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Abstract

A great technological strides have been carried out in the past to enhance the efficiency
of production and consumption of energy. The topological change in electric grid from
centralized to smart networks is one of them. The traditional grid consists of a centralized
large scale generators that are stationed far from the consumption site. Such arrangement
helps the utilities to generate power for large consumer bases at a time. In doing so, it
nullify the inconsistency in individual energy consumption and flattens the average energy
requirement. Inherently, this improves the predictability of the demand. As such, load
anticipation and optimal generator dispatch will be easier. In contrary, smart grid relies on
smaller and decentralized generation units. The majority of these units run on renewable
energy resources and are located closer to the consumer sides. Being smaller in size
increases the units affordability which could potentially turn consumers into intermittent
energy suppliers. Consequently, the previous uni-directional communication/energy flow
from producers to consumers is now changed into bi-directional. These has generated a
huge volume of data. Since it is composed of a smaller distributed units, the convenience
of bulk power estimation is no longer valid. As a result, there is high variability both in
energy production and consumption. Hence, a successful demand response scheme needs
better predictive models at the either ends of the power flow. These predictive models
should address the variability of supply and demand, handle the big data generated and
a provide a marginal profit gain for all parties involved in production, transmission and
consumption of electricity. This is where we believe probabilistic models will play a vital
role for a successful implementation of demand response optimization.

Probabilistic models can anticipate the uncertainties that could arise during system
interactions. These uncertainties can emanate from the very system we are trying to
control or can be external to the system. Either ways, in the presence of these uncertainties
we can not completely be sure if our estimation is correct. We can take our recent covid
pandemic as a good example as to how environmental factors affect the accuracy of a
predictive model. The likelihood of this event was closer to none. And yet, despite their
parametric nature, most of the predictive models utilized by the energy companies in
Europe couldn’t anticipate the sudden drop in electricity demand. Miscalculation will be
even more damaging to a cascaded system where the decision of the later sub-system is
dependent on the output of the former. Such arrangement is prone to error compounding.
If the system manipulate deterministic predictive models for decision making, such error
augmentation will have a profound effect on its accuracy.

In contrary, a probabilistic model considers all variables and system interactions as
random variables that are bound to vary. Therefore, it offers a full spectrum for a possible
system outputs taking into account the inputs randomness. As such, it provides a frame-
work for uncertainty propagation so that all subsequent subsystems work on a probable
outcomes rather than a singular value which may or might not be the true value. This
enables the system to make an informed decision corresponding to the anticipated uncer-
tainty. Thereby making it more robust and reliable. Here, we would like to point out that
we are not making an objective assessment on the quality of a predictive model. We are
merely considering a possible approach that could improve the accuracy of estimation,
as it is dependent on many factors. For example, the availability and quality of data,
the modeling approach, forecast horizon, hidden associations between predictors, sudden
environmental changes, socioeconomic and political dynamics are some these factors that
can impacts predictive accuracy. However, at the bare minimum a good predictive model
should exhibit a minimized prediction interval (PI), maximized coverage probability and
a robust response to uncertainty.

Quantifying uncertainty using interval width and coverage probability as quality met-
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rics and combining it with accuracy enhances the model validity for decision making.
Forecast models, be it, parametric, semi-parametric or non-parametric, have been stud-
ied to address and improve these qualities. Parametric models are simple, elegant and
interpretable. However, because of their constrained parameter space, they are also highly
influenced by unmodeled dynamics. On the other hand, non-parametric models have un-
constrained parameter space. Consequently, they have the ability to change the function
space in order to fit the given observation. These parametric models and their variants
have been used by Energy companies for demand-supply prediction. And, to cope up the
current trend in technological advances, they are still investing a lot on a new predictive
algorithms. Though, the acceptable degree of compromise with regard to model complex-
ity, reliability, accuracy and computational resource requirement remain subjected to the
needs of the company and the specific problem at hand.

This thesis investigate probabilistic predictive models based on the Gaussian process
and deep learning for electricity demand forecasting. As Gaussian processes are kernel-
based predictive models, their performance is constrained by the type, number and dimen-
sion of the selected kernel. To address these limitations, first it proposes a new gaussian
approximation technique that address the Bayesian computational bottleneck. Second, it
proposes a stochastic compositional kernel estimation algorithm using the proposed gaus-
sian approximation as the underlying model. Third, it follows an iterative procedure using
cross-validation for selecting an optimal combinations of kernels that best explain the data
generating model. Furthermore, it also tries to address the limitation of maximum like-
lihood approach which is usually employed in probabilistic deep learning models and yet
fails in guaranteeing a minimized interval width and maximised coverage probability for
the forecasted points. This thesis proposes a new training algorithm for neural networks.
The proposed distribution based lower upper bound estimation algorithm encompasses
interval width and coverage probability as quality metrics with adaptive parameters that
guarantee the needed performance compared to other alternative techniques.

The suggested approaches enhance the deployment of Gaussian and deep learning
models in the energy sector. The bound estimation model for a minimized prediction
interval and maximized coverage probability, can help potential energy suppliers in sizing
generators which will result in a marginal profit gain. In addition, the kernel estimation
algorithm can simplify the application of kernel-based learning to those who find kernel
selection vague. To the experienced, it can give a preliminary insight into the structure of
the kernels that could potentially fit the data. The randomized column sampling technique
could offer an alternative method for a fast Gaussian model building and approximation
that is scalable to large data. Furthermore, the bound estimation, in addition to providing
a forecast distribution to a point estimate neural models, it can also serve as a good
starting point to an alternative probabilistic model training in deep neural nets.
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Résumé

D’énormes progrès technologiques ont été réalisés dans le passé pour améliorer l’efficacité
de la production et de la consommation d’énergie. Le changement topologique dans le
réseau électrique, passant d’une structure centralisée à des réseaux intelligents, en fait
partie. Le réseau traditionnel se compose de générateurs à grande échelle centralisés,
situés loin du site de consommation. Cette disposition aide les services publics à pro-
duire de l’électricité pour de grandes bases de consommateurs simultanément. Ce faisant,
cela annule les incohérences dans la consommation individuelle d’énergie et aplatit le be-
soin énergétique moyen. Par nature, cela améliore la prévisibilité de la demande. Ainsi,
l’anticipation de la charge et la répartition optimale des générateurs seront plus faciles.
En revanche, le réseau intelligent repose sur des unités de génération plus petites et
décentralisées. La majorité de ces unités fonctionnent avec des ressources énergétiques re-
nouvelables et sont situées plus près des consommateurs. Leur taille plus réduite rend ces
unités plus abordables, ce qui pourrait potentiellement transformer les consommateurs en
fournisseurs d’énergie intermittente. Par conséquent, la communication et le flux d’énergie
unidirectionnels précédents, des producteurs aux consommateurs, sont désormais devenus
bidirectionnels. Cela a généré un volume énorme de données. Composé d’unités dis-
tribuées plus petites, le confort de l’estimation de puissance en vrac n’est plus valable.
En conséquence, il existe une grande variabilité à la fois dans la production et la consom-
mation d’énergie. Par conséquent, un schéma de réponse à la demande réussi nécessite de
meilleurs modèles prédictifs aux deux extrémités du flux d’énergie. Ces modèles prédictifs
doivent prendre en compte la variabilité de l’offre et de la demande, gérer les grandes
données générées et fournir un gain de profit marginal pour toutes les parties impliquées
dans la production, la transmission et la consommation d’électricité. C’est là que nous
pensons que les modèles probabilistes joueront un rôle crucial dans la mise en œuvre
réussie de l’optimisation de la réponse à la demande.

Les modèles probabilistes peuvent anticiper les incertitudes qui pourraient survenir
lors des interactions système. Ces incertitudes peuvent émaner du système même que
nous essayons de contrôler ou peuvent être externes au système. Dans les deux cas, en
présence de ces incertitudes, nous ne pouvons pas être complètement sûrs que notre esti-
mation est correcte. Nous pouvons prendre notre récente pandémie de covid comme un
bon exemple de la façon dont les facteurs environnementaux affectent l’exactitude d’un
modèle prédictif. La probabilité de cet événement était proche de zéro. Et pourtant,
malgré leur nature paramétrique, la plupart des modèles prédictifs utilisés par les en-
treprises énergétiques en Europe n’ont pas pu anticiper la baisse soudaine de la demande
d’électricité. Une erreur de calcul serait encore plus dommageable pour un système en
cascade où la décision du sous-système ultérieur dépend de la sortie du précédent. Une
telle disposition est sujette à une augmentation des erreurs. Si le système manipule des
modèles prédictifs déterministes pour la prise de décision, une telle augmentation des
erreurs aura un effet profond sur sa précision.

En revanche, un modèle probabiliste considère toutes les variables et les interactions
système comme des variables aléatoires qui sont destinées à varier. Par conséquent, il offre
un spectre complet pour des sorties système possibles en tenant compte de l’aléatoire des
entrées. En tant que tel, il fournit un cadre pour la propagation de l’incertitude afin que
tous les sous-systèmes ultérieurs travaillent sur des résultats probables plutôt que sur une
valeur singulière qui peut être ou non la vraie valeur. Cela permet au système de prendre
une décision éclairée correspondant à l’incertitude anticipée, le rendant ainsi plus robuste
et fiable. Nous tenons à souligner que nous ne faisons pas une évaluation objective de la
qualité d’un modèle prédictif. Nous considérons simplement une approche possible qui
pourrait améliorer la précision de l’estimation, car elle dépend de nombreux facteurs. Par
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exemple, la disponibilité et la qualité des données, l’approche de modélisation, l’horizon
de prévision, les associations cachées entre les prédicteurs, les changements environnemen-
taux soudains, les dynamiques socio-économiques et politiques sont quelques-uns de ces
facteurs qui peuvent influencer la précision prédictive. Cependant, au minimum, un bon
modèle prédictif devrait présenter un intervalle de prédiction minimisé (PI), une proba-
bilité de couverture maximisée et une réponse robuste à l’incertitude.

Quantifier l’incertitude en utilisant la largeur de l’intervalle et la probabilité de couver-
ture comme métriques de qualité et les combiner avec l’exactitude améliore la validité du
modèle pour la prise de décision. Les modèles de prévision, qu’ils soient paramétriques,
semi-paramétriques ou non paramétriques, ont été étudiés pour aborder et améliorer ces
qualités. Les modèles paramétriques sont simples, élégants et interprétables. Cependant,
en raison de leur espace paramétrique contraint, ils sont également fortement influencés
par des dynamiques non modélisées. En revanche, les modèles non paramétriques ont un
espace paramétrique non contraint. Par conséquent, ils ont la capacité de modifier l’espace
des fonctions afin de s’adapter à l’observation donnée. Ces modèles paramétriques et leurs
variantes ont été utilisés par les entreprises énergétiques pour la prédiction de l’offre et de
la demande. Et, pour faire face à la tendance actuelle des avancées technologiques, elles
investissent toujours beaucoup dans de nouveaux algorithmes prédictifs. Cependant, le
degré acceptable de compromis en ce qui concerne la complexité du modèle, la fiabilité,
la précision et les besoins en ressources computationnelles restent soumis aux besoins de
l’entreprise et au problème spécifique en question.

Cette thèse examine des modèles prédictifs probabilistes basés sur le processus Gaussien
et l’apprentissage profond pour la prévision de la demande d’électricité. Comme les pro-
cessus Gaussiens sont des modèles prédictifs basés sur les noyaux, leur performance est
contrainte par le type, le nombre et la dimension du noyau sélectionné. Pour remédier
à ces limitations, premièrement, elle propose une nouvelle technique d’approximation
gaussienne qui aborde le goulot d’étranglement computationnel Bayésien. Deuxièmement,
elle propose un algorithme d’estimation de noyau compositionnel stochastique utilisant
l’approximation gaussienne proposée comme modèle sous-jacent. Troisièmement, elle suit
une procédure itérative utilisant la validation croisée pour sélectionner une combinaison
optimale de noyaux qui explique au mieux le modèle de génération de données. De plus,
elle tente également de résoudre la limitation de l’approche du maximum de vraisem-
blance, qui est généralement employée dans les modèles d’apprentissage profond proba-
bilistes et qui échoue à garantir une largeur d’intervalle minimisée et une probabilité de
couverture maximisée pour les points prévus. Cette thèse propose un nouvel algorithme
d’entrâınement pour les réseaux neuronaux. L’algorithme de estimation basé sur la dis-
tribution proposé englobe la largeur de l’intervalle et la probabilité de couverture comme
métriques de qualité avec des paramètres adaptatifs qui garantissent les performances
nécessaires par rapport à d’autres techniques alternatives.
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Motivation

Energy demand has never been a problem for the energy sector in the past. The acces-
sibility and affordability of cheap oil has minimized the volatility in the energy market.
Low population growth index, the absence of environmental awareness and small scale in-
dustrialisation are also few other factors that has naturally helped in keeping the demand
supply equilibrium. As a result, energy security was not considered as a concern and
an issue for most countries. However, the rapid change in world economy, urbanization,
demography and the sharp rise in the price of oil has ended the era of abundance. Despite
the price, the worsening climatic conditions and its environmental risks has made it clear
that we need to limit and minimize the utilization of carbon based energy resources.

This trend toward the green economy and zero-carbon society means that the future
energy demand will be met by an environmental friendly and yet seasonal sources of
energies. The integration of these sources into the grid to meet the daily and future de-
mands requires a change of perspective with regard to our energy policy, grid architecture,
energy production, storage, transportation and consumption. This creates a hub of inte-
grated, dynamic and complex systems, all working together to bring the demand supply
equilibrium. These systems such as the energy grid, telecommunication, transportation
networks and other connected devices come with their own complexity and associated
uncertainties. Additionally, the intermittent nature of the energy sources inherently puts
an extra layer of uncertainty on the energy demand. Even if it is not up to the expected
level, grid modernization and utilization of renewable energy resources is being carried
out around the world. But, presently, the majority of the energy demand is still covered
by the expensive carbon based energy sources.

At a time when energy is most expensive, the peak energy demand generated due to
power plant failures and seasonal shifts hurts the productivity of manufacturing sectors
and the profitability of the energy suppliers. As a result, during the period of peak
demand, utility companies are adopting the demand response scheme which allows them
to reduce the power delivered to the customers instead of buying it at the international
market. This mitigation strategy should be implemented in a way that maximise the
profitability of customers as well as the utility companies. Consequently, the success of
the demand response paradigm, among other things rest on the accuracy of predicting
the energy demand and supply before hand. Currently, parametric models are the goto
predictive models in the energy sector. Though they are simplistic and efficient, they
can’t handle complex feature interactions.

Nowadays energy companies are investing heavily on non-parametric predictive mod-
els. Predictive models that takes into account the anticipated volatility of the demand
and supply could help utility companies in minimizing risk and maximising profit during
the decision making process. In that spirit, this thesis aim to investigate the imple-
mentation of probabilistic predictive models in the energy sector. Yet, the uncertainties
that arise due to the intermittent nature of the energy supply, the interactions of various
systems and the huge data that is generated as a result of it, invites serious questions
regarding the efficiency of these models. Questions related to accuracy of prediction,
computational efficiency, prediction interval width, coverage probability and more impor-
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tantly their scalability to large data. To that end, this dissertation aims to address these
questions through the objectives stated below

Objectives
This dissertation primarily focus on investigating the feasible approaches for enhancing
the predictive accuracy and computational efficiency of Gaussian process and probabilistic
deep learning models. As such,

• It investigating the implementation and suitability of non-parametric probabilistic
machine and deep learning models. Analyse their predictive efficiency and compu-
tational performance. And, propose an alternative approximation to ensure their
scalability.

• Propose an efficient kernel search algorithm to rectify the time constraints imposed
on model training and evaluation.

• Propose a new algorithm that will allow a predictive distribution for deep learning
models.

Main Contributions
Gaussian process is a kernel-based non-parametric predictive model. Its Bayesian frame-
work allowed it to provide a predictive distribution as opposed to point estimates. How-
ever, its performance is constrained by the size of the data, the kernel type and the infer-
ence framework. For machine learning models, inference and generalization are directly
related to the amount and quality of data available. More data presents better opportu-
nity to learn. These fact is especially true for non-parametric models. Specifically models
that follow kernel-based learning, their predictive performance is also dependent on the
type and number of selected kernels. The Gaussian process (GP) employ these kernels in
order to mold a prior distribution on the given data. Consequently, its predictive perfor-
mance is dependent on the type of kernels selected for pattern discovery within the data.
The kernel matrix dimension is another aspect that presents a computational challenge
when analyzing big data. The size of the kernel matrix is equivalent to the number of
data points considered for fitting. As such, training GP models on big data incurs a huge
computational cost and memory requirement. Thereby inadvertently constraining the
underlying model. This is the very fact that forbade the scalability of Gaussian process
to big data.

The computational hurdles being the main issue, the success of kernel based learn-
ing is also dependent on the users ability to select and compose appropriate kernels.
Algorithmic based automatic kernel selection, although possible, it is computationally
intensive. In addition to that, kernel combinations compounds the number of hyperpa-
rameters which directly affects the computational efficiency of the model. As a result,
the direct implementation of kernel-based learning on complex data has been challenging.
Regardless, various methods have been suggested for its optimal estimation. For exam-
ple, exhaustive, grid, randomized and non-parametric search methods are few notable
mentions. The effectiveness of these approaches is dependent on the intricacies of the
data and the frameworks in which they operate. For example, in Gaussian models, the
kernel dimension presents a challenge for suitable kernel assessment. In the case of varia-
tional and MCMC-based models, the time complexity required for the ELBO and posterior
convergence hinders the implementation of optimal search. Furthermore, the need for a
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continuous iterative training and evaluation of the underlying model exacerbate the time
complexity incurred during evaluation. As such, in addition to the respective strategy,
a computationally efficient exploration should take into account the limitations of the
underlying model. To address these limitations, this thesis proposes,

1. The random sparse gaussian approximation method (RSGA). The intuition behind
this technique is that, finding the right summarizing points that are part of the
training data, is as important as optimising the model parameters. The reason
being, the successful evaluation of those points nullify the need to operate on the
full data set for pattern discovery. This in return sparsify the resulting model
and improve its computational efficiency. The experiments have shown that given
that we can find the right summarizing points, the RSGA provides a comparable
predictive performance to that of the SVGP, but with a faster computational time.
Meaning that optimal kernel evaluation using the RSGA as the underlying model
takes the least computational time compared to the other models. Hence, in an
effort to reduce the evaluation time while at the same time attempting to secure the
simplest kernel combinations, we propose an automatic kernel search algorithm.

2. The stochastic compositional kernel search algorithm. Here, the objective is to
utilize the computational efficiency of the RSGA and provide a framework for effi-
cient estimation of suitable kernels. To that end, the method divides and select the
available kernels stochastically so that it can map the existing local and global sim-
ilarities. The experiments have shown that the search algorithm provides optimal
kernel mixtures that can appropriately explain the observed patterns. Consequently,
it can can be used at the preprocessing stage to determine the best possible ker-
nel combinations. Furthermore, it can also simplify kernel-based learning to fellow
researchers who finds kernel selection vague, and to the experienced it can give a
preliminary insight into the structure of the data and the possible kernel mixtures
that would potentially fit it best.

In both cases stochastic sampling without replacement strategy is followed when build-
ing the model for the training point and kernel type selection. The predictive performance
of the model is evaluated using the variational gaussian process (VGA) as a benchmark .
We run a Monte Carlo type model building with a cross-validation evaluation scheme us-
ing the mean square error (MSE) and R2 score as quality metrics. An ensemble of models
were trained and evaluated for different sampling sizes under the same setting. The RSGA
approximation gave us a model which is on average 10 times faster than the SVGP. More
importantly, a model which makes algorithmic kernel estimation computationally feasi-
ble. As a result, we run a stochastic compositional kernel search for suitable kernels that
best fit the given data. We applied the root-mean squared error (RMSE) as a criterion
to evaluate the optimality of the returned mixtures in explaining the given observation.
We tested the algorithm on real and synthetic data. In the experiment we observed, the
algorithm offers iteratively possible kernel combinations by following the path with the
least RMSE score. The sparsity in model building and the stochastic approach for kernel
selection has afforded the algorithm a computational advantage over other exhaustive
methods. Hence, for a fast optimal kernel estimation and big data analysis, the RSGA
can give an alternative route to model building and inference. Additionally, the search
algorithm can be used as an alternative technique for a suitable kernel exploration that
best explain the data.

The above approaches only improve the accuracy and computational efficiency of the
model using proper kernel selection and sparse approximation. We have already stated
how minimum prediction interval and maximized coverage for the forecast points are
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relevant features for a given model. For a Gaussian process model, the prediction interval
is dependent on the distance between observation and their uncertainty. Meaning that
the more data we have, the less ambiguity we will have in model prediction which in
return results in a small prediction interval. As a design parameter, the 95% coverage
probability is mostly considered for the interval estimation in practice. However, there
are no frameworks to check the optimality of the confidence interval and whether or
not the forecasted points actually lie within the interval. This is actually true for most
models. For example, the Gaussian models are trained using the maximum likelihood as
a criterion. Here, the aim is to maximize the likelihood of generating the observed data
without considering the quality of the returned prediction interval and/or its coverage
probability. Hence, for objective assessment and quantification of the optimality of the
confidence interval, predictive models should be trained using the minimum prediction
interval width (MPIW) and prediction interval coverage probability (PICP) as performance
metrics. With that in mind, this thesis proposes,

1. A distribution based upper lower bound estimation model for deep neural networks
using MPIW and PICP as quality metrics. Neural networks are great at making
points estimates. However, the lack of uncertainty quantification through a pre-
dictive distribution has constrained their application in sensitive areas. Recent
advances into deep probabilistic models such as the Bayesian neural network (BNN)
have enabled the models to handle uncertainty and provide a distribution. How-
ever, like the gaussian process models, the maximum likelihood approach for model
fitting presents the same challenge for the optimal quantification of confidence in-
terval. The proposed interval estimation method takes a smaller prediction interval
and higher coverage for the predicted points as its performance index. We mathe-
matically demonstrate a distribution based coverage probability and interval width
assessment method. The approach directly encompasses the quality metrics in its
bound estimation. In addition to that, adaptive hyperparameter is used to weigh
the relative importance of prediction interval versus coverage probability. Based
on these, a customized loss function is written for model training. A randomized
parameter initialization and aggregated ensemble models were considered for the
aleatoric and epistemic uncertainty quantification. The performance of the pro-
posed approach was tested on both synthetic and various UCI regression real data
sets using the recent quality driven (QD) bound estimation method as a benchmark.

The experiments showed the algorithm can adaptively change the variance of the distri-
bution in order to allow a wider or a smaller sampling areas. Consequently, narrowing
and widening the prediction interval commensurate with the needed coverage areas. The
algorithm can achieve the desired quality metrics score for data with complex pattern
employing a minimum number of layers and neurons as compared to other alternative
interval prediction algorithms. It also offers a simple tuning and a stable evaluation for
a predictive distribution regardless of the network settings. In the simulation for the
same 95% coverage probability, the algorithm achieved a minimum prediction interval.
Although, we assumed a logistically approximated Gaussian data distribution during the
derivation, the approach has a robust response to data with asymmetric distribution as
well. Hence, the algorithm can be used as an alternative learning method to provide a
predictive distribution in neural networks.
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Motivation

La demande en énergie n’a jamais été un problème pour le secteur de l’énergie par le passé.
L’accessibilité et l’abordabilité du pétrole bon marché ont minimisé la volatilité sur le
marché de l’énergie. L’indice de croissance démographique bas, l’absence de sensibilisation
environnementale et l’industrialisation à petite échelle sont également quelques autres
facteurs qui ont naturellement contribué à maintenir l’équilibre entre l’offre et la demande.
Par conséquent, la sécurité énergétique n’était pas considérée comme une préoccupation
majeure pour la plupart des pays. Cependant, le changement rapide dans l’économie
mondiale, l’urbanisation, la démographie et la forte hausse du prix du pétrole ont mis
fin à l’ère de l’abondance. Malgré le prix, l’aggravation des conditions climatiques et ses
risques environnementaux ont clairement montré que nous devons limiter et minimiser
l’utilisation des ressources énergétiques à base de carbone.

Cette tendance vers l’économie verte et la société zéro carbone signifie que la demande
énergétique future sera satisfaite par des sources d’énergie respectueuses de l’environnement
et pourtant saisonnières. L’intégration de ces sources dans le réseau pour répondre
aux demandes quotidiennes et futures nécessite un changement de perspective concer-
nant notre politique énergétique, l’architecture du réseau, la production d’énergie, le
stockage, le transport et la consommation d’énergie. Cela crée un hub de systèmes
intégrés, dynamiques et complexes, tous travaillant ensemble pour atteindre l’équilibre
entre l’offre et la demande. Ces systèmes tels que le réseau énergétique, les réseaux
de télécommunication, de transport et autres appareils connectés présentent leur propre
complexité et des incertitudes associées. De plus, la nature intermittente des sources
d’énergie ajoute intrinsèquement une couche supplémentaire d’incertitude sur la demande
énergétique. Même si elle n’est pas encore au niveau attendu, la modernisation du réseau
et l’utilisation des ressources énergétiques renouvelables sont en cours dans le monde en-
tier. Cependant, actuellement, la majorité de la demande énergétique est encore couverte
par des sources d’énergie carbonées coûteuses.

À une époque où l’énergie est la plus chère, la demande d’énergie de pointe générée en
raison de pannes d’usines électriques et de changements saisonniers nuit à la productivité
des secteurs manufacturiers et à la rentabilité des fournisseurs d’énergie. Par conséquent,
pendant la période de demande de pointe, les entreprises de services publics adoptent
le schéma de réponse à la demande qui leur permet de réduire la puissance fournie aux
clients plutôt que de l’acheter sur le marché international. Cette stratégie d’atténuation
devrait être mise en œuvre de manière à maximiser la rentabilité des clients ainsi que des
entreprises de services publics. En conséquence, le succès du paradigme de la réponse à la
demande, entre autres, repose sur la précision de la prédiction de la demande et de l’offre
d’énergie à l’avance. Actuellement, les modèles paramétriques sont les modèles prédictifs
les plus utilisés dans le secteur de l’énergie. Bien qu’ils soient simplistes et efficaces, ils
ne peuvent pas gérer les interactions de caractéristiques complexes.

De nos jours, les entreprises énergétiques investissent massivement dans des modèles
prédictifs non paramétriques. Les modèles prédictifs qui prennent en compte la volatilité
anticipée de la demande et de l’offre pourraient aider les entreprises de services publics
à minimiser les risques et à maximiser les profits lors du processus décisionnel. Dans cet
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esprit, cette thèse vise à examiner la mise en œuvre de modèles prédictifs probabilistes
dans le secteur de l’énergie. Cependant, les incertitudes qui découlent de la nature inter-
mittente de l’approvisionnement en énergie, des interactions entre différents systèmes et
du volume considérable de données générées en résultant soulèvent des questions sérieuses
concernant l’efficacité de ces modèles. Des questions liées à l’exactitude de la prédiction,
à l’efficacité computationnelle, à la largeur de l’intervalle de prédiction, à la probabilité de
couverture et, plus important encore, à leur extensibilité aux grandes données. Dans cette
optique, cette dissertation vise à répondre à ces questions à travers les objectifs énoncés
ci-dessous.

Objectifs
Cette dissertation se concentre principalement sur l’investigation des approches réalisables
pour améliorer la précision prédictive et l’efficacité computationnelle des modèles de pro-
cessus Gaussien et d’apprentissage profond probabiliste. En tant que tel,

• Elle examine la mise en œuvre et l’adéquation des modèles d’apprentissage au-
tomatique probabiliste non paramétriques et d’apprentissage profond. Analyse leur
efficacité prédictive et leurs performances computationnelles. Et propose une ap-
proximation alternative pour garantir leur extensibilité.

• Propose un algorithme de recherche de noyau efficace pour rectifier les contraintes
de temps imposées à l’entrâınement et à l’évaluation du modèle.

• Propose un nouvel algorithme qui permettra une distribution prédictive pour les
modèles d’apprentissage profond.

Principales Contributions
Le processus Gaussien est un modèle prédictif non paramétrique basé sur les noyaux. Son
cadre Bayésien lui permet de fournir une distribution prédictive plutôt que des estima-
tions ponctuelles. Cependant, sa performance est contrainte par la taille des données,
le type de noyau et le cadre d’inférence. Pour les modèles d’apprentissage automatique,
l’inférence et la généralisation sont directement liées à la quantité et à la qualité des
données disponibles. Plus de données offrent de meilleures opportunités d’apprentissage.
Ce fait est particulièrement vrai pour les modèles non paramétriques, en particulier ceux
qui suivent un apprentissage basé sur les noyaux, dont la performance prédictive dépend
également du type et du nombre de noyaux sélectionnés. Le processus Gaussien (GP)
utilise ces noyaux afin de modeler une distribution a priori sur les données fournies.
Par conséquent, sa performance prédictive dépend du type de noyaux sélectionnés pour
découvrir les motifs dans les données. La dimension de la matrice de noyaux est un autre
aspect qui pose un défi computationnel lors de l’analyse de grandes données. La taille
de la matrice de noyaux est équivalente au nombre de points de données considérés pour
l’ajustement. Ainsi, l’entrâınement des modèles GP sur de grandes données entrâıne un
coût computationnel et une exigence en mémoire élevés. Cela limite involontairement le
modèle sous-jacent. C’est précisément ce fait qui a empêché l’évolutivité du processus
Gaussien aux grandes données.

Les difficultés computationnelles étant le principal problème, le succès de l’apprentissage
basé sur les noyaux dépend également de la capacité des utilisateurs à sélectionner et à
composer des noyaux appropriés. La sélection automatique de noyaux basée sur des al-
gorithmes, bien que possible, est intensivement computationnelle. En plus de cela, les
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combinaisons de noyaux augmentent le nombre d’hyperparamètres, ce qui affecte directe-
ment l’efficacité computationnelle du modèle. Par conséquent, la mise en œuvre directe de
l’apprentissage basé sur les noyaux sur des données complexes a été difficile. Néanmoins,
diverses méthodes ont été suggérées pour son estimation optimale. Par exemple, les
méthodes de recherche exhaustive, en grille, aléatoire et non paramétrique sont quelques-
unes des mentions notables. L’efficacité de ces approches dépend des subtilités des données
et des cadres dans lesquels elles opèrent. Par exemple, dans les modèles Gaussiens, la di-
mension du noyau présente un défi pour une évaluation de noyau appropriée. Dans le cas
des modèles basés sur des méthodes variationnelles et MCMC, la complexité temporelle
requise pour l’ELBO et la convergence postérieure entrave la mise en œuvre de la recherche
optimale. De plus, la nécessité d’un entrâınement et d’une évaluation itératifs continus
du modèle sous-jacent aggrave la complexité temporelle encourue lors de l’évaluation. En
conséquence, en plus de la stratégie respective, une exploration efficace sur le plan com-
putationnel doit prendre en compte les limitations du modèle sous-jacent. Pour remédier
à ces limitations, cette thèse propose,

1. Un modèle d’estimation des bornes supérieures et inférieures basé sur la distribution
pour les réseaux neuronaux profonds utilisant MPIW et PICP comme métriques de
qualité. Les réseaux neuronaux sont excellents pour faire des estimations ponctuelles.
Cependant, le manque de quantification de l’incertitude à travers une distribu-
tion prédictive a limité leur application dans des domaines sensibles. Les récents
progrès dans les modèles probabilistes profonds tels que le réseau neuronal bayésien
(BNN) ont permis aux modèles de gérer l’incertitude et de fournir une distribu-
tion. Cependant, comme les modèles de processus gaussiens, l’approche du max-
imum de vraisemblance pour l’ajustement du modèle présente le même défi pour
la quantification optimale de l’intervalle de confiance. La méthode d’estimation
d’intervalle proposée prend comme indice de performance un intervalle de prédiction
plus petit et une couverture plus élevée pour les points prédits. Nous démontrons
mathématiquement une méthode d’évaluation de la probabilité de couverture et
de la largeur de l’intervalle basée sur la distribution. L’approche intègre directe-
ment les métriques de qualité dans son estimation de bornes. De plus, un hyper-
paramètre adaptatif est utilisé pour pondérer l’importance relative de l’intervalle de
prédiction par rapport à la probabilité de couverture. Sur cette base, une fonction
de perte personnalisée est écrite pour l’entrâınement du modèle. Une initialisa-
tion des paramètres aléatoire et des modèles d’ensemble agrégés ont été considérés
pour la quantification de l’incertitude aléatoire et épistémique. La performance de
l’approche proposée a été testée à la fois sur des ensembles de données synthétiques
et sur divers ensembles de données réelles de régression de UCI en utilisant la récente
méthode d’estimation des bornes axée sur la qualité (QD) comme point de référence.

Dans les deux cas, une stratégie d’échantillonnage stochastique sans remplacement est
suivie lors de la construction du modèle pour la sélection des points d’entrâınement et
du type de noyau. Les performances prédictives du modèle sont évaluées en utilisant le
processus gaussien variationnel (VGA) comme point de référence. Nous avons exécuté un
modèle de type Monte Carlo avec un schéma d’évaluation en validation croisée en utilisant
l’erreur quadratique moyenne (MSE) et le score R2 comme métriques de qualité. Un en-
semble de modèles a été entrâıné et évalué pour différentes tailles d’échantillonnage dans
le même cadre. L’approximation RSGA nous a donné un modèle qui est en moyenne 10
fois plus rapide que le SVGP. Plus important encore, un modèle rendant l’estimation al-
gorithmique du noyau réalisable sur le plan computationnel. En conséquence, nous avons
exécuté une recherche stochastique de noyaux compositionnels pour trouver des noyaux
adaptés qui correspondent le mieux aux données données. Nous avons appliqué l’erreur
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quadratique moyenne (RMSE) comme critère pour évaluer l’optimalité des mélanges re-
tournés dans l’explication de l’observation donnée. Nous avons testé l’algorithme sur des
données réelles et synthétiques. Dans l’expérience, nous avons observé que l’algorithme
offre itérativement des combinaisons de noyaux possibles en suivant le chemin avec le score
RMSE le plus faible. La parcimonie dans la construction du modèle et l’approche stochas-
tique pour la sélection du noyau ont offert à l’algorithme un avantage computationnel par
rapport aux autres méthodes exhaustives. Par conséquent, pour une estimation rapide et
optimale du noyau et une analyse de données volumineuses, le RSGA peut offrir une al-
ternative à la construction de modèles et à l’inférence. De plus, l’algorithme de recherche
peut être utilisé comme technique alternative pour une exploration de noyau adaptée qui
explique au mieux les données.

Les approches ci-dessus améliorent uniquement la précision et l’efficacité computa-
tionnelle du modèle en utilisant une sélection appropriée de noyaux et une approximation
parcimonieuse. Nous avons déjà expliqué comment un intervalle de prédiction minimal
et une couverture maximisée pour les points de prévision sont des caractéristiques per-
tinentes pour un modèle donné. Pour un modèle de processus Gaussien, l’intervalle de
prédiction dépend de la distance entre l’observation et son incertitude. Cela signifie
que plus nous avons de données, moins nous aurons d’ambigüıté dans la prédiction du
modèle, ce qui se traduit par un petit intervalle de prédiction. En tant que paramètre
de conception, la probabilité de couverture de 95% est principalement considérée pour
l’estimation de l’intervalle en pratique. Cependant, il n’y a pas de cadres pour vérifier
l’optimalité de l’intervalle de confiance et si les points prévus se trouvent réellement dans
l’intervalle ou non. Cela est en fait vrai pour la plupart des modèles. Par exemple,
les modèles Gaussiens sont entrâınés en utilisant le maximum de vraisemblance comme
critère. L’objectif est de maximiser la probabilité de générer les données observées sans
tenir compte de la qualité de l’intervalle de prédiction retourné et/ou de sa probabilité
de couverture. Par conséquent, pour une évaluation objective et une quantification de
l’optimalité de l’intervalle de confiance, les modèles prédictifs doivent être entrâınés en
utilisant la largeur minimale de l’intervalle de prédiction (MPIW) et la probabilité de
couverture de l’intervalle de prédiction (PICP) comme métriques de performance. Dans
cette optique, cette thèse propose,

1. Un modèle d’estimation des bornes supérieures et inférieures basé sur la distribution
pour les réseaux neuronaux profonds utilisant MPIW et PICP comme métriques de
qualité. Les réseaux neuronaux sont excellents pour faire des estimations ponctuelles.
Cependant, le manque de quantification de l’incertitude à travers une distribu-
tion prédictive a limité leur application dans des domaines sensibles. Les avancées
récentes dans les modèles probabilistes profonds tels que le réseau neuronal bayésien
(BNN) ont permis aux modèles de gérer l’incertitude et de fournir une distribution.
Cependant, comme pour les modèles de processus gaussiens, l’approche du max-
imum de vraisemblance pour l’ajustement du modèle présente le même défi pour
la quantification optimale de l’intervalle de confiance. La méthode d’estimation
d’intervalle proposée prend comme indice de performance un intervalle de prédiction
plus petit et une couverture plus élevée pour les points prédits. Nous démontrons
mathématiquement une méthode d’évaluation de la probabilité de couverture et
de la largeur de l’intervalle basée sur la distribution. L’approche intègre directe-
ment les métriques de qualité dans son estimation de bornes. De plus, un hyper-
paramètre adaptatif est utilisé pour pondérer l’importance relative de l’intervalle de
prédiction par rapport à la probabilité de couverture. Sur cette base, une fonction
de perte personnalisée est écrite pour l’entrâınement du modèle. Une initialisa-
tion des paramètres aléatoire et des modèles d’ensemble agrégés ont été considérés
pour la quantification de l’incertitude aléatoire et épistémique. La performance de
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l’approche proposée a été testée à la fois sur des ensembles de données synthétiques
et sur divers ensembles de données réelles de régression de UCI en utilisant la récente
méthode d’estimation des bornes axée sur la qualité (QD) comme point de référence.

Les expériences ont montré que l’algorithme peut adapter de manière adaptative la
variance de la distribution afin de permettre des zones d’échantillonnage plus larges ou
plus petites. Par conséquent, il réduit ou élargit l’intervalle de prédiction en fonction des
zones de couverture nécessaires. L’algorithme peut atteindre le score des métriques de
qualité souhaité pour des données présentant un motif complexe en utilisant un nombre
minimal de couches et de neurones par rapport aux autres algorithmes alternatifs de
prédiction d’intervalle. Il offre également un réglage simple et une évaluation stable pour
une distribution prédictive quel que soit le paramétrage du réseau. Dans la simulation
pour la même probabilité de couverture de 95%, l’algorithme a atteint un intervalle de
prédiction minimal. Bien que nous ayons supposé une distribution de données gaussienne
approximativement logistique lors de la dérivation, l’approche présente également une
réponse robuste aux données présentant une distribution asymétrique. Par conséquent,
l’algorithme peut être utilisé comme une méthode d’apprentissage alternative pour fournir
une distribution prédictive dans les réseaux neuronaux.
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Outline
In line with our objectives, this dissertation evaluates the performance, limitation and
relevance of non-parametric models to the energy sector. With that in mind, the thesis
is organized into 5 chapters. The contribution of each chapter is outlined below,

Chapter 1 presents an introductory reviews on the changing landscapes in grid evo-
lution, challenges to a large scale utilization of renewable energy sources and future op-
portunities in grid modernization. Furthermore, we will review the contributions of prob-
abilistic models to the energy sector. More importantly, how their deployment could help
in managing the uncertainties that could arise during the introduction of variable sources
to the grid.

Chapter 2 takes a deep dive into probabilistic models, Gaussian process and its
approximates, such as, the deterministic training conditional (DTC), the fully independent
training conditional (FITC) and the sparse variational gaussian process (SVGP). We will
also review in detail, the kernel basis functions which characterizes the dynamics of the
Gaussian models and see how their selection affects the prior and posterior distribution
of the resulting model. In addition to that, we will examine some of the approximation
methods that are followed in order to improve the computational efficiency of the model
and its scalability to large data. Specifically, we will review model approximation through
pseudo points and variational inference.

Chapter 3 evaluate the implementation of SVGP on electricity demand profile data
and review its limitation. To improve the performance of the model, the chapter intro-
duces a stochastic kernel estimation algorithm. We will also propose the sparse Gaussian
approximation based on random column sampling. This model will be used as the under-
lying model for running the kernel search algorithm. The performance of the proposed
techniques will be evaluated in detail.

Chapter 4 will review uncertainty quantification in the context of deep learning
framework. Here, we present a method for better uncertainty quantification. We will also
see the importance of defining coverage probability and prediction interval as performance
metrics. Based on that, the chapter introduces a distribution based lower upper bound
estimation algorithm. The performance of the algorithm will be evaluated against the
latest bound estimation algorithm using real and synthetic data. And finally,

Chapter 5 will revise and conclude our contribution in relation to forecasting in the
energy sector, machine learning and future research direction.
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Chapter 1

Predictive Models in Energy Sector

1.1 Introduction

We have heard the benefits of electricity in one way or another from different sources. A
mere visualization of modern life without electricity can give a better contextualization
for its importance. Human civilization is built on top of our ability to cooperate and
communicate. The computer-networks that allowed us to process and exchange complex
ideas, the machinery that made us productive in farming, mining, industries, the equip-
ment in science and education that gave us insight and improved our understanding, the
home appliances (i.e heating, refrigeration, air conditioners) that increased the comfort
and convenience of life, are all powered by electricity. That is why the consumption of
electricity is considered as a good indicator for the quality of life [1, 2]. Furthermore,
improving the accessibility and affordability of electricity could enhance the development
of a country by driving the migration of companies and industries towards it. As such,
ensuring the reliability, affordability and sustainability of energy production has been the
goal of any aspiring nation. These commitments has never been more apparent than in
Europe where the new ITER fusion reactor is being built.

The individualistic and nationwide competition for the acquisition of energy has driven
its demand to grow exponentially. The growth in population, urbanization, consumerism
and decarbonization through electrically powered transportation systems are the key
drivers for the rise in demand. Consequently, the finances involved in building, trans-
portation and maintenance of the electric grid have made the price of electricity expen-
sive. The pricing is also dependent on the type of resources used for power generation and
more importantly who controls it. The Russian-Ukrainian confrontation and the surge in
the price of electricity in Europe can be taken as a good case in point on how political
dynamics influence the price [2, 3]. As a result, for most countries energy self-sufficiency
has been a top priority. These in turn has resulted in a wide penetration of renewable
energy resources (RER).

Technological and manufacturing improvement in the areas of wind and solar energy
has reduced their cost and increased their deployment. The international energy agency
(IEA) projection in 2021 indicated that solar energy utilization is expected to reach closer
to 3 terra watt (TW) and wind energy will surpass 1.5 TW by 2030 as shown in Figure 1.1.
This has exceeded the 2006 world energy outlook prediction for RER utilization by 2030.
Solar is expected to show 30 fold increment whereas wind energy share will quadruple
compared to the initial extrapolation in 2006. Further improvement in manufacturing,
wind turbine design, photovoltaic and thermal energy conversion technology, finance and
wider public support could make their energy share even more by 2030 [2, 3, 4, 5].
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Figure 1.1: Renewable energy resource utilization projection for the year 2030 according to
IEA. Source: IEA renewable data and Mckinsey edition on Renewable-energy development
in a net-zero world

1.2 Challenges in renewable energy deployment
For the past few years, the demand for renewable energy resources has dramatically
exceeded all expectations. Further improvement in manufacturing, wind turbine design,
photovoltaic and thermal energy conversion technology, finance and wider public support
are set to make their energy share even more [2, 3, 5]. However, a successful transition
to clean energy is not as easy as one could imagine considering their obvious advantages.
Hence, a complete shift requires addressing the social and technological challenges we are
facing today. Furthermore, it needs the full participation of policy makers, companies and
citizens. Consequently, to speed up this transition, few key challenges must be addressed.

1.2.1 Society
As much as people are eager to enjoy the benefits of electricity and despite the impacts
clean energy has on combating climate degradation, some people are not open to the
idea of large scale RER deployment in their backyard. Some of these concerns may be
warranted. For instance, the construction of a hydro-power reservoir can have a negative
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impact on the environment or the livelihood of those around it. The site could cover
agricultural and historical areas, homes, forests or could obstruct the migration of fishes [6]
which might be a source of income or sustenance to those living downstream. In the case of
solar and wind farms, a change of landscape scenery, noises, moving shadows and flickering
lights are some of the reported concerns [2]. Despite the inconvenience, people are more
ready to make a concessions or compromise when they are properly communicated on
the pros or compensated for their trouble. Consequently, one approach that is suggested
as a mitigation strategy is to incentivize the community. Involving individuals on large
scale projects as direct participants in owning share of the project, could empower and
make them more amicable to the idea of deployment [2, 3]. Hence, RER deployment
should involve a careful design considerations in rectifying the adverse effect it has on
the environment and societal well-being. Most importantly, it should provide a positive
contribution to the social and economic development [10].

1.2.2 Governmental policies

Energy from carbon based minerals (i.e natural gas, coal, oil) comes from a finite resources
which aren’t available in ample amount at every corner of the world. This scarcity is also
evident in some of the renewable energy resources. As an example, energy harvest from a
hydro-power is dependent on the location and accessibility of enough water. Not all places
are fit for Hydro-power generation. In contrary, solar and wind power can be harvested
sufficiently everywhere. Consequently, they account for most of the government energy
policy toward renewable energy deployment [2, 3, 10]. RER utilization is growing, perhaps
not as much as expected or not at the same scale everywhere. Currently, Asia takes the
lion share in RER expansion. However, a faster transition to clean energy requires the
participation of the government in ratifying flexible policies capable of tackling the private
and public regulation barriers that hinders RER deployment.

Policies that motivate the use of carbon-based energy resources such as government oil
subsidization or preferential tax treatments that lower taxation for oil importers must be
discouraged [10]. On contrary, policies that make investment into large scale renewable
installation attractive should be appreciated. Reforms that create a conducive environ-
ment for investors to involve in renewable projects, such as, tax incentives in the form of
deductions, credits and exceptions should be promoted. The government should promote
grants and subsidization for individuals willing to invest or utilize renewable energies.
Energy policies such as the feed-in tariff (FITs) payment scheme that guarantee a return
of investment to potential investors should be encouraged [3, 10].

Investment goes hand in hand with public awareness. Investors are more inclined for a
risk when there is a demand for it. As such, the government should promote a wide public
awareness on the explicit reasons for the shift toward a clean energy and its potential
benefits to the general public [10]. On the other hand, the government should make
sure that energy providers strictly and consistently follow the renewable energy portfolio
standards (RPS). In RPS market based policy, energy providers are required to diversify
and supply a portion of their energy production from renewable energy resources [3].
Adherence to these policies will promote a gradual shift toward a sustainable clean energy
utilization. Reform policies only reflect the government willingness. However, for a true
transformation these policies must be supported by grid modernization. One aspect of
renewable investment that makes it off-putting to potential investors is that it is more
capital intensive compared to the carbon based energy investments [7]. Hence, grants and
support in grid modernization will make investment in renewable energy attractive and
integration easier.
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1.2.3 Technology
Research and development in material science and manufacturing has made RER deploy-
ment cost-effective. This has enhanced their wider penetration and increased their global
average energy share [7]. However, import-export taxation on renewable energy equip-
ment’s could add unnecessary additional finance, reduce affordability and hamper wide
scale utilization. Hence, governments should focus on producing solar panels, wind tur-
bines and all the necessary accessories locally for renewable energy extraction. Financial
grants and support for homegrown R&D and industrial expansion can potentially relieve
the pressure on countries dependence on imported accessories and increase renewable en-
ergy affordability. Solar and wind energy extraction is a matured science. However, there
is still a long way to go in terms of revolutionizing the design, efficiency of energy extrac-
tion and storage. Hence, governments continual support to R&D must be a priority [10].

Technological advancement should also focus on knowledge transfer. Renewable infras-
tructure production without installation doesn’t bring the intended result. Most people
even if they are inclined to the idea of renewable energy utilization, they face technical
difficulties during installation. For instance, technical difficulty’s such as grid incompati-
bility, location inaccessibility for installation, operational acumen, energy market penetra-
tion and competitiveness. Hence, the government should also focus on capacity building
and skilled workforce in the areas of renewable energy [2].

1.3 Traditional grid
Renewable energy integration is one aspect that should be considered for a full scale
deployment. Energy production is one thing, but to be useful it needs to transported.
For a community participation as both energy producers and consumers, the existing
grid requires modernization. This has been a common concern for a renewable energy
investment. Additionally, their vulnerabilities to a periodical reduced power generation
puts their dependability to question. Sometimes, this reduction compels the utilities
to use a more expensive sources of energy. Thereby increasing the price of electricity.
Ironically, the pricing mostly affects the commercial and residential consumers. Industrial
consumers enjoy the privilege of receiving electricity at a higher voltage and lower current
which minimizes the transmission loss. Hence, they receive electricity at a lower cost per
kilowatt-hour compared to other consumers [8].

The difference in the payment is attributed to the existing grid architecture. The
traditional grid has been the backbone of technological advancement for hundred’s of
years and it will be so for sometimes in the future. By design, it consist a centralized large
scale generators stationed far from the consumption site considering their environmental
impact, resources availability, cooling so an so forth, as shown in the left part of Figure 1.2.
Such arrangement helps the utilities to generate power for large consumer bases at a time.
This will nullify the inconsistency in individual energy consumption and flattens the
average energy requirement. Inherently, this improves the predictability of the demand.
As such, load anticipation and optimal generator dispatch will be easier. However, their
distance from their consumer base, significantly increase the amount of energy wasted on
the transmission line. Hence, more energy is produced than needed to compensate for
the transmission loss. Unfortunately, the consumers are expected to pay both for their
energy demand and the averaged loss. Additionally, the existing grid architecture is not
scalable to the ever increasing energy demand.

As the demand grows, the traditional mantra dictates large and large power plants
must be constructed [8]. And, this has been the trend for a hundred of years. The build
and forget approach for energy generation and transmission is no longer sustainable.
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Especially in this era, where we have witnessed a tremendous need for energy due to the
rapid population growth, urbanization and a step by step inclination towards a carbon
free society such brute force approach is not economical. As such, building a bigger power
plants for every foreseeable demand is not financially viable (sound). Furthermore, any
natural or man-made incidents could put the whole grid at risk of a shutdown [8].

In the event of a single point of failure, a centralized network exposes itself to a cas-
caded failure that sometimes results in a complete system shutdown. Thereby impacting
its reliability. More importantly, the existing grid has a limitation for a full renewable en-
ergy integration. Grid expansion, communication devices, smart meters, and other extra
accessories are required for a distributed renewable energy integration. As a result, these
limitations demand a complete paradigm shift in the gird architecture that guarantee
the sustainability, dependability and efficiency of how energy is produced and consumed.
And, possibly result in a profit gain for all parties involved in electricity production and
consumption [8].

Figure 1.2: Grid genesis from traditional to smart infrastructure. source: smart grid
concept and characteristics, a technical article by Edvard Csanyi

1.4 Smart grid
The notion of smart grid has been around for quite sometime. However, in many parts of
the world, a complete topological shift from the centralized grid to a smart grid networks
is just taking a root. Smart grid topology is considered as the next evolutionary step to
the traditional electric grid. Both implicit and explicit reasons can be given as to why
this shift is necessary at this age. But a better contextualization for its necessity can be
stated by examining some of the shortcoming of the existing network. Here, we would
like to make it clear that when we say by shortcomings we are not claiming these issues
we are about to discuss render the traditional grid obsolete. But rather, they make the
grid inefficient in more ways than one. As such, they should be considered as a mere
limitations.

The promise of smart grid is great and especially the economic incentives for the partic-
ipants are what makes it truly revolutionary. Smart grid relies on a smaller decentralized
generation units based on renewable energy resources and located closer to the consumer
sides as shown in the right side of Figure 1.2. The concept of decentralization creates a
more resilient and self-healing grid architecture. Smaller units offers a production afford-
ability potentially turning consumers into intermittent energy suppliers. Meaning that the
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uni-directional communication/energy flow from producers to consumers is now changed
into bi-directional. The production units are located closer to the consumption sites
thereby minimizing transportation loss and improving energy utilization. Furthermore,
renewable energy resources utilization have increased the accessibility and affordability of
cheap electricity to many. However, its implementation requires complex infrastructure
compared to the traditional grid. At every stage it requires the integration of different
automation, communication and computer systems components to deliver power from the
generation cite to consumption which resulted in the generation of big data [11].

As it is composed of a smaller distributed units, the convenience of bulk power estima-
tion is no longer valid. Consequently, there is high variability both in energy production
and consumption [8]. As such, a successful demand response requires better predictive
models at the either ends of the power flow. These predictive models should address the
variability of supply and demand, handle the big data generated and a provide a marginal
profit gain for all parties involved. This is where we believe probabilistic models will play
a vital role for a successful implementation of demand response optimization.

1.4.1 Smart grid challenges
Grid transformation is something that should be a priority for a successful distributed en-
ergy assimilation. This evolution requires the integration of communication technologies,
smart meters and control infrastructures, protocols and architectures to handle the large
amount of data that is generated into the existing grid. However, a number of challenges
needs to be addressed before that happen. The size of data implies the grid needs to
be scalable to the ever increasing customers number. As more and more customer who
potentially could become producers themselves and who employ different metering and
generation sources, a lot of the data is generated. This data could create an issue with
latency, bandwidth and reliability. Furthermore, with connectivity and automation comes
a security breach [8].

Some of these security breaches include data and password theft, denial of service, grid
violations so and so forth. These attacks can range from energy theft to grid instability
resulting in localized or a complete system shutdown and generators damages [11, 12].
The impact of these violations has already been witnessed in the Dec 2015 power grid
attack in Ukraine, in the Dec 2014 steel mill attack in Germany, in the Mar 2021 electric
company attack in Australia and int the Jan 2020 electric corporation attack in Israel.
Even worse, the internet of things that is yet to come will open the gateway so that the
type and manner of these attacks will be more frequent. As such, safeguarding the grid
and the users information from possible cyber crimes must also be a priority. Hence, the
protocols, architectures, communication and grid specific devices should be designed to
address the volume of data, possible security vulnerabilities and the associated mitigation
strategy in mind [3, 11, 12].

1.5 Role of predictive models
Today’s energy market is demand-driven where customers consumption dictate the amount
of raw materials required for power generation. Hence, energy is generated in real-time
to meet the existing need. Inherently, this demand is not constant and is continuously
changing through out the day [8]. It goes in a periodical peak and off-peak cycle depend-
ing on the time of the day and day of a week. As such, energy providers prefer a more
controllable resource for demand supply equilibrium. This fact has made carbon-based
raw materials prime candidates. Among the renewables only few present themselves con-
trollable like hydro-power. Solar and wind are not controllable. They are a “what you
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see is what you get” type of energy resources regardless of the existing demand. Hence,
their energy output is entirely dependent on the weather [13].

Currently, the weather affects only our energy consumption. However, when smart
grid is up and running, the weather determines not only how we consume energy but also
how much we can generate from it. Consequently, the energy exchange will be determined
by the weather. Hence, the demand, low or high, doesn’t change the amount of available
energy or impact how much energy can/should be harvested. This makes balancing
energy consumption with production difficult in real-time which puts the stability of the
electric grid at risk [15]. Thus, demand-supply equilibrium will be dependent on our
ability to understand and predict these intermittent energy resources. In these supply-
driven energy exchange, predictive models will help us in planning and managing the
move toward clean energy by ensuring renewable resources takes the lion share in the
coming paradigm shift [3, 13, 14].

The presence of uncertainty in the supply requires greater control over energy gen-
eration and consumption. This can be achieved through active engagement with the
customers so that energy is efficiently generated and consumed. The participation can
range from adjusting customers demand commensurate with production to allowing the
energies providers a partial or full control over their equipment’s [8]. The smart grid
architecture makes it possible for customers to be both consumers and producers. Hence,
at the time of peak-demand, the customers can use their own supply to nullify their en-
ergy deficit or become providers themselves. Consequently, predictive models are used to
anticipate the variation at both end of the power-flow so that the necessary adjustment
can be made before hand. As such, it is fair to say that the success of the balance and
grid stability is predicated upon the accuracy of prediction.

The benefits of predictive models goes beyond securing grid stability. They have been
used in different sectors for optimising operations that result in efficient utilization of
energy and financial gains. For instance, the profitability of an energy company is depen-
dent of the level of customers satisfaction. A consistent power delivery in the event of
storms, thunders and other natural phenomena increases the dependability of the com-
pany [9]. Thus improving customers trust that results in a higher subscription rate and
profit gain. Failing to deliver power during natural disasters creates a dissatisfaction
among its customers. Hence, by using predictive models, energy companies can deter-
mine the probability of those events happening and plan a predictive maintenance or
arrange human resources for immediate intervention in the likely event of a blackouts.
Arbitrary maintenance schedules can also be avoided by using predictive models.

Forecast models can show the time of a day and day of a week where there is a least
demand so that scheduling can be done without creating inconvenience to the customers.
They can also be used in short, medium and long term planning [14]. For instance, in all
phases of planning the company can determine the future forecasted demand beforehand
and economically acquire the necessary resources that will enable it to generate power
consistently without interruption. Demand forecasting can also be clustered and used to
identify dense customers areas or new potential areas for future expansion so that the
company can use it to setup a facility nearby. This enables it to minimize the infrastruc-
ture cost, transmission loss and maximise revenue returns. In a company’s day to day
operations, forecast models can help avoid over or under power generation by optimising
generator dispatches so that equivalent power is generated to stabilise the grid and meet
the demand [14].

In building temperature control, predictive models have been used to optimize energy
utilization by actively regulating the building thermodynamics without impacting the
comfort level of the occupants. It can also show building managers possible areas where
energy minimization is needed thereby lowering operational cost.

33



In industries, predictive models can be used to determine possible areas for trimming
energy consumption and how best to schedule machinery’s in a way that maximise pro-
ductivity and minimise energy expenditure. In the event the company is equipped with a
local energy production or storage facility, the models could help in determining when to
connect to or disconnect from the grid and when to charge or discharge the local storage
in a way that minimise energy expenditure and maximise profit. Regardless of the sec-
tors in which they are used, the main objective of predictive models remains the same,
ensuring efficient utilization of energy that results in a profit gain for all parties involved
in production, transportation and consumption of energy. Their role will be even more
paramount and significant in the next evolution of energy exchange and their accuracy
will guarantee the successful implementation of smart grid and the wide integration of
renewable energy resources.

1.5.1 Predictive models in demand forecasting
Energy companies have used short, medium and long-term demand forecasting to plan,
produce and optimise the efficient utilization of energy [14]. Various statistical, AI and
hybrid models that differ in nature, methodology, performance and output distribution
have been proposed and utilized to that end. Even now, they are investing a lot on
new predictive algorithms. A number of researchers have tried to assess the quality of
these models objectively. Yet there is no uniform consensus as to which model is best.
And we won’t be making one. The reason being the predictive performance of a given
model is dependent on many factors. For instance, the availability and quality of data,
the modeling approach, forecast horizon, hidden associations between predictors, sudden
environmental changes, socioeconomic and political dynamics are some these factors that
can impacts predictive accuracy. Even then, there are some performance metrics that
are inherently the defining characteristics of the model. For example, machine learning
models tend to require more computational effort and consume a lot of memory compared
to other statistical models. If these were the criteria in which the models were compared
with then it would be fair to say that statistical models are better.

A subjective bias introduced by the researcher when selecting the data generating
model and tuning its parameters, is also another factor that will skew the assessment.
Consequently, different levels of compromises has to be made to select a model that fit
the given problem. This makes the very definition of objective assessment vague and the
accompanied result subjective. As such, although performance analysis is possible, model
selection, the acceptable degree of compromise with regard to its complexity, reliability,
accuracy and computational resource requirement should be dictated according to the
need and the problem at hand.

Currently Energies companies use a combination statistical (i.e ARIMA, SARIMA, ES,
MA, KALMAN,GPR, LR,...etc) and deep & machine learning (i.e MLP, CNN, RNN,GPR,
LR,...etc) forecast model suited to their need and forecast horizon. However, a converging
research interest is making the distinction between statistical and machine learning models
difficult. Hence, it is becoming more common to see a hybrid model that contains the
best of both models. In Figure 1.3, we have tried to outline some of the models employed
by these companies for demand forecasting. However, as the choice tends to be subjective
and tailored to the needs of the company, the list will be very large.

1.5.2 Why probabilistic models?
Humanity has always looked into the future for strategic advantage, for assurance and
survival. There are those who argued our desire to look into the future is rooted upon
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Figure 1.3: Sample electricity demand forecasting models

our perpetual fear of death, destitution and unforeseen calamity [16]. The desire to know
the shape of things to come doesn’t necessarily mean we will like whatever it has in store
for us. In time of uncertainty, good predictions are considered as good omen and filled us
with the prospect of hope. And bad predictions left us in despair. Regardless, humanity
has shown the willingness to see the future and the responsibility to bear its outcome. For
some, predicting the future transcends gaining strategic advantage, assurance or securing
once survival.

Martin on his book on ”seeing the future” [16] stated that without the desire to know
the future ”Goals cannot be established, nor efforts towards realizing them launched;
nor the consequences of reaching, or not reaching, those goals be considered. Neither
can threats and dangers be identified and either met head on or avoided. All this is as
true today as it was when we first became human”. He argued that without foresight,
anticipation or the will to know the future, human life is meaningless [16]. Considering
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where we are now compared to where we once were, it is a valid argument. Humanity
has done a lot for the sake of self-preservation and fear of the future. The tools we built
to protect, the techniques of farming to feed or the rule of low and system of governance
that created a society with a common goal, were to ensure our individual and collective
survival [17]. But our desire to know the future has exceeded the instinct to survive.
Now we look to the future for becoming. As long as we hold on to the idea of becoming
better than we were yesterday, humanity will never stop looking into the future. At the
age when complex ideas seemed incomprehensible and thought they should be left to the
gods, we prayed and believed in beings greater than ours. The desperate ones believed
in the goddess of fortune (Fortuna) in the hope of receiving a blessing, those who longed
for understanding prayed to Minerva, the goddess of wisdom [18]. Now we are at the age
of understanding the nature of things which were once thought to be within the domains
of the gods. Through probability and statistical reasoning, we have tried to find meaning
in the randomness of chances and entered the realm of Fortuna. Through engineering,
we have acquired the eyes and wings of Horus, created the thunder of Zeus, what more is
there to the sun god than welding nuclear energy?.

Every scientific research and technological advancement is bringing us an inch closer
to becoming better than we were yesterday. There is a lot to be done and humanity is
billions miles away from fulfilling its objectives and attaining true understanding. The
aspiration to forecast is no different. It is just one goal on a long list of ambitions. Of
course, at this age we won’t base future decision by looking at the guts of animals like the
ancient Romans used to do. Instead we learned to look at data, however, the desire to
know the future remained similar regardless. We recognized that tomorrow has a history.
If it is recorded, it can be analysed and its future outcome will be deterministic to a
degree. To that end, both statistical and machine learning based deterministic models
were used to create a possible data generating model that could simulate the observed
data. Our experience with deterministic models have showed us, the past is not enough.
Things that haven’t happened yet could change the outcome. For instance, the rapid
technological advancement in the areas of renewable technology has forced the prediction
for a renewable energy penetration by the year 2030 to be corrected repeatedly year after
year as shown in Figure 1.1.

One factor that could be considered a limitation in deterministic model prediction is
their absolute belief in the accuracy of the input data or model parameters. Deterministic
models don’t leave room for doubt. They don’t question the certainty of the data they
process or the parameters of the model. For them the past explain the future. There is no
questionable difference between prior data and what comes after it [19]. For these models,
given the data and model parameters, the answer they provide is 100% correct. They are
more certain about the outcome even when they are wrong. They ignore the fundamental
fact that all data contains uncertainty whether it is from approximation, systematic or
randomness. Such models present potential risks during important decision making.

These uncertainties can emanate from the very system we are trying to control or
they can be external to the system. Either ways, in the presence of these uncertainties
we can not completely be sure if our estimation is correct. We can take our recent covid
pandemic as a good example as to how environmental factors affect the accuracy of a
predictive model. The likelihood of this event was closer to none. And yet, despite their
parametric nature, most of the predictive models utilized by the energy companies in
Europe, couldn’t anticipate the sudden drop in electricity demand. Miscalculation will be
even more damaging to a cascaded system where the decision of the later sub-system is de-
pendent on the output of the former. Such arrangement is prone to error compounding. If
the system manipulate deterministic predictive models for decision making, a propagating
error will have a profound effect on its accuracy.
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In contrary, a probabilistic model considers all variables and system interactions as
random variables that are bound to vary. Therefore, it offers a full spectrum for a possible
future outcomes taking into account the inputs randomness. As such, it provides a frame-
work for uncertainty propagation so that all subsequent subsystems work on a probable
outcomes rather than a singular value which may or might not be the true value. This
enables the system to make an informed decision considering the inherent uncertainty
thereby making it more robust and reliable. Consequently, the tendency to include un-
certainties leaves probabilistic models at a far better position in forecasting the future
than deterministic models. There are a lot of probabilistic models and various methods of
accounting for uncertainties. As a result, the question of which one is better is still debat-
able. However, at the bare minimum a good predictive model should exhibit a minimized
prediction interval (PI) and offer maximum coverage. In the coming chapter we will have
a lot to say about probabilistic models, prediction interval and coverage probability.

1.6 Conclusion
In this chapter, we discussed how electricity is waived into every aspect of our life. And
without it everything we take for granted will be no more. If it hadn’t been for the depen-
dence of modern life on electricity, smart grid or grid modernization wouldn’t have been
an issue. Restructuring the existing grid for monitoring the interconnected components,
optimizing the delivery and consumption of electricity and managing distributed power
plants is not a small feet. Its realization will ensure the reliability and efficient utilization
of energy. However, this grid revolution, although beneficial, it also exposes the grid to
a new host of man-made and natural threats. Especially, the integration of weather de-
pendent renewable energy sources by itself put another layer of challenge. These variable
sources despite their limitation, they offer the best chance in increasing the affordability
of electricity and ensuring the security and energy independence of a country. Conse-
quently, in addition to a wider public awareness and governmental support, smart grid
requires innovative technologies in the areas of improving the reliability of delivery, energy
generation and storage, efficiency of consumption and a foolproof network architecture to
rectify cyber vulnerabilities and the mitigation of the variable energy generation. As part
of the mitigation process, predictive models play a vital role in anticipating the changes
in the demand for energy and the production capacity so that appropriate demand-supply
optimization can be carried out.

In this thesis we considered a probabilistic based machine learning models for demand
forecasting mainly for two reasons. First, probabilistic models enhance decision making
at the either end of the power flow under uncertainty. Hence, by improving accuracy,
it results in a financial gain for all parties involved in generation, transportation and
consumption of electricity. Second, grid modernization has generated huge volumes of
data and machine learning models are better at analyzing patterns and making sense
of big data. To that end, we selected the Gaussian process and its derivatives, like the
DTC, FITC and the SVGP as probabilistic model from machine learning, and the neural
architectures like LSTM and MLP as a representatives to as a deep learning frameworks.
In the coming chapters we will discuss the implementation of these models for demand
forecasting in the energy sector in detail.
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Chapter 2

Literature Review

2.1 Introduction
In the last decades, energy companies have been investing a lot in predictive algorithms
that have different performances according to their complexity, prediction accuracy and
computational resource requirement. The performance of these algorithms are depen-
dent on many factors. Apart from their inherent parametric form, the quality of data,
prediction horizon, hidden associations between predictors, a sudden socio-economic and
environmental changes are some other factors that can impact the quality of forecast.
Even the act of stretching the forecast horizon induces the propagation of more uncer-
tainties which restrict the validity of the forecast. Regardless of that, a predictive model
should exhibit few desirable features such as a minimized prediction interval (PI) to ac-
count for uncertainties and maximized accuracy for mean trajectory. And, a model that
combines accuracy with a principled approach to uncertainty quantification through PI
enhance the validity of its forecast [20, 21].

In this chapter we will review parametric and non-parametric probabilistic predictive
models. More importantly, we will focus on the Gaussian process regression and some of
the approximation methods utilized for its scalability to big data analysis and prediction.
In chapter 4, we will review probabilistic forecasting in deep learning context.

2.2 Probabilistic predictive models
There are different ways of categorizing a predictive model. They can be classified based
on their task, learning approach, method of prediction, nature of their output, so and so
forth. For instance, based on their inherent mathematical form, predictive algorithms can
be categorized as parametric [22, 23, 24, 25], semi-parametric [26, 27, 28, 29] and non-
parametric [21, 20, 30, 31, 32, 33, 34, 35]. Parametric models have a fixed parameter space
which make them simple, elegant and interpretable. They allow a reasonable assumption
to be made about the structure of the learning model and number of parameters needed.
Once fixed, they won’t change their mind easily about how many parameters are needed
to fit the given observation, despite the amount and complexity of data available [36].
Hence, they generalize the data with a fixed set of parameters regardless of its nature.
However, this rigid parameter assignment is restrictive which ultimately constrain what
can be learned from the data. Consequently, the understanding of the model doesn’t grow
as new information is made available. As such, they are highly influenced by unmodeled
dynamics [29]. However, they can also be trained to capture relevant information by
introducing non-linearity through appropriate transformations. This can be achieved by
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modifying the initial assumption on the nature of interaction between the independent
variables. The model can be made to learn complex patterns through parameter re-
laxation, augmentation, adding extra polynomial terms, auxiliary features, or non-linear
interaction between independent variables [37]. It should be noted that the extra non-
linearity is added as part of the variables modification and for mathematical convenience
the model will still remain linear in its parametric representation. Such modification has
already been implemented to asses the effect of environmental dynamics on the predictive
performance of a model. For instance, the generalized additive model with augmented
adaptive parameter estimation using kalman filter was suggested as a mitigation strategy
to improve responsiveness and forecast accuracy during the covid pandemic [38].

On the other hand, non-parametric models have unconstrained parameter space. These
are the models where we don’t make any assumption about the number of parameters
required to fit the given data. Instead, the objective is generating a function that is con-
sistent with the observation. This allowed them to change their function space commen-
surately with the data which in return improved their generalization ability and accuracy
of representation. As such, they use a data driven design methodology that genuinely
encompasses the motto ”let the data speak for itself”. Unfortunately, such degree of
flexibility and improved accuracy come at a cost of higher model complexity and huge
computational resource requirements [30]. Some of these models follow a kernel-based
learning. For example, the Gaussian process (GP), the support vector machine (SVM),
ridged regression and kernel-PCA are few notable mention [39]. For instance, in the case
of gaussian process regression, samples are taken from the multivariate distribution. Their
plot against the input space looks a lot like the plot of a standard parametric function.
However, these samples were drawn without any explicit assumption on the mathematical
form or the number of parameters required to define the observed data.

Here, we would like to make it clear that parameterization of a model has nothing to
do with it being probabilistic. Both parametric and non-parametric models can be made
probabilistic. The parameterization affects how the model sees the given data and/or the
kind of data it expects [37]. This will ultimately impacts its generalization and forecast
accuracy. A better contextualization for the impact of parameterising a model can be
illustrated by showing at how these models see a given observation. For instance, given a
time series data D = {(xn, yn)}N

n=1, a parametric model defines a probabilistic predictive
model as

yn = f(xn) + ϵ where ϵ ∼ N (0, β2)
f(xn) = wT xn,

w = [w0, w1, w2, ..., wd]T ,

xn = [1, xn, x2
n, ...xd

n]T

(2.1)

Where, xn is the input point, w is the parameters of the model, ϵ is the perceived data
variability, and yn & f(xn) provide the model’s actual and average output at xn respec-
tively. Alternatively, equation (2.1) can also be written assuming the parameters of the
models as random variables as

yn = f(xn) + ϵ where ϵ ∼ N (0, β2)
f(x) = Xw, with w ∼ N (µw, Σw) and

X =



1 x1 x2
1 x3

1 ... xd
1

1 x2 x2
2 x3

2 ... xd
2

...

...

...
1 xn x2

n x3
n ... xd

n


(2.2)
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Where, X is the design matrix containing input points in matrix, w is now a random
parameter vector with its own mean vector µw and variance Σw. Here, the model assumes
a specific parametric form for f(xn). As such, depending on the degree of complexity, a
polynomial function of varying degree can be established. On contrary, the non-parametric
gaussian process assumes a latent non-linear function f(xn) and defines a prior distribution
over it as

yn = f(xn) + ϵ with

ϵ ∼ N (0, β2)
p(f(x) | θ) ∼ GP

(
µ(x), Σ(xi, xj | θ)

) (2.3)

where µ(x) and Σ(x, x) represent the mean function and covariance matrix of the multi-

(a) 1st order polynomial prior (b) 1st order polynomial posterior

Figure 2.1: First order polynomial prior-post predictive distribution

variate distribution. Unlike the parametric model in equation (2.1), the Gaussian process
in equation (2.3) assumes or specify no prior parametric form. Hence, its form is dictated
by the data and covariance matrix defining the correlation between data points. As such,
the objective is selecting potential functions that are consistent with the observed data.
The target function f(x) is given by the mean vector µ(x) and the variability between its
corresponding data values is provided in the covariance matrix Σ(xi, xj). For a probabilis-
tic outcome, a prior distribution is assumed in both the parametric and gaussian process
cases to train the model in a manner consistent with Bayesian reasoning. However, the
approach and the impact it has, is different. In equation (2.1) and (2.2), the prior func-
tional distribution is the result of the prior assumption on the type of the model or the
specified number of parameters (w) and their corresponding distribution. This will define
the nature of the model or the order of the polynomial. Hence, although probabilistic, all
candidate functions for the data fitting will exhibit the same behavior but with varying
parameter values as shown in the prior distribution of a 1st order polynomial in Fig-
ure 2.1a. Contrarily, the Gaussian process in equation (2.3), defines a prior distribution
over functions in a finite dimension equivalent to the range of observation. All kinds of
functions differing in smoothness and wiggliness are presented as candidate functions as
shown in the prior distribution of a Gaussian process in Figure 2.4a. Through Bayesian
reasoning, only those functions consistent with the given data will be selected, averaged
and presented as the final fit function. Further illustration of this difference is given in
parametric and Gaussian process prior posterior distribution shown in Figures 2.1 - 2.4.
Each figures display ten possible realizations from the prior and posterior distribution
of 1st, 2nd, 3rd order polynomial and Gaussian process fits for a sample data defined at
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x = {−0.75,−0.4, 0, 0.25, 0.6, 0.8} and generated according to

y = 2sin(1.5πx2) + x + x2 with,

ϵ ∼ N (0, x2)
(2.4)

The impact of parameterization in constraining candidate functions for fitting can be

(a) 2nd order polynomial prior (b) 2nd order polynomial post

Figure 2.2: Second order polynomial prior-post predictive distribution

seen in the prior distribution of the polynomial models shown in Figures 2.1a - 2.3a. In
Figure 2.1a prior distribution, only 1st order functions are presented as candidates. The
same analogy can be made in Figure 2.2a & 2.3a for quadratic and 3rd order polynomials
respectively. These prior assignments force the model to expect similar patterns in the
observed data. Any data element that doesn’t correspond to this pattern will not be repre-
sented accurately. This can be seen in the posterior distribution of the predicted function
values shown in Figures 2.1b - 2.3b. The parametric form results in a computationally

(a) 3rd order polynomial prior (b) 3rd order polynomial post

Figure 2.3: Third order polynomial prior-post predictive distribution

efficient model compared to the non-parametric form. The hope is that the prediction in-
terval will be wide enough to compensate for any inaccuracies that might arise due to data
variability, model specification or the approximation error introduced as a result of it. On
the other hand, in Figure 2.4a, the Gaussian prior distribution presents complex functions
as potential candidates without restrictions. Through an appropriate selection of kernel
functions for the covariance matrix, the resulting distribution can made to accommodate
the complex patterns ( i.e linear, quadratic, periodic,...etc) observed in the data and ex-
pected to be seen the future. Hence, during training only those functions that best fit the
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given data will be selected as shown in Figure 2.4b posterior distribution. The Gaussian
process shows great flexibility in accommodating the given observation compared to the
parametric forms as demonstrated in Figure 2.1 to Figure 2.4. However, this adaptability
increase the complexity and computational cost of the underlying model. The reason
being, the mathematical form and complexity of the generated functions is dictated by
the covariance matrix. The dimension and contents of this matrix varies depending on
the size of the data, the type, kind and number of kernel functions used. As a result of
these interdependence, the covariance matrix is synonymously called the kernel matrix.
And we will be using these two names interchangeably in the rest of this thesis.

(a) Gaussian process prior (b) Gaussian process post

Figure 2.4: Gaussian process prior-post predictive distribution

One feature of data that makes prediction possible is the correlation between observed
data points. Without local or global interdependence within the data, prediction will be
impossible. The observation will not contain any valuable information regarding what
comes next. Consequently, the recorded data doesn’t provide a valuable insight about
the probable future expectations other than being considered as a random noise. Some
other time, even in the presence of a valid correlation, the relationship will be too complex
to comprehend for some models, like auto regressive models (i.e AR,MA,ARIMA,...etc).
Fortunately, for Gaussian process model the concept of kernels creates a mathematical
convenience which enables it to uncover the hidden associations between data points. The
models employ kernel functions as a measure of similarity between data points regardless
of the extent or complexity of the correlation. In return, this similarity index will be
used to provide an appropriate function which is consistent with the observed data and
agrees with the observed similarity [40]. However, searching and selecting suitable kernel
functions for the covariance matrix is not an easy task and mostly it is challenging [40].

The basic concept behind kernel based learning is understanding the correlation be-
tween data points. This help us understand the structure of the data. Models like the
Gaussian process whose inference is based on the Bayesian framework will use it to mold
a prior distribution on the given data [35, 40]. The model employs various kernels to
establish the trend, local and global similarities (i.e smoothness and periodicity) between
observations [41, 42]. The extent of these co-variances are regulated by the parameters
defining each kernel functions. These parameters determines the degree of forecast hori-
zon at which the model could extrapolate. For example, the prediction horizon for a
Gaussian process with a squared exponential kernel function is proportional to the length
(l) parameter. For a prediction horizon larger than this length, the model prediction will
revert back to the mean value. Consequently, how far to the future a model can see is
dependent on the kernel type and its parameter values. These limitations can easily be
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rectified through a careful selection of kernels and parameter optimisation in such a way
that the performance of the model is optimal.

The biggest challenge in the implementation of Gaussian process is the dimension of
the kernel matrix. The Gaussian process model defines NxN covariance matrix (Gram
matrix) employing different combinations of base kernel functions, where N signify the
size of the data [43]. The Gaussian process needs the inverse of the covariance matrix for
parameter optimisation and posterior predictive distribution. A procedure that requires
an operation cubic to the number of data instances O(N3) [39, 44]. The computational of
the model is further exacerbated by the number of kernel functions used for data fitting
which increases the number of hyper-parameter during optimisation [42]. In addition to
the computational burden, the persistent need to keep the data for training and prediction
puts a higher memory requirement. As a result the direct implementation of kernel-based
learning on large data has been challenging [39]. This is the very fact that forbade the
scalability of Gaussian process to big data domain and constrain their application areas
only to smaller data domain. Later, we will return to the topic of kernels and their impact
on the predictive performance of the model in detail in section 2.4.

2.3 Gaussian process model limitations
Nowadays non-parametric predictive models are gaining momentum. Among them, prob-
ably the most under represented and utilized regression algorithm in the areas of elec-
tricity load forecasting is the Gaussian process (GP) [21]. GP have been used exten-
sively in the areas of classification and regression due to their nonparametric nature and
predictive performance [45]. Time series analysis and prediction [46, 47], stream flow
prediction for water resource management [48], generated energy forecast for solar [49],
wind [50], state of health prediction for battery [51], tourism [52] and demand forecast-
ing [21, 34, 35, 49, 53, 54, 55], are few notable mentions. Their non-parametric form
allowed them to have the flexibility to fit complex function in infinite dimension in a way
that is interpretable and puts a measure of cost on overfitting. Additionally, a closed form
solution for inference and hyperparameter optimization make the models more interest-
ing. However, they don’t always explain the observed data. This is due to the unrealistic
assumption that the prior distribution of the observed data is Gaussian-alike [56].

One of the desirable feature of GP is its ability to provide forecast distributions as
opposed to point estimates. Energy companies use forecast distribution as a basis for
making decision on unit commitment, energy price fixing and distributed energy resource
integration [54]. The recent trend toward smart grid resulted in huge volume of data.
Applying Gaussian process regression on such data incurs a considerable memory require-
ment and computational cost. While the prediction distribution offered by the model is
attractive, the computational resource requirement remains higher. The success and lim-
itation of Gaussian processes can be attributed to two factors. The Bayesian framework
that is used for parameter learning & inference, and the adapted kernel based learning
approach for measuring the correlation between data points.

2.3.1 Kernels
In the words of Arthur Samuel, the pioneer in the fields of AI, the idea behind machine
learning is to give computer models the ability to learn from data without explicitly being
programmed to do so. Learning imply the capacity to find a valid relationship within
the data, identifying redundant features, differentiate regular and irregular occurrences
towards building a model for inference and generalization. Such pattern identification
and data exploration will not only help in building a possible data generation model or an
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approximation of it, but it also improve the expectation of the model about the possible
data that is expected from the source. Among the different algorithms used in pattern
analysis, kernel based learning is one of them. Kernel functions were first used for pattern
analysis in SVM classifications tasks. Their implementation has improved the flexibility
of classification algorithms and gave a computational advantage over linear classifiers in
solving non-linear functions or decision boundary problems [57]. Over the years, research
in the fields of kernels and pattern discovery has seen them in various application areas
such as regression, classification, correlation, principal component analysis, clustering and
many more. In Gaussian process, these functions are mainly used to identify the similarity
over all pairs of observed points. As part of the learning process, mapping the correlation
remained the responsibility of the specific kernel function used, whereas the inference and
prediction is left to the Bayesian framework. Hence, they both have a part to play in
determining the predictive performance the underlying model [58].

The Gaussian process defines a prior distribution p(f(x) | θ) ∼ GP(µ(x), Σ(xi, xj | θ, k))
over functions using different combinations of kernels k. A mean centered prior definition
which assumes µ(x) = 0 is preferred for mathematical convenience [59]. As such, the
breadth and depth of the prior distribution is entirely dictated by the covariance matrix
Σ, the kernel function k and values of the its parameters θ. Being Bayesian demands
the consideration of prior knowledge or belief. In the absence of data, they represent the
ground in which we base our decision on. Meaning that how they are defined, whether
it is random or it is based on prior expertise determines the accuracy and computational
efficiency of the underlying model. For instance, in univariate Gaussian, uninformative
and broad prior definition (i.e Uniform distribution ) could drag the computational time
required for parameter evaluation. A narrow assignment can be too restrictive. As such,
it can constrain the parameter space which can mask the estimation of the right values.
The same can be said in the multivariate distribution. For example, in Gaussian process
regression, the Bayesian framework assign probabilities to every sampled functions from
the distribution. This measures the likelihood of the given function is representing the
observed data. A wide prior assignment expands the function evaluation space, thereby
forcing the estimation to take a longer time. The opposite can also be said for a narrow
prior assignment. This will constrains the space of possible candidate functions. As such,
the true function representing the observed data might not be available. Consequently, a
balanced prior assignment that is based on prior expertise in relation to the problem at
hand is fundamental for the accurate modeling and representation of the observed data.
Such assignments are regulated by the choice of kernels functions and their corresponding
parameters.

Researchers have pursued a parametric and non-parametric approach to kernel func-
tion design. The non-parametric method encapsulates the unconstrained and data-driven
approach to kernel design [60]. Especially, the absence of parametrization in its imple-
mentation has circumvented the need for specifying complex covariance functions. Conse-
quently, simplifying kernel-based learning [39, 61]. For example, the hierarchical Bayes [61]
follows a non-parametric approach for a data-driven kernel design. The approach utilized
a cascaded EM and Nyström algorithms for the estimation and covariance matrix gen-
eralization to new features. Another notable mention is the Bayesian non-parametric
kernel learning BaNK [39] algorithm. BaNK provides a robust generative model that is
scalable to large data based on gaussian mixtures for a data-driven kernel design. Such
probabilistic based approach allowed a large class of kernels to be estimated at a time.
Hence, providing a superior performance for a regression and classification tasks. Never-
theless, the hyper-parameter optimization follows MCMC sampling which incurs a time
constraints for a posterior convergence. On the other hand, the parametric approach of-
fers a fixed batches of basis functions. This will restrict possible kernel explorations and
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bounds pattern learning to the subsets of few priorly chosen kernel functions [39]. More-
over, the choice of a candidate basis function from the set requires deep insight about the
data and descriptions of the kernel function [40]. However, coupled with a good search
algorithm, these primitive function can provide an acceptable predictive performance. As
a result, they have been used extensively in kernel-based learning. The compositional
kernel search methods such as the structure discovery [40] and dynamic kernel search [42]
are few notable mentions.

The limiting factors in the implementation of a search algorithm for suitable kernel
functions can be attributed to the nature of the inference applied and the size of the data.
Gaussian inference requires operations cubic to the size of the data. As such, any attempt
on the algorithmic kernel selection would requires a continuous training and evaluation of
the model. This will ultimately affect the memory and time efficiency of the model. Con-
sequently, in addition to the exploration mechanism, the implementation should address
the limitation of the underlying model. As such, a faster and more practical approach
in model building that is scalable to large data must be followed. The computational
burden attributed to the size of the data prohibits the implementation of the exact gaus-
sian inference in big data [60]. Approximation methods and minimizing the number of
training instances are the two widely used alternatives for scalability and computational
efficiency. For example, ensembles models [55, 62], gaussian scalability through kernel ma-
nipulation [43, 63], localized regression by splitting the observational space [44, 64, 65],
gaussian approximation through variational and MCMC sampling [66, 67, 68, 69, 71] are
few notable mentions. Localisation and minimization of the observational space by re-
taining and discarding instances of the training data, reduces the dimensionality of the
kernel matrix. Thereby improving the model performance and making the search algo-
rithm feasible. However, this technique inadvertently affect the inferential capacity of the
model and eclipses the hidden patterns that could be learned.

On the other hand, when minimizing the span the observation is not an option, vari-
ational and MCMC approximation methods [66, 67, 68, 69, 71] have been put forth as a
viable alternatives. These methods have addressed the kernel dimensionality crisis and
the Bayesian posterior computational bottleneck. This has dramatically improved the
computational efficiency and scalability of the model. In doing so, opened the door for
an acceptable kernel search implementation [42]. Nevertheless, the variational inference
requires a lot of computation and iterations for the ELBO convergence. As such, running
the search algorithm although possible, consumes a considerable mount of time. The
same reasoning can be extended to models based on MCMC approximation in regards to
the effort needed for a posterior convergence.

The computational hurdles being the main issue, the success of kernel based learning
is also dependent on the users ability to select an appropriate kernel. Various approaches
have been suggested to facilitate the search for suitable kernels for GP. For example,
the structure discovery [40] and the dynamic kernel [42] are notable mentions for finding
possible kernel combinations for the given observation. The structure discovery algorithm
in [40] employ a greedy search approach using the marginal likelihood as a criterion
to pick the highest scoring kernel. This kernel again is used as a basis to find other
mixtures. For a Gaussian process that consumes huge computational resources, this is
a brilliant approach. The greedy search approach, where we take the local best scoring
kernel can shorten the search time, However, it can also eclipse other combinations that
best fit the data. Whereas the algorithm in [42], performs an exhaustive search using
the mean squared error (MSE) as criterion for evaluating suitable kernel combinations
and forwards the combinations with lowest MSE as the optimal kernels. Although these
approaches improve the predictive accuracy of the model, the number of kernel functions
and complexity of their mixture further exacerbate the computational burden.
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2.3.2 Bayesian framework
In the case of the framework, the Bayesian is what gives the GP its simplistic inference.
However, it is also responsible for constraining the application of the model in areas of big
data and in the areas where the normal Gaussian assumption doesn’t hold [56, 71]. This
is due to the inherent computational constraints in evaluating the posterior distribution.
The power of Bayesian inference rests on its ability to accommodate the contribution of
model parameters by averaging over all likely values they could take under its posterior
distribution. To that end, the inference needs the inverse of the kernel matrix (Σxx +
σ2In)−1 for parameter optimisation and posterior computation. However, the inversion
of a matrix is something which is not computationally feasible, even under the best of
terms (i.e small matrices), let alone for a kernel matrix whose size is equivalent to the
size of the training data. This fact has reduced the computational efficiency and created
scalability issues to large data. Furthermore, a data distribution other than the Gaussian
likelihood assumption, often renders the posterior computation intractable [70, 71]. In an
effort to address issues related to the kernel dimensions, different approaches have been
suggested. For instance, clustering the training data locally and training an ensemble of
Gaussian processes is presented as an alternative [64]. They adopted a weight assignment
that follows a probabilistic approach where each model is assigned a weight based on the
average likelihood of containing the predicted point. Then, the forecast mean is evaluated
as a weighted average of the response of each ensemble models. However, this approach
effectively transform the non-linear relationship between data points and linearize the
mean function around the forecast points . As such, for data exhibiting complex pattern
(i.e periodicity) the approach offers a sub-optimal prediction accuracy. Another approach
to solve computational complexity in GP is to probabilistically divide the observational
space using gating networks and fit a specific model for each sub region [65]. This has
the advantage of significantly reducing the dimension of the kernel matrix where the
computational effort is cubic only to the number of data points contained within the
region [65].

Approximation based estimation offers a viable alternative for a scalable Gaussian
process. Any model that ever existed is an approximation and a simplification to the real
system that generated the data and the uncertainty that affected it. The advancements in
the areas of computing power, data mining, and optimization has reduced the dependency
on approximate mathematics for solving intractable equation just for the sake of conve-
nience [72]. These days computers have become far better in solving intractable equation
numerically than they were years ago. Hence, the application of numerical methods is
becoming more prevalent in solving large scale problems than a standard closed form
equation. Especially, the computational power is advancing to the point where the choice
between optimisation algorithms is becoming irrelevant [37]. However, having the power
for solving equation doesn’t signify there won’t be an approximation error.

The notion behind approximation is that the overall dynamics of the system can be
replaced by a model with a smaller set of parameters. This results in a more computa-
tionally efficient and close resembling counterpart. Sampling based estimation methods
(i.e MCMC) employ random sampling to provide an approximate solution to a determin-
istic intractable equation. Inherently these methods are not regarded as an optimization
algorithms. In a sense, they don’t provide estimate that would maximized the likelihood
of the given cost function. But rather, they provide a potential predictive distribution
for those values that would maximize the likelihood of the underlying event. They ap-
proximate the posterior, first by drawing a random sample from the initial distribution.
Then, iteratively move toward the desired distribution by applying a stochastic transition
operator until convergence [71]. This method offers simplicity in terms of implementa-
tion. However, its accuracy and efficiency are dependent on the number of iterations
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and transitions required. The variational counterpart, on the other hand, presents the
question of approximation as an optimization problem. Hence, it defines a parameterized
surrogate distribution and optimize it until the divergence from the true distribution is
minimal [66, 71, 73]. It applies the KL-divergence as a metrics to quantify this differ-
ence. The intractability of the Bayesian posterior is due to the difficulties of estimating
the normalization constant. The KL-divergence is insensitive to constants. As such, its
inclusion in minimization renders the approximation process insensitive to the effect of
the normalization constant. This has greatly simplified the computation of a surrogate
distribution to the true posterior distribution.

The sparse variational GP uses variational inference and sparsity to address the chal-
lenges of posterior intractability and input dimensionality. The approach approximate
the posterior through variational inference utilizing few randomly sampled points from
the input space [66]. These points and the associated values are called the inducing points
and inducing random variables respectively. This technique effectively reduced the kernel
dimension and improved the computational effort. Hence, it is regarded as the deriva-
tive of GP that truly scaled the model to the big data domain. Its predictive efficiency
has been demonstrated in the areas of navigation [73], optimal sensor location for com-
munication [74], classification [67] and regression [68, 69]. Nevertheless, the inability to
determine the number and location of these inducing points limits the forecast accuracy
of the model.

Predominantly, issues of scalability has been addressed either through approximation
or down sampling the data. Both approaches have their own advantages and limitations.
Down sampling or discarding, relies on taking few prior observation at a time with a
walk forward forecast update for a continuous prediction. Such approach usually employ
a gaussian kernel to define the correlation between the observed and the forecast points.
Consequently, it gives high emphasis to points closer to the forecast horizon. Inevitably lo-
calizing the model and forcing it to disregard points that are further away and those which
can affect the forecast point periodically. Although discarding part of the data ensures the
adaptation and scalability of the model, it also results in a loss of valuable information.
Thereby, minimizing the models ability to make sense of complex interactions between
recorded observations. On the other hand, Bayesian backed approximation methods have
dramatically improved the computation efficiency and scalability the models, though with
a reduced accuracy. Such approximations are widely carried out either through sampling
(i.e MCMC) or applying variational inference [71]. In the absence of such estimation, exact
gaussian inference on large data is bound to increases the dimension of the kernel matrix.
Thereby increasing the computational burden. As a result, a reasonable trade off is made
with dimensional reduction for a fast and efficient model through approximation at the
expense of exact solution. This approach has reduced the application areas and limited
its implementation on big data domain [43]. However, a great stride has been taken to
improve its predictive accuracy. Ensembles models [62], aggregates [55], kernel manip-
ulation for scalability [43], and localized regression by splitting the observational space
[75], are few notable mentions. Despite the different approaches followed in constructing
the predictive model or the algorithm used to optimize the hyperparameters, the success
of GP for large data has relied on minimizing the number of observation in training set.
As a result, the adaptation and/or scalability of the model and long term prediction rely
on data reduction through down sampling.

2.3.3 Prediction interval width estimation
In predictive analytics, model building for a specific application and making a forecast
for future outcomes may not always be enough. In some areas like banking, finance and
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energy sectors, more is demanded from a predictive model than just a prediction. The
model is expected to provide a measure of how confident it is about that specific forecast.
Such information is invaluable in risk management, mitigation and decision making.

In section 2.1, we have stated how the explicit consideration of noise in model build-
ing empower the model to have more than just point forecasting. Once the presence
of uncertainty is recognized, then the a stochastic approach to parameter assignment
and all variables affecting system behavior as random is logical. The sources of these
uncertainties can easily be the parameters of the model whose values are unknown, in-
adequate modeling due to lack of exact mathematical understanding of the underlying
process, model approximation, numerical approximation during optimisation, data vari-
ability during measurement so and so forth. The characterization of uncertainties are as
wide as the errors we are bound to make when modeling. However, their categorization
as internal to the system (Epistemic) and external to the system (Aleatoric) will gener-
alize them better. Such identification helps the model to understand and quantify the
uncertainty. Regardless, the most important part beyond their recognition is the ques-
tion of how to quantify them and minimize their subsequent impact on prediction. It has
been an accepted norm that an informed decision should take into account the possible
uncertainty that could be expected and the decision should be made considering this [76].
Although, different methodologies have been followed in their estimation, an intuitive way
of presenting the range of possible values or the degree of belief in estimated parameter
has been through confidence interval.

Interval estimation uses different methodology depending on the nature of the data and
the modeling technique applied. For instance, in linear regression and Bayesian model,
the residual error (noise) is assumed to follow a normal distribution. In case of a smaller
sample size, the t-distribution is applied as an alternative sample distribution for interval
estimation. However, there are occasions where the assumptions of normality doesn’t
hold. The data generation process may be too complex, follows unknown distribution or it
might just follow an asymmetric distribution. In such cases, an approximate distribution,
bootstrapping and quantile methods are usually employed. On the other hand, in deep
learning models, a data driven(non-parametric) approach to variance estimation and a
bimodal distribution for parameter sampling are used to estimate this interval. Regardless
of the techniques applied, the most important aspect of interval estimation is its precision.
And, how precise it is depends on many factor. The estimation can easily be affected by
the inadequacy of the modeling approach, quality of the data or failure in accounting the
sources of uncertainty mentioned above. Without addressing these scenarios adequately,
even if the model provided a confidence interval, the information conveyed will not be
accurate and estimation will not be useful other than providing a false sense of security.
Beside the precision, how wide should it be ?, is yet another question worth asking. A
naive predictive model can account for all sources of uncertainty by predicting a wider
confidence interval that delivers a 100% coverage probability of the forecasted points.
Inherently, it is logical to say a minimum confidence interval with maximum coverage is a
good quality to have for a predictive model. Meeting this objective has been a challenge
for most predictive models and that is the very reason we are mentioning it here as an
additional limitation to the gaussian process.

In section 2.3, we have tried to list some of the limitation of the Gaussian process.
These limitations have more to do with the accuracy of the mean trajectory and com-
putational efficiency of the model. This limitations can be minimized through a proper
selection of kernels, applying the sparse and variational approximations. Its confidence
interval estimation, however, is dependent on the distance between observation and their
uncertainty. This fact is self-evident in the values of the covariance matrix elements.
Assuming a squared exponential kernel is selected, the elements of the covariance matrix

48



(Σij) is given a value corresponding to the distance between observations xi and xj

Σij = α2 ∗ exp
(
− (xi−xj)2

2l2

)
+ σ2

ij (2.5)

where σ2
ij is the assumed data variability. Meaning that a smaller distance between ob-

servation results in a higher correlation. In other words, the more data we have the less
ambiguity in model prediction which results in a minimum confidence interval. Addition-
ally to account for any modeling errors, usually the 95% coverage probability is taken as a
design parameter for the upper and lower bound interval estimation. However, there are
no frameworks to check the optimality of the confidence interval and whether or not the
forecasted points actually lie within the interval. This is not the limitations of a Gaussian
process alone, but also a shortcoming shared by most predictive models.

The primary goal of model building has been to construct a data generation model
that can closely resemble the observed data, an almost perfect match between the inputs
to the outputs [77]. As a result, the methods of fitting and training is solely devoted to
ensuring the accuracy of the target trajectory. For example, the Gaussian process models
are trained using the maximum likelihood as a criterion. Here, the aim is to maximize
the likelihood of generating the observed data without considering the prediction inter-
val or its coverage probability. Hence, for objective assessment and quantification of the
optimality of the confidence interval, predictive models should be trained in a manner
that takes into account not only the accuracy of mean trajectory but also the interval
width and coverage probability. Figure 2.5 describes the difference in the confidence in-

(a) Coverage with MPIW and PICP (b) Coverage with Maximum Likelihood

Figure 2.5: Effect of estimation approaches on the coverage probability and interval width

terval generation between two models trained on different algorithms. Figure 2.5a shows
the confidence interval estimation for model trained on an algorithm that tries to opti-
mise the interval width and coverage probability while Figure 2.5b shows a model trained
using maximum likelihood criterion. In chapter 4, we will have a lot to say about algo-
rithms focused on the optimality of the confidence interval, but for the time being, from
Figure 2.5a, it can easily be verified that an algorithm that takes into account interval
estimation delivers a smaller interval with maximum coverage compared to other alterna-
tive methods. In Gaussian process, interval estimation that focus on optimising the width
and coverage probability of the forecast horizon is not practically feasible. On contrary,
deep learning models present an opportunity to try new algorithms and provides a good
platform for testing uncertainty quantification and bound estimation. Furthermore, un-
like the Gaussian process models, deep learning models do not have a scalability issue to
large data. By widening their parameter space and accumulating as much parameters as
need commensurate with the given data, they try to provide a fitting function. Though,
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often times running into the risk of overfitting and over-parameterized models. However,
the evolution of big data and the flexibility of these models, has seen a wide penetration
of deep learning models in demand supply prediction [78]. However, like the Gaussian
process, they have their own limitations. One of the major challenge in deep learning mod-
els is point estimation and their absolute certainty in the accuracy of their prediction.
Especially, in areas like energy demand and supply prediction, where wrong prediction
can cause a devastating impact on the stability of the grid, over confidence is dangerous.
However, researches in the areas of deep probabilistic models such as Bayesian neural
net (BNN) have enabled these models to handle data variability so that their prediction
can be supported by a margin of uncertainty. In chapter 4, we will revisit uncertainty
quantification in deep learning models in great detail and introduce a new algorithm for
interval estimation.

2.4 Kernels in gaussian process

The word kernel carry different meaning depending on the area of specialization. In
linear algebra, it is a reference to the nullspace (linear subspace) containing all vectors v⃗
that provides a solution to the homogeneous systems whose dynamics are described by
the equation Av⃗ = 0. In computer science, it is often associated with the core program
responsible for facilitating the communication between the hardware and the operating
system, and it could also refers to the smoothing function in kernel density estimation
problems. However, in here kernel refers to all functions in the reproducing kernel hilbert
space (RKHS) which are used as a measure of similarity. The Hilbert space is an abstract
mathematical space created by the inner products of random vectors which allows efficient
computation to be carried out irrespective of the dimension of the space. As such, the
role of a kernel function in general is returning a similarity index between any two pairs
of data points [79]. The subject of kernel is vast and so is their contribution to the areas
machine learning. For instance, one of the difficult task in classification is classifying
a non-linear separable data. Transforming it into a linearly separable data requires the
introduction of auxiliary features or new dimensions to the existing data. This process
is accomplished by mapping the data onto a higher dimensional space using a non-linear
function ϕ(·). This procedure can get computationally intensive real easy. It will be
more exponentially demanding when the size of data and number of features considered
are substantial, as we are expected to apply the mapping function ϕ(·) on each element
and later on perform computations of the resulting features. Kernels, on the other hand,
provides an efficient mechanism of computing the inner product that is required for setting
the decision boundary without the need to map the data onto a higher dimension. This
makes makes the task of data mapping computationally feasible. The type and application
of kernels is broad and it won’t be possible to review them all here. However, an in depth
analysis on kernels and their corresponding features space in the form of a reproducing
kernel map can be found in [57, 80, 81]. As kernels are the information block of the
Gaussian process, for the sake of generality, before going deeper into the mathematical
details and analytical solutions of the model, it will be best to explore and familiarize
ourselves with some of the kernels that are used in Gaussian process for an interpretable
predictive distributions.

A kernel function k(x, z) quantify the similarity between any two given vectors x =
[x1, x2, ··, xm]T , z = [z1, z2, ··, zm]T ϵ Rm, through their the dot product (inner product)

k(x, z) = xT z
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or, equivalently

k(x, z) =
m∑

i=1
xizi (2.6)

k(x, z) = x · z
∥x∥∥z∥

From equation (2.6), it is simple to deduce that k(x, z) is symmetric k(x, z) = k(z, x) and
∀ z ϵ Rm, z ̸= x, k(x, x) > k(x, y), meaning that a vector is more similar to itself than
another vector. Equation (2.6) can also be extended to any set ϕ(·) that acts as feature
representation of the vectors. In classification tasks, the function ϕ(x) represents the
mapping function that transform a non-linear relationship to a linear in higher dimension.
In regression, given a data set {(xi, zi)}m

i=1, its purpose is to creates a number of features
{(ϕ(xi), zi)}m

i=1 which could possibility enhance the predictive performance of the model.
Assuming there is such mapping function ϕ(·) that transform the vectors to a higher

dimension ϕ(·) : Rm 7→ Rn where n > m, the kernel k(x, z) can also be defined as

k(x, z) = ϕ
′(x)ϕ(z) or

k(x, z) = ϕ(x)ϕ(z)
∥ϕ(x)∥∥ϕ(z)∥

(2.7)

The best feature of kernels is that, even if ϕ(·) is regarded as a set containing the features
of the given data, there is no need to create the multivariate data representation of it, as
it can be evaluated automatically using the predefined kernels. In equation (2.6) & (2.7),
k(x, z) follows a dot product and hence, the result is a singular value. However, applying
k(·, ·) on each element of vector x ϵ Rn creates a similarity matrix K ϵ Rnxn containing
all possible inner products

K =



k(x1, x1) k(x1, x2) · · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · · k(x2, xn)
· · · · · · ·
· · · · · · ·
· · · · · · ·

k(xn−1, x1) k(xn−1, x2) · · ·· k(xn−1, xn)
k(xn, x1) k(xn, x2) · · · · k(xn, xn)


(2.8)

This matrix is called the kernel matrix K or the Gram matrix. Note: we will be using
the capital letter K and Σ interchangeably to refer to the covariance or kernel matrix.
The representation of kernel as a matrix instead of a function will simplify the analysis.
Such transformation will allow us to bring the techniques of linear algebra to the table
without distorting the fundamental characteristics of the kernel function [81, 82]. The
kernel matrix (K) is symmetric (i.e K = KT ) and positive semi-definite if and only if ∀z ϵ
Rn, zT Kz ≥ 0.

Proposition 2.4.1. A matrix K is positive semi-definite if and only if K = L
′
L for some

matrix L

Proof. Suppose A = L
′
L, then for any vector λ, we have λ

′
Aλ = λ

′
L

′
Lλ⇒ ∥Lλ∥2 ≥ 0

The kernel matrix and its inverse are frequently used in parameter optimisation, sam-
pling and estimating the multivariate posteriors distribution. Despite its mathematical
convenience, the matrix representation doesn’t spare the computational and resources
requirement of the underlying process from being higher. The symmetricity and positive
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semi-definiteness properties of the matrix can be used to lessen the burden. The symmetric
property ensures that the matrix can be factorized into a more computationally efficient
form of representation. To that end, a number of numerical methods have been suggested.
Matrix decomposition methods, like Eigen and Cholesky, apply factorization techniques
in order to provide a closed-form analytical solutions to a matrix with a less resource
requirement. The Cholesky decomposition factorize the kernel matrix K as a product of
an upper and lower triangular matrix (i.e K = L

′
L). This approach has enabled the inverse

and determinant computation to be performed more efficiently. Especially, the computa-
tional gain will be apparent when inverting large matrices. The contribution of Cholesky
method goes beyond linear algebra and sampling Gaussian distribution. It is also applied
in a stochastic deep learning optimisation as a reparameterization trick which transform
a random variable into a differential variable so that its gradients can flow through the
network during the back propagation step. The are also other numerical methods such as
the Nyström method that rely on sampling and recursive estimation in order to provides
a low rank approximation to the kernel matrix. Consequently, the Cholesky and Nyström
methods are considered alternative numerical methods that are frequently used in practice
to enhance computational efficiency [82].

The positive definiteness property of a matrix, geometrically creates a conic vector
space that is more amicable to quadratic optimisation algorithms. In the quadratic or
convex optimisation problem the aim is to provide a solution to a multivariate function
f(x) = 1

2 xT Kx−Bx+c. The search for the vector x∗ that minimize f(x) will be easier to work
with when K is positive definite guaranteeing that the function f(x) is a convex function,
its associated hessian matrix ((i.e f

′′(x)) positive and the solution x∗ a global minimum.
Unfortunately, the gaussian process objective function for parameter optimisation is a
non-convex function. As such, global minimum value is not guaranteed. In the coming
section, we will formally define and frame the parameter optimisation in the gaussian
process as non-convex optimisation problem.

The characteristics mentioned above have more to do with how to realize efficient
computation when the size of the data or the dimension of the kernel matrix is large.
The positive semi-definiteness of the kernel matrix doesn’t imply invertibility. There are
moments when the kernel matrix becomes singular (i.e det(K) = 0) even for smaller data
and evaluating its inverse may not be possible. For instance, identical data points could
result in similar values providing dependent eigen vectors which makes the matrix ill-
conditioned. In practice, to avoid this singularity a sort of regularization term (i.e an
infinitesimal number) is added to the diagonal part of the existing matrix (i.e K = K + αI,
where α is a very small constant number), as a means of ensuring the stability of matrix
inversion. This infinitesimal number is sometimes called a noise term or a jitter.

Any function can be regard as a kernel function provided it results in a similarity
matrix that is symmetric and positive semi-definite.

Proposition 2.4.2. For any two kernel functions k1 and k2 that fulfill proposition 2.4.1,
then the following are also kernels

1. K = α1k1 + α2k2 for any α1, α2 > 0

2. K = α1k1 ∗ α2k2 for any α1, α2 > 0

Proof. Given k1 and k2 are positive semi-definite and for any random vector zϵRn,
If zT k1z ≥ 0 and zT k2z ≥ 0, then summing both zT (k1 + k2)z ≥ 0, and
∀α1, α2 > 0 If zT (k1 + k2)z ≥ 0 ⇒ zT (α1k1 + α2k2)z ≥ 0
If k1 and k2 are positive semi-definite, then the element wise multiplication k1ij ∗ k2ji

results in a positive semi-definite kernel K = k1 ∗ k2. An elaborate proof for the positive-
definiteness of the Hadamard product (k1 ◦ k2) is given in [80].
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Proposition 2.4.2 lays a theoretical foundation for the construction of new kernels out
of the combination of the existing ones. On any function that fulfills the characteristics
of a kernel, the sum and product rule of proposition 2.4.2 can be used to construct new
kernels.

2.4.1 Constant kernel
The constant kernel defines a matrix of all ones scaled by some parameter σ. Each
elements of the matrix K has the same value kij(xi, xj = σ2), depending on the value of
the parameter.

K = σ2


1 · · 1
· · · ·
· · · ·
1 · · 1

⇒


σ√
n
· · σ√

n

· · · ·
· · · ·
σ√
n
· · σ√

n


T

∗


σ√
n
· · σ√

n

· · · ·
· · · ·
σ√
n
· · σ√

n

 = V T V (2.9)

It is a symmetric and positive semi-definite matrix as given in proposition 2.4.1. It can
easily be proved for any random vector z ϵ Rn, it can be decomposed and rewritten as
zT Kz ⇒ zT V T V z ⇒ ∥V z∥2 ≥ 0. As per the proposition 2.4.2, it is mainly used to create
and modify other kernels. In practice, it is employed to shift the posterior mean as an
additive kernel or scale it as product kernel. Hence, applying the constant kernel as the
covariance function only produces constant line functions. This can be seen from few
sample functions drawn from GP prior with the constant covariance function for the data
given in equation (2.4) as shown in Figure 2.6a.

(a) Constant kernel GP prior (b) Constant kernel GP posterior

Figure 2.6: GP with constant kernel predictive distribution

2.4.2 Linear kernel
The linear kernel is a non-stationary kernel that defines a dot product between the ele-
ments of two vectors x and z.

kd(x, z) = λ(xT · z) (2.10)
Because of that sometimes it is referred as the dot-product kernel. The parameter λ is
sometimes replaced with a constant kernel. According to the second item of proposi-
tion 2.4.2, the linear kernel can also be given as a product of the constant kernel and the
dot-product kernel(i.e K = Kc(x, z) ∗ kd(x, z)) without the parameter λ. In classification, it
is mostly used when the existing data has enough features or exhibit higher dimension-
ality or when the diversity and type of data allows linear separation. In regression, they
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are employed to fit first order linear models and also as an additive and product kernel
to model upward and downward trends in a data. The covariance map and few sampled
functions drawn from a gaussian process prior with a linear kernel for the data given in
equation (2.4) is shown in Figure 2.7b and Figure 2.7a respectively. From Figure 2.7a, it
can be generalized that a gaussian prior with a linear kernel as a covariance function only
produces straight lines or models linear functions.

(a) Linear kernel GP prior (b) Linear kernel covariance map

Figure 2.7: GP with linear kernel prior distribution

2.4.3 Polynomial kernel
Polynomial kernels are a generalization to the linear kernels. They are a valid non-
stationary covariance kernel functions. Their validity can easily be proved by applying
the second item of proposition 2.4.2 and representing it as a product of p number of linear
kernels as shown in equation (2.11). They are mostly used when the data exhibit non-
linear variability and the addition of extra features or dimensions are thought to improve
the performance of the data generation model. These kernels allows complex features
to be considered during model development. More importantly, they can also be used
in creating new kernels or approximating the existing kernels through the Taylor series
expansion [83]. Mathematically, it defines a covariance function between any two random
vectors x, z ϵ Rn

k(x, z) = (xT z + c)p (2.11)

where c and p are the parameters defining the kernels. The parameter p determines the
order of the polynomial function or the decision boundary in regression and classification
tasks respectively. As such, it determines the degree of model complexity. The covariance
map of a 5th order polynomial kernel and few samples from the prior distribution of GP
using it as a covariance function is shown in Figure 2.8. There is more freedom and
flexibility when using the polynomial kernel. However, it is also the easiest kernel to
overfit the given data during training.

2.4.4 Squared exponential kernel
The squared exponential (SE) kernel is the most commonly used similarity function in
kernel-based learning models. It is a stationary kernel that defines a covariance function
for any two vector x,z ϵ Rn

k(x, z) = exp
(
− ∥x− z∥2

2l2

)
(2.12)
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(a) Polynomial kernel GP prior (b) Polynomial kernel covariance map

Figure 2.8: GP prior distribution with 5th order polynomial kernel and its covariance map

where l > 0 is the length parameter that controls the smoothness and complexity of
the model or alternatively the spread of covariance. The similarity index is dictated by
an exponentially decaying relative euclidean distance (i.e ∥x − z∥2) between data points
regardless of their absolute position. Hence, smaller values of l will give high emphasis
and assign a high value of similarity to points that are closer to a given point. At the same
time disregard the effect of points that are farther away as if they are uncorrelated. As a
result, the function returned will exhibit large variances or wiggleness with a smaller bias
resembling the behaviour of a high-degree polynomial fitting. In contrary, a large value
of l will have a sort of smoothing effect with a long range correlation to points near and
far. As such, it assigns a similarity value to all points commensurate with their relative
distance from the point under focus in a fashion similar to a low-order polynomial fitting
would. In general, the parameterization of the kernel not only determines the complexity
of the resulting model but also the contribution of each training point for the estimated
value at the forecast point.

As a mapping function, they can project any two vectors x, z ϵ Rn into an infinite
dimensional space R∞. For instance, assuming we have such a mapping function ϕ(·)

k(x, z) = ϕ(x)′
ϕ(z) = exp

(
− ∥x− z∥2

2l2

)
k(x, z) = exp

(
− (x− z)T · (x− z)

2l2

)
Expanding the exponential terms for l = 1

k(x, z) = exp
(
− (xT x− 2xT z + zT z)

2
)

k(x, z) = exp
(
− ∥x∥

2

2 − ∥z∥
2

2
)
exp

(
2xT z

2
)

The first exponential term in the above equation is constant. Hence, assuming γ =
exp

(
− ∥x∥2

2 −
∥z∥2

2

)
k(x, z) = γexp

(
xT z

)
Applying Taylor series expansion on exp

(
xT z

)
, it can be expanded into an infinite sum

of polynomial kernels

exp
(
xT z

)
= 1 + β1(xT z) + · · ·+ βn−1(xT z)n−1 + βn(xT z)n + · · ·

k(x, z) = γexp
(
xT z

)
⇒ γ

∞∑
n=0

Kpoly(x, z)
(2.13)
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The implication of equation (2.13) is that the squared exponential kernel is infinitely
differentiable and very smooth. Consequently, in problems where function smoothness is
a priority and the analysis of the derivative information is necessary, a gaussian process
prior with a squared exponential kernel assumption can provide the desired qualities with
an added benefits of derivative information of any order. The covariance map of SE kernel

(a) SE kernel GP prior (b) SE kernel covariance map

Figure 2.9: GP prior distribution with SE kernel and its covariance map

and samples drawn from a prior distribution of GP with SE kernel is shown in Figure 2.9b
and Figure 2.9a respectively. Figure 2.9a shows the smoothness of the resulting functions.
However, its ability to introduce a smoothing effect presents a challenge when modeling
a discontinuous function or modeling data with big gap in between data points. This
is also reflected during prediction, when there is a large gap between the observed data
and forecasted points, it produces a very smoothed function which might not reflect the
behaviour of the underlying data generating process. In such moments a Matern class
kernels that encapsulate the flexibility of SE kernels with an added benefits of modeling
discontinuity can give a better performing models.

2.4.5 Matern kernels
These classes of kernels exhibit the properties of polynomial, exponential and to the
extreme squared exponential kernel behaviours. Such diversity has given these kernels
to excel in areas where the SE kernel couldn’t. As a result, they are considered as a
generalization to the SE kernel and by extension to the exponential kernel as well. They
produce a less-smoother functions compared to the squared exponential kernel. However,
if there is a possibility of missing data or discontinuous, a prior gaussian assumption with
matern class kernels as a covariance function provides a better fitting models. The matern
class kernel is a stationary kernel that defines a covariance function on any two vectors
x, z ϵ Rn which is given by

k(x, z) = 1
Γ(v)2v−1

(√2v
l
∥x− z∥

)v
Kv
(√2v

l
∥x− z∥

)
(2.14)

where, Γ(v) is a gamma function, Kv is the modified Bessel function of the second kind
and ∥x− z∥ the euclidean distance between the two vectors. The kernel is parameterized
by the length parameter l > 0 and v > 0. The purpose of parameter l is similar to the
length parameter in squared exponential kernel. It control the range of influence a given
data point has on points near and far as dictated by the decaying exponential euclidean
distance between them. Parameter v also called the smoothing parameter, determines
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the level of smoothness and flexibility of the kernel in modeling abrupt changes, discon-
tinuities, gaps and variations in the data. As v → ∞, the kernel resembles a squared
exponential kernel resulting in a smoother functions with continuous differentiability. A
lower value of v, results in a rougher function with discontinuous derivatives which helps
in modeling data variations better than other alternative kernels. In practice values of v
ϵ {1

2 , 3
2 , 5

2} are frequently used and its approximation to the exponential and polynomial-
exponential kernel is given in equation (2.15) respectively. The differentiability of the
resulting function is dependent on the value of v. A Gaussian process with a matern
covariance function is at most v − 1 times differentiable. As such, for v = 1

2 zero (dis-
continuous), for v = 3

2 once and for v = 5
2 is twice differentiable. Correspondingly, their

reduced kernel equations become, for v = 1
2

k
1
2 (x, z) = exp

(
− 1

l
∥x− z∥

)
for v = 3

2

k
3
2 (x, z) =

(
1 +
√

3
l
∥x− z∥

)
exp

(
−
√

3
l
∥x− z∥

)
(2.15)

for v = 5
2

k
5
2 (x, z) =

(
1 +
√

5
l
∥x− z∥+ 5

3l
∥x− z∥2

)
exp

(
−
√

5
l
∥x− z∥

)
Optimization algorithms doesn’t allow an abrupt change in model type or complexity
during the optimization steps. Consequently, although the kernel has two parameters,
only one of them (i.e the length parameter l) is trainable. As the parameter v determines
the type of the model, it is a design parameter. Hence, it is pre-selected as a model specific
parameter before training. Figure 2.10b and 2.10a show the covariance map and sampled
functions from a GP prior with a matern kernel as a covariance function. The smoothing
parameter was selected to be v = 0.5. Compared to the prior distribution of GP with
SE kernel in Figure 2.9a, Figure 2.10a shows GP with a matern kernel produces a more
rougher and sharp functions fit for modeling jumps. For v = 3

2 , 5
2 , · · ·,∞ the resulting

functions of the GP prior with matern kernel will resembles those shown in Figure 2.9a.

(a) Matern kernel GP prior (b) Matern kernel covariance map

Figure 2.10: GP prior distribution with matern kernel nu=0.5 and its covariance map
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2.4.6 Rationale quadratic kernel
In the squared exponential kernel, the length parameter l control the range of influences
a given point can have. Once fixed or optimized the model will either exhibit local depen-
dence with high variance or a global dependence with low variance and high smoothing
factor. The rational quadratic is a stationary kernel that encapsulate the benefits of a
collection of SE kernels with varied length scales. It is represented as an infinite sum of
SE kernels with differing length scales. As such, for any two vectors x, z ϵ Rn, it defines
a covariance function given by

k(x, z) =
∫ ∞

0
Γ(l)exp

(
− ∥x− z∥2

2l2

)
≈
(
1 + 1

2αl2∥x− z∥2
)−α

(2.16)

where, Γ(l) is a gamma function, α > 0 determines the weighting value applied on the

(a) RQ kernel GP prior (b) RQ kernel covariance map

Figure 2.11: GP prior distribution with RQ kernel α = 0.5,l = 0.1 and its covariance

different length parameter (l > 0) and ∥x− z∥ represent the euclidean distance. Both the
α and l parameters are trainable and optimised during training. A Gaussian process with
a rational quadratic kernel as a covariance function produces a rougher priors for small
values of α which is ideal for modeling abrupt data variations. As the values of α→∞ the
model will produce smoother functions with low variance just like the SE kernels would.
The RQ kernel covariance map and sample functions from a GP that has a RQ kernel with
l = 0.1 and α = 0.5 as a covariance function are shown in Figure 2.11b and Figure 2.11a
respectively. The depth of interaction between data points can be seen by comparing
the covariance map of the SE kernel in Figure 2.9b and RQ kernel in Figure 2.11b. The
consideration of varied mixture of length scales in rational quadratic has enabled points
to interact with their nearby points as well as those farther away. However, the RQ kernel
produces less smoother functions as shown in Figure 2.11a compared to the SE kernel in
Figure 2.9a.

In general, the squared exponential, matern and the rationale quadratic kernels are
great at interpolating and filling missing values regardless of the nature of the data.
However, their extrapolation ability depends on the length parameter l and structure of
the data. The estimated forecast of a Gaussian process that has any of those kernel as a
covariance function will revert back to the mean value during extrapolation for a forecast
horizon greater than the length parameter. Especially, for the data that exhibit periodic
patterns, those kernels don’t posses the framework to capture and set accurate similarity
measures for the observed oscillatory behaviour [79].
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2.4.7 Periodic kernels
Periodic kernels enables data points to interact intermittently. As a result, they provide an
accurate similarity measure to points near and far but can affect one another recurrently.
Consequently, the prediction of a Gaussian process with periodic kernel at a given point is
determined by the contribution of all points that influences the given point intermittently.

Periodic kernel can be constructed from any stationary kernel by transforming the
vectors x, z ϵ Rn through a wrapper function u(·) = [cos(·), sin(·)] and then feeding the
transformed vectors as an input to the stationary kernel. For instance, the exponentiated-
sine squared periodic kernel uses the SE kernel as a base kernel. First, it transforms
the given vectors x, z into u(x) = [cos(x), sin(x)] and u(z) = [cos(z), sin(z)] using the
wrapper function respectively. Then, it substitutes the euclidean distance ∥x− z∥2 of the
SE kernel with ∥u(x)− u(z)∥2.

Assuming there is such function u(·) : x, z 7→ [cos(·), sin(·)], the euclidean distance
between the vectors is given as

∥u(x)− u(z)∥2 =
(
u(x)− u(z)

)T(
u(x)− u(z)

)
∥u(x)− u(z)∥2 =

(
cos(x)− cos(z)

)2
+
(
sin(x)− sin(z)

)2

∥u(x)− u(z)∥2 = 2
(
1− cos(x− z)

)
Applying the half angle formula on 2

(
1− cos(x− z)

)
∥u(x)− u(z)∥2 = 2

(
2sin2(x− z

2 )
)

Considering periodic recurrence 2πf or 2π
p

, the above equation can rewritten as

∥u(x)− u(z)∥2 = 2
(
2sin2(π(x− z)

p
)
)

Now given the SE kernel k(x, z) = exp
(
− ∥x−z∥2

2l2

)
and substituting ∥u(x)−u(z)∥2 in place

of ∥x− z∥2

k(x, z) = exp
(
− ∥u(x)− u(z)∥2

2l2

)
k(x, z) = exp

(
−

2
(
2sin2(π(x−z)

p
)
)

2l2

)
⇒ exp

(
−

(
2sin2(π(x−z)

p
)
)

l2

) (2.17)

where l and p are the length parameter and the fundamental period that characterizes the
cyclic event respectively. The periodic kernel covariance map and a few sampled functions
from a GP model with a periodic kernel are shown in Figure 2.12b and 2.12a. The length
parameter determines the level of smoothness of the resulting functions and the extent
of interaction as shown in prior distribution and the covariance map of Figure 2.12a
and Figure 2.12b respectively. Small values of l produces narrower strip and large values
produce broad strip in the covariance map to signify the level of influence. The parameter
p is the fundamental period. Its value determine the number of strip in the covariance
map. As such, for small frequency values, we are bound to see a lot of strips on the
covariance map.

Note:, We have been referring the variables that describe the dynamics of a kernel as
parameters. Since they directly impact the response of the kernel, the parameter reference
is a fitting description. However, it should be noted that when discussing kernel-based
learning models, the same parameters will be addressed as hyper-parameters due to their
indirect influence through the kernel. Despite the differing nomenclature used, both
references point to the same variables.
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(a) Periodic kernel GP prior (b) Periodic kernel covariance map

Figure 2.12: GP prior with periodic kernel p = 0.75, l = 0.5 and its covariance map

2.4.8 Compositional kernels

The tendency to base forecast decisions based on the wisdom of crowed sourcing is the
advantage that the Bayesian and deep learning models share in common. These models
capitalize on the information gathered from numerous sources to make better decision.
They weigh the contributions of different functions and the appropriateness of their so-
lution to a given problem. The more features the model can distinguish, the better will
be its generalization and forecast accuracy. Hence, learning and inference at its core de-
pends on the model’s ability to understand and discern the structure of the data. For
instance, a neural network that is designed to differentiate linear features, can be made to
learn non-linear mappings with an additional hidden layer. The extra layer improves the
network’s flexibility and competence to analyze new features. Consequently, its output
will be the cumulative result of all details that the network was able to detect. The ex-
ploration of complex features in kernel-based learning models also include the utilization
of multiple kernels. Individually, the kernel functions discussed in section 2.4 may not be
adequate in representing the full spectrum of patterns observed in a given data. However,
pattern mapping by combining a number of kernel together presents an opportunity to
utilize the combined predictive performance of all. For instance, SE kernel mostly capture
trends and local similarity where as the periodic kernel looks for global interdependence
corresponding to the fundamental frequency. The additive or multiplicative combination
of these kernels undeniably would give improved performance than either of them used
alone. As a result, various kernel learning schemes such as analytical [79], data-driven [84],
numerical approximation [60, 83, 85] have been put forth as an alternative approach to
kernel design or enhancing its fitness.

Some of the major challenges associated with kernel learning is the question of how
best to select it and the algorithm that should be used for optimising its parameter [86].
Practically, we mostly make personal decision on which kernel and algorithm to apply or
think are more appropriate to the task at hand. The selection signify that we implicitly
put a restriction on the relevant features the model should focus on learning. In doing
so, the assumption will inadvertently bias the outcome [87]. In fact this goes against the
aim of machine learning. The selected kernels may or may capture the best features. One
possible strategy in rectifying this limitation is proposing an algorithm which is capa-
ble of automatically selecting the relevant features through a combination of predefined
collection of kernels [81, 86, 87].

Various reasons can be given for the motivation behind combining kernels. For in-
stance, it can be the need to explore and understand the structure of the data, handle
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heterogeneous information fusion or improve the predictive performance of the data gen-
eration model. Some other time, we might find the exiting kernels are perhaps compu-
tationally intensive. As such, we needed a new approach to approximate or potentially
replace it by another kernel that is more efficient [83]. Regardless of the reasons or the
method of combination, all kernels, old and new, should provide an acceptable measure
of similarity in accordance with the task and the nature of the data. They should also
adhere to the characteristic of a kernel given in proposition 2.4.1 and the principles of
kernel combination stated in proposition 2.4.2. To that end, various multiple kernel learn-
ing (MKL) algorithms differing in principles and optimisation techniques (i.e rule based,
heuristic, Bayesian, optimisation, boosting) have been implemented [87]. The rule based
kernel combination follows the sum and product rule given in proposition 2.4.2 to create
new kernels. According to it, for any two predefined kernel functions k1 and k2, K is a
new kernel given by

K = α1k1 + α2k2, for any α1, α2 > 0
K = α1k1 ∗ α2k2, for any α1, α2 > 0

(2.18)

The coefficients α1 and α2 are mostly substituted by a constant kernel. Such approaches
prefer to optimise all parameters as part of the fitting process and no particular optimisa-
tion step is carried out separately for the coefficients. Although this scheme appears to be
simple, the selection of suitable kernels for combination requires expert domain knowledge
in regards to the type of data and the problem in general. Especially, for a time-series
data that exhibit visible patterns, this methods offers an interpretable kernel structure
with acceptable predictive performance. Another alternative that is proposed for kernel
learning is to present kernel combination as a convex optimisation problem and leverage
the objective function convexity in order estimate the coefficient’s for the mixture [87].
Given base kernels k1, · · ·, km and parameter vector η ϵ Rm, a new kernel K(η) can be
defined as

K(η) =
m∑

i=1
ηiki

η = arg min J(η)
η ϵ Rm

(2.19)

The parameterization of the cost function J(η) varies depending on the specialization.
For instance, in regularised linear regression, the objective function is given as J(η) =
λ
2 yT (K(η) + nλI)−1y, where n and λ are number of points and regularization factor respec-
tively. Despite the mathematical form, the parameter η’s values are evaluated by minimiz-
ing the given cost function J(η). The Bayesian methods takes a robust and probabilistic
approach to optimal weight assignment by considering the combination parameters as
random vectors and defining a prior distribution on η ∼ Dir(η; α) where α ∼ Γ(k, β).
The resulting posterior will be used as the coefficient for the kernel combination in equa-
tion (2.19). There are also performance based weight assignments where the predictive
quality of one kernel is used as a based to to scale the weights for the whole combina-
tion [86, 87]. Alternatively, the boosting or ensemble based approaches follow a recursive
addition of base kernels to the combination until a certain performance index is met where
the value of the coefficients are optimised during turning along with the kernel parameters.

The multiple kernel learning frameworks undoubtedly give machine learning models
the capability to process complex features, analyze and fuse information from various
sources. However, such degree of flexibility comes at a cost of negatively impacting the
computational performance of the underlying model. For example, combining kernels
compounds the number of parameters to be optimised. As the number of kernels increase,
the computational complexity of the model will also increase. As a result, the time

61



and resource requirement for parameter optimisation and model fitting will be higher.
Additionally, a higher number of kernels in model training can lead to a complex model
that is highly vulnerable to overfitting, resulting in a model that performs well during
training and worse on validation. Furthermore, algorithmic based kernel combination puts
model interpretability at risk. The reason being, the algorithms automatically combines
kernels to meet some predefined performance metrics among which model interpretability
is not one of them. To that end, they construct complex relationships between inputs and
outputs features in order to achieve it. Unfortunately, due to the inherent nature of the
algorithm, the interpretability of the final model is not guaranteed. Especially, in areas
where high model transparency is a requirement, such procedure presents a challenge
resulting in the undesirability of the trained model.

2.5 Gaussian process probabilistic models
Probabilistic models tends to predicts the trajectory of the mean and its variance. This
is due to the high susceptibility of individual behaviour to variation. As such, model-
ing every singular randomness is very difficult. However, the behaviour of the average
population although it varies in its own pace, stays minimal compared to the samples vari-
ations. Hence, analysing and predicting group behaviour is much easier. In the collective
assessments of the mass, the effect of individual variability is minimal [88].

In this subsection, we present the mathematical concept behind the multivariate
Gaussian process model. The Gaussian distribution has been widely used in machine
learning and system modeling. The reason behind its popularity can be attributed to its
finite-dimensional sufficient statistics. Meaning that the number of parameters needed to
describe the observed data and characterize the behavior of the corresponding distribu-
tion do not increase with the size of the data. Hence, the distribution requires a fixed
set of parameters that can sufficiently define it. Figure 2.13a shows a univariate Gaussian
distribution for a random variable x with mean µ and variance σ2. Its probability density
p(x|µ, σ2) is given by

p(x|µ, σ2) = 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
(2.20)

The parameters µ and σ2 contain all the accessible information that can be inferred from

(a) Univariate gaussian density plot (b) Bivariate gaussian density plot

Figure 2.13: Gaussian univariate and bivariate distribution
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the given data as well as the future expectations from the generation model. In addition
to compressing the information content of a data, the mean-variance parameterization
simplify the process of mapping one distribution into another. For instance, estimations
in areas like variational inference, stochastic sampling and normalizing flows involve trans-
forming distributions from one form to another in order to study variables from a different
perspective or use the existing distribution as base to create another. Regardless of the
form of the distribution, this transformation has been carried out either through the cu-
mulative distribution function (CDF) or the change of variable techniques which requires
a bit of computations. In case of Gaussian, however, due to the mean-variance param-
eterization complex distributions can easily be constructed by transforming the mean µ
and variance σ2 parameters. This approach doesn’t require applying the CDF or rules of
change of variables. This has been the reason why Gaussian linear transformation rules
are widely preferred in posterior derivation than the approach suggested in the Bayesian
framework. As a result, a Gaussian is defined as a distribution that is fully specified by
its mean and variance parameters [82].

In probabilistic linear regression, the univariate Gaussian has been used to analyse
the cause-and-effect relationship between variables and accommodate different features.
However, those features and their interactions are modeled only as part of the mean
parameter. Being univariate, the distribution doesn’t offer the framework to model the
relative correlations between multiple random variables. In such moments, the multivari-
ate Gaussian distribution can provide a valuable insight into how the correlation between
the random variables impact the predictive performance of a model.

The multivariate Gaussian distribution is an extension and a generalization to the
univariate Gaussian in a higher dimension which is used to study the correlations among
multiple random variables. Consequently, a vector of n random variables is said to be
n-variate Gaussian distributed, if every linear combination of its n components is also
normally distributed. That is, given a vector of random variables X = {x1, x2, ·, ·, xn} ϵ
Rn is multivariate Gaussian if, for every β = {β1, β2, ·, ·, βn} ϵ Rn, their linear combination
ϕ(X, β) =

∑n
i=1 βixi is Gaussian. If so, their joint distribution can be described by

p(x1, ··, xn|µ, Σ) = 1
(2π)n/2|Σ|1/2 exp

(
− 1

2(X− µ)T Σ−1(X− µ)
)

∼ N (µ, Σ)
(2.21)

where µ ϵ Rn is now a mean vector and Σ ϵ Rnxn is a symmetric semi-definite covariance
matrix with |Σ| as its determinant. Visualising a multidimensional distribution for n > 2
is difficult. However, for two random vectors x1 and x2 a bivariate joint distribution can
be defined as

p(x1, x2|µ, Σ) = 1
(2π)|Σ|1/2 exp

(
−1

2

[
x1 − µ1
x2 − µ2

]T

Σ−1
[
x1 − µ1
x2 − µ2

])

where, Σ−1 =
[
Σx1x1 Σx1x2

Σx1x2 Σx2x2

]−1 (2.22)

where µ = [µ1, µ2]T is the mean vector, Σx1x1 & Σx2x2 describe the marginal variance of x1
& x2 and Σx1x2 models the covariance between them. Figure 2.13b shows the bell-shaped
joint density, covariance contour plot and few sampled data points for vectors distributed
according to p(x1, x2) ∼ N (0, [[1, 0.9], [0.9, 1]]).
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2.5.1 Multivariate distribution in probabilistic regression
The general objective in regression is to model the relationship between the inputs features
xn and the target variable yn.

yn = β1x1 + β2x2 + · · ·+ βnxn (2.23)

The multivariate distribution provides a framework that simplifies the analysis in a way
that captures the mutual interaction between the given predictors through probabilistic
distributions. For instance, the Bayesian linear regression takes a probabilistic approach
on model outputs and parameters by assuming both quantities as random vectors that
follow a multivariate normal distribution. For instance, given a time series data D =
{(xn, yn)}N

n=1 and considering D-input features, the target vector Y is assumed to follows
a Gaussian distribution

Y = f(X) + ϵ where ϵ ∼ N (0, σ2Id) , f(X) = Xβ

X =



1 x1 x2
1 x3

1 ... xd
1

1 x2 x2
2 x3

2 ... xd
2

...

...

...
1 xn x2

n x3
n ... xd

n


, β =



β1
β2
·
·
·

βd


(2.24)

where, the vector X represents the design matrix for the input features, β the parameters
of the model and ϵ the perceived aleatoric uncertainty. Applying the linear Gaussian
transformation rule, the likelihood function can also be written as a distribution

Y = Xβ + ϵ

Y ∼ N (Xβ, σ2Id)
(2.25)

For N observations, the joint distribution becomes an N-dimensional multivariate distri-
bution with mean Xβ and variance σ2Id whose density is given by

p(y1, y2, ·, ·, yn|X, β, σ) = 1
(2π)N/2|σ2Id|1/2 exp

(
− 1

2(y −Xβ)T σ−2Id(y −Xβ)
)

(2.26)

Since the likelihood is a Gaussian, for mathematical convenience a Gaussian prior is
assumed for the parameter distribution. Hence, the Gaussian prior for β is also given
by p(β) ∼ N (µo, Σo). For a D-input features, this also defines a D-dimensional joint
parameter distribution

p(β1, β2, ·, ·, βd|µo, Σo) = 1
(2π)D/2|Σo|1/2 exp

(
− 1

2(β − µo)T Σ−1
o (β − µo)

)
(2.27)

Equation (2.27) makes it possible to model the epistemic uncertainty through the param-
eter covariance matrix Σ. Since both the likelihood and prior follow a normal distribution,
the parameter posterior will also be gaussian p(β|Y, X, µo, Σo) ∼ N (µp, Σp) and it can be
estimated by applying Bayesian inference on equation (2.26) & (2.27),

p(β|Y, X, µo, Σo) = p(Y |X, β, σ)p(β|µo, Σo)∫
p(Y |X, β, σ)p(β|µo, Σo)

(2.28)

The integral in equation ( 2.28) complicates the derivation. The easiest alternative is to
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apply moment matching on LHS and RHS of equation (2.28)

p(β|Y, X, µp, Σp) = p(Y |X, β, σ)p(β|µo, Σo)∫
p(Y |X, β, σ)p(β|µo, Σo)

p(β|Y, X, µp, Σp) α p(Y |X, β, σ)p(β|µo, Σo)
1

(2π)D/2|Σp|1/2 exp
(
− 1

2(β − µp)T Σ−1
p (β − µp)

)
α

1
(2π)N/2|σ2Id|1/2∗

exp
(
− 1

2(y −Xβ)T (σ2Id)−1(y −Xβ)
) 1

(2π)D/2|Σo|1/2 exp
(
− 1

2(β − µo)T Σ−1
o (β − µo)

)
(2.29)

collecting terms only related to β and matching the RHS with the LHS of equation (2.29),
the posterior parameter distribution can be given as

Σp =
(
Σ−1

o + 1
σ2 XT X

)−1

µp =
(
Σ−1

o µo + 1
σ2 XT t

)
Σp

(2.30)

where the µp and Σp represent the posterior mean and variance distribution for the pa-
rameter β. Hence, using equation (2.24) and (2.30), the target posterior distribution can
be computed

f(Y ) = Xβ + ϵ, where
ϵ ∼ N (0, σ2Id)
β ∼ N (µp, Σp)

Applying the linear transformtion rule
f(Y ) ∼ N (Xµp, XT ΣpX + σ2Id)

(2.31)

Equation (2.31) provides the model’s output distribution with mean Xµp and variance
XT ΣpX + σ2Id. In addition to providing a forecast distribution, the estimation methods
follows a principled approach in addressing the aleatoric uncertainty through σ2 and the
epistemic uncertainty with Σp as shown in equation (2.31). Bayesian linear regression
through the multivariate distribution context allowed it to encompass the impact the
inputs correlation has on the mean trajectory and estimated variance. Something which
was difficult to do in the univariate case. However, due to its parametric nature, the data
generation capability or the accuracy of the model in representing the observed data is
still constrained by the number of input features or the number of parameters considered.
Furthermore, since the selection of the features (i.e the complexity of the model) is a
design parameter, the suitability of the model to the given problem remains subjective.
On the contrary, the Gaussian process is the non-parametric version of Bayesian inferential
learning that makes no prior such assumption on the number of parameters required to
fully define a model. In a multivariate distribution context, it relies on the prior and
posterior distribution of functions in contrary to the parametric distribution followed in
the case of parametric regression models. As such, the Gaussian process is a multivariate
distribution over functions. Consequently, this data-driven approach to model building
gives the Gaussian process an advantage in delivering an appropriate fit functions that is
relevant to the problem at hand compared to other regression methods.

2.5.2 Gaussian process regression
Definition 2.5.1. Formally Gaussian process model is defined as a stochastic process that
maps every input xi to a random function f(xi) where the joint distribution p(f(x1), ··, f(xn))
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of a finite collection of these random functions f(x) = {f(x1), f(x2), ··, f(xn)} is a multivariate
Gaussian.

As a distribution over functions, it is fully specified by a mean and covariance functions.
Consequently, it follows a multivariate distribution parameterized with a mean µ(x) and
covariance matrix Σ,

p(f(x1), f(x2), ··, f(xn)) ∼ N (µ(x), Σ) , where

µ(x) =



µ(x1)
µ(x2)
·
·
·

µ(xn)


, Σ(x, x) =



k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · ˙ k(x2, xn)
· · · · ˙ ·
· · · · ˙ ·
· · · · ˙ ·

k(xn, x1) k(xn, x2) · · · k(xn, xn)


,

(2.32)

where the covariance matrix Σ is a symmetric positive semi-definite matrix that is also
referenced as the kernel matrix. It’s elements are evaluated based on the specific ker-
nel function k(x, x) employed. Data normalization and mean-centring can also give an
alternative specification where the mean function is assumed to be zero. In fact, the
Gaussian process with zero mean P (f1, f2, ··, fn) ∼ N (0, Σ) is the most widely used form
of representation.

2.5.3 Prior distribution
In Gaussian process model, the Bayesian framework treats functions as random variables.
The prior distribution quantify the belief and understanding on the distribution of those
functions before observing any data. How inclusive and informative the prior, is entirely
dependant on the past observed history and level of expertise. The information about
the structure of the data, the patterns it is exhibiting and the possible functions that
are expected to sufficiently represent it, are primarily encoded through a selection of the
kernels. In return, these choices makes the prior definition more or less subjective. And
yet, no more subjective than the various assumption we make about the nature of the
anticipated noise, the number of parameters or their distribution, when building other
predictive models.

As a non-parametric model the Gaussian process maps every input xi to a random
variable output yi. Meaning that for infinite number of inputs X∞, we will have infinite
number random variables Y∞ which makes the underlying model infinite dimensional.
Something which exceeds the bound of realization. However, according to Definition 2.5.1,
a collection of those random variables are jointly Gaussian. As such, bounding the collec-
tion of the observed values within a finite set, it is possible to create a distribution that
is computable. Furthermore, by dividing the collection into random variables at the ob-
served location f and random variables at any other location f∗, the prior distribution of
the Gaussian process can be established. Hence, for a time series data D = {(xn, yn)}N

n=1
the Gaussian process prior distribution over functions can be formally defined as a joint
distribution p(f, f∗) over the random variables f at observed point x and the random
variable f∗ at all other points x∗ as

p
(
f, f∗

)
∼ N

(
0,

[
Σff Σff∗

ΣT
f∗f Σf∗f∗

])
(2.33)

where, µ is assumed to be zero. Whereas, Σff , Σf∗f∗ and Σff∗ = Σf∗f models the marginal
and cross-variance between the points at observed x and test points x∗ respectively. As-
suming there are N observations and P forecast points, Σff , Σf∗f∗ and Σff∗ are an N x N,
P x P and N x P sized matrices respectively.
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Applying the multivariate marginalization rule on equation (2.33), the marginal dis-
tribution at the observed points p(f) and at test points p(f∗) is given as

p(f) ∼ N (0, Σff )
p(f∗) ∼ N (0, Σf∗f∗)

(2.34)

Marginal probabilities are used to compute the probabilities and expectations of a singular
random variable. However, if the desired outcome is the probabilities of more than one ran-
dom variable, then a joint probability distribution is used instead. Marginal distributions
contain relevant information regarding a specific random variable under consideration.
As such, they don’t contain enough information to completely specify the joint distribu-
tion of one random variable with respect to another. Contrarily, the joint distribution
contains additional information regarding the cause-effect relationship between random
variables, an information which is not available in the case of marginal distribution. For
instance, given the prior distribution a Gaussian process model in equation (2.33), the
joint probability density between the random variables f and f∗ is given as

p(f, f∗) = 1
(2π)N

2 |Σ|1/2
exp

(
−1

2

[
f
f∗

]T

Σ−1
[

f
f∗

])
(2.35)

2.5.4 Posterior distribution
Bayesian learning evolves only after observing new information. This change in perspec-
tive is manifested either by changing the parameter distribution or the prior understanding
of the problem at hand. Even then, Bayesian models are largely skeptical. For instance,
if an N-time coin flip experiment resulted in N number of heads and 0 tails outcomes,
the frequentist would believe that the probability of the next outcome being head is 1.
However, being skeptical even in light of the observed data, the Bayesian model wouldn’t
assume the probability of the next outcome being head as 1. And yet, they are not close-
minded either. If they are presented with an evidence-based reasoning, then the Bayesian
model would be compelled to recreate a posterior-self. In the context of distribution,
this posterior-self is referenced as the posterior distribution. The posterior contains valu-
able information regarding how likely some values are after observing new data and the
degree of uncertainty associated with that assertion. Mathematically, its estimation is
conditioned on the observed data, the likelihood and prior distribution. As such, before
driving the posterior distribution of the latent random variables, lets take a look at the
likelihood of the observed data under the Gaussian process.

In latent variable models the observed data y1, y2, ·, ·, yn are assumed to be a realization
or samples drawn from another random variable Y that is distributed according to

Y = f + ϵ , where, ϵ ∼ N (0, σ2Id)
Y ∼ N (f, σ2Id)

(2.36)

In equation (2.34) the marginal distribution p(f) of the random variable at observed point
is given. Applying the Gaussian linear transformation and marginalizing f , equation
(2.36) can be re-written as

Y ∼ N (f, σ2Id)
Y ∼ N (0, Σff + σ2Id)

(2.37)

Since f is marginalized, it is now called the latent variable, as its effect is felt but not
observed. Equation (2.37) provides the distribution of the random variable Y at observed
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points along with the expected uncertainty. Hence, it can be used to define the likelihood
for the time series data D = {(xn, yn)}N

n=1 as

p(y|f, x, θ) = 1
(2π)N

2 |Σff + σ2Id|1/2
exp

(
−1

2yT (Σff + σ2Id)−1y
)

(2.38)

where Σff is the covariance matrix for the observed points, θ the kernel parameters, σ2 is
the assumed aleatoric uncertainty and N is the number of training samples. The likelihood
function in equation (2.38) is mostly used for optimising the parameters θ defining the
contents of the covariance matrix Σff as part of the model fitting process.

2.5.4.1 Gaussian process conditionals

Multivariate distribution encapsulate the interaction of multiple random variables. Al-
though being stochastic implies the possibility of acquiring any value at any given time, it
doesn’t imply that the values of the random variable will observable all the time. In such
moments, the best approach is to condition the probable values the variable could take,
based on the values of the other variables it correlated with. The multivariate conditional
distribution offers an opportunity to guess the probable values a random variable could
take given the observed values of other variables. Even if they don’t provide accurate
information regarding the values acquired by the variable, they could provide a probable
value from the knowledge of other observed variables. However, such inference is only
possible if there is an interdependence between the random variables. If the random vari-
ables are independent, no amount of data about the other variables will give us adequate
information regarding the variable in question. In such scenarios, the random variables
are said to be independent.

The Gaussian process prior distribution establish the required dependency between the
latent variables at testing points f∗ and at observed points f within its covariance matrix,
so that the former can be predicated conditioned on the values of the later. To that
end, from equation (2.34) and (2.37), we have the marginal distribution of the random
variables f∗ and the observed data Y respectively. These equations can be combined and
used to define the joint distribution between the observed data Y and f∗ as

p
(

Y, f∗
)
∼ N

(
0,

[
Σff + σ2Id Σff∗

Σf∗f Σf∗f∗

])
(2.39)

Applying the multivariate conditional rule [see Appendix. 5] on equation (2.39), the
Gaussian conditional at test points or more formally the posterior predictive distribution
of the model at forecast point is given by

p(f∗|f, x, y, θ) ∼ N (µ∗, Σ∗) , where

µ∗ = Σf∗f (Σff + σ2Id)−1y

Σ∗ = Σf∗f∗ − Σf∗f (Σff + σ2Id)−1Σff∗

(2.40)

Note: the variance of the conditional distribution p(f∗|f, x, y, θ) in equation (2.40) is the
Schur complement of the block Σf∗f∗ of the covariance matrix given in equation (2.33).
Equation (2.40) shows the predicted variance Σ∗ doesn’t depend on values of the observed
variable Y, but rather on the relative distance between observations [89]. As a result, the
model confidence in its prediction is higher (i.e narrow confidence interval) for forecast
points that are closer to the observed values as shown in Figure 2.14. On the other hand,
the predicted mean µ∗ = Σf∗f (Σff + σ2Id)−1y resembles a weighted average combination
of all y values (i.e µ∗ = By, where B = Σf∗f (Σff + σ2Id)−1), where the weights depend
on the prior distribution and the selected kernel function.
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In regards to the uncertainty quantification, equation (2.40) considers both sources of
uncertainty. Like in the Bayesian linear regression, the model tries to anticipate variabil-
ity through the data variance σ2 and modeling inadequacy or model variance with Σff

while evaluating a fitting function. Equation (2.33) - (2.40) show the significance of the
covariance matrix in determining the suitability of the model to a given problem. The
Gaussian process prior, likelihood and posterior distribution are all dependent on this
matrix. By extension, the dimension of the matrix and the specific kernel functions used
impact the computational efficiency and predictive accuracy of the underlying model.

For instance, assuming we have a data generation model given by y = x ∗ sin(π
2 x) for

an x ϵ [0, 6] and six observed points (x, y) ϵ {(5.8, 1.9), (5.3, 4.6) , (2.8,−2.9), (5.3, 4.6),
(3.4,−2.9), (3.8,−0.5)}. A SE kernel for covariance mapping and a noise variance of
σ2 = 0.52 were selected to create a noise-free and noisy Gaussian process models. The
prior distribution of the models resembles a Gaussian process with an SE kernel given in
Figure 2.9a. However, the posterior distribution depends on training points, the optimised
SE hyperparameters and the absence or presence of a noise. Figure 2.14a and Figure 2.14b
show the posterior conditional distribution for a noise-free and noisy GP model with an
assumed data variance of σ = 0.52. The Figures clearly show in areas of adequate observed
data, both the noisy and noise-free models predict with more confidence (i.e narrow
prediction interval), with the exception that the noisy prediction takes into account data
variability. As a result, the prediction interval width of the noisy GP is higher compared
to the noise-free GP as shown in Figure 2.14. It should be noted that a prediction with
an SE kernel will go back to the mean of the training data µ(x) ≈ 1

n

∑n
i yi for a prediction

horizon greater than the value of the kernel length parameter.

(a) Noise free GP distribution (b) Noisy GP distribution σ2 = 0.52

Figure 2.14: Noisy and noise free GP distribution

2.5.5 Parameter optimisation
The Gaussian process prior presents possible fit functions within Rn dimensional space
as dictated by the inputs and the chosen kernels. To select the best possible functions
that could explain the data, the hyperparameters of the underlying model needs to be
optimised. In probabilistic models, the search for a function that fits the data is equiv-
alent to evaluating a model that has a higher chance of generating the observe data. As
a result, for gaussian process models the likelihood function given in equation (2.38) is
used as an objective function for hyperparameter optimisation. This function combines
the contribution of the prior, kernels, inputs, observed values and turns it into a single
constant number that can be used for parameter selection and model comparison. When
the kernel functions are of the same family, parameter optimisation is also synonyms with
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model optimisation [89]. In multiple kernel learning, parameter optimisation is associated
with model selection. The usual approach in either of these cases, is to optimise the hy-
perparameters of the kernels using the log-marginal likelihood function. The logarithmic
scale is applied only for the sake of mathematical convenience and numerical stability.
For instance, given the covariance matrix Σff , the parameters θ1, θ2, ··, θd, where θi ϵ θ
represent the hyperparameters including the data variance σ2 and the marginal likelihood
function p(y|f, x, θ),

p(y|f, x, θ) = 1
(2π)N

2 |Σff + σ2Id|1/2
exp

(
−1

2yT (Σff + σ2Id)−1y
)

Applying logarithmic transformation on LHS and RHS, the log-likelihood is given by

log p(y|f, x, θ) = −1
2yT (Σff + σ2Id)−1y − 1

2 log |Σff + σ2Id| −
N
2 log(2π) (2.41)

The log-likelihood function is a differentiable function. However, the presence of the
determinant |Σff + σ2Id| term makes it a non-convex function. This in return molds the
parameter search procedure into a non-convex optimisation problem. A problem where
the optimisation returns a number of feasible regions containing multiple locally optimal
values θ∗. Each of these optimal regions corresponds to different model with a particular
interpretation of the given data. Hence, this log-likelihood based optimisation doesn’t
guarantee a global optimum hyperparameter values. Instead, the estimation provides
various feasible models with different contextual information in regards to the optimal fit
functions. Furthermore, the non-convexity of the objective function puts an exponential
time requirement for evaluating feasible optimal values in the event of multiple kernel
learning with a large number of parameters. Be that as it may, the Gausssian process
models are robust and intuitive. As such, the local minima’s are capable of providing
a model with acceptable predictive performance. Consequently, the log-likelihood as an
objective function and any second-order gradient decent algorithm as an optimiser have
been employed to find the optimal parameter values θi that maximise the log p(y|f, x, θ).

θi∗ = arg max
θi ϵ θ

{
− 1

2yT (Σff + σ2Id)−1y − 1
2 log |Σff + σ2Id| −

N
2 log(2π)

}
(2.42)

As it can be seen in the above equation, the log-likelihood function is composed of
three terms. The first term is associated with the observed data Y. As a result, it is mostly
referred as the data-fit. The second term contains the kernel functions, parameters and
training points, all the variables that influence model behaviour and performance. It puts
a sort of regularization on model complexity or the parameter attainable values. Hence,
it is called the complexity term. The third and final term is the normalizing constant, a
constant that doesn’t affect the optimisation process or value of the optimal parameter.
As such, it is mostly ignored during the maximization process.

The complexity term doesn’t mention the observed values Y. That means the breadth
of the prior distribution, the smoothness of the returned functions or the complexity of the
model, have more to do with the inputs, kernels and their hyperparameters values than
the actual observation. The balance between the data-fit and complexity term resembles
the bias-variance trade off and determines whether the resulting model overfit or under-fit
the given problem. For instance, Figure 2.15a shows the evolution of a normalized data-fit
and complexity term with respect to the SE kernel length parameter l. As l → 0, the
complexity term converges to 0 and the data-fit term converge to a constant C depending
on the observed values Y. On the other hand, when l → ∞, the data-fit term decrease
and the complexity term increase as shown in Figure 2.15a. In section 2.4.4, we have
said, large values of l have a smoothing effect and results in a low order model or lower
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(a) A normalized data-fit and complexity term versus the length hyper-parameter l

complexity. However, here the complexity term behave opposite to that assertion only
because of the negative in the log-likelihood function in equation (2.41). The complexity
term shouldn’t be confused with the order of the model. Accordingly, the increase in
complexity term as l → ∞, signifies the decrease in model complexity. The data-fit,
complexity versus hyperparameter graph differs depending on observed values, inputs
and range of the hyperparameter. However, one thing remains constant, when data-fit
increases, the complexity decreases and vice versa. As a result, in a similar manner to the
bias-variance trade-off, optimal hyperparameter values need to provide a well balanced
data-fit values without worsening the complexity term.

The unfortunate consequence of employing the likelihood p(y|f, x, θ) for parameter
optimisation is the associated computational bottlenecks. In equation (2.42), the optimi-
sation algorithm continuously estimate the inverse of the covariance matrix (Σff +σ2Id)−1.
This requires numerical operations O(n3) cubic to the number of observations n. Fur-
thermore, we have to retain the whole data {(xi, yi)}n

i=1 during the optimisation steps and
posterior estimation in equation (2.42) and (2.40), which puts a quadratic O(n2) memory
growth requirements. Consequently, likelihood-based parameter optimisation results in
an intensive computation and a higher storage requirement. It is exponentially demand-
ing for big data with a higher dimensional covariance matrix. These realities has made
the Gaussian process unscalable and unfit for the analysis of big data [75, 90].

The intractability of the Bayesian inference and the associated computational bot-
tlenecks can be circumvented through the adoption of approximate inference. These
techniques can be stochastic like the sparse approximation or they can be deterministic
in nature. Methods that follow deterministic approximation focus on drawing inference
using the most probable outcome. For instance, the Laplace approximation draws prob-
abilistic inference around the mode of the given distribution [91], while variational based
deterministic approximations focus on approximate posterior utilizing the lower bounds
of the marginal probability distribution [92]. It is also paramount to point out that not
a single approach is successful in approximating all problems regardless of the nature of
the approximation. Meaning that, there are problems that either the deterministic or
stochastic approach can approximate well and problems in which one of them might not
be suitable for. For instance, the Laplace approximation is the easiest approximation.
And yet, it might not be the closest Gaussian approximation as compared to those deter-
ministic inferences that employ the KL-divergence as a criteria. On the other hand, the
KL-divergence is a good metrics for measuring the discrepancy between two distributions.
But, applying the KL-divergence as a measure of similarity to approximate a complex
distribution through a simple variational distribution lowers the variance estimation. As
such, a successful technique follows a logical path of matching the specific approxima-
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tion method with the given problem at hand. However, the common denominator in all
approximate inference mechanisms is that their representation comes with a reduced ac-
curacy. Furthermore, employing these methods doesn’t entail a reduction in difficulty. In
fact, approximate inference is basically a trade off between the inconvenience of solving an
intractable integral equation with the difficulty of solving optimization problem. In spit
of that, the optimization part is more preferred, because it offers a fast, computationally
efficient and optimal approximate solution.

In the case of Gaussian process models, sparse approximation methods like sampling
for kernel dimensional reduction and variational inference for posterior approximation rec-
tify these issues by avoiding the Bayesian inference and full rank kernel implementation
during parameter learning and posterior estimation. For instance, the sparse variational
Gaussian approximation that will be discussed in section 2.6.4, evaluates a sparse approx-
imation of the posterior using fewer samples drawn from the training data [66, 93]. These
approximations can be carried out either through a stochastic or deterministic based ap-
proximate inferences. In the next section, we will present some of the popular techniques
utilized as an approximate inference methodologies in the case of the Gaussian process
models.

2.6 Gaussian process approximation

The practical limitation of the exact Gaussian inference can be attributed to the demand
for a computational complexity of O(n3) and storage capacity O(n2) where n is the size
of the data [99]. Both requirements create equal impediments when analysing a data with
millions of observed values. Even so, the recent improvements in computing power is
making the computational requirement irrelevant. However, the storage capacity is still
limited and becomes the real challenge when working with huge volume of data. Hence,
the question that has been asked by so many is how to make the Gaussian process scalable
to big data. In all of the proposed approaches, there is no argument that for the model
scalability, the rank of the covariance matrix must be minimized [100]. These approaches
argue that rank minimization can be achieved by building the model prior on m pseudo
data points that are capable of approximating the observed data rather than building the
model relying on the original n observations. By compressing the information content
of the gathered data with an m ≪ n points, the model’s computational and memory
requirements can be reduced to the order of the approximating points.

The most important development of this shift in perspective is that the proposed
pseudo points may or may not be real data points. Meaning that, they are not necessarily
bounded to the domain of the observation. Consequently, they may or may not be part
of the training data, as well as no real constraints associated with their exact location.
In practice, they have been selected stochastically from the training data, or optimised
as part of the fitting process. Hence, there hasn’t been a uniform consensus on how they
should be selected and what aspect of the model they should approximate. This diverging
opinions has given rise to the model-based and posterior-based approximation methods.

Model-based approximations ensure model scalability by approximating the likelihood
of the exact Gaussian. Thereby effectively replacing the original model by another model
that has a low rank covariance matrix and high computational efficiency. As a result, some
aspect of the original model is lost. On the other hand, posterior-based approximation
methods such as those that employ the variational free energy (VFE), rely on variational
inference and data compression to approximate the posterior distribution while keeping
the original GP model intact. In such approximations, the m pseudo points are used to
establish a surrogate variational distribution with a sole purpose of approximating the
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posterior. To that end, the KL-divergence between the variational and the true pos-
terior is implemented as a metric to quantify the difference, ultimately leading to the
evidence lower bound (ELBO) derivation. Here as well, there is no uniform agreement on
the procedure for selecting the mathematical form of the approximating (i.e variational)
distribution. The choice has largely depended on the specific problem at hand and the
desired level of accuracy. This difference has provided a family of posterior-based approx-
imation methods such as the mean-field variational family [94, 95], Gaussian variational
family [92, 96], exponential variational family [97, 98], so and so forth.

Despite their difference, something that remained constant in both the posterior and
model-based approximation is that the mathematical form of the approximating distribu-
tion rely on factorization. However, on which part of the model is the factorization being
performed differ from one approach to another. For example, in VFE the factorization is
carried out in approximating the posterior distribution of the model. And, this factoriza-
tion primarily focus on constructing the surrogate or the variational distribution. In case
of model-based approximation methods, such as the FITC, since it assumes a full condi-
tional independence of the outputs given the inputs, the joint conditional distribution is
given as a factorized approximations of the output distributions.

Among the available model-based approximations, the deterministic training condi-
tional (DTC), the partial independent training conditional (PITC) and the fully inde-
pendent training conditional (FITC) are the most widely utilized methods for GP model
approximation. These methods share similarity on the principle of what part of the model
to use for the approximation. However, they differ on the exact strategy followed. For
instance, equation (2.33) and equation (2.36) establish the exact GP prior and likelihood
as

p
(
f, f∗

)
∼ N

(
0,

[
Σxx Σxx∗

ΣT
xx∗ Σx∗x∗

])
y = f + ϵ , where, ϵ ∼ N (0, σ2Id)
y ∼ N (f, σ2Id)

(2.43)

This derivation assumes a correlation between the latent random variables at the observed
points f and all other points f∗ as shown by the thick horizontal line connecting f and f∗
in the GP graphical model representation in Figure 2.16. Additionally, for the likelihood
derivation it assumes a conditional independence among the observed values y given f as
shown by the dangling y values in Figure 2.16. This has resulted in a conditional posterior

f1 f2 f3 . . . fn f∗

x1 x2 x3 xn x∗

y1 y2 yn y∗

Latent

Input

Output

Figure 2.16: The exact GP graphical model: Missing and observed value are shown with
a broken and solid circle respectively. The latent random variables f and f∗ are connected
by a unbroken horizontal line to signify full correlation. The observed values y1, y2, ··, yn

are conditionally independent given f . Hence, they are shown as dangling along with their
respective f .
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distribution given in equation (2.40) for the exact GP as

p(f∗|y) ∼ N (Σx∗x(Σxx + σ2Id)−1y, Σx∗x∗ − Σx∗x(Σxx + σ2Id)−1ΣT
xx∗) (2.44)

The first theoretical foundation behind the DTC, PITC and FITC approximation is the

u1 . . . um

f3f2f1 . . . fn f∗x

y1 y2 yn y∗

Figure 2.17: Model-based GP approximation: As the connection between f and f∗ is
broken, after observing some data y any inference about f∗ comes through the inducing
variable u. Hence, u serves as a link between the observed data and points at the forecast
horizon.

assumption of a conditional independence between the latent variables at training (x, f)
and test points (x∗, f∗) given the random variables at pseudo points (zm, um). Such as-
sumption effectively breaks the correlation link between the latent variables at the training
point f from those at forecast f∗ as shown by the absence of a connection line between f
and f∗ in Figure 2.17. As such, any impact the observed data has on the forecast point is
induced indirectly through the pseudo variables um. As a result, the random variables rep-
resenting the pseudo points are also commonly referred as the inducing random variables.
There are various researches on model-based approximations. Some with different names
and yet with a similar methods of implementation as discussed in detail [99, 100, 101].
The general framework to sparsify the covariance matrix into creating a computationally
feasible model through model-based approximations starts by augmenting the exact GP
with few inducing random variables. For instance, assuming we have {ui}m

i=1 inducing
variables, the augmented joint distribution p(f, f∗, u) can be written as

p
(
f, f∗, u

)
∼ N

0,

Σuu Σuf Σuf∗

Σfu Σff Σff∗

Σf∗u Σf∗f Σf∗f∗


 (2.45)

where p(u) ∼ N (0, Σuu) is the prior on the inducing variables. From equation (2.45), we
can estimate the conditional distribution of f and f∗ given u

p(f |u) ∼ N (ΣfuΣ−1
uu u , Σff − ΣfuΣ−1

uu Σuf )
p(f∗|u) ∼ N (Σf∗uΣ−1

uu u , Σf∗f∗ − Σf∗uΣ−1
uu Σuf∗)

(2.46)

These results resemble exactly the posterior distribution for the exact GP. The condi-
tional distribution p(f |u) in equation (2.46) still contains the original matrix Σff . Such
representation wouldn’t help us in improving the computational efficiency of the model.
Hence, the objective in all sparse approximation is to estimate the conditionals p(f |u) and
p(f∗|u) in a way that minimize or eliminate the contribution of Σff . The different ap-
proaches and assumptions made to realize an approximate estimate to these conditionals
has given rise to a number of model-based GP approximation methods.
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2.6.1 Deterministic training conditional (DTC) approximation
The DTC is a model-based approximation method that has been also called the projected
latent variable method and projected process approximation method in different liter-
ature [101]. The DTC approximate formulation rests on two important consideration.
First, it assumes that there is a deterministic relation between the inducing random vari-
able u and the latent random variable f with zero variance. Consequently, it provides an
approximate conditional for p(f |u) given in equation (2.46)

p(f |u) ≈ q(f |u) ∼ N (ΣfuΣ−1
uu u , 0) (2.47)

This deterministic assumption ignores the stochastic nature of the covariance among f &
u. In doing so, it completely avoids the computational bottleneck associated with covari-
ance matrix Σff . The deterministic mapping goes further into providing an approximate
likelihood q(y|f),

p(y|f) ≈ q(y|f) ∼ N (f, σ2In)
∼ N (ΣfuΣ−1

uu u , σ2In)
(2.48)

Marginalizing u ∼ N (0, Σuu), the DTC approximated likelihood q(y|f) is given by

q(y|f) = N (0 , ΣfuΣ−1
uu Σuf + σ2In) (2.49)

Because of this DTC is also referenced as a likelihood-based approximation method. The
second consideration is related to how best to approximate the conditional p(f∗|u). We
could follow the same approach to approximate p(f∗|u), as we did for p(f |u). However,
considering a deterministic behaviour for the posterior distribution can constrain uncer-
tainties propagation [101]. To ensure variance propagation during prediction, DTC allows
f∗ to keep its prior variance Σf∗f∗ . As a result, the approximate conditional q(f∗|u) retains
the same conditional distribution for f∗ ⇒ q(f∗|u) = p(f∗|u). Given the approximated
conditional q(f |u) and q(f∗|u), we can establish the prior distribution for f and f∗ under
the DTC method. Applying the linear Gaussian transformation on q(f |u) and q(f∗|u)

q(f |u) ∼ N (ΣfuΣ−1
uu u , 0) where u ∼ N (0, Σuu)

q(f) ∼ N (0 , ΣfuΣ−1
uu ΣT

fu) and
q(f∗|u) = p(f∗|u)
q(f∗|u) ∼ N (Σf∗uΣ−1

uu u , Σf∗f∗ − Σf∗uΣ−1
uu Σuf∗)

q(f∗) ∼ N (0 , Σf∗f∗)

(2.50)

Now that we have q(f) and q(f∗), the DTC approximated prior can be defined

q(f, f∗) ∼ N
(

0,

[
ΣfuΣ−1

uu Σuf cov(f, f∗)
cov(f, f∗) Σf∗f∗

])
cov(f, f∗) = ΣfuΣ−1

uu Σf∗u

q(f, f∗) ∼ N
(

0,

[
ΣfuΣ−1

uu Σuf ΣfuΣ−1
uu Σuf∗

Σf∗uΣ−1
uu Σuf Σf∗f∗

]) (2.51)

Given the approximated likelihood q(y|f) ∼ N (0 , ΣfuΣ−1
uu Σuf + σ2In), and assigning

Λ = ΣfuΣ−1
uu Σuf + σ2In, the DTC approximated posterior can be estimated as

q(f∗|y) ∼ N (Σf∗uΣ−1
uu ΣufΛ−1y , Σf∗f∗ − Σf∗uΣ−1

uu ΣufΛ−1ΣfuΣ−1
uu Σuf∗) (2.52)

The DTC decision to retain the prior variance Σf∗f∗ at the forecast points has created
inconsistency on variance evaluation. The variance estimation at a given point varies
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depending on whether that point is part of the training data or not. The graphical
representation of the DTC approximation is shown in Figure 2.18. Due to the conditional
independence of the latent variables f and f∗ given u, all communication path have
been removed. However, f∗ is allowed to retain its prior to ensure the propagation of
uncertainties during prediction. Meaning that the elements of f∗ may or may not retains
their mutual interdependence depending on the nature of Σf∗f∗ as shown by the thick
connection line between the elements of f∗ in Figure 2.18. If matrix Σf∗f∗ is diagonal then
the horizontal line connecting the elements of f∗ can be ignored.

u1 . . . um

f1 f2 f3 fn f∗1 . . . f∗zx

y1 y2 yn y∗1 y∗z

Figure 2.18: Graphical model for DTC approximation: the random variables f and f∗ are
assumed to be conditionally independent given u. As such, all paths between the latent
variables have been severed.

2.6.2 Fully independent training conditional (FITC) approx.
The DTC answer to the issue of scalability and computational inefficiencies in the exact
GP inference was to completely remove the covariance Σff−ΣfuΣ−1

uu Σuf at training points
from the conditional p(f |u) ∼ N (ΣfuΣ−1

uu u , Σff−ΣfuΣ−1
uu Σuf ). And, provided an approx-

imate conditional q(f |u) ∼ N (ΣfuΣ−1
uu u , 0) in its place. However, such approximation

has made the relationship deterministic and constrained the rich interactions between
the inducing and latent variables. The computational cost associated with inverting the
matrix Σff − ΣfuΣ−1

uu Σuf is understandable. And yet, it can be made manageable by
turning it into a diagonal matrix. That is precisely the idea behind the fully independent
training conditional approximation. The FITC proposes an alternative approximation
q(f |u) to the conditional p(f |u) that provides a robust interaction between the inducing
and latent variables while keeping the computational cost minimum. For instance, given
the conditional p(f |u)

p(f |u) ∼ N (ΣfuΣ−1
uu u , Σff − ΣfuΣ−1

uu Σuf ) (2.53)

and assuming full independence between the latent variables or alternatively considering
the diagonal part of the covariance matrix, the FITC approximated conditional q(f |u) is
given by

p(f |u) ≈ q(f |u) ∼ N (ΣfuΣ−1
uu u , diag[Σff − ΣfuΣ−1

uu Σuf ]) (2.54)

The size of the matrix diag[Σff − ΣfuΣ−1
uu Σuf ] extends to the full range of the training

data. In return this results in a more flexible likelihood approximation q(y|f)

p(y|f) ≈ q(y|f) ∼ N (f, σ2In)
∼ N (ΣfuΣ−1

uu u , diag[Σff − ΣfuΣ−1
uu Σuf ] + σ2In)

(2.55)
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Marginalizing u ∼ N (0, Σuu), the FITC approximated likelihood q(y|f) is given by

q(y|f) ∼ N (0, ΣfuΣ−1
uu Σuf + diag[Σff − ΣfuΣ−1

uu Σuf ] + σ2In) (2.56)

Except for the addition of the covariance diag[Σff −ΣfuΣ−1
uu Σuf ], the derivation of FITC

is similar to the DTC approximation. As such, just like in case of DTC, the FITC allows
the conditional at forecast point q(f∗|u) to retain its prior variance ⇒ q(f∗|u) ≈ p(f∗|u).
Consequently, the approximated prior in the case of FITC is given by

q(f, f∗) ∼ N
(

0,

[
ΣfuΣ−1

uu Σuf + diag[Σff − ΣfuΣ−1
uu Σuf ] ΣfuΣ−1

uu Σuf∗

Σf∗uΣ−1
uu Σuf Σf∗f∗

])
(2.57)

As we have said before the difference between DTC and FITC is the addition of the diagonal
matrix. Hence, assuming Λ = diag[Σff − ΣfuΣ−1

uu Σuf ] + σ2In, and Σq = ΣfuΣ−1
uu Σuf , the

FITC approximated predictive distribution q(f∗|y) is given by

q(f∗|y) ∼ N (Σf∗uΣ−1
uu Σuf (Σq + Λ)−1y , Σf∗f∗ − Σf∗uΣ−1

uu Σuf (Σq + Λ)−1ΣfuΣ−1
uu Σuf∗)

(2.58)

The graphical model of the FITC is similar to the DTC and is shown in Figure 2.18. In
the case of DTC, conditional independence between the latent variables or the absence of
information path between the latent variables in Figure 2.18, is guaranteed by removing
the correlation matrix in driving the approximated conditional. In the case of FITC,
conditional independence is ensured by diagonalizing the correlation matrix which in
principle breaks the information path as shown in Figure 2.18. However, the nature of
interaction between the latent variables at forecast point is truly independent if and only
if the matrix Σf∗f∗ is diagonal. If that happens the connection line between the elements
of f∗ in Figure 2.18 should be omitted.

2.6.3 Optimal inducing locations
Modeling through pseudo points creates an opportunity to take advantage of the redun-
dancy and correlation that might exist in the input data so that a model defined in a
minor subspace can have an equivalent inference capacity compared to a model defined
in the entirety of the input space. And yet, the gained reduction in computational load
is paid with the loss of predictive accuracy. No matter how good the approximation, the
resulting model will not be as accurate as a model trained on a full data. Regardless, the
trade off can be made affordable through a careful selection of the placement and number
of the pseudo points. Fixing the number of the inducing variables is a matter of tuning
based on the desired level of accuracy and the computational load that one is willing to
bear for the task at hand. However, the determination of the optimal inducing points
is more of an optimization problem. Good inducing locations that are capable of rep-
resenting the information content of the whole data set requires an iterative procedure.
One effective approach that is suggested is through the maximization of the marginal
likelihood.

ζi∗ = arg max
{

log p(y|z, u, θ)
}

ζi ϵ ζ

(2.59)

where ζi = {zi, ui, θi} represent the inducing location, inducing value and the kernel hyper-
parameters respectively. Employing the likelihood as a criterion allows the optimisation
of both the hyperparameters and the inducing variables to be made in one go. In regards
to the pseudo points learning, the brute force approach to their optimisation will be to
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maximise the likelihood with respect z and u. However, the number of parameters to
optimise can be lowered by following a more economical procedure. One approach that is
suggested in [102] is to place a Gaussian prior on the inducing values u and marginalize it
out of the likelihood definition. This approach is inline with the first assumption placed
upon the pseudo points. It is assumed that there is no constraint regarding pseudo point
location. The only requirement if any, that is placed upon the inducing variables is that
they should be jointly distributed with the latent random variable f , f∗ of the original
data if they are to approximate it well. Consequently, placing a Gaussian prior on the
inducing variables u

p(u|z) ∼ N (0, Σuu) (2.60)
we have derived the DTC and FITC approximated likelihood in equation (2.49) and (2.56)
as

q(y|f) ∼ N (0, ΣfuΣ−1
uu Σuf + Λ) (2.61)

where Λ = σ2In for DTC and Λ = diag[Σff − ΣfuΣ−1
uu Σuf ] + σ2In in case of FITC.

The marginalization of u from the likelihood definition relieves the computational cost
associated with its evaluation so that the maximization is more focused on its location z.
As such, the optimal inducing locations are estimated through the maximisation of the
likelihood log q(y|z, θ) given in equation (2.61)

log q(y|z, θ) = −1
2yT (Σq + Λ)−1y − 1

2 log |Σq + Λ| − n

2 log(2π) (2.62)

where n is the size of the training data, Σq = ΣfuΣ−1
uu Σuf , Λ = σ2In for DTC and Λ =

diag[Σff − ΣfuΣ−1
uu Σuf ] + σ2In for FITC. The likelihood criterion continuously evaluates

the inverse (Σq + Λ)−1 and the determinant |Σq + Λ| during the optimisation. In its
current form, the covariance matrix Σq + Λ is still an n x n matrix which makes the
estimation of the inverse and determinate infeasible for large n. Fortunately, the nature
of the covariance matrix permits alternative matrix representation through the woodbury
matrix identity and woodbury determinant lemma [103]. The woodbury matrix identity
states that given a n x n matrix Σ such that

Σ = A−1 + XB−1XT (2.63)

where A,X and B are conformable matrices with size n x n, n x m and m x m respectively.
Then its inverse Σ−1 and determinant |Σ | can be evaluated as

Σ−1 = A− AXP−1XT A

|Σ | = |P||A|−1|B|−1 (2.64)

where the matrix P = B + XT AX is an m x m matrix. Hence, in the DTC likeli-
hood approximation, the inverse and determinant of the covariance matrix (Σq + Λ) =
ΣfuΣ−1

uu Σuf + σ2In ⇒ (σ−2In)−1 + ΣfuΣ−1
uu Σuf can be conveniently evaluated using the

two woodbury relationships by assigning A = σ−2In, B = Σuu, X = Σfu and P =
Σuu+σ−2ΣufΣfu. In a similar manner for the FITC likelihood approximation, by assigning
A = (diag[Σff −ΣfuΣ−1

uu Σuf ] + σ2In)−1, B = Σuu, X = Σfu and P = Σuu + Σuf (diag[Σff −
ΣfuΣ−1

uu Σuf ] + σ2In)−1Σfu computational efficiency can be improved. In both cases the
matrix A is an n x n diagonal matrix. As such, determining A−1 is computationally
feasible.

The covariance matrices in the approximate posteriors q(f∗|y) given in equation (2.52)
and (2.58) are still n x n. Analogous to the log-likelihood formulation, the same prin-
ciple can be applied in rewriting the DTC and FITC approximate posterior into a more
computationally convenient form. For instance, substituting the values of the matrix A,
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B, X, P that is used in the log-likelihood into the DTC approximate posterior q(f∗|y) and
simplifying it, q(f∗|y) can be rewritten into a form that has the inverse of m x m matrix,
where m is the size of the inducing variables

q(f∗|y) ∼ N (Σf∗uP−1XT Ay, Σf∗f∗ − Σf∗uB−1Σuf∗ + Σf∗uP−1Σuf∗) (2.65)

where P = Σuu + σ−2ΣufΣfu, B = Σuu, A = σ−2In and X = Σfu. On the other hand, the
estimate for FITC approximate posterior will have a similar form to the posterior given in
equation (2.65), except for a minor change in the matrix A = (diag[Σff − ΣfuΣ−1

uu Σuf ] +
σ2In)−1 and P = Σuu + ΣufAΣfu.

The impact of pseudo point inclusion on data compression and model approximation
is evident in the DTC and FITC predictive distribution shown in Figure 2.19. We applied
the model approximations on a randomly generated function. The squared exponential
kernel and ten inducing locations were selected to map and approximate the covariance
matrix. In regards to tracking the mean trajectory, both DTC and FITC deliver acceptable
model approximations based on how close the inducing locations are to the forecast point.
In fact, the FITC model tends to overfit the given observations. However, the estimated
variance varies depending on the spread of the inducing points. The additional diagonal
component on the covariance matrix of FITC makes the model to underestimate the
variance in densely populated inducing areas. Thereby, affecting its coverage probability
compared to the DTC and the exact GP as shown in Figure 2.19a and Figure 2.19b. In
spite of that, both models ensure variance propagation and for forecast point that are far
from the inducing locations, the estimated variance will approach the prior variance Σf∗f∗

(i.e Σf∗uB−1Σuf∗ + Σf∗uP−1Σuf∗ → 0).
In general, the apparent effect of this diverging approach to Gaussian process approx-

imation is that the model-based approximation methods such as FITC and DTC result in
a faster computation where as posterior-based approximation like the VFE are computa-
tionally intensive compared to FITC or DTC. However, VEF allow complex covariance to
be defined among the latent random variables which is not possible due to the indepen-
dence assumption in model-based approximations. Although model-based approximations
shows a fast computational efficiency compared to the VFE, they run into the risk of over-
fitting when optimizing the model parameters. This is due to the result of working on
approximating the model itself. However, in the case of the VFE, the hyper-parameter
optimization is carried out on the lower bounds of the marginal likelihood. Meaning
that the true marginal likelihood is always greater than the ELBO. As such, the opti-
mized parameters will not overfit the model worse than any parameters optimized using
the true marginal likelihood. In section 2.6.4, we present the variational based Gaussian
approximation.

2.6.4 Sparse variational gaussian process (SVGP) approximation
In the previous section we discussed the DTC and FITC model based approximation meth-
ods. And, we have said rank minimization for the covariance matrix can be carried out
by utilizing extra pseudo points. The approach that is followed in approximating the
aspect of the model through these pseudo points, determines the nature and predictive
accuracy of the resulting model. Like the DTC and FITC, the sparse variational Gaussian
process (SVGP) is another popular approximation method based on pseudo points. How-
ever, unlike the previous, SVGP is a method that try to ensure model scalability using
a variational based approximate posterior. It follows sparse modeling and variational in-
ference to build a computationally efficient inferential model. To that end, it utilize an
auxiliary distribution with the objective of optimising its parameters until its divergence
from the true posterior is minimised. This surrogate distribution is commonly called the
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(a) Exact GP Vs DTC approximate predictive distribution

(b) Exact GP Vs FITC approximate predictive distribution

Figure 2.19: Model-based GP approximate methods: The dark and blue points show
the inducing variables ui locations before and after optimisation. Although, 10 inducing
locations were used for the approximation, only 9 on them resides within the training
range.

variational distribution [71]. The characteristics of this distribution is determined by the
placement of the pseudo points. Similar to the model-based approximation methods, the
SVGP models place the same requirements on the pseudo-points. No constraints on their
placement and the expectation of a joint distribution with the latent variables f and f∗
of the original data. However, the diverging approaches in regards to the form of the
variational distribution has resulted in a number of posterior-based approximation meth-
ods. Such as, the mean-field and Gaussian variational family distributions mentioned in
section 2.6. However, in this section we follow the approach outlined in [66]. Before diving
into the SVGP derivation, lets review the step that lead to the computational bottleneck
in the exact GP inference. In equation (2.33), we established the prior distribution and
the likelihood of the exact GP model

p
(
f, f∗

)
∼ N

(
0,

[
Σff Σff∗

Σf∗f Σf∗f∗

])
y = f + ϵ , where, ϵ ∼ N (0, σ2Id)
y ∼ N (f, σ2Id)

(2.66)
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with a true posterior joint distribution

p(y, f) = p(y|f)p(f) (2.67)

where p(f) ∼ N (0, Σff ). If we apply Bayesian inference on equation (2.66) - (2.67), it will
eventually lead us to the exact GP with the expensive covariance matrix Σff + σ2In. For
an alternative parameter learning and forecast derivation, the sparse variational method
makes two important arguments. First, it assumes that for a given data D = {(xi, yi)}n

i=1,
we can find m (i.e where m ≪ n) inducing locations {zi}m

i=1 that can be used to sum-
marize the data. Good data summerization entails that the inducing random variables
{ui}m

i=1 at these locations should be jointly distributed with the latent variables f and f∗.
Furthermore, it assumes that the latent variables of the original data are conditionally in-
dependent given the inducing variable u ⇒ p(f∗|f, u) = p(f∗|u). Consequently, it defines
an augmented sparse GP prior

p
(
f, f∗, u

)
∼ N

0,

Σuu Σuf Σuf∗

Σfu Σff Σff∗

Σf∗u Σf∗f Σf∗f∗


 (2.68)

with augmented true posterior joint distribution

p(y, f, u) = p(y|f, u)p(f |u)p(u)
= p(y|f)p(f |u)p(u)

(2.69)

Despite the augmentation, the application of Bayesian inference on equation (2.69) will
marginalize and remove the inducing variable u from equation (2.69) which turns it into
equation (2.67). Hence, the objective in sparse variational approximation is how to eval-
uate the augmented joint distribution p(y, f, u) in a way that circumvent the Bayesian
inference. To that end, it proposes an augmented variational distribution q(f, u) whose
parameters will be optimised through variational inference to approximate the real pos-
terior p(y, f, u) [66]. Consequently, a factorized joint variational distribution q(f, u) is
proposed

p(y, f, u) ≈ q(f, u) = p(f |u)q(u) (2.70)

where p(f |u) is the conditional distribution of f from the sparse prior in equation (2.68)
and is given by

p(f |u) ∼ N (ΣfuΣ−1
uu u, Σff − ΣfuΣ−1

uu Σuf ) (2.71)
and q(u) = N (u; µq, Σq), is a new user defined variational distribution drawn from a
family of gaussian distribution Q that will be selected by optimizing the free variational
parameter µq and Σq. Now, from equation (2.70) the marginal distribution of q(f) can
be computed as

q(f) =
∫

q(f, u)du⇒ q(f) =
∫

p(f |u)q(u)du

=
∫
N (f |ΣfuΣ−1

uu u, Σff − ΣfuΣ−1
uu Σuf )N (u|µq, Σq)du

q(f) ∼ N (f |ΣfuΣ−1
uu µq, Σff − ΣfuΣ−1

uu Σuf + ΣfuΣ−1
uu Σq(ΣfuΣ−1

uu )T )
q(f) ∼ N (A, B)

(2.72)

where A = ΣfuΣ−1
uu µq and B = Σff − ΣfuΣ−1

uu Σuf + ΣfuΣ−1
uu Σq(ΣfuΣ−1

uu )T . The similarity
between the two joint distribution in equation (2.69) and (2.70) is measured and framed
as an optimization problem using KL(p(f, u, y)||q(f, u)) divergence, where

kl(p(f, u, y)||q(f, u)) =
∫∫

q(f, u)log
q(f, u)

p(f, u, y)dfdu (2.73)
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Substituting equation (2.69) & (2.70) into equation (2.73) and simplifying it

kl(p(f, u, y)||q(f, u)) =
∫∫

q(f, u) log p(f |u)q(u)
p(y|f)p(f |u)p(u)dfdu

=
∫∫

q(f, u) log q(u)
p(y|f)p(u)dfdu

(2.74)

Then the main task in the variational inference would be to seek the parameters that
minimize the KL divergence between p(f, u, y) and q(f, u). As a result, during parameter
optimisation, equation (2.74) will be minimized with respect to the hyperparameters θ,
the inducing locations z.

arg min
z,θi

{
kl(p(f, u, y)||q(f, u))

}
= arg min

z,θi

{ ∫∫
q(f, u) log q(u)

p(y|f)p(u)dfdu
}

(2.75)

However, the KL minimization problem in equation (2.75) can be forwarded as a maximi-
sation problem

arg min
z,θi

{
kl(p(f, u, y)||q(f, u))

}
= −

{
arg max

z,θi

{ ∫∫
q(f, u) log q(u)

p(y|f)p(u)dfdu
}}

= arg max
z,θi

{ ∫∫
q(f, u) log p(y|f)p(u)

q(u) dfdu
}

= arg max
z,θi

{ ∫∫
q(f, u) log p(y|f)dfdu +

∫∫
q(f, u) log p(u)

q(u)dfdu
}

= arg max
z,θi

{ ∫
q(f) log p(y|f)df +

∫
q(u) log p(u)

q(u)du
}

= arg max
z,θi

{ ∫
q(f) log p(y|f)df −

∫
q(u) log q(u)

p(u)du
}

= arg max
z,θi

{ ∫
q(f) log p(y|f)df − kl(q(u)||p(u))

}
(2.76)

Equation (2.76) establishes the famous evidence lower bound (ELBO equation.

ELBO =
∫

q(f) log p(y|f)df − kl(q(u)||p(u)) (2.77)

As such, minimizing KL(p(f, u, y)||q(f, u)) is equivalent to maximizing the ELBO. Hence,
through the maximisation of the ELBO, the optimal variational parameters can be eval-
uated. Assuming the observed values are sampled from a random variable y generated
according to

y ∼ N (f, σ2In), then

log p(y | f) = −N

2 log 2πσ2 − 1
2σ2 (y − f)T (y − f)

(2.78)

It should be noted that in equation (2.78), the assumed Gaussian data distribution is
only out of mathematical convenience so that the resulting variational distribution can be
compared with the Bayesian version. In fact, the variational methods permits the random
variable y to be drawn from any stochastic process regardless of the nature of the error
distribution. As such, it doesn’t require the likelihood distribution to be strictly normal.
In equation (2.77), the likelihood term is an expectation with respect to the variational

82



distribution q(f). As such, substituting equation (2.72) & (2.78) into equation (2.77) for
q(f) and log p(y|f), the ELBO can be rewritten as

ELBO =
∫

q(f) log p(y|f)df − kl(q(u)||p(u))

= Eq(f)

{
log p(y|f)

}
− kl(q(u)||p(u))

=
∫ {
− N

2 log 2πσ2 − 1
2σ2 (y − f)T (y − f)

}
N (f |C,D)df − kl(q(u)||p(u))

=
∫ {
− N

2 log 2πσ2 − 1
2σ2 tr(yyT − 2yfT + fT f)

}
N (f |C, D)df − kl(q(u)||p(u))

=
{
− N

2 log 2πσ2 − 1
2σ2 tr(yyT − 2yC + CT C + D)

}
− kl(q(u)||p(u))

=
{
− N

2 log 2πσ2 − 1
2σ2 (y − C)T (y − C)− 1

2σ2 tr(D)
}
− kl(q(u)||p(u))

=
{

logN (y |C, σ2In)− 1
2σ2 tr(D)

}
− kl(q(u)||p(u))

(2.79)

where the p(y|f) ∼ N (y |C, σ2In) and C = ΣfuΣ−1
uu u & D = Σff −ΣfuΣ−1

uu Σuf are given in
equation (2.71). For two multivariate gaussian distribution q(u) & p(u), the KL-divergence
kl(q(u)||p(u)) is given as

kl(q(u)||p(u)) = 1
2

{
log |Σuu|
|Σq|

−m + tr(Σ−1
uu Σq) + (0− µq)T Σ−1

uu (0− µq)
}

(2.80)

Substituting equation (2.80) in place of kl(q(u)||p(u)) in equation (2.79), the analytical
form of the ELBO used for parameter optimisation is given by

ELBO =
{

logN (y |C, σ2In)− 1
2σ2 tr(D)

}
− 1

2

{
log |Σuu|
|Σq|

−m + tr(Σ−1
uu Σq) + (0− µq)T Σ−1

uu (0− µq)
} (2.81)

The addition of the trace component 1
2σ2 tr(D) in the ELBO, adds another extra layer of

regularization compared to the DTC and FITC log-likelihood in equation (2.62) that is
used for parameter learning. As a result, the SVGP is less susceptible to overfitting com-
pared to either of the model based approximations. The KL-divergence between p(y, f, u)
& q(f, u) can also be used to evaluate the analytical form of the optimal variational
distribution q∗(u). For instance, in equation (2.76), the KL-divergence minimization is
represented as a maximisation problem

arg min
z,µq ,Σq ,θi

{
kl(p(f, u, y)||q(f, u))

}
=arg max

z,µq ,Σq ,θi

{ ∫∫
q(f, u) log p(y|f)dfdu

+
∫∫

q(f, u) log p(u)
q(u)dfdu

} (2.82)

Hence, the optimal variational distribution q∗(u) is the distribution that minimize the
LHS of equation (2.82) or that maximise the RHS of the same equation. Marginalizing f
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out of equation (2.82) and then derivating the resulting equation with respect to q∗(u)

kl(p(f, u, y)||q(f, u)) =
∫

q(u) log p(y|f)du +
∫

q(u) log p(u)
q(u)du

∂

∂q∗(u)kl(p(f, u, y)||q(f, u)) = ∂

∂q∗(u)

{ ∫
q(u) log p(y|f)du +

∫
q(u) log p(u)

q(u)du
}

∂

∂q∗(u)kl(p(f, u, y)||q(f, u)) =
∫ {

log p(y|f) + log p(u)− log q(u)− 1
}

du

0 = log p(y|f) + log p(u)− log q(u)− 1
log q(u) = log p(y|f)p(u)− 1
log q(u) ∝ log p(y|f)p(u)

(2.83)

Due to the proportionality, the optimal variational parameters can be computed through
moment matching. From equation (2.79) we have p(y|f) ∼ N (y |C, σ2In) where C =
(ΣfuΣ−1

uu )u, for the sake of brevity lets represent C=Ru where R = ΣfuΣ−1
uu . From the

sparse prior in equation (2.68) we have p(u) ∼ N (0, Σuu), substituting these in their
respective place in equation (2.83) and applying moment matching

log q(u) ∝ log p(y|f)p(u)

logN (µ∗
q, Σ∗

q) ∝ log
{
N (y |C, σ2In)N (0, Σuu)

}
−1

2(u− µ∗
q)T Σ∗

q
−1(u− µ∗

q) ∝ −
1

2σ2 (y − C)T (y − C)− 1
2uT Σ−1

uu u

−1
2(u− µ∗

q)T Σ∗
q

−1(u− µ∗
q) ∝ −

1
2σ2 (y − Ru)T (y − Ru)− 1

2uT Σ−1
uu u

−1
2(uT Σ∗

q
−1u− 2uT Σ∗

q
−1µ∗

q + µ∗
q

T µ∗
q) ∝ −

1
2σ2 (yT y − 2uT RT y + uT (RT R)u)− 1

2uT Σ−1
uu u

−1
2(uT Σ∗−1

q u− 2uT Σ∗
q

−1µ∗
q) ∝ −

1
2(uT (RT R

σ2 + Σ−1
uu )u− 2uT (RT y

σ2 ))

Σ∗
q

−1 = RT R
σ2 + Σ−1

uu ⇒ Σ∗
q = (RT R

σ2 + Σ−1
uu )−1

Σ∗
q

−1µ∗
q = RT y

σ2 ⇒ µ∗
q = Σq

∗RT y

σ2

(2.84)

where, R = ΣfuΣ−1
uu . Equation (2.84) provides the optimal variational distribution q∗(u) ∼

N (µ∗
q, Σq

∗) ≈ N (σ−2Σq
∗RT y, (σ−2RT R + Σ−1

uu )−1). Once the optimal variational distribu-
tion is estimated, it can be used to evaluate the posterior predictive distribution at test
locations as

p(f∗|y) =
∫∫

p(f∗, f, u)dfdu (2.85)

Marginalizing the latent random variable f ,

p(f∗|y) =
∫

p(f∗|u)q(u)du (2.86)

from the sparse prior given in equation (2.68), computing the conditional distribution of
p(f∗|u)

p(f∗|u) ∼ N (Σf∗uΣ−1
uu u, Σf∗f∗ − Σf∗uΣ−1

uu Σuf∗) (2.87)

Finally, applying the Gaussian linear transformation rule, the posterior predictive distri-
bution as a function of the variational parameters can be estimated as

p(f∗|u) ∼ N (Σf∗uΣ−1
uu µ∗

q, Σf∗f∗ − Σf∗uΣ−1
uu Σuf∗ + Σf∗uΣ−1

uu Σ∗
qΣ−1

uu Σuf∗)
∼ N (f∗; µf , Σf )

(2.88)
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where µf = Σf∗uΣ−1
uu µ∗

q and Σf = Σf∗f∗ −Σf∗uΣ−1
uu Σuf∗ + Σf∗uΣ−1

uu Σ∗
qΣ−1

uu Σf∗u. From equa-
tion (2.88), the mean trajectory and the associated 95% upper-lower confidence bounds
are given by ymean = µf , yupper = µf +1.96∗Σf

1
2 and ylower = µf −1.96∗Σf

1
2 respectively.

(a) GP Vs SVGP predictive distribution

(b) R2 model fit performance metrics

Figure 2.20: GP model approximation

The implementation of the Gaussian process in this manner brings two things into
fruition. First, the computational burden will reduce from O(n3) to O(nm2) and the
memory requirement from O(n2) to O(m2) where n and m are the number of data points
and inducing locations respectively. Thereby ensuring the possibility of applying the
Gaussian process to large datasets. Second, the the maximisation of the evidence lower
bound only draws the variational posterior closer to the real posterior. Meaning the ELBO
will always be lower than the marginal likelihood of the data. Hence, the ELBO serves as
a testament to the fact that the resulting model will not overfit compared to the exact
Gaussian fit with all the training data as shown in Figure 2.20. The Figure 2.20 shows
the posterior distribution for an exact and sparse variational Gaussian models that are
trained on samples drawn from a process y = xsin(0.5πx), for x ϵ [0, 10]. A SE kernel for
the covariance matrix, 7 inducing variables for the variational inference and 16 randomly
selected points for the exact Gaussian were selected for model fitting. The variational
approach predicts with less variance as compared to the exact Gaussian. However, the
confidence interval, although broader in Figure 2.20, is generally dependent on the number
of the inducing variables. A prediction with better accuracy and high confidence ( i.e
narrow confidence interval) can be achieved by increasing the number of inducing variables
and optimising their location. However, for the computational efficiency, their number
should be kept small compared to the number of training points. Though, the minimum
threshold on the number of inducing variables required to represent a given distribution
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sufficiently is determined by the nature of data and the computational resources that one
is willing to spare. Model approximation employing inducing variables lower than the
required threshold returns a low order model approximation with smoother functions and
high variance.

(a) A normalized weekly electricity consumption

(b) GP and SVGP model predictive distribution

(c) GP and SVGP R2 model-fitness performance metrics

Figure 2.21: GP and SVGP predictive distribution for weekly power consumption

The size of the inducing variable is a design parameter. As such, tuning its value
based on the desired performance criteria is not difficult. The challenging part of working
with the sparse variational Gaussian models is designing the kernel matrix. The main
task of the sparse approximation is to generalize the observed data with few selected
points. And, generalization entails some aspects of the original data will be lost. It is
an unavoidable outcome of using the model. However, by designing a suitable kernel
combinations, the impact can be minimized. What type of basis kernels to select and
how to combine them requires a bit of computation, patience and expertise. Real data is
chaotic. Even in the presence of discernible patterns and prior expertise, determining the
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nature of combination (i.e whether it is additive or multiplicative) and its overall impact
on the predictive performance of the model needs continuous retraining. Consequently, it
can get tiresome. For instance, Figure 2.21a, Figure 2.21b and Figure 2.21c show a slice
of a normalized weekly electricity consumption data, GP and SVGP models predictive
distribution along with R2 performance metrics respectively.

The data was recorded at 10 minute interval with a total of 1008 observations per a
week. It is a small data. However, the presence of multiple frequencies makes the kernel
selection challenging. After multiple retraining, a kernel structure k = k1 + k2 ∗ K3 is
selected for pattern discovery, where k1 is SE kernel and k2, k3 are periodic kernels. For
variational inference 16 inducing points and 160 randomly selected points for the Gaussian
process fits provided a decent approximation to the original data. However, the predictive
accuracy of the variational approximation can be improved further through an optimal
combination of kernels. Figure 2.21 already shows computational efficiency of the SVGP
model with a O(163) time complexity. This makes the algorithmic estimation of optimal
kernel combination feasible and its exploration simplistic compared to the trailer and error
search approach to suitable kernel functions.

2.7 Conclusion

In this chapter we have tried to review some of the non-parametric approaches to model
building for a stochastic process using the Gaussian process. We have also seen its compu-
tational limitations along with a possible model approximations that would rectify it. The
covariance matrix that gave the Gaussian process a higher degree flexibility in providing
a fit function for a given problem, is also responsible for the computational limitations
of the underlying model. The model computational need grows with the number of data
points. The high memory storage, the cubic time complexity O(n3) for matrix inversion
during parameter optimisation and prediction makes the model undesirable in big data
domain. This assertion is inspite of the computational advantage achieved through ma-
trix decomposition methods such as the cholesky. But, such matrix factorization methods
takes us only far enough when dealing with a millions of data points. Consequently, for
the scalability and deployment of Gaussian models to large datasets, the number of points
need to be minimized. This has been achieved through the model and posterior based
approximations methods, such as the DTC, FITC and the SVGP.

The sparse representation using pseudo points have made it possible to condense the
information content of a large data set. This has effectively minimized the dimension of
the covariance matrix. As a result, the behaviour of the model and that of the data is no
longer dictated by the correlation of all observed points, but rather few sampled points
that can potentially summarize it. Consequently, the original data generation model, in
the sense of the exact GP, is approximated by a model with a lower rank covariance matrix.
As a result, some aspect of the original model and the possibility of exact inference is
striped away for a gain in computational efficiency. This has been the reality in methods
such as the DTC and FITC. However, techniques such as the SVGP have provided an
alternative approximation methods in an effort to preserve at least the semblance of the
original model.

Circumventing the Bayesian inference and embracing the path of variational approx-
imation, the SVGP has rectified issues related to posterior intractability. Regardless of
the specific methodology, approximation based performance improvement comes with the
risk of a reduced variance estimation and predictive accuracy. The reduced predictive
accuracy can be attributed to the smaller pseudo point approximation. The tendency to
underestimate the variance however, depends on the specific modeling approach followed.
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In the case of DTC and FITC, the conditional independence assumption between the latent
and inducing variables plays the major part. On the other hand, in variational based ap-
proximations, the nature of the surrogate distribution that is used for the approximation
tends to lower the estimated variance. For instance, attempting to approximate a complex
data that follows an asymmetric distribution with a Gaussian ends up underestimating
the variance.

In spite of that, the SVGP model has demonstrated some important qualities as a
worthy predictive model for demand supply forecasting. Qualities such as, sparsity for
computational efficiency; posterior-based approximation that guarantee the convenience
of working on the original model; and the parameter learning using ELBO which puts an
extra regularization so that the model doesn’t overfit are some notable mentions. Fur-
thermore, in addition to truly scaling the Gaussian process to big data, it has also made
algorithmic kernel search techniques feasible. However, the suggested model approxima-
tion only rectify the computational impediments for the implementation of GP in big
data domain. The predictive accuracy of the model is still dependent on suitability of
the selected kernel regardless of the nature of the approximation. To that end, in the
following chapter we will focus on search algorithms for optimal kernel evaluation using
the SVGP as the underlying GP model.
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Chapter 3

Kernel Estimation

3.1 Introduction

In the general machine learning framework, the availability of huge data offers ample op-
portunity to learn and infer educated generalizations. Unfortunately, the computational
cost and efficiency of the GP model is tied to the size of the data [105]. As such, big data
has been their Achilles heel and impeded their wider application. In chapter 2, we have
discussed possible approximation methods that enhanced its efficiency and ensured its
scalability. The proposed methods only mitigate issues related to speed of computation
and memory utilization. They have nothing to do with improving the predictive accu-
racy of the model. In fact, the act of approximation by default degrades accurate data
representation to a certain degree.

As a kernel-based learning model, the characteristics GP is primarily dependent on the
kernel functions. By extension, the suitability of the kernels determine the generalization,
inferential and forecast accuracy of the model. As such, the choice of kernel is an important
design consideration during model development [105]. And yet, the question of how to
select it appropriately in parallel with the problem at hand is not always clear. For
instance, the dynamics of the model, the nature of the data and the desired outcome are
some of the parameters that guide kernel selection. As such, choosing kernel requires prior
expertise on the given problem, the observed pattern in the data, the future expectations,
so and so forth. Especially, in a dynamic time series data with a high tendency to change,
prior expertise might not be enough in selecting optimal kernels. Consequently, their
selection mostly has relied on few well thought basis functions with an added trial and
error approach.

Inherently kernel selection is computationally intensive. This has been one of the
challenges in automatic optimal kernel evaluation. In spite of that, various methods
have been suggested for algorithmic kernel estimation. For example, exhaustive, grid,
randomized and nonparametric search methods are few notable mentions. However, the
effectiveness of these approaches is dependent on the intricacies of the data and the
frameworks in which they operate. For instance, for Gaussian models the dimension of
the covariance matrix and continuous retraining presents a challenge for suitable kernel
assessment. In the case of SVGP and MCMC-based models, the time complexity required
for the ELBO and posterior convergence hinders the implementation of optimal search.
Consequently, in addition to the respective search strategy, a computationally efficient
kernel exploration should take into account the limitations of the underlying model.

In chapter 2, we have seen some of the kernel utilized for building an interpretable
Gaussian model. In this chapter, we will investigate the implementation of SVGP for
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electricity load forecasting, its limitation and the impact of kernel on predictive accuracy.
Furthermore, to enhance the performance of the SVGP model, we will propose a stochastic
approach to optimal kernel estimation and a GP approximation model based on random
column sampling for a feasible kernel exploration.

3.2 Electricity demand profile
In this thesis, we employed both synthetic and real datasets. For a robust analysis some
of the selected data follow a symmetric distribution and the rest are asymmetric. For
instance, for the electricity load forecasting, the METRON energy company has provided
us a two year total electricity consumption of more than fifty organizations. The collected
demand profile is a time series data recorded for a period of two years at a ten minute
interval. That means, we have a total observations of 144 and 1080 per a day and a week
respectively. The demand profile exhibits a daily, weekly and yearly seasonality with an
increasing trend as shown in Figure 3.1. However, a close inspection of the data shows
there is a high irregularity in electricity demand due to the presence of Holiday’s and
dynamism of consumption. This has made the selection of suitable kernels challenging
for the GP model development. Furthermore, the dependency of the models predictive
accuracy on the appropriateness of the selected kernels makes the choice of kernels critical.
A random combination of kernel using the recovered patterns and relying on the trial and
error approach to multiple kernel learning doesn’t provide the desired predictive accuracy.
As such, in this chapter, taking advantage of the computational efficiency of the SVGP
model, we will investigate optimal kernel search methods and their implementation in
SVGP model for electricity load forecasting.

Figure 3.1: A two year total electricity demand for more than 50 organizations, collected
at 10 minute interval(i.e 144 measurements in a day)

3.3 Optimal kernel combination
In principle the search for optimal kernel combination is similar to training and comparing
an ensembles of Gaussian models trained on different covariance matrices. As such, the
selection of optimal kernel combination falls to model evaluation based on a predefined
performance metrics. There are a numbers of metrics and criterion’s that one could apply
to objectively compare these models. The average deviation of model outputs from the
real value is one such quality metrics. As such, the mean squared error (MSE) and root
mean squared error (RMSE) are the two popular approaches that are usually deployed in
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evaluating model performance. However, for probabilistic models, the likelihood criterion
is usually preferred. Regardless of the quality metrics employed, during model evaluation a
kernel with the highest performance index will be the selected as the more suitable kernel
for the problem at hand. In chapter 2, we have already stated unlike the parametric
models, Gaussian process retain the training data during parameter optimisation and
prediction. As a result, training a number of models for optimal kernel evaluation risks
huge computational and memory storage requirements, especially for large data. However,
the sparse and variational inference has rectified those computational bottlenecks and has
made the Gaussian framework viable for automatic kernel evaluation.

3.3.1 Exhaustive kernel search
The Exhaustive kernel search is a brute force approach to optimal kernel evaluation. Given
a set {k1, k2, ··, kn} ϵ Q containing valid kernel functions, the exhaustive search approach
finds all possible combinations. One positive contribution of this approach is that it guar-
antee and provides the right solution without leaving other unexplored alternatives. The
need to evaluate every combination for suitability makes the technique computationally
intensive. However, those risks can be managed by minimizing the number of kernel func-
tions. Although inefficient, in the absence of clear insight on the structure of the data, this
method can give an explanation on possible combinations better than the trial and error
approach. The electricity consumption data shown in Figure 3.1 shows a linear trend,
cyclic and periodic oscillations. This pattern discovery help in keeping the set of possible
kernel function minimum. That is the very reason why we considered this approach for
optimal kernel evaluation, despite its computational ineffectiveness.

Generally given a list of n kernels {Constant, SE, Periodic, Linear, RQ, Matern,· · ·} ϵ
Q, where Q is the set containing all valid kernel functions, the exhaustive search construct
a sub-list of kernel combinations in the order of

nCm = n!
m!(n−m)! where m=1,2,· · ·,n+1 (3.1)

In section 2.4.4, we have discussed that SE kernel can be used to model local similarities
as well as global trends. Its combination with other kernels can model the dynamic
degradation exhibited in a time series data. As such, it can be used as a base node
to construct other possible mixtures. This assignment will minimize the number of the
resulting mixtures. Every list represents a possible combination path from the base node
to the child node as shown in Figure 3.14. As we go down from the base node (k1) to the
children (k2, k3, ..., kn), the product rule of kernel construction given in proposition 2.4.2
is applied to combine the kernels. To test the validity of the resulting mixtures, a number
of models based on the spares variational approximation given section 2.6.4 were trained
to fit the observed data for each mixtures. The performance of each model is evaluated
based on the mean squared error criterion and the optimality of their respective kernel
is evaluated considering the width of the confidence interval and its coverage probability.
These criterion were selected according to their relevance to the energy sector.

3.3.2 Evaluation metrics
Decision making in energy sector depends heavily on the confidence interval than the
predicted mean trajectory. Accordingly, the mean prediction interval width (MPIW) and
prediction interval coverage probability (PICP) are selected as a quantitative metrics to
asses model predictive performance. These two measure the span of the interval and the
percentage of forecast points falling within the interval respectively. By definition, the
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width of the prediction interval is quantified through MPIW [20] and mathematically is
given by

MPIW = 1
N

N∑
i=1

(ŷupper
i − ŷlower

i ) (3.2)

where N is number of observations and ŷupper
i , ŷlower

i are the upper and lower bounds of
confidence interval for the ith sample respectively.

On the other hand, PICP estimates the percentage of points falling within the confi-
dence interval. To that end, we considered a binary variable ζi ϵ ζ that takes a membership
value of 1 and 0; signifying the presence or absence of the point within the interval re-
spectively. As such, PICP and the random variable ζi are mathematically defined as

PICP = 1
N

N∑
i=1

ζi, where ζi =
[
1, ŷlower

i ≤ yi ≤ ŷupper
i

0, otherwise

]
(3.3)

The value of PICP falls between 0 and 1. A naive model with infinite confidence interval
width can have a PICP value of 1. Consequently, a PICP value closer to 1 is considered a
good quality indicator for a given model only when it is supported by a minimum MPIW
value.

3.3.3 Model evaluation and kernel selection
The average mean squared error (MSE) between the predicted mean and the true value,
is employed as a criterion for selecting the first z mixtures with the least MSE error as the
best performing kernels. These kernels are again combined following the sum rule given
in proposition 2.4.2 to form the final kernel which is given by

k =
z∑

i=a

(ki) (3.4)

Such manner of composing kernels compounds the number of hyperparameters and reduce
efficiency. Therefore, the exact number of mixtures for the final kernel is left as a design
parameter for the user to select based on the available computational resources. The

Figure 3.2: A combination of n kernels. z mixtures with the least mean squared error are
selected to evaluate the final kernel k = ∑z

i=a(ki) for model training and evaluation

algorithm is tested on a subset of the time series data given in Figure 3.1. In order to
minimize the number of combinations, the SE kernel is taken out from the kernel definition
and introduced via a multiplication as shown in Algorithm 1.

A number of models were trained for the demand profile provided in Figure 3.1. Since
the data show a clear seasonality, we used a periodic kernel to model the daily, weekly and
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Algorithm 1: Exhaustive kernel search
kernels← {0 : k1, 1 : k2...n : kn}
n← kernels size
m← kernels key list
k ← SE kernel
for index = 1, 2, ··, n + 1 do

for list, in combination (m,index) do
L← list size
for i= 0,1,. . . ,L do

k ← k ∗ kernels[list[i]]
end
Train model using kernel k
Estimate model output Ymean

Compute model MSE (Ytrue − Ymean)
Collect model MSE error for each kernels
k ← SE

end
end
Evaluate the first z kernels with the least MSE error
return k ← ∑(zś kernels)

yearly seasonality along with other relevant kernels to capture the trend. A sliding window
technique with a stride length ws = 1008, and ws = 2016 (for a week and two weeks ahead
forecast respectively) is used for updating and forecasting. For the variational inference
computation and ELBO optimisation, the number of inducing variables and maximum
iteration are set to z = 75, and Iteration = 14000, respectively. We used the six best
performing kernels to construct the optimal kernel. These kernel mixtures with their
associated MSE scores are shown in Figure 3.3. To enhance accurate representation of the
data, these composites are again combined to give the final kernel k

k = k1k4 + k1k4(k2 + k3) + k1k4k2(k3 + k5) +
5∏

i=1
ki (3.5)

where k1=SE, k2= Matern, k3= Periodic(daily), k4= Periodic(weekly), k5= Linear.
The SVGP model trained on the final kernel (k) given in equation (3.5), scored the

lowest MSE relative to the other mixtures as shown in Figure 3.3. However, this kernel
is not constant. It is one optimal combination based on the portion of the data and the
hyperparameter setting. In a sense, the algorithm finds a suitable kernel dynamically,
whenever the data or the hyperparameter settings change. We could minimize model
complexity and further improve computational efficiency by reducing the number of mix-
tures in the final evaluation. A sample of the two weeks ahead demand forecast using
the evaluated kernel is shown in Figure 3.4. The simulation showed the SVGP model’s
superior performance in handling big data. However, the sparse approximation degrades
prediction accuracy for special days (i.e holidays) as shown in Figure 3.5. Generally, the
model performs well for a regular day. But, despite the yearly periodicity introduced
into the kernel to account for a holiday recurrence, the model fails to capture the yearly
pattern. As a result, its fails to predict accurately the electric demand for holiday’s. This
is due to the uneven data distribution between the holidays and regular days. The bulk
of the time series data is dominated by samples from regular (non-holiday) days. There-
fore, the probability of the inducing variables distribution resembling this range is higher.
Consequently, the model generalizes and considers holiday’s just like any other day as
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Figure 3.3: MSE score for the 15 kernel combinations. The final kernel is the sum of the
six least scoring kernels whose MSE score displayed at index 15

shown in Figure 3.5

Figure 3.4: A two weeks ahead forecast for a predictive model with a year long prior
observation and 75 inducing variables used for training and approximation. A window
size = 1008

The inference drawn from few inducing variables and the associated prediction cover-
age is also dependent on the size of the training sample. This dependency is illustrated
in Figure 3.6. Here, the model is trained with 4000 and 8000 samples using the same
number of inducing variables. Increasing the sample size improves PICP by enlarging the
MPIW. The reason being, expanding the sample size while holding the inducing variable
constant introduces a higher uncertainty which inflates the prediction width. On the
other hand, training the model on a smaller sample size resulted in a smaller MPIW
which is followed by a reduction in the percentage of points covered under the prediction
interval (smaller PICP). The simulations show large training sample is not a guarantee
for better prediction. For example, in Figure 3.4, the model was trained on a year long
prior observations using 75 inducing variables. A smaller MPIW and similar PICP can
be achieved by training the model with 8000 samples as shown in Figure 3.6 and Ta-
ble 3.1. Therefore, one can manipulate the sample size in conjunction with the number
of inducing variable for a desirable prediction coverage and computational efficiency. In
addition to sample size, PICP and MPIW are also affected by the size of inducing variables
and their initial assignment. The experiment show their arbitrary placement and number
assignment degrades prediction accuracy.

We later compared the performance of the model using the long short term memory
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Figure 3.5: A week ahead prediction during holiday with 8000 prior observation and 75
inducing variables used for training and approximation
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Figure 3.6: PICP and MPIW week ahead prediction for a model with 8000 and 4000 prior
observation as training data

(LSTM) as a benchmark. LSTM neural nets provides point estimates only. They represent
the latest non-parametric regression models that is efficient and score a fast computational
time during forecasting. However, they do require a long training time and generate a
trajectory for mean prediction only. In order equalize the comparison, we generated
a forecast distribution through aggregating multiple LSTM models. Twenty one LSTM
models were trained using the walk forward technique to generate a two weeks ahead
prediction for the time series data shown in Figure 3.1. Each models consists of five inputs,
an LSTM layer with 75 neurons followed by a dense layer and one output. We selected the
number of neurons parallel to the number of inducing variables used when building the
spares variational Gaussian model. In order to create a probabilistic irregularity on the
forecast, we varied the batch-size, learning rate and epochs. Since we wanted to use the
outputs of the 75 neurons, we didn’t utilize drop out layer. For fast computation, the given
data was re-sampled on hourly basis. The daily and weekly periodicity’s are encoded and
presented as an input feature along with the actual values. Then, the models were trained
using 8400 samples on the training set. Finally, we made a two weeks ahead multiple-step
forecast. The mean forecast and aggregated distribution are shown in Figure 3.7.

In regards to prediction latency, there is no measurable performance difference between
a trained LSTM and Gaussian model. They both provide fast prediction in a fraction of
seconds. However, in Table 1, we can see that the LSTM model trained on 6000 samples
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Figure 3.7: Aggregated lstm predictive model for a two weeks ahead demand forecast.

takes 244 seconds during training. By comparison, the Gaussian model takes 70 seconds
in both cases. Aggregating LSTM models further expands the training time. In an online
training and prediction where less latency is the objective, the Gaussian model outperform
LSTM when it comes to fast training time and the convenience of providing a forecast
distribution rather than a point estimate.

Table 3.1: Performance metrics

Model Sample Size PICP MPIW Training Time
LSTM 6000 0.935 6.58kw 244 sec

SVGP
8000 0.989 7.33kw 70 sec
4000 0.962 7.83kw 70 sec

Kernel based learning through exhaustive kernel search method exposed few things.
In addition to the inherent inefficiency of the search algorithm, the variational approxi-
mation requires a considerable amount of time for posterior convergence. The variational
approach provides a tangible objective function that can be used as a metric to mea-
sure the degree of approximation during optimization. However, multiple model training
and optimization requires a lot of computation and iteration which linearly increase the
computational time required for optimal kernel evaluation. As such, any attempt on the
algorithmic kernel evaluation requires a continuous training and evaluation of the model.
This will ultimately affect the computational time and efficiency of the model. Conse-
quently, in addition to the exploration mechanism, an effective implementation should
address the limitation of the underlying model. As such, a faster and more practical
approach in model building that is scalable to large data must be followed.

The sampling theorem states that few point have the capacity to summarize and
capture the information content of a given data. The fidelity of this representation depends
on many factors like the sampling rate, the range of frequencies so and so forth. However,
it makes a valid argument that for pattern discovery, analysing the entire data is not
necessary. Hence, the easiest alternative would be a Gaussian process model that is
based on a randomised column sampling. In doing so, it results in a computationally
feasible model to carry out the search algorithm. This sparse approximation makes the
size of the kernel dimension manageable through sampling. The reduction in kernel size
together with the Bayesian inference offers a faster model evaluation compared to other
approximations. As such, this arrangement rectify the time constraint that would have
been required for the ELBO convergence. The rationalization behind such model building
and kernel estimation can be attributed to the fact that a kernel that approximate a
sampled points could approximate the original data as well.
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3.4 Random sparse gaussian approximation
A Gaussian model based on random sampling doesn’t need the entire input space for
training. It represents the given observation by a selected subsets of the data that could
potentially generalize it. This approximation will transform the data space from D ϵ
RNxN to D ϵ Rpxp, where p is number of points selected for approximation. However,
the accuracy of representation depends on how well the selected data D̄ summarize the
original data.

Hence, given a time series data D = {(xn, yn)}N
n=1 and a set of randomly sampled

points D = {(xi, yi)}P
i=1, it defines a joint distribution over the sampled points f and all

other points f∗ as

p(f, f∗) ∼ N
([

0
0

]
,

[
Σpp Σnp

ΣT
np Σnn

])
(3.6)

where Σpp the approximating kernel, n is the size of training data and p is a randomly
selected points without replacement. The principle of model fitting and parameter opti-
misation follows the regular Bayesian framework discussed in section 2.5.2. Here, the only
difference being, the prior definition in equation (3.6) manipulate a kernel with a reduced
dimension.

The sampled observations (yp) are assumed to be samples of the random variable y(x)
which are drawn randomly from a normally distributed Gaussian with mean f ≈ 0 and
variance ϵ ∼ N (0, β2Ip),

y(x) ∼ N (0, Σpp + β2Ip) (3.7)

As such, the likelihood of the data p(y|f) can be expressed as

= 1
(2π)n

2 det(Σpp + β2Ip) 1
2
exp

(
−y(x)T (Σpp+β2Ip)−1y(x)

2

)
(3.8)

The parameters of the kernel matrix (i.e θi, i...m) defining the covariance between the two
random variables are estimated through

∂log(p(y|f))
∂θi

= 0 (3.9)

Performing marginalization and conditioning on (3.6) - (3.8), the Bayesian framework
defines the posterior distribution p(f∗|f, y) as

p(f∗|y) = N (f∗; µf , Σf ) (3.10)

∼ N
([

Σnp(Σpp + β2Ip)−1y, Σnn − Σnp(Σpp + β2Ip)−1ΣT
pn

])
(3.11)

where µf = Σnp(Σpp + β2Ip)−1y and Σf = Σnn − Σnp(Σpp + β2Ip)−1ΣT
pn. From (3.11), the

mean forecast and the associated 95% upper and lower prediction bounds are given by
ymean = µf , yupper = µf + 1.96 ∗ Σf

1
2 and ylower = µf − 1.96 ∗ Σf

1
2 respectively.
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Figure 3.8: Input space sampling
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Figure 3.9: Gaussian process predictive distribution on sampled space

The objective in the Gaussian process with random sampling is to select the right
combinations of input columns and kernel parameters so that the original likelihood of
the data y(x) ∼ N (0, Σnn + β2In) can be approximated by y(x) ∼ N (0, Σpp + β2Ip),
where Σpp is a low rank approximating kernel. Though, the mathematical representation
looks sound, the validity of this approach is dependent on the sampled input columns
in approximating the whole observation. As such, the question that remains is how
to find and select those approximating points without the need for inducing variables
or the trouble of optimising their location. One potential alternative is to sample the
original data by applying the Nyquist-Shannon criteria. Especially, for large data, such
technique can reduce the sample space for random draws. Consequently, it can provide a
set of summarising points with high probability for accurate representation of the original
observation. Accordingly, at the preprocessing stage of data preparation, the original data
can be down-sample at frequency fs to provide the sample space S

fs = 2 ∗ fmax (3.12)

where fs and fmax are the sampling frequency used and maximum frequency observed
within the data respectively. Then, a training data {(xi, yi)}P

i=1 is created iteratively by
drawing P samples randomly without replacement from the sample space {(xi, yi)}P

i=1
ϵ S. An m number of Gaussian models will be trained and evaluated by sampling the
sample space S randomly without replacement. Consequently, it will create an ensembles
of Gaussian models with a total time complexity O(mP3) where m and P are the size of
iteration and the number of sampled points. This process is better contextualized and
illustrated in Figure 3.8 and Figure 3.9. From the original data given in Figure 3.8a, the
first half is used for sampling. The second half and the leftovers points from sampling are
later used for testing and model validation. The first half is sampled randomly, ten points
(i.e P= 10) at a time without replacements as shown in Figure 3.8b - Figure 3.8d. Then,
three models are trained using the selected clusters and their predictive distribution is
shown in Figure 3.9b - Figure 3.9d. In Figure 3.9, the best approximating model is the
one in Figure 3.9d and it is chosen via a predefined performance metrics (i.e lowest MSE
score, PICP, MPIW, etc) or on the basis of which model approximate the original data
best.

3.4.1 Model evaluation via cross-validation
For the sake of the sparse approximation, we followed a sampling approach for training
point selection. This has effectively reduced the size of data, a data which could have
been utilized for improving the inferential ability of the model. In the presence of a
number of Gaussian models to evaluate and less data to work with, the cross-validation
approach is the best technique to apply for model evaluation. In reality, it is a scheme
that is computationally intensive. However, it is also a valid approach that guarantee
efficient utilization of the training data [37, 89, 104]. The sampling divides the training
data into two. Here, there is a 2-fold cross-validation with two unequally sized subsets
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of data. In this scheme the model is trained continuously on a new randomly generated
P sampled points. The model is evaluated on the remaining P - 1 data points. The
randomness in column sampling rectify the selection bias that may be introduced when
preparing the data from training. For a holistic model comparison, the root mean square
error (RMSE) and R2 score are utilized as the performance metrics. As a result, the model
and the training points will be accepted or rejected as a representative to the underlying
generative model based on which sampled columns fulfilled the desired performance index.
For instance, given a time series data D = {(xi, yi)}n

i=1, 2-fold cross-validation, provides
Dt = {(xi, yi)}p

i=1 as the training data and the model is evaluated on Dv = {(xi, yi)}n
i=p,

so that the average RMSE on the validation set is given as

RMSE =
√√√√ n∑

i=p

(yi − ŷi)2

n− p
(3.13)

where yi and ŷi are the observed value and predicted value at point i. As a result,
the model and the training points will be accepted or rejected as a representative to the
underlying generative model based on which combinations fulfilled the desired index. The
random data selection and the manner in which optimal model performance is accepted
or rejected gives the notion of Monte Carlo in model building and evaluation as shown in
Algorithm 2.

The proposed sparse model approximation perform a fast fourier transform (FFT)
on the input data to retrieve the maximum frequency fmax. This frequency is used to
estimate the required sampling frequency fs. Points located at the sampling frequency
contain enough representative information for the whole observation. As such, the given
data is down-sampled to create subset of points for model training. Once the training
domain is created, we randomly select P points iteratively for model fitting and parameter
optimization. The sampling is carried out without replacement. Therefore, the remaining
points will constitute the majority of the test data. The root mean squared error on the
test data is applied as a criterion for model comparison. The model with the least mean
squared error is finally taken as the best performing model as shown in the algorithm 2.

3.4.2 Random column sampling simulation
It is an established fact that all data contains a little bit of noise either systematic or
random. For the FFT analysis, We assumed the maximum frequency as the highest
frequency with a non-zero signal strength. This assumption creates a problem when
analysing data with added noise. Especially, when the modeling approach followed is
based on a handful of points that are thought to potentially summarize the underling
data distribution. The frequency spectrum of a noise signal is vast. Determining the
sampling period in the presence of a noise affects the acquisition of subset of data needed
for training. Consequently, the noise must be filtered out before performing dimensional
reduction of the given data. As such, data analysis and determination of a cut-off signal
strength is necessary to nullify noise frequencies.

We tasted the random sparse Gaussian approximation (RSGA) algorithm on a syn-
thetic data. We used a non-linear function that exhibit periodicity and gradual degrada-
tion to encompass features of a time series data

y = sin(2πf0 ∗ x)+sin(2πf1 ∗ x) + sin(2πf2 ∗ x)
with ϵ ∼ N (0, β2)

x [0, 100], fo = 0.08, f1 = f0/10, f2 = f0/2
(3.14)

whose time and frequency spectrum are shown in Figure 3.10a, Figure 3.10b respectively.
The data exhibit periodic oscillation and gradual decay. As such, the exponential squared

99



Algorithm 2: Random sparse gaussian approximation
Input: data (X,Y)
Initialize kernel hyper-parameter θ = [σ2,l,p,...]
Initialize P : number of points for fitting
Define kernel structure Σpp

Determine maximum frequency fmax = max(FFT(Y))
Define sampling frequency fs = 2 ∗ fmax

Xs, Ys = downSample(X,Y,fs)
samples = [0,1,2,...,len(Xs)]
indices = random.choice(samples,p,replace=False)
Xp, Yp = Xs[indices], Ys[indices]
model = GP(Σpp)
θopt = model.fit(Xp,Yp) and optimize parameters
Ym = model.predict(Xs)
scoreopt = model.score(Ym, Ys)
Xopt, Yopt = Xp, Yp

for index = 1, 2, . . . , m do
indices = random.choice(samples,P,replace=False)
Xp, Yp = Xs[indices], Ys[indices]
θ = model.fit(Xp,Yp) and optimize parameters
Ym = model.predict(Xs)
score = model.score(Ym, Ys)
if i = 1 then

θopt, scoreopt = θ, score
Xopt, Yopt = Xp, Yp

else
if score < scoreopt then

θopt, scoreopt = θ, score
Xopt, Yopt = Xp, Yp

end
end

end
end

and periodic kernel functions are used used for modeling the local and global co-variances.

Σij = σ2exp
(
− ||xi−xj ||

2l2

)
+ σ2

pexp
(
−(2sin2(π||xi−xj ||/p)

l2p

)

The random sparse Gaussian model was trained and evaluated on a 100 generated
points. The first 50 points were selected for training. The training set was resampled
again with 1/2fmax sampling period and further reduced to 25 points. Then iteratively 10
points were randomly selected without replacement for model fitting and the remaining
40 points were used for a continuous model evaluation. A multi-start minimization is
followed for the kernel hyperparameter optimisation. As such, the optimiser restart was
set to 50 to randomly sample the parameter space.

The experiment shows that random column sampling without replacement creates a
better convergence as compared to sampling with replacement counterpart as shown in
Figure 3.11b. The acceptance and rejection of a viable model is also demonstrated in Fig-
ure 3.11b. The algorithm will keep the same state (i.e model, parameters, sampled input
locations) while rejecting all other models with a higher MSE score as shown in algorithm 2
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Figure 3.10: Data with its frequency spectrum

and the horizontal lines in Figure 3.11b. This algorithm offers by far the easiest, compu-
tationally efficient and scalable Gaussian model for algorithmic kernel search. Although
the fourier based sampling helps in reducing the search space for potential summarising
points, the sampling scheme is undirected. As such it exhibit a stochastic nature.

Later on, the RSGA algorithm is compared with the variational Gaussian approxima-
tion (VGA). We used the same kernel for data structure discovery. For uniform com-
parison, we set the inducing variables z = 10 and iteration to 20000 for variational
inference and ELBO maximization. The experiment shows that the random Gaussian
model (RSGA) exhibits faster convergence and a better predictive performance than the
variational Gaussian (VGA). Compared to the variational, the randomize approximation
scored a lower mean squared error (MSE) and a higher R2 score as shown in Figure 3.12. In
Figure 3.12a and Figure 3.12b, the MSE and R2 scores prove that the RSGA approximate
and explain the variations in the observed data better than VGA. Variational inference
requires a higher number of iteration for better accuracy. This affects the computational
efficiency of the model. Since it is not based on variational inference, RSGA exhibits a
faster training time and under a good summarizing points, a higher predictive perfor-
mance. Furthermore, the experiment shows modeling building and evaluation through a
random column sampling is 10 times faster than the variational alternative. This can be
attributed to the iterative computation required in variational inference for ELBO max-
imization. In this particular experiment, model building and evaluation took te ≤ 2.5
seconds in RSGA while taking te ≤ 25 seconds on average in case of VGA.
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Figure 3.11: Predictive distribution with effect of sampling
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Figure 3.12: Random sparse (RSGA) Vs variational (VGA) gaussian approximation

The effect of sampled columns were one aspect of the model building process that we
were interested in. As such, we carried out an experiment to determine how the number
of sampled columns P affect the predictive performance. We varied the sampled columns
p ϵ [10, 26] and iteratively trained more than 300 models based on the RSGA and VGA.

The experiment showed increasing the number of sampled columns improved the pre-
dictive performance of the RSGA as shown in Figure 3.13a and Figure 3.13b. However,
the most striking difference in regards to the variational inference was the computational
efficiency. The time required for model training in VGA is on average 10 times more
than the RSGA. As such, the simulation proved that random column sampling is more
computational efficient than the variational alternative. This approach could also be used
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(a) RSGAVs VGA MSE score for different P
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Figure 3.13: Random Vs variational model comparison for sampled column Pϵ[10, 25]

to determine the minimum number of columns (i.e number of inducing variable and their
location in VGA) that are required to approximate the given data using a predefined per-
formance metrics such as R2 or MSE. The RSGA model achieved the maximum but similar
R2 score for all column sampling P ≥ 12 as shown in Figure 3.13b. As such, together
with the MSE score in Figure 3.13a, we can say that P = 12 are the minimum number
column samples that are required to achieve the needed performance index. Now that
the approximating columns for kernel size reduction is done, in the next section we will
review an efficient method for kernel exploration. We will see how to select appropriate
kernels for similarity measure in a way that guarantee both sufficient data representation
and computational efficiency using the random column sampling as the underlying model
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building framework.

3.5 Stochastic kernel search

The stochastic kernel search uses the same compositional learning listed in proposi-
tion 2.4.2 to construct kernel from primitive basis functions for pattern discovery. These
techniques were used in the exhaustive search methods. However, unlike the exhaustive
search method, only promising kernels that could provide the highest data representation
are added to the mix. The approach begins by checking for local similarity and then ex-
tends this to a global correlation. To improve the search efficiency, the primitive kernels
are divided into groups for local and global similarity before the search begins. Among
the available basis function, SE function, RQ function, and Matern basis functions are
selected to model local similarity. The remaining kernel functions are grouped in a set
for global similarity. Such arrangement will constrain the search space and rectify the
time complexity incurred during the random selection and evaluation phase. Once the
kernels are ground, the next step is to train the Gaussian model to select the best local
kernel. To that end, the root mean squared error RMSE is used as a criterion for model
evaluation. Once a suitable local kernel is established, it will be used as a based node to
construct other possible mixtures following proposition 2.4.2. This procedure creates a

Figure 3.14: Kernel combinational tree using the product (∗) and the sum (+) rule. Here
P ,L, and C stand for the periodic, linear and constant kernel respectively. Kernels on the
path that results in the least RMSE score, are selected as the suitable mixtures for the
given data

tree of possible kernel combinations as shown in Figure 3.14. The resulting mixtures are
ranked by iteratively evaluating the random Gaussian model (RSGA) given in algorithm 2.
The transition from the node to node is dictated by which path results in the minimum
RMSE score. As long as the path offers the lowest error the branches are expanded up to
a user defined depth parameter d. According to proposition 2.4.2, applying the sum and
product rule, a single node bores two child nodes. If the RMSE score of the child nodes are
greater than the parent node, the stochastic search will stop branching. Then, the kernel
mixtures from the base node to the last parent node will be forwarded as the combinations
that best explain the observed data. The pictorial description and the details of the search
mechanism is outlined in Figure 3.14 and algorithm 3. Inherently compositional learning
compounds the number of hyperparameters. As a result, a parameter d is provided to
monitor the level of complexity and depth of branching.
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Algorithm 3: Stochastic kernel learning
Given kernel dictionaries for local(L) and global(G) Cov
L = {’se’: SE, ’rq’: RQ, ’m’: Matern}
G = {’p’: Periodic, ’c’: Const, ’Wh’: Noise,’L’: Linear}
Given the depth = n for child nodes
optk = [ ]
score = [ ]
for key, k in L.items() do

Evaluate GP for kernel k and return RMSE
if score is empty then

optk = k
score = RMSE
else

if RMSE < score then
optk = k
score = RMSE

end
end

end
end
for i in range of len(G) do

Randomly select a kernel k from G
Generate tk = optk + k and tk = optk ∗ k
Evaluate GP for each mixtures and return RMSE
if RMSE < score then

optk = tk
score = RMSE
break
else

continue
end

end
end
for i in range of (depth - 1) do

Randomly select a kernel k from G
Generate tk = optk + k and tk = optk ∗ k
Evaluate GP for each mixtures and return RMSE
if RMSE > score then

break
else

optk = tk
score = RMSE

end
end

end
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3.5.1 Stochastic kernel search simulation
The stochastic search algorithm was tested on a real and toy data for the purpose of
generalization. For the synthetic data, we selected a non-linear function given in equa-
tion (3.14). The random sparse Gaussian model was trained on a 100 generated points.
The first 50 points were used for training and evaluation. The training set is further
reduced to 25 points by resampling it at 1/2fmax. A stochastic data sampling was car-
ried out for RSGA model training and evaluation as given in algorithm 2. The kernels
were combined using the stochastic compositional kernel learning approach given in al-
gorithm 3. For the iterative model training, 10 points were randomly selected without
replacement. Then, the remaining 40 points were used for continuous model evaluation.
For kernel hyperparameters optimisation, a multi-start minimization with a 50 optimiser
restart was applied. For pattern learning the tree depth was varied from 2 to 5.

In the experiment, the algorithm combines elementary kernels stochastically. As such,
in every iteration different compositional kernels were given as a potential mixtures out-
puts as shown in Figure 3.15b. The experiment was carried out with a maximum tree
depth of 5. After the first node is fixed, using the provided kernels for local similarity, the
algorithm uses the RMSE criterion to find additional nodes for global similarity. Travers-
ing the tree along the least RMSE path allowed the algorithm to branch off stochastically
and find other suitable mixtures as shown in Figure 3.15b and Figure 3.15c. The observed
randomness can also be attributed to the stochasticity introduced during training point
selection. Despite the depth, the estimated complex kernels delivered more or less similar
predictive performance as compared to the simple composites as shown in Figure 3.15a and
Figure 3.15b. The effect of compositional learning on the time complexity of the model
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Figure 3.15: Model predictive distribution and compositional kernel learning

can be seen in Figure 3.15d. Figure 3.15d shows as more and more kernels are added
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Figure 3.16: Passengers flight data predictive model and possible kernel combinations

to the mix, the time required to optimise the hyperparameters of the model increase.
Thereby increase the overall model evaluation time. The algorithm can uncover any hid-
den pattern provided enough tree depth. This in return increase the number of kernels in
the mixture. Combining kernels in such a manner compounds the number of hyperparam-
eters to optimize. Consequently, introducing an exponential time requirement for model
estimation as shown in Figure 3.15d. As such, considering the available resources and the
desired predictive performance, one could manipulate the depth for the exploration of an
appropriate kernel. The experiment also showed, some of the returned mixtures were not
able to accurately explain the data or provide the desired level of predictive performance.
This is due the fact that the exploration and the formation of new branches is predicated
upon scoring the least RMSE error. If both rules (sum and product) of combining kernels
resulted in a higher RMSE error compared to the immediate parent node, the algorithm
stops the exploration prematurely. Therefore, it is necessary to retrain and assess the
returned kernels to determine if they accurately explain the training data.

Later on, the same strategy was applied to evaluate different kernel configurations
for a passenger flight data which exhibits trend and seasonality. The data was divided
using a train-test split of 50-50 for training and evaluation. We further down-sampled the
training data and iteratively selected 10 points randomly without replacement for model
training. The experiment showed, the presence of trend affects the time efficiency of the
search and the optimality of all returned kernels. However, the algorithm was able to
provide various kernel arrangements which could potentially explain the observed data as
shown in Figure 3.16a and Figure 3.16b.

3.6 Conclusion

In kernel-based regression models, the choice of kernel can greatly impact the predictive
performance of the model. As a result, various search methods, such as exhaustive,
grid, and randomized search, have been used to find the optimal kernel that explains the
given data. Exhaustive search methods tend to offer the best possible combinations, but
they are computationally intensive. Grid and randomized search methods can improve
efficiency by constraining the search space to a few basis kernel functions, but the time
complexity of the search still depends on the nature of the model.

In this chapter, trusting the computational efficiency of the sparse variational Gaussian
process, we employed the exhaustive search approach to find a suitable kernel. The al-
gorithm successfully unveiled the hidden patterns within the given data and provided a
fitting covariance matrix. However, the approach requires model training and evaluation
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for every kernel combination which affects the search efficiency. In addition, the time
needed for the ELBO convergence adds an extra time complexity. In spit of that the re-
search also showed the sparse variational Gaussian model outperform LSTM deep learning
models in computational efficiency and providing a predictive distribution. However, it
suffers from a generalization problem. For data that exhibits multiple periodicity, the ap-
proximation favors those features of the data that are bound to happen more frequently.
As such, moments which are rare but could happen periodically are ignored and lumped
as same with the most frequent moments during forecast. Hence, multiple predictive
models with separate data aggregation and analysis could rectify these issues.

For most machine learning algorithm, more training data often entails better approx-
imation. However, for sparse variational Gaussian model, more training data doesn’t
always mean better approximation. Increasing the training sample while holding the
number of inducing variables constant, introduces higher predictive uncertainty. As a
result, one could manipulate the sample size, hyperparameter space and kernel setting
to find a better coverage probability (PICP) with minimum confidence interval (MPIW).
If there is a predictable pattern within the data, including more points on the training
phase could be disadvantageous unless more inducing points are used. Since the size of the
inducing variables and arbitrary assignment affects accuracy, subjective analysis of the
data and determination of optimal inducing location is necessary. So that a compromise
can be made on the computational resources one is willing to sacrifice versus the desired
performance goal.

To curb the limitation of the SVGP model as a framework for kernel evaluation, we
introduced a randomised column sampling technique for a fast predictive model building
and proposed a random sparse Gaussian approximation (RSGA) algorithm. We used
the variational Gaussian algorithm as a benchmark to test the predictive performance
of the suggested algorithm. The experiment has shown that random column sampling
offer an alternative method for Gaussian approximation that is scalable to large data.
The algorithm follows a stochastic sampling scheme. However, this randomness could be
directed and constrained to a subset of the data through frequency sampling. We applied
frequency analysis as a mandatory data preprocessing step. This has enabled us to extract
points that could potentially summarize the given data. Hence, minimised the space for
column sampling and improved the computational efficiency of the underlying model.

The experiments demonstrated that a Gaussian approximation based on random sam-
pling achieved a better predictive performance than the variational counterpart. The
RSGA was found to be 10 times faster than the VGA. The experiment revealed inference
through variational approach requires a lot of computation. This has affected the com-
putational efficiency of the model. Furthermore, VGA’s dependency on the number and
location of inducing variable and the type of kernel has affected the predictive accuracy
of the model. We have used and enjoyed the benefits of variational inference in other
projects. We also know that its predictive accuracy can easily be affected by so many
parameters. Although, it provides an ingenious way of dealing with the Bayesian bottle-
neck, model training requires a lot of tuning and patience to see the desired result. Hence,
for a fast and scalable Gaussian inferences, predictive algorithms such as the RSGA can
be utilized as an alternative approach for inference and approximation.

In this chapter, we also proposed a stochastic kernel search algorithm that takes into
account the limitation of the exhaustive search approach for optimal kernel evaluation.
The objective was to utilize the random sparse Gaussian process as the underlying model
and provide a framework for efficient estimation of suitable kernels. A combination of
sparsity in model building and a stochastic approach for kernel selection has afforded the
method a computational advantage over other counterparts. However, it is still stochas-
tic in nature and hence, it requires iterative retraining to find the best combinations.
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This approach can be used at the preprocessing stage to determine which combinations
of kernels provide better predictive performance and fit the observed values best. On
top of that, the algorithm can simplify the application of kernel-based learning to those
who find kernel selection vague. To the experienced, it can give a preliminary insight
into the structure of the kernels that could potentially fit the data. Regardless of their
computational difference, the exhaustive and stochastic kernel search methods can help
in retrieving the hidden structures embedded within the given data. Especially to data
that exhibit difficult patterns to discern. However, combining kernels in whatever man-
ner increases the complexity of the model and the number of hyperparameters. As such,
by minimizing the number of mixtures, in parallel with the desired performance and the
available computational resources, the model predictive efficiency can be guaranteed.
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Chapter 4

Uncertainty in Deep Learning Models

4.1 Introduction

In chapter 2 and 3, we have reviewed in details the implementation and limitations of
gaussian process model. Despite its shortcomings, gaussian model follows a more di-
rect and credible approach to uncertainty quantification in modeling building process.
It addresses the epistemic uncertainty as function of the relative distance between the
recorded observations within the covariance matrix of the prior distribution. By optimis-
ing the number of kernels, their type and hyperparameters, it anticipate and mitigate their
impact on predictive accuracy. For the consideration of the inherent and irreducible data
variability, the gaussian process assumes an observational noise in the model likelihood
function. Yet the exact parametric form of the uncertainty is specific to the problem at
hand and varies depending on the posterior predictive distribution. As such, there is some
degree subjectivity in the assumed error distribution. On the other hand, Neural networks
show a great flexibility in handling big data and making point estimates. However, the
lack of uncertainty quantification through a predictive distribution has constrained their
application in sensitive areas. Both gaussian and deep learning models have exhibited
great performance in providing a flexible function to a given problem. In fact, in previous
research it has also been shown that a neural networks with infinite hidden layer will
converge to a gaussian prior over functions. Furthermore, for specific priors on network
parameters and transfer functions, a fitting covariance functions can be computed ana-
lytically, providing a network prediction with infinite hidden layers in a time-complexity
of O(n3), resembling the gaussian process posterior[106, 107]. Although some equivalence
can be established between the two, there is also a great divide based on their parametric
nature, the way how they look the observed data, its significance and interpretation, and
means of parameter optimisation.

In chapter 2 the gaussian process was defined as a non-parametric regression model.
This definition doesn’t imply there are no parameters in the gaussian process. However,
the non-parametericity signify that the number of parameters required to define a given
problem has no relation relation with the amount of data. Hence it doesn’t grow or
shrink with the size of the data. The parametric profile of a gaussian process is fixed
regardless of the size of the data. Consequently, it is fully specified by a fixed set of
parameters. More precisely, the mean, covariance function and the hyper-parameters of
the kernel function. On the other hand, deep learning models are parametric. Their
flexibility to generate complex patterns commensurate with the given problem emanates
from their tendency to expand their parameter space and accumulate as much parameter
as required. This often times leads to overfitting, poor predictive performance and over-
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parameterised model. The difference in the parameterisation of the models has affected
how the models see the observed data. For a gaussian process, in addition to optimising
the hyper-parameters, the observed data determines the future outcomes of the model.
This is evident in chapter 2, parameter learning in equation (2.41) and posterior mean
in equation (2.40). Hence, the observed data impact the present form and future of be-
haviour of the model. Consequently, the observed data needs to be kept and monitored
for future reference thereby causing a huge storage constraints. In case of deep learning
and other parametric models as well, the reach of the observed data extends up to mod-
ifying the parameters of the model. Hence, it doesn’t directly affect the outcome of the
model during prediction. Consequently, it can be discarded after model training or pa-
rameter optimisation. In spite of their differences, as predictive model, the quantification
of uncertainties involved during prediction is crucial and the objective assessment of these
uncertainties improves the validity of the model. Researches in the areas of probabilistic
deep learning has allowed the predominately mean centered network estimation to have
the ability to anticipate variability and provide a predictive distribution.

This chapter proposes a new approach for a predictive distribution in deep learning
models. It will focus on ensuring the quantification of both sources of uncertainties in a
way that provides a minimum confidence interval with maximum coverage for prediction
points. We will demonstrate mathematically, the upper lower bound assessment method
encompassing the quality metrics, prediction interval coverage probability (PICP) and
mean prediction interval width (MPIW) in its bound estimation. Then, we developed a
customized loss function with adaptive hyperparameter that balances the needed coverage
probability in relation to the prediction interval. Finally, we evaluated the performance
of our approach on a UCI regression data using the recent Quality Driven (QD) bound
estimation method as a benchmark.

4.2 Uncertainty Estimation in Deep learning

Uncertainty quantification is a hallmark of a predictive model. Even though there are
areas that don’t require it (i.e joint torque estimation for a robotic system [108]), the
majority relay on uncertainty estimation for decision making [91]. For example, the range
of uncertainties is used for cost profit optimization in energy and stock market regression
models. In the case of a classification oriented tasks such as AI assisted clinical decision
making [109], post office and nuclear power plant [110], a probabilistic model output with
high uncertainty could invite a second opinion from experts for better interpretation and
improved judgment. Therefore, the inclusion of uncertainty during prediction enhances
the acceptability and validity of the model [111].

Deep neural nets have demonstrated impressive predictive agility. They have been
used for regression and classification based predictions in a variety of areas [76]. Medi-
cal [109], weather [111], transportation [112], energy [113], stock [114] and robotics [108],
are some of the specialization where deep neural net is gaining momentum. However, the
lack of uncertainty estimation has restricted their application in sensitive areas [109, 115].
This can be attributed to the absence of probabilistic modeling which has limited their
outputs to point estimations in case of regression and labels without confidence in case
of classification. A variety of approach have been proposed to establish a probabilis-
tic output distribution for neural nets. Deep ensembles, distribution based [115, 116]
and distribution free interval estimation [117, 118], Bayesian inference [119], probabilistic
irregularity through MC dropouts [110] are few notable mentions.

For machine learning uncertainty quantification, understanding the source of the un-
certainty is important. The uncertainties can emanate inherently from the model or could
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be external to it and part of the input observation. Predictive models optimize their pa-
rameters based on the quality and quantity of data in which they are permitted to train.
Their generalization about the problem at hand is directly driven from their experience.
As such, epistemic uncertainty arises when either the quantity or the quality of the data
is low enough to affect its inference ability. As a result, they are also called knowledge
based uncertainties. They can arise due to the train-test data split irregularity that skew
or bias the training data on which the machine is being trained. This creates a difference
between the training and validation data forcing the model to be trained on a wrong and
non-representative data which inadvertently affects the inferential ability of the underly-
ing model. Model misconfiguration, inadequate size and quality of the data are also some
other factors that constrain the knowledge building process and contribute to presence
of epistemic uncertainty [120, 76]. Meaning that by providing enough data with a higher
representative information, avoiding sampling bias during training point selection and
improving the quality of the data, epistemic uncertainties can be mitigated and reduced.

On the other hand, uncertainties due to the randomness or variability of the input
data are called aleatoric uncertainties. All data that is ever recorded contains a bit
of randomness or noise. Unlike the epistemic uncertainty, improving the quantity or
quality of data doesn’t help in mitigating aleatoric uncertainties. If every bit of data
that is collected comes with a noise, collecting some more data won’t help in minimizing
the effect of these uncertainties. It is one aspect of the data that either the human
observer or the machine has no control over. As such, it is not the property of the
model, rather the intrinsic property of the data. Consequently, it is also called the data
variance. Owing to its stochastic nature and dependence on the observations rather than
the model, anticipating and rectifying aleatoric uncertainty is challenging. No amount
of new information or model configuration will help in reducing aleatoric uncertainties.
They are the irreducible noises embedded within the input data. They are mitigated
through a probabilistic distribution by assuming a conditional probability of the output
on the input along with all the parameters affecting it [120, 76].

Probabilistic models like the gaussian process account for data uncertainty by assum-
ing the observed values as samples drawn randomly from a stochastic process defined by
y(x) ∼ N (µx, Σxx + σ2In), where σ2 represent the anticipated data variability. In image
processing, data augmentation and transformation techniques (i.e rotation, translation,
flipping, cropping, etc) are well know techniques that have been used widely to mini-
mize the effect these uncertainties which leads to a robust predictive performance during
model development phase. Especially, in the presence of less data, data augmentation on
the training data could help in improving the generalization capability of the model to
instance which the model has never seen or trained before. During validation the same
approach can also be used to populate the validation data with auxiliary test point so
that the model can be evaluated more robustly.

A number of techniques have been devised to account for the two uncertainties in
neural net prediction. Some, like the Bayesian neural net (BNN) follow a principled
mathematical formulation to estimate the epistemic uncertainty. However, their imple-
mentation imposes a huge computational requirement [109, 115]. A distribution free
interval estimation algorithm such as the Quality Driven [118], offers a higher computa-
tional efficiency and a simplistic modeling that incorporate the quality metrics into the
interval estimation. It accounts epistemic uncertainty through an ensembles of neural
net models. However, it fails to provide a minimized prediction interval (PI) for high
frequency data. On the other hand, the distribution based interval estimation methods,
assumes a conditional probability distribution on the input data. This approach creates a
mathematical convenience to address the aleatoric and epistemic uncertainties. However,
it fails to incorporate the quality metrics (i.e PICP and MPIW) into consideration. Hence,

111



for a successful bound estimation through a distribution based approach, the selection of
the error distribution should complement the metrics that is used to evaluate the per-
formance of the predictive model. In [115, 116], a gaussian error distribution is assumed
on the input data, and now if MPIW is the intended metrics that is employed to asses
model performance, a gaussian error distribution, although acceptable, is not the right
distribution. We believe a logistically approximated gaussian distribution will simplify
the assimilation of the quality metric MPIW in PI optimization in a meaningful manner
as compared to other distributions.

In neural network, more heuristic approach to predictive distribution is through point
estimate aggregation. It should be noted that in chapter 3, we followed a similar method
and trained 21 LSTM neural networks in generating the electricity demand for two weeks
ahead predictive distribution. The major challenge in training multiple models to acquire
and anticipate data variability through a distribution is that, the time required for model
training scales linearly with the number of models considered. On top of that, deep
learning models generalization ability puts the validity of this approach into question. For
example, even with different network setting and parameter initialization, the network
parameters are bound to converge and provide a similar predictions. As a result, the
approach doesn’t provide a guarantee in the fidelity of the estimated coverage probability
and confidence interval. An intuitive yet straightforward approach to rectify the network
predictive convergence is suggested through the introduction of a probabilistic dropout
layer [76, 110, 121]. This method employs dropping a percentage of the networks node
stochastically in manner similar to Monte Carlo (MC) sampling during training. It assigns
a Bernoulli random variable zij with a probability of success pi to every input point j in
every network layer i. The unit j in layer i−1 will be dropped as an input to layer i if its
corresponding random variable zij = 0. As such, not all aspect of the data is visible to all
nodes of the network. This artificial mask creates a self induced randomness in model’s
prediction. Thereby providing a means for uncertainty quantification and at the same
time penalizing over-fitting [76, 110].

A more valid and principled approaches to uncertainty quantification has been for-
warded through the Bayesian framework. The Bayesian neural net (BNN), assumes a
prior p(w|θ) on the networks parameters. Then, given the observations (D), a Bayesian
inference is made to compute the posterior probability of the weights (p(w|θ,D)) which
will later be used to find the predictive distribution of the network output [76, 109, 115].
Unfortunately, this results in an intractable posterior computation. To address it, an ap-
proximate posterior evaluation is suggested using sampling (i.e MCMC). Bayesian neural
net took the predominately point estimation to a distribution, despite the intractability
of the posterior evaluation and the slow MCMC algorithm which resulted in a higher
computational cost [76, 119, 115]. In an effort to rectify this, an approximate posterior
evaluation is suggested through a variational distributions and MC dropout [110, 122]. The
variational inference takes the Bayesian posterior as an optimization problem and try to
approximate it through a variational distribution that is more manageable to numerical
methods [122]. Whereas, MC dropout creates a probabilistic irregularity on the number
of network weights considered for output evaluation. This approach has been mathemati-
cally proven to provide an approximate posterior in deep ensembles [110]. Mean variance
estimation (MVC) for deep ensembles [123] offer yet another approach to a predictive
distribution. This distribution based estimation method apply the likelihood criterion as
an objective function and utilize a neural network with two outputs to predicts the mean
and variance of the target distribution. For uncertainty estimation, it apply an ensem-
ble learning with randomization based approach where each member of the ensembles is
trained on a random parameter initialization and data shuffling to provide an aggregated
predictive distribution. As such, it captures the aleatoric uncertainty through a gaussian
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target-error distribution and minimize the epistemic using the aggregated ensembles [123].
The error based uncertainties quantification techniques mentioned above mostly grav-

itate toward maximizing the coverage probability of points closer to the mean trajectory.
Even then there is no guarantee to the optimality of the prediction interval (PI) or the
proportion of points enclosed within the margin of doubt. This has been one of the
challenging problem in uncertainty quantification both in parameter and non-parametric
models. The lower upper bound estimation (LUBE) [20] and Quality driven PI [118] es-
timation methods, perhaps can be considered as a breakaway from the traditional error-
based interval estimation methods. These methods focus on maximizing the probability
of the prediction interval in containing the epistemic and aleatoric variability of the in-
dividual data point while at the same time minimizing the constructed interval width.
To that end, they followed a distribution-free estimation method with a new criterion
to asses the quality of the prediction interval. They argued that the interval width and
its coverage probability should be the proper criterion by which the quality of prediction
interval should be measured. As such, the mean prediction interval width (MPIW) and
prediction interval coverage probability (PICP) are employed to objectively quantify the
optimality of the constructed PI. LUBE develops a combinational width-based criterion
that provides a narrow PI while maintaining optimal coverage probability commensurate
with the performance metrics. However, the LUBE loss function doesn’t integrate well
with gradient based optimization techniques. The Quality Driven distribution-free al-
gorithm (QD) builds upon LUBE and address its limitation by proposing an alternative
cost function that is compatible with gradient based optimizers. It provides an elegant
approach to PICP and MPIW modeling for PI minimization. The algorithm is simple and
yet with faster convergence time and accurate prediction. However, QD and LUBE fail
to provide a minimized PI for data with high frequency and complex pattern. For such
data, they fulfill the needed coverage probability at the expense of a higher PI width.

The main argument in the distribution-free estimation methods such as LUBE [20] is
that, the quality of the PI in distribution-based estimation methods is questionable for
the very reason they do not consider the quality metrics (i.e PICP and MPIW) in their
derivation. In this Chapter, we will provide a mathematical proof that a distribution-
based estimation methods could incorporate the quality metrics towards an algorithm
that provides a minimized PI with high coverage probability for low and high frequency
data. Our objective is to propose a distribution based lower upper bound estimation
technique. The proposed cost function can be minimized by any of the available gradient
based optimization algorithm. We will test the algorithm on a synthetic and real data.
As a benchmark, the algorithm will be compared with the latest QD algorithm.

4.3 Lower Upper Bound Estimation
Like the MVC model, the lower upper bound estimation model follow the same network
architecture shown in Figure 4.1, with two output nodes y1 and y2 at the output layer. The
only exception being, in the MVC, the outputs y1 and y2 represent the estimated mean and
variance of the target distribution. In case of LUBE, they represent the estimated lower
and upper bounds as shown in Figure 4.1-(b) respectively. Assuming we are given a data
such as shown in Figure 4.1, the central theme in LUBE is to maximize the probability
of finding individual data points yi between y1 & y2 and minimize the average distance
between the two

arg min
{ 1

n

n∑
i=1

(y2,i − y1,i)
}

(4.1)

Furthermore, assuming a gaussian error distribution and an independent data distri-
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Figure 4.1: General LUBE network graph with two outputs and sample bound estimation

bution, the data points can be modeled with random variable y(x) = f(x) + ϵ, where
ϵ ∼ N (0, σ2In) or equivalents as y(x) ∼ N (µx, σ2In) where σ2 represent the anticipated
data variability. Now, for any data point y, the probability density is given by

p(y) = 1√
2πσ

exp
(
− (y − µx)2

2σ2

)
(4.2)

And the probability it lies within the bound y1 and y2 is given by

p(y1 < y < y2) = Φ
(

y2 − µx

σ

)
− Φ

(
y1 − µx

σ

)
where

Φ(y) = 1√
2π

∫ y

−∞
exp

{
− 1

2u2
}

du

(4.3)

In equation (4.2) & (4.3), the relative distance between the data point and the mean of the
distribution is given as a squared difference. In addition to the inconvenience of evaluating
Φ(y), this representation will minimize the squared deviation, not the average mean de-
viation given in equation (4.1). In a distribution-based interval estimation methods such
as in [115, 116, 123], considering a gaussian error distribution the assumption, contrary
to the actual PI, it mostly minimizes the squared distance between the prediction bounds
and the mean of the distribution. Consequently, we considered a logistically approximated
gaussian data distribution. This approximation creates a mathematical convenience to
assimilate the quality metrics directly into the modeling and optimization, along with the
familiarity of gaussian-like error distribution for aleatoric uncertainty quantification.

Figure 4.2: Logistic-gaussian approximation

A gaussian distribution with N (µ, σ2)
can be approximated by a logistic distribu-
tion with L(µ, πσ

3 ) as shown in Figure 4.2.
As such, for the prediction interval (MPIW)
minimization, we considered a general lo-
gistic data distribution L(µ, s) with prob-
ability density function (PDF) for any ran-
dom variable Y given by

p(Y = y) = e−(y−µ)/s

s(1 + e−(y−µ)/s)2 (4.4)

114



and a cumulative distribution function
(CDF)

p(Y ≤ y) = 1
1 + e−(y−µ)/s

(4.5)

Assuming a network prediction {y1, y2} ϵ Q, where Q represent the space of all possible
bound functions, and y1 ≤ y ≤ y2, the equation for PI optimization can be derived
from the CDF in equation 4.5. Unfortunately, interval minimization using CDF is not
computationally stable. The reason being the success of PI minimization through CDF
is predicated upon the assumption that the network always forecast y1 ≤ y ≤ y2, an
assertion which might not be true all the time. A more computationally stable interval
minimization (i.e MPIW) can be derived using the PDF given in equation 4.4. For the
coverage probability maximization, we followed a simple membership assignment for the
absence and/or presence of the observation within the prediction bound. That means, the
PI optimization problem can be broken down and discussed separately as the minimization
of MPIW and maximization of PICP. Later on, a custom loss function will be derived by
combining the interval minimization and coverage probability maximization.

4.3.1 Interval width minimization
By definition, the width of the prediction interval is quantified through the mean predic-
tion interval width (MPIW)[20] which is given by

MPIW = 1
n

n∑
i=1

(y2,i − y1,i) (4.6)

where n is number of observations and y1,i, y2,i are the lower and upper bounds of the
predicted PI for the ith sample respectively. Now, for a time series data D = {(xi, yi)}n

i=1,
the prediction bounds are assumed to be samples drawn from a logistically distributed
random variable Y

Y = f(xi) + ϵ, ϵ ∼ L(0, s = 1) (4.7)
Y ∼ L(f(xi), s = 1) (4.8)

where f(xi) = yi and s are the mean and scale of the distribution.
For a logistically distributed random variable Y ∼ L(yi, s = 1), and {y1, y2} ϵ Y, we

compute the PDF of the lower y1 and upper bound y2 is given as

p2,i(Yi = y2,i) = e−(y2,i−yi)/s

s(1 + e−(y2,i−yi)/s)2 (4.9)

p1,i(Yi = y1,i) = e−(y1,i−yi)/s

s(1 + e−(y1,i−yi)/s)2 (4.10)

where Yi ϵ Y . Applying a log transformation on the LHS & RHS of equation (4.9) - (4.10)
and simplifying it

y2,i = yi − s ln s− s ln p2,i − 2s ln (1 + e−(y2,i−yi)/s)
y1,i = yi − s ln s− s ln p1,i − 2s ln (1 + e−(y1,i−yi)/s)

y2,i − y1,i = s ln
(

p1,i

p2,i

)
+ 2s ln

(1 + e−(y1,i−yi)/s

1 + e−(y2,i−yi)/s

) (4.11)
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Equation (4.11) provides the interval width for a single data point. Applying equa-
tion (4.11) for all points in our data set and computing MPIW using equation (4.6)

MPIW = 1
n

n∑
i=1

(y2,i − y1,i)

MPIW = 1
n

n∑
i=1

{
s ln

(
p1,i

p2,i

)
+ 2s ln

(1 + e−(y1,i−yi)/s

1 + e−(y2,i−yi)/s

)}

= s

n

n∑
i=1

{
ln
(

p1,i

p2,i

)
+ 2 ln

(1 + e−(y1,i−yi)/s

1 + e−(y2,i−yi)/s

)}
(4.12)

We can minimize equation (4.12) by maximizing equation (4.9) and (4.10). As we maxi-
mize the individual PDFs, the predicted bounds will approach to the data mean trajectory
which will drive the second term in RHS of equation (4.12) to zero. Hence, PI optimisation
can be carried out by maximizing the two PDF’s. Consequently, the prediction interval
minimization can formally be defined as

arg min{MPIW} = arg min
{

s

n

n∑
i=1

{
ln
(

p1,i

p2,i

)
+ 2 ln

(1 + e−(y1,i−yi)/s

1 + e−(y2,i−yi)/s

)}}

= −
{

arg max
{

s

n

n∑
i=1

{
ln
(

p1,i

p2,i

)
+ 2 ln

(1 + e−(y1,i−yi)/s

1 + e−(y2,i−yi)/s

)}}}

≈ −
{

arg max
{

s

n

n∑
i=1

{
p1,i + p2,i

}}}
(4.13)

The last assertion in equation (4.13) is the consequence of the logarithm function being
a strictly increasing function. However, for numerical stability or to avoid adding and
dividing small numbers, the logarithmic version in equation (4.13) can also be used.

4.3.2 PICP maximization

The quality metric PICP quantifies the percentage of points falling within the PI. To
that end, we attached a binary variable ϕi ϵ Φi that takes the values of 1 and 0 with
probabilities (1 − α) where α = 0.05 to each data point, signifying the absence and/or
presence of the point within the interval. Each observations of the random variable Φi are
defined as

ϕi =
[
1, y1,i ≤ yi ≤ ŷ2,i

0, otherwise

]
(4.14)

For a single observation, the random variable Φi follows a Bernoulli distribution given by

p(Φi = ϕi) = (1− α)ϕi ∗ α(1−ϕi) (4.15)

Assuming c is the total number of points covered under the PI, and given n observations
that are iid and having the same probability of success (1 − α), the random variable Φi

follows a Binomial distribution given by

p(Φi = c) =
(

n
c

)
(1− α)ϕi ∗ α(n−ϕi) (4.16)

PICP modeling and maximization through Binomial distribution is elegantly demon-
strated in [118]. In this chapter, however, we follow a rudimentary approach in evaluating
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and optimizing PICP. By definition [20, 118],PICP measures the percentage of points con-
vered under the PI prescribed by a confidence limit ((1 − α). From equation (4.14), the
total number of points covered within the PI can be estimated as

c =
n∑

i=1
ϕi (4.17)

Consequently, the coverage probability can be computed as

PICP = c

n
(4.18)

For most application, a coverage probability PICP ≥ (1 − α) ∗ 100% is required. Hence,
the PICP maximization can formally be defined through a constraint

arg max
{

PICP− (1− α) ≥ 0
}

(4.19)

Hence, a maximized PICP can be found by minimizing equation (4.19)

arg min
(

(1− α)−PICP
)

(4.20)

Combining the MPIW and PICP optimization problems stated in equation (4.13) and (4.20),
a general objective function L can be defined as

L = arg min
{

MPIW
}

+ arg max
{

PICP
}

−
{

s

n

n∑
i=1

{
p1,i + p2,i

}}
+
{

(1− α)−PICP
}

L = −λ1

n

n∑
i=1

(
p1,i + p2,i

)
+ λ2

(
(1− α)−PICP

) (4.21)

Where the parameters λ1 and λ2 are design parameters which will generalize the loss
function depending on the data distribution considered and the order of priority given to
the quality metrics. For instance, λ1 can be made an adaptive parameter based on the
the values of PICP to set the variance of distribution so that the network will be forced to
sample from a specific distribution. On the other hand, the parameter λ2 can be used to
establish a preferential priority on which quality metric (i.e prediction width or coverage
probability) the network should focus on optimizing. Especially, for data with asymmetric
distribution, tuning the values of λ2 improves the accuracy of prediction. For gaussian-like
data distribution the parameter λ2 can be ignored or assigned a value λ2 = 1.

One of the challenges in distribution based bound estimation models is finding a suit-
able value for the distribution variance. The width of the interval and coverage probabil-
ity have an inverse relationship during the optimization. Coverage probability (i.e PICP)
should be maximized while minimizing the coverage width (i.e MPIW). This inverse rela-
tionship can be modeled by a decaying exponential function. As such, the parameter λ1
can be turned into an adaptive parameter that regulate the variance of distribution based
on the current values of the PICP

λ1 = e−β∗PICP (4.22)

where β > 0 is a design parameter for the exponential decay rate. Such assignment will
force the network to sample candidate bound values from a distribution with a variable
variance depending on the value of the PICP.
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In equation (4.14) and (4.17), the existence of a data point within the PI and the total
number of data point is evaluated respectively. However, a step function membership
assignment in equation (4.14) for PICP evaluation creates computational inconvenience
when minimizing the loss. As such, an alternative differentiable approximation suggested
in [118, 124] is adopted. Hence, equation (4.14) and (4.17) are modified accordingly

[
kup

]
=
[ 1

1+e−γ(y2,i−yi) , yi ≤ y2,i i = 1, ··, n

0, otherwise

]
(4.23)

[
klo

]
=
[ 1

1+e−γ(yi−y1,i) , y1,i ≤ yi i = 1, ··, n

0, otherwise

]
(4.24)

Then the total number of data points inside the PI can be given as

c = kup ∗ klo (4.25)

4.3.3 Custom loss algorithm
The summary of the proposed distribution based interval optimisation is demonstrated
in algorithm 4. The network will be trained with the objective function defined in equa-
tion (4.21). To that end, a custom loss function is written as shown in algorithm 4. Given
the data and user-defined parameters, the algorithm will adaptively set the parameter λ1
based on the current coverage probability. In the algorithm, the gain parameter λ2 can be
set to 1 for a normal-like distributed data. However, a value different λ2 ̸= 1 will improve
the PI optimization for data with asymmetrical distribution. Computing the PDF’s can
introduce smaller number that might lead to overflow and numerical instability, if that
happens the log-PDF’s can be applied.

Algorithm 4: Distribution based LUBE loss
Input: β, γ, λ2, true value (yt), upper bound (y2), lower bound (y1)
if y2 ≥ yt then

kup = sigmoid
(

γ(y2 − yt)
)

end
if y1 ≤ yt then

klo = sigmoid
(

γ(yt − y1)
)

end
PICP = 1

n
∗ (kup ∗ klo)

λ1 = exp
{
− β ∗ PICP

}
p2 = p(y2 = yt)
p1 = p(y1 = yt)
MPIW = 1

n
(p2 + p1)

loss = −λ1(MPIW) + λ2((1− α)− PICP)
return loss

4.4 Uncertainty Quantification
The aleatoric uncertainty has already been defined as the irreducible data noise variance.
Regardless, it is a variance that should be counted when considering the total uncertainty.
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Together with the model epistemic uncertainty, the total system variance can be defined
as

σ2 = σ2
a + σ2

e (4.26)
where σa and σe are the aleatoric and epistemic uncertainty respectively. The epistemic
uncertainty is related to the networks parameter uncertainty. As such, the aggregated
ensemble models technique suggested in [118, 123] is applied to mitigate the epistemic
uncertainty. That means, a number of models will be trained on random parameter
initialization and their bound estimation will be aggregated to provide the network final
interval estimates as a distribution. Assuming a uniform mixture weight for each model
in ensemble and given the upper (y2) and lower (y1) bound estimates of the z models in
ensemble, the aggregated distribution is given by

y2 ∼ N
(

µ2 = 1
z

z∑
i=1

y2,i, σ2
2 = 1

z − 1

z∑
i=1

(y2,i − µ2)2
)

(4.27)

y1 ∼ N
(

µ1 = 1
z

z∑
i=1

y1,i, σ2
1 = 1

z − 1

z∑
i=1

(y1,i − µ1)2
)

(4.28)

where y2,i and y1,i describe the upper and lower bound estimates of model i. Now, following
equation (4.27) and (4.28) and assuming a 95% coverage probability, the final upper and
lower bound network predictions for ensembled models ca be given as

y2 = µ2 + 1.96 ∗ σ2

y1 = µ1 − 1.96 ∗ σ1
(4.29)

where y2 and y1 are the forecasted upper and lower bounds of the network.

4.5 Distribution based lower upper bound simulation
The proposed distribution-based lower upper bound estimation (DBLUBE) algorithm was
tested on a synthetic and real data. To account for the trend, seasonality and cyclic
patterns that is exhibited in a time series data, the synthetic data was formed as a
combination of polynomial and trigonometric parametric equation. The data variability
is simulated using a gaussian and exponential distribution.

y1 = 2sin(2.5πx2) + x + x2 + ϵ

with ϵ ∼ N (0, x2)

and ϵ ∼ Exp
( 1

x2

) (4.30)

The predictive performance of DBLUBE is evaluated using as a benchmark the recent qual-
ity driven (QD) interval estimation algorithm suggested in [118] for deep neural networks.
The difference between the two algorithms is that DBLUBE takes a prior assumption on
the distribution of the given data. However, their tendency to provide prediction based
on the same quality metrics and in terms of PI bounds makes them similar. A number of
models were trained using the two algorithms under the same network architecture and
on a 500 randomly sampled data points generated according to y2 = 2sin(πx) + ϵ and
y3 = 2sin(1.5πx2) + x + x2 + ϵ with ϵ ∼ N (0, x2) and x ∼ U [−1, 1]. The experiment
showed that for a low frequency data, both algorithms score a similar performance index
in terms of the required PICP quality metrics as shown in Figure 4.3-(a). However, for
high frequency data, without adding extra hidden nodes, the QD’s ability to provide a
minimized MPIW diminishes. It provides a maximized coverage at the expense of a wide
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Figure 4.3: Single model PI prediction

prediction interval as shown in Figure 4.4-(c-d). The simulations shows that DBLUBE
has a faster convergence rate and faster computation than QD, both for low and higher
frequency data. The optimality of QD’s PI is highly dependent on the value of the gain
parameter λ. Hence, it requires continuous tuning as the data changes. On the other
hand, DBLUBE also needs a good β parameter setting for a faster convergence and opti-
mal quality score. However, the fact that it is distribution based makes its PI prediction
less sensitive to changes in data pattern and parameter settings. In Figure 4.3-(a-b), the
QD algorithm requires re-tuning its λ parameter as the data frequency changes for min-
imized PI and optimal coverage. In contrary, DBLUBE achieves an optimal PI and high
coverage score for a constant β value and without the need for a re-tuning its parameter.

Table 4.1: QD algorithm performance metrics on real data

DATA PICP MPIW R2 RMSE CVRMSE
Air Quality Benzen Cons. 0.96±0.02 0.65±0.10 −0.31 0.375 0.622
Airfoil Self-Noise Presu. 0.99±0.00 1.31±0.03 0.504 0.259 1.777

Boston Housing 0.94±0.00 1.10±0.02 0.639 0.239 0.971
Wave Energy Conversion 0.98±0.01 0.50±0.05 0.920 0.081 0.676
Steel factory E.Consum. 0.97±0.01 2.20±0.21 0.750 0.213 0.314
Concrete Comp-Strength 0.95±0.00 1.06±0.06 0.659 0.238 1.522
Parkinsons Monitoring 0.96±0.00 2.21±0.15 0.057 0.426 4.942
Forest Fire Area Estim. 0.98±0.01 1.94±0.22 ∗ ∗ ∗∗ 0.271 0.278

Note: The actual Data has been normalized in the range (-1,1). As such, the metrics ( i.e MPIW,
RMSE and CVRMSE) are computed based on this range.

The final PI predictive distribution that takes into account the total model uncertainty
was carried out quantitatively by aggregating the predicted PI bounds of multiple neural
models according to equation (4.27) and (4.28). Fifteen ensemble models were trained on
a randomly generated data (x, y1) and (x, y2) using QD and DBLUBE algorithm as a loss
function and on a parameter range λ ϵ [0.01, 0.15] and β ϵ [0, 1.5] respectively. The final
prediction bounds is evaluated according to equation (4.29). The experiments showed that
for a specifically tuned value of λ, QD handles exponential noise better than DBLUBE.
However, when varying the λ parameter for the ensemble learning, the final aggregated
PI distribution results in a broader MPIW as shown in Figure 4.4-(a-b). On the other
hand, the aggregate distribution in equation (4.29) gives DBLUBE enough flexibility and
variance to handle exponential noises. Moreover, for data with normal distribution, the
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Figure 4.4: Ensemble PI predictive distribution

Table 4.2: DBLUBE performance metrics on real data

DATA PICP MPIW R2 RMSE CVRMSE
Air Quality Benzen Cons. 0.99±0.00 0.75±0.15 0.918 0.094 0.156
Airfoil Self-Noise Presu. 0.98±0.03 1.12±0.06 0.689 0.205 1.406

Boston Housing 0.96±0.01 0.94±0.03 0.769 0.191 0.776
Wave Energy Conversion 0.99±0.01 0.52±0.05 0.964 0.053 0.451
Steel factory E.Consum. 0.91±0.00 1.76±0.21 0.762 0.208 0.307
Concrete Comp-Strength 0.96±0.00 1.02±0.04 0.751 0.200 1.300
Parkinsons Monitoring 0.95±0.01 1.80±0.11 0.162 0.402 4.661
Forest Fire Area Estim. 0.94±0.01 1.71±0.29 ∗ ∗ ∗∗ 0.279 0.286

Note: The actual Data has been normalized in the range (-1,1). As such, the metrics ( i.e MPIW, RMSE

and CVRMSE) are computed based on this range.

means of the DBLUBE’s lower and upper distributions provides the needed minimized
MPIW while meeting the required coverage probability, without utilizing the variance of
the distribution for a 95% uncertainty coverage.

Later on, the performance of the two algorithms were evaluated on real data from UCI
repository. Most of the data follow asymmetric distribution. A similar network topology
is followed during model development and training. For the uncertainty quantification,
ten ensembles were trained in a 67-33% train test split and their outputs were aggregated
according to equation (4.27) and (4.28) for the final bound estimation. In the experiment,
the parameters (λ & β) were allowed to vary within [0.1, 1]. The model comparison
was carried out based on the PICP and MPIW quality metrics. A model that achieves
the coverage probability PICP ≥ (1 − α) with a minimum prediction width is selected
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as the optimal model. Since, DBLUBE is distribution based, it has the tendency to
overfit. In the experiment, different regularization’s techniques were applied to avoid
overfitting. However, early stopping was the only approach that addressed overfitting as
well as providing a better coverage. Hence, the DBLUBE models were trained for 100
epochs while the models with QD were trained for 500 epochs. The simulation showed
that for data that exhibit a skewed distributions (i.e, forest fire, steel factory energy
consumption), QD performed well as shown in Table. 3.1. In the case of the forest fire
data, we managed to improve DBLUBE’s PICP score (PICP:0.94 → 0.952, MPIW: 1.71
→ 1.81) and steel factory energy consumption (PICP:0.94 → 0.96, MPIW: 1.76 → 1.92)
by increasing the batch size. However, under the same network setting, QD handles
non-gaussian distributed data much better than DBLUBE. Nevertheless, tuning the QD’s
λ parameter for better result takes time and makes automatic learning challenging. In
addition to that, the need to apply a positive and negative bias to the upper and lower
predicted bounds for stable and interpretable forecast creates a numerical instability.
On the other hand, under the same network setting and without increasing the depth
and width of the network, DBLUBE handles high frequency data better than QD. It is
numerically more stable than QD and it can adaptively balance prediction width versus
coverage probability without going through the pain of tuning. More importantly, for the
same coverage probability, DBLUBE results in the lowest prediction width as compared
to others. The experiments have shown that the DBLUBE can provide an alternative
learning approach to bound estimation for deep learning models.

4.6 Conclusion
In this chapter, we proposed a simple distribution based upper lower bound estimation
algorithm (DBLUBE). The algorithm can adaptively change the variance of the distri-
bution in order to allow a wider or a smaller sampling areas. Consequently, narrowing
and widening the prediction interval commensurate with the needed coverage areas. We
demonstrated, the algorithm can achieve the desired quality metrics score for data with
complex pattern employing a minimum number of layers and neurons as compared to other
alternative interval prediction algorithms. Since, the algorithm is distribution based, in-
herently it is bound to overfit. We observed that this tendency has its own advantage and
disadvantage. On one hand, the predicted upper and lower bounds gravitate towards the
true distribution which gives us the minimum prediction interval as compared to other
algorithms. On the other hand, although it allowed a good model performance during
training, it resulted in a poor performance during validation. Especially, when processing
a data with a skewed distribution. As such, early stopping has been used as a mitigation
strategy to enhance the model generalization ability as well as provide the desired quality
metrics.

For data that exhibit a Gaussian-like distribution, the algorithm offers a simple and
stable computation with a convenient tuning that ensures a maximized coverage prob-
ability and minimized prediction interval. Its response to asymmetric data distribution
can be improved by tuning the second auxiliary hyper-parameter(i.e λ2) towards a gain
that provides a higher priority to coverage over a minimized interval.
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Chapter 5

Conclusion and Future Work

Grid modernization and the associated big data evolution will see a wider application of
machine and deep learning models in different stages of the infrastructure. In addition
to the preexisting ones, the massive integration of renewable energies will introduce extra
uncertainty in the stability of the grid. As a result, probabilistic predictive models will
become ubiquitous in the energy sector. These models will operate on large volume of
data. Furthermore, they are expected to deliver an improved prediction accuracy with
high coverage probability. One valid approach that is suggested for enhanced model
representation and approximation is to free predictive modeling from the shackles of
parametric bounds. The intuition behind this approach can attributed to the belief that
a model that is not constrained by the number and form of its parameters would have
the greater probability of replicating the data generation model. Consequently, there is a
shift in modeling assumption where the structure of the model is not determined prior to
observing the data. This data driven, structure-less or non-parametric modeling approach
tends to be resource intensive compared to the parametric counterpart. However, it
exhibits a greater chance of replicating the dynamics of the data generation system. And
yet, accurate model representation is not enough for probabilistic models.

Beyond accuracy, probabilistic models need to posses the ability to quantify uncer-
tainty in a such a way that they should guarantee high coverage for the majority of the
forecasted points within a minimum confidence interval. By default, being probabilis-
tic means the model will output multiple forecasts for any given point. However, there
is no certainty on the optimality of the confidence interval and its coverage probability.
This outcome is attributed to the performance metrics employed during model training.
Most models are trained either through maximizing the likelihood of the data (MLE) or
minimizing the squared deviation (MSE) from the mean. These quality metrics put high
emphasis on tracking the mean trajectory without any consideration on the optimality of
the returned confidence interval or its coverage probability. In contrary, a training algo-
rithm that give high priority to prediction interval and coverage probability, will produce
a better probabilistic model.

With that in mind, in this thesis we proposed a learning algorithm that focus more
on the optimality of interval minimization and coverage maximisation. The proposed
bound estimation techniques enables deep learning models to have a probabilistic distri-
bution. The effectiveness of the method was demonstrated on a number of real data sets.
The experiments have shown that a model trained on this algorithm delivers the desired
coverage probability within a minimum prediction interval compared to other alternative
methods. Although, the algorithm was successful in training MLP type fully connected
neural networks, it didn’t results in a consistent bound estimation when applied to the
LSTM type neural networks. Our hope being, in our next work we will address the issues
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so that the algorithm can be fully integrated.
We have also dedicated our time investigating the implementation of Gaussian process

models. We believe that with all its limitations, the Gaussian process deserves a fair
amount of attention for two simple reasons, Expressiveness and Interpretability. Of course,
there are other predictive models that share these qualities or at least follow a balanced
approach to achieve it. But, there are non as natural and intuitive as the Gaussian
process. The data driven approach, the ability to map complex patterns and provide
flexible functions to a wide range of problems gives them a high degree of expressiveness.
Their interpretability, however, lies in the kernel functions. kernels give GP models a
simplistic approach to conveniently encode prior assumptions and observed relationships
among the elements of the given data. These interactions are later quantified and used
as a measure of correlation through model parameters that are interpretable.

Currently, there isn’t much freedom in utilizing these models to their fullest extent.
The computational requirement induced by the size of the data limit their deployment
and more importantly what these models could achieve. Perhaps at some point in the
near future, the advancement in computing will likely make the preference between nu-
merical algorithms and the requirement that comes along with it irrelevant. Especially,
if researches in the areas of high-performance computing to believed then in accordance
with the Moore’s law, the next few years will see a faster and improved hardware. May
be then, the desirability of these models will be judged based on the true merits of a
predictive model such as accuracy and coverage probability than computational demand.
Even at this age, GPUs and parallel computing have lessened those demands and are
making the implementation of these models a reality in few areas. However, until such
time Gaussian approximate inference such as the DTC, FITC and SVGP will fill the void
in extending the involvement of these models in major areas.
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Appendix A
Lets assume that two random vectors y(x) and f∗(x∗) of length n and n∗ are jointly
distributed according to

p
([

f∗(x∗)
y(x)

])
∼ N

([
µ(x∗)
µ(x)

]
,

[
Σx∗x∗ Σxx∗

ΣT
xx∗ Σxx + σ2Id

])
(5.1)

For the sake of readability the random variables f∗(x∗), y(x), and the mean functions
µ(x∗), µ(x) will be referenced as f∗, y and µ∗, µ respectively, ignoring their respective
points of observation x and x∗. Now from the multivariate gaussian distribution property,
the marginal distribution of y and f∗ is given by

p(y ∼ N (µ, Σxx + σ2Id)
p(f∗ ∼ N (µ∗, Σx∗x∗)

(5.2)

From the Bayesian inference, the conditional distribution of p(f∗(x∗) | y(x))

p(f∗ | y) = p(f∗, y)
p(y) (5.3)

The marginal distribution of y and its joint distribution with f∗ are given as

p(y) = 1
(2π)n

2 |Σxx + σ2Id|1/2 exp
(
−1

2

(
y − µ

)T
(Σxx + σ2Id)−1

(
y − µ

))
(5.4)

p(f∗, y) = 1
(2π)n+n∗

2 |Σ|1/2
exp

(
−1

2

([
f∗
y

]
−
[
µ∗
µ

])T

Σ−1
([

f∗
y

]
−
[
µ∗
µ

]))

where Σ−1 =
[
Σx∗x∗ Σxx∗

ΣT
xx∗ Σxx + σ2Id

]−1

=
[
Σa Σb

Σc Σd

]
, |Σ| = Det

([
Σx∗x∗ Σxx∗

ΣT
xx∗ Σxx + σ2Id

])
(5.5)

Applying the matrix inversion lemma will make the conditional distribution estimation
much simpler. Hence, the matrix inversion lemma states that if a matrix k is symmetric
and positive definite, then its inverse can be given in terms of the Schur complement as[
Σ11 Σ12
Σ21 Σ22

]−1

=
[

(Σ11 − Σ12Σ−1
22 Σ21)−1 −(Σ11 − Σ12Σ−1

22 Σ21)−1Σ12Σ−1
22

−Σ−1
22 Σ21(Σ11 − Σ12Σ−1

22 Σ21)−1 Σ−1
22 + Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)−1Σ12Σ−1

22

]
(5.6)

Substituting equation (5.4) and (5.5) into equation (5.3)

p(f∗ | y) = p(f∗, y)
p(y)

=
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(2π)n+n∗ |Σ|

exp
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2
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(5.7)
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(5.8)
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Substituting Σ−1 =
[
Σa Σb

Σc Σd

]
, and expanding equation (5.8), note that Σ12 = Σ21 and

Σ22 = Σxx + σ2Id

= 1√
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|Σ| exp
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(5.9)

Substituting the values of Σa, Σb, Σd from equation (5.6) into equation (5.9)
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eliminating like terms
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rearranging terms
1√

(2π)n∗

√
|Σ22|
|Σ| exp

(
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2

(
((f∗ − µ∗)− Σ21Σ−1
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(5.10)

Which is a probability density for a multivariate distribution with mean (µ∗ +Σ21Σ−1
22 (y−

µ)) and covariance (Σ11 − Σ12Σ−1
22 Σ21). Hence, the conditional distribution of f∗ given y

is estimated as

p(f∗ | y) = p(f∗, y)
p(y) ∼ N (m(x), Σ(x))

∼ N (µ∗ + Σ21Σ−1
22 (y − µ), Σ11 − Σ12Σ−1

22 Σ21)
(5.11)
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