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RÉSUMÉ EN FRANCAIS

Cette thèse explore l’analyse des données dans le cadre de la supervision d’Internet,
mettant un accent particulier sur l’examen des mesures de délais réseau. Ces mesures
sont cruciales car elles révèlent des informations essentielles sur la qualité de service, la
connectivité, et les potentielles défaillances au sein du réseau. Un avantage notable est
la capacité d’acquérir des mesures de délais à travers l’Internet sans nécessiter le statut
d’opérateur réseau, grâce à l’utilisation de sondes permettant d’effectuer des mesures
de bout en bout sans accès direct aux équipements réseau. Un exemple pertinent est
l’utilisation de plateformes de mesure Internet publiques, telles que RIPE Atlas, exploitées
dans cette thèse.

L’intérêt pour ces données réside dans leur utilité pour évaluer et améliorer la qua-
lité de service, ainsi que dans leur capacité à faciliter l’analyse des incidents réseau. Bien
que l’analyse puisse être réalisée manuellement par des experts, la volumétrie des don-
nées impliquées rend rapidement le processus laborieux, surtout lorsqu’il s’agit d’incidents
majeurs pouvant requérir plusieurs jours d’analyse. D’où l’intérêt marqué pour l’automa-
tisation du traitement de ces données.

Cependant, l’exploitation de ces mesures de délai n’est pas exempte de défis. Parmi
ceux-ci figure le problème des données manquantes, qui peut survenir à la suite de dé-
faillances des sondes, de congestion du réseau, ou de pertes de paquets. Ce phénomène,
particulièrement prononcé durant les incidents réseau, nécessite une attention particu-
lière, tout comme la stratégie de sous-échantillonnage adoptée pour prévenir la surcharge
du réseau, qui peut également entraîner un manque de données. Un autre défi est la
non-stationnarité des données, avec des délais Internet restant généralement stables sur
quelques heures mais pouvant subir des changements brusques, souvent dus à des modi-
fications de routage.

Ainsi, cette thèse se penche sur la résolution du problème des données manquantes et
sur la segmentation multivariée des délais.
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Contributions

Les travaux portant sur l’aspect de la complétion des données manquantes dans les
délais réseau ont abouti à deux contributions significatives, chacune conduisant à une
publication dans des conférences internationales. La première s’est concentrée sur les
méthodes basées sur la factorisation matricielle, explorant l’application des algorithmes
de factorisation matricielle positive pour reconstruire les matrices de délais incomplètes.
La seconde contribution se base sur les méthodes de filtrage collaboratif neuronal (NCF),
inspirées des systèmes de recommandation.

— Non-negative matrix factorization for network delay matrix completion.
Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and Thierry Chonavel.
In : NOMS 2022-2022 IEEE/IFIP Network Operations and Management Sympo-
sium. IEEE, 2022. p. 1-6.

— Neural collaborative filtering for network delay matrix completion. Sanaa
Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and Thierry Chonavel. In :
2022 18th International Conference on Network and Service Management (CNSM).
IEEE, 2022. p. 359-363.

La contribution finale de cette thèse concerne la segmentation des délais dans les ré-
seaux. Pour commencer, les séquences de délais ont été regroupées grâce au regroupement
hiérarchique. Ensuite, leur segmentation a été réalisée en utilisant une méthode combi-
nant le regroupement hiérarchique et l’algorithme de Viterbi, dans le but d’optimiser la
précision et l’efficacité du processus. Cette approche a été validée par deux publications,
une présentée à une conférence nationale et l’autre à une conférence internationale.

— Lightweight Network Delay Segmentation Based on Smoothed Hierarchi-
cal Clustering. Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and
Thierry Chonavel. In : 2023 IFIP Networking Conference (IFIP Networking). IEEE,
2023. p. 1-9.

— Segmentation à faible coût des délais réseau basée sur le regroupement
hiérarchique. Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and Thierry
Chonavel. In : GRETSI 2023.

Cette thèse est structurée en cinq chapitres. Le premier chapitre offre une introduction
globale, tandis que le second met en évidence la complexité et l’importance de la sur-
veillance d’un réseau Internet. Le troisième chapitre est dédié à la collecte des délais, tant
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synthétiques que réels. Les quatrième et cinquième chapitres abordent, respectivement,
les processus de complétion et de segmentation de ces délais. Une exploration approfondie
de chaque chapitre sera présentée dans les sections suivantes, concluant par un résumé
des travaux réalisés ainsi que des perspectives d’avenir.

La complexité d’Internet

L’Internet se distingue par une complexité inhérente à son architecture étendue et à sa
capacité à relier des milliards d’usagers via des milliers de systèmes autonomes intercon-
nectés. Outre les aspects techniques et technologiques, l’Internet a également un impact
économique, politique et réglementaire significatif. Cette complexité de connexions et de
systèmes impose une surveillance attentive afin d’assurer un fonctionnement fluide et une
compréhension approfondie.

Néanmoins, superviser l’Internet est parsemé de défis. L’automatisation des processus
de supervision, la gestion des erreurs et l’efficacité du stockage des données en font par-
tie. Ces obstacles soulignent la complexité du contrôle du fonctionnement de l’Internet,
dont tous les aspects, des performances à la sécurité, doivent être gérés méticuleusement.
Il s’agit de naviguer dans d’énormes quantités de données, de garantir l’exactitude des
informations recueillies et de traiter rapidement toute anomalie ou tout problème afin
de prévenir ou d’atténuer les perturbations. Cela nécessite non seulement des solutions
technologiques sophistiquées, mais aussi une approche stratégique.

L’importance des mesures dans ce processus de supervision est primordiale. Dans cette
étude, nous privilégions l’utilisation de mesures actives par opposition aux mesures pas-
sives, pour des raisons de sécurité et de disponibilité. Des plateformes comme RIPE Atlas
constituent un outil inestimable, permettant d’avoir une vue d’ensemble sur l’Internet et
de mieux comprendre son fonctionnement afin de l’améliorer si nécessaire. Grâce à des
mesures actives, nous pouvons tester de manière proactive les performances et la fiabilité
du réseau, offrant ainsi des informations essentielles pour la maintenance et l’amélio-
ration continues de l’infrastructure Internet. Cette approche permet une stratégie plus
dynamique et réactive dans la supervision et l’amélioration de la performance et de la
résilience de l’Internet.

Mesures synthétiques et réelles des délais

Le troisième chapitre de la thèse se concentre sur les méthodes de collecte de données
de délai, en utilisant à la fois un environnement synthétique, via un simulateur de délai
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spécialement conçu, et un contexte réel, par le biais de plateformes de mesure et de
supervision d’Internet telles que RIPE Atlas. La première contribution de ce chapitre
réside dans le développement d’un simulateur de délais réseau. Le simulateur de délai est
élaboré pour reproduire fidèlement les caractéristiques des délais réels dans un système
autonome, offrant une solution simplifiée mais efficace pour tester divers algorithmes dans
un cadre maîtrisé. En effet, le simulateur de délais permet de régler plusieurs facteurs,
y compris la topologie sous-jacente, la distribution des délais et la longueur des séries
temporelles de délais générées.

Le simulateur permet la modélisation précise des délais de bout en bout à travers des
graphes représentant des systèmes autonomes, en générant du trafic suivant un modèle
gravitaire, et en simulant des variations brusques qui peuvent être dues à des incidents ou
à des changements de routage et des congestions. Cette démarche vise à reproduire la sta-
bilité temporelle et la corrélation spatiale observées dans les réseaux actuels, constituant
ainsi une base solide pour l’évaluation et l’optimisation des algorithmes.

La seconde contribution de ce chapitre est l’acquisition de données réelles en exploitant
la plateforme de surveillance Internet RIPE Atlas. Cette démarche a permis d’accéder à
un large éventail de mesures par deux moyens principaux : le téléchargement de mesures
publiques existantes et la mise en œuvre de campagnes de mesure personnalisées. Nous
avons priorisé l’utilisation de deux types de mesures disponibles sur la plateforme : les
temps de trajet aller-retour (RTT) et les mesures traceroute, permettant de constituer
plusieurs ensembles de données.

Dans le cadre de notre campagne de mesure, deux ensembles de données spécifiques
ont été créés. Le premier se basait sur l’utilisation d’ancres aléatoires sélectionnées dans
RIPE Atlas, tandis que le second ciblait des sondes situées au sein des systèmes autonomes
exploités par Google. En outre, nous avons enrichi notre collection de données en extrayant
des informations à partir de mesures existantes liées à deux incidents significatifs survenus
sur les points d’échange Internet AMS-IX et DE-CIX. Pour ce faire, des traceroutes ont
été réalisés et les données de délai associées aux chemins empruntant ces IXP spécifiques
ont été filtrées et analysées.

L’objectif de cette collecte de données était de capturer la diversité et la variabilité des
délais observés sur l’ensemble du réseau Internet, offrant ainsi une vue d’ensemble de sa
performance. Les données relatives aux périodes de crise, notamment durant les incidents
affectant les IXP majeurs, ont été particulièrement précieuses pour évaluer l’impact de
telles perturbations sur les délais. Cette stratégie globale de collecte de données a considé-
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rablement enrichi la thèse, en fournissant des scénarios pratiques pour valider les modèles
théoriques et les simulations développées.

Complétion des délais

Le quatrième chapitre de cette thèse aborde le défi de la mesure et de la prédiction
précise des délais au sein des réseaux, un enjeu de plus en plus crucial dans le contexte
de la surveillance des performances réseau, notamment avec l’émergence d’applications
exigeant une grande réactivité. L’obtention de mesures de délai précises est essentielle
pour améliorer la qualité de service (QoS) du réseau et enrichir l’expérience utilisateur
dans divers domaines tels que le streaming vidéo en temps réel ou le trading financier.
Cependant, la collecte systématique et complète de données sur les délais représente un défi
majeur. Cette tâche peut s’avérer coûteuse et entraîner une congestion du réseau due au
trafic supplémentaire généré par ces activités de mesure. De plus, le nombre de mesures
nécessaires pour analyser exhaustivement un réseau augmente de manière quadratique
avec sa taille, ce qui conduit souvent à limiter le nombre de mesures, entraînant ainsi
des données potentiellement incomplètes. En outre, divers facteurs techniques tels que
les pannes de réseau, la perte de paquets ou la défaillance de sondes peuvent également
contribuer à l’absence de mesures, entraînant ainsi l’omission de données. En estimant les
délais manquants à partir d’une observation partielle des mesures de délai d’un réseau, la
complétion de la matrice des délais s’apparente à la tomographie de réseau. Cette dernière
estime les caractéristiques internes d’un réseau en se basant sur des mesures de bout en
bout. Les deux approches exploitent des modèles mathématiques pour inférer les données
manquantes, permettant ainsi d’obtenir une vision plus complète des performances du
réseau malgré les lacunes dans les données directement mesurées.

Pour surmonter ces défis, le chapitre explore la possibilité de considérer la complétion
des délais manquants comme un problème de complétion de matrice, en exploitant les
corrélations spatiales et temporelles inhérentes aux délais dans les réseaux. La corrélation
spatiale se réfère aux similarités de motifs dans les délais lorsqu’on considère des itinéraires
avec des segments ou des nœuds communs, tandis que la corrélation temporelle dénote la
stabilité des délais dans le temps pour une paire de nœuds particulière. Ces corrélations
suggèrent que les mesures manquantes peuvent être efficacement inférées à partir des
données disponibles, réduisant ainsi le besoin d’une surveillance en temps réel exhaustive.

Une structure de données a été choisie pour les mesures de délai, définissant une
structure de matrice de délai qui encapsule les délais entre les nœuds au fil du temps. Cette
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structure bénéficie des corrélations spatiales et temporelles mentionnées précédemment,
contribuant ainsi à ses caractéristiques de rang faible, une propriété clé qui facilite les
méthodes de complétion de matrice efficaces pour prédire les délais manquants.

Le problème de complétion de matrice qui consiste à prédire ou à estimer les valeurs
manquantes dans une matrice à partir des valeurs connues et observées dans cette même
matrice est souvent abordé en utilisant des techniques d’apprentissage automatique, telles
que la factorisation de matrice, les méthodes de régression, les réseaux de neurones, etc.
Ces techniques exploitent les relations entre les différentes entrées pour prédire les valeurs
manquantes de manière efficace.

Dans le cadre de cette thèse, deux approches ont été explorées pour la prédiction des
délais réseau non observés : la factorisation de matrice non négative (NMF) et le filtrage
collaboratif neuronal (NCF), ouvrant ainsi de nouvelles perspectives dans ce domaine.

La NMF est une méthode qui consiste à approximer une matrice donnée comme le
produit de deux matrices de rang faible, avec des entrées non négatives. Cette technique
est particulièrement adaptée à la nature des délais réseau, qui sont intrinsèquement non
négatifs. En appliquant la NMF à la complétion des matrices de délais réseau, des consi-
dérations supplémentaires sur la stabilité temporelle et les corrélations spatiales des délais
ont été intégrées. Deux variantes de la NMF ont été étudiées : une méthode de gradient
projeté alterné et une méthode utilisant le gradient optimal de Nesterov. Ces deux mé-
thodes visent à minimiser les erreurs de reconstruction pour les valeurs observées tout en
garantissant que les estimations des délais restent non négatives.

Nous avons pu tester ces méthodes dans un environnement contrôlé en utilisant notre
générateur de délai synthétique et sur des données réelles avec des délais de Ripe Atlas.
Les deux approches sont simples, faciles à mettre en œuvre et montrent une grande pré-
cision sur la tâche de complétion lorsqu’elles sont appliquées à des données synthétiques.
Cependant, les expériences ont souligné la différence de vitesse entre les deux algorithmes.
Le gradient projeté alterné converge plus lentement que le NeNMF. Par conséquent, la
scalabilité du NeNMF a été exploitée en l’appliquant à des ensembles de données réels.
La complétion donnée par cet algorithme a montré une grande précision avec un petit
nombre d’itérations.

La deuxième approche, le filtrage collaboratif neuronal (NCF), largement utilisé dans
les systèmes de recommandation, a été appliquée pour prédire les délais réseau non ob-
servés en identifiant les interactions latentes dans les données des délais réseau. Deux
architectures ont été examinées : la factorisation matricielle généralisée (GMF) et le per-
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ceptron multicouche (MLP). Le GMF agit essentiellement comme une forme de factori-
sation matricielle, simplifiant ainsi les relations complexes des délais réseau en un modèle
plus simple. En revanche, l’architecture MLP introduit de la non-linéarité, améliorant
ainsi sa capacité à capturer les relations plus complexes et subtiles présentes dans les
données. Grâce à ces deux approches, le modèle NCF offre un cadre complet pour la com-
préhension des délais réseau, en passant des interactions de base décrites par le modèle
GMF aux dynamiques plus nuancées révélées par le modèle MLP.

Testées sur des données synthétiques et réelles, les approches NCF nous permettent
d’atteindre un taux d’erreur très faible pour la tâche de complétion de matrices sur les
deux ensembles de données. Par ailleurs, l’impact de plusieurs paramètres tels que l’opti-
miseur, le taux d’apprentissage ou le nombre d’époques sur la qualité de la reconstruction
a été étudié de manière approfondie. Cela a permis de définir un environnement d’entraî-
nement optimal pour les modèles NCF. En outre, les résultats de la comparaison entre les
algorithmes NMF révèlent que NCF surpasse NeNMF sur des données synthétiques, mais
cette dynamique s’inverse lorsqu’appliquée aux données de Ripe Atlas. Cette inversion
pourrait être attribuée à un nombre insuffisant d’itérations et à l’absence de régularisa-
tion par morceaux. Par ailleurs, il a été constaté que NCF est plus efficace en termes de
calcul que NeNMF. Finalement, l’ajout d’un terme de régularisation n’a pas amélioré la
qualité de la complétion de l’ensemble de données synthétique.

Segmentation des délais

Le cinquième chapitre souligne l’importance des mesures de délai dans la supervision
des réseaux et propose une nouvelle approche pour automatiser la segmentation de ces
délais en utilisant le regroupement hiérarchique et l’algorithme de Viterbi. En effet, les
métriques de délai Internet de bout en bout, telles que le délai aller-retour (RTT), sont
essentielles pour évaluer la performance et garantir la qualité de service.

Ces mesures de délai peuvent révéler une variété de motifs, certains étant récurrents
dans le temps ce qui reflète la présence de dépendances temporelles dans les séries de délai.
Ces schémas récurrents offrent souvent des indications sur l’état du réseau et peuvent éga-
lement signaler la présence d’anomalies. De plus, il n’est pas rare que des motifs identiques
apparaissent de manière synchrone dans plusieurs séries temporelles de délai, en particu-
lier lorsque les chemins réseau associés partagent des segments de route communs. Cette
synchronisation des motifs entre les séries temporelles correspond à la corrélation spa-
tiale des délais, particulièrement observable entre les chemins passant par le même point
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d’échange Internet (IXP). Dans ces cas, les délais peuvent souvent illustrer des change-
ments synchronisés, mettant en évidence l’importance de comprendre et de segmenter ces
données de manière appropriée.

Historiquement, la segmentation des délais nécessitait une intervention humaine. Ce-
pendant, avec l’afflux énorme de données issues de sources telles que Ripe Atlas et les
serveurs des fournisseurs d’accès à Internet, la segmentation manuelle devient non seule-
ment laborieuse mais aussi susceptible d’erreurs, rendant cette approche peu viable. Ce
contexte accentue la nécessité de disposer d’outils capables de traiter ces données de
manière efficace, et met en évidence l’importance cruciale d’automatiser le processus de
segmentation pour les délais réseaux.

Dans la revue de la littérature, diverses tentatives de modélisation des délais Internet
et de caractérisation des changements sont mentionnées, y compris l’utilisation de l’ap-
prentissage profond et d’autres méthodes statistiques. Toutefois, ces approches se heurtent
souvent à des exigences computationnelles élevées et à un manque de prise en compte des
dépendances spatiales parmi les séries de RTT. Pour combler ces lacunes, le chapitre
propose une méthode novatrice pour la segmentation multivariée des délais réseau. Dans
cette approche, le regroupement hiérarchique est utilisé pour gérer la corrélation spatiale,
en commençant par considérer chaque point de données comme un cluster individuel,
puis en fusionnant progressivement les clusters les plus proches pour former des clusters
plus grands, jusqu’à obtenir un seul cluster global, créant ainsi une hiérarchie de clus-
ters. L’algorithme de Viterbi est ensuite employé pour prendre en compte la dépendance
temporelle dans les données.

La méthodologie présentée dans ce chapitre commence par une application du regrou-
pement hiérarchique sur la matrice de corrélation de Pearson des séries temporelles de
temps de réponse (RTT), ciblant la détection de clusters de séries de délai basée sur leur
corrélation spatiale. Cette étape initiale vise à regrouper les séries temporelles présentant
des similitudes dans leurs motifs de retard. Par la suite, une approche de segmentation est
adoptée pour ces séries au sein de chaque groupe, combinant une nouvelle fois le regrou-
pement hiérarchique avec un processus de lissage utilisant l’algorithme de Viterbi. Cette
démarche est conçue pour affiner la segmentation en tenant compte des dépendances tem-
porelles des données, améliorant ainsi la gestion des séries de délai avec des variances et
des motifs diversifiés. L’efficacité de cette méthode a été validée sur des données réelles,
montrant des améliorations notables en termes de précision et d’efficacité du traitement
par rapport aux techniques existantes.

10



La contribution principale de cette approche réside dans son efficacité à révéler les
interdépendances spatiales et temporelles au sein des données de délai réseau, tout en
réalisant des gains significatifs en réduisant à la fois le coût de calcul et le temps d’exé-
cution. La méthode exploite stratégiquement deux cycles de regroupement hiérarchique,
couplés à l’algorithme de Viterbi, pour distiller ces relations complexes entre les séries.
Le premier cycle de regroupement hiérarchique filtre les séries temporelles par simila-
rité de motifs, où le type de liaison choisi—complète pour une homogénéité accrue sans
compression significative, ou de Ward pour une classification en larges ensembles—affecte
directement la cohésion des motifs au sein des groupes. La présence notable de corrélations
spatiales, illustrée par des sources ou destinations communes au sein des clusters, enrichit
cette analyse. Le second cycle de regroupement, suivi de l’application de l’algorithme de
Viterbi, entame le processus de segmentation proprement dit, mettant en avant l’efficacité
du lissage de Viterbi pour affiner la segmentation. Cette technique démontre des perfor-
mances comparables à celles du modèle HDP-HMM, mais se distingue par une réduction
considérable de la charge de calcul, par un facteur de neuf, par rapport à HDP-HMM,
soulignant ainsi l’efficience remarquable de l’approche proposée.

Conclusions et travaux futurs

La thèse s’est focalisée sur la surveillance des réseaux, notamment sur les mesures de
délai Internet de bout en bout. Un simulateur de délai réseau a été développé afin de
produire des données de délai fiables, et des ensembles de données réelles provenant de
plateformes telles que Ripe Atlas ont été explorés. La thèse a aussi traité le problème des
valeurs manquantes dans les délais et a proposé des solutions utilisant des approches de
complétion de matrice et des réseaux de neurones. De plus, une approche de segmentation
multivariée pour les séries temporelles de délai a été introduite.

Pour les travaux futurs, la thèse envisage d’explorer des termes de régularisation al-
ternatifs afin d’améliorer la précision du modèle et d’appliquer ces méthodes à différents
ensembles de données. Elle suggère également le développement d’algorithmes de com-
plétion en ligne et de détection d’anomalies pour gérer efficacement la surveillance des
réseaux en temps réel. Enfin, des stratégies d’échantillonnage intelligentes pour les me-
sures réseau sont proposées afin de trouver un équilibre entre l’efficacité des ressources et
l’intégrité des données.
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Chapter 1

INTRODUCTION

1.1 Context and problems addressed in the thesis

This thesis falls within the context of the analysis of Internet monitoring data. It
focuses on monitoring the Internet network principally through the lens of network delay
measurements. Actually, network delays can provide resourceful information regarding the
quality of service, connectivity, and network failures to cite a few. Delay measurements
can be obtained on an Internet scale without being a network operator yourself. Indeed,
it is possible to deploy probes allowing end-to-end measurements without having access
to network equipment. This is for example the case of public access Internet measurement
platforms such as RIPE Atlas [97]. In the framework of this thesis, we have used such
type of data.

These data are widely used to assess and help improve the quality of service and to
analyze and help perform root-cause analysis of network incidents. To some extent, this
analysis can be done by experts in a non-automated way. However, given the quantity of
data to analyze, this task quickly becomes tedious. Analyzing a major network incident
can take days of work. It is therefore desirable to automate the processing as much as
possible.

Despite the availability of delay measurements, some problems need to be addressed in
order to automate their processing. One of them is the missing data problem, which can
be due to probe failures or congestion and packet loss. The rate of missing observations
can sometimes be very high, especially during network incidents. Such a phenomenon is
observed on monitoring platforms. Missing data can also result from an under-sampling
measurement strategy designed to avoid network overloading. Another problem is the
nonstationarity of data. Indeed, Internet delays, are often stationary on a timescale of
a few hours. However, abrupt changes occur from time to time. Typically such changes
can be caused by routing changes.

In the framework of this thesis, we have particularly studied the problem of missing
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data and of segmentation of multivariate piecewise stationary data. We focus on the
completion and segmentation of network delays.

1.2 Contributions of the thesis

To address the problem of missing observations we propose to take advantage of de-
pendencies among and inside delay time series. This led us to estimate missing delays via
a matrix completion strategy. We first considered positive matrix factorization algorithms
based on standard minimization techniques such as alternated gradient descent. This has
led to one publication which is a communication in a conference.

[37] Non-negative matrix factorization for network delay matrix completion.
Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and Thierry Chonavel. In :
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022. p. 1-6.

Alternatively, we investigated deep learning approaches inspired by recommender sys-
tems for the completion of time delay matrices. This has led to another publication which
is a communication in a conference.

[36] Neural collaborative filtering for network delay matrix completion.
Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton and Thierry Chonavel. In
: 2022 18th International Conference on Network and Service Management (CNSM).
IEEE, 2022. p. 359-363.

Finally, our last contribution is related to the segmentation of network delays. Given
the frequent presence of numerous time delay sequences that necessitate analysis, it is
advantageous to cluster them into groups prior to time-based segmentation. We have
used the hierarchical clustering data-mining approach to cluster time series. In a second
step, we have proposed to associate hierarchical clustering with Hidden Markov Models
(HMMs) for the joint segmentation of clustered time series. We have studied different
variants of the method to enhance its accuracy and speed. Finally, this has led to two
communications, one at a national conference and one at an international conference.
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— [35] Lightweight Network Delay Segmentation Based on Smoothed Hier-
archical Clustering. Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton
and Thierry Chonavel. In : 2023 IFIP Networking Conference (IFIP Networking).
IEEE, 2023. p. 1-9.

— [38] Segmentation à faible coût des délais réseau basée sur le regroupe-
ment hiérarchique. Sanaa Ghandi, Alexandre Reiffers-Masson, Sandrine Vaton
and Thierry Chonavel. In : GRETSI 2023.

1.3 Organization of the document

The organization of the thesis is as follows. The second chapter shows the importance
of network monitoring and presents the most common challenges that can be encountered
in this framework. Furthermore, it underlines the importance of network delay measure-
ments with a focus on round trip times, the measurements used in this thesis. Finally,
it defines the research objectives, which are the completion and the segmentation of the
round trip time series, and provides an overview of the existing methods.

The third chapter tackles all the aspects related to the datasets used in this work.
It covers the generation of synthetic datasets, the collection and scheduling of delay and
routing measurements on the Ripe Atlas platform, and the selection of significant mea-
surements to monitor specific Internet infrastructures such as Internet eXchange Points
(IXPs). It also provides a small tutorial showing how to launch measurement campaigns
in Ripe Atlas.

The fourth chapter presents the different models used to treat the matrix delay com-
pletion problem and validates them on both synthetic and real-world datasets. It suggests
two approaches: the first one is based on non-negative matrix factorization (NMF) and
presents three NMF algorithms. These algorithms are the alternative gradient descent, its
regularized version, and an algorithm based on the Nesterov NMF (NeNMF). The other
approach considered for the completion problem is neural collaborative filtering (NCF)
and we provide two different neural network architectures. This chapter is based on the
references [37] and [36].

The fifth chapter covers the segmentation problem and gives a holistic approach vali-
dated on real-world data that integrates routing measurement for a deeper understanding
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of the network. The approach is based on hierarchical clustering followed by Viterbi
smoothing treatment. This chapter is based on the references [35] and [38].

Finally, we conclude this thesis with a chapter that presents the general conclusions
of this work and its different perspectives.
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Chapter 2

ANALYSIS OF INTERNET DELAY

MEASUREMENTS: SOME CHALLENGES

2.1 On the complexity of Internet monitoring

For most people, it is unimaginable to think of a day without the Internet, as it has
become an essential part of our lives. From airports to healthcare, communication to
shopping, business to entertainment, the Internet is present in every sphere. In most
cases, it performs flawlessly, which justifies its resilient aspect. Nevertheless, there are
instances when the Internet proves to be fragile. A recent illustration of this fragility is
the Internet outage experienced by Hawaiian Airlines, leading to over 250 flight delays and
50 cancellations [44]. Another critical scenario arises in the healthcare sector, where the
heavy reliance on connected devices and services, coupled with digitalization, amplifies the
consequences of Internet malfunctions [99]. Beyond quantifiable impacts, businesses can
suffer severe damage to service reputation due to network disconnections, as clients expect
uninterrupted availability. Prominent examples of this are social media platforms like
Facebook, which lost over 100 million dollars of revenue, 5% of its stock value, and watched
the fortune of its CEO drop by 4 billion dollars because of a 6-hour outage [77]. This
incident is not isolated, as similar events can affect other content providers and companies
such as Netflix, YouTube, or Amazon [33]. All these reasons give both customers and
companies enough incentive to make sure that their network works continuously. But
doing so is more complex than it seems.

On the complexity of Internet network Being able to manage correctly the Inter-
net is difficult due to three main challenges: volume and quality of service requirements,
its intertwined nature, and the presence of multiple stakeholders.

We can identify four recent causes for the large volume of traffic on the Internet. (1)
A high number of devices are connected to the Internet since 66% of the world population
is online. (2) International bandwidth usage has almost doubled between 2020 and 2022
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reaching a total of 120 Tbits/s, a consequence of advancements in technology and the rise
of bandwidth-intensive applications such as 4K streaming and online gaming [51]. (3) The
COVID-19 crisis contributed as well to this amplification that increased traffic demand
due to the lockdown effect and the remote working trends afterward [29]. (4) The IoT
holds now 15.14 billion connected devices and aiming for more than 30 billion by 2030 can
only contribute to additional network complexity [27]. Having a large volume of traffic is
already hard to manage because the network infrastructure has to be adapted. Moreover,
the different requirements of each application make the problem even more complex and
force the need to design efficient algorithms (load balancing, routing, etc...) to ensure a
good quality of service [87, 19, 115].

To understand the Internet, it would be nice to have a simple model or simple represen-
tation of its topology. Such a model could help design algorithms for resource allocation
or to identify precisely the location of a failure. However, the Internet is not a simple
network of networks. It comprises various infrastructures such as Autonomous Systems
(AS) and Internet Exchange Points (IXP) connected between them [40]. These infras-
tructures are often intertwined, which makes it hard to create precise models where nodes
and links are properly delimited [39]. As a consequence, determining the appropriate
course of action in the event of an outage or incident is not a straightforward task. One
solution for this problem is to create a specific model for every use case [26]. For instance,
the Internet can be viewed as an AS graph, but different layers have different topologies
based on each layer’s constraints [98].

Despite not being covered in this work, it is important to address the graph represen-
tation of the Internet and some of its challenges. The Internet has often been referred
to as a graph, and different models have been proposed to understand its structure. One
of the major characteristics of modeling the Internet as a graph is its "robust yet fragile"
nature. In fact, while central nodes on the Internet provide good connectivity and make
it robust against node failure, peripheral nodes are vulnerable to attacks that can reach
these central nodes, making the Internet fragile [26]. The Internet can also be seen as a
hub network, but this is not always the case since it is based only on power law degree
[1]. In a hub network, a few highly connected nodes (hubs) play a crucial role in facili-
tating connections between other nodes. These hubs act as central points for information
exchange. And the power law degree distribution results in a scale-free network, where a
few nodes have a disproportionately large number of connections while the majority have
relatively few. However, the backbone of the Internet is sparse, and the highest degree
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nodes can be found in the periphery of the network, which is made of a non-central set of
nodes that are linked to the core, to address high-performance issues. These peripheral
nodes often operate as content delivery servers or serve as regional hubs that aggregate
traffic from smaller networks and provide a connection point to the core of the Internet.
To create a more accurate model of the Internet, its function and constraints, such as the
cost of deployment, performance, and bandwidth, must be taken into account. The dif-
ference between peripheral and backbone network structures is also an important factor.
Some recent work aims to incorporate these factors and combine them with the graph
perspective of the Internet by suggesting graph neural network approaches [9]. Internet
modeling must also take into account the real constraints of the Internet to create an
accurate representation.

Furthermore, the Internet’s complexity extends beyond its technical aspects. It is
intertwined with political, economic, and social factors, all of which influence its func-
tioning and development. Multiple stakeholders, including countries’ regulatory bodies,
users, service providers, content providers, and economic entities, in addition to the cur-
rent market competition, and the different technological aspects such as infrastructure,
technology, and devices, play an essential role in shaping the Internet [98]. For instance,
Internet service providers (ISPs) have the responsibility of troubleshooting problems that
arise for their customers. They must monitor and analyze clients’ consumption for billing
purposes and to ensure compliance with their Service Level Agreements (SLAs). ISPs
manage billing procedures and dedicate teams to address customer issues effectively. An-
other example is policy regulators and governing bodies who need to remain informed
about the activities and trends on the Internet. They require insights into the Internet’s
operations, developments, and potential issues to enact appropriate regulations and poli-
cies. Each of these stakeholders requires a different view of the network and presents
different monitoring requirements.

To achieve their respective goals, all these stakeholders need tools and methods to
assess or improve the quality of Internet connections. This is precisely where the field
of Internet monitoring comes into play. It is essential to consider the Internet from the
performance lens by taking into account the use of measurements and their purpose.

Monitoring and the network management cycle Before specializing in moni-
toring the Internet, we will first describe briefly the network management cycle and the
importance of network monitoring in communication networks. Network monitoring is
the process of observing and analyzing the performance, availability, and overall health
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of a computer network. This practice involves the use of various tools and technologies to
gather data about the network’s traffic, devices, and infrastructure. It plays a crucial role
in network management operations, allowing for early identification of trends and patterns
in network traffic and devices. It helps network operators understand the current state
of the network and helps to find new configurations to improve the state of the network.
However, network operators face challenges in monitoring and troubleshooting, leading to
disruptions and increased costs. Indeed, the complexity of monitoring tasks can often be
a challenge when it comes to supervising a communication network. Additionally, these
operations are error-prone and rely heavily on human intervention.

It has been identified by network operators and companies that monitoring and trou-
bleshooting networks are important. For instance, after experiencing multiple outages
lasting over three hours, Amazon has allocated a growing portion of its IT budget to
network monitoring instead of investing in value-adding services and equipment [118].

Part of the difficulty in monitoring is due to its interaction with the rest of the net-
work management cycle. Indeed, it is an essential part of the network management cycle:
design, deployment, and monitoring (illustrated in Figure 2.1). Network operators can
manage their network using measurements and configurations. Measurements provide in-
sights into the network’s current behavior, while configurations define the desired behavior
of network devices. Another challenge to keep in mind while doing network monitoring is
the ’intrusiveness’ of the measurement tool, which can impact network performance, as it
adds extra traffic and potentially disrupts the network flow [89]. This intrusiveness issue is
particularly relevant in the context of delay measurements. In fact, certain measurement
platforms limit the number of measurements conducted each day to prevent overloading
the overall network traffic.

Let us start by illustrating a network management cycle for load reduction near a
router. Such cycle can be summarized as follows (see Figure 2.1): the monitoring opera-
tions collect and analyze measurements to understand the network’s behavior, influencing
design operations to make necessary changes to configurations and infrastructure. These
changes aim to meet specific network requirements, such as traffic distribution, QoS or
business constraints. The planned changes are then deployed in the network, while mon-
itoring ensures that the network operates as intended. The cycle continues as deviations
between the current and intended behavior are identified through monitoring, prompting
configuration redesign to restore the desired behavior. This cycle of operations repeats as
requirements change and new issues arise.
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Figure 2.1 – Network management cycle for load reduction [62].

Notice that, in the previous example, the interactions between components require
additional work to progress efficiently. A standard language capable of describing policies
for various aspects of network operations is necessary as well as implementing a configu-
ration checker to reduce errors. Finally, visualization tools can help operators understand
clearly the configuration to implement and its potential impact.

On the other hand, the monitoring step can be classified into five layers: collection,
representation, report, analysis, and presentation.

1. The collection layer focuses on collecting accurate measurement data without dis-
rupting network operations.

2. The representation layer determines the formats for storing and communicating
measurements.

3. The report layer ensures timely and efficient transfer of data from collection devices
to management stations.

4. The analysis layer analyzes measurements and extracts high-level interpretations,
which can influence configuration settings.

5. The presentation layer presents analysis results in user-friendly formats, aiding net-
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work operators in prioritizing issues.

Towards a more efficient monitoring accuracy After analyzing previous works
on the five layers of monitoring, a natural tradeoff can be identified. Highly accurate
monitoring goes hand in hand with a more frequent measurement scheme, a wider range
of metrics, and more complicated treatment tools. This enhancement of precision comes
at a cost. It often requires more data storage and computing power for efficient data
analysis. In fact, collecting more data more frequently, for better failure identification
will increase the CPU load. Another example is the deployment of new monitoring de-
vices which increases the configuration effort. A way of dealing with this is to act on the
collection level. In fact, controlling how to sample by only acquiring packets from the
flow of interest and avoiding redundancy can be helpful to increase both the accuracy
and efficiency of the monitoring. This is the case of cSamp, [105] a network-wide flow
monitoring system that controls packet sampling to enhance accuracy and efficiency. It
employs high quantiles for precise delay monitoring to effectively capture changes. An-
other approach includes raising the intelligence of collection devices so that some of the
analysis operations are computed directly within these devices. An example of this is
the Highly Available Monitoring Services Architecture (HAMSA) [12]. It allows a dy-
namically enhanced monitoring functionality and enables its decentralization efficiently.
Finally, other monitoring policies focus on flexibility by collecting diverse data types and
allowing programmable measurements [72].

Performance metrics To ensure accurate monitoring, it is crucial to select the most
suitable performance metrics that can assess the reliability of the network. The most used
metrics include:

1. Network connectivity is monitored across all network layers and is crucial as it
guarantees end-to-end communication between nodes.

2. Network delay, measured through end-to-end pings, is widely used to assess network
path performance, especially for small data transmissions. It is the cumulative sum
of all individual delays within the network.

3. Packet loss rate, measured through SNMP packet statistics. It is measured as a
percentage of packets lost with respect to packets sent. For ISPs, it is a vital metric
to minimize as it affects their marketing. Packet loss, a common network problem,
often occurs due to router queues reaching their capacity, leading to packets being
dropped.
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4. Available bandwidth, which directly affects data transmission speed, is essential for
highly demanding services such as video streaming but is less popular than the delay
metric due to its high measurement overhead. As a substitute, the link load metric,
which is easier to measure, is often used to capture available bandwidth information.

Another key factor to consider is the capacity of a path which is the minimum capacity
among all its constituent links.

Internet measurements: active monitoring and the challenges As researchers
explore the Internet through active measurements, the scope of activities is predomi-
nantly shaped by the privacy, legal, and proprietary constraints that render passive mea-
surements, which involve collecting data from ongoing traffic without injecting additional
probes, inaccessible. As a result, the focus is on utilizing publicly available platforms for
conducting active Internet measurements, where specific investigations can be scheduled
and executed.

Active measurements, unlike passive ones, involve generating additional traffic to con-
duct network monitoring. While they do not require any storage and cause no privacy
issues, they can potentially disrupt the network by adding extra traffic. Additionally, they
demand more resources, both in terms of the network capacity used for the test traffic and
the processing power needed to generate and analyze this traffic. However, the benefits
of active measurements, such as their ability to provide real-time data, targeted testing,
and not requiring access to all devices on the network, justify their use.

Despite the advantages of active measurements, navigating publicly available plat-
forms devoted to this task presents significant challenges. Common issues include missing
data due to non-responsive nodes, network connectivity disruptions, and limitations set
by service providers. Furthermore, scheduling measurement campaigns requires careful
consideration to prevent an overload of monitoring traffic, which could negatively impact
network performance or breach ethical guidelines.

In the sphere of active monitoring, another challenging aspect is the development of
the analysis layer on monitoring platforms. This requires devising and exploring diverse
methods adaptable to network data. We predominantly use delay data in this process
due to its accessibility and a direct reflection of the network’s quality of service (QoS).
The latter is a metric of service performance overall. Augmenting this data with routing
measurements enables us to account for the underlying network topology, thereby devising
efficient scheduling schemes for monitoring specific Internet infrastructures and uncovering
correlations within the network topology. An example of this, developed in Chapter 3,
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covers a measurement scheme used to monitor specific Internet exchange points of the
Internet.

Internet and Measurement Platforms Ripe Atlas [97], M-Lab [116], Caida [13]
and other Internet measurement platforms offer different views of the Internet through
topology discovery and performance measurement. They are crucial in determining In-
ternet performance. While these platforms measure various metrics, their accuracy is
not always reliable, and they generate overhead [6]. The process of conducting measure-
ments requires specific probes, techniques, and hardware. Furthermore, these platforms
face challenges such as limited resources and the need to motivate users to participate in
measurements.

At the core, performance metrics for networks can be measured at two levels: link-
level or end-to-end level. For network operators, Simple Network Management Protocol
(SNMP), which is a standard protocol used for managing devices on IP networks, guar-
antees the accessibility of link-level measurements such as link packet, loss rate, and link
load. However, it’s challenging to infer end-user performance solely based on this infor-
mation. It demands synchronization of measurements on all links along an end-to-end
path, which is technically challenging. Moreover, combining performance information
from multiple links to infer the overall path performance can be unclear. On the other
hand, end-to-end monitoring provides a more realistic representation of a user’s data
transmission experience. It doesn’t require access to network internal information, thus
making it an attractive option for both ISP network operators and end users. However,
end-to-end monitoring also has its challenges, such as the difficulty of designing techniques
to measure end-to-end performance. Currently, the most common end-to-end monitor-
ing techniques are ping and traceroute, which can measure delay, connectivity, and route
information.

Measurement Strategy and Tools Our research predominantly utilized the Ripe
Atlas measurement platform [97], a global, open, distributed Internet measurement plat-
form. Ripe Atlas consists of thousands of measurement devices, called probes and anchors,
which measure Internet connectivity in real time. This platform is operated by the RIPE
NCC, an organization supporting the infrastructure of the Internet through technical co-
ordination in Europe, the Middle East, and parts of Central Asia. More details regarding
this platform are developed in Chapter 3.

These probes and anchors, hosted by volunteers worldwide, provide an ongoing under-
standing of the state of the Internet in real time. They generate invaluable data about
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network latency, reachability, routing, and other key performance indicators. Network
operators, developers, and researchers widely use this data to improve network resilience,
monitor service level agreements, verify reachability, and other applications.

2.2 Internet end-to-end delays

In this thesis, we will focus on Round-Trip Time (RTT) measurements which is one
possible measurement to monitor network delays. RTTs capture the time needed for a
data packet to travel from a sender to a receiver and then back to the sender. There are
many reasons behind the monitoring of RTTs. In the context of applications requiring low
delay such as gaming or emergencies, making sure that RTTs don’t exceed a certain level
is crucial. Another aspect is the impact of RTTs on bandwidth provisioned by higher-
level transport protocols [122]. Finally, RTTs can be useful to indicate paths having
congestion, once the values exceed the minimum RTT [76]. The minimum RTT is viewed
as the constant sum of propagation and transmission delays, measured on networks with
low traffic.

One limitation of the RTTs metric when compared to the one-way delay metric, is the
fact that the Internet paths are rarely symmetric [46]. Estimating one-way delay from
RTTs, for example, by dividing RTTs by two, is therefore unfeasible due to factors like
different network loads or QoS provisions leading to path asymmetry.

It is not possible to use RTTs properly without the knowledge of network topology
and more specifically information regarding the paths taken by the packets. In fact, RTT
provides a global idea about the overall route, but it is hard to extract any information
regarding specific links. For this reason, we need to use Internet routing measurements,
particularly traceroutes. The traceroute utility provides a detailed view of the path a
packet takes from its origin to its destination and the time taken at each hop. This
sequence of hops forms the RTT. Although having access to all hops might be difficult,
by pinpointing most hops in the packet’s journey, traceroute enables network engineers
to identify potential points of delay or failure in the network [30]. This information is
particularly relevant to understanding the source of delays and designing a more efficient
routing.

Working with RTTs comes with challenges like incomplete data, which can happen
due to equipment failure, congestion, measurement policies [5], or privacy issues as many
routers can block ICMP packets for security reasons [25]. Another one is the automation of
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RTT treatment. In fact, despite the simplicity of figuring out change points and anomalies
in RTT time series, their large data volume makes this task error-prone and fastidious for
most humans.

RTT representations Delays can be treated as time series. In this approach, each
time series represents the delay between a specific origin and destination pair over time.
By capturing the temporal variations in delays for each pair, one can analyze patterns,
trends, and anomalies in the time series data.

In addition, to account for dependence among network delay time series, they can
be organized into a matrix format. In this representation, the rows correspond to pairs
of origin and destination nodes, while the columns represent the instances of measure-
ments. Each entry in the matrix corresponds to the delay between the specific origin
and destination at the given time of measurement. This matrix representation provides
a comprehensive overview of delays between different node pairs at different time points,
allowing for analysis and computations based on the matrix structure.

When observed over a long period, typically spanning a few days, network delays
tend to exhibit stability over time with minimal variation. However, abrupt changes can
occur due to network congestion, equipment failures, or routing changes. The stability
in network delays during normal operation implies that the delay matrix, organized as
described previously, possesses a low-rank property. This low-rank property arises from
the fact that the columns of the delay matrix change very little over time.

RTT challenges: Completion and segmentation
During this Ph.D. we have focused on RTT completion and RTT segmentation

— Completion is a task that consists of inferring missing values from an incomplete
set of observations. It helps to palliate network problems that can arise and result
in missing values. It can also contribute to programming smarter measurement
schemes that rely on fewer probes in the network.

— Segmentation is a technique used to dissect the RTT signal into smaller parts, which
helps to identify patterns and relations between different sections of the network.
Through this analysis, network engineers can improve network performance, iden-
tify network bottlenecks and congestion, and troubleshoot problems. RTT segmen-
tation, therefore, plays a crucial role in network monitoring, optimization, traffic
analysis, and capacity planning.
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2.3 Estimation of missing data in RTT measurements

Figure 2.2 – The matrix completion problem [74].

Related works

In large-scale distributed networks, explicit end-to-end delay measurements between all
network pairs become impractical due to computational and network traffic overheads.
Delay prediction techniques are thus used as an alternative to these direct measurements,
considerably reducing these overheads. These techniques employ matrix completion meth-
ods, an essential task involving filling in missing entries of a partially observed matrix.
Applications are found in numerous fields such as recommendation systems, image pro-
cessing, and bioinformatics.
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Missing values in network delay have captured the interest of previous work in the net-
working community. [107] For instance, investigates the missing delays within the Ripe
Atlas platform and tries to evaluate the extent of probes’ disconnectivity contributing to
this issue. Missing delays can be a challenge during the analysis phase. Some works on
modeling and segmenting delays based on hidden Markov models (HMM) [80] needed to
address this problem using different methods. These methods include assigning elevated
values to missing data, treating them as outliers, or substituting missing values in each
delay time series with the last known value. Consequently, the considered models for ana-
lyzing delays, are forced to adapt to accommodate the missing values. This emphasizes the
importance of being able to recover missing delays accurately. Matrix completion methods
include Singular Value Thresholding (SVT) [49] which is an optimization technique that
reduces the rank of a matrix by applying a thresholding operation to its singular values,
Nuclear Norm Minimization [128] that encourages low-rank solutions by minimizing the
sum of the singular values of a matrix, Alternating Least Squares (ALS) [43] an itera-
tive optimization algorithm, and Gradient Descent a general optimization technique that
aims to minimize a cost function by iteratively adjusting the matrix elements based on the
gradient of the cost function. Modern techniques also incorporate Bayesian Probabilistic
Matrix Factorization (BPMF) [65] which provides a way for capturing uncertainty in the
completion process. Autoencoders [111], a product of deep learning advancements, can
learn a compact representation of the input matrix, allowing for efficient and accurate
completion of missing entries. The latter is particularly efficient when dealing with large
data. While these methods are efficient computationally, BPMF can be more resource-
consuming and the efficiency of deep learning models often can vary according to the
complexity of the data. On the other hand, BPMF and autoencoders can provide more
flexibility than the rest of the mentioned models. The selection of the appropriate method
is based on the specific characteristics of the problem at hand, such as the amount and
pattern of missing data, and the underlying data distribution.

All these methods can be extended and adapted to particular problems using regu-
larization techniques. Indeed it helps to manage the complexity of models and prevent
overfitting. The regularization is used to also add prior knowledge on the data by pro-
moting desirable properties like low-rank representations or sparsity. Techniques include
L1 Regularization (Lasso Regression) [112], L2 Regularization (Ridge Regression) [54],
and Elastic Net, a blend of both L1 and L2 penalties [57, 92]. L1 regularization favors
sparse solutions while the L2 enhances stability. Elastic Net combines both and finds a
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balance between sparsity and stability. Finally, these techniques enhance the robustness,
generalization, and practicality of matrix completion models.

Regarding deep learning models, many techniques can be used to customize the model
such as Dropout [109], Early Stopping [130], and Batch Normalization [100]. Dropout
randomly ignores a subset of layer outputs during training, Early Stopping terminates
training before the model’s performance on a validation set deteriorates, and Batch Nor-
malization normalizes neurons’ activations on a mini-batch basis. Weight Decay, equiva-
lent to L2 regularization, adds a penalty term to the loss function to discourage the model
from learning overly complex patterns.

In summary, the interplay between matrix completion, and regularization techniques
is crucial in addressing delay prediction in large-scale networks. These combined methods
not only deal with network overheads but also tackle missing delays due to network
issues such as probe disconnectivity, congestion, or packet loss contributing significantly
to efficient network management and optimization.

NMF for RTT completion

Figure 2.3 – The non-negative matrix factorization.

The first method that we have used in this thesis to perform RTT completion is
the Non-negative Matrix Factorization (NMF). NMF algorithms are commonly used in
multivariate analysis and linear algebra where a matrix D with non-negative entries and
dimensions (n × m) is factorized into (usually) two matrices W and H having respectively
the dimensions (n × r) and (r × m), with lower rank r where r ≤ n, m, where D ≈ WH.
Additionally, W and H must have non-negative elements. The matrix W is generally
interpreted as the basis matrix, where its columns (the basis vectors) capture the main
patterns of the original matrix D learned during the factorization. The matrix H is often
referred to as the coefficient matrix, its rows indicate how much each basis vector con-
tributes to each column of the original matrix D. This non-negativity makes the resulting
matrices easier to interpret and the factors physically meaningful. This decomposition is
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illustrated in Figure 2.3.
The basic idea is that the observed delays (the known elements of the matrix) can be

represented as a product of two lower-rank matrices, one representing the "features" of the
source/destination nodes and the other representing the "features" of the measurement
instants. Once these feature matrices are learned, they can be used to estimate the
unobserved time delay.

One key advantage of NMF here is that it produces interpretable results. Because the
factorization is constrained to non-negative elements, the resulting factors can often be
interpreted in a meaningful way, such as the intrinsic latency of each network node or
the inherent delay of each link in the network [34]. In addition, using other completion
methods such as singular value decomposition (SVD) for example, can lead to a completion
containing negative values if the number of missing values is important. An example of
this result is provided in Chapter 4. In the context of network delays that can only have
positive values, methods imposing the nonnegativity constraints such as NMF are indeed
important to consider. In this work, we considered two regularizations for the NMF that
were able to incorporate the temporal correlation among the RTT time series in order to
capture the piecewise-like behavior of network delays.

Moreover, NMF can also handle the high-dimensional and sparse nature of the data
often encountered in network monitoring. By reducing the dimensionality of the data,
NMF can help alleviate issues with computational complexity and data sparsity, making
it easier to analyze and visualize the data.

Neural collaborative filtering (NCF) for RTT completion

Figure 2.4 – The collaborative filtering principle.

Related works
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Neural Collaborative Filtering (NCF) [45] is an approach to recommendation sys-
tems that utilizes the flexibility and non-linearity of neural networks to learn user-item
interactions. It’s a powerful technique that can effectively capture complex user-item
relationships and improve recommendation performance.

It is inspired by collaborative filtering, which is a popular technique used in rec-
ommendation systems and information filtering to provide personalized suggestions or
recommendations to users. As shown in Figure 2.4, it relies on the idea that users who
have interacted with similar items in the past are likely to have similar preferences and
interests in the future. In other words, it collaboratively uses the behavior and preferences
of a group of users to make recommendations to an individual user.

The rationale behind using NCF for delay completion in network analysis can be
considered analogous to the way neural collaborative filtering is used for recommendation
systems. Let’s consider network nodes as "users" and measurement instants as "items".
Now, instead of predicting user preference for items, we predict time delays between
network nodes at different measurement instants.

In many network scenarios, you might not have complete information about time
delays between every pair of nodes in the network, similar to how in a recommendation
system, you don’t know every user’s preference for every item. The goal of NCF in this
context is to predict the unknown time delays.

NCF leverages the power of neural networks to learn a better function for predicting
these delays. Conventional collaborative filtering methods [101, 129] often depend on
linear models, which may fail to capture complex patterns. Neural networks, however,
can model intricate non-linear interactions.

In summary, NCF is used for delay completion because of its ability to handle sparse
data, model complex interactions, and fill in unknown values effectively. This can be
particularly useful in scenarios such as network traffic analysis, where fully understanding
the delay times between different nodes can aid in optimizing network performance.

The use of NCF has some advantages, such as the possibility to represent much more
complex patterns and not being very tied to the low-rank matrix hypothesis [96]. On the
other side, the NMF can be more efficient in capturing data schemes when these present
simple patterns.
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2.4 Segmentation of RTT time series

Related works Delay segmentation refers to the process of dividing a network delay
time series into distinct segments or clusters based on similarities or patterns in the delay
values.

Time series segmentation is a crucial technique used in data analysis and pattern recog-
nition, particularly when handling sequential data such as network delays. By breaking
down a complex time series into smaller segments with distinct and interpretable charac-
teristics, one can uncover meaningful patterns, trends, and anomalies that can contribute
significantly to network performance optimization.

One common method is the Sliding Window approach [127]. This technique segments
the time series by moving a fixed-size window along the data. It enables the detection of
local patterns or trends, making it a suitable choice for identifying anomalies or variations
in network delays. However, the key to its effectiveness lies in the appropriate choice of
window size, which depends on the specific characteristics of the data. It operates by
anchoring the left point of a potential segment at the first data point of a time series,
then approximating the data to the right with segments of increasing lengths. When the
regimen changes it detects the presence of a new segment.

The Bottom-up [22] and Top-down [10] methods provide another perspective to seg-
mentation. The Bottom-up approach starts by considering each data point as an indi-
vidual segment and progressively merges the segments based on a predefined similarity
criterion. The Top-down method, in contrast, starts with the entire time series as a single
segment and iteratively splits it into smaller parts based on a predefined criterion such as
the fitting error or the Euclidean distance.The Bottom-up approach offers the advantage
of capturing fine-grained patterns and providing a hierarchical view of the data but can be
computationally intensive and sensitive to initial conditions. In contrast, the Top-down
method efficiently identifies significant changes and is guided by domain knowledge, yet it
may overlook fine-grained details and involve subjective criteria for splitting. Both these
methods offer a hierarchical view of the data, which can be valuable when dealing with
multi-scale phenomena often encountered in network delays.

The Pott’s Model [117] is a statistical method that allows for the detection of change
points in the time series, points where the statistical properties of the data change. This
model can be particularly useful for network delay segmentation as it can identify shifts
in delay patterns, offering insights into network performance and potential issues.
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Clustering-based techniques offer yet another approach to time series segmentation.
By treating each segment as an instance of a particular cluster, these methods allow the
identification of common patterns across different segments of the data. These common
patterns can then be used to better understand the behavior of network delays.

These classical models can be used for segmentation. Indeed, when a drift is observed
in the estimated parameters, we could segment at the moment of change. Interestingly,
the principles underlying these segmentation techniques resonate with those used in time
series analysis and forecasting. For instance, methods like autoregressive model (AR),
moving average model (MA), and autoregressive moving average model (ARMA) models,
which consider past observations and errors to estimate future values, echo the princi-
ple of examining previous data points in the sliding window or hierarchical approaches.
Autoregressive integrated moving average model (ARIMA) and seasonal autoregressive
integrated moving average model (SARIMA) models, which account for trends and sea-
sonality, align to identify change points and patterns in segmentation methods like Pott’s
Model or Clustering-based techniques. Additionally, State Space Models and the Kalman
Filter, which make predictions based on hidden states, could be compared to determine
the structure of network delays using segmentation.

Further, vector autoregression (VAR) and generalized autoregressive conditional het-
eroskedasticity (GARCH) models, which address the interdependency of variables and
time-varying volatility respectively, can be useful in the context of network delays where
interdependencies and variability are often present. Finally, tools like Prophet and re-
current neural networks (RNNs) or long short-term memory (LSTM), designed to handle
strong seasonality and sequence prediction, underscore the essence of segmentation, which
is to identify recurring patterns and predict future network behavior based on these de-
tected patterns.

Using hierarchical clustering and Viterbi for delay segmentation Hierarchical
clustering offers a systematic and intuitive approach to achieving this segmentation. The
main advantage of hierarchical clustering is its ability to create a hierarchical structure or
tree-like representation called a dendrogram. The dendrogram illustrates the clustering
process, showing how individual delay points or segments merge at different levels of
similarity. This hierarchical structure provides a visual depiction of the relationships and
similarities between delay segments.

In the context of delay segmentation, hierarchical clustering can help identify differ-
ent patterns or groups of delay behavior. By grouping similar delay values, it becomes
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possible to identify periods of high delay, low delay, or distinct delay patterns within the
time series. The hierarchical clustering, however, didn’t incorporate the dimension related
to temporal stability. One way to solve this problem was adding a post-treatment step
using the Viterbi algorithm to smooth the results. The regularization to get more coher-
ent and smooth segments was introduced using the transition probability matrix of the
Viterbi algorithm. It favors the behavior of staying within the same state if the emission
probabilities are close and changing the state in case of real distinct emission laws.
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Chapter 3

MEASUREMENTS AND OTHER DATASETS

In this chapter, we will present the different datasets used in this thesis and the purpose
and specificities of each one of them. The first part is dedicated to a synthetic network
delay simulator, that serves as a controlled ground truth environment, and the second
part is dedicated to real-world datasets coming from an Internet measurement platform
called RIPE Atlas.

3.1 Synthetic datasets

The necessity of synthetic dataset First of all, synthetic datasets provide a valu-
able source of ground truth. In fact, whether it is related to the completion or the seg-
mentation problem, it can be challenging to find real-world datasets with ground truth
values. Indeed, we can never know the value of missing measurements occurring in real
scenarios. In addition, labeling the segments and the change points by hand is often a
tedious task. That’s why having datasets with ground truth is very important as they
provide a realistic view of the algorithm’s performance and help tune and enhance them.

Second, using synthetic data we have total control over the complexity and the nature
of the patterns of the delay time series. We can change the distributions of the generated
time series, and we can also decide on the level of spatial correlation within the dataset by
controlling the rate of route segments shared by the different paths. One might note, that
by distribution we mainly mean the overall behavior of the time series: the number of
abrupt changes, the level of stationarity and the level of noise. In fact, the model described
later in this section enables us to guarantee certain characteristics found in RTTs without
exact control over the mathematical distribution of the time series. Additionally, we
control the length of the time series providing us for instance with a time series long
enough to capture some of the periodical characteristics of delays.

Finally, having total control over the network topology can enable us to test a large
set of real-world network topologies and evaluate the impact of routing changes or routing
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incidents. In this context, we opted for two topologies: GEANT and Renater. Addition-
ally, it allows us to control the routing, as we can either opt for the shortest route strategy
or for another routing scenario. This provides the possibility to implement easily routing
changes, or congestion by changing weights on the route segments. It can also serve to
represent failure or attack scenarios by removing one or more route segments.

Reproducing RTT characteristics There are some characteristics in actual net-
work delay measurements that we want to reproduce which are the temporal stability and
the spatial correlation. As it can be noticed in Figure 4.1, in many RTT series the delay
is stable over several hours and changes occur abruptly. The statistical distribution of
the delay during the stable periods displays a baseline and some random variations above
this baseline. Indeed, the delay in a network has various components [83]. One compo-
nent corresponds to signal propagation and packet processing at router interfaces, which
accounts for the baseline delay. This baseline remains constant due to fixed geographical
distances between the source and destination, as well as consistent processing times. An-
other component relates to queuing effects, responsible for introducing randomness into
the delay. This randomness is dependent on the network’s traffic load.

Additionally, when routing changes occur it often induces abrupt changes in network
delays. Moreover, network protocols like OSPF (Open Shortest Path First) and BGP
(Border Gateway Protocol) take some time to converge after a routing change. During
this period, packets might be sent to less optimal and efficient routes leading to an increase
in delays. Regarding the spatial characteristic, the delays between different (Origin,
Destination) pairs of nodes are sometimes correlated with each other. Indeed, part of
the paths between origins and destinations are shared, which creates spatial correlation.

3.1.1 The network delay simulator

Different tools for network emulation and simulation exist such as Mininet [56] and
ns-3 [86]. Using these tools is beneficial in scenarios that require complex and feature-rich
network simulations. However, using them for simple simulations might not be optimal
considering their complexity, resource-intensive nature, and the time required to get fa-
miliar with the tool and its setup. We decided for this reason to build our own simulator
since the main goal of the simulator is obtaining end-to-end delays that replicate real-
istic delay characteristics. As explained below, many simplifying assumptions are made
to reduce the model complexity, making sure at the same time that the desired delay
requirements are met.
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The autonomous system model For our delay simulator we consider the case of
a single Autonomous System (AS) which is modeled as a graph, the nodes of which
are the routers. Some nodes can be the origin or destination of the traffic. In fact,
an AS is a collection of IP networks and routers governed by a single entity and has
a unique number assigned to it referred to as the autonomous system number (ASN).
We opted for the AS model, as the internal network management and routing policy are
autonomous and controlled by the AS entity. We consider that the entering traffic crosses
the autonomous system (AS) by going from the entry border routers (sources) to the exit
border routers (destinations). In this model, we will be interested in unidirectional full-
mesh traffic. The unidirectional assumption is made in order to reduce the complexity
of the model, however, this can be reflected in some real-world cases where the traffic is
indeed unidirectional such as browsing and video streaming services where the traffic is
mainly sent from the server to the user. So we consider that the entering traffic will be
sent from all the sources to all the destinations. For simplicity reasons, we order the pairs
(source, destination) following the lexicographic order on the indexes of the sources and
destinations.

The traffic generation We consider slotted time, where at the beginning of each
time slot k ∈ N, T (k) denotes the traffic entering and leaving the autonomous system.
The total traffic demand T (k) may not be constant but may be a quasi-periodic term
that takes into account daily variability. We assume that for every k:

T (k) = f(k) + ϵk, (3.1)

where:

— f(k) is a deterministic function capturing the average traffic at the instant k,

— ϵ(k) is a zero mean normal random variable with finite variance.

After defining the total traffic volume present at each instant k in the network, we
need to define the amount of traffic present on each path. In fact, the Origin-Destination
(OD) traffic matrix represents the traffic demand (in bytes) between each origin node and
each destination node. To generate this traffic matrix, we use a simple gravity model
[132].

The gravity model Let us recall the gravity model. It assumes that the traffic be-
tween node i and node j is proportional to the product of two terms, one of them represent-
ing the proportion of traffic entering through origin node i, and the other representing the
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proportion of traffic which exits through the destination node j. So, T(i,j) = T ×y
(o)
i ×y

(d)
j

where T(i,j) is the traffic between nodes i and j and T is the total traffic demand. y
(o)
i

and y
(d)
j are proportions so that ∑

i y
(o)
i = ∑

j y
(d)
j = 1 and T = ∑

i,j T(i,j).
In our approach, the time is slotted so that T(i,j)(k) (respectively T (k)) represent the

traffic between nodes i and j (respectively, the total traffic demand) in a time window k

(lasting a few minutes). Similarly, the previously defined proportions depend on k: y
(o)
i (k)

and y
(d)
j (k).

The traffic per link Once the OD traffic matrix has been generated, we can deduce
the traffic volumes on the links of the network. If one considers a particular link l then
the traffic T l(k) through link l is the aggregation of all the origin-destination demands
which routes go through link l.

So, T l(k) = ∑
{(i,j),l⊂P (i,j)} T(i,j)(k) where P (i, j) is the path from i to j. In our simu-

lator, we have assumed that routes follow the shortest path, which is the most realistic
scenario in normal network conditions. Other models to distribute the traffic exist such
as the Frank-Wolfe algorithm [123] or the Dial’s algorithm [114] which are two traffic as-
signment algorithms used to determine the traffic flow in the network considering factors
like link capacity, and congestion and travel time. More recently, algorithms based on
machine learning and reinforcement learning such as [113, 28] are used.

The need for abrupt changes Second, our goal is to simulate realistic time series,
taking into account the spatial correlation but also the temporal correlation of the de-
lays. In particular, we want to simulate abrupt changes in the statistical distribution of
delays, as shown in Figure 4.1. In the case of an AS, such abrupt changes can be due to
modifications of the external routing, which leads to changing the entry or exit points of
part of the traffic [119]. Eventually, these changes in addition to the convergence time
needed by the routers within the AS lead to changes in the corresponding network delays.
So, in our simulator, the terms y

(o)
i (k) and y

(d)
j (k) of the gravity model are not constant.

Figure 3.1 – RTT between two anchors on RIPE Atlas over 1 week [79].
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They remain constant for a while, and then, according to Markovian dynamics, a change
of state occurs. As the state of the Markov chain changes, the values of the proportions
y

(o)
i (k) and y

(d)
j (k) change, while respecting the normalization constraints.

Abrupt changes generation The model we choose behind the abrupt changes is
as follows: when no change occurs in the state of the network, the proportions of traffic
corresponding to each origin and destination y

(o)
i (k) and y

(d)
j (k), as described in para-

graph "Gravity model", do no change. When a change occurs, part of the sources or
the destination witnesses a change share. For this purpose, we redistribute the shares
between those selected nodes and keep the shares of the rest of the nodes untouched. The
process of modifying the traffic proportion is in fact, for a given source or destination, the
distribution shares evolve in time according to the following equation:

— If the state doesn’t change: y
(o)
i (k + 1) = y

(o)
i (k)

— If the state changes, we vary the traffic proportion on a set of selected origins :

y
(o)
i (k+1) =

I{i ∈ NO(k)} X
(o)
i∑

j∈NO(k) X
(o)
j

(1−
∑

j /∈NO(k)
y

(o)
j (k))+(I{i /∈ NO(k)}y

(o)
i (k))


with O is the set of origins,denotes the indicator function. We also have:

— X
(o)
i ∼ exp(I{Sk+1 = 1}λ1 + I{Sk+1 = 2}λ2), with λ1, λ2 > 0. Sk is the state of the

Markov-chain at instant k

— NO(k) is the set of nodes among the sources and ND(k) is the set among the desti-
nations that will be affected by the new traffic distribution. In order to determine
these sets, we draw uniformly a number ns from 1 to |S| and nd from 1 to |D|
respectively. Then we choose no nodes among O and nd among D to modify their
weights’ distribution at the instant k using Xi.

The update of y
(d)
i (k) follows the same process as the one y

(o)
i (k).

This formulation was motivated by two factors. First, the overall stability of the
network was modeled by a more likely state of the Markov chain that induces abrupt
changes but forces the network to remain in this regimen for a long period of time. Then
the fact that the traffic distribution was operated due to external factors such as a change
in the routing, which explains the introduction of some randomness through Xi and
through the construction of N(k).

We will now prove that the proposed model follows a simple gravity model.
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Lemma The proposed traffic distribution model is equivalent to a simple gravity
model, and we have

T(oi,dj)(k) = T (k) × yoi
(k) × ydj

(k) = T
(o),in
i (k) ×

T
(d),out
j (k)∑

dn∈D T out
dn

(k) ,

with T
(o),in
i (k) referring to the total traffic entering the AS from source si and T

(d),out
j (k)

the total traffic leaving it through destination dj.
Proof We will use an induction argument. The initialization is coming from the fact

that the traffic conservation assumption ensures that ∑
oi∈O y

(o)
i (0) = ∑

dj∈D y
(d)
j (0) = 1.

Let us assume that ∑
si∈O y

(o)
i (k) = ∑

dj∈D y
(d)
j (k) = 1 holds.

— If Sk = Sk+1, then: y
(o)
i (k) = y

(o)
i (k + 1) and y

(d)
j (k) = y

(d)
j (k + 1) for each i and j.

Hence, the equality is true for k + 1.

— If Sk ̸= Sk+1, then for nodes in D: ∑
dj∈D y

(d)
j (k + 1)

= ∑
i∈ND(k) yi(k + 1) + ∑

i/∈ND(k) yi(k + 1)
= ∑

i∈ND(k)
Xi∑

j∈ND(k) Xj
(1 − ∑

j /∈ND(k) yj(k)) + ∑
i/∈ND(k) yi(k)

= 1.

The same applies to nodes in O. According to the traffic distribution model (3), we
assume that at each instant k:

T
(o),in
i (k) = T (k) × y

(o)
i (k),

T
(d),out
j (k) = T (k) × y

(d)
j (k).

(3.2)

with T (k) following the formula defined earlier in the section "The traffic generation".
Therefore, we can write

T(oi,dj)(k) = T (k)y(o)
i (k)y(d)

j (k) = T (k)y(o)
i (k) × T (k)y(d)

j (k) × 1
T (k)

= T
(o),in
i (k) ×

T
(d),out
j (k)

T (k) × ∑
dn∈D ydn(k)

= T
(o),in
i (k) ×

T
(d),out
j∑

dn∈D T (k) × y
(d)
n (k)

= T
(o),in
i (k) ×

T
(d),out
j (k)∑

dn∈D T
(d),out
n (k)

.

The last line is the simple gravity formula, and this concludes our proof.
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The delay generation The delay from node i to node j is then obtained as a sum
of delays along the path P (i, j). A delay is associated with each of the links using an
M/M/1 queue model. In an M/M/1 model, the average delay of a link l with capacity
Cl and offered traffic T l(k) is equal to 1

µ
1

1−ρ
. 1

µ
is the average service time, that is to say,

the packet size divided by the bandwidth of the router interface, and does not depend on
the offered traffic. ρ = T l(k)

Cl
is the load and approximates the fraction of time a server

is busy (and ρ < 1 since we assume that the queue is stable). We make the following
assumptions:

— All the links are identical and have the same capacity C.
— There is no congestion in the network. This means that there is no packet loss due

to traffic bottlenecks for instance.
— We consider that the load doesn’t reach the link capacity which means ρ = λ/µ < 1,

where 1/λ is the average interarrival time of packets and 1/µ is the average service
time.

Then, in the simulator the delay Dij(k) from node i to node j is modeled by an M/M/1
and given by

Dij(k) =
∑

l,l⊂P (i,j)

Packet Size
Cl

1
1 − T l(k)

Cl

(3.3)
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Figure 3.2 – Simulated delay time series.
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3.1.2 The simulation setup

As an example of simulation, we used the model described previously with a network of
30 nodes: 6 sources, 6 destinations and the rest of the nodes served as transition routers.
This provides 64 OD pairs. In order to define the corresponding paths, we chose the
shortest path on the graph for each pair. For this we use the Dijkstra algorithm, as it is
classically used for shortest path network routings and is more computationally efficient
than the Bellman-Ford algorithm [71] We sample RTTs for OD pairs at 800 successive
instants for our delay time series. In order to induce abrupt changes in the delay time
series, we followed the two-state Markov model described earlier. In this example, we use
the following transition matrix for our two-state Markov chain:0.99 0.01

0.01 0.99

 .

Such transition probability choice will force a piecewise-like behavior since the delay
remains stationary for a long time until the occurrence of the next state change.

The goal, however, is to be able to try different network topologies and to simulate
delays on networks that are big enough to reflect real-world scenarios. For this purpose,
we simulate delays on two real-world topologies: Abilene and Renater. Abilene Network
was a high-performance backbone US network created by the Internet2 community in the
late 1990s. It is composed of 12 nodes and 15 physical links [60]. Renater [61] on the
other hand, is made of 45 nodes and 54 links.

Figure. 3.2 displays some delay time series obtained from the simulator. It can be
observed that the signals present abrupt changes, some of which are synchronized between
several (Origin, Destination) pairs, with a baseline delay value over stable periods. For
the simulations, we considered a network of 150 nodes with 8 origins and 8 destinations
of traffic (n = 64 (Origin, Destination) pairs).

More details regarding the implementation of the simulator are found in the corre-
sponding github repository [84].

3.2 Real-world datasets

In this section, we analyze delay measurements from the RIPE Atlas platform. RIPE
Atlas [97] is a global and public measurement platform held by RIPE NCC, that provides
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data on Internet network availability. It contains multiple types of Internet measurements,
including delays, traceroutes, DNS, SSL, HTTP, and NTP. One can either get access to
the results of past and running measurements or launch his own measurement campaign.
A detailed tutorial to launch a measurement campaign is provided in the appendix. In
order to provide wide geographical coverage, Ripe Atlas has more than 9000 probes and
800 anchors distributed as shown in Figure 3.3. Ripe probes are small hardware devices
able to perform network measurements, Ripe anchors on the other hand are an evolved
version of the probes able to conduct measurements with a higher stability and capacity
and provide valuable information about Internet connectivity on a regional level. Mea-
surements conducted on both types of devices are aggregated and made publicly available.
Ripe Atlas uses these measurements for Internet monitoring purposes but also provides
users with public access to many tools like IXP Jedi to find if measurements cross an IXP,
or RipeIPmap to find an IP geolocalisation. In this work, we have used Ripe datasets for
both the completion and the segmentation problem, but for each research topic, we opted
for specific datasets with convenient properties. For the completion problem, we wanted

Figure 3.3 – Ripe Atlas probes distribution over the world. In green are the connected
probes, in yellow are the disconnected ones, and in grey are the ones that have been
abandoned [97].

first to get an idea about the real rate of missing data in real Internet scenarios such as the
one encountered in the Ripe Atlas platform [107] as well as how these missing values are
distributed in time and in space, then we needed to evaluate the accuracy of our models
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in inferring the missing values. For the first criterion, we needed to run measurements on
randomly chosen probes so that we could get a realistic view regarding their availability
and response, for the second criterion we needed robust and highly stable available probes
so that we could have a complete ground truth to evaluate our results.

Regarding the segmentation problem, first, we wanted to target time series with vary-
ing patterns over time, second, we want to explore the spatial correlation between delay
time series, finally, we want these datasets to be as complete as possible. For this purpose,
we consider for time series of pairs passing through the same Internet infrastructure to
reflect the spatial dependency. In fact, we assume that paths sharing significant route
segments will display similar changes in performance if these segments are touched by
an event or an outage. In this context, we are interested in monitoring an IXP. For this
reason, when a period of time contains big Internet incidents like outages, pairs passing
through the same damaged IXP display synchronous varying patterns. Finally, to assure
the stability of delay measurements we opted for the anchor mesh of Ripe Atlas.

In particular, in Chapter 5, to highlight the potential use of segmentation to analyze
incidents over the Internet, we chose two datasets of delays measured between Ripe an-
chors. The first dataset contains pairs of anchors passing through DE-CIX over the period
of an incident in 2018 and the second contains pairs passing through AMS-IX over the
period of an incident in 2015.

3.2.1 How to conduct measurements on Ripe Atlas ?

In order to conduct measurements on the Ripe Atlas platform, several steps need to
be followed:

1. Create an account in the platform and log in

2. Get Ripe Atlas credits. To get credits, a person can host a probe, get a credit
transfer, or ask the Ripe moderators for a token.

3. In the measurements section, we specify that we want to create a measurement

4. Then, we select the measurement type, the frequency, and the destination see Fig-
ure 3.4. If more than one target or destination is needed, we simply add a new
measurement. Since there is one destination per measurement, many measurements
are possible within a single campaign.

5. Later we specify the sources of the measurement. These can be selected randomly,
picked from a given map as in Figure 3.10, or specified according to predefined
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selection. In this case, we provide probe identifiers.

6. Then, we should specify the period of the measurements as seen in Figure 3.6.

7. Finally, the campaign can be launched.

8. Once the measurements are running or ended, we can fetch them by going to mea-
surements and then selecting the section that indicates ’mine’.

Figure 3.4 – Defining the measurement
type and the target [97].

Figure 3.5 – Selecting source probes
from a map [97].

Figure 3.6 – Providing sources and the
campaign duration [97].

Figure 3.7 – Few probes participating
in the campaign with 2 non-responding
(red) [97].

3.2.2 Completion datasets

Randomly chosen anchors Our dataset corresponds to delay measurements con-
ducted every four minutes between a set of anchors chosen randomly around the world.
In this section, the measurement campaign covers a period of one week starting from
the 11th of January 2022. These delays are collected using three ICMP pings, and the
minimum value is saved for each timestamp. The minimum value reflects the optimal
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Figure 3.8 – Legend key of a Ripe Atlas probe [97].

performance of the network and is the value encountered in normal circumstances since
one of the three pings can get higher values due to lost packets for example. This pro-
vides a dataset of 720 RTT series of 2520 time slots each. Figure 3.7 contains 6 of the
participating probes, and we can see that 2 of them, located in India and Russia, were
unavailable for this measurement.

In this dataset, the overall missing delays represent 25% of the measurements. We
can observe on the heatmap Figure 3.10 that missing values are not distributed uniformly.
Patterns vary from one (Origin, Destination) pair to another. Missing measurements may
be due to a dysfunction of the origin or destination anchor, or in a device located on the
taken route and such problems can be temporary or permanent. Only (Origin, Destina-
tion) pairs with a rate of missing data lower than 80% were kept for the experiments.
Recovering missing delays is done based on the information and redundancy of captured
delays. For this reason, we aim to get rid of the bias that can be induced through present
outliers. These outliers can happen due to devices, probes or anchors, dysfunction, or
packet loss for instance. In order to remove the outliers, we do the following: for each
(Origin, Destination) time serie, we have considered as outliers the points that are above
(resp. below) µ + 2σ2 (resp. µ − 2σ2) where µ is the mean of the known delay values
and σ2 is their variance These values were removed and considered as missing delays.
After applying this treatment, the size of the conserved matrix D is 572 × 2520 and the
proportion of missing values is 18% (i.e. Sij = 0).

Groundtruth dataset The dataset in Figure 3.9 comes from a measurement cam-
paign on Ripe Atlas. Unlike in the work [37], we wanted to have a ground truth for all
the entries of our delay matrix. To this end, we searched for anchors belonging to some
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Figure 3.9 – Time series from the ground
truth dataset.

Figure 3.10 – Heatmap showing the
missing measurements (in black) in Ripe
data.

Google ASs in the Ripe Atlas database using Google autonomous system number (ASN).
Then we selected 14 probes among them belonging to different regions around the world.
The selected probes and their location are given in Figure 3.11 using the country code,
with Figure 3.8 explaining each component of the legend. They are prone to be more
stable and have a higher probability of being connected and responding to requests. The
rationale behind this assumption is that Google equipment would have more chances to
be maintained and fixed in case of connectivity or responsiveness problems. This was
actually the case since we did not have missing delays on this campaign.The dataset con-
tains 50 RTT time series of length 800 each corresponding to 22 hours of measurements.
The RTT measurements are given in ms.

Figure 3.11 – The probes selected for the Google dataset [97].
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3.2.3 Segmentation datasets

In order to have a spatially correlated time series, we wanted to make sure that our
origin-destination (OD) paths have a shared route segment. For this purpose, we decided
to filter ODs that pass through a given IXP and we define below the used strategy. A
reason for choosing to filter through an IXP, is its importance in the overall traffic and the
possibility of having a strong correlation, especially in case of global Internet incidents.

Filtering path going through an IXP In order to get delays between pairs passing
through a specific IXP, we need to make use of traceroute measurements. Which provides
a map of how data on the internet travels from its source to its destination. In fact, we run
traceroute measurements between all Ripe anchor pairs for 24 hours, then we investigate
every IP in these measurements. If an IP belongs to the desired IXP, by being part of
its netmask we keep the pair of anchors. We run the traceroute campaign for 24 hours so
that we don’t miss a given pair which can happen for several reasons: routing changes,
non-responding devices, hidden IP addresses etc. Once the pairs of anchors are selected,
we then run our delay campaign or fetch existing measurements between them for the
desired period. This selection and filtering process was done using Python.

Figure 3.12 – 10 Delay time series passing through DE-CIX from April 9th to April 10th
2018.

RTT traces passing through DE-CIX Between April 9th and April 10th 2018,
DE-CIX Frankfurt experienced a disruption of its network connectivity to route servers,
resulting in rerouted traffic and an interruption of traffic. This was evidenced by an
analysis of the rates of BGP updates, which are messages to advertise routing information
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such as path attributes and prefixes or withdraws previously advertised routes, received
by route collectors located at DE-CIX, which dropped close to zero between 19:43 and
23:28 on the 9th of April, and between 02:02 and 03:51 on the 10th of April, as reported in
[22]. This dataset contains 38k pairs passing through DE-CIX. Each of these time series
has 720 timeslots which correspond to two days of measurements, the 9th and 10th of
April 2018. Figure 3.12 represents 10 delay time series taken from this dataset. We can
observe the delay disruption during the incident interval

RTT traces passing through AMS-IX On May 13th, 2015, AMS-IX experienced
a seven-minute, two-second partial outage due to a switch interface generating looped
traffic on the peering LAN. This resulted in some peers at the exchange losing their BGP
session, as reported by [23]. The outage lasted between 10:22:12 and 10:29:14 UTC before
the switch interface was disconnected. This dataset contains 26k pairs passing through
AMS-IX. Each has 360 timeslots corresponding to the 13th of May 2015.

LINX incident A more recent incident happened to the LINX, an IXP in London.
The outage took place between the 23rd and the 25th of March 2021. On March 23rd,
LINX LON1 experienced two brief service degradations due to technical issues. A signif-
icant traffic loss occurred during diagnosis. On March 24, the LON1 IXP continued to
operate stably, and a maintenance window was set for intrusive testing. The LON1 issue
was ultimately resolved by March 25, allowing the provisioning of new connections [64].

3.3 Conclusion

This chapter describes the different datasets used in this thesis. It underscores the
importance of having both synthetic and real-world datasets. The simulator enables us
to have a solid ground truth and a controlled environment, whereas real delays provide
valuable insights about scenarios encountered practically in network monitoring. In the
next chapters, we test and evaluate different methods and algorithms on these datasets
to address two problems: the completion and segmentation of network delay. Looking
ahead, it is essential to further expand our dataset collection, especially by incorporating
real-world incident data from various Internet Exchange Points (IXPs). Additionally, we
should explore different network topologies and simulate a wide array of incidents within
our simulator to enhance the comprehensiveness of our study.
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Chapter 4

NETWORK DELAY COMPLETION

Contributions: Developed two highly accurate methods for network delay comple-
tion:

— The first is based on non-negative matrix factorization.

— The second is based on neural collaborative filtering.

These approaches have yielded remarkable accuracy rates of more than 98%.

4.1 Problem: introduction and motivation

4.1.1 The problem of missing delays within the Internet

In this section, we first underline the importance of monitoring network delays at a fine
granularity. Then we show that being able to do so is often challenging due to multiple
factors such as device problems and restrictions on measurement policies. Finally, we
demonstrate that treating the issue as a matrix completion problem enables us to have a
good estimate of the unobserved delays.

The importance of delay measurements in networking

Internet delay measurements have wide applications and are crucial for proper net-
work monitoring. With the rise of time-sensitive applications such as gaming, live video
streaming, financial trading, or videoconferencing, delays are generally crucial to ensure
the right functioning of these applications and to guarantee a good experience for the end
user. On a general level, delays are continuously used to help network administrators mea-
sure network QoS and indicate the network state so they can be able to pinpoint potential
congestion or high latency areas that require optimization. Moreover, in distributed ser-
vices knowledge of delays helps to improve responsiveness in content distribution networks
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by choosing the most suitable communication peer and enhance load balancing for overlay
routing by sending packets to less congested routes. For all these reasons, full knowledge
of network delays sounds attractive. However, conducting on-demand measurements reg-
ularly on the network is costly and time-consuming. Actually, for a full-mesh network of n

nodes, the number of all possible delays is n2 which grows quadratically with the network
size and can constitute a serious limitation as this latter grows [55]. In fact, injecting
many probes in the network for the sole purpose of monitoring can disturb the overall
traffic leading to a bias in the measured performances. Moreover, congestion, packet loss,
network outage, or device issues are also contributing factors to missing measurements.
Consequently, whether it is due to restrictions imposed by measurement policies or in-
cidents caused by network anomalies, being able to predict missing delays from limited
available measurements is necessary.

The spatial and temporal correlations of network delay measurements

The network delay prediction problem is well-posed due to the high correlation that
can be found within network delays. Indeed, this correlation is twofold: first, delay
measurements between different origins and destinations are spatially correlated with
each other. Second, when a single delay is observed during a sufficiently long period, it
displays a strong temporal correlation. Regarding the spatial correlation, delays having
the same source or the same destination, show some similar pattern, especially in the case
of a device deterioration scenario. Similarly, measurements going through paths that share
some route segments will possibly display close patterns. This can be especially the case
if the shared segments contain important Internet infrastructures such as autonomous
systems (AS) or Internet exchange points (IXP) or if these segments witness specific
network behaviors such as incidents or outages [80]. Spatial correlation can also happen in
the case of congestion where the congested neighboring routers get affected by each other
[32]. For the temporal correlation, if one considers a particular pair of nodes, the delay is
generally stable over long periods of time, resulting in temporal stability. It is explained
by the fact that a determinant aspect of the delay values is the geographical distance
which remains stable over time. Besides, when observed over a long period, some periodic
behaviors can be observed [75] due to periodic traffic changes, congestion, and route
changes [88]. An example of this is the diurnal property of the Internet, linked to users’
consumption and behavior [4]. Having these correlations, both spatial and temporal [75],
makes it easier and possible to approximate missing measurements from existing ones,
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which can help reduce the number of conducted measurements and overcome network
hazardous events.

4.1.2 The datasets architecture

We consider that time is slotted with time slots of ∼ 5 minutes, a common mea-
surement frequency used on Internet monitoring platforms such as Ripe Atlas. An RTT
matrix over a network of N nodes at a given instant t is a N × N matrix X(t) where
Xij(t) is the delay between the origin node i and the destination node j at instant t. The
delay matrix has many characteristics, including positive entries and low effective rank.
The low effective rank property in this case results from spatial correlation. Indeed, some
nodes, such as nodes in the same AS, often share route segments and therefore exhibit
similar performance. Moreover, successive delays between the same pair of origin and des-
tination are correlated through time since the delay is stable over long periods of time on
a particular path. For instance, Figure. 4.1 displays the time series of Round Trip Times
(RTT) between two anchors on RIPE Atlas [97] during one week. We can observe that
the delay is stable for hours and abrupt changes in the statistical distribution of the delay
occur due to routing changes (see for example [80]). In order to take advantage of this
property, we will construct a matrix D where the t-th column is given by Dt = vec(X(t))
and vec(.) is the operator that reshapes a matrix into a column vector. Therefore, a row
of D represents successive RTTs for a (Origin, Destination) pair, and a given column
represents an instant. The matrix D is of size n × m where n is the number of node pairs,
and m is the number of time slots. Spatial correlation among origin-destination pairs and
the temporal stability of the rows of this matrix contributes to the low-rank property.
This property constitutes a sufficient condition for a proper matrix factorization [18].

Figure 4.1 – RTT between two anchors on RIPE Atlas over 1 week [79].
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4.1.3 The matrix completion problem

Given the low-rank property of the measurements, one natural way to use these corre-
lations is to formulate our delay inference problem as a matrix completion problem [14].
Often when having noisy data, accurately determining the true rank of a matrix can be
challenging. To ascertain whether the matrix exhibits a low-rank property, a common
approach is to examine its singular values. When the singular values decrease rapidly,
this characteristic strongly indicates the presence of a low-rank structure within the ma-
trix. In fact, when the singular values decline significantly as we move along the diagonal
of the diagonal matrix in the singular value decomposition (SVD), it means that only a
few singular vectors are responsible for most of the data’s variation. This phenomenon
indicates that the matrix can be well-approximated by a lower-rank version. The matrix
completion problem is defined as follows: we consider a given matrix M of dimension
m × n and we assume that M is partially observed. The goal of the matrix completion
is to estimate a new low-rank matrix that approximates M on the observed values and
recovers its unobserved entries. The objective of this estimation is to minimize the recon-
struction error, generally calculated between the observed entries of M and the entries
with the same index of the new estimates matrix M̃

4.2 State of the art and suggested models

4.2.1 Existing models

Network delay estimation has first been addressed in the context of network coordinate
systems using either Euclidean embedded models [21, 85] or matrix factorization [70, 63,
133]. Euclidean embedded approaches are embedding network nodes in a low-dimensional
space. In this space, a good approximation for the delay between nodes is assumed to
be equal to the Euclidean distance. Such approaches decrease the number of end-to-end
delays needed for the estimation of distances. However, their major drawbacks are that
they are limited by geometrical constraints (triangle inequality, symmetry), and they are
not efficient in the presence of complex routing policies [121].

To overcome this problem, matrix factorization approaches gained a lot of interest.
These methods are often based on the low-rank approximation of the delay matrix. Many
models use nuclear norm for rank minimization and others use non-negative matrix factor-
ization (NMF) exploiting the positivity of delays [69, 16]. However, these works applied
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NMF to network coordinates rather than delays and presented algorithms with multi-
plicative updates which are different than the one proposed in this work. Matrix and
tensor completions have also been recently used to estimate the traffic matrix [42, 124,
125] and to infer top-k Elephant flows [126].

The estimation of network delays with completion approaches has been studied in
multiple recent works [120, 73, 50]. An adaptive completion algorithm has been proposed
in [120] to estimate network delays. Moreover, in [73], authors have studied an efficient
probing strategy of (Origin, Destination) pairs to improve the performance of completion.
Finally, the effect of graph-Laplacian regularization on the performance has been studied
in [50]. Such regularization is used to add more non-linear interactions between network
delays.

In recent years, matrix completion has gained a lot of popularity with applications
ranging from recommender systems, and image and audio reconstruction, to networking
and genomics [93]. Until recently, the matrix completion problem was resolved using
matrix factorization approaches [15]. Lately, other non-linear methods have appeared
to solve this problem, such as neural networks. These approaches can be more interest-
ing in terms of computational cost and their ability to capture the complexity of high
dimensional data [45].

4.2.2 Suggested models

We suggest two approaches: the first one is based on non-negative matrix factorization
and suggests 3 variations of the method, and the second approach is inspired by neural
collaborative filtering and is based on two neural network architectures. The proposed
models introduce innovation to the field of network delay estimation by departing from tra-
ditional approaches such as matrix factorization and Euclidean embedded models. With a
focus on non-negative matrix factorization (NMF) and neural network architectures, these
models offer variations in NMF and a shift towards computational efficiency, making them
adaptable to diverse network scenarios and capable of handling high-dimensional data.
Additionally, it extends the applicability of matrix completion techniques and collabora-
tive filtering, previously employed in fields like recommender systems and genomics, into
the domain of network delay estimation. In the non-negative factorization problem, we
define the network delay prediction problem as a piecewise constant non-negative matrix
factorization to incorporate expert knowledge into the completion problem [104]. Firstly,
the non-negative constraints on the coefficients of the factorized matrices is consistent

58



Network delay completion

with the fact that network delays cannot be negative. Secondly, we are looking for a
piecewise constant factorization to encode the temporal correlation.

The second approach addresses the delay matrix completion problem from a neural
network perspective by using a neural collaborative filtering (NCF) approach [45]. Col-
laborative filtering [59] is a widely used technique in recommender systems. It gathers
data from other users in order to identify similarities between them. This helps the rec-
ommender system to predict missing users’ preferences. Neural collaborative filtering, in
particular, makes use of the flexibility and complexity of neural networks to accomplish
this recommendation task.

In the following, we provide more details regarding both models.

4.3 Non-negative matrix factorization (NMF)

4.3.1 Problem formulation

Non-negative matrix factorization (NMF) consists of approximating the matrix D as
the product of two low-rank matrices W ∈ Rn×r

+ and H ∈ Rr×m
+ with r ≤ min(n, m).

To derive this approximation, we solve the following constrained optimization problem:
minW,H ∥D − WH∥F subject to W ∈ Rn×r

+ and H ∈ Rr×m
+ where ∥.∥F is the Frobenius

matrix norm.
Let D·j = (Dij)1≤i≤n denotes the column vector of delays at time j. Then D·j ≃∑r

k=1 W·kHkj with W·k the kth column of matrix W . The columns of W are the basis
vectors of the decomposition of the matrix delays, while the lines of H indicate how each
basis vector contributes to the delay at time j.

In real-world applications, network performance is often only partially monitored (in
time or space). This fact implies that in practice, only part of the elements of D are
observed. Moreover, it is possible that some devices are not replying to the probes, and
therefore, are producing extra missing values in D.

The idea behind matrix completion is to approach D solely on the basis of available
measurements. We introduce a n×m binary matrix S, named the sampling matrix, where
Sij = 1 if Dij is known and Sij = 0 otherwise. The optimization criterion then becomes:
minW,H ∥S ◦ (D − WH)∥F subject to W ∈ Rn×r

+ and H ∈ Rr×m
+ , where ◦ is the Hadamard

product (term by term product of matrices).
In order to take advantage of the time stability observed among the column of D, we

59



Network delay completion

add an additive regularization term β
∑r

i=1
∑n

j=2 |Hij − Hi(j−1)| to ∥S ◦ (D − WH)∥F
2.

This permits to favor solutions for which delays are more stable over time. β is a weight-
ing hyperparameter that controls temporal smoothness. We arrive at the optimization
problem:

minW,H C(W, H) s.t. W ≥ 0, H ≥ 0, (4.1)

where the optimization criterion can be split into two terms:

C(W, H) = F (W, H) + L(H),
with F (W, H) = ∥S ◦ (D − WH)∥F

2,

and L(H) = β
∑r

i=1
∑n

j=2 |Hij − Hi,j−1|.
(4.2)

4.3.2 Solution of NMF factorization

In the next sections, we consider two algorithms that can be used to solve the opti-
mization problem (4.1). The first one is an alternating projected gradient algorithm [104].
And the second one involves Nesterov’s optimal gradient method [41].

4.3.3 Alternating projected gradient

The alternating projected gradient algorithm is an iterative algorithm where estimates
of W and H are updated sequentially. Each iteration k can be decomposed into two
steps: i) a steepest descent method is used to update W with H = Hk−1 fixed and with
a projection over the set W ≥ 0 leading to the update W k, and ii) a steepest descent
method is used to update H with W = W k fixed and with a projection over H ≥ 0:

W k+1 = [W k − α∇W F (W k, Hk)]+
Hk+1

ij = [Hk
ij − α[∇HF (W k+1, Hk)]ij + ∂L(H)

∂Hij
]+, ∀(i, j)

(4.3)

With these equalities indicating the matrix equality entrywise, [x]+ = max{0, x} and
α ≥ 0 is a step-size. The mathematical closed expression of the first order derivatives
∇W F (W, H), ∇HF (W, H) and ∂L(H)

∂Hij
are:

∇W F (W, H) = S ◦ ((WH − D)H⊤)
∇HF (W, H) = W ⊤(S ◦ (WH − D))
∂L(H)
∂Hij

= β(sign(Hij − Hi(j+1)) − sign(Hi(j−1) − Hij))
(4.4)
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4.3.4 NeNMF: Nesterov gradient

The NeNMF applies the Nesterov optimal gradient. The NeNMF overcomes NMF
solver’s limitations such as numerical instability, slow convergence, and theoretical con-
vergence problems. In addition, it achieves the optimal convergence rate O( 1

k2 ) by using
the Nesterov accelerated gradient [82] when focusing on a convex problem. The NMF is
not a convex optimization problem, still, it is known that NeNMF is usually faster than
standard gradient descent even if no theoretical proof exists for non-convex problems.
The NeNMF consists of updating sequentially W k and Hk at each outer iteration k by
running an inner loop of Nesterov accelerated gradient method to approximately minimize
the objective function with respect to W with Hk fixed (and vice versa). In fact, in order
to estimate Hk, Nesterov gradient method constructs two sequences {Ht} and {Yt} and
updates them at each iteration round t :

Ht = minH≥0{ϕ(Yt, H) = F (W k, Yt) + ⟨∇HF (W k, Yt), H − Yt⟩ + Lc

2 ∥H − Yt∥F
2}

Yt+1 = Ht + αt−1
αt+1

(Ht − Ht+1),
(4.5)

where H 7→ ϕ(Yt, H) is a quadratic majorant function of H 7→ F (W k, H) at Yt [106].
⟨·, ·⟩ is the matrix inner product, Lc = ∥W ⊤W∥2 is a Lipschitz constant of the gradient
of the objective function H 7→ F (W k, H) and Yt is a linear combination of the two last
approximate solutions, i.e. Ht−1 and Ht. The coefficient αt is updated at each iteration
according to the formula αt+1 = (1 +

√
4(αt)2 + 1)/2.

When solving the first-order optimality conditions (KKT conditions) for the convex
optimization problem (4.5), the previous equations can be rewritten as:

Step 1: Ht = [Yt − 1
Lc

∇HF (W ⊤, Tk)]+,

Step 2: Yt+1 = Ht + αt−1
αt+1

(Ht − Ht+1).
(4.6)

This algorithm doesn’t use the penalization L(H), and therefore, in the rest of the chapter,
when we refer to the NeNMF algorithm, we implicitly assume that β = 0 (i.e. C(W, H) =
F (W, H)).

4.4 Performance evaluation of NMF

To start our study, we work on synthetic data. It provides a ground truth that will
be used to compare the results of the completion algorithms. Then we test the method
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on a real-world dataset from Ripe Atlas. This shows that NMF can adapt to real missing
delay patterns.

4.4.1 Matrix completion results on synthetic datasets

The matrix D is obtained by vectorizing the (Origin, Destination) delays and by
concatenating these vectors of delays at successive periods. The low-rank property can
be justified through the fast decrease of its ordered singular values. In fact, the 5 greatest
of the 64 singular values are 409.13, 10.12, 5.45, 3.65 and 2.45. So a small value of r is
sufficient to capture most of the energy of the matrix D.

To evaluate the performance of matrix factorization algorithms we consider the con-
vergence stress [66]. It measures the quality of reconstruction of the missing entries of
Dij (i.e. such that Sij = 0). It is defined as:

P k
stress =

√√√√∑
i,j(1 − Sij)(Dij − [W kHk]ij)2∑

i,j(1 − Sij)(Dij)2 , (4.7)

where k is the iteration number in the matrix factorization algorithm.
Impact of the hyperparameter β Figure 4.2 represents the evolution of the convergence

stress of the alternating projected gradient algorithm as a function of the number of
iterations. As a first study, we consider the first 100 and 10000 iterations and two different
values β = 0 and β = 0.4. The sampling rate is 0.7 that is to say that 70% of the
delay values Dij are known (i.e. Sij = 1) and 30% of the delays are supposed to be
unknown. These graphs aim to give an idea of the algorithm behavior with and without
the regularization term. A more detailed study of the impact of β is provided taking into
account a larger set of values.

We can notice that the stress decreases rapidly in the first iterations. But one can also
notice oscillations of the stress value over the long term when β ̸= 0. These oscillations are
due to the choice of an L1 norm in the penalty term L(H). Indeed the subgradient ∂L(H)

∂Hij

takes only three values (2β, 0, −2β) and there are some abrupt changes in the value during
iterations. Another algorithm to tackle the oscillations due to the piecewise regularization
would be to do alternate minimization, instead of alternating gradient descent, using
standard solvers. However, this approach could have two major drawbacks. One is that
the algorithm can get stuck in bad local minimum; and also because we alternate between
solving two optimization problems, the time for the algorithm to converge will be huge.
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Figure 4.2 – Evolution of the convergence stress over the first 100 and 10000 iterations of
the alternating projected gradient algorithm.

L2 norm would as well probably lead to a smoother evolution of the stress. Table 4.1
gives the influence of β on the stress value for the alternating projected gradient (APG)
with a 30% missing data and after 150.000 iterations. Choosing β ∈ [10−2, 5.10−2] yields
a stress smaller than 2%.

Table 4.1 – Impact of β on the stress.

β 0.001 0.01 0.05 0.1 0.3 0.5 0.7
Stress 0.017 0.015 0.015 0.019 0.018 0.017 0.019

Impact of the rank r We are also interested in the impact of rank r on the quality of
the reconstruction when β = 0 and when the percentage of missing data is 30%. Table
4.2 gives the stress values of the APG once the algorithm has converged (after 150.000
iterations) and of the NeNMF (after 10.000 iterations). It is natural to see that stress
improves with a higher rank, as this allows for a greater number of basis vectors, thereby
enhancing the model’s capability to capture more complex patterns within the data.
However, a higher rank may also result in longer convergence times due to the larger size
of the matrices involved.

Impact of the sampling rate We have also assessed the influence of the sampling rate.
For values ranging from 50% to 95% of delays known (i.e. Sij = 1), Table 4.3 gives the
value of the stress after 150000 iterations of APG, 10000 iterations of the NeNMF method
and for β = 0.
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Table 4.2 – Impact of rank r on the stress.

Rank r 1 2 3 4 6 8 10
Stress APG 0.031 0.031 0.014 0.011 0.007 0.005 0.003
Stress NeNMF 0.031 0.021 0.016 0.013 0.009 0.007 0.007

Table 4.3 – Impact of sampling rate on the stress.

Sampling rate 50% 60% 70% 80% 90% 95%
Stress APG 0.020 0.015 0.015 0.014 0.014 0.014
Stress: NeNMF 0.014 0.013 0.013 0.013 0.012 0.012

Evaluation of the execution time Finally, it is interesting to observe the acceleration
provided by Nesterov’s method in the optimization of the criterion F (W, H). In Figure 4.3,
the value of the stress over the first 100 iterations of the projected alternating gradient
and of the NeNMF algorithm is represented. While the projected alternating gradient
exhibits slow convergence and numerical instabilities, the NeNMF algorithm converges
within fewer iterations. We also evaluated the execution time of the alternating gradient
method over 100.000 iterations and the NeNMF method over 1000 iterations. We used
a 2, 6 GHz Intel Core i7 processor with a 32Go 2667 MHz DDR4 memory. For the
alternating gradient, the execution time was 16 minutes and for the NeNMF it was 472s.
Such a difference in convergence time confirms the acceleration property of the NeNMF.
When considering real-world data in the following section, this execution time difference
leads us to opt for the NeNMF algorithm.

Importance of the positivity constraints In Figure 4.4, we see the reconstruction of
a 80% observed synthetic dataset using both SVD and NMF. We can notice that the
reconstructed delays are positive using both methods. However, we can see that the
reconstruction using SVD displays more noise and variability, whereas NMF provides
more accurate results corresponding to the ground truth dataset.

In Figure 4.5, we observe the reconstruction of a synthetic dataset with a 50% ob-
servation rate using both SVD and NMF techniques. The SVD reconstruction exhibits
negative delay values, demonstrating the significance of the positivity constraint when
addressing delay completion. As shown earlier, when the observation rate decreases, the
reconstruction tends to be more challenging and often provides less accurate results. Nev-
ertheless, the NMF reconstruction in Figure 4.5 still corresponds to the baseline of the
original delays, even though it introduces more variance in one of the delay time series.
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Figure 4.3 – Stress evolution over the first 100 iterations.

Figure 4.4 – Reconstruction of an 80% observed synthetic dataset using NMF(left) and
SVD (right). The delays are in blue and the reconstruction is in red.

4.4.2 Matrix completion results on RIPE Atlas RTT dataset

The measurement campaign covers a period of one week. Delays were collected using
three ICMP pings, and the minimum value was saved for each timestamp. This provides
a dataset of 720 RTT series with 2520 time slots each.

In the dataset, missing delays account for 25% of measurements, and their distribution
varies for each (Origin, Destination) pair. Only (Origin, Destination) pairs with missing
data rates below 80% were retained for experiments. As mentioned in Chapter 3, outliers
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Figure 4.5 – Reconstruction of an 50% observed synthetic dataset using NMF(left) and
SVD (right). The delays are in blue and the reconstruction in red.

have been removed to avoid bias during the reconstruction. This treatment reduced the
size of the retained matrix D to 572×2520, with a proportion of missing values at 18%.

According to the previous results on the synthetic data, we restrict our interest to the
NeNMF on the Ripe dataset as it appears to be faster than the alternating projection
gradient. Since we lack ground truth for the non-measured values of this dataset, we use
the following error criterion to evaluate the factorization quality:

P k
error =

√√√√∑
i,j Sij(Dij − [W kHk]ij)2∑

i,j Sij(Dij)2 , (4.8)

where k is the iteration number. The algorithm converges within hundreds of iterations,
and we observe that the error decreases with the rank. We fix the number of iterations
to 1000 and the rank to 100. In this experiment, the reconstruction error on the observed
values is 2%. This low error rate is highlighted by Figure 4.6 which displays 5 different
RTT series completed using the NeNMF. We can notice that the completed segments
capture the overall baseline of the original RTT series.

Relevance of the piecewise constant assumption

In Figure 4.7, we can observe the application of L1 trend filtering [58] to two delay
time series derived from a real-world dataset. When the time series exhibits minimal
variance, L1 trend filtering effectively functions as a segmentation tool, highlighting the
significance of assuming piecewise behavior in delay time series. However, in the second
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Figure 4.6 – RTT completion using NeNMF.

plot of Figure 4.7, the time series presents substantial variance in two specific sections. In
these regions, L1 trend filtering struggles to identify a single continuous segment, which
justifies our exploration of alternative methods, including clustering in the upcoming
chapter, to address this segmentation challenge.

4.4.3 Conclusion and takeaways

We addressed the problem of inferring missing delays in the matrix of OD RTTs
within a matrix completion approach. This was conceivable thanks to the stability of
delays throughout time which is a contributing factor to the low-rank property of the
delay matrix. We used two Non-negative matrix factorization algorithms: the alternating
projected gradient and the NeNMF. We were able to test these methods in a controlled
environment by using a synthetic delay generator and on real-world data with delays
from Ripe Atlas. The two approaches are simple, easy to implement, and show great ac-
curacy on the completion task when applied to synthetic data. The experiments, however,
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Figure 4.7 – Application of the L1 trend filtering to two real-world delay time series.

pointed out the speed difference between the two algorithms. The alternating projected
gradient converges slower than the NeNMF. Hence, the scalability of the NeNMF was
exploited by applying it to real-world datasets. The completion given by this algorithm
has shown great accuracy within a small number of iterations.

4.5 Neural collaborative filtering (NCF)

This section addresses the delay matrix completion problem from a neural network
perspective by using the neural collaborative filtering (NCF) approach [45]. Collaborative
filtering [59] is a widely used technique in recommender systems. It gathers data from
other users in order to identify similarities between them. This helps the recommender
system to predict missing users’ preferences. In this section, we would like to investigate
whether NCF can be an interesting alternative to NeNMF in terms of speed and accuracy.

Neural collaborative filtering, in particular, makes use of the flexibility and complexity
of neural networks to accomplish this recommendation task.

We compare the performance obtained with other techniques based on non-negative
matrix factorization (NMF) [37]. We base our comparison on two datasets. The first
is generated by our delay simulator of an autonomous system with variations linked to
external routing changes. The second one consists of real RTT measurements on the
Internet obtained from the RIPE Atlas platform [97].

As before, we assume that there are some unobserved entries in the matrix D that
correspond to missing measurements. Let us introduce S the set of index pairs (i, j)
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such that Dij is observed, and S the set of indices of unobserved delays. Each index
(i, j) of an entry of the delay matrix can be represented by two one-hot encoded vectors.
For example, we associate to the entry Dij with (i, j) ∈ S the vectors pi ∈ {0, 1}n and
tj ∈ {0, 1}m where:

pi(k) = 1{k=i} and tj(l) = 1{l=j}, (4.9)

where 1 is the indicator function. An example of this encoding is given in Fig. 4.8. We

Figure 4.8 – Sparse representation of the delays coordinates, pink squares represent miss-
ing delays.
are now going to present two different Neural Collaborative Filtering architectures that
can be used to solve this matrix completion problem. The Generalized Matrix Factoriza-
tion (GMF) generalizes the standard matrix factorization approach and the multi-layer
perceptron (MLP), a standard deep learning architecture [45].

Each architecture is trained on a given number of epochs over the set S of observed
delays in order to minimize a loss, defined as a measure of discrepancy between the
predicted and the observed delays. In order to do so, the neural network uses an optimizer
that updates each parameter during the backpropagation with a given learning rate. The
impact of all these parameters on the quality of the reconstruction will be studied in the
evaluation section. On the other hand, the test phase is performed on S. To be more
precise, we act as if the values were not known, and we check the quality of the prediction
by evaluating the loss between the actual and the predicted values.

4.5.1 Generalized Matrix Factorization (GMF)

Following [45], the architecture of the GMF algorithm is composed of three main
components.

1. For each Dij to be predicted, the input layer consists of sparse entry vectors pi and
tj.
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2. The embedding layer is a fully connected layer projecting a sparse vector to a dense
one. Generally speaking, an embedded layer is designed to handle categorical input
data and aims to learn a low-dimensional, dense representation (embedding) for each
category or entity in the input space with a smaller dimension, say k. Its dimension
k is considered as a parameter of the model. This layer is seen as a latent feature
extractor.

3. The neural collaborative filtering block is a multi-layered neural architecture that
connects the output of the embedding layer to the predicted delays. Its goal is to
minimize the loss between the estimated delay and the target value.

In this model, each layer output serves as an input for the next one. This architecture
is described in Figure 4.9, with the size indicating the dimension of the input, with k, r and
1 corresponding respectively to the dimension of the embedding, the FC1 and the FCout

layers, with FC denoting a fully connected layer. The ReLu is the activation function
used between the two FCs. We can formulate the GMF model as:

Figure 4.9 – Generalized Matrix Factorization (GMF) model.

De
ij(Ξ1, Ξ2, Θ1, Θout) = ϕout(ϕ1(E1(pi, Ξ1) ◦ E2(tj, Ξ2), Θ1), Θout), (4.10)
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where De
ij is the estimated delay corresponding to the entry (i, j), ϕout and ϕ1 are respec-

tively the mapping functions of the output layer FCout and the first neural collaborative
filtering layer FC1. ◦ denotes the element-wise Hadamard product of vectors and E1 and
E2 refer to the functions of the embedding layers. Finally, Θ1, Θout, Ξ1 and Ξ2 corre-
spond to trainable parameters. For simplicity reasons, De

ij(Ξ1, Ξ2, Θ1, Θout) is denoted
by De

ij(Ξ, Θ).
Such neural network is called the Generalized Matrix Factorization (GMF) since we

can find the classical matrix factorization if ϕ1 is a product by the all one vector and
ϕout is the identity function. Indeed, let us denote hi = E1(pi, Ξ1) ∈ Rk and wj =
E2(tj, Ξ2) ∈ Rk the dense vectors resulting from the embedding layers. The classical
reduced rank matrix factorization model D ≈ H⊤W with H = [h1 · · · hn] ∈ Rn×k and
W = [w1 · · · wm] ∈ Rk×m estimates De

ij(Ξ, Θ) by: De
ij(Ξ, Θ) = h⊤

i wj. When ϕout = Id

and ϕ1 = 1 with Id the identity function and 1 a vector of ones of length k, and there is
no intermediate ReLu:

De
ij(Ξ, Θ) = ϕout(ϕ1(hi◦wj, Θ1), Θout) = Id(1⊤(hi◦wj)) = 1⊤(hi◦wj) = h⊤

i wj. (4.11)

4.5.2 Multi layer perceptron (MLP)

The MLP model also takes as an input the sparse vectors pi and tj followed by an
embedding layer. The embedded vectors hi and wj are then concatenated and supplied
to a towered multi-layered architecture as observed in Figure 4.10. This multi-layer archi-
tecture introduces more flexibility and non-linearity to the model. We denote ϕi(x, Θi)
the mapping function of each hidden layer i and Θi its trainable parameter. For the layers
of this model, we choose the ReLu as an activation function.

4.5.3 Loss and optimizers

For both architectures, we consider the mean squared error as the loss function:

L(Ξ, Θ) = 1
|S|

∑
(i,j)∈S

(Dij − De
ij(Ξ, Θ))2, (4.12)

where |S| is the cardinal of S and Ξ, Θ denoting the trainable parameters of the network.
In the evaluation section, we use a batch size of 1 and we test different optimizers. We
opted for a batch of size 1, since with piecewise regularization, we were unsure how to
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Figure 4.10 – Multi Layer Perceptron (MLP) model.

compute the gradient with batch processing. Moreover, this provides the possibility of
fine-grained updates. With a batch size of 1, the model’s parameters are updated after
processing each individual data point. This can provide fine-grained control over the
learning process and might be beneficial when the data has specific patterns that need to
be captured.

4.6 Performance evaluation of NCF

We evaluate the NCF introduced in the previous section on two different datasets.
The first one is a synthetic dataset generated by an AS simulator. The second dataset is
a real-world dataset from a measurement campaign that we have conducted on the Ripe
Atlas platform [97]. This campaign involves Ripe anchors located around the world and
the measurements are conducted at a frequency of 4 minutes. More details about these
datasets are provided in Chapter 3.

To evaluate the completion performance of the two NCF architectures, we consider
the convergence stress [66] as a performance measure. It measures the quality of the
reconstruction on the missing values Dij with (i, j) ∈ S:
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Stress =

√√√√∑
(i,j)∈S(Dij − De

ij(Ξ, Θ))2∑
(i,j)∈S(Dij)2 (4.13)

We use the stress to compare the performance of NCF approaches to the ones obtained
with the Non-negative Matrix Factorization (NMF) ones. To this end, we consider two
NMF algorithms: the alternated projected gradient (APG) [103] and the NeNMF [41]
algorithm that uses a Nesterov gradient.

4.6.1 Matrix completion results on synthetic datasets

Our simulated dataset consists of a delay matrix of n = 20 source-destination pairs
over m = 400 instants.

Impact of the embedding layer dimension We start our study by varying the embedding
layer dimension k in the model architectures. As we can see in Table 4.6.1 the stress
decreases with the embedding layer dimension. This is due to the fact that a larger
embedding layer captures more latent features and is more adapted to complex high-
dimensional data. We set the embedding dimension to 35 for the MLP approach since it
reaches its minimum stress at this value, whereas for the GMF the embedding dimension
will be fixed at 30.

Table 4.4 – Impact of the embedding dimension on the stress.
Emb dim k 5 10 15 20 25 30 35
Stress GMF 0.0183 0.0188 0.0134 0.0133 0.012 0.0103 0.0106
Stress MLP 0.0222 0.0135 0.0154 0.0113 0.0144 0.0108 0.0085

Impact of the number of epochs We have also assessed the influence of the number of
epochs on the completion accuracy. We can notice in Figure 4.11 that the performance
is enhanced when we increase the training phase for both GMF and MLP. We can see
that stress starts to become stable between 1.5e5 and 2e5 epochs. We fix the number of
epochs to 1.5e5 for the rest of the experiences for both architectures.

Impact of the optimizer and the learning rate We are also interested in the impact of
the type of optimizer. We have tried three different optimizers: the stochastic gradient
descent (SGD), the Adam optimizer, which is a method for stochastic optimization, widely
used in training deep learning models, and the AdamW which corresponds to the Adam
optimizer with weight decay. Table shows that the Adam optimizer is optimal for this
study for both models. Moreover, we analyzed the influence of the learning rate by trying
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Figure 4.11 – The impact of the number of epochs, of the learning rate and of the sampling
rate on the stress.

different values. Figure 4.11 indicates that the learning rates of 1e−3 and 5e−4 minimize
the stress respectively for the GMF and MLP models. Hence, the learning rate will be
fixed for each architecture accordingly.

Comparison of the execution times The execution time plays a crucial role in the real-
world deployment of completion methods and should take part in the evaluation process.
By using a 2, 6 GHz Intel Core i7 processor and a 32Go 2667 MHz DDR4 memory the
MLP and GMF were executed respectively within 335 and 222 seconds each. On the
other hand, NeNMF takes 472s to converge whereas APG has a much longer execution
time of 16 minutes.

Testing piecewise regularization term on NCF As previously highlighted in the NMF
section, we can add a regularization term to the loss in order to incorporate more infor-
mation about the temporal stability of the RTTs observed in the data. Let us denote by
Lβ(Ξ, Θ) the regularized loss function, where β is the regularization parameter. Omitting
the dependencies with respect to (Ξ, Θ) for simplicity reasons, Lβ writes:

Lβ = 1
|S|

∑
(i,j)∈S(Dij − De

ij)2 + β
∑

i

(
|De

i1 − De
i2| + |De

i(T −1) − De
iT |

+ ∑T −1
t=2 |De

it − De
i(t+1)| + |De

it − De
i(t−1)|

)
,

(4.14)

We observe in Table 4.6.1 that the regularization does not have a positive impact on stress
evolution. Therefore, we will set β = 0.

Impact of the sampling rate and NMF/NCF comparison When a signal is partially
observed, we denote the sampling rate, the proportion of the observed values with respect
to the total number of entries of the matrix. In Figure 4.11, we investigate its impact on
the stress for NCF and NMF methods. Despite the fact that all the methods display a
stress less than 2%, we can notice that the MLP clearly outperforms the other methods
with a stress smaller than 1% for sampling rates higher than 70%. On the other hand, the
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performance of the GMF tends to approach the NeNMF results on lower sampling rates
but surpasses it on higher ones. APG displays however worse results than other methods.

Table 4.5 – Impact of the optimizer on the stress.
Optimizer SGD Adam AdamW
Stress GMF 0.0194 0.0112 0.0210
Stress MLP 0.0344 0.0089 0.0102

Table 4.6 – Impact of β on the stress.
β 0 0.01 0.1 0.3 0.5
Stress GMF 0.0104 0.0130 0.0201 0.0230 0.0260

Figures 4.12 and 4.13 show the reconstruction of two delay matrices sampled respec-
tively at 70% and 50% using GMF and MLP. We can notice that the reconstruction
captures the baseline of each time series. Besides, the completion corresponding to a
higher sampling rate is less noisy and shows more stability.

Figure 4.12 – Reconstruction for a simulated dataset using GMF with 70% observed data.

4.6.2 Matrix completion results on RIPE Atlas RTT dataset

This dataset comes from a measurement campaign on Ripe Atlas as mentioned in
Chapter 3. We wanted to have a ground truth for all the entries of our delay matrix
and this was actually the case since we did not have missing delays on this campaign.
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Figure 4.13 – Reconstruction for a simulated dataset using MLP with 50% observed data.

The dataset contains 50 RTT time series of length 800 each corresponding to 22 hours of
measurements.

Impact of the embedding layer dimension First, we explore the impact of the embedding
layer on the stress in Table 4.7. Results were obtained by running 1.5e5 epochs. The
stress remains overall constant for both architectures, but we can see that GMF and
MLP achieve their minimum stress at 20. For this reason, we fixed this dimension to 20.

Table 4.7 – Impact of the embedding dimension on the stress for 1.5e5 epochs.
Emb dim 5 10 15 20 25 30
Stress GMF 0.0118 0.0115 0.0115 0.0113 0.0115 0.0118
Stress MLP 0.0121 0.0134 0.0132 0.0119 0.0142 0.0131

Impact of the number of epochs Table 4.11 shows that MLP reaches its minimum stress
at 1.5e5 epochs, whereas GMF stress continues to decrease if more epochs are considered.
Due to time execution considerations, we set the number of epochs to 1.5e5 for both
architectures.

Table 4.8 – Impact of the number of epochs on the stress.
Number of epochs 5e4 1e5 1.5e5 2e5 2.5e5
Stress GMF 0.0182 0.0117 0.0119 0.0116 0.0115
Stress MLP 0.0123 0.0120 0.0118 0.0119 0.0142

Impact of the optimizer and the learning rate We investigate the impact of the learning
rate in Table 4.10 . One can see that 1e−4 is the best learning rate for both architectures.
We fix the learning rate at this value. Table 4.9 shows the stress after 1.5e5 epochs with
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a learning rate of 1e−4 for different optimizers. The Adam optimizer is the most suitable
for both the GMF and the MLP architectures.

Table 4.9 – Impact of the optimizer on the stress.
Optimizer SGD Adam AdamW
Stress GMF 0.4433 0.0113 0.0116
Stress MLP 0.4408 0.0117 0.0118

Table 4.10 – Impact of the learning rate on the stress.
Learning rate 0.005 0.001 0.0005 0.0001
Stress GMF 0.0192 0.0173 0.0144 0.0118
Stress MLP 0.0168 0.0151 0.0144 0.0117

Impact of the sampling rate and NMF/NCF comparison We can see in Table 4.11 that
the stress decreases with the sampling rate for all the architectures. Moreover, we can
observe that the MLP is better than the GMF and that the overall stress remains smaller
than 2%. However, we see that the NeNMF outperforms the NCF approaches when
applied to the real-world dataset, which is in line with the findings of the comparative
studies [2, 95]. Such a result can be explained by the time stability of the real-data
matrix, and its sparsity considering the low rank, combined with its high dimensions.
These conditions can be in favor of a simple matrix product rather than a more complex
model that needs to learn many additional parameters.

Table 4.11 – Impact of the sampling rate on the stress.
Sampling rate 0.50 0.6 0.7 0.8 0.9
Stress GMF 0.0198 0.0186 0.0166 0.0166 0.0158
Stress MLP 0.0126 0.0170 0.0125 0.0121 0.0119
Stress NeNMF 0.0182 0.0117 0.0119 0.0116 0.0115

By comparing Figure 4.14 and Figure 4.15, one can notice that both reconstructions
correspond to the original time series, but we can clearly see that at equal sampling rate,
the GMF reconstruction is noisier than the MLP one.

4.6.3 Conclusion and takeaways

NCF approaches enable us to achieve a very low stress rate for matrix completion
task, both on the simulated and real-world datasets. In this chapter, we have studied
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Figure 4.14 – Reconstruction of an 70% observed real-world dataset using GMF.

Figure 4.15 – Reconstruction of an 70% observed real-world dataset using MLP.

extensively the impact of multiple parameters such as the optimizer, the learning rate,
or the number of epochs on the reconstruction quality. This allowed us to set an optimal
training environment for the NCF models. The comparison with the NMF algorithms
showed that NCF outperforms NeNMF on synthetic data, whereas this tendency is re-
versed when applied to Ripe Atlas data. One of the possible reasons is that we didn’t use
enough iterations, and we did not use piecewise regularization. Moreover, we have shown
that NCF is more computationally efficient than the NeNMF. Finally, the addition of a
regularization term didn’t improve the completion quality of the synthetic dataset.
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Chapter 5

NETWORK DELAY SEGMENTATION

Contributions:

— Time series clustering based on hierarchical clustering and Pearson correlation ma-
trix.

— Multivariate segmentation of time series within the same cluster based on the hier-
archical clustering and Viterbi algorithm.

— Demonstration of the efficiency of the method for delays with various patterns.

— Computational efficiency regarding an existing state-of-the-art technique.

Delay measurements are important for network monitoring. With Internet monitoring
platforms providing an unparalleled amount of data, it becomes necessary to automate
their treatment. In particular, segmenting these delays permits supervising infrastructures
and analyzing possible incidents. This chapter explores the use of hierarchical cluster-
ing for the segmentation of multivariate network delays. The proposed method offers a
computationally efficient way to identify the spatial correlations among network delays
and to jointly segment time series within the same cluster. A post-treatment step is
introduced that involves the Viterbi algorithm to smooth segmentation and handle the
temporal dependency more effectively. This global method is evaluated on the real-world
datasets introduced earlier, demonstrating its suitability for managing delays with vary-
ing variance and changing patterns. The proposed approach provides an efficient and
cost-effective method for automated delay characterization.

5.1 Problem: introduction and motivation

As discussed in Chapter 2, the importance of Internet end-to-end delay metrics, such
as the round trip time (RTT), is well established, as it can be used to assess performance,
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the status of a specific path, the quality of user experience, and real-time applications.
Typically, delay measurements exhibit similar patterns when the routes followed contain
shared segments. In [79], it was observed that delays between pairs passing through the
same damaged Internet Exchange Point (IXP), presented synchronized pattern changes.
An example of spatially correlated paths can be seen in Figure 5.1, which displays a
group of Internet delay time series that exhibit similar behaviors. This similarity can be
attributed to the underlying network routing.

Figure 5.1 – Time series with correlated change patterns.
In the networking community, Internet delay segmentation and characterization have

been widely studied as an intriguing problem. Traditionally, the segmentation of delays
has been left to human experts. Nonetheless, with the abundance of data available on
platforms such as Ripe Atlas and Caida, as well as on private ISP servers, relying on
human analysts to segment delays is both expensive and challenging. Therefore, there is
a need for an automated layer and the creation of appropriate tools and algorithms to
meet this increasing demand.

Many works have aimed to model Internet delays in time [131, 78] in order to gain
a better understanding of this metric and more insight into network performance and
functioning [23]. Furthermore, Shao et al. [108] studied RTT segmentation in order to
evaluate the impact of the routing changes at different levels (AS, IXP) on RTT changes,
and Mouchet et al. [79] used HDP-HMM to detect IXP outages based on RTT changes
frequency. Other characterization studies of the delays using different distributions have
been conducted [131], [102], [47], as well as approaches based on deep learning [91].

Despite the high accuracy of RTT series segmentation achieved in several of the cited
works, the state of the art presents two primary issues. Firstly, the suggested methods
are computationally intensive. Secondly, many studies only take into account temporal
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stability, without taking full advantage of spatial dependencies among RTT series. Many
works got interested in the problem of the segmentation of multivariate time series [17],
[24], [48], however, to the best of our knowledge, this paper proposes the first multivariate
segmentation of delay networks based on joint segmentation of multiple delay time series.

In this chapter, we explore the use of hierarchical clustering for the segmentation of
multivariate network delays. To capture the spatial correlation in the dataset, we first
apply hierarchical clustering on the Pearson correlation matrix of the RTT time series
[7]. Subsequently, when the clusters are identified, we jointly segment the time series
within each cluster using hierarchical clustering [11]. This clustering alone, however, does
not incorporate the temporal stability property of these delays. Therefore, we propose
a post-treatment step by exploiting the Viterbi algorithm [31], which is able to smooth
the resulting clustering and handle the temporal dependency more effectively. Our global
method is then evaluated on the two real-world datasets considered in this thesis, demon-
strating its suitability for managing delays with varying variance and changing patterns.

In the following, we first describe the methodology and an illustrative example, starting
with the description of the hierarchical clustering, and then explaining the clustering of
time series. Later we present the two-step multivariate segmentation using the Viterbi
smoothed hierarchical clustering. Finally, we evaluate the methodology, on the clustering
of time series and then on the segmentation by comparing it to the most efficient state-
of-the-art method both in terms of accuracy and execution time.

5.1.1 Principles of hierarchical clustering

Hierarchical clustering is a popular agglomerative clustering technique used to group
variables based on similarity. This approach considers that each element is its own cluster
initially. Then, clusters are iteratively merged into larger clusters. At each step, the two
closest clusters are merged into one new parent cluster. This process is repeated until
a single global cluster remains after N-1 iterations, with N the number of variables [67].
This iterative clustering process can be represented in the form of a dendrogram, that is
a tree structure plot.

The similarity between clusters is measured using a linkage method, such as single
(sgl), complete (cpl), average (avg), centroid (ctr), or Ward (wrd) linkage [81]. Lets con-
sider two clusters: C1 and C2. Single linkage considers the closest elements of the clusters:
dsingle(C1, C2) = minx1∈C1,x2∈C2 ∥x1 −x2∥ , complete and average linkage considers the fur-
thest elements and the average distance between all elements, respectively. Their formu-
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las are the following: dcomplete(C1, C2) = maxx1∈C1,x2∈C2 ∥x1 − x2∥ and daverage(C1, C2) =
1

|C1|·|C2|
∑

x1∈C1

∑
x2∈C2 ∥x1 − x2∥. Centroid linkage is based on the distance between the

respective cluster centroids and is calculated by dcentroid(C1, C2) = ∥m1 − m2∥, where m1

and m2 are the centroids of clusters C1 and C2, respectively. Ward linkage minimizes the
variance of the merged clusters, which is calculated by the error sum of squares defined
for a given cluster C as ess(C) = ∑

x∈C(x − 1
|C|

∑
y∈C y)2, with |C| being the cardinal

of the cluster C. The Ward linkage between two clusters C1 and C2 is then given by
dWard(C1, C2) = ess(C1 ∪ C2) − (ess(C1) + ess(C2).

Table 5.1 – Pros and cons of each linkage method.

Pros and Cons Sgl Cpl Avg Ctr Wrd

Handle noise between the clusters x x x

Less susceptible to noise and outliers x x

Handle non-elliptical shapes x

Capture clusters of different sizes x

Biased towards globular clusters x x x x

Sensitive to noise and outliers x

Sensitive to noise between the clusters x

Tend to break large clusters x

We can see in Table 5.1 that highlights the pros and cons (in italic) of different linkage
strategies [110] that ward and complete linkages are the only ones that can handle noise
and outliers. The complete however is not good for handling stationarity since it tends to
break large clusters. For these reasons, we consider using the complete linkage for time
series clustering and the Ward linkage for the segmentation.
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5.1.2 Time series clustering

In this research, the hierarchical model is employed to efficiently cluster multivariate
features. It is first used to make a profit from the spatial correlation of Internet delays
by detecting groups of time series that display similar patterns. For this purpose, we
introduce the following notation. We consider slotted time and suppose that a network
with n available pairs of source/destination is observed during T timeslots. We observe
the delay measurements between each source and destination of these pairs at different
timeslots. D denotes the n-variate time series of length T , Di: the row i of the matrix
D which represent the i − th observed time serie of delays and D:j the column j of the
matrix D which represent the vector of measured delays at instant j.

To shed light on the spatial correlation among time series, a Pearson correlation matrix
R is computed between time series of the matrix D. In fact, we define R as follows:
R = 1

N−1

(
D−D̄T

σD

) (
D−D̄T

σD

)T
.

Where :

— R is the matrix of Pearson correlation coefficients between rows in matrix D.

— N is the number of rows (time series) in D.

— D̄ is a column vector of means for each row in D.

— σD is a column vector of standard deviations for each row in D.

— D is the matrix of time series, where each row represents a time series.

A hierarchical clustering is then performed on the values of the correlation matrix. Finally,
the rows and columns of the Pearson correlation matrix are reordered according to the
resulting cluster labels. In this new matrix, diagonal blocks are formed and each block
represents groups of time series with higher correlation.

In order to estimate the number of clusters within a given dataset, we must determine
the dendrogram cut-off. As seen in Figure 5.2, the cut-off threshold set at 0.7 results in
three clusters, and the one at 1 yields two clusters. A lower threshold leads to a higher
number of clusters, while a higher threshold corresponds to fewer clusters.

To set this threshold we would like to minimize the number of clusters while max-
imizing the correlation of time series within each cluster. For this purpose, we de-
fine the following criterion: For a partition P of the dataset, we define the metric:
h(P ) = ∑

c∈P
1
|c|

∑
sk,sl∈c |corr(sk, sl)|, with corr(x, y) being the Pearson correlation be-

tween x and y.
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Figure 5.2 – Example of a dendrogram with two cut-off thresholds generating respectively
2 and 3 clusters.

An example of this process is given in Figure 5.3 that shows the correlation matrix
of 200 time series before and after the hierarchical clustering. We can notice that in the
second figure, blocks of highly correlated pairs are formed and are easier to identify.

Figure 5.3 – Heatmap of the Pearson correlation matrix before (left) and after (right)
hierarchical clustering. The x and y axis correspond to the delay time series of the
dataset.

In order to have a closer look at the formed clusters, consider for instance Figures
5.1 and 5.4 that show the time series within the last two formed clusters at the bottom
right of the Pearson matrix after clustering. It is easy to notice that within each cluster,
the time series show synchronous and similar patterns, whereas the pattern nature and
temporal distribution change from one cluster to another. This property demonstrates
that the change points are highly synchronized between correlated pairs. This motivates
the intracluster segmentation that we introduce the following.
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Figure 5.4 – Example of ten time series found in the same cluster.

5.1.3 Viterbi smoothing post-treatment

Let us denote by Dc the submatrix of D that contains the observed time series within
the identified cluster c. Once the clusters of similar time series are identified, we are
interested in segmenting jointly the delay time series within each cluster. In this second
step, we first apply the hierarchical clustering on the columns of the matrix Dc. Figure
5.5 shows the result of this clustering. Despite the effectiveness of capturing the spatial
correlation, hierarchical clustering imperfectly incorporates the temporal stability inside
times series. To address this problem, we propose a Viterbi algorithm as a post-treatment.
To this end, we suggest capturing the temporal correlation by modeling the multivariate
delays present in Dc for each identified cluster c using a multivariate hidden Markov model
(HMM) where the column of (Dc) is the vector observation at time t. This model considers
that the observed delay vectors (Dc

i )i≤T are generated by some hidden states (sk)k≤m. In
fact, the Markovian assumption regarding Internet delay changes is commonly used in the
literature [79], [131]. The segmentation problem can hence be reformulated as follows:
the segment labels are defined by the hidden states and the goal is to infer them based on
the observed delay vectors. To this end, we use a Viterbi algorithm which is a dynamic
programming algorithm for finding the most likely sequence of hidden states, called the
Viterbi path [68], that results in the sequence of observed events. It is commonly used in
the context of Hidden Markov Models (HMMs). In simple terms, it calculates the most
likely sequence of events that have led to the observed sequence.

We use the output of the hierarchical clustering segmentation on each matrix Dc to
roughly identify the number of hidden states and estimate the emission probability of
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Figure 5.5 – Segmentation of the series in a cluster using hierarchical clustering, after one
Viterbi smoothing and after two Viterbi smoothings.

each state. First, we separate the data points into different clusters based on the labels
provided by the hierarchical clustering. Then we use observations identified within a
cluster to initialize the distribution of emissions using either a density kernel method or a
histogram method. Moreover, for the sake of simplicity, we assume prior knowledge of the
transition probability matrix which stresses the fact that two successive delay vectors have
more chance to be generated by the same hidden state. For this reason, we put ourselves
in the context of transition probabilities that are small compared to the probability of
remaining in the same state. For the sake of simplicity, we define the transition probability
m × m matrix Pt as follows: Pt(i, j) = ϵ/(m − 1) if i ̸= j and Pt(i, i) = 1 − ϵ, with m the
number of hidden states. Choosing a small value of ϵ enforces state persistence. Finally,
we assume that the network states are initially equally distributed.

However, this joint treatment of several time series is sensitive to the size of the clus-
ter. Indeed, when the cluster contains many time series, the influence of the transition
probability term tends to become negligible compared to the emission probability term
resulting in weak smoothing. In order to overcome this imbalance, we introduce the fol-
lowing alternative regularization that depends on the cluster size, say N : the transmission
probability is set to Pt(i, j) = ϵN/(m − 1) if i ̸= j and Pt(i, i) = 1 − ϵN . This version of
smoothing will be called regularized Viterbi smoothing.

If we consider the result of the hierarchical clustering in Figure 5.5 and apply the
Viterbi algorithm, we get the segmentation result in Figure 5.5. We can see that the
segments are smoothed and more stability is incorporated. To further improve these
results we update the estimates of emission probabilities from this new segmentation and
apply again the Viterbi algorithm. The final result is provided in Figure 5.5 which displays
a slightly more smoothed segmentation than Figure 5.2.4.

In order to quantify the smoothing effect and measure the quality of the segmentation,
we have chosen to use the adjusted Rand index. Indeed, the Rand index is a measure of
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similarity between two partitions of the same set and it represents the proportion of pairs
of points that are grouped in the same way in the two partitions [94]. The adjusted Rand
index is an enhancement of the Rand index as it adjusts it to account for agreement that
might occur by random chance. It is mainly used to assess the quality of a clustering
when the ground truth is provided. And it ranges from -1 to 1, where 1 indicates perfect
agreement, 0 indicates random agreement and negative values suggest less agreement than
random. This index will allow us to decide the best variant of the method to choose in
terms of the Viterbi version and the number of smoothings to use. It detailed formula is
as follows: ARI = NAP−ENAP

1
2 (TNP−ENAP)+ 1

2 (TNP−ENDP) .
Where:

— NAP is the number of agreeing pairs, which is the number of pairs with the same
cluster in both predicted and ground truth clustering. It represents how many data
point pairs are correctly placed in the same cluster by both the predicted and ground
truth clusterings.

— ENAP is the expected number of agreeing pairs, which is what you would expect
to happen if the data were randomly assigned to clusters. It’s essentially the level
of agreement that could occur purely due to random chance.

— ENDP is the expected number of disagreeing pairs, which is the counterpart to the
expected agreement. It’s the number of data point pairs that would be placed in
different clusters by random chance.

— TNP is the total number of pairs.

5.2 Performance evaluation

5.2.1 Datasets

We will test our methods on different real-world datasets. The datasets are collected
from Ripe Atlas. They represent delays between pairs passing through specific IXPs, DE-
CIX, and AMS-IX respectively. For these datasets, we use as ground truth approximation
for the segmentation an HDP-HMM method [80] that was validated and adapted by Ripe
Atlas in an API [3]. The different datasets are described more in detail in Chapter 3. We
denote them as follows: Real dataset 1 (RD1), RTT traces passing through DE-CIX, this
dataset contains 38k pairs passing through DE-CIX. Each of these time series has 720
timeslots which correspond to two days of measurements, the 9th and 10th of April 2018.
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And Real dataset 2 (RD2), RTT traces passing through AMS-IX, this dataset contains
26k pairs passing through AMS-IX. Each has 360 timeslots corresponding to the 13th of
May 2015. This dataset will be denoted RD2.

5.2.2 Baseline method: HDP-HMM

To our knowledge, HDP-HMM (Hierarchical Dirichlet Process Hidden Markov Models)
is state-of-the-art for efficient segmentation of HMMs with an unknown number of states
and unknown emission distributions that are modeled as Gaussian mixtures (with an
unknown number of components).

We compare the successive treatments proposed with HDP-HMM segmentation: the
hierarchical clustering alone (HC), HC with one Viterbi smoothing (V1), HC with two
Viterbi smoothings (V2) and finally HC with one regularized Viterbi smoothing (V1
REG) and HC with two regularized Viterbi smoothings (V2 REG). V2 version of Viterbi
smoothing introduces a re-estimation of the emission densities after the first smoothing.

5.2.3 Delay time series clustering

Hierarchical clustering is employed to group time series with similar and homogeneous
patterns. The optimal clustering is obtained by determining a threshold for cutting off
the dendrogram. A low threshold leads to simple clusters with highly similar patterns,
yet a large number of clusters; thus, failing to fully capitalize on the similarity and di-
mensionality reduction. A high threshold, on the other hand, lightly compresses data,
yielding a low number of clusters, but also presenting the risk of combining time series
with distinct patterns within the same group, making it difficult to achieve an accurate
multivariate segmentation. To maximize the correlation within each cluster, a threshold
is chosen that lies between these two extremes. For the following, compression refers to
the reduction in the number of clusters. It comes into play to simplify the clustering
structure and it involves merging or combining some of the initially identified clusters to
reduce their number. This can make the interpretation and analysis of the data more
manageable and can help in summarizing the key patterns or groups in a more concise
way.

In this section, we are going to explore the impact of the different linkage methods
on the clustering quality. We focus in particular on the comparison between Ward and
complete linkage along with defining the optimal dendrogram cut-off threshold.
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Figure 5.6 – Evolution of the global correlation with the dendrogram cut-off threshold
and the number of clusters having more than 5 time series for RD1.

We can see in Figure 5.6 that for RD1 the optimal cut-off threshold is 0.2. This
clustering used the complete linkage method. When we cut the dendrogram at this value,
we obtain the distribution given in Table 5.2 and Figure 5.6. We can clearly notice that
a large part of the data remained unclustered. For a dataset of nearly 38k time series,
16200 time series remained ungrouped. One way to deal with this is to raise the cut-off
threshold. Nonetheless, the unclustered time series frequently consists of a considerable
amount of noise that doesn’t correspond to any existing pattern within the clustered time
series. Given that the primary objective of this clustering step is to create clusters of
time series sharing similar patterns of change, which can subsequently be segmented in a
multivariate manner, we have chosen to maintain the threshold at its optimal value. This
being said the rest of the data were clustered in a homogeneous way, with the majority
of clusters containing between 2 and 50 time series.

Table 5.2 – Number of clusters having 5 time series or less.
Nb of time series 1 2 3 4 5
Nb of clusters for RD1 16200 1393 544 316 180
Nb of clusters for RD2 5006 699 321 230 119

We should note that a maximum number of time series per cluster is 617 as can be
seen in Figure 5.7. We can see that the clustering detects the pertinent common patterns
despite the presence of noise and outliers. Figure 5.7 shows on the other hand a cluster
of time series with high stability. 5.7

Figures 5.8 and 5.8 present two clusters with very similar patterns. We should notice
that despite the similarity displayed between these clusters, the complete linkage sepa-
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Figure 5.7 – Two clusters with respectively 617 and 162 time series from RD1 using
complete linkage.

rated them while they could have been grouped into one larger cluster. This result goes
along with one of the cons of complete linkage described in Table 5.1 which is its tendency
to break large clusters.

Figure 5.8 – Two clusters with respectively 115 and 108 time series from RD1 using
complete linkage.

In Figure 5.9 we can see the dendrogram of the Ward linkage. On the x-axis we see the
number of time series per cluster, knowing that each vertical line refers to an independent
cluster. On the y-axis, we can see the distance between these clusters using the Ward
linkage. The clustering remains the same for cut-off thresholds ranging from 0 to 8. For
thresholds starting from 8, the process of agglomeration starts again. In order to have
a clustering from this stable zone, the cut-off value was decided to be 8, leading to 30
clusters. This choice achieves a good trade-off between the number of clusters and the
degree of their compression.

One difference that we can outline compared to the complete linkage, is the fact that
the number of time series per cluster is higher on average. Moreover, in Figures 5.10, we
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Figure 5.9 – The dendrogram of the hierarchical clustering of the delay time series using
Ward linkage.

can see that the pattern that was split using the complete linkage in Figures 5.8 is totally
grouped into one cluster of 1227 time series using the Ward method.

In Figures 5.12 and 5.11, we can notice that one drawback of the compression power
of Ward is the fact that it will group together time series having a similar baseline,
but different patterns. This is especially noticeable when the time series exhibit repeated
peaks. As depicted in Figure 5.11, Ward clustering might combine time series with similar
baseline trends, even if their peak patterns differ. This behavior is referred to as a globular
bias, as mentioned in Table 5.1, where Ward tends to create clusters with a common
baseline but potentially varying patterns. The complete linkage, on the contrary, didn’t
group these time series even though they have a common baseline behavior since they
don’t display a similar pattern change.

A possible approach to take advantage of the pros of both methods is to first cluster the
data using Ward linkage. First, apply Ward linkage to the data. Once the homogeneous
clusters are identified, these clusters can be further processed. The remaining data, which
was initially grouped by Ward, and consists of heterogeneous clusters, can be considered as
a new dataset. This new dataset can then be subjected to complete linkage clustering for
a finer grouping, aiming to create more homogeneous clusters that consider both baseline
and pattern changes.
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Figure 5.10 – Cluster containing 1227 time series in RD1 obtained using Ward linkage.

Figure 5.11 – Cluster with 500 time series from RD1 using complete linkage.

Figure 5.12 – Cluster with 150 time series from RD1 using complete linkage.
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After the analysis of the RD1, the same results were observed on RD2. The cut-off
threshold was set as well to 0.2 for the complete linkage and to 12 for the Ward method.
The complete linkage provided a quite similar distribution of the number of time series
per cluster of RD1. Furthermore, this clustering helps to explore the various patterns of
delays along the global dataset as the number and type of changes differ from one cluster
to another.

The spatial correlation within the clusters An analysis was conducted on each cluster
to investigate possible spatial correlations. Specifically, for the RD2 dataset, we selected
clusters with more than 10 time series, which represents a set with 3200 clusters. As
shown in Figure 5.13, a high number of clusters has series with only a small number of
sources or destinations. This suggests that spatial correlations can often be related to
measurements with a common source or destination and potentially share a few common
links.

Figure 5.13 – Repartition of the number of common OD pairs per cluster.

5.2.4 Viterbi smoothing

It’s important to clarify that the color-coded segments in the following figures represent
different states within each segmentation. However, these colors are not consistent from
one figure to another. In this section, we evaluate the impact of some parameters on the
smoothing, considering the stationarity of the time series. First, we show the impact of ϵ

on the transition between states.
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For values of ϵ ranging from 10−5 to 10−2, the distribution state doesn’t change. An
example of this can be seen in Figures 5.14, where we can clearly notice that there is
little difference between the state distribution for ϵ = 10−2 on the left and ϵ = 10−5 on
the right. The state transitions remain consistent which indicates the robustness of the
model regarding the choice of ϵ.

Figure 5.14 – States after the first Viterbi smoothing for ϵ = 10−2 and for ϵ = 10−5.

For the following experiences, we fix ϵ to 0.001 for the first smoothing of Viterbi and
to 0.0001 for the second smoothing, since we consider that the states are more stable after
the smoothing leading to smaller transition probabilities between states.

We will now evaluate the segmentation quality and the impact of the number of time
series in the cluster on both the quality of segmentation and the execution time. For
this purpose, we compare the segmentation of each cluster with the segmentation of a
representative of that cluster using both our method and the method based on the HDP-
HMM.

Comparison with the HDP-HMM method: execution time We measured the processing
time of the series per cluster for the method based on the histograms. We can see that
a hierarchical plus Viterbi approach offers processing gain by a factor of 9 compared to
HDP-HMM, as shown in Table 5.3. The values given in the table are mean values for ten
experiments and the time series are 720 timeslots long. Similar results were observed for
the RD2 dataset.

Table 5.3 – Comparison of the execution time in seconds.
Method Hierarchical + Viterbi HDP-HMM
Execution time in seconds 0.28 2.6

Effect of the smoothing on the number of states In Figure 5.15 we show a summary of
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Figure 5.15 – The emission probabilities for each state after hierarchical clustering (12
states), first Viterbi smoothing (7 states) second Viterbi smoothing (4 states) for a time
serie from RD1.(From left to right)

Figure 5.16 – Segmentation result after hierarchical clustering, one and two Viterbi
smoothings. We respectively get 12, 7 and 4 states. The cluster contains 10 time se-
ries from RD1.(From left to right)

multivariate emission probabilities before and after the Viterbi smoothing. This summary
is obtained by gathering data in all dimensions and computing the compounding kernel
density estimator. We can notice that the number of states diminishes throughout the
process passing from 12 to 4 states. This illustrates the smoothing effect that happens
since the model adopted for the transition probabilities favors stability within one state
instead of transitions. This enables us to get rid of states with low probability and replace
them with more dominant ones in the segment.

Effect of the smoothing on the segmentation Moreover, the impact of Viterbi smoothing
is also very clear in terms of segmentation quality. In fact, in Figure 5.16, we can notice

Figure 5.17 – Segmentation of three time series from the cluster in Fig. 5.16 using HDP-
HMM. 3 states are found for each time series.
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Figure 5.18 – Impact of the number of time series on the segmentation quality, cluster
with 130, the full cluster, 10 and 3 time series.

that the segments become more homogeneous. The cluster represented in Figure 5.16
presents roughly two major states: one that is stable and one that has a high variance.
At the end of the process in Figure 5.16 on the right, we can see that the stable state (in
green) is well segmented, and the unstable state on the other hand is separated into two
segments. This segmentation makes sense since the delay distribution is homogeneous
within the blue segments while presenting higher variance in the yellow one.

Global patterns VS local patterns When segmenting jointly a high number of series,
we can notice the fact that local patterns that are specific for each time serie tend to
disappear from the segmentation result of the whole cluster. For instance, many local
peaks first detected with hierarchical clustering in Figure 5.16 on the left were merged
to a more global state (in green) in Figure 5.16 on the right. This phenomenon can also
be noticed in univariate segmentation with the HDP-HMM method. In the series of the
first two clusters in Figure 5.17, one can observe that small peaks, relative to the overall
variation of the time series, are not segmented independently but are instead included in
larger segments. However, when considering isolated peaks or distinctive patterns, these
are still identifiable by both our approach and the HDP-HMM and can be detected within
separate segments as is the case in Figures 5.17 for the second time serie and in 5.16 for
the last time serie.

Effect of the number of time series In Figure 5.18 we highlight the impact of the
number of time series inside the cluster on the segmentation quality. In fact, as we can
see in Figure 5.17, despite the similarity between these three time series, the HDP-HMM
provides a different segmentation for each one. As we can see the highly variable pattern
in the middle of these time series has been treated differently: in the first serie it was
considered as a whole segment, in the second it was divided into three segments, and in
the last serie to two segments. This can mean that each time serie has its own specificities
that can be related to the path taken or to other network properties.
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When segmenting jointly a high number of time series as is the case in Figure 5.18 on
the left, the smoothing effect isn’t as efficient. We can see that for a smaller number of
time series, 10 and 3 in the last two clusters of Figure 5.18, the segmentation is better
smoothed and is closer to the one given by the HDP-HMM. As the number of states tends
to increase, maybe a smoothing of transition probabilities stronger than ϵN would better
mitigate the influence of the number of series.

Effect of the Viterbi regularization on clusters with high cardinality In order to assess
the quality of the segmentation in regards to the number of time series within a specific
cluster, we employed the adjusted Rand Index as a criterion. This index is computed by
comparing the multivariate segmentation of the cluster with the univariate segmentation
generated by HDP-HMM for each individual series. Subsequently, an average score was
computed to provide insight into the segmentation quality across the entire cluster. We
compared the four variants of our approach, and how this average adjusted Rand index
evolves in response to the increasing number of time series within the segmented cluster.

It has been shown that the contribution of the post-processing steps always improves
the quality of segmentation compared to hierarchical clustering alone. It has also been
observed that the Viterbi regularized version with one run shows the best results. There-
fore, when treating jointly a high number of time series we choose the regularized version
with only one pass of Viterbi as the segmentation strategy.

5.3 Conclusion and takeaways

In this chapter, a multivariate segmentation approach for network delays has been
developed. It takes advantage of the spatial correlation between pairs of a network and
their temporal stability. The method is based on two successive applications of hierarchi-
cal clustering and on the Viterbi algorithm to account for space and time dependencies
among series. The hierarchical clustering among series for time series enabled us to group
a large number of series having similar patterns. We have seen that the choice of the
linkage method has an impact on the homogeneity of the patterns within the same clus-
ter. Complete linkage tends to give more homogeneous clusters but does not have a big
compression power, whereas Ward linkage gives clusters with a large number of elements.
The spatial correlation within clusters has also been evidenced. Most clusters show the
presence of common sources or destinations. After clustering the time series, the pro-
cess of segmentation begins by applying again the hierarchical clustering followed by the
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Viterbi algorithm. We have shown the impact of Viterbi smoothing on the enhancement
of the segmentation quality. Its results are similar to the ones given by HDP-HMM, while
we have shown that the computational burden is reduced by a factor of 9 compared to
HDP-HMM.
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Chapter 6

CONCLUSION AND PERSPECTIVES

6.1 Conclusion

During this thesis, we have been interested in problems of network monitoring. More
specifically, we considered problems related to Internet end-to-end delay measurements.

The first aspect of the thesis was about measuring Internet delays and being able to
generate delays via network simulation. For this purpose, we developed a network delay
simulator that replicates delays within an autonomous system. This was important to
obtain a reliable ground truth and to control several factors, including the underlying
topology, the delay distribution, and the length of the generated delay time series.

The second one was about the acquisition of real-world datasets. This has been done
through exploring the Internet monitoring platform Ripe Atlas and getting to know all
the possible options to access measurements: download publicly available measurements
or conduct our measurement campaigns. We mainly used two types of measurements
available on the platform: round trip times and traceroutes. Several datasets have been
recorded.

We generated two datasets by launching our measurement campaign. The first dataset
used random anchors in Ripe Atlas, and the second one used probes belonging to Google’s
autonomous systems. Two other datasets were acquired through existing measurements
corresponding to two major Internet incidents touching AMS-IX and DE-CIX. To fetch
these delays, we conducted traceroute measurements and filtered the delays associated
with paths containing the given IXP in their traceroute results.

The second step after acquiring network delay datasets is their analysis. Within the
scope of this thesis, we recognized a critical issue when dealing with Internet delays which
is the presence of missing delay values. Missing delays can occur for different reasons,
such as device malfunctions, security restrictions, or limitations on the number of allowed
measurements. This lead us to the second contribution of this thesis which involves
proposing two solutions to infer and recover missing delays via matrix completion and
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neural network approaches.

The first model based on non-negative matrix factorization, uses the redundancy and
the stability that can be found in round trip time delays. When observed over a long
period, from a few hours to several days, delays display an important stationarity. This
property makes the network delay matrix low-rank. Two algorithms were considered:
the alternated projected gradient and the NeNMF. These two algorithms were tested
on synthetic datasets generated by our delay simulator to have the ground truth of the
missing delays. It has shown great accuracy in the completion task. We have noticed,
however, a significant difference in terms of execution time between the two algorithms.
Indeed, the NeNMF was faster than the alternated projected gradient. As a result, we
opted for the exclusive utilization of NeNMF during the evaluation phase on the Ripe
Atlas dataset. The resulting completion was highly accurate after only a small number of
iterations.

The second model used to address the completion task is neural collaborative filtering
(NCF). It is based on two neural network architectures: the generalized matrix factor-
ization (GMF) or the multi-layer perceptron (MLP). Both architectures were tested on
synthetic and real-world datasets and have shown very low stress. To find the optimal
framework for this approach, we have tested the impact of many parameters on these
two suggested models such as the optimizer, the learning rate as well as the number
of epochs needed. Another important result was the comparison between the NeNMF
and the NCF approaches. NCF approach was better than the NeNMF when applied to
synthetic datasets but this tendency was reversed for real-world datasets.

The final contribution of this thesis is the proposition of a multivariate segmenta-
tion approach for network delay time series. This approach used both the temporal and
the spatial dependencies that can be found in delays. It uses hierarchical clustering and
the Viterbi algorithm. The initial phase is based on the hierarchical clustering of delay
time series. The goal is to form clusters of time series that exhibit similar and syn-
chronous patterns and changes. Subsequently, the time series within the same cluster are
concurrently segmented via hierarchical clustering, resulting in the initial clustering of
measurement instants. To enhance the temporal consistency of this initial clustering and
ensure its smoothness, we applied the Viterbi algorithm as a post-treatment. The efficacy
of Viterbi smoothing in improving the quality of segmentation was evidenced through the
comparison with the state-of-the-art segmentation method based on HDP-HMM model-
ing. Finally, we established that our approach significantly reduces computational costs,
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compared to the HDP-HMM method.

6.2 Perspectives

During this work, we attempted to incorporate the temporal dependencies within net-
work delays using specific regularization terms to induce a piecewise structure. To further
enhance the accuracy of our models, we consider exploring alternative regularization terms
in the future. It will reflect the knowledge we have developed regarding the behavior and
dynamics of Internet delays. It will be interesting as well, to apply the elaborated methods
to different datasets, including different topologies, use cases, and recent incidents.

An aspect of importance that falls in the continuity of our work is the real-time
treatment of delays. Network anomalies or incidents can have a significant impact on
performance, security, and user experience. Detecting these events as they occur is vital
for quick mitigation and issue resolution and can be a tool to raise alerts to network
operators to help them investigate the ongoing issue. Similarly, being able to recover
missing values simultaneously with their occurrence, can help speed the treatment of the
delays and facilitate subsequent analysis.

For this reason, it will be interesting to conceive online completion and anomaly de-
tection algorithms. Regarding the online completion, we can get inspired by the two
following works. [8] suggests a non-negative passive-aggressive (NN-PA) [20], a family
of online algorithms for non-negative matrix factorization (NMF). The second work [52],
presents online collaborative filtering using iterative user clustering (OCTAL). For online
anomaly detection, [90] presents an unsupervised multivariate anomaly detection in time
series. This approach ensures that the choice of kernels in the machine learning model
is not fixed but is dynamically adjusted based on the inherent structure and patterns
identified in the unsupervised training data through hierarchical clustering.

Another interesting aspect to be addressed is the development of efficient sampling
strategies for network measurements. The goal is to acquire data that brings critical
information while reducing the overall volume of measurements to be collected. These
strategies aim to reach a balance between resource efficiency and maintaining the accu-
racy and integrity of the monitoring process. Recent work addressed this for the traffic
completion problem [53]. This online completion is based on rank estimation of the con-
sidered sliding window, followed by an adaptive sampling scheduling algorithm to acquire
the next data points.
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Titre : Analyse des mesures de délai réseau. Méthodes de data mining pour la complétion et la segmen-
tation.
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Résumé : La croissance exponentielle d’Internet
nécessite une supervision régulière des métriques
réseau. Cette thèse se concentre sur les délais
aller-retour et la possibilité de résoudre les pro-
blèmes de données manquantes et de segmenta-
tion multivariée. La première contribution comprend
l’orchestration de campagnes de mesure des dé-
lais, ainsi que le développement d’un simulateur qui
génère des traces de délais de bout en bout. La
deuxième contribution de cette thèse est l’introduc-
tion de deux méthodes de complétion de données
manquantes. La première méthode repose sur la
factorisation de matrices non négatives et la se-
conde utilise le filtrage collaboratif neuronal. Tes-
tées sur des données synthétiques et réelles, ces
méthodes démontrent leur efficacité et précision.

La troisième contribution de cette thèse porte sur
la segmentation multivariée des délais. Cette ap-
proche repose sur le regroupement hiérarchique et
se déroule en deux étapes. Dans un premier temps,
il s’agit de regrouper les séries de délais afin d’ob-
tenir des séries présentant des variations similaires
et synchrones. Ensuite, on segmente de manière
conjointe les séries groupées. On utilise le regrou-
pement hiérarchique suivi d’un post-traitement à
l’aide de l’algorithme de Viterbi qui vise à lisser le
résultat de la segmentation. Cette méthode a été
testée sur des traces de délais réels et les résultats
indiquent que cette méthode se rapproche de l’état
de l’art en matière de segmentation tout en rédui-
sant de manière significative la rapidité et les coûts
de calcul.

Title: Analysis of network delay measurements. Data mining methods for completion and segmentation.

Keywords: End-to-end delays, Internet measurements, Completion, Multivariate segmentation, Hierar-

chical clustering

Abstract: The exponential growth of the Internet
requires regular monitoring of network metrics. This
thesis focuses on round-trip delays and the possi-
bility of addressing the problems of missing data
and multivariate segmentation. The first contribu-
tion includes the orchestration of delay measure-
ment campaigns, as well as the development of a
simulator that generates end-to-end delay traces.
The second contribution of this thesis is the intro-
duction of two missing data completion methods.
The first is based on non-negative matrix factor-
ization, while the second uses collaborative neural
filtering. Tested on synthetic and real data, these
methods demonstrate their efficiency and accuracy.
The third contribution of this thesis involves multi-

variate delay segmentation. This approach is based
on hierarchical clustering and is implemented in two
stages. Firstly, the delay time series are grouped
to obtain, within the same group, series with sim-
ilar and synchronous variations and trends. Next,
the multivariate segmentation step collectively and
jointly segments the series within each group. This
step uses hierarchical clustering followed by post-
processing using the Viterbi algorithm to smooth
the segmentation result. This method was tested
on real delay traces from two major events affecting
two Internet Exchange Points (IXPs). The results
show that this method approximates the state-of-
the-art in segmentation, while significantly reducing
computing speed and costs.
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