the ideas presented above, where aneural network u(x, t; θ) is trained to solve a PDE problem:

∂u

∂t
= G(u(x, t), t), x ∈ Ω, t ∈ [0, T ],

u(x, 0) = u0(x),

f∂Ω(u(x, t)) = 0, ∀x ∈ ∂Ω.

(3.33)

Where u0 is the initial condition of the problem and f∂Ω(u(x, t)) representsthe boundary conditions imposed at the boundary ∂Ω of the computational do-main Ω. In the PINNs approach, the neural network u(x, t; θ) is simply trained toverify the above equations through gradient descent, by minimizing the follow-ing loss:

L =
1

NΩ

NΩ∑
i=1

∥∂ui
∂t
−G(ui, ti)∥+

1

N∂Ω

N∂Ω∑
i=1

∥f∂Ω(ui)∥+
1

N0

N0∑
i=1

∥u(xi, 0)− u0(xi)∥.

(3.34)Where each term in the loss enforces one of the constraints in Eq.(3.33) andthe notationsN_ correspond to the pre-definednumber of points onwhich eachterm is evaluated. Minimizing this loss means that the model is trained to re-spect the physical conditions governing the problem, rather than extract themfrom data. This method can be used to directly forecast states using the trainedneural network u(x, t), but also to reconstruct a system’s state from sparse datawhen used to solve inverse problems [174, 178, 59], or fitmodel parameters. Wenote that implicit representation methods have also seen some use in the con-text of reduced-order modeling [171].Unfortunately, thesemethods have significant drawbacks,mainly their com-putational cost which can sometimes be on par with the cost of directly solvingthe problem in a standard PDE solver. They are also hindered by their gener-alization capabilities, as balancing the tradeoff between the expressivity of theneural network u(·; θ) and avoiding overfitting can be complicated.
Neural Operators

Very similar to the above methods, Neural operators propose to learn implicitrepresentations of the operator that solves a given parametric problem, yield-ing a continuous solution to parametric PDE problems. To illustrate the ap-proach, we briefly introduce the DeepONet [162], which proposed one of the
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first neural operator learning approaches. The goal of the method is to learnthe map G : P 7→ S between P the space of functions representing the parame-ters of the PDE problem to be solved, and S the space of its solutions. The mapis parameterized using a neural networkG so that:
Gθ[p](x, t) = s(x, t). (3.35)

Where (x, t) are the spatio-temporal coordinates and p the parameters. Todo so, the neural operator Gθ is separated in a number of so-called branch-networks bj(·; θ) and a trunk-network t(x, t; θ). The branch-networks bj handlethe parametric nature of the PDE problem, while the trunk-network tj learns thespatiotemporal dependencies of the solution. To ensure that the dimension ofthe input of the network is coherent between parametric cases, a discretizedrepresentation of the function p is generally used, so that the network takesthe following final form:
Gθ[p](x, t) =

Nb∑
j=1

bj (p(η1), . . . , p(ηF )) ; θ)tj(x, t; θ). (3.36)
With ηi the discretization points used to represent the parameters p. Lu etal. [162] proved that the above formulation could approximate the map G toany desired degree of precision. The method can be trained by gathering datatriplets ((x, t), p, s(x, t)) so that the following loss is minimised:

L =
1

N

N∑
i=1

∥s(xi, ti)−Gθ[pi](xi, ti)∥. (3.37)
This neural operator has the advantage of structurally accounting for theparametric nature of the dynamical problem at hand by separating the para-metric and spatiotemporal parts of the solution. This alleviates the need toretrain the architecture when generalizing to new parametric conditions. Ex-tensions of the approach have been proposed such as Kaltenbach, Perdikaris,and Koutsourelakis [188] and Li et al. [138], andmost notably, the Fourier NeuralOperator [137].Despite these advances, the efficiency of the approach still remains limiteddue in part to the complexity of learning the results of long-range integral prob-lems that result from the resolution of PDEs for arbitrary integration times. Wenote however that these models constitute an interesting proposal for the em-bedding of inductive biases specific to the nature of parametric PDE problemsin the architecture of neural networks.

Stability constraints

Various proposals have also been made to embed neural networks with sta-bility constraints, starting with Hamiltonian Neural Networks (HNN) which were
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developed to model the dynamics of conservative systems [118]. The approachproposes a very simple model architecture that ensures the stability of the re-sulting model. This is achieved by leveraging the structure of Hamiltonian sys-tems, which are based on the partial derivatives of a scalar functionH(p,q):

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
,

(3.38)

where (p,q) are the generalized coordinates of the system. The HNN ap-proach proposes to parametrize the Hamiltonian function H of a conservativesystem with unknown dynamics as a neural network. Indeed, the conserva-tive nature of the above system is independent of the choice of the function
Hθ, thus, the above model is guaranteed to be stable, even outside its trainingconditions. Similar ideaswere proposed to ensure the invertibility of neural net-works, Behrmann, Duvenaud, and Jacobsen [113] proposed to constrain the Lip-schitz constant of the weight matrices of a neural network to ensure its invert-ibility, which is equivalent to ensuring the conservation of information througheach layer of the network, while Haber and Ruthotto [86] proposed novel pa-rameterization schemes for weight matrices based on Hamiltonian mechanicsto ensure the stability of the model.

Of course, the Hamiltonian framework is often found to be excessively re-strictive for the modeling of physical problems, as most dynamical systems aredissipative, and often forced by exogenous factors, such as an inflow boundarycondition in the case of a fluid problem. However, parameterization schemeswere proposed to ensure the stability of neural dynamical models. For exam-ple, N. B. Erichson and Mahoney [121] and Pan and Duraisamy [142] proposedto use dissipative parameterizations to enforce the stability of trainable linearoperators.
Neural ODEs

We introduce a last neural modeling approach, called Neural ODEs [99], whichis used extensively in our work. The method borrows concepts from dynami-cal systems to construct continuous (or infinite) depth neural networks. Thesemethods are derived from the Residual Network [82] architecture, which is aslight modification of the multi layer perceptron introduced in Section 3.1.1. Aresidual network Φθ(x) learns a transformation of an input x as follows:

Φθ(x) = ϕN,θ ◦ . . . ◦ ϕ3,θ ◦ ϕ2,θ ◦ ϕ1,θ(x),
ϕi,θ(x) = x+ ψi,θ,

(3.39)
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where ψi,θ are trainable transformations, such as the linear layer defined inSection 3.1.1. This approach was proposed to handle increasingly deep networkarchitectures and quickly became state of the art, notably for image classifica-tion tasks. Observing that the dimension of the layers of the residual networkin equation 3.39 is constant and equal to the dimension of the input x, Eq.(3.39)can be viewed as the Euler integration scheme of a dynamical system, wherethe layer ϕi corresponds to the ith time step of the integration. Chen et al. [99]proposed to directly learn the dynamics of the transformation so that:
dx

dt
= f(x; θ),

Φ(x0) = x0 +

∫ T

0
f(xt; θ)dt,

(3.40)

where T is a pre-determined integration horizon, f is a trainable transfor-mation, defined as a neural network, and the output of the network, xT , resultsfrom the integration of these trainable dynamics. Because the dynamics f canbe trained to be arbitrarily stiff, the number of integration steps, which corre-sponds to the number of layers in a Residual Network, can be as high as re-quired by the task at hand. Similar to standard neural networks, Neural ODEsare trained to minimize a loss function L(xT ), however, the discrete backprop-agation algorithm introduced in Section 3.1.2 is ill-suited for this task. Instead,Adjoint backpropagation, an adaptation of the backprop algorithm to time con-tinuous problems, is used.
Adjoint Backpropagation

The adjoint backpropagation algorithmonwhichNeural ODEs are based is usedto solve problems of the following form3:
min
θ

L(x(T ))

s.t.
dx

dt
− f(x; θ) = 0

x(0) = x0.

(3.41)

These problems are generally solved through gradient descent, which re-quires evaluation of the following gradient:
dL
dθ

=
∂L
∂x

∂x

∂θ

∣∣∣
T
. (3.42)

3This specific criterion and constraints choice correspond to the training objectiveof Neural ODEs. The adjoint backpropagation algorithm can be used to solve morecomplex problems; however, we chose to restrict the scope to this formulation to clarifythe derivation.
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Because the derivative of ẋ(t) = f(x; θ) is parameterised by θ, there is animplicit relation x = x(t; θ). The estimation of the sensitivity ∂x

∂θ |T requires theconsideration of the impact of θ on the whole time-integration, from t = 0 to
t = T . The adjoint backpropagation is used to avoid computing this term, whichis done by evaluating the sensitivity of the following Lagrangian:

J = L+

∫ T

0
µ(t)(ẋ(t)− f(x; θ))dt (3.43)

ẋ(t) = f(x; θ) =⇒ dL
dθ

=
dJ
dθ

. (3.44)
The vector of Lagrangian multipliers µ is a function of time. Distributingthe product in the integral and integrating the first term by parts leads to an

expression where the sensitivity ∂x
∂θ

∣∣∣
T
can be isolated:

J = L+
[
µx
]T
0
−
∫ T

0
µ̇x(t) + µ(t)f(x; θ)dt (3.45)

=⇒ dJ
dθ

=
(∂L
∂x

+µ(T )
)∂x
∂θ

∣∣∣
T
−µ(0)

�
�
��
0

∂x

∂θ

∣∣∣
0
−
∫ T

0

(
µ̇+µ(t)

∂f

∂x

)∂x
∂θ

∣∣∣
t
+µ(t)

∂f

∂θ

∣∣∣
x=x(t)

dt.

(3.46)A so-called adjoint equation is then obtained to avoid having to solve forthe sensitivity ∂x
∂θ . Enforcing a vanishing variation of the Lagrangian wrt x atoptimality yields:

dµ

dt
= −µ∂f

∂x

∣∣∣
t

µ(T ) = −∂L
∂x

∣∣∣
T
.

(3.47)
Solving the adjoint equation (3.47) for the values of µ(t) leads most of theterms in Equation (3.46) to vanish, so that:

dJ
dθ

= −
∫ T

0
µ(t)

∂f

∂θ

∣∣∣
x=x(t)

dt. (3.48)
Both this integral and the adjoint equation can be easily evaluated if dx

dt isapproximated by a neural network as the required vector-Jacobian products
µ∂f
∂x and µ∂f

∂θ can be easily computed in any deep learning framework.
Adaptive checkpoint adjoint

The original NeuralODE paper [99] proposed to integrate forward in time to ob-tain the initial condition of the adjoint equation evaluated from x(T ), while dis-carding intermediate values x(t). This choice was made with the goal of reduc-ing thememory footprint of themethod. However, discarding the intermediate
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Figure 3.5: Forward and backward time integration of the Van der Pol oscilla-tor. Numerical errors during the integration lead to the divergence of the twotrajectories which should be identical.

time-steps x(t) means that they have to be recomputed during backpropaga-tion to evaluate the adjoint ODE (3.47), as well as the gradient integral (3.48).This can be done as a single backward-in-time integration by concatenating thedifferent quantities (x, µ, dLdθ ) in a single state vector:

z =
[
x, µ,

dJ
dθ

] (3.49)
dz

dt
=
[
f(x; θ),−µ∂f

∂x
,−µ∂f

∂θ

] (3.50)
z(T ) =

[
x(T ),−∂L

∂x

∣∣∣
T
,
∂L
∂x

∂f

∂θ

∣∣∣
T

]
. (3.51)

Not only does this increase the computational cost of the method, but itcan also lead to erroneous gradients, as numerical errors during integrationcan lead to differences between the forward and backward trajectories for x(t).This was observed in Zhuang et al. [150] and is illustrated in Figure 3.5, whichshows that, despite using the sameparameters, the forward andbackward timetrajectories diverge due to numerical errors. To address this issue, one can usethe Adaptive Checkpoint Adjoint method. Thismethod retains the intermediateintegration steps (t, x(t)) and simply evaluates the integrals for the adjoint µ andthe gradient dJ
dθ at the time steps selected during the forward integration, usingthe forward trajectory x(t).

Although this increases the memory footprint of the method, it limits thecomputational cost of the backward pass, as the time steps are already se-lected, and the trajectory x(t) does not have to be integrated another time.Most importantly, this limits the numerical errors introduced by the integra-tion schemes, which can have a significant impact on the training, especially inthe case of chaotic dynamics.
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3.2.4 Summary
The approaches presented above all stand as various forms of hybridization.Methods such as the physics informed neural networks, or the neural opera-tor, propose to leverage the properties of neural networks to efficiently solvePDE problems. Similarly, the methods described in subsection 3.2.3 as well asthe NeuralODE method propose to embed neural network architectures withpreviously established properties such as stability or time continuity. Theseproperties can both help guarantee the results of a trained model and simplifytraining.

3.3 The POD Galerkin method

Retaining Physics through the Galerkin Projection

In this Section, we come back to the topic of reduced order modeling, and weshow that while the various methods listed in the previous Section can be usedto adapt Deep Learning approaches to physical modeling, it is possible to di-rectly retain part of the governing equations when designing a reduced ordermodel. Thus retaining a dynamical basis that can then be hybridized with data-driven approaches to create stable and accurate reduced order models. To thisend, the Galerkin Projectionmethod is introduced as an efficient reduced-ordermodelingmethod that leverages the governing equations of the problemunderstudy to avoid sole reliance on data. We also refer the reader to Holmes et al.[48] and Lassila et al. [64] for additional discussions on the topic.
Linear dimensionality reductionmethods such as POD have a significant ad-vantage for the construction of hybrid reduced-order models. Indeed, they canbe used in combination with the Galerkin projection method to retain part ofthe dynamics in the reduced space. The method starts from a discretized full-order model as follows:

du

dt
= F(t,u) (N equations), (3.52)

where u ∈ RN is the high dimensional state of the system discretized inthe chosen full-order representation space (it could for example be the coeffi-cients of a Finite Elements basis), and F is the discretized full order model, forexample, the discretized incompressible Navier Stokes equations, used for thesimulation of simple fluid flows. Starting from this high dimensional system ofequations and a number of pre-acquired simulation snapshots u(ti), a reducedPOD basis of principal modesVr ∈ RN×r, r ≪ N is identified following the pro-cedure described in Section 2.2.2. With this basis, an approximate solution canbe reconstructed:
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ũ(t) = Vra(t) (3.53)
∥u− ũ∥2 ≪ ∥u∥2 (3.54)

where a(t) ∈ Rr is the reduced coordinate vector of the state in the PODbasis, whose value is obtained from the full order state through projection
a(t) = Vr

Tu(t). Similarly, Eq.(3.52) can be projected to obtain a system of dy-namical equations for the coordinates a(t):
da

dt
= Vr

TF(t,u) (r equations). (3.55)
The projection above yields a system of r ODEs that exactly control the timeevolution of the reduced coordinates a. However, it is unusable in a reducedorder modeling context as it assumes knowledge of the full order state u(t)during the simulation. To close the above system in a, the approximate state

u ≈ Vra is injected in Eq.(3.55) to evaluate the dynamics, introducing approxi-mation errors in the model:
da

dt
≈ Vr

TF(t,Vra) (r equations). (3.56)
The above procedure is called a Galerkin projection and is similar to theconstruction of weak forms in the Finite Elements Method [50]. In next Sec-tion, we discuss the way this reduced model can be constructed practically andefficiently, by exploiting the linearity of the derivative operator.

Computational efficiency

First principle models are generally expressed as partial differential equations.Thus, the linear nature of the derivative operator can be leveraged to efficientlyreduce the full ordermodelF in Eq.(3.56) into a number of low dimensional ten-sorial operations. To give an example, we consider the incompressible Navier-Stokes Equations which control the behavior of the velocity and pressure fields
u(x, t) and p(x, t) of a fluid flow at reasonably low Reynolds numbers (Re):

∂u

∂t
= −∇p− (u · ∇)u+

1

Re
∇2u

∇ · u = 0
(3.57)

These equations can be discretized and projected on a Finite Element basisfollowing the procedure introduced in Section 2.1 to obtain a system of equa-tions for the dynamics of the FE coefficient vectors u(t) and p(t):
du

dt
= −Ap− (uT ·Q)u+

1

Re
Bu,

Cu = 0.

(3.58)
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Where A,B,C are high dimensional matrices resulting from the discretiza-tion of the differential operators. Indeed, the gradient, Laplacian and diver-gence operators in the Navier-Stokes equations are all linear and naturally re-sult in discretized linear operators on the state of the system. Finally, the op-erator Q is a three dimensional tensor representing the quadratic advectionterm (u · ∇)u in the NS equations. Note that all these operators are extremelysparse as they only model local interactions in the flow field, meaning that theevaluation of the above expression can be optimized numerically to improveperformance.Projecting this equation on a POD basis Vr and injecting the approximatestate u ≈ Vra, a system of r ODEs is obtained:

da

dt
=

1

Re
Vr

TBVra−Vr
TaT(Vr ·Q)Vr

Ta. (3.59)
Note that both the mass conservation condition (Cu = 0) and the pressureterm (Ap) have been dropped from the equation. This is due to the fact thatthe reconstructed flow fieldVra is divergence-free by construction as the PODmodes Vr all respect mass conservation (see Section 2.2.2), thus, the secondequation is always verified. The pressure term can be dropped because thepressure field relates to the local compression or stretching of the flow, whichis null for a divergence-free field, thus, the pressure field is constant and itsgradient is null.The advantage of this tensorial reduced order model is that a large part ofthe operations can be computed prior to the simulation of the ROM to obtainthe filtered operators B̃ ∈ Rr×r and Q̃ ∈ Rr×r×r, yielding an efficient ROM thatis easily evaluated through a few r-dimensional vector-matrix multiplications:

B̃ = Vr
TBVr, (3.60)

Q̃ = Vr
T(Vr ·Q)Vr, (3.61)

da

dt
=

1

Re
B̃a− aTQ̃a. (3.62)

This example of the incompressible Navier Stokes equations shows that lin-ear reduction methods are very advantageous as they allow for the construc-tion of reduced dynamical models entirely based on the governing equations.It should be noted that while the Galerkin Projection method works well inthe general setting of Partial Differential Equations, it can become inefficientfor the reduction of strongly nonlinear equations. An example would be thecase of chemical source terms that are generallymodeled using Arrhenius laws,for which the above procedure of pre-assembling low-dimensional dynamicalterms would not be applicable. For these cases, methods such as the discreteempirical interpolation method [43] have been proposed, relying on the evalu-ation of the irreducible dynamics on a low number of well-chosen spatial points
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to construct the low-order representation of the nonlinear terms at each inte-gration time.
Limitations of the Galerkin Projection

The Galerkin Projection can efficiently exploit linear dimensionality reductionand pre-existing equations to construct a dynamical model for the low dimen-sional system representation. This comes at the cost of approximation errorsas themodel is only exact when the projected dynamics are evaluated from thefull-order model:
da

dt
= Vr

TF(t,u). (3.63)
Because the state of the system is only partially resolved in the reducedorder setting, the above expression cannot be computeddirectly. Using a Taylorexpansion, the dynamics can be separated into resolved and unresolved parts:

da

dt
= Vr

TF(t, ũ+ u− ũ︸ ︷︷ ︸
unresolved part

), (3.64)
da

dt
= Vr

TF(t, ũ) +Vr
T∂F

∂u

∣∣∣
ũ
(u− ũ) + . . .︸ ︷︷ ︸
ϵ

(3.65)

This expansion shows that the error term ϵ in the reduced order model di-rectly depends on the unresolved part of the state (u− ũ). Despite the relativelylowmagnitude of this unresolved part (see Eq.(3.54)), this term has a significantimpact on the quality of the model. Indeed, the errors on the dynamics com-pound over time, leading to inaccurate trajectories of the reduced coordinates
a. This topic has been extensively studied, with the development of more ad-vanced projection schemes to account for the residual ϵ during the integrationof the model. Choi and Carlberg [115] and Carlberg, Barone, and Antil [84] pro-vide a thorough study of the stability and optimality of the Galerkin Projection,as well as other projection schemes, showing that some of the limitations of theGalerkin projection can be alleviated, at the cost of increased computationaloverhead.

In this Section, we have shown that linear reduction methods can be cou-pled with well-established PDE projection methods to construct reduced-ordermodels from the governing equations. Despite providing amodel unconcernedwith the various issues inherent to fully data-driven models (see Section 3.2.2),they are limited by the reconstruction errors associated with the use of incom-plete linear bases. Indeed, their errors are directly related to the complementof the projection on the linear basis ũ− u.
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This concludes this Section on the construction of dynamical models whengoverning equations are unavailable, or can not directly be used. We haveshown that a range of methods are available, with various degrees of accuracyand interpretability. We have discussed the issues that comewith directly learn-ing models from data as well as the interest in retaining the original equationsas much as possible when deriving models for a low-dimensional representa-tion of a system.

3.4 Conclusion
This Section introduced the topics at the center of the thesis. We have shownthat there is a continuum of modeling approaches between standard PDE sim-ulation and Deep Learning for dynamical models.

Figure 3.6: Hybridization spectrum between full order methods and fully data-driven methods. NB: The annotated methods only constitute a sample of thevarious approaches relevant to the thesis topic, and are chosen to illustrate thevariety of possible approaches.
We have discussed the inefficiency of full order simulationmethods for rep-resenting the state of physical systems, and the way pre-acquired data canbe exploited to construct better representation spaces. We have shown thata range of Machine Learning methods were available for the identification ofsuitable reduced spaces, each with its advantages and drawbacks. Most im-portantly, we have underlined the differences in terms of performance and in-terpretability between the linear proper order decomposition method (Section2.2.2) and neural Autoencoders (Section 3.1.5) as these methods both offer asolution to the same problem, while presenting very different properties.The last Sections discussed the various ways dynamical models could beconstructed in the absence of an already established model, either throughprincipled approaches based on well-established theory or through direct ap-proximation of the dynamics using Machine Learning techniques. Once again,
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weunderline the existence of a tradeoffbetweenpowerful approximationmeth-ods that provide good accuracy close to their training conditions, such as recur-rent neural networks, and the use of theoretically grounded models that pro-vide better guarantees but might be less accurate.As mentioned previously, the work presented in this thesis focuses on thistradeoff as we strive to derive theoretically soundways to combine the approxi-mation powers of neural networkswith interpretablemodeling approaches, themain goal being the construction of reduced models with improved accuracythat retain theoretical guarantees. In the following Chapter, we introduce oneof the main contributions of this thesis, the CD-ROM approach, which focuseson addressing the shortcomings of the Galerkin projection method presentedabove, while ensuring that the model retains as much of the properties of theoriginal system as possible.
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4.1 Introduction

4.1.1 Context
This Chapter presents one of the main contributions of the thesis, the CD-ROMmethod, and is based on the work presented in Menier et al. [191]. In the pre-vious Chapter, we discussed the importance of hybridization for the modelingof dynamical systems. We showed that linear dimensionality reduction meth-ods could be used in combination with the POD-Galerkin method to constructreduced-ordermodels based on the governing equations of the system at hand(see Section 3.3).We also discussed the shortcomings of the POD-Galerkinmethod and showedthat it is embedded with approximation errors, which limits the applicability ofthe method to strongly nonlinear dynamics. Thus, we introduce in this Chaptera model order reduction strategy built around the improvement of the POD-Galerkin method. The method is based on a neural closure model which onlylearns the complement of the Galerkin reduced order model, rather than thefull dynamical model. The method is thus named CD-ROM: Complemented Deep
- Reduced Order Model.Wewill show in this Chapter that the CD-ROMmethodusesNeural Networksto correct the imperfect dynamics of Galerkin reduced order models, while re-taining coherence with existing theoretical results. Moreover, the CD-ROM ap-proach yields a time-continuous model that can be simulated as a standarddynamical system, as it is based on a time-continuous memory architecture.This should be put in contrast with classical neural sequential modeling meth-ods such as Recurrent Neural Networks which learn a discrete time-steppingscheme for the dynamics of a system (see Section 3.2.1). Framing the modelin the context of hybridization, which is at the core of this thesis, we place themodel on the hybridization spectrum displayed in figure 4.1 and introduced inthe previous Chapter to facilitate the comparison with existing modeling ap-proaches.Before presenting the derivation of the model, the following Section pro-vides a direct comparisonwith the existingworks closest to theCD-ROMmethod.
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Figure 4.1: The CD-ROMmethod on the hybridization spectrum. NB: This figure is
provided for illustrative purposes and helps frame our proposals within the broader
context of the thesis. The placement of each method on the spectrum is open to
discussion, and small variations could lead to displacing a given approach closer to
one end or the other.

4.1.2 Related Work
Reduced order modeling methods offer powerful and straightforward indus-trial applications, thus, their improvement has been the subject of a large bodyof literature. We divide the existing solutions into intrusive and non intrusivemethods. Intrusive approaches aim at learning a closure model for the avail-able ROM such that high fidelity data are fitted, while non intrusive approachesare closer to those presented in Section 3.2.1 as they propose to completely re-place pre-existing models with learned black-box forecasting methods. Severalworks have proposed to leverage deep learning methods to develop non in-trusive forecasting models on low dimensional spaces and represent physicalsimulation problems ([184, 140, 123, 157, 131]). Specifically, the necessity of ex-ploiting temporal information to reconstruct accurate dynamics has been un-derlined in [154, 164, 129, 149]. More theoretically grounded works have alsoproposed to develop intrusive non-Markovian closure models for existing Re-duced Order Modeling approaches ([148, 143]). They are motivated by the Mori-Zwanzig formalism ([29]), which provides a theoretical framework for the mod-eling of partially observed systems. Similar to these efforts, our work aims atdeveloping a theoretically grounded reduced modeling method for the fore-casting of physical systems, preserving the physical insights provided by theprojected PDE describing the problem. Most importantly, we focus on the factthat the majority of the approaches cited above propose to use recurrent neu-ral networks to either learn a closure model or the full dynamics of the system.Although this choice can be motivated by the necessity of capturing memoryeffects, RNNs are limited for the modeling of dynamical systems, mainly be-cause of their time-discrete nature (see Section 3.2.1). On the other hand, our



58 CHAPTER 4. CD-ROM

Non-Markovian Non Intrusive Continuous MemoryinterpretabilityWang et al. ([148]) ✓ ✓Pawar et al. ([143]) ✓Maulik et al. ([140]) ✓ ✓ ✓Vlachas et al. ([201]) ✓ ✓ ✓Wu et al. ([149]) ✓ ✓ ✓Maulik et al. ([164]) ✓ ✓Pawar et al. ([123]) ✓ ✓CD-ROM ✓ ✓ ✓

Table 4.1: Comparison of closure approaches from the recent literature.
proposal is constructed around a time-continuous memory formulation withnumerous advantages over discrete time models. Moreover, we underline be-low the higher degree of interpretability of our solution. The main novelties ofthe method presented in this Chapter are listed below and Table 4.1 also pro-vides a summary of the potential crossovers between existingmethods and thepresent work.

• Intrusivity: Closure modeling has been a topic of interest since the earlydays of numerical simulation, thus, developing intrusive correction mod-els which combine with existing physical models is not a novel approachin and of itself. However, most deep learning approaches do not take thisroute and propose to learn forecasting models from scratch, ignoring theunderlying physical laws. In this work, we show that the Galerkin ROMcan be used inside the training loop to optimize the closure model in an
a-posteriori fashion, that is, by simulating the whole model and assessingits performance. Embedding the existing ROM in the training strategy al-lows us to leverage pre-existing physical information rather than replaceit with a physics-agnostic model.

• Continuity: The proposed model is embedded with a novel time contin-uous memory formulation. This increases the applicability of the modelas it can be plugged in any initial value problem solver without being bi-ased against specific time-step and/or numerical scheme choices madeduring training. Moreover, this flexibility implies that this work can beused to model arbitrarily stiff problems through the use of adaptive time-stepping schemes. Finally, the continuous structure allows the model tobe used in combination with irregularly spaced data, often encounteredin real-life problems, with no additional considerations to interpolationbetween samples.
• Memory Interpretability: Contrary to classical recurrent neural networks
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such as the Long Short Term Memory (LSTM) used in the state of the art,the proposed memory formulation was specifically designed for numer-ical simulation purposes. Particularly, the time evolution of the memoryhas a closed form solution, which means that the memory term can beinitialised to any desired degree of precision. Our proposed formulationalso allows for the evaluation of the time persistence of information inmemory, increasing the overall interpretability of the model.

• End to End Training: In contrast with other works which propose to learnthe closure model in an a-priori fashion, i.e. by learning the dynamics cor-rection as a standalone regression problem, we integrate the imperfectmodel directly within the training strategy. Thus the correction model ac-curately learns to compensate for the sensitivity of the Galerkin ROM andaccount for the long term effects of unstable, low energy modes in thesystem. Indeed, it has been observed in the literature that this strategylead to more stable and accurate models ([165, 90, 147]).
The outline of the Chapter is as follows: a reminder on the POD-Galerkinreduction method is provided in Section 4.2. Section 4.3 details the main con-tribution of the method with the derivation of a continuous in time correctionarchitecture for reduced order models. Motivation for our work through com-parisons with existing approaches is provided in Section 4.4, while the selectedtest cases and results are respectively discussed in Section 4.5 and 4.6. Section4.8 concludes the Chapter.

4.2 Model reduction approach

4.2.1 POD Galerkin
As mentioned in Section 2.2.2, the POD method can be used to construct a ma-trix Vr ∈ RN×r whose columns form a low dimensional basis on which the highdimensional state of a physical systemu ∈ RN can be projected so thata = V T

r uand u ≈ ũ = Vra. Section 3.3 also discussed the way this linear basis of princi-pal modes could be used to project the governing equations using the Galerkinmethod to obtain a low dimensional system of equations for the reduced stateof the system α, which in the case of the incompressible Navier Stokes equa-tions, yields a simple algebraic model (see Section 3.3 for the derivation):
dai(t)

dt
=

r∑
j=1

B̃i,j ai(t) +
r∑

j=1

r∑
k=1

Q̃i,j,k aj(t) ak(t) + ϵi(t), ∀ i = 1, . . . , r. (4.1)
Where B̃ ∈ Rr×r and Q̃ ∈ Rr×r×r respectively correspond to the reduced dis-sipative and advective terms of the full-order equations. Unfortunately, models



60 CHAPTER 4. CD-ROM

constructed with the Galerkin method were shown to be embedded with error,denoted as ϵ in the equation above. In Section 3.3, we showed that this errorcould be directly related to the complement of the projection on the POD basis(u− ũ), which is unavailable during the simulation of a reduced order model, asit is orthogonal by construction to the resolved representation space. In nativePOD-Galerkin reduced models, this error term is generally ignored. Unfortu-nately, this approximation means that small errors on the dynamics will com-pound over time and lead to significant discrepancies between the true andsimulated trajectories. This is especially true in the case of nonlinear dynam-ical systems where orthogonal projection on the POD basis can suppress animportant part of the dynamics. In the case of the Navier Stokes equations,POD-Galerkin models have been shown to fail to reproduce the dynamics evenin simple cases like the flow over a cylinder [32].
Thus, the aim of this work is to retain the simplicity of the POD-Galerkinmethod, and learn the complement of the ROM using deep learning methods,we then call our proposed method Complemented Deep - Reduced Order

Model.

4.2.2 Non-Markovianity and Takens’ theorem
The residual depends on information from a subspace orthogonal to the spanof the POD basis. This means that an accurate correction model cannot be di-rectly computed from the reduced state a(t). However, we leverage the factthat the information lost by projection of the full order state can be retrievedby considering past states of the system. This hypothesis is formalized by theTakens’ theorem ([12]), which states that, under mild conditions, the dynamicsof a state vector can be reproduced by constructing a time-embedding from
time-lagged observables: z(t) =

(
z(t), z(t − τ), z(t − 2τ), . . . , z(t − kτ)

), with k
large enough.1 This is illustrated in Figure 4.2, which shows the Lorenz attractorobserved via its embeddedX-component. By constructing a 3-dimensional em-bedding of the obtained time-series, an attractor is obtained, which preservesthe topology of the true attractor (e.g., symmetries, correlation dimension, etc.).

This suggests that the complement of POD-Galerkin reduced order models,which we denote as R, is non-Markovian and should consider past states of
the system (

a(t− τ),a(t− 2τ), . . .
). However, such a discrete time-embedding

is not well suited in the context of continuous time models such as equation
1We tacitly assumed here that z is a suitable observable. Observability analysis goesbeyond the scope of this work. Nevertheless, it is well known that higher harmonicPODmodes are enslaved to dominant PODmodes ([105, 155]). Therefore, in the rest ofthe Chapter, we will assume that the dynamics of the unobserved space spanned canbe retrieved from past observations of the dynamics in the space defined by the PODmodes.
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Figure 4.2: Illustration of the Takens’ delay embedding theorem. Left: OriginalLorenz attractor; middle: Delayed time series of theX coordinate; right: Recon-structed attractor.
(4.1). Indeed, using discrete time steps in combination with adaptive step timemarching schemes, such as the Runge-Kutta method [11], would require spe-cific considerations about interpolation between the simulation steps and therequired embedding steps. To address this time-continuity issue while retain-ing a non-Markovian correction structure, we propose to use delay differentialequations (DDE) with a continuous embedding of the past information:

d

dt
a(t) = g(a(t),y(t)) , y(t) =

∫ t

−∞
e(τ−t)λa(τ)dτ (4.2)

with λ ∈ R+ sufficiently large for the integral above to be bounded.
These equations retain information from past states of the system in a time-continuous manner and are used for a number of modeling applications suchas epidemiology or population dynamics ([18, 25]). In this formulation, the dy-namics g depend both on the partially observed states of the system a(t) and amemory variabley(t), corresponding to the integral of past observables, dampedin time by an exponential decay. In fact, the memory term y can be defined inmany ways, depending on the problem at hand. However, the exponential de-cay formulation was chosen because i) it provides the model with the abilityto consider recent states of the system while older observations are discardedand ii) it can be solved by directly augmenting the original systemwith a secondODE for the memory:

d

dt
a(t) = g(a(t),y(t)),

d

dt
y(t) = a(t)− λy(t).

(4.3)

The exponential decay e(τ−t)λ acts as a filter of width 1/λ on the observablesevolution and we show in a later Section that the value of the decay rate (λ) can
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be learned in a data driven setting. Other applications of the same augmentedODE exist in literature but with different purposes such asmodelling of subgrid-scales in Large-Eddy Simulations (LES) [33] or to find unstable-steady solutionsof the Navier-Stokes equations [36]. As mentionned earlier, we have made theconvenient choice of the exponential kernel since it can be described by a lin-ear ODE and easily constrained to model dissipative dynamics, but alternativekernels exist in the DDE literature which could be considered if the exponentialkernel became too constraining for certain cases.
It is worth noting that the memory variables y have the same dimensionas the observations a in (4.3). This limitation might introduce a significant in-formation bottleneck in the model. Indeed, Takens’ theorem states that thedimension required to obtain a satisfactory embedding can go as high as twicethe intrinsic dimension of the true attractor. Although there is no similar resultfor the continuous case, the limited dimension of the memory y may preventderiving an accurate correction model. As a result, we define an encoding map

E : Rr → RnE , used to lift the observations a to a higher dimensional space toincrease the dimension of the memory:

y(t) =

∫ t

−∞
e(τ−t)λE(a(τ))dτ. (4.4)

In fact, the use of such an encoding map to unfold non-linear dynamics andrecover a linear ODE is rooted in Koopman theory as each encoded coordinatecan be considered as an observable of the original state. While approaches suchas dictionnary learning ([77]) and kernel methods ([72]) have been proposed tolearn these observables, we use neural networks to avoid additional optimiza-tion considerations and retain flexibility, similar to the works of [88, 142]. Usingthe modified DDE architecture (Eq.(4.4)) to close reduced order models, thecorrection operatorR acting on the memory y(t) becomes an application frommemory space to phase space: RnE → Rr. Finally, the following augmentedreduced order model is obtained:
d

dt
a(t) = VT

r F (Vra) + R(y),
d

dt
y(t) = E(a) − λy.

(4.5)

This proposed augmented ROM architecture has a similar form to the Mori-Zwanzig formalism [29] which derives an equation for the dynamics of partiallyobserved systems. Although the parallel with the CD-ROM approach is not for-mally established, we discuss these similarities in Section 4.4.1 as it providesadditional motivation for the above choices. Finally, the augmented ROM for-mulation is summarised in Figure 4.3 to help illustrate the idea.
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Figure 4.3: Visualisation of the CD-ROM approach. The full order solution snap-shots are projected on the POD basis to obtain time series of the reduced co-ordinates (a). These reduced coordinates are then augmented with a memory
y(t). Finally, the augmented dynamical model is presented on the right handside of the image.

4.3 Data driven learning of the residual
Although the motivation for the existence of the residual R and encoding map
E was outlined above, little information about their form can be derived fromthe previous expressions. In this context, we leverage the universal functionapproximator property of artificial neural networks [20] to model the missingterms.
4.3.1 Neural Networks
Our work relies on the Multi Layer Perceptron architecture introduced in Sec-tion 3.1. This very simple network architecture can be used to learn any smoothcontinuous applicationΦ : Rr → Rk by optimizing the weights of a sequence of
L layers:

Φ(a) = ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ1(a) (4.6)
ϕl = σl(W lϕl−1 +Bl), ∀ l ∈ {2, . . . , L} (4.7)

where σl is a nonlinear activation function, and the dimension of ϕl correspondsto the number of neurons in the layer l. It has been shown that, providedthe dimension of the layer is high enough, the trainable parameters W l and
bl can be optimized to approximate any function [20]. The encoder E(a) andthe residual R(y) are both approximated with neural networks with parame-
ters θE =

(
{W l, bl}, l = 1, .., LE

) and θR respectively.
4.3.2 Memory time scales
Physical systems often involve a variety of phenomena each evolving at differ-ent time scales. Capturing these phenomena can be critical to accuratelymodel



64 CHAPTER 4. CD-ROM

Figure 4.4: Superposition of sinusoidal signals of frequencies 1, 10 and 100 Hz,filtered by an exponential decay with a decay rate λ = 50. The higher frequency(100 Hz) is filtered out while the other two are reproduced in the memory sig-nal. This implies that recent events in memory due to the 100 Hz frequency arefiltered out so that thememory is mostly driven by older events associated withlower frequencies. Note that the memory signal has been scaled by a factor λfor clarity.

these systems, which is why the memory should be able to retain informationat different rates. The time scales accounted for by the memory are driven bythe parameter λ of the exponential decay in Eq. (4.2), which acts as a low-passfilter on the encoded trajectory (see Figure 4.4 for an illustration).
To retain information at different rates, λ can be adjusted for each observ-able Ei(a). Equation (4.5) is then modified accordingly with the single λ param-eter replaced with a diagonal matrix Λ ∈ RnE×nE

+ whose entries can be trainedto select time scales relevant to the system at hand. This finally results in theCD-ROM architecture:
d
dta(t) = VT

r F (Vra) + R(y;θR),
d
dty(t) = E(a;θE) − Λy.

(4.8)

4.3.3 Training strategy
Optimizing the parameters of the model (4.8) requires consideration of paststates of the system as well as their impact on the dynamics in the future. Insome sense, the problem is similar to the optimization of classical recurrentneural networks for the simulation of dynamical systems [201]. The major dif-ference is that the aim of the present work is to derive a continuous time dy-namical model, while recurrent networks have traditionally been used tomodeltransitions between discrete time instants. As a result, we cannot use standardbackpropagation through time to optimize the model. Instead, the NeuralODE
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approach [99] introduced in detail in Section 3.2.3, is used.

As explained in Section 4.2.1, reduced models of the incompressible Navier-Stokes equations can be expressed directly in terms of the reduced coordinates
a and evaluated through simple tensorial expressions. This means that theROM dynamics can be directly computed and back-propagated through oncethe reduced operators B̃ and Q̃ are assembled (see Eq.(4.1)). The Deep ROMarchitecture (Eq.(4.8)) can then be optimized within the Neural ODE frameworkby concatenating the reduced state and the memory into a single state vector
z(t) = [a(t),y(t)], with dynamics f(z;θE,θR,Λ):

f(z;θE,θR,Λ) =

(
B̃a+ aTQ̃a + R(y;θR)
E(a;θE) − Λy

)
. (4.9)

Since the last modes in the POD basis V are typically associated to low-energy dissipative scales [151], if r is not large enough, the ROMmodel retrievedby Vr might be unstable and diverge after a few time integration steps. Thispotentially unstable primal model is however embedded in the optimizationframework so that the residual is trained accordingly, resulting in a stable, ac-curate, model.

4.3.4 Implementation details
This Section details the various practical choices made to implement and trainthe CD-ROM model.

Training data

Tooptimize the parameters of equation (4.9) through theNeural ODE approach,one only needs knowledge of the true trajectory of the reduced coordinates
a⋆(t). As presented in Section 2.2.2, this trajectory data can be obtained by pro-jecting the solutions computed with the full order solver on the POD basis:

a⋆(t) = VT
r u(t). (4.10)

If the snapshots are sampled with a time interval ∆t, simulating the cor-rected ROM (4.9) for nt time steps leads to the followingL2 mean squared error:

J =
1

nt

nt∑
i=1

∥a(i∆t)− a⋆(i∆t)∥22 (4.11)
for which a gradient can be computed by integrating the adjoint equation (3.47).
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Memory Initialisation

For the model to be accurate, the memory term needs to be initialized by eval-uating the memory integral at time t = 0 which requires knowledge of the pastof the true trajectory:
y(0) =

∫ 0

−∞
E(a⋆(τ); θE)e

Λτdτ. (4.12)
To be able to compute this integral, the infinite horizon of the memory inte-gral can be relaxed by defining a finite τmin from the longest time scale λmin ofthe matrix Λ and a threshold ϵ ≪ 1, chosen to be small enough such that therelative error made on the initial memory is sufficiently small:

τmin = − log ϵ

λmin
, (4.13)

y(0) ≈
∫ 0

−τmin

E(a⋆(τ); θE)e
Λτdτ. (4.14)

Because this initial memory term directly depends on the parameters of theencoder and the matrix Λ, it needs to be re-computed at each training epoch.This can be done very efficiently on aGPU through a simple trapezoidal approxi-mation of the integral in Eq. (4.14). It should be noted that, while the initializationof the memory is necessary to obtain an exact model of the system at hand, itcould limit the applicability of the method to certain real life settings. However,there are ways tomake it less critical, such as initializing thememory with whitenoise during training. This would of course impact the accuracy of the model,depending on the system at hand.
Training Loop

Algorithm 1 summarises the NeuralODE training procedure.
Residual regularization

We observed that only training the model to follow the trajectory data can leadto poor local optima with large corrections applied to the original model. Sincethemagnitude of the correction ismeant to be small when r is sufficiently large,this tends to indicate over-fitting. This is an issue as such amodel does not cap-ture the true dynamics, and will quickly diverge when evaluated on conditionsdifferent from the training trajectory. To address this, a regularization term canbe added to the loss, to limit the magnitude of the corrections applied to theROM:
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Algorithm 1 Training the CD-ROM as a Neural ODE
Require: f(z; θ) the dynamics of the CD-ROM, L the loss, η the learningrate
for i← 1 to N do ▷ Training iterationsSample a batch of trajectories a⋆

−τmin−→TCompute the initial memory y0 ▷ Equation 4.14
z0 ← [a⋆

0,y0]
[at,yt]← z0 +

∫ t

0
f(z; θ)dt ▷ CD-ROM simulationCompute the loss L(a0−→T ,a

⋆
0−→T )

µT ← dL
dzT

▷ Adjoint Initial Condition
µt ← µT −

∫ t

T
µT ∂f

∂zt
dt ▷ Adjoint Equation

d
dθ
L ←

∫ T

0
−µT

t
∂f
∂θ
dt ▷ Compute the Gradient

θ ← θ − η d
dθ
L

end for

J =
1

nt

nt∑
i=1

(
∥a(i∆t)− a⋆(i∆t)∥22 + ρ ∥R(y(i∆t)∥22

) (4.15)
where nt is the number of time steps of length∆t in the optimized trajectory,

a⋆ is the training trajectory data, and ρ is a hyper-parameter chosen to balancethe importance of the regularization w.r.t. the rest of the loss. Although thisfairly simple approach already helped guide the training, we obtained betterresults by adding a custom regularization loss. This loss is based on the ap-proximate value of the residual on the true trajectory, which can be obtainedby computing the time-derivative of the true reduced coordinates ȧ⋆ throughfinite differences, and computing the difference with the derivative defined bythe uncorrected ROM:
R⋆ = ȧ⋆ − L̃a⋆ − a⋆TQ̃a⋆. (4.16)

In parallel, the true value of the memory can be evaluated from the truetrajectory integrating in time the following ODE:
d

dt
y = E(a⋆;θE)−Λy. (4.17)

One can then define a regularization term Lcorr for the loss:
Lcorr =

1

nt

nt∑
i=1

∥R(y(i∆t))−R⋆(i∆t)∥22 . (4.18)
This regularized loss definition was observed to lead to models with bettergeneralization properties. Note that Lcorr can be computed for a small random
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subset of the training batch at each epoch, to accelerate training while keepinga “stochastic” regularization for the residual.
Encoded space regularization

Regularizing the encoded space can both help smooth the training process andincrease the robustness of the model to unseen conditions. Taking inspirationfrom existing work ([88]), we propose to add the identity function to the en-coder model. This means that useful information is embedded in memory inthe form of a time convolution of the past resolved states of the system. Theencoded stateE(at) is then composed of both the reduced state at and a learn-able nonlinear transformationMLP(·,θE) of it:
E(at, θE) =

[
at,MLP(at,θE)] (4.19)

With this structure, the encoder will only be learning additional nonlinear trans-formations of the state, simplifying the training and introducing a level of struc-ture in the encoded space as we ensure its first dimensions are coherent withthe phase space.
Memory Dimension

The dimension of the memory in the CD-ROM formulation is a hyperparameterthat should be chosen depending on the case and the dimension of the reducedstate. Choosing an excessively low memory dimension will lead to poor predic-tion performance, while using too high of a dimension will negatively impactthe computational cost of the corrected model and might lead to overfittingand poor numerical conditioning.In our experiements, good results were obtained usingmemory dimensionsranging from 2× to 10× the dimension of the reduced state.

4.4 Interpretation of the model
Before presenting the selected test cases and results, further justification andinsights into the model are discussed in this Section. First, the Mori-Zwanzigformalism is introduced to frame our model in the context of dynamical sys-tems theory. Then, we study how it can be compared to purely data drivenapproaches, such as reservoir computing.
4.4.1 The Mori-Zwanzig formalism
TheMori-Zwanzig formalism ([6, 10, 29]) provides a closed form for the dynamicsof partially observed systems by distinguishing three separate terms:
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d

dt
a(t) = Ω(a(t)) +

∫ t

0
K(a(s))ds+ F (t) (4.20)

where a(t) are observables of a system defined as a projection of the full or-der state onto the observable space and Ω is the projected part of the originaldynamics. These two quantities can respectively be identified as the reducedcoordinates and dynamics of classical POD-Galerkin models. The remainingterms account for the impact of the non-observed coordinates of the systemon the resolved dynamics. K represents the dynamical exchanges between re-solved and unresolved dynamics during the simulation, while F accounts forthe incomplete knowledge of the initial condition and system dynamics. Underthe condition that the unresolved dynamics be dissipative, which is reasonablewhen the unobserved coordinates correspond to the small scales of a dynami-cal system, and that the boundary of the integral term in Eq. (4.20) be modifiedto −∞, the last term in the Mori-Zwanzig formalism vanishes, leading to thefollowing formulation:
d

dt
a(t) = Ω(a(t)) +

∫ t

−∞
K(a(s))ds. (4.21)

The residual modelR proposed above can then be identified with themem-ory integral defined by the time-convolution kernel K, providing a strong con-nection with our non-Markovian correction hypothesis. Framing the CD-ROMarchitecture in the context of the Mori-Zwanzig formalism further justifies ourmodeling choices. Yet, it does not provide additional insights into the form ofthe correction model since little information is known about the convolutionoperator which can be infinite dimensional in certain cases. Choices about thestructure ofK need to be made. In this work, assumptions are made about thevanishing impact of past states of the system on the residual model, accountedfor by the matrix Λ in our approach. In fact, this parallel with the Mori-Zwanzigformalism was further exploited in our work and led to the development of asecond contribution, which we introduce in Chapter 6.
4.4.2 Deep Learning interpretation of the model
In this Paragraph, the link between the CD-ROM architecture and classical deeplearningmodels is discussed. Numerousmethods havebeenproposed tomodelsequential data, each relying on a specific mechanism to extract and retainmeaningful information from the past states of the system. The most popu-lar architectures, GRU and LSTM ([56, 23, 57]), both use a combination of gatingmechanisms to learn long termdependencies in a sequence. Other approacheslike reservoir computing rely on an underlying dynamical system forced by thesequence data to predict the required output. In fact, strong similarities canbe identified between our approach and echo state networks (ESN [45, 128]), a
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widespread reservoir computing architecture. ESNs are based on the simula-tion of random dynamics described by matricesWin andWR. The matrixWinis used to encode some data xt in higher dimension, while the matrixWR holdsthe weights of the reservoir used to advance the state (memory) yt in time:
yt+1 = σ(Winxt +WRyt). (4.22)

For the sake of comparison, the nonlinear activation function σ is dropped,and we consider that equation (4.22) results from the Euler integration withtime-step ∆t of a continuous system describing the dynamics of the memory
dy
dt :

yt+1 = Winxt +WRyt (4.23)
= yt +∆t

dy

dt
(4.24)

which leads to the following expression:
dy

dt
=

Win

∆t
xt +

(WR − I)
∆t

yt. (4.25)
Because the spectral radius of the matrixWR is constrained to be less thanunity, all the eigenvalues of the operatorWR = (WR−I)

∆t
have negative real parts,leading the ESN to have memory dissipation properties similar to those of ourmodel. To underline this similarity, we can express the state of the ESN at time

t by diagonalising the operatorWR = PΛRP
−1:

y(t) =

∫ T

0
PeΛR(t−τ)P−1Win

∆t
x(τ)dτ. (4.26)

Thus, a parallel between our model and the ESN is outlined. Major differ-ences remain in the fact that the dynamics (WR) and encoding matrix (Win) arenot optimised during the ESN training. It should also be noted that nonlinear-ity is introduced in the ESN dynamics through the σ activation function, whileour model is based on linear memory dynamics and on a nonlinear encodingoperator. These comparisons between direct deep learning methods and thecontinuous correction approach help build intuition about the role of each termin the model. The encoder can be compared with the input gate of an LSTM, orthe Win matrix of the ESN, the Λ matrix provides a tunable forget mechanism,while the residual termR plays the role of the output operator in our “continu-ous recurrent network”.
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Figure 4.5: Computational domain for the cylinder case.

4.5 Case presentation and reduced models
In this Section, we introduce the simulation cases selected to demonstrate theability of the CD-ROM approach to improve the performance of POD-Galerkinmodels. We first present two flow problems to illustrate the benefits of theCD-ROM architecture in the context of fluid mechanics. The first case is thestandard configuration of the flow over a cylinder, often used as a benchmarkfor reduction methods. The second case is the fluidic pinball flow, introducedin Noack and Morzyński [89] for the development of new control strategies.Finally, we introduce the case of the 1D Kuramoto-Sivashinsky which we useto demonstrate the ability of the CD-ROM approach to extend to parametricsimulation problems.
4.5.1 Flow over a cylinder
The two-dimensional incompressible flow over a cylinder has been extensivelystudied in the context of reduced order modeling [17, 32] and model identi-fication [79, 105] which makes this test case a good initial benchmark for theproposed correction method. The flow is simulated at a Reynolds number of
Re = 100 based on the cylinder diameter and the velocity of the incoming flow.In this regime, the flow is laminar and exhibits vortex shedding in the wake ofthe cylinder.The flow is governed by the incompressible Navier-Stokes equations, heresolved using the FEniCs finite elements solver [50, 67]. The retained mesh isshown in Figure 4.5. It is rectangle-shaped, spanning from x = −5 to x = 15 inthe streamwise direction, and from y = −5 to y = 5 in the transverse direction.The cylinder has a diameter D = 1, centered around the origin. The inflow ismodeled as a uniform axial flow (u(−5, y) = [U∞, 0]) and a free-slip conditionis used for the lower and upper boundaries of the rectangle while a no-slipcondition is enforced at the cylinder surface. Finally, a stress-free condition isused for the outlet.
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Figure 4.6: Vorticity fields of themodes selected for the reduced ordermodelingof the cylinder flow.
A reduced order modeling strategy is employed to obtain a baseline modelfor the correction approach. The main results are summarised here but we re-fer to Noack et al. [32] for details on the reduction strategy. The vortex sheddingregime of the cylinder flow is simulated with the FEniCs solver to obtain snap-shot data and compute the POD modes. The first two modes, accounting formore than 95% of the Frobenius norm of the snapshot matrix are selected. Thesteady solution of the system is computed with a Newton method to constructa so-called shift mode (a∆). This mode is computed as a vector orthogonal tothe plane described by the first two modes, pointing to the base flow solution

ub, and serves as a support for the simulation of the transition of the systemfrom its steady state to the vortex shedding limit cycle. A three-dimensionalPOD basis is thus finally obtained. They are shown in Fig. 4.6 in terms of thevorticity field.The training data corresponds to the simulation of the transition of the sys-tem to the limit cycle of oscillations, starting from an initial condition u0. Thisinitial condition is taken as a point close to the base flow ub which is the fixedpoint of the incompressible Navier Stokes equations. Following the procedureof Loiseau et al. ([105]), we chose
u0 = ub + ϵv1, (4.27)

where v1 is the first POD mode, and ϵ > 0 is a small coefficient used to perturbthe unstable base flow.Through Galerkin projection of the discretised Navier-Stokes equations, asystem of 3 coupled ODEs is obtained, describing the dynamics of the reducedcoordinates vector. The results of the simulation of the transition using both theFinite Elements model and the Galerkin ROM are displayed in Figure 4.7. Eventhough the three equation model is able to simulate the transient dynamics, itstrajectory strongly diverges from the projected snapshot data. The transitionstarts much later than in the full order simulation, due to a growth rate of theROM’s transition lower than what it should be. Another significant issue withthe model is its stabilization around the limit cycle (a∆ = 0) where an overshootcan be observed before the vortex shedding regime is established, which is notobserved in the snapshot data. These discrepancies between the two trajecto-ries can be attributed to the ignored residual term in the dynamics, making this
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Figure 4.7: True trajectory and simulation of an uncorrected Galerkin ROM.Plots (1) & (2) show the phase space trajectories projected on the a1 − a∆ and
a1−a2 planes, while (3) shows the time evolution of the shift mode coefficient.
model a good baseline for the correction approach illustrated in Section 4.6.A test trajectory is also simulated in FEniCs by taking a random initial condi-tion in the phase space spanned by the three selected modes, such that:

u0,test =
3∑

i=0

viai, ai ∼ N (0, 1), (4.28)
where vi are the POD modes, and ai are random reduced coordinates sam-pled from a normal distribution. Starting from this initial condition, the finiteelement model is simulated in FEniCs for 700 seconds to ensure the systemreaches the oscillation regime. The performance of the various models on thisdata trajectory are presented in Section 4.6.
4.5.2 Fluidic pinball
The second case used to demonstrate the approach is the so-called fluidic pin-ball. Initially proposed as a challenging test bed for the development of controllaws [89], the fluidic pinball case offers a good trade-off between complexity ofits dynamics and interpretability [116, 156]. The simulation domain (Figure 4.8) iscomposed of three equidistant cylinders, each generating vortices in the wakewhich interact to create rich dynamics. The mesh used for the simulation wasprovided by the authors of Cornejo Maceda et al. [100]. Displayed in Figure 4.8,the domain is a rectangle spanning from x = −6 to x = 20 in the streamwise di-rection, and y = −6 to y = 6 in the transverse direction. Three identical cylinderswith diameter D = 1 are arranged in an equilateral triangle, with centers’ coor-dinates (0, 0.75), (0,−0.75) and (−1.25, 0) respectively. The boundary conditionsare identical to those of the cylinder case in Sec. 4.5.1. The inflow is modeledas a uniform axial flow, the upper and lower boundaries of the computationaldomain are modeled as free-slip, while a no-slip condition is used for the wallsof the three cylinders and the outlet is modeled as stress-free.The flow is simulated at a Reynolds number of Re = 130. At this Reynoldsnumber, the flow dynamics have been shown to be chaotic [156], which makes
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Figure 4.8: Computational domain of the fluidic pinball case.

Figure 4.9: Flow complexity of the pinball case. Left: Vorticity field of the flow inthe chaotic regime. Right: Spectrum of the snapshot matrix.
it a challenging problem for any correction model as the smallest error on thedynamics will make the simulated trajectory diverge exponentially fast in timefrom the truth. These kind of chaotic problems are starting to get tractionas interesting benchmarks for forecasting tasks and modeling problems [158].The flow is simulated for 1800 seconds in the chaotic regime, which, basedon the ergodic property of the system, yields a trajectory long enough to berepresentative of it’s attractor.It should be noted that the pinball flow is much more complex than thecylinder, as evidenced from Figure 4.9 where it is seen that many POD modesare required to account for a significant part of the energy. Almost a thousandmodes would be required to capture 99% of the Frobenius norm of the snap-shot data, while only 8 are required to achieve the same accuracy in the cylindercase.We chose to build a POD-Galerkin model of this flow using only the first 10POD modes. Although this choice is somewhat arbitrary, it was made to chal-lenge the correction method, as the mean reconstruction error of about 60%has an important impact on the approximated dynamics. Indeed, the obtainedreducedmodel quickly separates from the original trajectory, as expected froma chaotic system. More problematic is the fact that the reduced model is very
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Figure 4.10: From top to bottom: time evolution of the first 3 POD coefficients.
Black line: true value of the pinball’s POD coefficients, orange line: trajectoriesobtained by integrating an uncorrected Galerkin reduced order model con-structed using the first 10 POD modes.
unstable and diverges after 70 s of simulation, as shown in Figure 4.10. Ap-plication of the correction method is presented in Section 4.6, a discussion onthe impact of the number of modes is provided in Section 4.7.1, while additionalinformation on the computational cost of the approach is given in Section 4.7.2.
4.5.3 Parametric Kuramoto-Sivashinsky equation
Finally, to illustrate the ability of the proposed method to extend to parametricproblems, we introduce the case of the 1D parametric Kuramoto-Sivashinsky(KS) equation. This case is often used to validate physical modeling methods asit is inexpensive to simulate because of the relatively low dimension of the dis-cretization required, and presents non linear dynamics. Moreover, dependingon the parameters used for the simulation, the dynamics become chaotic, mak-ing it significantlymore challenging to forecasting approaches. The KS equationis formulated as follows:

∂u

∂t
= −1

2
∇ · u2 −∆u− ν∆2u, (4.29)

u(x+ L, t) = u(x, t), (4.30)
u(x, 0) = g(x), (4.31)

where L is the length of the 1D simulation domain, g is the initial condition and
ν is a parameter that controls the degree of dissipativity of the system. Takinginspiration from Wang, Ripamonti, and Hesthaven [148], we propose to learn acorrected ROM for this problem under varying ν values. As in Wang, Ripamonti,and Hesthaven [148], we chose L = 22 and g is computed as the sum of thefour leading Fourier modes with coefficients 0.06. The problem is discretisedspatially on a basis of N = 513 Fourier modes, and integrated in time throughthe semi-implicit third order scheme from Kar [39]. This choice of discretisation
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Figure 4.11: Left: Simulations of the KS equation carried out under two differentparameter values. Right: Relative snapshot reconstruction accuracy against thenumber of POD modes used for reconstruction.

implies that the periodicity condition (equation 4.30) is satisfied by construction.The simulation is carried out for a duration of 50 seconds, using a time step (∆t)of 0.025s.
As in Wang, Ripamonti, and Hesthaven [148], the parameter ν is varied inthe range [0.3, 1.5]. As mentioned in the previous Paragraph, this parametercontrols the degree of dissipation in the system, thus, low ν values lead tomorechaotic dynamics and a harder model reduction task. This is represented onfigure 4.11, which displays the differences between simulations carried out atthe limits of the chosen parameter range.
To create a reduced model of the system, the simulation problem is solvedfor 25 parameter values selected within a log-linear range from ν = 0.3 to

ν = 1.5. With this initial data, the proper orthogonal decomposition of the snap-shot matrix is computed. The evolution of the relative snapshot reconstructionerror depending on the number of selected modes is shown in Figure 4.11. Toassemble the Galerkin reduced model, we select the 25 leading POD modes,which account for more than 99.5% of the information in the snapshot data.The computed POD modes form a basis V , which can be used to approximatethe solution field u(t, ν) computed for a given time and parameter value as fol-lows: u(t, ν) ≈ ũ(t, ν) = V a(t, ν).
As in the non-parametric case, computing the vector of reduced coordinates

a(t, ν) is sufficient to fully determine the approximate solution ũ(t, ν). Finally,the Galerkin projection method described in Section 4.2 is applied to the KSequation, yielding the following reduced model:
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Figure 4.12: Coefficients of the first 4 POD modes simulated with the uncor-rected Galerkin ROM under different parameter values. Dashed line: ProjectedDNS data, full line: Simulation of uncorrected the Galerkin ROM.

da

dt
= −1

2
aTQ̃a− L̃a− νL̃2a, (4.32)

Q̃i,j,k =< vi,∇(vjvk) >, i, j, k = 1, ..., r (4.33)
L̃i,j =< vi,∆vj >, i, j = 1, ..., r (4.34)
L̃2i,j =< vi,∆

2vj >, i, j = 1, ..., r (4.35)
where vi are the POD modes, and < ·, · > is an inner product defined overthe computational domain. It can be noted that the Q̃ and L̃ operators arethe one dimensional equivalent of the reduced Navier-Stokes operators intro-duced in Section 3.3. Similarly, the operator L̃2 is a linear operator correspond-ing to the fourth order derivative in equation 4.29. To test the model, 62 testparameter values are selected randomly in the range ν ∈ [0.3, 1.5] following alog-uniform distribution.The uncorrected Galerkin ROM is simulated using the semi-implicit schemefromKar [39]. Figure 4.12 presents the results obtainedby simulating theGalerkinmodel under different parameter values. The figure clearly underlines the dif-ficulty of modeling lower ν values, as we observe that the Galerkin model di-verges quickly from the true trajectory. Results obtained by augmenting theGalerkin ROM with the CD-ROM architecture are presented in Section 7.

4.6 Results and discussion
In this Section, wepresent the results obtainedby applying theCD-ROMmethodto the imperfect Galerkin ROMs presented in the previous Section. While some
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of the design choices regarding each specific cases are discussed in the follow-ing Paragraphs, we refer the reader to Appendix 9.1 for a description of thevarious training details and hyper-parameter choices.

4.6.1 Cylinder case
The reduced model derived in Section 4.5 above was shown to be efficient forthe simulation of the vortex shedding regime, but not suited to the simulation oftransient dynamics. To apply the proposed correction procedure to this model,the modeling terms introduced in Sec. 4.3 are added to the reduced model.The dimension of the memory is chosen to be ten times the dimension of thereduced state. The residualR and encoderE are defined as multi layer percep-trons, using the Rectified Linear Unit activation function. Finally, the diagonal ofthe memory matrix Λ is initialised at random from a normal distribution. Themodel is trained with the Adam optimizer, and the trajectory loss introducedearlier (Eq. (4.11)) is used in combinationwith the additional regularization termsintroduced in Section 4.3.4.

As described in Section 4.5, the model is trained on the trajectory data ob-tained by simulating the transition from an initial condition close to the baseflow. Since this target trajectory starts close to the base flow of the system,which is stationary, the initial memory can be computed with minimal errorthrough the following integral:

y(0) = E(a⋆
b)

∫ 0

−τmin

eΛτdτ

where a⋆
b = VT

r ub are the reduced coordinates of the base flow and τmin is thelongest time horizon defined by the Λ matrix as in Equation (4.13). Finally, theparameters of the models are progressively optimised to reproduce the truetransition trajectory as shown in Figure 4.13.
The CD-ROM model is integrated in time using an adaptive RK-45 scheme.Simulation results on the training trajectory are presented on Figure 4.14. Itcan be seen that the corrected model follows the training trajectory perfectly,triggering the transition at the right time, and correcting the oscillations of theoriginal ROM during the stabilisation on the limit cycle. Moreover, the graphshows that the correction applied by the residual model is strong during thetransition, where the original ROM struggles, and becomes minimal during therest of the trajectory.
Finally, we present results of the performance of the model on the test tra-jectory. The first 8 seconds of DNS simulation are used to initialise thememoryfollowing Equation (4.14). Figure 4.15 presents the performance of each modelon this trajectory. Because the starting point is not close to the base flow, the
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Figure 4.13: CD-ROM trajectory obtained at different levels of training. The firstmode’s amplitude is displayed in the top panel, while the third mode’s ampli-tude is shown in the bottom panel.

Figure 4.14: Results obtained with the corrected ROM for the simulation of thecylinder flow’s transient dynamics. Left: phase space trajectory from base flowto limit cycle simulated with the finite element solver, the original Galerkin ROMand our corrected model. Right: time evolution of the shift mode’s coefficientsimulated with the same models, as well as the norm of the correction appliedby our model.
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Figure 4.15: Simulation results obtained on a test trajectory. As in Figure 4.14,the first graph represents the phase space trajectory, while the time evolutionof the shift mode’s coefficient is presented on the second graph.
uncorrected ROM instantly exhibits transient dynamics, however, the growthrate of the transition is still inaccurate and the shift mode’s trajectory presentsthe same non-physical oscillations around the limit cycle observed in the train-ing trajectory. The corrected model does much better than the original ROM,simulating a more accurate transition, and stabilising on the limit cycle almostperfectly.
4.6.2 Fluidic pinball results
Correction Results

While the cylinder case discussed above offers a simple test bed for the pre-sentation of the approach and its potential, it has already been shown that veryparsimonious models could be used to model its dynamics [105], which sug-gests this configuration might not require a high dimensional neural networkto learn a correction term. The case of the fluidic pinball is more challengingand can better underline the ability of our method to handle complex physics.As presented in the previous Section, the POD-Galerkin approach is not wellsuited to the reduction of the pinball case. The number of modes required toreconstruct the snapshot data with a satisfying accuracy is very large and usinga small number of modes leads to an unstable model.To apply the correction approach to the pinball case, a correction model isbuilt. The encoder and residual models aremulti layer perceptrons and the Sig-moid Linear Unit activation function is used as it leads to smoother integration.Theweights of the residualmodel are initialised to be close to 0 so that the ROMis initially almost uncorrected. Diagonal entries of the memory matrix are ini-tialised as a log-linear range of time horizons, ranging from 0.6 to 3.84 seconds.The training data consists of 1800 seconds (15000 snapshots) of DNS simulationin the chaotic regime. The leading two thirds of the simulated DNS trajectoryare used for training while the remaining third is set aside for testing.
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Figure 4.16: Vorticity fields obtained after 110 s of simulation in the chaoticregime.

As presented in the previous Section, the uncorrected 10-mode ROM is un-stable and diverges after 70 s of simulation. As a result, trying to optimise thecorrection model for long trajectories directly would lead to a very unstabletraining process. To address this issue and stabilise the training, the correctedROM is trained on sub-trajectories of only 10 seconds This length is chosen as itis short enough for the model to remain stable and long enough for the impactof the encoder on the memory to be accounted for. Once a good correctionmodel has been trained for 10 seconds long trajectories, the length is progres-sively augmented to attain the target horizon of 120 s. Besides the stabilisationof the training, using sub-trajectories also allows for parallel training. Multiplesub-trajectories can be sampled from the snapshot data and integrated in par-allel on a GPU to dramatically speed-up training, more information about thetraining strategy as well as the training parameters used is provided in 9.1.
The pinball correctionmodel was trained to follow true trajectories up to 120seconds. Results of the simulated flowfields are presented on Figure 4.16. It canbe seen that the projection on the 10-dimensional POD basis effectively filterspart of the spatial structures, leading to the divergence of the uncorrected re-ducedmodel. In contrast, the corrected ROM is able to reproduce the projectedflow field accurately.
As with the cylinder case, the CD-ROM is simulated with an adaptive RK-45scheme. Trajectory results simulated from a condition in the training basis arepresented on Figure 4.17. The model starts quickly diverging from the true tra-jectory after the training horizon (120 s) as is expected from the chaotic natureof the problem. Deriving a model to perfectly follow the DNS trajectory wouldhere make little modeling sense.
More interesting is the fact that, despite leaving the training trajectory, thecorrectedmodel does not becomeunstable, evenwhen integrated for over 1000seconds with an initial condition outside of the training data. This suggests thatthe dynamics correction learned by the model has some physical consistency,
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Figure 4.17: Results of the correction approach applied to the 10-mode ROMof the fluidic pinball. The initial condition is a random point selected in thetraining trajectory. Plots (a),(b),(c) describe the coefficients of the first three PODmodes simulated with different models. Plot (d) presents the relative Euclideandistance between the true data and the trajectory simulated with the CD-ROM.
dissipating the necessary energy which would otherwise have made the simu-lation diverge in the uncorrected case.

The intuition that the model was able to learn a Physics-compatible correc-tion is confirmed when looking at the statistics of the attractor spanned by theCD-ROM’s trajectory. Using the nolitsa library [107], the correlation dimension([13]) was estimated, as well as the maximum Lyapunov exponent ([14]) of thecorrected and true trajectories. The results are shown in Figure 4.18 wherethe model is seen to reproduce well the characteristics of the true attractor.One can also look at the probability distributions of the mode’s amplitudes,presented on Figure 4.19. Once again, the simulated trajectory reproduces theresults of the true simulation.
Note that long trajectories (several hundreds of seconds) were simulatedwith the corrected model to obtain these statistics. Due to the chaotic natureof the problem and the length of the integration period, the model has visitedparts of the attractor different from those seen in the training trajectory. De-spite this, the CD-ROM remains stable and describes an attractor with statisticsthat are very similar to those of the true attractor, further supporting the ap-proach for the reduced modeling of complex dynamics.

4.6.3 Parametric KS equation results
In this Paragraph, we present the results obtained by applying the CD-ROM ar-chitecture to a parametric case, the KS equation presented in Section 4.5.3. Todo so, the reduced Galerkin model of equation 4.32 is augmented with the pro-posed CD-ROM architecture (equation 4.8). To account for the parametric na-ture of the problem, the coefficient ν is passed to both the residual (R) and
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Figure 4.18: Statistics of the 10-dimensional attractors described by the pro-jected DNS data (black) and the CD-ROM (blue). Left: Average number of points
g in a sphere of radius r, the data follows the law g = rCd where Cd correspondsto the correlation dimension of the attractor. Right: Time evolution of the aver-age distance d between trajectories starting from arbitrarily close initial condi-tions on the attractor. The data follows the law d = etle where le corresponds tothe maximum lyapunov exponent of the system at hand.

Figure 4.19: Estimated probability density functions for the coefficient of eachmode. Plain blue line: Statistics of the trajectory simulated with the correctedmodel; dotted black line: Statistics of the projected DNS data. Labels refer to themode index.



84 CHAPTER 4. CD-ROM

Figure 4.20: Coefficients of the first 4 POD modes simulated with the CD-ROMas well as the uncorrected Galerkin ROM under different parameter values inthe test dataset. Dashed line: Projected DNS data, full orange line: Simulation ofthe Galerkin ROM, full blue line: Simulation of the CD-ROM.

encoder (E) models, yielding the following CD-ROM system:
d
dta = −1

2a
TQ̃a− L̃a− νL̃2a + R(y, ν;θR),

d
dty = E(a, ν;θE) − Λy.

(4.36)
The residual and encoder models are both expressed as multi layer percep-trons, using the SiLU activation function. The weights of both neural networks,as well as the memory matrixΛ, are optimised using the Adam optimizer. As inthe previous fluidic pinball case, we start by optimising themodel on small sub-trajectories, then gradually increase the length of the sub-trajectories as themodel reaches the desired accuracy. The model is trained on the data gener-ated to computed the PODmodes and assemble the Galerkin ROM (see Section4.5.3). This training data corresponds to simulations carried out under 25 differ-ent parameter values in the range [0.3,1.5]. After training, the model is testedon 62 new simulations carried out under different parameter values selectedrandomly following a log-uniform distribution, as described in Section 4.5.3.
Contrary to the two previous flow cases, it is more efficient to simulate theKS equations using the semi implicit time-stepping scheme of Kar [39], thus weuse this scheme to integrate the CD-ROM model in time. Figure 4.20 presentsthe results obtained by simulating the CD-ROM using ν values not included inthe training data. On the two cases presented, the CD-ROM performs betterthan the Baseline Galerkin ROM. It can be seen that the model diverges fromthe true trajectory data earlier in the case where the value of ν is lower. Thisis expected as we showed in Section 4.5.3 that lower ν values lead to morecomplex dynamics.



4.6. RESULTS AND DISCUSSION 85

Figure 4.21: Error metric (equation 4.37) computed for each test parametervalue.

To assess the performance of the CD-ROM over the whole test set, the Eu-clidean distance between the simulated reduced coordinates vector a and theprojected DNS data a⋆ is computed over time, and for every test parametervalues:

d(t, ν) = ∥a(t, ν)− a⋆(t, ν)∥2. (4.37)

Figure 4.21 presents the values of the error metric (equation 4.37) for everytest parameter value at select time steps. The figure shows that the CD-ROMis able to remain significantly closer to the true trajectory than the baselineGalerkin ROM for almost 20 seconds. The model then behaves differently de-pending on the parameter value. Cases in the ν ∈ [0.3, 0.5] range presentingthe more chaotic dynamics quickly diverge from the true trajectory, while theCD-ROM is able to beat the baseline on the rest of the test cases for up to 50seconds.
These results demonstrate the ability of the CD-ROM architecture to im-prove the Galerkin model order reduction approach in a parametric setting.The trained CD-ROM model is able to reproduce the dynamics of the full ordersystem better than its uncorrected counterpart, even when using parametervalues different from the training conditions.
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4.7 Additional Results

4.7.1 Number ofmodes for the fluidic pinball reduction
Before concluding this Chapter, we discuss below some additional studies thatwere conducted on the case of the fluidic pinball. A first study considers theevolution of the uncorrected model error depending on the number of modes,which was carried out to underline the challenge of using only the ten leadingmodes in the experiments presented in the previous Section. A discussion onthe computational costs of the method is then provided, to underline the pa-rameters driving these costs as well as the tradeoff between the dimension ofthe ROM and the computational cost of the correction model.
Uncorrected models comparison

In Section 4.5, we present a 10-mode reduced order model of the fluidic pinballproblem. The number ofmodes is chosen somewhat arbitrarily to challenge themethod. Themoremodes are used to model the flow, the better the model willbe at reproducing the true dynamics, reducing the complexity of the requiredresidual term. With this study, we provide additional insights into the impact ofthe number of modes on the reduction problem to clarify the choice of using10 modes to model the pinball flow.Figure 4.22 presents the performance of different reduced models of thepinball flow. It is clearly seen that increasing the number of modes is benefi-cial for the performance of the reduced models. The magnitude of the closureterm, as well as the speed at which the reduced model diverges from the truetrajectory, are reduced when the number of modes increases. This Figure alsoshows that a higher number of modes leads to more stable reduced models.However, further experiments showed that even well resolved models such asthe one using 173 modes were not stable and would diverge in certain condi-tions.
Training convergence

To add to the argument, a comparison of the training convergence betweentwo models using different number of modes is discussed. Two models arebuilt, using respectively 10 and 55 POD modes, and the correction architectureis trained using the same parameters, presented in Table 4.2.
Memory Dimension 5 × POD dimensionResidual lr 10−3

Encoder lr 10−3

Λ lr 2 10−4

Optimiser AdamW
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Figure 4.22: Comparison of the performance of POD-Galerkin models at differ-ent degrees of reduction. Top: Simulated value for the amplitude of the firstPOD mode; center: Value of the closure term for the first POD mode computedon the true trajectory; bottom: Relative distance between simulated and truetrajectories.
Table 4.2: Parameters, e.g. learning rates (lr), used for the training of thecompared CD-ROM architectures.

In both cases, the same loss is used, combining the optimisation of the dis-tance between simulated and true trajectory with the residual regularizationdiscussed in Section 4.3.4:

J =
1

r

(
1

nt

nt∑
i=1

∥a(i∆t)− a⋆(i∆t)∥22 + c
1

nt

nt∑
i=1

∥R(y(i∆t))−R⋆(i∆t)∥22

)
. (4.38)

where c = 0.1 is a constant weighting the importance of the stochastic residualregularization term w.r.t. the trajectory loss. Notice that, to ease the compari-son between the two models, the loss is scaled by the number of modes usedin the ROM. The twomodels are trained in the same fashion, sub-trajectories ofa hundred time steps are sampled in the training base and the loss (4.38) is op-timised until a chosen threshold (5× 10−4) is reached, at which point the lengthof the sub-trajectories is increased by fifty time steps. This process is repeateduntil the model is able to reproduce sub-trajectories of a thousand time steps.Figure 4.23 presents the evolution of the loss for the two models, as ex-pected, the 55-mode model is quicker to train as it first reaches the thresholdin 1400 epochs, while it takes the 10-mode model more than twice the num-ber of epochs to achieve the same performance. Similarly, the 55-mode modelachieves the required precision on trajectories of a 1000 time steps in only 4700epochs, which is again more than twice as fast as the 10-mode model.These results confirm the interest of only using the first 10 modes to chal-lenge our correction approach. The relatively high magnitude of the residualterm to be learned, the instability embedded in the model and the low degree
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Figure 4.23: Loss evolution of two CD-ROM architectures using a different num-ber of modes.
of resolution of the problem (only 42% of the snapshot information) all consti-tute significant complexities which could arise in real world applications. Whilewe showed that using a higher number of modes would simplify the modelingproblems, this constraining choice helps demonstrate the applicability of theCD-ROM method to challenging modeling problems.
4.7.2 Computational cost
While the computational cost of the overall CD-ROM approach and the way itcompares to full order methods will strongly vary with the nature of the prob-lem it is applied to, the simulation software used as well as the available hard-ware, we provide some elements of comparison with the PODGalerkin methodin this Section. Once again focusing on the case of the fluidic pinball (see Section4.5.2), we distinguish several components of the computational costs entailedby the CD-ROM method:
ROM assembly

Because most POD Galerkin models are often restricted to a very low num-ber of modes, the cost of assembling the reduced model can often be over-looked. However, some problems might require a high number of POD modesto achieve a satisfactory resolution. For example, the fluidic pinball case re-quires up to a thousand modes to capture 99% of the snapshot information,which directly impacts the cost of assembling the reduced operators L̃ and Q̃ inequation 4.1. Specifically, the reduced advective operator Q̃ requires the com-putation of O(n3) inner products, n being the number of selected POD modes.This leads to exploding ROM assembly costs as the number of POD modesgrows higher. While the assembly remains a one-time, parallelisable operation,we observed that assembling a 250modes ROMon a 50 cpumachine tookmorethan a full day of computation. This underlines the interest of representing
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Integration timesUncorrected 10 modes 30 msUncorrected 173 modes 550 msCD-ROM 10 modes 330 ms
Figure 4.24: Performance and computational cost of simulating different mod-els starting from an initial condition outside the CD-ROM training basis.

the dynamics on a low dimensional basis of modes, as assembling a thousandmode ROM would become prohibitively expensive.

ROM Simulation

Figure 4.24 presents the comparative simulation costs and performance of dif-ferent reduced models on the fluidic pinball case. The figure shows that, al-though the CD-ROM does diverge from the true trajectory after some time,it performs better than its uncorrected counterparts. Specifically, the uncor-rected 173 modes reduced model which captures more than 90% of the snap-shot information, diverges earlier than the CD-ROM, while being more expen-sive to simulate.
It can also be seen that the CD-ROM is significantly more expensive to sim-ulate than the simple Galerkin model. This can be explained by the cost of eval-uating the neural networks embedded in the CD-ROM architecture. Indeed,neural networks require the evaluation of matrix vector products of relativelyhigh dimension. In the pinball case, we use two hidden layers of 250 neuronsfor the correctionmodel, which explains the computational cost increase. How-ever, it is interesting to note that the cost of evaluating a multi layer perceptronscales quadratically with its width (number of neurons per layer), while the costof evaluating the advection term in the galerkin ROM scales cubically with thenumber of modes. This explains the fact that the 173 modes Galerkin ROM ismore expensive to simulate than the 10 dimensional CD-ROM, while having alower accuracy. Similar to the previous Paragraph, this shows the interest ofcorrecting a low dimensional model, rather than simply increasing the numberof modes.
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Notes on Full Order Models

Providing a detailed comparison with full ordermethods is outside of the scopeof this study, as the computational cost of a full order model will depend on alarge number of choices, ranging from simulation software implementation tonumerical integration choices. We can however state that in fluid mechanicsexamples, the full-order models were extremely expensive to simulate whencompared to the reduced models studied in this Chapter. For example, gener-ating the snapshot and test data for the fluidic pinball case tookmore than a dayon a 50 cores machine. By comparison, the simulation of the trained CD-ROMfor the same duration is of the order of the second on a normal computer.

4.8 Conclusion
This Chapter introduces an augmented reduced ordermodeling strategy basedon the hybridization of the classical Galerkin projectionmethod and simple neu-ral networks. By studying the limitations of theGalerkin projection, we establishlinks with the theory of partially observed systems, which leads us to use pastobservables of the studied system as a critical ingredient for the correction ofGalerkin models. Building on this result, the CD-ROM architecture is proposedto extract and exploit useful information from the system trajectory, by embed-ding themodel with a delay differential equation structure. Moreover, the train-ing strategy based on adjoint optimization ensures a-posteriori performance ofthe model on the training trajectory.

The CD-ROM approach was demonstrated on two simple CFD test cases,namely, the flow over a cylinder and the fluidic pinball. Numerical experimentshave shown that the corrected models were able to capture the true dynamicswith a high degree of accuracy, reproducing the true transition in the case of thecylinder flow, and following the training trajectory for multiple Lyapunov timesin the fluidic pinball case. Moreover, these experiments outlined the reliabilityof the corrected model as it performed better than its uncorrected counterparteven outside the training conditions. The results obtained with the fluidic pin-ball are particularly encouraging. We showed that the correction model wasable to stabilize the original Galerkin model in a consistent physical manner, asthe attractor simulated with the CD-ROM approach presents statistics similarto the original attractor.
The ability of the proposed approach to extend to parametric problemswas also demonstrated. The CD-ROM method was applied to the case of theKuramoto-Sivashinsky equation with varying viscosity. After training the modelon a small number of parameter values in a selected range, we showed thatthe CD-ROMapproach improved the performance of the baselineGalerkin ROMover the whole parameter range, evenwhen simulating using parameter values
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outside of the training data. This is of interest for many real-world situations,e.g. industrial applications where a low-cost parametric model is a key enabler.With this, we conclude this Chapter on the CD-ROMmethod. We once againemphasize the hybrid nature of themodel, combining first principles and neuralmodeling. We show in the following Chapter that the degree of hybridization ofthe model can be adjusted to allow for the reduction of challenging non-lineardynamics. We also show that the time-continuous and interpretable memoryformulation of the CD-ROM learns to select frequencies that are consistent withthe system of interest.
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5.1 Introduction
The previous Chapter introduced the CD-ROM method for the augmentationof POD-Galerkin reduced-order models. The method was shown to be able to

93
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correct imperfect reduced order models resulting from the reduction of a sys-tem’s governing equation on a low dimensional linear basis. In this Section, wediscuss additional studies carried out with the CD-ROM method.
First, we introduce results that were presented in Menier et al. [176]. Thiswork was carried out in collaboration with Michelin R&D in the context of theHSA project at IRT SystemX. It focuses on the reduced-order modeling of anindustrial process with the CD-ROMmethod, the calendering of tire rubber andillustrates the adaptability of the approach to previously irreducible equations.
A second study is then presented on the time horizons learned by the CD-ROMarchitecture. By analyzing thememory dynamics of the CD-ROM, we showthat the model is able to choose and extract the dominating frequencies fromsystem data.

5.2 Application to Calendering and adaptive
hybridization

In this Section, we apply the CD-ROM approach to an industrial modeling prob-lem. We show that the approach provides an adjustable degree of intrusivity asit can be used to learn both a closure model as well as specific terms in partialdifferential equations. Thus, we can consider this application of the CD-ROM tobe a relatively more data-driven model than the original approach proposed inthe previous Chapter. Similar to the native CD-ROM approach presented in theprevious Chapter, we place the method proposed in this Section on the hybridi-
sation spectrum,displayed on figure 5.1.

Figure 5.1: The adaptive CD-ROM approach on the hybridization spectrum. NB:
This figure is provided for illustrative purposes and helps frame our proposals within
the broader context of the thesis. The placement of each method on the spectrum is
open to discussion, and small variations could lead to displacing a given approach
closer to one end or the other.
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Figure 5.2: Left: Schematic of the calendering process. Right: Simulation meshused in the finite element solver.
By augmenting an incomplete reducedordermodel of the systemof interestwith the CD-ROM architecture, we show that an efficient and flexible model isobtained, able to accurately simulate the problem in conditions unseen duringtraining and linearly reduce previously irreducible dynamics.

5.2.1 Problem introduction
Industrial problem: Rubber calendering process

This study focuses on the modeling of the rubber calendering process. Cal-endering is a manufacturing process that consists in passing a rubber sheetbetween two rollers to obtain the desired thickness and mechanical properties(see Figure 5.2). Because of the compression between the rotating cylinders,the rubber can heat up and deteriorate. To address this issue, one needs to es-timate the heat generation inside the material under different cylinder rotationspeeds in order to determine acceptable process conditions. The issue is thatsimulating the problem in a classical finite elements solver can take too muchtime, limiting the applicability of full order simulation approaches to the controlof the process. We hence propose to use model order reduction to lower thecost of simulating the problem.
Governing equations

The dynamics of this problem are governed by the following system of partialdifferential equations:

0 = −∇(2η(u, T )γ(u))− p, (5.1)
∂T

∂t
=

λ

ρCp
∇2T − u · ∇T +

η(u, T )γ(u)2

ρCp
. (5.2)

where T (x, t) represents the value of the temperature of the rubber, u(x, t)is the velocity of the rubber, p the pressure in the system, η the dynamic viscosityof the material and γ the deformation rate. Note that although the velocity of
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the fluid is critical in the modeling of the system as it captures the effects ofthe rotating cylinders on the system, it is governed by a steady-state equation.This is because in this case, the velocity field of the rubber reacts rapidly andis considered to transition instantly to its steady state under the given cylinderspeed and temperature conditions. The second equation then represents thedynamics of the temperature field as it reacts to the velocity field imposed bythe cylinders.Building a reduced-order model of these equations using the POD-Galerkinmethod is not straightforward. First, the steady-state problem in Eq.(5.1) is un-suitable for the efficient simulation of this system, as it has to be solved at ev-ery time step of the integration. This requires additional considerations on thechoice of solver, and can lead to expensive and unstable integration.Second, Eq.(5.2) can not be efficiently reduced through linear projection. Be-cause of the linear nature of the Laplacian and gradient operators, the first twoterms of the dynamics can directly be projected on a linear low dimensional ba-sis of spatial modes, reducing their computation to simple tensorial operationsas shown in Section 3.3. The last term, however, is a source term accountingfor the heat generated by the deformation of the rubber. This phenomenon isstrongly nonlinear and cannot be reduced linearly. Computing its reduced formwould require back-and-forth exchanges between the full-order solver and thereduced model, which would directly impact the computational performancesof the ROM. To avoid these costly steps, we extend the CD-ROM approach tomodel the last term of Eq. (5.2) in addition to the required correction term.
5.2.2 Proposed modeling approach
Data Generation

To construct the ROM, we first assemble a collection of solutions of the systemat different time steps and under different cylinder rotational speeds (S(t)) bysimulating Eq. (5.2) with the finite element solver MEF++1 [144]. To generate thedata, cylinder speed trajectories are sampled from the following distribution:

S(t) = c0 +
7∑

i=4

ci sin

(
2πt

2i

)
, c0 ∼ N (1, 0.25), ci ∼ N (0, 0.25). (5.3)

This distribution yields cylinder speed trajectories in a range representativeof the operating conditions of the calendering process. 20 trajectories of S(t)are sampled from this distribution, under which the system is simulated to gen-erate solution snapshots.
1MEF++ — Wikipédia, http://fr.wikipedia.org/w/index.php?title=MEF%2B%2B&

oldid=192108614

http://fr.wikipedia.org/w/index.php?title=MEF%2B%2B&oldid=192108614
http://fr.wikipedia.org/w/index.php?title=MEF%2B%2B&oldid=192108614
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ROM

By computing the ProperOrthogonal Decomposition of the obtained snapshotsas in Section 2.2.2, we extract a reduced number of principal modes optimallyapproximating the data. Following this strategy, we compute two orthonormalbases of modes, VT ∈ Rnc×nT for the temperature and Vu ∈ R2nc×nu for thevelocity. Here nc denotes the number of grid cells in themesh, nT the number ofselected temperatures modes, and nu the number of selected velocity modes,so that each column of the matrices VT and Vu represents a complete field.After computing these two bases, one can approximate the solution as linearcombinations of the principal components: T̃ = VTaT and ũ = Vuau. With thisformulation, solving the problem reduces to computing the low dimensionalvectors of POD coordinates aT ∈ RnT and au ∈ Rnu .Observing that the critical quantity to be modeled is the temperature field,and that the computation of the velocity field implies the resolution of a non-linear system of equations (Eq.(5.1)), we propose to model the reduced velocitycoordinates as a function of the cylinder speed and temperature:
ũ ≈ ũ(S,aT ). (5.4)

The above equation is only an approximation as modeling the solution ofthe Stokes problem in Eq.(5.1) exactly might not be feasible. However, we notethat any approximation error introduced by this modeling choice can be ac-counted for by the CD-ROM closure model. Thus, the problem is reduced tothe modeling of the dynamics of the reduced temperature coordinates aT .Following the POD-Galerkin method introduced in Section 3.3, the reducedforms of the temperature and velocity fields are injected in the temperaturedynamics (Eq. (5.2)), which are then projected on the temperature POD basis
VT , yielding a system of nT ordinary differential equations:

daT

dt
=

λ

ρCp
V T
T ∇2VTaT − auV

T
T (Vu · ∇VT )aT︸ ︷︷ ︸

r(aT ,S)

+V T
T

η(Vuau, VTaT )γ(Vuau)
2

ρCp
+R︸ ︷︷ ︸

i(aT ,S)

(5.5)

WhereR is the residual introduced in Section 3.3 that results from the evalu-ation of the dynamics from the approximate reconstructed states ũ and T̃ . Theabove equation can be separated into two parts: a reducible part r which easilyexpresses in terms of the reduced coordinates au,aT , and an irreducible part iwhich cannot be directly evaluated in the reduced space. This would normallybe a major impediment to the use of the POD-Galerkin method to solve this
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problem. However, using the CD-ROM approach, we can learn the effect of ion the reduced dynamics using a neural network. Allowing for the extension ofreduced order modeling approaches to previously irreducible problems, whileretaining as much as possible from the original dynamical equations:
daT

dt
(t) = r(aT ,au,S) +NN (aT ,au,S, y) (5.6)
y(t) =

∫ t

−∞
e(s−t)Λx(s)ds, x(t) = [aT (t),S(t)] (5.7)

whereΛ is a positive diagonal matrix corresponding to the time horizonma-trix defined in the previous Chapter (see Section 4.3.2) and y(t) is the memoryof themodel, specifically designed to be continuously integrable in parallel withthe reduced dynamics as a simple linear system. In the previous Chapter, thecritical role of the memory term y(t) in retrieving information necessary for thecorrection of reduced order models was underlined. In the following Section,we show that this same idea can be used to model both the residualR and theirreducible terms in the original equations.
5.2.3 Results
POD Bases

POD bases are computed for both the velocity and temperature fields. Figures5.3 and 5.4 respectively present the results of the POD method on the temper-ature and velocity fields.

Figure 5.3: Temperature field POD. Top: Relative training data reconstructionerror depending on the number of modes. Bottom: Visualization of the leadingPOD modes.
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Figure 5.4: Velocity field POD. Top: Relative training data reconstruction errordepending on the number of modes. Bottom: Visualization of the vertical com-ponent of the leading POD modes.

The results display clearly that both the temperature and velocity fields canbe reduced on very low dimensional linear bases. We see that selecting theleading nT = 6 PODmodes capturesmore than 95% of the variance in the prob-lem. Similarly, the leading nu = 4 velocity modes are enough to capture morethan 98% of the variance in the velocity snapshots.
Velocity modeling

Asmentioned in the previous Section, the equations governing the velocity fieldare not solved in the reduced model to avoid costly non-linear system resolu-tions. Instead, a simple machine learning model is chosen to learn the relationbetween the reduced velocity coordinates au, the cylinder velocity S and tem-perature coordinates aT :
âu = f(aT ,S). (5.8)

In this study, we defined f as a simple ridge regression model in order toreduce as much as possible the variance in the reduced part r of the model. In-deed, this reduced part constitutes the basis upon which the CD-ROMmodel isbuilt, meaning that the inaccuracies introduced by this simple ridge regressionmodel can be accounted for by the non-linear closure, i = NN (aT , âu,S, y).
Test performance

The model is trained on 80% of the trajectories in the dataset using the Neu-ralODEapproach in combinationwith theAdaptive Checkpointing Adjointmethod
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[150]. The objective L is defined as the mean squared Euclidean distance be-tween the simulated reduced coordinates and their true value a⋆
T :

L =
1

nt + 1

nt∑
i=0

∥a⋆
T (ti)− aT (ti)∥22 (5.9)

The remaining 20% of the dataset is used for testing. Figure 5.5 presentsthe performance of the model and its uncorrected counterpart on a test tra-jectory. We also compute the RMSE normalized by the standard deviation ofthe data (NRMSE) to provide a quantitative indication of the performance of themodel on the test trajectories. Obtained results show that the CD-ROM tra-jectory fits the true trajectory almost perfectly, compared with the incompleteROM (Figure 5.5). The final NRMSE computed over the complete test set is of
2.5% . Moreover, the simulation of the corrected reduced model is much morecomputationally efficient than finite element solvers as the parallel simulationof 128 trajectories only takes a few seconds on a RTX 2080 GPU, while the simu-lation of a single trajectory in our finite elements solver took about 5 minutes.Note that similarly to the values presented in Section 4.7, these simulation timesonly provide a rough estimation of the performance gap, as they heavily dependon the hardware, implementation and simulation parameters of both the ROMand the FE model.

Figure 5.5: Performance of the corrected ROM (Eq. (5.6)) on a trajectory unseenduring training. Left: Trajectory of the first mode a1. Right: Trajectory of the sec-ondmode a2. The incomplete ROM (r in Eq. (5.5)) is also shown for comparison.

5.2.4 Study Conclusion
This study presented an application of the CD-ROM method introduced in theprevious Chapter to an industrial problem. We tried to underline the adapt-ability of the CD-ROM approach to ill-posed reduction problems such as thoseinvolving highly nonlinear terms, while retaining a high degree of interpretabil-ity compared to models unaware of the governing equations.Moreover, we showed that the CD-ROM model can be used outside of itstraining conditions with a high degree of accuracy. In the future, the ability of
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the model to generalize to new materials in addition to new conditions shouldbe investigated. The proposed approach could then be used in model predic-tive control strategies to optimally tune the parameters of the manufacturingprocess.
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5.3 Memory interpretability andTimehorizons

5.3.1 Introduction
This Section presents a study of the ability of the CD-ROM to tune its memorymechanism to select and retain the useful frequencies in the history of a sys-tem. Indeed, the previous Chapter discussed the interpretability of thememoryarchitecture of the CD-ROM, which is based on a simple low-pass filteringmech-anism of the system trajectory.In this short study, we show that themodel is able to learn relevantmemory
time horizons to optimally retain the information necessary to the modeling ofa system’s dynamics. To do so, we discuss the notion of time horizon of thememory and then introduce a simple test case that allows for the study of thememory mechanism and its interpretability.
5.3.2 Memory Horizons
As presented in the previous Chapter, the memory of the CD-ROM, y ∈ Rdy ,evolves according to the following dynamics:

dy

dt
= E(x; θ)− Λθy. (5.10)

Where x ∈ Rdx is the state of the system, E(·; θ) : Rdx 7→ Rdy is a trainablemap that lifts the state to the memory space and Λθ ∈ Rdy×dy
+ is a positive diag-onal matrix. Because the matrix Λ is diagonal, the dynamics in memory spaceare uncoupled, thus, each dimension of the memory y = [y1, y2, . . . , ydy ] can beisolated and its value computed as follows:

yi(t) =

∫ t

−∞
e(s−t)λiEi(x(s); θ)ds. (5.11)

Where λi is the diagonal entry of Λ corresponding to dimension i, and Eithe corresponding dimension of the output of E. From the above equation, wedefine a time horizon τi for the information in the memory dimension yi:
τi =

1

λi
. (5.12)

Thus τi corresponds to the length of time necessary for the importance ofa given state Ei(x(s)) in memory to decrease by a factor of e−1. Note that thisquantity is also directly related to the cutoff frequency of the filter in Eq.(5.11).In the following Sections, we show that the CD-ROM approach systematicallylearns similar values for the time horizons τi starting from different initial con-ditions. We also show that these horizons are coherent with the system to belearned.
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Figure 5.6: A single frequency sine wave results from a two-dimensional sys-tem, it can not be modeled through one-dimensional Markovian dynamics.However, a delayed coordinate can be used to model the dynamics as a non-markovian process.

5.3.3 Experiment setup

A simple test case

To analyze the way the CD-ROM’s memory architecture selects time horizons,we chose the simplest non-markovian test case possible, a superposition ofsine waves. Sine waves have the advantage of being driven by clearly identifiedfrequencies, and despite their simplicity, they cannot bemodeled asMarkovianautonomous systems (see figure 5.6).
They can however be augmented with delayed coordinates to obtain a non-markovian dynamical model for the wave. We see in figure 5.6 that when thewave only has one frequency, taking a delay of T

4 with T the period of the waveyields a coordinate system in which the system is a simple limit cycle, and canthus be modeled directly as an autonomous system.
A similar idea is used in this study as we analyze how the CD-ROM modeluses the memory dimensions, which play a similar role to delayed coordinates,to learn the non-markovian dynamics of a superposition of two waves. We sim-plify the memory architecture in Eq.(5.10) by defining the map E as a simplerepetition of the state of the wave x(t) ∈ R so that:

E(x) = [x× dy]. (5.13)
This means that the dimensions of the memory y(t) directly correspond tolow-pass filtering of the trajectory x(t). Finally, the trajectory to be learned isdefined as the superposition of two waves of periods T1 = 50s and T2 = 168s:

x(t) = sin(2π
50
t) +

1

2
sin( 2π

168
t). (5.14)
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5.3.4 Modeling

The dynamical model is defined as follows:

dx

dt
= NN (x,y; θ) (5.15)

dy

dt
= E(x)− Λθy. (5.16)

Where NN is a simple multi-layer perceptron mapping the delayed coor-dinates to the value of the dynamics, E and Λ are the operators introduced inequation 5.10, and the dimension of the memory is chosen to be dy = 3, whichis required as the wave is driven by two different frequencies.
The above model can be trained very easily to reproduce the trajectory ofthe sine wave in Eq.(5.14), following the training strategy introduced in Section4.3.3.

5.3.5 Results

To gather information in memory, the model learns the diagonal entries λi ofthememorymatrix to select the relevant frequencies in the trajectory of the sys-tem. We confirmed this behavior by training the model starting from differentinitializations for the memory matrix. In each test, the entries of the memorymatrix were initialized to be equal to the same value at the start of the trainingso that:
1

λ1,init
=

1

λ2,init
=

1

λ3,init
= τ0. (5.17)

50 values for τ0 are sampled logarithmically in the range [20, 200]. The resultsobtained after training the model with three of those values are presented onfigure 5.7. We then present the distributions of the final values for the time
horizons τi computed from the memory entries λi at the end of training withthe aforementioned 50 different initial values τ0 in figure 5.8.Figure 5.8 clearly shows that the model converged to similar time horizonsdespite the strongly differing initializations. This result confirms the CD-ROMmodel’s ability to adequately learn the matrix Λ entries irrespective of the ini-tialization. It is also interesting to note that the time horizons τi are coherentwith the system. The longest time horizon τ3 ≈ 163s is very close to the largestperiod in the data T2 = 168s, similarly τ2 ≈ T1 = 50s, finally the shortest timehorizon τ1 is close to the optimal discrete delay value T1

4 .
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Figure 5.7: True and predicted values obtained after training the CD-ROM ar-chitecture in Eq.(5.15) with three different initial values τ0 for the time horizons.

Figure 5.8: Distributions of the learned time horizons at the end of the training,starting from 50 constant initializations. Average values for the time horizonsare denoted as < τi >. Three cases did not lead to a converged model and arenot presented here.
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5.4 Conclusion
This Chapter introduced two additional studies carried out with the CD-ROMmodel. First, we presented an application of the CD-ROM method to an indus-trial problem. Showing that in addition to yielding satisfactory performance onthe modeling of the calendering of tire rubber, the CD-ROM model could beextended to strongly nonlinear dynamics. Overcoming limitations of the PODGalerkin reduction method while retaining the part of the governing equationsthat can be efficiently reduced on a low dimensional basis. We present this ap-plication as an example of how suitably designed data-driven models can becombined with physical models to avoid relying entirely on data.In a second study, we investigated the abilities of the CD-ROM memory ar-chitecture to extract relevant frequencies from system data and retain themin memory. We underline this aspect of the approach as a major advantageover less interpretable approaches such as the LSTM network. Indeed, this in-terpretability of the memory can be used to accurately initialize the model’smemory (see Section 4.3.4) and confirm its validity.Despite these advantages, we underline the fact that the CD-ROM approachis bound to linear dimensionality reduction methods as they are intrinsic to theGalerkin projection method. In the following Chapter, we discuss the fact thatlinear reduction is often limited for the identification of low-dimensional spacesfor the dynamics of physical systems. On the other hand, we show that nonlin-ear methods can be combined with the theory of partially observed systems toidentify very efficient, low-dimensional dynamical models from data.
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6.1 Introduction

The two previous chapters introduced in detail the CD-ROMapproach, which fo-cuses on the improvement of the POD-Galerkin reducedordermodelingmethod.We tried to show that the hybrid nature of the CD-ROM approach yielded mul-tiple advantages in terms of training, stability and interpretability comparedto purely data-driven approaches. Moreover, we discussed the similarities be-tween hybrid modeling approaches and the topic of inductive bias in machinelearning models, mentioned in Section 3.1.4.
In this chapter, we introduce the results presented in Menier et al. [192],where we apply similar ideas in the context of nonlinear dimensionality reduc-

tion. Indeed, it is a well-established fact that linear methods often fall short ofoptimality for the reduction of dynamical systems ([184]). By contrast, neural au-toencoders introduced in Section (3.1.5) are able to efficiently capture the lowdimensional, non-linear manifolds on which dynamical systems evolve ([135])and have become state of the art for non-linear dimensionality reduction. Thelatent space identified by these autoencoders can then be used in combinationwith dynamical modeling approaches to construct reduced models of any sys-tem of interest.
We propose a novel interpretable model order reduction technique thatleverages the efficiency of nonlinear dimensionality reduction for dynamicalsystems. This work is based on the existing Learning Effective Dynamics (LED )framework ([184]). The framework proposes to use neural networks to carry outdimensionality reduction to learn the structure of the latent space via a non-linear mapping, and a second type of neural network architecture, the LSTM([24], see also Section 3.2.1), to learn the potentially non-markovian dynam-ics of the reduced system. While this framework yields promising results, weshow in this chapter that it can be modified to learn a theoretically grounded,interpretable dynamical model replacing the LSTM currently in use. To thisend, we propose a novel machine-learning framework that is closely basedon Mori-Zwanzig [6, 10] and Koopman-Operator theory ([1], see also Section3.2.1). This theoretical basis yields a method that is both accurate and offersa higher degree of interpretability than classical deep-learning modeling ap-proaches. The final model is constructed around interpretable linear dynamicsand completed by a physically motivated nonlinear closure. Thus, we name theproposed framework interpretable Learning of Effective Dynamics (iLED), a fullydata-driven modeling approach that is well grounded in dynamical system the-ory. Once again to help frame the approach in the context of the thesis, the

iLEDmethod is placed on the hybridization spectrum, displayed in figure 6.1.
Due to a neural architecture closely based on Mori-Zwanzig and Koopman
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Figure 6.1: iLED on the hybridization spectrum. NB: This figure is provided for
illustrative purposes and helps frame our proposals within the broader context of
the thesis. The placement of each method on the spectrum is open to discussion,
and small variations could lead to displacing a given approach closer to one end or
the other.

theory our framework has a strong inductive bias and differs from black-boxmodels such as Neural ODE and SDE [99, 136] which can be used to learn timecontinuous dynamical models. In fact, the iLEDmodel is conceptually closer tothe Koopman-based approaches discussed in Section 3.2.1 which only learn lin-ear dynamics in the latent space of an autoencoder such as Otto and Rowley[90] and Champion, Brunton, and Kutz [114]. Indeed thesemodels are very inter-pretable as linear dynamics are easy to analyze and simulate, but they assumethat the model is Markovian, thus, they are unable to capture memory effectson the trajectory.
The remainder of this chapter is structured as follows. In Section 6.2 wepresent the general methodological framework giving special attention to theconnection between our novel framework and the Mori-Zwanzig formalism aswell as the Koopman operator theory. Computational aspects related to train-ing the framework and generating predictions are discussed in Section 6.2.4.Numerical illustrations are then presented in Section 6.4. Finally Section 6.5concludes the chapter with a discussion of the results and possible extensions.

6.2 Methodology
This Section introduces the novel iLED framework in detail. We especially focuson showing the connection betweenourmethod and theoretical considerationsinvolving the Mori-Zwanzig formalism and the Koopman Operator theory. InSection 6.2.1, the motivation for the choice of neural networks to carry out di-mensionality reduction is provided, while Section 6.2.2 presents the theoretical
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justifications for our proposed interpretable reduced dynamics framework. Fi-nally, the actual iLED architecture is summarised in Section 6.2.3.
As in the rest of the thesis, we consider as our target a high dimensional,potentially non-linear system whose state u ∈ Rdu evolves in time according toan operator F :

du

dt
= F (t,u) (6.1)

This system can result from the discretization of a PDE such as the Navier-Stokes equations. Such high dimensional models are often derived from firstprinciples and, while they are generally accurate, they can be extremely expen-sive to solve numerically.
The following of this Section is organized as follows. In Section 6.2.1, themo-tivation for the choice of neural networks to carry out dimensionality reductionis provided, while Section 6.2.2 presents the theoretical justifications for ourproposed interpretable reduced dynamics framework. Finally, the actual iLEDarchitecture is summarised in Section 6.2.3.

6.2.1 Dimensionality Reduction
As presented in chapter 2, the dimension du of the full order system in equation(6.1) can be exceedingly high compared to the actual intrinsic systemdimension.Indeed, in general there exists a mapping D : Rdu 7→ Rdz , with dz ≪ du, suchthat u ≈ D(z).

In order to identify and exploit this reduced dimensionality, the mapping Dcan be extracted from data using machine learning methods. Reduced ordermodeling methods such as the POD-Galerkin approach which we consideredin the earlier chapters of the thesis leverage linear reduction approaches toconstruct a basis that builds a matrix V ∈ Rdu×dz on which both the system’sstate u and the dynamics F can be projected:

V Tu = z, (6.2)
dz

dt
= V TF (t,V z) + ϵ, (6.3)

where ϵ is an unknown error term. These linear reduction approaches havethe important advantage of being physics-based as they are able to retain partsof the original model F . Despite numerous successes with ROM[46, 186, 73],linear reduction has been shown to be inefficient, in terms of dimensionalityreduction when compared to non-linear reduction approaches. Indeed, the
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dynamics of most systems are not restricted to low dimensional linear sub-spaces but rather evolve on strongly non-linear manifolds[184]. This topic wasdiscussed in detail in Section 2.2 where we showed that neural networks couldbe used to perform non-linear reduction efficiently. Thus, we propose to learntwo parameterized non-linear mappings, a decoder D(·;θD) and an encoder
E(·;θE), such that:

u = D(z;θD), (6.4)
z = E(u;θE) (6.5)

where θD and θE are the parameters of the decoder and encoder that arelearned during training of the neural networks.However, using a non-linear encoder/decoder structure, the dynamics of thereduced-order system have to be learned afterward or concurrently, as non-linear dimensionality reduction does not allow for the direct reduction of theoriginal model F . Existing works [132, 76], most notably the LED framework[184], have demonstrated that these reduceddynamics could bedirectly learnedusing recurrent neural networks:
zt+1 = RNN(zt,ht;θRNN ), (6.6)

where h is a memory term and θRNN are the parameters of the RNN. At thesame time, these models have limited interpretability, and aren’t directly linkedto dynamical systems theory. In the following Paragraphs, we show that it ispossible to derive a interpretable reduced dynamical model, with theoreticaljustifications.
6.2.2 Framing iLED within the Mori-Zwanzig formalism
The iLED framework is based on both the Mori-Zwanzig formalism [6, 10] as wellas Koopman operator theory [1, 55]. In this Section, we first give a reminder onthe Koopman operator, introduced in Section 3.2.1, which acts on observablefunctions g of the state u of high-dimensional systems, before introducing theGeneralized Langevin Equation (GLE) for a reduced subset of these observables.We subsequently define an appropriate closure term for the GLE and introducea neural network architecture.

Koopman Operator Theory and the Generalized Langevin Equation

The Koopman operator, introduced in Section 3.2.1, describes the dynamicsof observables of physical systems and has been employed extensively withinreduced-order modeling approaches [153, 47, 55]. For the high-dimensional
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system u(t,u0), a Koopman operator can be used to represent the dynamics ofthe system instead of Equation 6.1.
In more details, an observable g : Rdu 7→ R of the system u is advanced intime by the Koopman operatorKt [161]:

Ktg(u0) = g(u(t,u0)) (6.7)
Operator Kt is linear, and potentially infinite dimensional. For practical pur-poses, its operating space can be separated in an observed subspace (Hg) de-fined as the space spanned by a chosen set ofM observablesM = {gi}i=1,...,Mandanorthogonal subspaceHḡ forwhich a set of basis functionsM = {ḡi}i=M+1,...,∞can be constructed so that ⟨gi, ḡj⟩ = 0 for all i ∈ [1,M ], j > M . The dynamicsof observables can then be expressed on the basis defined by the setM∪M([161]):

d

dt

[
gM
gM

]
= L

[
gM
gM

]
=

[
LMM LMM
LMM LMM

] [
gM
gM

]
. (6.8)

where L is a linear operator that corresponds to the infinitesimal generatorofKt, gM = [g1, g2, . . . , gM ] are the chosenobservables and gM = [ḡM+1, ḡM+2, . . . , ḡ∞]are the orthogonal observables. Note that the operator L is separated in fourparts, with LMM the dynamics in the observed subspace, LMM the orthogo-nal dynamics and LMM and LMM the exchanges between the observed andorthogonal subspaces.
The above system can be solved for gM as follows:

gM(t) =

∫ t

0
e(t−s)LMMLMMgM(s)ds+ etLMMgM(0), t > 0. (6.9)

Finally, by injecting Eq.(6.9) in (6.8), an expression for the dynamics of theobservables gM is obtained:

dgM
dt

= LMMgM + LMM

∫ t

0
e(t−s)LMMLMMgM(s)ds+ LMMetLMMgM(0).

(6.10)
The above expression describes the dynamics of the partially observed stateof a system and has the same form as the Generalized Langevin Equation de-rived in the Mori-Zwanzig formalism. It still depends on the unobserved partof the initial condition (gM(0)) via the last term and thus is not a closed equa-tion for gM only. However, this last term is often modeled as noise or simplyignored in several modeling approaches [40, 44, 69, 161]. In the following Sec-tion the conditions under which this term can be accounted for are explainedin more detail.
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Closing the GLE

The last term in Eq.(6.10) depends on information that is unavailable as it is or-thogonal to the observed subspace. However, this term vanishes if the historyof the observed subspace is known, and the orthogonal dynamics (LMM) aredissipative. Indeed, if the history of the system is known, we can re-write Eq.(6.9)for any initial condition [gM(−τ),gM(−τ)], τ > 0:
gM(t) =

∫ t

−τ
e(t−s)LMMLMMgM(s)ds+ e(t+τ)LMMgM(−τ). (6.11)

The last term in Eq.6.11 vanishes for τ → ∞, if the orthogonal dynamics
LMM are dissipative, which is often a reasonable assumption as, for instance,when the orthogonal (unobserved) subspace corresponds to the small scalesof a dynamical system. Under such hypothesis, we obtain the following closedequation for the dynamics of the observed subspace:

gM(t) =

∫ t

−∞
e(t−s)LMMLMMgM(s)ds, (6.12)

=⇒ dgM
dt

= LMMgM + LMM

∫ t

−∞
e(t−s)LMMLMMgM(s)ds. (6.13)

In the following subsection, we show that the various operators expressedin the closed GLE (Eq. (6.13)) can be learned from data to derive an interpretableand theoretically sound model for the reduced dynamics of physical systems.
6.2.3 The iLED architecture
To construct the iLED architecture, we first identify the observables gM with thelearned subspace of the neural encoder E so that gM ≡ z = E(u;θE). We thenlearn the various operators Lxx that express the different parts of the Mori-Zwanzig formalism in equation (6.13).The observed dynamics LMM can be directly learned as a linear operator,denotedAθ ∈ Rdz×dz below. However, because both operators LMM and LMMare possibly infinite dimensional, they need to be approximated. We proposeto learn these operators as non-linear transformations of the observables z.Justifications for this choice will be detailed in Section 6.2.3.We introduce two neural networks Ψ1(·; θ) : Rdh+dz 7→ Rdz and Ψ2(·; θ) :

Rdz 7→ Rdh , where dh is a user-defined parameter, and model the orthogonaldynamics LMM as a negative diagonal operator Λθ ∈ Rdh×dh
− . This choice isin line with the assumption that the orthogonal dynamics are dissipative andsignificantly simplifies certain computations such as the initialization of the non-markovian (or memory) term in the model. This leads to the iLED architecturein Figure 6.2.
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d
dt

z = Aθ z + Ψθ,1 [z, ∫
t

−∞
e(t−s)Λθ Ψθ,2(z) ds]

Linear Non-linear

Figure 6.2: ILED architecture: The high-dimensional system is encoded to alower-dimensional representation using the encoder E . The lower-dimensionalrepresentation is propagated in time using a linear and a non-linear part basedon the Mori-Zwanzig formalism. With the help of a decoder D, the high-dimensional system is subsequently reconstructed.
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The key part of this novel architure is the temporal dynamic of the iLED state

z:
d

dt
z = Aθz +Ψθ,1

[
z,

∫ t

−∞
e(t−s)ΛθΨθ,2(z)ds

]
(6.14)

We note that the operator Ψ1 now also takes as argument the reduced state
z itself. This choice simplifies the training of the model by putting at the be-ginning of the training process more weight on the latest time step during thecomputation of the memory. This remains coherent with the framework de-rived above, as the additional terms correspond to zero memory contributionswhich is equivalent to entries of the matrix Λθ going to negative infinity. Thisfinal iLED architecture allows us to directly learn the various terms of the Mori-Zwanzig formalism from data. Details on the training strategy will be given inSection 6.2.4. But we first provide additional justifications for the model.
Remarks on the Approximation of an infinite linear operator using
a finite non-linear neural network based model

Our choice to approximateLMM andLMMwithDeepNeural Networks is basedon the universal approximation theorem. Neural networks are universal ap-proximators for non-linear operators if both the given input and output of theoperator are compact [22]. This has been successfully employed to constructNeural Operators such as the Deep Operator Network [163]. However, in oursituation here, the subspace is infinite, and thus not compact. Fortunately, theKoopman operator, our starting point in Equation 6.7, is generally representedby a finite-dimensional operator with reasonable accuracy. In fact, this is a keyassumption for all main data-driven Koopman models, see e.g. Li et al. [88],Otto and Rowley [90], and Brunton et al. [153] for reference. We assume thatthe same assumption holds here, and thus are dealing with a finite-dimensionalorthogonal space whose operators can be approximated by neural networks.

6.2.4 Training the iLED architecure
This Section details the training of the iLED architecture, and the specific lossfunction used.

A key difficulty is the choice of the latent dimension dz. The best choice isa dimension close to the intrinsic dimension of the problem at hand. In thecommon case where it is unknown, several approaches can be used to selectthis parameter. A first option is to directly apply hyperparameter optimizationapproaches such as grid search to the problem. i.e., train autoencoders with in-creasing latent dimensions and select the dimension when the reconstructionperformance of the autoencoder starts to plateau. However, this approach can
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be expensive when applied to problems that use high-dimensional represen-tations such as two-dimensional fluid flows. To avoid these expensive com-putations, statistical analysis such as correlation analysis can be employed toapproximate the dimension of the attractor.
Having chosen this latent dimension dz , we can set up the model for thelatent dynamics.To simulate the iLEDmodel, we re-arrange the integro-differential equation(6.14) into a coupled system of ordinary differential equations. First, we definean intermediate term h as follows:

h(t) =

∫ t

−∞
e(t−s)ΛθΨθ,2(z)ds. (6.15)

This h term corresponds to the memory of the model, which can be ad-vanced in time in parallel of the reduced order state as follows:
dz

dt
= Aθz +Ψθ,1(z,h),

dh

dt
= Ψθ,2(z) + Λθh.

(6.16)

With this time-continuous architecture, the iLEDmodel can be used in com-bination with any standard ODE integrator. In this work, we used the semi-implicit Runge-Kutta (siRK) scheme from Kar [39], which advances the iLED state
[z,h] in time as follows:
(
I − k

6
∆tAθ

)
zk∆t/3 = z0 +

k

6
∆tAθz0 +

k

3
∆tΨθ,1(z(k−1)∆t/3,h(k−1)∆t/3),(

I − k

6
∆tΛθ

)
hk∆t/3 = h0 +

k

6
∆tΛθh0 +

k

3
∆tΨθ,2(z(k−1)∆t/3),

k = 1, 2, 3.

(6.17)

WhereΛθ,Ψθ,1,Ψθ,2 andAθ correspond to the various operators introducedin Eq.(6.14). This scheme takes advantage of dynamics that efficiently separate alinear and a non-linear part. Moreover, siRK is very efficient for the simulation ofstiff dynamics, which is critical here, as the iLEDmodel can be stiff and unstablebefore being fully trained.The siRK integration scheme is used in combination with the NeuralODE[99] method introduced in Section 3.2.3 to train the iLED architecture. We trainthe model in an end-to-end fashion, that is to say, both the neural autoencoder
{E ,D} and the dynamics are optimized simultaneously, using the combinedloss:

L = Lrec + αLforecast. (6.18)
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whereLrec andLforecast are respectively the reconstruction and forecast losses,and α controls their relative importance.
The reconstruction loss Lrec drives the autoencoder to accurately recon-struct the true full order trajectory u⋆

ti :

Lrec = 1

Nt

Nt∑
i=1

∥u⋆
ti −D(E(u

⋆
ti))∥

2
2. (6.19)

The forecast loss Lforecast pushes the model to accurately predict the re-duced state z:
Lforecast = 1

Nt

Nt∑
i=1

∥ẑti − E(u⋆
ti)∥

2
2, (6.20)

where ẑ is calculated according to Equation 6.16. This aggregated loss is suf-ficient to train the iLED architecture. However, we found that adding certainterms of lesser importance was beneficial and helped stabilize training. Thus,we added a reconstructed forecast loss:

Lrec forecast =
1

Nt

Nt∑
i=1

∥Φ⋆
ti −D(ẑti)∥22. (6.21)

And a regularization loss on the nonlinear part of the iLED dynamics:

Lnon-linearity =
1

Nt

Nt∑
i=1

∥Ψ1(ẑti , ĥti)∥22, (6.22)
where Ψ1 is the non linear part of the iLED dynamics in equation (6.14). Fi-nally, the full loss is written as follows:

L = Lrec + α1Lforecast + α2Lrec forecast + α3Lnon-linearity, (6.23)
with the coefficients αi adjusted to control the importance of each term.In the next Section, we provide more details regarding lesser implementationdetails that were used to obtain the results presented in Section 6.4.

6.3 Implementation Details
This Sectiondiscusses the choiceswemadeduring the construction of themethodthat should be considered to reproduce the results.
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6.3.1 Memory Initialization
Because the iLED and CD-ROMmodels use the same memory architecture, thememory is initialized in the exact same way:

h0 =

∫ 0

−∞
Ψ1(z(s))e

−Λsds. (6.24)
As described in Section 4.3.4, the infinite boundary of the above integral isrelaxed by computing the longest time horizon τmax of the memory from thelargest entry λmin of the negative diagonal matrix Λ:

τmax =
ϵ

−λmin
(6.25)

Where ϵ ∈ R+ is a small parameter, generally chosen to be equal to 10−2,that controls the relative error on the computation of h0. After relaxing theinfinite boundary in equation (6.24), the memory can be initialised as follows:
h0 =

∫ 0

τmax

Ψ1(E(Φ⋆(s)))e−Λsds. (6.26)
Note that the above integral can be computed from the training data as asimple trapezoidal integration, which can be directly backpropagated throughduring training.

6.3.2 Linear Parameterization
To ensure a higher degree of stability in the model. The linear operator Aθ inthe iLED architecture is parameterized to be stable as follows:

Aθ = Wθ −WT
θ − diag(abs(w⃗θ)), (6.27)

withW ∈ Rdz×dz a trainable weight matrix and w⃗θ ∈ Rdz a trainable vector.With this formulation, the operator Aθ is guaranteed to be stable i.e. its eigen-values have negative or zero real parts. This not only stabilizes the model butalso avoids divergence of the model in the early stages of training.
6.3.3 Latent space centering
To allow for the interpretability of the linear term in the iLED dynamics, it isimportant to ensure that the latent codes computed by the encoder E are cen-tered. Indeed, a limit cycle arising from an unforced linear system will neces-sarily be centered around the origin. To do so, we define a LatentSpaceCenteringoperation LC(z) as follows:

LC(z) = z − µ⃗. (6.28)
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Where µ⃗ is a running mean of the latent code’s averages that is computedduring training and frozen at inference time. This approach is very similar toclassical batch normalization, except the data is only centered, as unitary scalingof the latent space is not required for the model to learn efficiently.

6.3.4 Form of the memory kernel network
Once again, the memory architecture of the CD-ROM model is re-used, thus,the lifting operator Ψ2 is expressed as a concatenation of the state and train-able nonlinear transformations of said state z. So as to exploit the informationembedded in the latent space:

Ψ2(z) = [z,MLP(z)]. (6.29)
WhereMLP : Rdz 7→ Rdh−dz denotes a standard multi layer perceptron.

6.4 Numerical Experiments
The capabilities of iLED are demonstrated on three relevant simulation prob-lems: The FitzHugh-Nagomomodel, a simple 1D equation with periodic dynam-ics; The chaotic dynamics presented by the Kuramoto-Shivasinsky equation;The incompressible Navier-Stokes equations describing flow around a cylinderwith two different Reynolds numbers (100 and 750).
6.4.1 Example 1: The FitzHugh-Nagomo Model
The FitzHugh-Nagomomodel was developed to study the dynamics of excitablesystems. It has been widely used in biology, physics and neuroscience. Themodel consists of a pair of coupled Partial Differential Equations that describethe dynamics of a fast-acting variable u(x, t) ∈ R, x ∈ Ω = [0, L], t ∈ [0, T ], inhib-ited by a slower variable v(x, t) ∈ R:

∂u

∂t
= Du

∂2u

∂x2
+ u− u3 − v, (6.30)

∂v

∂t
= Dv

∂2v

∂x2
+ ϵ (u− α1v − α0) . (6.31)

where variable u evolves on a much smaller time scale than its inhibitor
v. This separation of time scales is controlled by parameter ϵ, set here to ϵ =

0.006. The other model parameters are chosen as follows: Du = 1, Dv = 4, L =

20, α0 = −0.03 and α1 = 2, to replicate the experiment presented in Vlachaset al. [184].
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The computational domain Ω is discretized using a grid of N = 101 points.Theproblem is solved starting from5different initial conditions using the Latice-Boltzmann method [38] and its implementation provided in Vlachas et al. [184].The data is sampled at rate∆t = 1s to obtain 5 trajectories of 451 seconds each.Two of those trajectories are set aside for validation and the others are usedfor training. An additional trajectory of 104 seconds is simulated for testing pur-poses.By training various autoencoders to reconstruct the training trajectories de-scribed above, we determined that the optimal latent dimension was dz = 2, asthe reconstruction accuracy evaluated from the validation trajectories saturatesfor higher dimensions. This result is coherent with the oscillatory nature of thedynamics and highlights the efficiency of non-linear dimensionality reduction.Indeed, a linear method such as PCA requires up to 16 latent dimension (seeVlachas et al. [184] figure 2-A) to achieve the same level of accuracy. A visualiza-tion of the system evolution, as well as the corresponding latent trajectory arepresented in Figure 6.3.

Figure 6.3: Visualization of the FHN model’s dynamics. The evolution of the fullstate for a subset of the test trajectory is presented on the left. The right handside of the plot displays the latent manifold learned by an autoencoder usinglatent dimension dz = 2.
An iLED dynamical model is also trained at the same time as the autoen-coder, using the procedure described in Section 6.2.4 (the hyperparametersused are detailed in 10.1.1). Figure 6.4 presents the results obtained by simu-lating the final model on the test trajectory. The Figure shows that the iLEDmodel is able to accurately reconstruct the full order system state from the la-tent code z. Moreover, the dynamics is accurately captured: themodel remainson the true latent attractor even after a very long integration.Finally, we argue that the iLEDmethod is particularly well-suited for this case,and highly interpretable. Due to the optimal latent dimension dz = 2, the linearpart of the iLED dynamics exhibits a single natural frequency, aligning with theperiodic nature of the dynamics under study. The learned frequency is approx-imately 5.74mHz, while the primary frequency extracted from the true system
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Figure 6.4: Forecasting performance of the iLEDmethod on the FHN case. Fromtop to bottom: true inhibitor field, predicted inhibitor field and absolute errorbetween the two. The right hand side presents the true and predicted latenttrajectory for an integration period of 8000s. NB: only the inhibitor v field ispresented for clarity, as it is harder to predict than the activator field u.
data using a Fourier Transform is 5.37mHz. This comparison demonstrates thatthe operator has accurately captured the driving frequency of the system, al-lowing the linear part of the iLED model to support most of the dynamics. Aclose examination of the norm of the dynamics separately for the linear andnon-linear terms (Figure 6.5) confirms this result: The figure clearly shows thatthe dynamics is mainly supported by the linear term, the contribution of thenonlinear term being approximately one order of magnitude smaller. It is im-portant to note that the nonlinear term still plays a role in this case, as thelearned latent attractor is not perfectly circular: A purely linear model wouldinevitably diverge from the true trajectory.

Figure 6.5: Norm of the dynamics parts
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6.4.2 Example 2: The Kuramoto-Sivashinsky Equation
The Kuramoto-Sivashinsky (KS) equation, previously introduced in Section 4.5.3,provides a simplified mathematical description of the spatiotemporal dynam-ics of a range of physical systems, most notably in CFD. It serves as a proto-typical example of a nonlinear partial differential equation, and exhibits a richvariety of behaviors, including the emergence of self-sustained oscillations, theformation of coherent structures, and the occurrence of spatiotemporal chaos,making it the perfect test-bed for reduced order modeling methods.The KS equation can be written as:

∂u

∂t
+
∂2u

∂x2
+
∂4u

∂x4
+ u

∂u

∂x
= 0,

u(x, t) ∈ R, x ∈ [0, L], t ∈ [0, T ],

u(0, t) = u(L, t),

(6.32)

where u(x, t) represents the unknown scalar field, and L is the length of thecomputational domain, that controls the nature of the dynamics. Note that con-trary to the CD-ROM experiments, we didn’t target the problem of parametricmodeling in this study, the viscosity ν in Eq.(4.29) is set to be equal to 1 and isthus discarded from the equations. Weuse hereL = 22, a common value for thestudy of this problem ([184, 170]) which yields a dynamical system that evolveson a stable attractor with a characteristic dimension approximately equal to
8 (a higher dimensional attractor than the attractor of the FitzHugh-Nagomomodel studied in previous Section). Moreover, the KS system develops chaoticdynamics under these conditions, which significantly increases the complexityof the learning problem, as small errors naturally compound over time duringthe simulation.The problem is discretized on a spectral basis of N=64 Fourier modes, andadvanced in time using a Semi implicit Runge-Kutta scheme [39]. We generate2048 training trajectories starting from random initial conditions, and 64 othersfor validation. The initial conditions are all advanced in time for 3000 "warm-up" steps of length δt = 0.025s, which are discarded as they account for thetransition from the random initial conditions to the chaotic attractor. The next1280 steps are then sub-sampledwith a∆t = 0.25s in order to obtain the trainingand validation data. Finally, one hundred new initial conditions are simulatedwith a longer time horizon (800s) for testing purposes. The evolution of one ofthe training trajectories is presented in figure 6.6, as well as a visualization ofthe joint probability density p(∂u∂x , ∂2u

∂x2 ), which is a helpful way of visualizing thedynamics of the KS equation.Applying the iLEDmethod1, we find that the reconstruction performance ofthe autoencoder used for dimensionality reduction does not improve for latent
1Details on the architecture and hyperparameters used can be found in 10.1.2
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Figure 6.6: Two views of a training trajectory for the Kuramoto-Shivasinsky case(see text).
dimensions superior to dz = 8, which is in accordance with the true intrinsicdimension of the KS attractor. Figure 6.7 presents results obtained on a testtrajectory with a trained iLEDmodel.The figure clearly demonstrates that the iLED method is able to correctlycapture the dynamics of the problem on a previously unseen trajectory, for atime horizon at least as long as its training horizon. Of course, the forecast-ing error does increase for longer integration times. But this was expected, asthe chaotic nature of the problem makes it increasingly hard for a model toaccurately follow the true system trajectory. Moreover, the figure shows thatdespite leaving the true trajectory, the obtained attractor, visualized throughthe densities of the derivatives, remains correct.Similarly to the FHN case (section 6.4.1), let us take a close look at the eigen-values of the learned linear operator in the iLED architecture. Figure 6.8 showsthe natural frequencies learned by the iLEDmodels after training under ten dif-ferent random seeds. Although these learned frequencies are harder to inter-pret than for the FNH, as the KS system is not driven by a singlemain frequency,it is interesting to note that the different model initializations led to learning asimilar range of frequencies. Moreover, the natural frequencies of the iLED lin-ear operator are coherent with the frequencies observed in the data. Figure 6.8displays the Fourier transform of a test trajectory, showing that a large range offrequencies is present in the data. The figure also shows that this range is cov-ered by the various frequencies learned by the iLED linear operator, suggestingthat while the chaotic attractor does not directly correspond to a periodic cyclein latent space, this cycle is still relevant to the system dynamics.
6.4.3 Example 3: Navier-Stokes Equations for the Flow

around a Cylinder
Finally, we apply the iLEDmethod to the case of the cylinder flow. The complex-ity of this case is controlled by the Reynolds number (Re), which is a dimension-less number that relates to the importance of energy dissipation in the system.We chose to tackle the simulation problem under two different Reynolds num-
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Figure 6.7: Results obtained with the iLED method on a test trajectory. Dashed
black line: Horizon of the warm-up required to initialize the memory of themodel, Dashed red lined: time horizon used to train the model.

bers: Re = 100, the standard value used to benchmark reduced order modelingapplications; Re = 750, as the system then exhibits muchmore complex dynam-ics.
In both cases, the incompressible Navier-Stokes equations are solved us-ing an adaptive meshing and time stepping solver [200]. The generated data isthen interpolated on a cartesian grid to ensure compatibility with convolutionalneural networks. To construct the autoencoder, we use a multiscale approachsimilar to the one proposed in Kičić et al. [189]. Indeed, the more complex partof the dynamics takes place around the cylinder, requiring a higher resolutionthan the remaining of the computational field. Thus, we use separate convolu-tional encoders with different resolutions for the domain around the cylinderand the remaining of the computational domain. These two encoders producetwo intermediate latent codes z1 and z2 which are passed through an additional

mixermulti layer perceptron to compute the latent code z. Thismixer network isused to ensure that each dimension of the latent state z can encode informationfor both the higher and lower resolution parts of the state, which is important
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Figure 6.8: Top: Eigenvalues λi of the iLED linear operator (average and std. dev.over ten different training runs). Bottom: Fourier transform of a test trajectoryaveraged over the computational domain, the natural periods of the iLED op-erator are also displayed for comparison. Note that several runs learned onepurely real eigenvalue, meaning that the learned period is infinite, thus not in-cluded in the computation of the largest period (T4).

as the iLED linear operatorAθ acts on the full latent state z. This multi-scale ar-chitecture is illustrated in figure 6.9. Additional details on the architecture andhyperparameters used can be found in 10.1.3
For both Reynolds numbers, the problem is simulated for 100s. The firstwarm-up twenty seconds are discarded as they correspond to the transitionfrom the initial condition. The rest of the trajectory is sub-sampled with a ∆t =

0.02s yielding a trajectory of 4000 points. The first 2500 points are used for train-ing, and the last 1500 are set aside for validation.
The results obtained by training an iLED model for the Re = 100 case arepresented in figure 6.10. We used a latent dimension of dz = 3, which is slightlyhigher than theminimal dimension 2 required to represent the limit cycle of thesystem, but yielded better modeling performance according to the combinedloss (Eq.(6.18)). Figure 6.10 clearly shows that the iLEDmodel is able to accuratelyreconstruct the system state after multiple periods of the dynamics. Similarlyto the Fitz-Hugh Nagomo case (sec 6.4.1) the results underline the effectivenessof the iLED architecture, as the figure shows that most of the dynamics are sup-
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Figure 6.9: Multiscale architecture used to model the cylinder flow. The areaaround the cylinder is rendered at four times the resolution of the rest of thefield, as it is where the dynamics are most complex.

ported by the linear part of the model.
Finally, the natural frequency of 1.466Hz learned by the iLED linear operatoris in accordance with the system data which presents a dominant frequency of

1.562Hz: This further confirms the validity of the model.
The results obtained on the case of the cylinder flow under a Reynolds num-ber of 750 are presented in figure 6.11. Because this case presents more com-plex dynamics than the simple 2D periodic limit cycle encountered for Re = 100,we used a latent dimension of dz = 16 tomodel the latent dynamics. This choiceof latent dimensionswasmade in accordancewith the results presented in Kičićet al. [189], because of the similarities with the multiscale autoencoder used inthis work. Similar to the Re = 100 case, the iLED model is able to accuratelyforecast and reconstruct the system state and once again, despite the highercomplexity of the case, most of the dynamics are supported by the linear op-erator and the neural network closure (Ψ1 in equation (6.16)) is only used tocorrect the numerical imperfections in the curvature of the learned latent at-tractor. Figure 6.11 also shows that the learned frequencies are coherent withthe system data, as the two first natural frequencies of the linear operator areperfectly coherent with the dominant frequencies of the Fourier transform ofthe true latent trajectories.
With these results, we demonstrate the ability of the iLEDmodel to scale tomore complex, two-dimensional dynamics. The model yields satisfying perfor-
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Figure 6.10: Results obtained with the iLED method on the case of the cylinderflow at a Reynolds number of 100.
mance combined with a high degree of interpretability and stability.
6.4.4 Remarks on the linearity of the dynamics
In two of the three numerical experiments presented above, we have shownthat the iLED model was able to transform high dimensional, nonlinear PDEsinto quasi-linear Ordinary Differential Equations. This is in fact coherent withthe oscillatory nature of the dynamics in both the FHN and Cylinder flow cases.We underline this result as a major strength of the iLED framework as it is ableto identify simple models from data without any a-priori assumptions on thesystem under study.Moreover, it is important to note that although the identified models relyalmost entirely on the linear part of the dynamics, they are still completed by anonlinear termof lessermagnitude. Indeed, the complexity involved in learninga purely linear model reaching the same degree of accuracy might be higher.This is due to the fact that the neural autoencoders used for dimensionalityreduction struggle to learn perfectly organized latent attractors, which is criti-cal to ensure the accuracy of purely linear dynamics. Of course, this aspect isonly magnified with the increasing complexity of the application case. Thus, thenonlinear term in the framework can be looked at as a relaxation of the con-straints on the shape of the latent attractor while still allowing for the extractionof a simple interpretable model, as the observed low magnitude of the nonlin-ear dynamics allows for accurate analysis of the model from the learned linearterm.
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Figure 6.11: Results obtained with the iLED method on the case of the cylinderflow at a Reynolds number of 750.

Finally, we note that these quasi-linear dynamics were not observed in thecase of the Kuramoto-Shivasinsky equations. This is due to the chaotic natureof the case. Because the system does not rely on a set of clearly identifieddriving frequencies, the linear part of themodel is not sufficient for the accuraterepresentation of the case, and the non-linear part then automatically learnsto complete the dynamics. This once again underlines the adaptability of themodel as no a-priori knowledge of the nature of the dynamics is required tomodel the system.

6.5 conclusion
This chapter introduced the iLED method proposed to learn interpretable re-duced order dynamics for high-dimensional, multiscale systems. This methodis closely based on Koopman operator theory and the Mori-Zwanzig formalismand thus benefits from the inductive bias derived from this domain knowledge.In addition to offering a high degree of interpretability, the latent dynamics ofour novel approach are still expressive enough such that the method can beapplied to various problems.
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We show that the approach performs well on a range of dynamics, fromchaotic problems to high-dimensional 2D flow cases. For each test case, themethod is able to learn a linear model for the latent dynamics as well as a non-Markovian, non-linear closure term. Thehigh-dimensional systems aremappedwith a non-linear encoder to a latent space, in which the complex non-linearPDEs can be reduced to very simple quasi-linear ODEs, thus yielding fast andstable simulations. The high-dimensional state can be reconstructed from thelatent space representation using a decoder that is trained simultaneously withthe aforementioned encoder, using an autoencoder architecture.
Currently, the derived latent dynamics are deterministic. For future work,we plan to propose a probabilistic version based on either the Bayesian ap-proach or Conformal Inference, in order to quantify the uncertainty caused bydimensionality and model reduction. Another unsolved challenge pertains tothe optimal choice of the latent dimension. Indeed, we discussed in Section6.2.4 the fact that various approaches can be used to estimate this value andthat, although the most efficient, direct optimization of the latent dimension isnot always feasible because of computational costs. Moreover, the iLEDmethodcould be used tomodel more complex problems such as partially observed sys-tems, or applied to real-world problems with unknown dynamics such as epi-demic dynamics or brain activity to help derive interpretable dynamical lawsfrom available data.Before concluding this thesis, the next chapter presents additional studieson topics adjacent to our work. We discuss possible ways to use results fromdynamical systems theory to construct novel Deep Learning approaches, witha focus on generative modeling.



130 CHAPTER 6. ILED



CHAPTER 7

ADDITIONAL STUDIES: DYNAMICAL SYSTEMS
FOR GENERATIVE MODELING

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Unsupervised Domain Translation . . . . . . . . . 132

7.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.3 Study Conclusion . . . . . . . . . . . . . . . . . . . . 137

7.3 Hamiltonian Flows for Generative Modeling . . . 137

7.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.2 Related Works . . . . . . . . . . . . . . . . . . . . . 144

7.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.4 Limitations and Open questions . . . . . . . . . . . . 150

7.3.5 Study Conclusion . . . . . . . . . . . . . . . . . . . . 152

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1 Introduction
Aside from themain focus of the thesis, we carried out additional studies on thesimilarities between dynamical systems and Deep Learning, where instead ofusing deep learning to derive novel physical modeling approaches, we tried touse insights from dynamical systems theory to inform and construct novel neu-ral architectures. The two studies presented in this Chapter focus on the use
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of Hamiltonian Neural Networks [118], introduced in Chapter 3, to define invert-ible transformations. Section 7.2 first introduces work on the use of Hamilto-nian Neural Networks for domain translation, which was presented in Menieret al. [177]. Section 7.3 then presents work on the use of Hamiltonian NeuralNetworks for generative modeling, where we show that despite limited per-formance, the Hamiltonian framework presents interesting properties for theconstruction of Normalizing Flows.

7.2 Unsupervised Domain Translation
Domain translation is the process of transforming elements from one domainto another. One can think of applications such as neural style transfer [80]which is for example used to apply a certain painter’s style to photo-realisticimages. A common problem encountered in domain translation applications isthat, in many cases, paired data is not available during training, which meansthat the problem has to be formulated in an unsupervised setting. Unsuper-vised learning is very common in the field of generative modeling, and severalarchitectures have been proposed to deal with the problem of UnsupervisedDomain Translation. In this work, we focus on the Cycle-GAN [95] architecture,which has proved successful in various applications of Unsupervised DomainTranslation 1.

Despite its success, the formulation of the Cycle-GAN method has beenquestioned and shown to be ill-posed. Using results from Chen and Gopinath[28], it can be shown that when considering two distinct domains, there existan infinity of pairings between the two domains which satisfy the Cycle-GANobjective. This is an issue as the model could get stuck trying to learn wildlyinefficient mappings, leading to unsatisfactory optima. This conditioning prob-lem has been explored in depth by Bézenac, Ayed, and Gallinari [152], as theyproposed to use a regularized residual network to learn the mapping betweentwo given domains. Borrowing ideas from optimal transport and dynamicalsystems, they showed that pushing the training towards simple, low-energy,transformations in latent space leads to learning a sensible and trivially invert-ible mapping between the two domains of interest.
The study of the links between dynamical systems theory and deep learningis still to this day a major topic of interest. One can for example cite the identifi-cation of residual networks as first order approximations of a time-continuousprocesswhich has led to the development of ground-breaking approaches suchas neural ordinary differential equations (Neural ODE [99]) or invertible neuralnetworks [113].
Building on this existing connection, as well as the work of Bézenac, Ayed,
1Cycle GAN project page, https://junyanz.github.io/CycleGAN/

https://junyanz.github.io/CycleGAN/
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and Gallinari [152], we propose a formulation of unsupervised domain transla-tion as a continuous time process with conservation guarantees which ensureinvertibility by construction. The proposed architecture learns the dynamics ofthe transformation as a Hamiltonian dynamical system. Hamiltonian systemsare typically used in General Mechanics to describe the evolution of conser-vative systems. They preserve a quantity, called the Hamiltonian, along theirtrajectory. Using neural networks to learn Hamiltonian dynamics is an earlieridea that was proposed in Greydanus, Dzamba, and Yosinski [118]. Howeverthis work proposes to use them to ensure invertibility of the generative pro-cess which is a desirable property to ensure the domain translation problemis well-posed. Learning conservative transformations is in fact critical to othergenerative modeling approaches, such as normalizing flows [74].

7.2.1 Method

Invertibility and CycleGAN

Formally, we can look at the two domains as two separate setsA,B ⊂ Rd, where
d is the dimension of the space, i.e. the pixel space for images, or any latent rep-resentation space. The goal of unsupervised domain translation is to learn theforward mapping F : A → B as well as the reverse map R : B → A so that thepair (F,R) generates semantically meaningful samples of each domain. Thatis to say, the generated samples should be indistinguishable from samples inthe target domain, while remaining coherent with their corresponding samplein the original domain.

CycleGan proposes to enforce these constraints by using a combined loss:
L = Ladv + Lcyc. The first term Ladv = D(F (A),B) corresponds to an adversar-ial loss which measures the distance between the generated samples and thetarget domain. This term ensures that generated samples are indistinguish-able from the target domain. In CycleGAN, D is implemented using GenerativeAdversarial Networks [60].

The second term in the loss is called the cyclic loss, Lcyc = ∥F ◦R(xA)−xA∥+
∥R◦F (xB)−xB∥. This term promotes transformations F that are invertible andsuch that R = F−1. Intuitively, this pushes the CycleGAN architecture towardslearning minimal transformations of the samples, so as to retain a maximumof information from the initial sample and simplify the reconstruction R ◦ F .This second term is used to ensure coherence between the translated and ini-tial samples. In addition, learning an invertible (thus bijective) map betweenthe two domains is critical at the conceptual level. Indeed, one sample from agiven domain should not map to multiple samples in the target domain as onlyone sample in the target domain should optimally satisfy the trade-off betweencoherence with the original sample and similarity with the target domain.
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Continuous models and Hamiltonian Neural Networks

The previous Paragraph outlined the importance of ensuring the translationmap is invertible to relax the learning problem. In fact, this is not specific to thedomain translation problem, as invertibility of learnedmaps has been linked toclassical deep learning problems such as vanishing/exploding gradients in re-current neural networks [51], or the training of other generativemodels like nor-malizing flows [74]. Several approaches have been proposed to push learnedmodels towards invertibility [108, 2], however, they often impose significant con-straints on the structure and expressivity of the models, leading to importanttraining costs.
In this work, we propose to use a natural formulation for invertible trans-formations. Exploiting the parallel between the residual networks used in nu-merous image processing approaches, and ordinary differential equations, wepropose to define domain translation as a continuous system. Starting at t = 0with samples from one domain xt=0 ∈ A, we learn a transport flow fθ so that,at t = T , xt=T ∈ B:

dx

dt
= fθ(x), s.t. x0 ∈ A, xT ∈ B (7.1)

This formulation is not enough to ensure invertibility of the transformation,as the flow fθ could be dissipative, or even unstable. To enforce invertibility,we express the flow fθ as a conservative operator using Hamiltonian neuralnetworks inspired from Greydanus, Dzamba, and Yosinski [118]. To do so, thesamples are divided into two vectors of equal length x = [p, q], (we assume d tobe even as amodeling choice). In general mechanics, p and q would respectivelydescribe the position and momentum of the studied entities. In our setting,their significance is more abstract and is defined by another function, calledthe Hamiltonian Hθ(p, q) : Rd/2 × Rd/2 → R, which we parameterize using aneural network, hence:

fθ(x) =

(
dp
dt = −∂Hθ

∂q
dq
dt = ∂Hθ

∂p

)
(7.2)

Using Neural ODEs and automatic differentiation, the function Hθ can betrained to satisfy the transport objective, i.e. xT ∈ B given x0 ∈ A. Moreover,this formulation is invertible by design as it preserves the quantity Hθ(x) alongits trajectory. We show below that learning the transformation fθ with this for-mulation allows for the generation of semantically correct samples, without us-ing the cyclic loss required in CycleGAN. Thanks to the conservation propertiesof the flow fθ, the inverse map is trivially obtained by integrating the flow back-ward in time:
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xB = xA +

∫ T

0
fθ(x)dt ⇐⇒ xA = xB +

∫ 0

T
fθ(x)dt (7.3)

7.2.2 Results
Generative results

We apply our Hamiltonian domain translation approach to image generationtasks. As proposed in Bézenac, Ayed, and Gallinari [152], we train an encoder
E and a decoder G to map images from both domains to a latent space of size
d = 128. This is a common approach in many image processing approaches, asthe intrinsic dimension of a given image dataset is generally much lower thanthe pixel representation, which is the same idea as the one presented in Section2.2 for dynamical systems. Thus, encoding images to a low-dimensional latentspace reduces the domain translation problem complexity, as well as trainingcosts.Once the pair (E,G) is trained, it can be used to generate low-dimensionalencoded vectors of images of the dataset at hand. We then use our approach tolearn the transport flow fθ. The Hamiltonian H and discriminator D are imple-mented as multi layer perceptrons with 3 hidden layers. The continuous flow islearned using the optimise-then-discretise version of NeuralODEs. We apply thearchitecture to the task of translating male samples of the celebA [70] datasetto females. Figure 7.1 presents samples generated with this approach.

Figure 7.1: Selected samples of the male to female transport process using theproposed continuous domain translation approach. The transported encod-ings are decoded at regular time intervals, to illustrate the transformation ap-plied by the model.
As shown on Figure 7.1, decoding the transported samples along the trans-formation trajectory shows that the flow fθ progressively transforms the malesamples to females. As expected, the conservative nature of the model pro-motes transformations that retain non gender-specific features, as we observethat attributes such as pose, skin tone, face shape and background are pre-served during the transformation. Figure 7.2 demonstrates an additional inter-est of the Hamiltonian architecture as we are able to generate males from fe-male samples by simply integrating the flow backward (see Eq. 7.3). One should
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Figure 7.2: Selected samples of the reverse male to female generation process.NB : These samples are generated using equation (7.3) as transport flow wassolely trained to map male to females.
note that these results were obtained without ever training the model to mapfemales to males as we do not compute the cyclic loss used in CycleGAN. Theseresults are similar to the results of Bézenac, Ayed, and Gallinari [152] while nopenalization of the magnitude of the flow applied by the model is used but in-vertibility is enforced instead.

Figure 7.3: Results of excessive integration of the transport flow. A modeltrained to map males to females in 1 t.u. is integrated backward for more thantwice themap horizon. We observe that the generated samples retain semanticsense for up to about 1.5 times the training horizon.

Excessive Integration

An interesting feature of using a continuous flow to carry out domain transla-tion is that one can gain some insight in the way themodel transforms samples.If a flow fθ has been trained to map two domains in one time unit (t.u.), T = 1,it can be integrated for a longer period, pushing the transformation further.This is one of the major differences between learning continuous transforma-tions and discrete residual blocks. While residual blocks approximate the flowin specific regions of the latent space, the continuous flow is defined over thewhole space. Any trained model starts losing performance once it drifts toofar from its training conditions but we observed interesting results when inte-grating our model for several t.u.. Figure 7.3 shows that transported samplesretain semantic meaning for up to about one and a half t.u., as the model pro-gressively adds more and more gender-related features such as beards, widerjaws, shorter hair, etc. This generalisation performance can be linked to theconservative architecture of the model which prevents it from diverging to un-
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known conditions. It also adds to the interest of the approach as it supports theidea that the model is consistent with the structure of the latent space.
Training

It should be noted that, once the autoencoder is trained, learning the flow fθ isvery inexpensive. The model starts generating semantically coherent samplesafter a single epoch, and does not require fine tuning between the training ofthe discriminator D and the flow fθ. More formal benchmarking against com-parable domain translation methods are planned for the future.

7.2.3 Study Conclusion
This work proposes a novel formulation for domain translation. By using a time-continuous approach, we are able to leverage results from general mechanicsto obtain a model that is invertible by construction. We show that this modelcan quickly learn tomap two domains of interest, even in a latent space learnedprior to training the domain translation architecture. We frame this study in thecontext of hybridization, showing that as Deep Learning can be applied to im-prove numerical modeling, the reverse also stands, and results from dynamicalsystems theory can be exploited to derive new Deep Learning approaches. Thenext Section follows the same line, where we discuss the way Hamiltonian flowscan be used for generative modeling.

7.3 Hamiltonian Flows for Generative Model-
ing

Generative modeling is a prominent topic in Deep Learning research. The ideaof being able to learn and sample from the data distribution is appealing inmany applications. In recent years, denoising diffusion probabilistic models[75] have generated a lot of interest owing to their ability to generate samplesfrom very complex image distributions [167, 182, 183]. Before these results, sev-eral works on generative models had already been proposed. One can cite:Variational Autoencoders (VAEs)[53], Generative Adversarial Networks (GANs)[61] and flow-based models [58]. Each method has its advantages and limita-tions. VAEs introduce a prior Gaussian distribution on the low dimensional la-tent representation of the data. They are easy to train but the assumption ofGaussian distribution can lead to posterior collapse due to uninformative latentrepresentations or due to a high expressivity of the decoder [126, 125]. Remark-able achievements were obtained with GANs in image, text and music genera-tion [120, 134, 101]. In GANs, two neural networks are trained in an adversarial
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way to map a low dimensional latent Gaussian distribution to the data distri-bution. However, the Nash equilibrium between the training of the generatornetwork and the discriminator network is difficult to achieve [130]. This makesGANs hard to train and prone tomode collapse. Due to the low dimensional la-tent representation of the data used to generate samples, the probability den-sity estimation of the inputs cannot be estimatedwith GANs. Flow-based gener-ativemodels overcome these limitations by progressively transforming a simpledistribution into a complex data distribution through a sequence of invertiblefunctions. Moreover, densities are preserved through the transformation.Thesemodels were proposed in the early days of deep generativemodeling,and are generally less efficient than competing approaches in terms of gener-ated samples quality. The invertibility constraint introduces limitations on thechoice of possible architectures. However, they have several advantages com-pared to alternative approaches:
• Density Estimation: flow-based models can be used to carry out densityestimation, which is extremely useful for critical tasks such as molecularfolding, or for predicting the probability of future events.
• Meaningful Training Objective: They can be trained using a likelihood-based objective which is quantitatively significant. This is not the case ofapproaches such as GANs.
• Latent Representation: They learn a well organised latent representa-tion of the data at hand. Indeed manipulations of the normalized datacan be carried out to achieve useful transformations in the latent spaceof flow-based generative models. The latent code of samples can for ex-ample be interpolated, or transported along chosen directions to obtainmeaningful transformations of the data such as adding a smile to a faceimage, or smoothly transform a sample.
These desirable aspects make flow-based generative models an attractiveoption for certain generativemodeling tasks, which iswhy a large body of recentwork was dedicated to their development [85, 103, 119]. Their main limitation istheir computational cost, as their training requires repetitive and costly evalua-tions of the determinant of a large jacobianmatrix. This is usually addressed byusing network architectures specifically designed to alleviate the cost of evalu-ating the training objective ( more details on these architectures are given inSection 7.3.1 and in [58]).Significant efforts have been made to relax these architectural constraintsand lighten the computational burden. In this work, we propose to focus on theContinuous Normalizing Flow (CNF) approach, first introduced in parallel to theNeural ODE method [99], which models the flow as a time continuous trans-port of the data samples. The dynamics of this continuous transport map can
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be learned by optimising a simplified maximum likelihood objective, withoutadditional constraints on the architecture describing the flow.In this Section, we leverage the link between continuous neural approachessuch as the CNF method and well established results from general mechanics.the goal is to propose a variant of the Continuous Normalizing Flow approach,termed Hamiltonian Normalizing Flow. We show that the link between deeplearning and dynamical systems can be exploited to ensure desirable charac-teristics such as invertibility by construction and simplify both the computationof the training objective and density estimation. Furthermore, we discuss thelink between our proposal and classical flow-based modeling architectures.The study is organized as follows. Section 7.3.1 introduces the theory behindflow-based generativemodeling as well as our proposal for the improvement ofContinuous Normalizing FLows. Section 7.3.2 discusses the links between ourapproach and existing works while results are presented in Section 7.3.3.
7.3.1 Methods
Maximum Likelihood training

The goal of flow-based generative modeling is to learn a model pθ of an arbi-trary data distribution. This is done by defining a continuous and invertiblemap Fθ trained to transform the data distribution x ∼ p⋆ into a simpler latentdistribution z ∼ pG. Such a transformation is usually implemented using neu-ral networks, and trained by minimising the negative log-likelihood of the data,resulting in the following optimization problem:
θ ∈ argmin

θ̃

E
x∼p⋆

[
− log p

θ̃
(x)
]
. (7.4)

Typically, the distribution pG is defined as a normal distribution so that pG =

N (µG,diag(Σ2
G)), and the negative log-likelihood objective can be computed us-ing the following change of variable formula:

log pθ(x) = log pG(z) + log

∣∣∣∣∂Fθ

∂x

∣∣∣∣ ,
with z = Fθ(x).

(7.5)
Thus, the optimisation of a flow-based generative model requires the estima-
tion of the determinant of the jacobian of the model ∣∣∣∂Fθ

∂x

∣∣∣ at each training it-
eration. This can be computationally expensive, which is why the form of thetransformation Fθ must be carefully chosen. Usually, the transformation is im-plemented as a sequence of N intermediate steps fθ,n:

Fθ = fθ,1 ◦ fθ,2 ◦ . . . ◦ fθ,N ,

log

∣∣∣∣∂Fθ

∂x

∣∣∣∣ = N∑
n=1

log

∣∣∣∣∂fθ,n∂x

∣∣∣∣ , (7.6)
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where each step fθ,n is a neural network specifically designed to be invertible.Indeed, neural networks are not natively invertible, nor is the determinant oftheir Jacobian matrix generally straightforward to compute. To address this is-sue, specific architectures called coupling layers are used [58, 85] to constructthe intermediate transformation steps. These layers are invertible by construc-tion and have a triangular jacobian matrix, greatly simplifying the computationof the second term in Eq. (7.5), since the determinant of their Jacobian is equalto the product of its diagonal terms so that:
log

∣∣∣∣∂fθ,i∂x

∣∣∣∣ = sum
(
logdiag

(
∂fθ,i
∂x

))
. (7.7)

Coupling layers make the training of flow-based generative models computa-tionally tractable at the cost of constraints on the architecture of the networksused in the learning process. Alternative approaches rely on more flexible pa-rameterizations of the transformationFθ. In this work, we focus on the Continu-ous Normalizing Flows [99] approach which defines themap Fθ as a continuoustransformation such that:
Fθ(x0) = x0 +

∫ T

0
fθ(xt)dt, (7.8)

where fθ can be any function of the samples x0 ∼ p⋆ and xt ≡ x(t), x(0) = x0.This allows for a more flexible parametrization of the function Fθ and changesthe negative log-likelihood objective Eq. (7.5) as follows:
log pθ(x0) = log pG(xT ) +

∫ T

0
Tr

(
dfθ
dxt

)
dt, (7.9)

which is inexpensive to evaluate since a trace operation scales only linearly withthe number of hidden dimensions, while the computation of the determinantin Eq. (7.5) scales with the cube of the dimension for dense jacobian matrices.
Despite these simplifications, ContinuousNormalizing Flows are only invert-ible in the continuous time limit, and still require the evaluation of the network’sjacobian at every integration step. In the following Section, we introduce an al-ternative perspective on learning invertible transformations using conservativedynamical systems. We also describe the way these transformations can beused to learn flow-based generative models.

Hamiltonian flows

Continuous transformations and Invertibility

As presented in the previous Section, the construction of flow-based genera-tive models hinges on the invertibility of the transformation Fθ. This Paragraph
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Figure 7.4: Illustration of the invertibility of conservative systems. The ideal(conservative) pendulum conserves its energy along the trajectory, thus, its ini-tial condition can be retrieved from any point of the trajectory. The real (dissi-pative) pendulum loses energy over time, and converges to 0 for t −→ ∞, pre-venting inversion.
presents how results from general mechanics can be used to inform the con-struction of Continuous Normalizing Flows to ensure their invertibility. Indeed,the properties of the transformation in Eq. (7.8) are directly related to the formof the transport dynamics fθ.Importantly, the invertibility of the transformation is not numerically guar-anteed if the dynamics fθ are unconstrained. This is especially the case if thedynamics fθ have dissipative properties, as dissipative systems can forget theirinitial condition and yield an unstable inverse process (see figure 7.4 for an illus-tration). On the other hand, a conservative system defines an invertible trans-formation, as any point of the trajectory can be used to retrieve the initial con-dition. To ensure that fθ is conservative, we suggest to model the function fθ asa governing equation of a Hamiltonian system:

fθ(x = [q, p]) =

(
−∂Hθ([q,p])

∂p
∂Hθ([q,p])

∂q

)
, (7.10)

where the samples x ∈ R2d are split into two equal parts q, p ∈ Rd and Hθ isa scalar trainable function called the Hamiltonian. This idea was proposed inGreydanus, Dzamba, and Yosinski [118] to learn the dynamics of conservativesystems. Indeed, the system in Eq. (7.10) is conservative by construction, mean-ing that no matter the structure of the function Hθ, the value of Hθ(x) is con-served along the trajectory of the system. This formulation can thus be used toensure the invertibility of Continuous Normalizing Flows by construction.
Volume preservation

A significant aspect of this choice of parameterization is that it is volume pre-serving, meaning that its divergence, here given by the trace of its jacobian, isnull. This greatly simplifies the computation of the training objective Eq. (7.9)as the second term vanishes:
log pθ(x0) = log pG(xT ) +

∫ T

0 �
���

��*
0

Tr

(
dfθ
dxt

)
dt. (7.11)
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This result implies that conservative flows preserve probability densities alongtheir trajectory. It is worth to note that the second term in the right hand sideof Eq. (7.5) and Eq. (7.9) rescales the target distribution such that volumes arepreserved when local compressions or stretchings of the probability measurearise under themap Fθ or the flow fθ. Volume preservation can also be too con-straining as the model is not allowed to compress nor stretch locally the prob-ability measure. To overcome this limitation, we propose to augment the datawith additional dimensions. This effectively allows the model to stack samplesalong the additional dimensions to increase or removemass on the distributionmarginalized to the original dimensions. This is illustrated in figure 7.5 wherewe augment a 1D bimodal distribution q ∼ p⋆ with a 1-D Gaussian dimension
p0 ∼ N (0, 1).With this formulation, ourHamiltonianNormalizing Flow (HNF) canbe trainedto model compressive cases. Moreover, it can be used to easily carry out den-sity estimation. Using the volume preserving properties of the Hamiltonian flowand the fact that the variables p0 and q0 are independent, we write:

p(x0) = p(q0)p(p0) = pG(xT ), (7.12)
=⇒ p(q0) =

pG(xT )

p(p0)
. (7.13)

Thus, the probability density of a data sample q0 can be easily computed as theratio of two Gaussian probability densities, without the need to evaluate thedeterminant of a jacobian matrix. We note that the accuracy of this estimatoris conditioned by the performance of the model, i.e., the accordance betweenthe target distribution pG and the true transported data distribution xT ∼ p̃G.Because models verify their training objective under some convergence preci-sion, the estimator in Eq. (7.13) turns out to be noisy. This directly impacts theperformance of the model in estimating the probability density. More detailsare provided in the results Section 7.3.3.
Training a HNF

TheHamiltonianNormalizing Flow canbe trained by directly optimising the neg-ative log-likelihood objective in Eq. (7.9). The augmented data samples x0 aretransported by integrating the Hamiltonian system Eq. (7.10) using a Runge-Kutta 4(5) time marching scheme and backpropagation is carried out using a
discretise-then-optimise version of the NeuralODE approach [99, 175].Note that the negative log-likelihood in Eq. (7.11) should be modified to re-flect the augmentation of the data. Indeed, the model should minimize theprobability of the data distribution q0 ∼ p⋆, not the augmented data distribu-tion x0. This can be easily computed using the density estimator (7.13):

− log pθ(q0) = − log pG(xT ) + log p(p0) (7.14)
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Figure 7.5: Gaussianization of a 1D bimodal distribution q0 ∼ p⋆ augmentedwith a Gaussian dimension p0 ∼ N (0, 1). Points are colored according to theirprobability in the final Gaussian (qT , pT ) ∼ pG distribution, as probabilities areconserved in the (p,q) space by the Hamiltonian Normalizing Flow.
Because p0 follows a simple Gaussian distribution, this does not significantlyincrease the computation time of the training objective.
Relation to coupling layers

To improve understanding of the proposed method we make the link betweenthe coupling layer architecture and Hamiltonian dynamics clearer. We showthat, in certain cases, Hamiltonian systems and coupling layers are equivalent.We focus on a specific architecture called the Additive Coupling Layer which isthe basis of modern flow-based generative modeling owing to its invertibilityand volume preserving properties. Additive Coupling Layers advance a sample
x0 through the flow using the following rule:[

q0
p0

]
= x0,

p 1
2
= p0 + fθ(q0),

x 1
2
= permute([q0, p 1

2
]).

(7.15)

Where the permute operation is predefined exchange of the dimensions so thatsuccessive coupling layers act on different parts of the state. In contrast, weconsider the integration of a Hamiltonian system using a leap-frog time march-ing scheme, specifically designed for the simulation of Hamiltonian dynamics.This time marching scheme advances the state x0 = (q0, p0) as follows:
p 1

2
= p0 −

1

2

∂Hθ

∂q
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2
− 1

2

∂Hθ

∂q

∣∣∣∣∣
q1,p 1

2

(7.16)
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When the Hamiltonian is expressed as the sum of potential and kinetic ener-gies (Hθ([q, p]) = Tθ(q) + Vθ(p)), and the permutation performed in Eq. (7.15)is a simple swap of the dimensions (permute([q0, p 1
2
]) = [p 1

2
, q0]), the leap-frogtime stepping scheme becomes equivalent to a stack of three additive couplinglayers:

p 1
2
= p0 −

1

2

∂Vθ
∂q

∣∣∣∣∣
q0

≡ p 1
2
= p0 + fθ(q0)

q1 = q0 +
∂Tθ
∂p

∣∣∣∣∣
p 1
2

p1 = p 1
2
− 1

2

∂Vθ
∂q

∣∣∣∣∣
q1

(7.17)

Although this equivalence does not hold in the general case as more com-plex coupling layer architectures are used in modern flow based models, thisparallel can be used to further justify the choice of the Hamiltonian structure tobuild continuous flow-based generative models.
It should be noted that this separation of the Hamiltonian is not required inour approach and, in fact, our application focuses on the general case where

∂2Hθ
∂p∂q ̸= 0. The trainable Hamiltonian function considers the full state, in contrastwith classical discrete approaches, as coupling layers only consider part of thestate at each flow step.

7.3.2 Related Works
Discrete Flows: As presented in the above Sections, state of the art flow-basedgenerativemodels use the coupling layer architecture introduced inDinh, Krueger,and Bengio [58] to build efficient and invertible flowmodels. These layers havebeen used and improved in various works; Dinh, Sohl-Dickstein, and Bengio[85] used an affine version of the coupling layer to allow the model to com-press distributions and Kingma and Dhariwal [103] proposed to use invertible
1 × 1 convolution to increase the performance of the model. Other modifica-tions of this architecture have been proposed over the years (see Ho et al. [119]for example), and overall, coupling layers have proven their efficiency for bothdensity estimation and generative tasks. However, they impose a significantarchitectural constraint on the model. We propose our HNF as an alternativeto coupling layers for the design of flow-based models, and in a more generalsense, the design of invertible neural transformations.

Although discrete models currently outperform our Hamiltonian Nor-
malizing Flows on image datasets, we emphasize the theoretical advantagesof the HamiltonianNormalizing Flow framework, as the proposed approach sig-
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nificantly relaxes the constraints on the form of neural networks used in themodel, simplifies the computation of the training objective and reduces the es-timation of probability densities to a simple ratio of Gaussian probabilities.

ContinuousNormalizing Flows : CNFs [99] have lower complexity than dis-crete models and have proven their efficiency. However, the cost of integratingthe trace of their jacobian remains a bottleneck, although it can be efficientlyapproximated as shown in Grathwohl et al. [117]. The advantage of the HNFmethod is that this computational burden disappears as this specific term van-ishes with our formulation.
Conservative Neural Applications: In the previous Sections, we describedthe link between the conditioning of the neural network describing the dynam-ics (fθ) and the invertibility of the transformation. This topic has been studiedin other works as it pertains to various application fields. Approaches such asBehrmann, Duvenaud, and Jacobsen [113] have proposed to penalise the con-ditioning of weight matrices to ensure asymptotic stability of residual networkswhile Haber and Ruthotto [86] have proposed to constrain weightmatrices witha symplectic structure to ensure the stability and invertibility of the networks.Finally, Richter-Powell, Lipman, and Chen [181] have proposed a new parame-terization for divergence free field, which could be used to obtain similar theo-retical results as our method.
The Hamiltonian framework: The Hamiltonian framework appears in sev-eral works on generative modeling. Dockhorn, Vahdat, and Kreis [172] use thesame idea of dimensionality augmentation as we do to allow for faster mixingof the noise with the data samples in diffusion models, yielding a system ofODE that can be decomposed in a Hamiltonian part combined with a Ornstein-Uhlenbeck process. Similarly, Huang, Dinh, and Courville [133] show that theiraugmented normalizing flows can be considered to be a discrete approximationof a Hamiltonian system. Most notably, the idea of using Hamiltonians systemsto carry out flow-basedmodeling was also proposed in Toth et al. [146]. The au-thors propose to use a Hamiltonian system to forecast the state of a system bydoing rollout generation of the next states. They also show that theHamiltonianframework can be used to do pure generation on toy datasets. We consider thepresent work to be an extension of this work, with the following differences:
• Continuity: To train their flowmodel on toy datasets, the authors of Tothet al. [146] only use two leapfrog integration steps, making their approacha variation of an additive coupling layer flow (see Section 7.3.1). On theother hand, we show that theHamiltonian framework canbeuseddirectlyin combination with the NeuralODE approach, without giving considera-tion to the number of flow steps.
• Hamiltonianarchitecture: Previousworks propose to express theHamil-tonian function as a linear combination of potential and kinetic energy,
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Hθ = Tθ(q) + Vθ(p). We show that this constraint is not necessary, allow-ing for a more flexible parameterization of the model.
• Image generation: We apply the Hamiltonian framework to image gen-eration tasks and convolutional Hamiltonian functions.

7.3.3 Experiments
This Section presents the various experiments carried out to demonstrate theperformance of Hamiltonian Normalizing Flows. We first discuss the case of a1D bimodal distribution to illustrate several aspects of the model, particularlythe density estimation process and its relation to the random dimensions usedto augment the data. Examples of applications on 2-D toy datasets are then pre-sented and finally, we demonstrate the ability of the Hamiltonian NormalizingFlow to scale to real datasets.

In all experiments, we used the adaptive checkpointing adjointmethod [150]which is a more stable version of the Neural ODEmethod, but has higher mem-ory requirements. As discussed in the above Sections, the Runge-Kutta 4(5)adaptive time stepping scheme is used to allow the model to learn the num-ber of integration steps required to carry out the transformation. This canbe thought of as adjusting the depth of the model during training. In the par-ticular case of Hamiltonian systems, symplectic integration schemes would befavored for their volume preserving properties, however, these come with in-creased computational costs.

1D density estimation

To illustrate the behavior of the density estimator in equation Eq. (7.13), we usethe case of the normalization of a 1D bimodal distribution denoted p⋆. As pre-sented on figure 7.5, a HamiltonianNormalizing Flow can be trained to learn themap between the augmented data distribution x = [q0, p0], q0 ∼ p⋆, p0 ∼ N (0, 1)and a Gaussian distribution xT ∼ pG. In this 1D case, the Hamiltonian Hθ is pa-rameterised as a simple multi layer perceptron with three hidden layer of 64neurons each and the swish activation function is chosen over the rectified lin-ear unit function because it is continuously differentiable. Once the model istrained, the density probability of the data samples can be estimated using theformula Eq. (7.13) as illustrated in Figure 7.6. As mentionned in Section 7.3.1,the estimator is noisy because of the distance between the target distribution
pg and the true distribution generated by the model xT ∼ p̃G. However, theestimator is unbiased since it does yield the correct density value on average,this can be shown by sampling several p0 values for each data sample q0.
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Figure 7.6: Density estimation carried out the estimator using the HNF. As dis-cussed in sec 7.3.1, the estimator doesn’t yield the same value depdending onthe p0 value sampled.

Toy Datasets

Following the results obtained on a one dimensional case, we applyHamiltonian
Normalizing Flows on several 2D toy datasets. For each dataset, the 2D data
q0 ∈ R2 is augmented with two 1D Gaussian dimensions p0 ∈ R2. Similar to theexperiment on the 1D distribution, the Hamiltonian function is parameterizedas a multi layer perceptron with 3 hidden layers of 256 neurons each and SiLUactivation functions.

Figure 7.7 presents the results obtained after training the models on thevarious cases. The figure shows that the model is able to accurately capturethe target distributions, both in caseswhere distributions are disjoint andmulti-modal. It is interesting to note that the number of function evaluations requiredto carry out the normalization is of the order of 10, which is relatively low whencompared to state of the art CNF results on similar benchmarks. For exam-ple, the improved CNF method proposed in Grathwohl et al. [117], which yieldsexcellent results on both tabular and image data, requires about 100 functionevaluations to learn similar toy datasets.

Real Data

Finally, this subsection presents results obtained by applying the HamiltonianNormalizing Flow approach to real datasets. We first present an application toseveral tabular datasets which can be used to measure the performance of alikelihood model. Application of the HNF method on image datasets are thenpresented.
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Figure 7.7: Left column: samples from the data distribution. Center columns: 2Dtoy densities averaged over different numbers of p0 samples . Right column:Kernel density estimation.

Tabular Data

This Paragraph presents the application of the HNF method to likelihood es-timation tasks on datasets commonly used to validate the performance likeli-hood models. These datasets are pulled from the UCI machine learning repos-itory [54], and we reproduce the data pre-processing steps of Papamakarios,Pavlakou, and Murray [91] to allow for direct comparisons with other state ofthe art models. The hamiltonian is defined as a multi layer perceptron, andtrained using the simplified negative likelihood objective Eq. (7.14).
Table 7.1: Average test compression costs in nats (lower is better) ob-tained on tabular datasets with the HNFmethod. Compared with resultsfromGrathwohl et al. [117] and Papamakarios, Pavlakou, andMurray [91].

GAS HEPMASS MINIBOONEReal NVP -8.3 18.71 13.55Glow -8.15 18.92 11.35FFJORD -8.59 14.92 10.43HNF -7.96 20.66 17
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Figure 7.8: Generation of black & white faces at temperature of 0.7. The noiseon the left is continuously transformed during to obtain the final samples.

Results on the selected datasets are presented in table 7.1. Although theHNF method does not surpass the performance of the well optimized state ofthe art flow-based modeling architectures, the performance of our proposedmethod is of the same order. This indicates that with a more thorough designof experiment and optimization of the training of the model, the method couldperform on par with its state of the art counterparts, while offering a moreflexible parameterization, and being less expensive to optimize.

MNIST

Figure 7.9: Top: Samples from the MNIST digits dataset. Bottom: Random sam-ples generated with Hamiltonian Normalizing Flow at temperature 0.7
In this Paragraph, we present results obtained on image generation tasks.First, we focus on the MNIST handwritten digits dataset [198] which containblack andwhite 28 by 28 images. To build the HamiltonianNormalizing Flow, weuse the multiscale architecture proposed in [85], which consists of a sequenceof L levels each containing K flows, followed by a squeeze operation that de-creases the dimension of the images and increases their number of channel,and another K flow steps. In our application, we use L = 2 levels with K = 2HNF on each side of the squeezing operation. The flow steps are expressed as
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a Hamiltonian continuous transport, and the Hamiltonian at each flow step is aconvolutional neural network that maps the current image to a scalar.
Results of the generation process on the MNIST dataset are presented onfigure 7.9. Despite their imperfections, these results demonstrate the abilityof the Hamiltonian Normalizing Flow method to scale to image datasets. Theyalso show that the Hamiltonian formulation can be used in combination witharbitrary architectures, such asmultiscale approaches and convolutional neuralnetworks which leverage spatial correlations in the data.

Black and White Celebs

Finally, in an effort to scale the approach beyond 28 by 28 pixel images, we ap-plied the approach on the normalization of a grayscale version of the celebAdataset [199] which contains two hundred thousands images of celebrities. Af-ter taking a center crop of the images, and resizing them to a size of 64 by 64pixels, we trained a model to normalize the data using a sequence of 10 HNF,with the Hamiltonian parameterized as a convolutional neural network. Thisparticular choice over the multiscale architecture used for the MNIST dataset ismade to allow for the visualization of the continuous evolution of the samplesduring the generation process, as shown on figure 7.8, while samples from themodel are presented on figure 7.10. These results demonstrate the potential ofthe method to scale to higher dimensional problems.

Figure 7.10: Random samples generated with a convolutional HNF at tempera-ture 0.7

7.3.4 Limitations and Open questions
The previous Paragraphs have shown that the Hamiltonian Normalizing Flowsframework presents interesting properties for the modeling of arbitrary datadistributions. However, we want to underline that there are still unanswered
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questions that should be addressed tomake themethod competitivewithstate of the art approaches. We identify two main issues below:

• Density Estimation: In the results, we have discussed the noisy nature ofthe density estimator provided by the Hamiltonian Normalizing Flow. Weshowed that the empirical results did not respect the fact that the densityof a data point q0 predicted by our model should be independent of theaugmented variables p0 used to carry out the normalization.
We explain this issue by the inability of the model to converge to the opti-mum of the learning problem, i.e., the normalized data distribution doesnot perfectly correspond to the target Gaussian distribution pG. Thus, theaccordance between the density pG(qT , pT ) and the actual probability ofthe data varies for different p0 values. A similar problem happens whencarrying out data generation, where the model does not yield perfect in-dependence between the generated data q̃0 and generated augmentedvariable p̃0.
One idea to address this issue would be to carry out bi-directionnal train-ing, by training at the same time the normalization process using the MLEobjective of equation 7.14 and the generation process, where the distancebetween the true and generated data distributions could be estimated us-ing Maximum Mean Discrepancy as in Ardizzone et al. [112].
The possibility of leveraging this noisy nature of the density estimator toquantify model uncertainty should also be investigated.

• Expressivity: The generality of the approach and the expressivity of thenetwork architecture require additional investigation. We have shownin Section 7.3.1 that the Hamiltonian normalizing flow could be seen amore general formulation of a sequence of additive coupling layers [58].However, this is not sufficient to state that the Hamiltonian formulation isgeneral, as better-performing approaches such as Kingma and Dhariwal[103] are now using more complex invertible layer architectures, whichare harder to relate to our HNF.
Another justification uses Liouville’s theorem which can be used to showthat any conservative system with n degrees of freedom follows Hamil-tonian dynamics in a 2n dimensional phase space. Observing that thenormalizing flow to be learned is by definition a conservative system, asit conserves the overall probability density, we can state that the HNFframework can learn the necessary dynamics, provided Hθ is expressiveenough.
This last condition is in fact an open question, as we have not managed toestablish optimal architecture forHθ. This is especially true for image ap-plications, where the convolutional neural networks used to map images
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to scalars might suffer from the locality of the convolution operation andfail to propagate information across the images.
7.3.5 Study Conclusion
This Section introduced our proposal for the construction of continuous nor-malizing flows using Hamiltonian dynamics. Similar to the previous Sectionon unsupervised domain translation, we showed that the conservative natureof Hamiltonian dynamics could be used to construct neural flow models withdesirable properties. Most notably, we have discussed the way the volumepreserving nature of the HNF yielded a tractable probability density estimator,which in turns led to simplified training.We also discussed some of the remaining issues that limit the applicabilityof our proposed method. Future work will be concerned with the explorationof the various improvements proposed in Section 7.3.4. We do believe that thiswork could lead a better overall understanding of flow generative modeling,and possibly a unified view of the problem.Finally, wemention that the increased flexibility of the HNF could be used tomodel problems that would benefit from more specified architectures, for ex-ample, molecular data modeling tasks, which could benefit from architecturessuch as graph neural networks that might need to account for the whole datasample at every flow step.

7.4 Conclusion
With these two studies, we have proposed potential avenues to use dynami-cal systems theory to inform the construction of novel Deep Learning architec-tures. As mentioned at the start of this Chapter and in Chapter 3, approachessuch as those presented above are a form of hybridization, which has given riseto various Deep Learning approaches in recent years that are now state of theart. Methods such as residual networks[82], or NeuralODEs [99] that are usedextensively in this thesis are examples of such hybridization successes.The work presented in this Chapter revolved around the use of Hamiltoniandynamical systems to construct invertible transformations. We have shownthat the guarantees provided by Hamiltonian architectures yielded desirableproperties. Invertibility by construction was for example used to carry out two-way domain translation in Section 7.2.2 while only training the model to learnout one-way transformations. We also mention the exploration of the volumepreserving properties of Hamiltonian flows and the way they could be used totransport and compress marginal distributions.We note that the approaches proposed in this Chapter still have significantlimitations and several potential improvements should be explored to bring
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them on par with the state of the art. Thus, avenues such as those proposed inSection 7.3.4 should be explored in future works.
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CHAPTER 8

CONCLUSION

The application of Deep Learning methods to the improvement of numericalsimulation methods has become a major research topic. As evidenced by theexistence of a range of approaches to this question, some of which were in-troduced in the first parts of this thesis. We discussed some of the major dif-ferences between the main existing proposals, mainly from the point of view of
hybridization, that is to say, the degree towhich amethod combines pre-existingphysical information with data-driven modeling techniques. We tried to under-line the fact that the development of efficient numerical simulation engines liesin the efficient application of hybridization, rather than sole reliance on eithernumerical or data-driven methods.

More specifically, we looked at the topic of reduced order modeling, whichcenters around the identification of suitable representation spaces for the dy-namics of physical systems. We showed that identifying such spaces from datacould help alleviate some of the cost issues associated with full order numericalsimulation. However, the optimal approach to this topic is not yet established.We discussed the existence of several methods within the reduced order mod-eling subfield, both for dimensionality reduction and dynamical modeling, eachpresenting various degrees of performance and data-reliance. These consider-ations led to the development of two novel methods based on the hybridizationof neural networks and existing reduced order modeling techniques.
First, the CD-ROM approach was introduced, amethod for the developmentof closure models for POD-Galerkin ROMs. We derived the closure modelingarchitecture from considerations on the nature of the error embedded in POD-Galerkin ROMs, and dynamical systems theory. We showed that this problemwas directly related to the study of partially observed systems and that captur-ing non-Markovian effects in the dynamics of the reduced systemwas critical toits accurate simulation. The proposed CD-ROM method stands as an example
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of a hybrid model, combining information retained from the governing equa-tions of the system, a theoretically consistent memory architecture, and a pow-erful data-driven closure model relying on neural networks. We also showedthat this hybrid architecture could be adapted to strongly non-linear problemsthat would have previously been hard to reduce in the context of POD-Galerkinmodel reduction. Finally, we studied the way the novel continuous memory ar-chitecture of the CD-ROM selected specific frequencies to retain inmemory andshowed that it did so in a coherent fashion with the system to be learned.
The iLED model was then proposed for the interpretable modeling of non-linearly reduced systems. Starting from the consideration of the inefficiencyof linear dimensionality reduction for dynamical systems, we developed an ap-proach to extract interpretable dynamical laws fromdata. First, thewell-establishednon-linear dimensionality reduction capabilities of neural networks were lever-aged to construct very low dimensional representation spaces for various dy-namical systems. We then showed that the theory of the Koopman operatorintroduced in the earlier stages of the thesis could be used to derive a theoret-ically grounded and interpretable ansatz for the dynamics of a physical system.We showed that systems presenting oscillatory dynamics could be reduced tovery low dimensional linear systems even when governed by non-linear equa-tions such as the Navier-Stokes equations. We also discussed the particularityof chaotic systems, such as the Kuramoto-Sivashinsky equations, which can notbemodeled as purely linear systems but can still benefit from a supporting limitcycle in the latent space of an autoencoder. Once again, this proposal is placedin the context of hybrid modeling, where we used a theoretically groundedarchitecture to constrain a data-driven model to ensure coherence and inter-pretability.

8.1 Perspectives
We discuss below some of the potential applications and improvements to ourproposals that should be considered in the future.

• Control Applications: We showed in our work that the CD-ROM andiLED methods could be used to model complex dynamical systems andextend seamlessly to parametric problems. We are now considering po-tential applications of our work to Model Predictive Control. This alreadywell-established field will strongly benefit from the availability of fast andaccurate models, able to extract dynamical law from a few probes mea-suring the state of a system. In this context, our proposals would be keyenablers, opening avenues to other related research fields, such as onlinetraining, exploration, and reinforcement learning.
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• Neural Architectures: We have centered our work around the topic ofinterpretability and shown that either by retaining part of the governingequations or replacing themwith an easily interpretable linear term, a de-gree of understanding of the model could be gained. It remains that boththe iLED and CD-ROM methods rely on hard-to-interpret neural closuremodels. We discussed in the first chapter how certain constraints couldbe embedded in the structure of neural networks through careful param-eterization of the weight matrices. The study of the applicability of thesestable parameterizations could be a first step toward understanding orat least obtaining guarantees on the behavior of these neural dynamicalterms.
• Model Extensions: Extensions to the proposed models should be ex-plored. As an example, the memory architecture, which is identical be-tween both the CD-ROM and iLED approaches, could be extended to ac-commodate more complex memory kernels. We have discussed the ad-vantages of a simple diagonalmemory kernel as it allows for independentmemory dimensions and simple memory initialization. However, moreflexible parametrizations might lead to a more expressive memory archi-tecture.
Finally, we give our perspective on the current applications of Deep Learningto numerical simulation. It is clear to us that the potential of neural networksto approximate unknown operators, such as the reduced dynamics of a systemon a low dimensional manifold, can lead to major advantages and yield valu-able insights into the behavior of physical systems. However, we acknowledgethat the strength of numerical simulation methods lies in their generality. Therepresentation of the real through universal laws is the foundation of physics,and this aspect of universality is clearly lacking in the existing applications ofDeep Learning to simulation problems, including our proposal. This is why webelieve that the development of general simulation engines that do not relyon application-specific retraining should become a major research topic in thefuture. Combined with ever-improving computation architectures, research inthis direction could lead to orders of magnitude improvement in the design ofsome of our more challenging technologies.
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CHAPTER 9

APPENDIX: CD-ROM

9.1 Hyper-Parameters and training

This appendix details the various design and training choices made for the dif-ferentmodels presented in the results section 4.6. As explained earlier in Chap-ter 4, the models are trained using progressively longer prediction horizons.Themain advantage of thismethod, as opposed to directly training with the tar-get prediction horizon, is that potentially unstable systems in the earlier learn-ing stages will struggle to reach long-term prediction horizons without diverg-ing, making the training extremely inefficient. Moreover, using this strategymeans that a single, long DNS trajectory can be separated into numerous sub-trajectories which can be batched together and simulated in parallel, yielding avery efficient training process. The procedure is presented in algorithm 2.

Finally, the hyper-parameters values and training details for the differentmodels trained using the above strategy are presented below. In an effort toimprove readability, the various values are organized in table 9.1.
161
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Algorithm 2 Batching and Sub-trajectories
Require: Ti the initial prediction horizon, Tf the final prediction hori-zon, Tinc the horizon increment, Lt the loss threshold, f(z, θ) a CD-ROMmodel
T ← Ti

L ← +∞
while T < Tf do

while L > Lt doSample a batch of trajectories a⋆
−τmin−→TCompute the initial memory y0

z0 ← [a⋆
0,y0]

[at,yt]← z0 +
∫ t

0
f(z; θ)dt ▷ CD-ROM simulation

L ← L(a0−→T , a
⋆
0−→T )Backpropagation & Gradient Step

end while
T ← T + TincReorganise batches according to the new T

end while

Cylinder Pinball KSMemory Size 30 50 30Corrector Neurons (30,30,30,30,3) (50,250,250,250,10) (56,150,150,150,25)Encoder Neurons (3,9,15,21,27) (10,17,24,31,40) (26,21,16,11,5)Activation SiLU SiLU SiLUOptimizer Adam Adam AdamLearning Rate (E & R) 10−3 10−3 5× 10−4

Weight Decay (E & R) 10−4 10−2 10−3

Learning Rate (Λ) 10−4 2× 10−4 5× 10−4

Weight Decay (Λ) 0 0 0Time Integrator Scipy RK-45 Scipy RK-45 Semi Implicit 3rd order [39]Training Time 1/2 day 1 day 1/2 day
Table 9.1: Hyper parameters used in the training of the different modelspresented in Section 4.6. The various parts of the CD-ROM are desig-nated as follows, R the neural network predicting the residual of theGalerkin model, E the memory encoder model, Λ the diagonal memorymatrix. The final line presents the order of magnitude of the trainingtimes of each model on a single RTX 2080 gpu.
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APPENDIX: ILED

10.1 Network parameters

This Section lists the various hyperparameters and network architectures usedto obtain the results presented in Section 6.4.

10.1.1 FHN

The tables below present the architecture of both the autoencoder and iLEDdynamical models used to obtain the results on the FHN case.
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Layer Encoder(1) ConstantPad1d(padding=(13, 14), value=0.0)(2) Conv1d(2, 8, kernel_size=(5,), stride=(1,), padding=same)(3) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(4) SiLU()(5) Conv1d(8, 16, kernel_size=(5,), stride=(1,), padding=same)(6) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(7) SiLU()(8) Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=same)(9) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(10) SiLU()(11) Conv1d(32, 4, kernel_size=(5,), stride=(1,), padding=same)(12) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(13) SiLU()(14) Flatten(start_dim=-2, end_dim=-1)(15) Linear(in_features=32, out_features=2, bias=True)(16) LatentSpaceCenteringLayer()
Layer Decoder(1) Linear(in_features=2, out_features=32, bias=True)(2) SiLU()(3) Unflatten(dim=-1, unflattened_size=(4, 8))(4) Upsample(scale_factor=2.0, mode=linear)(5) ConvTranspose1d(4, 32, kernel_size=(5,), stride=(1,), padding=(2,))(6) SiLU()(7) Upsample(scale_factor=2.0, mode=linear)
(8) ConvTranspose1d(32, 16, kernel_size=(5,), stride=(1,),padding=(2,))(9) SiLU()(10) Upsample(scale_factor=2.0, mode=linear)(11) ConvTranspose1d(16, 8, kernel_size=(5,), stride=(1,), padding=(2,))(12) SiLU()(13) Upsample(scale_factor=2.0, mode=linear)(14) ConvTranspose1d(8, 2, kernel_size=(5,), stride=(1,), padding=(2,))(15) 1 + 0.5 Tanh()(16) Unpad()

Table 10.1: One-dimensional convolutional autoencoder used to obtainthe results on the case of the FHN model presented in Section 6.4.1
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iLED Parameters

Aθ Linear(2,2,bias=False)
Ψ1 neurons 18 - 32 - 32 - 32 - 2
Ψ1 activation SiLU()

dh 16
Ψ2 AugmentedIdentityEncoder (see Eq. (6.29))

Ψ2 neurons 2 - 5 - 8 - 11 - 14
Ψ2 activation SiLU()

Λθ diag(w), w ∈ Rdh
−

Table 10.2: Hyperparameters of the iLED dynamics used to obtain theresults on the FHN case presented in Section 6.4.1.

10.1.2 KS

Similar to the previous paragraph, the architecture of the networks used for theKS case are presented below.
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Layer Encoder(1) Conv1d(1, 16, kernel_size=(5,), stride=(1,), padding=same)(2) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(2), (0,))(3) SiLU()(4) Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=same)(5) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(6) SiLU()(7) Conv1d(32, 64, kernel_size=(5,), stride=(1,), padding=same)(8) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(9) SiLU()(10) Conv1d(64, 8, kernel_size=(5,), stride=(1,), padding=same)(11) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))(12) SiLU()(13) Flatten(start_dim=-2, end_dim=-1)(14) Linear(in_features=64, out_features=8, bias=True)(15) LatentSpaceCentering()
Layer Decoder(1) Linear(in_features=8, out_features=64, bias=True)(2) Unflatten(dim=-1, unflattened_size=(8, 8))(3) Upsample(scale_factor=2.0, mode=linear)(4) ConvTranspose1d(8, 64, kernel_size=(5,), stride=(1,), padding=(2,))(5) SiLU()(6) Upsample(scale_factor=2.0, mode=linear)
(7) ConvTranspose1d(64, 32, kernel_size=(5,), stride=(1,),padding=(2,))(8) SiLU()(9) Upsample(scale_factor=2.0, mode=linear)
(10) ConvTranspose1d(32, 16, kernel_size=(5,), stride=(1,),padding=(2,))(11) SiLU()(12) Upsample(scale_factor=2.0, mode=linear)(13) ConvTranspose1d(16, 1, kernel_size=(5,), stride=(1,), padding=(2,))

Table 10.3: One-dimensional convolutional autoencoder used to obtainthe results on the case of the KS equation (sec 6.4.2)
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iLED Parameters

Aθ W −WT − diag(w), W ∈ Rdz×dz ,w ∈ Rdz
+

Ψ1 neurons 40 - 64 - 64 - 64 - 8
Ψ1 activation SiLU()

dh 32
Ψ2 AugmentedIdentityEncoder (see Eq. (6.29))

Ψ2 neurons 8 - 12 - 16 - 20 - 24
Ψ2 activation SiLU()

Λθ diag(w), w ∈ Rdh
−

Table 10.4: Hyperparameters of the iLED dynamics used to obtain theresults on the KS case presented in Section 6.4.2.

10.1.3 Flow around a cylinder

The autoencoders used in the Cylinder flow case have a complex architecture,to simplify the notation, we define two blocks that combine similar operations:

Table 10.5: Sub blocks defined to help describe the CNN autoencoders
Layer DownBlock(in_size,out_size)
(1) Conv2d(in_size, out_size, kernel_size=(5, 5), stride=(2, 2),padding=(2, 2), padding_mode=replicate)(2) SiLU()

Layer UpBlock(in_size,out_size)(1) Upsample(scale_factor=2.0, mode=bilinear)
(2) Conv2d(in_size, out_size, kernel_size=(5, 5), stride=(1, 1),padding=(2, 2), padding_mode=replicate)(3) SiLU()(4) BatchNorm2d()
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Layer Encoder #1 Encoder #2(1) DownBlock(2,4) DownBlock(2,4)(2) DownBlock(4,16) DownBlock(4,8)(3) DownBlock(16,4) DownBlock(8,16)(4) DownBlock(4,2) DownBlock(16,2)(5) Flatten(start=-3,end=-1) Flatten(start=-3,end=-1)(6) Linear(512,20) Linear(200,20)(7) dz1 = 20 dz2 = 20Mixer Encoder(8) Concatenate(z1, z2)(9) Linear(40,30)(10) SiLU()(11) Linear(30,dz)Layer Mixer Decoder(1) Linear(dz,30)(2) SiLU()(3) Linear(30,40)(4) z1, z2 = zDecoder #1 Decoder #2(5) Linear(20,512) Linear(20,200)(6) Unflatten(-1,(2,32,8)) Unflatten(-1,(2,10,10)(7) UpBlock(2,4) UpBlock(2,16)(8) UpBlock(4,16) UpBlock(16,8)(9) UpBlock(16,4) UpBlock(8,4)(10) Upsample(2.0,bilinear) Upsample(2.0,bilinear)
(11) Conv2d(4, 1, kernel_size=(5, 5),stride=(1, 1), padding=(2, 2),padding_mode=replicate)

Conv2d(4, 1, kernel_size=(5, 5),stride=(1, 1), padding=(2, 2),padding_mode=replicate)(12) Flatten(start=-3,end=-1) Flatten(start=-3,end=-1)(13) StreamFnToVelocity() StreamFnToVelocity()
Table 10.6: Hyperparameters of the 2-dimensional convolutional autoen-coder used to obtain the results on the Cylinder case presented in Sec-tion 6.4.3.

The value of dz changes depending on the Reynolds number considered. Itis equal to dz = 3 in the Re = 100 case, and dz = 16 in the Re = 750 case. Notethat we don’t use a LatentSpaceCentering layer contrary to the other cases. Thisis due to the fact that, because of the memory costs of the models, the batchsize has to be relatively low, which has a negative impact on batch normalizationapproaches. To ensure that the latent space remained centered, which is criticalto the accuracy and interpretability of the linear term in the dynamics, we added
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a term to the loss:

Lcentering = ∥ 1

NT

NT∑
i=1

E(Φti))∥22. (10.1)
This loss effectively penalizes the average of the latent codes, ensuring thatthey are centered around the origin.Also note that the decoder doesn’t directly predict the velocity field, but thestream function ψ which is a scalar field, that is used to compute the velocitycomponents as follows:

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (10.2)

This specific choice is inspired from previous works ([141, 189]). It allows forthe guaranteed prediction of a divergence free field, which is a constraint of theincompressible Navier-Stokes equations.Finally, the parameters of the iLED dynamical model are provided below:
iLED Parameters

Aθ W −WT − diag(w), W ∈ Rdz×dz ,w ∈ Rdz
+

Ψ1 neurons dz + dh - 128 - 128 - 128 - dz
Ψ1 activation SiLU()

dh 32
Ψ2 AugmentedIdentityEncoder (see Eq. (6.29))

Ψ2 neurons(Re = 750) 16 - 17 - 17 - 17 - 15
Ψ2 neurons(Re = 100) 3 - 10 - 16 - 22 - 28
Ψ2 activation SiLU()

Λθ diag(w), w ∈ Rdh
−

Table 10.7: Hyperparameters of the iLED dynamics used to obtain theresults on the Cylinder cases presented in Section 6.4.3.
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CHAPTER 11

SYNTHÈSE EN FRANÇAIS

Les systèmes dynamiques sont généralement modélisés à l’aide d’équationsaux dérivées partielles (EDP). Ces modèles sont étroitement liés à la façon dontles scientifiques observent le monde et, en tant que tels, ils sont limités parnotre compréhension des systèmes étudiés. En effet, des modèles tels que leséquations de Navier-Stokes ne modélisent que les interactions locales dans unécoulement, et négligent les phénomènes sous-jacents qui controlent le sys-tème dans son ensemble. Ce caractère local des modèles basés sur les EDPcouplé à la complexité des phénomènes et géométries étudiés dans les appli-cations industrielles implique l’utilisation de discrètisations très fines pour lasimulation des phénomènes physiques. Ce qui conduit généralement à descoûts de calcul excessifs associés à la résolution numérique des EDP.
Dans cette thèse, nous discutons de la manière dont les données peuventêtre exploitées pour dériver de meilleurs espaces de représentation pour lessystèmesphysiques ainsi quedesmodèles dynamiques simplifiés, appelésmod-èles réduits. Nous présentons d’abord quelques unes des approches de réduc-tion de modèle existantes. Nous proposons ensuite d’exploiter les capacitésd’approximation des réseaux de neurones pour construire de nouvelles méth-odes de réduction de modèles. Les approches introduites dans cette thèse re-posent sur le concept d’hybridation entre la modélisation physique et les méth-odes d’apprentissagemachine. Nous nous appuyons sur les propriétés des sys-tèmes dynamiques étudiés pour construire des modèles interprétables, préciset en accord avec la théorie afin de résoudre les problèmes de coûts de calculassociés à la modélisation physique standard, tout en limitant la dépendancedesmodèles aux données. Les travaux présentés dans cette thèse peuvent êtreséparés en deux propositions distinctes.
CD-ROM : La méthode Complemented Deep - Reduced Order Model proposeune approche de fermeture basée sur les réseaux de neurones pour les mod-
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èles à ordre réduit de type POD-Galerkin. L’approche est basée sur la théoriedes systèmes partiellement observés, elle utilise des réseaux de neurones pourapproximer les erreurs inhérentes aux modèle réduits POD-Galerkin, tout enconservant une partie des équations qui gouvernent le système. Contraire-ment à la plupart des travaux précédents sur la réduction de modèle à l’aidedes réseaux neuronaux, l’approche CD-ROM est basée sur une formulation demémoire interprétable et continue en temps, dérivée d’hypothèses simples surle comportement des systèmes dynamiques. Cette formulation continue entemps permet de simuler les modèles construits avec la méthode CD-ROM àl’aide d’intégrateurs temporels standards, là où les réseaux de neurones récur-rents reposent généralement sur une progression discrète en temps.
iLED : La méthode intepretable Learning of Effective Dynamics for multiscale

systems est une approche de modélisation dynamique entièrement basée surles données. La méthode propose d’utiliser les réseaux de neurones pour con-struire à la fois une représentation du système étudié en dimension réduiteet un modèle dynamique pour la simulation du système dans l’espace réduitobtenu. Nousmontrons que iLEDoffreuneprécision comparable aux approchesbasées sur les réseauxdeneurones récurrents tout en retenant undegré d’interprétabilitéélevé. L’architecture iLED est directement basée sur la théorie de l’opérateurde Koopman. Nous montrons dans nos expériences que iLED peut être util-isé pour dériver des équations quasi linéaires de basse dimension pour desEDP non linéaires généralement résolues dans des espaces de très haute di-mension, fournissant des informations précieuses sur la dynamique étudiéeet réduisant considérablement les coûts de calcul associés à la simulation dumodèle.Chaque méthode est illustrée à l’aide de cas standard de la littérature, telsque les écoulements fluides bidimensionnels et les systèmes chaotiques telsque les équations de Kuramoto-Sivashinsky.
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