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Systéemes dynamiques

Résumé:Les systémes dynamiques sont
généralement modélisés a l'aide d'équations
aux dérivées partielles (EDP). Ces modeles
sont étroitement liés a la fagon dont les sci-
entifiques observent le monde et, en tant
que tels, ils sont limités par notre com-
préhension des systemes étudiés. En ef-
fet, des modeéles tels que les équations de
Navier-Stokes ne modélisent que les interac-
tions locales dans un écoulement, et négli-
gent les phénomenes sous-jacents qui con-
trolent le systéme dans son ensemble. Cela
conduit souvent a des co(ts de calcul exces-
sifs associés a la résolution numérique des
EDP. Dans cette these, nous discutons de
la maniére dont les données dynamiques
peuvent étre exploitées pour dériver de
meilleurs espaces de représentation pour
les systemes physiques ainsi que des mod-
eles simplifiés, appelés modeles réduits.
Nous présentons d'abord quelques unes
des approches de réduction de modele exis-
tantes. Nous proposons ensuite d'exploiter
les capacités d'approximation des réseaux
de neurones pour construire de nouvelles
méthodes de réduction de modeles. Les

techniques introduites dans cette theése re-
posent sur le concept d'hybridation entre
la modélisation physique et les méthodes
d'apprentissage machine. Nous nous ap-
puyons sur les propriétés des systemes dy-
namiques étudiés pour construire des mod-
eles interprétables, précis et en accord avec
la théorie afin de résoudre les problémes
de codts de calcul associés a la modélisation
physique standard, tout en limitant la dépen-
dance des modéles aux données. Nous pro-
posons deux nouvelles approches, la méth-
ode CD-ROM qui propose de construire des
modeles de fermeture les modéles réduits
par la méthode POD-Galerkin, et la méth-
ode iLED, qui est une approche de mod-
élisation entierement basée sur les don-
nées, construisant des modeles dynamiques
interprétables a l'aide de réseaux de neu-
rones. Chaque méthode est illustrée par des
expériences numeériques sur des cas tests
standards tirés de la littérature comme les
écoulements en deux dimensions, ou les
systemes chaotiques tels que I'équation de
Kuramoto-Sivashinsky.
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Abstract: Dynamical systems are generally
modeled using Partial Differential Equations
(PDE). These models are intricately linked to
the way scientists observe the world and, as
such, they are limited by our understanding
of the behavior of the systems under study.
For example, models such as the Navier-
Stokes equations only account for the local
interactions in fluid systems, and ignore the
underlying phenomena that drive the system
as a whole. This often leads to a poor un-
derstanding of the dynamical problems un-
der study and excessive computational costs
associated with the numerical resolution of
PDE-based models. In this thesis, we discuss
the way dynamical data can be exploited to
derive better representation spaces for phys-
ical systems as well as computationally effi-
cient models, called reduced order models.
We discuss some of the existing reduced or-
der modeling approaches. We then propose
to leverage the approximation power of neu-
ral networks to derive novel, improved re-

duced order modeling methods. The mod-
eling techniques proposed in this thesis are
built around the concept of hybridization be-
tween physical and data driven modeling.
We leverage pre-existing knowledge of dy-
namical systems into theoretically grounded,
accurate, and interpretable dynamical mod-
els to address the computational costs is-
sues associated with standard physical mod-
eling, while avoiding complete reliance on
data. We introduce two novel modeling ap-
proaches, the CD-ROM method which pro-
poses to construct neural closure models for
the well established POD-Galerkin method,
and the iLED method, which is a fully data
driven modeling approach that extracts low
dimensional, interpretable dynamical mod-
els from data using neural networks. Each
method is illustrated using standard cases
from the literature such as two dimensional
fluid flows, and chaotic systems such as the
Kuramoto-Sivashinsky equations.
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CHAPTER 1

INTRODUCTION

At the beginning of the sixteenth century, Tommaso Masini, a collaborator of
Leonardo da Vinci, stood on the roof of a building near the city of Florence.
After careful study of the works of the master, he had managed to build a pro-
totype of the first machine that would take humanity to the skies and all that
remained to do was to demonstrate the capabilities of the machine. Taking
a leap from the roof, he quickly realized that the machine was in fact unable
to sustain his weight and fell to the ground, breaking his leg in the process.
While commendable from a scientific standpoint, as this experiment could only
lead to the advancement of science, he might have judged the price too high.
Issues such as this one are still common to this day where, instead of a col-
league’s physical integrity, countless man-hours and large amounts of money
must be expended to advance certain areas of science. One can think of instal-
lations such as the Large Hadron Collider and the ITER nuclear fusion project,
which stand as large-scale international undertakings, involving significant bud-
get and personnel investments. Similarly, prototyping is employed sparingly in
smaller-scale applications such as the development of aviation and energetic
technologies, because of very high costs.

Because of these limitations, scientists are now carrying out some of these
more expensive experiments in-silico, using a number of numerical simulation
methods. Indeed, the majority of physical phenomenons can be represented
through mathematical models taking the form of a Partial Differential Equation
(PDE). These models rarely have known closed-form solutions, making them
hard to use directly. Fortunately, they can be solved numerically to approximate
the behavior of a physical system without actually constructing it in-vivo.

Despite the significant advantages of this dematerialized approach to ex-
perimentation, numerical simulation is too limited for some of today’s applica-
tions. Indeed, most numerical simulation methods, such as the Finite Elements
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Method (FEM,[83]) rely on the resolution of high dimensional systems of equa-
tions, requiring significant computing power, which in turn leads to significant
financial expenditure. A large body of work has been dedicated to address-
ing these cost issues, ranging from pure algorithmic optimization to simplified
models.

As part of these efforts towards the optimization of numerical simulation
methods, approaches have been developed to reduce physical systems to a
small number of driving phenomena. With the goal of limiting the number of
degrees of freedom of the systems considered, and thus the computational
costs associated with their simulation. These methods are now considered to
form a subfield of numerical simulation, called Reduced Order Modeling. We
will show in this thesis that despite their computational advantages, the accu-
racy of reduced order modeling methods is often limited: considering only the
dominant features of a system can lead to large approximation errors.

The aim of this doctoral thesis is to design methods for the amelioration
of Reduced Order Modeling methods, improving their accuracy while retaining
their low computational cost. Our ambition is to preserve the essential charac-
teristics of applicability of the proposed methods such as interpretability, sta-
bility, or generality. To this end, we propose different data-driven approaches
to improve the accuracy of the reduced equations describing the underlying
physics, ranging from approximating PDEs in reduced spaces to purely data-
driven methods agnostic to the underlying physics.

We note that numerical simulation methods have been intricately linked
with the field of machine learning since their inception. One can think of Bayesian
methods being routinely used in combination with numerical simulation tools
for design optimization or the application of Kalman filters to the control of
physical processes. The closure models used to simulate the Reynolds Aver-
aged Navier Stokes equations that use data-driven methods to fit the model
parameters are another example.

More recently, with the rise of neural networks, this hybridization between
numerical simulation and Machine Learning has become a major topic of study.
These novel models have been shown to be very flexible and able to extract
complex correlations from data. Numerous applications to numerical simula-
tion have been proposed in recent years, which we discuss at the beginning of
this thesis.

In this work, we propose leveraging the approximation capabilities of neu-
ral networks to improve reduced-order modeling methods. We chose to focus
on the interpretability of the resulting models, which is critical in applications
where guarantees on the model are required. Because neural networks are not
easily interpretable, we developed various approaches to improve this specific
aspect.

To achieve our goal of interpretability, we leverage the theory of dynami-
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cal systems to build theoretically sound, hybrid models. Our first proposal re-
tains the established system equations and combines them with data-driven
closures, much in the fashion of classical physical modeling methods such as
the Reynolds Averaged Navier-Stokes equations. We then propose a similar
method able to extract fully data-driven models from data using dynamical sys-
tems theory to derive the form of the model and improve interpretability.

Main Contributions

The main contributions of this thesis lie in the proposal of two novel methods
for the reduced-order modeling of physical systems :

* The CD-ROM method: The method focuses on the closure of the POD-
Galerkin [37, 32] reduced order modeling method. We explore the loss of
information that is inherent to linear dimensionality reduction, and how
it can be accounted for. We show that the method can be seamlessly
used in combination with standard ODE solvers, and adapted to challeng-
ing dynamics. We demonstrate the method on various use cases used
to benchmark dynamical modeling problems, such as laminar fluid flows
and chaotic systems.

* The iLED method: This second modeling approach leverages the nonlin-
ear dimensionality reduction capabilities of neural networks to build in-
terpretable dynamical models. Although much more data-driven than the
CD-ROM method, we show that iLED is grounded in dynamical systems
theory, and highly interpretable compared to classical neural network ar-
chitectures. As with the CD-ROM method, iLED is shown to perform well
on various numerical simulation problems.

Outline

This thesis is organized around the various scientific communications that have
been produced over the course of the Ph.D. The second chapter provides an
introduction to the topic of reduced order modeling, where we introduce the
most important complexities that come with the simulation of physical systems,
while the third chapter emphasizes the deep connections that exist with the
field of Machine Learning. Each following chapter is then based on a specific
communication. We provide below a summary of each chapter:

+ Chapter 2 introduces the problem of model order reduction. A brief sum-
mary of classical numerical simulation is provided, followed by a review
of the dominant dimensionality reduction approaches. We then discuss
the advantages of these methods and the challenges they raise.
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+ Chapter 3 introduces neural networks, powerful function approximators,
which were used extensively in this thesis. Emphasis is put on the poten-
tial of neural networks for dynamical modeling and the existing applica-
tions in the literature that helped drive and improve our proposal.

+ Chapter 4 is based on the following publication :

E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, and M. Schoenauer, “CD-
ROM: complemented deep - reduced order model”, Computer Methods
in Applied Mechanics and Engineering 410, 115985 (2023). https://arxiv.
org/abs/2202.10746.

This publication describes a major contribution of the thesis, the CD-ROM
method, which is the method we developed to complement the POD-
Galerkin reducer order modeling method using neural networks. This
method proposes to learn a closure term for an imperfect reduced order
model that results from the projection of the governing Partial Differen-
tial Equations. The final model is both accurate, based on the projected
physical equations, and continuous in time.

+ Chapter 5 presents additional results obtained with the CD-ROM method.
The first part of the chapter is based on the following short paper :

E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, T. Dairay, R. Meunier, M.
Schoenauer (2022). "Continuous Methods: Adaptively intrusive reduced
order model closure", Workshop on continuous time methods for ma-
chine learning ICML 2022, https://arxiv.org/abs/2211.16999.

This contribution is an extension of the CD-ROM method, where we show
that the method could be used to model strongly nonlinear dynamics.
These problems are generally not straightforward to model using the POD
Galerkin method as their linear projection doesn’t result in a simple, low-
dimensional algebraic expression. With this work, we show that the CD-
ROM method can be used to model these terms while retaining the re-
ducible part of the equations.

A study on the ability of the CD-ROM model to learn the driving frequen-
cies of a system is then presented. Further underlining the interest of the
proposed architecture.

+ Chapter 6 is based on the following paper :

E. Menier, S. Kaltenbach, M. Yagoubi, M. Schoenauer, P. Koumoutsakos
(2023). "interpretable Learning of Effective Dynamics for multiscale sys-
tems", Submitted, https://arxiv.org/abs/2309.05812.


https://arxiv.org/abs/2202.10746
https://arxiv.org/abs/2202.10746
https://arxiv.org/abs/2211.16999
https://arxiv.org/abs/2309.05812

In this paper, we propose a method that leverages the dimensionality re-
duction capabilities of neural networks. The interest of nonlinear dimen-
sionality reduction for dynamical systems is well established and also dis-
cussed in Chapter 2. Starting from this observation, we discuss the way a
reduced-order modeling strategy can be constructed by extracting both
a reduced manifold and a dynamical model from data using neural net-
works. Emphasis is put on the derivation of a theoretically grounded dy-
namical model in the reduced space of a neural autoencoder: In order to
do so, we start from the well-studied Koopman operator [169] and lever-
age its links with the theory of partially observed systems (Mori-Zwanzig
formalism[6]) to obtain an ansatz for the dynamics of the reduced system.
We show that our method can transform high dimensional, non-linear
PDEs into simple quasi-linear ODEs in suitable cases, as well as provide
an interpretable framework for the study of chaotic systems.

« Chapter 7 presents additional studies that are outside the scope of the
thesis, linked to the potentiality of using dynamical systems theory to
inform the construction of Deep Learning architectures. The work pre-
sented is mainly focused on generative modeling, and was presented in
part in the following workshop short paper:

E. Menier, M. A. Bucci, M. Yagoubi, L. Mathelin, M. Schoenauer (2022).
"Continuous Methods: Hamiltonian Domain Translation", Workshop on
continuous time methods for machine learning ICML 2022, https://arxiv.
org/abs/2207.03843.

+ Chapter 8: Conclusion of the thesis.
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This Chapter focuses on the numerical simulation aspects of this thesis,
while the next Chapter will provide the background related to neural networks
and their power as flexible function approximators.

In particular, this Chapter establishes the challenges facing current model
order reduction methods and the previous proposals that have been made to
use data-driven approaches to improve their approximation accuracy.

2.1 Full order simulation

Full order simulation designates the range of methods based on the high-dimensional
discretization of a Partial Differential Equation (PDE). This Section briefly intro-
duces the methods used to solve these problems in most scientific applications,

as well as the drawbacks of this approach that limit its applicability for certain
critical problems.
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2.1.1 First principles

The vast majority of complex physical problems can be represented by models
built from first principles. That is to say, models that have been derived from
physical and theoretical considerations and are expressed in the form of Partial
Differential Equations as follows:

2D _ Glule.t).1), x € 2 1€ 0.1,

u(,0) = up(a). o
U(ﬂ’j,t) = fD(xvt)v Vo € aQDa .
a“éz’ D _ ba(w.t), Vo € 90y

Where u(z,t) is the state of the system, 2 the computational domain, 9Qp
and 99Qy are parts of the domain’s boundary 02 on which the boundary con-
ditions fp(z) and fy(x) are defined and wuy is the initial condition. Depending
on the form of the operator G, this general formulation can be used to rep-
resent the behavior of various physical problems such as quantum mechanics
problems or structure simulation problems. To propose a more concrete intro-
duction, we will focus in this Chapter on the incompressible Navier-Stokes equa-
tions, which are one model of the behavior of fluid flows at low-speed regimes.

These equations are representative of a wide variety of dynamical phenomenons
encountered in more complex cases, while remaining tractable in an experi-
mental setting. For this reason, we used them extensively as a test bed for this
thesis. They are formulated as follows:

(2.2)

where u corresponds to the velocity field, p is the pressure field and Re is the
Reynolds number, which is a parameter that corresponds to the degree of en-
ergy dissipation in the system. This parameter directly controls the complexity
of the dynamics, which increases with its value. These equations can be used
to simulate the behavior of most simple flow cases, such as the case of the flow
around a cylinder, which is widely used as a benchmark for reduced-order mod-
eling approaches. To provide a concrete example of the type of problems we
focused on, a schematic of this specific case is displayed in figure 2.1.

The simulation problem consists in computing (an approximation of) the
solution of Eq.(2.2).
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Figure 2.1: Computational domain of the cylinder flow. Typical boundary con-
ditions for this problem are also displayed. U is the inflow velocity and o the
fluid stress tensor.

2.1.2 Problem Discretisation

The simulation problem can be solved using various discretization methods.
We illustrate the procedure here with the Finite Elements Method (FEM), histor-
ically the most popular approach, and the method that was used primarily in
our work. Note that other approaches are possible (Finite Differences, Spectral
Elements, Finite Volumes ...), which might be more efficient depending on the
simulation problem considered. However, all these methods generally face the
same issues that are tackled in this work, and our results are compatible with
most choices of full order discretisation method.

The Finite Elements Method proposes to divide a PDE problem such as the
one in Eq.(2.1) into a number of smaller sub-problems. This is achieved by dis-
cretizing the computational domain €2 in a number of sub-domains, designated
as elements, creating a partition of the domain, aka a mesh. After constructing
the mesh, an approximation space for the solution of the PDE is chosen by con-
structing a set of basis functions ¢;. The solution u(z,t) is then expressed as
follows:

u(w,t) =Y ci(t)pi(). (2.3)
=1

There are a lot of choices possible for the form of the basis functions ¢;, they
are commonly defined as piece-wise polynomial functions constructed to be
non-zero on only a fraction of the mesh, typically a small number of elements.
Figure 2.2 presents this idea of discretization, with a simple 1-dimensional do-
main divided into five sub-domains, over which the basis functions ¢; are de-

fined as piecewise linear.
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Figure 2.2: A 1-dimensional domain meshed into five sub-domains, over which
six piecewise linear basis functions are defined.

The main advantage of this discretization approach is that it simplifies the
computation of the spatial derivatives of the solution u. Indeed, leveraging
Eqg.(2.3) as well as the linear nature of the derivative, we get:

(2.4)

ou(x,t) B ‘ 0¢;(x)

or ;Cz(t) or
Hence the computation of spatial derivatives now entirely depends on the

choice of approximation space, defined by the functions ¢;. This has the ef-

fect of removing spatial derivatives from a continuous PDE problem. Similarly,

partial temporal derivatives simplify as follows:

Ou(x,t) ol

ot

dCi (t)
dt

¢i(). (2.5)

(]

i=1
These simplifications allow for the discretization of a continuous PDE prob-
lem such as the incompressible Navier-Stokes equations (2.2) into a system of
Ordinary Differential Equations (ODEs) that determines the value of the coef-
ficients ¢;. However, the direct discretization of the PDE in Eq.(2.1) can be too
constraining, depending on the form of the operator G. The computation of
second-order derivatives such as dissipative terms imposes the use of high-
order polynomial basis functions ¢; to ensure sufficient smoothness, which in
turn leads to increased computational costs. Similarly, accounting for bound-
ary conditions is not straightforward with this direct approach. Instead, a dis-
cretization of the weak (or variational [83]) formulation of a PDE problem is of-
ten solved, to alleviate the aforementioned issues. This approach allows for the
computation of the best solution in the chosen approximation space, yielding
a discretized system of ODEs :
ou de;

— =NS(u) - =

It = NS(CZ'), (26)
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Figure 2.3: Vorticity field of the case of isotropic turbulence represented on
meshes of various precision. Coarse meshes are unable to represent small-
scale phenomena and filter out critical information. Turbulence data obtained
from Biferale et al. [127].

where NS represents the right-hand side of the Navier Stokes equations
(Eq. (2.2)) and NS is the discretized system of N equations computed from the
variational form of the Navier Stokes Equations.

Note that the goal of this Section is not to give a complete introduction to the
Finite Elements method, but only to introduce some of the challenges faced by
full order simulation methods. An extensive body of work has been dedicated
to the Finite Elements method. We refer the reader to introductory books such
as Langtangen and Mardal [83] for a detailed formal description of the method.

2.1.3 Accuracy & Computational Cost

As described in previous Section, PDE problems can be expressed as a system of
ordinary differential equations using numerical approaches such as the Finite
Elements Method. It is important to note that the resolution of the discretiza-
tion (size of the largest element) is critical to the accuracy of the approximate
solution. Indeed, a coarse discretization will be unable to represent complex
phenomena, as illustrated in figure 2.3 with a 2D snapshot of a turbulent flow
at different mesh resolutions. The figure illustrates the fact that, as the mesh
grows coarser, details of the solution are filtered out. This is a significant issue
as the inability of the mesh to represent the solution significantly degrades the
accuracy of the computation, and might also lead to a diverging simulation. Be-
cause first principles models such as the Navier-Stokes equations often repre-
sent the balance of various quantities (e.g. mass or energy) in the system, their
accurate representation is critical to the accurate computation of the dynamics.

A more formal expression of this idea is the Lax equivalence theorem [3],
which states that for a well-posed linear PDE problem, convergence and stabil-
ity of the numerical schemes are equivalent. Here, convergence refers to the
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factthat, as the time-step size goes to o, the time-discretized solution converges
to the true solution. Meanwhile, stability refers to the eigenvalues of the linear
operator resulting from the discretization of the PDE, stating that successful
applications of the operator to advance the initial condition in time will lead to
bounded solutions. In the case of PDE problems, the stability condition relates
the precision of the spatial discretization (A,) with the temporal discretization
precision (A7), ensuring that A, goes to 0 with Ar. Equivalency between these
conditions, as stated by the Lax theorem, implies that the high precision dis-
cretization of the problem is required to compute a highly accurate solution.

This means that while full order simulation methods allow for the simulation
of exact models derived from first principles, their accuracy is bounded to the
precision of the discretization used to solve the problem. Unfortunately,
this parameter also controls the computational cost of solving the problem, as
the number of elements, and thus the number of equations to be solved in the
discretized system scales with the size of the mesh.
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Figure 2.4: Mesh used for the simulation of the cylinder flow case.

This constraint imposes the use of high-dimensional meshes even for sim-
ple problems such as the aforementioned case of the cylinder flow. The mesh
that was used in some of our work is displayed in figure 2.4, it contains approx-
imately 12000 elements. While this is already a high-dimensional problem, it
is possible to solve it in a reasonable time on a normal computer. However,
real-life cases such as turbulent flows over a plane wing involve phenomena
on scales separated by multiple orders of magnitude. Thus, these problems
can hardly be simulated using full order simulation methods as they require
meshes involving billions of elements, making them excessively expensive to
solve, even on the largest computers available.
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Figure 2.5: The idea of dimensionality reduction. The solution points lie on a
lower dimensional (in red) manifold than the full space used to represent them.

U1

2.2 Dimensionality Reduction

In the previous Section, we explained that while full order simulation methods
are very accurate, due to their ability to exploit exact models, they are limited
by the dimension of the discretization used to solve the problem. In this Sec-
tion, we discuss the fact that the dimension of most simulation problems can
be drastically reduced through various dimensionality reduction methods. A
description of the dominant methods is given in the following Paragraphs, ac-
companied by a discussion of their advantages and drawbacks.

2.2.1 Intrinsic Dimension

Representing the state of a physical system on a very large mesh is necessary to
ensure the accuracy and convergence of full order simulations. However, this
high-dimensional representation is used in direct opposition to the fact that the
states of most dynamical systems effectively evolve on very low-dimensional
manifolds.

This idea is represented in figure 2.5, which displays a high dimensional
space, defined by the directions ¢;. This high-dimensional space contains a
lower-dimensional manifold, in red, which holds all the solution points of the
problem. This is explained by the fact that a reduced number of dominant phe-
nomena generally drives dynamical systems. These dominant phenomena can
be viewed as supporting a low-dimensional manifold that optimally represents
the systems. Note that the reduced representation space on figure 2.5 is pre-
sented as a linear sub-space for clarity. However, these reduced representation
spaces generally correspond to non-linear manifolds, which do not directly cor-
respond to low dimensional Euclidean spaces.

In fact, this idea is not limited to dynamical systems but can be framed in
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the context of data compression. We often find that data correlations can be
exploited to represent a dataset of N variables using a reduced number r of
features, with » << N. This is directly due to the lack of an optimal basis to
represent the data. An immediate parallel can for example, be drawn with the
inadequacy of the pixel space to represent most image datasets.

This aspect is especially important when computational costs become criti-
cal, as it can drastically reduce the number of equations to be solved. Indeed,
such low intrinsic dimensions of a system means that its evolution can be re-
stricted to the aforementioned low dimensional, or reduced, space. Unfortu-
nately, these low dimensional representation spaces are not known a-priori,
and have to be extracted from data. To this end, a wide range of methods have
been proposed. In the following Paragraphs, we provide an overview of the
dominant approaches in the literature, distinguishing between two families of
dimensionality reduction methods, linear and nonlinear approaches.

2.2.2 Linear reduction

Linear methods have been extensively studied because of their ease of use
and generality. We also discuss in this Chapter their interest in terms of inter-
pretability, as they can be seamlessly used in combination with physical equa-
tions such as Eq. (2.1).

The linear methods discussed in this Section are based on the idea of modal
decomposition, that is to say, the decomposition of the state of a system into
a linear combination of a low number r of modes v; € RY that represent the
data more efficiently than full order discretization methods. Once identified,
the modes v; span a reduced sub-space of the high dimensional discretization
of the system, so that any discretized system state u(¢) lying in this space can
be expressed using a reduced number of features a; € R:

(2.7)

With this expression, the problem is reduced to the determination of a low
dimensional vector of coefficients a(t) = [a1(t), az(t), ..., a-(t)], which achieves
computational gainwhenr << N. To simplify notations, we adopt the following
matrix-vector notation:
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B u(t) = Val(t). (2.8)

Here, V = [vy,vs,...,v,] € RV*" is a rectangular matrix assembled by stacking

horizontally the modes v;, which we denote as the reduced basis. The prob-
lem then becomes one of identifying a suitable reduced basis to represent the
solutions of a system. As mentioned in the previous Paragraphs, there exists a
number of methods to identify this basis. In the following, we give a description
of the most common methods, starting with the Proper Orthogonal Decompo-
sition method.

Proper Orthogonal Decomposition

The proper orthogonal decomposition POD method ([&, 9]), also known as the
principal component analysis PCA method’, is a well-established algorithm. Itis
part of most machine learning toolkits and can be used for various applications
such as data visualization or, for our purposes, dimensionality reduction.

The method proposes to extract a reduced basis of principal directions or
modes from previously acquired system data. The method starts from a num-
ber of n; realizations of the discretized state of the system w(¢;), arranged in
a matrix S = {u(t;)|i = 1,...,n}, called the snapshot matrix. Computing the
singular value decomposition SVD of the matrix S € RV*"t yields three different
matrices:

S=VEIWT'. (2.9)

Where V € RV*" and W € R™*™ respectively hold the left and right eigen-
vectors of the snapshot matrix. The diagonal matrix ¥ € R"*"t holds the sin-
gular values of S, arranged such thato; > 09 > ... > 0, > 0.

The columns of V are the time-invariant spatial modes defining a POD ba-
sis. These POD modes are orthonormal such that (v;, v;) = d;;, with ¢;; the Kro-
necker deltaand (-, ) is here Euclidean: (v;,v;) = v/ v;. These modes are useful
for dimensionality reduction because, for any r < n;, the sub-space spanned by

"The equivalence between PCA and POD holds up to implementation details specific
to the field. PCA is used in general data mining contexts while POD was specifically
proposed to treat dynamical systems. However the principles behind both methods
are the same.
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the basis V, = {vy,vo,..., v, } optimally approximates the data S over the set
of N x r matrices in the sense that it minimizes the reconstruction error E,
defined as:

E,=|S-V,V]S|F, Vrell,...,n. (2.10)

This error can be related to the sum of the discarded singular values: E? =
> ort, 4107 This implies that the information captured by the leading » modes
in the POD basis can be quantified by looking at the following ratio:

r 2
R(r) = Zﬁt;la’;- (2.11)
k=1%k
The POD method has several advantages over other dimensionality reduc-
tion approaches, it is available in most data science packages and takes advan-
tage of thoroughly optimized matrix manipulation algorithms. Moreover, the
criterion derived in the equation above allows for the a-priori estimation
of the accuracy of the reduced basis. Choosing r so that R(r) = 1 yields a
perfectly accurate representation of the data in the snapshot matrix S. We also
note that R(r) = 1 for » = min(ny, N), thus, in cases where the number of
snapshots nr is lower than the dimension of the discretization (N), as is often
the case in complex simulation problems, the POD method can be used as a
lossless reduction method. This criterion also provides a direct interpretation
of the method. Indeed, the POD modes have a clear statistical meaning as
they directly relate to the optimal representation of the available data.
Another advantage of the method is that it conserves linear invariants of
the data. That is to say, any linear condition verified by the data samples u(t) is
also verified by the POD modes v;:

Bu(t;) =0 = Bwv; =0. (2.12)

With B € RV*N a matrix that encodes the linear relationships verified by
the data samples. This is explained by the fact that the POD modes v; lie in the
span of the columns of the matrix S, which correspond to the data samples.
Thus, they can be expressed as a linear combination of the data samples:

e
Vi = chiuju<tj)7

=1
’ (2.13)

ng
— Bv; = z_: Cv;,j Bu(tj) =0.
J=1 0
Finally, we see that any linear combination of the POD modes u(t) = Va(t)

also verifies the condition in Eq. (2.12). This means that certain physical con-
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straints such as the conservation of mass for incompressible flows are encoded
in the reduced basis:

V-u=0. (2.14)

Because the samples u(¢;) used to compute the POD basis V all verify the
conservation of mass, any reconstruction on the POD basis will also respect this
physical constraint. Indeed, the divergence V- is a linear operator. This partic-
ular point provides additional physical guarantees that can be hard to obtain
with other reduction methods. Because of these advantages, the method has
been used to study complex systems, such as fluid flows, for more than 30 years
(31, 17]).

The method does have significant drawbacks, however, most notably, opti-
mality in the sense of the reconstruction error does not imply that the basis can
efficiently capture the dynamics of the system. Concretely, small reconstruc-
tion errors often have a significant impact on the dynamics of a system and
can compound over time, leading to inaccurate reduced order models (ROMs).
This is discussed in more detail in Section 3.2, while the following Paragraphs
discuss methods that might be better suited for the representation of system
dynamics.

DMD

Dynamic mode decomposition or DMD ([42]) is a second well-established method
for the identification of dominant modes from system data. Where the POD
method uses the Ls reconstruction error (Eq. (2.10)) to construct the modes.
The DMD is rooted in Koopman theory, as it assumes a linear relationship be-
tween temporally ordered data:

U, = Autl. (2.']5)

With A a matrix whose eigenvectors are the DMD modes v;. Note that the
linear relationship in Eq. (2.15) is equivalent to expressing the time evolution of
the solution wu(t) as a superposition of the eigenvectors of the matrix A such
that:

N
ut) = Y _cjeto;. (2.16)
j=1

With Re(\;) and Im();) the growth rate and frequency associated with the
eigenvectors v; of the matrix A. With this result, we see that Dynamic Mode
Decomposition identifies both a basis on which the state of the system of in-
terest can be expressed and a representation of the system dynamics. This
is an important aspect as it suggests that the modes identified by the DMD
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method might be better suited to support the dynamics than POD modes. In
other words, where the POD modes have statistical meaning in the sense that
they optimally represent the data in the snapshot matrix, the DMD modes have
dynamical meaning as they are associated with specific frequencies in the sys-
tem data.

The goal of the DMD method is the identification of the matrix A. Over the
years, multiple variants of the algorithm have been proposed. We refer the
reader to Tu et al. [66] for a description of these variants and a discussion of
their advantages and drawbacks while we describe the general method in this
Paragraph. The method starts with pairs of data points {(uy, uf)}, k=1,...,K,
with an assumed linear relationship (as in Eqg. (2.15)). Note that the case of tem-
porally ordered data is a particular case of this more general framework, as
we can identify u, = u;, and u” = wuy,. A major advantage of this general
formulation is that it can accommodate samples extracted from different tra-
jectories, but representative of the same system. After assembling the matrices
U= {uxlk=1,...,K} and U# = {uk#|k =1,...,K}, the following problem is
solved:

U7 = AU,

— A =U#U". (2.17)

With Ut the pseudo-inverse of the matrix U. Thus, the matrix A corre-
sponds to the solution of a least-square regression problem. By computing its
eigenvectors v;, the DMD modes are obtained.

Contrary to the POD method, there is no clear metric to order and select
the most relevant DMD modes. A number of criteria can be used to select a
reduced number r of DMD modes v; to reduce the dimension of the system of
interest. The modes can be selected based on their norm, although some care
should be given to the scaling of the modes ([66]). They can also be selected
according to their associated frequencies and growth rate to focus on different
aspects of the dynamics, i.e., high frequencies might be filtered out to focus on
larger scale phenomena in the system. Another approach proposed is to look
for a sparse representation of the snapshots wu in the basis of the DMD modes
v; to identify a reduced number of expressive modes ([62]).

Applications of linear reduction

The methods derived above have become ubiquitous for the analysis of dynam-
ical systems and they have extended and applied to a wide range of problems.
Their ability to identify particular modes associated with clear interpretations
has led to them being used to gain insights into the physics of dynamical sys-
tems ([155, 139, 55]). We will show later in the thesis that they can also be used
to build dynamical models and forecast the behavior of a system outside of the
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POD,

PODq

Figure 2.6: Left: Points lying on a two-dimensional manifold, embedded in a
three-dimensional space. Right: Projection of the data on the leading two POD
modes.

conditions used to extract the linear basis of modes. Finally, we mention vari-
ous extensions that have been proposed to apply linear reduction methods to
control problems. Methods such as the Balanced Proper Orthogonal Decompo-
sition BPOD ([35]) were specifically designed to handle data obtained through
sparse measurements of a system and account for the particularities of the con-
trol of dynamical systems. We refer the reader to more thorough reviews on
the topic ([94, 6&8]) for more detailed discussions.

2.2.3 Non Linear reduction

Because of their simplicity and stability, linear methods are very efficient and
widely used for dimensionality reduction. However, they are overtaken in terms
of efficiency by non-linear reduction methods. This is due to the fact that the
states of dynamical systems do not directly lie in well-organized linear sub-
spaces as depicted in figure 2.5, but on non-linear manifolds which have a low
intrinsic dimension, but aren’t well captured by linear reduction methods.

To illustrate this phenomenon, we use the case of a simple 2D manifold in
a three-dimensional space, depicted in figure 2.6 and show that linear dimen-
sionality reduction through POD fails to capture the two-dimensional manifold
as the depth of the data points is lost and they are overlaid in the same place
in the low-dimensional representation. This simple example outlines the limi-
tations of linear dimensionality reduction, and the potential for improvement
using non-linear reduction methods.

Various methods have been developed over the years to re-arrange non-
linear manifolds in low-dimensional sub-spaces. We introduce a few of them in
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the following to provide some insights into their potential and limitations=.

Locally Linear Embeddings

Locally Linear Embeddings are a nonlinear dimensionality reduction method
that leverages the local flatness of the manifold to be identified. The method
assumes that small regions of the manifold can be seen as local linear spaces.
This means that data points u can be expressed as linear combinations of their
neighbors:

K
u; = ij’u]‘. (2.18)
j=1

Where u; are the K nearest neighbors of the point u;. The method com-
putes a set of K weights for every data point, under the constraint that each
set of weights w; sums to 1, which is equivalent to minimizing the following ob-
jective:

K
T =11 wi(u; —w)|*. (2.19)
j=1

These weights represent the local relationships between points on the man-
ifold. These relationships can be expected to be conserved as best as possible
in any lower-dimensional representation space. Thus, the method looks for
low-dimensional coordinates Y; = f(u;) that minimise the following cost:

K
o= S Yi - w2 (2.20)
j=1

This defines a quadratic form in the low dimensional coordinates Y; which
can be minimized to obtain the coordinates of the data points in the /atent, low
dimensional space. Figure 2.7 displays the results obtained with this method
on the simple two-dimensional manifold of figure 2.6.

As shown in the figure, the LLE method is able to exploit the locally linear
structure of the manifold to compute global coordinates for each data point.
The points are well organized in the two-dimensional latent space as the mani-
fold is "unrolled".

Isomaps

Similar to locally linear embeddings, Isomaps are a non-linear dimensionality
reduction method that constructs a low dimensional embedding of each point

2Code for the examples shown in this Section is available at https://github.com/
emenier/manifolds
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Figure 2.7: Left: Points lying on a two-dimensional manifold, embedded in a
three- dimensional space. Right: Two-dimensional embedding of the data, ob-
tained with the LLE algorithm.

while respecting certain properties of the dataset. Isomaps are a form of Multi
Dimensional Scaling ([19]), while Locally Linear Embeddings leverage the local
relationships between data points to learn the shape of the data manifold, Multi
Dimensional Scaling MDS looks for an embedding that conserves the distances
between each point in the dataset. That is to say, the coordinates (Y;) derived
through MDS minimize the following loss function, denoted as the Stress:

Stressp(Y1,Ya,...,Y,) = > (diy — Vi = Y52 (2.21)
i#j=1,...N

Where d;; is the distance between the data points u;. The particularity of
Isomaps lies in the choice of distance metric d;;. While MDS generally uses the
Euclidean distance to compute the low dimensional embedding, Isomaps use
the geodesic distance on the data manifold. This distance can be estimated by
constructing a graph of the nearest neighbors of each data point and using a
shortest path algorithm to approximate the shortest distance on the manifold.
Once this distance is computed, the stress function is minimized to obtain the
reduced embedding of the data. Figure 2.8 presents the results obtained with
the approach.

As with locally linear embeddings, a well-organized latent representation of
the data is obtained, exploiting the relationships between the data points while
accounting for the shape of the manifold. It can be argued that Isomaps tend
to yield a better-organized representation of the data. However, this comes at
a cost as the minimization of the stress (Eq. (2.21)) becomes expensive to carry
out when applied to large datasets.

These two examples show that non-linear dimensionality reduction can per-
form better than linear methods as it focuses on learning the shape of the
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Figure 2.8: Left: Points lying on a two-dimensional manifold, embedded in a
three- dimensional space. Right: Two-dimensional embedding of the data, ob-
tained with Isomaps. The conservation of the geodesic distance is also illus-
trated in black with the shortest path between two points on the 3D manifold
presented on the left, and the equivalent Euclidean distance in the reduced
space on the right.

underlying manifold. Note that there exist various other methods of nonlin-
ear dimensionality reduction, such as t-distributed stochastic neighbor embed-
dings (t-SNE, [41]), or diffusion maps ([34]) which have been applied in the con-
text of dynamical systems ([102]). Kernel methods have also been used to ef-
ficiently compute and exploit non-linear transformations of a system'’s state
([26]). Spectral sub-manifolds (SSM) are another promising research track for
the non-linear discovery of underlying manifolds. SSMs have also been applied
to dynamical modeling problems ([159, 81]).

Limitations

The last Paragraphs showed that nonlinear reduction methods can exploit the
curved nature of most data manifolds. They have been applied to dynamical
systems modeling ([185, 102]) however, they have a number of limitations that
should not be overlooked.

While we showed that nonlinear reduction was very efficient at capturing the
low dimensional relationships between data points, it is often unclear how the
original data can be reconstructed from the low-dimensional embeddings. This
effectively limits the efficiency of these methods in reduced order modeling ap-
plications, as the goal is often to reconstruct the state of the system at selected
time steps, or under certain conditions, which goes beyond the computation of
a low-dimensional representation. Previously cited methods often rely on the
development of an additional model to reconstruct the full-order state of the
system from its low dimensional representation. While this can be an effective
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approach, it implies additional modeling work, often combining methods that
were not designed for this purpose.

2.3 Conclusion

This Chapter discussed the topic of dimensionality reduction for numerical sim-
ulation. We showed that the full order simulation methods used to numerically
solve PDE problems were generally tied with excessive computational costs,
partly due to their inability to account for the structure of the manifolds sup-
porting the dynamics of the systems under study. We also discussed the various
approaches that could be taken to identify these manifolds, in the hope of de-
termining better representations, yielding additional insights in the dynamics
under study and reducing the dimensionality of the problems to be solved.

Most importantly, we showed that despite their numerous advantages, lin-
ear reduction methods were generally unable to optimally represent low di-
mensional representation spaces in the context of dynamical modeling. This
aspect motivated the introduction of non-linear reduction methods, which also
come with certain limitations. In the following Chapter, we introduce neural
networks, a type of machine learning algorithm that was used extensively in
this work, and discuss their advantages in the context of both nonlinear dimen-
sionality reduction as well as dynamical modeling.
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This Chapter introduces neural networks, focusing on Deep Neural Net-
works, which we chose to use to approximate the various operators and maps
that form the basis of the methods proposed in this thesis. Indeed, neural net-
works have several properties that make them a suitable choice for dynamical
modeling. They are universal approximators, meaning that they can approxi-
mate any continuous function provided they have a sufficient amount of train-
able parameters (see Section 3.1.1), we note that increases in model expressivity
do not come with exploding computational costs, as is the case with approaches

25
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such as polynomial regression methods (see Section 3.2.1). They belong to the
class of differentiable programming methods [96], meaning that their gradi-
ents can be evaluated using automatic differentiation, allowing for their use
in combination with gradient-based optimization methods (see Section 3.1.2).
This aspect also makes neural networks particularly suitable for the resolution
of PDE problems, as has been shown with certain approaches that propose to
directly learn the solutions of PDEs by minimizing the residual of the governing
equations (see Section 3.2.2). The next Section first introduces the basic aspects
of building and training neural networks, while Section 3.2 describes some of
the approaches that have been proposed to directly extract the dynamics of
physical systems from data using Neural Networks.

3.1 Introduction to Deep Learning

Part of the family of Machine Learning methods, Artificial Neural Networks have
been in development for more than 60 years, when one of the first studies train-
ing a Multi Layer Perceptron (MLP) using stochastic gradient descent was pub-
lished [7]. Unfortunately, the limited computing power available at the time
proved to be an obstacle to their widespread adoption, despite the develop-
ment of seminal approaches. We can cite, for example, the use of Convolu-
tional Neural Networks for handwritten digit recognition [16], the use of neuro-
evolution for control [21], as well as the early application of MLPs to physical sim-
ulation problems [30]. Itis not until very recently, with the development of heav-
ily parallelized computation leveraging the capabilities of Graphical Processing
Units (GPU) that neural networks became the algorithm of choice for the han-
dling of large datasets to learn complex tasks. The seminal work of Krizhevsky,
Sutskever, and Hinton [49], which overtook every other method available at the
time on the famous ImageNet image recognition competition, is often cited as
the starting point of the widespread adoption of deep neural networks (DNNs)
in the Machine Learning community.

With the growing availability of computing power and their unmatched per-
formance on most complex learning problems, the research interest in neural
networks has grown exponentially. This has led to the development of unprece-
dented applications, especially in the field of Natural Language Processing with
the recently released Large Language Models. These models established the
ability of neural networks to leverage enormous amounts of data into creating
versatile human conversation engines [194, , 1. In parallel, Neural Net-
works are now being applied to most scientific problems with varying degrees
of success, from robotics [196] to drug discovery [145].

The study of Artificial Neural Networks, and in particular Deep Neural Net-
works, is now designated as a standalone field, also called Deep Learning. In
the following Paragraphs, we give an introduction to the building blocks of the
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most simple Deep Learning model, the Multi Layer Perceptron, which we used
extensively over the course of this thesis.

3.1.1 The Multi Layer Perceptron

The Multi Layer Perceptron is one of the most simple Deep Learning model
available, it is constructed as a succession of trainable operations, called layers:

Pp(z) = Ppnpo...0¢300 P90 P1p(T). (3)

In the above expression, ®, represents the complete network, z is the input
of the network, ¢, ¢ are the layers, and 6 represents the set of learnable param-
eters, also called weights. In the case of a Multi Layer Perceptron, the layers are
constructed as so-called fully-connected layers, i.e., each ¢, ¢ is the composition
of a nonlinear function and a trainable affine transformation of its inputs:

dig(x) = o(Aigx + Bip) (3.2)

where 4,9 € R%i+1 is a trainable weight matrix and B; g € R%i+1 a train-
able weight vector designated as the bias. Finally, o is a non-linear function,
called the activation function that is defined at the construction of the neural
network. Popular choices for o are the sigmoid function, or the rectified linear
unit (RelLU, [111, 1), except for the last layer ¢, where o is generally defined
as the identity.

It has been shown that under mild conditions on the choice of ¢, a neural
network using only one hidden layer (i.e. ®(z) = ¢20¢1(x)) can approximate any
continuous function, provided the width of the hidden layer d,, is sufficiently
large [22]. However, building arbitrarily deep networks by stacking more and
more layers has also been shown to increase the expressivity of neural net-
works, without requiring exponentially high layer dimensions [104]. Thus, most
multi layer perceptrons are constructed as a sequence of more than two rea-
sonably wide layers, as shown in figure 3.1.

Xd(bi

3.1.2 Backpropagation

The MLP introduced in the previous Section is a simple and flexible network
architecture that can be trained to approximate any continuous function from
data. To do so, the set of weights 6 = {(A;, B;)|[i = 1,..., N} is iteratively modi-
fied to minimize an objective function, called the /oss function.

This loss function can take many forms depending on the task to be learned,
as long as it is differentiable. To give a simple example, in a simple regression
framework, we are given data pairs (z;,y;) and we want to learn the map @ :
R% — R% between the inputs = and outputs y. This can be done by minimizing
the mean squared error (MSE) between the output of the neural network ®(z;)
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Figure 3.1: Representation of a Multi Layer Perceptron (®(z)) with 3 hidden lay-
ers.

and the true value y;. In this case, the loss function (£) takes the simple following
form:

1 &
L= TTZH‘I’(%‘) — ill3- (3.3)
T =1

In deep learning, the above loss is generally optimized through some variant
of the basic gradient descent algorithm: the parameters 6 of the neural network
are iteratively adjusted in the opposite direction of the gradient of the loss £
with respect to the parameters as follows:

oL
~ gy
where n € Ris the so-called learning rate that controls the gradient step size.
Note that gradient descent is one of the simplest optimization strategies avail-
able for this kind of problem and can lead to slow optimization as well as local
optima. Both issues that could be addressed using more complex approaches,
such as second-order optimization methods. However, the particularity of neu-
ral networks is that they rely on large amounts of trainable parameters, which
makes the computation of second-order derivatives very expensive.
The evaluation of the gradient of the loss in Eq. (3.4) with respect to the
parameters is made possible thanks to the particular form of the network, us-
ing iteratively the chain rule for differentiation: this leads to the algorithm called
backpropagation, and can be easily programmed using reverse mode auto-differentiation.
Introduced in Rumelhart, Hinton, and Williams [15] in the context of neural net-
works, the backpropagation algorithm can be seen as an adaptation of an ad-
joint optimization algorithm proposed earlier in Pontriagin et al. [4].

B0 = 0, (3.4)
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We give below a general derivation of the algorithm. It allows for the efficient
computation of the gradient of the loss in Eq. (3.3) with respect to the set of
weights 6 of the network:

AL _ oL | 9L Oz
6~ 90 " 9zy 90

The notation z;, i = 0,... N is introduced to denote the intermediate state
of the network. That is the output of each layer, with zp = x and zy = ®(z). To
compute the gradient ﬁg, the above equation has to be simplified as the term
aZN can be expensive to estimate directly. Indeed, it captures the impact of any
parameter change in the earlier layers on the output of the last layer. The idea
of the backpropagation algorithm is to avoid computing this term through the

(3.5)

introduction of a set of multipliers p;, i =1,..., N:
N
J =L+ Z ul (2 — di(zim1)), (3.6)
=1 T/
47  dL
— PR R (3.7)

Through manipulations of Eq. (3.6), conditions on the values of the multipli-
ers u; can be derived to avoid computing the intermediate gradients % 321'

d7 0T 9z XN: 10z

A6 dzy 00 Hi“ag
N
a¢z Zz 1 azz 1
T
Z 8,21 1 89 (38)
N

Ta¢z Zi— 1
Z 00 89'

Taking out the Ny, term of the first sum, and observing that 8Z0 = 0, yields
the following:

_ (9T 1) %N
ozn PN ) o6
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With these manipulations, the conditions on the values of y; are clearly iden-
tified:

a T
px =L, (3.10)
ZN
Aiv1(z) "
i = O¢ir1(z) 51(2 ) it 1- (3.11)
i

The advantage of these conditions in the context of neural networks is that
the jacobians &%; are easily computed as the layers ¢; are generally based on
simple expressions. In the case of Multi Layer Perceptrons, they simply corre-
spond to a matrix multiplication followed by a non-linear function. Computing
the multipliers u; such that they verify the above conditions effectively cancels
out the intermediate states’ derivatives % in the expression of the gradient (Eq.
(3.9)). Finally, the gradient of the loss with respect to the network parameters

is estimated from the values of the multipliers:

N

Once again, the structure of the network can be exploited to simplify the
above computation, as each layer ¢; is only dependent on a small subset of 6,
meaning that the jacobian matrices %dg' are very sparse and don't need to be
fully assembled. For illustration purposes, we provide a minimal implementa-
tion example’.

This algorithm can be extended to compute the gradient of much more com-
plex network architectures. Significant effort has been devoted to the develop-
ment of optimized and flexible frameworks thatimplement reverse-mode auto-
matic differentiation, we cite for example TensorFlow [71], JAX [98], and Pytorch
[122] which is the framework that was used extensively in this thesis.

3.1.3 Stochastic Gradient Descent

Neural Networks are able to handle large datasets during training because they
work extremely well in combination with Stochastic Gradient Descent (SGD). The
basicidea of SGD is to only evaluate the gradient of the model on a random sub-
set of the data at every step rather than the full dataset. This has the advantage
of reducing the cost of each gradient step, as the above equations are only com-
puted for a reduced number of data samples. More importanty, this reduces
the memory footprint of the algorithm. This approach introduces a degree of
noisiness in the estimation of the gradient, which has been shown to in fact
improve the efficiency of the gradient descent method.

"https://github.com/emenier/backpropagation
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Schemes have been developed to leverage the noisiness of the gradient to
further improve the optimization of neural networks. Most of these schemes
are based on momentum, which in the simplest case corresponds to computing
arunning average of the gradient and using this average to compute the weight
update:

d.L
doi—y’
O = 0i—1 — nmy. (3.14)

me = Pmi—1 + (1 — ) (3.13)

With n € R the learning rate and s € [0, 1] the rate of change of the mo-
mentum m;. This type of scheme is now considered state of the art for the
optimization of neural networks, as it has been shown to find better optima,
with better generalization properties, in the parameter spaces of neural net-
works. One interpretation of the scheme in Eq.(3.13) is to see it as a filtering
of the gradients’ trajectory. That is to say, high-frequency variations from one
gradient step ¢ to another (¢t + 1) are attenuated in the trajectory of m; as they
cancel each other out. Meanwhile, dominating directions in the gradient from
one random batch of data samples to another are reinforced and lead to faster
descent in these directions.

Figure 3.2 presents the optimization path followed by the variants of the
Gradient Descent algorithm on a simple two-parameter case. The figure shows
that computing the gradient from the full dataset is wasteful as a stochastic esti-
mation from two samples at each step yields similar performance. The interest
of using momentum in combination with SGD is also displayed, as some of the
noisiness in the gradient is filtered out, leading to a much smoother optimiza-
tion path?.

Note that this momentum scheme is only presented as an illustration, as
better refined variations of this concept are used in practice, we cite for example
Nesterov momentum [78] that is often used in combination with SGD. Other
schemes such as RMSProp [52] compute the second order momentum of the
gradient to scale the gradient step at each iteration. The Adam optimizer [87]
which was used extensively in this work uses both the first and second order
momentum to compute the gradient update :

dc
my = Bmy_1 + (1 — Bl)dﬁt,f
ac \?
st = Bmy—1 + (1 — B2) , (3.15)
dbi—1
my dl
0 =01 —n—— .
et n\/st dd;_1

2SGD code example available at https://github.com/emenier/SGD
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Gradient Descent ' SGD ‘ SGD + Momentum
ok ok ok
6, 0, 6,
o,
[ J
0, 0, 0,
Number of function evaluations
Gradient Descent 1.5 x 107
SGD (and momentum) 3 x 10°

Figure 3.2: Example of various Gradient Descent strategies to fit the parameters
of the Rosenbrock function (f(z,y) = (61 — z)? + 62(y — 22)?). Left: Gradient
descent on the full dataset. Middle: Stochastic Gradient Descent using mini-
batches of two samples. Right: Stochastic Gradient Descent with momentum
using the same mini-batch size. The learning rate » and the number of gradient
steps taken are the same. Level sets of the loss function are shown in red.

Where s, is the second order momentum of the gradient, and 1, 52 € R are
user-defined parameters that control the rate of change of the first and second
order momentum. With this formulation, the gradient is scaled at each itera-
tion, where the simpler momentum scheme of Eq.(3.13) proposed to advance
the parameter in the direction of the first moment of the gradient. The idea
behind both methods remains similar, as they both leverage previous values of
the gradient to alleviate the impact of the noisiness of the gradient inherent to
SGD.

3.1.4 Inductive Bias

Before concluding this short introduction to Deep Learning, we discuss the topic
of inductive bias. The multi layer perceptron architecture which we presented
in the above Paragraphs is the simplest existing Neural Network architecture.
However, the basic concepts that are used to build and train this architecture
have been improved upon and extended to propose different architectures,
better suited to specific learning tasks. Indeed, the fully connected layer which is
the basic building block of the MLP learns linear combinations of all the dimen-
sions of the previous layers’ state. This is a very flexible approach as it doesn't
assume any specific relationships between features of the input. However, it
can lead to harder optimization, waste of compute, and doesn't always yield
the desired behavior.

A simple example is the case of image data where spatially close features
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(pixels in this case) are strongly correlated and can be analyzed locally to extract
information. Using fully connected layers on this type of data implies that the
full image is considered for every dimension of a layer’s output, which leads to
an exponentially high number of parameters, and considers interactions be-
tween far apart pixels which does not generally provide useful information.
Even worse, this type of approach is very sensitive to translations of the input,
meaning that shifting an image by a few pixels can drastically change the output
of the neural network if it is not carefully trained.

To address this issue, inductive biases can be embedded in the network ar-
chitecture. In the case of Image data, convolutional layers were developed to
efficiently extract local information from images [16]. These layers learn rela-
tively small convolutional filters that learn to exploit local correlations in im-
ages, leading to translation equivariant layers and much more efficient com-
putations. Similarly, Recurrent Neural Networks (RNN) [23, 56] were developed
to treat time series data through memory mechanisms. RNNs are discussed in
more detail in Section 3.2.1.

This idea of inductive bias has also been applied to the case of physical sim-
ulations, where Graph Neural Networks, an architecture specially designed to
handle graph data, was applied to simulation problems [166]. Networks with
equivariance properties with respect to certain groups, such as the group of
three-dimensional rotations, have also been developed for the analysis and
simulation of molecular dynamics [168].

3.1.5 Neural networks for dimensionality reduction

Neural Networks can be used to learn continuous functions from data, which
has led to their natural application to dimensionality reduction tasks. Indeed,
the various methods presented in Section 2.2 share the same goal of learning a
map ® from data, such that z = ®(u) with d, < d,. Which is generally done by
minimizing a suitable criterion to ensure the learned embedding respects the
properties of the original manifold.

For most of the nonlinear reduction methods introduced (Isomaps, Locally
Linear Embeddings..), the aforementioned criterion is based on the conser-
vation of the local relationships between data points in the low dimensional
embedding. In the case of neural networks, the model is trained to recon-
struct the data points, passed through a bottleneck layer ¢, of dimension d..
Thus, the network learns to optimize the intermediate representation ¢.(u) so
that it contains sufficiently enough information to reconstruct the original data
points u, or a good approximation thereof. This architecture is called an Au-
toencoder and is built with two different networks, the Encoder £ which learns
the map z = £(u), and the decoder D which learns the reconstruction of the
data u = D(z).
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Figure 3.3: lllustration of an autoencoder used to learn the map from data sam-
ples u to a low dimensional embedding =

Figure 3.3 illustrates the proposed architecture. It can be trained by directly
optimizing the Mean Squared Error (MSE) between the data points w and their
reconstruction by the autoencoder u = D(E(w)):

L= Ip(E) - ulk 316
“ =1

We illustrate the method using the same three-dimensional dataset pre-
sented in Section 2.2.3. We show that the neural autoencoder is able to disentangle
the data samples through its layers to learn a two-dimensional representation.
Moreover, we see in figure 3.4 that the learned low-dimensional representation
z is sufficient to reconstruct the original data manifold. Finally, the evolution of
the data samples along the layers of the encoder network is also presented on
the figure.

3.2 Learning the Dynamics

In the previous Chapter, we showed that data can be used to identify low-
dimensional representation spaces for the solutions of numerical simulations,
in order to reduce the computational costs of numerically simulating systems
of interest.

Unfortunately, this is not a trivial matter, as the dynamics of the low dimen-
sional embeddings extracted from data can be hard to identify. Indeed, rep-
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Figure 3.4: Performance of a neural Autoencoder on the reduction of a three-
dimensional data manifold. Top: Two dimensional embedding and reconstruc-
tion of the data learned by the Autoencoder. Bottom: Evolution of the data
samples projected on the leading principal components of the encoded data at
each layer.

resentations unaware of the underlying manifold such as the Finite Elements
Method were developed specifically so that they could be used to solve Partial
Differential Equations, which are often the only model available for the accurate
description of dynamical systems. Thus, changing the representation space to
achieve dimensionality reduction complexifies the use of first-principle models,
as reduced spaces are generally less suitable for the evaluation of PDEs.

In a more general setting, systems can not always be fully observed. For ex-
ample, point-wise probes are often used for the experimental study of systems
to measure the state at given spatiotemporal points. Similarly, in larger-scale
applications such as weather modeling, the state is only measured sparsely
over the world. These factors limit the applicability of standard PDE model-
ing methods and are sometimes addressed through expensive pre-processing
steps using data assimilation methods (see for example Foures et al. [59]).

Both these scenarios are very similar from a dynamical modeling point of
view as they are both related to the modeling of systems using only partial in-
formation, for which models are not readily available. A possible solution to
avoid expensive data assimilation approaches combined with high dimensional
models is to construct low dimensional models from the available system data
directly.
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3.2.1 Fully data-driven models

The following Paragraphs introduce some of the methods used for the direct
identification of dynamics from data. There exists a large range of methods de-
signed for this task. We chose some of the main methods used in reduced-order
modeling contexts to introduce the principal challenges of the topic. Most no-
tably, we want to emphasize the varying degrees of interpretability and theoret-
ical justifications of each method, underlining that different methods designed
for similar tasks can have strongly differing properties.

The Koopman operator and DMD

The theory of the Koopman operator provides an attractive theoretical frame-
work for the construction of system dynamics, we present the main concepts
below and refer the reader to Brunton et al. [169], Lin et al. [161], and Lin and
Lu [160] for a complete and more formal derivation. The theory states that ob-
servables of the state of a system defined here as g(u) : R ~— R are advanced
in time linearly by an operator called the Koopman operator (K):

g(ury1) = Kuy. (3.17)

This formulation is advantageous, as the linear nature of the above system
makes it extremely simple to simulate and analyze. Indeed, the time evolution
of the observables g(u;) can be computed without the expensive integration of
an ODE, as the solution of a linear system. We note that when g = v; with ; an
eigenfunction of the Koopman operator, we get:

Yi(un) = N'Yi(u). (3.18)

With \; the associated eigenvalues and n the number of time steps taken.
Thus, it appears that the eigenfunctions of the Koopman operator form an ad-
vantageous coordinate change, defining a space over which the dynamics are
linear. The issue with this formulation is that the operating space of the Koop-
man operator is potentially infinite-dimensional. Meaning that for the approach
to be computationally tractable, the Koopman operator has to be approximated
and only part of its operating space considered.

For this purpose, it is practical to consider a set of observable functions
{gj(u)]j =1,..,00}. It can be shown that under mild assumptions ([169] sec 2.3),
each observable is expressed as a linear combination of the Koopman eigen-
functions:
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9= vjithi, (3.19)
i—1

= gjt+1 = Zvj,Mﬂ/fi (3.20)
=1

A set of observables g; can be constructed so that it forms a basis span-
ning the operating space of the Koopman operator, meaning that the Koopman
eigenfunctions can be decomposed in terms of the observables ¢, = >"72 ; w; gk
Injecting this result into Eq.(3.18), a linear system for the dynamics of the observ-
ables g;:

oo oo
9jt+1 = Z Aivj i Z Wi k Gkt (3.21)
i=1 k=1
— gi+1 = Kgr. (3.22)
Where g = [g1, g2, . . .| corresponds to the observables arranged into a vec-

tor, and K is a matrix representation of the Koopman operator. With this ad-
vantageous matrix formulation, truncations of the basis of observables g; can
be considered to approximate the dynamics in the above equation in a finite-
dimensional operating space.

A simple approach to the approximation of these dynamics is called the Dy-
namic Mode Decomposition algorithm, proposed in Schmid and Sesterhenn
[42]. The algorithm defines the linear dynamics directly over the state of the
system so that g(u) = w. This yields a linear system of equations:

U1 = Aut. (323)

With A a truncation of the Koopman operator (K). Note that this algorithm
was already introduced in the context of dimensionality reduction in Section
2.2.2, indeed, the algorithm provides both a relevant basis of modes on which
the state of the system can be expressed through the computation of the right
eigenvectors of A, and an advantageous formulation for the dynamics of the
system. We note that this advantageous formulation can be exploited not only
to forecast the state of a system in the future but also to analyze the system at
hand, through the spectral properties of the operator A [55].

This formulation is sufficient for the identification of the dynamics when ap-
plied to linear or weakly nonlinear PDEs. In other cases, this approach loses its
efficiency for the forecasting of the state of the system, although its interest for
the identification of relevant dynamical modes remains. To adapt the method
to nonlinear dynamics, approaches have been proposed to construct efficient
observable bases g on which the dynamics can be represented linearly.
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The Extended-DMD [77] uses dictionary learning methods to construct a ba-
sis of observables g(u) = [f1(u), fo(u), ..., fn,(u)] with Ny generally well supe-
rior to the dimension of u, on which the dynamics are represented linearly.
Similarly, the Kernel-DMD [72] uses kernel methods to efficiently construct a
basis of non-linear observables g. Both these methods select a number of non-
linear transformations of the state u to construct the observable sub-space on
which the approximate Koopman operator acts.

More recently, neural networks have been used to learn this dictionary of
observables [88, 90, , 114, ]. These methods leverage the ability of neu-
ral networks to learn an efficient basis of functions on which the dynamics are
linear. These extensions of the DMD method help address the issue of the trun-
cation of the operating space of the Koopman operator. Indeed, although it is
impossible to perfectly represent the dynamics of complex systems in a finite-
dimensional space as a linear ODE, given enough data, neural networks are able
to identify an efficient representation of the system, yielding a more accurate
and interpretable representation of the dynamics.

Finally, we point out that in this Section, we have not discussed the topic
of reduced order modeling using the Koopman operator. That is because the
dimension of the coordinates vector g(u) is generally taken to be large, in accor-
dance with the expectation that the Koopman operator is infinite-dimensional,
which is in direct opposition with the idea of dimensionality reduction intro-
duced in Section 2.2. However, we show in our work (see Chapter 6) that certain
dynamical systems can be efficiently modeled in very low dimensional spaces
as linear systems. Moreover, the theory of the Koopman operator introduced
in this Section can be used to derive an ansatz for the dynamics of partially
observed systems, which is shown to be critical to the construction of theoreti-
cally grounded dynamical systems. This particular topic is discussed in detail in
chapter 6.

Sindy

The theory of the Koopman operator presents a very advantageous representa-
tion of the dynamics of a system. However, it is sometimes intractable because
of the assumption of linearity of the dynamics and the dimension of the oper-
ating space of the Koopman operator. We introduce in this Section the Sparse
Identification of Nonlinear Dynamics SINDy [79], as a method for the extraction
of nonlinear dynamical models from data.

The SINDy algorithm is based on a simple dictionary-learning approach to
approximate the derivative of the system at hand. First, the system snapshots
u; = u(t;) are assembled in a matrix U = [uy,us,...,u,,], then, a dictionary
D(U) € Répxdns of candidate functions is constructed:
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uq (75) Unp,

2 2 2

S w3 ... Ul
D)= lsinu) sin(us) ... sin(u)| (3.24)

The true value of the time derivative of each snapshot u; is then computed,
either from the governing equations if they are known, or approximated through
finite differences to obtain the matrix U = [, @o, . . ., 1,,]. To obtain a repre-
sentation of the dynamics in the dictionary of functions, a matrix of coefficients
C € R%>9p to be learned is introduced, so that the time derivative is expressed
as follows:

U =CD(U). (3.25)
The goal of the method is to identify a sparse representation of the dynamics

in the dictionary of functions D. Thus, the following optimization problem is
solved:

C = argmin|[U — CD(U)|| + A||C|}x. (3.26)
o}

With X\ a coefficient controlling the importance of the sparsity-promoting
term in the above loss. Solving the above optimization problem yields a matrix
of coefficients C, whose rows correspond to the coefficients of a linear com-
bination of the functions in D(U) that approximates the dynamics of each di-
mension of the state w.

Note that the above procedure has few theoretical justifications as it only
trains a model to predict the value of the time derivative extracted from data,
which can be highly sensitive to noise and lead to inaccurate predictions. More-
over, it has two major limitations that are intrinsic to dictionary learning. First,
the choice of functions that make up the dictionary must be made a-priori,
meaning there is no guarantee that the dictionary is expressive enough for the
dynamics to be efficiently represented. The more important issue, however, is
that the number of functions in the dictionary scales exponentially with the di-
mension of the state w. Indeed, combinations of each dimension of the state
must be added to the dictionary to capture systems as simple as the Lorenz
attractor. This last factor makes it hard to construct a tractable dictionary that
retains expressivity for relatively high dimensional states.

The approach does however have one major advantage which is its inter-
pretability. Indeed, once trained, the SINDy model can be easily analyzed. Works
such as Loiseau and Brunton [105] and Callaham, Brunton, and Loiseau [155]
have shown that this interpretable aspect can be leveraged into physical con-
straints on the structure of the model, or used to gain insights into the behavior
of the system under study. Similar ideas have also been used to derive inter-
pretable nonlinear closures, as in Kalur et al. [197].
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Recurrent Neural Networks

The Koopman operator, and to a lesser extent, the SINDy algorithm, both pro-
vide principled ways to identify dynamical models from data that have the ad-
vantage of being interpretable. Unfortunately, we have discussed how these
models are limited, either by their lack of expressivity, or by their computa-
tional costs. We introduce in this Section Recurrent Neural Networks (RNNs) as
a way to extract dynamical models from data, with very little a-priori constraints
on the structure of the model.

Recurrent Neural Networks are general neural network architectures that
have loops in the connectivity graph. They have been intensively used to han-
dle sequential data. Two main RNN architectures have emerged: the Long Short
Term Memory (LSTM) proposed in 1995 [23], and the more recent and simpler
Gated Recurrent Unit GRU proposed in 2014 [56]. Both these approaches have
been used extensively in most application fields of Deep Learning. In this Sec-
tion, we focus on the LSTM network as it has been used in works that are rele-
vant to this thesis [201, 184].

The LSTM architecture was proposed as a model able to handle temporal
dependencies in time series and retain information along its trajectory. Thus,
it is able to capture non-markovian effects in the dynamics of a system. To do
so, the LSTM advances an internal state in time, which can be seen as a mem-
ory, using a series of gating mechanisms. We introduce the equations for the
LSTM from a dynamical point of view, where the model is trained to predict the
next timestep u;; based on the current state u;, the memory c¢; and potential
exogenous inputs x;. The LSTM does so through the following equations:

f; = o(Wrx; + Ushy + by), (3.27)
iy = o(Wixy + Uihy + 1), (3.28)
o = o(Woxy + Ushy + b,), (3.29)
Cry1 = tanh(Wexy + Uchy + be), (3.30)
Ciy1 = © ¢t +ip © Cq1, (3.31)
w1 = oy © tanh(cyy1) (3.32)

where W and U are weight matricesand b_bias vectors, to be learned, while
o is the sigmoid function. The logic behind the equations is based on gating, i.e.
the three gates f, i, 0, bounded between 0 and 1, are used to select the informa-
tion in the various quantities handled by the LSTM to be passed forward in time.
We see that the forget gate f; is used to select the information in the previous
memory state c¢; to be passed through; The input gate i, meanwhile computes
the amount of the new tentative memory ¢ to be passed in memory; And the
output gate o, computes the next state u;; from the memory c. Note that this is
a simplified version of the architecture, in practice, the model outputs a hidden
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state h; from which the output u, is computed. Moreover, multiple versions
of this architecture are generally stacked to increase expressivity, so that the
output of each LSTM cell is fed as input to the cell above it.

As discussed, this complex architecture is able to extract dynamic infor-
mation from time series data. Its main advantage is its expressivity and scal-
ability. Indeed, it is much more expressive than a simple linear model or a
relatively large dictionary of functions. It is also able to transparently handle
non-Markovian effects in the model which is critical in certain reduced-order
modeling applications (see Chapter 4). It should however be noted that LSTM
networks have to be used as a black box. Indeed, it is extremely difficult to
gain insights into the model once it is trained, and there is no guarantee that it
will remain stable over long integration periods. Because of these drawbacks,
their usability in critical industrial applications has remained limited. They con-
stitute however an example of the advantage of Neural Networks over other
approaches in terms of expressivity and tractability.

As mentioned at the beginning of this Section, the above methods are not
an exhaustive list of the fully data-driven methods that have been proposed to
forecast the dynamics of physical systems. We cite, for example, approaches
based on cluster models [63], on graph neural networks [166], on reservoir
computing [128, 179, 180] or more recently, approaches based on transform-
ers [193], which use machine learning to extract dynamical models from data
directly. However, with the three above methods, we hope to have illustrated
the breadth of the field of data-driven dynamical modeling. We have tried to
underline the tradeoff between the interpretability and guarantees embedded
in the model architecture and its expressivity. In fact, most of the work pre-
sented in this thesis is concerned with this specific point, as constructing ex-
pressive models that retain certain properties in terms of interpretability and
theoretical validity is still very much an open problem. In the following Sections,
we discuss this topic in more detail, introducing a range of methods developed
to hybridize fully data-driven deep learning approaches with physical concepts.
We then discuss the way reduced order models can sometimes be constructed
directly from the governing equations to avoid using fully data-driven models.

3.2.2 On the importance of Hybridisation

As mentioned above, the construction of reliable and interpretable dynamical
models is at the center of this thesis. We have shown in the previous Sections
that fully data-driven methods can be used to obtain models that capture the
dynamics embedded in system data. However, such approaches are limited by
several factors:

+ Expressivity: The choice of model to be trained can have limited expres-
sivity and cannot fully capture the complexities of certain dynamical sys-
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tems.

* Generality: The validity range of fully data-driven models is a central
topicin Machine Learning research as it is well recognized that the perfor-
mance of such models rapidly degrades when getting outside their train-
ing conditions. A large body of work has been dedicated to the issue,
and despite the development of a wide range of methods to improve the
generalization performance of data-driven models (regularization[s], en-
sembling[27], dropout[65] ...), this topic still constitute a major limiting
factor to the use of Machine Learning approaches in critical applications.

+ Data availability: Because of their complete reliance on the availability
of data, fully data-driven models require large amounts of data to gain an
acceptable level of accuracy. In industrial applications, data is very often
scarce, as systems can be expensive to simulate and even more expensive
to observe experimentally under various conditions (e.g., failures).

Various steps can be taken to address these limitations, such as embedding
physical constraints in the structure of the model, or retaining part of the full-
order PDEs that describe the dynamics of the system in the model. These ideas
arerelated to the topic of inductive biases discussed in Section 3.1.4 as their goal
is to embed the model with constraints that it should verify to avoid having to
learn them, simplify training and construct architectures that better fit the task
at hand.

3.2.3 Deep Learning and physics

The above considerations have led to a large body of work on the topic of hy-
bridization between Deep Learning and physical models. We describe in this
Section a few methods that have been proposed in the general context of hy-
bridization between Deep Learning and PDE simulation.

Implicit representation

Implicit methods, also called mesh-free methods, propose to represent the state
of a system as a neural network, i.e. the state of the system u(z, t) is not repre-
sented as a linear combination of a number of basis functions as in the Finite
Elements method, but rather as the value of a function chosen to be a neural
network. These methods have the advantage of bypassing the issues inherent
to high dimensional discretizations (see sec 2.1), but also provide a degree of
hybridization as they leverage the governing equations to train the neural net-
work.

Various approaches following this idea have been proposed, we cite for ex-
ample Berg and Nystrom [97] who used fully connected layers to approximate
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the solution of simulation problems on complex geometries and Sirignano and
Spiliopoulos [110] who proved that multi-layer perceptrons can approximate the
solution of a large class of PDEs, provided they are wide enough. We also sum-
marise below the well known physics informed neural networks approach (PINNS,
[109, 92, 93, 124]). This method is based on the ideas presented above, where a
neural network u(x, t; ) is trained to solve a PDE problem:

21: = G(u(z,t),t), z € Q,t € 0,7,

u(z,0) = up(x), (3.33)
foa(u(z,t)) =0, Vo € 0.

Where uy is the initial condition of the problem and fsq(u(z,t)) represents
the boundary conditions imposed at the boundary 02 of the computational do-
main Q. In the PINNs approach, the neural network u(x, t; 8) is simply trained to
verify the above equations through gradient descent, by minimizing the follow-
ing loss:

1 ou; Noa
= Ny - ZH — G(ug, 1) || +7Z|!fa§z (ua) | +*ZHU (@i,0) — uo(w3)]]-

(3.34)
Where each term in the loss enforces one of the constraints in Eq.(3.33) and

the notations N_correspond to the pre-defined number of points on which each
term is evaluated. Minimizing this loss means that the model is trained to re-
spect the physical conditions governing the problem, rather than extract them
from data. This method can be used to directly forecast states using the trained
neural network u(z, t), but also to reconstruct a system'’s state from sparse data
when used to solve inverse problems [174, 178, 59], or fit model parameters. We
note that implicit representation methods have also seen some use in the con-
text of reduced-order modeling [171].

Unfortunately, these methods have significant drawbacks, mainly their com-
putational cost which can sometimes be on par with the cost of directly solving
the problem in a standard PDE solver. They are also hindered by their gener-
alization capabilities, as balancing the tradeoff between the expressivity of the
neural network u(-;8) and avoiding overfitting can be complicated.

Neural Operators

Very similar to the above methods, Neural operators propose to learn implicit
representations of the operator that solves a given parametric problem, yield-
ing a continuous solution to parametric PDE problems. To illustrate the ap-
proach, we briefly introduce the DeepONet [162], which proposed one of the
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first neural operator learning approaches. The goal of the method is to learn
the map G : P — S between P the space of functions representing the parame-
ters of the PDE problem to be solved, and S the space of its solutions. The map
is parameterized using a neural network G so that:

Golpl(z,t) = s(x,1). (3.35)

Where (z,t) are the spatio-temporal coordinates and p the parameters. To

do so, the neural operator Gy is separated in a number of so-called branch-

networks b;(-;0) and a trunk-network t(z,t;6). The branch-networks b; handle

the parametric nature of the PDE problem, while the trunk-network ¢; learns the

spatiotemporal dependencies of the solution. To ensure that the dimension of

the input of the network is coherent between parametric cases, a discretized

representation of the function p is generally used, so that the network takes
the following final form:

Ny
Golpl(z, ) = _bj (p(m), ..., p(nr)) ;0)t; (2, £ 6). (3.36)
j=1
With n; the discretization points used to represent the parameters p. Lu et
al. [162] proved that the above formulation could approximate the map G to
any desired degree of precision. The method can be trained by gathering data
triplets ((z,t),p, s(x,t)) so that the following loss is minimised:

N
L— % ; (i, t:) — Golpi) (s, ). (337)

This neural operator has the advantage of structurally accounting for the
parametric nature of the dynamical problem at hand by separating the para-
metric and spatiotemporal parts of the solution. This alleviates the need to
retrain the architecture when generalizing to new parametric conditions. Ex-
tensions of the approach have been proposed such as Kaltenbach, Perdikaris,
and Koutsourelakis [188] and Li et al. [138], and most notably, the Fourier Neural
Operator [137].

Despite these advances, the efficiency of the approach still remains limited
due in part to the complexity of learning the results of long-range integral prob-
lems that result from the resolution of PDEs for arbitrary integration times. We
note however that these models constitute an interesting proposal for the em-
bedding of inductive biases specific to the nature of parametric PDE problems
in the architecture of neural networks.

Stability constraints

Various proposals have also been made to embed neural networks with sta-
bility constraints, starting with Hamiltonian Neural Networks (HNN) which were



3.2. LEARNING THE DYNAMICS 45

developed to model the dynamics of conservative systems [118]. The approach
proposes a very simple model architecture that ensures the stability of the re-
sulting model. This is achieved by leveraging the structure of Hamiltonian sys-
tems, which are based on the partial derivatives of a scalar function H(p, q):

dq _ 0H
dt  op’
dt  0q’

where (p,q) are the generalized coordinates of the system. The HNN ap-
proach proposes to parametrize the Hamiltonian function H of a conservative
system with unknown dynamics as a neural network. Indeed, the conserva-
tive nature of the above system is independent of the choice of the function
Hy, thus, the above model is guaranteed to be stable, even outside its training
conditions. Similar ideas were proposed to ensure the invertibility of neural net-
works, Behrmann, Duvenaud, and Jacobsen [113] proposed to constrain the Lip-
schitz constant of the weight matrices of a neural network to ensure its invert-
ibility, which is equivalent to ensuring the conservation of information through
each layer of the network, while Haber and Ruthotto [86] proposed novel pa-
rameterization schemes for weight matrices based on Hamiltonian mechanics
to ensure the stability of the model.

Of course, the Hamiltonian framework is often found to be excessively re-
strictive for the modeling of physical problems, as most dynamical systems are
dissipative, and often forced by exogenous factors, such as an inflow boundary
condition in the case of a fluid problem. However, parameterization schemes
were proposed to ensure the stability of neural dynamical models. For exam-
ple, N. B. Erichson and Mahoney [121] and Pan and Duraisamy [142] proposed
to use dissipative parameterizations to enforce the stability of trainable linear
operators.

Neural ODEs

We introduce a last neural modeling approach, called Neural ODEs [99], which
is used extensively in our work. The method borrows concepts from dynami-
cal systems to construct continuous (or infinite) depth neural networks. These
methods are derived from the Residual Network [82] architecture, which is a
slight modification of the multi layer perceptron introduced in Section 3.1.1. A
residual network ®,(z) learns a transformation of an input x as follows:

Pp(z) = Ppnpo...0¢300 P90 d1p(T),

big(z) =+ g, (3.39)
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where 1; g are trainable transformations, such as the linear layer defined in
Section 3.1.1. This approach was proposed to handle increasingly deep network
architectures and quickly became state of the art, notably for image classifica-
tion tasks. Observing that the dimension of the layers of the residual network
in equation 3.39 is constant and equal to the dimension of the input z, Eq.(3.39)
can be viewed as the Euler integration scheme of a dynamical system, where
the layer ¢; corresponds to the iy, time step of the integration. Chen et al. [99]
proposed to directly learn the dynamics of the transformation so that:

dx

T (3.40)
®(x0) = x0 —i—/o fxy;0)dt,
where T is a pre-determined integration horizon, f is a trainable transfor-
mation, defined as a neural network, and the output of the network, =, results
from the integration of these trainable dynamics. Because the dynamics f can
be trained to be arbitrarily stiff, the number of integration steps, which corre-
sponds to the number of layers in a Residual Network, can be as high as re-
quired by the task at hand. Similar to standard neural networks, Neural ODEs
are trained to minimize a loss function £(z1), however, the discrete backprop-
agation algorithm introduced in Section 3.1.2 is ill-suited for this task. Instead,
Adjoint backpropagation, an adaptation of the backprop algorithm to time con-
tinuous problemes, is used.

Adjoint Backpropagation

The adjoint backpropagation algorithm on which Neural ODEs are based is used
to solve problems of the following form3:

min  L(z(T))

%

dx

—_— : = (3'41)
s.t. ¥ f(z;0)=0

x(0) = xo.

These problems are generally solved through gradient descent, which re-
quires evaluation of the following gradient:

AL _ 9L
d6 — ox 001

3This specific criterion and constraints choice correspond to the training objective
of Neural ODEs. The adjoint backpropagation algorithm can be used to solve more

complex problems; however, we chose to restrict the scope to this formulation to clarify
the derivation.

(3.42)
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Because the derivative of i(t) = f(z;60) is parameterised by 6, there is an
implicit relation x = z(¢;0). The estimation of the senS|t|V|ty |7 requires the
consideration of the impact of # on the whole time- mtegratlon from¢ = 0 to
t = T. The adjoint backpropagation is used to avoid computing this term, which
is done by evaluating the sensitivity of the following Lagrangian:

T
T+ /0 ()@ (t) — f(a:0))dt (3.43)
(1) = f(2:0) — % - ‘z%. (3.44)

The vector of Lagrangian multipliers x is a function of time. Distributing
the product in the integral and integrating the first term by parts leads to an

expression where the sensitivity %‘ can be isolated:
T

T T
J:£+@40—A;mw+uwﬂ%@& (3.45)
47 (oL af do| o Of
(3.46)

A so-called adjoint equation is then obtained to avoid having to solve for
the sensitivity g—g. Enforcing a vanishing variation of the Lagrangian wrt x at
optimality yields:

du__of
dt ~ "oxl
- ] (3.47)
H - ozl

Solving the adjoint equation (3.47) for the values of n(t) leads most of the
terms in Equation (3.46) to vanish, so that:

dJ T of
S g

Both this integral and the adjoint equation can be easily evaluated |f < is
approxmated by a neural network as the required vector-Jacobian products
uaf and M /. can be easily computed in any deep learning framework.

(3.48)

z=x(t)

Adaptive checkpoint adjoint

The original NeuralODE paper [99] proposed to integrate forward in time to ob-
tain the initial condition of the adjoint equation evaluated from z(T"), while dis-
carding intermediate values z(t). This choice was made with the goal of reduc-
ing the memory footprint of the method. However, discarding the intermediate
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— Forward integration
== Backward integration
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Time(s)
Figure 3.5: Forward and backward time integration of the Van der Pol oscilla-

tor. Numerical errors during the integration lead to the divergence of the two
trajectories which should be identical.

time-steps x(t) means that they have to be recomputed during backpropaga-
tion to evaluate the adjoint ODE (3.47), as well as the gradient integral (3.48).
This can be done as a single backward-in-time integration by concatenating the
different quantities (z, u, %) in a single state vector:

- d
=[] (3.49)
dz 1. B g B %
a - _f('fve)a Ma$7 :uae:| (350)
I aL| OLOf
AT) = _:L‘(T),—%‘T,%% T]. (3.51)

Not only does this increase the computational cost of the method, but it
can also lead to erroneous gradients, as numerical errors during integration
can lead to differences between the forward and backward trajectories for z(t).
This was observed in Zhuang et al. [150] and is illustrated in Figure 3.5, which
shows that, despite using the same parameters, the forward and backward time
trajectories diverge due to numerical errors. To address this issue, one can use
the Adaptive Checkpoint Adjoint method. This method retains the intermediate
integration steps (¢, z(¢)) and simply evaluates the integrals for the adjoint ¢ and
the gradient &7 at the time steps selected during the forward integration, using
the forward trajectory z(t).

Although this increases the memory footprint of the method, it limits the
computational cost of the backward pass, as the time steps are already se-
lected, and the trajectory z(¢) does not have to be integrated another time.
Most importantly, this limits the numerical errors introduced by the integra-
tion schemes, which can have a significant impact on the training, especially in
the case of chaotic dynamics.



3.3. THE POD GALERKIN METHOD 49

3.2.4 Summary

The approaches presented above all stand as various forms of hybridization.
Methods such as the physics informed neural networks, or the neural opera-
tor, propose to leverage the properties of neural networks to efficiently solve
PDE problems. Similarly, the methods described in subsection 3.2.3 as well as
the NeuralODE method propose to embed neural network architectures with
previously established properties such as stability or time continuity. These
properties can both help guarantee the results of a trained model and simplify
training.

3.3 The POD Galerkin method

Retaining Physics through the Galerkin Projection

In this Section, we come back to the topic of reduced order modeling, and we
show that while the various methods listed in the previous Section can be used
to adapt Deep Learning approaches to physical modeling, it is possible to di-
rectly retain part of the governing equations when designing a reduced order
model. Thus retaining a dynamical basis that can then be hybridized with data-
driven approaches to create stable and accurate reduced order models. To this
end, the Galerkin Projection method is introduced as an efficient reduced-order
modeling method that leverages the governing equations of the problem under
study to avoid sole reliance on data. We also refer the reader to Holmes et al.
[48] and Lassila et al. [64] for additional discussions on the topic.

Linear dimensionality reduction methods such as POD have a significant ad-
vantage for the construction of hybrid reduced-order models. Indeed, they can
be used in combination with the Galerkin projection method to retain part of
the dynamics in the reduced space. The method starts from a discretized full-
order model as follows:

((11—1: =F(t,u) (N equations), (3.52)

where u € R¥ is the high dimensional state of the system discretized in
the chosen full-order representation space (it could for example be the coeffi-
cients of a Finite Elements basis), and F is the discretized full order model, for
example, the discretized incompressible Navier Stokes equations, used for the
simulation of simple fluid flows. Starting from this high dimensional system of
equations and a number of pre-acquired simulation snapshots u(¢;), a reduced
POD basis of principal modes V, € RV*" r < N is identified following the pro-
cedure described in Section 2.2.2. With this basis, an approximate solution can
be reconstructed:
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u(t) = Vea(t) (3.53)
[u—all2 < [Jull2 (3.54)

where a(t) € R" is the reduced coordinate vector of the state in the POD
basis, whose value is obtained from the full order state through projection
a(t) = V. u(t). Similarly, Eq.(3.52) can be projected to obtain a system of dy-
namical equations for the coordinates a(t):
da

T VrTF(t, u) (r equations). (3.55)

The projection above yields a system of » ODEs that exactly control the time
evolution of the reduced coordinates a. However, it is unusable in a reduced
order modeling context as it assumes knowledge of the full order state w(t)
during the simulation. To close the above system in a, the approximate state
u ~ V,a is injected in Eq.(3.55) to evaluate the dynamics, introducing approxi-
mation errors in the model:

da

=~ V."F(t,V.a) (r equations). (3.56)

The above procedure is called a Galerkin projection and is similar to the
construction of weak forms in the Finite Elements Method [50]. In next Sec-
tion, we discuss the way this reduced model can be constructed practically and
efficiently, by exploiting the linearity of the derivative operator.

Computational efficiency

First principle models are generally expressed as partial differential equations.
Thus, the linear nature of the derivative operator can be leveraged to efficiently
reduce the full order model F in Eq.(3.56) into a number of low dimensional ten-
sorial operations. To give an example, we consider the incompressible Navier-
Stokes Equations which control the behavior of the velocity and pressure fields
u(x,t) and p(z,t) of a fluid flow at reasonably low Reynolds numbers (Re):

ou v v 1 o2
5 = VP- (u-V)u+ RV U
V-u = 0
These equations can be discretized and projected on a Finite Element basis

following the procedure introduced in Section 2.1 to obtain a system of equa-
tions for the dynamics of the FE coefficient vectors u(t) and p(t):

(3.57)

du T 1
T —Ap—(u' - Q)u+ EBU, (3.58)

Cu =0.
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Where A, B, C are high dimensional matrices resulting from the discretiza-
tion of the differential operators. Indeed, the gradient, Laplacian and diver-
gence operators in the Navier-Stokes equations are all linear and naturally re-
sult in discretized linear operators on the state of the system. Finally, the op-
erator @ is a three dimensional tensor representing the quadratic advection
term (u - V)u in the NS equations. Note that all these operators are extremely
sparse as they only model local interactions in the flow field, meaning that the
evaluation of the above expression can be optimized numerically to improve
performance.

Projecting this equation on a POD basis V, and injecting the approximate
state u ~ V,a, a system of » ODEs is obtained:

da 1
dt  Re

Note that both the mass conservation condition (Cu = 0) and the pressure
term (Ap) have been dropped from the equation. This is due to the fact that
the reconstructed flow field V,a is divergence-free by construction as the POD
modes V, all respect mass conservation (see Section 2.2.2), thus, the second
equation is always verified. The pressure term can be dropped because the
pressure field relates to the local compression or stretching of the flow, which
is null for a divergence-free field, thus, the pressure field is constant and its
gradient is null.

The advantage of this tensorial reduced order model is that a large part of
the operations can be computed prior to the simulation of the ROM to obtain
the filtered operators B € R™" and Q € R™*"*", yielding an efficient ROM that
is easily evaluated through a few r-dimensional vector-matrix multiplications:

V."BV.a -V, Ta"(V,-Q)V, a. (3.59)

B =V,"BV,, (3.60)
Q=V."(V:-Q)V,, (3.61)
i EBG —a' Qa. (3.62)

This example of the incompressible Navier Stokes equations shows that lin-
ear reduction methods are very advantageous as they allow for the construc-
tion of reduced dynamical models entirely based on the governing equations.
It should be noted that while the Galerkin Projection method works well in
the general setting of Partial Differential Equations, it can become inefficient
for the reduction of strongly nonlinear equations. An example would be the
case of chemical source terms that are generally modeled using Arrhenius laws,
for which the above procedure of pre-assembling low-dimensional dynamical
terms would not be applicable. For these cases, methods such as the discrete
empirical interpolation method [43] have been proposed, relying on the evalu-
ation of the irreducible dynamics on a low number of well-chosen spatial points
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to construct the low-order representation of the nonlinear terms at each inte-
gration time.

Limitations of the Galerkin Projection

The Galerkin Projection can efficiently exploit linear dimensionality reduction
and pre-existing equations to construct a dynamical model for the low dimen-
sional system representation. This comes at the cost of approximation errors
as the model is only exact when the projected dynamics are evaluated from the
full-order model:

da T
= VTR (r,w) (3.63)

Because the state of the system is only partially resolved in the reduced
order setting, the above expression cannot be computed directly. Using a Taylor
expansion, the dynamics can be separated into resolved and unresolved parts:

da o T ~ ~

T =V, Ft,Lu+ wuw—u ), (3.64)
unresolved part

da o 7 - TOF ~

E_Vr F(t,u) + V; %ﬁ(u—u)—i— (3.65)

~\~
€

This expansion shows that the error term ¢ in the reduced order model di-
rectly depends on the unresolved part of the state (u —u). Despite the relatively
low magnitude of this unresolved part (see Eq.(3.54)), this term has a significant
impact on the quality of the model. Indeed, the errors on the dynamics com-
pound over time, leading to inaccurate trajectories of the reduced coordinates
a. This topic has been extensively studied, with the development of more ad-
vanced projection schemes to account for the residual e during the integration
of the model. Choi and Carlberg [115] and Carlberg, Barone, and Antil [84] pro-
vide a thorough study of the stability and optimality of the Galerkin Projection,
as well as other projection schemes, showing that some of the limitations of the
Galerkin projection can be alleviated, at the cost of increased computational
overhead.

In this Section, we have shown that linear reduction methods can be cou-
pled with well-established PDE projection methods to construct reduced-order
models from the governing equations. Despite providing a model unconcerned
with the various issues inherent to fully data-driven models (see Section 3.2.2),
they are limited by the reconstruction errors associated with the use of incom-
plete linear bases. Indeed, their errors are directly related to the complement
of the projection on the linear basis u — w.
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This concludes this Section on the construction of dynamical models when
governing equations are unavailable, or can not directly be used. We have
shown that a range of methods are available, with various degrees of accuracy
and interpretability. We have discussed the issues that come with directly learn-
ing models from data as well as the interest in retaining the original equations
as much as possible when deriving models for a low-dimensional representa-
tion of a system.

3.4 Conclusion

This Section introduced the topics at the center of the thesis. We have shown
that there is a continuum of modeling approaches between standard PDE sim-
ulation and Deep Learning for dynamical models.

Efficiency, Flexibility

Full Order Model (i.e. FEM) S >
INDy

POD G’(Ll(’rkm Recurrent N quml Networks

Classical
Simulation

Transformers

Data driven
Models

Boussinesq, K —e,. ..

<

DMD

Generality, Interpretability, Correctness

Figure 3.6: Hybridization spectrum between full order methods and fully data-
driven methods. NB: The annotated methods only constitute a sample of the
various approaches relevant to the thesis topic, and are chosen to illustrate the
variety of possible approaches.

We have discussed the inefficiency of full order simulation methods for rep-
resenting the state of physical systems, and the way pre-acquired data can
be exploited to construct better representation spaces. We have shown that
a range of Machine Learning methods were available for the identification of
suitable reduced spaces, each with its advantages and drawbacks. Most im-
portantly, we have underlined the differences in terms of performance and in-
terpretability between the linear proper order decomposition method (Section
2.2.2) and neural Autoencoders (Section 3.1.5) as these methods both offer a
solution to the same problem, while presenting very different properties.

The last Sections discussed the various ways dynamical models could be
constructed in the absence of an already established model, either through
principled approaches based on well-established theory or through direct ap-
proximation of the dynamics using Machine Learning techniques. Once again,
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we underline the existence of a tradeoff between powerful approximation meth-
ods that provide good accuracy close to their training conditions, such as recur-
rent neural networks, and the use of theoretically grounded models that pro-
vide better guarantees but might be less accurate.

As mentioned previously, the work presented in this thesis focuses on this
tradeoff as we strive to derive theoretically sound ways to combine the approxi-
mation powers of neural networks with interpretable modeling approaches, the
main goal being the construction of reduced models with improved accuracy
that retain theoretical guarantees. In the following Chapter, we introduce one
of the main contributions of this thesis, the CD-ROM approach, which focuses
on addressing the shortcomings of the Galerkin projection method presented
above, while ensuring that the model retains as much of the properties of the
original system as possible.
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4.1 Introduction

4.1.1 Context

This Chapter presents one of the main contributions of the thesis, the CD-ROM
method, and is based on the work presented in Menier et al. [191]. In the pre-
vious Chapter, we discussed the importance of hybridization for the modeling
of dynamical systems. We showed that linear dimensionality reduction meth-
ods could be used in combination with the POD-Galerkin method to construct
reduced-order models based on the governing equations of the system at hand
(see Section 3.3).

We also discussed the shortcomings of the POD-Galerkin method and showed
that it is embedded with approximation errors, which limits the applicability of
the method to strongly nonlinear dynamics. Thus, we introduce in this Chapter
a model order reduction strategy built around the improvement of the POD-
Galerkin method. The method is based on a neural closure model which only
learns the complement of the Galerkin reduced order model, rather than the
full dynamical model. The method is thus named CD-ROM: Complemented Deep
- Reduced Order Model.

We will show in this Chapter that the CD-ROM method uses Neural Networks
to correct the imperfect dynamics of Galerkin reduced order models, while re-
taining coherence with existing theoretical results. Moreover, the CD-ROM ap-
proach yields a time-continuous model that can be simulated as a standard
dynamical system, as it is based on a time-continuous memory architecture.
This should be put in contrast with classical neural sequential modeling meth-
ods such as Recurrent Neural Networks which learn a discrete time-stepping
scheme for the dynamics of a system (see Section 3.2.1). Framing the model
in the context of hybridization, which is at the core of this thesis, we place the
model on the hybridization spectrum displayed in figure 4.1 and introduced in
the previous Chapter to facilitate the comparison with existing modeling ap-
proaches.

Before presenting the derivation of the model, the following Section pro-
vides a direct comparison with the existing works closest to the CD-ROM method.
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Figure 4.1: The CD-ROM method on the hybridization spectrum. NB: This figure is
provided for illustrative purposes and helps frame our proposals within the broader
context of the thesis. The placement of each method on the spectrum is open to
discussion, and small variations could lead to displacing a given approach closer to
one end or the other.

4.1.2 Related Work

Reduced order modeling methods offer powerful and straightforward indus-
trial applications, thus, their improvement has been the subject of a large body
of literature. We divide the existing solutions into intrusive and non intrusive
methods. Intrusive approaches aim at learning a closure model for the avail-
able ROM such that high fidelity data are fitted, while non intrusive approaches
are closer to those presented in Section 3.2.1 as they propose to completely re-
place pre-existing models with learned black-box forecasting methods. Several
works have proposed to leverage deep learning methods to develop non in-
trusive forecasting models on low dimensional spaces and represent physical
simulation problems ([184, , , , 131]). Specifically, the necessity of ex-
ploiting temporal information to reconstruct accurate dynamics has been un-
derlined in [154, , 129, ]. More theoretically grounded works have also
proposed to develop intrusive non-Markovian closure models for existing Re-
duced Order Modeling approaches ([148, 143]). They are motivated by the Mori-
Zwanzig formalism ([29]), which provides a theoretical framework for the mod-
eling of partially observed systems. Similar to these efforts, our work aims at
developing a theoretically grounded reduced modeling method for the fore-
casting of physical systems, preserving the physical insights provided by the
projected PDE describing the problem. Most importantly, we focus on the fact
that the majority of the approaches cited above propose to use recurrent neu-
ral networks to either learn a closure model or the full dynamics of the system.
Although this choice can be motivated by the necessity of capturing memory
effects, RNNs are limited for the modeling of dynamical systems, mainly be-
cause of their time-discrete nature (see Section 3.2.1). On the other hand, our
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Non-Markovian | Non Intrusive | Continuous Memory
interpretability

Wang et al. ([148]) v v
Pawar et al. ([143]) v
Maulik et al. ([140]) v v v
Vlachas et al. ([201]) v v v
Wu et al. ([149]) v v v
Maulik et al. ([164]) v v
Pawar et al. ([123]) v v
CD-ROM v v v

Table 4.1: Comparison of closure approaches from the recent literature.

proposal is constructed around a time-continuous memory formulation with
numerous advantages over discrete time models. Moreover, we underline be-
low the higher degree of interpretability of our solution. The main novelties of
the method presented in this Chapter are listed below and Table 4.1 also pro-
vides a summary of the potential crossovers between existing methods and the
present work.

* Intrusivity: Closure modeling has been a topic of interest since the early

days of numerical simulation, thus, developing intrusive correction mod-
els which combine with existing physical models is not a novel approach
in and of itself. However, most deep learning approaches do not take this
route and propose to learn forecasting models from scratch, ignoring the
underlying physical laws. In this work, we show that the Galerkin ROM
can be used inside the training loop to optimize the closure model in an
a-posteriori fashion, that is, by simulating the whole model and assessing
its performance. Embedding the existing ROM in the training strategy al-
lows us to leverage pre-existing physical information rather than replace
it with a physics-agnostic model.

Continuity: The proposed model is embedded with a novel time contin-
uous memory formulation. This increases the applicability of the model
as it can be plugged in any initial value problem solver without being bi-
ased against specific time-step and/or numerical scheme choices made
during training. Moreover, this flexibility implies that this work can be
used to model arbitrarily stiff problems through the use of adaptive time-
stepping schemes. Finally, the continuous structure allows the model to
be used in combination with irregularly spaced data, often encountered
in real-life problems, with no additional considerations to interpolation
between samples.

+ Memory Interpretability: Contrary to classical recurrent neural networks
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such as the Long Short Term Memory (LSTM) used in the state of the art,
the proposed memory formulation was specifically designed for numer-
ical simulation purposes. Particularly, the time evolution of the memory
has a closed form solution, which means that the memory term can be
initialised to any desired degree of precision. Our proposed formulation
also allows for the evaluation of the time persistence of information in
memory, increasing the overall interpretability of the model.

* End to End Training: In contrast with other works which propose to learn
the closure model in an a-priori fashion, i.e. by learning the dynamics cor-
rection as a standalone regression problem, we integrate the imperfect
model directly within the training strategy. Thus the correction model ac-
curately learns to compensate for the sensitivity of the Galerkin ROM and
account for the long term effects of unstable, low energy modes in the
system. Indeed, it has been observed in the literature that this strategy
lead to more stable and accurate models ([165, 90, 147]).

The outline of the Chapter is as follows: a reminder on the POD-Galerkin
reduction method is provided in Section 4.2. Section 4.3 details the main con-
tribution of the method with the derivation of a continuous in time correction
architecture for reduced order models. Motivation for our work through com-
parisons with existing approaches is provided in Section 4.4, while the selected
test cases and results are respectively discussed in Section 4.5 and 4.6. Section
4.8 concludes the Chapter.

4.2 Model reduction approach

4.2.1 POD Galerkin

As mentioned in Section 2.2.2, the POD method can be used to construct a ma-
trix V. € RV>*" whose columns form a low dimensional basis on which the high
dimensional state of a physical system u € R" can be projected sothata = V,Tu
and u =~ u = V,.a. Section 3.3 also discussed the way this linear basis of princi-
pal modes could be used to project the governing equations using the Galerkin
method to obtain a low dimensional system of equations for the reduced state
of the system «, which in the case of the incompressible Navier Stokes equa-
tions, yields a simple algebraic model (see Section 3.3 for the derivation):

d ; T _ T T . .
‘iit(t) = ;Bi,j ai(t)+> > Qijrajt)ar(t) +e(t),  Vi=1,...,r (4

j=1 k=1

Where B € R™*" and Q € R™"*" respectively correspond to the reduced dis-
sipative and advective terms of the full-order equations. Unfortunately, models
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constructed with the Galerkin method were shown to be embedded with error,
denoted as ¢ in the equation above. In Section 3.3, we showed that this error
could be directly related to the complement of the projection on the POD basis
(u—w), which is unavailable during the simulation of a reduced order model, as
it is orthogonal by construction to the resolved representation space. In native
POD-Galerkin reduced models, this error term is generally ignored. Unfortu-
nately, this approximation means that small errors on the dynamics will com-
pound over time and lead to significant discrepancies between the true and
simulated trajectories. This is especially true in the case of nonlinear dynam-
ical systems where orthogonal projection on the POD basis can suppress an
important part of the dynamics. In the case of the Navier Stokes equations,
POD-Galerkin models have been shown to fail to reproduce the dynamics even
in simple cases like the flow over a cylinder [32].

Thus, the aim of this work is to retain the simplicity of the POD-Galerkin
method, and learn the complement of the ROM using deep learning methods,
we then call our proposed method Complemented Deep - Reduced Order
Model.

4.2.2 Non-Markovianity and Takens' theorem

The residual depends on information from a subspace orthogonal to the span
of the POD basis. This means that an accurate correction model cannot be di-
rectly computed from the reduced state a(t). However, we leverage the fact
that the information lost by projection of the full order state can be retrieved
by considering past states of the system. This hypothesis is formalized by the
Takens’ theorem ([12]), which states that, under mild conditions, the dynamics
of a state vector can be reproduced by constructing a time-embedding from
time-lagged observables: z(t) = (z(t),z(t —71),2(t = 27),...,2(t — k:r)), with &
large enough.” This is illustrated in Figure 4.2, which shows the Lorenz attractor
observed via its embedded X-component. By constructing a 3-dimensional em-
bedding of the obtained time-series, an attractor is obtained, which preserves
the topology of the true attractor (e.g., symmetries, correlation dimension, etc.).

This suggests that the complement of POD-Galerkin reduced order models,
which we denote as R, is non-Markovian and should consider past states of

the system (a(t —7),a(t—27),.. ) However, such a discrete time-embedding
is not well suited in the context of continuous time models such as equation

"We tacitly assumed here that z is a suitable observable. Observability analysis goes
beyond the scope of this work. Nevertheless, it is well known that higher harmonic
POD modes are enslaved to dominant POD modes ([105, 155]). Therefore, in the rest of
the Chapter, we will assume that the dynamics of the unobserved space spanned can
be retrieved from past observations of the dynamics in the space defined by the POD
modes.
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X(t—27)

Figure 4.2: lllustration of the Takens’ delay embedding theorem. Left: Original
Lorenz attractor; middle: Delayed time series of the X coordinate; right: Recon-
structed attractor.

(4.1). Indeed, using discrete time steps in combination with adaptive step time
marching schemes, such as the Runge-Kutta method [11], would require spe-
cific considerations about interpolation between the simulation steps and the
required embedding steps. To address this time-continuity issue while retain-
ing a non-Markovian correction structure, we propose to use delay differential
equations (DDE) with a continuous embedding of the past information:

Gal =gla®.y@) . vl = [ o Pa(rar (42)

with A € R, sufficiently large for the integral above to be bounded.

These equations retain information from past states of the system in a time-
continuous manner and are used for a number of modeling applications such
as epidemiology or population dynamics ([18, 25]). In this formulation, the dy-
namics g depend both on the partially observed states of the system a(t) and a
memory variable y(t), corresponding to the integral of past observables, damped
in time by an exponential decay. In fact, the memory term y can be defined in
many ways, depending on the problem at hand. However, the exponential de-
cay formulation was chosen because /) it provides the model with the ability
to consider recent states of the system while older observations are discarded
and ji) it can be solved by directly augmenting the original system with a second
ODE for the memory:

Salt) = gla(t),y(t),
d (4-3)
Y0 = al) = y().

The exponential decay e("~%* acts as a filter of width 1/ on the observables

evolution and we show in a later Section that the value of the decay rate (\) can
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be learned in a data driven setting. Other applications of the same augmented
ODE exist in literature but with different purposes such as modelling of subgrid-
scales in Large-Eddy Simulations (LES) [33] or to find unstable-steady solutions
of the Navier-Stokes equations [36]. As mentionned earlier, we have made the
convenient choice of the exponential kernel since it can be described by a lin-
ear ODE and easily constrained to model dissipative dynamics, but alternative
kernels exist in the DDE literature which could be considered if the exponential
kernel became too constraining for certain cases.

It is worth noting that the memory variables y have the same dimension
as the observations a in (4.3). This limitation might introduce a significant in-
formation bottleneck in the model. Indeed, Takens' theorem states that the
dimension required to obtain a satisfactory embedding can go as high as twice
the intrinsic dimension of the true attractor. Although there is no similar result
for the continuous case, the limited dimension of the memory y may prevent
deriving an accurate correction model. As a result, we define an encoding map
E : R" — R"®, used to lift the observations a to a higher dimensional space to
increase the dimension of the memory:

y(t) = / t T E(a(r))dT. (4.4)

—0o0

In fact, the use of such an encoding map to unfold non-linear dynamics and
recover a linear ODE is rooted in Koopman theory as each encoded coordinate
can be considered as an observable of the original state. While approaches such
as dictionnary learning ([77]) and kernel methods ([72]) have been proposed to
learn these observables, we use neural networks to avoid additional optimiza-
tion considerations and retain flexibility, similar to the works of [88, 142]. Using
the modified DDE architecture (EqQ.(4.4)) to close reduced order models, the
correction operator R acting on the memory y(t) becomes an application from
memory space to phase space: R"* — R”. Finally, the following augmented
reduced order model is obtained:

d
! (4.5)
a}’(t) =

This proposed augmented ROM architecture has a similar form to the Mori-
Zwanzig formalism [29] which derives an equation for the dynamics of partially
observed systems. Although the parallel with the CD-ROM approach is not for-
mally established, we discuss these similarities in Section 4.4.1 as it provides
additional motivation for the above choices. Finally, the augmented ROM for-
mulation is summarised in Figure 4.3 to help illustrate the idea.
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Figure 4.3: Visualisation of the CD-ROM approach. The full order solution snap-
shots are projected on the POD basis to obtain time series of the reduced co-
ordinates (a). These reduced coordinates are then augmented with a memory
y(t). Finally, the augmented dynamical model is presented on the right hand
side of the image.

4.3 Data driven learning of the residual

Although the motivation for the existence of the residual R and encoding map
E was outlined above, little information about their form can be derived from
the previous expressions. In this context, we leverage the universal function
approximator property of artificial neural networks [20] to model the missing
terms.

4.3.1 Neural Networks

Our work relies on the Multi Layer Perceptron architecture introduced in Sec-
tion 3.1. This very simple network architecture can be used to learn any smooth
continuous application ® : R” — R* by optimizing the weights of a sequence of
L layers:

®(a) =¢ro¢r_10---0 ¢1(a) (4.6)

ol :Ul(Wl(blfl +Bl>7 Vie {277L} (4.7)

where ¢, is a nonlinear activation function, and the dimension of ¢; corresponds
to the number of neurons in the layer [. It has been shown that, provided
the dimension of the layer is high enough, the trainable parameters W, and

b; can be optimized to approximate any function [20]. The encoder E(a) and
the residual R(y) are both approximated with neural networks with parame-

ters O = ({Wl, b}, =1, ..,LE> and 6y respectively.

4.3.2 Memory time scales

Physical systems often involve a variety of phenomena each evolving at differ-
ent time scales. Capturing these phenomena can be critical to accurately model
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Signal and resulting memory obtained with a decay rate of 50
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Figure 4.4: Superposition of sinusoidal signals of frequencies 1, 10 and 100 Hz,
filtered by an exponential decay with a decay rate A\ = 50. The higher frequency
(100 Hz) is filtered out while the other two are reproduced in the memory sig-
nal. This implies that recent events in memory due to the 100 Hz frequency are
filtered out so that the memory is mostly driven by older events associated with
lower frequencies. Note that the memory signal has been scaled by a factor A
for clarity.

these systems, which is why the memory should be able to retain information
at different rates. The time scales accounted for by the memory are driven by
the parameter \ of the exponential decay in Eq. (4.2), which acts as a low-pass
filter on the encoded trajectory (see Figure 4.4 for an illustration).

To retain information at different rates, A\ can be adjusted for each observ-
able E;(a). Equation (4.5) is then modified accordingly with the single A param-
eter replaced with a diagonal matrix A € R’,”*"# whose entries can be trained
to select time scales relevant to the system at hand. This finally results in the
CD-ROM architecture:

S
—~

o~
S~—

VIF(Vra) + R(y;0r),

d
%y(t) = E(a;0g) - Ay. 4-8)

4.3.3 Training strategy

Optimizing the parameters of the model (4.8) requires consideration of past
states of the system as well as their impact on the dynamics in the future. In
some sense, the problem is similar to the optimization of classical recurrent
neural networks for the simulation of dynamical systems [201]. The major dif-
ference is that the aim of the present work is to derive a continuous time dy-
namical model, while recurrent networks have traditionally been used to model
transitions between discrete time instants. As a result, we cannot use standard
backpropagation through time to optimize the model. Instead, the NeuralODE
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approach [99] introduced in detail in Section 3.2.3, is used.

As explained in Section 4.2.1, reduced models of the incompressible Navier-
Stokes equations can be expressed directly in terms of the reduced coordinates
a and evaluated through simple tensorial expressions. This means that the
ROM dynamics can be directly computed and back-propagated through once
the reduced operators B and Q are assembled (see Eq.(4.1)). The Deep ROM
architecture (Eq.(4.8)) can then be optimized within the Neural ODE framework
by concatenating the reduced state and the memory into a single state vector
z(t) = [a(t),y(t)], with dynamics f(z;0g, 0, A):

73 TH .

Since the last modes in the POD basis V are typically associated to low-
energy dissipative scales [151], if r is not large enough, the ROM model retrieved
by V, might be unstable and diverge after a few time integration steps. This
potentially unstable primal model is however embedded in the optimization
framework so that the residual is trained accordingly, resulting in a stable, ac-
curate, model.

4.3.4 Implementation details

This Section details the various practical choices made to implement and train
the CD-ROM model.

Training data

To optimize the parameters of equation (4.9) through the Neural ODE approach,
one only needs knowledge of the true trajectory of the reduced coordinates
a*(t). As presented in Section 2.2.2, this trajectory data can be obtained by pro-
jecting the solutions computed with the full order solver on the POD basis:

a*(t) = Viu(t). (4.10)

If the snapshots are sampled with a time interval A,, simulating the cor-
rected ROM (4.9) for n, time steps leads to the following L? mean squared error:

1

T

J==> lla(iA) —a*(iAy)|; (4.1)

i=1

for which a gradient can be computed by integrating the adjoint equation (3.47).
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Memory Initialisation

For the model to be accurate, the memory term needs to be initialized by eval-
uating the memory integral at time ¢ = 0 which requires knowledge of the past
of the true trajectory:

0
y(0) :/ E(a*(7);0g)e?dr. (4.12)
—0o0
To be able to compute this integral, the infinite horizon of the memory inte-
gral can be relaxed by defining a finite ,;, from the longest time scale A, of
the matrix A and a threshold ¢ < 1, chosen to be small enough such that the
relative error made on the initial memory is sufficiently small:

1

Tmin — _)\ng’ (4.13)
0

y(0) z/ E(a*(7);0g)e?dr. (4.14)

Tmin

Because this initial memory term directly depends on the parameters of the
encoder and the matrix A, it needs to be re-computed at each training epoch.
This can be done very efficiently on a GPU through a simple trapezoidal approxi-
mation of the integral in Eq. (4.14). It should be noted that, while the initialization
of the memory is necessary to obtain an exact model of the system at hand, it
could limit the applicability of the method to certain real life settings. However,
there are ways to make it less critical, such as initializing the memory with white
noise during training. This would of course impact the accuracy of the model,
depending on the system at hand.

Training Loop

Algorithm 1 summarises the NeuralODE training procedure.

Residual regularization

We observed that only training the model to follow the trajectory data can lead
to poor local optima with large corrections applied to the original model. Since
the magnitude of the correction is meant to be small when r is sufficiently large,
this tends to indicate over-fitting. This is an issue as such a model does not cap-
ture the true dynamics, and will quickly diverge when evaluated on conditions
different from the training trajectory. To address this, a regularization term can
be added to the loss, to limit the magnitude of the corrections applied to the
ROM:
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Algorithm 1 Training the CD-ROM as a Neural ODE

Require: f(z;0) the dynamics of the CD-ROM, L the loss, n the learning
rate

fori«+ 1to N do > Training iterations
Sample a batch of trajectories a*,  _,,
Compute the initial memory yy, > Equation 4.14
Zo < [aaay0] ‘
las, ye) < 2o + [, f(z;0)dt > CD-ROM simulation
Compute the loss L(ay—1, af—y 1)
pir — 4= > Adjoint Initial Condition
pe 4 pr — [T 2 dt > Adjoint Equation
DL 1 —pT %t > Compute the Gradient
0« 0—nLL

end for

1 , . ,
7= 3" (llaia) — a* G803 +p [R(y (i 8013 ) (4.15)

=1

where n, is the number of time steps of length A; in the optimized trajectory,
a* is the training trajectory data, and p is a hyper-parameter chosen to balance
the importance of the regularization w.r.t. the rest of the loss. Although this
fairly simple approach already helped guide the training, we obtained better
results by adding a custom regularization loss. This loss is based on the ap-
proximate value of the residual on the true trajectory, which can be obtained
by computing the time-derivative of the true reduced coordinates a* through
finite differences, and computing the difference with the derivative defined by
the uncorrected ROM:

R* = a* — La* — a*' Oa*. (4.16)

In parallel, the true value of the memory can be evaluated from the true
trajectory integrating in time the following ODE:

d
Y= E(a*;0g) — Ay. (4.17)

One can then define a regularization term L., for the loss:

n

1
Ecorr = TTt Z HR(Y(ZAI‘/)) - R*(ZAt)Hg . (418)

=1
This regularized loss definition was observed to lead to models with better
generalization properties. Note that L .., can be computed for a small random
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subset of the training batch at each epoch, to accelerate training while keeping
a “stochastic” regularization for the residual.

Encoded space regularization

Regularizing the encoded space can both help smooth the training process and
increase the robustness of the model to unseen conditions. Taking inspiration
from existing work ([88]), we propose to add the identity function to the en-
coder model. This means that useful information is embedded in memory in
the form of a time convolution of the past resolved states of the system. The
encoded state E(a;) is then composed of both the reduced state a, and a learn-
able nonlinear transformation MLP(-, 0g) of it:

E(a'tu QE) = |:a't7 M‘Cp(atv HE)] (4'19)

With this structure, the encoder will only be learning additional nonlinear trans-
formations of the state, simplifying the training and introducing a level of struc-
ture in the encoded space as we ensure its first dimensions are coherent with
the phase space.

Memory Dimension

The dimension of the memory in the CD-ROM formulation is a hyperparameter
that should be chosen depending on the case and the dimension of the reduced
state. Choosing an excessively low memory dimension will lead to poor predic-
tion performance, while using too high of a dimension will negatively impact
the computational cost of the corrected model and might lead to overfitting
and poor numerical conditioning.

In our experiements, good results were obtained using memory dimensions
ranging from 2x to 10x the dimension of the reduced state.

4.4 Interpretation of the model

Before presenting the selected test cases and results, further justification and
insights into the model are discussed in this Section. First, the Mori-Zwanzig
formalism is introduced to frame our model in the context of dynamical sys-
tems theory. Then, we study how it can be compared to purely data driven
approaches, such as reservoir computing.

4.4.1 The Mori-Zwanzig formalism

The Mori-Zwanzig formalism ([6, 10, 29]) provides a closed form for the dynamics
of partially observed systems by distinguishing three separate terms:
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t

%a(t) — Q(a(t) + /O K(a(s))ds + F(¢) (4.20)
where a(t) are observables of a system defined as a projection of the full or-
der state onto the observable space and Q is the projected part of the original
dynamics. These two quantities can respectively be identified as the reduced
coordinates and dynamics of classical POD-Galerkin models. The remaining
terms account for the impact of the non-observed coordinates of the system
on the resolved dynamics. K represents the dynamical exchanges between re-
solved and unresolved dynamics during the simulation, while F accounts for
the incomplete knowledge of the initial condition and system dynamics. Under
the condition that the unresolved dynamics be dissipative, which is reasonable
when the unobserved coordinates correspond to the small scales of a dynami-
cal system, and that the boundary of the integral term in Eq. (4.20) be modified
to —oo, the last term in the Mori-Zwanzig formalism vanishes, leading to the
following formulation:

t
Lo = 2a) + / K(a(s))ds. (4.21)
dt -

The residual model R proposed above can then be identified with the mem-
ory integral defined by the time-convolution kernel K, providing a strong con-
nection with our non-Markovian correction hypothesis. Framing the CD-ROM
architecture in the context of the Mori-Zwanzig formalism further justifies our
modeling choices. Yet, it does not provide additional insights into the form of
the correction model since little information is known about the convolution
operator which can be infinite dimensional in certain cases. Choices about the
structure of K need to be made. In this work, assumptions are made about the
vanishing impact of past states of the system on the residual model, accounted
for by the matrix A in our approach. In fact, this parallel with the Mori-Zwanzig
formalism was further exploited in our work and led to the development of a
second contribution, which we introduce in Chapter 6.

4.4.2 Deep Learning interpretation of the model

In this Paragraph, the link between the CD-ROM architecture and classical deep
learning models is discussed. Numerous methods have been proposed to model
sequential data, each relying on a specific mechanism to extract and retain
meaningful information from the past states of the system. The most popu-
lar architectures, GRU and LSTM ([56, 23, 57]), both use a combination of gating
mechanisms to learn long term dependencies in a sequence. Other approaches
like reservoir computing rely on an underlying dynamical system forced by the
sequence data to predict the required output. In fact, strong similarities can
be identified between our approach and echo state networks (ESN [45, 1. a
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widespread reservoir computing architecture. ESNs are based on the simula-
tion of random dynamics described by matrices Wi, and Wg. The matrix Wy,
is used to encode some data x; in higher dimension, while the matrix W holds
the weights of the reservoir used to advance the state (memory) y; in time:

Vit1 = 0(Winxs + WRry). (4.22)

For the sake of comparison, the nonlinear activation function o is dropped,
and we consider that equation (4.22) results from the Euler integration with

time-step A, of a continuous system describing the dynamics of the memory

dy.
dt -

Vi+1 = Winxy + WRry: (4.23)
dy
— A —= 2
yet Seg, (4.24)

which leads to the following expression:

d Wiy Wpgr—1
dt At At

Y- (425)

Because the spectral radius of the matrix Wy is constrained to be less than
unity, all the eigenvalues of the operator Wy = % have negative real parts,
leading the ESN to have memory dissipation properties similar to those of our
model. To underline this similarity, we can express the state of the ESN at time

t by diagonalising the operator Wi = PARP~:

T W.
y(t)_/ PeAR(t—T)P—lT:’x(r)dr. (4.26)
0

Thus, a parallel between our model and the ESN is outlined. Major differ-
ences remain in the fact that the dynamics (W) and encoding matrix (W) are
not optimised during the ESN training. It should also be noted that nonlinear-
ity is introduced in the ESN dynamics through the ¢ activation function, while
our model is based on linear memory dynamics and on a nonlinear encoding
operator. These comparisons between direct deep learning methods and the
continuous correction approach help build intuition about the role of each term
in the model. The encoder can be compared with the input gate of an LSTM, or
the W;, matrix of the ESN, the A matrix provides a tunable forget mechanism,
while the residual term R plays the role of the output operator in our “continu-
ous recurrent network”.
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Figure 4.5: Computational domain for the cylinder case.

4.5 Case presentation and reduced models

In this Section, we introduce the simulation cases selected to demonstrate the
ability of the CD-ROM approach to improve the performance of POD-Galerkin
models. We first present two flow problems to illustrate the benefits of the
CD-ROM architecture in the context of fluid mechanics. The first case is the
standard configuration of the flow over a cylinder, often used as a benchmark
for reduction methods. The second case is the fluidic pinball flow, introduced
in Noack and Morzynski [89] for the development of new control strategies.
Finally, we introduce the case of the 1D Kuramoto-Sivashinsky which we use
to demonstrate the ability of the CD-ROM approach to extend to parametric
simulation problems.

4.5.1 Flow over a cylinder

The two-dimensional incompressible flow over a cylinder has been extensively
studied in the context of reduced order modeling [17, 32] and model identi-
fication [79, 105] which makes this test case a good initial benchmark for the
proposed correction method. The flow is simulated at a Reynolds number of
Re =100 based on the cylinder diameter and the velocity of the incoming flow.
In this regime, the flow is laminar and exhibits vortex shedding in the wake of
the cylinder.

The flow is governed by the incompressible Navier-Stokes equations, here
solved using the FEnICs finite elements solver [50, 67]. The retained mesh is
shown in Figure 4.5. It is rectangle-shaped, spanning from x = —5to z = 15 in
the streamwise direction, and from y = —5to y = 5 in the transverse direction.
The cylinder has a diameter D = 1, centered around the origin. The inflow is
modeled as a uniform axial flow (u(-5,y) = [Ux,0]) and a free-slip condition
is used for the lower and upper boundaries of the rectangle while a no-slip
condition is enforced at the cylinder surface. Finally, a stress-free condition is
used for the outlet.
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Figure 4.6: Vorticity fields of the modes selected for the reduced order modeling
of the cylinder flow.

A reduced order modeling strategy is employed to obtain a baseline model
for the correction approach. The main results are summarised here but we re-
fer to Noack et al. [32] for details on the reduction strategy. The vortex shedding
regime of the cylinder flow is simulated with the FEniCs solver to obtain snap-
shot data and compute the POD modes. The first two modes, accounting for
more than 95% of the Frobenius norm of the snapshot matrix are selected. The
steady solution of the system is computed with a Newton method to construct
a so-called shift mode (aa). This mode is computed as a vector orthogonal to
the plane described by the first two modes, pointing to the base flow solution
u,, and serves as a support for the simulation of the transition of the system
from its steady state to the vortex shedding limit cycle. A three-dimensional
POD basis is thus finally obtained. They are shown in Fig. 4.6 in terms of the
vorticity field.

The training data corresponds to the simulation of the transition of the sys-
tem to the limit cycle of oscillations, starting from an initial condition ug. This
initial condition is taken as a point close to the base flow u, which is the fixed
point of the incompressible Navier Stokes equations. Following the procedure
of Loiseau et al. ([105]), we chose

ug = uy + €vy, (4.27)

where vy is the first POD mode, and € > 0 is a small coefficient used to perturb
the unstable base flow.

Through Galerkin projection of the discretised Navier-Stokes equations, a
system of 3 coupled ODEs is obtained, describing the dynamics of the reduced
coordinates vector. The results of the simulation of the transition using both the
Finite Elements model and the Galerkin ROM are displayed in Figure 4.7. Even
though the three equation model is able to simulate the transient dynamics, its
trajectory strongly diverges from the projected snapshot data. The transition
starts much later than in the full order simulation, due to a growth rate of the
ROM's transition lower than what it should be. Another significant issue with
the model is its stabilization around the limit cycle (ax = 0) where an overshoot
can be observed before the vortex shedding regime is established, which is not
observed in the snapshot data. These discrepancies between the two trajecto-
ries can be attributed to the ignored residual term in the dynamics, making this
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Figure 4.7: True trajectory and simulation of an uncorrected Galerkin ROM.
Plots (1) & (2) show the phase space trajectories projected on the a; — ax and
a; — ay planes, while (3) shows the time evolution of the shift mode coefficient.

model a good baseline for the correction approach illustrated in Section 4.6.
A test trajectory is also simulated in FEniCs by taking a random initial condi-
tion in the phase space spanned by the three selected modes, such that:

3
Wgest = »_viai, ;i ~N(0,1), (4.28)
i=0

where v; are the POD modes, and q; are random reduced coordinates sam-
pled from a normal distribution. Starting from this initial condition, the finite
element model is simulated in FEniCs for 700 seconds to ensure the system
reaches the oscillation regime. The performance of the various models on this
data trajectory are presented in Section 4.6.

4.5.2 Fluidic pinball

The second case used to demonstrate the approach is the so-called fluidic pin-
ball. Initially proposed as a challenging test bed for the development of control
laws [29], the fluidic pinball case offers a good trade-off between complexity of
its dynamics and interpretability [116, 156]. The simulation domain (Figure 4.8) is
composed of three equidistant cylinders, each generating vortices in the wake
which interact to create rich dynamics. The mesh used for the simulation was
provided by the authors of Cornejo Maceda et al. [100]. Displayed in Figure 4.8,
the domain is a rectangle spanning from x = —6 to = = 20 in the streamwise di-
rection,andy = —6toy = 6 inthe transverse direction. Three identical cylinders
with diameter D = 1 are arranged in an equilateral triangle, with centers’ coor-
dinates (0,0.75), (0, —0.75) and (—1.25,0) respectively. The boundary conditions
are identical to those of the cylinder case in Sec. 4.5.1. The inflow is modeled
as a uniform axial flow, the upper and lower boundaries of the computational
domain are modeled as free-slip, while a no-slip condition is used for the walls
of the three cylinders and the outlet is modeled as stress-free.

The flow is simulated at a Reynolds number of Re = 130. At this Reynolds
number, the flow dynamics have been shown to be chaotic [156], which makes
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Figure 4.8: Computational domain of the fluidic pinball case.
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Figure 4.9: Flow complexity of the pinball case. Left: Vorticity field of the flow in
the chaotic regime. Right: Spectrum of the snapshot matrix.

it a challenging problem for any correction model as the smallest error on the
dynamics will make the simulated trajectory diverge exponentially fast in time
from the truth. These kind of chaotic problems are starting to get traction
as interesting benchmarks for forecasting tasks and modeling problems [158].
The flow is simulated for 1800 seconds in the chaotic regime, which, based
on the ergodic property of the system, yields a trajectory long enough to be
representative of it's attractor.

It should be noted that the pinball flow is much more complex than the
cylinder, as evidenced from Figure 4.9 where it is seen that many POD modes
are required to account for a significant part of the energy. AlImost a thousand
modes would be required to capture 99% of the Frobenius norm of the snap-
shot data, while only 8 are required to achieve the same accuracy in the cylinder
case.

We chose to build a POD-Galerkin model of this flow using only the first 10
POD modes. Although this choice is somewhat arbitrary, it was made to chal-
lenge the correction method, as the mean reconstruction error of about 60%
has an important impact on the approximated dynamics. Indeed, the obtained
reduced model quickly separates from the original trajectory, as expected from
a chaotic system. More problematic is the fact that the reduced model is very
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Figure 4.10: From top to bottom: time evolution of the first 3 POD coefficients.
Black line: true value of the pinball's POD coefficients, orange line: trajectories
obtained by integrating an uncorrected Galerkin reduced order model con-
structed using the first 10 POD modes.

unstable and diverges after 70 s of simulation, as shown in Figure 4.10. Ap-
plication of the correction method is presented in Section 4.6, a discussion on
the impact of the number of modes is provided in Section 4.7.1, while additional
information on the computational cost of the approach is given in Section 4.7.2.

4.5.3 Parametric Kuramoto-Sivashinsky equation

Finally, to illustrate the ability of the proposed method to extend to parametric
problems, we introduce the case of the 1D parametric Kuramoto-Sivashinsky
(KS) equation. This case is often used to validate physical modeling methods as
itis inexpensive to simulate because of the relatively low dimension of the dis-
cretization required, and presents non linear dynamics. Moreover, depending
on the parameters used for the simulation, the dynamics become chaotic, mak-
ing it significantly more challenging to forecasting approaches. The KS equation
is formulated as follows:

ou _} 5 2

5 2V u® — Au — vA*u, (4.29)
u(z + L, t) = u(z, 1), (4.30)
u(z,0) = g(z), (4.31)

where L is the length of the 1D simulation domain, g is the initial condition and
v is a parameter that controls the degree of dissipativity of the system. Taking
inspiration from Wang, Ripamonti, and Hesthaven [148], we propose to learn a
corrected ROM for this problem under varying v values. As in Wang, Ripamonti,
and Hesthaven [148], we chose L = 22 and g is computed as the sum of the
four leading Fourier modes with coefficients 0.06. The problem is discretised
spatially on a basis of N = 513 Fourier modes, and integrated in time through
the semi-implicit third order scheme from Kar [39]. This choice of discretisation
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Figure 4.11: Left: Simulations of the KS equation carried out under two different
parameter values. Right: Relative snapshot reconstruction accuracy against the
number of POD modes used for reconstruction.

implies that the periodicity condition (equation 4.30) is satisfied by construction.
The simulation is carried out for a duration of 50 seconds, using a time step (A;)
of 0.025s.

As in Wang, Ripamonti, and Hesthaven [148], the parameter v is varied in
the range [0.3,1.5]. As mentioned in the previous Paragraph, this parameter
controls the degree of dissipation in the system, thus, low v values lead to more
chaotic dynamics and a harder model reduction task. This is represented on
figure 4.11, which displays the differences between simulations carried out at
the limits of the chosen parameter range.

To create a reduced model of the system, the simulation problem is solved
for 25 parameter values selected within a log-linear range from v = 0.3 to
v = 1.5. With this initial data, the proper orthogonal decomposition of the snap-
shot matrix is computed. The evolution of the relative snapshot reconstruction
error depending on the number of selected modes is shown in Figure 4.11. To
assemble the Galerkin reduced model, we select the 25 leading POD modes,
which account for more than 99.5% of the information in the snapshot data.
The computed POD modes form a basis V, which can be used to approximate
the solution field u(¢, v) computed for a given time and parameter value as fol-
lows: u(t,v) =~ a(t,v) = Val(t,v).

As in the non-parametric case, computing the vector of reduced coordinates
a(t,v) is sufficient to fully determine the approximate solution u(¢,v). Finally,
the Galerkin projection method described in Section 4.2 is applied to the KS
equation, yielding the following reduced model:
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Figure 4.12: Coefficients of the first 4 POD modes simulated with the uncor-
rected Galerkin ROM under different parameter values. Dashed line: Projected
DNS data, full line: Simulation of uncorrected the Galerkin ROM.

da 1

Fri —QaTQa — La —vL%a, (4.32)
Qi,j,k =< v;, V(vjug) >, L, k=1..r (4.33)
Ei,j =< Ui,A’l}j >, 1,7 =1,...,7 (4.34)
L} =<v, N>, dj=1..r (4.35)

where v; are the POD modes, and < -,- > is an inner product defined over
the computational domain. It can be noted that the Q and £ operators are
the one dimensional equivalent of the reduced Navier-Stokes operators intro-
duced in Section 3.3. Similarly, the operator £2 is a linear operator correspond-
ing to the fourth order derivative in equation 4.29. To test the model, 62 test
parameter values are selected randomly in the range v € [0.3,1.5] following a
log-uniform distribution.

The uncorrected Galerkin ROM is simulated using the semi-implicit scheme
from Kar [39]. Figure 4.12 presents the results obtained by simulating the Galerkin
model under different parameter values. The figure clearly underlines the dif-
ficulty of modeling lower v values, as we observe that the Galerkin model di-
verges quickly from the true trajectory. Results obtained by augmenting the
Galerkin ROM with the CD-ROM architecture are presented in Section 7.

4.6 Results and discussion

In this Section, we present the results obtained by applying the CD-ROM method
to the imperfect Galerkin ROMs presented in the previous Section. While some
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of the design choices regarding each specific cases are discussed in the follow-
ing Paragraphs, we refer the reader to Appendix 9.1 for a description of the
various training details and hyper-parameter choices.

4.6.1 Cylinder case

The reduced model derived in Section 4.5 above was shown to be efficient for
the simulation of the vortex shedding regime, but not suited to the simulation of
transient dynamics. To apply the proposed correction procedure to this model,
the modeling terms introduced in Sec. 4.3 are added to the reduced model.
The dimension of the memory is chosen to be ten times the dimension of the
reduced state. The residual R and encoder E are defined as multi layer percep-
trons, using the Rectified Linear Unit activation function. Finally, the diagonal of
the memory matrix A is initialised at random from a normal distribution. The
model is trained with the Adam optimizer, and the trajectory loss introduced
earlier (Eq. (4.11)) is used in combination with the additional regularization terms
introduced in Section 4.3.4.

As described in Section 4.5, the model is trained on the trajectory data ob-
tained by simulating the transition from an initial condition close to the base
flow. Since this target trajectory starts close to the base flow of the system,
which is stationary, the initial memory can be computed with minimal error
through the following integral:

0

v(0) = E(a}) / AT dr

Tmin

where a; = V' u, are the reduced coordinates of the base flow and 7, is the
longest time horizon defined by the A matrix as in Equation (4.13). Finally, the
parameters of the models are progressively optimised to reproduce the true
transition trajectory as shown in Figure 4.13.

The CD-ROM model is integrated in time using an adaptive RK-45 scheme.
Simulation results on the training trajectory are presented on Figure 4.14. It
can be seen that the corrected model follows the training trajectory perfectly,
triggering the transition at the right time, and correcting the oscillations of the
original ROM during the stabilisation on the limit cycle. Moreover, the graph
shows that the correction applied by the residual model is strong during the
transition, where the original ROM struggles, and becomes minimal during the
rest of the trajectory.

Finally, we present results of the performance of the model on the test tra-
jectory. Thefirst 8 seconds of DNS simulation are used to initialise the memory
following Equation (4.14). Figure 4.15 presents the performance of each model
on this trajectory. Because the starting point is not close to the base flow, the
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Figure 4.13: CD-ROM trajectory obtained at different levels of training. The first
mode’s amplitude is displayed in the top panel, while the third mode’s ampli-
tude is shown in the bottom panel.
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Figure 4.14: Results obtained with the corrected ROM for the simulation of the
cylinder flow's transient dynamics. Left: phase space trajectory from base flow
to limit cycle simulated with the finite element solver, the original Galerkin ROM
and our corrected model. Right: time evolution of the shift mode’s coefficient
simulated with the same models, as well as the norm of the correction applied
by our model.
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Figure 4.15: Simulation results obtained on a test trajectory. As in Figure 4.14,
the first graph represents the phase space trajectory, while the time evolution
of the shift mode’s coefficient is presented on the second graph.

uncorrected ROM instantly exhibits transient dynamics, however, the growth
rate of the transition is still inaccurate and the shift mode’s trajectory presents
the same non-physical oscillations around the limit cycle observed in the train-
ing trajectory. The corrected model does much better than the original ROM,
simulating a more accurate transition, and stabilising on the limit cycle almost
perfectly.

4.6.2 Fluidic pinball results

Correction Results

While the cylinder case discussed above offers a simple test bed for the pre-
sentation of the approach and its potential, it has already been shown that very
parsimonious models could be used to model its dynamics [105], which sug-
gests this configuration might not require a high dimensional neural network
to learn a correction term. The case of the fluidic pinball is more challenging
and can better underline the ability of our method to handle complex physics.
As presented in the previous Section, the POD-Galerkin approach is not well
suited to the reduction of the pinball case. The number of modes required to
reconstruct the snapshot data with a satisfying accuracy is very large and using
a small number of modes leads to an unstable model.

To apply the correction approach to the pinball case, a correction model is
built. The encoder and residual models are multi layer perceptrons and the Sig-
moid Linear Unit activation function is used as it leads to smoother integration.
The weights of the residual model are initialised to be close to 0 so that the ROM
is initially almost uncorrected. Diagonal entries of the memory matrix are ini-
tialised as a log-linear range of time horizons, ranging from 0.6 to 3.84 seconds.
The training data consists of 1800 seconds (15000 snapshots) of DNS simulation
in the chaotic regime. The leading two thirds of the simulated DNS trajectory
are used for training while the remaining third is set aside for testing.
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Figure 4.16: Vorticity fields obtained after 110 s of simulation in the chaotic
regime.

As presented in the previous Section, the uncorrected 10-mode ROM is un-
stable and diverges after 70 s of simulation. As a result, trying to optimise the
correction model for long trajectories directly would lead to a very unstable
training process. To address this issue and stabilise the training, the corrected
ROM is trained on sub-trajectories of only 10 seconds This length is chosen as it
is short enough for the model to remain stable and long enough for the impact
of the encoder on the memory to be accounted for. Once a good correction
model has been trained for 10 seconds long trajectories, the length is progres-
sively augmented to attain the target horizon of 120 s. Besides the stabilisation
of the training, using sub-trajectories also allows for parallel training. Multiple
sub-trajectories can be sampled from the snapshot data and integrated in par-
allel on a GPU to dramatically speed-up training, more information about the
training strategy as well as the training parameters used is provided in 9.1.

The pinball correction model was trained to follow true trajectories up to 120
seconds. Results of the simulated flow fields are presented on Figure 4.16. It can
be seen that the projection on the 10-dimensional POD basis effectively filters
part of the spatial structures, leading to the divergence of the uncorrected re-
duced model. In contrast, the corrected ROM is able to reproduce the projected
flow field accurately.

As with the cylinder case, the CD-ROM is simulated with an adaptive RK-45
scheme. Trajectory results simulated from a condition in the training basis are
presented on Figure 4.17. The model starts quickly diverging from the true tra-
jectory after the training horizon (120 s) as is expected from the chaotic nature
of the problem. Deriving a model to perfectly follow the DNS trajectory would
here make little modeling sense.

More interesting is the fact that, despite leaving the training trajectory, the
corrected model does not become unstable, even when integrated for over 1000
seconds with an initial condition outside of the training data. This suggests that
the dynamics correction learned by the model has some physical consistency,
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Figure 4.17: Results of the correction approach applied to the 10-mode ROM
of the fluidic pinball. The initial condition is a random point selected in the
training trajectory. Plots (a),(b),(c) describe the coefficients of the first three POD
modes simulated with different models. Plot (d) presents the relative Euclidean
distance between the true data and the trajectory simulated with the CD-ROM.

dissipating the necessary energy which would otherwise have made the simu-
lation diverge in the uncorrected case.

The intuition that the model was able to learn a Physics-compatible correc-
tion is confirmed when looking at the statistics of the attractor spanned by the
CD-ROM's trajectory. Using the nolitsa library [107], the correlation dimension
([13]) was estimated, as well as the maximum Lyapunov exponent ([14]) of the
corrected and true trajectories. The results are shown in Figure 4.18 where
the model is seen to reproduce well the characteristics of the true attractor.
One can also look at the probability distributions of the mode’s amplitudes,
presented on Figure 4.19. Once again, the simulated trajectory reproduces the
results of the true simulation.

Note that long trajectories (several hundreds of seconds) were simulated
with the corrected model to obtain these statistics. Due to the chaotic nature
of the problem and the length of the integration period, the model has visited
parts of the attractor different from those seen in the training trajectory. De-
spite this, the CD-ROM remains stable and describes an attractor with statistics
that are very similar to those of the true attractor, further supporting the ap-
proach for the reduced modeling of complex dynamics.

4.6.3 Parametric KS equation results

In this Paragraph, we present the results obtained by applying the CD-ROM ar-
chitecture to a parametric case, the KS equation presented in Section 4.5.3. To
do so, the reduced Galerkin model of equation 4.32 is augmented with the pro-
posed CD-ROM architecture (equation 4.8). To account for the parametric na-
ture of the problem, the coefficient v is passed to both the residual (R) and
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Figure 4.18: Statistics of the 10-dimensional attractors described by the pro-
jected DNS data (black) and the CD-ROM (blue). Left: Average number of points
g in a sphere of radius r, the data follows the law g = 7“2 where C, corresponds
to the correlation dimension of the attractor. Right: Time evolution of the aver-
age distance d between trajectories starting from arbitrarily close initial condi-
tions on the attractor. The data follows the law d = e''e where [, corresponds to
the maximum lyapunov exponent of the system at hand.

-3 -3
-50 -25 00 25 5.0 =50 -25 00 25 5.0 -4 -2 0 2 4 -4 -2 0 2 4 -2 0 2

(6) (7) (8) (9)

———
_"’

|
0 2 -2 0 2 =

Figure 4.19: Estimated probability density functions for the coefficient of each
mode. Plain blue line: Statistics of the trajectory simulated with the corrected
model; dotted black line: Statistics of the projected DNS data. Labels refer to the
mode index.
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Figure 4.20: Coefficients of the first 4 POD modes simulated with the CD-ROM
as well as the uncorrected Galerkin ROM under different parameter values in
the test dataset. Dashed line: Projected DNS data, full orange line: Simulation of
the Galerkin ROM, full blue line: Simulation of the CD-ROM.

encoder (E) models, yielding the following CD-ROM system:

%a = —%aTQa — La—vL’a + R(y,v;0z),
dy — . (4.36)
ay = E(CL,V, 0E> - Ay

The residual and encoder models are both expressed as multi layer percep-
trons, using the SiLU activation function. The weights of both neural networks,
as well as the memory matrix A, are optimised using the Adam optimizer. As in
the previous fluidic pinball case, we start by optimising the model on small sub-
trajectories, then gradually increase the length of the sub-trajectories as the
model reaches the desired accuracy. The model is trained on the data gener-
ated to computed the POD modes and assemble the Galerkin ROM (see Section
4.5.3). This training data corresponds to simulations carried out under 25 differ-
ent parameter values in the range [0.3,1.5]. After training, the model is tested
on 62 new simulations carried out under different parameter values selected
randomly following a log-uniform distribution, as described in Section 4.5.3.

Contrary to the two previous flow cases, it is more efficient to simulate the
KS equations using the semi implicit time-stepping scheme of Kar [39], thus we
use this scheme to integrate the CD-ROM model in time. Figure 4.20 presents
the results obtained by simulating the CD-ROM using v values not included in
the training data. On the two cases presented, the CD-ROM performs better
than the Baseline Galerkin ROM. It can be seen that the model diverges from
the true trajectory data earlier in the case where the value of v is lower. This
is expected as we showed in Section 4.5.3 that lower v values lead to more
complex dynamics.
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Figure 4.21: Error metric (equation 4.37) computed for each test parameter
value.

To assess the performance of the CD-ROM over the whole test set, the Eu-
clidean distance between the simulated reduced coordinates vector a and the
projected DNS data a* is computed over time, and for every test parameter
values:

d(t,v) = lla(t,v) — a*(t,v)]2. (4.37)

Figure 4.21 presents the values of the error metric (equation 4.37) for every
test parameter value at select time steps. The figure shows that the CD-ROM
is able to remain significantly closer to the true trajectory than the baseline
Galerkin ROM for almost 20 seconds. The model then behaves differently de-
pending on the parameter value. Cases in the v € [0.3,0.5] range presenting
the more chaotic dynamics quickly diverge from the true trajectory, while the
CD-ROM is able to beat the baseline on the rest of the test cases for up to 50
seconds.

These results demonstrate the ability of the CD-ROM architecture to im-
prove the Galerkin model order reduction approach in a parametric setting.
The trained CD-ROM model is able to reproduce the dynamics of the full order
system better than its uncorrected counterpart, even when using parameter
values different from the training conditions.
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4.7 Additional Results

4.7.1 Number of modes for the fluidic pinball reduction

Before concluding this Chapter, we discuss below some additional studies that
were conducted on the case of the fluidic pinball. A first study considers the
evolution of the uncorrected model error depending on the number of modes,
which was carried out to underline the challenge of using only the ten leading
modes in the experiments presented in the previous Section. A discussion on
the computational costs of the method is then provided, to underline the pa-
rameters driving these costs as well as the tradeoff between the dimension of
the ROM and the computational cost of the correction model.

Uncorrected models comparison

In Section 4.5, we present a 10-mode reduced order model of the fluidic pinball
problem. The number of modes is chosen somewhat arbitrarily to challenge the
method. The more modes are used to model the flow, the better the model will
be at reproducing the true dynamics, reducing the complexity of the required
residual term. With this study, we provide additional insights into the impact of
the number of modes on the reduction problem to clarify the choice of using
10 modes to model the pinball flow.

Figure 4.22 presents the performance of different reduced models of the
pinball flow. It is clearly seen that increasing the number of modes is benefi-
cial for the performance of the reduced models. The magnitude of the closure
term, as well as the speed at which the reduced model diverges from the true
trajectory, are reduced when the number of modes increases. This Figure also
shows that a higher number of modes leads to more stable reduced models.
However, further experiments showed that even well resolved models such as
the one using 173 modes were not stable and would diverge in certain condi-
tions.

Training convergence

To add to the argument, a comparison of the training convergence between
two models using different number of modes is discussed. Two models are
built, using respectively 10 and 55 POD modes, and the correction architecture
is trained using the same parameters, presented in Table 4.2.

Memory Dimension | 5 x POD dimension

Residual Ir 1073
Encoder Ir 1073
Alr 21074

Optimiser AdamW




4.7. ADDITIONAL RESULTS 87

=== 10 Modes (42%) 55 Modes (75%) === 173 Modes(90%) === DNS]
JILL
; \/ /I
_5 \ ‘
0.2 k/\ /\
001 s L AN S\ A
T N \,\/
—0.24
oy
[ i i =R EE R R EEREE
101 /:: _____________________
1072 4 . ‘ ,
0 10 20 30 w0 = "

time (s)

Figure 4.22: Comparison of the performance of POD-Galerkin models at differ-
ent degrees of reduction. Top: Simulated value for the amplitude of the first
POD mode; center: Value of the closure term for the first POD mode computed
on the true trajectory; bottom: Relative distance between simulated and true
trajectories.

Table 4.2: Parameters, e.g. learning rates (Ir), used for the training of the
compared CD-ROM architectures.

In both cases, the same loss is used, combining the optimisation of the dis-
tance between simulated and true trajectory with the residual regularization
discussed in Section 4.3.4:

=1 (; > lalia) = a*GA)3 + e 3 [R(v(iA) - R*@A»H%) - (439)
i=1 i=1

where ¢ = 0.1 is a constant weighting the importance of the stochastic residual
regularization term w.r.t. the trajectory loss. Notice that, to ease the compari-
son between the two models, the loss is scaled by the number of modes used
in the ROM. The two models are trained in the same fashion, sub-trajectories of
a hundred time steps are sampled in the training base and the loss (4.38) is op-
timised until a chosen threshold (5 x 10~%) is reached, at which point the length
of the sub-trajectories is increased by fifty time steps. This process is repeated
until the model is able to reproduce sub-trajectories of a thousand time steps.

Figure 4.23 presents the evolution of the loss for the two models, as ex-
pected, the 55-mode model is quicker to train as it first reaches the threshold
in 1400 epochs, while it takes the 10-mode model more than twice the num-
ber of epochs to achieve the same performance. Similarly, the 55-mode model
achieves the required precision on trajectories of a 1000 time steps in only 4700
epochs, which is again more than twice as fast as the 10-mode model.

These results confirm the interest of only using the first 10 modes to chal-
lenge our correction approach. The relatively high magnitude of the residual
term to be learned, the instability embedded in the model and the low degree
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Figure 4.23: Loss evolution of two CD-ROM architectures using a different num-
ber of modes.

of resolution of the problem (only 42% of the snapshot information) all consti-
tute significant complexities which could arise in real world applications. While
we showed that using a higher number of modes would simplify the modeling
problems, this constraining choice helps demonstrate the applicability of the
CD-ROM method to challenging modeling problems.

4.7.2 Computational cost

While the computational cost of the overall CD-ROM approach and the way it
compares to full order methods will strongly vary with the nature of the prob-
lem it is applied to, the simulation software used as well as the available hard-
ware, we provide some elements of comparison with the POD Galerkin method
in this Section. Once again focusing on the case of the fluidic pinball (see Section
4.5.2), we distinguish several components of the computational costs entailed
by the CD-ROM method:

ROM assembly

Because most POD Galerkin models are often restricted to a very low num-
ber of modes, the cost of assembling the reduced model can often be over-
looked. However, some problems might require a high number of POD modes
to achieve a satisfactory resolution. For example, the fluidic pinball case re-
quires up to a thousand modes to capture 99% of the snapshot information,
which directly impacts the cost of assembling the reduced operators £ and Q in
equation 4.1. Specifically, the reduced advective operator Q requires the com-
putation of O(n?) inner products, n being the number of selected POD modes.

This leads to exploding ROM assembly costs as the number of POD modes
grows higher. While the assembly remains a one-time, parallelisable operation,
we observed that assembling a 250 modes ROM on a 50 cpu machine took more
than a full day of computation. This underlines the interest of representing
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Figure 4.24: Performance and computational cost of simulating different mod-
els starting from an initial condition outside the CD-ROM training basis.

the dynamics on a low dimensional basis of modes, as assembling a thousand
mode ROM would become prohibitively expensive.

ROM Simulation

Figure 4.24 presents the comparative simulation costs and performance of dif-
ferent reduced models on the fluidic pinball case. The figure shows that, al-
though the CD-ROM does diverge from the true trajectory after some time,
it performs better than its uncorrected counterparts. Specifically, the uncor-
rected 173 modes reduced model which captures more than 90% of the snap-
shot information, diverges earlier than the CD-ROM, while being more expen-
sive to simulate.

It can also be seen that the CD-ROM is significantly more expensive to sim-
ulate than the simple Galerkin model. This can be explained by the cost of eval-
uating the neural networks embedded in the CD-ROM architecture. Indeed,
neural networks require the evaluation of matrix vector products of relatively
high dimension. In the pinball case, we use two hidden layers of 250 neurons
for the correction model, which explains the computational cost increase. How-
ever, itis interesting to note that the cost of evaluating a multi layer perceptron
scales quadratically with its width (number of neurons per layer), while the cost
of evaluating the advection term in the galerkin ROM scales cubically with the
number of modes. This explains the fact that the 173 modes Galerkin ROM is
more expensive to simulate than the 10 dimensional CD-ROM, while having a
lower accuracy. Similar to the previous Paragraph, this shows the interest of
correcting a low dimensional model, rather than simply increasing the number
of modes.
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Notes on Full Order Models

Providing a detailed comparison with full order methods is outside of the scope
of this study, as the computational cost of a full order model will depend on a
large number of choices, ranging from simulation software implementation to
numerical integration choices. We can however state that in fluid mechanics
examples, the full-order models were extremely expensive to simulate when
compared to the reduced models studied in this Chapter. For example, gener-
ating the snapshot and test data for the fluidic pinball case took more than a day
on a 50 cores machine. By comparison, the simulation of the trained CD-ROM
for the same duration is of the order of the second on a normal computer.

4.8 Conclusion

This Chapter introduces an augmented reduced order modeling strategy based
on the hybridization of the classical Galerkin projection method and simple neu-
ral networks. By studying the limitations of the Galerkin projection, we establish
links with the theory of partially observed systems, which leads us to use past
observables of the studied system as a critical ingredient for the correction of
Galerkin models. Building on this result, the CD-ROM architecture is proposed
to extract and exploit useful information from the system trajectory, by embed-
ding the model with a delay differential equation structure. Moreover, the train-
ing strategy based on adjoint optimization ensures a-posteriori performance of
the model on the training trajectory.

The CD-ROM approach was demonstrated on two simple CFD test cases,
namely, the flow over a cylinder and the fluidic pinball. Numerical experiments
have shown that the corrected models were able to capture the true dynamics
with a high degree of accuracy, reproducing the true transition in the case of the
cylinder flow, and following the training trajectory for multiple Lyapunov times
in the fluidic pinball case. Moreover, these experiments outlined the reliability
of the corrected model as it performed better than its uncorrected counterpart
even outside the training conditions. The results obtained with the fluidic pin-
ball are particularly encouraging. We showed that the correction model was
able to stabilize the original Galerkin model in a consistent physical manner, as
the attractor simulated with the CD-ROM approach presents statistics similar
to the original attractor.

The ability of the proposed approach to extend to parametric problems
was also demonstrated. The CD-ROM method was applied to the case of the
Kuramoto-Sivashinsky equation with varying viscosity. After training the model
on a small number of parameter values in a selected range, we showed that
the CD-ROM approach improved the performance of the baseline Galerkin ROM
over the whole parameter range, even when simulating using parameter values
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outside of the training data. This is of interest for many real-world situations,
e.g. industrial applications where a low-cost parametric model is a key enabler.

With this, we conclude this Chapter on the CD-ROM method. We once again
emphasize the hybrid nature of the model, combining first principles and neural
modeling. We show in the following Chapter that the degree of hybridization of
the model can be adjusted to allow for the reduction of challenging non-linear
dynamics. We also show that the time-continuous and interpretable memory
formulation of the CD-ROM learns to select frequencies that are consistent with
the system of interest.
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5.1 Introduction

The previous Chapter introduced the CD-ROM method for the augmentation
of POD-Galerkin reduced-order models. The method was shown to be able to

93



94 CHAPTER 5. ADAPTIVE CD-ROM

correct imperfect reduced order models resulting from the reduction of a sys-
tem’s governing equation on a low dimensional linear basis. In this Section, we
discuss additional studies carried out with the CD-ROM method.

First, we introduce results that were presented in Menier et al. [176]. This
work was carried out in collaboration with Michelin R&D in the context of the
HSA project at IRT SystemX. It focuses on the reduced-order modeling of an
industrial process with the CD-ROM method, the calendering of tire rubber and
illustrates the adaptability of the approach to previously irreducible equations.

A second study is then presented on the time horizons learned by the CD-
ROM architecture. By analyzing the memory dynamics of the CD-ROM, we show
that the model is able to choose and extract the dominating frequencies from
system data.

5.2 Application to Calendering and adaptive
hybridization

In this Section, we apply the CD-ROM approach to an industrial modeling prob-
lem. We show that the approach provides an adjustable degree of intrusivity as
it can be used to learn both a closure model as well as specific terms in partial
differential equations. Thus, we can consider this application of the CD-ROM to
be a relatively more data-driven model than the original approach proposed in
the previous Chapter. Similar to the native CD-ROM approach presented in the
previous Chapter, we place the method proposed in this Section on the hybridi-
sation spectrum,displayed on figure 5.1.

Efficiency, Flexibility

Full Order Model (i.e. FEM) >
CD-ROM SINDy

POD Ci(.z”'lerkm Recurrent Nqural Networks

Classical Data driven
Simulation Models

|Adaptive CD-ROMI Transformers
DMD

Boussinesq, K —,. ..

<

Generality, Interpretability, Correctness

Figure 5.1: The adaptive CD-ROM approach on the hybridization spectrum. NB:
This figure is provided for illustrative purposes and helps frame our proposals within
the broader context of the thesis. The placement of each method on the spectrum is
open to discussion, and small variations could lead to displacing a given approach
closer to one end or the other.
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Figure 5.2: Left: Schematic of the calendering process. Right. Simulation mesh
used in the finite element solver.

By augmenting an incomplete reduced order model of the system of interest
with the CD-ROM architecture, we show that an efficient and flexible model is
obtained, able to accurately simulate the problem in conditions unseen during
training and linearly reduce previously irreducible dynamics.

5.2.1 Problem introduction

Industrial problem: Rubber calendering process

This study focuses on the modeling of the rubber calendering process. Cal-
endering is a manufacturing process that consists in passing a rubber sheet
between two rollers to obtain the desired thickness and mechanical properties
(see Figure 5.2). Because of the compression between the rotating cylinders,
the rubber can heat up and deteriorate. To address this issue, one needs to es-
timate the heat generation inside the material under different cylinder rotation
speeds in order to determine acceptable process conditions. The issue is that
simulating the problem in a classical finite elements solver can take too much
time, limiting the applicability of full order simulation approaches to the control
of the process. We hence propose to use model order reduction to lower the
cost of simulating the problem.

Governing equations

The dynamics of this problem are governed by the following system of partial
differential equations:

O _ A o n(u, T)y(u)®

where T'(z,t) represents the value of the temperature of the rubber, u(z, t)
is the velocity of the rubber, p the pressure in the system, n the dynamic viscosity
of the material and ~ the deformation rate. Note that although the velocity of



96 CHAPTER 5. ADAPTIVE CD-ROM

the fluid is critical in the modeling of the system as it captures the effects of
the rotating cylinders on the system, it is governed by a steady-state equation.
This is because in this case, the velocity field of the rubber reacts rapidly and
is considered to transition instantly to its steady state under the given cylinder
speed and temperature conditions. The second equation then represents the
dynamics of the temperature field as it reacts to the velocity field imposed by
the cylinders.

Building a reduced-order model of these equations using the POD-Galerkin
method is not straightforward. First, the steady-state problem in Eq.(5.1) is un-
suitable for the efficient simulation of this system, as it has to be solved at ev-
ery time step of the integration. This requires additional considerations on the
choice of solver, and can lead to expensive and unstable integration.

Second, Eq.(5.2) can not be efficiently reduced through linear projection. Be-
cause of the linear nature of the Laplacian and gradient operators, the first two
terms of the dynamics can directly be projected on a linear low dimensional ba-
sis of spatial modes, reducing their computation to simple tensorial operations
as shown in Section 3.3. The last term, however, is a source term accounting
for the heat generated by the deformation of the rubber. This phenomenon is
strongly nonlinear and cannot be reduced linearly. Computing its reduced form
would require back-and-forth exchanges between the full-order solver and the
reduced model, which would directly impact the computational performances
of the ROM. To avoid these costly steps, we extend the CD-ROM approach to
model the last term of Eq. (5.2) in addition to the required correction term.

5.2.2 Proposed modeling approach

Data Generation

To construct the ROM, we first assemble a collection of solutions of the system
at different time steps and under different cylinder rotational speeds (S(¢)) by
simulating Eq. (5.2) with the finite element solver MEF++" [144]. To generate the
data, cylinder speed trajectories are sampled from the following distribution:

7
S(t)=co+ Z ¢; sin (2271;75) , co ~ N(l, 0.25), ¢~ N(O, 0.25). (5.3)
=4

This distribution yields cylinder speed trajectories in a range representative
of the operating conditions of the calendering process. 20 trajectories of S(t)
are sampled from this distribution, under which the system is simulated to gen-
erate solution snapshots.

"MEF++ — Wikipédia, http://fr.wikipedia.org/w/index.php?title=MEF},2B%2B&
01did=192108614
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ROM

By computing the Proper Orthogonal Decomposition of the obtained snapshots
as in Section 2.2.2, we extract a reduced number of principal modes optimally
approximating the data. Following this strategy, we compute two orthonormal
bases of modes, Vy € R"*"7 for the temperature and V,, € R?"<*"u for the
velocity. Here n. denotes the number of grid cells in the mesh, ny the number of
selected temperatures modes, and n, the number of selected velocity modes,
so that each column of the matrices Vp and V,, represents a complete field.
After computing these two bases, one can approximate the solution as linear
combinations of the principal components: T = Vyar and @ = Vyay. With this
formulation, solving the problem reduces to computing the low dimensional
vectors of POD coordinates ar € R"” and a, € R™.

Observing that the critical quantity to be modeled is the temperature field,
and that the computation of the velocity field implies the resolution of a non-
linear system of equations (Eq.(5.1)), we propose to model the reduced velocity
coordinates as a function of the cylinder speed and temperature:

u~u(S,ar). (5.4)

The above equation is only an approximation as modeling the solution of
the Stokes problem in Eq.(5.1) exactly might not be feasible. However, we note
that any approximation error introduced by this modeling choice can be ac-
counted for by the CD-ROM closure model. Thus, the problem is reduced to
the modeling of the dynamics of the reduced temperature coordinates ar.

Following the POD-Galerkin method introduced in Section 3.3, the reduced
forms of the temperature and velocity fields are injected in the temperature
dynamics (Eq. (5.2)), which are then projected on the temperature POD basis
Vr, yielding a system of ny ordinary differential equations:

dCLT A
= TCpVTT V¥Vrar — ayVy (Vi - VVp)ar
o) (5.5)
2 .
+ VQT n(vuam VTaT)’Y(Vuau) IR
PCp
i(aTVS)

Where R is the residual introduced in Section 3.3 that results from the evalu-
ation of the dynamics from the approximate reconstructed states & and 7. The
above equation can be separated into two parts: a reducible part r which easily
expresses in terms of the reduced coordinates a.,, ar, and an irreducible part i
which cannot be directly evaluated in the reduced space. This would normally
be a major impediment to the use of the POD-Galerkin method to solve this
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problem. However, using the CD-ROM approach, we can learn the effect of i
on the reduced dynamics using a neural network. Allowing for the extension of
reduced order modeling approaches to previously irreducible problems, while
retaining as much as possible from the original dynamical equations:

daT
dt

y(t):/_t e Ma(s)ds,  a(t) = [ar(t), S(1)] (5.7)

(t) = r(aT7 all78) +NN(O'T7 au,S,y) (56)

where A is a positive diagonal matrix corresponding to the time horizon ma-
trix defined in the previous Chapter (see Section 4.3.2) and y(¢) is the memory
of the model, specifically designed to be continuously integrable in parallel with
the reduced dynamics as a simple linear system. In the previous Chapter, the
critical role of the memory term y(¢) in retrieving information necessary for the
correction of reduced order models was underlined. In the following Section,
we show that this same idea can be used to model both the residual R and the
irreducible terms in the original equations.

5.2.3 Results
POD Bases

POD bases are computed for both the velocity and temperature fields. Figures
5.3 and 5.4 respectively present the results of the POD method on the temper-
ature and velocity fields.
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Figure 5.3: Temperature field POD. Top: Relative training data reconstruction
error depending on the number of modes. Bottom: Visualization of the leading
POD modes.
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Figure 5.4: Velocity field POD. Top: Relative training data reconstruction error
depending on the number of modes. Bottom: Visualization of the vertical com-
ponent of the leading POD modes.

The results display clearly that both the temperature and velocity fields can
be reduced on very low dimensional linear bases. We see that selecting the
leading n = 6 POD modes captures more than 95% of the variance in the prob-
lem. Similarly, the leading n,, = 4 velocity modes are enough to capture more
than 98% of the variance in the velocity snapshots.

Velocity modeling

As mentioned in the previous Section, the equations governing the velocity field
are not solved in the reduced model to avoid costly non-linear system resolu-
tions. Instead, a simple machine learning model is chosen to learn the relation
between the reduced velocity coordinates a,,, the cylinder velocity S and tem-
perature coordinates ar:

ay = f(ar,S). (5.8)

In this study, we defined f as a simple ridge regression model in order to
reduce as much as possible the variance in the reduced part r of the model. In-
deed, this reduced part constitutes the basis upon which the CD-ROM model is
built, meaning that the inaccuracies introduced by this simple ridge regression
model can be accounted for by the non-linear closure, i = NN (ar, G4, S, y).

Test performance

The model is trained on 80% of the trajectories in the dataset using the Neu-
ralODE approach in combination with the Adaptive Checkpointing Adjoint method
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[150]. The objective L is defined as the mean squared Euclidean distance be-
tween the simulated reduced coordinates and their true value a’:

e

L= 27 3 et - on ()l (5.9

The remaining 20% of the dataset is used for testing. Figure 5.5 presents
the performance of the model and its uncorrected counterpart on a test tra-
jectory. We also compute the RMSE normalized by the standard deviation of
the data (NRMSE) to provide a quantitative indication of the performance of the
model on the test trajectories. Obtained results show that the CD-ROM tra-
jectory fits the true trajectory almost perfectly, compared with the incomplete
ROM (Figure 5.5). The final NRMSE computed over the complete test set is of
2.5% . Moreover, the simulation of the corrected reduced model is much more
computationally efficient than finite element solvers as the parallel simulation
of 128 trajectories only takes a few seconds on a RTX 2080 GPU, while the simu-
lation of a single trajectory in our finite elements solver took about 5 minutes.
Note that similarly to the values presented in Section 4.7, these simulation times
only provide a rough estimation of the performance gap, as they heavily depend
on the hardware, implementation and simulation parameters of both the ROM
and the FE model.
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Figure 5.5: Performance of the corrected ROM (Eq. (5.6)) on a trajectory unseen
during training. Left: Trajectory of the first mode a,. Right: Trajectory of the sec-
ond mode ay. The incomplete ROM (r in Eq. (5.5)) is also shown for comparison.

5.2.4 Study Conclusion

This study presented an application of the CD-ROM method introduced in the
previous Chapter to an industrial problem. We tried to underline the adapt-
ability of the CD-ROM approach to ill-posed reduction problems such as those
involving highly nonlinear terms, while retaining a high degree of interpretabil-
ity compared to models unaware of the governing equations.

Moreover, we showed that the CD-ROM model can be used outside of its
training conditions with a high degree of accuracy. In the future, the ability of
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the model to generalize to new materials in addition to new conditions should
be investigated. The proposed approach could then be used in model predic-

tive control strategies to optimally tune the parameters of the manufacturing
process.
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5.3 Memoryinterpretability and Time horizons

5.3.1 Introduction

This Section presents a study of the ability of the CD-ROM to tune its memory
mechanism to select and retain the useful frequencies in the history of a sys-
tem. Indeed, the previous Chapter discussed the interpretability of the memory
architecture of the CD-ROM, which is based on a simple low-pass filtering mech-
anism of the system trajectory.

In this short study, we show that the model is able to learn relevant memory
time horizons to optimally retain the information necessary to the modeling of
a system'’s dynamics. To do so, we discuss the notion of time horizon of the
memory and then introduce a simple test case that allows for the study of the
memory mechanism and its interpretability.

5.3.2 Memory Horizons

As presented in the previous Chapter, the memory of the CD-ROM, y € R%,
evolves according to the following dynamics:

d
dl = E(x;60) — Agy. (5.10)
t
Where x € R% is the state of the system, E(-;6) : R% — R% is a trainable

map that lifts the state to the memory space and Ay € R%Xdl’ is a positive diag-

onal matrix. Because the matrix A is diagonal, the dynamics in memory space
are uncoupled, thus, each dimension of the memory y = [y1, 42, ...,ya4,] can be
isolated and its value computed as follows:

¢
yi(t):/ BTN Bi(x(s); 0)ds. (5.11)

Where ); is the diagonal entry of A corresponding to dimension 4, and E;

the corresponding dimension of the output of E. From the above equation, we
define a time horizon 7; for the information in the memory dimension y;:

T = " (5.12)

Thus 7; corresponds to the length of time necessary for the importance of
a given state E;(x(s)) in memory to decrease by a factor of e~!. Note that this
quantity is also directly related to the cutoff frequency of the filter in Eq.(5.11).
In the following Sections, we show that the CD-ROM approach systematically
learns similar values for the time horizons 7; starting from different initial con-
ditions. We also show that these horizons are coherent with the system to be
learned.
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Figure 5.6: A single frequency sine wave results from a two-dimensional sys-
tem, it can not be modeled through one-dimensional Markovian dynamics.
However, a delayed coordinate can be used to model the dynamics as a non-
markovian process.

5.3.3 Experiment setup
A simple test case

To analyze the way the CD-ROM'’'s memory architecture selects time horizons,
we chose the simplest non-markovian test case possible, a superposition of
sine waves. Sine waves have the advantage of being driven by clearly identified
frequencies, and despite their simplicity, they cannot be modeled as Markovian
autonomous systems (see figure 5.6).

They can however be augmented with delayed coordinates to obtain a non-
markovian dynamical model for the wave. We see in figure 5.6 that when the
wave only has one frequency, taking a delay of £ with T the period of the wave
yields a coordinate system in which the system is a simple limit cycle, and can
thus be modeled directly as an autonomous system.

A similar idea is used in this study as we analyze how the CD-ROM model
uses the memory dimensions, which play a similar role to delayed coordinates,
to learn the non-markovian dynamics of a superposition of two waves. We sim-
plify the memory architecture in Eq.(5.10) by defining the map E as a simple
repetition of the state of the wave z(¢) € R so that:

E(z) = [z x d). (5.13)

This means that the dimensions of the memory y(¢) directly correspond to
low-pass filtering of the trajectory z(t). Finally, the trajectory to be learned is
defined as the superposition of two waves of periods T} = 50s and T, = 168s:

.2 1. 2
z(t) = sm(%ﬂ + 5sm(ét). (5.14)
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5.3.4 Modeling

The dynamical model is defined as follows:

d
di; = NN (z,y;0) (5.15)
d

d% = E(z) — Agy. (5.16)

Where NN is a simple multi-layer perceptron mapping the delayed coor-
dinates to the value of the dynamics, E and A are the operators introduced in
equation 5.10, and the dimension of the memory is chosen to be d, = 3, which
is required as the wave is driven by two different frequencies.

The above model can be trained very easily to reproduce the trajectory of
the sine wave in Eq.(5.14), following the training strategy introduced in Section
4.3.3.

5.3.5 Results

To gather information in memory, the model learns the diagonal entries \; of
the memory matrix to select the relevant frequencies in the trajectory of the sys-
tem. We confirmed this behavior by training the model starting from different
initializations for the memory matrix. In each test, the entries of the memory
matrix were initialized to be equal to the same value at the start of the training
so that:

1 1 1

= = = To. (5.17)
ALinit  A2jnit  A3,init

50 values for ry are sampled logarithmically in the range [20, 200]. The results
obtained after training the model with three of those values are presented on
figure 5.7. We then present the distributions of the final values for the time
horizons 7; computed from the memory entries \; at the end of training with
the aforementioned 50 different initial values 7 in figure 5.8.

Figure 5.8 clearly shows that the model converged to similar time horizons
despite the strongly differing initializations. This result confirms the CD-ROM
model’s ability to adequately learn the matrix A entries irrespective of the ini-
tialization. It is also interesting to note that the time horizons 7; are coherent
with the system. The longest time horizon 73 &~ 163s is very close to the largest
period in the data 7T, = 168s, similarly =, ~ T} = 50s, finally the shortest time
horizon 7, is close to the optimal discrete delay value %.
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Figure 5.7: True and predicted values obtained after training the CD-ROM ar-
chitecture in Eq.(5.15) with three different initial values r; for the time horizons.
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Figure 5.8: Distributions of the learned time horizons at the end of the training,
starting from 50 constant initializations. Average values for the time horizons
are denoted as < ; >. Three cases did not lead to a converged model and are
not presented here.
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5.4 Conclusion

This Chapter introduced two additional studies carried out with the CD-ROM
model. First, we presented an application of the CD-ROM method to an indus-
trial problem. Showing that in addition to yielding satisfactory performance on
the modeling of the calendering of tire rubber, the CD-ROM model could be
extended to strongly nonlinear dynamics. Overcoming limitations of the POD
Galerkin reduction method while retaining the part of the governing equations
that can be efficiently reduced on a low dimensional basis. We present this ap-
plication as an example of how suitably designed data-driven models can be
combined with physical models to avoid relying entirely on data.

In a second study, we investigated the abilities of the CD-ROM memory ar-
chitecture to extract relevant frequencies from system data and retain them
in memory. We underline this aspect of the approach as a major advantage
over less interpretable approaches such as the LSTM network. Indeed, this in-
terpretability of the memory can be used to accurately initialize the model’s
memory (see Section 4.3.4) and confirm its validity.

Despite these advantages, we underline the fact that the CD-ROM approach
is bound to linear dimensionality reduction methods as they are intrinsic to the
Galerkin projection method. In the following Chapter, we discuss the fact that
linear reduction is often limited for the identification of low-dimensional spaces
for the dynamics of physical systems. On the other hand, we show that nonlin-
ear methods can be combined with the theory of partially observed systems to
identify very efficient, low-dimensional dynamical models from data.
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6.1 Introduction

The two previous chapters introduced in detail the CD-ROM approach, which fo-
cuses ontheimprovement of the POD-Galerkin reduced order modeling method.
We tried to show that the hybrid nature of the CD-ROM approach yielded mul-
tiple advantages in terms of training, stability and interpretability compared
to purely data-driven approaches. Moreover, we discussed the similarities be-
tween hybrid modeling approaches and the topic of inductive bias in machine
learning models, mentioned in Section 3.1.4.

In this chapter, we introduce the results presented in Menier et al. [192],
where we apply similar ideas in the context of nonlinear dimensionality reduc-
tion. Indeed, it is a well-established fact that linear methods often fall short of
optimality for the reduction of dynamical systems ([184]). By contrast, neural au-
toencoders introduced in Section (3.1.5) are able to efficiently capture the low
dimensional, non-linear manifolds on which dynamical systems evolve ([135])
and have become state of the art for non-linear dimensionality reduction. The
latent space identified by these autoencoders can then be used in combination
with dynamical modeling approaches to construct reduced models of any sys-
tem of interest.

We propose a novel interpretable model order reduction technique that
leverages the efficiency of nonlinear dimensionality reduction for dynamical
systems. This work is based on the existing Learning Effective Dynamics (LED )
framework ([184]). The framework proposes to use neural networks to carry out
dimensionality reduction to learn the structure of the latent space via a non-
linear mapping, and a second type of neural network architecture, the LSTM
([24], see also Section 3.2.1), to learn the potentially non-markovian dynam-
ics of the reduced system. While this framework yields promising results, we
show in this chapter that it can be modified to learn a theoretically grounded,
interpretable dynamical model replacing the LSTM currently in use. To this
end, we propose a novel machine-learning framework that is closely based
on Mori-Zwanzig [6, 10] and Koopman-Operator theory ([1], see also Section
3.2.1). This theoretical basis yields a method that is both accurate and offers
a higher degree of interpretability than classical deep-learning modeling ap-
proaches. The final model is constructed around interpretable linear dynamics
and completed by a physically motivated nonlinear closure. Thus, we name the
proposed framework interpretable Learning of Effective Dynamics (iLED), a fully
data-driven modeling approach that is well grounded in dynamical system the-
ory. Once again to help frame the approach in the context of the thesis, the
iLED method is placed on the hybridization spectrum, displayed in figure 6.1.

Due to a neural architecture closely based on Mori-Zwanzig and Koopman
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Figure 6.1: iLED on the hybridization spectrum. NB: This figure is provided for
illustrative purposes and helps frame our proposals within the broader context of
the thesis. The placement of each method on the spectrum is open to discussion,
and small variations could lead to displacing a given approach closer to one end or
the other.

theory our framework has a strong inductive bias and differs from black-box
models such as Neural ODE and SDE [99, 136] which can be used to learn time
continuous dynamical models. In fact, the iLED model is conceptually closer to
the Koopman-based approaches discussed in Section 3.2.1 which only learn lin-
ear dynamics in the latent space of an autoencoder such as Otto and Rowley
[90]and Champion, Brunton, and Kutz [114]. Indeed these models are very inter-
pretable as linear dynamics are easy to analyze and simulate, but they assume
that the model is Markovian, thus, they are unable to capture memory effects
on the trajectory.

The remainder of this chapter is structured as follows. In Section 6.2 we
present the general methodological framework giving special attention to the
connection between our novel framework and the Mori-Zwanzig formalism as
well as the Koopman operator theory. Computational aspects related to train-
ing the framework and generating predictions are discussed in Section 6.2.4.
Numerical illustrations are then presented in Section 6.4. Finally Section 6.5
concludes the chapter with a discussion of the results and possible extensions.

6.2 Methodology

This Section introduces the novel iLED framework in detail. We especially focus
on showing the connection between our method and theoretical considerations
involving the Mori-Zwanzig formalism and the Koopman Operator theory. In
Section 6.2.1, the motivation for the choice of neural networks to carry out di-
mensionality reduction is provided, while Section 6.2.2 presents the theoretical
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justifications for our proposed interpretable reduced dynamics framework. Fi-
nally, the actual iLED architecture is summarised in Section 6.2.3.

As in the rest of the thesis, we consider as our target a high dimensional,
potentially non-linear system whose state u € R% evolves in time according to
an operator F:

du
T F(t,u) (6.1)

This system can result from the discretization of a PDE such as the Navier-
Stokes equations. Such high dimensional models are often derived from first
principles and, while they are generally accurate, they can be extremely expen-
sive to solve numerically.

The following of this Section is organized as follows. In Section 6.2.1, the mo-
tivation for the choice of neural networks to carry out dimensionality reduction
is provided, while Section 6.2.2 presents the theoretical justifications for our
proposed interpretable reduced dynamics framework. Finally, the actual iLED
architecture is summarised in Section 6.2.3.

6.2.1 Dimensionality Reduction

As presented in chapter 2, the dimension d,, of the full order system in equation
(6.1) can be exceedingly high compared to the actual intrinsic system dimension.
Indeed, in general there exists a mapping D : R% — R%, with d, < d, such
that u =~ D(2).

In order to identify and exploit this reduced dimensionality, the mapping D
can be extracted from data using machine learning methods. Reduced order
modeling methods such as the POD-Galerkin approach which we considered
in the earlier chapters of the thesis leverage linear reduction approaches to
construct a basis that builds a matrix V€ R%>?: on which both the system'’s
state u and the dynamics F can be projected:

Viu=z, (6.2)
% =VIF(t,Vz)+e, (6.3)

where e is an unknown error term. These linear reduction approaches have
the important advantage of being physics-based as they are able to retain parts
of the original model F. Despite numerous successes with ROM[46, 186, 73],
linear reduction has been shown to be inefficient, in terms of dimensionality
reduction when compared to non-linear reduction approaches. Indeed, the



6.2. METHODOLOGY M1

dynamics of most systems are not restricted to low dimensional linear sub-
spaces but rather evolve on strongly non-linear manifolds[184]. This topic was
discussed in detail in Section 2.2 where we showed that neural networks could
be used to perform non-linear reduction efficiently. Thus, we propose to learn
two parameterized non-linear mappings, a decoder D(-;6p) and an encoder
E(+;0¢), such that:

u = D(=; 0p), (6.4)
z=E(u;0¢) (6.5)

where 8p and ¢ are the parameters of the decoder and encoder that are
learned during training of the neural networks.
However, using a non-linear encoder/decoder structure, the dynamics of the
reduced-order system have to be learned afterward or concurrently, as non-
linear dimensionality reduction does not allow for the direct reduction of the
original model F. Existing works [132, 76], most notably the LED framework
[184], have demonstrated that these reduced dynamics could be directly learned
using recurrent neural networks:

zi+1 = RNN(z¢, hy; Ornw), (6.6)

where h is a memory term and Oy are the parameters of the RNN. At the
same time, these models have limited interpretability, and aren’t directly linked
to dynamical systems theory. In the following Paragraphs, we show that it is
possible to derive a interpretable reduced dynamical model, with theoretical
justifications.

6.2.2 Framing iLED within the Mori-Zwanzig formalism

The iLED framework is based on both the Mori-Zwanzig formalism [6, 10] as well
as Koopman operator theory [1, 551. In this Section, we first give a reminder on
the Koopman operator, introduced in Section 3.2.1, which acts on observable
functions g of the state u of high-dimensional systems, before introducing the
Generalized Langevin Equation (GLE) for a reduced subset of these observables.
We subsequently define an appropriate closure term for the GLE and introduce
a neural network architecture.

Koopman Operator Theory and the Generalized Langevin Equation

The Koopman operator, introduced in Section 3.2.1, describes the dynamics
of observables of physical systems and has been employed extensively within
reduced-order modeling approaches [153, 47, 55]. For the high-dimensional
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system u(t, up), a Koopman operator can be used to represent the dynamics of
the system instead of Equation 6.1.

In more details, an observable g : R% — R of the system u is advanced in
time by the Koopman operator IC; [161]:

ICig(uo) = g(u(t, uo)) (6.7)

Operator IC, is linear, and potentially infinite dimensional. For practical pur-
poses, its operating space can be separated in an observed subspace (#,) de-
fined as the space spanned by a chosen set of M observables M = {g;}i—1...m

and an orthogonal subspace #Hg for which a set of basis functions M = {8 i=m+1.... 00

can be constructed so that (g;,g;) = 0 for alli € [1, M],j > M. The dynamics
of observables can then be expressed on the basis defined by the set M U M

([e10):

)bl e
dt [gxg ey Lviv Lo | L 8w

where L is a linear operator that corresponds to the infinitesimal generator

of ICt, gm = (84,8, - - -, 8 arethe chosen observables and i = 8ma1:8ritar - -

are the orthogonal observables. Note that the operator L is separated in four
parts, with Ly the dynamics in the observed subspace, Ly ; the orthogo-
nal dynamics and Ly, and L, ; the exchanges between the observed and
orthogonal subspaces.

The above system can be solved for g; as follows:

t
gr(t) = / e(t_s)LWLﬂMgM(s)ds + ethgﬂ(O), t>0. (6.9)
0

Finally, by injecting Eq.(6.9) in (6.8), an expression for the dynamics of the
observables g\ is obtained:

t

diiéw =Lyvmegm + LMM/O 6(t_s)LWLﬂMgM(s)als + LMﬂetLWgﬂ(O).
(6.10)
The above expression describes the dynamics of the partially observed state
of a system and has the same form as the Generalized Langevin Equation de-
rived in the Mori-Zwanzig formalism. It still depends on the unobserved part
of the initial condition (g5(0)) via the last term and thus is not a closed equa-
tion for gy only. However, this last term is often modeled as noise or simply
ignored in several modeling approaches [40, 44, 69, 161]. In the following Sec-
tion the conditions under which this term can be accounted for are explained

in more detail.

 8oc)
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Closing the GLE

The last term in Eqg.(6.10) depends on information that is unavailable as it is or-
thogonal to the observed subspace. However, this term vanishes if the history
of the observed subspace is known, and the orthogonal dynamics (Lyx;) are
dissipative. Indeed, if the history of the system is known, we can re-write Eq.(6.9)
for any initial condition [ga(—7), gz (—7)], 7 > 0:

t
go(t) = / et IMNA Ly g (s)ds + e lvmag (7). (6.11)

The last term in EqQ.6.11 vanishes for - — oo, if the orthogonal dynamics
Ly are dissipative, which is often a reasonable assumption as, for instance,
when the orthogonal (unobserved) subspace corresponds to the small scales
of a dynamical system. Under such hypothesis, we obtain the following closed
equation for the dynamics of the observed subspace:

t
gr(t) = / e(t_S)LWLmMgM(S)ds, (6.12)
dgm P

In the following subsection, we show that the various operators expressed
in the closed GLE (Eq. (6.13)) can be learned from data to derive an interpretable
and theoretically sound model for the reduced dynamics of physical systems.

6.2.3 The iLED architecture

To construct the JLED architecture, we first identify the observables g with the
learned subspace of the neural encoder £ so that gy = z = £(u; 0¢). We then
learn the various operators L., that express the different parts of the Mori-
Zwanzig formalism in equation (6.13).

The observed dynamics L n can be directly learned as a linear operator,
denoted A4y € R%*?: below. However, because both operators Ly;,, and L , -
are possibly infinite dimensional, they need to be approximated. We propose
to learn these operators as non-linear transformations of the observables z.
Justifications for this choice will be detailed in Section 6.2.3.

We introduce two neural networks ¥;(-;6) : R%+d= 3 R and Wy(-;0) :
R% +— R, where dj, is a user-defined parameter, and model the orthogonal
dynamics Ly; as a negative diagonal operator Ay < R This choice is
in line with the assumption that the orthogonal dynamics are dissipative and
significantly simplifies certain computations such as the initialization of the non-
markovian (or memory) term in the model. This leads to the iLED architecture
in Figure 6.2.
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ZZ =|Ay 2|+, [z, J el= W, (2) ds} ®
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Figure 6.2: ILED architecture: The high-dimensional system is encoded to a
lower-dimensional representation using the encoder £. The lower-dimensional
representation is propagated in time using a linear and a non-linear part based
on the Mori-Zwanzig formalism. With the help of a decoder D, the high-
dimensional system is subsequently reconstructed.
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The key part of this novel architure is the temporal dynamic of the JLED state

t

%Z =Apz+ ‘11971 |:Z,/ e(t_S)AO‘I/QVQ(Z)dS (6.14)

We note that the operator ¥; now also takes as argument the reduced state
z itself. This choice simplifies the training of the model by putting at the be-
ginning of the training process more weight on the latest time step during the
computation of the memory. This remains coherent with the framework de-
rived above, as the additional terms correspond to zero memory contributions
which is equivalent to entries of the matrix Ay going to negative infinity. This
final iLED architecture allows us to directly learn the various terms of the Mori-
Zwanzig formalism from data. Details on the training strategy will be given in
Section 6.2.4. But we first provide additional justifications for the model.

Remarks on the Approximation of an infinite linear operator using
a finite non-linear neural network based model

Our choice to approximate L+, ,and L , . ; with Deep Neural Networks is based
on the universal approximation theorem. Neural networks are universal ap-
proximators for non-linear operators if both the given input and output of the
operator are compact [22]. This has been successfully employed to construct
Neural Operators such as the Deep Operator Network [163]. However, in our
situation here, the subspace is infinite, and thus not compact. Fortunately, the
Koopman operator, our starting point in Equation 6.7, is generally represented
by a finite-dimensional operator with reasonable accuracy. In fact, this is a key
assumption for all main data-driven Koopman models, see e.g. Li et al. [88],
Otto and Rowley [90], and Brunton et al. [153] for reference. We assume that
the same assumption holds here, and thus are dealing with a finite-dimensional
orthogonal space whose operators can be approximated by neural networks.

6.2.4 Training the iLED architecure

This Section details the training of the JLED architecture, and the specific loss
function used.

A key difficulty is the choice of the latent dimension d.. The best choice is
a dimension close to the intrinsic dimension of the problem at hand. In the
common case where it is unknown, several approaches can be used to select
this parameter. A first option is to directly apply hyperparameter optimization
approaches such as grid search to the problem. i.e., train autoencoders with in-
creasing latent dimensions and select the dimension when the reconstruction
performance of the autoencoder starts to plateau. However, this approach can
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be expensive when applied to problems that use high-dimensional represen-
tations such as two-dimensional fluid flows. To avoid these expensive com-
putations, statistical analysis such as correlation analysis can be employed to
approximate the dimension of the attractor.

Having chosen this latent dimension d,, we can set up the model for the
latent dynamics.

To simulate the /LED model, we re-arrange the integro-differential equation
(6.14) into a coupled system of ordinary differential equations. First, we define
an intermediate term h as follows:

¢
h(t) —/ et o (2)ds. (6.15)

This h term corresponds to the memory of the model, which can be ad-
vanced in time in parallel of the reduced order state as follows:
d
@ _ Agz+ ¥y (2, h),
dt
ah (6.16)
— =W Agh.
” 0.2(z) + Ag
With this time-continuous architecture, the iLED model can be used in com-
bination with any standard ODE integrator. In this work, we used the semi-
implicit Runge-Kutta (siRK) scheme from Kar [39], which advances the /LED state
[z, h] in time as follows:

k k k
(I - AtAe) Zpas = 20 + ZAtAgzo + - At 1 (Z(k-1)At/3, P(k—1)A1/3);

6 6 3
k k k 6.1
<I — 6AtA9) hiatss = ho + EAtAeho + §At‘1’0,2(z(k71)ﬁt/3)’ ©7)

k=1,23.

Where Ay, ¥y 1, ¥y 5 and Ay correspond to the various operators introduced
in Eq.(6.14). This scheme takes advantage of dynamics that efficiently separate a
linear and a non-linear part. Moreover, siRKis very efficient for the simulation of
stiff dynamics, which is critical here, as the iLED model can be stiff and unstable
before being fully trained.

The siRK integration scheme is used in combination with the NeuralODE
[99] method introduced in Section 3.2.3 to train the jLED architecture. We train
the model in an end-to-end fashion, that is to say, both the neural autoencoder
{€,D} and the dynamics are optimized simultaneously, using the combined
loss:

L = Lrec + aLforecast- (6.18)
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where Lrec and Lsorecast are respectively the reconstruction and forecast losses,
and « controls their relative importance.

The reconstruction loss Lye drives the autoencoder to accurately recon-
struct the true full order trajectory u; :

Nt
1
Lrec = ﬁt Z ”UZ - D(S(UZ))H% (6.19)
i=1

The forecast 10ss Lsorecast PuUshes the model to accurately predict the re-
duced state z:

Ny
1 s
Lforecast = N, Z 2¢, — 5(UZ)||37 (6.20)
i=1

where z is calculated according to Equation 6.16. This aggregated loss is suf-
ficient to train the /LED architecture. However, we found that adding certain
terms of lesser importance was beneficial and helped stabilize training. Thus,
we added a reconstructed forecast loss:

Ny
1 .
Lrec forecast = N, Z ||(I'Z - D(zti)H%' (6.21)
=1

And a regularization loss on the nonlinear part of the iLED dynamics:

Ny
1 R ~
ﬁnon-linearity = ﬁt Z W1 (24, ht,) ”%7 (6.22)
=1

where ¥, is the non linear part of the /LED dynamics in equation (6.14). Fi-
nally, the full loss is written as follows:
L = Lrec + a1 Lforecast + @2Lrec forecast T 3Lnon-linearity (6.23)

with the coefficients «; adjusted to control the importance of each term.
In the next Section, we provide more details regarding lesser implementation
details that were used to obtain the results presented in Section 6.4.

6.3 Implementation Details

This Section discusses the choices we made during the construction of the method
that should be considered to reproduce the results.
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6.3.1 Memory Initialization

Because the jLED and CD-ROM models use the same memory architecture, the
memory is initialized in the exact same way:

_ 0 —As
ho = Wi(z(s))e Hds. (6.24)

As described in Section 4.3.4, the infinite boundary of the above integral is
relaxed by computing the longest time horizon 7,,,, of the memory from the
largest entry A\, of the negative diagonal matrix A:

€

(6.25)

Tmax =
A
min

Where ¢ € R* is a small parameter, generally chosen to be equal to 1072,
that controls the relative error on the computation of hg. After relaxing the
infinite boundary in equation (6.24), the memory can be initialised as follows:

0
ho = U, (E(P*(s)))e Mds. (6.26)

Note that the above integral can be computed from the training data as a
simple trapezoidal integration, which can be directly backpropagated through
during training.

6.3.2 Linear Parameterization

To ensure a higher degree of stability in the model. The linear operator Ay in
the JLED architecture is parameterized to be stable as follows:

Ay =Wy — W] — diag(abs(ty)), (6.27)

with W € R4=*4= 3 trainable weight matrix and w, € R% a trainable vector.
With this formulation, the operator Ay is guaranteed to be stable i.e. its eigen-
values have negative or zero real parts. This not only stabilizes the model but
also avoids divergence of the model in the early stages of training.

6.3.3 Latent space centering

To allow for the interpretability of the linear term in the iLED dynamics, it is
important to ensure that the latent codes computed by the encoder £ are cen-
tered. Indeed, a limit cycle arising from an unforced linear system will neces-
sarily be centered around the origin. To do so, we define a LatentSpaceCentering
operation LC(z) as follows:

LC(z) =z — . (6.28)
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Where i is a running mean of the latent code’s averages that is computed
during training and frozen at inference time. This approach is very similar to
classical batch normalization, except the data is only centered, as unitary scaling
of the latent space is not required for the model to learn efficiently.

6.3.4 Form of the memory kernel network

Once again, the memory architecture of the CD-ROM model is re-used, thus,
the lifting operator ¥, is expressed as a concatenation of the state and train-
able nonlinear transformations of said state z. So as to exploit the information
embedded in the latent space:

Py (z) = [z, MLP(2)]. (6.29)

Where MLP : R% s R¥*~4: denotes a standard multi layer perceptron.

6.4 Numerical Experiments

The capabilities of /LED are demonstrated on three relevant simulation prob-
lems: The FitzHugh-Nagomo model, a simple 1D equation with periodic dynam-
ics; The chaotic dynamics presented by the Kuramoto-Shivasinsky equation;
The incompressible Navier-Stokes equations describing flow around a cylinder
with two different Reynolds numbers (100 and 750).

6.4.1 Example 1: The FitzHugh-Nagomo Model

The FitzZHugh-Nagomo model was developed to study the dynamics of excitable
systems. It has been widely used in biology, physics and neuroscience. The
model consists of a pair of coupled Partial Differential Equations that describe
the dynamics of a fast-acting variable u(z,t) € R,z € Q = [0, L], t € [0,T], inhib-
ited by a slower variable v(z,t) € R:

ou O*u 3

T Du—am2 +u—u’—wv, (6.30)
ov 0%v

e —Dvﬁ-i—e(u—alv—ag). (6.31)

where variable u evolves on a much smaller time scale than its inhibitor
v. This separation of time scales is controlled by parameter ¢, set here to e =
0.006. The other model parameters are chosen as follows: D, =1, D, =4, L =
20, g = —0.03 and a1 = 2, to replicate the experiment presented in Vlachas
et al. [184].
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The computational domain Q is discretized using a grid of N = 101 points.
The problem is solved starting from 5 different initial conditions using the Latice-
Boltzmann method [38] and its implementation provided in Vlachas et al. [184].
The data is sampled at rate At = 1s to obtain 5 trajectories of 451 seconds each.
Two of those trajectories are set aside for validation and the others are used
for training. An additional trajectory of 10* seconds is simulated for testing pur-
poses.

By training various autoencoders to reconstruct the training trajectories de-
scribed above, we determined that the optimal latent dimension was d, = 2, as
the reconstruction accuracy evaluated from the validation trajectories saturates
for higher dimensions. This result is coherent with the oscillatory nature of the
dynamics and highlights the efficiency of non-linear dimensionality reduction.
Indeed, a linear method such as PCA requires up to 16 latent dimension (see
Vlachas et al. [184] figure 2-A) to achieve the same level of accuracy. A visualiza-
tion of the system evolution, as well as the corresponding latent trajectory are
presented in Figure 6.3.

1.0 u(x, t) Latent space trajectory

XO.S

0.0
v(x, t)
0 200 400 600 800
t(s)

Figure 6.3: Visualization of the FHN model’s dynamics. The evolution of the full
state for a subset of the test trajectory is presented on the left. The right hand
side of the plot displays the latent manifold learned by an autoencoder using
latent dimension d, = 2.
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0.0
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An iLED dynamical model is also trained at the same time as the autoen-
coder, using the procedure described in Section 6.2.4 (the hyperparameters
used are detailed in 10.1.1). Figure 6.4 presents the results obtained by simu-
lating the final model on the test trajectory. The Figure shows that the /LED
model is able to accurately reconstruct the full order system state from the la-
tent code z. Moreover, the dynamics is accurately captured: the model remains
on the true latent attractor even after a very long integration.

Finally, we argue that the iLED method is particularly well-suited for this case,
and highly interpretable. Due to the optimal latent dimension d, = 2, the linear
part of the jLED dynamics exhibits a single natural frequency, aligning with the
periodic nature of the dynamics under study. The learned frequency is approx-
imately 5.74mH z, while the primary frequency extracted from the true system
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Figure 6.4: Forecasting performance of the iLED method on the FHN case. From
top to bottom: true inhibitor field, predicted inhibitor field and absolute error
between the two. The right hand side presents the true and predicted latent
trajectory for an integration period of 8000s. NB: only the inhibitor v field is
presented for clarity, as it is harder to predict than the activator field w.

data using a Fourier Transform is 5.37mH z. This comparison demonstrates that
the operator has accurately captured the driving frequency of the system, al-
lowing the linear part of the iLED model to support most of the dynamics. A
close examination of the norm of the dynamics separately for the linear and
non-linear terms (Figure 6.5) confirms this result: The figure clearly shows that
the dynamics is mainly supported by the linear term, the contribution of the
nonlinear term being approximately one order of magnitude smaller. It is im-
portant to note that the nonlinear term still plays a role in this case, as the
learned latent attractor is not perfectly circular: A purely linear model would
inevitably diverge from the true trajectory.

Norm of the separated dynamics over time

101 WW/V\/

Norm

—— Linear part
Non-linear part

1072

0 200 400 600 800 1000
Time (s)

Figure 6.5: Norm of the dynamics parts
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6.4.2 Example 2: The Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation, previously introduced in Section 4.5.3,
provides a simplified mathematical description of the spatiotemporal dynam-
ics of a range of physical systems, most notably in CFD. It serves as a proto-
typical example of a nonlinear partial differential equation, and exhibits a rich
variety of behaviors, including the emergence of self-sustained oscillations, the
formation of coherent structures, and the occurrence of spatiotemporal chaos,
making it the perfect test-bed for reduced order modeling methods.
The KS equation can be written as:

ot o2 ozt T “or ]
u(z,t) € R,z €0, L], t € [0,T], (6.32)
U(Oat) = U(L,t),

=0,

where u(x, t) represents the unknown scalar field, and L is the length of the
computational domain, that controls the nature of the dynamics. Note that con-
trary to the CD-ROM experiments, we didn't target the problem of parametric
modeling in this study, the viscosity v in Eq.(4.29) is set to be equal to 1 and is
thus discarded from the equations. We use here L = 22, a common value for the
study of this problem ([184, 170]) which yields a dynamical system that evolves
on a stable attractor with a characteristic dimension approximately equal to
8 (a higher dimensional attractor than the attractor of the FitzHugh-Nagomo
model studied in previous Section). Moreover, the KS system develops chaotic
dynamics under these conditions, which significantly increases the complexity
of the learning problem, as small errors naturally compound over time during
the simulation.

The problem is discretized on a spectral basis of N=64 Fourier modes, and
advanced in time using a Semi implicit Runge-Kutta scheme [39]. We generate
2048 training trajectories starting from random initial conditions, and 64 others
for validation. The initial conditions are all advanced in time for 3000 "warm-
up" steps of length 6t = 0.025s, which are discarded as they account for the
transition from the random initial conditions to the chaotic attractor. The next
1280 steps are then sub-sampled with a At = 0.25s in order to obtain the training
and validation data. Finally, one hundred new initial conditions are simulated
with a longer time horizon (800s) for testing purposes. The evolution of one of
the training trajectories is presented in figure 6.6, as well as a visualization of
the joint probability density p(%, %), which is a helpful way of visualizing the
dynamics of the KS equation.

Applying the iLED method’, we find that the reconstruction performance of
the autoencoder used for dimensionality reduction does not improve for latent

'Details on the architecture and hyperparameters used can be found in 10.1.2
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Figure 6.6: Two views of a training trajectory for the Kuramoto-Shivasinsky case
(see text).

dimensions superior to d, = 8, which is in accordance with the true intrinsic
dimension of the KS attractor. Figure 6.7 presents results obtained on a test
trajectory with a trained iLED model.

The figure clearly demonstrates that the /LED method is able to correctly
capture the dynamics of the problem on a previously unseen trajectory, for a
time horizon at least as long as its training horizon. Of course, the forecast-
ing error does increase for longer integration times. But this was expected, as
the chaotic nature of the problem makes it increasingly hard for a model to
accurately follow the true system trajectory. Moreover, the figure shows that
despite leaving the true trajectory, the obtained attractor, visualized through
the densities of the derivatives, remains correct.

Similarly to the FHN case (section 6.4.1), let us take a close look at the eigen-
values of the learned linear operator in the iLED architecture. Figure 6.8 shows
the natural frequencies learned by the iLED models after training under ten dif-
ferent random seeds. Although these learned frequencies are harder to inter-
pret than for the FNH, as the KS system is not driven by a single main frequency,
it is interesting to note that the different model initializations led to learning a
similar range of frequencies. Moreover, the natural frequencies of the iLED lin-
ear operator are coherent with the frequencies observed in the data. Figure 6.8
displays the Fourier transform of a test trajectory, showing that a large range of
frequencies is present in the data. The figure also shows that this range is cov-
ered by the various frequencies learned by the iLED linear operator, suggesting
that while the chaotic attractor does not directly correspond to a periodic cycle
in latent space, this cycle is still relevant to the system dynamics.

6.4.3 Example 3: Navier-Stokes Equations for the Flow
around a Cylinder

Finally, we apply the iLED method to the case of the cylinder flow. The complex-
ity of this case is controlled by the Reynolds number (Re), which is a dimension-
less number that relates to the importance of energy dissipation in the system.
We chose to tackle the simulation problem under two different Reynolds num-
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Figure 6.7: Results obtained with the /LED method on a test trajectory. Dashed
black line: Horizon of the warm-up required to initialize the memory of the
model, Dashed red lined: time horizon used to train the model.

bers: Re = 100, the standard value used to benchmark reduced order modeling
applications; Re = 750, as the system then exhibits much more complex dynam-
ics.

In both cases, the incompressible Navier-Stokes equations are solved us-
ing an adaptive meshing and time stepping solver [200]. The generated data is
then interpolated on a cartesian grid to ensure compatibility with convolutional
neural networks. To construct the autoencoder, we use a multiscale approach
similar to the one proposed in Kici¢ et al. [189]. Indeed, the more complex part
of the dynamics takes place around the cylinder, requiring a higher resolution
than the remaining of the computational field. Thus, we use separate convolu-
tional encoders with different resolutions for the domain around the cylinder
and the remaining of the computational domain. These two encoders produce
two intermediate latent codes z; and z; which are passed through an additional
mixer multi layer perceptron to compute the latent code z. This mixer network is
used to ensure that each dimension of the latent state z can encode information
for both the higher and lower resolution parts of the state, which is important
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Figure 6.8: Top: Eigenvalues \; of the /LED linear operator (average and std. dev.
over ten different training runs). Bottom: Fourier transform of a test trajectory
averaged over the computational domain, the natural periods of the iLED op-
erator are also displayed for comparison. Note that several runs learned one
purely real eigenvalue, meaning that the learned period is infinite, thus not in-
cluded in the computation of the largest period (7}).

as the iLED linear operator Ay acts on the full latent state z. This multi-scale ar-
chitecture is illustrated in figure 6.9. Additional details on the architecture and
hyperparameters used can be found in 10.1.3

For both Reynolds numbers, the problem is simulated for 100s. The first
warm-up twenty seconds are discarded as they correspond to the transition
from the initial condition. The rest of the trajectory is sub-sampled with a A; =
0.02s yielding a trajectory of 4000 points. The first 2500 points are used for train-
ing, and the last 1500 are set aside for validation.

The results obtained by training an iLED model for the Re = 100 case are
presented in figure 6.10. We used a latent dimension of d, = 3, which is slightly
higher than the minimal dimension 2 required to represent the limit cycle of the
system, but yielded better modeling performance according to the combined
loss (Eq.(6.18)). Figure 6.10 clearly shows that the iLED model is able to accurately
reconstruct the system state after multiple periods of the dynamics. Similarly
to the Fitz-Hugh Nagomo case (sec 6.4.1) the results underline the effectiveness
of the iLED architecture, as the figure shows that most of the dynamics are sup-
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Figure 6.9: Multiscale architecture used to model the cylinder flow. The area
around the cylinder is rendered at four times the resolution of the rest of the
field, as it is where the dynamics are most complex.

ported by the linear part of the model.

Finally, the natural frequency of 1.466H = learned by the iLED linear operator
is in accordance with the system data which presents a dominant frequency of
1.562H z: This further confirms the validity of the model.

The results obtained on the case of the cylinder flow under a Reynolds num-
ber of 750 are presented in figure 6.11. Because this case presents more com-
plex dynamics than the simple 2D periodic limit cycle encountered for Re = 100,
we used a latent dimension of d, = 16 to model the latent dynamics. This choice
of latent dimensions was made in accordance with the results presented in Kicic¢
et al. [189], because of the similarities with the multiscale autoencoder used in
this work. Similar to the Re = 100 case, the iLED model is able to accurately
forecast and reconstruct the system state and once again, despite the higher
complexity of the case, most of the dynamics are supported by the linear op-
erator and the neural network closure (¥, in equation (6.16)) is only used to
correct the numerical imperfections in the curvature of the learned latent at-
tractor. Figure 6.1 also shows that the learned frequencies are coherent with
the system data, as the two first natural frequencies of the linear operator are
perfectly coherent with the dominant frequencies of the Fourier transform of
the true latent trajectories.

With these results, we demonstrate the ability of the iLED model to scale to
more complex, two-dimensional dynamics. The model yields satisfying perfor-
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Figure 6.10: Results obtained with the iLED method on the case of the cylinder
flow at a Reynolds number of 100.

mance combined with a high degree of interpretability and stability.

6.4.4 Remarks on the linearity of the dynamics

In two of the three numerical experiments presented above, we have shown
that the iLED model was able to transform high dimensional, nonlinear PDEs
into quasi-linear Ordinary Differential Equations. This is in fact coherent with
the oscillatory nature of the dynamics in both the FHN and Cylinder flow cases.
We underline this result as a major strength of the /LED framework as it is able
to identify simple models from data without any a-priori assumptions on the
system under study.

Moreover, it is important to note that although the identified models rely
almost entirely on the linear part of the dynamics, they are still completed by a
nonlinear term of lesser magnitude. Indeed, the complexity involved in learning
a purely linear model reaching the same degree of accuracy might be higher.
This is due to the fact that the neural autoencoders used for dimensionality
reduction struggle to learn perfectly organized latent attractors, which is criti-
cal to ensure the accuracy of purely linear dynamics. Of course, this aspect is
only magnified with the increasing complexity of the application case. Thus, the
nonlinear term in the framework can be looked at as a relaxation of the con-
straints on the shape of the latent attractor while still allowing for the extraction
of a simple interpretable model, as the observed low magnitude of the nonlin-
ear dynamics allows for accurate analysis of the model from the learned linear
term.
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Figure 6.11: Results obtained with the iLED method on the case of the cylinder
flow at a Reynolds number of 750.

Finally, we note that these quasi-linear dynamics were not observed in the
case of the Kuramoto-Shivasinsky equations. This is due to the chaotic nature
of the case. Because the system does not rely on a set of clearly identified
driving frequencies, the linear part of the model is not sufficient for the accurate
representation of the case, and the non-linear part then automatically learns
to complete the dynamics. This once again underlines the adaptability of the
model as no a-priori knowledge of the nature of the dynamics is required to
model the system.

6.5 conclusion

This chapter introduced the /LED method proposed to learn interpretable re-
duced order dynamics for high-dimensional, multiscale systems. This method
is closely based on Koopman operator theory and the Mori-Zwanzig formalism
and thus benefits from the inductive bias derived from this domain knowledge.
In addition to offering a high degree of interpretability, the latent dynamics of
our novel approach are still expressive enough such that the method can be
applied to various problems.
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We show that the approach performs well on a range of dynamics, from
chaotic problems to high-dimensional 2D flow cases. For each test case, the
method is able to learn a linear model for the latent dynamics as well as a non-
Markovian, non-linear closure term. The high-dimensional systems are mapped
with a non-linear encoder to a latent space, in which the complex non-linear
PDEs can be reduced to very simple quasi-linear ODEs, thus yielding fast and
stable simulations. The high-dimensional state can be reconstructed from the
latent space representation using a decoder that is trained simultaneously with
the aforementioned encoder, using an autoencoder architecture.

Currently, the derived latent dynamics are deterministic. For future work,
we plan to propose a probabilistic version based on either the Bayesian ap-
proach or Conformal Inference, in order to quantify the uncertainty caused by
dimensionality and model reduction. Another unsolved challenge pertains to
the optimal choice of the latent dimension. Indeed, we discussed in Section
6.2.4 the fact that various approaches can be used to estimate this value and
that, although the most efficient, direct optimization of the latent dimension is
not always feasible because of computational costs. Moreover, the iLED method
could be used to model more complex problems such as partially observed sys-
tems, or applied to real-world problems with unknown dynamics such as epi-
demic dynamics or brain activity to help derive interpretable dynamical laws
from available data.

Before concluding this thesis, the next chapter presents additional studies
on topics adjacent to our work. We discuss possible ways to use results from
dynamical systems theory to construct novel Deep Learning approaches, with
a focus on generative modeling.



130 CHAPTER 6. ILED



CHAPTER [/

LADDITIONAL STUDIES: DYNAMICAL SYSTEMS
FOR GENERATIVE MODELING

Contents
7.1 Introduction . .............. .. ..., 131
7.2 Unsupervised Domain Translation . ... ... .. 132
721 Method . ... ... . ... ... 133
722 Results . ... .. ... 135
7.2.3 Study Conclusion . . . . . . ... .. ... ...... 137
7.3 Hamiltonian Flows for Generative Modeling . .. 137
731 Methods . . . . . ... ... ... . 139
7.3.2 Related Works . . . . ... ... oL 144
7.3.3 Experiments. . . .. . ... ... 146
7.3.4 Limitations and Open questions . . . . . . ... ... 150
7.3.5 Study Conclusion . . . . . . ... ... ... ... .. 152
74 Conclusion. . ... ... ... ... ... 000, 152

7.1 Introduction

Aside from the main focus of the thesis, we carried out additional studies on the
similarities between dynamical systems and Deep Learning, where instead of
using deep learning to derive novel physical modeling approaches, we tried to
use insights from dynamical systems theory to inform and construct novel neu-
ral architectures. The two studies presented in this Chapter focus on the use
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of Hamiltonian Neural Networks [118], introduced in Chapter 3, to define invert-
ible transformations. Section 7.2 first introduces work on the use of Hamilto-
nian Neural Networks for domain translation, which was presented in Menier
et al. [177]. Section 7.3 then presents work on the use of Hamiltonian Neural
Networks for generative modeling, where we show that despite limited per-
formance, the Hamiltonian framework presents interesting properties for the
construction of Normalizing Flows.

7.2 Unsupervised Domain Translation

Domain translation is the process of transforming elements from one domain
to another. One can think of applications such as neural style transfer [20]
which is for example used to apply a certain painter’s style to photo-realistic
images. A common problem encountered in domain translation applications is
that, in many cases, paired data is not available during training, which means
that the problem has to be formulated in an unsupervised setting. Unsuper-
vised learning is very common in the field of generative modeling, and several
architectures have been proposed to deal with the problem of Unsupervised
Domain Translation. In this work, we focus on the Cycle-GAN [95] architecture,
which has proved successful in various applications of Unsupervised Domain
Translation ™.

Despite its success, the formulation of the Cycle-GAN method has been
questioned and shown to be ill-posed. Using results from Chen and Gopinath
[28], it can be shown that when considering two distinct domains, there exist
an infinity of pairings between the two domains which satisfy the Cycle-GAN
objective. This is an issue as the model could get stuck trying to learn wildly
inefficient mappings, leading to unsatisfactory optima. This conditioning prob-
lem has been explored in depth by Bézenac, Ayed, and Gallinari [152], as they
proposed to use a regularized residual network to learn the mapping between
two given domains. Borrowing ideas from optimal transport and dynamical
systems, they showed that pushing the training towards simple, low-energy,
transformations in latent space leads to learning a sensible and trivially invert-
ible mapping between the two domains of interest.

The study of the links between dynamical systems theory and deep learning
is still to this day a major topic of interest. One can for example cite the identifi-
cation of residual networks as first order approximations of a time-continuous
process which has led to the development of ground-breaking approaches such
as neural ordinary differential equations (Neural ODE [99]) or invertible neural
networks [113].

Building on this existing connection, as well as the work of Bézenac, Ayed,

"Cycle GAN project page, https://junyanz.github.io/CycleGAN/
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and Gallinari [152], we propose a formulation of unsupervised domain transla-
tion as a continuous time process with conservation guarantees which ensure
invertibility by construction. The proposed architecture learns the dynamics of
the transformation as a Hamiltonian dynamical system. Hamiltonian systems
are typically used in General Mechanics to describe the evolution of conser-
vative systems. They preserve a quantity, called the Hamiltonian, along their
trajectory. Using neural networks to learn Hamiltonian dynamics is an earlier
idea that was proposed in Greydanus, Dzamba, and Yosinski [118]. However
this work proposes to use them to ensure invertibility of the generative pro-
cess which is a desirable property to ensure the domain translation problem
is well-posed. Learning conservative transformations is in fact critical to other
generative modeling approaches, such as normalizing flows [74].

7.2.1 Method

Invertibility and CycleGAN

Formally, we can look at the two domains as two separate sets A, B ¢ R? where
dis the dimension of the space, i.e. the pixel space forimages, or any latent rep-
resentation space. The goal of unsupervised domain translation is to learn the
forward mapping F' : A — B as well as the reverse map R : B — A so that the
pair (F, R) generates semantically meaningful samples of each domain. That
is to say, the generated samples should be indistinguishable from samples in
the target domain, while remaining coherent with their corresponding sample
in the original domain.

CycleGan proposes to enforce these constraints by using a combined loss:
L = Lagy + Leye. The first term L4, = D(F(A), B) corresponds to an adversar-
ial loss which measures the distance between the generated samples and the
target domain. This term ensures that generated samples are indistinguish-
able from the target domain. In CycleGAN, D is implemented using Generative
Adversarial Networks [60].

The second term in the loss is called the cyclicloss, Leye = ||FoR(z.4) —z .4l +
||Ro F(xzg)— zg||. This term promotes transformations F that are invertible and
such that R = F~1. Intuitively, this pushes the CycleGAN architecture towards
learning minimal transformations of the samples, so as to retain a maximum
of information from the initial sample and simplify the reconstruction R o F.
This second term is used to ensure coherence between the translated and ini-
tial samples. In addition, learning an invertible (thus bijective) map between
the two domains is critical at the conceptual level. Indeed, one sample from a
given domain should not map to multiple samples in the target domain as only
one sample in the target domain should optimally satisfy the trade-off between
coherence with the original sample and similarity with the target domain.
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Continuous models and Hamiltonian Neural Networks

The previous Paragraph outlined the importance of ensuring the translation
map is invertible to relax the learning problem. In fact, this is not specific to the
domain translation problem, as invertibility of learned maps has been linked to
classical deep learning problems such as vanishing/exploding gradients in re-
current neural networks [51], or the training of other generative models like nor-
malizing flows [74]. Several approaches have been proposed to push learned
models towards invertibility [108, 2], however, they often impose significant con-
straints on the structure and expressivity of the models, leading to important
training costs.

In this work, we propose to use a natural formulation for invertible trans-
formations. Exploiting the parallel between the residual networks used in nu-
merous image processing approaches, and ordinary differential equations, we
propose to define domain translation as a continuous system. Starting att =0
with samples from one domain z;—o € A, we learn a transport flow fy so that,
att =T, x—7 € B:

d
d—'f = fo(x), st. xo€ A xp B (7.1)

This formulation is not enough to ensure invertibility of the transformation,
as the flow fy could be dissipative, or even unstable. To enforce invertibility,
we express the flow fy as a conservative operator using Hamiltonian neural
networks inspired from Greydanus, Dzamba, and Yosinski [118]. To do so, the
samples are divided into two vectors of equal length x = [p, ¢], (we assume d to
be even as a modeling choice). In general mechanics, p and ¢ would respectively
describe the position and momentum of the studied entities. In our setting,
their significance is more abstract and is defined by another function, called
the Hamiltonian Hy(p,q) : R¥? x R¥? — R, which we parameterize using a
neural network, hence:

dp _ _9He
fo(z) = ( &, ) (7.2)

a = ap

Using Neural ODEs and automatic differentiation, the function H, can be
trained to satisfy the transport objective, i.e. zr € B given xy € A. Moreover,
this formulation is invertible by design as it preserves the quantity Hy(z) along
its trajectory. We show below that learning the transformation f, with this for-
mulation allows for the generation of semantically correct samples, without us-
ing the cyclic loss required in CycleGAN. Thanks to the conservation properties
of the flow fy, the inverse map is trivially obtained by integrating the flow back-
ward in time:
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T 0
$B=$A+/O fo(x)dt <= $A=$B+/T fo(x)dt (7.3)

7.2.2 Results

Generative results

We apply our Hamiltonian domain translation approach to image generation
tasks. As proposed in Bézenac, Ayed, and Gallinari [152], we train an encoder
E and a decoder G to map images from both domains to a latent space of size
d = 128. This is a common approach in many image processing approaches, as
the intrinsic dimension of a given image dataset is generally much lower than
the pixel representation, which is the same idea as the one presented in Section
2.2 for dynamical systems. Thus, encoding images to a low-dimensional latent
space reduces the domain translation problem complexity, as well as training
costs.

Once the pair (F, G) is trained, it can be used to generate low-dimensional
encoded vectors of images of the dataset at hand. We then use our approach to
learn the transport flow fy. The Hamiltonian A and discriminator D are imple-
mented as multi layer perceptrons with 3 hidden layers. The continuous flow is
learned using the optimise-then-discretise version of NeuralODEs. We apply the
architecture to the task of translating male samples of the celebA [70] dataset
to females. Figure 7.1 presents samples generated with this approach.

Figure 7.1: Selected samples of the male to female transport process using the
proposed continuous domain translation approach. The transported encod-
ings are decoded at regular time intervals, to illustrate the transformation ap-
plied by the model.

As shown on Figure 7.1, decoding the transported samples along the trans-
formation trajectory shows that the flow f, progressively transforms the male
samples to females. As expected, the conservative nature of the model pro-
motes transformations that retain non gender-specific features, as we observe
that attributes such as pose, skin tone, face shape and background are pre-
served during the transformation. Figure 7.2 demonstrates an additional inter-
est of the Hamiltonian architecture as we are able to generate males from fe-
male samples by simply integrating the flow backward (see Eq. 7.3). One should
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Figure 7.2: Selected samples of the reverse male to female generation process.
NB : These samples are generated using equation (7.3) as transport flow was
solely trained to map male to females.

note that these results were obtained without ever training the model to map
females to males as we do not compute the cyclic loss used in CycleGAN. These
results are similar to the results of Bézenac, Ayed, and Gallinari [152] while no
penalization of the magnitude of the flow applied by the model is used but in-
vertibility is enforced instead.

T=00tu. T=025tu. T=05tu. T=075tu. T=10tu. T=125tu. T=15tu. T=175tu.

RRAAAAEA

Figure 7.3: Results of excessive integration of the transport flow. A model
trained to map males to females in 1 ¢.u. is integrated backward for more than
twice the map horizon. We observe that the generated samples retain semantic
sense for up to about 1.5 times the training horizon.

Excessive Integration

An interesting feature of using a continuous flow to carry out domain transla-
tion is that one can gain some insight in the way the model transforms samples.
If a flow fy has been trained to map two domains in one time unit (t.u.), T =1,
it can be integrated for a longer period, pushing the transformation further.
This is one of the major differences between learning continuous transforma-
tions and discrete residual blocks. While residual blocks approximate the flow
in specific regions of the latent space, the continuous flow is defined over the
whole space. Any trained model starts losing performance once it drifts too
far from its training conditions but we observed interesting results when inte-
grating our model for several t.u.. Figure 7.3 shows that transported samples
retain semantic meaning for up to about one and a half t.u., as the model pro-
gressively adds more and more gender-related features such as beards, wider
jaws, shorter hair, etc. This generalisation performance can be linked to the
conservative architecture of the model which prevents it from diverging to un-
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known conditions. It also adds to the interest of the approach as it supports the
idea that the model is consistent with the structure of the latent space.

Training

It should be noted that, once the autoencoder is trained, learning the flow f is
very inexpensive. The model starts generating semantically coherent samples
after a single epoch, and does not require fine tuning between the training of
the discriminator D and the flow fy. More formal benchmarking against com-
parable domain translation methods are planned for the future.

7.2.3 Study Conclusion

Thiswork proposes a novel formulation for domain translation. By using a time-
continuous approach, we are able to leverage results from general mechanics
to obtain a model that is invertible by construction. We show that this model
can quickly learn to map two domains of interest, even in a latent space learned
prior to training the domain translation architecture. We frame this study in the
context of hybridization, showing that as Deep Learning can be applied to im-
prove numerical modeling, the reverse also stands, and results from dynamical
systems theory can be exploited to derive new Deep Learning approaches. The
next Section follows the same line, where we discuss the way Hamiltonian flows
can be used for generative modeling.

7.3 Hamiltonian Flows for Generative Model-
ing
Generative modeling is a prominent topic in Deep Learning research. The idea
of being able to learn and sample from the data distribution is appealing in
many applications. In recent years, denoising diffusion probabilistic models
[75] have generated a lot of interest owing to their ability to generate samples
from very complex image distributions [167, 182, ]. Before these results, sev-
eral works on generative models had already been proposed. One can cite:
Variational Autoencoders (VAEs)[53], Generative Adversarial Networks (GANSs)
[61] and flow-based models [58]. Each method has its advantages and limita-
tions. VAEs introduce a prior Gaussian distribution on the low dimensional la-
tent representation of the data. They are easy to train but the assumption of
Gaussian distribution can lead to posterior collapse due to uninformative latent
representations or due to a high expressivity of the decoder [126, 125]. Remark-

able achievements were obtained with GANs in image, text and music genera-
tion [120, , 101]. In GANs, two neural networks are trained in an adversarial
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way to map a low dimensional latent Gaussian distribution to the data distri-
bution. However, the Nash equilibrium between the training of the generator
network and the discriminator network is difficult to achieve [130]. This makes
GANs hard to train and prone to mode collapse. Due to the low dimensional la-
tent representation of the data used to generate samples, the probability den-
sity estimation of the inputs cannot be estimated with GANs. Flow-based gener-
ative models overcome these limitations by progressively transforming a simple
distribution into a complex data distribution through a sequence of invertible
functions. Moreover, densities are preserved through the transformation.

These models were proposed in the early days of deep generative modeling,
and are generally less efficient than competing approaches in terms of gener-
ated samples quality. The invertibility constraint introduces limitations on the
choice of possible architectures. However, they have several advantages com-
pared to alternative approaches:

+ Density Estimation: flow-based models can be used to carry out density
estimation, which is extremely useful for critical tasks such as molecular
folding, or for predicting the probability of future events.

+ Meaningful Training Objective: They can be trained using a likelihood-
based objective which is quantitatively significant. This is not the case of
approaches such as GANs.

+ Latent Representation: They learn a well organised latent representa-
tion of the data at hand. Indeed manipulations of the normalized data
can be carried out to achieve useful transformations in the latent space
of flow-based generative models. The latent code of samples can for ex-
ample be interpolated, or transported along chosen directions to obtain
meaningful transformations of the data such as adding a smile to a face
image, or smoothly transform a sample.

These desirable aspects make flow-based generative models an attractive
option for certain generative modeling tasks, which is why a large body of recent
work was dedicated to their development [85, , 119]. Their main limitation is
their computational cost, as their training requires repetitive and costly evalua-
tions of the determinant of a large jacobian matrix. This is usually addressed by
using network architectures specifically designed to alleviate the cost of evalu-
ating the training objective ( more details on these architectures are given in
Section 7.3.1and in [58]).

Significant efforts have been made to relax these architectural constraints
and lighten the computational burden. In this work, we propose to focus on the
Continuous Normalizing Flow (CNF) approach, first introduced in parallel to the
Neural ODE method [99], which models the flow as a time continuous trans-
port of the data samples. The dynamics of this continuous transport map can
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be learned by optimising a simplified maximum likelihood objective, without
additional constraints on the architecture describing the flow.

In this Section, we leverage the link between continuous neural approaches
such as the CNF method and well established results from general mechanics.
the goal is to propose a variant of the Continuous Normalizing Flow approach,
termed Hamiltonian Normalizing Flow. We show that the link between deep
learning and dynamical systems can be exploited to ensure desirable charac-
teristics such as invertibility by construction and simplify both the computation
of the training objective and density estimation. Furthermore, we discuss the
link between our proposal and classical flow-based modeling architectures.

The study is organized as follows. Section 7.3.1introduces the theory behind
flow-based generative modeling as well as our proposal for the improvement of
Continuous Normalizing FLows. Section 7.3.2 discusses the links between our
approach and existing works while results are presented in Section 7.3.3.

7.3.1 Methods

Maximum Likelihood training

The goal of flow-based generative modeling is to learn a model py of an arbi-
trary data distribution. This is done by defining a continuous and invertible
map Fy trained to transform the data distribution = ~ p* into a simpler latent
distribution z ~ pg. Such a transformation is usually implemented using neu-
ral networks, and trained by minimising the negative log-likelihood of the data,
resulting in the following optimization problem:

0 c in E |—logpy .
agmin E_[~log (o) 7.0

Typically, the distribution p¢; is defined as a normal distribution so that pg =
N (ue, diag(¥%)), and the negative log-likelihood objective can be computed us-

ing the following change of variable formula:

0Fy

log py(z) = log pc(2) +log | -~

(7.5)
with z = Fp(z).

Thus, the optimisation of a flow-based generative model requires the estima-

tion of the determinant of the jacobian of the model ’%) at each training it-

eration. This can be computationally expensive, which is why the form of the
transformation F, must be carefully chosen. Usually, the transformation is im-
plemented as a sequence of N intermediate steps fy ,:

=f910f920 .o fo.n,

Zl f@n

(7.6)
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where each step fy,, is a neural network specifically designed to be invertible.
Indeed, neural networks are not natively invertible, nor is the determinant of
their Jacobian matrix generally straightforward to compute. To address this is-
sue, specific architectures called coupling layers are used [58, 85] to construct
the intermediate transformation steps. These layers are invertible by construc-
tion and have a triangular jacobian matrix, greatly simplifying the computation
of the second term in Eq. (7.5), since the determinant of their Jacobian is equal
to the product of its diagonal terms so that:

=sum (log diag (gy‘i‘)) : (7.7)

Coupling layers make the training of flow-based generative models computa-
tionally tractable at the cost of constraints on the architecture of the networks
used in the learning process. Alternative approaches rely on more flexible pa-
rameterizations of the transformation Fj. In this work, we focus on the Continu-
ous Normalizing Flows [99] approach which defines the map Fj as a continuous
transformation such that:

Ofo,i
ox

log ‘

T
Fy(wo) = 20 + /0 folao)dt, (7.8)

where fp can be any function of the samples =y ~ p* and z; = z(t), z(0) = .
This allows for a more flexible parametrization of the function Fy and changes
the negative log-likelihood objective Eq. (7.5) as follows:

T
otz =toepcten)+ [ 1 (2) a, 79
0 Tt
which is inexpensive to evaluate since a trace operation scales only linearly with
the number of hidden dimensions, while the computation of the determinant
in Eq. (7.5) scales with the cube of the dimension for dense jacobian matrices.
Despite these simplifications, Continuous Normalizing Flows are only invert-
ible in the continuous time limit, and still require the evaluation of the network’s
jacobian at every integration step. In the following Section, we introduce an al-
ternative perspective on learning invertible transformations using conservative
dynamical systems. We also describe the way these transformations can be
used to learn flow-based generative models.

Hamiltonian flows
Continuous transformations and Invertibility

As presented in the previous Section, the construction of flow-based genera-
tive models hinges on the invertibility of the transformation Fy. This Paragraph
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Figure 7.4: lllustration of the invertibility of conservative systems. The ideal
(conservative) pendulum conserves its energy along the trajectory, thus, its ini-
tial condition can be retrieved from any point of the trajectory. The real (dissi-
pative) pendulum loses energy over time, and converges to 0 for t — oo, pre-
venting inversion.

presents how results from general mechanics can be used to inform the con-
struction of Continuous Normalizing Flows to ensure their invertibility. Indeed,
the properties of the transformation in Eq. (7.8) are directly related to the form
of the transport dynamics fj.

Importantly, the invertibility of the transformation is not numerically guar-
anteed if the dynamics fp are unconstrained. This is especially the case if the
dynamics fy have dissipative properties, as dissipative systems can forget their
initial condition and yield an unstable inverse process (see figure 7.4 for anillus-
tration). On the other hand, a conservative system defines an invertible trans-
formation, as any point of the trajectory can be used to retrieve the initial con-
dition. To ensure that fy is conservative, we suggest to model the function fy as
a governing equation of a Hamiltonian system:

_ 9He(lg.p])
fola = la.p]) = ( ool ) , (7.10)
dq

where the samples 2 € R?? are split into two equal parts ¢,p € R? and Hy is
a scalar trainable function called the Hamiltonian. This idea was proposed in
Greydanus, Dzamba, and Yosinski [118] to learn the dynamics of conservative
systems. Indeed, the system in Eq. (7.10) is conservative by construction, mean-
ing that no matter the structure of the function H,, the value of Hy(x) is con-
served along the trajectory of the system. This formulation can thus be used to
ensure the invertibility of Continuous Normalizing Flows by construction.

Volume preservation

A significant aspect of this choice of parameterization is that it is volume pre-
serving, meaning that its divergence, here given by the trace of its jacobian, is
null. This greatly simplifies the computation of the training objective Eq. (7.9)
as the second term vanishes:

0
T (d
g palan) = lospoten) + [ 12 () ar 7.1)
0 Tt
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This result implies that conservative flows preserve probability densities along
their trajectory. It is worth to note that the second term in the right hand side
of Eq. (7.5) and Eq. (7.9) rescales the target distribution such that volumes are
preserved when local compressions or stretchings of the probability measure
arise under the map Fj or the flow fy. Volume preservation can also be too con-
straining as the model is not allowed to compress nor stretch locally the prob-
ability measure. To overcome this limitation, we propose to augment the data
with additional dimensions. This effectively allows the model to stack samples
along the additional dimensions to increase or remove mass on the distribution
marginalized to the original dimensions. This is illustrated in figure 7.5 where
we augment a 1D bimodal distribution ¢ ~ p* with a 1-D Gaussian dimension
po ~ N(0,1).

With this formulation, our Hamiltonian Normalizing Flow (HNF) can be trained
to model compressive cases. Moreover, it can be used to easily carry out den-
sity estimation. Using the volume preserving properties of the Hamiltonian flow
and the fact that the variables py and ¢ are independent, we write:

p(z0) = p(q0)pP(P0) = pa(T), (7.12)
— p(qo) = 2 5&3) - (7.13)

Thus, the probability density of a data sample ¢ can be easily computed as the
ratio of two Gaussian probability densities, without the need to evaluate the
determinant of a jacobian matrix. We note that the accuracy of this estimator
is conditioned by the performance of the model, i.e., the accordance between
the target distribution p; and the true transported data distribution z7 ~ pg.
Because models verify their training objective under some convergence preci-
sion, the estimator in Eq. (7.13) turns out to be noisy. This directly impacts the
performance of the model in estimating the probability density. More details
are provided in the results Section 7.3.3.

Training a HNF

The Hamiltonian Normalizing Flow can be trained by directly optimising the neg-
ative log-likelihood objective in Eq. (7.9). The augmented data samples xy are
transported by integrating the Hamiltonian system Eq. (7.10) using a Runge-
Kutta 4(5) time marching scheme and backpropagation is carried out using a
discretise-then-optimise version of the NeuralODE approach [99, 175].

Note that the negative log-likelihood in Eq. (7.11) should be modified to re-
flect the augmentation of the data. Indeed, the model should minimize the
probability of the data distribution ¢y ~ p*, not the augmented data distribu-
tion zy. This can be easily computed using the density estimator (7.13):

—log pg(qo) = —logpa(xr) + log p(po) (7.14)
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Figure 7.5: Gaussianization of a 1D bimodal distribution ¢y ~ p* augmented
with a Gaussian dimension py ~ N(0,1). Points are colored according to their
probability in the final Gaussian (¢r,pr) ~ pg distribution, as probabilities are
conserved in the (p,q) space by the Hamiltonian Normalizing Flow.

Because p, follows a simple Gaussian distribution, this does not significantly
increase the computation time of the training objective.

Relation to coupling layers

To improve understanding of the proposed method we make the link between
the coupling layer architecture and Hamiltonian dynamics clearer. We show
that, in certain cases, Hamiltonian systems and coupling layers are equivalent.
We focus on a specific architecture called the Additive Coupling Layer which is
the basis of modern flow-based generative modeling owing to its invertibility
and volume preserving properties. Additive Coupling Layers advance a sample
xo through the flow using the following rule:

[CIO:| = 20,

Po
p1 =po+ fo(qo), (7.15)
z1 = permute([go, p1]).

Where the permute operation is predefined exchange of the dimensions so that
successive coupling layers act on different parts of the state. In contrast, we
consider the integration of a Hamiltonian system using a leap-frog time march-
ing scheme, specifically designed for the simulation of Hamiltonian dynamics.
This time marching scheme advances the state 2y = (qo, po) as follows:

» » 10Hy
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When the Hamiltonian is expressed as the sum of potential and kinetic ener-
gies (Hy([q,p]) = To(q) + Vo(p)), and the permutation performed in Eqg. (7.15)
is a simple swap of the dimensions (permute([qo,p%]) = [p%,qo]), the leap-frog
time stepping scheme becomes equivalent to a stack of three additive coupling
layers:

vy
Py=m 50| =P = po + fo(qo)
qo0
Ty
@1 =qo+ o (7.17)
b1
2
_ . 1ov
pl—P% 2 dq
q1

Although this equivalence does not hold in the general case as more com-
plex coupling layer architectures are used in modern flow based models, this
parallel can be used to further justify the choice of the Hamiltonian structure to
build continuous flow-based generative models.

It should be noted that this separation of the Hamiltonian is not required in
our approach and, in fact, our application focuses on the general case where
%ng‘g # 0. The trainable Hamiltonian function considers the full state, in contrast
with classical discrete approaches, as coupling layers only consider part of the
state at each flow step.

7.3.2 Related Works

Discrete Flows: As presented in the above Sections, state of the art flow-based
generative models use the coupling layer architecture introduced in Dinh, Krueger,
and Bengio [58] to build efficient and invertible flow models. These layers have
been used and improved in various works; Dinh, Sohl-Dickstein, and Bengio
[85] used an affine version of the coupling layer to allow the model to com-
press distributions and Kingma and Dhariwal [103] proposed to use invertible
1 x 1 convolution to increase the performance of the model. Other modifica-
tions of this architecture have been proposed over the years (see Ho et al. [119]
for example), and overall, coupling layers have proven their efficiency for both
density estimation and generative tasks. However, they impose a significant
architectural constraint on the model. We propose our HNF as an alternative
to coupling layers for the design of flow-based models, and in a more general
sense, the design of invertible neural transformations.

Although discrete models currently outperform our Hamiltonian Nor-
malizing Flows on image datasets, we emphasize the theoretical advantages
of the Hamiltonian Normalizing Flow framework, as the proposed approach sig-
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nificantly relaxes the constraints on the form of neural networks used in the
model, simplifies the computation of the training objective and reduces the es-
timation of probability densities to a simple ratio of Gaussian probabilities.

Continuous Normalizing Flows : CNFs [99] have lower complexity than dis-
crete models and have proven their efficiency. However, the cost of integrating
the trace of their jacobian remains a bottleneck, although it can be efficiently
approximated as shown in Grathwohl et al. [117]. The advantage of the HNF
method is that this computational burden disappears as this specific term van-
ishes with our formulation.

Conservative Neural Applications: In the previous Sections, we described
the link between the conditioning of the neural network describing the dynam-
ics (fg) and the invertibility of the transformation. This topic has been studied
in other works as it pertains to various application fields. Approaches such as
Behrmann, Duvenaud, and Jacobsen [113] have proposed to penalise the con-
ditioning of weight matrices to ensure asymptotic stability of residual networks
while Haber and Ruthotto [86] have proposed to constrain weight matrices with
a symplectic structure to ensure the stability and invertibility of the networks.
Finally, Richter-Powell, Lipman, and Chen [181] have proposed a new parame-
terization for divergence free field, which could be used to obtain similar theo-
retical results as our method.

The Hamiltonian framework: The Hamiltonian framework appears in sev-
eral works on generative modeling. Dockhorn, Vahdat, and Kreis [172] use the
same idea of dimensionality augmentation as we do to allow for faster mixing
of the noise with the data samples in diffusion models, yielding a system of
ODE that can be decomposed in a Hamiltonian part combined with a Ornstein-
Uhlenbeck process. Similarly, Huang, Dinh, and Courville [133] show that their
augmented normalizing flows can be considered to be a discrete approximation
of a Hamiltonian system. Most notably, the idea of using Hamiltonians systems
to carry out flow-based modeling was also proposed in Toth et al. [146]. The au-
thors propose to use a Hamiltonian system to forecast the state of a system by
doing rollout generation of the next states. They also show that the Hamiltonian
framework can be used to do pure generation on toy datasets. We consider the
present work to be an extension of this work, with the following differences:

+ Continuity: To train their flow model on toy datasets, the authors of Toth
etal. [146] only use two leapfrog integration steps, making their approach
a variation of an additive coupling layer flow (see Section 7.3.1). On the
other hand, we show that the Hamiltonian framework can be used directly
in combination with the NeuralODE approach, without giving considera-
tion to the number of flow steps.

+ Hamiltonian architecture: Previous works propose to express the Hamil-
tonian function as a linear combination of potential and kinetic energy,
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Ho = Tp(q) + Vo(p). We show that this constraint is not necessary, allow-
ing for a more flexible parameterization of the model.

* Image generation: We apply the Hamiltonian framework to image gen-
eration tasks and convolutional Hamiltonian functions.

7.3.3 Experiments

This Section presents the various experiments carried out to demonstrate the
performance of Hamiltonian Normalizing Flows. We first discuss the case of a
1D bimodal distribution to illustrate several aspects of the model, particularly
the density estimation process and its relation to the random dimensions used
to augment the data. Examples of applications on 2-D toy datasets are then pre-
sented and finally, we demonstrate the ability of the Hamiltonian Normalizing
Flow to scale to real datasets.

In all experiments, we used the adaptive checkpointing adjoint method [150]
which is a more stable version of the Neural ODE method, but has higher mem-
ory requirements. As discussed in the above Sections, the Runge-Kutta 4(5)
adaptive time stepping scheme is used to allow the model to learn the num-
ber of integration steps required to carry out the transformation. This can
be thought of as adjusting the depth of the model during training. In the par-
ticular case of Hamiltonian systems, symplectic integration schemes would be
favored for their volume preserving properties, however, these come with in-
creased computational costs.

1D density estimation

To illustrate the behavior of the density estimator in equation Eq. (7.13), we use
the case of the normalization of a 1D bimodal distribution denoted p*. As pre-
sented on figure 7.5, a Hamiltonian Normalizing Flow can be trained to learn the
map between the augmented data distribution = = [qo, po], 90 ~ p*, po ~ N(0,1)
and a Gaussian distribution zp ~ p¢g. In this 1D case, the Hamiltonian Hy is pa-
rameterised as a simple multi layer perceptron with three hidden layer of 64
neurons each and the swish activation function is chosen over the rectified lin-
ear unit function because it is continuously differentiable. Once the model is
trained, the density probability of the data samples can be estimated using the
formula Eq. (7.13) as illustrated in Figure 7.6. As mentionned in Section 7.3.1,
the estimator is noisy because of the distance between the target distribution
pg and the true distribution generated by the model 2 ~ pg. However, the
estimator is unbiased since it does yield the correct density value on average,
this can be shown by sampling several py values for each data sample ¢o.
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Figure 7.6: Density estimation carried out the estimator using the HNF. As dis-
cussed in sec 7.3.1, the estimator doesn't yield the same value depdending on
the py value sampled.

Toy Datasets

Following the results obtained on a one dimensional case, we apply Hamiltonian
Normalizing Flows on several 2D toy datasets. For each dataset, the 2D data
g0 € R? is augmented with two 1D Gaussian dimensions py € R2. Similar to the
experiment on the 1D distribution, the Hamiltonian function is parameterized
as a multi layer perceptron with 3 hidden layers of 256 neurons each and SiLU
activation functions.

Figure 7.7 presents the results obtained after training the models on the
various cases. The figure shows that the model is able to accurately capture
the target distributions, both in cases where distributions are disjoint and multi-
modal. Itis interesting to note that the number of function evaluations required
to carry out the normalization is of the order of 10, which is relatively low when
compared to state of the art CNF results on similar benchmarks. For exam-
ple, the improved CNF method proposed in Grathwohl et al. [117], which yields
excellent results on both tabular and image data, requires about 100 function
evaluations to learn similar toy datasets.

Real Data

Finally, this subsection presents results obtained by applying the Hamiltonian
Normalizing Flow approach to real datasets. We first present an application to
several tabular datasets which can be used to measure the performance of a
likelihood model. Application of the HNF method on image datasets are then
presented.
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Figure 7.7: Left column: samples from the data distribution. Center columns: 2D
toy densities averaged over different numbers of p, samples . Right column:
Kernel density estimation.

Tabular Data

This Paragraph presents the application of the HNF method to likelihood es-
timation tasks on datasets commonly used to validate the performance likeli-
hood models. These datasets are pulled from the UCI machine learning repos-
itory [54], and we reproduce the data pre-processing steps of Papamakarios,
Pavlakou, and Murray [91] to allow for direct comparisons with other state of
the art models. The hamiltonian is defined as a multi layer perceptron, and
trained using the simplified negative likelihood objective Eq. (7.14).

Table 7.1: Average test compression costs in nats (lower is better) ob-
tained on tabular datasets with the HNF method. Compared with results
from Grathwohl et al. [117] and Papamakarios, Pavlakou, and Murray [91].

GAS HEPMASS MINIBOONE

Real NVP | -8.3 18.71 13.55
Glow -8.15 18.92 1.35
FFJORD | -8.59 14.92 10.43

HNF -7.96 20.66 17
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Figure 7.8: Generation of black & white faces at temperature of 0.7. The noise
on the left is continuously transformed during to obtain the final samples.

Results on the selected datasets are presented in table 7.1. Although the
HNF method does not surpass the performance of the well optimized state of
the art flow-based modeling architectures, the performance of our proposed
method is of the same order. This indicates that with a more thorough design
of experiment and optimization of the training of the model, the method could
perform on par with its state of the art counterparts, while offering a more
flexible parameterization, and being less expensive to optimize.

MNIST

2944059793
6955&67‘703

Figure 7.9: Top: Samples from the MNIST digits dataset. Bottom: Random sam-
ples generated with Hamiltonian Normalizing Flow at temperature 0.7

In this Paragraph, we present results obtained on image generation tasks.
First, we focus on the MNIST handwritten digits dataset [198] which contain
black and white 28 by 28 images. To build the Hamiltonian Normalizing Flow, we
use the multiscale architecture proposed in [85], which consists of a sequence
of L levels each containing K flows, followed by a squeeze operation that de-
creases the dimension of the images and increases their number of channel,
and another K flow steps. In our application, we use L = 2 levels with K = 2
HNF on each side of the squeezing operation. The flow steps are expressed as
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a Hamiltonian continuous transport, and the Hamiltonian at each flow step is a
convolutional neural network that maps the current image to a scalar.

Results of the generation process on the MNIST dataset are presented on
figure 7.9. Despite their imperfections, these results demonstrate the ability
of the Hamiltonian Normalizing Flow method to scale to image datasets. They
also show that the Hamiltonian formulation can be used in combination with
arbitrary architectures, such as multiscale approaches and convolutional neural
networks which leverage spatial correlations in the data.

Black and White Celebs

Finally, in an effort to scale the approach beyond 28 by 28 pixel images, we ap-
plied the approach on the normalization of a grayscale version of the celebA
dataset [199] which contains two hundred thousands images of celebrities. Af-
ter taking a center crop of the images, and resizing them to a size of 64 by 64
pixels, we trained a model to normalize the data using a sequence of 10 HNF,
with the Hamiltonian parameterized as a convolutional neural network. This
particular choice over the multiscale architecture used for the MNIST dataset is
made to allow for the visualization of the continuous evolution of the samples
during the generation process, as shown on figure 7.8, while samples from the
model are presented on figure 7.10. These results demonstrate the potential of
the method to scale to higher dimensional problems.

Figure 7.10: Random samples generated with a convolutional HNF at tempera-
ture 0.7

7-3.4 Limitations and Open questions

The previous Paragraphs have shown that the Hamiltonian Normalizing Flows
framework presents interesting properties for the modeling of arbitrary data
distributions. However, we want to underline that there are still unanswered
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questions that should be addressed to make the method competitive with
state of the art approaches. We identify two main issues below:

+ Density Estimation: In the results, we have discussed the noisy nature of
the density estimator provided by the Hamiltonian Normalizing Flow. We
showed that the empirical results did not respect the fact that the density
of a data point ¢y predicted by our model should be independent of the
augmented variables py used to carry out the normalization.

We explain this issue by the inability of the model to converge to the opti-
mum of the learning problem, i.e., the normalized data distribution does
not perfectly correspond to the target Gaussian distribution ps. Thus, the
accordance between the density ps(qr, pr) and the actual probability of
the data varies for different py values. A similar problem happens when
carrying out data generation, where the model does not yield perfect in-
dependence between the generated data ¢y and generated augmented
variable py.

One idea to address this issue would be to carry out bi-directionnal train-
ing, by training at the same time the normalization process using the MLE
objective of equation 7.14 and the generation process, where the distance
between the true and generated data distributions could be estimated us-
ing Maximum Mean Discrepancy as in Ardizzone et al. [112].

The possibility of leveraging this noisy nature of the density estimator to
quantify model uncertainty should also be investigated.

+ Expressivity: The generality of the approach and the expressivity of the
network architecture require additional investigation. We have shown
in Section 7.3.1 that the Hamiltonian normalizing flow could be seen a
more general formulation of a sequence of additive coupling layers [58].
However, this is not sufficient to state that the Hamiltonian formulation is
general, as better-performing approaches such as Kingma and Dhariwal
[103] are now using more complex invertible layer architectures, which
are harder to relate to our HNF.

Another justification uses Liouville’s theorem which can be used to show
that any conservative system with n degrees of freedom follows Hamil-
tonian dynamics in a 2n dimensional phase space. Observing that the
normalizing flow to be learned is by definition a conservative system, as
it conserves the overall probability density, we can state that the HNF
framework can learn the necessary dynamics, provided #y is expressive
enough.

This last condition is in fact an open question, as we have not managed to
establish optimal architecture for H,. This is especially true for image ap-
plications, where the convolutional neural networks used to map images
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to scalars might suffer from the locality of the convolution operation and
fail to propagate information across the images.

7.3.5 Study Conclusion

This Section introduced our proposal for the construction of continuous nor-
malizing flows using Hamiltonian dynamics. Similar to the previous Section
on unsupervised domain translation, we showed that the conservative nature
of Hamiltonian dynamics could be used to construct neural flow models with
desirable properties. Most notably, we have discussed the way the volume
preserving nature of the HNF yielded a tractable probability density estimator,
which in turns led to simplified training.

We also discussed some of the remaining issues that limit the applicability
of our proposed method. Future work will be concerned with the exploration
of the various improvements proposed in Section 7.3.4. We do believe that this
work could lead a better overall understanding of flow generative modeling,
and possibly a unified view of the problem.

Finally, we mention that the increased flexibility of the HNF could be used to
model problems that would benefit from more specified architectures, for ex-
ample, molecular data modeling tasks, which could benefit from architectures
such as graph neural networks that might need to account for the whole data
sample at every flow step.

7.4 Conclusion

With these two studies, we have proposed potential avenues to use dynami-
cal systems theory to inform the construction of novel Deep Learning architec-
tures. As mentioned at the start of this Chapter and in Chapter 3, approaches
such as those presented above are a form of hybridization, which has given rise
to various Deep Learning approaches in recent years that are now state of the
art. Methods such as residual networks[82], or NeuralODEs [99] that are used
extensively in this thesis are examples of such hybridization successes.

The work presented in this Chapter revolved around the use of Hamiltonian
dynamical systems to construct invertible transformations. We have shown
that the guarantees provided by Hamiltonian architectures yielded desirable
properties. Invertibility by construction was for example used to carry out two-
way domain translation in Section 7.2.2 while only training the model to learn
out one-way transformations. We also mention the exploration of the volume
preserving properties of Hamiltonian flows and the way they could be used to
transport and compress marginal distributions.

We note that the approaches proposed in this Chapter still have significant
limitations and several potential improvements should be explored to bring



7.4. CONCLUSION 153

them on par with the state of the art. Thus, avenues such as those proposed in
Section 7.3.4 should be explored in future works.
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CHAPTER 8

CONCLUSION

The application of Deep Learning methods to the improvement of numerical
simulation methods has become a major research topic. As evidenced by the
existence of a range of approaches to this question, some of which were in-
troduced in the first parts of this thesis. We discussed some of the major dif-
ferences between the main existing proposals, mainly from the point of view of
hybridization, that is to say, the degree to which a method combines pre-existing
physical information with data-driven modeling techniques. We tried to under-
line the fact that the development of efficient numerical simulation engines lies
in the efficient application of hybridization, rather than sole reliance on either
numerical or data-driven methods.

More specifically, we looked at the topic of reduced order modeling, which
centers around the identification of suitable representation spaces for the dy-
namics of physical systems. We showed that identifying such spaces from data
could help alleviate some of the cost issues associated with full order numerical
simulation. However, the optimal approach to this topic is not yet established.
We discussed the existence of several methods within the reduced order mod-
eling subfield, both for dimensionality reduction and dynamical modeling, each
presenting various degrees of performance and data-reliance. These consider-
ations led to the development of two novel methods based on the hybridization
of neural networks and existing reduced order modeling techniques.

First, the CD-ROM approach was introduced, a method for the development
of closure models for POD-Galerkin ROMs. We derived the closure modeling
architecture from considerations on the nature of the error embedded in POD-
Galerkin ROMs, and dynamical systems theory. We showed that this problem
was directly related to the study of partially observed systems and that captur-
ing non-Markovian effects in the dynamics of the reduced system was critical to
its accurate simulation. The proposed CD-ROM method stands as an example

155
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of a hybrid model, combining information retained from the governing equa-
tions of the system, a theoretically consistent memory architecture, and a pow-
erful data-driven closure model relying on neural networks. We also showed
that this hybrid architecture could be adapted to strongly non-linear problems
that would have previously been hard to reduce in the context of POD-Galerkin
model reduction. Finally, we studied the way the novel continuous memory ar-
chitecture of the CD-ROM selected specific frequencies to retain in memory and
showed that it did so in a coherent fashion with the system to be learned.

The iLED model was then proposed for the interpretable modeling of non-
linearly reduced systems. Starting from the consideration of the inefficiency
of linear dimensionality reduction for dynamical systems, we developed an ap-
proach to extractinterpretable dynamical laws from data. First, the well-established
non-linear dimensionality reduction capabilities of neural networks were lever-
aged to construct very low dimensional representation spaces for various dy-
namical systems. We then showed that the theory of the Koopman operator
introduced in the earlier stages of the thesis could be used to derive a theoret-
ically grounded and interpretable ansatz for the dynamics of a physical system.
We showed that systems presenting oscillatory dynamics could be reduced to
very low dimensional linear systems even when governed by non-linear equa-
tions such as the Navier-Stokes equations. We also discussed the particularity
of chaotic systems, such as the Kuramoto-Sivashinsky equations, which can not
be modeled as purely linear systems but can still benefit from a supporting limit
cycle in the latent space of an autoencoder. Once again, this proposal is placed
in the context of hybrid modeling, where we used a theoretically grounded
architecture to constrain a data-driven model to ensure coherence and inter-
pretability.

8.1 Perspectives

We discuss below some of the potential applications and improvements to our
proposals that should be considered in the future.

+ Control Applications: We showed in our work that the CD-ROM and
iLED methods could be used to model complex dynamical systems and
extend seamlessly to parametric problems. We are now considering po-
tential applications of our work to Model Predictive Control. This already
well-established field will strongly benefit from the availability of fast and
accurate models, able to extract dynamical law from a few probes mea-
suring the state of a system. In this context, our proposals would be key
enablers, opening avenues to other related research fields, such as online
training, exploration, and reinforcement learning.
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* Neural Architectures: We have centered our work around the topic of
interpretability and shown that either by retaining part of the governing
equations or replacing them with an easily interpretable linear term, a de-
gree of understanding of the model could be gained. It remains that both
the iLED and CD-ROM methods rely on hard-to-interpret neural closure
models. We discussed in the first chapter how certain constraints could
be embedded in the structure of neural networks through careful param-
eterization of the weight matrices. The study of the applicability of these
stable parameterizations could be a first step toward understanding or
at least obtaining guarantees on the behavior of these neural dynamical
terms.

* Model Extensions: Extensions to the proposed models should be ex-
plored. As an example, the memory architecture, which is identical be-
tween both the CD-ROM and iLED approaches, could be extended to ac-
commodate more complex memory kernels. We have discussed the ad-
vantages of a simple diagonal memory kernel as it allows for independent
memory dimensions and simple memory initialization. However, more
flexible parametrizations might lead to a more expressive memory archi-
tecture.

Finally, we give our perspective on the current applications of Deep Learning
to numerical simulation. It is clear to us that the potential of neural networks
to approximate unknown operators, such as the reduced dynamics of a system
on a low dimensional manifold, can lead to major advantages and yield valu-
able insights into the behavior of physical systems. However, we acknowledge
that the strength of numerical simulation methods lies in their generality. The
representation of the real through universal laws is the foundation of physics,
and this aspect of universality is clearly lacking in the existing applications of
Deep Learning to simulation problems, including our proposal. This is why we
believe that the development of general simulation engines that do not rely
on application-specific retraining should become a major research topic in the
future. Combined with ever-improving computation architectures, research in
this direction could lead to orders of magnitude improvement in the design of
some of our more challenging technologies.
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CHAPTER 9

APPENDIX: CD-ROM

9.1 Hyper-Parameters and training

This appendix details the various design and training choices made for the dif-
ferent models presented in the results section 4.6. As explained earlier in Chap-
ter 4, the models are trained using progressively longer prediction horizons.
The main advantage of this method, as opposed to directly training with the tar-
get prediction horizon, is that potentially unstable systems in the earlier learn-
ing stages will struggle to reach long-term prediction horizons without diverg-
ing, making the training extremely inefficient. Moreover, using this strategy
means that a single, long DNS trajectory can be separated into numerous sub-
trajectories which can be batched together and simulated in parallel, yielding a
very efficient training process. The procedure is presented in algorithm 2.

Finally, the hyper-parameters values and training details for the different
models trained using the above strategy are presented below. In an effort to
improve readability, the various values are organized in table 9.1.
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Algorithm 2 Batching and Sub-trajectories

Require: T; the initial prediction horizon, T, the final prediction hori-
zon, Tj,c the horizon increment, £, the loss threshold, f(z, ) a CD-ROM
model
T+ T;

L + 400

while T < Ty do

while £ > £, do

Sample a batch of trajectoriesa* .,
Compute the initial memory y
Zo < [ag, yol
A, y] < 20 + [, f(z;0)dt > CD-ROM simulation
L+ E(ao—>T7 aa—>T)
Backpropagation & Gradient Step

end while

T <« T+ Tinc

Reorganise batches according to the new T

end while
Cylinder Pinball KS

Memory Size 30 50 30
Corrector Neurons (30,30,30,30,3) (50,250,250,250,10) (56,150,150,150,25)
Encoder Neurons (3,9,15,21,27) (10,17,24,31,40) (26,21,16,11,5)
Activation SiLU SiLU SiLU
Optimizer Adam Adam Adam
Learning Rate (E & R) 1073 1073 5x 1074
Weight Decay (E & R) 1074 1072 1073
Learning Rate (A) 1074 2% 1074 5x 1074
Weight Decay (A) 0 0 0
Time Integrator Scipy RK-45 Scipy RK-45 Semi Implicit 3rd order [39]
Training Time 1/2 day 1 day 1/2 day

Table 9.1: Hyper parameters used in the training of the different models
presented in Section 4.6. The various parts of the CD-ROM are desig-
nated as follows, R the neural network predicting the residual of the
Galerkin model, E the memory encoder model, A the diagonal memory
matrix. The final line presents the order of magnitude of the training
times of each model on a single RTX 2080 gpu.
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APPENDIX: ILED

10.1 Network parameters

This Section lists the various hyperparameters and network architectures used
to obtain the results presented in Section 6.4.

10.1.1 FHN

The tables below present the architecture of both the autoencoder and iLED
dynamical models used to obtain the results on the FHN case.
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Layer

Encoder

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
C))
(10)
(11)
(12)
(13)
(14)
(15)
(16)

ConstantPad1d(padding=(13, 14), value=0.0)
Convid(2, 8, kernel_size=(5,), stride=(1,), padding=same)
AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
SiLU()

Convid(8, 16, kernel_size=(5,), stride=(1,), padding=same)
AvgPoolid(kernel_size=(2,), stride=(2,), padding=(0,))
SiLU()

Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=same)
AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
SiLU()

Conv1d(32, 4, kernel_size=(5,), stride=(1,), padding=same)
AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
SiLU()

Flatten(start_dim=-2, end_dim=-1)
Linear(in_features=32, out_features=2, bias=True)
LatentSpaceCenteringlLayer()

Layer

Decoder

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

Linear(in_features=2, out_features=32, bias=True)
SiLU()

Unflatten(dim=-1, unflattened_size=(4, 8))
Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(4, 32, kernel_size=(5,), stride=(1,), padding=(2,))
SiLU()

Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(32, 16, kernel_size=(s5,), stride=(1,),
padding=(2,))

SiLU()

Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(16, 8, kernel_size=(5,), stride=(1,), padding=(2,))
SiLU()

Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(8, 2, kernel_size=(5,), stride=(1,), padding=(2,))
1+ 0.5 Tanh()

Unpad()

Table 10.1: One-dimensional convolutional autoencoder used to obtain
the results on the case of the FHN model presented in Section 6.4.1
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ILED Parameters

Ay Linear(2,2,bias=False)
¥, neurons 18-32-32-32-2
¥, activation SiLU()

dp, 16

v, AugmentedldentityEncoder (see Eq. (6.29))
¥, neurons 2-5-8-11-14
W, activation SiLU()

Ay diag(w), w € R™

Table 10.2: Hyperparameters of the JiLED dynamics used to obtain the
results on the FHN case presented in Section 6.4.1.

10.1.2 KS

Similar to the previous paragraph, the architecture of the networks used for the
KS case are presented below.
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Layer Encoder
(1) Convad(1, 16, kernel_size=(5,), stride=(1,), padding=same)
(2) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(2), (0,))
(3) SiLU()
(4) Conv1d(16, 32, kernel_size=(s5,), stride=(1,), padding=same)
(5) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
(6) SiLU()
(7) Conv1d(32, 64, kernel_size=(5,), stride=(1,), padding=same)
(8) AvgPoolid(kernel_size=(2,), stride=(2,), padding=(0,))
(9) SiLU()
(10) Conv1d(64, 8, kernel_size=(5,), stride=(1,), padding=same)
(11) AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,))
(12) SiLU()
(13) Flatten(start_dim=-2, end_dim=-1)
(14) Linear(in_features=64, out_features=8, bias=True)
(15) LatentSpaceCentering()
Layer Decoder
(1) Linear(in_features==8, out_features=64, bias=True)
(2) Unflatten(dim=-1, unflattened_size=(8, 8))
(3) Upsample(scale_factor=2.0, mode=linear)
(4) ConvTranspose1d(8, 64, kernel_size=(s5,), stride=(1,), padding=(2,))
(5) SiLU()
(6) Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(64, 32, kernel_size=(5,), stride=(1,),
(7) padding=(2,))
(8) SiLU()
(9) Upsample(scale_factor=2.0, mode=linear)
ConvTranspose1d(32, 16, kernel_size=(s5,), stride=(1,),
(10) o
padding=(2,))
(11) SiLU()
(12) Upsample(scale_factor=2.0, mode=linear)
(13) ConvTranspose1d(16, 1, kernel_size=(5,), stride=(1,), padding=(2,))

Table 10.3: One-dimensional convolutional autoencoder used to obtain
the results on the case of the KS equation (sec 6.4.2)
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ILED Parameters

Ay W — W7 —diag(w), W € R%=*% 4 ¢ R%
¥, neurons 40-64-64-64-8
¥, activation SiLU()

dy, 32

v, AugmentedldentityEncoder (see Eq. (6.29))
¥, neurons 8-12-16-20-24
W, activation SiLU()

Ay diag(w), w € R™

Table 10.4: Hyperparameters of the JLED dynamics used to obtain the
results on the KS case presented in Section 6.4.2.

10.1.3 Flow around a cylinder

The autoencoders used in the Cylinder flow case have a complex architecture,
to simplify the notation, we define two blocks that combine similar operations:

Table 10.5: Sub blocks defined to help describe the CNN autoencoders

Layer DownBlock(in_size,out_size)

() Conv2d(in_size, out_size, kernel_size=(5, 5), stride=(2, 2),
padding=(2, 2), padding_mode=replicate)

(2) SiLU()
Layer UpBlock(in_size,out_size)
(1) Upsample(scale_factor=2.0, mode=bilinear)

) Conv2d(in_size, out_size, kernel_size=(5, 5), stride=(1, 1),
padding=(2, 2), padding_mode=replicate)

(3) SiLU()

(4) BatchNormad()
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Layer Encoder #1 Encoder #2
(1) DownBlock(2,4) DownBlock(2,4)
(2) DownBlock(4,16) DownBlock(4,8)
(3) DownBlock(16,4) DownBlock(8,16)
(4) DownBlock(4,2) DownBlock(16,2)
(5) Flatten(start=-3,end=-1) Flatten(start=-3,end=-1)
(6) Linear(512,20) Linear(200,20)
(7) dzl =20 dzz =20
Mixer Encoder
(8) Concatenate(z, z2)
(9) Linear(40,30)
(10) SiLU()
(11) Linear(30,d,)
Layer Mixer Decoder
(1) Linear(d.,30)
(2) SiLU()
(3) Linear(30,40)
(4) 2,20 =%
Decoder #1 Decoder #2
(5) Linear(20,512) Linear(20,200)
(6) Unflatten(-1,(2,32,8)) Unflatten(-1,(2,170,10)
(7) UpBlock(2,4) UpBlock(2,16)
(8) UpBlock(4,16) UpBlock(16,8)
(9) UpBlock(16,4) UpBlock(8,4)
(10) Upsample(2.0,bilinear) Upsample(2.0,bilinear)
Conv2d(4, 1, kernel_size=(5, 5), Conv2d(4, 1, kernel_size=(5, 5),
(11) stride=(1, 1), padding=(2, 2), stride=(1, 1), padding=(2, 2),
padding_mode=replicate) padding_mode=replicate)
(12) Flatten(start=-3,end=-1) Flatten(start=-3,end=-1)
(13) StreamFnToVelocity() StreamFnToVelocity()

Table 10.6: Hyperparameters of the 2-dimensional convolutional autoen-
coder used to obtain the results on the Cylinder case presented in Sec-

tion 6.4.3.

The value of d, changes depending on the Reynolds number considered. It
is equal to d, = 3 in the Re = 100 case, and d, = 16 in the Re = 750 case. Note
that we don't use a LatentSpaceCentering layer contrary to the other cases. This
is due to the fact that, because of the memory costs of the models, the batch
size has to be relatively low, which has a negative impact on batch normalization
approaches. To ensure that the latent space remained centered, which is critical
to the accuracy and interpretability of the linear term in the dynamics, we added
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a term to the loss:

1 2
Ecentering = HNiT Zg(q)tl))ng (10.1)
=1

This loss effectively penalizes the average of the latent codes, ensuring that
they are centered around the origin.

Also note that the decoder doesn't directly predict the velocity field, but the
stream function v which is a scalar field, that is used to compute the velocity
components as follows:

_oyp 0y
Uy = (97y’ Uy = o0
This specific choice is inspired from previous works ([1471, 1). It allows for
the guaranteed prediction of a divergence free field, which is a constraint of the
incompressible Navier-Stokes equations.
Finally, the parameters of the iLED dynamical model are provided below:

(10.2)

ILED Parameters

Ay W — W7 —diag(w), W € R%=*% € R%
¥, neurons d,+d-128-128 -128 - d,
¥, activation SiLU()

dy, 32

v, AugmentedldentityEncoder (see Eq. (6.29))
¥, neurons 16-17-17 -17 - 15

(Re = 750)

\I(f;g:iulrgg)s 3-10-16-22 - 28
W, activation SiLU()

Ag diag(w), w € R™

Table 10.7: Hyperparameters of the /LED dynamics used to obtain the
results on the Cylinder cases presented in Section 6.4.3.
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CHAPTER 11

SYNTHESE EN FRANCAIS

Les systemes dynamiques sont généralement modélisés a l'aide d'équations
aux dérivées partielles (EDP). Ces modéles sont étroitement liés a la facon dont
les scientifiques observent le monde et, en tant que tels, ils sont limités par
notre compréhension des systemes étudiés. En effet, des modeles tels que les
équations de Navier-Stokes ne modélisent que les interactions locales dans un
écoulement, et négligent les phénomeénes sous-jacents qui controlent le sys-
téme dans son ensemble. Ce caractére local des modeles basés sur les EDP
couplé a la complexité des phénomenes et géomeétries étudiés dans les appli-
cations industrielles implique l'utilisation de discrétisations trés fines pour la
simulation des phénomenes physiques. Ce qui conduit généralement a des
codts de calcul excessifs associés a la résolution numérique des EDP.

Dans cette these, nous discutons de la maniére dont les données peuvent
étre exploitées pour dériver de meilleurs espaces de représentation pour les
systemes physiques ainsi que des modeles dynamiques simplifiés, appelés mod-
éles réduits. Nous présentons d'abord quelques unes des approches de réduc-
tion de modele existantes. Nous proposons ensuite d'exploiter les capacités
d’approximation des réseaux de neurones pour construire de nouvelles méth-
odes de réduction de modeles. Les approches introduites dans cette these re-
posent sur le concept d’hybridation entre la modélisation physique et les méth-
odes d’'apprentissage machine. Nous nous appuyons sur les propriétés des sys-
témes dynamiques étudiés pour construire des modéles interprétables, précis
et en accord avec la théorie afin de résoudre les problemes de codts de calcul
associés a la modélisation physique standard, tout en limitant la dépendance
des modeles aux données. Les travaux présentés dans cette thése peuvent étre
séparés en deux propositions distinctes.

CD-ROM : La méthode Complemented Deep - Reduced Order Model propose
une approche de fermeture basée sur les réseaux de neurones pour les mod-
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eles a ordre réduit de type POD-Galerkin. L'approche est basée sur la théorie
des systémes partiellement observés, elle utilise des réseaux de neurones pour
approximer les erreurs inhérentes aux modele réduits POD-Galerkin, tout en
conservant une partie des équations qui gouvernent le systeme. Contraire-
ment a la plupart des travaux précédents sur la réduction de modéle a l'aide
des réseaux neuronaux, 'approche CD-ROM est basée sur une formulation de
meémoire interprétable et continue en temps, dérivée d’hypothéses simples sur
le comportement des systémes dynamiques. Cette formulation continue en
temps permet de simuler les modéles construits avec la méthode CD-ROM a
l'aide d'intégrateurs temporels standards, la ou les réseaux de neurones récur-
rents reposent généralement sur une progression discréte en temps.

iLED : La méthode intepretable Learning of Effective Dynamics for multiscale
systems est une approche de modélisation dynamique entiérement basée sur
les données. La méthode propose d'utiliser les réseaux de neurones pour con-
struire a la fois une représentation du systeme étudié en dimension réduite
et un modele dynamique pour la simulation du systeme dans l'espace réduit
obtenu. Nous montrons que iLED offre une précision comparable aux approches
basées sur les réseaux de neurones récurrents tout en retenant un degré d'interprétabilité
élevé. L'architecture iLED est directement basée sur la théorie de l'opérateur
de Koopman. Nous montrons dans nos expériences que iLED peut étre util-
isé pour dériver des équations quasi linéaires de basse dimension pour des
EDP non linéaires généralement résolues dans des espaces de tres haute di-
mension, fournissant des informations précieuses sur la dynamique étudiée
et réduisant considérablement les colts de calcul associés a la simulation du
modele.

Chaque méthode est illustrée a l'aide de cas standard de la littérature, tels
que les écoulements fluides bidimensionnels et les systemes chaotiques tels
que les équations de Kuramoto-Sivashinsky.
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