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ABSTRACT

Emotions are vital in our daily lives, becoming a primary focus of ongoing research.
Automatic emotion recognition has gained considerable attention owing to its wide-
ranging applications across sectors such as healthcare, education, entertainment, and
marketing. This advancement in emotion recognition is pivotal for fostering the devel-
opment of human-centric artificial intelligence. Supervised emotion recognition systems
have significantly improved over traditional machine learning approaches. However,
this progress encounters limitations due to the complexity and ambiguous nature of
emotions. Acquiring extensive emotionally labeled datasets is costly, time-intensive,
and often impractical. Moreover, the subjective nature of emotions results in biased
datasets, impacting the learning models’ applicability in real-world scenarios. Motivated
by how humans learn and conceptualize complex representations from an early age
with minimal supervision, this approach demonstrates the effectiveness of leveraging
prior experience to adapt to new situations. Unsupervised or self-supervised learning
models draw inspiration from this paradigm. Initially, they aim to establish a general
representation learning from unlabeled data, akin to the foundational prior experience
in human learning. These representations should adhere to criteria like invariance,
interpretability, and effectiveness. Subsequently, these learned representations are ap-
plied to downstream tasks with limited labeled data, such as emotion recognition. This
mirrors the assimilation of new situations in human learning. In this thesis, we aim to
propose unsupervised and self-supervised representation learning methods designed
explicitly for multimodal and sequential data and to explore their potential advantages
in the context of emotion recognition tasks. The main contributions of this thesis en-
compass: (i) Developing generative models via unsupervised or self-supervised learning
for audiovisual speech representation learning, incorporating joint temporal and multi-
modal (audiovisual) modeling. (ii) Structuring the latent space to enable disentangled
representations, enhancing interpretability by controlling human-interpretable latent
factors. (iii) Validating the effectiveness of our approaches through both qualitative
and quantitative analyses, in particular on emotion recognition task. Our methods
facilitate signal analysis, transformation, and generation.
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Chapter 1

INTRODUCTION

”In the beginning was emotion“, by Louis-Ferdinand Céline.

Contents
1.1 Introduction to affective computing . . . . . . . . . . . . . . . 13

1.1.1 Applications of affective computing . . . . . . . . . . . . . . . . 14
1.1.2 Emotion recognition system . . . . . . . . . . . . . . . . . . . . 15

1.2 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Ambiguity in the representation of emotions . . . . . . . . . . 17
1.4 Limitations of supervised methods . . . . . . . . . . . . . . . . 18
1.5 Leveraging unlabeled data for emotion recognition: challenges 19

1.5.1 Towards other learning paradigms for emotion recognition . . . 20
1.5.2 Learning representations is (all) you need . . . . . . . . . . . . 20
1.5.3 Towards multimodal learning for affective computing . . . . . . 21

1.6 Thesis organization and contributions . . . . . . . . . . . . . . 23

Emotions are intricate phenomena that significantly impact our daily experi-
ences. Automating their recognition stands as a pivotal domain in research,
fostering the convergence of human interactions with technology across var-
ious fields like healthcare, education, and advertising. Over the past decade,
supervised emotion recognition systems have made notable strides by learning
emotional representations from annotated databases. Despite their remarkable
accuracy compared to conventional methods, these systems face constraints that
limit their practical real-world applicability. This chapter aims to contextualize
my research thesis, analyze the constraints of supervised emotion recognition
systems, and explore research avenues aimed at overcoming these limitations.

Summary
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Introduction

Figure 1.1 – An image generated using DALL.E-2 depicting a person in a stressful job
interview situation.

Imagine yourself in a job interview or videoconference session with your potential
future employers. You confront a question that leaves you perplexed. In an instant, you
find yourself grappling with physical manifestations like sweating, an elevated heart rate,
high blood pressure, hot flashes, and more. These physical responses can be accompanied
by various emotions, such as anxiety or anger, making it challenging to remain focused
and perform at your best during the interview. It is important to remember that these
physiological and emotional responses are entirely normal. They are the natural result of
your brain and body reacting to a potentially uncomfortable situation. These responses
alert you that something might be wrong and motivate you to protect your well-being.
However, in some situations, like a job interview, these reactions can interfere with your
ability to communicate effectively and showcase your skills and qualifications.

Dealing with the emotional and physiological responses that arise in a stressful envi-
ronment can be challenging. However, imagine accessing a tool capable of mitigating such
responses in a videoconference or similar situation. This tool could be designed to propose
appropriate interactions through any interface, considering your emotional states, the
context, and the environment, allowing you to regain control. Like a digital coach, this tool

12



Introduction

can help restore confidence by familiarizing the candidate with the stressful environment.
For instance, this tool might suggest relaxation exercises or breathing techniques tailored
to the individual’s stress levels before the presentation. During the presentation, it could
provide real-time feedback on pacing, tone, or body language, helping the candidate stay
composed and engaged with the audience. By providing such assistance, the tool empowers
job seekers to feel more confident during the interview process.

This tool is currently under development through a collaborative with Randstad,
a recognized leader in human resources services. The project is a joint effort between
Randstad and CentraleSupélec, which aims to revolutionize recruitment by encouraging
equal opportunities for all candidates. This collaboration resulted in several research theses,
including my own, which I will present in this manuscript.

1.1 Introduction to affective computing

To ensure the tool’s effectiveness, accurate emotion recognition that could disrupt the
interview process is essential. This is where my thesis plays a role, primarily focusing
on recognizing and analyzing emotions. Specifically, my work falls within the field of
affective computing, which encompasses the development of technologies that can accurately
recognize, interpret, and respond to human emotional states.

Affective computing is an umbrella term for human emotions, feelings, and attitudes
(Fleckenstein, 1991). The concept of affective computing initiated and proposed by R.
Picard, 1997, has been guiding the development of computers in recognizing, expressing,
and intelligently responding to human emotions. This thesis considers and focuses only on
the recognition part. Automatic emotion recognition is an important aspect across diverse
domains, profoundly influencing human communication and interactions. The applications
and implications of this recognition are discussed in the following section.

Emotions, feelings, and attitudes are interconnected yet distinct psychological
constructs that collectively shape human experiences and behaviors.

Emotion is the most fundamental of the three concepts. It refers to a complex,
automatic response to a specific event, situation, or stimulus. Emotions are brief and
intense, often triggered by external factors or internal thoughts (Izard, 1971). They
are "universal" and biologically wired in humans, as well as in many animals. Common

13
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emotions include happiness, sadness, anger, fear, disgust, and surprise (Ekman, 1973).
Feelings are the conscious experiences or subjective states that arise as a result of

emotions. In other words, emotions are the underlying processes, while feelings are the
conscious awareness of those processes. Feelings are more specific than emotions (i.e.,
unique to each individual).

Attitudes are more stable (days and longer) and enduring evaluations or predis-
positions toward various objects, ideas, people, or groups. They are shaped by a
combination of emotions and feelings, as well as cognitive processes, such as beliefs,
thoughts, and experiences (Van der Pligt et al., 1997).

Throughout the remainder of this manuscript, we will consistently employ the term
emotion to remain consistent with the literature.

1.1.1 Applications of affective computing

In such a short time, affective computing has gained popularity due to its wide range
of application domains (B. W. Schuller, 2018). In many practical scenarios, there is a need
to develop intelligent systems that can accurately distinguish and understand people’s
emotions and provide appropriate and friendly responses quickly (Scheutz, 2012). In
social media, affective computing can aid in understanding the opinions being expressed
on different platforms (Balazs & Velásquez, 2016). In healthcare, affective computing
can help diagnose and treat mental health conditions, monitor patients’ emotions and
stress levels, and improve communication between doctors and patients (Mano et al.,
2016). In education, affective computing can create personalized learning experiences
based on students’ emotions, attention levels, and cognitive abilities (C.-H. Wu et al.,
2016). In automotive, affective computing can improve driver safety and comfort by
detecting drowsiness or stress and adjusting the driving environment accordingly. In
entertainment, affective computing can be used in the gaming industry to create more
immersive and engaging experiences by adapting game difficulty or storylines based on the
player’s emotional state. In marketing, affective computing can analyze consumer emotions
and behavior and develop targeted advertising and product recommendations. Emotion
recognition stands as the foundational pillar towards achieving this objective (Latif et al.,
2021). By accurately discerning and understanding emotions, machines can navigate the
complexity of human affect, paving the way for a future where technology harmoniously
interacts with and responds to our emotional states. Thus, R. W. Picard et al., 2001
believe that affective computing is the key to promoting and advancing the development

14
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of human-centric AI 1. But How can an effective automatic emotion recognition system be
developed? We will delve into this query in the subsequent section.

1.1.2 Emotion recognition system

According to Pantic et al., 2005, an ideal emotion recognition system should encom-
pass five fundamental functionalities: multimodality, robustness and accuracy, generality,
sensitivity to dynamics, and contextual awareness.

These attributes collectively shape the framework for an effective emotion recognition
system. Firstly, being multimodal implies using multiple modalities, such as facial expres-
sions, vocal intonations, and body language, enabling a more comprehensive understanding
of emotions. Secondly, the system should exhibit robustness and accuracy, ensuring consis-
tent and reliable performance across various conditions and individuals. Thirdly, it should
be generic and capable of recognizing emotions across different cultures, contexts, and
demographics. Additionally, sensitivity to dynamics is essential, as emotions are often
transient and evolve. Finally, emotions are profoundly affected by situational factors and
context, making it necessary to grasp the broader context in which they manifest. By
encompassing these five qualities, an emotion recognition system can significantly enhance
its effectiveness in real-world applications.

In the following sections, we will explore why prevalent emotion recognition systems,
primarily reliant on supervised learning, currently struggle to satisfy the second and third
outlined criteria.

1.2 Context of the thesis

To highlight the context of my thesis, I will briefly recall the emotion recognition
pipeline. This latter provides a foundation for understanding the following sections.

Figure 1.2 illustrates the pipeline for emotion recognition using deep learning which
can be summarized in four steps. (i) It begins with collecting and preprocessing diverse
data, including audio, video, or text samples that exhibit various emotions. Typically,
human experts gather labeled data using self-reporting, physiological sensors, or facial
expression analysis. During data preprocessing, noise removal and standardization

1. Human-centric AI refers to the design, development, and deployment of artificial intelligence systems
and technologies with a primary focus on benefiting and empowering humans.
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Valence

Arousal

Supervised learning

Train Validation Test

(i) Data + Preprocessing

(ii) Feature extraction (iii) Deep learning architecture

(iv) Training and
 evaluation

Classification Regression
Labeled dataset

Human annotations

Human annotations

Metrics 

Train and
validation flow 

Test flow 

Figure 1.2 – An overview of a deep representation learning-based emotion recognition
system.

are performed, (ii) The next step is feature extraction, where relevant features like
Mel-Frequency Cepstral Coefficients (MFCCs) (Davis & Mermelstein, 1980) and pitch
for audio and facial landmarks for video are extracted. For text data, conversion into
numerical vectors through techniques like word embeddings or advanced methods
like BERT embeddings (Devlin et al., 2019) is employed, (iii) Then comes the choice
of the deep learning architecture: Convolutional Neural Networks (CNNs) (LeCun
et al., 1989) may be preferred for images or spectrograms, while Recurrent Neural
Networks (RNNs) (Elman, 1990) or Transformers (Vaswani et al., 2017) are suitable for
sequential data like text or audio. In supervised learning, the training phase involves
feeding the model with input features and corresponding labeled emotions, enabling it
to adjust its internal parameters to minimize prediction errors, (iv) Finally, validation
and hyperparameter tuning are performed to ensure model performance. Datasets are
split into training and validation sets, and hyperparameters are adjusted based on
validation metrics. Following training, model evaluation is conducted using a separate
test dataset, assessing various metrics such as accuracy, precision, recall, and F1-score
in the case of a classification task.

In affective computing, supervised learning is a common approach for emotion recog-
nition across different data sources. While supervised learning has been quite successful
in emotion recognition, it has limitations, as noted in many studies (Abate et al., 2023;
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Y. Chen & Joo, 2021; Latif et al., 2022; Ouali, 2023; Sebe et al., 2005). A significant
concern is the potential for unfair outcomes stemming from biases in both the data and
the model. These points will be developed in Section 1.4.

To tackle these challenges, our studies explore alternatives to traditional supervised
learning involving less supervised or unsupervised approaches, thus reducing the reliance
on human annotations. These points will be developed in Section 1.5.

But before that, it is important to note that emotions are complex phenomena, often
characterized by ambiguity and difficulties in their description (Tran et al., 2022). Different
individuals might express similar emotions in varying ways, making it challenging to
categorize or identify emotions accurately. The same emotion can manifest differently
based on cultural, social, or personal contexts, leading to ambiguity in interpretation
(Gendron et al., 2014). An introduction to the understanding of emotions and the inherent
challenges in accurately representing them is introduced in the next section.

1.3 Ambiguity in the representation of emotions

To explain the idea of ambiguity in the representation of emotion, consider a scenario
presented by Tran et al., 2022 within Shannon’s communication model (Shannon, 1948).
This model includes three key components: the source, the message, and the recipient.
In machine communication, the source corresponds to the person expressing emotions,
the message includes their verbal and non-verbal cues, and the recipient interprets this
message. Emotion recognition in human communication involves complex challenges.

Ambiguity in emotions can be observed across all three stages of Shannon’s model.
First, it can stem from the source, as emotions are often complex and not easily under-
stood, even by the person experiencing them. Second, ambiguity can be found in the
message itself, which uses various channels (verbal and non-verbal) to convey emotions,
making interpretation challenging. Third, ambiguity can occur at the recipient level, where
people may interpret the same emotional message differently. This subjectivity in emotion
perception is evident when annotators disagree on perceived emotions, especially when
emotions are not strongly expressed.

Individuals rely on their judgment when interpreting emotions, giving varying impor-
tance to different communication signals. Perceived emotions can be seen as a mathematical
combination of observed signals, each with a different weight influenced by personal ex-
periences. For instance, one annotator might emphasize facial expressions more in their
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emotional assessment, while another might focus on speech prosody.

In affective computing, researchers commonly em-
ploy categorical labels or numerical scales to repre-
sent emotions (Gunes & Schuller, 2013; Schroder
et al., 2007). Categorical labels classify emotions
into distinct categories, such as anger, happiness,
sadness, and fear, providing a discrete represen-
tation of emotions. On the other hand, numeri-
cal scales continuously measure emotional dimen-
sions, such as arousal and valence (see Figure 1.3).
Arousal signifies the activation level linked to an
emotion, spanning from low arousal or calmness to
high arousal or excitement. Valence, on the other
hand, captures the positive or negative nature
of an emotion. Nevertheless, these approaches to
emotion representation provide single-valued point
estimates that cannot fully encapsulate emotions
ambiguity, encompassing both their expression
and perception (Sethu et al., 2019).

Neutral

Arousal

Valence

Surprised

Excited

Happy

+-
Pleased

Relaxed

SleepyTired
Bored

Depressed

Sad

Fear

Angry

Disguest

Figure 1.3 – Arousal represents the
level of activation of an emotion,
ranging from low to high. Conversely,
valence represents the pleasantness
or unpleasantness of emotion, rang-
ing from negative to positive.

As explained in this section, the representation of emotions inherently carries ambigu-
ity, which subsequently introduces biases across the entire supervised learning pipeline
(Section 1.2), spanning from data acquisition to model validation. The following section
will delve into an exploration of the limitations intrinsic to supervised learning.

1.4 Limitations of supervised methods

In terms of data Biases in data can lead to unfairness in learning tasks and take
various forms. The literature on emotion recognition distinguishes three types of datasets
(Abbaschian et al., 2021; Sebe et al., 2005): simulated, semi-simulated, and natural emotion
databases.

Simulated datasets use recordings by actors in a controlled studio environment, making
comparing results across different studies easy. However, the models trained on these
datasets tend to overfit and may struggle to generalize to real-world conversations with
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slightly different emotions. On the other hand, semi-simulated databases involve placing
speakers in emotionally charged situations to evoke near-authentic emotions, based on
scenarios that elicit emotions similar to natural utterances of speech. However, since
these emotions are artificially created, speakers may express them differently than in
real-life situations. Besides, the scenarios may not encompass all the emotions in natural
conversations (Ververidis et al., 2004). Natural databases are mainly obtained from talk
shows, call center recordings, radio talks, and similar sources and are sometimes called
spontaneous speech. Nevertheless, collecting these datasets can be difficult due to ethical
and legal concerns, and annotating them poses challenges; annotating each example in
the database with a particular emotion can be contentious among annotators, resulting in
variations and a lack of agreement in many instances (Y. Chen & Joo, 2021).

In terms of model Real-world datasets inherently contain biases due to the finite
nature of the collected data. When we train models using standard supervised learning
techniques, they tend to lack robustness to shifts in the data distribution (Vapnik, 1999).
For instance, let us consider an emotion recognition model trained on facial expressions
captured in a controlled studio environment characterized by well-regulated demographics
and lighting conditions. Although such a model might excel on this specific training
data (possibly overfitting), its performance could drastically deteriorate when applied
to real-world scenarios, such as images or videos taken outdoors, under varying lighting
conditions, or featuring diverse populations.

The model’s ability to uphold its performance across different domains is known as out-
of-distribution generalization (Shen et al., 2021). Out-of-distribution generalization, often
called OOD generalization, is a critical facet of machine learning, including applications
like emotion recognition. It refers to the model’s capacity to make accurate predictions not
just on the exact dataset it was trained on but also on novel, unseen data from various
sources or domains.

1.5 Leveraging unlabeled data for emotion recogni-
tion: challenges

The limitations associated with supervised learning, coupled with the potential for
biases in labeled datasets, emphasize the need to explore alternative approaches that
require minimal or no supervision. Throughout my thesis, we have delved into other
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training paradigms that aim to reduce the need for labels and address the aforementioned
challenges.

1.5.1 Towards other learning paradigms for emotion recognition

In recent years, machine and deep learning have witnessed an increasing interest in
exploring unsupervised and self-supervised learning paradigms. These methods present a
promising alternative to the fully supervised learning approach, especially when labeled
data is limited or prone to bias (Ouali, 2023). An illustrative example is that of autonomous
driving. Consider the contrast between humans mastering driving within roughly 20 hours
of practice with minimal guidance, while even advanced AI systems, trained on extensive
human driving data, struggle with achieving fully autonomous driving. The crux lies in
humans’ reliance on their accumulated background knowledge of how the world operates.

Unsupervised learning involves training models on unlabeled data, intending to identify
patterns and structures in the data without explicit guidance on what the model should look
for, often referred to as knowledge discovery (Murphy, 2012). This can include techniques
such as clustering, generative modeling, and dimensionality reduction (Ghahramani, 2003).
Self-supervised learning involves training models on pretext tasks, such as predicting missing
parts of an image or reconstructing a corrupted image, to learn a general representation
that can be used for downstream tasks. By learning to solve these pretext tasks, the
model can indirectly recognize patterns and structures in the data without explicit labels
(Ericsson et al., 2022).

The following subsection explains why unsupervised and self-supervised learning can
have significant advantages in affective computing.

1.5.2 Learning representations is (all) you need

Unsupervised and self-supervised methods usually involve a separate two-step learning
process (Ericsson et al., 2022; Ghahramani, 2003; Obin, 2023). In the first step, the model
learns to represent the data in an unsupervised or self-supervised way, through a pretext
task that does not require labeling data. This approach enables the model to extract
relevant features from the vast amount of unlabeled data available. In the second step,
the model transfers the knowledge learned in the first step to an auxiliary task, such as
emotion recognition, thereby using the learned representation for various downstream
tasks, even with limited labeled data. In contrast, supervised methods combine these
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two-step processes simultaneously in a single training session. This can result in the learned
features being heavily reliant on the labeled input data, which may introduce potential
biases that could affect the model’s performance on unseen data.

The concept of leveraging information from the unsupervised or self-supervised phase to
improve performance in the supervised learning stage has become more widely recognized.
The basic idea is that some relevant features for unsupervised tasks may also be useful for
supervised learning tasks. For instance, a generative model trained to produce images of
emotional faces must identify the patterns that differentiate each emotion. If the model
can accurately represent these patterns, the learned representation can be effectively used
for supervised learning tasks. While there is to be a clear mathematical or theoretical
understanding of this process, predicting which tasks will benefit from unsupervised
learning is often difficult. Additionally, many aspects of this approach are model-dependent.
For example, if we want to apply a linear classifier to the pre-trained features, the features
must make the underlying classes linearly separable, which may only sometimes be the case.
While these properties often occur naturally, they are not always guaranteed (Goodfellow
et al., 2016).

Self-supervised and unsupervised learning for emotion recognition share a common
goal: To learn a robust latent representation of the data that can extract relevant features
(which satisfies some criteria we will discuss in the next chapter) without relying on explicit
emotion labels. This latent representation can then be transferred to the task of emotion
recognition, leading to more accurate and robust models, particularly in scenarios where
labeled data is scarce or biased.

1.5.3 Towards multimodal learning for affective computing

Mehrabian, 2017 suggests that only 7% of feelings and emotions are conveyed through
the words used in oral communication. In contrast, 38% are conveyed through tone
and voice, and the remaining 55% are conveyed through facial expressions and body
language. These findings, drawn from experiments related to the communication of feelings
and attitudes (Mehrabian & Ferris, 1967; Mehrabian & Wiener, 1967), highlight the
significance of incorporating nonverbal communication and multiple modalities to reduce
the uncertainty in unimodal systems for accurate emotion recognition.

Besides improving interpretability, emotions are not experienced in isolation but are
influenced by the surrounding context. The multimodal input allows for capturing the
contextual factors that shape emotional expressions. Imagine a situation where someone
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makes a sarcastic comment during a conversation. He/she says, "Wow, what a brilliant
idea!" with a smirk on the face. In this case, relying solely on the statement’s textual
content may appear as a positive affirmation. However, we can detect the underlying
sarcasm by considering the visual modality, precisely their facial expression. The smirk
on their face, coupled with the sarcastic tone of their voice, provides additional cues that
indicate their true intention. Combining the textual content, facial expression, and vocal
tone forms a multimodal representation that enables us to identify the sarcasm or irony
in the statement accurately. Another example is when someone is giving a presentation
on a serious topic. He maintains a composed and serious facial expression during his
speech while his tone remains calm and measured. However, their body language, such as
tapping their foot or fidgeting with their hands, indicates nervousness or anxiety. In this
scenario, analyzing only the audio speech might indicate that the person is delivering their
message in a profound and controlled manner. However, incorporating the visual modality
allows us to observe additional cues that reveal the underlying emotions. Despite the
composed speech, their subtle signs of nervousness suggest an underlying sense of anxiety
or discomfort. The emotion recognition system can capture the full range of expressed
emotions by combining audio speech and visual modality.

Moreover, using multiple modalities offers a solution to the limitations associated
with individual modalities (Abdullah et al., 2021; Sebe et al., 2005). Acoustic features
may be vulnerable to background noise or speaker accents, potentially impacting emotion
recognition accuracy. Similarly, the visual modality can be hindered by factors like lighting
and background clutter, camera quality and angle, and the potential for movement and
occlusions during data capture. The fusion of audio and visual modalities can significantly
improve the accuracy and robustness of emotion recognition systems. Multimodal ap-
proaches effectively tackle the impact of noise or inconsistencies present in a single modality.
This capability allows the models to handle real-world scenarios where emotions vary
across individuals or challenging environments, making them more suitable for real-world
deployments.

Overall, emotions are complex and subjective, leading to ambiguity in their represen-
tation, which is translated into the data and methods based on supervised learning.
To address this issue, we seek to investigate whether integrating unsupervised or self-
supervised representation learning methods, specifically when dealing with multimodal
and sequential data, can improve emotion recognition.
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Figure 1.4 – This figure divides our contributions into 3 blocks, each of which is developed
in the next chapters.

1.6 Thesis organization and contributions

Our contributions can be summarized in three main points as illustrated in Figure 1.4.
These contributions and the organization of the manuscript are summarized in the following
paragraphs:
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Deep representation learning, Chapter 2, Page 27 We provide a review of the
general state-of-the-art in deep representation learning, focusing on unsupervised and
self-supervised approaches.

Learning and controlling the source-filter representation of speech with
a variational autoencoder, Chapter 3, Page 75 We aim to improve the un-
derstanding and control of latent representations in deep generative models. We can
analyze, transform, and generate diverse data types by exploring these representa-
tions. In speech processing, the source-filter model (Fant, 1970) is inspired by the
physiological aspects of speech production, suggesting that speech signals arise from
a few independent and meaningful latent factors. These factors include the funda-
mental frequency f0 and formants, which play a crucial role in emotion recognition,
particularly f0. According to this model, speech is generated by the vibration of the
vocal folds (source) and filtered by the vocal tract (filter) before being emitted. This
work investigates the relationship between the source-filter model and the latent space
of a variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014)
trained on a large dataset of unlabeled speech signals. We find that the VAE naturally
captures the source-filter model as orthogonal subspaces within its latent space. We
identify the subspaces corresponding to f0 and the first three formant frequencies using
a small amount of labeled data generated by an artificial speech synthesizer. These
subspaces are orthogonal, allowing us to accurately and independently control the
source-filter factors within them. Our method does not require additional information
or human-labeled data, enabling the creation of a deep generative model for speech
spectrograms conditioned on f0 and formant frequencies. This model can effectively
transform speech signals.

A multimodal and dynamical variational autoencoder, Chapter 4, Page 103
We present a multimodal and dynamical variational autoencoder (MDVAE) for unsu-
pervised learning of audiovisual speech representations. The MDVAE’s latent space
is designed to separate dynamical factors shared across modalities from those spe-
cific to each modality. A static latent variable is introduced to capture constant
information within an audiovisual speech sequence. The MDVAE is trained in two
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stages on an audiovisual emotional speech dataset. In the first stage, separate vector
quantized VAEs (VQ-VAEs) (Van den Oord et al., 2017) are trained for each modality
without temporal modeling. In the second stage, the MDVAE is trained using the
intermediate representation of the VQ-VAEs before quantization. In this second stage
occurs the disentanglement of static versus dynamic and modality-specific versus
modality-common information. The proposed approach is validated through extensive
experiments involving resynthesis, transformation-synthesis, image denoising, and
emotion recognition to demonstrate the effectiveness of the proposed model.

A vector quantized masked autoencoder, Chapter 5, Page 137 We build
upon the growing interest in self-supervised learning methods, which offer promising
solutions to the limitations of supervised learning. These approaches enable learning
from vast amounts of unlabeled data, often readily available in various domains. In this
context, we propose the VQ-MAE-AV model, a vector quantized masked autoencoder
designed explicitly for self-supervised representation learning of audiovisual speech.
Unlike existing multimodal MAEs that process raw audiovisual speech data, the
VQ-MAE-AV model adopts a self-supervised paradigm based on discrete audio and
visual speech representations learned by two pre-trained VQ-VAEs (Van den Oord
et al., 2017). To evaluate the effectiveness of the proposed approach, the VQ-MAE-AV
model is pre-trained on the VoxCeleb2 (Chung et al., 2018) database and fine-tuned on
standard emotional audiovisual speech datasets. The experimental results demonstrate
that the proposed method outperforms state-of-the-art audiovisual speech emotion
recognition methods. These results underscore the potential of self-supervised learning
approaches and showcase the efficacy of the VQ-MAE-AV model in learning robust
and effective representations of audiovisual speech for emotion recognition.

Conclusion, ethical concerns and perspective, Chapter 6, Page 159 In
this final chapter, we summarize the key contributions of this thesis and provide an
overview of the findings. We reflect on the implications and significance of the research
conducted, highlighting its potential impact in the field. Additionally, we discuss
future perspectives and potential directions for further exploration and development,
identifying areas for future research and potential applications of the findings.
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Chapter 2 – Deep representation learning

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as
simple and as few as possible without surrendering the adequate representation of a single datum of

experience. Albert Einstein, in a 1933 lecture, "On the Method of Theoretical Physics,"

This chapter examines the current state-of-the-art in deep representation learn-
ing, encompassing various approaches, techniques, and paradigms. This chapter
aims to provide an overview of the existing literature, emphasizing essential
concepts and emerging trends in the field, focusing explicitly on unsupervised
and self-supervised learning methods. This chapter establishes the groundwork
for the following chapters, which will delve into more specific aspects of repre-
sentation learning.

Summary

2.1 Introduction

According to Bengio, Courville, and Vincent, 2013, representation learning (RL) is
defined as the process of “Learning representations of the data that facilitate the extraction
of valuable information during the construction of classifiers or other predictive models”.
RL involves various methods that enable systems to automatically uncover the needed
representations for feature detection or classification directly from raw data. The term
automatically emphasizes the distinction between traditional feature engineering approaches
and deep representation learning methods.

The process of manually designing a conversion of raw data into meaningful information
using domain knowledge is referred to as feature engineering. In the context of emotion
recognition (ER), as in many other applications, feature engineering and machine learning
models for classification or regression are often treated as separate problems. Much ER
research has focused on feature engineering pipelines to construct emotional representations
that facilitate machine learning algorithms. While feature engineering techniques can
improve ER performance, the downside is that they are labor-intensive, time-consuming
and potentially sub-optimal (Latif et al., 2021). On the other hand, representation learning
refers to the process of learning representations through the automatic transformation of
input data using deep neural networks (DNNs) 1. The primary objective of representation

1. DNNs consist of multiple layers of artificial neurons and are renowned for their ability to learn
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learning is to generate abstract and meaningful representations that can be used for
machine learning tasks like classification and regression (Bengio, Courville, & Vincent,
2013; Obin, 2023). Representation learning is a less time-consuming process requiring
minimal human domain knowledge to produce better results than hand-engineered features
(Latif et al., 2021).

Reducing dependency on engineered features is desirable to expand machine learning’s
applicability. By doing so, new applications can be developed more efficiently and effectively,
leading to the advancement of artificial intelligence (AI). According to Bengio, Courville,
and Vincent, 2013, AI system must deeply understand our world. This can only be
accomplished if it can discern and distinguish the underlying factors that explain the
environment it observes while relying on low-level sensory data.

In this chapter, we delve into the following key points:
— Understanding representation learning, Section 2.2: We introduce represen-

tation learning from an information theory perspective, allowing us to bring together
various learning paradigms, including supervised, unsupervised, and self-supervised
learning.

— Effective representation learning, Section 2.3: We thoroughly examine the
criteria that a good learned representation should satisfy. Our exploration takes us
into disentangled representation learning, where we delve into its formalization and
explore its properties.

— Understanding the generative variational autoencoder model, Section 2.4:
We delve into the generative variational autoencoder model, followed by a discussion
on the methodologies for acquiring disentangled representations. Furthermore, we
explore techniques for extending the generative model’s capabilities to process
sequential or multimodal data effectively.

— Exploring the masked autoencoder, Section 2.5: We introduce another
generative model based on self-supervised learning, the masked autoencoder, where
each part of the model is explained and analyzed.

Remark. The purpose of this chapter is to present methods for unsupervised and self-
supervised representation learning while abstracting from the foundation of deep learning
techniques. Therefore, this chapter does not cover basic deep learning techniques and
assumes that the reader already has a background in deep learning.

complex patterns. A deep neural network can approximate any function through its learned parameters
(universal approximation theorem (T. Kim & Adalı, 2003)).
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2.2 Exploring representation learning through the
lens of information theory

Before delving into the subsequent sections, let us introduce some key definitions that
will be important for our discussion.

2.2.1 Notations and background

Notations In our discussions, we will use different symbols to represent different
types of mathematical entities. We use x, x, and X to denote scalars, vectors, and
higher-dimensional tensors respectively. We use X = {x1, x2 . . .} to denote the observed
variables of the input domain, Z = {z1, z2 . . .} for latent representations and Y for
the output domain. For example, if we solve a classification task, Y is a set of discrete
classes.

Background Mutual information (MI) measures the statistical dependence or infor-
mation shared between two random variables. Let (x, y) be a pair of random variables.
If their joint distribution is p(x, y) and the marginal distributions are p(x) and p(y),
the mutual information is defined as

I(x; y) = DKL

(
p(x, y) ∥ p(x) · p(y)

)
, (2.1)

where DKL is the Kullback–Leibler divergence, which is a mathematical measure used
to quantify the difference between two probability distributions. DKL is formalized by
the following equation DKL(p ∥ q) = Ep(x) [log (p(x))− log (q(x))] ≥ 0.

MI quantifies the shared information or dependence between the two random
variables. If x and y are independent, their MI is zero, indicating that knowing one
variable provides no information about the other. Conversely, a higher MI value
indicates a stronger dependence or shared information between the two variables.

The conditional mutual information between three random variables, x, y, and
z, with the expectation term, denoted as I(x; y|z), is a measure of the amount of
information shared between x and y while conditioning on the information provided
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by z. In mathematical terms, it is defined as:

I(x; y|z) = Ep(z)
[
DKL

(
p(x, y|z) ∥ p(x|z) · p(y|z)

)]
, (2.2)

where E[.] is the expectation operator.

2.2.2 Representation learning, information theory and informa-
tion bottleneck

A concept underlies RL is that of “minimal sufficient statistics”. To understand this
concept, we need to decompose it:

Fisher, 1925 introduced the concept of a sufficient statistic. This means there are specific
statistics that hold all the information we can gather from data related to a particular
distribution. In other words, once we know the value of the sufficient statistic, the additional
information provided by the remaining data does not add any new information about the
estimated parameter. A theorem arises from the concept of sufficient statistics:

Theorem 2.2.1. Let T be a probabilistic function of x. Then, T is a sufficient statistic
for a target variable y if and only if I(T (x); y) = I(x; y).

This theorem states that a sufficient statistic captures all the information about y in
x. If this sufficient statistic effectively captures all the relevant information about y in the
most concise or compact way possible, we refer to it as a minimal sufficient statistic.

This latter definition resonates with a fundamental concept in deep learning known as
the information bottleneck (IB) (Tishby & Zaslavsky, 2015). The core idea behind IB is
to extract valuable insights from observed signals linked to a target y by discovering a
representation z that optimizes the quantity of information about y (enhanced performance)
while minimizing the information required for representing x (maximal compression). This
principle can be translated as the following optimization problem (Fischer, 2020; Shwartz-
Ziv & Tishby, 2017):

min
z

{
I(x; z)− βI(z; y)

}
. (2.3)

The I(z; y) measures the amount of target information y that is accessible through
the compressed representation z and is an indicator of the model’s ability to perform well
on the task of interest. On the other hand, I(x; z) represents the amount of information
that z carries about the input x, which is the information that we aim to compress.
Therefore, there is a trade-off between compressing the representation and preserving the
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relevant information about the target variable y, and the hyperparameter β controls this
compromise.

Let us analyse the relationship between the IB and the minimal sufficient statistic T .
These two concepts are closely related. An efficient IB is characterized by the encoder,
which can be any function T (possibly stochastic) that maps the observed data x to
a compressed representation z, and whose information content in z is maximized for a
given task. Moreover, if I(x; y|z) = 0, then we say that z satisfies the sufficiency property
concerning the target variable y. If this condition is satisfied, we can declare that the IB
is the exact minimal sufficient statistic. However, if the condition is unsatisfied, the IB
approximates the minimal sufficient statistic.

The concepts we have discussed so far have been based on the assumption of a single
source of data x. However, these concepts can be generalized to multiple sources of input
{x1, x2, x3 . . .}, which is often referred to as multiview or multimodal representation
learning. This extension is significant for self-supervised learning (SSL) but applies to both
supervised and unsupervised learning paradigms.

2.2.3 Supervised representation learning

Definition Supervised representation learning involves the task of learning a meaningful
representation z = T (x) of the input data x that facilitates accurate predictions of the
corresponding labels y. In the context of the formalism described earlier in Equation 2.3,
the variable y corresponds to the labels associated with the data, such as different emotions
or categories. The goal is to find a representation that captures the relevant information
in x and allows the model to make predictions about the labels y.

Connection to information theory Shwartz-Ziv and Tishby, 2017 present quantitative
evidence that supervised learning models undergo two distinct phases: empirical error
minimization (fitting phase) and representation compression (compression phase). The
authors visualized the dynamic of training a neural network by plotting the values of I(x; z)
and I(z; y) against each other (called the information plane). During the fitting phase,
the model extracts information from the input and converts it into learned representations,
leading to an increase in MI between inputs and hidden representations I(x; z). In contrast,
the compression phase focuses on discarding unnecessary information for target prediction,
resulting in a decrease in MI between learned representations and inputs I(x; z), while
the MI between representations and targets I(z; y) increases. The connection between the
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Figure 2.1 – Example of a feedforward DNNs with k hidden layers, an input layer x, and
an output layer ŷ. The target output, y, is available only during the learning phase and is
obtained from a finite sample of the joint distribution, p(x, y).

compression phase and generalization has been emphasized by Shwartz-Ziv and Tishby,
2017, and subsequent studies have further supported their findings (Chelombiev et al.,
2019; Shwartz-Ziv et al., 2018).

Based on this analysis, we can define the supervised approach with two components
(see Figure 2.1): the encoder, which maps the raw data to a meaningful representation,
and the decoder, which uses the encoded representation to make predictions or generate
the desired categories y.

Suppose we consider the encoder and decoder as DNNs. In that case, we can harness
the power of DNNs in learning hierarchical representations that benefit a wide range of
machine learning tasks. In DNNs, each layer processes inputs solely from the preceding
layer, forming a Markov chain within the network. This Markov property gives rise to
the data processing inequality, which states that each subsequent layer in the network
can only access and extract information from the input data equal to or less than the
information processed by the preceding layer. In other words, as we progress deeper into
the network, the representation becomes increasingly compressed and abstract, capturing
the most salient and relevant features of the input (Tishby & Zaslavsky, 2015):

I(x; y) ≥ I(T1(x); y) ≥ I(T2(x); y) ≥ · · · ≥ I(Tk(x); y) ≥ I(ŷ; y). (2.4)
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2.2.4 Unsupervised representation learning

Definition Unlike supervised representation learning, where the variable y is the target
label, unsupervised representation learning takes a different approach by replacing the
target labels with the reconstruction performance of the input. By replacing the labels
with the unlabeled input data, unsupervised representation learning becomes a special case
of supervised representation learning. The focus shifts from predicting specific labels to
reconstructing or capturing the input data’s properties. This allows the model to extract
relevant features and representations that can later be used for various downstream tasks
such as classification, clustering, or anomaly detection.

Connection to information theory The information theory perspective of unsu-
pervised learning is characterized by two components: I(x; z), which represents the MI
resulted encoded by the encoder, and I(z; y = x̂), which represents the MI resulted by the
decoder. This definition encapsulates a paradoxical nature that arises from the inherent
trade-off between two conflicting objectives. On the one hand, our goal is to minimize
I(x; z). Doing so encourages the representation to capture only the most discriminative
information, effectively filtering out irrelevant or redundant details. This process promotes
the discovery of compact representations that generalize well to unseen data. On the other
hand, we also desire the representation z to retain sufficient information about the original
input x to enable accurate reconstruction x̂. By preserving this information, the decoder
can effectively reconstruct the input from the learned representation, facilitating tasks
that rely on faithful data reconstruction or generation.

In the unsupervised learning paradigm, the concept of compression assumes a nuanced
perspective (Voloshynovskiy et al., 2020). In the supervised case, the latent variable z is a
sufficient statistic for the target variable y, leading to a lower entropy 2 than the input
variable x. This reduction in entropy is a consequence of the compression phase. However,
in the unsupervised setting, the IB principle suggests a different approach to compression.
Here, the objective is to encode the input into a compressed representation that allows for
unique decoding of each input sequence. In this scenario, the entropy of the latent space
needs to match the entropy of the input space, making compression considerably more
challenging. Unlike the supervised case, where the latent space can capture the essential
information required for prediction, the unsupervised setting requires the latent space

2. The entropy of a random variable is the average level of information or uncertainty inherent to the
variable’s possible outcomes. The entropy is expressed as H(x) = Ep(x)[− log p(x)].
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Figure 2.2 – The workflow initiates with the pre-training of a model on an unlabeled
dataset, using a Self-supervised Learning (SSL) objective. Following this, the acquired
parameters serve as the starting point for the model configuration in a downstream task
involving a smaller labeled dataset.

to capture all the information necessary for faithful reconstruction. This places a higher
burden on the compression process, as it necessitates encoding the input data in a way that
preserves its essential characteristics without discarding too much important information.

2.2.5 Self-supervised representation learning

Definition Piaget’s theory of cognitive development explains how children acquire
knowledge through sensory and motor experiences, from birth until around 18 months
(Piaget, 2000). This sensorimotor stage involves basic actions like sucking, grasping, looking,
and listening, leading to the emergence of early representational thought. As children
progress through different developmental stages, their reasoning abilities advance toward
abstract thinking and deductive logic.

Learning is most effective when complex structures are built upon simpler ones,
promoting natural development rather than relying solely on external reinforcement.
Education aims to create dynamic structures that enable generalization, allowing learned
knowledge and skills to be applied in different contexts (transfer of learning).

Like cognitive development, self-supervised learning aims to create models capable of
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generating universal representations. SSL originated in robotics, where training data is
labeled using relationships between input sensor signals. More formally, in contrast to
supervised learning that depends on labeled data, SSL defines pretext tasks based on
unlabeled inputs to generate descriptive representations. These pretext tasks serve as a
proxy for the actual task of interest, allowing the model to learn meaningful representations.
Pretext tasks can take various forms depending on the type of data and the specific learning
objectives. In computer vision, pretext tasks, as shown in Figure 2.2, encompass various
challenges, including adjusting image colors, geometric transformations, solving jigsaw
puzzles, ordering frames in videos, and predicting future data. These tasks train models
to understand images independently of color, recognize global-to-local view changes,
reconstruct images from scrambled patches, establish temporal connections in videos, and
capture high-level temporal patterns. In natural language processing, pretext tasks involve
language modeling, word prediction, and coherent sentence generation.

Connection to information theory Integrating SSL into the information theory
framework is a complex challenge requiring substantial research efforts (Garrido et al., 2022;
W. Huang et al., 2021; Shwartz-Ziv & LeCun, 2023). Numerous studies have endeavored
to bridge this gap (Bachman et al., 2019; Hjelm et al., 2018). For instance, Dubois et al.,
2021 conducted a theoretical analysis of the IB principle in the field of SSL, focusing
on determining the minimum bit rate required to store the input while achieving high
performance on downstream tasks. This problem can be framed as a trade-off between rate
and distortion, aiming to find a compressed representation that yields accurate predictions
for each task. To ensure bounded distortion, they impose a condition that the difference
between the conditional entropy of y given z and y given x remains below a specified
threshold δ.

Other methods in this field rely on what is called the multiview assumption (Sridharan
& Kakade, 2008). Which considers the case when we have several input sources (e.g.,
x1, x2) and their respective representations (e.g., z1, z2).

Assumption 2.2.2 (the multiview assumption). There exists an ϵinfo ≥ 0 such that:
I(y; x2|x1) ≤ ϵinfo and I(y; x1|x2) ≤ ϵinfo.

An intuitive understanding of this assumption suggests that, on average, if we already
know x1, learning x2 would not significantly enhance our understanding of y (and vice
versa). This marginal potential gain is ϵinfo. In simpler terms, this assumption implies that
both x1 and x2 are (approximately) carrying redundant information about y. Embracing
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this assumption allows us to distinguish between what is essential and not in the information.
Using this insight, we can selectively compress unimportant details that do not contribute
to subsequent tasks. The goal is twofold: we aim to maximize the relevant information
captured by I(x2; z1) while minimizing the information I(x1; z1|x2). This information
should not be more useful for the task and can thus be discarded.

To illustrate the mildness of this assumption, consider self-supervised visual contrastive
learning (Hjelm et al., 2018; Tsai et al., 2018), where the input and the self-supervised signal
are the same images with different augmentations. This can be associated with altering the
style of an image while preserving its content. The information required for downstream
tasks should be retained in the content, not the style. However, the assumption may falter
in cases of failure (or when ϵinfo is large): when the input and the self-supervised signal
contain vastly different task-relevant information. For instance, drastic image augmentation
(e.g., adding substantial noise) could alter the image’s content (e.g., the noise completely
occludes the objects).

2.3 Learning good representation

We have previously defined representation learning, but what makes one representa-
tion better than another? Defining an effective representation remains challenging. For
example, a valid representation in probabilistic models captures the posterior distribution
of explanatory factors under the observed input (Bengio, Courville, & Vincent, 2013).
Others suggest that an ideal representation disentangles the underlying factors of variation
that generated the data (Goodfellow et al., 2016). Before delving into this matter, let us
establish the criteria for effective representation learning.

2.3.1 Challenges of representation learning

Invariance and equivariance To illustrate the concept of invariance and equivariance,
let us consider the task of emotion recognition from audio data. In this task, we aim to
build a model to accurately recognize emotions conveyed in speech data (x ∈ X ). These
audio samples may come from different accents, languages, and recording qualities. We
aim to learn a representation (z ∈ Z) that suits this task. Ideally, if the emotional content
in the audio changes, we want our representation to adapt accordingly; our representation
should be emotion-equivariant. Equivariance means that if a transformation affects the
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input x, the output representation z is affected similarly. However, we also desire our
representation to be invariant to variations caused by factors like background noise or
recording conditions.

Generating factors In the context of a data distribution representing the domain X , the
generating factors S are the fundamental variables that comprehensively capture the data’s
variability, whether it is observed or not. Recent research suggests that representations
should aid in the decomposition or disentanglement of input data into distinct factors
(Bengio, Courville, & Vincent, 2013; Schölkopf et al., 2021). These factors should correspond
to significant variables involved in the underlying data-generation process. Attempting to
enumerate and isolate every possible combination of these factors in a dataset would be
impractical due to the sheer number of potential variations.

Out-of-distribution generalization Considering an independent and identically dis-
tributed (i.i.d.) data distribution is a convenient yet often overly simplistic assumption.
Real-world datasets inherently carry biases due to the finite and context-specific nature
of the data they represent. When we train learning algorithms using standard super-
vised learning approaches, without accounting for these biases, the resulting models tend
to struggle when confronted with changes in the data distribution (see more details in
Section 1.4).

To illustrate this in the context of multimodal ER, consider scenarios where we collect
speech and visual data from various sources. Each source might introduce biases related
to varying recording equipment, speaking styles, facial expressions, or lighting conditions.
These biases could affect the model’s ability to consistently recognize emotions across these
different sources. However, understanding the data generation process and the underlying
relationships between variables can help us mitigate these biases. We can develop more
robust multimodal ER systems by explicitly modeling these domain shifts and defining
the changes we want our model to be invariant or equivariant.

2.3.2 Disentangled representation

Disentangled representations offer a promising solution to the challenges we have
discussed. These representations aim to learn features that remain unaffected or exhibit
well-defined changes for some data transformations (invariant/equivariant). They achieve
this by considering the data generation process and potential domain shifts. While there
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is no universally accepted definition for disentangled representations, the fundamental
concept revolves around separating the primary factors that drive variations in our data
distribution.

Generic definition Bengio, Courville, and Vincent, 2013 propose an intuitive definition
of a disentangled representation. Disentangled representation refers to the capacity of a data
representation system to separate the different underlying generative factors of variation
within the data. In such a representation, individual latent variables or components
correspond to specific and distinct generative factors, and they are sensitive to changes in
one particular factor while remaining relatively unaffected by changes in other factors.

Formal definition Higgins et al., 2018 provide a rigorous mathematical definition of dis-
entangled representations (from the perspective of group theory) without any assumptions
regarding dimensionality or basis: “A vector representation is called a disentangled repre-
sentation with respect to a particular decomposition of a symmetry group into subgroups if
it decomposes into independent subspaces, where each subspace is affected by the action of
a single subgroup, and the actions of all other subgroups leave the subspace unaffected.”

Consider a symmetry group 3 G, world state vector s ∈ S (i.e., ground truth factors
which generate observations), data vector x ∈ X , and representation vector z ∈ Z. We
refer to the group action as (·). Assume G can be decomposed as a direct product
G = g1 × g2 × . . .× gn. Representation z is disentangled with respect to G if:

— There is an action of G on Z : G× z→ z
— There exists a mapping from s to z, i.e., f : s → z which is equivariant between

the action of G on s and z. This condition can be formulated as follows: g.f(s) =
f(g.s), ∀g ∈ G, ∀s ∈ S.

— The action of G on z is disentangled with respect to the decomposition of G. In
other words, there is a decomposition z = z1× . . .× zn such that each zi is affected
only by gi and invariant to gj, ∀j ̸= i.

This rigorous definition substitutes the term "data generative factors" from the generic
definition with "disentangled actions of the symmetry group."

Properties of disentangled representation Recently, some properties of the disen-
tangled representation have been introduced (Higgins et al., 2018; X. Liu et al., 2022;

3. A symmetry group refers to a set of transformations or operations that leave an object or a system
invariant.
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Locatello et al., 2019):

— Compactness: This property measures whether a single latent dimension encodes
each generative factor of the data. According to Higgins’s definition, each disentan-
gled subspace can indeed be multi-dimensional. However, numerous disentangled
representation methods and metrics promote the idea of a single latent dimension
for each generative factor (R. T. Chen et al., 2018; X. Chen et al., 2016; Higgins
et al., 2017a).

— Identifiability: Learning disentangled representations without guidance is incredibly
challenging (Locatello et al., 2019). This is because numerous models could have
generated the same observed data. In other words, when we have an observation x,
countless generative models could have produced a sample from the same general
distribution (Locatello et al., 2019);

— A causal perspective: Learning disentangled representations becomes problematic
when the factors we seek to disentangle are not truly independent but are intercon-
nected through causal relationships. Causal relationships are directional, meaning
that changing the cause will alter the effect but not vice versa. For example, a
person’s vocal tone may be influenced by their underlying emotional state, which,
in turn, affects their facial expressions. Therefore, causal representation learning
extends disentangled representation learning by incorporating additional constraints
on the relationships between latent variables.

Among the various methods for learning disentangled representations, generative models
such as generative adversarial networks (GANs) (Goodfellow et al., 2014) and variational
autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) have emerged as
powerful contenders. These methods operate in an unsupervised manner and have achieved
notable success in disentangled representation learning (R. T. Chen et al., 2018; X. Chen
et al., 2016; Higgins et al., 2017a). However, this chapter exclusively focuses on VAEs.
This choice is justified because autoencoders constitute a primary research focus of our
AIMAC team. Additionally, various issues associated with GANs have been highlighted
(Creswell et al., 2018). One prominent issue with GANs is their training instability, often
leading to difficulties in convergence and mode collapse, where the generator produces
limited outputs. Additionally, GANs are known to demand more meticulous parameter
tuning and can be more computationally expensive compared to VAEs. Moreover, VAEs,
as we will delve into later, possess properties that render this model flexible for expansion
into sequential or multimodal data contexts.
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Figure 2.3 – The goal of generative modeling is to estimate the parameters θ such that
the model distribution pθ(x) closely approximates the empirical distribution p̂(x).

2.4 Variational autoencoder

Real-world data often exhibit complex patterns among their dimensions. Pixels in an
image, for example, are not independent but somewhat influenced by their spatial rela-
tionships and semantic meanings. This has led to the hypothesis that a lower-dimensional
latent representation exists from which the observed high-dimensional data is generated
(Fefferman et al., 2016).

Dimensionality reduction techniques aim to capture and leverage these structural
dependencies, enabling us to work with a more concise data representation while preserving
essential information. In the following Section 2.4.2, we will explore dimensionality reduction
methods, starting with a linear method like principal component analysis (PCA). Then,
we will progress to discuss probabilistic and generative extensions before introducing the
versatile framework known as the VAE.

In Section 2.4.3, we will delve into VAE training, covering topics such as the variational
inference, the evidence lower bound, and tricks for efficient training.

Following that, in Sections 2.4.5, 2.4.6, and 2.4.7, we will expand upon VAE’s capabili-
ties, exploring its applications in disentanglement, dynamical modeling, and multimodal
modeling, respectively.

Background Bayesian rules are fundamental probability theory and statistics prin-
ciples. These rules govern updating and manipulating probability distributions based
on new evidence or information. One of the foundational Bayesian rules is Bayes the-
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orem, which establishes a mathematical relationship between conditional probabilities.
It enables us to calculate the probability of a random variable given certain observed
outcomes or data. Bayes’ Theorem is often expressed as:

p(z|x) = p(x|z) · p(z)
p(x) . (2.5)

2.4.1 Notes on latent-variable generative modeling

Generative modeling (Ruthotto & Haber, 2021; Salakhutdinov, 2015) aims to learn
a probabilistic model of an observable random variable x ∈ X ⊂ RD, as illustrated in
Figure 2.3. In this context, the goal is to estimate the parameters θ that minimize the
discrepancy between the model distribution pθ(x) and the empirical distribution p̂(x),
where this discrepancy is often quantified using metrics such as the KL divergence:

min
θ

{
DKL(p̂(x) ∥ pθ(x)) = Ep̂(x)

[
log p̂(x)− log pθ(x)

]}
. (2.6)

This optimization problem is equivalent to the maximum log-marginal likelihood
parameter estimation

max
θ

{
Ep̂(x)

[
log pθ(x)

]
︸ ︷︷ ︸

L(θ)

}
. (2.7)

From a mathematical perspective, we consider a dataset D = {x1, . . . , xN ∈ X}
comprising N independent and identically distributed (i.i.d.) observations of x. The
empirical distribution of x is defined as p̂(x) = 1

N

∑
xn∈D δ(x − xn), where δ denotes

the Dirac delta function. The Dirac delta function is nonzero only at zero, taking the
value 1. Generative models generally fall into two categories: explicit and implicit.
Explicit models define a distribution’s density function, characterizing data distribution
and inferring sample likelihood (Kingma & Welling, 2014; Ngiam et al., 2011; J. Xie et al.,
2016). We often refer to them as latent variable models. However, they often encounter
computational challenges due to unknown normalization constants 4. On the other hand,
implicit models, like GANs (Goodfellow et al., 2014), directly produce diverse samples
by transforming random noise into generated samples, but encounter challenges during
training, such as instability and mode collapse.

4. The normalization constant is a constant factor used to scale a probability distribution function so
that the total probability over all possible outcomes sums up to 1.
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Latent variable In this framework, we assume that the observed data x ∈ RD is
generated from an unobserved latent variable z ∈ RL through a probabilistic process
(Bishop, 1998; Borsboom et al., 2003). Consider facial images x as an example, where
substantial variability arises from factors like gender, eye color, hair color, pose, etc.
However, these underlying factors are latent, meaning they are not directly accessible
unless explicitly annotated. The objective is to create explicit models for these latent
factors using the latent variables z. Incorporating latent variables into parameterized
models serves multiple purposes. It can simplify the probabilistic representation of a
problem, making it more accessible for sampling the overall model pθ(x, z). Additionally,
latent variables allow for modeling the impact of an external factor, whether observable or
hidden, on the data x. Moreover, they offer control over the generation of x by selecting a
latent variable z and obtaining corresponding x samples from pθ(x|z).

Relationships between models Deep generative models are designed to capture the
intricate connections between observed and latent variables. In latent variable models, the
marginal likelihood pθ(x) is defined by marginalizing the joint distribution x and z (or
called the generative model) as follows:

log pθ(x) = log
∫

pθ(x, z)dz = log
∫

p(z)pθ(x|z)dz, (2.8)

where p(z) is the prior over the latent vector and pθ(x|z) is the parametric conditional
likelihood, which indicates how the observed data are generated from the latent vector. In
latent-variable generative modeling, finding the posterior distribution pθ(z|x) (or called the
inference model) is important because it represents the conditional distribution of latent
variables z given the observations x. Automatically discovering the underlying structure
in the latent space is a fundamental aspect of model training.

When directly maximizing the logarithm of the marginal likelihood L(θ) (assuming all
distributions are tractable), as depicted by Equation 2.7, the gradient of the log-marginal
likelihood over the dataset D is obtained as (Y. Kim et al., 2018):

∇θL(θ) =
N∑

n=1
Epθ(z|x)

[
∇θp(xn, z)

]
. (2.9)

It is important to note that the aforementioned gradient involves an expectation over the
posterior pθ(z|xn), illustrating how inference serves as a subroutine in the learning process.
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With this gradient expression, we update the parameters using: θnew = θold + η∇θL(θold),
where η is the learning rate. In scenarios where the posterior inference becomes intractable,
approximation methods like variational inference come into play, which will be discussed
in Subsection 2.4.3. When learning the parameters of a latent variable model, variational
inference optimizes a lower bound on the log-marginal likelihood. This lower bound is
based on an approximate posterior distribution over latent variables.

Notations In the following, N (.; µ, Σ) denotes a multivariate Gaussian distribution
with mean vector µ and covariance matrix Σ, diag{.} is the operator that forms a
diagonal matrix from a vector by putting the vector entries on the diagonal.

2.4.2 From PCA to variational autoencoder

Principal component analysis (PCA), Figure 2.4(a) PCA is interested in finding
projections x̂ of data points x that are as similar to the original data points as possible (i.e.,
we have x̂ ≈ x) but which have a significantly lower intrinsic dimensionality (Pearson, 1901).
More concretely, we consider an i.i.d dataset D = {x1, . . . , xN ∈ RD}, ∀n ∈ {1, · · · , N},
with the data covariance matrix S = 1

N

∑N
n=1(xn −µ)T (xn −µ), where µ is an estimation

of the dataset mean.
We assume the existence of a low-dimensional compressed representation z ∈ RL, where

L≪ D, and establish a linear relationship as xn = Bzn+µ ∈ RL. Here, B = [b1, . . . , bL] ∈
RD×L is the projection matrix, and its columns, known as principal components, are
orthogonal (i.e., bT

i bj = 0 when i ̸= j) and normalized (i.e., bT
i bi = 1).

PCA, illustrated in Figure 2.4(a), can be conceptualized as a pair of operations
resembling an encoder-decoder setup: zn = BT (xn − µ) represents the encoder, while
xn = Bzn + µ corresponds to the decoder. The linear transformation by matrix B serves
as the decoder, translating the lower-dimensional vector zn ∈ RL back into the original
data space RD. Conversely, BT acts as the encoder, transforming the centred original data
(xn − µ) into a lower-dimensional vector zn.

Theorem 2.4.1. The principal components [b1, . . . , bL] of PCA are the eigenvectors of
the data covariance matrix S, ordered by decreasing eigenvalue.

This theorem can be demonstrated using mathematical techniques, like maximizing
the variance in the projected space (Murphy, 2012; Tharwat, 2016) or minimizing the
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Figure 2.4 – Illustration showcasing the architectural evolution from PCA to PPCA and
VAE. Each method represents a step towards richer probabilistic modeling and more
expressive latent representations

average reconstruction error (Bishop, 2006b; Deisenroth et al., 2020).

Probabilistic principal component analysis (PPCA), Figure 2.4(b) is a prob-
abilistic extension of PCA (Tipping & Bishop, 1999). Its goal is to bring probabilistic
modeling to PCA, which can be advantageous in several contexts (e.g., missing data
imputation (Qu et al., 2009)).

We will explicitly define the probabilistic model for linear dimensionality reduction. In
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this context, we assume the presence of a continuous latent variable z ∈ RL with a standard
normal prior distribution, denoted as p(z) = N (z; 0, IL), where IL is a L × L identity
matrix. Additionally, we assume the presence of an affine relationship between these latent
variables and the observed data x, which can be expressed as x = Bz + µ + ϵ ∈ RD,
where ϵ ∼ N (ϵ; 0, σ2ID) represents the Gaussian observation noise. We have B ∈ RD×L

and µ ∈ RD, which describe the affine mappings from the latent to the observed variables.
Consequently, PPCA connects the latent and observed variables through the following
parametric (θ = {B, µ, σ}) conditional likelihood distribution:

pθ(x|z) = N
(
x; Bz + µ, σ2ID

)
, (2.10)

where the likelihood distribution acts as a mapping from latent vectors z to observed data
vectors x (i.e., a decoder). We note that the PCA is the specific case of PPCA when the
variance of the noise tends to 0 (i.e., degenerate Gaussian σ → 0). Using the theory of
Gaussian models, we can easily formalize the parametric joint distribution pθ(x, z) as well
as the parametric posterior distributions pθ(z|x) = N (z; m, C), where the mean vector
m = BT

(
BBT +σ2I

)−1
(x−µ) and the posterior covariance C = I−BT

(
BBT +σ2ID

)−1
B.

Note that the posterior covariance does not depend on the observed data x, while the
mean vector m has an affine relationship with x. The posterior distribution maps from
observed data to latent space (i.e., encoder). Posterior distributions also help in quantifying
uncertainty (Deisenroth et al., 2020). For a new observation xnew and the corresponding
latent variable znew, if the posterior distribution p(znew|xnew) exhibits a high variance, it
often indicates the possibility of encountering an outlier.

In PPCA, while the maximum marginal likelihood estimation is analytically tractable,
practical parameter estimation in θ often requires iterative algorithms like the expectation-
maximization (EM) algorithm. EM is an iterative method for learning latent variable
models with tractable posterior inference. It maximizes a lower bound on the log marginal
likelihood at each iteration and can be scaled to large high-dimensional datasets. EM
is based on a two-step procedure: (i) an expectation step, estimating the expectation
Epθ(z|x)[pθ(x, z)] over the latent variables z; (ii) a maximization step, that optimizes the
parameters θ to maximize the first expectation.

Remark. PPCA is a specific instance within the family of factor analysis (FA) methods
(Rummel, 1988). In PPCA, the Gaussian noise is isotropic, meaning that the covariance
matrix takes the form σ2I. In contrast, FA assumes any diagonal covariance matrix,
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allowing for variability along different directions.

Variational autoencoder (VAE), Figure 2.4(c) The VAE was initially proposed by
Kingma and Welling, 2014 and Rezende et al., 2014. A VAE decoder can be considered a
generalization of the PPCA, with a nonlinear (instead of linear) relationship between z
and the parameters θ.

The VAE decoder models pθ(x|z) (representing the probability of generating the
observed data x given a specific vector of the latent variable z), which is usually assumed
to be Gaussian distribution:

pθ (x|z) = N
(
x; µθ(z), diag{σθ(z)}

)
, (2.11)

where µθ and σθ are nonlinear functions of z modeled by the decoder DNN, where θ

denotes the weights of the decoder neural network. For the sake of computational efficiency,
we typically opt for diagonal covariance matrices. This choice stems from the fact that the
number of parameters within a covariance matrix grows quadratically with the dimensions
of the variables.

On the other hand, the VAE encoder models qϕ(z|x), which approximates the intractable
exact posterior pθ(z|x) using variational inference (this part will be addressed in the
following section). A common choice for the approximate posterior distribution qϕ(z|x) is
to use a Gaussian distribution:

qϕ (z|x) = N
(
z; µϕ(x), diag{σϕ(x)}

)
, (2.12)

where µϕ and σϕ are nonlinear functions of x modeled by the encoder DNN, where ϕ

denotes the weights of the encoder neural network.

2.4.3 Variational Inference

Optimizing the generative model involves maximizing the likelihood parameter es-
timation in Problem 2.7. However, directly addressing this optimization problem can
be challenging, if not impossible, when the marginal likelihood becomes analytically in-
tractable. The intractability issue is rooted in the integral within Equation 2.8, which
cannot be calculated directly. In the context of the VAE, the non-linearity is a result of the
complex connection between the latent and observed variables. The observed variables are
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generated from the latent ones through a DNN, turning pθ(x|z) into a nonlinear function
of z.

A common strategy to alleviate this problem is to exploit the latent variable aspect of
the model to maximize an intractable log-likelihood lower bound, as described in Neal
and Hinton, 1998’s work. This procedure essentially relies on the posterior distribution of
latent variables or its approximation. Taking an arbitrary variational distribution/family
q(z), we can derive the following decomposition of the log-marginal likelihood:

log pθ(x) = Eq(z)
[

log pθ(x)
]

= Eq(z)

[
log pθ(x, z)

pθ(z|x)

]

= Eq(z)

[
log

{
pθ(x, z)

q(z) · q(z)
pθ(z|x)

}]

= Eq(z)

[
log pθ(x, z)

q(z)

]
+ Eq(z)

[
log q(z)

pθ(z|x)

]

= Eq(z)

[
log pθ(x, z)

q(z)

]
︸ ︷︷ ︸

L(q, θ)

+DKL

(
q(z) ∥ pθ(z|x)

)
, (2.13)

Since DKL

(
q(z) ∥ pθ(z|x)

)
is always non-negative, the L(q, θ) is a lower-bound on log pθ(x)

log pθ(x) ≥ L(q, θ), (2.14)

where L(q, θ) is commonly known as the evidence lower bound (ELBO) (Jordan et al.,
1999). In Equation 2.14, equality is achieved, signifying that the ELBO precisely matches
the log-marginal likelihood, only when the variational distribution q(z) matches with the
exact posterior distribution pθ(z|x) (i.e., q(z) = pθ(z|x)).

When employing the EM algorithm to optimize both q(z) and θ for the maximum ELBO,
which is called the variational expectation maximization (Neal & Hinton, 1998), the process
unfolds in two steps. The expectation step, which usually performs exact posterior inference,
is replaced with variational inference, which finds the best variational approximation to the
true posterior. In contrast, the maximization step focuses on optimizing the ELBO with
respect to θ (i.e., maximizes the expected complete data likelihood where the expectation
is taken with respect to the variational posterior). Let us consider the case where the
variational family is flexible enough to include the true posterior. The above reduces to the
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classic EM algorithm, since in the first step DKL

(
q(z) ∥ pθ(z|x)

)
is minimized when q(z)

matches the true posterior pθ(z|x), which is why q(z) will be denoted by the approximate
posterior distribution qϕ(z|x). The EM algorithm can optimize an implicit distribution
to match the posterior without directly computing the marginal log-likelihood, resolving
Problem 2.7. However, this method might remain computationally expensive (Y. Kim
et al., 2018). An alternative strategy, such as amortized variational inference (Hoffman
et al., 2013) and VAE, employs a trained neural network called an inference network.
This network predicts variational parameters for a given input x by undergoing training
through gradient ascent, enabling it to perform variational inference across all data points.

2.4.4 Training the variational autoencoder

In the VAE methodology (Kingma & Welling, 2014; Rezende et al., 2014), the ELBO
represented in Equation 2.13, now denoted as LVAE(θ, ϕ), is optimized using stochastic
gradient-based techniques. This process entails the iterative refinement of both the genera-
tive and inference model parameters. Throughout VAE training, the encoder and decoder
networks are interconnected, as illustrated in Figure 2.2, and the parameters θ and ϕ are
jointly updated.

The ELBO can be further expressed as (the best-known formulation):

LVAE(θ, ϕ) = Eqϕ(z|x)
[

ln pθ(x|z)
]

︸ ︷︷ ︸
Reconstruction

−DKL
(
qϕ(z|x) ∥ p(z)

)
︸ ︷︷ ︸

Regularisation

. (2.15)

The ELBO consists of two components: the first part represents the accuracy of the
encoding-decoding process. If we opt for a Gaussian generative model pθ(x|z) with an
identity covariance matrix, this term quantifies the negative mean-squared error between
the original data and the decoder’s output, with some additional constants.

The second component serves as a regularization term, compelling the approximate
posterior distribution qϕ(z|x) to closely match the prior distribution p(z). In Gaussian VAE
where p(z) = N (z; 0, IL) and qϕ (z|x) = N

(
z; µϕ(x), diag{σϕ(x)}

)
, the regularization

term possesses a known analytical expression, dependent on µϕ and σϕ, as elaborated in
further detail in the work by Kingma and Welling, 2014.

In practical VAE training, a training dataset D = {x1, . . . , xN ∈ X} is employed.
Assuming the training vectors are i.i.d., the VAE training goal is to maximize the ELBO.
This objective involves summing the individual ELBO scores computed for each training
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Original form Reparameterization trick

Backprop

X

Stochastic Node

Deterministic Node
Backprop

Figure 2.5 – The reparameterization trick involves reformulating the sampling of latent
variables. When z is sampled stochastically (in the left) from a parameterized distribution,
the gradients must flow through the stochastic node. In contrast, the reparameterization
trick (in the right) allows a gradient path through a deterministic node, which makes it
differentiable for gradient-based optimization, ensuring efficient training of VAEs.

vector. The ELBO can be expressed as:

LVAE(θ, ϕ) =
N∑

n=1
Eqϕ(zn|xn)

[
ln pθ(xn|zn)

]
−

N∑
n=1

DKL
(
qϕ(zn|xn) ∥ p(zn)

)
. (2.16)

To efficiently find the optimal parameters, stochastic gradient descent (SGD) is com-
monly employed. The typical approach involves rearranging terms to transform the gradient
of the expectation into an expectation of the gradient. This can then be estimated using
Monte Carlo samples.

The gradient of the ELBO with respect to θ is given by

∇θEqϕ

[
log pθ(x, z)− log qϕ(z|x)

]
= Eqϕ

[
∇θlog pθ(x, z)

]
= Eqϕ

[
∇θlog pθ(x|z)

]
,

the first equality holds because the distribution for which we compute the expectation does
not depend on θ, so we can push the gradient inside the expectation. The second equality
holds because the prior p(z) does not depend on θ. The expectation in the gradient above
is typically estimated with Monte Carlo samples. The same principle cannot be applied
to ∇ϕEqϕ

[
log pθ(x, z)− log qϕ(z|x)

]
because ϕ is involved in the probability distribution
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itself, preventing the straightforward placement of ∇ϕ inside the expectation.
To address this, the reparameterization trick is employed as illustrated in Figure 2.5.

The reparameterization trick introduces an auxiliary random variable ϵ that is sampled
from a simple and fixed distribution, typically a standard Gaussian N (ϵ; 0, IL). Doing so
allows us to express the random variable z as a deterministic function of ϵ. The sampled ϵ

is then transformed using a differentiable function, typically involving multiplication by
the standard deviation and addition of the mean of qϕ(z|x). This transformation allows us
to make the sampling process differentiable (because ϵ is not a function of ϕ), enabling
the VAE to be trained efficiently using SGD.

Latent space
Latent spaceFactors of variation Factors of variation

Emotion

Identity

Shape

Skin

Mouth

Nose

Eyes

Figure 2.6 – The illustration of the comparison between dimension-wise (left) and vector-
wise (right) RL.

2.4.5 Disentanglement in variational autoencoder

Two approaches to disentangled representation learning methods

Disentangled representation methods, as discussed by X. Wang et al., 2022, fall into
two broad categories: dimension-wise and vector-wise, as illustrated in Figure 2.6.

Dimension-wise methods take a fine-grained approach, where individual dimensions
(or small sets of dimensions) within the representation correspond to specific generative
factors. These methods are typically evaluated using synthetic and simple datasets that
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often involve multiple fine-grained latent factors, such as those found in the Dsprite dataset
(Matthey et al., 2017).

Vector-wise methods, on the other hand, adopt a more coarse-grained perspective.
Different vectors within the representation capture various semantic meanings. Vector-wise
disentanglement methods find practical application in real-world scenarios like identity
swapping and image classification. Real-world datasets and applications typically involve
fewer coarse-grained factors, such as identity and pose.

In the upcoming section, we will delve into dimension-wise methods, with a specific
focus on those based on VAE. VAEs serve as the foundational framework for many
state-of-the-art disentanglement methods.

Application of disentangled representation

Applications of disentangled representations encompass a wide array of domains,
including but not limited to controllable image generation (Zhu et al., 2018), image
manipulation (Gabbay & Hoshen, 2019), and domain adaptation (Peng et al., 2019).
Moreover, it is expected that better disentangled representations will significantly impact
model interpretability (W.-N. Hsu et al., 2017a), abstract reasoning (Van Steenkiste et al.,
2019), and the pursuit of fairness in machine learning (Creager et al., 2019).

Some methods of disentanglement in VAE

As noted previously, N (z; 0, IL) is selected as the prior distribution for the latent
variable z in the context of VAEs. This choice is made to introduce independent constraints
on the representations that the neural network learns, and it is considered a key factor
contributing to VAE’s potential for disentanglement, as noted in prior research (R. T. Chen
et al., 2018; X. Liu et al., 2022). However, it has been observed that vanilla VAEs exhibit
limited disentanglement capability, especially when dealing with complex datasets. To
address this challenge, substantial efforts have been made to enhance disentanglement by
introducing implicit or explicit inductive biases. These enhancements involve incorporating
various regularization techniques, including but not limited to methods like β-VAE (Higgins
et al., 2017b), AnnealedVAE (Burgess et al., 2018), FactorVAE (H. Kim & Mnih, 2018)
and β-TCVAE (R. T. Chen et al., 2018).
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β-VAE The β-VAE is a variant of the VAE framework that incorporates an adjustable
hyperparameter, denoted as β, into the original VAE ELBO (Higgins et al., 2017b).

Lβ-VAE(θ, ϕ) = Eqϕ(z|x)
[

log pθ(x|z)
]
− βDKL

(
qϕ(z|x) ∥ p(z)

)
. (2.17)

Carefully selecting values for β, typically β > 1, results in more disentangled latent repre-
sentations, denoted as z. When β = 1, the β-VAE aligns with the original VAE framework.
This introduces additional constraints on the latent bottleneck z and exerts extra pressure
to maintain its factorized structure while being sufficient for data reconstruction (Higgins
et al., 2017a). Higher β values, aimed at promoting disentanglement, often entail a trade-off
between the fidelity of β-VAE reconstructions and the disentangled nature of its latent
variable z. This trade-off is explained in the FactorVAE paragraph below.

AnnealedVAE introduced a modified version of β-VAE, which dynamically adjusts the
capacity of the latent encoding during training (Burgess et al., 2018). With low encoding
capacity, the model initially focuses on capturing the most salient features to enhance
reconstruction quality. As training progresses and capacity increases, the model gradually
incorporates additional semantic factors into the latent representation while preserving
the disentanglement of previously learned factors. The loss function for AnnealedVAE is
defined as:

LAnnealdVAE(θ, ϕ) = Eqϕ(z|x)
[

log pθ(x|z)
]
− γ|DKL

(
qϕ(z|x) ∥ p(z)

)
− C|, (2.18)

where γ and C are hyperparameters. During training, C is annealed from zero to some
value which is large enough to produce good reconstruction.

FactorVAE H. Kim and Mnih, 2018 introduced a variation of VAE called FactorVAE,
which addresses disentanglement by modifying the decomposition of the ELBO. They
decompose the expectation of the KL term in Equation 2.15 using a formulation from
Hoffman and Johnson, 2016:

Ep̂(x)
[
DKL(q(z|x) ∥ p(z))

]
= I(x; z) + DKL

(
q(z) ∥ p(z)

)
, (2.19)

where I(x; z) represents the MI between x and z, p̂(x) is the empirical distribution of x and
q(z) = Ep̂(x)

[
q(z|x)

]
is the the aggregated posterior distribution over all data (Makhzani

et al., 2015). In β-VAE, both terms in the equation are jointly impacted: (i) DKL[q(z) ∥
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p(z)] encourages q(z) to match the factorized prior p(z), promoting disentanglement; (ii)
Additionally, I(x; z) reduces the information about the data x stored in the latent vector
z, which may result in less accurate reconstructions for high values of β in β-VAE model.

H. Kim and Mnih, 2018 argue that penalizing the MI between x and z might not be
necessary or desirable for improved disentanglement. Instead, they introduce an additional
term to the VAE objective (Equation 2.31) that penalizes the dependence of variables
within the latent space:

LFactorVAE(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x) ∥ p(z))︸ ︷︷ ︸
β-VAE

−γDKL

(
q(z) ∥

L∏
j=1

q(zj)
)
,

(2.20)
where zj denotes the j-th dimension of the latent variable. The second term is the total
correlation (TC) (a popular measure of dependence for multiple random variables), which
evaluates the degree of dimension-wise independence on z. The exact values of TC are
difficult to calculate without the availability of the closed-form distributions (Bai et
al., 2023). H. Kim and Mnih, 2018 propose an approach using “the density ratio trick”
(Sugiyama et al., 2012). This method involves training a binary classifier (discriminator)
to determine the probability d(z) that its input was sampled from q(z) rather than from∏L

j=1 q(zj):

TC(z) = DKL(q(z) ∥
L∏

j=1
q(zj)) = Eq(z)

[
log q(z)∏L

j=1 q(zj)

]
≈ Eq(z)

[
log d(z)

1− d(z)

]
. (2.21)

For a more detailed explanation of how density ratio estimation
(
q(z)/ ∏L

j=1 q(zj)
)

can
be reduced to probabilistic classification, please refer to Tiao, 2018. The training process
involves the joint training of the discriminator and the VAE.

β-TCVAE serves as an enhancement of the β-VAE. In their work, R. T. Chen et al., 2018
are inspired by an alternative breakdown of the second term presented in Equation 2.15,
leading to the following partition (Hoffman & Johnson, 2016):

Ep̂(x)
[
DKL

(
qϕ(z|x) ∥ p(z)

)]
=

DKL

(
q(z, x) ∥ q(z)p(x)

)
︸ ︷︷ ︸

(i)

+ DKL

(
q(z) ∥

∏
j

q(zj)
)

︸ ︷︷ ︸
(ii)

+
∑

j

DKL

(
q(zj) ∥ p(zj)

)
︸ ︷︷ ︸

(iii)

. (2.22)
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The first term (i) is the index-code MI, which denotes the mutual information between
the data x and the latent z variable. The second term (ii) is TC. The last term (iii) is the
dimension-wise KL, which primarily encourages the latent dimensions to better match
their corresponding priors. According to R. T. Chen et al., 2018, the total correlation term
in the ELBO is the most important term in this decomposition for learning disentangled
representations. To verify this claim, the authors propose a simple yet general framework for
training using “minibatch-weighted sampling” to stochastically estimate the decomposition
terms in Equation 2.22.

Note on inductive bias As mentioned in Section 2.3.2 concerning the proper-
ties of disentangled representations, achieving disentanglement in an unsupervised
manner faces the challenge of identifiability (unsupervised learning of disentangled
representations is fundamentally impossible (Locatello et al., 2019)). Using domain
knowledge, often called inductive bias, becomes pivotal to addressing this challenge.
Inductive bias leverages disentanglement priors that introduce a structured framework
into learned representations, aligning them more closely with the underlying data
generation process. It is worth noting that previous representation learning methods
have already harnessed the inductive biases inherent in techniques such as CNNs
(LeCun, Bengio, et al., 1995) and RNNs (Graves et al., 2013) or/and the bias of the
training data itself. In Chapter 3, we will delve into weakly supervised VAE-based
approaches for achieving disentanglement.

However, all the model-based VAE discussed above are primarily designed for static
(non-sequential) and unimodal (involving a single input source) data. In the following
subsection, we will delve into various models designed specifically to handle sequential data.
Additionally, in Subsection 2.4.7, we will explore approaches that tackle the challenges
presented by multimodal data in VAE methods. These two subsections provide essential
background for understanding our contribution in Chapter 4, where we merge the pro-
cessing of dynamical and multimodal data within a unified disentangled VAE framework,
specifically applied to audiovisual speech data.

2.4.6 Dynamical variational autoencoder

The original VAE framework is not designed to handle sequential data and lacks
the ability to model temporal dependencies. Each data vector and its corresponding
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latent vector are treated independently. However, in recent years, several research papers
have proposed extensions of VAEs to process sequential data by incorporating recurrent
neural networks (RNNss) (Bayer & Osendorfer, 2014; Chung et al., 2015; Fabius &
Van Amersfoort, 2014) or transformers (Jiang et al., 2020), called dynamical variational
autoencoders (DVAE) (Girin et al., 2021b). These extensions aim to capture the temporal
dependencies within a sequence of data vectors and their corresponding latent vectors. We
first define a DVAE in terms of a generative model and then present the general lines of
inference and training in the DVAE framework

Generative model of DVAEs DVAEs deal with sequences of observed vectors
x1:T = {xt ∈ RD}T

t=1 and their corresponding latent vectors z1:T = {zt ∈ RL}T
t=1. The

definition of a DVAE generative model requires specifying the joint distribution of
both the observed and latent sequential data, denoted by pθ(x1:T , z1:T ). A DVAE is
thus defined by the following joint probability density function:

pθ(x1:T , z1:T ) = pθ(x1:T |z1:T )pθ(z1:T ). (2.23)

However, this form lacks insight into the generative process, so we find it more
informative to reformulate Equation 2.24 using the chain rule as follows:

pθ(x1:T , z1:T ) =
T∏

t=1
pθ(xt|x1:t−1, z1:t)pθ(zt|z1:t−1, x1:t−1). (2.24)

This specific reformulation, one of the multiple plausible alternatives, follows a
causal structure: zt is generated based on the past latent vector z1:t−1 and the past
observed data x1:t−1. The generation of xt is based on the past data x1:t−1 and the
latent sequence z1:t. In practice, these probabilistic distributions are parameterized
using DNNs, often using recurrent neural networks, and are characterized by a set of
parameters denoted by θ, where zt (or xt) is the output of RNNs that take z1:t−1 and
x1:t−1 (or z1:t and x1:t−1) as inputs.

Remark. A key observation is that the choice of ordering within the chain rule
allows different arrangements of random vectors, which significantly impacts practical
implementations, ultimately yielding different sampling procedures.
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Inference model of DVAEs The posterior distribution for the state sequence z1:T

is denoted as pθ(z1:T |x1:T ). Similar to the standard VAE, this posterior distribution
becomes intractable due to non-linearities in the generative model. To address this
challenge, we introduce an inference model, denoted by qϕ(z1:T |x1:T ), which is an
approximation to the intractable posterior distribution pθ(z1:T |x1:T ). Using the chain
rule, we can reshape the inference model in the following general form:

qϕ(z1:T |x1:T ) =
T∏

t=1
qϕ(zt|z1:t−1, x1:T ), (2.25)

where the parametric probabilistic distributions qϕ(zt|z1:t−1, x1:T ) is parameterized
by RNNs and rely on a set of parameters denoted by ϕ, which takes the past latent
sequence z1:t−1 and the entire x1:T as inputs.

Training of DVAEs As for the standard VAE, training a DVAE is based on
maximizing the ELBO (Equation 2.15). In the case of DVAEs, ELBO is extended to
data sequences, using Equations 2.24 and 2.25, as follows (Girin et al., 2021b):

LDVAE(θ, ϕ) =
T∑

t=1
Eqϕ(z1:t|x1:T ) [log pθ(xt|z1:t−1, z1:t)]

−
T∑

t=1
Eqϕ(z1:t−1|x1:T ) [DKL(qϕ(zt|z1:t−1, x1:T ) ∥ pθ(zt|z1:t−1, x1:t−1))] (2.26)

Similar to the VAE, the ELBO of the DVAE comprises a reconstruction-accuracy
term and a regularization term. However, in contrast to the standard VAE, where the
regularization term typically has a known analytical form for common distributions,
in the DVAE, both the reconstruction accuracy and regularization terms necessitate
the computation of Monte Carlo estimates, specifically empirical averages.

There are several DVAE models that differ in the structure and formulation of the
generative model and the inference model (Alias Partg Goyal et al., 2017; Bayer &
Osendorfer, 2014; Chung et al., 2015; Fabius & Van Amersfoort, 2014; Fraccaro et al.,
2016). These DVAE models have two points in common when modeling sequential data:
(i) unsupervised training is preserved, and (ii) the structure of the VAE is maintained;
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this means that the inference and generative models are jointly learned by maximizing
the ELBO. Of particular interest to the present chapter is the disentangled sequential
autoencoder (DSAE) (Y. Li & Mandt, 2018), which separates dynamical from static latent
information.

(a) Encoder (b) Generator

Figure 2.7 – A graphical model visualisation of the generator and the encoder of DSAE.

Disentangled Sequential Autoencoders (DSAE) Introduced by Y. Li and Mandt,
2018, DSAE extends the sequence of latent variables, z1:T , by incorporating an additional
latent vector referred to as f . This extension is designed to encode the sequence-level
characteristics of the data. Specifically, zt captures time-dependent features, such as the
dynamical behavior of a face in a video clip. In contrast, f is dedicated to representing all
other relevant information, which are inherently time-independent, including the intrinsic
characteristics of the face within the same video clip (e.g., identity, gender).

If we classify this method based on the two categories introduced in Section 2.4.5,
DSAE falls into the category of vector-wise methods. This categorization stems from the
fact that disentanglement within DSAE occurs at the level of vector structures, with f
addressing static aspects and zt capturing dynamical features.

Y. Li and Mandt, 2018 characterize the generative model pθ

(
x1:T , z1:T , f

)
as represented

in Equation 2.27, which is also represented through the Bayesian network in Figure 2.7(b).

pθ

(
x1:T , z1:T , f

)
= p(f)

T∏
t

pθ

(
zt|z1:t−1

)
pθ

(
xt|zt, f

)
, (2.27)

Equation 2.27 indicates that, at time index t, the observed data vector xt is generated
from the static latent variable f and the dynamical latent variable at time index t (zt). All
latent variables are assumed independent, and the prior for the dynamical variable has
the autoregressive structure pθ

(
zt|z1:t−1

)
.
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Each conditional distribution that appears in a product over the time indices in
Equation 2.27 is modeled as a Gaussian with a diagonal covariance, and its parameters
are provided by deep neural networks (decoders) that take as input the variables after
the conditioning bars. Standard feed-forward fully connected neural networks are used to
parameterize the conditional distributions pθ

(
xt|zt, f

)
. The autoregressive structure of the

priors over the latent dynamical variable pθ(zt|z1:t−1) requires the use of RNNs. Finally,
the prior over the static latent variable p(f) is a Gaussian with zero mean and identity
covariance matrix.

Using the Bayesian network of the model, the chain rule of probabilities, and D-
separation (Geiger et al., 1990), it is possible to analyze how the observed and latent
variables depend on each other in the exact posterior, and define an inference model with
the same dependencies. We can factorize the inference model as follows:

qϕ

(
z1:T , f |x1:T

)
= qϕ

(
f |x1:T

) T∏
t

qϕ

(
zt|z1:t−1, xt:T , f

)
. (2.28)

The probabilistic graphical model of DSAE during inference is represented in Figure 2.7(a),
corresponding to the factorization in Equation 2.28. It can be interpreted as follows:
First, we infer the static latent variable f from the observed data sequence x1:T , which
corresponds to the computation of qϕ

(
f |x1:T

)
. Next, we infer the dynamical latent variable

zt from the previously inferred variable f and the observed data variable xt:T , which
corresponds to the computation of qϕ

(
zt|z1:t−1, xt:T , f

)
.

In this inference model, each conditional distribution is modeled as a Gaussian with
a diagonal covariance, and its parameters (mean vector and variance coefficients) are
provided by deep neural networks (encoders) that take as input the variables after the
conditioning bars.

As in standard DVAEs, learning the DSAE generative and inference model parameters
consists in maximizing the ELBO:

LDSAE(θ, ϕ) = Eqϕ(f |x1:T )

[
T∑

t=1
Eqϕ(zt|f ,x1:T ) [log pθ(xt|zt, f)]

−
T∑

t=1
Eqϕ(z1:t−1|f ,x1:T )

[
DKL

(
qϕ(zt|f , xt:T ) ∥ pθ(zt|z1:t−1)

)]]
−DKL

(
qϕ(f |x1:T ) ∥ p(f)

)
(2.29)

The authors present compelling results across two sequential modalities in the exper-
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imental section. First, with cartoon video clips, the model demonstrates its ability to
transform the content of a given sequence using the variable f , effectively performing
content permutations while preserving the dynamical information. Secondly, with audio
modality, DSAE showcases its capacity to convert a male speaker’s voice into that of a
female and vice versa.

2.4.7 Multimodal variational autoencoder

VAEs have gained substantial attention for modeling multimodal data due to their
advantages over other generative models, particularly GANs (Goodfellow et al., 2014).
VAEs, equipped with both encoder and decoder models, offer a more stable and efficient
training process compared to GANs, rendering them well-suited for multimodal generative
modeling (Suzuki & Matsuo, 2022). Various techniques have been developed to learn a
unified latent space for multiple diverse input data within the VAE framework, referred to
as multimodal variational autoencoder (MVAE). In the subsequent sections, we introduce
the foundational aspects of an MVAE, encompassing its generative model, and outline the
key elements of inference and training within this framework.

Generative model of MVAEs MVAEs deal with a set of vectors describing N

modalities x(1:N) = {x(i) ∈ RD}N
i=1 and their corresponding latent vectors z(1:N) =

{z(i) ∈ RL}N
i=1. The definition of a MVAE generative model requires to specify the

joint distribution of both the observed and latent variable, denoted as pθ(x(1:N), z(1:N)).
A MVAE is thus defined by the following joint probability density function using
chain rule:

pθ(x(1:N), z(1:N)) = pθ(x(1:N)|z(1:N))pθ(z(1:N)). (2.30)

These probabilistic distributions are parameterized by DNNs, where their parame-
ters are called θ.

Inference model of MVAEs The posterior distribution for the latent variables
z(1:N) is denoted as pθ(z(1:N)|x(1:N)). Similar to the standard VAE, this posterior
distribution becomes intractable due to the presence of non-linearities in the generative
model. To address this challenge, we introduce an inference model, represented
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as qϕ(z(1:N)|x(1:N)), which serves as an approximation to the intractable posterior
distribution pθ(z(1:N)|x(1:N)). The infernce model is parameterized by DNNs and relies
on a set of parameters represented as ϕ.

Training of MVAEs As for the standard VAE, training a MVAE is based on
maximizing the ELBO (Equation 2.15). The multimodal ELBO, initially introduced
by M. Wu and Goodman, 2018, represents the primary objective function optimized
by all MVAE models:

L(θ, ϕ) = Eqϕ(z(1:N)|x(1:N))

[
log pθ(x(1:N)|z(1:N))

]
− Eqϕ(z(1:N)|x(1:N))

[
DKL(qϕ(z(1:N)|x(1:N)) ∥ p(z(1:N)))

]
. (2.31)

According to Shi et al., 2019, the multimodal generative model should satisfy four
criteria:

— Latent Factorization: The model’s latent space should implicitly be divided into
subspaces that capture shared and modality-specific information. This factorization
is crucial for downstream tasks because well-separated representations are more
versatile and adaptable to various applications;

— Coherent Joint Generation: When generating data in different modalities from
the same latent variable, there should be coherence regarding the shared aspects
represented in the latent space. For example, if the latent representation signifies
"happiness", the generated speech audio should correspondingly express happiness,
and the generated facial expression should portray a happy emotion;

— Coherent Cross Generation: Imagine a scenario where the model generates
facial expressions based on audio input, such as spoken words carrying an emotion.
If the audio input describes "anger," the generated facial expressions should be
coherent with anger-related cues, such as a furrowed brow or clenched jaw;

— Synergy 5: Observing data in multiple modalities should enhance the quality of
the generative model for each modality. In other words, combining multimodal
observations should lead to improved data generation in each modality compared
with considering each modality in isolation. For instance, images and textual

5. In liang2023quantifying, synergy is defined as the emergence of novel information that was not
initially present in either modality.
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(a) (b)

(c) (d)
Figure 2.8 – A graphical model visualization of the encoder of (a) JointMVAE (Suzuki
et al., 2016), (b) PoE-VAE (M. Wu & Goodman, 2018), (c) MoE-VAE (Shi et al., 2019),
(d) PMVAE (W.-N. Hsu & Glass, 2018).

descriptions should result in more detailed and accurate image generation (and
description generation) than considering only one modality.

Several MVAE models have been developed to satisfy these criteria. In the following
discussion, as depicted in Figure 2.8, we introduce four of the most prominent ones (for a
more extensive list, please refer to the comprehensive study by Suzuki and Matsuo, 2022):

Joint multimodal VAE (JointMVAE) JointMVAE leverages a joint representa-
tion shared among all modalities (Suzuki et al., 2016). Let us define x(1) and x(2)

two modalities that are conditioned independently on the same latent vector z; i.e.,
pθ(x(1), x(2)|z) = pθ1(x(1)|z)pθ2(x(2)|z), where θ1, θ2 represent the model parameters. Con-

62



2.4. Variational autoencoder

sidering an approximate posterior distribution as qϕ(z|x(1), x(2)), we can estimate a lower
bound of the log-likelihood log p(x(1), x(2)) as follows:

L(θ, ϕ) = Eqϕ(z|x(1),x(2))

(
pθ1(x(1)|z)

)
+ Eqϕ(z|x(1),x(2))

(
pθ2(x(2)|z)

)
−DKL

(
qϕ(z|x(1), x(2)) ∥ p(z)

)
(2.32)

When informative modality inputs (e.g., images) are missing from the input of a neural
network-based inference distribution, the inferred representation is significantly corrupted
(Suzuki et al., 2016). To accurately generate missing modalities from the available ones
(cross generation), the authors introduce two additional networks for each modality, these
additional encoders (qϕ1(z|x(1)), qϕ2(z|x(2))) are trained to match qϕ(z|x(1), x(2)). Therefore,
the final ELBO of JointMVAE becomes:

LJointMVAE(θ, ϕ) = L(θ, ϕ)
− α

[
DKL

(
qϕ(z|x(1), x(2)) ∥ qϕ1(z|x(1))

)
+ DKL

(
qϕ(z|x(1), x(2)) ∥ qϕ2(z|x(2))

)]
. (2.33)

The authors establish that this objective is a lower bound for the variation of information
Ep̂(x)

[
pθ(x1|x2) + pθ(x2|x1)

]
. In other words, the JointMVAE is optimized to promote

cross-modal generation.

Product-of-experts VAE (PoE-VAE) The JointMVAE employs an ELBO objective
(Equation 2.33) that incorporates two supplementary divergence terms to minimize the
disparity between unimodal and multimodal posterior distributions. Unfortunately, the
JointMVAE necessitates training a novel inference network for each multimodal subset.
This implies the inclusion of 2N additional encoders, denoted as qϕ(z|x̄), for every subset
of modalities x̄ ⊂ {x(1), x(2), . . . , x(N)}. This is intractable in the general setting.

To tackle this challenge, M. Wu and Goodman, 2018 propose to model the joint
posterior as a product of experts (PoE) over the marginal posteriors (Hinton, 2002), where
they decompose the posterior distribution as qθ(z|x(1), x(2), . . . , x(N)) ≈ p(z) ∏N

i=1 qθ(z|x(i)).
When no modalities are observed, this posterior matches with the prior. As the number of
modalities increases, the precision of this posterior distribution also increases, which is a
result of the product property. In other words, this posterior becomes sharper with more
observed modalities.

At the training stage, The ELBO is sub-sampled during each gradient step. This
sub-sampling includes three specific scenarios: (i) optimizing the ELBO using the product
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of all N Gaussians (in the case where all the modalities are available), (ii) optimizing all
ELBO terms using a single modality, and (iii) optimizing k ELBO terms from k randomly
chosen subsets denoted as x̄k. This technique is called sub-sampled training paradigm.

Mixture-of-experts VAE The PoE factorization does not appear to be practically
suited for multimodal learning, likely due to the precision miscalibration of experts
(Shi et al., 2019). When PoE is applied, each expert wields significant influence over
the joint distribution. If the inference for a particular modality is very sharp, the joint
inference will be heavily dominated by it; therefore, the optimization of unimodal inference
with low precision might be greatly degraded. Consequently, Shi et al., 2019 propose
factorizing the joint variational posterior as a combination of unimodal posteriors, using
a mixture of experts (MoE) as qϕ(z|x(1), x(2), . . . , x(N)) = ∑N

i=1 αiqϕ(z|x(i)) where αi is
constrained to ∑

i αi = 1, and in many cases αi = 1/N . MoE does not face the issue
of potentially overconfident experts. However, a drawback of the MoE approach is that
combining the expertise of multiple components does not yield a sharper distribution than
individual experts. Consequently, increasing the number of experts does not enhance the
informativeness of the shared representation, unlike the PoE approach. This limitation
hinders the ability to perform proper aggregated inference. To mitigate the trade-off
between PoE and MoE, a generalization of PoE and MoE, called a mixture of products of
experts (MoPoE), is introduced by Sutter et al., 2020.

Note on the limitations of MVAE A recent study by Daunhawer et al. (Daun-
hawer et al., 2021) has shed light on the limitations of methods like PoE-VAE,
MoE-VAE, and MoPoE-VAE. While promising for multimodal learning, these ap-
proaches exhibit a notable generative quality gap compared to their unimodal VAE
counterparts, which operate in an entirely unsupervised manner. To explain this dis-
parity, the authors uncover a fundamental limitation that applies to a wide range of
mixture-based multimodal VAEs. They establish that the sub-sampling of modalities
imposes an undesirable upper bound on the multimodal ELBO, effectively constraining
the generative capabilities of these models. Their empirical investigations find that
none of the existing approaches can fully satisfy all the desired criteria for an effective
multimodal generative model, especially when applied to complex datasets.
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Partitioned multimodal VAE (PMVAE) The MVAE methods described above
have been mainly focused on the scenario where the objective is to extract the shared
explanatory factors while discarding the rest. W.-N. Hsu and Glass, 2018 investigate the
task of discovering explanatory factors from multimodal sensory data, such as parallel
images and speech recordings, resembling what humans perceive during learning. W.-N.
Hsu and Glass, 2018 introduce PMVAE, a model to learn representations for not only the
shared explanatory factors s, but also the modality-dependent factors z(m), and to encode
them in different latent variables for disentanglement and interoperability.

The generative model for PMVAE is formulated as:

pθ(x(1:N), z(1:N), s) = pθ(s)
N∏

i=1
pθ(z(i))pθ(x(i)|z(i), s) (2.34)

Specifically, we assume the prior distributions over s and z(i), i ∈ [1, N ] to be centered
isotropic Gaussian with no trainable parameters. The conditional distribution of each
modality (pθ(x(i)|z(i), s)) is assumed to be a diagonal Gaussian, whose mean and variance
are parameterized by DNN that take the corresponding latent variables as input.

Using the Bayesian network of the model, the chain rule of probabilities, and D-
separation, it is possible to analyze how the observed and latent variables depend on each
other in the exact posterior:

qϕ(z(1:N), s|x(1:N)) = qϕ(s|x(1:N))
N∏

i=1
qϕ(z(i)|x(i), s). (2.35)

A variational lower bound on the log-likelihood is given as follows:

LPMVAE(θ, ϕ) =
N∑

i=1

[
Eqϕ(z(i),s|x(1:N))

(
pθ(x(i)|z(i), s)

)
−DKL

(
qϕ(z(i)|x(i), s ∥ pθ(z(i))

) ]

−DKL

(
qϕ(s|x(1:N)) ∥ p(s)

)
. (2.36)

In the original paper, the authors introduce two additional regularizations to Equa-
tion 2.36. The first, called multimodal-unimodal coherence, addresses scenarios where only
a single modality is available. The second loss, named cross-modality semantic contrastive-
ness, encourages similarity when inferences of the latent semantic variable s are made by
different modalities from the same sample and dissimilarity when inferences are drawn
from different samples. While the latter encourages shared explanatory factors to be
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captured by the latent semantic variable, the former ensures that non-shared factors are
not inadvertently encoded within it.

2.4.8 Discrete variation autoencoder

Until now, our focus has been on VAEs with continuous latent spaces, represented as z.
Let us now shift our attention to models where the latent space is discrete, represented as
zq, with dim(zq) = K. Nevertheless, why should we be intrigued by learning discrete latent
codes? When we examine latent variable models, one key objective is to find a more concise
data representation, where zq serves as a “compact” space that encapsulates essential
information about the observations in x. This concept of compression is often framed
in terms of dimensionality, with VAEs typically featuring a latent space of significantly
lower dimensionality than that of x. However, while valid, this perspective needs to be
revised in information theory. After all, storing an unlimited amount of information (as per
Shannon’s theory) in a single latent variable is theoretically possible. On the other hand,
with a finite zq space, we can establish a clear and precise understanding of compression, as
the quantity of information represented by zq is rigorously bounded by log2(K) (Thickstun,
2020).

Since the ELBO does not impose any restrictions on the continuity of z, we can employ
this variational objective to optimize a discrete VAE. If z is discrete, it is natural to
consider a uniform prior p(z). The divergence term in Equation 4.11 is just the entropy:

DKL
(
qϕ(z|x) ∥ p(z)

)
= log(K)−H

(
qϕ(z|x)

)
(2.37)

Let us revisit the ELBO we previously derived:

L(θ, ϕ) = Eqϕ(z|x)
[

ln pθ(x|z)
]

+ H(qϕ(z|x))− log(K) (2.38)

Nonetheless, as explained in Section 2.4.4, obtaining gradients of Equation 2.38 concerning
ϕ directly is unfeasible. In contrast to continuous latent variables, we cannot resolve this
issue using the reparameterization trick. Several methods have been proposed to solve this
problem (Jang et al., 2016; Mnih & Gregor, 2014; Razavi et al., 2019; Van den Oord et al.,
2017).
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Figure 2.9 – A figure describing the VQ-VAE.

Vector quantization through the straight-through estimator Van den Oord et al.,
2017 proposes a vector quantized variational autoencoder (VQ-VAE). The VQ-VAE employs
discrete latent variables and is inspired by vector quantization for training. The posterior
and prior distributions take the form of categorical distributions, and samples drawn
from these distributions serve as indices for an embedding codebook. These embeddings,
denoted by e, serve as inputs to the decoder network. Because the quantization operation
is non-differentiable, the authors applied the straight-through estimator (Bengio, Léonard,
& Courville, 2013) to calculate the gradient, which involves directly copying gradients
from the decoder input zd to the encoder output ze. This means that the gradient from
the first layer of the decoder is directly passed to the last layer of the encoder, skipping
the codebook altogether. The total training objective of VQ-VAE becomes:

LVQ-VAE(θ) = log
(
pθ(x|zd)

)
︸ ︷︷ ︸

(1)

+ ∥sg(ze)− e∥2︸ ︷︷ ︸
(2)

+ β∥ze − sg(e))∥2︸ ︷︷ ︸
(3)

(2.39)

where sg(.) represents the stop gradient operator. The first term (1) in Equation 2.39
corresponds to the reconstruction term (e.g., mean square error). This term is responsible
for optimizing both the decoder and the encoder, using the straight-through estimator
for gradient flow as illustrated in the red arrow in Figure 2.9. The second term (2)
corresponds to the codebook loss. Since the embeddings (e) do not receive gradients from
the reconstruction loss, the authors employ vector quantization, serving as a straightforward
dictionary learning algorithm. It helps in the learning process of the embedding space by
adjusting each codebook vector to be nearer to the vector it replaces. Finally, the third term
(3) is the “commitment loss”, which addresses concerns related to the dimensionless nature
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of the embedding space. Without this loss, the embedding space could potentially grow
without bounds if the embeddings ei do not train as rapidly as the encoder parameters.

By coupling these quantized representations with an autoregressive prior (e.g., Pix-
elCNN (Van den Oord et al., 2016)), the model demonstrates the capability to produce
high-quality images, videos, and speech. Additionally, it excels in tasks such as speaker
conversion and the unsupervised learning of phonemes, offering compelling evidence for
the effectiveness of the acquired representations.

Vector quantization through other approaches Various alternative methods have
been introduced for training discrete VAE. The NVIL estimator employs a single-sample
objective for optimizing the variational lower bound and incorporates several variance-
reduction techniques to enhance training efficiency (Mnih & Gregor, 2014). In contrast,
VIMCO optimizes a “multi-sample objective”, accelerating convergence by leveraging
multiple samples from the inference network (Mnih & Rezende, 2016). Jang et al., 2016 pre-
sented the Gumbel-softmax trick, which uses a continuous distribution with a temperature
constant that can be gradually reduced during training to approach a discrete distribution
in the limit. This approach can be viewed as an extension of the reparameterization trick
tailored for categorical distributions.

2.5 Masked autoencoder

All the VAE-based techniques mentioned earlier, along with their subsequent variations
and enhancements, operate within the framework of Bayesian probabilistic models and
are trained using unsupervised methods. However, in the following section, we introduce a
"masked autoencoder" model that abstains from the Bayesian probabilistic framework and
employs a self-supervised approach instead. While the previous generative models centered
on probabilistic principles, focusing on modeling the generative structure, inference, and
training, this new approach primarily revolves around the paradigm of mask-based learning
governed by a single loss, which has shown interesting results. Nevertheless, before tackling
this approach, let us look at self-supervised methods.

2.5.1 A rapid tour of self-supervised learning methods

As already discussed in Subsection 2.2.5, SSL is a promising approach in machine
learning that enables learning from vast amounts of unlabeled data. Unlike supervised

68



2.5. Masked autoencoder

learning, which relies on labeled data, SSL defines pretext tasks based on unlabeled inputs
to generate descriptive representations. Pretext tasks are essential for SSL. They create
supervisory signals within unlabeled data, serving as proxies for the target tasks, and
enabling meaningful representation learning. These tasks involve predicting data aspects,
like spatial, temporal, or semantic properties, teaching the model to extract valuable
features for downstream tasks. Examples of pretext tasks include information restoration,
using temporal relationships, learning spatial context, grouping similar images together,
etc.

SSL methods can be broadly categorized into two main categories: contrastive learning
and generative learning. Each of these categories will be further elaborated in the following
paragraphs.

Contrastive learning Contrastive learning is a SSL method that revolves around the
multiview assumption property (see Subsection 2.2.5). Many modern SSL methods use
contrastive learning to create feature representations invariant to simple transforms (X.
Liu et al., 2021). The idea of contrastive learning is to encourage a model to represent
two augmented versions of an input similarly. It encourages the model to bring similar
samples close while separating dissimilar ones in the learned feature space. Positive pairs
are augmented versions of the same data (e.g., an image with rotations and another with
changes in brightness or audio clips of the same spoken sentence with varying noise or
pitch) or across different modalities (e.g., an image with its corresponding audio clip or
text description), while negative pairs match augmented samples with distinct dataset
entries. Key loss functions like InfoNCE (Oord et al., 2018) or NT-Xent (T. Chen et al.,
2020) guide the model to maximize similarity for positives and minimize it for negatives,
promoting shared information capture and discriminative learning.

Contrastive learning encompasses several successful methods. SimCLR is a simple
framework for contrastive learning of visual representations, which trains visual represen-
tations by promoting similarity between two augmented image views. These views are
created through various transformations, like resizing, cropping, and random blurring. After
encoding each view, SimCLR employs a projector, often implemented as a Multi-Layer
Perceptron (MLP) followed by a Rectified Linear Unit (ReLU) activation. This mapping
transforms the initial embeddings into a space where a contrastive loss is applied to en-
courage similarity between the views. For downstream tasks, extracting the representation
before applying the projector has been demonstrated to enhance performance (T. Chen
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et al., 2020). BYOL (Bootstrap Your Own Latent) introduces self-distillation to prevent
collapse 6, using two networks and a predictor. The "online" or student network maps
one network’s outputs to the other’s, while the other is the "target" or teacher network.
Both networks receive different views of the same image through transformations, such as
resizing, cropping, color adjustments, and brightness changes (Grill et al., 2020). Many
other methods belong to this self-distillation family like SimSiam (L.-W. Chen & Rudnicky,
2021), MoCo (He et al., 2020), and DINO (Caron et al., 2021).

Generative learning Contrastive SSL has gained prominence as an effective alternative
to supervised training. However, its effectiveness is now challenged by a generative SSL
called masked modeling (C. Zhang et al., 2022).

Early attempts at masked autoencoding can be traced back to denoising autoencoders,
which aimed to learn higher-level representations by filling in missing portions of images
(Vincent et al., 2008). Variations of this approach, such as feature learning through
inpainting and masked channel prediction, have shown promise, particularly in tasks like
dense semantic segmentation (Larsson et al., 2016; R. Zhang et al., 2016).

The success of masked prediction in language models like GPT (proposed by OpenAI)
and BERT (Devlin et al., 2019) sparked interest in applying it to image modeling. Models
like iGPT (M. Chen et al., 2020) and iBERT (Dosovitskiy et al., 2020) demonstrated
potential. However, their practicality was limited by high computational requirements
and inferior performance compared to contrastive methods based on convolutional neural
networks (CNNs) (T. Chen et al., 2020).

A significant breakthrough came with BEiT (Bao et al., 2021), which adopted autoencoder-
based masked prediction in a novel way. BEiT leverages a discrete variational autoencoder
to train an image tokenizer. BEiT outperformed the contrastive method DINO (Caron
et al., 2021), highlighting the effectiveness of the masked modeling approach.

BEiT relies on a pretrained discrete variational autoencoder, making it a non-end-to-
end solution. In contrast the masked autoencoder (MAE) (He et al., 2022) and SimMIM
(Z. Xie et al., 2022) explore end-to-end training of masked autoencoders. MAE employs a
transformer decoder, while SimMIM opts for a simpler single-layer decoder. MAE sets a
new standard for self-supervised pretraining, particularly evident in its performance on the
ImageNet-1K dataset (Deng et al., 2009). It outshines robust competitors like BEiT (Bao

6. i.e., the model converges to a state where it produces the same output or representation for all input
data, regardless of the variations in the data
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Figure 2.10 – (Image is taken from MAE article (He et al., 2022)) In the pre-training phase,
a substantial portion of image patches, typically around 75%, is randomly masked out. The
encoder operates solely on the smaller subset of visible patches (i.e., 25% of the image).
Subsequently, mask tokens are introduced after the encoding step, and the complete set
of encoded patches, along with these mask tokens, is passed through a compact decoder.
This decoder’s role is to reconstruct the original image at the pixel level.

et al., 2021) by a significant margin, all the while adopting a simpler and more efficient
approach.

2.5.2 Understanding the masked autoencoder

MAE essentially functions as a denoising autoencoder (He et al., 2022), employing
a straightforward approach where it randomly masks patches of the input image and
then reconstructs the missing pixels, as illustrated in Figure 2.10. The MAE model is
underpinned by two key architectural choices:

1. Asymmetric Encoder-Decoder Design: The encoder exclusively processes the visible
patches, while the lightweight decoder is responsible for reconstructing the target
image.

2. High Masking Ratio: An input image with a substantial masking ratio, often as high
as 75%, is employed, resulting in a nontrivial and meaningful self-supervisory task.

Patchifying and masking In line with the methodology pioneered by the Vision
Transformer (ViT) [16], MAE systematically divides an image into equally sized, non-
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overlapping patches. Subsequently, MAE employs a patch sampling mechanism, selectively
choosing a subset of these patches while masking (i.e., concealing) the remainder. This
patch sampling strategy, termed "random sampling," is straightforward and effective.

Why and how does patchifying contribute to MAE? S. Cao et al., 2022 prove that the
random patch selecting of MAE preserves the information of the original image while
reducing the computing costs under common assumptions on the low-rank nature of
images.

How does masking influence the learned representation? A recent study demonstrates
the influence of the masking ratio in MAE (L. Kong et al., 2023). They show how key
hyperparameters in MAE (the masking ratio and the patch size) determine which true latent
variables to be recovered, therefore influencing the level of semantic information in the
representation; masking too much or too little does not recover high-level representations
from low-level features.

Does MAE benefit from other corruptions? As MAE functions as a denoising au-
toencoder, Tian et al., 2022 examines whether alternative image degradation techniques,
aside from masking, are effective for visual pretraining. They investigated five methods:
zoom-in, zoom-out, distortion, blurring, and de-colorizing. Their findings indicate that
these methods outperform no pretraining, highlighting a unified denoising perspective
behind MAE’s success. Notably, blurring and de-colorizing are less effective than other
methods involving spatial transformations, as they alter the image style from the pretext
task to the downstream task. Among these techniques, zoom-in excels and complements
masking to boost performance.

MAE encoder and decoder The MAE encoder is based on the ViT architecture [16].
However, it distinguishes itself by operating exclusively on visible, non-masked patches.
Like a standard ViT, the encoder embeds these patches through a linear projection
augmented by positional embeddings. Subsequently, it processes this set of embeddings
using a sequence of Transformer blocks (Vaswani et al., 2017). However, a pivotal deviation
sets the encoder apart. It exclusively functions on a smaller subset, typically encompassing
around 25%, of the entire patch collection. This approach yields several benefits. Most
notably, it allows us to train substantially large encoders while harnessing only a fraction
of the computational resources and memory.

The MAE decoder takes as input the complete set of tokens, comprising (i) encoded
visible patches and (ii) mask tokens (depicted in Figure 2.10). Each mask token represents a

72



2.5. Masked autoencoder

shared and learned vector that signifies the presence of a missing patch awaiting prediction.
MAE applies positional embeddings to all tokens within this comprehensive set, ensuring
mask tokens contain information about their spatial location within the image. The decoder
proceeds with additional Transformer blocks to perform its tasks.

Does MAE solely rely on adjacent neighbor patches to reconstruct each masked patch?
According to S. Cao et al., 2022, MAE employs a global interpolation of latent represen-
tations for masked patches, determined by an inter-patch topology learned through its
attention mechanism.

Loss function Regarding the loss function, inspired by BERT (Devlin et al., 2019),
the MAE calculates the Mean Squared Error (MSE) between the pixel values of the
reconstructed image and those of the original image. This loss is computed exclusively for
the masked patches, focusing the learning process on the areas requiring reconstruction.

Remark. Using MSE losses for reconstruction can however result in a blurred image. As He
et al. suggest (He et al., 2022), improving the quality of MAE predictions can potentially
lead to better representations for downstream tasks.

Does MAE require extensive data? The conventional belief is that transfer learning
benefits from pretraining on a considerably larger dataset than the target data. However,
El-Nouby et al., 2021 challenges this idea by exploring if self-supervised pretraining on a
smaller dataset can provide similar advantages. Their study is particularly noteworthy as
it utilizes a ViT-based masked autoencoder, which, compared to CNN, generally demands
more samples (Dosovitskiy et al., 2020). Interestingly, El-Nouby et al., 2021 demonstrates
that pretraining a masked autoencoder BEiT (Bao et al., 2021) on just 1% of the ImageNet
dataset (Deng et al., 2009) can achieve transfer performance comparable to full ImageNet
pretraining. In contrast, previous methods like DINO (Caron et al., 2021) are more
sensitive to data size and type. More recently, Z. Xie et al., 2023 conducted an extensive
study on data scaling, ranging from 10% of ImageNet to full ImageNet-22K, with masked
autoencoder models varying from 49 million to 1 billion parameters. This study suggests
that masked image modeling requires larger datasets.
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2.6 Conclusion of the chapter

This chapter delved into the representation learning methods, focusing on unsupervised
and self-supervised techniques. As discussed in Section 2.3.2, the ultimate goal is to
obtain learned representations that exhibit disentanglement (Higgins et al., 2018),
meaning they should be inherently structured to capture independent and interpretable
high-level data characteristics. A recent study by Van Steenkiste et al., 2019 highlights
the advantages of solving complex downstream tasks using disentangled representations,
showcasing improved sample efficiency (i.e., with limited training data), robustness,
and generalization. This has spurred numerous studies to leverage these representations
in the context of emotion recognition (Eskimez et al., 2018; Ong et al., 2022; H.-C.
Yang & Lee, 2019; K. Yang et al., 2023). These motivations served as the guiding
principles throughout my thesis work, leading to the following contributions:

— In the following chapter, we present a weakly supervised approach to tackle the
issue discussed in Section 2.3.2 (identifiability). This method is implemented
in the field of audio speech to disentangle pitch from formants within the
source-filter model;

— In Chapter 4, we introduce a multimodal dynamical autoencoder designed
to learn structured audiovisual representations across distinct latent spaces,
including those related to joint vs. specific modality and static vs. dynamic
information. One application of this model is audiovisual emotion recognition.

— In Chapter 5, we introduce a vector quantized MAE for audiovisual speech rep-
resentation learning, applied to emotion recognition. Unlike the original MAE,
which works with raw data (e.g., pixels in images), our approach takes com-
pact and discrete representations obtained from two distinct vector quantized
variational autoencoders as input.
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This chapter introduces the first contribution of this thesis, which focuses
on learning and controlling factors of variation in the VAE. The focus of
this chapter shifts specifically to audio speech representation, leveraging the
generative capabilities of the VAE model. The following key findings have been
established. By examining the VAE’s latent space, we have identified a link
between the standard source-filter model of speech production and the learned
representation. Specifically, we noticed that the fundamental and formant
frequencies are encoded in pseudo-orthogonal latent subspaces. Leveraging
this association, we introduce an approach for generating and controlling
speech signals, managed through interpretable trajectories of f0 and formant
frequencies.

Summary

3.1 Introduction

In the previous chapter, we discussed how high-dimensional data, like natural images
or speech signals, exhibit regularity, indicating the existence of a lower-dimensional latent
representation from which the observed data is generated. As mentioned previously,
representation learning aims to uncover this latent representation of complex data, and
deep latent-variable generative models have emerged as promising unsupervised approaches
(R. T. Chen et al., 2018; Goodfellow et al., 2014; Higgins et al., 2017a; H. Kim & Mnih, 2018;
Kingma & Welling, 2014; Le Moine et al., 2021; Rezende et al., 2014). The VAE (Kingma
& Welling, 2014; Rezende et al., 2014), equipped with both a generative and inference
model, not only enables data generation but also facilitates analysis and transformation.
Additionally, the VAE, as a learned probability density function (pdf), can serve as a
powerful prior for solving inverse problems like compressed sensing (Bora et al., 2017),
speech enhancement (Bando et al., 2018; Leglaive et al., 2018), and source separation
(Jayaram & Thickstun, 2020; Kameoka et al., 2019). Understanding the learned latent
representation in a VAE and controlling the underlying factors of variation in the data
are key challenges in building more expressive and interpretable generative models and
probabilistic priors.
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A series of previous works on representation learning with deep generative models, in
particular VAEs, have focused on images (R. T. Chen et al., 2018; Higgins et al., 2017a;
H. Kim & Mnih, 2018; Locatello, Bauer, Lucic, et al., 2020; Locatello et al., 2019). Yet, it is
not always easy to define the ground-truth latent factors of variation involved in generating
natural images. Speech data exhibits a direct relationship between latent variation factors
and speech production’s anatomical mechanisms. The source-filter model, proposed by
Fant (1970), explains that speech signals are generated through the interaction of a source
signal with a linear filter. In voiced speech, the vibration of the vocal folds produces a
quasi-periodic glottal sound wave, where the fundamental frequency (referred to as "pitch")
plays a crucial role in speech prosody. Unvoiced speech, on the other hand, involves a
noise source generated by turbulent airflow or acoustic impulses. The vocal tract modifies
the source signal as a linear filter. The vocal tract’s cavities create resonances known as
"formants", characterized by their frequency, amplitude, and bandwidth. When individuals
manipulate speech articulators such as the tongue, lips, and jaw, they modify the shape of
their vocal tract, resulting in changes to the acoustic filter, associated resonances, and the
resulting speech sounds. The power spectra and the spectral envelopes of two French vowels
are displayed in Figure 3.1. The spectral envelopes show that the formant frequencies differ
for the two vowels. In this example, however, the harmonic structure of the spectra shows
that the fundamental frequency is the same for the two vowels. Formant frequencies are
important distinctive features of vowels. In a first approximation, they can be related to
the opening of the mouth, the front/rear position of the tongue, and the rounding of the
lips for the first, second, and third formant, respectively. In the context of voiced phonemes,
humans possess the ability to manipulate the formants independently from the pitch,
indicating the capacity to adjust the filter without affecting the source (Fant, 1970), and
independently from one another (MacDonald et al., 2011). According to the source-filter
model, speech signals are primarily characterized by a few continuous latent factors of
variation, representing the source (with fundamental frequency f0 playing a central role)
and the filter (predominantly described by the formants). The independence between the
source and filter characteristics makes speech signals an intriguing domain for disentangled
representation learning methods, particularly with deep generative latent-variable models
such as the VAE.

In this chapter, we analyze and control the latent space of a VAE from the perspective of
the source-filter model of speech production, which can be beneficial for various applications
in speech analysis, transformation, and synthesis. Figure 3.2 shows an overview of the
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Figure 3.1 – Power spectrum (solid black line) and spectral envelop (orange dashed line)
for two vowels uttered by a male speaker.

Figure 3.2 – Overview of the proposed method. First, 1 a VAE is trained in an unsupervised
manner by maximizing a lower bound of the data log-marginal likelihood (see Section 3.3.1)
on a large dataset of unlabeled natural speech signals (not shown on this figure for clarity).
Given the pretrained VAE and given 2 a few seconds of automatically-labeled speech
generated with an artificial speech synthesizer, we then propose 3 a linear subspace
identification method to put in evidence that 4 the VAE latent space is structured into 5
orthogonal subspaces that encode f0 and the formant frequencies, thus complying with the
source-filter model of speech production. The subspaces are identified by minimizing the
L2 norm of the reconstruction error obtained after passing the artificially-generated speech
trajectories through the VAE encoder and projecting on the subspaces (see Section 3.3.2).
Finally, we propose 6 a piecewise linear regression model to learn how to move into the
source-filter latent subspaces, so as to perform speech manipulations in a disentangled
manner. This model is also learned using the automatically-labeled artificial speech
trajectories, by minimizing the L2 norm of the difference between the output of the
regression model and the data coordinates in the previously-learned latent subspaces (see
Section 3.3.4). No supervision is used to constrain the structure of the VAE latent space
during its training. Supervision is only used after the training of the VAE, to identify the
disentangled latent subspaces encoding the f0 and formant frequencies, and to learn how
to move into these subspaces to perform speech manipulations.

proposed approach. We first train a VAE on a dataset of about 25 hours of unlabeled
speech signals. Then, using only a few seconds of automatically labeled speech signals
generated with an artificial speech synthesizer, we propose a method to identify and
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independently control the source-filter continuous latent factors of speech variation within
the latent space of the VAE. Our contributions are the following: (i) We identify the
source-filter model in the VAE latent space by showing experimentally that f0 and the
frequency of the first three formants, f1, f2, and f3, are encoded in different subspaces.
We put in evidence the orthogonality of the learned subspaces, which not only shows
that the representation learned by the VAE complies with the source-filter model of
speech production, but also suggests that we can perform speech transformations in a
disentangled manner (i.e., modifying one of the factors would not affect the others) by
moving into the learned subspaces. (ii) For each factor fi, i ∈ {0, 1, 2, 3}, we propose to
learn a piecewise linear regression model from the factor value in the synthetic speech
dataset to the coordinates in the corresponding latent subspace. This method allows us
to precisely and independently control the source-filter factors of speech variation within
the learned subspaces, as confirmed experimentally on both artificial and natural signals.
Without requiring additional information such as text or human-labeled data, the proposed
approach leads to a deep generative model of speech spectrograms that is conditioned
on f0 and the formant frequencies. (iii) Finally, to illustrate the interest of the learned
representation for downstream tasks, we propose an f0 estimation method that exploits
the projection of a speech signal onto the learned latent subspace associated with f0.
Experiments show that this approach competes with state-of-the-art methods in terms of
precision and robustness to noise.

To the best of our knowledge, this is the first study showing the link between the classical
source-filter model of speech production and the representation learned in the latent space
of a VAE. Exploiting this link, we propose a principled method to generate and transform
speech signals controlled with interpretable trajectories of f0 and the formant frequencies.
Regarding this latter application, our objective is not to compete with traditional signal
processing methods (discussed in the next subsection), which remain state-of-the-art to
the best of our knowledge. The present chapter’s interest is to advance the understanding
of deep generative modeling of speech signals while comparing fairly with traditional
signal-model-based systems specifically designed for a given task. Moreover, advancing on
the interpretability and control of the VAE latent space is expected to be beneficial for
downstream tasks, for instance, to develop pitch-informed extensions of VAE-based speech
enhancement methods such as those of Bando et al., 2018; Bie et al., 2022; Leglaive et al.,
2018, 2020.
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3.2 Related work

Time-scale, pitch-scale, and timbre modification of speech signals is a highly covered
research problem originally addressed with signal processing methods. Three main groups
of approaches exist (Laroche, 2002): time-domain methods such as the pitch-synchronous
overlap and add (PSOLA) algorithm (Moulines & Charpentier, 1990), methods that work
in the short-time Fourier transform (STFT) domain such as the phase vocoder (Flanagan &
Golden, 1966; Laroche & Dolson, 1999), and parametric approaches based for instance on
linear predictive coding (LPC) (Makhoul, 1975; Markel & Gray, 1976), sinusoidal modeling
(George & Smith, 1997; McAulay & Quatieri, 1986), or sinusoidal plus noise modeling
(Laroche et al., 1993; Serra & Smith, 1990). Other signal-processing-based approaches to
real-time speech manipulations include the STRAIGHT (Banno et al., 2007; Kawahara,
2006) and WORLD (Morise et al., 2016) vocoders, which exploit a decomposition of the
speech signal into f0, spectral envelope, and aperiodicity.

Deep learning has recently emerged as a powerful approach to speech signal manipula-
tion. A few methods have investigated combining traditional signal processing models with
deep learning (Choi et al., 2021; Juvela et al., 2019; Lee et al., 2019; Valin & Skoglund,
2019; X. Wang et al., 2019). LPCNet is a successful neural vocoder inspired by the source-
filter model (Valin & Skoglund, 2019). It was recently extended to pitch shifting and
time stretching of speech signals by (Morrison et al., 2021). Yet, the authors showed that
time-domain PSOLA (TD-PSOLA) (Moulines & Charpentier, 1990) remains a very strong
baseline that is difficult to outperform with deep learning methods.

Regarding the use of deep generative models (in particular VAEs) for speech modeling
and transformation, the studies of Akuzawa et al., 2018; Blaauw and Bonada, 2016; C.-C.
Hsu et al., 2016; W.-N. Hsu et al., 2017a, 2017b are pioneering. Of particular interest
to the present chapter is the work of (W.-N. Hsu et al., 2017a). The authors proposed
using VAEs to modify the speaker identity and the phonemic content of speech signals by
translations in the latent space of a VAE. Yet, this method requires knowing predefined
values of the latent representations associated with both the source and target speech
attributes to be modified. The method’s performance thus depends on the quality of the
estimation of the source attribute (e.g., f0), which has to be obtained from the input
speech signal to be transformed. This differs from the proposed method, which relies on
projection onto the latent subspace associated with a given attribute and only requires
the target value for this attribute. Moreover, W.-N. Hsu et al., 2017a did not address the

80



3.2. Related work

control of continuous factors of speech variation in the VAE latent space, contrary to the
present work.

For deep latent representation learning methods, the challenge is to relate the learned
representation to interpretable speech attributes. In Qian et al., 2020 and Webber et al.,
2020, this interpretability is enforced by the design of the model. Qian et al., 2020 proposed
to use three independent encoder networks to decompose a speech signal into f0, timbre,
and rhythm latent representations. Webber et al., 2020 focused on controlling source-filter
parameters in speech signals, where the ability to control a given parameter (e.g., f0) is
enforced explicitly using labeled data and adversarial learning. In this approach, each
parameter to be controlled requires dedicated training of the model. Moreover, these
methods are speaker-dependent, as speech generation in Qian et al., 2020 is conditioned
on the speaker identity, and Webber et al., 2020 used a single-speaker training dataset.
This contrasts with the proposed method which is speaker-independent, and in which the
source-filter representation is shown to emerge as orthogonal subspaces of the latent space
of a single unsupervised VAE model.

In the machine learning and computer vision communities, variants of the VAE have
recently led to considerable progress in disentangled representation learning (R. T. Chen
et al., 2018; Higgins et al., 2017a; H. Kim & Mnih, 2018). From experimental analyses
on image data, these methods suggest that a vanilla VAE cannot learn a disentangled
representation. Moreover, Locatello et al., 2019 and Locatello, Bauer, Lucic, et al., 2020
recently showed both theoretically and from a large-scale experimental study that the
unsupervised learning of disentangled representations is impossible without inductive
biases (i.e., implicit or explicit assumptions by which a machine learning algorithm is
able to generalize) on both the models and the data. Weakly-supervised (Hosoya, 2018;
Locatello, Poole, et al., 2020; Shu et al., 2020) and semi-supervised (Locatello, Tschannen,
et al., 2020; Sorrenson et al., 2020) methods have thus been proposed to learn disentangled
representations. For example, the semi-supervised approach of Locatello, Tschannen, et
al., 2020 exploits a small amount of labeled data to enforce the disentanglement of the
representation at training time. This differs from the proposed approach where, after
training a VAE on unlabeled natural speech signals, a few examples of artificially generated
labeled speech data are used to identify the disentangled structure of the VAE latent
representation in terms of source-filter factors of speech variation. This allows us to
experimentally show that learning a disentangled source-filter representation of speech
using a simple VAE is possible, complying with the definition of disentanglement proposed
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in Higgins et al., 2018.
Several methods have been recently proposed to control continuous factors of variation

in deep generative models (Goetschalckx et al., 2019; Härkönen et al., 2020; Jahanian et al.,
2019; Plumerault et al., 2020), focusing essentially on generative adversarial networks
(Goodfellow et al., 2014). They consist in identifying and then moving onto semantically
meaningful directions in the latent space of the model. The present work is inspired by
Plumerault et al., 2020, which assumes that a factor of variation can be predicted from
the projection of the latent vector along a specific axis, learned from artificially generated
trajectories. The proposed method is however more generic, thanks to the learning of
latent subspaces associated with the latent factors and to the introduction of a general
formalism based on the use of “biased” aggregated posteriors. Moreover, the previous works
on controlling deep generative models only allow for moving “blindly” onto semantically
meaningful directions in the latent space. In the present study, we are able to generate
data conditioned on a specific target value for a given factor of variation (e.g., a given
formant frequency value). Finally, previous works focused on image data. To the best of
our knowledge, the present chapter proposes the first approach to identify and control
source-filter factors of speech variation in a VAE.

The rest of this chapter is organized as follows: Section 3.3 presents the proposed
method for analyzing and controlling source-filter factors of speech variation in a VAE.
The method is evaluated experimentally and compared with traditional signal processing
algorithms and with the approach of W.-N. Hsu et al., 2017a in Section 3.4. We finally
conclude in Section 3.5.

3.3 Analyzing and controlling source-filter factors of
speech variation in a VAE

In this section, we introduce the Itakura-Saito VAE model as our foundation (for a
comprehensive understanding of VAEs, refer to Section 2.4, page 41). This model is trained
on a large dataset of unlabeled natural speech signals. We then present our proposed
method, which includes the following components: (i) The identification of latent subspaces
that encode the source-filter factors of speech variation using a small amount of labeled
speech signals generated artificially. (ii) An assessment of the disentanglement of the
learned representation through a simple measurement strategy. (iii) A method to control
the continuous factors of variation within the learned subspaces and generate corresponding
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speech signals. (iv) A straightforward approach to estimate the f0 contour of a speech
signal by leveraging its projection onto the associated latent subspace.

3.3.1 Itakura-Saito variational autoencoder

As mentioned in Section 2.4, Page 41, generative modeling involves learning a proba-
bilistic model of an observable random variable x, which belongs to a subset X in RD. We
consider a dataset D = {x1, ..., xN} consisting of N independent and identically distributed
(i.i.d.) observations of x. Here, N represents the cardinality of D. The empirical distribution
of x is given by p̂(x) = 1

N

∑
xn∈D δ(x− xn), where δ denotes the Dirac delta function. The

Dirac delta function takes the value 1 only at 0 and is zero elsewhere.
VAE (Kingma & Welling, 2014; Rezende et al., 2014) is designed to approximate the

empirical distribution p̂(x) with a parametric probability density function pθ(x), where θ

represents the model parameters. In the case of high-dimensional data like natural images
or speech signals, the D dimensions of x exhibit regularity, indicating that they are not
independent of each other. This suggests the presence of a lower-dimensional latent variable
z ∈ RL, where L≪ D, from which the observed data are generated. The VAE models the
distribution by integrating over the joint distribution of the latent and observed variables,
resulting in pθ(x) =

∫
pθ(x|z)p(z)dz.

In this work, the observed data vector x ∈ X = RD
+ denotes the power spectrum of a

short frame of speech signal (i.e., a column of STFT power spectrogram). Its entries are
thus non-negative and its dimension D equals the number of frequency bins. We use the
Itakura-Saito VAE (IS-VAE) (Bando et al., 2018; Girin et al., 2019b; Leglaive et al., 2018)
defined by

p(z) = N (z; 0, I), (3.1)

pθ(x|z) =
D∏

d=1
Exp

(
[x]d; [vθ(z)]−1

d

)
, (3.2)

where N and Exp denote the densities of the multivariate Gaussian and univariate
exponential distributions, respectively, and [v]d denotes the d-th entry of v. The inverse scale
parameters of pθ(x|z) are provided by a neural network called the decoder, parametrized
by θ and taking z as input.

The marginal likelihood pθ(x) and the posterior distribution pθ(z|x) are intractable
due to the nonlinearities of the decoder, so it is necessary to introduce an inference model
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qϕ(z|x) ≈ pθ(z|x), which is defined by

qϕ(z|x) = N (z; µϕ(x), diag{vϕ(x)}) , (3.3)

where the mean and variance parameters are provided by a neural network called the
encoder network, parametrized by ϕ and taking x as input. Then, the VAE training
consists in maximizing a lower-bound of ln pθ(x), called the evidence lower-bound (ELBO)
and defined by

L(θ, ϕ) = Ep̂(x)

[
Eqϕ(z|x)

[
pθ(x|z)

]
−DKL

(
qϕ(z|x) ∥ p(z)

)]
, (3.4)

During training, the generative and inference model parameters θ and ϕ are jointly
estimated by maximizing the ELBO, using (variants of) stochastic gradient descent with
the so-called reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014).

3.3.2 Learning source-filter latent subspaces

In addition to the pre-trained IS-VAE speech spectrogram model introduced in the
previous subsection, we also assume the availability of an artificial speech synthesizer
allowing for an accurate and independent control of f0 and the formant frequencies. We
use Soundgen (Anikin, 2019), a parametric synthesizer based on the source-filter model of
speech production. For a given speech sound, the voiced component of the source signal is
generated by a sum of sine waves, the noise component by a filtered white noise, and both
components are then summed and passed through a linear filter simulating the effect of
the human vocal tract. Importantly, this synthesizer allows us to easily generate artificial
speech data labeled with f0 and formant frequency values.

Formally, let fi denote the speech factor of variation (in Hz) corresponding to the
fundamental frequency, for i = 0, and to the formant frequencies, for i ∈ {1, 2, 3}. Let Di

denote a dataset of artificially-generated speech vectors (more precisely short-term power
spectra) synthesized by varying only fi, all other factors {fj, j ̸= i} being arbitrarily fixed.
All examples in Di are labeled with the index and the value of the factor of variation. It
would be relatively difficult to build such a dataset from existing corpora of unlabeled
natural speech. In contrast, it is a very easy task using an artificial speech synthesizer
such as Soundgen (Anikin, 2019), which precisely takes f0 and the formant parameters as
input, and outputs waveforms from which we extract power spectra.
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Let p̂(i)(x) denote the empirical distribution associated with Di, defined similarly as
p̂(x). We also introduce the following marginal distribution over the latent vectors:

q̂
(i)
ϕ (z) =

∫
qϕ(z|x)p̂(i)(x)dx = 1

#Di

∑
xn∈Di

qϕ(z|xn). (3.5)

In the literature, this quantity is referred to as the aggregated posterior (Makhzani et al.,
2015), and its introduction can be found in Section 2.4.5 (page 51). However, qϕ(z|x) is
usually aggregated over the empirical distribution p̂(x) such that the aggregated posterior
is expected to match with the prior p(z) (R. T. Chen et al., 2018; Dai & Wipf, 2018). In
contrast, in 3.5 we aggregate over the “biased” data distribution p̂(i)(x), where we know
only one latent factor varies. This defines the explicit inductive bias (Locatello et al., 2019)
that we exploit to learn the latent source-filter representation of speech in the VAE.

In the following of the chapter, without loss of generality, we assume that, for each
data vector in Di, the associated latent vector z has been centered by subtracting the
mean vector

µϕ(Di) = E
q̂

(i)
ϕ

(z)[z] = 1
#Di

∑
xn∈Di

µϕ(xn). (3.6)

Because only one factor varies in Di, we expect latent vectors drawn from the “biased”
aggregated posterior in 3.5 to live on a low-dimensional manifold embedded in the original
latent space RL. We assume this manifold to be a subspace characterized by its semi-
orthogonal basis matrix Ui ∈ RL×Mi , 1 ≤ Mi < L. This matrix is computed by solving
the following optimization problem:

min
U∈RL×Mi

E
q̂

(i)
ϕ

(z)

[∥∥∥z−UU⊤z
∥∥∥2

2

]
, s.t. U⊤U = I. (3.7)

The space spanned by the columns of Ui is a subspace of the original latent space RL in
which the latent vectors associated with the variation of the factor fi in Di are expected
to live.

Using Equation 3.5, the fact that U⊤U = I, and the inference model (centred ver-
sion) qϕ(z|x) = N (z; µϕ(x)− µϕ(Di), diag{vϕ(x)), the cost function in the optimization
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problem 3.7 can be rewritten as follows:

E
q̂

(i)
ϕ

(z)

[∥∥∥z−UU⊤z
∥∥∥2

2

]
= 1

#Di

∑
xn∈Di

Eqϕ(z|xn)

[∥∥∥z−UU⊤z
∥∥∥2

2

]

= tr
(I−UU⊤) 1

#Di

∑
xn∈Di

Eqϕ(z|xn)[zz⊤]


= tr
{
(I−UU⊤)Sϕ(Di)

}
, (3.8)

where Sϕ(Di) is defined as follows:

Sϕ(Di) = 1
#Di

∑
xn∈Di

[
µϕ(xn)µϕ(xn)⊤ + diag{vϕ(xn)}

]
− µϕ(Di)µϕ(Di)⊤. (3.9)

From the equality 3.8, we see that the optimization problem 3.7 is equivalent to

max
U∈RL×Mi

tr
{
U⊤Sϕ(Di)U

}
, s.t. U⊤U = I. (3.10)

Very similarly to PCA (Pearson, 1901), the solution to the problem 3.7 is given by the Mi

dominant eigenvectors of Sϕ(Di) (i.e., associated to the Mi largest eigenvalues) (Bishop,
2006b, Section 12.1). The dimension Mi of the subspace can be chosen such as to retain a
certain percentage of the data variance in the latent space. Note that the only source of
supervision used here is the knowledge that only the factor fi varies in the dataset Di.

3.3.3 Disentanglement analysis of the latent representation

As defined by Higgins et al., 2018, a representation is disentangled if it is possible to
learn orthogonal latent subspaces associated with each factor of variation, whether they
are single- or multi-dimensional. The approach presented in the previous subsection exactly
follows this definition and offers a natural and straightforward way to objectively measure
if the unsupervised VAE managed to learn a disentangled representation of the factors
of variation under consideration. First, by simply looking at the eigenvalues associated
with the columns of Ui ∈ RL×Mi , we can measure the amount of variance that is retained
by the projection UiU⊤

i . If a small number of components Mi represents most of the
variance, it indicates that only a few intrinsic dimensions of the latent space are dedicated
to the factor of variation fi and varying this factor can be done by affine transformations.
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Second, if for two different factors of variation fi and fj , with i ≠ j, the columns of Ui are
orthogonal to those of Uj, this indicates that the two factors are encoded in orthogonal
subspaces and therefore disentangled. It should however be verified experimentally that
applying transformations by moving onto the subspace associated with fi generalizes to
values of {fj, j ̸= i} different than the ones used in Di.

3.3.4 Controlling the source-filter factors of variation

So far, for each factor fi, we have defined a methodology to learn a latent subspace
Ui ∈ RL×Mi that encodes its variations in the dataset Di, containing a few examples of
speech data generated by an artificial synthesizer. Making now use of the values of the
factor fi for the data in Di, we learn a regression model gηi

: R+ 7→ RMi from fi, whose
value is denoted by y ∈ R+, to the data coordinates in the latent subspace defined by Ui.
The parameters ηi are thus defined as the solution of the following optimization problem:

min
η

E
q̂

(i)
ϕ

(z,y)

[∥∥∥gη(y)−U⊤
i z

∥∥∥2

2

]
c= 1

#Di

∑
(xn,yn)∈Di

∥∥∥gη(yn)−U⊤
i

(
µϕ(xn)− µϕ(Di)

)∥∥∥2

2

,

(3.11)

where q̂
(i)
ϕ (z, y) =

∫
qϕ(z|x)p̂(i)(x, y)dx, p̂(i)(x, y) is the empirical distribution associated

with Di, considering now both the speech data vector x and the value y of fi, and c=
denotes equality up to an additive constant w.r.t. η. This approach can be seen as a
probabilistic extension of principal component regression (Hotelling, 1957; Kendall, 1957).
For simplicity and because it revealed efficient for this task, gηi

is chosen as a piece-wise
linear regression model learned independently for each output coordinate m ∈ {1, ..., Mi}.
This choice is supported by the fact that the semi-orthogonal matrix Ui decorrelates the
data (Bengio, Courville, & Vincent, 2013). Solving the optimization problem 3.11 then
consists in solving a linear system of equations. In this work, we used the Python library
of Jekel and Venter, 2019. It is important to remind that even if the regression model is
supervised, the labeled dataset Di is very small with only a few seconds of speech signals
(see experimental setup details in Appendix A.1), it is synthetic, and the values of fi

are automatically obtained during the generation of the data with an artificial speech
synthesizer, so no manual annotation effort is required.

We can now transform a speech spectrogram by analyzing it with the VAE encoder,
then linearly moving in the learned subspaces using the above regression model, and finally
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resynthesizing it with the VAE decoder. Given a source latent vector z and a target value
y for the factor fi, we apply the following affine transformation:

z̃ = z−UiU⊤
i z + Uigηi

(y). (3.12)

This transformation consists in (i) subtracting the projection of z onto the subspace
associated with the factor of variation fi; and (ii) adding the target component provided
by the regression model gηi

mapped from the learned subspace to the original latent space
by the matrix Ui. This operation allows us to move only in the latent subspace associated
with the factor fi. If this subspace is orthogonal to the latent subspaces associated with
the other factors {fj, j ̸= i}, the latter should remain the same between z and z̃, only fi

should be modified. This process can be straightforwardly generalized to multiple factors,
by subtracting and adding terms corresponding to each one of them. Contrary to W.-N.
Hsu et al., 2017a, the operation in 3.12 does not require the knowledge of the factor fi

value associated with the source vector z, it only requires the value y of the factor fi

corresponding to the target vector z̃ (this value y being used as input to the regression
model.)

Finally, as the prior p(z) and inference model qϕ(z|x) are Gaussian (see Equations 3.2
and 3.3), the transformation in 3.12 has the following probabilistic formulation (using
U⊤

i Ui = I):

p(z̃; fi = y) = N
(

z̃; Uigηi
(y), Mi

)
(3.13)

qϕ(z̃|x; fi = y) = N
(

z̃; Uigηi
(y) + Miµϕ(x), Midiag{vϕ(x)}

)
, (3.14)

where Mi = I−UiU⊤
i . The prior in 3.13 is now conditioned on the factor fi and can be

used to generate speech data given input trajectories of f0 and formant frequencies. As we
assumed centered latent data, the mean vector µϕ(Di) defined in Equation 3.6 must be
added to z̃ before mapping this vector through the generative model pθ(x|z).

3.3.5 Estimating the fundamental frequency using the learned
latent representation

To illustrate the interest of the learned representation on an analysis task, we propose
to estimate the f0 contour of a speech signal using its projection onto the corresponding
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latent subspace characterized by the estimated matrix U0 ∈ RL×M0 (cf. Section 3.3.2). As
we focus on the analysis of f0, in this subsection we assume that the latent vectors are
centered by subtracting the mean vector µϕ(D0) defined in Equation 3.6: z← z−µϕ(D0).
Let p = U⊤

0 z ∈ RM0 denote the projection of z onto the f0 latent subspace 1. Because
p results from a linear transformation of z and the approximate posterior distribution
qϕ(z|x) defined in Equation 3.3 is Gaussian, we have:

qϕ(p|x) = N
(
p; U⊤

0 µϕ(x), U⊤
0 diag{vϕ(x)}U0

)
. (3.15)

As will be confirmed experimentally in Section 3.4, the subspace generated by U0 encodes
the fundamental frequency information, and the formant frequencies are encoded in other
orthogonal subspaces. Therefore, the projection of z onto U0 is expected to provide
invariance to a change of the formant frequencies, which is an appealing feature for
estimating the fundamental frequency. The method we propose is simple but effective, as
will be shown experimentally. For an input speech power spectrum xtest assumed to be
voiced, the estimated fundamental frequency is given by the value y of f0 associated with
x⋆ ∈ D0 defined by

x⋆ = argminx∈D0 DKL
(
qϕ(p|xtest) ∥ qϕ(p|x)

)
. (3.16)

Using the KL divergence allows us to base the estimation of f0 on the full distribution of
the projection, i.e. taking not only the mean of the projection in Equation 3.15 into account
but also the covariance. The proposed method requires computing the KL divergence
between two multivariate Gaussians, which admits a closed-form expression. We can thus
simply compute the KL divergence in Equation 3.16 numerically for all the examples x in
the synthetic labeled dataset D0 and return the value y of f0 associated with the minimum.

The f0 estimation is done independently for each frame of the power spectrogram of
an input speech signal. The resulting “raw” estimated f0 trajectory is then smoothed
by applying a median filter with a window size of 5 frames. Above, we assumed xtest

was a voiced speech spectrum. The voiced/unvoiced detection can be made automat-
ically by setting a threshold on the minimum value of the above KL divergence, i.e.
DKL (qϕ(p|xtest) ∥ qϕ(p|x⋆)).

1. The term projection used to refer to p ∈ RM0 is a misuse of language. Strictly speaking, the
projection of z ∈ RL onto the subspace characterized by U0 ∈ RL×M0 is given by U0U⊤

0 z ∈ RL.
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Figure 3.3 – Examples of spectrograms modified and generated with the proposed method.
The color bar indicates the power in dB. Top left: f0 and formant transformations of
a vowel /a/ uttered by a female speaker. Top right: Spectrogram generated from input
trajectories of f0 and formant frequencies. The target values of the factors fi are indicated
by the black lines. Bottom left: Original spectrogram of a speech signal uttered by a female
speaker; Bottom middle: Transformed spectrogram with f0 (blue line) set constant over
time; Bottom right: Transformed spectrogram where the original voiced speech signal
(bottom left) is converted into a whispered speech signal (i.e., the pitch is removed).

3.4 Experiments

This section presents qualitative and quantitative experimental results obtained with
the proposed VAE-based method for controlling f0 and the formant frequencies of
speech signals. The VAE is trained on about 25 hours of multi-speaker speech data
from the Wall Street Journal (WSJ0) dataset (Garofalo et al., 1993). The data space
dimension is 513 and the latent space dimension is set to 16. This dimension was chosen
based on previous work showing it is optimal for the modeling of speech power spectra
in the context of speech enhancement (Leglaive et al., 2018, 2019a; Sekiguchi et al.,
2019). For a given factor of variation, the corresponding latent subspace is learned (see
Section 3.3.2) using short trajectories of speech power spectra (corresponding to a few
seconds of speech) generated with Soundgen (Anikin, 2019), all other factors being
arbitrarily fixed. When solving the optimization problem 3.7, the latent subspace
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dimension Mi of each factor of variation is chosen such that 80% of the data variance
is retained. This leads M0 = 4, M1 = 1 and M2 = M3 = 3. The regression models used
to control the speech factors of variation in the latent space (see Section 3.3.4) are
learned on the same trajectories, but using the values of the Soundgen input control
parameters (i.e., f0 and formant frequencies values). More details on the experimental
set-up can be found in A.1. Given a generated or transformed spectrogram, we use
Waveglow (Prenger et al., 2019) to reconstruct the time-domain signal.

3.4.1 Qualitative results

In Figure 3.3, we illustrate the ability of the proposed method to modify f0 and the
formant frequencies in an accurate and independent manner. The top-left spectrogram
contains five segments of equal length. The first segment corresponds to the original
spectrogram of the steady vowel /a/ uttered by a female speaker. In the following segments,
we vary successively each individual factor fi, for i = 0 to 3, as indicated by the black
lines in the figure. Variations of f0 modify the harmonic structure of the signal while
keeping the formant structure unaltered. Variations of fi, i ∈ {1, 2, 3}, modify the formant
frequencies, as indicated by the color map, while keeping f0 unaltered.

The top-right spectrogram in Figure 3.3 was generated by using the conditional prior in
3.13 (generalized to conditioning on multiple factors). We can see that the characteristics
of the generated speech spectrogram match well with the input trajectories represented by
the lines in the figure.

In the second row of Figure 3.3, from left to right we show the original spectrogram of
a speech signal uttered by a female speaker (left), the transformed spectrogram where f0

is set constant over time (middle), and the transformed spectrogram where the pitch has
been removed (i.e., the original voiced speech signal is converted into a whispered speech
signal) (right). This last spectrogram is obtained by subtracting to z its projection onto
the latent subspace corresponding to f0 (i.e., by considering only the two first terms in the
right-hand side of 3.12). This results in a spectrogram where the harmonic component is
neutralized, while preserving the original formant structure. This is remarkable considering
that the VAE was not trained on whispered speech signals, and it further confirms that
the proposed method dissociates the source and the filter contributions in the VAE latent
space.

Audio examples and additional examples of generated and transformed speech spec-
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trograms can be found online 2 or in Appendix A.3. In Subsection 3.4.2, we provide plots
of trajectories in the learned latent subspaces, illustrating that, according to each factor,
the proximity of two speech spectra is preserved in the corresponding latent subspace. A
graphical user interface to control audio speech has also been developed (see Appendix D.1).

3.4.2 Visualization of the learned latent subspaces

Table 3.1 – Cumulative variance (in %) retained by the projection UiU⊤
i , Ui ∈ RL×Mi , as

a function of the number of components Mi. We keep as much components as needed to
retain at least 80 % of the data variance, as indicated by the underlined numbers.

f0 f1 f2 f3
Mi = 1 component 33 81 39 48
Mi = 2 components 59 87 70 73
Mi = 3 components 78 90 88 83
Mi = 4 components 90 92 93 87

For i = 0, 1, 2 and 3, Figures 3.4(a), 3.4(b), 3.4(c) and 3.4(d) are respectively obtained
by projecting the latent mean vectors µϕ(x) ∈ RL, for all data vectors x ∈ Di, within the
latent subspace characterized by Ui ∈ RL×Mi (i.e., we perform dimensionality reduction).
In the reported experiments, the latent subspace dimension Mi for each factor of variation
was chosen such that 80% of the data variance was retained in the latent space. As indicated
in Table 3.1, this resulted in M0 = 4, M1 = 1 and M2 = M3 = 3. In this section, for
visualization purposes, we set Mi = 3 for all i ∈ {0, 1, 2, 3}. However, we can see that the
f1 trajectory (Figure 3.4(b)) is mainly concentrated along a single axis, as indicated by the
amount of variance retained by this axis 81% (see Table 3.1). Regarding f0 (Figure 3.4(a)),
setting M0 = 3 retained 78% of the variance of D0 in the latent space. A recent study
explored our method to investigate and give intuitions about the question (Jacquelin et al.,
2023): why the variation of such one-dimensional factor of variation is often explained by
multiple latent dimensions? For example, the authors showed that the first dimension of f0

correlates with gender, while the second dimension corresponds to variations in f0 specific
to males, and the third dimension corresponds to variations in f0 specific to females.

From Figure 3.4, we see that two data vectors x and x′ corresponding to two close
values of a given factor have projections of µϕ(x) and µϕ(x′) that are also close in the
learned latent subspaces. This can be seen from the color bars which indicate the values of

2. https://samsad35.github.io/site-sfvae/
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(a) f0 trajectory corresponding to D0. (b) f1 trajectory corresponding to D1.

(c) f2 trajectory corresponding to D2.
(d) f3 trajectory corresponding to D3.

(e) Three trajectories for f1, associ-
ated with different values of f2.

(f) Three trajectories for f2, associated
with different values of f1.

Figure 3.4 – Visualization of trajectories in the learned latent subspaces.
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the factors of variation. The learned representation thus preserves the notion of proximity
in terms of f0 and formant frequencies.

In Figure 3.4(e), we project three different datasets D1, defined for three different values
of f2. Similarly, in Figure 3.4(f) we show the trajectories associated with the projection of
three datasets D2, defined for three different values of f1. We notice that as expected, the
trajectories are very similar and mostly differ by a translation.

3.4.3 Quantitative results

Figure 3.5 – Correlation matrix of the learned latent subspaces basis vectors.

Orthogonality of the latent subspaces

In this experiment, we quantitatively evaluate the proposed method in terms of
disentanglement of the learned source-filter latent representation. Following the discussion
in Section 3.3.3, we compute the dot product between all pairs of unit vectors in the
matrices Ui ∈ RL×Mi , i ∈ {0, 1, 2, 3}. Figure 3.5 shows that the resulting correlation
matrix is mainly diagonal. Except for a correlation value of −0.21 across f1 and the
first component of f2, all other values are below 0.13 (in absolute value), confirming
the orthogonality of the learned subspaces and thus the disentanglement of the learned
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source-filter representation of speech. The methodology presented in Section 3.3.2 was
applied to try to identify orthogonal source-filter subspaces directly in the space of speech
power spectra and Mel-frequency cepstral coefficients (MFCCs). The results (see A.2) show
that an organization into orthogonal source-filter subspaces does not exist when working
on such raw signal representations. Indeed, there exist strong correlations between the
learned subspaces. This confirms that the disentanglement in terms of source-filter factors
is achieved during the unsupervised learning of the VAE model. We remind that in the
proposed method, the synthetic labeled data are only used to identify the disentangled
subspaces of the learned representation, after the VAE unsupervised training.

Pitch and formant transformations

In this experiment, we quantitatively evaluate the performance of the proposed method
regarding the modification of f0 and the formant frequencies in speech signals (see Sec-
tion 3.3.4).

Experimental set-up We use a corpus of 12 English vowels uttered by 50 male and 50
female speakers (Hillenbrand et al., 1995), which is labeled with the value of f0 and the
formant frequencies. We also use the TIMIT dataset (Garofolo et al., 1993), a corpus of
phonemically and lexically transcribed speech of American English speakers of different
sexes and dialects. We used the test corpus containing 1680 utterances. Because we
are interested in studying the interaction between modifications of f0 and the formant
frequencies, we only evaluate the method on the voiced phonemes (40 phonemes over a
total of 52), which are identified using the annotations. We transform each test signal
in the English vowels and TIMIT datasets by varying one single factor fi at a time, for
i ∈ {0, 1, 2, 3}, according to the ranges and step sizes given in Table 3.2. For instance,
when performing transformations of f0, for each test signal in the English vowels dataset,
we vary the target f0 value between 100 and 300 Hz linearly, with a step size of 1 Hz, thus
resulting in 200 transformations.

Metrics For the modification of each factor fi, we measure the performance regarding
three aspects: First, in terms of accuracy by comparing the target value for the factor
(see 3.12) and its estimation computed from the modified output speech signal. Second,
in terms of disentanglement, by comparing the values of fj for j ̸= i, before and after
modification of the factor fi. Third, in terms of speech naturalness of the transformed
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Factor Min Max Step size (in Hz) Relative

(in Hz) English vowels TIMIT variation (%)

f0 100 300 1 10 ±50
f1 300 900 10 50 ±50
f2 1100 2700 20 100 ±42
f3 2200 3200 20 50 ±18

Table 3.2 – Variation range (min and max values) and step size used for the transformation
of each test signal in the English vowels and TIMIT datasets, for each factor of variation
fi, i ∈ {0, 1, 2, 3}. The last column indicates by how much a factor varies relative to the
center value of its variation range. Its entries are computed as ± (max − min)/(max +
min)×100%.

signal.

Accuracy and disentanglement are measured in terms of relative magnitude error (in
percent, the lower the better). For a given factor fi, it is defined by δfi = 100%× |ŷ− y|/y

where y is the target value of fi and ŷ its estimation from the output transformed signal. Let
us take the example of a modification of f0: δf0 measures the accuracy of the transformation
on f0 while δf1, δf2 and δf3 are used to assess if the other factors of variation f1, f2 and
f3 remained unchanged after modifying f0. We use CREPE (J. W. Kim et al., 2018) to
estimate f0 and Parselmouth (Jadoul et al., 2018), which is based on PRAAT (Boersma
& Weenink, 2021a), to estimate the formant frequencies. Regarding speech naturalness,
we use the NISQA objective measure (Mittag & Möller, 2020). This metric (the higher
the better) was developed in the context of speech transformation algorithms and it was
shown to highly correlate with subjective mean opinion scores (MOS) (i.e., human ratings).
As a reference, the NISQA score on the original dataset of English vowels (i.e., without
any processing) is equal to 2.60 ± 0.53.

TIMIT is phonemically richer than the English vowels dataset, however, it is not
labeled with f0 and formant frequency values. Therefore, we do not have the ground truth
values which makes the evaluation in terms of disentanglement more difficult than with the
English vowels labeled dataset. Instead of the ground truth, we use the formant frequencies
and f0 values computed on the original speech utterances (i.e., before transformation).
This makes the evaluation on TIMIT less reliable than on the English vowels dataset, but
it allows us to test the methods on a larger variety of phonemes.
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English vowels dataset TIMIT dataset

Factor Method NISQA (↑) δf0 (%, ↓) δf1 (%, ↓) δf2 (%, ↓) δf3 (%, ↓) NISQA (↑) δf0 (%, ↓) δf1 (%, ↓) δf2 (%, ↓) δf3 (%, ↓)

f0 TD-PSOLA 2.32 ± 0.55 3.8 ± 2.5 6.3 ± 2.8 3.7 ± 0.9 2.1 ± 0.5 2.36 ± 0.50 2.4 ± 1.9 7.9 ± 0.6 4.5 ± 0.3 3.9 ± 0.2

WORLD 2.49 ± 0.60 4.5 ± 0.6 3.7 ± 1.8 2.3 ± 0.7 1.2 ± 0.2 2.45 ± 0.47 0.3 ± 0.1 7.1 ± 1.2 6.2 ± 0.4 4.2 ± 0.2

VAE baseline 1.94 ± 0.43 6.21 ±2.8 10.4 ± 2.4 6.2 ± 0.9 4.5 ± 0.2 1.59 ± 0.43 16.1 ±6.3 17.0 ± 3.0 12.1± 0.2 10.9 ± 1.3

Proposed 2.08 ± 0.48 0.8 ± 0.2 7.2 ± 1.3 3.6 ± 1.2 3.8 ± 0.3 2.28 ± 0.57 0.8 ± 0.6 9.1 ± 1.1 8.3 ± 0.9 6.0 ± 1.8

f1 VAE baseline 1.84 ± 0.5 11.3 ± 4.2 15.1 ± 3.5 6.0 ± 1.2 4.2 ± 0.4 1.42 ± 0.34 10.1 ± 2.8 16.4 ± 1.4 12.4 ± 0.9 11.2 ± 2.6

Proposed 1.85 ± 0.4 6.0 ± 1.6 8.4 ± 3.2 5.7 ± 0.4 4.4 ± 0.3 1.66 ± 0.31 7.1 ± 3.6 9.2 ± 0.8 9.0 ± 1.3 7.8 ± 1.1

f2 VAE baseline 2.01 ± 0.4 19.5 ± 3.2 10.7 ± 0.5 10.9 ± 1.9 5.8 ± 0.6 1.46 ± 0.30 19.3 ± 5.0 16.4 ± 0.8 20.3 ± 6.3 11.5 ± 0.5

Proposed 2.03 ± 0.43 8.5 ± 1.1 8.7 ± 1.1 6.2 ± 1.5 5.8 ± 0.2 1.49 ± 0.30 9.1 ± 2.2 8.3 ± 1.3 4.3 ± 1.3 8.1 ± 0.2

f3 VAE baseline 1.82 ± 0.14 27.0 ± 1.5 13.0 ± 1.3 12.0 ± 1.8 7.3 ± 1.5 1.40 ± 0.48 20.4 ± 1.0 17.4 ± 0.2 14.4 ± 0.2 11.7 ± 2.3

Proposed 1.94 ± 0.48 8.3 ± 1.0 8.6 ± 0.7 4.9 ± 0.9 2.0 ± 0.4 1.48 ± 0.42 8.5 ± 1.9 8.7 ± 0.9 5.7 ± 2.1 2.5 ± 1.8

Table 3.3 – Performance (mean and standard deviation) for the transformation of f0 and
the formant frequencies (f1, f2 and f3) on the English vowel and TIMIT datasets.

Methods We compare the proposed approach with several methods from the literature:
(i) TD-PSOLA (Moulines & Charpentier, 1990) performs f0 modification through the
decomposition of the signal into pitch-synchronized overlapping frames. (ii) WORLD
(Morise et al., 2016) is a vocoder also used for f0 modification. It decomposes the speech
signal into three components characterizing f0, the aperiodicity, and the spectral envelope.
(iii) The method proposed by W.-N. Hsu et al., 2017a (here referred to as “VAE baseline”)
consists in applying translations directly in the latent space of the VAE. Unlike the proposed
approach, this method requires predefined latent attribute representations µsrc and µtrgt

associated with the source and target values of the factor to be modified, respectively.
In particular, computing µsrc requires analyzing the input speech signal, for instance, to
estimate f0, which is not the case for the proposed method. The source and target latent
attribute representations are then used to perform the translation z̃ = z − µsrc + µtrgt,
where z and z̃ are respectively the original and modified latent vectors. To ensure a fair
comparison, we build dictionaries of predefined latent attribute representations using
the same artificially-generated speech data used in the proposed method’s training stage.
All the methods we compare with require a pre-processing of the input speech signal to
compute the input trajectory of the factor to be modified, which is not the case of the
proposed method.

Discussion Experimental results (mean and standard deviation) are shown in Table 3.3.
Compared to the VAE baseline, the proposed method obtains better performance in terms
of accuracy, disentanglement, and naturalness, for both test datasets. These results confirm
the effectiveness of performing the transformations in the learned latent subspaces and not
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directly in the latent space, as well as the advantage of using regression models instead of
predefined latent attribute representations. To analyze the disentanglement results, when
performing the transformation for a given factor fi, one must compare the movement of
other factors {fj, j ≠ i} relative to their fixed targets (as given by the metrics {δfj, j ̸= i})
to the movement of the factor fi that is varied relative to the center value of its variation
range (as given in the last column of Table 3.2). For instance, when f0 is varied in the
experiments on the English vowels dataset, Table 3.3 shows that the proposed method
makes the other factors move from their fixed targets by 7.2%, 3.6%, and 3.8% for f1,
f2, and f3 respectively. These values are much smaller than the relative variation of the
factor f0 itself, as indicated in the last column of Table 3.2 is equal to 50%. We can
thus conclude that modifying f0 has little effect on the other factors. Similar conclusions
can be drawn by analyzing the disentanglement results for the variation of other factors,
confirming the disentanglement of the learned representation. Regarding f0 transformation,
WORLD obtains the best performance in terms of disentanglement, which is because
the source and filter contributions are decoupled in the architecture of the vocoder. In
terms of naturalness, WORLD and then TD-PSOLA obtain the best performance. This
may be explained by the fact that these methods operate directly in the time domain,
therefore they do not suffer from phase reconstruction artifacts, unlike the proposed and
VAE baseline methods. Naturalness is indeed greatly affected by phase reconstruction
artifacts, even from an unaltered speech spectrogram (i.e., without transformation). Phase
reconstruction in a multi-speaker setting is still an open problem in speech processing.
We want to emphasize that the objective of this study is not to compete with traditional
signal processing methods such as TD-PSOLA and WORLD. It is rather to advance on the
understanding of deep generative modeling of speech signals and to compare honestly with
highly-specialized traditional systems. TD-PSOLA and WORLD exploit signal models
specifically designed for the task at hand, which for instance prevents them to be used for
modifying formant frequencies. In contrast, the proposed method is fully based on learning
and the same methodology applies to modifying f0 or the formant frequencies.

Robustness with respect to the VAE training dataset

In this Section, we investigate the robustness of the proposed method with respect to
different datasets used to train the VAE model. We considered three training datasets in
addition to the WSJ0 dataset used in the previous experiments: (i) the SIWIS French
speech synthesis dataset (Honnet et al., 2017), which contains more than ten hours of
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Dataset NISQA (↑) δf0 (%, ↓) δf1 (%, ↓) δf2 (%, ↓) δf3 (%, ↓)

WSJ 2.08 ± 0.48 0.8 ± 0.2 7.2 ± 1.3 3.6 ± 1.2 3.8 ± 0.3

SIWIS 1.93 ± 0.43 1.2 ± 0.5 10.0 ± 4.2 8.3 ± 1.1 14.0 ± 0.2

TESS 1.98 ± 0.50 2.7 ± 2.3 9.3 ± 3.5 9.0 ± 0.8 7.0 ± 0.2

LJspeech 1.96 ± 0.40 1.2 ± 0.6 9.3 ± 1.2 5.6 ± 0.6 4.6 ± 0.1

Table 3.4 – Performance (mean and standard deviation) of f0 transformation with the
proposed method, on the English vowels test dataset, using different training datasets for
the unsupervised VAE model.

French speech recordings; (ii) the Toronto emotional speech (TESS) dataset (Dupuis
& Pichora-Fuller, 2010), which contains 2,800 utterances spoken by two actresses using
different emotions (anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral);
and (iii) the LJspeech dataset (Ito & Johnson, 2017), which contains 13,100 short audio
clips of a single speaker reading passages from 7 non-fiction books. The artificially-generated
speech dataset used for learning the latent subspaces and the regression models remain
the same.

Table 3.4 presents the results for the modification of f0 only, applied to the English
vowels dataset. It can be seen in Table 3.4 that the performance remains quite stable with
different VAE training datasets. WSJ0 is the largest dataset and therefore leads to the best
performance. Interestingly, the results obtained with the SIWIS dataset of French speech
signals remain satisfactory, even if there is a mismatch between the training (French) and
testing (English) datasets.

(a) λ = 20% (b) λ = 10% (c) λ = 1%

Figure 3.6 – Results of the f0 tracking experiment: Pitch error (PE, in %) as a function
of the SNR (in dB), for different values of the threshold λ (in %). “Proposed(p)" and
“Proposed(z)" denote the proposed approach for f0 estimation using the projection of z into
the learned subspace of the pitch and using z directly without the projection, respectively.
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Robust f0 estimation

Experimental set-up For the experiments on fundamental frequency estimation, we
used the Pitch Tracking Database from Graz University of Technology (PTDB-TUG)
(Pirker et al., 2011). This dataset provides microphone and laryngograph signals from 20
native English speakers. The ground truth f0 is extracted from the laryngograph signals.
To evaluate the robustness of the f0 estimation methods, we corrupted each clean speech
test signal by adding real-world cafeteria noise extracted from the DEMAND dataset
(Thiemann et al., 2013), where the signal-to-noise ratio (SNR) is varied from −10 to 40 dB.
In this experiment, for both the proposed and reference methods, we only considered the
problem of estimating f0 given the ground-truth voicing labels, i.e., we did not consider
the problem of detecting which frames are voiced.

Metric Following Rabiner et al., 1976, the performance is measured in terms of pitch
error (PE) defined as the proportion of frames considered as voiced by both the estimation
algorithm and the ground truth for which the relative f0 error is higher than a certain
threshold λ in %:

PE = Nest

Nv

× 100%, (3.17)

where Nv is the number of voiced frames and Nest is the number of the frames for which
|ŷ − y|/y ≥ λ with ŷ and y the estimated and ground-truth f0 values, respectively. The
parameter λ can be interpreted as the tolerance for which the f0 prediction is considered
as correct.

Methods We compared the proposed approach described in Section 3.3.5 with several
state-of-the-art methods from the literature: (i) pYin (Mauch & Dixon, 2014) improvement
of the Yin-based autocorrelation algorithm in the time domain using probabilistic threshold
distribution. We used the one implemented in the Librosa package (McFee et al., 2015);
(ii) SWIPE (Camacho & Harris, 2008) is a method for pitch detection based on the
autocorrelation of the speech signal in the frequency domain. We used the one implemented
in the pysptk toolkit (Yamamoto et al., 2019); (iii) CREPE (J. W. Kim et al., 2018)
is a supervised method based on CNN already used in Section 3.4.3. We used the one
implemented in the torchcrepe github of Morrison, 2020. To confirm the interest of
estimating the f0 in the corresponding latent subspace and not directly in the VAE latent
space, we also apply the proposed method described in 3.3.5 by directly working with
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qϕ(z|x) instead of qϕ(p|x) to compute the KL divergence in (3.16). This aims to show that
projecting the speech signal in the latent subspace encoding f0 indeed helps discarding
information that is not related to this factor and thus improves the estimation accuracy.

Discussion The results are shown in Figure 3.6. Figures 3.6(a), 3.6(b), and 3.6(c) display
the PE metric (%) as a function of the SNR for λ equal to 20%, 10%, and 1%, respectively.
The proposed pitch estimation method based on the projection of the latent variable z
on the f0 subspace outperforms the same approach using the latent variable z directly.
This result confirms the fact that the f0 subspace is less sensitive to formant variations
(invariance property), and projecting z into this subspace globally preserves well the pitch
information, which makes the detection more robust to variations that are independent of
f0. For large λ values (i.e., high precision tolerance), the proposed method gives results
that are competitive with the state-of-the-art methods for moderate noise levels (high
SNRs) and that outperform SWIPE for a high level of noise (low SNRs). For small λ values
(i.e., low precision tolerance), the proposed approach shows the best trade-off between
robustness to noise and precision. Indeed, the proposed method is about 2% PE below
CREPE, consistently over the whole SNR range. It also outperforms SWIPE and pYin
below 14dB SNR.

3.5 Conclusion of the chapter

The source-filter model of speech production is a fundamental concept in speech
processing. In this work, using only a few seconds of artificially generated labeled
speech data, we showed that the fundamental frequency and formant frequencies are
encoded in orthogonal latent subspaces of an unsupervised VAE. We proposed to
exploit this disentangled source-filter latent representation for the transformation and
analysis of speech spectrograms. Using a regression model trained on the artificially-
generated labeled speech data, we proposed a method to control f0 and the formant
frequencies in speech spectrograms by applying affine transformations in the learned
latent subspaces. We also proposed to exploit the projection of the speech signal in the
latent subspace associated with f0 to robustly estimate the latter from speech signals
corrupted by noise. Even if the identification of the latent source-filter subspaces, the
learning of the regression models, and the f0 estimation method were designed using a
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very limited set of artificially-generated signals, we showed experimentally that the
speech transformations and analysis are effective on natural signals. To the best of
our knowledge, this is the first approach that, with a single methodology, is able to
extract, identify and control the source and filter low-level speech attributes within a
VAE latent space. This is an important step towards a better understanding of deep
latent-variable generative modeling of speech signals.
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In the previous chapter, we explored the learning and control of factors of
variation in audio speech, focusing on aspects such as pitch and formants.
While these factors are essential, they primarily address low-level character-
istics and do not fully capture the sequential nature of the data. To address
this limitation, we introduce a novel approach that considers both the data’s
multimodality and dynamical aspects. We seek to learn a multimodal dynamical
VAE (MDVAE) that disentangles the audiovisual speech latent factors. We
aim to learn a hierarchical latent space that separates static from dynamical
information and modality-common from modality-specific information in unsu-
pervised learning. In addition, we propose a two-stage training method that
enhances reconstruction and generation quality, as well as improves training
efficiency. The proposed approach is validated through extensive experiments
to demonstrate the effectiveness of the proposed model: involving resynthesis,
transformation-synthesis, image denoising, and emotion recognition.

Summary

4.1 Introduction

The world around us is represented by a multitude of different modalities (Lazarus,
1976). A single event can be observed from different perspectives, and combining these
different views can provide a complete understanding of what is happening. For instance,
speech in human interactions is a multimodal process where the audio and visual modal-
ities carry complementary verbal, as well as non-verbal, information. By capturing the
correlations between different modalities, we can reduce uncertainty and better understand
a phenomenon (Bengio, Courville, & Vincent, 2013). Combining complementary sources
of information from heterogeneous modalities is a challenging task, for which machine
and deep learning techniques have shown their efficiency. In particular, the flexibility and
versatility of deep neural networks allow them to efficiently learn from heterogeneous data
to solve a given task (Baltrušaitis et al., 2018; Ramachandram & Taylor, 2017).

The rapid development of artificial intelligence technology and hardware acceleration
has led to a shift towards multimodal processing (Ramachandram & Taylor, 2017), which
aims to enhance machine perception by integrating various data types. With the explosion of
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digital content and communication, audiovisual speech processing has become increasingly
important for a range of applications, such as speech recognition (Afouras et al., 2018;
Hori et al., 2019; Petridis et al., 2018), speaker identification (Roth et al., 2020; Vallet
et al., 2012), speech enhancement in noise (Sadeghi et al., 2020), and emotion recognition
(Augusma et al., 2023; F. Noroozi et al., 2017; Schoneveld et al., 2021; C.-H. Wu et al.,
2014). However, in tasks such as emotion recognition, the limited availability of labeled
data remains a significant challenge. As a result, researchers are investigating unsupervised
or weakly supervised methods to learn effective audiovisual speech representations. This is
extremely promising in problem settings involving a large amount of unlabeled data but
limited labeled data.

Deep generative models (Goodfellow et al., 2014; Kingma & Welling, 2014; Rezende
et al., 2014) have recently become very successful for unsupervised learning of latent
representations from high-dimensional and structured data such as images, audio, and
text. Learning meaningful representations is essential not only for synthesizing data but
also for data analysis and transformation. For a learned representation to be effective,
as discussed in Section 2.3, it should capture high-level characteristics invariant to small
and local changes in the input data and be as disentangled as possible for explainability.
Furthermore, hierarchical and disentangled generative models have demonstrated their
efficacy in solving downstream learning tasks (Bengio, Courville, & Vincent, 2013; Van
Steenkiste et al., 2019). Variants of generative models have recently led to considerable
progress in disentangled representation learning, particularly with the VAE (Kingma &
Welling, 2014; Rezende et al., 2014), for a comprehensive overview of the VAEs, please
consult Section 2.4. Early methods for disentanglement using VAEs focused on modifying
the evidence lower bound objective function (R. T. Chen et al., 2018; Higgins et al., 2017a;
H. Kim & Mnih, 2018). Since unsupervised disentanglement in a generative model is
impossible without incorporating inductive biases on both models and data (Locatello
et al., 2019), new approaches are oriented towards weakly-supervised (Locatello, Poole,
et al., 2020; Sadok, Leglaive, Girin, et al., 2023a) or semi-supervised learning (Klys et al.,
2018). Because of their flexibility in modeling complex data, VAEs have been extended to
various data types, including multimodal or sequential data.

While many extensions of the VAE have been proposed to handle either sequential
(refer to Section 2.4.6, Page 55) or multimodal data (refer to Section 2.4.7, Page 60), none
have been able to process both types of data simultaneously. This chapter presents a novel
approach for modeling multimodal and sequential data in a single framework, specifically
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applied to audiovisual speech data. We propose the first unsupervised generative model of
multimodal and sequential data, to learn a hierarchical latent space that separates static
from dynamical information and modality-common from modality-specific information.
The proposed model, called Multimodal Dynamical VAE (MDVAE), is trained on an
expressive audiovisual speech database and evaluated on three tasks: the transformation
of audiovisual speech data, audiovisual facial image denoising, and audiovisual speech
emotion recognition.

4.2 Multimodal dynamical VAE

This section presents the design and architecture of MDVAE. Initially, we motivate the
structure of the MDVAE latent space from the audiovisual speech generative modeling
perspective. Subsequently, we formalize the MDVAE generative and inference models.
Finally, we introduce a two-stage training approach for unsupervised learning of the
MDVAE model.

Table 4.1 – Summary of the notations.

Variable notation Definition

T, t Sequence length and time/frame index
x(a) ∈ Rda×T Observed audio data sequence
x(v) ∈ Rdv×T Observed visual data sequence
w ∈ Rw Latent static audiovisual vector
z(av) ∈ Rlav×T Latent dynamical audiovisual vectors
z(a) ∈ Rla×T Latent dynamical audio vectors
z(v) ∈ Rlv×T Latent dynamical visual vectors
z = {z(a), z(v), z(av), w} Set of all latent variables
x = {x(a), x(v)} Set of all observations

4.2.1 Motivation and notations

We aim to model emotional audiovisual speech at the utterance level, where a
single speaker speaks and expresses a single emotion. Let {x(a), x(v)} denote the
observed audiovisual speech data, where x(a) ∈ Rda×T is a sequence of audio features
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of dimension da, x(v) ∈ Rdv×T is a sequence of observed visual features of dimension
dv, and T is the sequence length. For the audio speech, features are extracted from the
power spectrogram of the signal, and for the visual speech, features are extracted from
the pre-processed face images. The feature extraction process will be further discussed
below.

To motivate the structure of the generative model in MDVAE, let us reason about
the latent factors involved in generating an emotional audiovisual speech sequence.
First, the speaker’s identity and global emotional state correspond to static and
audiovisual latent factors. Indeed, these do not evolve with time at the utterance level,
and they are shared between the two modalities as defined from both vocal and visual
attributes (e.g., the average pitch and timbre of the voice and the visual appearance).
Second, we have dynamical latent factors that are shared between the two modalities,
so audiovisual factors that vary with time. This typically corresponds to the phonemic
information carried by the movements of the speech articulators that are visible in the
visual modality, namely the jaw and lips. Finally, we have dynamical latent factors that
are specific to each modality. Visual-only dynamical factors include, for instance, facial
movements that are not related to the mouth region and the head pose. Audio-only
dynamical factors include the pitch variations, induced by the vibration of the vocal
folds, and the phonemic information carried by the tongue movements, which is another
important speech articulator not visible in the visual modality.

This analysis of the latent factors involved in the generative process of emotional
audiovisual speech suggests structuring the latent space of the MDVAE model by
introducing the following latent variables: w ∈ Rw is a static latent variable assumed
to encode audiovisual information that does not evolve with time; z(av) ∈ Rlav×T is a
dynamical (i.e., sequential) latent variable assumed to encode audiovisual information
that evolves with time; z(a) ∈ Rla×T is a dynamical latent variable assumed to encode
audio-only information; z(v) ∈ Rlv×T is a dynamical latent variable assumed to encode
visual-only information. A time/frame index t ∈ {1, 2, ..., T} is added in the subscript
of dynamical variables to denote one particular frame within a sequence (i.e., x(a)

t ,
x(v)

t , z(a)
t , z(v)

t , z(av)
t ). The above notations are summarized in Table 4.1.

In summary, the MDVAE model is a generative model of audiovisual speech data
{x(a), x(v)} that involves four different latent variables {w, z(av), z(a), z(v)}. In the latent
space of MDVAE, we can dissociate the latent factors that are static (w) from those
that are dynamic (z(av), z(v), z(a)), and we can dissociate the latent factors that are
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Figure 4.1 – MDVAE generative probabilistic graphical model.

shared between the modalities (w, z(av)) from those that are specific to each modality
(z(a), z(v)). A study by Gao and Shinkareva, 2021 recently showed that the human brain
distinguishes between modality-common and modality-specific information for affective
processing in a multimodal context. In the MDVAE model, we also introduce temporal
modeling on top of this dichotomy regarding modality-common vs modality-specific
information. Our objective is to learn a multimodal and dynamical VAE that can
disentangle the above-mentioned latent factors in an unsupervised manner to analyze
and transform emotional audiovisual speech data. The next subsections detail the
generative and inference models of MDVAE and its two-stage training.

4.2.2 Generative model

The generative model of MDVAE is represented as a Bayesian network in Figure 4.1,
which also corresponds to the following factorization of the joint distribution of the observed
and latent variables:

pθ(x, z) = pθ

(
x(a)|w, z(av), z(a)

)
pθ

(
x(v)|w, z(av), z(v)

)
× p (w) pθ

(
z(av)

)
pθ

(
z(a)

)
pθ

(
z(v)

)
,

(4.1)

where x = {x(a), x(v)}, z = {z(a), z(v), z(av), w}, and

pθ

(
x(a)|w, z(av), z(a)

)
=

T∏
t=1

pθ

(
x(a)

t |w, z(av)
t , z(a)

t

)
; (4.2)
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pθ

(
x(v)|w, z(av), z(v)

)
=

T∏
t=1

pθ

(
x(v)

t |w, z(av)
t , z(v)

t

)
; (4.3)

p(z(av)) =
T∏

t=1
pθ

(
z(av)

t |z(av)
1:t−1

)
; (4.4)

p(z(a)) =
T∏

t=1
pθ

(
z(a)

t |z
(a)
1:t−1

)
; (4.5)

p(z(v)) =
T∏

t=1
pθ

(
z(v)

t |z
(v)
1:t−1

)
. (4.6)

Equation 4.2 (resp. 4.3) indicates that, at time index t, the observed audio (resp. visual)
speech vector x(a)

t (resp. x(v)
t ) is generated from the audiovisual static latent variable (w),

the audiovisual dynamical latent variable at time index t (z(av)
t ), and the audio-only (resp.

visual-only) dynamical latent variable at time index t (z(a)
t , resp. z(v)

t ). In particular, we
see that w is involved in generating the complete audiovisual speech sequence (x(a), x(v)).
All latent variables are assumed independent, and the autoregressive structure of the
priors for the dynamical variables in equations 4.4-4.6 is inspired by DSAE (Y. Li &
Mandt, 2018), which is discussed in Subsection 2.4.6 in page 55. Following standard DVAEs
(Girin et al., 2021b), each conditional distribution that appears in a product over the
time indices in equations 4.2-4.6 is modeled as a Gaussian with a diagonal covariance,
and its parameters are provided by deep neural networks (decoders) that take as input
the variables after the conditioning bars. For the distributions in equations 4.2-4.3, the
variance coefficients are fixed to one, while for the distributions in equations 4.4-4.6, the
variance coefficients are learned. Standard feed-forward fully-connected neural networks
can be used to parametrize conditional distributions over the observed audiovisual speech
variables. The autoregressive structure of the priors over the latent dynamical variables
requires the use of RNNs. Finally, the prior over the static latent variable w is a Gaussian
with zero mean and identity covariance matrix. More details about the decoder network
architectures can be found in B.1.
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Figure 4.2 – MDVAE inference probabilistic graphical model.

4.2.3 Inference model

As in the standard VAE, the exact posterior distribution of the latent variables in the
MDVAE model is intractable, we thus need to define an inference model qϕ (z|x) ≈ pθ (z|x).
However, it is not because the exact posterior distribution is intractable that we cannot look
at the structure of the exact posterior dependencies. Actually, using the Bayesian network
of the model, the chain rule of probabilities, and D-separation (Bishop & Nasrabadi,
2006; Geiger et al., 1990), it is possible to analyze how the observed and latent variables
depend on each other in the exact posterior, and define an inference model with the same
dependencies. An extensive discussion of D-separation in the context of DVAEs can be
found in Girin et al., 2021b. The Bayesian network corresponding to our MDVAE model
is represented in Figure 4.1. For this model, it is relevant to factorize the inference model
as follows:

qϕ (z|x) = qϕ

(
w|x(a), x(v)

)
qϕ

(
z(av)|x(a), x(v), w

)
× qϕ

(
z(a)|x(a), z(av), w

)
qϕ

(
z(v)|x(v), z(av), w

)
, (4.7)

where

qϕ

(
z(av)|x(a), x(v), w

)
=

T∏
t=1

qϕ

(
z(av)

t | z(av)
1:t−1, x(a)

t:T , x(v)
t:T , w

)
; (4.8)
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qϕ

(
z(a)|x(a), z(av), w

)
=

T∏
t=1

qϕ

(
z(a)

t | z
(a)
1:t−1, x(a)

t:T , z(av)
t , w

)
; (4.9)

qϕ

(
z(v)|x(v), z(av), w

)
=

T∏
t=1

qϕ

(
z(v)

t | z
(v)
1:t−1, x(v)

t:T , z(av)
t , w

)
. (4.10)

This factorization is consistent with the exact posterior dependencies between the latent
and observed variables, i.e., no approximation was made as we followed the principle of
D-separation. However, to lighten the inference model architecture, we choose to omit the
non-causal dependencies on the observations in 4.8, 4.9 and 4.10. In these equations, we
thus replace x(a)

t:T with x(a)
t and x(v)

t:T with x(v)
t , and the equalities become approximations. In

this inference model, qϕ

(
w|x(a), x(v)

)
and each conditional distribution that appears in a

product over the time indices in equations 4.8-4.10 is modeled as a Gaussian with a diagonal
covariance, and its parameters (mean vector and variance coefficients) are provided by
deep neural networks (encoders) that take as input the variables after the conditioning
bars. In practice, the MDVAE encoder can be decomposed into four sub-encoders, each
dedicated to the inference of a specific latent variable. Distinct conditioning variables
are concatenated at the input of these sub-encoders depending on the structure of the
corresponding inference model. For instance, when inferring w, we concatenate x(a) and
x(v) along the feature dimension. More details about the encoder network architectures
can be found in B.1.

The probabilistic graphical model of MDVAE during inference is represented in Fig-
ure 4.2, and it corresponds to the factorization in 4.7. It can be interpreted as follows: First,
we infer the static audiovisual latent variable w from the observed audiovisual speech
sequence, which corresponds to the computation of qϕ(w|x(a), x(v)). Next, we infer the
audiovisual dynamical latent variable z(av) from the previously inferred variable w and the
observed audiovisual speech, which corresponds to the computation of qϕ(z(av)|x(a), x(v), w).
Indeed, we need the static audiovisual information to infer the dynamical audiovisual
information from the audiovisual speech observations. Finally, we infer the audio-only
(resp. visual-only) dynamical latent variables z(a) (resp. z(v)) from the audio (resp. visual)
speech observations x(a) (resp. x(v)) and the previously-inferred audiovisual latent vari-
ables w and z(av), which corresponds to the computation of qϕ(z(a)|x(a), z(av), w) (resp.
qϕ(z(v)|x(v), z(av), w)). This is logical, as to infer the latent information that is specific to
one modality, we require the observations of that modality and also the latent information
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that is shared with the other modality, which is captured by w and z(av).

4.2.4 Training of MDVAE

The evidence lower bound of MDVAE

As in standard (D)VAEs (Girin et al., 2021a; Kingma & Welling, 2014; Rezende et
al., 2014), learning the MDVAE generative and inference model parameters consists in
maximizing the evidence lower-bound (ELBO):

L(θ, ϕ) = Eqϕ(z|x) [log pθ(x | z)]−DKL (qϕ(z | x) ∥ pθ(z)) . (4.11)

The first term in 4.11 is the reconstruction accuracy term, which aims to maximize the
conditional log-likelihood over a training dataset. The input and output data can take any
form, including raw images for the visual modality and speech power spectra for the audio
modality, or can be replaced by any representation from another pre-trained model. The
second term is the latent space regularization term, which encourages the latent variables
to conform to the prior distribution.

We present the derivation to obtain the ELBO for the MDVAE:

log pθ(x) = logEqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]

≥ Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]

L(θ, ϕ) = Eqϕ(z|x)

log pθ(x(a), x(v), z(av), z(a), z(v), w)
qϕ(z(av), z(a), z(v), w|x(a), x(v))︸ ︷︷ ︸

(F)

 (4.12)

The fraction above (F) can be simplified using the equations 4.1 and 4.7 as follows:

(F ) = pθ(x(a), x(v)|w, z(av), z(a), z(v)) · p(w)
qϕ (w|x) ·

pθ(z(av))
qϕ (z(av)|x, w)

× pθ(z(a))
qϕ (z(a)|x(a), z(av), w) ·

pθ(z(v))
qϕ (z(v)|x(v), z(av), w) (4.13)

We incorporate equation 4.13 into equation 4.12. The writing of the ELBO can be
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Figure 4.3 – The overall architecture of VQ-MDVAE. During the first step of the training
process, we learn a VQ-VAE independently on each modality, without any temporal
modeling. During the second step of the training process, we learn the MDVAE model on
the latent representation provided by the frozen VQ-VAE encoders, before quantization.

simplified as below:

L(θ, ϕ) = Eqϕ(z|x)
[
log pθ

(
x(a) | w, z(av), z(a)

)]
+ Eqϕ(z|x)

[
log pθ

(
x(v) | w, z(av), z(v)

)]
−DKL(qϕ(w|x(a), x(v)) ∥ p(w))
− Eqϕ(z|x)

[
DKL

(
qϕ

(
z(av)|x(a), x(v), w

)
∥ pθ

(
z(av)

))]
− Eqϕ(z|x)

[
DKL

(
qϕ

(
z(a)|x(a), w, z(av)

)
∥ pθ

(
z(a)

))]
− Eqϕ(z|x)

[
DKL

(
qϕ

(
z(v)|x(v), w, z(av)

)
∥ pθ

(
z(v)

))]
. (4.14)

This simplified ELBO 4.14 is excluded from any time dependency. In a direct way,
we could expand it further by introducing the temporal dependencies exposed in the
subsections 4.2.2 and 4.2.3.

Two stage training

Unlike GANs (Goodfellow et al., 2014), VAEs often produce poor reconstructions that
lack realism, which also affects the generation of new data. Improving the quality of VAE
reconstruction or generation is an active area of research. One issue with VAE is that using
an information bottleneck in combination with a pixel-wise reconstruction error can result
in blurry, unrealistic images. This problem also exists with the audio modality, where VAE-
generated sound is often unnatural, mainly when using a time-frequency representation.
To address this problem, several solutions have been proposed. One approach is to combine
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VAEs and GANs, where the discriminator replaces the standard reconstruction error and
provides improved realism (Larsen et al., 2016). Another solution is to build a hierarchical
VAE, with a more complex structure for the latent space (Vahdat & Kautz, 2020). Other
methods incorporate regularization techniques, such as using a perceptual loss for the image
modality, to ensure that VAE outputs have similar deep features to their corresponding
inputs (Hou et al., 2019; Pihlgren et al., 2020). In this work, we focus on using a VQ-VAE
model (Van den Oord et al., 2017), which is a deterministic autoencoder with a discrete
latent space. In the VQ-VAE, the continuous latent vector provided by the encoder is
quantized using a discrete codebook before being fed to the decoder network. The codebook
is jointly learned with the network architecture. The VQ-VAE model has been shown to
produce higher-quality generations than VAEs or GANs (Razavi et al., 2019). For more
information about VQ-VAE, please refer to Subsection 2.9 on Page 67. Therefore, as
illustrated in Figure 4.3, we propose a two-stage training approach to the MDVAE model
to improve its reconstruction and generation quality.

The first stage involves learning a VQ-VAE model independently on the visual and
audio modalities and without temporal modeling. The training procedure of the VQ-VAEs,
including the loss functions, is the same as originally proposed in (Van den Oord et al.,
2017), using an exponential moving average for the codebook updates. The VQ-VAE loss
function includes a reconstruction term, which corresponds to the pixel-wise mean squared
error for the visual modality and to the Itakura-Saito divergence (Févotte et al., 2009;
Girin et al., 2019a) for the audio modality. In the second stage, we learn the MDVAE
model on the continuous representations obtained from the pre-trained VQ-VAE encoders
before quantization, instead of working directly on the raw audiovisual speech data. The
disentanglement between static versus dynamic and modality-specific versus audiovisual
latent factors occurs during this second training stage. This is because the VQ-VAEs are
learned independently on each modality and without temporal modeling. To reconstruct
the data, the continuous representations from the MDVAE are quantized and decoded by
the pre-trained VQ-VAE decoders. This approach will be referred to as VQ-MDVAE in
the following.

The first stage of this two-stage approach can be seen as learning audiovisual speech
features in an unsupervised manner using a VQ-VAE. This feature extraction procedure
is pseudo-invertible, as we can go from the raw data to the features with the VQ-VAE
encoder and from the features to the raw data with the VQ-VAE decoder. This two-stage
learning approach not only improves the reconstruction/generation quality, but also speeds
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up the training as the MDVAE model is learned from a compressed representation of the
audiovisual speech data.

4.3 Experiments on audiovisual speech

This section presents three sets of experiments conducted with the VQ-MDVAE model
for audiovisual speech processing. First, we analyze qualitatively and quantitatively the
learned representations by manipulating audiovisual speech sequences in the MDVAE latent
space. Second, we explore the use of the VQ-MDVAE model for audiovisual facial image
denoising, showing that the model effectively exploits the audio modality to reconstruct
facial images where the mouth region is corrupted. Finally, we show that using the static
audiovisual latent representation learned by the VQ-MDVAE model leads to state-of-the-art
results for audiovisual speech emotion recognition.

4.3.1 Expressive audiovisual speech dataset

The VQ-MDVAE model is trained on the multi-view emotional audiovisual dataset
(MEAD) (K. Wang et al., 2020). It contains talking faces comprising 60 actors and
actresses speaking with eight different emotions at three levels of intensity. We keep
only the frontal view for the visual modality. 75%, 15%, and 10% of the dataset
are used respectively for the training, validation, and test, with different speakers in
each split. This corresponds to approximately 25h, 5h, and 3h of audiovisual speech,
respectively. For the visual modality, face images in the MEAD dataset are cropped,
resized to a 64x64 resolution, and aligned using Openface (Baltrušaitis et al., 2016).
For the audio modality, power spectrograms are computed using the short-time Fourier
transform (STFT). The STFT parameters are chosen such that the audio frame rate
is equal to the visual frame rate (30 fps), which leads to an STFT analysis window
length of 64 ms (1024 samples at 16 kHz) and a hop size of 52.08% of the window
length.

4.3.2 Training VQ-MDVAE
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The architecture of the MDVAE and VQ-VAE models are described in detail in B.1.
This section only provides an overview of the training pipeline.

The pre-processed facial images and the power spectrograms are used to train
the visual and audio VQ-VAEs, respectively. The two VQ-VAEs do not include any
temporal model, i.e., the audio and visual frames of an audiovisual speech sequence
are processed independently. The VQ-VAE for the visual modality takes as input
and outputs an RGB image of dimension 64× 64× 3. This image is mapped by the
encoder to a latent representation corresponding to a 2D grid of 8 × 8 codebook
vectors of dimension 32. The visual codebook contains a total number of 512 vectors.
The VQ-VAE for the audio modality takes as input and outputs a speech power
spectrum of dimension 513. This power spectrum is mapped by the encoder to a latent
representation corresponding to a 1D grid of 64 codebook vectors of dimension 8.
The audio codebook contains a total number of 128 vectors. The VQ-VAEs consist of
convolutional layers for both the visual and audio modalities. Since the quantization
operation is non-differentiable, the codebooks for each modality are learned using the
stop gradient trick (Van den Oord et al., 2017).

The audio and visual observed data x(a) ∈ Rda×T and x(v) ∈ Rdv×T that are used
to train the MDVAE model are taken from the flattened output of the pre-trained and
frozen VQ-VAE encoders before quantization, with da = 512 (64× 8) and dv = 2048
(8× 8× 32). The sequence length is fixed to T = 30 for training. The MDVAE model
is composed of dense and recurrent layers. The dimensions of the latent variables
in the VQ-MDVAE model are as follows: the static latent vector (w ∈ Rw) has a
dimension of w = 84, the audiovisual dynamical latent vectors (z(av) ∈ Rlav×T ) have
a dimension of lav = 16, and both the audio and visual dynamical latent vectors
(z(v) ∈ Rlv×T , z(a) ∈ Rla×T ) have a dimension of lv = la = 8. The models are trained
using the Adam optimizer (Kingma & Ba, 2015).

Remark. The MDVAE model was trained on other modalities to demonstrate its effective
generalization capabilities (different views of the visual modality, visual modality and
landmarks). Refer to the Appendix 3.4.2 for further details and insights.

4.3.3 Analysis-resynthesis

We first present the results of an analysis-resynthesis process on the audiovisual speech
data. The analysis step involves performing inference on audiovisual speech sequences
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Table 4.2 – Speech performance of the MDVAE model tested in the analysis-resynthesis
experiment. The STOI, PESQ, and MOSnet scores are averaged over the test subset of
the MEAD dataset.

Method STOI ↑ PESQ ↑ MOSnet ↑ SI-SDR ↑
VQ-VAE-audio 0.91 ±0.02 3.49 ±0.25 3.60 ±0.15 6.67 ±1.18

DSAE-audio 0.79 ±0.05 2.10 ±0.31 1.88 ±0.30 -1.20 ±1.58
MDVAE 0.82 ±0.03 2.90 ±0.23 2.35 ±0.18 2.21 ±1.30

VQ-DSAE-audio 0.84 ±0.03 2.12 ±0.24 3.05 ±0.20 6.12 ±1.10
VQ-MDVAE 0.85 ±0.04 2.43 ±0.28 3.54 ±0.20 6.85 ±1.15

Table 4.3 – Visual performance of the MDVAE model tested in the analysis-resynthesis
experiment. The MSE, PSNR, SCC and SSIM scores are averaged over the test subset of
the MEAD dataset.

Method MSE ↓ PSNR ↑ SCC ↑ SSIM ↑
VQ-VAE-visual 0.0016 ±0.0002 27.2 ±0.70 0.70 ±0.01 0.85 ±0.01

DSAE-visual 0.023 ±0.03 15.8 ±2.9 0.58 ±0.07 0.47 ±0.03
MDVAE 0.010 ±0.008 20.3 ±1.3 0.62 ±0.03 0.58 ±0.03

VQ-DSAE-visual 0.0018 ±0.0005 25.3 ±1.23 0.70 ±0.01 0.82 ±0.04
VQ-MDVAE 0.0017 ±0.0007 26.8 ±0.72 0.72 ±0.01 0.84 ±0.02

that were not seen during training to obtain the latent vectors, while the resynthesis step
involves generating the sequence from the obtained latent vectors without any modification,
with the goal of faithfully reconstructing the input sequence.

Methods For this experiment, we compare MDVAE and VQ-MDVAE to VQ-VAE (Van
den Oord et al., 2017) and DSAE (Y. Li & Mandt, 2018), which are unimodal generative
models. DSAE also includes a temporal model that separates sequential information from
static information. The VQ-VAE does not include any temporal model. The VQ-VAE
and DSAE are both trained separately on the audio and visual modalities. For a fair
comparison, we consider the original DSAE and its improved version VQ-DSAE obtained
by training the model in two stages like VQ-MDVAE (see Section 4.2.4). This experimental
comparison therefore corresponds to an ablation study: If we take VQ-MDVAE and remove
the multimodal modeling we obtain VQ-DSAE. If we further remove the temporal model
we obtain VQ-VAE. It will also allow us to assess the impact of the proposed two-stage
training process on both DSAE and MDVAE.
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Evaluation metrics The average quality performance for the speech and visual modalities
is evaluated using the MEAD test dataset. Four metrics are used to assess the quality of
the resynthesized audio speech data:

— The Short-Time Objective Intelligibility (STOI) measure is an intrusive metric (i.e.,
it requires the original reference speech signal) that assesses how intelligible the
resynthesized speech is (Taal et al., 2010);

— The Perceptual Evaluation of Speech Quality (PESQ) measure is an intrusive metric
that evaluates the perceived quality of the resynthesized speech (Rix et al., 2001).
It accounts for factors like distortion, noise, and other artifacts that can affect the
overall perceived quality;

— The Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) is an intrusive metric
defined as the power ratio between the original speech signal and the distortion
caused by the resynthesis process (Le Roux et al., 2019); it is made invariant to
signal amplitude rescaling.

— MOSnet is a learning-based non-intrusive metric that predicts human-rated quality
scores for speech (Lo et al., 2019).

Four metrics are also used to assess the quality of the resynthesized visual data:
— The Mean Square Error (MSE) computes the average squared difference between

the pixel values of the original and resynthesized visual data;
— The Peak Signal-to-Noise Ratio (PSNR) considers both the image fidelity and the

level of noise or distortion introduced during resynthesis;
— The Spatial Correlation Coefficient (SCC) evaluates how well the structures and

patterns in the images match using the correlation;
— The Structural Similarity Index Measure (SSIM) assesses the structural similarity

between the original and resynthesized images. It takes into account luminance,
contrast, and structure, providing a comprehensive measure of image quality (Z.
Wang et al., 2004).

Discussions Tables 4.2 and 4.3 respectively show the reconstruction quality of the audio
and visual modalities for this analysis-resynthesis experiment. The proposed VQ-MDVAE
method outperforms MDVAE alone, as evidenced by the improvement of 0.03, 0.47, 1.19,
and 4.64 for STOI, PESQ, MOSnet, and SI-SDR, respectively, for the audio modality.
Similarly, for the visual modality, VQ-MDVAE yields a gain of 6.5, 0.1, and 0.26 for
PSNR, SCC, and SSIM, respectively. These results validate the proposed two-step training
approach, demonstrating a significant improvement in reconstruction quality. This is
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confirmed when comparing the results of DSAE with those of VQ-DSAE. In addition, for
both modalities, MDVAE and VQ-MDVAE outperform DSAE and VQ-DSAE, respectively.
However, the proposed method (VQ-MDVAE) shows a decrease in reconstruction quality
compared to using the VQ-VAE alone, especially for the PESQ metric. This can be
attributed to the fact that the VQ-MDVAE, with its temporal dependencies, acts as
a temporal filter. Despite this, we can leverage these temporal dependencies and the
hierarchy provided by the MDVAE model for other applications, as discussed in the
following sections.

4.3.4 Analysis-transformation-synthesis

This section aims to analyze the latent representations learned by the MDVAE model.
We want to study what high-level characteristics of audiovisual speech are encoded in
the different latent variables of the model. The experiments involve exchanging latent
variables between a sequence named (A) and sequences named (B) through an analysis-
transformation-synthesis process. The analysis step involves performing inference separately
on two audiovisual speech sequences (A) and (B). Then, the values of certain latent variables
from (A) are replaced with the values of the same latent variable from (B). Finally, the
output sequence is reconstructed from the combined set of latent variables. The resulting
sequence is expected to be a mixed sequence whose features correspond to sequence (A)
for the unmodified latent variables and sequence (B) for the modified latent variables.

Figure 4.4 – Visual sequences generated using the analysis-transformation-synthesis exper-
iment. The top two sequences depict original image sequences of two distinct individuals,
while the bottom two sequences were generated by swapping the latent variable w between
the two original sequences.

119



Chapter 4 – A multimodal dynamical variational autoencoder for audiovisual speech
representation learning

Figure 4.5 – This figure demonstrates the qualitative significance of each latent space
for visual data using the analysis-transformation-synthesis experiment. The sequences
in the yellow box (left) were generated using z(av) from sequence (a) and z(v), w from
sequences (b) and (c). The sequences in the red box (right) were generated using z(v) from
the sequence (a), and z(av), w from sequences (b) and (c).

Figure 4.6 – The first row represents a sequence of face images for an individual whose
emotion is neutral. The rows below are generated with VQ-MDVAE, keeping all the
dynamical latent variables of the first sequence and replacing the static latent variable
with that of sequences from the same person but with different emotions (from top to
bottom: fear, sad, surprised, angry, and happy).

Qualitative results

Visual modality Figure 4.4 illustrates visual sequences generated using the analysis-
transformation-synthesis method, each accompanied by two curves representing the in-
tensity of two facial action units (AUs), namely jaw drop (AU26) and eyes closed (AU43),
plotted as a function of the frame index. AUs are the smallest components of facial
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expression, involving coordinated contractions of facial muscles that produce recognizable
and measurable changes in the face (Ekman & Friesen, 1978). These AUs were extracted
from the visual sequences using Py-Feat (Muhammod et al., 2019). The top two sequences
depict original visual sequences of different subjects exhibiting varying facial expressions.
Conversely, the bottom sequences display the results when the variable w values are
swapped between the two original sequences. We observe that the bottom-left sequence has
the same facial movements as the top-left sequence, but the speaker identity is that of the
top-right sequence. The curves of AU43 and AU26 for the bottom-left sequence are similar
to those of the top-left sequence. A noticeable blink of the eyes occurs between frames
26 and 28, which is depicted by a peak in the AU43 curve. Similarly, the bottom-right
sequence has the same facial movements as the top-right sequence, but the speaker identity
is that of the top-left sequence. This disentanglement of dynamic facial movements from
static speaker identity reveals that w encodes the visual identity of the speaker, among
other information.

Figure 4.5 illustrates what other latent variables encode using the analysis-transformation-
synthesis method. The figure shows three sequences of visual data, labeled as sequence
(a) in the green box and sequences (b) and (c) in the blue box. First, two sequences on
the left are reconstructed by combining z(av) of sequence (a) with w and z(v) of sequences
(b) and (c). The speaker identity of sequences (b) and (c) is preserved in the output
sequences, but the movement of the lips follows that of sequence (a). This shows that z(av)

encodes the lip movement. Second, two other sequences on the right are reconstructed
by combining z(v) of sequence (a) with w and z(av) of sequences (b) and (c). The speaker
identity and the movement of the lips of sequences (b) and (c) are preserved in the output
sequences, but the movement of the eyes and eyelids (e.g., the blink of the eyes, as seen in
the red rectangle) follows that of sequence (a). This indicates that z(v) encodes eye and
eyelid movements. It also appears that the head orientation in the bottom right output
sequence is different from that of the original sequence (c), which was not the case for the
bottom left output sequence. This indicates that z(v) also encodes the head pose. From
this example, we can also confirm that w encodes the speaker’s identity.

Figure 4.6 shows that w also encodes the global emotional state. Each line in the figure
is a reconstruction created by combining the dynamical latent variables of the sequence
labeled as neutral in terms of emotion (first row) with w of other sequences of the same
person labeled with different emotions (from top to bottom: fear, sad, surprised, angry, and
happy). The emotion changes between the different rows, but the visual dynamics remain
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the same as in the first row, indicating that the static audiovisual variable w encodes both
the identity and the global emotion in the input sequence.
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Figure 4.7 – Audio spectrograms generated from analysis-transformation-synthesis between
sequence (a) in green and sequence (b) in blue. The spectrograms (1), (2), (3), and (4)
are synthesized by swapping latent variables between sequence (a) and sequence (b). The
black dotted line corresponds to the pitch contour.

Audio modality As for the visual modality, Figure 4.7 illustrates audio sequences (speech
power spectrograms) generated using the analysis-transformation-synthesis method. In this
figure, sequence (a) (green box) represents the power spectrogram and the pitch contour
of a speech signal spoken by a male speaker, and sequence (b) (blue box) represents the
power spectrogram and the pitch contour of a speech signal spoken by a female speaker.
The pitch contour is extracted using CREPE (J. W. Kim et al., 2018). The generated
spectrogram (1) (top left) is derived from w of sequence (a), and the dynamical latent
variables z(av), z(a) of sequence (b). Comparing the resulting spectrogram with that of
sequence (b), we can deduce that they have the same phonemic structure, but the pitch has
been shifted downwards, as can be seen from the pitch contour and the spacing between
the harmonics. Similarly, the reconstructed spectrogram (2) (bottom left) is derived from
w of sequence (b), and the dynamical latent variables z(av), z(a) are from the sequence (a).
Here, we notice that the pitch shifts upwards while preserving the phonemic structure of
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sequence (a). Therefore, the static latent variable w encodes the average pitch value related
to the speaker’s identity. The generated spectrograms (3) (top right) and (4) (bottom right)
reveal that the dynamical latent variables z(a) and z(av) have distinct roles in capturing the
phonemic content. Specifically, z(a) predominantly captures the high frequency, while z(av)

encodes the low frequency, which also corresponds to the lower formants. This finding is
noteworthy as research has shown that the lower formants are highly correlated with the
lip configuration (Arnela et al., 2016). Moreover, it is particularly interesting that the two
correlated factors (lower formants and lip movements) are found in the same latent dy-
namical variable, z(av), especially since the MDVAE was trained in an unsupervised manner.

Additional qualitative results Additional qualitative results, such as audiovisual
animations, analysis-transformation-synthesis, interpolation on the static latent space, and
audiovisual speech generation conditioned on specific latent variables, can be found online 1

or in Appendix B.3 and B.4. To demonstrate the generalizability, we have trained the
proposed model on other modalities, as shown in Appendix B.5. A graphical user interface
analysis-transformation-synthesis process has also been developed (see Appendix D.2).

Quantitative Results

The aim of this section is to complement the above qualitative analysis with quantitative
metrics by measuring the ability of the VQ-MDVAE model to modify facial and vocal
attributes through manipulations of the different latent variables.
Experimental setup and metrics The evaluation protocol for this experiment involves
using a sequence (labeled as (A)) and 50 other sequences selected randomly from the test
dataset (labeled as (B)). The protocol is based on the analysis-transformation-synthesis
framework described in Section 4.3.4. It involves reconstructing sequences (B) using
one of the latent variables (among {w, z(av), z(a), z(v)}) taken from the sequence (A) and
comparing audio and visual attributes extracted from the output sequences to the same
attributes extracted from the original sequence (A). This comparison is done using the
mean absolute error (MAE) and the Pearson correlation coefficient (PCC). If the MAE
metric (resp. the PCC metric) is low (resp. high) for the swapping of a given latent variable,
it indicates that the attribute was transferred from the sequence (A) to sequences (B);
the swapped variable thus encodes the attribute. For the visual modality, the attributes
being considered include the action units (ranging from 0 (not activated) to 1 (very

1. https://samsad35.github.io/site-mdvae/
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Figure 4.8 – Relationship between the audio/visual attributes and the latent variables
of VQ-MDVAE. (left) Pearson correlation coefficient (PCC), (right) mean absolute error
(MAE).

activated)), the angle of the gaze, and the head pose. These factors are estimated using
Py-Feat (Muhammod et al., 2019) and Openface (Baltrušaitis et al., 2016). For the audio
modality, we consider the first two formant frequencies (in Hz) and the pitch (in Hz),
estimated using Praat (Boersma & Weenink, 2021b) and CREPE (J. W. Kim et al., 2018).
Note that all these attributes are time-varying. The PCC is computed after centering the
data (by subtracting the time average of the factor), which is not the case for the MAE.
Therefore, contrary to the MAE, the PCC will not be affected by a time-invariant shift of
the attribute.

Discussion Figure 4.8 presents the average results obtained by repeating the protocol 50
times, i.e., using 50 different sequences (A). From this figure, we draw four main conclusions.
First, the action units related to the lips and jaw (lip press AU24, lip parts AU25, jaw drop
AU26, and lip suction AU28) and the first two formant frequencies all show high PCC values
and low MAE values when performing transformations with the latent variable z(av). It
indicates that this audiovisual dynamical latent variable plays a significant role in globally
controlling these factors. This is very interesting, considering that the lips and jaw are two
important speech articulators whose movement induces variations of the shape of the vocal
tract and thus also variations of the formant frequencies (the resonance frequencies of the
vocal tract). The VQ-MDVAE model thus managed to encode highly-correlated visual and
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audio factors in the same audiovisual dynamical latent variable. Secondly, the pitch factor
shows a high PCC value when manipulating the dynamical audiovisual latent variable
z(av). However, it shows a low MAE value when manipulating the static audiovisual latent
variable w. This indicates that w encodes the average pitch value while z(av) captures
the temporal variation of the pitch around this center value (we remind that the PCC
is computed from centered data but not the MAE). The fluctuations in pitch around
the average value are encoded in the audiovisual latent variable z(av) rather than the
audio-specific one z(a). This finding is supported by a recent study (Berry et al., 2022) that
demonstrates a significant correlation between pitch and the lowering of the jaw. Then,
the action unit associated with the closing of the eyes (AU43), the angle of the gaze as well
as the pose of the head show a high PCC and low MAE when manipulating the visual
dynamical latent variable z(v). This suggests that z(v) plays a significant role in globally
controlling the movement of the eyelids, the gaze, and the head movements. These factors
are indeed much less correlated with the audio than the lip and jaw movements, which
explains why they are encoded in the visual dynamical latent variable z(v) and not in the
audiovisual dynamical latent variable z(av). Finally, action units such as the inner brow
raiser (AU01), outer brow raiser (AU02), upper lid raiser (AU05), cheek raiser (AU06), and
lid tightener (AU07) on one side, and nose wrinkler (AU09), nasolabial deepener (AU11),
lip corner puller (AU12), and dimpler (AU14) on the other side, show high PCC values
with respect to z(v) and z(av), respectively, but low MAE values with respect to w. We
argue that this result is related to the encoding of the speaker’s emotional state in the
latent space of the VQ-MDVAE model. Indeed, we have shown qualitatively that the
static audiovisual latent variable w encodes the global emotional state of a speaker, which
explains why it also encodes the average activation level (as indicated by the low MAE
values) of the above-mentioned action units that are important for emotions. In contrast,
the dynamical latent variables z(av) and z(v) capture the temporal variations around this
average value (as indicated by the high PCC values). As an illustration, we can think of
an audiovisual speech utterance spoken by a happy speaker. The global emotional state
(happy) would be encoded in w, leading to high constant average values of the cheek raiser
(AU06) and lip corner puller (AU12) action units, and these values would be modulated
temporally by the movement of the speech articulators, as encoded in z(av).

In Section 4.3.4, we showed qualitatively that the static audiovisual latent variable w
encodes the speaker’s identity and global emotion. This paragraph aims to quantify this
with two complementary approaches. The first approach operates in the reconstructed
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(a) Confusion matrix for emotion classification on
the VQ-MDVAE output images after perturbation
of the dynamical latent variables.

Emotion recognition

Person identity recognition

(b) Performance of emotion and person identity
recognition for each latent variable of the VQ-
MDVAE model.

Figure 4.9 – Analysis of the latent variables of the VQ-MDVAE model in terms of emotion
and person identity.

image space at the output of the VQ-MDVAE model, while the second approach operates
in the latent space of the model. To investigate the emotions in the VQ-MDVAE output
images, we randomly select an audiovisual sequence (A) from the test data that is labeled
with a specific emotion. We then perturb the dynamical latent variables of (A) by replacing
them with those of sequences (B) whose emotions are different from that of sequence (A),
while keeping the static audiovisual latent variable w of sequence (A) unchanged. We
evaluate the performance of an emotion classification model (ResMaskNet (Pham et al.,
2021)) on the VQ-MDVAE output images produced by this experiment and repeat the
process 120 times for each emotion. The results are summarized in a confusion matrix
shown in Figure 4.9(a). This matrix is mainly diagonal, indicating that as long as the static
audiovisual latent variable w is not changed, the overall emotion is not changed. This is
consistent with the discussion in the previous paragraph, where w was shown to control
the average value of certain action units. In the second approach, we use the latent variable
of the VQ-MDVAE model to recognize emotions and identities using a Support Vector
Machine (SVM) classifier. The training and test datasets for the SVM comprised 70% and
30% of the combined test and validation data from the MEAD dataset, respectively. The
dataset consisted of 11 speakers and included eight emotions. The performance accuracy for
both classification tasks is shown in Figure 4.9(b), for different latent variables used as input
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to the classifier. The results show that emotional and identity information are encoded
in the static audiovisual latent variable w, with 98% and 100% correct classification,
respectively. B.2 contains visualizations of the static latent space, while the aforementioned
companion website provides qualitative results of interpolations on w, demonstrating how
we can modify the emotion within an audiovisual speech sequence without altering the
identity, and vice versa.

4.3.5 Audiovisual facial image denoising

Experimental set-up This section focuses on denoising audiovisual facial videos. The
denoising approach consists of encoding and decoding corrupted visual speech sequences
with autoencoder-based models (see next paragraph) pre-trained on the clean MEAD
dataset. We intentionally introduced two types of perturbations, strategically located
around the eyes and mouth. Specifically, we chose to perturb the sequences using centered
isotropic Gaussian noise, and we studied the impact of different levels of noise variance.
Our analysis was performed on sequences consisting of ten images, where only the six
central images were corrupted.

Methods In this experiment, we compare the performance of VQ-MDVAE, which uses
both audio and visual modalities and includes a hierarchical temporal model, with three
other models: VQ-VAE (Van den Oord et al., 2017), a unimodal model only trained on
the visual modality and without temporal modeling; DSAE (Y. Li & Mandt, 2018), a
unimodal model only trained on the visual modality and with the same temporal hier-
archical model as the proposed VQ-MDVAE; and JointMVAE (Suzuki et al., 2016), a
multimodal model without temporal modeling. To ensure a fair comparison, we trained
the DSAE and JointMVAE models in two stages, similar to the VQ-MDVAE model. It is
important to mention that the VQ-VAE used in this experiment is identical to the one
used in VQ-MDVAE, VQ-DSAE, and VQ-JointMVAE.

Metrics To evaluate the denoising performance, we consider again the PSNR and SSIM
metrics. These are calculated on the corrupted region of the image, and provide a quantita-
tive measure of the quality and similarity of the denoised image compared to the original.
The higher the PSNR and SSIM values, the better the denoising performance.

Discussion Figures 4.10 and 4.11 present the qualitative and quantitative results for
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(a) Corruption of the eyes region.
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(b) Corruption of the mouth region.

Figure 4.10 – Qualitative comparison of the denoising results. From top to bottom:
perturbed sequences; sequences reconstructed with VQ-VAE; sequences reconstructed with
DSAE; and sequences reconstructed with VQ-MDVAE.
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(a) Corruption of the mouth region.

(b) Corruption of the eyes region.

Figure 4.11 – (For better visibility, please zoom in.) Quantitative results of audiovisual
facial image denoising. (a) PSNR (left) and SSIM (right) are plotted as a function of the
noise variance when the noise is applied to the mouth region. (b) PSNR (left) and SSIM
(right) are plotted as a function of the noise variance when the noise is applied to the eyes
region.

the denoising experiment, respectively. The mean and standard deviation of the metrics
computed over 200 test sequences for the mouth and eyes corruptions are shown in
Figures 4.11(a) and 4.11(b), respectively. Overall, the VQ-MDVAE, VQ-JointMVAE, and
VQ-DSAE models outperform the VQ-VAE for both types of perturbations. In the case of
mouth corruption, the VQ-MDVAE and VQ-JointMVAE models perform better than the
unimodal VQ-DSAE model, demonstrating the benefit of multimodal modeling. These
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models use the audio modality to denoise the mouth, resulting in a notable 7 dB increase
in PSNR at a variance of 10 for VQ-MDVAE compared to VQ-DSAE. As expected, the
audio modality is less useful for denoising the eyes, resulting in a smaller advantage for
multimodal models in this case. In fact, the PSNR improvement with VQ-MDVAE for the
corruption of the eyes is only 3 dB compared to the unimodal VQ-DSAE model. It can
also be seen that VQ-MDVAE consistently outperforms VQ-JointMVAE, which shows the
benefit of temporal modeling in multimodal models.

4.3.6 Audiovisual speech emotion recognition

This section presents emotion recognition experiments based on the static audiovisual
representation w learned by VQ-MDVAE in an unsupervised manner. We consider two
problems: estimating the emotion category and the emotional intensity level.

Experimental set-up We assess the effectiveness of the proposed model on two different
datasets: MEAD (K. Wang et al., 2020) and RAVDESS (Livingstone & Russo, 2018).
The MEAD dataset was presented in Section 4.3.1. The RAVDESS dataset contains 1440
audio files recorded by 24 professional actors, each labeled with one of eight different
emotions: neutral, calm, happy, sad, angry, fearful, disgusted, or surprised. We conduct
two types of evaluations to measure performance. The first evaluation involves recognizing
emotions and their intensity levels where individuals can be seen during the training
phase (person-dependent evaluation). For this evaluation, we randomly divide the dataset
into 70% training data and 30% testing data. The second evaluation involves recognizing
emotions and their intensity levels when individuals are not seen during the training
phase (person-independent evaluation). To perform this evaluation, we use a 5-fold cross-
validation approach to separate the speakers’ identities between the training and evaluation
sets. Through these evaluations, we are able to assess the ability of the models to detect
emotions and their intensity levels in both person-dependent and person-independent
scenarios using two different datasets.

Methods We compare the performance of VQ-MDVAE with three methods from the
literature. First, the VQ-DSAE-audio and VQ-DSAE-visual models, which correspond to
the VQ-DSAE model already discussed in the previous experiments, here trained either on
the audio modality or on the visual modality. We remind that VQ-DSAE is an improved
version of DSAE (Y. Li & Mandt, 2018) that uses the 2-stage training process proposed
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in the present study. VQ-MDVAE can be seen as a multimodal extension of VQ-DSAE
because both methods share the same hierarchical temporal model, including a static and
a dynamical latent variable. Comparing VQ-MDVAE with the two VQ-DSAE models will
thus allow us to fairly assess the benefit of a multimodal approach to emotion recognition.
Second, the wav2vec model (Schneider et al., 2019), which is a self-supervised unimodal
representation learning approach. Wav2vec is trained on the audio speech signals of the
Librispeech dataset (Panayotov et al., 2015), which includes 960 hours of unlabeled speech
data, with 2338 different speakers. Finally, we also include in this experiment two state-of-
the-art supervised multimodal approaches (Chumachenko et al., 2022; Tsai et al., 2019),
which are based on an audiovisual transformer architecture. The method of (Chumachenko
et al., 2022) will be referred to as “AV transformer”. It also relies on transfer learning
using EfficientFace (Z. Zhao et al., 2021), a model pre-trained on AffectNet (Mollahos-
seini et al., 2017), the largest dataset of in-the-wild facial images labeled in emotions.
The method of (Tsai et al., 2019) will be referred to as “MULT” for multimodal transformer.

AV transformer and MULT are fully supervised, trained, and evaluated on RAVDESS.
This contrasts with wav2vec, VQ-DSAE-audio, VQ-DSAE-visual, and VQ-MDVAE, which
are pre-trained in a self-supervised or unsupervised manner and then used as frozen feature
extractors to train a small classification model on top of the extracted representation of
(audiovisual) speech. For VQ-DSAE-audio, VQ-DSAE-visual, and VQ-MDVAE, only the
global latent variable (w) is fed to the classifier. For wav2vec, a temporal mean-pooling
layer is added before the classifier as in (Pepino et al., 2021). Depending on the feature
extraction method and evaluation configuration (person independent or dependent), we
consider different classification models: a simple multinomial logistic regression (MLR)
implemented with a single linear layer followed by a softmax activation function, or a
multilayer perceptron (referred to as MLP) with two hidden layers followed by a linear
layer and a softmax activation function. In the person-dependent setting, we explore a
third approach (referred to as DA + MLR) that involves transforming the test data using
an unsupervised domain adaptation method (DA) before classification with the MLR
model. Unsupervised domain adaptation is here used to compensate for the domain shift
due to the fact that speakers are different in the training and testing sets. This is further
discussed below.

Discussion We start by comparing VQ-MDVAE with its two unimodal counterparts,
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VQ-MDVAE

VQ-DSAE-visual

VQ-DSAE-audio

Figure 4.12 – Accuracy for emotion category classification as a function of the amount
of labeled data used to train the MLR classification model on the MEAD dataset in the
person-dependent evaluation setting.

VQ-DSAE-audio and VQ-DSAE-visual, for the emotion category classification task on the
MEAD dataset. In Figure 4.12, we show the classification accuracy as a function of the
amount of labeled training data used to train the MLR classification model. VQ-MDVAE
and the VQ-DSAE models are all pre-trained in an unsupervised manner on the MEAD
dataset. Using the exact same experimental protocol, we observe that when using 100% of
the labeled data the VQ-MDVAE model outperforms its two unimodal counterparts by
about 50% of accuracy, which clearly demonstrates the interest of a multimodal approach
to emotion recognition from latent representations learned with dynamical VAEs. Another
interesting observation is that we need less than 10% of the labeled data to reach 90% of
the maximal performance of the VQ-MDVAE model.

Table 5.1 compares the emotion category and intensity level classification performance
of the proposed VQ-MDVAE method and the previously mentioned methods from the
literature. We report the accuracy (in %), defined as the ratio of correctly predicted
instances to the total number of instances, and the F1-score (in %), defined as the harmonic
mean of the precision and recall. For the person-dependent evaluation (“PD” section of the
table), VQ-MDVAE demonstrates superior performance in recognizing emotion categories
(resp. emotion levels) on the MEAD dataset, outperforming VQ-DSAE-audio by 57.8%
(resp. 35.2%), VQ-DSAE-visual by 47.6% (resp. 40.6%), and wav2vec by 22% (resp. 28.5%)
of accuracy. On the RAVDESS dataset, it can be observed that VQ-MDVAE pre-trained
on MEAD and finetuned on RAVDESS (in an unsupervised manner) outperforms the
fully-supervised state-of-the-art method (Chumachenko et al., 2022) (AV transformer) by
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Table 4.4 – Accuracy (%) and F1-score (%) results of emotion category and intensity
level recognition in the person-dependent (PD) and person-independent (PI) evaluation
settings for the MEAD and RAVDESS datasets. The best scores are in bold and second
best scores are underlined. For the VQ-MDVAE model evaluated on RAVDESS, two scores
are reported. The first one corresponds to VQ-MDVAE trained on MEAD only, and the
second one to the same model fine-tuned (in an unsupervised manner) on RAVDESS.

Model Emotion category Emotion intensity level
MEAD RAVDESS MEAD RAVDESS

classification representation Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

PD
MLR

VQ-DSAE-audio (Y. Li & Mandt, 2018) 40.4 39.3 - - 48.7 45.7 - -
VQ-DSAE-visual (Y. Li & Mandt, 2018) 50.6 51.1 - - 43.3 44.2 - -

wav2vec (Schneider et al., 2019) 76.2 75.0 74.3 75.5 55.0 54.6 76.5 76.3
VQ-MDVAE (our) 98.2 98.3 81.9 / 89.4 82.9 / 89.6 83.9 83.1 78.0 / 80.1 77.2 / 79.8

AV transformer (Chumachenko et al., 2022) - - 89.2 88.6 - - - -

PI

MLR wav2vec (Schneider et al., 2019) 68.4 64.5 69.5 68.6 51.8 50.3 76.6 75.6
VQ-MDVAE (our) 73.2 72.5 68.8 / 71.4 68.5 / 70.5 63.8 61.7 73.8 / 77.2 75.7 / 77.6

MLP wav2vec (Schneider et al., 2019) 70.9 70.8 70.2 70.6 53.7 53.9 76.6 76.3
VQ-MDVAE (our) 80.0 80.5 77.5 / 78.7 78.0 / 78.1 71.5 72.2 77.4 / 77.4 77.6 / 77.7

DA + MLR wav2vec (Schneider et al., 2019) 71.0 69.9 71.6 71.2 53.5 52.9 76.8 76.5
VQ-MDVAE (our) 83.1 82.2 78.1 / 79.3 78.0 / 80.7 77.5 78.0 78.1 / 79.0 78.5 / 79.1

MULT (Tsai et al., 2019) - - 76.6 77.3 - - - -
AV transformer (Chumachenko et al., 2022) - - 79.2 78.2 - - - -

0.2% of accuracy and 1.0% of F1-score. Note that the AV transformer cannot be trained
simultaneously on MEAD and RAVDESS because the emotion labels in these two datasets
are different. On the contrary, the proposed VQ-MDVAE model can be pre-trained on any
emotional audiovisual speech dataset, precisely because it is unsupervised. The learned
representation can then be used to train a supervised classification model. This evaluation
confirms that the static audiovisual latent variable w learned by the proposed VQ-MDVAE
is an effective representation for audiovisual speech emotion recognition. Indeed, as shown
in Figure B.2 of B.2, emotion categories and levels form distinct clusters in the static
audiovisual latent space of the VQ-MDVAE model.

For the person-independent evaluation, we only compare VQ-MDVAE, wav2vec, MULT
and AV transformer, as the person-dependent evaluation showed that VQ-MDVAE out-
performs its two unimodal counterparts based on VQ-DSAE. Compared with the person-
dependent setting, we observe in the “PI” section of Table 5.1 a decrease in performance
for all methods using an MLR classification model. For VQ-MDVAE, this decline can be
analyzed through visual representations of the static audiovisual latent space, as shown
in Figure B.2 of B.2. This figure highlights the hierarchical structure of the static latent
audiovisual space in terms of identity, emotion, and intensity level. In this structure,
identities are represented by clusters, each of which is made up of several emotion clusters.
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These clusters represent eight distinct emotions distributed in a range of intensity levels
from weak to strong. As a result, each identity is associated with its own representation of
emotions, which means that the emotion clusters differ from one identity to another. By
incorporating the identity information as in the previous evaluation approach, we can more
accurately classify the emotion categories. Consequently, a simple linear model (MLR) is
sufficient for classifying both the emotions and their levels. To improve generalization to
test data where speakers were not seen during training, we propose two solutions. First,
we improve the classification model by replacing the linear MLR classifier by a non-linear
MLP classifier, which results in a substantial increase in accuracy for the VQ-MDVAE
model: +6.8% and +7.3% for emotion category classification on the MEAD and RAVDESS
datasets, respectively (using the finetuned model for RAVDESS). We observe a similar
trend with the wav2vec + MLP model, which leads to an improvement in performance
compared to using the MLR classifier. Second, we keep the MLR classification model
but apply unsupervised domain adaptation to the test data using an optimal transport
approach (Courty et al., 2017). Domain adaptation has been shown to be effective when
dealing with domain shifts caused by unknown transformations, such as changes in identity,
gender, age, ethnicity, or other factors (D. Kim & Song, 2022; Wei et al., 2018). To adapt
our model to a new domain, we use optimal transport to map the probability distribution
of the source domain (w of seen identities) to that of the target domain (w of unseen
identities). This is accomplished by minimizing the earth mover’s distance between the two
distributions (Courty et al., 2017). By finding an optimal transport plan, we can transfer
knowledge from the source domain to the target domain in an unsupervised manner (i.e.,
emotion labels are not used), resulting in a large improvement in accuracy for both the
wav2vec and VQ-MDVAE models compared to when no domain adaptation is performed:
+9.9% and +7.9% for emotion category classification on the MEAD and RAVDESS
datasets with the VQ-MDVAE model (using the finetuned model for RAVDESS), and
+2.6% and +2.1% with the wav2vec model. It can also be seen that the MLR linear
classification model with domain adaptation is more effective than the MLP non-linear
classification approach. Finally, for emotion category classification on RAVDESS, we see
that the proposed VQ-MDVAE (finetuned) with domain adaptation and MLR outperforms
the state-of-the-art fully-supervised AV transformer and MULT methods by 0.1% and
2.7% of accuracy. This is particularly interesting considering that most of the proposed
model parameters have been learned in an unsupervised manner. Indeed, only the MLR
classification model, which includes 680 (84× 8 + 8) trainable parameters, is learned using
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labeled emotional audiovisual speech data.

4.4 Conclusion of the chapter

Deep generative modeling is a powerful unsupervised learning paradigm that can be
applied to many different data types. In this chapter, we proposed the VQ-MDVAE
model to learn structured and interpretable representations of multimodal sequential
data. A key to learn a meaningful representation in the proposed approach is to
structure the latent space into different latent variables that disentangle static, dy-
namical, modality-specific and modality-common information. By defining appropriate
probabilistic dependencies between the observed data and the latent variables, we
could learn structured and interpretable representations in an unsupervised manner.
Trained on an expressive audiovisual speech dataset, the same VQ-MDVAE model
was used to address several tasks in audiovisual speech processing. This versatility
contrasts with task-specific supervised models. The experiments have shown that the
VQ-MDVAE model effectively combines the audio and visual information in static
(w) and dynamical (z(av)) audiovisual latent variables, while characteristics specific to
each individual modality are encoded in dynamical modality-specific latent variables
(z(a) and z(v)). Indeed, we have shown that lip and jaw movements can be synthesized
by transferring z(av) from one sequence to another, while preserving the speaker’s
identity, emotional state and visual-only facial movements. For denoising, we have
shown that the audio modality provides robustness with respect to the corruption
of the visual modality on the mouth region. Finally, we proposed to use the static
audiovisual latent variable w for emotion recognition. This approach was effective with
only a few labeled data and obtained much better accuracy than unimodal baselines.
Experimental results have also shown that the proposed unsupervised representation
learning approach outperforms state-of-the-art fully-supervised emotion recognition
methods based on an audiovisual transformer.

Unfortunately, the two modalities are not always available in audiovisual speech
processing. For instance, the audio modality might be missing due to highly intrusive
noise, and the visual modality might be missing due to low-lighting conditions. A robust
multimodal information retrieval system should be able to handle such a situation
where some modalities are temporarily missing. In the current configuration of the
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MDVAE model, the proposed approach relies on both modalities for inference of the
latent variables. Nevertheless, MDVAE could be extended to accommodate single-
modality inference using the “sub-sampled training” approach proposed in M. Wu
and Goodman, 2018, or maybe using the multimodal masking strategies proposed in
Bachmann et al., 2022. Moreover, inferring all latent variables from one single modality
would allow the model to be used for cross-modality generation, i.e., generating one
modality given another.
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The previous chapter presented a multimodal dynamical VAE applied to
unsupervised audiovisual speech representation learning. This chapter shifts
our focus towards another learning paradigm centered around self-supervision.
This chapter can be summarized in three points: Firstly, we introduce the
VQ-MAE-AV model, which stands for a vector quantized masked autoencoder
designed specifically for learning audiovisual speech representations. Secondly,
we present two distinct data fusion techniques based on attention mechanisms,
implemented in both the encoder and the decoder model. Lastly, we discuss the
application of our method in the domain of emotion recognition tasks, where
the proposed method outperforms state-of-the-art audiovisual speech emotion
recognition methods.

Summary

5.1 Introduction

In recent years, advances in artificial intelligence technology and hardware acceleration
have shifted towards multimodal processing in emotion recognition (Ramachandram &
Taylor, 2017; Schoneveld et al., 2021; Tsai et al., 2019). Supervised learning using large
annotated datasets can result in valuable representations. However, collecting a substantial
amount of emotionally labeled data can be expensive, time-consuming, and sometimes
impractical. Most datasets in emotion recognition tasks rely on actors to display various
emotions at specific intensities, which requires considerable acquisition time and resources
as discussed in Section 1.4, page 18. Unsupervised and self-supervised learning approaches
are natural ways to address these issues and have been explored in recent studies (Bengio
et al., 2006; L.-W. Chen & Rudnicky, 2021; Dib et al., 2023; Y. Wang et al., 2021). SSL
offers the advantage of high scalability, as the SSL task can be carried out on large amounts
of unlabeled speech data, reducing the need for labeled data (S. Liu et al., 2022; C. Zhang
et al., 2022). These methods involve pre-training models with pretext tasks and then
fine-tuning them on a smaller set of labeled data for the emotion recognition task (Gong,
Lai, et al., 2022; Jegorova et al., 2023; Pepino et al., 2021).

SSL models can be broadly categorized into discriminative and generative approaches
(C. Zhang et al., 2022). Discriminative SSL focuses on creating pairs or groups of data
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samples and formulating loss functions that enable the model to distinguish or group these
samples, which can later benefit downstream tasks (T. Chen et al., 2020; X. Chen et al.,
2020). Pretext tasks can consist of solving jigsaw puzzles (M. Noroozi & Favaro, 2016)
or predicting image rotations (Gidaris et al., 2018) for example. Contrastive learning has
emerged as the predominant paradigm in discriminative SSL (Akbari et al., 2021; Alayrac
et al., 2020). In contrast, generative SSL involves generating or reconstructing segments of
unlabeled and potentially corrupted data using an autoencoder model (Bao et al., 2021;
He et al., 2022; Z. Xie et al., 2022). The latent representation produced by the encoder
can subsequently be used for downstream tasks.

The present study focuses on the MAE, an SSL generative model that uses an asymmet-
ric encoder-decoder architecture with input masking (He et al., 2022). The MAE approach
is inspired by masked language modeling (Devlin et al., 2019) and has been successfully
applied to image modeling thanks to the development of Vision Transformers (Dosovitskiy
et al., 2020). A description of the MAE paradigm is introduced in Section 2.5 on page 68.
The MAE has recently been adapted for audio using a 2D time-frequency representation
(Baade et al., 2022; Gong, Lai, et al., 2022; Xu et al., 2022). It was recently shown that
combining the task of reconstructing masked tokens with contrastive learning can improve
the representation learned by an MAE (Gong, Lai, et al., 2022; Z. Huang et al., 2022).

A recent extension of the MAE was presented in (Feichtenhofer et al., 2022; Tong et al.,
2022) for modeling image sequences, called Video-MAE. It uses the same architecture as the
vanilla MAE (He et al., 2022) but incorporates a masking process from video ViT (ViViT)
(Arnab et al., 2021). Since videos often contain redundant information, particularly in
scenes with no motion, the authors propose a cubic masking approach along the temporal
axis, combined with a high masking ratio of 90%. Other works have extended the MAE to
handle multimodal data (Bachmann et al., 2022; Geng et al., 2022; Gong, Rouditchenko,
et al., 2022). MultiMAE (Bachmann et al., 2022) encodes a small random subset of visible
tokens from multiple modalities (RGB, depth, and semantic images) and is trained to
reconstruct the missing ones. M3AE (Geng et al., 2022) is a unified MAE architecture
for two input modalities (image and text). The main difference in architecture between
M3AE and MultiMAE lies in the architecture of the decoder. The MulitMAE approach
introduces individual decoders for each modality, enhancing their fusion by incorporating a
cross-attention layer at the outset of each decoder. On the other hand, the M3AE approach
uses a single decoder that takes the concatenated tokens from all modalities.

In the literature, MAEs are typically trained using the L1 or L2 losses, which can
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negatively affect the reconstruction quality of the masked tokens, resulting, for instance,
in blurred or noisy images or sounds. It has been shown that improving the quality of
MAE reconstructions can be beneficial in terms of downstream task performance (He
et al., 2022). Several approaches have been proposed in that sense, which include adding a
perceptual loss (Dong et al., 2021) or using discrete representations obtained from vector
quantized generative adversarial networks (VQ-GANs) (Esser et al., 2021) or variational
autoencoders (VQ-VAEs) (Van den Oord et al., 2017) to train the MAE (T. Li et al.,
2022; Sadok, Leglaive, & Séguier, 2023). These works only considered an unimodal setting,
while the present study proposes a multimodal MAE for audiovisual speech representation
learning.

We introduce the VQ-MAE-AV model, a vector quantized MAE for audiovisual speech
representation learning applied to audiovisual SER. The overall architecture of the model is
illustrated in Figure 5.1 and 5.2. To the best of our knowledge, this is the first multimodal
SSL approach based on MAEs that is proposed for audiovisual SER. Moreover, unlike
existing multimodal MAEs proposed in other application contexts, the VQ-MAE-AV model
operates on the discrete latent representation of the modalities and introduces global
tokens that are learned using contrastive learning to capture the overall sequence-wise
information from each modality. The VQ-MAE-AV model is pre-trained on the VoxCeleb2
dataset (Chung et al., 2018) and fine-tuned on three standard emotional audiovisual
speech datasets. The experimental results show that the proposed VQ-MAE-AV model
consistently outperforms the state-of-the-art audiovisual SER methods across the three
test datasets. Extensive ablation experiments are also presented to study the impact of
different model designs. The code and qualitative results are available online 1.

5.2 The VQ-MAE-AV model

This section presents the VQ-MAE-AV model. The overall approach is illustrated in
Figure 5.1 and 5.2 and it can be summarized as follows:

— Fully-convolutional VQ-VAEs are trained independently on the audio and visual
modalities (see Section 5.2.1);

— Discrete audio and visual tokens are built from the quantized representations
provided by the frozen VQ-VAE encoders (see Section 5.2.2);

1. https://anonymous-35.github.io/VQ-MAE-AV
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5.2. The VQ-MAE-AV model
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Figure 5.1 – Discrete audio and visual tokens creation: (i) fully-convolutional VQ-VAEs are
trained independently on the audio and visual modalities (see Section 5.2.1); (ii) discrete
audio and visual tokens are built from the quantized representations provided by the frozen
VQ-VAE encoders (see Section 5.2.2).
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Figure 5.2 – VQ-MAE-AV model structure. See the first paragraph of Section 5.2 for a
complete description of the pipeline.

— A proportion of the discrete audio and visual tokens is masked out, using a coupled
masking strategy between the two modalities (see Section 5.2.3);

— The visible audio and visual tokens are replaced with trainable continuous em-
bedding vectors (see Section 5.2.4), which are fed to the VQ-MAE-AV encoder
(see Sections 5.2.5 and 5.2.5, where we present two strategies based on attention
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mechanisms to fuse the modalities);
— Attention pooling is used to compute global sequence-wise tokens that are specific

to each modality (see Section 5.2.5);
— The token-wise representation obtained from the encoder is combined with mask

tokens and fed to the VQ-MAE-AV decoder, which tries to reconstruct the original
non-masked discrete audio and visual tokens (see Section 5.2.5);

— The VQ-MAE-AV model is trained in a self-supervised manner to minimize (i)
the cross-entropy loss between the reconstructed and original tokens and (ii) a
contrastive loss between the audio and visual global tokens (see Section 5.2.6);

— After self-supervised learning, the VQ-MAE-AV encoder and attention pooling
layers are fine-tuned for supervised audiovisual SER (see Section 5.2.7).

This section will present each above-listed aspect of the model in more detail.

5.2.1 Vector quantized variational autoencoder

The proposed multimodal self-supervised approach uses the discrete latent represen-
tation of two pre-trained and frozen VQ-VAEs (Van den Oord et al., 2017). For more
information about VQ-VAE, please consult Subsection 2.9 on Page 67. Specifically, as
illustrated in Figure 5.1, we use the VQ-VAE-audio and VQ-VAE-visual encoders to
obtain compressed and quantized representations of the input speech power spectrogram
x(a) ∈ RTa×D where Ta and D correspond to the time and frequency dimensions, and of the
input image sequence x(v) ∈ RTv×H×W ×C where Tv, H, W and C correspond to the time,
height, width, and channel dimensions. The audio and visual quantized representations
are denoted by x(a)

q ∈ ZTa×D′ and x(v)
q ∈ ZTv×H′×W ′ , respectively. Each entry of x(a)

q and
x(v)

q corresponds to the index of a vector in the VQ-VAE codebooks. Notably, x(a)
q retains

the time-frequency structure of the original spectrogram, while x(v)
q retains the spatio-

temporal structure of the original sequence images. This is because the VQ-VAE-audio and
VQ-VAE-visual models are designed to be fully convolutional on the frequency and spatial
axes, respectively, and they process the frames within a sequence independently. Therefore,
compression occurs along the frequency axis (D′ ≪ D) for x(a)

q and along the x and y-axes
of the image (H ′ ≪ H, W ′ ≪ W ) for x(v)

q . As shown in Figure 5.2 and discussed in the
following subsections, the proposed MAE-based self-supervised learning approach operates
on these discrete and compressed representations before audiovisual speech reconstruction
using the VQ-VAE decoders.

The training procedure of the VQ-VAEs follows the original approach presented in (Van
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den Oord et al., 2017). In particular, the VQ-VAE loss functions involve a reconstruction
term between the original and reconstructed data, which corresponds to the mean squared
error for the visual modality and to the Itakura-Saito divergence for the audio modality
(Févotte et al., 2009). More details are provided in Section 5.3.1.

5.2.2 Discrete audio and visual tokens

As shown in Figure 5.1, the audio and visual quantized representations x(a)
q ∈

ZTa×D′ and x(v)
q ∈ ZTv×H′×W ′ from the output of the VQ-VAE encoders are divided

into non-overlapping patches to build discrete tokens x(a)
q ∈ Z(nta ·ta)×(nd·d) and x(v)

q ∈
Z(ntv ·tv)×(nh·h)×(nw·w), where Ta = nta ·ta, D′ = nd·d, Tv = ntv ·tv, H ′ = nh·h, and W ′ = nw·w.
These representations are reshaped to x(a)

q ∈ Z(nta ·nd)×(ta·d) and x(v)
q ∈ Z(ntv ·nh·nw)×(tv ·h·w),

which are seen as sequences of nta · nd and ntv · nh · nw tokens of dimension ta · d and
tv · h · w, respectively.

The use of discrete audio and visual tokens in VQ-MAE-AV has several motivations.
Firstly, by dividing the audiovisual data into spatio-spectro-temporal patches, the method
could learn to relate audio tokens to visual tokens. For example, the audio tokens are
expected to correlate strongly with the visual tokens corresponding to the mouth area
(Arnela et al., 2016; Sadok, Leglaive, Girin, et al., 2023b). The proposed method can
potentially learn a representation that captures shared and distinctive information between
the two modalities by exploiting their complementarity. Additionally, the use of discrete
tokens can reduce the computational cost of the method as it involves working with a
reduced representation of the data, which allows us to increase the number of tokens
(i.e., manipulate longer audiovisual speech sequences) without exploding in the number
of trainable parameters compared to the multimodal MAE in the literature (Bachmann
et al., 2022).

5.2.3 Masking

We apply masking to the audio and visual sequences of tokens. The MAE aims to
reconstruct the masked tokens from the visible tokens to learn a semantic representation
of the data. The masking strategy impacts the performance of downstream tasks. In the
original MAE, the masked tokens are randomly drawn with a target ratio of the entire set
of tokens, typically 75%. In multimodal scenarios, the basic strategy would be to do the
same for each modality, but it has been shown that it is more interesting to implement a
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coupled masking strategy between the modalities (Bachmann et al., 2022). This involves
randomly drawing a masking proportion pa ∈ [0, 1] for the audio modality and pv ∈ [0, 1]
for the visual modality such that pa + pv = 1. To do this, a Dirichlet distribution is
used: (pa, pv) ∼ Dir(αa, αv) where αa, αv > 0 are the concentration parameters of the
distribution. When αa = αv = 1, the distribution is uniform overall points in its support
(the 1-simplex), and αa ≫ αb results in a sampling behavior where most of the tokens are
taken from the audio modality, and vice versa. These parameters can be used to reduce
the dominance of one modality over the other. This strategy allows the reconstruction of
missing information from one modality by relying on another. Therefore, the model will
leverage the less masked modality for the reconstruction of the more masked one. For this
study, we set αa = αv = 1.

5.2.4 Continuous embedding vectors

The discrete tokens correspond to the indices obtained through the quantization step
of the pretrained VQ-VAE encoder. Before being input to the VQ-MAE-AV encoder,
these discrete tokens are replaced with trainable continuous embedding vectors taken from
an audio codebook in Rka×ea and from a visual codebook in Rkv×ev , where ka/v is the
number of codes in the codebook and ea/v is the dimension of each code. This is simply
achieved by replacing the indices of a discrete token with the corresponding vectors of
dimension ea/v in the codebook. After this embedding process, the sequences of discrete
tokens x(a)

q ∈ Z(nta ·nd)×(ta·d) and x(v)
q in Z(ntv ·nh·nw)×(tv ·h·w) are transformed into sequences

of continuous tokens x(a)
c ∈ R(nta ·nd)×(ta·d·ea) and x(v)

c ∈ Z(ntv ·nh·nw)×(tv ·h·w·ev).

5.2.5 VQ-MAE-AV encoder and decoder

Attention Block

The VQ-MAE-AV encoder and decoder are built with multi-head Attention blocks
similar to those used in the Vision Transformer (ViT) (Dosovitskiy et al., 2020). Each
block comprises a multi-head attention layer, normalization layers, and a Multi-layer
Perceptron (MLP). These layers are interconnected with residual connections, as depicted
in Figure 5.2, and they will be used to capture the inter and intra-relationships between
audio and visual tokens. This attention block is inspired by the attention layer in the
original transformer (Vaswani et al., 2017). To simplify the reading afterward, we denote
the attention block by Attention(Q, V, K), where Q, V, K are the query, value, and key,
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respectively. The self-attention mechanism uses the same input vector for the query, key,
and value vectors. In the case of cross-attention, the query and key are different to enable
attention across multiple modalities or inputs.

Encoders

We propose two fusion strategies of the audio and visual speech data, resulting in
two architectures for the VQ-MAE-AV encoder. The first fusion strategy is called self-
attention fusion(SAF). As represented in Figure 5.2, this fusion consists of a concatenation
of token sequences for the two modalities, followed by L self-attention blocks. This
concatenation operates on the first dimension of the variables, i.e., we obtain a sequence
of (nta · nd) + (ntv · nh · nw) tokens after concatenation.

The second fusion strategy is called cross-attention fusion (CAF). As shown in Fig-
ure 5.2, the sequences of audio and visual tokens are used separately as the queries of
two separate attention blocks, which share the same keys and values corresponding to the
concatenation of the modalities. These two cross-attention blocks are then followed by a
stack of L self-attention blocks.

For both fusion strategies, the encoder outputs one sequence of tokens for each modality,
denoted by z(a) and z(v).

Global tokens

In addition to the token-wise representations z(a) and z(v), we learn two sequence-wise
global tokens, denoted by w(a) ∈ R1×(ta·d·ea) and w(v) ∈ R1×(tv ·h·w·ev), which can be thought
of as similar to [CLS] tokens (He et al., 2022). These global modality-specific tokens are
introduced to aggregate the spectro-temporal and spatio-temporal information in the two
modalities, which can be useful for downstream tasks involving predictions at the sequence
level, such as audiovisual SER. The global tokens are computed as follows:

w(a) = Attention
(
Q(a), V(a), K(a)

)
; (5.1)

w(v) = Attention
(
Q(v), V(v), K(v)

)
, (5.2)

where Q(a) = Z(a) ∈ R1×(ta·d·ea) and Q(v) = Z(v) ∈ R1×(tv ·h·w·ev) represent respectively
trainable audio and visual tokens, as proposed in Touvron et al., 2021, V(a) = K(a) = z(a),
and V(v) = K(v) = z(v).
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Decoders

The token-wise representation obtained from the encoder is combined with mask tokens
and fed to the VQ-MAE-AV decoder along with additional position embeddings, as denoted
by z̃(a) and z̃(v) and illustrated in Figure 5.2. The mask tokens actually correspond to one
single trainable vector as proposed in the original MAE (He et al., 2022). Similarly as for
the encoder, the audio and visual inputs of the VQ-MAE-AV decoder can be fused using
either self-attention fusion or cross-attention fusion. The number of attention blocks L′ in
the decoder is chosen to be lower compared to that of the encoder (L′ < L).

A linear layer is added at the end of the decoder, which maps to the size of the VQ-VAE
codebooks. The output of this linear layer corresponds to the logits of the discrete tokens.
After applying an softmax operation, we obtain reconstructions x̂(a)

q and x̂(v)
q of the indices

x(a)
q and x(v)

q that were provided by the VQ-VAE-audio and VQ-VAE-visual encoders,
respectively.

5.2.6 VQ-MAE-AV loss functions

Generative loss function

To train the VQ-MAE-AV model, we minimize the cross-entropy loss applied only to
the masked discrete tokens:

Lrec = cross-entropy

x(a)
q

(
Ω(a)

M

)
, x̂(a)

q

(
Ω(a)

M

)+ cross-entropy

x(v)
q

(
Ω(v)

M

)
, x̂(v)

q

(
Ω(v)

M

)
(5.3)

where x
(
Ω(·)

M

)
denotes the set of masked tokens in x. Another benefit of manipulating

discrete representations for multimodal inputs is the homogeneity of the losses, which does
not require balancing the losses between the two modalities.

Contrastive loss function

Building upon the approaches presented in (Akbari et al., 2021; Alayrac et al., 2020),
the global tokens are learned using noise contrastive estimation. This approach enhances
the alignment of audiovisual speech pairs by grouping together embeddings that belong
to the same time sequence and separating them from those that do not correspond to
the same sequence. This approach involves minimizing the loss function LNCE(w(a), w(v)),
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which is defined by:

LNCE(u, v) = − log


exp

(
u⊤v/τ

)
exp

(
u⊤v/τ

)
+ ∑

(u′, v′)∈N
exp

(
u′⊤v′/τ

)
 (5.4)

To form positive pairs (w(a), w(v)) for both audio and visual modalities, we select
corresponding streams from the same temporal location in the video. Conversely, negative
pairs (w′(a), w′(v)) are formed by selecting non-corresponding streams drawn from a set
N of different temporal locations for each batch. The sensitivity of the NCE loss in
distinguishing between positive and negative pairs is regulated by a temperature parameter
τ .

Final loss function

The final loss function corresponds to the sum of the generative loss function in (5.3)
and of the contrastive loss function in (5.4):

L = Lrec + LNCE (5.5)

5.2.7 Fine-tuning for audiovisual SER

After pre-training VQ-MAE-AV on token unmasking, the model is fine-tuned for
audiovisual SER. We propose three different approaches for fine-tuning the model. The
first two approaches rely on a pooling operation (of the encoder outputs z(a) and z(v)) to
extract the global audio and visual tokens, which is either a simple mean pooling or the
attention pooling discussed in Section 5.2.5. The extracted tokens are then concatenated
and passed through a single linear layer, followed by an argmax operation to classify the
emotion. The third proposed approach, referred to as Query2Emo and inspired by (S. Liu
et al., 2021), involves cross-attention between all audio and visual tokens (concatenation of
z(a), z(v)) as key and value, and the emotion classes represented by trainable embeddings
as the query. Query2Emo has a single attention block for both the encoder and decoder.
The extracted embeddings are then concatenated and passed through a single linear layer.
We adopt the asymmetric loss (Ridnik et al., 2021) for all these approaches between the
predicted emotion and the ground-truth emotion.
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Original speech power spectrogram Masking ratio 50% Masking ratio 80%

Reconstruction Reconstruction 

(a) Qualitative unmasking results for the audio modality. The spectrogram highlighted
in the red box represents the original spectrogram. The two spectrograms on the top
right represent the spectrograms masked at 50% and 80%, respectively. The recon-
structions using VQ-MAE-AV can be seen directly below these masked spectrograms.
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(b) Qualitative unmasking results for the visual modality. The first sequence shows
the original video, followed by the next two sequences representing the masked video
with a ratio of 50% and its reconstruction using VQ-MAE-AV. The last two sequences
represent the masked video with a ratio of 80% and its reconstruction using VQ-MAE-
AV.

Figure 5.3 – Quantitative results of the audio reconstruction (a) and visual reconstruction
(b) using VQ-MAE-12.
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5.3 Experiments

This section presents our study’s experimental setup and results, as well as a discussion
of their implications. We evaluate the effectiveness of the proposed approach for emotion
recognition on three standard audiovisual speech databases and compare it with state-
of-the-art methods. Additionally, we perform an ablation study to analyze the impact of
various hyperparameters and architectures on the performance of our method.

We present qualitative audio and visual reconstruction results in Figure 5.3(a) and
Figure 5.3(b), respectively. Furthermore, we conducted a study to measure the reconstruc-
tion quality at different masking ratios of the audiovisual speech data. This analysis is
detailed in Appendix C.1 and demonstrates the effectiveness of leveraging multimodality
to enhance reconstruction quality. Additional qualitative results can also be found on the
website 2.

Remark. A preliminary study focusing solely on audio speech modality has been carried
out, and the results were published in a workshop (Sadok, Leglaive, & Séguier, 2023). A
subsequent study is under development to generalize and improve the approach introduced
in this chapter on other types of input data, including visual modality and action units.
Detailed information on these two studies is available in appendix C.3 and C.4, respectively.

5.3.1 Experimental setup

Datasets and preprocessing

Dataset for self-supervised training To pre-train VQ-MAE-AV, we use the
VoxCeleb2 dataset (Chung et al., 2018), which offers a broad range of audiovisual
speech data from open-source media, with each video featuring a single speaker. We
restricted our dataset use to a subset of around 1000 hours of audiovisual speech,
encompassing 2170 different speakers. The test set includes about 100 hours of
audiovisual speech data, with 117 different speakers.

Data pre-processing The VQ-VAE-audio and VQ-VAE-visual models are trained
on the VoxCeleb2 dataset. The former is trained on STFT power spectrograms (x(a)),
while the latter uses RGB sequence images (x(v)) that are cropped on the face to

2. https://samsad35.github.io/VQ-MAE-AudioVisual
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reach a resolution of 96× 96. To compute the STFT, a Hann window of 64 ms (1024
samples at 16 kHz) and a 68% overlap are used, resulting in a sample rate of 50
Hz, which is twice the sample rate of the visual modality. This leads to sequences of
D = 513 Fourier coefficients.

Emotional audiovisual speech databases We fine-tune and evaluate the pro-
posed approaches on three emotional audiovisual speech databases.

— RAVDESS (Livingstone & Russo, 2018): This English database consists of
1440 videos recorded by 24 professional actors and labeled with eight different
emotions (neutral, calm, happy, sad, angry, fearful, disgust, surprised).

— CREMA-D (H. Cao et al., 2014): It is an English dataset of 7442 videos
recorded by 91 actors. Actors spoke from a selection of 12 sentences. The
sentences used one of six emotions (anger, disgust, fear, happy, neutral, and
sad) with four different intensities (low, medium, high, and unspecified).

— eNTERFACE05 (Livingstone & Russo, 2018): The audiovisual acted dataset
comprises recordings of six distinct emotions: anger, disgust, fear, joy, sadness,
and surprise. These emotional expressions were eliparencited from a diverse
group of 43 individuals representing 14 nationalities. The dataset encompasses
a total of 1290 video samples. Each participant was instructed to listen to six
short stories that eliparencited a specific emotion.

We selected these databases as they are commonly used for the emotion recognition
task, and their raw data is accessible. To ensure a fair comparison with previous
works, we performed 6 -fold, 10 -fold and 5 -fold cross-validation for the RAVDESS,
CREAM-D and eNTERFACE05 datasets, respectively. We carefully partitioned the
datasets to ensure speaker identity separation between fine-tuning and evaluation
phases.

Model architecture

VQ-VAE architectures The VQ-VAE-audio (respectively VQ-VAE-visual) ar-
chitecture is symmetrical concerning the encoder and the decoder, with three 1D
(respectively 2D) convolution for the encoder or transposed convolution for the decoder
layers on the frequency axis and a residual convolution layer. The VQ-VAE models
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process each frame independently with no time dependency. For each speech power
spectrogram frame of size D = 513, the VQ-VAE-audio encoder compresses it into
a discrete latent vector (a column of x(a)

q ) of size D′ = 64. For each image frame
of size (H = 96, W = 96, C = 3), the VQ-VAE-visual encoder compresses it into a
discrete latent representation of size (H ′ = 24, W ′ = 24). The VQ-VAE-audio and
the VQ-VAE-visual codebooks contain, respectively, ka = 256 and kv = 512 codes of
dimension ea = 8 and ev = 4. Such a low dimension is chosen to increase the use of
the different codes in the codebook (Yu et al., n.d.). Please refer to the supplementary
materials for more information about the VQ-VAE architectures.

VQ-MAE-AV architectures The VQ-MAE-AV model uses L = 12 attention
blocks in the encoder and L′ = 4 in the decoder. Each self-attention layer of a block
is divided into four heads. By default, the parameters of the discrete audio and visual
tokens (d, h, and w) are set to 4. We set ta = 10 and tv = 5 because the sampling rate
of x(a) is twice the sampling rate of x(v). In the ablation study (Section 5.3.3), we will
explore all possible combinations of the VQ-MAE-AV encoder and decoder, according
to the two fusion strategies (self-attention fusion and cross-attention fusion). We will
also evaluate the impact of the pooling strategy and contrastive learning. Additional
ablation studies are presented in the supplementary material.

Training and fine-tuning details

Self-supervised training details The VQ-MAE-AV is trained using the AdamW
optimizer (Loshchilov & Hutter, 2017) with a cosine scheduler to adjust the learning
rate, with a 100-epoch warm-up period. The parameters of the optimizer, similar
to (He et al., 2022), are β2 = 0.9, β2 = 0.95, and weight_decay= 0.05. The base
learning rate follows the linear scaling rule (Goyal et al., 2017) lr = (base_lr =
1e− 3)× (batchsize = 128)/256. We distributed the pre-training of VQ-MAE-AV
on 4 NVIDIA HGX A100. Over the course of 140 epochs, with each epoch having a
duration of approximately 15 minutes.

Fine-tuning details For the fine-tuning process, we also use the AdamW optimizer
(Loshchilov & Hutter, 2017) with a cosine scheduler to adjust the learning rate and
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with a 40-epoch warm-up period. The parameters of the optimizer are the same as
those used for the pre-training. The base learning rate is 1e-4.

Table 5.2 – Performance of VQ-MAE-AV using the self-attention fusion strategy for both
encoder and decoder, and it is fine-tuned using the attention pooling strategy. ‘Pre-train’
refers to the training of the VQ-MAE-AV for the unmasking task on the VoxCeleb2
database. ‘Freeze’ refers to the freezing of the VQ-MAE-AV encoder.

Method Pre-train Freeze Accuracy (%)
VQ-MAE-AV ✗ ✗ 29.6
VQ-MAE-AV ✓ ✓ 70.5
VQ-MAE-AV ✓ ✗ 81.5

Table 5.3 – Performance of VQ-MAE-AV using the self-attention fusion strategy for
both encoder and decoder, and it is fine-tuned using the Query2Emo pooling strategy.
‘Generative’ corresponds to the loss function in Eq. 5.3 and ‘Contrastive’ corresponds to
the loss function in Eq. 5.4.

Method Contrastive Generative Accuracy (%)
VQ-MAE-AV ✓ ✗ 75.2
VQ-MAE-AV ✗ ✓ 84.3
VQ-MAE-AV ✓ ✓ 84.8

Table 5.4 – Performance of VQ-MAE-AV without contrastive learning for different encoder
and decoder architectures, and it is fine-tuned using the attention pooling strategy. SAF
stands for self-attention fusion and CAF stands for cross-attention fusion.

Method Param. (M) Encoder Decoder Acc. (%)
VQ-MAE-AV 13.5 SAF SAF 81.5
VQ-MAE-AV 25.0 CAF SAF 82.8
VQ-MAE-AV 18.4 SAF CAF 81.8
VQ-MAE-AV 30.0 CAF CAF 83.0

Table 5.5 – Performance of VQ-MAE-AV using the self-attention fusion strategy for both
encoder and decoder and without contrastive learning for different pooling strategies on
emotion recognition.

Pooling strategy Accuracy (%) F1-score (%)
Mean Pooling 78.1 78.4

Attention Pooling 81.5 80.1
Query2Emo 84.3 84.8
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Table 5.1 – Accuracy (%) and F1-score (%) results of audiovisual SER. VQ-MAE-AV is
pre-trained with both the generative (5.3) and contrastive (5.4) loss functions using the
cross-attention fusion strategy for both the encoder and decoder and it is fine-tuned using
the Query2Emo pooling strategy. In the modality column, A and V stand for audio and
visual, respectively.

RAVDESS

Method Modality Acc F1

VO-LSTM (Ghaleb et al., 2019) V 60.50 -
MAE-DFER (Sun et al., 2023) V 75.56 -
AV-LSTM (Ghaleb et al., 2019) A+V 65.80 -

MuLT (Tsai et al., 2019) A+V 76.60 77.30
MDVAE (Sadok, Leglaive, Girin, et al., 2023b) A+V 79.30 80.70

AVT (Chumachenko et al., 2022) A+V 79.20 78.20

Ours A 73.20 72.80
Ours V 74.10 73.90
Ours A+V 84.80 84.50

CREMA-D

Method Modality Acc F1

VO-LSTM (Ghaleb et al., 2019) V 66.80 -
MAE-DFER (Sun et al., 2023) V 77.38 -
AV-LSTM (Ghaleb et al., 2019) A+V 72.90 -
MATER (Ghaleb et al., 2020) A+V 67.20 -

AV-Gating (Ghaleb et al., 2019) A+V 74.00 -
RAVER (Goncalves & Busso, 2022) A+V 77.30 -

Ours A 72.10 71.60
Ours V 76.50 76.70
Ours A+V 80.40 80.00

eNTERFACE05

Method Modality Acc F1

VO-LSTM (Ghaleb et al., 2019) V 66.80 -
MAE-DFER (Sun et al., 2023) V 77.38 -
AV-LSTM (Ghaleb et al., 2019) A+V 72.90 -
MATER (Ghaleb et al., 2020) A+V 67.20 -

AV-Gating (Ghaleb et al., 2019) A+V 74.00 -
RAVER (Goncalves & Busso, 2022) A+V 77.30 -

Ours A 72.10 71.60
Ours V 76.50 76.70
Ours A+V 80.40 80.00
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5.3.2 Audiovisual speech emotion recognition

Table 5.1 compares the emotion recognition performance (accuracy and F1-score
metrics) of the proposed VQ-MAE-AV model (using the cross-attention fusion strategy for
both the encoder and decoder) with the performance of several state-of-the-art methods.
For instance, the audiovisual transformer (AVT) (Chumachenko et al., 2022) is a supervised
method that employs self-attention fusion and modality dropout for audiovisual SER;
Robust Audiovisual Emotion Recognition (RAVER) (Goncalves & Busso, 2022) is a
supervised approach designed to address challenges in modality alignment, temporal
information capture, and missing features handling; MAE dynamic facial expression
recognition (MAE-DFER) (Sun et al., 2023) is a self-supervised technique that employs a
local-global interaction Transformer as the encoder pretrained on VoxCeleb2; multimodal
dynamical VAE (MDVAE) (Sadok, Leglaive, Girin, et al., 2023b) is an unsupervised
audiovisual speech representation learning technique, using a hierarchical latent space that
separates static from dynamical information and modality-common from modality-specific
information.

The VQ-MAE-AV model with Query2Emo outperforms the state-of-the-art methods.
VQ-MAE-AV achieves 8.2%, 5.6%, and 5.5% better accuracy than the MULT, AVT, and
MDVAE methods for the RAVDESS dataset, respectively. Regarding the CREMA-D
dataset, VQ-MAE-AV achieves 13.2%, 7.5%, and 3.1% better accuracy than the MATER,
AV-Gating, and RAVER method. On the eNTERFACE05 dataset, VQ-MAE-AV achieves
8.2% and 5.5% better accuracy than the FAN and Graph-Tran methods. Overall, the
VQ-MAE-AV model consistently outperforms state-of-the-art methods across all datasets,
which demonstrates the effectiveness of the proposed audiovisual speech self-supervised
representation learning technique for SER.

Table 5.1 also compares VQ-MAE-AV with its unimodal versions VQ-MAE-V and
VQ-MAE-A. The VQ-MAE-AV model exhibits improved performance compared to VQ-
MAE-V and VQ-MAE-A, with gains of 3.9% and 8.3% in accuracy on the CREMA-D
dataset, respectively. This shows the effectiveness of incorporating audiovisual information
in self-supervised learning for improved SER performance.

5.3.3 Ablation study and model properties

We conduct a series of experiments to evaluate the impact of various hyperparameters
and model designs on the emotion recognition performance of the proposed VQ-MAE-AV
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5.3. Experiments

model. In the following paragraphs, we will present and discuss the findings of these
experiments. All the ablation study is done on RAVDESS.

Impact of pre-training and fine-tuning

Table 5.2 shows the significance of pre-training and fine-tuning the VQ-MAE-AV model
for audiovisual SER. Pre-training the model for the unmasking task on the VoxCeleb2
database substantially improves the emotion recognition performance, with the accuracy
rising from 29.6% to 81.5%. Fine-tuning the encoder is also essential, as keeping it frozen
leads to a 11% drop in accuracy.

Impact of the contrastive learning

The influence of contrastive learning on emotion recognition is illustrated in Table 5.3.
When training VQ-MAE-AV exclusively with the contrastive loss, the accuracy achieved is
75.2%, which is 9.1% lower than when using only the generative loss. Notably, the fusion
of both losses, contrastive and generative, leads to improved emotion recognition, resulting
in a 0.5% accuracy boost compared to using the generative loss alone. This underscores
the importance of integrating both contrastive and generative learning strategies.

Impact of the encoder/decoder architecture

Table 5.4 shows the performance of the four different configurations of the VQ-MAE-AV
model described in Section 5.2.5, including all possible combinations of the fusion strategies
for the VQ-MAE-AV encoder and decoder:

— Self-attention fusion for both the encoder and decoder (SAF-SAF);
— Self-attention fusion for the encoder and cross-attention fusion for the decoder

(SAF-CAF);
— Cross-attention fusion for the encoder and Self-attention fusion for the decoder

(CAF-SAF);
— and Cross-attention fusion for both the encoder and decoder (CAF-CAF).

Among these configurations, CAF-CAF achieves the highest accuracy with a 1.5% im-
provement over SAF-SAF, followed by CAF-SAF with a 1.3% improvement over SAF-SAF,
and then SAF-CAF with only a 0.3% improvement. The cross-attention fusion encoder
architecture achieves the best performance in emotion recognition, as shown by the CAF-
CAF and CAF-SAF configurations. However, there exists a trade-off between performance
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Chapter 5 – A vector quantized masked autoencoder for audiovisual speech emotion recognition

Figure 5.4 – Impact of the discrete audio and visual token size on emotion recognition.

and the number of model parameters. Notably, CAF-CAF involves slightly more than
twice as many parameters as SAF-SAF.

Impact of the pooling strategy

Table 5.5 presents the impact of various pooling strategies when fine-tuning the model
for SER. The results reveal that attention-based pooling techniques, such as attention
pooling and Query2Emo, outperform mean pooling. Among the two attention-based
methods, Query2Emo outperforms attention pooling, with an accuracy gain of 2.8%.

Impact of the audio and visual discrete token size

Figure 5.4 shows the impact of the dimensions of the discrete tokens for the visual (h
and w) and audio (d) modalities on the SER performance. The values of h and w represent
the visual token size on the horizontal and vertical axes, respectively, while d represents
the token size on the frequency axis of the audio modality. Our study reveals that the
performance of emotion recognition is impacted by both (h, w) and d values. Therefore, it
is important to select these parameters carefully. Based on our experiments, we recommend
fixing them to (h = w = 4, d = 4).

Other ablation studies

We conducted additional ablation studies to investigate the impacts of the encoder
depth and of the masking strategy. Detailed results and insights from these studies can be
found in Appendix C.2.
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5.4. Conclusion of the chapter

5.4 Conclusion of the chapter

Masked autoencoder modeling is a versatile self-supervised learning approach that
can be adapted to various types of data. This chapter introduced the VQ-MAE-AV
model for learning representations of audiovisual speech data, which could be extended
to other multimodal sequential data. VQ-MAE-AV took as input a discrete audio
representation and a discrete visual representation obtained via two separate VQ-VAEs.
These reduced representations were then divided into multiple discrete tokens, with
spatio-temporal tokens for the visual modality and spectro-temporal tokens for the
audio modality. Pre-trained on the VoxCeleb2 dataset and fine-tuned on the standard
expressive audiovisual speech dataset, the experiments showed that the VQ-MAE-AV
model effectively combined the audio and visual modalities for SER, outperforming
several state-of-the-art methods across multiple datasets. For future work, we plan
to investigate other masking strategies and increase the resolution of the images to
further improve emotion recognition performance.
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Chapter 6

CONCLUSION

In Chapter 1, we highlighted the challenges encountered by supervised models in
the domain of ER and affective computing in general. Specifically, we pointed out the
detrimental effects of biases in training data and supervised methods, ultimately hampering
robustness and the ability to generalize effectively.

Given the exponential growth of non-annotated audiovisual data, there arises a need
to explore alternative training paradigms that rely minimally or not on labeled data. This
becomes particularly pertinent due to emotionally annotated data’s inherent ambiguities
and limitations (Section 1.3). These limitations encompass data volume constraints,
recording hours and participant numbers, and the challenge of capturing intricate emotional
nuances.

In Chapter 1, specifically in Section 1.1.2, we highlighted the essential criteria for an
effective ER system, which encompass multimodality, robustness and accuracy, generality,
sensitivity to dynamics, and contextual awareness. The following section will analyze the
thesis’ main points to determine how much our contributions align (or almost) with these
criteria.

6.1 Main thesis points: exploration and analysis

Unraveling disentangled representations Disentangled representation is a focal
point in my research trajectory. Chapter 3 introduces a straightforward approach to
acquiring and manipulating speech variation factors (such as pitch and formant) within a
VAE method. Moving forward to Chapter 4, we present another approach also based on
VAE, where disentanglement is achieved across modalities (specific or shared) as well as
temporally (static or dynamic).

Throughout these studies, we have demonstrated the significant advantages of disen-
tangled representations, especially within downstream tasks such as ER. These advantages
span several key areas, including enhanced sample efficiency, improved robustness, and
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generalization capabilities.

Shifting from supervised to unsupervised and self-supervised approaches This
transition aligns with a broader shift in artificial intelligence, where the pursuit of increased
adaptability and versatility has conducted researchers toward alternative paradigms,
diverging from the confines of supervised learning. These approaches can potentially
harness the immense volume of unlabeled data available on the internet, a resource-rich in
information but often needing more precise annotations. This shift is driven by the fact that
traditional supervised models may falter when encountering new emotions, leaving them
vulnerable to overfitting. The exploration of weakly supervised and unsupervised techniques
represents a strategic response to this challenge, intending to fortify the resilience and
scalability of ER models.

Through our contributions, we want to show that this transition to less supervised
approaches can benefit ER task, making ER systems more robust and generable. While the
shift from supervised to unsupervised methods may not yet be a groundbreaking revolution
in ER, it represents a strategic change with significant potential. These non-supervised
methods aim to establish a strong foundation by learning intricate data representations
initially. These acquired representations become valuable for subsequent tasks, moving
from solving isolated issues to fostering a more universally applicable framework.

Dynamical and multimodal input synergy This thesis aims to comprehensively
understand human emotions by developing both temporal and multimodal (audiovisual)
representations. Emotions are intricate, dynamic phenomena that evolve over time. More-
over, emotions are frequently conveyed through various sensory inputs. Visual data, for
instance, can capture essential aspects of emotional expression, such as facial expressions,
body language, and gestures. On the other hand, audio data can offer valuable insights
into elements like tone of voice and speech patterns. Chapters 4 and 5 show that combining
these modalities enriches the available information, leading to a more comprehensive
understanding of emotions than the unimodal/static method.

6.2 Ethical considerations and perspectives

A typical doctoral thesis spans an average duration of three years, encompassing the
processes of conceptualization, implementation, analysis, and interpretation. However,

160



this rigorous journey is also a period during which we occasionally step back from our
research. Particularly in the context of this thesis, I acknowledge that the subject matter
can evoke apprehension among those outside the field. As profoundly personal experiences,
emotions raise valid concerns regarding privacy violations, emotional manipulation, and
biases among users.

6.2.1 Ethical concerns with emotion recognition

As ER technology advances, it raises ethical concerns (Denning & Denning, 2020; Latif et
al., 2022). Its rapid proliferation has sparked discussions about potential risks and challenges
across diverse domains. These include the fear of exploitative manipulation, where access to
intimate emotions could be misused to influence beliefs and behaviors, particularly in areas
like politics, markets, and social interactions. Furthermore, the technology’s often-invasive
nature, with little regard for consent and privacy, raises significant concerns about personal
autonomy and privacy rights. Additionally, the vulnerability of ER systems to adversarial
attacks introduces risks, particularly in critical applications like mental health diagnosis.
Issues of bias and fairness are also at the forefront, given the potential for biased training
data and inaccurate emotion labeling to perpetuate unfair outcomes. Lastly, the reliance
on reductionist emotional models can oversimplify the complexity of human emotions,
potentially leading to misinterpretations and inadequate support in various contexts.

Using ER for emotional surveillance raises important ethical questions. To ensure the
ethical treatment of individuals and prevent exploitation or manipulation, we can draw
inspiration from well-established ethical principles, such as those outlined in the Belmont
Report 1980 (on Aging et al., 1980). The Belmont Report identifies three key principles:
Respect for Persons, Beneficence, and Justice. These principles serve as a foundation for
guiding ethical conduct in research involving human subjects (Sims, 2010).

In the context of AI and ER, there has been a growing focus on ethics, resulting in
numerous AI ethics principles and codes. Notably, Jobin et al., 2019 identified 84 such
codes related to AI in 2019. Four high-level ethical principles commonly found in these
declarations are beneficence, non-maleficence, autonomy, and justice. Additionally, Floridi
and Cowls, 2022; Floridi et al., 2021 emphasized the principle of explicability, advocating
that AI models should not operate as inscrutable black boxes.
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6.2.2 Future directions

In terms of methodology and paradigm

Explainability and interpretability The vulnerability of ER systems largely stems
from the inherent black-box nature of the machine learning models. These models often
lack transparency and the ability to provide interpretable insights into their outcomes. It
is vital to render them explainable in a manner comprehensible to humans. In recent years,
extensive research efforts have been dedicated to developing methods for interpreting the
workings of ML models, including methods explanations that delve into model internals to
reveal the most effective features contributing to a specific prediction (Abnar & Zuidema,
2020; Chefer et al., 2021; Zeiler & Fergus, 2014).

Our thesis emphasized the acquisition of disentangled representations aiming for human-
comprehensible models. Specifically in ER, this approach unveils the factors influencing
emotion prediction transparently and interpretably. By doing so, it fosters trust and user
acceptance. Given the numerous advantages of disentangled representations, the keyword
"disentangled representation" will receive primary attention in future research efforts.

Integrating multidisciplinary insights ER systems can significantly benefit from an
interdisciplinary approach incorporating psychology, neuroscience, and computer science
expertise. This inclusive perspective provides a holistic understanding of the complex
phenomenon of human emotions. Psychologists and neuroscientists get valuable insights into
the underlying mechanisms governing emotional experiences, expressions, and regulation
in individuals.

Sen YAN’s doctoral thesis, “Personalizing facial expressions by exploring emotional
mental prototypes”, showcases the power of interdisciplinary collaboration in advancing
ER. The thesis focuses on the idea of a unique mental prototype in each person. Sen
YAN combines psychology and artificial intelligence in a novel way. The key innovation
is blending generative adversarial networks with the psychophysical reverse correlation
process. This method involves adjusting facial expressions by controlling specific action
units in a GAN. Through iterative refinement guided by human feedback, the system
identifies the most important action units linked to a particular emotion for an individual.
This process customizes emotional prototypes beyond generic models to offer personalized
insights into emotional expressions (Yan, 2023).

This pipeline can also be used for audio speech by incorporating the model from
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Chapter 3. This adapted model allows us to control pitch and formant in the pipeline,
giving us a more precise way to adjust audio speech attributes. By manipulating these
factors and others, we can create personalized interpretations of speech-related emotions
that match an individual’s unique expression. Additionally, this pipeline has potential in
multimodal ER. Combining insights from visual and audio modalities allows us to develop
emotional prototypes tailored to each person. This approach can help us better understand
how individuals express and perceive emotions across different modalities.

Context matters Context provides invaluable information that facilitates the interpre-
tation of emotions. For example, when someone smiles while receiving a gift, the context
of the situation (i.e., a gift-giving occasion) helps us deduce that the expressed emotion is
likely happiness or gratitude. Contextual clues serve as a guide for ascribing meaning to
emotional expressions. Including additional context through other modalities, such as text
(scene or environmental descriptions), can enhance ER.

Recently, a growing interest has been in enhancing social reasoning abilities (J. Li
et al., 2022a; B. Xie & Park, 2023). B. Xie and Park, 2023 explore the integration of multi-
modal inputs and domain expertise to advance the comprehension of common knowledge.
They introduce a question-answering model conditioned on contextual embeddings from
multimodal inputs, showing promising results in social intelligence learning.

Improving and evolving our ongoing research Technical limitations are inherent in
our research, often serving as catalysts for improvement. However, one persisting limitation
throughout this thesis has been the challenge of synthesizing high-quality audio waveforms.
This thesis primarily represents audio speech using power spectrograms, omitting phase
information, which is crucial for waveform reconstruction. Techniques like Griffin-Lim
algorithm (Griffin & Lim, 1984), commonly used for phase reconstruction, have limitations
and may introduce artifacts. However, high-quality speech synthesis is rapidly evolving,
offering promising avenues for ongoing research. We are contemplating replacing the
source-filter VAE, VQ-MDVAE, or VQ-MAE-AV decoder with a higher-quality decoder to
enhance waveform speech synthesis (using neural vocoders like Hifi-GAN (J. Kong et al.,
2020)). This upgrade enables tasks like speaker conversion or speech emotion conversion.

An essential aspect to explore is the adaptability of our methods across diverse tasks.
While our unsupervised and self-supervised models were primarily developed for effective
representation learning in emotion recognition, their application extends to various other
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domains. One such domain is speech and speaker recognition, where MDVAE, for instance,
could be used to enrich speaker data. By altering factors like head position, eye movements,
and emotions while preserving mouth movements (content), these data augmentations
could substantially enhance the performance of speech and speaker recognition tasks.

In terms of validation

Benchmarking and Comparison In validating our models, it is essential to establish
a universally accepted protocol and a set of validation metrics to ensure fair benchmarking.
Researchers and developers can use standardized validation frameworks to assess their ER
systems against standard criteria. This practice not only enables equitable comparisons
between different systems but also fosters healthy competition, ultimately stimulating
innovation in the field. A lack of a universally accepted benchmarking protocol hinders
the fair evaluation of ER systems. Establishing such standards is an ongoing challenge for
the field.

Cross-corpus validation Different ER datasets often vary significantly regarding data
collection conditions, participants’ demographics, cultural backgrounds, and emotional
expressions. Models need to generalize across this variability. While significant strides
have been made in cross-corpus validation, the field still faces challenges in developing
methods that can robustly handle diverse datasets (Milner et al., 2019; B. Schuller et al.,
2010). Additionally, ongoing efforts are required to ensure that models are designed with
cross-corpus generalization in mind.

In terms of emotion/attitude representation

In Section 1.3, we explored the two most popular ways of representing emotions: the
categorical and the continuous modelization based on arousal and valence. It is important
to mention that there are alternative ways of representing emotions, such as Plutchik’s
wheel of Emotions. Much like colors, Plutchik’s model represents emotions as a wheel, with
eight primary emotions arranged in pairs of opposites. It also considers the intensity and
combinations of these primary emotions. Moine and Obin, 2020 proposed an alternative
representation focusing on social attitudes, categorized into four attributes: friendly,
seductive, dominant, or distant. These social attitudes are distinct from emotions, which
encapsulate the internal state of a speaker, and propositional attitudes, which reflect a
speaker’s disposition toward an utterance.
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In our research, we focused on the recognition of categorical emotions (Chapters 4
and 5) or their discrete intensity (Chapter 4). We did not explore continuous emotion
representation. However, since our goal is to acquire audiovisual representations, we could
readily swap out the classifier for a regression model in the output of our unsupervised/self-
supervised models (VQ-MAE-AV, VQ-MDVAE) to forecast either the arousal or valence
value.

In terms of environmental issues

There is no doubt that the use of large-scale models and large data sets can dramatically
improve a model’s ability to learn high-quality representations. Currently, there is a race
to see who can create the largest model (for example, large language models) with the
largest dataset. However, it is imperative to consider the carbon footprint associated with
these massive learning processes and their environmental consequences.

In 2019, researchers at the University of Massachusetts Amherst made a significant
discovery when they trained several large language models (Strubell et al., 2019). Their
investigation revealed that training a single large AI model could produce a staggering
≈ 300 tons of carbon emissions. To put this into perspective, these emissions are equivalent
to what five cars would emit over their lifetimes. A more recent study focused on training
GPT-3, a language model with a massive 175 billion parameters. The findings showed
that this training process consumed 1287 MWh of electricity. Furthermore, it led to the
release of 502 metric tons of carbon emissions, a figure that can be likened to the carbon
footprint generated by 112 gasoline-powered cars operating for a year (Tamburrini, 2022).

Addressing environmental issues related to AI methods requires a multi-faceted ap-
proach. In addition to dedicated hardware resources for AI architecture and efficient model
optimization techniques, several other strategies can contribute to environmental sustain-
ability. These include employing quantization and model pruning to reduce computational
requirements (Liang et al., 2021), implementing federated learning to reduce data transfer
energy consumption (Z. Yang et al., 2020), applying knowledge distillation to transfer
insights from large models to smaller and more energy-efficient ones (Gou et al., 2021), and
investing in green data centers powered by renewable energy sources (Bird et al., 2014).
Additionally, exploring sparse models that train only essential neural network connections
and developing dynamic resource allocation systems to prevent energy waste are essential.
Research into energy-efficient hardware architectures designed specifically for AI tasks
and incentives for prioritizing eco-friendly AI technologies are also essential components
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(Tamburrini, 2022). Furthermore, considering carbon offset programs and advocating for
policies and regulations that promote environmentally conscious AI development practices
can collectively contribute to reducing the carbon footprint of AI methods (Wara & Victor,
2008). Collaboration across hardware, software, and policy domains is key to addressing
these environmental challenges effectively.
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RÉSUMÉ EN FRANÇAIS

Introduction à la thèse

Imaginez-vous lors d’un entretien d’embauche ou d’une session de recrutement
vidéo. Vous êtes confronté à une question difficile qui provoque en vous des réactions
physiologiques et émotionnelles telles que la transpiration, l’accélération du rythme
cardiaque, une tension artérielle élevée, des bouffées de chaleur, ainsi qu’une gamme
d’émotions allant du stress à l’anxiété, voire à la colère. Ces réactions, bien qu’elles
soient normales, peuvent entraver votre capacité à communiquer efficacement et à
démontrer vos compétences.

En de telles situations stressantes, imaginez avoir accès à un outil en cours de
développement en collaboration avec Randstad et CentraleSupélec, conçu pour at-
ténuer ces réponses émotionnelles et physiologiques. Cet outil agirait comme un coach
numérique, proposant des interactions adaptées à votre état émotionnel, au contexte
et à l’environnement, vous permettant de regagner confiance en vous et d’améliorer
vos performances lors de l’entretien.

Contexte et problématique Pour assurer l’efficacité de cet outil, une reconnais-
sance précise des émotions est essentielle. C’est précisément l’application de ma thèse,
qui s’inscrit dans le domaine de l’informatique affective. Cette discipline englobe
le développement de technologies capables de reconnaître, interpréter et réagir aux
émotions humaines (R. Picard, 1997). L’informatique affective trouve des applications
variées, de la santé (Mano et al., 2016) à l’éducation (C.-H. Wu et al., 2016) en passant
par le divertissement et le marketing. La reconnaissance précise des émotions revêt
une importance capitale pour que les machines interagissent harmonieusement avec
nos émotions. Pour être efficace, un système de reconnaissance des émotions doit être
multimodal, robuste, général, sensible aux dynamiques et conscient du contexte (Pantic
et al., 2005).

La pipeline d’un système de reconnaissance des émotions en utilisant une approche
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supervisée est généralement structurée de la manière suivante : Tout d’abord, il faut
constituer une base de données d’apprentissage comportant des enregistrements, tels
que des données audio et/ou visuelles, étiquetés avec les émotions correspondantes.
Ensuite, ces données sont prétraitées pour extraire des caractéristiques pertinentes, ce
qui implique souvent une analyse spectrale pour les signaux audio et une analyse des
images pour les signaux visuels. Les caractéristiques extraites sont ensuite utilisées
pour entraîner un modèle d’apprentissage automatique, tel qu’un réseau de neurones,
avec les étiquettes d’émotion comme cibles. Ce modèle est entraîné à reconnaître les
schémas de caractéristiques associés à chaque émotion. Une fois le modèle entraîné, il
peut être évalué sur des données de test pour mesurer ses performances en terme de
précision de la reconnaissance émotionnelle.

Dans les systèmes de reconnaissance des émotions, les émotions sont souvent
représentées par des étiquettes catégorielles ou des échelles numériques, mais ces
représentations ne parviennent pas à saisir pleinement l’ambiguïté émotionnelle (Tran
et al., 2022). Cette ambiguïté peut introduire des biais dans les données et par
conséquent sur le modèle qui est entrainé de manière supervisé.

Existe-t-il d’autres paradigmes d’apprentissage permettant d’acquérir des représen-
tations pertinentes de manière non supervisée, en vue de leur application ultérieure
dans des tâches auxiliaires telles que la reconnaissance des émotions ?

Solutions et défis envisagés

Exploitation des données non étiquetées pour la reconnaissance des émotions
L’utilisation de données non étiquetées pour la reconnaissance des émotions présente des
avantages importants. Les méthodes d’apprentissage non supervisé et auto-supervisé
permettent de réduire la dépendance aux données étiquetées, ce qui est crucial étant
donné les limites et les biais potentiels des ensembles de données étiquetées. Ces
méthodes impliquent généralement un processus d’apprentissage en deux étapes, où le
modèle apprend d’abord à représenter les données de manière non supervisée ou auto-
supervée sur une grande base de donnée non annotée, puis transfère ces connaissances
à des tâches auxiliaires (e.g., reconnaissance des émotions).
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Exploration de l’apprentissage multimodal pour la reconnaissance des émo-
tions De plus, l’adoption de l’apprentissage multimodal pour l’affective computing
est essentielle. Les émotions ne sont pas uniquement transmises par les mots, mais
aussi par le ton de la voix, les expressions faciales et le langage corporel. En intégrant
ces différentes modalités dans les systèmes de reconnaissance des émotions, on peut
réduire l’incertitude et améliorer la précision (Abdullah et al., 2021; Sebe et al., 2005).
Cela permet de capturer les émotions complexes qui se produisent dans des contextes
réels, où les signaux émotionnels peuvent varier considérablement d’une personne à
l’autre.

L’apprentissage non supervisé ou auto-supervisé des représentations multimodales
et séquentielles présente-t-il des avantages pour la reconnaissance des émotions ?

Un apperçu rapide de l’état-de-l’art

Les modèles génératifs profonds, tels que l’autoencodeur variationnel (VAE), sont
devenus récemment très efficaces pour l’apprentissage non supervisé de représentations
latentes à partir de données complexes comme les images, l’audio et le texte (Good-
fellow et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014). Apprendre ces
représentations est important, non seulement pour la synthèse des données, mais aussi
pour leur analyse et leur transformation. Une représentation efficace doit saisir les
caractéristiques clés des données tout en restant invariable face aux petites variations
locales des données d’entrée, et elle doit être aussi démêlée que possible pour assurer
l’explicabilité (Bengio, Courville, & Vincent, 2013; Van Steenkiste et al., 2019). Ces
modèles génératifs ont grandement amélioré notre capacité à créer des représentations
structurées et interprétables des données.

Le VAE permet l’apprentissage profond non supervisé dans un cadre bayésien. En
général, une distribution gaussienne standard est choisie pour la distribution a priori
sur la variable latente, favorisant l’indépendance (démêlement) entre les différentes
dimensions de la représentation apprise. Cependant, les VAEs classiques présentent des
limites en termes de démêlement, surtout avec des ensembles de données complexes.
Pour améliorer cela, différentes approches ont été développées pour introduire des
biais dans le modèle et/ou l’algorithme d’apprentissage, permettant de renforcer
le démêlement. Ces méthodes incluent la modification de la borne infèrieur de la

169



vraissemblence (R. T. Chen et al., 2018; Higgins et al., 2017a; H. Kim & Mnih,
2018). De nouvelles approches se concentrent sur l’apprentissage faiblement supervisé
(Locatello, Poole, et al., 2020; Sadok, Leglaive, Girin, et al., 2023a) ou semi-supervisé
(Klys et al., 2018). Les VAE sont flexibles et ont été étendus à différentes formes de
données, y compris le multimodal et le séquentiel.

Les VAEs ont suscité un intérêt significatif pour la modélisation de données multi-
modales. Ces VAEs, avec leurs encodeurs et décodeurs, sont stables à l’apprentissage
contrairement aux réseaux génératifs antagonistes (GANs) (Goodfellow et al., 2014).
Ils sont adaptés à la modélisation générative multimodale (Suzuki & Matsuo, 2022).
Plusieurs approches ont été développées pour apprendre un espace latent commun pour
plusieurs données d’entrée hétérogènes. Par exemple, PoE-VAE (M. Wu & Goodman,
2018) adopte le produit d’experts (PoEs) (Hinton, 2002) pour modéliser la distribution
postérieure de données multimodales, tandis MoE-VAE (Shi et al., 2019) utilise un
mélange d’experts (MoEs). Une autre approche (Sutter et al., 2021) combine ces
deux méthodes pour améliorer la reconstruction des données. Néanmoins, des limites
ont été démontrées et formalisées pour ces méthodes. Par exemple, les modèles VAE
multimodaux produisent souvent des reconstructions de moindre qualité par rapport
aux modèles VAEs unimodaux, en particulier pour les ensembles de données complexes.

Un autre domaine où les modèles VAEs ont connu des progrès significatifs est la
modélisation de données séquentielles, où les variables latentes et/ou observées évoluent
dans le temps. Les VAE dynamiques (DVAE) (Girin et al., 2021b) visent à traiter des
données complexes de grande dimension présentant des corrélations temporelles ou
spatiales à l’aide de réseaux bayésiens dynamiques profonds. Les réseaux neuronaux
récurrents sont souvent utilisés à cette fin, et une large gamme de méthodes ont été
développées, différant dans leur structure de modèle d’inférence et de modèle génératif.
Ces modèles DVAE ont deux points en commun lors de la modélisation de données
séquentielles : L’entrainement non supervisée est préservée, et la structure du VAE
est maintenue ; cela signifie que les modèles d’inférence et génératifs sont appris
conjointement en maximisant une borne inférieure du log de la probabilité marginale.

Le chapitre 2 (page 27) offre un aperçu approfondi de l’état de l’art concernant les
modèles génératifs entraînés de manière non supervisée ou auto-supervisée. Il aborde
l’apprentissage de représentations disentangled, multimodales, séquentielles, ainsi que
d’autres aspects pertinents.
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Contributions

Apprentissage et contrôle de la représentation avec un autoen-
codeur variationnel (Chapitre 3, page 75)

Comprendre et contrôler les représentations latentes dans les modèles génératifs
profonds est un problème difficile mais important pour l’analyse, la transformation et la
génération de divers types de données. Dans le traitement de la parole, s’inspirant des
mécanismes anatomiques de la phonation, le modèle source-filtre (Fant, 1970) considère
que les signaux de parole sont produits à partir de quelques facteurs latents continus
indépendants et physiquement interprétables, parmi lesquels la fréquence fondamentale
et les formants sont de première importance. Dans ce travail, nous montrons que le
modèle source-filtre de la production de la parole apparaît naturellement dans l’espace
latent d’un VAE (Kingma & Welling, 2014; Rezende et al., 2014) entraîné de manière
non supervisée sur un ensemble de données de signaux de parole naturelle. En utilisant
seulement quelques secondes de signaux étiquetés générés par un synthétiseur vocal
artificiel, nous montrons expérimentalement que la fréquence fondamentale et les
fréquences des formants sont encodées dans des sous-espaces orthogonaux de l’espace
latent du VAE et nous développons une méthode faiblement supervisée pour contrôler
de manière précise et indépendante ces facteurs de variation de la parole dans les
sous- espaces latents appris. Sans nécessiter d’informations supplémentaires telles
que du texte ou des données étiquetées manuellement, nous proposons un modèle
génératif profond de spectrogrammes de parole qui est conditionné par la fréquence
fondamentale et les fréquences des formants, et qui est appliqué à la transformation
des signaux de parole.

Autoencodeur variationnel dynamique multimodal pour
l’apprentissage de la représentation audiovisuelle de la parole
(Chapitre 4, page 103)

Nous présentons un autoencoder variationelle multimodal et dynamique (MDVAE)
appliqué à l’apprentissage non supervisé de la représentations de la parole audiovisuelle.
L’espace latent est structuré pour dissocier les facteurs dynamiques latents partagés
entre les modalités de ceux qui sont spécifiques à chaque modalité. Une variable latente
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statique est également introduite pour encoder l’information qui reste constante au fil du
temps au sein d’une séquence de parole audiovisuelle. Le modèle est entraîné de manière
non supervisée sur un ensemble de données de parole émotionnelle audiovisuelle, en
deux étapes: Dans la première étape, un autoencoder variationelle quantifié (VQ-VAE)
(Van den Oord et al., 2017) est appris indépendamment pour chaque modalité, sans
modèle temporel. La deuxième étape consiste à apprendre le modèle MDVAE sur la
représentation intermédiaire des VQ-VAE avant la quantification. La dissociation entre
l’information statique et dynamique, ainsi que entre l’information spécifique à chaque
modalité et communes aux différentes modalités, se produit au cours de cette deuxième
étape d’entraînement. Des expériences approfondies sont menées pour étudier comment
les facteurs latents de la parole audiovisuelle sont encodés dans l’espace latent du
MDVAE. Ces expériences comprennent la manipulation de la parole audiovisuelle, le
débruitage audiovisuel d’images de visages et la reconnaissance des émotions dans
la parole audiovisuelle. Les résultats montrent que le MDVAE combine efficacement
l’information audio et visuelle dans son espace latent. Ils montrent également que
la représentation statique apprise de la parole audiovisuelle peut être utilisée pour
la reconnaissance des émotions avec peu de données annotées, et avec une meilleure
précision par rapport aux modèles unimodaux de référence et à un modèle supervisé
état de l’art.

Un autoencodeur masqué pour l’apprentissage de la représen-
tation audiovisuelle de la parole (Chapitre 5, page 137)

Nous nous appuyons sur l’intérêt croissant pour les méthodes d’apprentissage auto-
supervisé, qui offrent des solutions prometteuses aux limitations de l’apprentissage
supervisé. Ces approches permettent d’apprendre à partir de vastes quantités de
données non annotées, souvent disponibles dans divers domaines. Dans ce contexte,
nous proposons le modèle VQ-MAE-AV, conçu spécifiquement pour l’apprentissage
auto-supervisé de la représentation de la parole audiovisuelle. Contrairement aux MAE
multimodaux existants qui traitent les données brutes de la parole audiovisuelle, le
modèle VQ-MAE-AV adopte un paradigme d’auto-apprentissage basé sur des représen-
tations discrètes de la parole audio et visuelle apprises par deux VQ-VAE pré-entraînés
(Van den Oord et al., 2017). Pour évaluer l’efficacité de l’approche proposée, le modèle
VQ-MAE-AV est pré-entraîné sur la base de données VoxCeleb2 (Chung et al., 2018) et
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affiné sur des ensembles de données standard de parole audiovisuelle émotionnelle. Les
résultats expérimentaux démontrent que la méthode proposée surpasse les méthodes
actuelles de reconnaissance des émotions dans la parole audiovisuelle. Ces résultats
soulignent le potentiel des approches d’apprentissage auto-supervisé et mettent en
avant l’efficacité du modèle VQ-MAE-AV dans l’apprentissage de représentations
robustes et efficaces de la parole audiovisuelle pour la reconnaissance des émotions.

Conclusion

Les principales conclusions de cette thèse peuvent être synthétisées en trois points :

L’apprentissage des représentations démêlées La représentation démêlée est
un élément central de cette recherche. Dans le Chapitre 3, une méthode VAE est
présentée pour apprendre et contrôler des facteurs de variation de la parole (comme
le pitch et les formants). Le Chapitre 4 explore une autre approche basée VAE aussi,
permettant le désentrelacement entre les modalités (spécifiques ou partagées) ainsi que
temporellement (statique ou dynamique). Ces études montrent que les représentations
démêlées appliquées à la reconnaissance des émotions (ER) offrent une meilleure
efficacité, performance et généralisation.

Transition des approches supervisées vers les approches non supervisées
et auto-supervisées Le passage à des approches non supervisées peut renforcer la
reconnaissance des émotions, améliorant la robustesse et l’adaptabilité des systèmes
ER. Bien que ce changement de méthodologie ne représente pas une révolution majeure
dans le domaine, il constitue un changement stratégique avec un potentiel considérable.
Ces méthodes non supervisées visent à établir des bases solides en apprenant des
représentations complexes, passant de la résolution de problèmes spécifiques à la
création d’un cadre plus universellement applicable.

Synergie dynamique et multimodale pour la reconnaissance des émotions
Cette thèse explore les émotions humaines via des représentations temporelles et mul-
timodales. Les émotions, phénomènes dynamiques, sont transmises par divers stimuli
sensoriels (audio et visuelle). Les chapitres 4 et 5 démontrent que cette combinaison
de modalités enrichit la compréhension émotionnelle.
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Appendix A

APPENDIX: SOURCE-FILTER VAE

A.1 Experimental setup details

VAE training To train the IS-VAE model (Bando et al., 2018; Girin et al., 2019b;
Leglaive et al., 2018), we use the Wall Street Journal (WSJ0) dataset (Garofalo et al., 1993),
which contains 25 hours of speech signals sampled at 16 kHz, including 52 female and 49
male speakers. The time-domain speech signals are converted to power spectrograms using
the STFT with a Hann analysis window of length 64 ms (1,024 samples) and an overlap
of 75%. The VAE input/output dimension is D = 513 (we only keep the non-redundant
part of the power spectrogram corresponding to positive frequencies) and the latent vector
dimension is set to L = 16. The VAE encoder and decoder networks each have three dense
layers. Their dimensions (input dimension, output dimension) are (513, 256), (256, 64)
and (64, 2× 16) for the encoder, and (16, 64), (64, 256) and (256, 513) for the decoder 1. A
hyperbolic tangent (tanh) activation function is used at each layer, except for the output
layers of the encoder and decoder where we use the identity function. We train the model
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate equal to 0.001.

Artificially generated speech data For a given factor of variation, the corresponding
latent subspace is learned using trajectories of speech power spectra generated with
Soundgen (Anikin, 2019), all other factors being arbitrarily fixed (see Section 3.3.2). For
f0, the trajectory contains 226 points (which corresponds to 3.6 seconds of speech) evenly
spaced in the range [85, 310] Hz, f1, f2 and f3 being fixed to 600 Hz, 2000 Hz, and 3000
Hz, respectively. For f1, the trajectory contains 401 points (which corresponds to 6.4
seconds of speech) evenly spaced in the range [200, 1000] Hz, f0, f2 and f3 being fixed to
140 Hz, 1600 Hz, and 3200 Hz, respectively. For f2, the trajectory contains 401 points
evenly spaced in the range [800, 2800] Hz, f0, f1 and f3 being fixed to 140 Hz, 500 Hz,

1. We have two parameter vectors (mean and variance) for the distribution of z at the encoder, whereas
we have only one single parameter vector (scale) for the distribution of x at the decoder, see 3.2 and 3.3.
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and 3200 Hz, respectively. For f3, the trajectory contains 241 points (which corresponds
to 3.9 seconds of speech) evenly spaced in the range [2000, 3200] Hz, f0, f1 and f2 are
fixed to 140 Hz, 500 Hz, and 1200 Hz, respectively. These four trajectories are illustrated
in Figure A.1. The amplitude of the formants is fixed at 30dB, and their bandwidth
is automatically calculated from the formant frequencies using a formula derived from
phonetics studies. Quoting the documentation of Soundgen (Anikin, 2019), “above 500 Hz
[the bandwidth] follows the original formula known as “TMF-1963” (Tappert et al., 1963),
and below 500 Hz it applies a correction to allow for energy losses at low frequencies
(Khodai-Joopari & Clermont, 2002). Below 250 Hz the bandwidth starts to decrease again,
in a purely empirical attempt to achieve reasonable values even for formant frequencies
below the ordinary human range. See the internal function soundgen:::getBandwidth().”
The regression models used to control the speech factors of variation in the latent space (see
Section 3.3.4) are learned on the same trajectories, but using the values of the Soundgen
input parameters.

: fundamental frequency : 1st formant frequency

: 2nd formant frequency : 3rd formant frequency

Figure A.1 – Trajectories of speech power spectra generated with Soundgen (Anikin, 2019),
where only one factor of variation globally varies in each trajectory. From top to bottom
and from left to right: the trajectory of the fundamental frequency f0, the trajectory of
the formant f1, the trajectory of the formant f2 and the trajectory of the formant f3.
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A.2 Correlation matrices obtained from MFCCs and
short-term magnitude spectra

(a) MFCC (b) Short-term magnitude spectrum

Figure A.2 – Correlation matrix of the latent subspace basis vectors learned for MFCC
(top) and short-term magnitude spectrum (bottom).

We conducted experiments with the proposed method (i.e., learning the subspace
for each factor of variation and then learning a regression model to move in the learned
subspace) on the following representations: MFCC and short-term magnitude spectrum
(i.e., columns of the STFT magnitude spectrogram). We used the same artificial dataset
as for the VAE latent space representation. Figures A.2(a) and A.2(b) below show the
correlation matrix of the latent subspace basis vectors learned for the MFCC and short-term
magnitude spectrum, respectively. Similarly to what we did with the VAE, the dimension
of the subspaces is determined by applying a threshold on the data variance (≥80%). For
the dimension of the f0 subspace with the MFCCs, we actually need 15 components to
keep 80% of the data variance, so here we take only the principal one to facilitate the
reading.

A.3 Additional qualitative results

Examples of generated speech spectra
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(a) Generated spectra with 3 different
values of f0.

(b) Generated spectra with 3 different
values of f1.

(c) Generated spectra with 3 different
values of f2.

(d) Generated spectra with 3 different
values of f3.

Figure A.3 – Power spectra (solid black line) and spectral envelopes (dashed orange line)
obtained using the conditional prior in 3.13 (generalized to conditioning on multiple
factors). Each subfigure contains three plots where we vary the value of one single factor
at a time: f0 in (a), f1 in (b), f2 in (c), and f3 in (d).
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Examples of transformed speech spectrograms

(a) Original spectrogram of the vowel /ae/ ut-
tered by a male speaker.

(b) Transformation of the fundamental fre-
quency f0.

(c) Transformation of the 1st formant fre-
quency f1.

(d) Transformation of the 2nd formant fre-
quency f2.

(e) Transformation of the 3rd formant fre-
quency f3.

Figure A.4 – Figure (a) shows the spectrogram of a vowel uttered by a male speaker.
Figures (b), (c), (d) and (e) show transformations of this spectrogram with the proposed
method, where we vary f0, f1, f2, and f3, respectively. The target value for these factors
is indicated by the dashed blue line.

181



Figure A.5 – Each line in this figure corresponds to a speech signal uttered by a different
speaker. Left: spectrogram of the original speech signal; Middle: transformed spectrogram
where the fundamental frequency is set constant over time; Right: transformed spectrogram
where the original voiced speech signal (left) is converted into a whispered speech signal
(i.e., the fundamental frequency is removed).
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Appendix B

APPENDIX: MDVAE

B.1 The detailed architecture of the vector quantized
MDVAE

This section details the architecture of the VQ-MDVAE model, starting with the
VQ-VAE and then the MDVAE.

Table B.1 – The architecture of the VQ-VAE-visual.

Layer Activation Output dim
Input - - 3 × 64 × 64

Encoder

Conv2D(3, 64, 4, 2, 1) ReLu 64 × 32 × 32
Conv2D(64, 128, 4, 2, 1) ReLu 128 × 16 × 16
Conv2D(128, 128, 4, 2, 1) ReLu 128 × 8 × 8

2 × Residual Stack ReLu 128 × 8 × 8
Conv2D(128, 32, 1, 1) - 32 × 8 × 8

Decoder

ConvT2D(32, 128, 1, 1) - 128 × 8 × 8
2 × Residual Stack (T) ReLu 128 × 8 × 8

ConvT2D(128, 64, 4, 2, 1) ReLu 128 × 16 × 16
ConvT2D(64, 64, 4, 2, 1) ReLu 64 × 32 × 32
ConvT2D(64, 3, 4, 2, 1) - 3 × 64 × 64

Conv2D(in_channel, out_channel, kernel_size, stride, padding)
Residual Stack (T) = { 2 × Conv(T)2D(128, 128, 3, 1, 1)}
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Table B.2 – The architecture of the VQ-VAE-audio.

Layer Activation Output dim
Input - - 1 × 513

Encoder

Conv1D(1, 16, 4, 2, 1) Tanh 16 × 256
Conv1D(16, 32, 4, 2, 1) Tanh 32 × 128
Conv1D(32, 32, 3, 2, 1) Tanh 32 × 64

1 × Residual Stack Tanh 32 × 64
Conv1D(32, 8, 1, 1) - 8 × 64

Decoder

ConvT1D(8, 32, 1, 1) - 32 × 64
1 × Residual Stack (T) Tanh 32 × 64

ConvT1D(32, 32, 3, 2, 1) Tanh 32 × 128
ConvT1D(32, 16, 4, 2, 1) Tanh 16 × 256
ConvT1D(16, 1, 4, 2, 0) - 1 × 513

Conv1D(in_channel, out_channel, kernel_size, stride, padding)
Residual Stack (T) = { 2 × Conv(T)1D(32, 32, 3, 1, 1)}

VQ-VAE

The VQ-VAE developed for audio or images consists of three parts: (i) an encoder that
maps an image to a sequence of continuous latent variables, referred to as the intermediate
representation in the paper; (ii) a shared codebook that is used to quantize these continuous
latent vectors to a set of discrete latent variables (each vector is replaced with the nearest
vector from the codebook); and (iii) a decoder that maps the indices of the vectors from
the codebook back to an image. The architectures of the visual and audio VQ-VAEs are
described in tables B.1 and B.2, respectively.

MDVAE

MDVAE is decomposed into two models: (i) the inference model (encoder), further
decomposed into four inferences for each latent variable, represented by Gaussian distri-
butions whose parameters are determined via a neural network. The prior distributions
for the dynamic latent variables are also trained, except for the static latent space, where
the prior is assumed to be a standard normal distribution. (ii) The second part comprises
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Figure B.1 – (Better zoom in) The overall architecture of the MDVAE.

two decoders, one for the visual and the other for the audio modality. Structured only
with linear layers and non-linear activation functions, the input of these two decoders
are the concatenation of w, z(av)

t , z(v)
t and w, z(av)

t , z(a)
t for the visual and audio modalities,

respectively. Table B.3 and Figure B.1 present the details of the MDVAE architecture. The
figure overviews the MDVAE architecture, including the connections between the blocks
and the variables. The table complements the figure by detailing each block individually,
including its dimensions, activation functions, and other relevant information. Together,
the table and figure comprehensively describe the MDVAE architecture.

B.2 Visualization of the MDVAE static latent space

2D visualizations of the static latent space of the MDVAE are obtained using dimension
reduction methods. Figure B.2(a) shows visualizations obtained with PCA and ISOMAP
for one single speaker in the MEAD dataset, and the colors indicate the emotion labels.
It can be seen that different emotions form different clusters, and the neutral emotion is
approximately in the middle. Figure B.2(b) corresponds to the exact visualization, but
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Table B.3 – The architecture details of the MDVAE. The blocks from B1 to B11 are
illustrated in Figure B.1 to better understand their interactions.

Block Layer Activation Output dim.

B1 Linear(32 · 8 · 8, 1024) ReLu 1024
Linear(1024, 512) ReLu rv = 512

B2 Identity - ra = 512

B3

GRU(rv + ra, 256, 1, True) - 2 · 256
Linear(2 · 256, 256) Tanh 256
σw: Linear(256, lw) - lw

µw: Linear(256, lw) - lw

B4

GRU(lav, 128, 1, False) - hav

Linear(128, 64) ReLu 64
Linear(64, lav) - lav

Linear(64, lav) - lav

B5

Linear(rv + ra + hav + lw, 256) ReLu 256
Linear(256, 128) ReLu 128

σz(av) : Linear(128, lav) - lav

µz(av) : Linear(128, lav) - lav

B6

GRU(la, 128, 1, False) - ha

Linear(128, 32) ReLu 32
Linear(32, la) - la

Linear(32, la) - la

B7

Linear(ra + ha + lw, 128) Tanh 128
Linear(128, 32) Tanh 32

σz(a) : Linear(32, la) - la

µz(a) : Linear(32, la) - la

B8

GRU(lv, 128, 1, False) - hv

Linear(128, 64) ReLu 64
Linear(64, lv) - lv

Linear(64, lv) - lv

B9

Linear(rv + hv + lw, 256) ReLu 256
Linear(256, 128) ReLu 128

σz(v) : Linear(128, lv) - lv

µz(v) : Linear(128, lv) - lv

B10
Linear(lv · lav · lw, 512) ReLu 512

Linear(512, 1024) ReLu 1024
Linear(1024, 2048) ReLu 2048

B11
Linear(la · lav · lw, 128) Tanh 128

Linear(128, 256) Tanh 256
Linear(256, 512) Tanh 512

GRU(input_size, hidden_size, num_layers, bidirectional)
Linear(input_size, output_size)
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the colors now indicate the emotion intensity levels. For each emotion, the intensity level
increases continuously from the middle to the outside of the emotion cluster. Finally,
Figure B.2(c) shows the identity clusters for six different speakers (left figure) and the
emotion clusters for two speakers (figure on the right), both obtained using PCA. 3D
visualizations and other dimension reduction methods are available on the companion
website.

B.3 Interpolation in static latent space

In this section, we exploit the static latent space of MDVAE to perform temporal
interpolation between two sequences. The interpolation is performed according to the
following equation:

w̃t = αtw + (1− αt)w′; αt = (T − t)/(T − 1) (B.1)

The visual sequence is generated as a following:

pθ(x(v)|z(av), z(v), w̃) =
∏

t

pθ(x(v)
t |z

(av)
t , z(v)

t , w̃t) (B.2)

We illustrate this interpolation with qualitative examples. Figure B.3(a) interpolates
the emotions while keeping the same identity. Figure B.3(b) interpolates the identity while
keeping the same emotion.

B.4 Conditional generation experiment

MDVAE is a generative model, able to generate new data by sampling following the
distribution of the prior. Being hierarchical, we are also able to generate and edit some
variation factors while keeping some others.

Generation of audio sequences We illustrate the ability of the MDVAE model to
generate speech spectrograms with a qualitative example. Figures B.4(c) and B.4(b) show
spectrograms generated by sampling according to the prior distribution of z(av) and z(a),
respectively, conditioned on the first thirty frames (the lighted block in the figures). These
first thirty frames (with a duration of 1s) are obtained through analysis-resynthesis. After
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(a) Visualization of the emotion clusters for a single speaker using PCA
(left) and ISOMAP (right).

(b) Visualization of the emotional intensity levels for the same speaker as
in Figure B.2(a) using PCA (left) and ISOMAP (right).

(c) Visualization of the identity clusters for six speakers using PCA (left)
and visualization of the emotion clusters for two speakers using PCA (right).

Figure B.2 – 2D visualizations of the static latent space.

1s, we switch the MDVAE to pure generation mode. We can see that the spectrograms
generated with the prior distribution of z(av) exhibit a harmonic structure.

Generation of visual sequences Similarly, we illustrate the ability of the MDVAE
model to generate visual frames with a qualitative example. Figure B.5(a) and B.5(b)
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(a) Same identity, different emotions.

(b) Same emotion, different identities.

Figure B.3 – Qualitative results on the interpolation of w. (top) the interpolation is done
with the same person but between two different emotions; (bottom) the interpolation is
done with the same emotion but between two different persons.

respectively illustrate this by sampling following the Gaussian prior of z(v) and z(av),
conditioned on the analyzed-resynthesized first frame of the sequence. This conditioning
strategy to the first frame allows the generation mode to have temporally coherent
sequences. The first lightened lines correspond to the original visual sequences; the other
lines are three different generations. As expected, we have a smooth transition from the
analyzed-resynthesized frame to the generated one.
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(a) Original spectrogram of a male speaker.

(b) sampling according to the Gaussian distribu-
tion prior of z(av).

(c) sampling according to the Gaussian distribu-
tion prior of z(a).

Figure B.4 – Example of speech power spectrogram reconstructed (0-1 s) and generated
(1-2.6 s) by an MDVAE model.
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(a) we sample according to the Gaussian distribution prior of z(v).

(b) we sample according to the Gaussian distribution prior of z(av).

Figure B.5 – We illustrate the ability of the MDVAE model to generate visual frames with
a qualitative example. The figure illustrates this by sampling following the Gaussian prior
of z(v) and z(av), conditioned on the analyzed-resynthesized first frame of the sequence.
This conditioning strategy to the first frame allows the generation mode to have temporally
coherent sequences. The first lightened lines correspond to the original visual sequences;
the other lines are three different generations. As expected, we have a smooth transition
from the analyzed-resynthesized frame to the generated one.

B.5 Generalization to other modalities

To generalize to other modalities, we trained MDVAE on two other types of modalities:

Visual Lip landmarks-MDVAE We trained VQ-MDVAE on the MEAD database,
replacing the audio modality with the lip landmarks only.
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When training the MDVAE on the visual part and lip landmarks, one would intuitively
expect to find the visual movement of the lips and their landmarks in the shared dynamical
latent space z(av). The visual modality-specific latent space would contain other visual
information, such as eyelid and head movements. Finally, emotion and identity would be
found in the static latent space w.

We conducted qualitative analyses involving the exchange of latent variables between
sequences, a process outlined in detail in Section 4.3.4. Figure B.6 depicts one such ex-
periment: the red and blue boxes contain original sequences (image sequence + landmark
sequence), while the resulting four sequences within the grey boxes represent the qual-
itative outcomes. The two grey blocks on the left showcase sequences reconstructed by
interchanging the specific dynamical variable z(v) related to the visual modality. Notably,
the lip movements and landmarks remain consistent, while the eye movements undergo
changes, such as an eye blink depicted in the lower left block. The two grey blocks on
the right showcase sequences reconstructed by interchanging the multimodal dynamical
variable z(av). Notably, the eye movements remain consistent, while lip movements and
landmarks synchronize with the target sequence. Finally, the four blocks jointly show that
w encodes identity and overall emotional state.

Double view-MDVAE We also trained VQ-MDVAE on the MEAD database, replacing
the audio modality with the visual left view.

Intuitively, one would expect to find all visual movement, including lip and eyelid
movements, in the shared dynamical latent space z(av). The latent spaces specific to the
two modalities would not encode any information. Finally, emotion and identity would be
found in the static latent space w.

As before, we have carried out a qualitative analysis involving the exchange of latent
variables between sequences. Figure B.7 depicts one such experiment: the red and blue
boxes contain original sequences (front view sequence + front left landmark sequence), while
the resulting sequences below within the grey boxes represent the qualitative outcomes,
interchanging the multimodal dynamical variable z(av). Notably, the eye movements, lip
movements, and facial movements synchronize with the target sequence.
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Figure B.6 – The two sequences in the red and blue boxes represent visual sequences
and associated lip landmarks for two different individuals, and the sequences in the gray
box represent sequences generated by MDVAE trained on the visual modality and the
landmarks; each sequence is generated by interchanging the latent spaces of the two
sequences on top.

Figure B.7 – The two sequences in the red and blue boxes represent visual sequences of two
different views: a left view and a front view, and the sequences in the gray box represent
sequences generated by MDVAE trained on the visual modality of the two different views;
each sequence is generated by interchanging the latent spaces of the two sequences on top.
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Appendix C

APPENDIX: VQ-MAE-AV

C.1 Audiovisual speech reconstruction quality

(a) Peak Signal-to-Noise Ratio (PSNR in dB) on
the y-axis as a function of masking ratio (%) on
the x-axis.

(b) Signal Distortion Ratio (SDR in dB) on the
y-axis as a function of masking ratio (%) on the
x-axis.

Figure C.1 – Quantitative results of the visual reconstruction (a) and audio reconstruction
(b). The solid line represents the mean across the test examples of the VoxCeleb2 dataset,
and the shaded area corresponds to the standard deviation.

In this experiment, we evaluate the reconstruction quality of VQ-MAE-AV when applied
to masked audiovisual speech data. The model is fed with a sequence of tokens, some
of which have been masked (we will study the reconstruction performance for different
masking ratios), and it is used to predict the masked tokens, i.e. to reconstruct the complete
audiovisual speech sequence from partially observed tokens.

For this experiment, we compare VQ-MAE-AV-12 to VQ-MAE-A-12 (A for audio)
and VQ-MAE-V-12 (V for visual), which are the unimodal versions of VQ-MAE-AV. The
average quality performance for the speech and visual modalities is evaluated using the
VoxCeleb2 test set. The Peak Signal-to-Noise Ratio (PSNR in dB) is used to assess the
quality of the resynthesized visual data, the and Signal-to-Distortion Ratio (SDR in dB)
is used to assess the quality of the resynthesized audio data.

Figures C.1(a) and C.1(b) present the PSNR and SDR curves, respectively, for the
reconstruction quality of the visual and audio modalities as a function of the masking ratio.
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Table C.1 – Performance of VQ-MAE-AV using the joint fusion strategy for both encoder
and decoder (without contrastive learning), fine-tuned on RAVDESS for different encoder
depths.

Method Parm. (M) Acc. (%) f1-score (%)
VQ-MAE-AV-6 8.5 75.7 76.0
VQ-MAE-AV-12 13.5 81.5 80.1
VQ-MAE-AV-16 16.8 82.4 82.4
VQ-MAE-AV-20 20.2 81.3 81.3

Table C.2 – Performance of VQ-MAE-AV using the cross fusion strategy for both encoder
and decoder (with contrastive and generative learning), fine-tuned using different masking
strategies.

Masking strategy Ratio (%) Acc. (%)

Fixed
70 84.0
80 84.2
90 82.9

Dirichlet distribution - 84.8

Notably, VQ-MAE-AV outperforms VQ-MAE-V for masking ratios greater than 50%. At a
masking ratio of 90%, VQ-MAE-AV achieves a significant 3.68 dB gain in PSNR over VQ-
MAE-V. For the audio modality, VQ-MAE-AV outperforms VQ-MAE-A for masking ratios
greater than 40% and records a gain of 2.87 dB in SDR at 90% of masking. In summary,
this experiment highlights the effectiveness of leveraging multimodality for improving
reconstruction quality. Additional qualitative results are presented in the companion
website of this paper 1. In particular, we show that VQ-MAE-AV can reconstruct certain
information in a modality even when it is completely masked (masking ratio of 100%). This
is particularly interesting for the audio modality, as the model attempts to reconstruct
certain phonemes and speech structures from the visual modality based solely on lip
movements.

C.2 Exploring supplementary abstract study

Impact of the encoder depth Table C.1 shows the impact of encoder depth on emotion
recognition performance by varying the number of attention blocks (L), where a model
with n attention blocks in the encoder will be denoted by VQ-MAE-AV-n. The results
show that increasing the number of blocks in the encoder leads to improved performance

1. https://samsad35.github.io/VQ-MAE-AudioVisual/
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Figure C.2 – VQ-MAE-S model structure

to a certain extent. However, when the number of blocks becomes too high (as in the case
of VQ-MAE-AV-20 ), there is no further improvement, and performance actually decreases
by 1.1% accuracy compared to VQ-MAE-AV-16.

Effect of Masking Strategy Table C.2 compares the performance of two masking
techniques: fixed ratio masking (70%, 80%, and 90%) for both modalities and masking
based on a Dirichlet distribution sampled with parameters (αa = αv = 1), as discussed
in the paper. Notably, masking according to the Dirichlet distribution outperforms fixed
ratio masking, achieving an accuracy gain of 0.8, 0.6, and 1.9, respectively, compared to
fixed ratios of 70%, 80%, and 90%.

C.3 VQ-MAE for audio speech representation

Description We introduce the vector quantized MAE for speech (VQ-MAE-S), a self-
supervised model applied to emotion recognition in speech signals. VQ-MAE-S is an
adapted version of the Audio-MAE model proposed in (Baade et al., 2022; Gong, Lai, et
al., 2022; Xu et al., 2022). Unlike Audio-MAE, VQ-MAE-S operates on the discrete latent
representation of a vector-quantized variational autoencoder (VQ-VAE) (Van den Oord
et al., 2017) instead of the spectrogram representation.

Set-up and fine-tuning The speech VQ-VAE training setup and architecture closely
resemble those discussed in Section 5.3.1. The notable difference is in the spectrogram
pre-processing, with the overlap parameter adjusted to 75% (as opposed to 68%) for this
particular case.

Regarding the architecture of VQ-MAE-S, both the encoder and decoder are comprised
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Table C.3 – Overall results (accuracy (%) and f1-score (%)) on the four evaluation
databases.

DATASET RAVDESS-Speech RAVDESS-Song IEMOCAP EMODB
Metrics Accuracy f1-score Accuracy f1-score Accuracy f1-score Accuracy f1-score

Self-attention audio (Chumachenko et al., 2022) 58.3 - - - - - - -
SSAST (Gong, Lai, et al., 2022) (Patch-tf ) - - - - 54.3 - - -
MAE-AST (Baade et al., 2022) (Patch-tf ) - - - - 58.6 - - -

SpecMAE-12 (Patch-tf ) 52.2 52.0 54.5 53.9 46.7 45.9 57.2 57.0
VQ-MAE-S-12 (Patch-tf ) 76.7 75.9 84.0 84.0 61.9 61.2 85.7 85.8

VQ-MAE-S-12 (Patch-tf ) + Query2Emo 78.2 77.5 83.7 83.4 63.1 62.5 88.4 88.3
VQ-MAE-S-12 (Frame) 80.8 80.5 84.2 84.3 65.2 64.9 87.0 87.0

VQ-MAE-S-12 (Frame) + Query2Emo 84.1 84.4 85.8 85.7 66.4 65.8 90.2 89.1

of successive attention blocks. Specifically, there are 12 blocks in the encoder and four
blocks in the decoder. Training parameters are identical to those in Section 5.3.1.

Emotional databases for fine-tuning and evaluation We fine-tune and evaluate
the proposed approaches on four emotional speech audio databases.

— RAVDESS-Speech (Livingstone & Russo, 2018): This English database consists
of 1440 audio files recorded by 24 professional actors and labeled with eight different
emotional expressions (neutral, calm, happy, sad, angry, fearful, disgust, surprised).

— RAVDESS-Song (Livingstone & Russo, 2018): Same as the RAVDESS-Speech
database, but utterances are sung a capella. This database contains a total of 1012
audio files recorded by 23 actors and labeled with six emotions (neutral, calm,
happy, sad, angry, and fearful).

— IEMOCAP (Busso et al., 2008): This database comprises approximately 12 hours of
audio, annotated with several emotions, but only four emotions (neutral, happy, an-
gry, and disgusted) have been retained to ensure a balanced distribution. It consists
of dyadic sessions in which actors participate in improvisations or scripted scenarios.

— EMODB (Burkhardt et al., 2005): The German EMODB database comprises 535
utterances spoken by ten professional speakers. It includes seven emotions (anger,
boredom, anxiety, happiness, sadness, disgust, and neutral).

Performance on speech emotion recognition Table C.3 compares the SER perfor-
mance (accuracy and F1-score) of the proposed VQ-MAE-S model (with classification
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from the [CLS] token), its improved version VQ-MAE-S + Query2Emo, the SpecMAE-12
baseline, and three state-of-the-art methods: SSAST (Gong, Lai, et al., 2022), MAE-AST
(Baade et al., 2022), and a supervised self-attention-based approach (Chumachenko et al.,
2022) on the four evaluation databases. Two configurations of masking are considered:
random frame masking (Frame) and random time-frequency patch masking (Patch-tf ).
The results indicate that the proposed models outperform all other methods across all
databases. For random time-frequency patch masking (Patch-tf ), VQ-MAE-S achieves
15.2% better accuracy than SpecMAE, 7.6% better accuracy than SSAST, and 3.3% better
accuracy than MAE-AST on the IEMOCAP dataset. The accuracy improvement over
the supervised method on the RAVDESS-Speech database is 18.4%. Query2Emo also
contributes to the SER performance, with a gain of 1.5%, 1.2%, and 2.7% compared to
VQ-MAE-S (Patch-tf ) alone on RAVDESS-Speech, IEMOCAP, and EMODB, respectively.

We conducted an ablation study to assess the importance of several hyperparameters
of the proposed VQ-MAE-S model (impact of the masking ratio, the masking strategy,
the continuous embedding token size, etc.), which are presented in Sadok, Leglaive, and
Séguier, 2023.
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Figure C.3 – VQ-MAE-AU model structure

C.4 VQ-MAE for visual and action units representa-
tion

Description We introduce another multimodal VQ-MAE variant, denoted as VQ-MAE-
AU, where the video modality (a sequence of images) and the action unit modality serve
as inputs to the model. In both the encoder and decoder, we employ the "self-attention
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Original Visual modality

Action units

Masked all the visual modality The sequence reconstructed with our method

Figure C.4 – Cross-modal: from action units to images.

Original Visual modality

Action units Masked all the AUs The AUs reconstructed with our method

Figure C.5 – Cross-modal: from images to action units.

fusion" technique to merge these two modalities (refer to Section 5.2.5 for details). In this
model, we condition the visual modality on the first frame through a cross-attention block
in both the encoder and the decoder, as illustrated in Figure C.3. This block is used to
learn identity information from the first frame.

Set-up The VQ-MAE-AU model is trained on the multi-view emotional audiovisual
dataset (MEAD) (K. Wang et al., 2020). Face images in the MEAD dataset are cropped,
resized to a 112x112 resolution, and aligned using Openface (Baltrušaitis et al., 2016).
Additionally, Openface is employed for extracting action units. The action units in Openface
have a scale ranging from 0 to 1, which is discretized in our study to a scale of 0 to 50
(just multiply by 50 and take the integer value).
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Cross-modal and transformation Figures C.4 and C.5 demonstrate the cross-model
generation process from action units to image sequence and from image sequence to
action units, respectively. In Figure C.4, our model showcases the reconstruction of the
entire image sequence based on unit actions and conditioned by the initial image. The
reconstruction captures lip and eye movements. Specifically, the bottom row in the original
AUs corresponds to AU43. We have indicated three red rectangles responsible for eye
blinking. The generated sequence exhibits synchronous eye blinking within temporal
windows where AU43 activation occurs, demonstrating the faithful translation of this
action unit.
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Appendix D

APPENDIX: GRAPHICAL INTERFACES

A graphical interface was developed in Python using the Tkinter library (Lundh, 1999)
for each model presented in this manuscript. These interfaces not only facilitated the
generation of a large volume of qualitative results but also significantly enhanced the
user-friendliness of our trained models.

D.1 Graphical interface for source-filter VAE

123

6 5
4

7

Figure D.1 – User Interface for Source-Filter VAE: 1 Click the button to open a dialog
box for loading an audio file onto your computer. 2 Press the button to listen to the
downloaded audio. 3 Set Praat to display formants. 4 Choose the factor of variation to be
controlled. Simply draw a trajectory on the spectrogram with your mouse, as demonstrated
in the yellow figure. 5 Use this button if you wish to remove the factor of variation.
6 Delete the trajectory of the new factor of variation. 7 Click here to activate the
transformation.
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D.2 Graphical interface for VQ-MDVAE
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Figure D.2 – User Interface for VQ-MDVAE: 1 Click the ".json" button to open a dialog
box for selecting desired model parameters. Load the model by clicking the "MDVAE"
button. 2 Manage the number of images in the sequence. 3 and 4 Load audiovisual
data; buttons at the bottom of each sequence provide options for zooming in on visual
sequences, animating the sequence, tracking action units, and playing the respective audio.
5 and 6 Manage the latent vectors of the two audiovisual sequences; for example, in this
example, keep the w of the sequence at the top ( 3 ) and the other latent vectors of the
sequence at the bottom ( 4 ). 7 Click the "Run" button to synthesize the results. 8 View
the audiovisual output of the VQ-MDVAE model.
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D.3 Graphical interface for VQ-MAE-AV

1
2

3 4 5

6

7 8

Figure D.3 – User Interface for VQ-MAE-AV: 1 Click the "Config file" button to open a
dialog box for selecting model parameters. Load the model by clicking the "VQ-MAE-AV"
button. 2 Use the "Load data" button to open a dialog box for downloading a video to
your computer. The display in 3 opens automatically. 7 Click the "Run" button, and the
displays 4 (showing masked data) and 5 (illustrating reconstruction using our model)
will open. 6 Use the slider to adjust the masking percentage. 8 Click the "Save" button
to save all the data (input, masked data, and reconstruction) to your desired folder path.
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Titre : Apprentissage de représentation de la parole audiovisuelle pour la reconnaissance des
émotions.

Mot clés : Apprentissage profond des représentations, modèle génératif profond, reconais-

sance des émotions, parole audiovisuelle.

Résumé : La rareté des données étiquetées
constitue un défi majeur dans la reconnais-
sance des émotions audiovisuelles. Pour re-
lever ce défi, des méthodes récentes d’ap-
prentissage non supervisé et auto-supervisé
ont émergé, visant à réduire la dépendance
aux données étiquetées en apprenant des re-
présentations robustes applicables à diverses
tâches. Les représentations apprises doivent
répondre aux critères d’informativité, de gé-
néralisabilité, d’interprétabilité et de contrôla-
bilité. Pour cela, les modèles génératifs pro-
fonds ont gagné en importance dans l’appren-

tissage à partir de données complexes et de
grande dimension telles que les images, l’au-
dio et le texte. Cette thèse vise trois objectifs
principaux : Premièrement, développer des
modèles génératifs pour l’apprentissage non-
supervisé ou auto-supervisé de représenta-
tions de la parole audiovisuelle ; Deuxième-
ment, structurer ces modèles génératifs afin
d’apprendre des représentations désentrela-
cées pour améliorer l’interprétabilité de nos
modèles ; Enfin, analyser les performances et
l’efficacité de ces modèles pré-entraînés pour
la tâche de reconnaissance des émotions.

Title: Audiovisual speech representation learning applied to emotion recognition

Keywords: Deep representation learning, deep generative modeling, emotion recognition,

audiovisual speech processing.

Abstract: The scarcity of labeled data
presents a major challenge in audiovisual
speech emotion recognition. Furthermore, the
complexity and subjectivity of emotions intro-
duce ambiguity in their representation, which
is consequently reflected in data and methods
relying on supervised learning. To address
this challenge, recent unsupervised and self-
supervised learning methods have emerged,
aiming to minimize the reliance on labeled
data by learning robust representations ap-
plicable to various tasks. Effective represen-
tations should meet informativeness, general-
izability, interpretability, and controllability cri-

teria, where deep generative models have
gained prominence for their success in learn-
ing from complex and high-dimensional data
like images, audio, and text, fulfilling the above
criteria. This thesis pursues three primary
objectives: First, developing and expanding
generative models for unsupervised or self-
supervised learning of audiovisual speech rep-
resentation learning; Second, structuring the
generative model in order to learn disen-
tangled representations to improve the inter-
pretability of our models; And finally, analyzing
the performance and efficiency of these mod-
els applied for the emotion recognition task.
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