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Abstract

Ethical 1 Artificial intelligence (AI) is a set of practices and theories within the field of AI and

machine learning (ML) that aim to align AI practices with moral values, addressing the potential

impact on human lives. The ethical principles that technologies are expected to satisfy may vary

between the organizations and countries that formulated them. There are multiple versions of

possible ethical guidelines for ethical AI. Some of the common ethical AI principles include [1, 2]:

• fairness and non-discrimination,

• privacy,

• interpretability and explainability,

• safety and reliability.

Our work focuses on fairness, causality, and privacy in the context of machine learning and AI

systems. We see causality as a tool that can soften trade-offs and foster synergies among diverse

aspects of ethical AI. The general contribution of this thesis includes the holistic approach to

Ethical AI, which aims to incorporate methods for fairness, privacy, and causality. The specific

contributory elements are structured around chapters, each addressing specific aspects:

Chapter 7: BaBE - Enhancing Fairness via Estimation of Latent Explaining Variables proposes

a novel approach using Expectation-Maximization to estimate the conditional distribution of

a latent explaining variable, laying the foundation for data pre-processing to improve fairness,

accuracy, and explainability.

Chapter 8: Underrepresentation and Sampling Bias in Machine Learning systematically analyzes

the impact of sample size and underrepresentation on discrimination in algorithmic decisions,

linking the analysis to bias mitigation techniques.

Chapter 9: Causal Discovery under Local Privacy compares the performance of different locally

private mechanisms in the context of causal discovery tasks, emphasizing the advantages of using

geometric obfuscation methods.

Chapter 10: On the Need and Applicability of Causality for Fair Machine Learning emphasizes

the necessity of incorporating causality into fair AI, connecting causality in fair AI with European

AI legislation and discussing practical requirements.

Chapter 11: Dissecting Causal Biases explores causal biases and develops closed-form ex-

pressions for various sources, including confounding, colliding, measurement, and introduces

interaction bias.
1Other terms include ’Trustworthy’, ’Reliable’, ’Human Centric’
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Chapter 12: Gender and Sex Bias in COVID-19 Data provides a comprehensive review of

the literature on gender and sex bias in COVID-19 data, using causal graphs for analysis and

emphasizing the importance of explainability and causality.

The thesis contributes to the field by offering insights and novel approaches for achieving

better trade-offs between fairness, accuracy, privacy, and explainability in AI systems. It suggests

future research directions and advocates for a holistic approach to ethical AI development.



Résumé

Intelligence Artificielle Éthique (IA) regroupe un ensemble de pratiques et de théories dans le

domaine de l’IA et de l’apprentissage automatique visant à aligner les pratiques de l’IA sur des

valeurs morales, en abordant l’impact potentiel sur la vie humaine. Les principes éthiques que

les technologies sont censées satisfaire peuvent varier selon les organisations et les pays qui les

ont formulés. Il existe plusieurs versions de directives éthiques possibles pour une IA éthique.

Certains des principes éthiques communs de l’IA incluent:

- équité et non-discrimination,

- interprétabilité et explicabilité,

- sécurité et fiabilité.

Notre travail se concentre sur l’équité, la causalité et la vie privée dans le contexte de l’apprentissage

automatique et des systèmes d’IA. Nous considérons la causalité comme un outil capable

d’atténuer les compromis et de favoriser des synergies entre les divers aspects de l’IA éthique. La

contribution générale de cette thèse inclut une approche holistique de l’IA éthique, qui vise à

incorporer des méthodes pour l’équité, la vie privée et la causalité. Les éléments spécifiques de

contribution sont structurés autour des chapitres, chacun abordant des aspects spécifiques:

Chapitre 7: BaBE - Amélioration de l’équité via l’estimation des variables explicatives latentes

propose une nouvelle approche utilisant l’espérance-maximisation pour estimer la distribution

conditionnelle d’une variable explicative latente, jetant les bases du prétraitement des données

pour améliorer l’équité, la précision et l’explicabilité.

Chapitre 8: Sous-représentation et biais d’échantillonnage en apprentissage automatique analyse

systématiquement l’impact de la taille de l’échantillon et de la sous-représentation d’un groupe sur

la discrimination dans les décisions algorithmiques, liant l’analyse aux techniques d’atténuation

des biais. - Chapitre 9: Découverte causale sous la confidentialité locale compare les performances

de différents mécanismes localement privés dans le contexte des tâches de découverte causale,

mettant en avant les avantages des méthodes d’obfuscation géométrique.

Chapitre 10: Sur la nécessité et l’applicabilité de la causalité pour un apprentissage automatique

équitable souligne la nécessité d’incorporer la causalité dans une IA équitable, reliant la causalité

dans l’IA équitable à la législation européenne sur l’IA et discutant des exigences pratiques.

Chapitre 11: Dissection des biais causaux explore les biais causaux et développe des expressions

mathématiques pour diverses sources, notamment la confusion, la collision, la mesure, et introduit

le biais d’interaction.

Chapitre 12: Biais de genre et de sexe dans les données COVID-19 offre une revue complète de la

littérature sur les biais de genre et de sexe dans les données COVID-19, utilisant des graphiques
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causaux pour l’analyse et soulignant l’importance de l’explicabilité et de la causalité.

La thèse contribue au domaine en offrant des perspectives et des approches novatrices pour

obtenir de meilleurs compromis entre l’équité, la précision, la vie privée et l’explicabilité dans

les systèmes d’IA. Elle suggère des orientations de recherche future et plaide en faveur d’une

approche holistique du développement de l’IA éthique axée sur les données.
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Introduction



1
Ethical AI

Ethical 1 Artificial intelligence (AI) is a set of practices and theories within the field of AI and

machine learning (ML) that abides by certain moral values shaping the potential impact of

technology on human lives. The ethical principles that technologies are expected to satisfy

may vary between the organizations and countries that formulated them. There are multiple

versions of possible ethical guidelines for ethical AI. Some of the most important guidelines and

regulations for AI include the European Research Council High-Level Expert Group 2 (2018, EU),

European AI Act 3 (2022, EU), AI Bill of Rights 4 (2022, US), the Algorithmic Accountability

Acct 5 (2022, US), deep synthesis provisions 6 (2023, China). Some of the common ethical AI

principles include [1, 2]:

• fairness and non-discrimination,

• privacy,

• interpretability and explainability,

• safety and reliability.

In the next sections, we introduce the main subdomains of ethical AI research, based on these

principles.

1Other terms include ’Trustworthy’, ’Reliable’, ’Human Centric’
2https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
3https://eur-lex.europa.eu
4https://www.whitehouse.gov/ostp/ai-bill-of-rights/
5https://www.congress.gov/bill/117th-congress/house-bill/6580/text
6https://www.china-briefing.com/news/china-to-regulate-deep-synthesis-deep-fake-technology-starting-january-

2023/

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206&from=EN
https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.congress.gov/bill/117th-congress/house-bill/6580/text
https://www.china-briefing.com/news/china-to-regulate-deep-synthesis-deep-fake-technology-starting-january-2023/
https://www.china-briefing.com/news/china-to-regulate-deep-synthesis-deep-fake-technology-starting-january-2023/
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1.1 Fairness

The social and legal stance against unfair discrimination against individuals and groups is one of

the achievements of modern societies. Both EU and US laws foresee the protection of certain

historically marginalized social identities such as race, ethnicity, gender, sexual orientation, and

religious or political beliefs. In certain domains, such as hiring, the list extends to disability and

age. The problem of discrimination is faced anew in the context of algorithmic decision-making.

Despite stereotypic beliefs about algorithmic neutrality and objectivity, some bad-case examples

have raised red flags. When scrutinized, predictions based on machine learning were found to be

discriminatory against race or gender minorities.

One of the notorious examples of algorithmic discrimination is the 2016 ProPublica analysis

of a COMPAS algorithm used in the American criminal justice system [4]. The algorithm was

built to predict the risk of recidivism, which was taken into account when considering the release

on bail or the length of a sentence. However, when making a mistake in prediction, the system

was biased to falsely assign a lower risk score to white convicted criminals and a higher risk score

to black ones.

Other examples include the case of discrimination against black patients in the healthcare

need prediction system [5], lower predictive accuracy in face recognition for minority groups [6],

gender discrimination in job advertising [7], sexist predictions in natural language processing [8]

and others. Algorithmic discrimination is arguably more dangerous than previous historical

instances of unfairness. The first reason is the scale of the decisions. Machine learning algorithms

are capable of assigning millions of labels that affect millions of people in one day. The second

danger of machine discrimination is the feedback loop of the machine learning cycle (Figure ??).

The feedback loop is created when the data generated under the influence of unfair decisions is

used for further training of the algorithm (or other algorithms). Such data becomes ever more

biased, creating a self-perpetuating model of reality.

1.1.1 Sources of algorithmic discrimination

Discrimination in machine learning is dangerous; however, it is most often unintentional. It

usually results from learning from the biased data in combination with the specifics of the learning

algorithm. Discrimination can arise at any stage of the machine learning cycle (Figure 1.1). The

studies by [9, 10] point out three main causes of algorithmic discrimination: bias in modeling,

bias in training, and bias in usage. Bias in modeling is related to the choices of parameters or

features. Bias in usage arises when predictions are misinterpreted or transferred to inappropriate

contexts. Finally, bias in training is related to the data used for machine learning. Biased data

is arguably the most prominent source of unfair algorithmic predictions. "Garbage in, garbage

out" 7 has become a mantra in the data science community. Various data quality issues may arise

due to data collection and data generation processes. Most types of bias relevant to algorithmic

discrimination boil down to representation and historical biases.

7The phrase is usually attributed to Wilf Hey, a computer scientist at IBM [1].
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Figure 1.1: Machine learning cycle.

Historical bias

The traces of historical discrimination in the data may cause algorithmic unfairness. Discrimina-

tion can manifest itself as a lower positive decision rate for marginalized groups. For example,

low hiring rates for eligible women could reflect discriminatory practices in the company. This is

a direct discrimination recorded in the data set. There are also more subtle forms of historical

bias that are produced by long-term structural inequalities in society. For example, data can have

seemingly neutral labels but lower rates of merit-related qualities, such as university degrees,

for the group that historically had less access to education. In this case, the algorithm might

learn negative associations between a group and desirable qualities. One of the examples is the

previously mentioned COMPAS algorithm used in the American criminal justice system [4]. Data

used to train the COMPAS algorithm had higher baseline reoffense rates in the black population

for historical reasons [11]. As a result, the algorithm overestimated the probability of reoffence

for black defendants compared to white.

(Under)Representation of the group

Algorithmic discrimination can emerge from the training of an ML model using data with a

disparity in the number of samples corresponding to each subpopulation of the sensitive group.

The under-representation problem is well known in the deep learning literature. Buolamwini et

al. [6] found that several commercial face recognition software had significantly lower accuracy

for individuals belonging to a specific subpopulation, that is, dark-skinned women. The reason

behind the disparity was the data set that was not representative of darker-skinned women. The

authors of the paper were able to improve the fairness of the predictions by collecting more

images of dark-skinned women. It should be noted that underrepresentation could also be

the result of historical discrimination or marginalization. For example, there are fewer women

profiles in the data on high-level managers. It could also be a sampling artifact. For example,

collecting data on random passersby in summer will end up showing a higher number of tourists
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in the city.

1.1.2 Fairness notions

The quantification of discrimination in data or algorithmic decisions uses formal expressions

called fairness notions. There exist more than 40 different fairness notions. Fairness notions can

be classified into three major categories: individual fairness [12, 13], group fairness [14, 15] and

causal approaches [16, 17].

Individual fairness notions

Individual fairness notions are based on the idea that similar individuals should be treated

similarly [13]. Although the idea is very intuitive, it is difficult to establish a measure of

similarity and relevant attributes in which the individuals should be similar. For example, it

does not make sense to take into account the similarity in the birthplace in the context of hiring.

The similarity that matters could be related to work experience or education. Moreover, the

segmentation of similar individuals can vary from fine-grained, which makes it computationally

challenging, to very coarse, which approaches the group. Furthermore, individual fairness is not

compatible with the disparate impact legal framework. The disparate impact framework imposes

the equality of outcome between certain groups, even if the individuals between the groups are

dissimilar [18]. The goal is to avoid a disproportionate negative impact on a group that was

historically discriminated against or disadvantaged.

Group fairness notions

Group fairness notions consider groups that share the value of a sensitive attribute. They can

be probabilistic or based on some measure of predictive performance. Probabilistic metrics

measure the probabilities of positive labels conditioned on a sensitive attribute. Conditioning

can also include ground truth labels or explanatory attributes that are supposed to justify a

possible disparity. Fairness notions based on performance measurement usually require equality

in confusion matrix measures (in classification tasks) or error rates (in regression) for sensitive

groups. The main advantage of group fairness notions is that they are relatively easy to measure.

However, they provide a meaningful assessment of fairness only in cases where the within-group

distributions are fairly homogeneous.

Causal fairness notions

Causal fairness notions can be individual or group-based. Most causal metrics have statistical

counterparts. The distinct feature of causal metrics is that they can distinguish discrimination

from causal biases 8. Causal biases can be introduced by the way data are collected or generated

and can hinder accurate evaluation of discrimination by statistical measures. In extreme cases,

such as Simpson’s statistical paradox, the result measured by causal metrics can be the opposite of

8Causal biases are discussed in sections 10 and 11
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that obtained by statistical evaluation [19]. A well-known example is a Berkley College admission

case, in which discrimination against women was reversed to indicate discrimination against

men when considering a causal approach to evaluating fairness [20, 21]. Causal fairness notions

can also help to distinguish and quantify fair and unfair pathways in the data [22]. Namely,

how much the sensitive attribute influences the decision through the explanatory variables (eg,

education in hiring) that justify it, or the red-lining variables (eg. ZIP codes in hiring) that should

not be used for the decision.

Application of fairness notions

The work of [23] summarizes the other criteria to favor a particular notion of fairness. One

is the availability of ground truth in the case where the algorithmic decision is compared with

the labels in the data. Here, the requirement is to have similar predictive power for sensitive

groups. However, this approach assumes that the labels are reliable. Labels themselves could

be biased by prejudiced human decisions or differential measurement errors for groups. If the

labels can be trusted, then the specific measure for prediction power can be considered [23].

In some contexts, the false negative rate (how much of the predicted negatives are indeed

positive) is more important than the false positive rate (how much or predicted positives are

indeed negative). One example is cancer prediction, where a false negative would mean that a

patient will not receive the treatment she needs, while a false positive would mean additional

tests. In this case, it is meaningful to apply the fairness notion based on the false negatives

rate. In the case of causal fairness notions, the applicability depends on the identifiability of

causal quantities from the data [19]. However, it is important to note that the choice of a

particular notion of fairness is highly subjective and depends on ethical values [24]. In this sense,

it cannot be fully automated. Fairness notions encode cultural values and assumptions about

the world. For example, should the distributions of positive decisions be equal for the sensitive

groups, or disparity can be justified? Even if we find a justification for a disparity, it is highly

context-dependent. For example, it is considered normal to favor one gender when hiring for a

role in a movie or screening for a disease such as breast cancer. However, when hiring for an

office job, gender should not play any role, unless one group on average has a more suitable

education than the other. Here, "education" would be an explanatory factor that could justify the

disparity in hiring decisions. However, what explanatory factor is suitable for a particular job,

health screening, loan granting, or other decision is subject to the domain of application, cultural

values, and legal framework.

1.1.3 Fairness correction methods

The mitigation of the bias in the data or algorithmic decisions can be done either before learning

the model (pre-processing), at the time of learning (in-processing), or applied to already learned

prediction labels (post-processing). There is no consensus as to which approach is superior to the

others, and the applicability of a particular technique depends on the data set and the notion

of fairness that it aims to satisfy [25]. The benefit of pre-processing techniques is that they
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are model agnostic. However, pre-processing involves the manipulation of data that, if done

without clearly stated assumptions, borders data falsification. In-processing has the advantage of

explicitly incorporating the fairness-accuracy trade-off into the parameters and regularization

terms of the algorithm. However, in most cases, it is specific to a particular algorithm. Finally,

post-processing is a direct treatment of the labels assigned by the algorithm. It imposes the

desired fairness properties but does so without optimizing the learning process itself.

1.2 Privacy

Protecting data privacy is a legal obligation in Europe and many other countries around the

world. The first approach to protecting sensitive and identifying information in the data was

data anonymization. This means that all personal identifiers, such as names or ID numbers, are

removed from the data. However, there exist quasiidentifiers such as age or ZIP code that under

certain conditions can lead to the reidentification of an individual in the database. Researchers

have shown that data anonymization is not enough for privacy protection, because reidentification

is possible by combining quasi-identifiers from multiple databases [26, 27]. To answer this need,

numerous privatization methods have been developed to maximize the trade-off between a

good level of data privacy and utility. Some examples of data privatization approaches include

k-anonymity [28], t-closeness [29] and l-diversity [30]. In this thesis we will focus on one of the

most popular data-privatization approaches - Differential privacy (DP) [31].

1.2.1 Differential Privacy

Differential privacy has gained popularity because of formal privacy guarantees and useful

properties. DP is currently used in a variety of applications, from programming languages [32]

to social networks [33] and geolocation [34]. The DP property establishes a bound on the ratio

of the probability of getting the same reported answer from two adjacent databases, namely

two databases that differ for just one record. In essence, DP provides guarantees that if any

participant added or removed her data from the data set, no outputs would become significantly

more or less likely [35]. The bound is expressed in terms of a parameter 𝜖 , which represents

the level of privacy. The smaller the 𝜖 , the smaller the difference between databases with and

without any particular record, thus the higher the level of privacy.

DP has composability and robustness to post-processing properties. Composability ensures that

the joint distribution of the output of differentially private mechanisms also satisfies differential

privacy. Robustness to post-processing guarantees that the output of any function applied to

differentially private data will also be differentially private. Those properties are very useful for

evaluating and ensuring privacy in the context of machine learning. DP can be further classified

into central and local, depending on the point at which data privatization is applied (locally at the

data owners’ site or centrally at the data aggregator’s site), and a metric variant called 𝑑-privacy.



1.3 Causality 8

Central DP

Central DP, which is the original notion of DP, assumes the existence of a trusted server where

the data are aggregated. Data consumers (analysts) cannot access the data set directly but only

query it via the server, which is supposed to obfuscate the answer by controlled noise, before

reporting it to the analysts. One limitation of the central DP model is that the server or the data

collector cannot always be trusted: they may collude with an attacker or just be unable to protect

the data from security breaches.

Local DP

Local DP (LDP) has been proposed as an alternative to the central DP model [36, 37]. In LDP

the individual data are obfuscated directly by the data provider before even being collected. The

main advantage of LDP is that users are more willing to share their data when they do not need to

rely on the trustworthiness of the data collector and the server. This model has become popular,

especially because it has been adopted and promoted by leading high-tech companies such as

Google [38], Microsoft [39], and Apple [40].

𝑑-privacy

A variant of DP, called 𝑑-privacy (also known as metric privacy), was introduced in [41]. 𝑑-privacy

is suitable for domains provided with a notion of distance. Like in central and local DP, 𝑑-privacy

imposes a bound on the probability that the same result is obtained from two different objects

(the arguments of the mechanism). However, unlike DP, this bound does not depend only on

the parameter 𝜖 , but also on the distance between the objects. This means that the noise can be

calibrated depending on how large the range in which we want to achieve indistinguishability is.

On the contrary, LDP requires indistinguishability between any pair of elements in the domain.

𝑑-privacy, therefore, is particularly useful in applications where hiding an element within a group

of neighbors is a sufficient measure of privacy protection. 𝑑-privacy has been applied especially

in the local model, and in particular, in the context of location privacy, where it takes the name of

geo-indistinguishability [42].

1.3 Causality

Causality is arguably a universal and intuitive way humans make sense of the world. It pervades

many areas of human endeavor and is prominent in major religions. An attempt to systematically

reflect on causal concepts goes back to Antiquity (Aristotle) [43]. The idea of causality was further

developed by R.Descartes, I.Kant, G.W.Leibniz, and S.Hume [44]. One of the important milestones

in the history of causality is the shift from a deterministic to a probabilistic understanding of the

causal effect, which is strongly influenced by discoveries in quantum mechanics [45].

Causality has become fundamental for modern sciences, as well as ethics and legal philosophy

and practice [44]. As a response, frameworks and tools have emerged to establish causal

relationships from the data (or statistical causality). There exist two main approaches to causal
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evidence: the analysis of (1) experimental data and (2) observational data. The first approach is

based on randomized controlled trials (RCT), which is widely recognized as the gold standard

for proving causal relationships [46–48]. However, random assignment is often impractical or

impossible. For example, it is not ethical to assign random participants in the experiment to

smoke or engage in other hazardous activities. It is also impossible to change someone’s race

or gender, to measure its impact on hiring decisions or income. This is why causality is often

determined based on observable outcomes (the second approach). However, it requires the use

of specific instruments to distinguish causality from statistical correlations.

The two most prominent frameworks for determining causality from observational data are

the potential outcome framework [49], and the structural probabilistic model based on directed

acyclic graphs (DAGs) [46]. Social and health sciences are dominated by the potential outcome

framework [50], while DAGs are gaining popularity at the intersection of causality and AI [51].

1.3.1 Frameworks and Definitions

The realm of statistical causality is a mix of competing and sometimes complementary theories and

concepts, rather than a single cohesive framework. The researchers in [52] compare the discipline

of statistical causality with a "probability theory before Kolmogorov". In practice, statistical

causality is applied using a combination of tools and approaches from several frameworks. We

will provide a top-contour overview of the statistical causality landscape by introducing several

existing theories and definitions of causality. Most of them rely on understanding causes as a

relationship that is revealed by linear regression, grounds the definition of a cause in a notion

of real or hypothetical intervention, or requires a mechanistic understanding of the underlying

cause [53]. In this thesis, we rely mainly on the concepts and tools developed in the framework

of structural probabilistic models [46] and the potential outcome [49] frameworks. Next, we

provide more details on Pearl’s and Rubin’s theoretical background on causality. We also briefly

mention other existing approaches and definitions of causality. The technical definitions of the

relevant causal concepts can be found in the Technical Preliminaries 5.

Potential Outcome

The potential outcomes framework is one of the first formal theories of causal inference [54].

The framework defines causal effects as the difference of potential outcomes at different levels

or the presence versus absence of exposure [49]. The language of potential outcomes allows

one to express causal effects as statements about joint distributions of potential outcomes

expressed as random variables. The causal assumptions are represented as restrictions on these

distributions [55].

The potential outcomes can be factual - the outcome that happened, and counterfactual - the

outcome that would have happened had the exposure been different. For example, if a person

took a pill and got better, the factual outcome is "getting better". The counterfactual outcome is

what would have happened had she not taken the pill. It is quite obvious that for this person

we are not able to observe the counterfactual outcome. That makes the subject-specific effect of
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limited practical use [54].

However, counterfactual outcomes and causal effects can be estimated at the population level.

The population-level effect measures the aggregate impact of exposure on the outcome. The

causal effect of exposure is conceptualized as a contrast between the outcome where everyone

received treatment versus the outcome where no one received treatment. Once again, in the

data, we observe only the factual outcomes at the factual levels of exposure received by each

individual. However, given the SUTVA assumptions of identifiability 9 the causal effect can be

estimated due to randomization [54]. If exposure is randomized, the potential outcomes are

statistically independent of the exposure, and the conditional probability of the outcome, among

those who factually received the treatment is equivalent to the one in which everyone received it.

It is formally demonstrated in [49, 54].

The potential outcome framework provides tools for causal reasoning and simplified counter-

factual computation [50]. However, it has shortcomings. Pearl criticizes the potential outcome

framework for not providing clear rules for identifying relevant covariates [56]. He points out

that including as many covariates as possible is a dangerous approach, because controlling for

some covariates can increase the bias in the data.

Non-Parametric Structural Models (NPSEM)

Pearl [46] causality framework is often praised for its coherency and strong formal back-

ground [57]. Pearl synthesizes the approaches from agency causality (based on the concept of

intervention) and probabilistic graphical models [57] as well as ideas from counterfactual or

potential outcomes [54]. In terms of understanding the relationship between cause and effect,

Pearl takes a middle ground between the purely stochastic causal Bayesian model approach

(inspired by quantum mechanics) and the deterministic Laplace conception previously dominated

in structural equation models (SEM) popular in econometrics and social sciences [46]. The

NPSEM or Pearl framework links the graphical structure with the joint distributions of the vari-

ables. The causal structure is expressed by the directed acyclic graph (DAG). A DAG G = (V, E)
is composed of a set of variables/nodes V and a set of directed edges E between them so that

no cycle is formed. The DAG relates causal structure and joint distribution in the data through

the Markov condition, where every variable is conditionally independent of its nondescendants

given its parents. DAGs encode not only conditional independence relationships but also define

the causal and non-causal data-generating processes. If node 𝑌 has an incoming arrow from

node 𝑋, then 𝑋 is the direct cause of 𝑌 . If 𝑌 has a direct arrow from variable 𝑍, which has a

direct arrow from 𝑋, then 𝑋 is an indirect cause of 𝑌 (𝑍 being a mediator). The confounder and

collider structures imply a statistical relationship between the treatment and the outcome that

is non-causal. Pearl also provides identifiability conditions that specify when and how causal

quantities can be evaluated from observational data [46]. This is considered one of the most

important contributions of the NPSEM framework [55].

9The assumptions are detailed in the Technical Preliminaries 5.
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Other approaches

The sufficient cause framework conceptualizes causation as a set of sufficient causes that deter-

mine the occurrence of an event [58, 59]. Contrary to the potential outcomes or counterfactual

approach, the main focus here is on the effect rather than the cause [58]. In particular, Pearl [46]

has introduced alternative probabilistic notions of necessity and sufficiency [58]. The decision-

theoretic approach assumes stochastic counterfactuals and focuses on the transportability of

inference between an observational and an experimental regime [53]. It allows relaxation of

strong assumptions required by the potential outcomes framework in some problems of causal

inference [52]. Structural equation models (SEM) are deterministic models based on structural

linear equations [60]. SEMs are limited in terms of their parametric assumptions and expressive

power.

1.3.2 Causality and AI

The use of causality in AI falls mainly into one of two categories. The first approach is to

employ artificial intelligence to enhance the qualitative discovery and/or quantification of causal

connections from the data. The second one is to use causal tools to improve Machine Learning

(ML) predictions. Next, we elaborate on both of these methods to combine causality and ML.

ML for causality

Causal Discovery Most of the techniques for obtaining causal quantities rely on knowing the

causal structure of the data. It was previously assumed to be provided by experts. Recent advances

in causal discovery offer algorithmic tools for recovering causal graphs from observational data.

The basis for causal discovery is the probabilistic and graphical concepts of causality [57]. Two

main groups of causal discovery algorithms can be distinguished based on their attempt to identify

conditional or unconditional (including pairwise) independencies in the distribution from which

the observational data is generated. The first category includes constraints and score-based

algorithms such as PC [61], FCI [62], and GES [63]. They usually produce a partially oriented

causal graph. The second category consists of algorithms based on causal asymmetries such as

LiNGAM [64], and PNL [65]. The algorithms based on Kolmogorov’s (algorithmic) complexity

assume that if knowing the shortest compression of one variable does not reveal the shorter

compression of the other, two variables are considered independent [51, 66]. The summary of

the principles and performance for pairwise causal discovery is provided by Mooij et al. [67]. If

the assumptions of the algorithms are satisfied, they are capable of identifying a unique causal

graph or a causal direction between the two variables.

ML Tools for Causal Inference Supervised or semi-supervised machine learning methods

can be used to estimate causal quantities from the data or for variable selection in situations with

a high number of covariates [68, 69]. ML algorithms such as, for example, logistic regression,

bagging, random forest, and others, can be beneficial in estimating propensity scores used to

estimate causal effects in the potential outcome framework [70, 71].
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Causality for ML

One of the main arguments that motivated the use of causality for machine learning is that

causal modeling can lead to more invariant or robust models [51]. The problem of overfitting

and vulnerability to a domain shift is a known problem in ML. It is intuitive that learning the

correlation between two phenomena, for example, rain and umbrellas, will not help to predict

rain in situations where people prefer raincoats instead of umbrellas. A causal understand-

ing of phenomena is more general to multiple circumstances. Following Pearl, "...we may as

well view our unsatiated quest for understanding how data is generated or how things work

as a quest to acquire the ability to make predictions under a wider range of circumstances,

including circumstances in which things are taken apart, reconfigured, or undergo spontaneous

change" [46]. One of the methods to combine the ML model with the causal approach is to

incorporate causal knowledge (usually in the form of a complete or partial causal graph) in

the learning process [72, 73]. Causal representation learning is an attempt to combine latent

variables derived from unstructured data and causal structure to arrive at a more invariant or fair

model [51, 74–76]. The causal structure can also be used for feature selection, assuming that it is

known. Models based on direct causes to predict the outcome are considered more robust [77].

1.4 Trade-Offs in Ethical AI and Causality

The ethical AI landscape, both as a whole and within specific disciplines, such as fairness or

privacy, is marked by inherent trade-offs. Some of the most frequently encountered trade-offs

include those between:

• fairness and accuracy [78–81];

• explainability and accuracy [82, 83];

• accuracy and generalizability [51];

• various fairness notions [24, 84, 85];

• privacy and accuracy [86, 87].

However, some ethical AI requirements can enhance another desired property. For example,

the explainability of a model is important for evaluating fairness. There is also evidence that

privacy is associated with robustness [88, 89]. Next, we will provide more details on the difficulty

in achieving two or more ethical AI objectives simultaneously. We will also illustrate how causality

can soften tensions and foster synergies among various aspects of ethical AI.

Most of the statistical fairness literature aims to improve some fairness metric while preserving

accuracy as much as possible [90–93]. Often the level of achieved fairness is dependent on

the willingness to make a sacrifice in accuracy. This loss in accuracy is a consequence of either

obscuring information that is important for prediction but is also contributing to discrimination in

the data or constraining the algorithm to produce prediction within certain boundaries of fairness.

On the other hand, causality shifts attention from the accuracy with respect to the observed
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labels to the outcomes based on causal knowledge or towards the more generalizable predictions.

Causal fairness notions also allow one to re-evaluate discrimination by distinguishing justifiable

and discriminatory paths between sensitive variables and the outcome or by identifying spurious

correlations between them. As a consequence, the tensions between accuracy and fairness are

less acute or, sometimes, eliminated. Causality also provides human-understandable explanations

that facilitate reasoning about fairness. This is especially important when the judgment of

fairness or discrimination is highly culturally subjective and should rely on a public consensus,

rather than an algorithmic prediction or individual decision. This kind of judgment, of course,

requires an understanding of the reasoning behind a prediction or decision. For example, what

variables contribute to the lower rates of positive predictions? Many complex algorithms, such

as deep neural networks (DNN) or random forest (RF), have impressive predictive power but

provide "black-box" solutions that are hard to question or evaluate. Causal models are inherently

explainable because they often rely on an explicit causal structure or well-articulated causal

assumptions. As an added value, causal models provide better generalizability and precision

in the presence of a shift in distributions [51]. Statistical learning is vulnerable to relying on

spurious correlations in the data. One known example is a computer vision algorithm learning to

recognize cows based on the association with grass in the background [94]. As a consequence, it

no longer recognizes a cow if it is located on a beach. In contrast, the model based on causal

features can produce accurate predictions despite changes in the data distribution.

Fairness is also subject to tensions between different notions and discrimination metrics.

Numerous approaches to address the quantification of fairness suffer from conceptual and

mathematical disagreement. Friedler et al. [24] point out the worldview incompatibility between

the "what you see is what you get" and "we are all equal" conceptual frameworks. The first

framework justifies disparity since it is in line with the ground-truth labels or explanatory variables

in the data corresponding to a certain measurement for merit or need. For example, the hiring

rate for two groups may be different since the level of education is also different. On the contrary,

the "we are all equal" framework would require equality in hiring rates because any differences

in education are due to the historical structural inequalities that should be compensated for and

erased from future decisions. In this case, causality helps to better articulate the adopted fairness

approach. It requires evaluating the data-generating process and the pathways between the

sensitive attribute and the outcome. This makes the assumptions behind the choice of a metric

explicit.

Kim et al. [85] provide a formalism for systematic reasoning about group fairness notions

by expressing them as functions of the fairness–confusion tensor. The authors prove the general

incompatibility between multiple notions of fairness and provide the necessary conditions under

which they can be satisfied. However, this incompatibility does not hold for fairness metrics

under the causal framework [95].

The differential privacy approach relies on adding noise to the data which is controlled

by the parameter 𝜖 (the smaller value of 𝜖 corresponds to more noise, while the larger value

indicates less noise and less privacy). Naturally, it hurts the accuracy of an algorithm learned

on the privatized data. It is yet unknown how to avoid this fundamental trade-off between data
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protection and the utility of the data. However, some results show that causal models can be

more robust to membership inference attacks at a lower value of 𝜖 (thus less noise) [77].



2
Goals and Contributions

In this thesis, we explicitly focus on two principles of ethical AI, fairness and privacy. We

investigate the relationship between fairness, privacy, and causality. In addition, we explore the

role of causality to implicitly enhance interpretability and explainability of AI models.

2.1 Contributions

The general contribution of this thesis includes the holistic approach to Ethical AI, which aims

to incorporate methods for fairness, privacy, and causality. We analyze and propose methods

to accurately measure bias in the data. We distinguish and formalize sources of discrimination

such as sample size and under-representation biases and causal biases that can hinder accurate

measurement of direct discrimination. We discuss the need and challenges of applying causality

in ML fairness from a statistical and legal point of view. We identify a causal graph as one

of the main requirements for using causality in ethical AI. Motivated by this, we explore the

impact of data privatization on the learnability of causal graphs from the data. We provide

insights on achieving better trade-off in causal discovery and local data privacy. Finally, we

propose a causal knowledge-based data debiasing approach that reconciles fairness, accuracy,

and explainability in algorithmic decision-making. Next, we detail the contributions by chapter

(the original contributions of the thesis start at chapter 7):

Chapter 7: BaBE: Enhancing Fairness via Estimation of Latent Explaining Variables

Our first significant contribution lies in the proposal of a novel approach to estimate the con-

ditional distribution of a latent explaining variable 𝐸 |𝑆, a method that utilizes the Expectation-

Maximization (EM) technique. This estimation serves as a foundation for pre-processing data to
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improve fairness and increase accuracy (with respect to the decision based on true explaining

variable) and explainability of the decision.

Chapter 8: Underrepresentation and Sampling Bias in Machine Learning

We systematically analyze the impact of sample size and underrepresentation of a group on

discrimination in algorithmic decisions. We link our analysis to bias mitigation techniques and

show that, in the presence of underrepresentation bias, collecting more data samples for the

underrepresented group typically amplifies discrimination rather than reducing it.

Chapter 9: Causal Discovery under Local Privacy

In the domain of privacy, our work systematically compares the performance of different locally

private mechanisms, specifically Geometric and 𝑘-RR, in the context of causal discovery tasks.

With our findings, we highlight the advantages of using geometric obfuscation methods over

𝑘-RR, shedding light on the impact of noise levels on algorithm performance.

Chapter 10: On the Need and Applicability of Causality for Fair Machine Learning

We emphasize the necessity of incorporating causality into fair AI, consolidating statistical and

legal arguments. Compared to existing work, ours is the first attempt to connect causality in

fair AI with the European AI legislation. In addition, we discuss the requirements of applying

causality to fairness evaluation in practice.

Chapter 11: Dissecting Causal Biases

We explore causal biases in relation to the precise measurement of the direct effect of group

membership on the outcome. Leveraging tools from the field of causality, we develop closed-

form expressions for various sources of causal biases, including confounding, colliding, and

measurement. In addition, we introduce interaction bias, which is not previously discussed in

the context of fairness. Our empirical analysis highlights the extent of causal biases in fairness

benchmark datasets, underlining the importance of addressing these biases in machine learning.

Chapter 12: Gender and Sex Bias in COVID-19 Data

In the context of COVID-19, we contribute a comprehensive review of the literature, highlighting

the greater vulnerability of men than women to the virus. We use causal graphs to analyze the

causal relationship between gender and COVID-19, perform causal analysis on synthetic data,

and underscore the importance of explainability and causality in understanding big data and

facilitating equitable data-driven decisions.

Together, our contributions advance the field of ethical AI by drawing pathways toward better

trade-offs between fairness, accuracy, privacy, and explainability.
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2.2 List of Publications

The content of this dissertation is based on the following publications. The bibliographical

information and abstracts are listed below.

2.2.1 Publications included in this thesis

Part III (Fairness) is based on:

1. Binkyte, R., Gorla, D. and Palamidessi, C., 2023. BaBE: Enhancing Fairness via Estimation

of Latent Explaining Variables. arXiv preprint arXiv:2307.02891. Submitted.

We consider the problem of unfair discrimination between two groups and propose a pre-processing

method to achieve fairness. Corrective methods such as statistical parity usually lead to bad accuracy

and do not really achieve fairness in situations where there is a correlation between the sensitive

attribute 𝑆 and the legitimate attribute 𝐸 (explanatory variable) that should determine the decision.

To overcome these drawbacks, other notions of fairness have been proposed, in particular, conditional

statistical parity and equal opportunity. However, 𝐸 is often not directly observable in the data, i.e.,

it is a latent variable. We may observe some other variable 𝑍 representing 𝐸, but the problem is

that 𝑍 may also be affected by 𝑆, hence 𝑍 itself can be biased. To deal with this problem, we propose

BaBE (Bayesian Bias Elimination), an approach based on a combination of Bayesian inference and

the Expectation-Maximization method, to estimate the most likely value of 𝐸 for a given 𝑍 for each

group. The decision can then be based directly on the estimated 𝐸. We show, by experiments on

synthetic and real data sets, that our approach provides a good level of fairness as well as high

accuracy.

2. Zhioua, S. and Binkytė, R., 2023. Shedding Light on Underrepresentation and Sampling

Bias in Machine Learning. arXiv preprint arXiv:2306.05068. Submitted

Accurately measuring discrimination is crucial to faithfully assess the fairness of trained machine

learning (ML) models. Furthermore, understanding the bias responsible for discrimination in the

data guides the appropriate mitigation approach. Sampling bias is one of the common ML biases,

which, in case where it is born differently by different groups (e.g. females vs males, whites vs blacks,

etc.), may exacerbate discrimination against specific subpopulations. However, despite its familiarity,

sampling bias is not well defined and is inconsistently used in the literature. In this paper, we

attempt to disambiguate this term by introducing clearly defined variants of sampling bias, namely,

sample size bias (SSB) and underrepresentation bias (URB). We also show how discrimination can be

decomposed into variance, bias, and noise. Finally, we challenge the commonly accepted mitigation

approach that discrimination can be addressed by collecting more samples of the underrepresented

group.

Part IV (Privacy) is based on:

3. Binkytė, R., Pinzón, C., Lestyán, S., Jung, K, Arcolezi, H., Palamidessi, C. 2023.Causal

Discovery under Local Privacy. Accepted at Causal Learning and Reasoning (CLeaR) 2024
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Conference.

Differential privacy is a widely adopted framework designed to protect sensitive data providers

within a data set. It is based on the application of controlled noise at the interface between the server

that stores and processes the data, and the data consumers. Local differential privacy is a variant

that allows data providers to apply the privatization mechanism themselves to their data individually.

Therefore it provides protection also in contexts in which the server, or even the data collector, cannot

be trusted. However, the introduction of noise inevitably affects the utility of the data, particularly by

distorting the correlations between individual data components. This distortion can be detrimental

to tasks such as causal discovery. In this paper, we consider various well-known locally differentially

private mechanisms and compare the trade-off between the privacy they provide, and the accuracy of

the causal structure produced by algorithms for causal learning when applied to data obfuscated by

these mechanisms. Our analysis yields valuable insights into selecting appropriate local differentially

private protocols for causal discovery tasks. We foresee that our findings will aid researchers and

practitioners in conducting locally private causal discovery.

Part V (Causality) is based on:

4. Binkytė, R., Grozdanovski, L. and Zhioua, S. 2023. On the Need and Applicability of

Causality for Fair Machine Learning. arXiv preprint arXiv:2207.04053. Submitted.

Besides its common use cases in epidemiology, political and social sciences, causality turns out to be

crucial in evaluating the fairness of automated decisions, both in a legal and everyday sense. We

provide arguments and examples of why causality is particularly important for fairness evaluation. In

particular, we point out the social impact of non-causal predictions and the legal anti-discrimination

process that relies on causal claims. We conclude with a discussion of the challenges and limitations

of applying causality in practical scenarios, as well as possible solutions.

5. Binkytė, R., Zhioua, S. and Turki, Y., 2023. Dissecting Causal Biases. arXiv preprint

arXiv:2310.13364. Submitted.

Accurately measuring discrimination in machine learning-based automated decision systems is

required to address the vital issue of fairness between subpopulations and/or individuals. Any bias in

measuring discrimination can lead to either amplification or underestimation of the true value of

discrimination. This paper focuses on a class of bias originating in the way training data is generated

and/or collected. We call such class causal biases and use tools from the field of causality to formally

define and analyze such biases. Four sources of bias are considered, namely, confounding, selection,

measurement, and interaction. The main contribution of this paper is to provide, for each source of

bias, a closed-form expression in terms of the model parameters. This makes it possible to analyze

the behavior of each source of bias, in particular, in which cases they are absent and in which other

cases they are maximized. We hope that the provided characterizations help the community better

understand the sources of bias in machine learning applications.
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6. Díaz-Rodríguez, N., Binkytė, R., Bakkali, W., Bookseller, S., Tubaro, P., Bacevičius, A.,

Zhioua, S. and Chatila, R., 2023. Gender and Sex Bias in COVID-19 Epidemiological Data

through the Lens of Causality. Information Processing and Management, 60(3), p.103276.

The COVID-19 pandemic has spurred a large number of experimental and observational studies that

report a clear correlation between the risk of developing severe COVID-19 (or dying from it) and

whether the individual is male or female. This paper is an attempt to explain the supposed male

vulnerability to COVID-19 using a causal approach. We proceed by identifying a set of confounding

and mediating factors, based on the review of the epidemiological literature and the analysis of

sex-disaggregated data. Those factors are then taken into account to produce fair and explainable

prediction and decision models from observational data. The paper outlines how non-causal models

can motivate discriminatory policies such as biased allocation of the limited resources in intensive

care units (ICUs). The objective is to anticipate and avoid disparate impact and discrimination,

by considering causal knowledge and causal-based techniques to complement the collection and

analysis of observational big data. The hope is to contribute to the more careful use of health-related

information access systems to develop fair and robust predictive models.

2.2.2 Other publications

Other works that were published during my Ph.D. which are not included in the thesis content:

7. Binkytė, R., Makhlouf, K., Pinzón, C., Zhioua, S. and Palamidessi, C., 2023, June. Causal

discovery for fairness. In NeurIPS Workshop on Algorithmic Fairness through the Lens of

Causality and Privacy (pp. 7-22). PMLR.

It is crucial to consider the social and ethical consequences of AI- and ML-based decisions for the

safe and acceptable use of these emerging technologies. Fairness, in particular, guarantees that ML

decisions do not result in discrimination against individuals or minorities. Identifying and measuring

reliably fairness/discrimination is better achieved using causality which considers the causal relation,

beyond mere association, between the sensitive attribute (e.g. gender, race, religion, etc.) and the

decision (e.g. job hiring, loan granting, etc.). The big impediment to the use of causality to address

fairness, however, is the unavailability of the causal model (typically represented as a causal graph).

Existing causal approaches to fairness in the literature do not address this problem and assume that

the causal model is available. In this paper, we do not make such an assumption, and we review

the major algorithms for discovering causal relations from observable data. This study focuses on

causal discovery and its impact on fairness. In particular, we show how different causal discovery

approaches may result in different causal models, and, most importantly, how even slight differences

between causal models can have a significant impact on fairness/discrimination conclusions. These

results are consolidated by empirical analysis using synthetic and standard fairness benchmark

datasets. The main objective of this study is to highlight the importance of the causal discovery step

to appropriately address fairness using causality.
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8. Binkyte, R., 2023. Distant Reading and Viewing:“Big Questions” in Digital Art History

and Digital Literary Studies. Digital Humanities Quarterly, 17(2).

The emergence of digital art history is influenced by advances in computer vision, on the one hand,

and digitization of visual image archives - Getty Research Institute, Google Art Project, on the other.

However, the quantitative approach to images has qualitative implications. Here, we explore how art

history can be enriched with approaches that consciously apply computational methods together with

theory and interpretation. We draw inspiration and examples from the earlier adoption of large-scale

digital text analysis in digital literary studies.



Part II

Technical Preliminaries



3
Fairness

3.1 Fairness notions

Fairness metrics are quantitative measures used to assess and quantify the fairness of algorithms,

models, or decision-making processes. They provide a way to evaluate and compare the perfor-

mance of these systems in terms of how they treat different groups or individuals. We denote the

sensitive attribute 𝑆, the decision or label in the data 𝑌 Pand the algorithmic prediction 𝑌 . Many

fairness metrics are defined in the context of binary classification, where the goal is to predict

one of two classes, typically denoted as positive 𝑌 = 1 or negative 𝑌 = 0.

Confusion Matrix

To define fairness metrics, the confusion matrix is often used. Confusion matrix is a 2x2 table

that summarizes the model’s performance. It includes the following components:

- True Positives (TP): The number of positive instances correctly classified as positive.

- False Positives (FP): The number of negative instances incorrectly classified as positive.

- True Negatives (TN): The number of negative instances correctly classified as negative.

- False Negatives (FN): The number of positive instances incorrectly classified as negative.

The confusion matrix allows us to calculate various fairness metrics based on these compo-

nents.

Statistical parity difference (SPD)

Statistical parity difference measures [96] the difference in the probability of favorable outcomes

for the protected group and the nonprotected group. It is defined as:
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DEFINITION 3.1.1.

P[𝑌 = 1|𝑆 = 1] − P[𝑌 = 1|𝑆 = 0] (3.1)

Where Pr(Y=1 | S=1) is the probability of a positive outcome for the protected group. Pr(Y=1

| S=0) is the probability of a positive outcome for the unprotected group. A value equal to zero

indicates no discrimination.

Disparate Impact (DI)

Disparate Impact [90] is similar to statistical parity difference, except that it measures the ratio

of favorable outcomes for the protected group to the nonprotected group. It is defined as:

DEFINITION 3.1.2.

𝐷𝐼 =
P(Y=1|S=1)
P(Y=1|S=0)

Where Pr(Y=1|S=1) is the probability of a positive outcome for the protected group.

Pr(Y=1|S=0) is the probability of a positive outcome for the non-protected group.

A value of DI significantly different from 1 indicates potential discrimination.

Equal Opportunity Difference (EOD)

Equal Opportunity Difference [97] assesses whether the correct positive predictions are the same

for different groups. It is defined as:

DEFINITION 3.1.3.

𝐸𝑂𝐷 = P[𝑌 = 1|𝑌 = 1, 𝑆 = 1] − P[𝑌 = 1|𝑌 = 1, 𝑆 = 0] (3.2)

Where 𝑃[𝑌 = 1|𝑌 = 1, 𝑆 = 1] is the probability of correct positive prediction for privileged

group and 𝑃[𝑌 = 1|𝑌 = 1, 𝑆 = 0] - for the protected group. Equal Opportunity Difference should

ideally be 0 for fairness.

Conditional Statistical Parity Difference (CSPD)

The conditional statistical parity difference [98] measures the fairness of the prediction based on

an explanatory attribute 𝐸 , which justifies the disparity. It is defined as:

DEFINITION 3.1.4.

𝐶𝑆𝑃𝐷 = P[𝑌 = 1|𝐸, 𝑆 = 1] − P[𝑌 = 1|𝐸, 𝑆 = 0] (3.3)

=
∑︁
𝐸

P[𝑌 = 1|𝐸 = 𝑒, 𝑆 = 1]P[𝐸 = 𝑒]

−
∑︁
𝐸

P[𝑌 = 1|𝐸 = 𝑒, 𝑆 = 0]P[𝐸 = 𝑒]
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Where P[𝑌 = 1|𝐸 = 𝑒, 𝑆 = 1] is the probability of positive prediction based on the value of 𝐸

for 𝑆 = 1 and P[𝑌 = 1|𝐸 = 𝑒, 𝑆 = 0] - for 𝑆 = 0. The conditional statistical parity difference equal

to zero indicates fairness.

These equations provide a foundation for understanding and quantifying fairness metrics

in machine learning, especially in binary classification scenarios. Keep in mind that fairness

metrics can vary based on the specific goals and requirements of a given application, and different

fairness definitions may involve different equations and calculations.

3.2 Bias mitigation

Algorithmic bias mitigation, also known as bias reduction or debiasing, refers to the process

of identifying, reducing, or eliminating bias in the outcomes and decisions made by machine

learning algorithms and models. Depending on the phase of the learning cycle at which the

debiasing is applied, the techniques can be classified into pre-processing, in-processing, and

post-processing. Next, we provide examples of each data debiasing approach.

3.2.1 Pre-processing

Fairness pre-processing techniques are strategies and methods applied to the training data before

building machine learning models to reduce bias and ensure fairness. These techniques aim to

address disparities in data with respect to sensitive attributes, such as gender, race, or age.

Re-sampling

Re-sampling [99] involves modifying the training dataset to balance the representation of different

groups or classes, particularly those that are underrepresented. Techniques for over-sampling

the minority class or under-sampling the majority class are applied to achieve a more balanced

distribution.

Re-weighting

Re-weighting [100] data instances adjusts the importance or influence of each instance based on

its group membership, ensuring that underrepresented groups have more weight. The data are

pre-processed by assigning higher weights to instances from underrepresented groups.

Disparate Impact Remover

The Disparate Impact Remover [90] is a pre-processing technique that modifies the training

data by equalizing the distributions of features for sensitive attributes to ensure that they do not

disproportionately affect the model’s decisions.
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Data Transformation

Data transformation [101] techniques modify the data to reduce bias by adjusting the distribution

of sensitive attributes. The data are transformed so that sensitive attributes exhibit similar

distributions across groups.

Massaging

Massaging [102] involves modifying the data set by adding or removing instances to achieve

fairness objectives. Data is debiased by adding instances to underrepresented groups or removing

instances that may introduce bias.

3.2.2 In-processing

Fairness in-processing techniques involve integrating fairness considerations directly into the

machine learning model during the training process. These techniques aim to reduce bias and

promote fairness by adjusting the behavior of the model and predictions based on sensitive

attributes.

Adversarial debiasing

Adversarial networks [103] are added to the model to learn a representation of the data that

removes the influence of sensitive attributes. The model is trained to simultaneously optimize

prediction accuracy and fairness, making it difficult to determine sensitive attributes from the

data.

Regularization

In regularization [14] technique, fairness constraints are introduced during model training to

minimize the impact of sensitive attributes. Regularization terms are added to the loss function

to penalize models for making biased predictions.

3.2.3 Post-processing

Fairness post-processing techniques are strategies applied after a machine learning model has

been trained to mitigate bias and ensure fairness in the model’s predictions. These techniques

adjust the model’s outputs or decisions to align them with fairness objectives.

Re-ranking

Re-ranking [104] involves changing the order of model predictions based on fairness criteria to

ensure that sensitive groups are not unfairly disadvantaged.
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Calibration Post-processing

Calibration post-processing [105] techniques adjust model predictions to achieve calibrated

probabilities, where the predicted probabilities reflect the true likelihood of an event occurring.



4
Privacy

Data privacy, often referred to as information privacy or data protection, is a fundamental concept

that addresses the management, handling, and protection of personal and sensitive information.

It concerns the rights and expectations of individuals regarding how their data is collected,

processed, stored, and shared. Data privacy is a critical aspect of data security and ethical data

handling, particularly in the digital age where vast amounts of personal information are collected

and processed.

4.1 Privacy Notions

4.1.1 Central Differential Privacy

Central differential privacy (DP) [106] is a privacy framework used in the context of data

analysis and data release. It ensures that individual-level data is protected by adding noise or

randomization to the data prior to any analysis. Central Differential Privacy guarantees that

the privacy of individuals is preserved while still allowing meaningful aggregate analyses to be

performed on the data. Central DP assumes a trusted data aggregator.

Central DP ensures that the output of a data analysis algorithm, such as statistical queries

or machine learning models, remains statistically indistinguishable when any single individual’s

data is included or excluded from the database.

DEFINITION 4.1.1 (Differential Privacy). A randomized algorithmM with domain

N |𝑋 | is (𝜖 , 𝛿)-differentially private if for all S ⊆ 𝑅𝑎𝑛𝑔𝑒(M) and for all 𝑥, 𝑦 ∈ N |𝑋 |



4.1 Privacy Notions 28

such that |𝑥 − 𝑦 |1 ≤ 1 :

P[M(𝑥) ∈ S] ≤ exp(𝜖)𝑃𝑟 [M(𝑦) ∈ S] + 𝛿, (4.1)

If 𝛿 = 0, we say thatM is 𝜖-differentially private.

4.1.2 Local Differential Privacy

Local Differential Privacy is a privacy-preserving framework that focuses on protecting the privacy

of individual data points in a data set while still enabling aggregate analyses and data-driven

decision-making. Unlike Central Differential Privacy, which adds noise to the final output, Local

Differential Privacy injects noise or randomization directly into individual data points before

any analysis is performed. This ensures that the privacy of each individual’s data is safeguarded,

making it well-suited for scenarios where the data is highly sensitive and individual-level privacy

is a top priority.

One of the widely used privacy models is LDP [36, 37], which is formally defined as follows.

DEFINITION 4.1.2 (𝜖-Local Differential Privacy). Let 𝜖 > 0 be a parameter rep-

resenting the level of privacy loss. A randomized mechanismM satisfies 𝜖-local-

differential-privacy (𝜖-LDP) if, for any pair of input values 𝑣1, 𝑣2 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(M),
and any possible output 𝑥 ofM, the following holds (where P[𝑒] represents the

probability of the event 𝑒):

P[M(𝑣1) = 𝑥] ≤ 𝑒𝜖 · P[M(𝑣2) = 𝑥] .

In essence, LDP guarantees that it is unlikely that the data aggregator infers the true value

from the reported data. Privacy loss 𝜖 controls the trade-off between privacy and utility. Note

that lower values of 𝜖 result in tighter privacy protection. Similarly to global DP, LDP also has

several fundamental properties, such as robustness to post-processing and composition [106].

4.1.3 Local 𝑑-Privacy

𝑑-Privacy [41] is a variant of differential privacy that is particularly suitable for the domains that

have a notion of distance. In essence, in the local model 𝑑-Privacy guarantees, like in LDP, that it

is unlikely that the data aggregator or an attacker will infer the true value 𝑣 from the reported

data. But in this case, it is because it is made indistinguishable from all the other values in the

neighborhood. In other words, the nearby secrets should look identical to any observer.

𝑑-Privacy assumes that the domain of the mechanismM is provided with a notion of distance

𝑑.

DEFINITION 4.1.3 (Local 𝑑-Privacy). A mechanism M satisfies 𝑑-privacy, with

privacy parameter 𝜖 , iff for all values, 𝑣1, 𝑣2 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(M) and all possible outputs
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𝑥, the following inequality holds:

P[M(𝑣1) = 𝑥] ≤ 𝑒𝜖 𝑑 (𝑣1,𝑣2 ) · P[M(𝑣2) = 𝑥] .

One of the best-known applications of 𝑑-privacy is in the context of location privacy, where it

takes the name of geo-indistinguishability [42].



5
Causality

5.1 Causal structures

Variables are denoted by capital letters (e.g. 𝑋, 𝑌). Small letters denote specific values of

variables (e.g., 𝐴 = 𝑎, 𝑊 = 𝑤). Bold capital (e.g. V) and small letters (e.g. v) denote a set of

variables and a set of values, respectively.

A causal graph G = (V, E), composed of a set of variables/vertices V and a set of edges E, is a

directed acyclic graph (DAG) that describes the causal relations between variables. Edges have

causal interpretations. That is, a directed edge 𝑋 → 𝑌 indicates a causal relation from the cause

variable 𝑋 to the effect variable 𝑌 . Consequently, if all other variables are fixed to some values

and we change the value of 𝑋, 𝑌 will change, but not the other way around (changing the value

of 𝑌 will not change the value of 𝑋).

There are three basic structures in a causal graph, namely, a mediator, a confounder, and

a collider [21]. Figure 5.1 shows an example of each of these structures. The variable 𝑊 in

Figure 5.1(a) is called a mediator because it mediates the causal effect of 𝑋 on 𝑌1. A confounder

variable (𝐶 is a common cause of two other variables (𝑋 and 𝑌)). It is important to mention that

in both mediator and confounding structures, 𝑋 and 𝑌 are correlated. The difference is that in a

mediator, 𝑋 is a cause of 𝑌 , but in a confounder, 𝑋 is not a cause of 𝑌 . They are simply correlated.

A collider, on the other hand, is a variable caused by two other variables (𝑍 in Figure 5.1(c))2.

Unlike the two other structures, in the presence of a collider, 𝑋 and 𝑌 are not correlated. However,

if we condition on 𝑍, 𝑋 and 𝑌 become correlated.

1The mediator structure is known also as chain structure.
2A collider structure is known also as v-structure.
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((a)) Mediator

X Y
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((b)) Confounder

X Y

Z

((c)) Collider

Figure 5.1: Basic structures of causal graphs.

As the causal relation between two variables can go through different paths, mediation

analysis consists in distinguishing these causal paths. For example, in Figure 5.2, a causal effect

between 𝑋 and 𝑌 can be divided into direct (𝑋 → 𝑌), indirect (𝑋 → 𝑅 → 𝑌 and 𝑋 → 𝐸 → 𝑌),

or path-specific effect (e.g. only 𝑋 → 𝐸 → 𝑌). Assuming 𝑋 is a sensitive variable (used for

discrimination), this is very relevant to fairness as a direct effect is always unfair because the

sensitive variable should not be used directly to decide about the outcome, while the indirect or

path-specific effects may be unfair or fair depending on the mediator variable: an indirect effect

through a redlining/proxy variable (𝑅) is unfair, while an indirect effect through an explaining

variable (𝐸) is acceptable (fair). A proxy variable is a descendent of 𝑋 that is significantly

correlated with it in such a way that the use of the proxy in the outcome 𝑌 has almost the same

impact as using 𝑋 directly. An explaining variable is also a descendent of 𝑋 used to decide

about the outcome 𝑌 that is influenced by 𝑋 in a way that is accepted as non-discriminatory. For

example, discrimination against women for job hiring is acceptable if it is justified by the low

education level of female candidates. Deciding if a mediator is a proxy or explaining variable

typically requires some expertise about the context of the problem.

X Y

R

E

Figure 5.2: The causal effect between 𝑋 and 𝑌 can be split into three different paths: direct
(𝑋 → 𝑌) and indirect (𝑋 → 𝑅 → 𝑌 and 𝑋 → 𝐸 → 𝑌), involving (R)edlining/proxy and
(E)xplanatory variables.

Using causality allows one to appropriately assess fairness (and consequently discrimination)

due to two main reasons. First, by identifying confounder variables between 𝑋 and 𝑌 , it becomes

possible to account for the noncausal effect that goes through the confounder variables. For

example, the effect going through the path 𝑋 ← 𝐶 → 𝑌 in Figure 5.1(b) is non-causal while all

paths between 𝑋 and 𝑌 in Figure 5.2 correspond to causal effects. This is the reason we say that

"causation is different than correlation." Second, causal mediation analysis allows us to split the

total causal effect of 𝑋 to 𝑌 into direct/indirect and fair/discriminatory effects.

5.2 Intervention and 𝑑𝑜-operator

The causal effect between two variables is typically expressed in terms of intervention probabilities.

Intervention, noted 𝑑𝑜(𝑉 = 𝑣) [46], is a manipulation of the model that consists in fixing the
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value of a variable (or a set of variables) to a specific value regardless of the causes of that

variable. The intervention 𝑑𝑜(𝑉 = 𝑣) induces a different distribution on the other variables.

Intuitively, while P(𝑌 |𝐴 = 𝑎) reflects the population distribution of 𝑌 among individuals whose 𝐴

value is 𝑎, P(𝑌 |𝑑𝑜(𝐴 = 𝑎)3 reflects the population distribution of 𝑌 if everyone in the population

had their 𝐴 value fixed at 𝑎. The obtained distribution P(𝑌 |𝑑𝑜(𝐴 = 𝑎) can be considered as a

counterfactual distribution since the intervention forces 𝑎 to take a value different from the one

it would take in the actual world. P(𝑌 |𝑑𝑜(𝐴 = 𝑎) is not always computable from the data, a

problem known as identifiability. For instance, if all counfounder variables are observable, the

intervention probability, P(𝑌 |𝑑𝑜(𝐴 = 𝑎)), can be computed by adjusting on the counfounder(s).

For instance, assuming 𝑍 is the only confounder of 𝐴 and 𝑌 , a back door formula (Equation 11.1)

can be applied.

5.3 Causal fairness notions

Total Effect

Total effect (𝑇𝐸) [21]4 is the causal version of 𝑆𝑃𝐷 (Equation 7.1) and is defined in terms of

experimental probabilities as follows:

DEFINITION 5.3.1.

𝑇𝐸𝑥1,𝑥0 (𝑦) = P(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥1)) − P(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥0)) (5.1)

𝑇𝐸 measures the effect of the change of 𝑋 from 𝑥0 to 𝑥1 on 𝑌 = 𝑦 along all the causal

paths from 𝑋 to 𝑌 . Intuitively, while 𝑆𝑃𝐷 3.1 reflects the difference in proportions of 𝑌 = 𝑦 in

the current cohort, 𝑇𝐸 reflects the difference in proportions of 𝑌 = 𝑦 in the entire population.

P(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) denotes the probability of 𝑌 = 𝑦 after an intervention 𝑑𝑜(𝑋 = 𝑥). This is

equivalent to the probability of 𝑌 = 𝑦 after forcing all individuals in the population to have a

value 𝑋 = 𝑥. P(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) is denoted P(𝑦𝑥) for short5.

Mediation analysis related notions

Mediation analysis is about distinguishing the different paths of the causal effect between two

variables 𝑋 and 𝑌 . Causal paths can be direct or indirect. The direct natural effect (𝑁𝐷𝐸) [107]

is the simplest notion of mediation analysis, which measures the direct causal effect between two

variables. (e.g. 𝑋 and 𝑌). Assuming the variable 𝑋 is binary (it can take two possible values 𝑥0

and 𝑥1), 𝑁𝐷𝐸 is defined as:

DEFINITION 5.3.2.

𝑁𝐷𝐸𝑥1,𝑥0 (𝑦) = P(𝑦𝑥1,Z𝑥0
) − P(𝑦𝑥0) (5.2)

3The notations 𝑌𝐴←𝑎 and 𝑌 (𝑎) are used in the literature as well. P(𝑌 = 𝑦 |𝑑𝑜(𝐴 = 𝑎)) = P(𝑌𝐴=𝑎 = 𝑦) = P(𝑌𝑎 = 𝑦) =
P(𝑦𝑎) is used to define the causal effect of 𝐴 on 𝑌 .

4Total Effect is also known as average causal effect (𝐴𝐶𝐸).
5The notations 𝑌𝑋←𝑥 and 𝑌 (𝑥) are used in the literature as well. P(𝑌 = 𝑦 |𝑑𝑜(𝑋 = 𝑥)) = P(𝑌𝑋=𝑥 = 𝑦) = P(𝑌𝑥 = 𝑦) =

P(𝑦𝑥) is used to define the causal effect of 𝑋 on 𝑌 .
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Where Z is the set of mediator variables and P(𝑦𝑥1,Z𝑥0
) is the probability of 𝑌 = 𝑦 had 𝑋 been

𝑥1 and had Z been the value it would naturally take if 𝑋 = 𝑥0. Using the graph in Figure 5.2, this

means that 𝑋 is set to 𝑥1 in the single direct path 𝑋 → 𝑌 (there is always only one direct path but

several indirect paths between 𝑋 and 𝑌) and is set to 𝑥0 in all other indirect paths (𝑋 → 𝑅 → 𝑌

and 𝑋 → 𝐸 → 𝑌).

The natural indirect effect (𝑁𝐼𝐸) [107] measures the indirect effect of 𝑋 on 𝑌 and is defined

as:

DEFINITION 5.3.3.

𝑁𝐼𝐸𝑥1,𝑥0 (𝑦) = P(𝑦𝑥0,Z𝑥1
) − P(𝑦𝑥0) (5.3)

Using the same graph (Figure 5.2), this means that 𝑋 is set to 𝑥0 in the single direct path

𝑋 → 𝑌 and is set to 𝑥1 in all other indirect paths. The problem with NIE is that it does not

distinguish between the fair (explainable) and unfair (indirect discrimination) effects.

The path-specific effect [21, 108, 109] is a more nuanced measure that characterizes the

causal effect in terms of specific paths. Given a path set 𝜋, the 𝜋-specific effect is defined as:

DEFINITION 5.3.4.

𝑃𝑆𝐸 𝜋
𝑥1,𝑥0
(𝑦) = P(𝑦𝑥1 |𝜋 ,𝑥0 |𝜋 ) − P(𝑦𝑥0) (5.4)

where P(𝑦𝑥1 |𝜋 ,𝑥0 |𝜋 ) is the probability of 𝑌 = 𝑦 in the counterfactual situation where the effect

of 𝑋 on 𝑌 with the intervention 𝑑𝑜(𝑋 = 𝑥1) is transmitted along 𝜋, while the effect of 𝑋 on 𝑌

without the intervention (𝑥0) is transmitted along paths not in 𝜋 (denoted by: 𝜋). For example,

in the graph of Figure 5.2, if 𝜋 = 𝑋 → 𝐸 → 𝑌 , then 𝜋 includes 𝑋 → 𝑌 and 𝑋 → 𝑅 → 𝑌 .

Other notions of causal fairness

In addition to total effect (TE) and related mediation analysis notions (NDE, NIE, and PSE), causal

notions of fairness include no unresolved discrimination [110], no proxy discrimination [110] and

counterfactual fairness [111].

No unresolved discrimination [110] is a fairness notion focusing on indirect causal effects from

the sensitive variable 𝑋 to the outcome 𝑌 . Unresolved discrimination is satisfied when no directed

path from 𝐴 to 𝑌 is allowed, except through a resolving (explaining) variable 𝐸. A resolving

variable is any variable in a causal graph that is influenced by the sensitive attribute in a manner

that is accepted as non-discriminatory.

Similarly to no unresolved discrimination, no proxy discrimination [110] focuses on indirect

discrimination. A causal graph exhibits a potential proxy discrimination if there exists a path

from the protected attribute 𝑋 to the outcome 𝑌 that is blocked by a proxy/redlining variable

𝑅. It is called a proxy because it is used to decide about the outcome 𝑌 while it is a descendent

of 𝑋 that is significantly correlated with it in such a way that using the proxy in the decision

has almost the same impact as using 𝑋 directly. An outcome variable 𝑌 does not exhibit proxy

discrimination if equality:
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DEFINITION 5.3.5.

P(𝑌 | 𝑑𝑜(𝑅 = 𝑟)) = P(𝑌 | 𝑑𝑜(𝑅 = 𝑟 ′)) ∀ 𝑟, 𝑟 ′ ∈ 𝑑𝑜𝑚(𝑅) (5.5)

holds for any potential proxy variable 𝑅.

The use of both no unresolved discrimination and no proxy discrimination in real scenarios is

limited by the assumption of valid causal graph availability. Hence, both fairness notions depend

on the correct output of the causal discovery task.

Counterfactual fairness [111] is a very strong fairness notion that requires equality between

the observed outcome and the counterfactual outcome for every individual. That is, an outcome

𝑌 is counterfactually fair if under any assignment of values V = v and any individual in the

population,

DEFINITION 5.3.6.

P(𝑦𝑥1 | V = v, 𝑋 = 𝑥0) = P(𝑦𝑥0 | V = v, 𝑋 = 𝑥0) (5.6)

where V represents the set of all remaining variables (all variables in the causal graph except

{𝑋,𝑌 }). Counterfactual fairness, as an individual fairness notion, is satisfied if the probability

distribution of the outcome 𝑌 is the same in the actual and counterfactual worlds, for every

possible individual. For an exhaustive list of causal-based fairness notions, we refer interested

readers to the survey of Makhlouf et al. [19].

5.4 Causal Assumptions

Causal inference is always subject to causal assumptions. Here we provide the main causal

assumptions for potential outcome and Pearl’s causal frameworks.

SUTVA [112] (Potential Outcome) The SUTVA (Stable Unit Treatment Value Assumption)

requires that no influence on the treatment effect is induced by the interaction between individuals

or the treatment mechanism [50].

Ignorability [112] (Potential Outcome) The Ignorability assumption requires that the

sensitive attribute and the outcome are independent given observable variables.

Positivity [112] (Potential Outcome) The positivity is satisfied if all combinations of values

of the treatment variable and covariates have nonzero probability.

Causal Graph [46] (DAG) Causal graph is the main requirement in the DAG framework

and provides the complete specification of the relationships in the data. Formally, a causal

graph G = (V, E), composed of a set of variables/vertices V and a set of edges E, is a directed

acyclic graph (DAG) that describes the causal relations between variables. It is subject to further

assumptions of the Causal Markov condition, Causal Faithfulness, and Causal Sufficiency. All

three assumptions together encode the same requirements as the SUTVA and Ignorability in

Potential Outcome.
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Causal Markov condition [46] (DAG): Causal Markov condition is related to graph repre-

sentation and requires every node to be independent of its non-descendants given its parents.

Formally, a directed acyclic causal graph G with a set of vertices V and a probability distribution

P over the vertices V satisfies the Causal Markov Condition if every node 𝑋 in V is independent of

𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑋) given 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋). It implies the absence of cycles, a requirement equivalent

to the first assumption in SUTVA.

Causal faithfulness (DAG): Causal faithfulness is also a characteristic of a causal graph. It

requires that all the conditional independence relations that hold in the data be encoded in the

graph. Formally, a causal graph G and a probability distribution P on the same variables V are

faithful to each other if all and only the conditional independence relations that hold in P are

entailed by the Markov condition and the d separation in G. For example, faithfulness would

be violated if negatively correlated indirect paths in the data cancel out positively correlated

directed paths rending Nationality and Visa decision variables independent, even though they are

dependent (connected with directed edges) in the graph.

Causal sufficiency [46] (DAG): Causal sufficiency requires that there be no latent (hidden)

confounders between variables in the data. It corresponds to the assumption of ignorability in

the potential outcome framework.

5.5 Causal Discovery

Causal discovery is concerned with the identification of causal relationships from the data. More

precisely, it aims to learn the fully directed DAG or partly directed PDAG that best describes the

given data set. Causal discovery is performed by using observed samples. Previous knowledge of

data structure can also be incorporated to facilitate the learning process. There are several causal

discovery algorithms for a wide range of different assumptions; for a survey, see [113].

5.5.1 Causal discovery algorithms

The Peter and Clark (PC) [114] algorithm is a constraint-based method with two primary stages.

The initial stage, known as "adjacency search," involves identifying the undirected skeleton of

the Directed Acyclic Graph (DAG). The second stage focuses on estimating a completed partially

directed acyclic graph (CPDAG). PC can be applied to linear, Gaussian data (the Fisher Z test),

discrete multinomial data (the Chi-square test), and mixed multinomial/Gaussian data (the

Conditional Gaussian test). PC uses an alpha parameter which is a cutoff, which signifies the

threshold at which test results are considered indicative of dependence in a statistical test of

independence and typically defaults to 0.05. When using a higher alpha value, it leads to a

sparser graph. In other words, a higher alpha makes the test more stringent, and it requires

stronger evidence to conclude that variables are dependent, resulting in fewer edges in the

graphical model.

FCI (Fast Causal Inference) [115] algorithm is a constraint-based method designed to work

with sample data, and it can also consider optional background knowledge. In the large sample

limit, FCI provides an equivalence class of Conditional Bayesian Networks (CBNs) that encompass
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the set of conditional independence relations believed to be valid in the population, even when

there are hidden confounding variables. However, FCI has limitations and is most suitable

for datasets with several thousand variables. When applied to realistic sample sizes, it can be

inaccurate in determining both adjacencies and orientations.

FCI consists of two phases: the adjacency phase and the orientation phase. During the

adjacency phase, the algorithm begins with a complete undirected graph and then performs a

series of conditional independence tests. These tests lead to the removal of edges between pairs

of variables that are determined to be independent given some subset of the observed variables.

Conditioning sets that result in the removal of an edge are stored. By the end of the adjacency

phase, the undirected graph correctly represents the set of adjacencies among variables, but all

edges remain unoriented. FCI then proceeds to the orientation phase, where it uses the stored

conditioning sets to orient as many edges as possible, adding directionality to the graph.

FGES [116] is an enhanced and parallelized variant of the Greedy Equivalence Search (GES)

algorithm, initially developed by [117] and later studied by [118]. GES is a Bayesian algorithm

that uses a heuristic approach to explore the space of Conditional Bayesian Networks (CBNs) and

identify the model with the highest Bayesian score. Specifically, GES begins its search with an

empty graph and proceeds with a forward-stepping search, where it adds edges between nodes

to maximize the Bayesian score. This process continues until no further single-edge addition

improves the score. Subsequently, it performs a backward-stepping search, eliminating edges

until no single edge removal can enhance the score. These algorithms are capable of handling

both continuous data, utilizing the Structural Equation Modeling Bayesian Information Criterion

(SEM BIC) score, and discrete data, making use of the Bayesian Dirichlet equivalent uniform

(BDeu) score. FGES takes the penalty discount parameter. A higher penalty discount value yields

sparser graphs.

Iterative MCMC [119] is a hybrid optimization technique based on Markov chain Monte

Carlo (MCMC) methods. The algorithm’s initial step involves generating a skeleton, obtained

through the Greedy Equivalence Search (GES) algorithm. Subsequently, it conducts a score-based

search within the space defined by this initial skeleton, exploring various Directed Acyclic Graphs

(DAGs).

The Max-min hill-climbing (MMHC) [120] is a hybrid approach that follows a two-step

process. First, it estimates the skeleton of a Directed Acyclic Graph (DAG) using an algorithm

known as Max-Min Parents and Children. Then, it applies a greedy hill-climbing search to

determine the orientation of edges within the graph based on Bayesian scoring. MMHC is

particularly suitable for domains with a high number of dimensions.

RECI by [121] (regression error-based causal inference) This algorithm addresses non-

deterministic and non-linear relations and allows dependency between cause and noise. The

algorithm’s key idea is to fit regression models in both possible directions and to compare the

MSE. Independence tests are not used, but the assumptions on the model depend on the regressor

used for the model. In our experiments we used a polynomial regressor of degree 3 after rescaling

to [0, 1].
IGCI by [122] The Information Geometric Causal Inference model is a pairwise causal
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discovery model that is able to determine the causal relationship in a deterministic setting

𝑌 = 𝑓 (𝑋) (where 𝑓 is invertible), under the ‘independence assumption’ 𝐶𝑜𝑣 [log 𝑓 ′, 𝑝𝑋] = 0. In

our experiments we have used a Gaussian reference measure and the sp1 or "1-spacing" method

for entropy estimation used in [67].

ANM by [123] The approach assumes that 𝑌 = 𝑓 (𝑋) + 𝐸, where 𝑓 is nonlinear. Causal

inference is based on the independence between 𝑋 and 𝐸. Parameters like Gaussian process

regression and normalized HSIC can be used for the prediction and evaluation of the causal

direction.
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Other

The Expectation-Maximization Framework Let 𝑂 be a random variable depending on an

unknown parameter 𝜃. Given that we observe 𝑂 = 𝑜, the aim is to find the value of 𝜃 that

maximizes the probability of this observation and, therefore, is its best explanation. To this

purpose, we use the log-likelihood function 𝐿 (𝜃) = log 𝑃[𝑂 = 𝑜 |𝜃]. A maximum likelihood

estimate (MLE) of the parameter is then defined as argmax𝜃 𝐿 (𝜃) (which is the 𝜃 that maximizes

𝑃[𝑂 = 𝑜 |𝜃], since log is monotone). The Expectation Maximization (EM) framework [124–126]

is a powerful method to calculate argmax𝜃 𝐿 (𝜃).

6.1 Metrics for the quality of estimations

The Wasserstein distance This distance is defined between probability distributions in a

metric space. Let X be a set provided with a distance 𝑑, and let 𝜇, 𝜈 be two discrete probability

distributions on X. The Wasserstein distance between 𝜇 and 𝜈 is defined as

DEFINITION 6.1.1.

W(𝜇, 𝜈) = min
𝛼

∑︁
𝑥,𝑦∈X

𝛼(𝑥, 𝑦) 𝑑 (𝑥, 𝑦), (6.1)

where 𝛼 represents a coupling, i.e., a joint distributions with marginals 𝜇 and 𝜈 satisfying the

properties
∑

𝑦∈X 𝛼(𝑥, 𝑦) = 𝜇(𝑥) and
∑

𝑥∈X 𝛼(𝑥, 𝑦) = 𝜈(𝑦).

Accuracy Let 𝑋,𝑌 be two random variables with support X and Y respectively, and joint

distribution P[𝑋,𝑌 ]. Let 𝑓 : X → Y be a function that, given 𝑥 ∈ X, estimates the corresponding

𝑦, and let 𝑦 be the result, i.e. 𝑦 = 𝑓 (𝑥). The accuracy of 𝑓 is defined as the expected value of
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1𝑦=𝑦, the function that gives 1 if 𝑦 = 𝑦, and 0 otherwise. When the distribution is unknown, the

accuracy is estimated empirically via a set of pairs {(𝑥𝑖 , 𝑦𝑖) | 𝑖 ∈ I} independently sampled from

𝑃[𝑋,𝑌 ] (testing set), and is defined as:

DEFINITION 6.1.2.

Acc(𝑌,𝑌 ) =
1
|I |

∑︁
𝑖∈I

1𝑦𝑖=𝑦𝑖 where 𝑦𝑖 = 𝑓 (𝑥𝑖). (6.2)

Distortion If the variable 𝐸 to be predicted ranges over a metric space, and the metric is

important for decision-making, accuracy is not always the best way to measure the quality of the

estimation. Arguably, it is more suitable to use the distortion, i.e., the expected distance between

the true value and its estimation. The distortion in the estimation of 𝐸 is defined as

DEFINITION 6.1.3.

Dist(𝐸, 𝐸) = 1
|I |

∑︁
𝑖∈I
|𝑒𝑖 − 𝑒𝑖 |, (6.3)

where 𝑒𝑖 is an estimate of 𝑒𝑖.

Structural Hamming Distance (SHD) The Structural Hamming Distance is a metric used

to measure the dissimilarity between two structural representations, often in the context of

graph-based or hierarchical data. It is a way to quantify how different the structures of two

entities, such as graphs or trees, are from each other. Unlike the traditional Hamming distance,

which is used to measure the difference between binary strings, the Structural Hamming Distance

considers the structural relationships and hierarchies within the data.

DEFINITION 6.1.4.

𝑆𝐻𝐷 (𝐴, 𝐵) =
𝑛∑︁
𝑖=1

𝛿(𝐴𝑖 , 𝐵𝑖) (6.4)

Here 𝐴 and 𝐵 represent the two structural representations (e.g., graphs, trees) that are

compared. 𝐴𝑖 and 𝐵𝑖 represent the structural elements or nodes within 𝐴 and 𝐵, 𝛿(𝐴𝑖 , 𝐵𝑖) is a

function that measures the dissimilarity between the structural elements of 𝐴𝑖 and 𝐵𝑖.

F1 Score The F1 Score is a popular metric used in binary classification to assess the model’s

accuracy and balance between precision 1 and recall 2. It provides a single value that takes into

account both false positives and false negatives. The F1 score is particularly useful when dealing

with unbalanced data sets, where one class significantly outnumbers the other. The F1 Score is

calculated using the following formula:

DEFINITION 6.1.5.

𝐹1 =
𝑇𝑃

𝑇𝑃 + 0.5(𝐹𝑃 + 𝐹𝑁) (6.5)

1Precision=𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)
2Recall=𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)
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For the definitions of 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 see preliminaries on confusion matrix 3.1.



Part III

Fairness



7
BaBE: Enhancing Fairness via Estimation of Latent

Explaining Variables

7.1 Introduction

One of the first notions of group fairness proposed in the literature was statistical parity (SP) 3.1,

which enforces the probability of a positive prediction to be equal between different groups.

However, SP has been criticized for causing a loss of accuracy and for ignoring circumstances

that could justify the disparity. A more refined notion is conditional statistical parity (CSP) 3.3,

which allows for some disparity as long as it is legitimated by explaining factors.

The most common pre-processing approach to achieve CSP (or an approximation of it)

consists of editing the label 𝑌 (decision) in the training data, according to some heuristic, to

ensure that the number of samples with 𝑌 = 1, 𝑆 = 1, and 𝐸 = 𝑒 is approximately the same

number as those with 𝑌 = 1, 𝑆 = 0, and 𝐸 = 𝑒. However, one problem is that often 𝐸 is not

directly observable in the data, that is, it is a latent variable. Usually, we can observe some other

variable 𝑍 that is representative of 𝐸, but the problem is that 𝑍 may be also influenced by the

sensitive attribute 𝑆, hence 𝑍 itself can be biased. We illustrate this scenario with the following

examples.



7.1 Introduction 43

Figure 7.1: Left: illustration of the causal relation between the data. Right: illustration of our
pre-processing method

Example 7.1.1. The SAT (Scholastic Assessment Test) is a standardized test widely used for college

admissions in the United States aiming at indicating the skill level of the applicant, and therefore

her potential to succeed in college. However, the performance at the test can be affected by other

socioeconomic, psychological, and cultural factors. For example, a recent study [127] indicates that,

on average, black students are less likely to suffer the financial burden of retaking the test than white

students. This causes a racial gap in scores, as retaking the test usually improves the result. Another

study [128] reports that, on average, girls score approximately 30 points less on SAT than boys,

despite the fact that girls routinely achieve higher grades in school. According to [128], the cause is

the higher sensitivity to stress and test anxiety among females.

Example 7.1.2. Many healthcare systems in the United States rely on prediction algorithms to

identify patients in need of assistance. One of the most used indicators is individual healthcare

expenses, as they are easily available in insurance claim data. However, healthcare spending is

influenced not only by health conditions, but also by socioeconomic status. A recent study [5] shows

that the typical algorithms used by these healthcare systems are negatively biased against black

patients, in the sense that, for the same prediction score, black patients are on average sicker than

white ones. According to [5], this is due to bias in healthcare spending data, as black patients spend

less on healthcare due to lower financial capabilities and lower level of trust in the white-dominated

healthcare system and practitioners.

Example 7.1.3. Age is an important factor in determining retirement time, screening time for

oncologic and cardiovascular diseases, and similar decisions. However, a chronological age (the time

from birth to the current moment) does not always coincide with a biological age (an estimate based

on biological markers that indicate the cellular age of an organism). Moreover, the error between

biological age and chronological estimate is disparate for black and white populations. Recent studies

show that black people on average are older biologically than chronologically, while white people

have lower biological age compared to their chronological age [129–131].

In the above examples, the "true skills", the "true health status" and the "true biological age",

respectively, are the legitimate features 𝐸 (explanation) on which we should base the decision.

Unfortunately, 𝐸 is not directly observable. What we can observe, instead, is the result of the

SAT test and the healthcare-related spending, respectively. These are represented by the variable

that we call 𝑍. However, these indicators do not faithfully represent 𝐸, because they are also
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influenced by other factors, namely economic status (or gender) and race, respectively. These are

the sensitive attributes 𝑆.

The line of research that advocates the use of statistical parity [15, 132–135] adheres to the

principle "we are all equal" [136], and makes the basic assumption that 𝐸 and 𝑆 are independent.

However, in many cases, such as, for instance, in decisions regarding the medical treatment

of genetic illnesses, race or gender could have a direct effect on the likelihood of the medical

condition. For example, in our second running example, the real health status is on average

lower in the black population due to socioeconomic factors. Hence, we allow the possibility

of a link between the sensitive attribute 𝑆 and the explaining value 𝐸, and aim to remove the

discrimination introduced by the link between 𝑆 and 𝑍. The method we propose to remove the

discrimination works equally well whether or not there is a link between 𝑆 and 𝐸 , and it does not

modify this relation.

To summarize, in the original (unfair) scenario the decision 𝑌 is based on 𝑍, which is

influenced by both 𝐸 and 𝑆. The situation is represented in Figure 7.1 (left). The arrow from

𝑆 to 𝑍 represents that there is a causal relation between 𝑆 and 𝑍, and similarly for the other

solid arrows1, while the dashed arrow between 𝑆 and 𝐸 represents a relation that may or may

not be present. To make a fair decision, we would like to base the decision 𝑌 only on 𝐸 , but, as

explained before, 𝐸 may not be available directly. Therefore, we need to determine the most

likely value of 𝐸 for the given values of 𝑆 and 𝑍. To this purpose, we will derive the conditional

distribution of 𝐸 given 𝑍 and 𝑆, i.e. P[𝐸 |𝑍, 𝑆]. The objective is illustrated in Figure 7.1 (right).

Note that 𝐸 can be multidimensional and that we represent the effect of other possible

latent variables by randomness in the distribution of the data. The method we propose uses

a combination of the Bayes theorem and the expectation-maximization method (EM) [124], a

powerful statistical technique for estimating latent variables as maximum likelihood parameters

of empirical data observations. We call our method BaBE, for Bayesian Bias Elimination.

BaBE relies on some additional knowledge, namely an estimation of the conditional distribu-

tion of 𝑍 given 𝑆 and 𝐸 , that is, P[𝑍 |𝐸, 𝑆]. This estimate can be obtained by collecting additional

data. For example, for example 7.1.2, we could use the richer set of biomarkers, like in [5].

Alternatively, it can be produced by studies or experiments in a controlled environment. For

example 7.1.1, we could assess the skills in some subjects by in-depth examinations and derive

statistics on their SAT performance both at the first attempt and after a number of retakes.

One may question whether it is reasonable to assume that we can derive directly from the

data P[𝑍 |𝐸, 𝑆] and not P[𝐸 |𝑍, 𝑆] (the derivation of the latter from the first is the essence of our

proposal). We argue that, while it may not be always the case, there are real-life situations in

which this assumption is justified, and in which, therefore, our method is applicable. Besides the

above examples, one clear example is the study of symptoms (𝑍) induced by certain diseases (𝐸):

P[𝑍 |𝐸, 𝑆] can be statistically estimated from medical data collected by hospitals, while P[𝐸 |𝑍, 𝑆]
cannot, because not all patients affected by symptoms necessarily enter the medical system. A

further reason for assuming that we dispose of P[𝑍 |𝐸, 𝑆] and not of P[𝐸 |𝑍, 𝑆] is that the latter

depends on the distribution of 𝐸 , which can vary greatly depending on the geographical area, on

1Note that 𝐸 is what in causality is called a mediator.
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the social context, etc. For example, the racial health gap can be different in Europe and in the

United States, where the experiments or data collection took place. In contrast, P[𝑍 |𝐸, 𝑆] may be

more "universal", so it is convenient to invest in the estimation of the latter, which can be done

once and then transferred to different contexts. Indeed, one advantage of our approach is that it

allows for transferring of causal knowledge. That is, once we learn the relation P[𝑍 |𝐸, 𝑆], the

method can be reused with a population with different proportions, that is, different P[𝐸 |𝑆] (but

the same P[𝑍 |𝐸, 𝑆]). For more discussion on this point, we refer to [137–141].

Once P[𝐸 |𝑍, 𝑆] is estimated, we pre-process the training data by assigning a decision 𝑌 based

on the most likely value 𝑒 of 𝐸 , for given values of 𝑆 and 𝑍 . If 𝑒 does not have enough probability

mass, we may not achieve CSP, or even a good approximation of it. In this case, we can base

the decision on a threshold for the estimated 𝐸, aiming instead at achieving equal opportunity

(EO) [14], which we consider as a relaxation of the CSP. Formally, EO is classified as follows:

P[𝑌 = 1|𝑌 = 1, 𝑆 = 1] = P[𝑌 = 1|𝑌 = 1, 𝑆 = 0], where 𝑌 represents the "true decision", that is, the

decision based on a threshold for the real value of 𝐸 .

Related Work The notion of fairness that we consider in this work was introduced in [98]

and it is known nowadays as conditional statistical parity (CSP) [142]. In [98], CSP is achieved

through data prep-rocessing, by applying local massaging or local preferential sampling techniques.

However, the authors consider only an observable explanatory variable 𝐸, not a latent 𝐸. Note

that our 𝑍, although observable, cannot be considered as an explanatory variable, because we

are assuming it is influenced by the sensitive attribute in a way that would make it unfair to

base the decision on 𝑍. To better understand the difference, consider one of the main examples

used in [98] to illustrate the idea, which is a kind of Berkeley admission anomaly, an instance of

the Simpson paradox [143]. In this example, the admission to a certain university looks biased

against women, but the disparity can actually be explained by the fact that female students tend

to choose a more selective program. In this case, the explanatory variable is a mediator (the

choice of the program) and is assumed to be legitimate as a cause of the disparity. In contrast, in

our example, the observed score is considered to be influenced by social discrimination, hence it

cannot be directly used as an explanatory variable.

The work closest to ours is [15], where there is a model containing a latent variable whose

distribution is discovered using the expectation maximization method. However, in [15] the

notion of fairness considered is statistical parity (SP). Using SP as a constraint (thus applying

a sort of self-fulfilling prophecy approach) and other constraints such as the preservation of the

total ratio of positive decisions, the authors determine what the distribution P[𝑍 |𝐸, 𝑆] should be,

they distribute the probability mass uniformly on all attributes, and they finally apply the EM

method to determine fair labels. In contrast, we are trying to find the most probable value of 𝐸

for each combination of values of the other attributes (𝑆 and 𝑍), to make a fair decision based on

𝐸 , considered as the explanatory variable. We do not require statistical parity, nor do we assume

a uniform distribution on all attributes. Instead, we use external knowledge as prior knowledge

for applying the EM method. Another difference is that they optimize accuracy with respect to

the observed biased labels, whereas we consider accuracy towards the true fair label dependent
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on 𝐸 , considered as the actual attribute on which the decision should be made.

Similar in spirit to [15], [134] tries to discover the latent variable that is maximally informa-

tive about the decision, while minimizing the correlation with the sensitive attribute (statistical

disparity); this is done using a deep learning technique. Also, [16, 135, 144] use deep learning

latent variable models. [16, 144] consider latent confounders and [135] considers the sensitive

attribute as a confounder. The situations in which these assumptions apply are quite different

from the problem we study since they aim at eliminating the effect of the confounder, while for

us the latent variable is a mediator, and we want to use it as the basis for a fair decision. As

a consequence, the notion of fairness that these works aim at achieving is not suitable for our

case. [108] introduces path-specific counterfactual fairness, where (among other cases) they

consider the latent cause of a mediator between the sensitive attribute and the decision. This

is more similar to our notion of fairness. However, [108] assumes that the latent variable is

independent of the sensitive attribute; as such, their method is not directly applicable to our

problem. [132] uses probabilistic circuits to impose statistical parity and learn a relationship

between the latent fair decision and other variables. Finally, [145] uses a notion of fairness

called disparate impact, which is similar to statistical disparity, except that it is defined as a ratio

(instead of a difference) between the probabilities of positive decisions for each group. Similarly

to our work, [145] applies a corrective factor to the outcome of the observed variable 𝑍, but

its goal is to minimize the disparate impact (within a certain allowed threshold 𝛼), again in the

spirit of minimizing statistical disparity. Their technique is also very different: they consider the

distributions on the observed variable 𝑍 for each group, and they compute new distributions that

minimize the earthmovers’ distance and achieve the threshold 𝛼. Then they map each value of 𝑍

(for each group) in the new distribution to maintain the percentile.

7.2 Notation

𝐸, 𝑌 and 𝑌 notations In this chapter, 𝐸 (with generic value 𝑒) represents the estimation of the

explanatory variable 𝐸. Similarly, 𝑌𝐸 (with generic value 𝑦) represents the decision estimation,

based on 𝐸 , rather than the prediction of the model. To put it in context, recall that we propose

a pre-processing method: 𝑦 represents the value that we assign as decision in a sample of the

training data during the pre-processing phase. Fairness and precision notions are defined with

respect to these estimations. We use 𝑌𝑍 to indicate the biased decision based on 𝑍, and 𝑌𝐸 for

the "true" decision based on 𝐸. When clear from the context, we may use 𝑌 instead of 𝑌𝐸 . We

redefine SPD 3.1, CSPD 3.3 and EOD 3.2 using these notation:

DEFINITION 7.2.1 (SPD).

P[𝑌𝐸 = 1|𝑆 = 1] − P[𝑌𝐸 = 1|𝑆 = 0] (7.1)

DEFINITION 7.2.2 (CSPD).

P[𝑌𝐸 = 1|𝐸, 𝑆 = 1] − P[𝑌𝐸 = 1|𝐸, 𝑆 = 0] (7.2)
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DEFINITION 7.2.3 (EOD).

P[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 1] − P[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 0] (7.3)

7.3 The BaBE method

In this section, we describe the BaBE approach. We briefly recall the problem: we have a data

model represented in Figure 7.1, where 𝑆 is the sensitive attribute, 𝐸 is the latent variable on

which a fair decision should be based, and 𝑍 is an observed but biased version of 𝐸. We need

to estimate the distribution P[𝐸 |𝑍, 𝑆]. The first step is to estimate the distribution of 𝐸 for each

group, P[𝐸 |𝑆]. We accomplish this task by adapting the expectation maximization (EM) method

to our particular setting. Then, from P[𝐸 |𝑆] we derive, using the Bayes theorem, the estimation

of P̂[𝐸 |𝑆, 𝑍], from which we finally derive 𝐸 and 𝑌𝐸 .

7.3.1 Derivation of BaBE as an instance of the EM method

In this section, we show how to apply the EM method to the problem we are considering, thus

obtaining the main algorithm of our BaBE method.

Let 𝐸, 𝑍 and 𝑆 be random variables on E, Z and S, with generic elements 𝑒, 𝑧 and 𝑠

respectively. Let ( 𝑧̄, 𝑠̄) = {(𝑧𝑖 , 𝑠𝑖) | 𝑖 = [1, . . . , 𝑁]} be a sequence of samples from the joint

distribution P[𝑍, 𝑆], let

𝑧̄𝑠
def
= {𝑧𝑖 : 𝑖 ∈ {1, ..., 𝑁} ∧ 𝑠𝑖 = 𝑠} (7.4)

be the subsequence of 𝑧̄ of elements paired with 𝑠 in the samples and let 𝑀 be | 𝑧̄𝑠 |. Then, the

empirical probability of 𝑍 = 𝑧 given 𝑆 = 𝑠 (i.e., the frequency of 𝑧 in the samples with 𝑆 = 𝑠) is

defined as:

𝜑𝑠 [𝑧, 𝑧̄𝑠]
def
=
|{𝑧𝑖 ∈ 𝑧̄𝑠 : 𝑧𝑖 = 𝑧}|

𝑀
. (7.5)

Now, given ( 𝑧̄, 𝑠̄), 𝑠 ∈ S, 𝜑𝑠 [𝑧, 𝑧̄𝑠] and the conditional distribution P[𝑍 |𝐸, 𝑆], we want to

estimate the (unknown) P[𝐸 |𝑆] by applying the expectation maximization (EM) method, that

is, by finding the probability distribution on E that maximizes the probability of observing 𝑧̄𝑠
given 𝑠 (and therefore that is the best explanation of what we have observed). More precisely,

we want to prove that our algorithm yields a Maximum Likelihood Estimation (MLE) P̂[𝐸 |𝑆] that

approximates P[𝐸 |𝑆]. To this end, let Θ denote the set of all distributions on E conditioned on

𝑆 = 𝑠, and let 𝜃 range over it. The log-likelihood function for 𝑧̄𝑠 is 𝐿𝑧𝑠 : Θ→ R such that

𝐿𝑧𝑠 (𝜃)
def
= logP[𝑍𝑠 = 𝑧̄𝑠 |𝜃] (7.6)

where 𝑍𝑠 denotes a sequence of 𝑀 random samples drawn from Z when 𝑆 = 𝑠. Given 𝑧̄𝑠, an

unknown MLE P[𝐸 |𝑆] is defined as argmax𝜃 𝐿𝑧𝑠 (𝜃), that is, as the 𝜃 that maximizes 𝐿𝑧𝑠 (𝜃) (and

therefore P[𝑍𝑠 = 𝑧̄𝑠 |𝜃], since log is monotone).

We now show how to adapt the EM framework to the above setting. We start by defining the
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function

𝑄(𝜃, 𝜃′) def
= E[log 𝜃 | 𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, 𝜃′] (7.7)

where 𝜃 denotes the probability distribution on sequences 𝑒 = 𝑒1, 𝑒2, . . . , 𝑒𝑀 of i.i.d. events all

with probability distribution 𝜃. The above expectation is taken for all E and conditioned on

𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, and assuming 𝜃′ as a prior approximation of P[𝐸 |𝑆].
The function 𝑄 has the nice property 𝐿𝑧𝑠 (𝜃) − 𝐿𝑧𝑠 (𝜃′) ≥ 𝑄(𝜃, 𝜃′) − 𝑄(𝜃′, 𝜃′). Therefore,

to improve the approximation of the MLE, that is, to find an estimation 𝜃 that improves the

estimation 𝜃′, it is sufficient to compute 𝑄(𝜃, 𝜃′) and find the 𝜃 that maximizes it.

LEMMA 7.1.

𝑄(𝜃, 𝜃′) =
𝑀∑
𝑖=1

∑
𝑒∈E

P[𝑍𝑠=𝑧𝑖 |𝐸=𝑒,𝑆=𝑠] 𝜃 ′ [𝑒 |𝑠]∑
𝑒′ ∈E

P[𝑍𝑠=𝑧𝑖 |𝐸=𝑒′ ,𝑆=𝑠] 𝜃 ′ [𝑒′ |𝑠] log 𝜃 [𝑒 |𝑠] .

Proof. Given that the 𝐸𝑖s are i.i.d., by definition and linearity of conditional expectation, we have

that:

E[log 𝜃 | 𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, 𝜃′]

= E

[
log

𝑀∏
𝑖=1

𝜃 [𝑒𝑖 |𝑠]
����� 𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, 𝜃′

]
= E

[
𝑀∑︁
𝑖=1

log 𝜃 [𝑒𝑖 |𝑠]
����� 𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, 𝜃′

]
=

𝑀∑︁
𝑖=1

E[log 𝜃 [𝑒𝑖 |𝑠] | 𝑍𝑠 = 𝑧̄𝑠, 𝑆 = 𝑠, 𝜃′]

=

𝑀∑︁
𝑖=1

∑︁
𝑒∈E
P[𝐸 = 𝑒 |𝑍𝑠 = 𝑧𝑖 , 𝑆 = 𝑠] log 𝜃 [𝑒 |𝑠] (7.8)

where P[𝐸 |𝑍𝑠, 𝑆] is a probability based on the estimation 𝜃′ of the unknown P[𝐸 |𝑆]. By taking

the marginal distribution, we have that:

P[𝑍𝑠 = 𝑧𝑖 |𝑆 = 𝑠]

=
∑︁
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 , 𝐸 = 𝑒′ |𝑆 = 𝑠]

=
∑︁
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠]𝜃′ [𝑒′ |𝑠] . (7.9)

By the conditional Bayes theorem and (7.9), we have that
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P[𝐸 = 𝑒 |𝑍𝑠 = 𝑧𝑖 , 𝑆 = 𝑠]

=
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠]𝜃′ [𝑒 |𝑠]

P[𝑍𝑠 = 𝑧𝑖 |𝑆 = 𝑠]

=
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠]𝜃′ [𝑒 |𝑠]∑

𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠]𝜃′ [𝑒′ |𝑠]

By plugging the latter equality into (7.8), we conclude the proof. □

The next Lemma tells us that P̂[𝐸 |𝑆] (𝑡+1) (as defined in Algorithm 1) is the distribution that

maximizes 𝑄
(
· , P̂[𝐸 |𝑆] (𝑡 )

)
. This fact will allow us to conclude that the algorithm approximates

the MLE argmax𝜃 𝐿𝑧𝑠 (𝜃).

LEMMA 7.2. The 𝜃 that maximizes 𝑄( · , 𝜃′) is such that, for every 𝑒 ∈ E:

𝜃 [𝑒 |𝑠] =
∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑

𝑒′∈E
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠] .

Proof. By the method of Lagrangian multipliers, we can find the 𝜃 that maximizes 𝑄(𝜃, 𝜃′) by

adding to the latter the term 𝜆

( ∑
𝑒∈E

𝜃 [𝑒 |𝑠] − 1
)
, for some 𝜆, and study the function

𝐹 (𝜃, 𝜃′) ≜ 𝑄(𝜃, 𝜃′) + 𝜆
(∑︁
𝑒∈E

𝜃 [𝑒 |𝑠] − 1

)
(7.10)

that has the same stationary points as 𝑄(𝜃, 𝜃′) since
∑
𝑒∈E

𝜃 [𝑒 |𝑠] = 1, being 𝜃 a probability distribu-

tion on E given 𝑆 = 𝑠. To find the stationary points of 𝐹, we impose that all its partial derivatives,

including the one w.r.t. 𝜆, are equal to 0. For the latter one, we require that

𝜕𝐹

𝜕𝜆
=

∑︁
𝑒∈E

𝜃 [𝑒 |𝑠] − 1 = 0 (7.11)

and this trivially holds since 𝜃 [·|𝑠] is a distribution for every 𝑠. For the former ones, by relying on

Lemma 7.1, we impose that, for every 𝑒 ∈ E,

𝜕𝐹

𝜕𝜃 [𝑒 |𝑠]

=
1

𝜃 [𝑒 |𝑠]

𝑀∑︁
𝑖=1

P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠] + 𝜆

= 0 (7.12)

By multiplying the last equality by 𝜃 [𝑒 |𝑠], we get:

𝜆 𝜃 [𝑒 |𝑠] = −
𝑀∑︁
𝑖=1

P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠] . (7.13)
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By summing both sides of (7.13) on all 𝑒 ∈ E, we obtain:

𝜆
∑︁
𝑒∈E

𝜃 [𝑒 |𝑠]

= −
∑︁
𝑒∈E

𝑀∑︁
𝑖=1

P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

= −
∑︁
𝑒∈E

∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]𝑀
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑

𝑒′∈E
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

= −𝑀
∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]

∑
𝑒∈E
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑

𝑒′∈E
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

= −𝑀
∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]

= −𝑀 (7.14)

where the last step holds because of (7.4), and the second step holds because, again by (7.4), we

have that, for any function 𝑓 :

𝑀∑︁
𝑖=1

𝑓 (𝑧𝑖) =
∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]𝑀 𝑓 (𝑧). (7.15)

Hence, since 𝜃 [·|𝑠] is a probability distribution on E, we obtain that (7.12) is satisfied by

taking 𝜆 = −𝑀.

Therefore, by isolating 𝜃 [𝑒 |𝑠] from (7.13) and by using (7.15), we can conclude that, for

every 𝑒 ∈ E, we have that

𝜃 [𝑒 |𝑠]

= −1
𝜆

𝑀∑︁
𝑖=1

P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

=
1
𝑀

𝑀∑︁
𝑖=1

P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑
𝑒′∈E
P[𝑍𝑠 = 𝑧𝑖 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

=
∑︁
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧̄𝑠]
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒, 𝑆 = 𝑠] 𝜃′ [𝑒 |𝑠]∑

𝑒′∈E
P[𝑍𝑠 = 𝑧 |𝐸 = 𝑒′, 𝑆 = 𝑠] 𝜃′ [𝑒′ |𝑠]

□

Now, for the given 𝑠 ∈ S, we define the sequence
{
P̂[𝐸 |𝑆 = 𝑠] (𝑡 )

}
𝑡≥0 as follows:

P̂[𝐸 |𝑆 = 𝑠] (0) def
= any fully supported distribution

P̂[𝐸 |𝑆 = 𝑠] (𝑡+1) def
= argmax

𝜃

𝑄(𝜃, P̂[𝐸 |𝑆 = 𝑠] (𝑡 ) )

The next theorem states the key property of our algorithm, i.e. that
{
P̂[𝐸 |𝑆 = 𝑠] (𝑡 )

}
𝑡≥0



7.3 The BaBE method 51

tends to the MLE argmax𝜃 𝐿𝑧𝑠 (𝜃). The proof of the theorem follows from the fact that 𝑄(𝜃, 𝜃′)
has continuous derivatives in both its arguments, and from Theorem 4.3 in [146] (which is a

reformulation of a result due to Wu [126]).

THEOREM 7.3. lim
𝑡→∞
P̂[𝐸 |𝑆 = 𝑠] (𝑡 ) = argmax

𝜃

𝐿𝑧𝑠 ( 𝜃 ).

Furthermore, if P[𝑍 |𝐸, 𝑆], seen as a stochastic matrix, is invertible, then the MLE argmax
𝜃

𝐿𝑧𝑠 ( 𝜃 )

is unique. The proof follows from Theorem 4 in [147].

7.3.2 Deriving P̂[𝐸 |𝑆]

We estimate the unknown parameter P[𝐸 |𝑆] as the MLE of a sequence of samples ( 𝑧̄, 𝑠̄) =

{(𝑧𝑖 , 𝑠𝑖) | 𝑖 ∈ [1, 𝑁]},2 assuming that we know the effect of the bias, i.e., P[𝑍 |𝐸, 𝑆].
We denote by 𝜑𝑠 [𝑧, 𝑧̄] the empirical probability of 𝑍 = 𝑧 given 𝑆 = 𝑠, i.e., the frequency of 𝑧 in

the samples with 𝑆 = 𝑠. Algorithm 1 estimates P[𝐸 |𝑆] by starting with the uniform distribution

and by iteratively computing at step 𝑡 a new estimation P̂[𝐸 |𝑆] (𝑡 ) from the previous one, getting

closer and closer to the MLE. In the additional material we show how Algorithm 1 is obtained

from the EM method.

Algorithm 1 : Estimation of P[𝐸 |𝑆]
Input Data: {(𝑧𝑖 , 𝑠𝑖) |𝑖 ∈ [1, . . . 𝑁]} , P[𝑍 = 𝑧 |𝐸 = 𝑒, 𝑆 = 𝑠]} and 𝛾 (desired level of precision)
Result: An approximation (up to 𝛾) P̂[𝐸 |𝑆] of the MLE

Compute 𝜑𝑠 [𝑧, 𝑧̄] for all 𝑧, 𝑠
P̂[𝐸 = 𝑒 |𝑆 = 𝑠] (0) = 1

|𝐸 | for all 𝑒, where |𝐸 | is the cardinality of the domain of 𝐸 .
𝑡 = 0
repeat

𝑡 = 𝑡 + 1
P̂[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡 ) = ∑

𝑧∈Z
𝜑𝑠 [𝑧, 𝑧̄] P[𝑍=𝑧 |𝐸=𝑒,𝑆=𝑠]P̂[𝐸=𝑒 |𝑆=𝑠] (𝑡−1)∑

𝑒′ ∈E
P[𝑍=𝑧 |𝐸=𝑒′ ,𝑆=𝑠]P̂[𝐸=𝑒′ |𝑆=𝑠] (𝑡−1) , for all 𝑒, 𝑠

until
��P̂[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡 ) − P̂[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡−1) �� < 𝛾, for all 𝑒, 𝑠

return P̂[𝐸 |𝑆] = P̂[𝐸 |𝑆] (𝑡 )

7.3.3 Deriving P̂[𝐸 |𝑍, 𝑆] from P̂[𝐸 |𝑆]

Given the data {(𝑧𝑖 , 𝑠𝑖) | 𝑖 ∈ [1, 𝑁]}, the conditional distributions P[𝑍 |𝐸, 𝑆], and the estimation

P̂[𝐸 |𝑆], we use the Bayes formula to estimate P̂[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] as

P̂[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] = P[𝑍=𝑧 |𝐸=𝑒,𝑆=𝑠]P̂[𝐸=𝑒 |𝑆=𝑠]
P[𝑍=𝑧 |𝑆=𝑠]

7.3.4 Deriving 𝐸 and 𝑌𝐸 from P̂[𝐸 |𝑍, 𝑆]

We propose two ways to derive 𝑌𝐸 for pre-processing the samples in the training data, depending

on how much probability mass is concentrated on the mode of P̂[𝐸 |𝑍, 𝑆]. We denote by 𝜏 the

threshold for the values of 𝐸 that qualify for the positive decision.

2We use the notation [𝑎, 𝑏] to represent the integers from 𝑎 to 𝑏.
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Method 1 Given 𝑧 and 𝑠, if P̂[𝐸 |𝑍 = 𝑧, 𝑆 = 𝑠] is unimodal and has a large probability mass (say,

50% or more) in its mode, then we can safely set 𝐸 as that mode. Namely, if max𝑒 P̂[𝐸 = 𝑒 |𝑍 =

𝑧, 𝑆 = 𝑠] ≥ 0.5 then we set 𝑒 = argmax𝑒 P̂[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠], and we can then use 𝑒 directly to

set 𝑌𝐸 = 1 or 𝑌𝐸 = 0 in those samples with 𝑍 = 𝑧 and 𝑆 = 𝑠, depending on whether 𝑒 ≥ 𝜏 or not,

respectively. Our experimental results show that this method gives good accuracy.

Method 2 If P̂[𝐸 |𝑍 = 𝑧, 𝑆 = 𝑠] is dispersed in several values, so that no value is strongly

predominant, then it is impossible to estimate individual values for 𝐸 with high accuracy.

However, we can still accurately estimate 𝑌𝐸 as follows: Let 𝜎0 =
∑

𝑒<𝜏 P̂[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] and

𝜎1 =
∑

𝑒≥𝜏 P̂[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠]. If 𝜎0 < 𝜎1, then we set 𝑌𝐸 = 1; otherwise, 𝑌𝐸 = 0.

7.4 Experiments

In this section, we test BaBE on scenarios corresponding to Examples 7.1.1 and 7.1.2, using

synthetic data sets and a real data set respectively, and we compare our results with those

achieved by the following well-known pre-processing approaches that aim to satisfy statistical

parity.

Metrics

We will use the following metrics to measure fairness: Statistical parity difference (𝑆𝑃𝐷) 7.1,

Conditional statistical parity difference (𝐶𝑆𝑃𝐷𝑒) 7.2, Equal opportunity difference (𝐸𝑂𝐷) 7.3.

The performance is measured by accuracy (Acc(𝑌,𝑌 )) 6.2, distortion (Dist(𝐸, 𝐸)) 6.3, and the

Wasserstein distance between the true and estimated distributions (W(𝜇, 𝜈)) 6.1.

Other Algorithms for Comparison

The first approach we compare with is the disparate impact (DI) remover [145, 148] 3. DI has a

parameter 𝜆, which represents the minimum allowed ratio between the probability of success

(𝑌 = 1) of each group (hence 𝜆 = 1 corresponds to statistical parity). For the experiments, we use

𝜆 = 0.8.

The second algorithm we compare with ours is the naive Bayes (NB) [15] 4. NB also applies

the EM method; however, in contrast to our work, NB assumes that 𝐸 and 𝑆 are independent,

and uses EM to take decisions that optimize the trade-off between SPD and accuracy.

Synthetic data sets with varying means for 𝐸 |𝑆 = 1 and 𝐸 |𝑆 = 0

We generate synthetic data sets as follows. First, we generate a data set (multiset) of 20K

elements {𝑠𝑖}𝑖∈[1,20K] representing values for the sensitive variable (group) 𝑆, where each 𝑠𝑖

is sampled from the Bernoulli distribution B(0.5). This means that the two groups are about

even. Then, we set the domain of 𝐸 to be equal to [0, 99], and to each of the elements 𝑠𝑖 in

3We use the implementation by [148].
4Implementation kindly provided by the authors of [15].
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the sequence we associate a value 𝑒𝑖 for the variable 𝐸, sampled from the normal distribution

N(mean0, 𝑠𝑑) if 𝑠𝑖 = 0 and from N(mean1, 𝑠𝑑) if 𝑠𝑖 = 1,5 where the mean mean1 is set to 60,

and the standard deviation 𝑠𝑑 is set to 30. On the other hand, the value of mean0, varies through

the experiments from 40 to 80. Varying mean0 will allow us to test how our method behaves

when 𝐸 is independent of 𝑆 or not. Finally, to each pair (𝑠𝑖 , 𝑒𝑖) we associate a value 𝑧𝑖 with 𝑍 by

applying a bias to 𝑒𝑖 with a certain probability. More precisely, 𝑧𝑖 = 𝑒𝑖 + (bias × 𝑒𝑖), where bias

is sampled from N(−0.2, 0.05) if 𝑠𝑖 = 0 and from N(0.2, 0.05) if 𝑠𝑖 = 1. The threshold for the

decision is 𝐸 = 60, namely: 𝑌 = 1 if 𝐸 > 60 and 𝑌 = 0 otherwise.

Synthetic data sets with distributions shifts in 𝐸 |𝑆 = 1 and 𝐸 |𝑆 = 0

This group of data sets is generated to test the transfer of causal knowledge to populations with

different distributions. For this purpose, we estimate the distributions P[𝑍 |𝐸, 𝑆] from synthetic

data generated as in the first group of experiments, with mean0 = 60. We call these "source data".

Then we generate different populations where mean0 varies from 40 to 80. The percentage of

the two groups in these new populations also changes: we have set the group 1 to be 60% of the

population, and, consequently, the group 0 to be 40%.

The real-world data set

The National Health and Nutrition Examination Survey (NHANES) is a series of studies that are

intended to evaluate the health and nutritional status of adults and children in the United States.

The survey is unique in that it incorporates in-depth interviews and detailed physical examinations.

Health-related questions and demographics are included in the NHANES interview. For the

survey, the sample was selected to represent the US population of all ages. To produce reliable

statistics, NHANES oversamples individuals aged 60 and over, African Americans, and Hispanics.

The National Health and Nutrition Examination Survey (NHANES) 6 conducted by the National

Center for Health Statistics is a popular source for studying biological aging [149–152]. The data

set consists of 8243 samples. For our experiments, we use three variables from the data set, race

(black or white), which is out 𝑆, chronological age (20-90), which is our 𝑍 , and an estimate of the

biological age of the original KDM 7 biological age (variable ’kdm0’) which is our 𝐸 . We choose

chronological or biological age 75 or more as the threshold to set 𝑌𝑍 = 1 and 𝑌𝐸 = 1. This age

group shows the most racial disparity in biological aging in the NHANES data set (Figure 7.2).

Additionally, it is a reasonable age to check for age-related diseases or consider retirement.

5To keep the samples in the range of 𝐸 , we re-sample the values that are lower than 0 or higher than 99. We also
discretize them by rounding to the nearest integer.

6https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
7Klemera and Doubal’s method for calculating the biological age from the set of biomarkers.

https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
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Figure 7.2: The graph shows the equal opportunity difference (EOD) between the 𝑌𝐸 and 𝑌𝑍 ,
when different thresholds for 𝑍 (chronological age) are selected. The disparity is largest around
the chronological age equal 75 years.

Application of BaBE

Once the data are generated, we use a random portion of them (50%) to derive P[𝑍 |𝐸, 𝑆] and

P[𝐸 |𝑆], which we consider as the “true” distributions. Then we take another portion of the data

(40%) randomly selected from the unused ones, remove the 𝐸 values from them, and use them

to compute the empirical distribution P[𝑍 |𝑆] and to produce, by applying our BaBE method, the

estimates P̂[𝐸 |𝑆] and P̂[𝐸 |𝑍, 𝑆]. We verify that these satisfy the conditions for Method 1, and we

apply this method to set the values of 𝐸 and 𝑌𝐸 for each sample. In the second set of experiments,

"source data" is not available for BaBE. The prior knowledge in the form of P[𝑍 |𝐸, 𝑆] derived

from the "source data" is applied to estimate P[𝐸 |𝑆] in the data sets, where it is different from

the "source data". Experiments on the NHANES data are carried out using Method 2 of the

BaBE application. We evaluated various metrics for the precision of the estimations and fairness

and compared the performance of BaBE with disparate impact remover (DI) and with naive

Bayes (NB). The boxplots are obtained by repeating the experiments ten times with the same

parameters. We report the results for the values of 𝑚𝑒𝑎𝑛0 equal to 40,60 and 80.

Experimental results on the synthetic data with varying means for 𝐸 |𝑆 = 1 and 𝐸 |𝑆 = 0

Figure 7.3: The distributions P[𝐸 |𝑆 = 1] (orange) and P[𝑍 |𝑆 = 1] (magenta)
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The distributions of 𝐸 and 𝑍 in the data set, for each group 𝑆 = 1 and 𝑆 = 0, are shown in Figures

7.3 and 7.4 respectively.
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Figure 7.4: The distributions of 𝐸 (green) and 𝑍 (blue) for 𝑆 = 0, i.e., P[𝐸 |𝑆 = 0] and P[𝑍 |𝑆 = 0],
respectively

We now apply our BaBE method to estimate the distributions P[𝐸 |𝑆 = 1] and P[𝐸 |𝑆 = 0].
The corresponding estimates P̂[𝐸 |𝑆 = 1] and P̂[𝐸 |𝑆 = 0] are shown in Figures 7.5 and 7.7,

respectively. As we can see, all the estimates are very close to the original distributions. We note

that the estimation tends to exaggerate the irregularities in the original distribution. This is a

characteristic of the EM method when the volume of data is not very large.

Figure 7.5: The original distribution P[𝐸 |𝑆 = 1] (orange), and the estimate P̂[𝐸 |𝑆 = 1] produced
by BaBE (magenta)
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Figure 7.6: The original distributions P[𝐸 |𝑆 = 0].
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Figure 7.7: The original distributions P[𝐸 |𝑆 = 0] (green), and the estimates P̂[𝐸 |𝑆 = 0] produced
by BaBE (blue)
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We now apply the DI method to estimate the E values in the data sets (obtained by applying

a correction to 𝑍), and from the resulting data sets we compute (by counting the frequencies)

the distributions of the modified 𝐸 for each group. The corresponding distributions are shown

in Figures 7.8 and 7.9, respectively. Note that the new distributions are not very close to the

originals, but, on the other hand, estimating the true 𝐸 is not the goal of DI. Rather, DI aims

at making the distributions of 𝐸 for the two groups as similar as possible, thus reducing the

statistical parity difference. DI achieves the goal by applying a negative correction on 𝑍 for group

0, and positive for group 1. For this reason, even though there is only one data set for group 1,

we get 5 different distributions of 𝐸 , one for each value of mean0.
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Figure 7.8: The original distribution P[𝐸 |𝑆 = 1] (orange), and the distributions of the 𝐸 estimated
by DI (magenta) for group 1
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Figure 7.9: The original distributions P[𝐸 |𝑆 = 0] (green), and the distributions of the 𝐸 estimated
by DI (blue) for group 0

Figure 7.10: Wasserstein distance.
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Figure 7.11: Accuracy.

Figure 7.10 shows the Wasserstein distance (6.1) between P[𝑍] and P[𝐸] and between the

estimate P̂[𝐸] and P[𝐸] for BaBE and DI (NB does not estimate 𝐸). As expected, BaBE’s estimate

is quite accurate.

Figure A.6 shows the accuracy (6.2) of the prediction 𝑌𝑍 based on 𝑍 and the accuracy of the

prediction 𝑌𝐸 obtained by BaBE, DI, and NB, respectively. As expected, BaBE’s method produces

more accurate predictions, since we aim at achieving CSP rather than SP.

Figure 7.12 shows the distortion (6.3) of 𝑍 and of 𝐸 for BaBE and DI (NB does not estimate

𝐸). BaBE’s results are quite good: the average difference is only a couple of grades.

Figure 7.12: Distortion.

Figure 7.13 compares the statistical parity difference (SPD) of the prediction 𝑌𝐸 obtained

with various methods, and the SPD of 𝑌𝑍 . The SPD for 𝑌𝐸 is defined in (7.1), for 𝑌𝑍 is defined as

P[𝑌𝑍 = 1|𝑆 = 1]−P[𝑌𝑍 = 1|𝑆 = 0]. Note that the SPD of 𝑌𝑍 decreases as mean0 (the merit of group

0) increases. In particular, it becomes very small when mean0 = 80. This is because in this case

the merit of the group 0 is greater than that of the group 1 (we recall that mean1 = 60), which

compensates the effect of the bias (negative for group 0 and positive for group 1). Regarding 𝑌𝐸 ,

we recall that DI and NB are designed to optimize SPD under some constraints, while BaBE is

not. As expected, with BaBE the SPD is quite large in all cases except when the merit is similar

for the two groups (mean0 = mean1 = 60). DI has quite good results (very low SPD) in all cases.

In contrast, NB performs poorly. We think this is because the parameters of this experiment clash

with the constraints of NB. In other experiments, NB performs well (cf. supplementary material).
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Figure 7.13: Statistical Parity Difference (SPD).

Figure 7.14 compares the Conditional Statistical Parity Difference (CSPD) of the 𝑌𝐸 obtained

with various methods and the CSPD of 𝑌𝑍 . The CSPD for 𝑌𝐸 is defined in (7.2), for 𝑌𝑍 is defined

as P[𝑌𝑍 = 1|𝐸, 𝑆 = 1] − P[𝑌𝑍 = 1|𝐸, 𝑆 = 0]. Note that BaBE performs very well in all cases,

as expected. Also, DI performs surprisingly very well in the first two cases, but this is just a

coincidence, as for mean1 = 80 and in other experiments (cf. supplementary material) CSPD is

high.

Figure 7.14: Conditional Statistical Parity Difference (CSPD).

Figure 7.15: Equal Opportunity Difference.

Figure 7.15 compares the Equal Opportunity Difference (EOD) of the 𝑌𝐸 obtained with the

various methods and the EOD of 𝑌𝑍 . The EOD for 𝑌𝐸 is defined in (7.3), for 𝑌𝑍 is defined as

P[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 1] − P[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 0]. Again, BaBE performs very well in all cases,

as expected. Note that in the first case DI does not perform well for EOD, in contrast to its

performance for CSPD𝑒 with 𝑒 = 55. This is because EOD is computed for all 𝑒, and for other

values of 𝑒 the CSPD𝑒 of DI is large.
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Results on synthetic data sets with distribution shift

In this group of experiments, we show that BaBE is compatible with the transfer of causal

knowledge to populations with different distributions. The distribution for the source data are

shown in Figure 7.16, and those for the the new populations are shown in 7.17.

Figure 7.16: The distribution of 𝐸 |𝑆 in the source data for P[𝑍 |𝐸, 𝑆]
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Figure 7.17: The distribution of 𝐸 |𝑆 in the new populations

Figure 7.18 shows the Wasserstein distances between the true distributions and the estimated

ones. As we can see, BaBE manages to estimate 𝐸 quite well: the distance w.r.t. 𝐸 is very small.

Figure 7.18: The Wasserstein distance between P̂[𝑍] and P[𝐸] and between P̂[𝐸] and P[𝐸].

Figures7.19 shows the accuracy for the two groups. Once again the performance of BaBE is

better than other pre-processing methods.
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Figure 7.19: Experiment on the transfer of knowledge: The accuracy between 𝑌𝑍 and 𝑌𝐸 (for 𝑍),
and between 𝑌𝐸 and 𝑌𝐸 .

Figure 7.20 shows the distortion (Equation 6.3). Babe again produces results that are closer

to the true values of 𝐸 than the ones produced by other methods.

Figure 7.20: The distortion.

Figure 7.21 shows the conditional statistical parity difference on admission for each group,

conditioned on 𝐸 . The values for BaBE are close to zero, indicating the absence of discrimination.

Figure 7.21: Experiment on the transfer of knowledge: Conditional Statistical Parity Difference
(CSPD). We recall that for BaBE, DI and NB, CSPD is defined as P[𝑌𝐸 = 1|𝐸, 𝑆 = 1] − P[𝑌𝐸 =

1|𝐸, 𝑆 = 0]. For 𝑍, the definition is similar, with 𝑌𝐸 replaced by 𝑌𝑍 .

Figure 7.22 shows the probabilities of positive prediction when the true decision is positive,
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and the corresponding difference in equal opportunity. We note that the prediction based on 𝑍

has a high probability to be positive for the group 1, but not for the group 0, therefore 𝑍 has

positive values for EOD. On the other hand, BaBE’s prediction is based on the estimation of 𝐸,

and hence tends to be equal to the true decision yielding EOD close to zero.

Figure 7.22: Experiment on the transfer of knowledge: Equal Opportunity Difference (EOD). We
recall that for BaBE, DI, and NB, EOD is defined as P[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 1] − P[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 =

0]. For 𝑍, the definition is similar, with 𝑌𝐸 replaced by 𝑌𝑍

Finally, Figure 7.23 compares the statistical difference (SPD) of the prediction 𝑌𝐸 obtained

with the various methods and the SPD of 𝑌𝑍 . The SPD for 𝑌𝐸 is defined in (7.1), for 𝑌𝑍 is defined

as P[𝑌𝑍 = 1|𝑆 = 1] − P[𝑌𝑍 = 1|𝑆 = 0]. Once again, the SPD of 𝑌𝑍 decreases as mean0 (the

merit of group 0) increases. BaBE achieves correctly 𝑆𝑃𝐷 = 0 where mean0 = 60, that is, the

same as mean1. DI and NB achieve SPD close to zero only in the data with mean0 = 80, where

the disparity is high and the positive decision is more likely for 𝑆 = 0. In the cases where a

positive decision is more likely for 𝑆 = 1 (discrimination against 𝑆 = 0), DI and NB tend to

overcompensate, resulting in a negative value for SPD.

Figure 7.23: Statistical Parity Difference (SPD).
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Results on the NHANES data

Figure 7.24: Distributions of 𝐸 and 𝑍 for 𝑆 = 1 (left) and 𝑆 = 0 (right) in NHANES data set.

In this section, we show statistics and plots for the NHANES dataset. We applied BaBE using

Method 2 ( 7.3.4), because the conditional distribution of 𝑍 |𝐸, 𝑆 does not allow the accurate

estimation of every individual 𝐸 . However, it still allows us to recover the aggregated distribution

and estimate 𝑌𝐸 . Consistent with method 2 we report only 𝐸𝑂𝐷 8 and Acc(𝑌𝐸 , 𝑌𝐸), Acc(𝑌𝑍 , 𝑌𝐸) 9.

Figure 7.25 shows the accuracy resulting from the application of BaBE, DI, and NB to the

NHANES data set when the threshold is set to 75 years of age or older. BaBE achieves better

overall accuracy and significantly better accuracy for 𝑆 = 1.

Figure 7.26 shows the equal opportunity from the application of BaBE, DI, and NB to the

NHANES data set. BaBE achieves 𝐸𝑂𝐷 close to zero. DI and NB preprocessing methods do not

differ significantly from the estimated 𝐸𝑂𝐷 considering the original 𝑍. DI and NB are designed

to aim for a statistical disparity that is equal to zero. The statistical disparity in the NHANES data

is very small (owing to the oversampling of the minority population), so much preprocessing is

not needed if the goal is optimizing statistical parity.

8We also report intermediate steps for EOD: P[𝑌
𝐸
= 1|𝑌𝐸 = 1, 𝑆 = 1] and P[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 1], P[𝑌

𝐸
= |𝑌𝐸 =

1, 𝑆 = 0] and P[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 0]
9In addition we report intermittent steps to obtain accuracy measure: Acc(𝑌

𝐸
|𝑆 = 1, 𝑌𝐸 |𝑆 = 1) and Acc(𝑌𝑍 |𝑆 =

1, 𝑌𝐸 |𝑆 = 1), Acc(𝑌
𝐸
|𝑆 = 1, 𝑌𝐸 |𝑆 = 0) and Acc(𝑌𝑍 |𝑆 = 1, 𝑌𝐸 |𝑆 = 0)
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Figure 7.25: Experiments on the NHANES data. The accuracy between 𝑌𝑍 and 𝑌𝐸 (for 𝑍), and
between 𝑌𝐸 and 𝑌𝐸 .

Z BaBE DI NB
1.0

0.5

0.0

0.5

1.0

P[
Y E

=
1|

Y E
=

1,
S

=
0]

 
 a

nd
 P

[Y
Z

=
1|

Y E
=

1,
S

=
0]

Z BaBE DI NB
1.0

0.5

0.0

0.5

1.0

P[
Y E

=
1|

Y E
=

1,
S

=
1]

 
 a

nd
 P

[Y
Z

=
1|

Y E
=

1,
S

=
1]

Z BaBE DI NB
1.0

0.5

0.0

0.5

1.0

EO
D

Figure 7.26: Experiments on the NHANES data. 𝐸𝑂𝐷.

7.4.1 Discussion

Our experiments show that BaBE performs well for the fairness notions for which BaBE is

designed, i.e., CSPD𝑒 and EOD while maintaining good accuracy.

BaBE performs well also when P[𝐸 |𝑆] is different from that of the data in which P[𝑍 |𝐸, 𝑆]
has been computed (Figure 7.18), which shows that BaBE is compatible with the transfer of

causal knowledge to populations with different distributions. On the contrary, DI and NB highly

depend on the distribution as they always aim to minimize SPD. Note that minimizing SPD in the

NHANES data set would still result in discrimination against black people, who on average have

higher biological age than white people of the same chronological age.

It is important to mention that the performance of BaBE is dependent on the invertibility

of P[𝑍 |𝐸, 𝑆 = 𝑠] (seen as stochastic matrix, aka bias matrix), because invertibility is necessary

for the uniqueness of the MLE. However, even when the matrix is not invertible, we are able to

obtain favorable results. Indeed, in all our experiments the bias matrices we produce from the

synthetic data are not invertible, to mimic the more realistic scenarios. Preliminary experiments

show that the diagonal deterministic matrix produces the highest precision for the estimation

of distributions P[𝐸 |𝑆], and highest accuracy of the prediction 𝑌𝐸 . We leave a more systematic

study on how precision and accuracy depend on P[𝑍 |𝐸, 𝑆 = 𝑠] as a topic for future work.



8
Underrepresentation and Sampling Bias in

Machine Learning

8.1 Introduction

A common category of bias in ML occurs when the ML model is trained using a limited number of

samples. This produces an inaccurate model and the inaccuracy will typically be born differently

by different subpopulations, which leads to discrimination. This category of bias is inconsistently

given various names in the literature (e.g. sampling bias, representation bias, data imbalance

bias, etc.) and, to the best of our knowledge, is not formally defined. This chapter is an attempt to

disambiguate this category of bias by proposing definitions of two sources of bias, namely, sample

size bias (SSB) and underrepresentation bias (URB). SSB is the bias that results from training an

ML model using training data with a limited number of samples and where all subpopulations

are represented in the same proportions as the real population. URB is the bias resulting from

training an ML model using training data with a disparity in the number of samples corresponding

to each subpopulation.

8.1.1 Related Work

Although the link between the limited number of samples used for training and the disparity in

the accuracy of the obtained model may seem straightforward, the magnitude of such a pattern

has not been thoroughly studied in the ML fairness literature. Based on the proposed definitions

of SSB and URB, the empirical part of the chaper illustrates how the magnitude of discrimination

behaves as more extreme versions of bias are considered. Various discrimination metrics are

used, namely, difference in 𝐹𝑃𝑅 (false positive rate), equal opportunity [14], difference in 𝑍𝑂𝐿
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(zero-one loss), difference in 𝐴𝑈𝐶 (area under the curve), statistical disparity [96], and, for

regression problems, difference in 𝑀𝑆𝐸 (mean squared error). For the latter, we use previous

results in the literature [153, 154] to decompose discrimination into noise, bias, and variance.

The literature, particularly related to computer vision [6, 155, 156] suggests that sampling

bias can be corrected using more data for training, in particular for underrepresented groups.

Obtaining more data is possible either through data augmentation (duplicating or creating

synthetic samples) or resuming data collection. Unlike data augmentation, whose effect on

discrimination has been the subject of a number of papers, in particular related to computer

vision (e.g. [157–163]), the impact of collecting more samples on discrimination has not been well

studied in the literature1. Furthermore, the effect of collecting more samples on discrimination

in the case low-dimentional tabular data has not been addressed.

8.2 Preliminaries

Let A be a supervised learning algorithm for learning an unknown function 𝑓 : X ↦→ Y where

X is the input variables space and Y is the outcome space. Without loss of generality, the

outcome random variable 𝑌 is assumed to be binary (Y = {0, 1}, e.g. accepted/rejected). Let

S = {(x𝑖 , 𝑦𝑖 = 𝑓 (x𝑖))}, 𝑖 = 1 . . . 𝑚, be a training sample of size 𝑚. Based on the data sample S,

algorithm A learns a function A(S) = 𝑓 AS . Let 𝑌AS be the predicted outcome random variable

such that 𝑓 AS (x𝑖) = 𝑦𝑖. When there is no ambiguity, we refer to 𝑌AS and 𝑓 AS simply as 𝑌 (or 𝑌S)

and 𝑓 (or 𝑓S).

Given the true value 𝑦 and the prediction 𝑦, 𝐿 (𝑦, 𝑦) represents the loss incurred by predicting

𝑦 while the true outcome is 𝑦. A commonly used loss function for regression problems is the

squared loss defined as 𝐿𝑆𝐿 (𝑦, 𝑦) = (𝑦 − 𝑦)2. Other loss functions that will be considered in this

chapter are the absolute loss 𝐿𝐴𝐿 (𝑦, 𝑦) = |𝑦 − 𝑦 | and the zero-one loss 𝐿𝑍𝑂 (𝑦, 𝑦) = 0 if 𝑦 = 𝑦, and

1 otherwise.

Based on a loss function, we define two special predictions, namely, the main prediction for a

learning algorithm A and the optimal prediction.

Given a learning algorithm A and a set of training samples 𝔖 = {S1,S2, . . .}, the main

prediction random variable ¯̂𝑌
A
𝔖 (¯̂𝑦 =

¯̂
𝑓
A
𝔖 (x)) represents the prediction that minimizes the loss

across all training sets in 𝔖. That is,

¯̂
𝑓 A
𝔖
(x) = argmin

𝑓 ′
ES∈𝔖 [𝐿 ( 𝑓S (x), 𝑓 ′(x)] .

When there is no ambiguity, we refer to ¯̂𝑌
A
𝔖 and ¯̂

𝑓 A
𝔖
(x) simply as ¯̂𝑌 and ¯̂

𝑓 (x). Typically, the main

prediction corresponds to the average prediction across all training sets in 𝔖. That is,

¯̂
𝑓 (x) = E

S∈𝔖
𝑓S (x)2. (8.1)

The optimal prediction 𝑌 ∗ (𝑦∗ = 𝑓 ∗(x)) is the prediction that minimizes the loss across all

1Detailed related work is provided in Supplementary Material
2We exceptionally use the expectation on a function, instead of a random variable.
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possible predictors. That is,

𝑓 ∗(x) = argmin
𝑓 ′
E[𝐿 ( 𝑓 (x), 𝑓 ′(x)] .

It is important to note that 𝑓 ∗ is independent of the learning algorithm A.
Assume that the sensitive attribute 𝐴 is a binary variable with possible values 𝐴 = 𝑎0 and

𝐴 = 𝑎1, each representing a different group (e.g. male vs female, black vs white, etc.). Let 𝐺0 and
𝐺1 denote these groups. That is, 𝐺0 = {x ∈ X|𝐴 = 𝑎0} and 𝐺1 = {x ∈ X|𝐴 = 𝑎1}. Discrimination
between 𝐺0 and 𝐺1 can be defined in terms of the disparity in prediction accuracy. Let 𝐶•𝑎 (𝑌 )
denote the accuracy/cost of prediction 𝑌 for group 𝐴 = 𝑎. For classification problems, we consider
four metrics, namely, false positive rate (𝐹𝑃𝑅), false negative rate (𝐹𝑁𝑅), true positive rate
(𝑇𝑃𝑅), and zero one loss (𝑍𝑂𝐿). For regression problems, we consider mean square error (𝑀𝑆𝐸).
These metrics are defined as follows:

◦ 𝐶FPR
𝑎 (𝑌 ) = E[𝑌 |𝑌 = 0, 𝐴 = 𝑎]

◦ 𝐶FNR
𝑎 (𝑌 ) = E[1 − 𝑌 |𝑌 = 1, 𝐴 = 𝑎]

◦ 𝐶TPR
𝑎 (𝑌 ) = E[𝑌 |𝑌 = 1, 𝐴 = 𝑎]

◦ 𝐶ZOL
𝑎 (𝑌 ) = E[1[𝑌 ≠ 𝑌 ] |𝐴 = 𝑎]

◦ 𝐶MSE
𝑎 (𝑌 ) = E[(𝑌 − 𝑌 )2 |𝐴 = 𝑎]

Discrimination 𝐷𝑖𝑠𝑐• can be defined as the difference in 𝐶•𝑎 between the two sensitive groups.

For instance 𝐷𝑖𝑠𝑐FPR(𝑌 ) = 𝐶FPR
𝑎1
(𝑌 ) − 𝐶FPR

𝑎0
(𝑌 ). Notice that 𝐷𝑖𝑠𝑐TPR(𝑌 ) corresponds to discrimination

according to equal opportunity [14] and that 𝐷𝑖𝑠𝑐TPR(𝑌 ) = −𝐷𝑖𝑠𝑐FNR(𝑌 ) as 𝑇𝑃𝑅 = 1− 𝐹𝑁𝑅. In the

rest of the chapter, we use 𝐷𝑖𝑠𝑐TPR(𝑌 ) and 𝐷𝑖𝑠𝑐EO(𝑌 ) interchangeably. In addition, for reference,

we use 𝐷𝑖𝑠𝑐SD(𝑌 ) = E[𝑌 |𝐴 = 𝑎1] − E[𝑌 |𝐴 = 𝑎0] to denote statistical disparity [96].

8.2.1 Decomposing and bounding statistical disparity

Statistical disparity is the simplest discrimination metric and it corresponds to the difference in

the expected outcomes between groups:

DEFINITION 8.2.1 (Statistical Disparity).

𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌S) = EX [𝑌S |𝐴 = 𝑎1] − EX [𝑌S |𝐴 = 𝑎0]

= E
x∈𝐺1

[ 𝑓S (x)] − E
x∈𝐺0

[ 𝑓S (x)]

𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌S) is a biased estimation of the true value 𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌 ). The following theorem states

that the error in estimating statistical disparity can be bounded where the bounds are expressed

in terms of noise, bias, and variance.
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THEOREM 8.1. The error in estimating statistical disparity is bounded as follows:

|𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌S) − 𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌 ) | ≤ (𝑁
𝐴𝐿

𝑎1
(𝑌S) − 𝑁

𝐴𝐿

𝑎0
(𝑌S)) + (𝐵

𝐴𝐿

𝑎1
(𝑌S) − 𝐵

𝐴𝐿

𝑎0
(𝑌S))+

(𝑉 𝐴𝐿

𝑎1
(𝑌S) −𝑉

𝐴𝐿

𝑎0
(𝑌S))

|𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌S) − 𝐷𝑖𝑠𝑐𝑆𝐷 (𝑌 ) | ≥ max(

(𝑁𝐴𝐿

𝑎1
(𝑌S) − 𝑁

𝐴𝐿

𝑎0
(𝑌S)) − (𝐵

𝐴𝐿

𝑎1
(𝑌S) − 𝐵

𝐴𝐿

𝑎0
(𝑌S))−

(𝑉 𝐴𝐿

𝑎1
(𝑌S) −𝑉

𝐴𝐿

𝑎0
(𝑌S)),

(𝐵𝐴𝐿

𝑎1
(𝑌S) − 𝐵

𝐴𝐿

𝑎0
(𝑌S)) − (𝑁

𝐴𝐿

𝑎1
(𝑌S) − 𝑁

𝐴𝐿

𝑎0
(𝑌S))−

(𝑉 𝐴𝐿

𝑎1
(𝑌S) −𝑉

𝐴𝐿

𝑎0
(𝑌S)),

(𝑉 𝐴𝐿

𝑎1
(𝑌S) −𝑉

𝐴𝐿

𝑎0
(𝑌S)) − (𝐵

𝐴𝐿

𝑎1
(𝑌S) − 𝐵

𝐴𝐿

𝑎0
(𝑌S))−

(𝑁𝐴𝐿

𝑎1
(𝑌S) − 𝑁

𝐴𝐿

𝑎0
(𝑌S)))

where:

◦ 𝑁𝐴𝐿

𝑎 (𝑌S) = Ex∈X [𝑁𝐴𝐿 (x) |𝐴 = 𝑎]

◦ 𝐵𝐴𝐿

𝑎 (𝑌S) = Ex∈X [𝐵𝐴𝐿 (x) |𝐴 = 𝑎]

◦ 𝑉 𝐴𝐿

𝑎 (𝑌S) = Ex∈X [(1 − 2 × 𝐵𝐴𝐿 (x)) ×𝑉 𝐴𝐿 (x) |𝐴 = 𝑎]

Proof. The proof is based on the triangle inequality of metrics. Recall that a metric is a function

of two arguments (𝑑𝑖𝑠𝑡 (𝑥, 𝑦)) that satisfy minimality (∀𝑥, 𝑦, 𝑑𝑖𝑠𝑡 (𝑥, 𝑦) ≥ 𝑑𝑖𝑠𝑡 (𝑥, 𝑦)), symmetry

(∀𝑥, 𝑦, 𝑑𝑖𝑠𝑡 (𝑥, 𝑦) = 𝑑𝑖𝑠𝑡 (𝑦, 𝑥)), and triangle inequality (∀𝑥, 𝑦, 𝑧𝑑𝑖𝑠𝑡 (𝑥, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑥) ≥ 𝑑𝑖𝑠𝑡 (𝑥, 𝑦)).
The full proof is very similar to the proof in [154] (Theorem 7). □

8.3 Sample Size and Underrepresentation Biases

Typically, the size of the data used to train an ML model has a significant impact on the accuracy

of the obtained model. However, it is generally assumed that the loss in accuracy is equally born

by the different segments of the data. As it is not usually the case, we define sample size bias

(SSB) as the bias resulting from training a model with a given data size.

Let 𝔖𝔪 = {S1,S2, . . .} be the set of samples of size 𝑚, and let 𝑓S1 , 𝑓S2 , . . . be the models

produced by applying the learning algorithm A on each sample (A(S1) = 𝑓S1 , etc.). Let ¯̂𝑌
A
𝔖𝔪

(¯̂𝑦𝑚 =
¯̂
𝑓 A
𝔖𝑚
(x)) be the main prediction obtained using the set of training sets 𝔖𝔪. That is,

¯̂
𝑓 A
𝔖𝑚
(x) = argmin

𝑓 ′
ES∈𝔖𝑚

[𝐿 ( 𝑓S (x), 𝑓 ′(x)] . (8.2)

When there is no ambiguity, we refer to ¯̂𝑌
A
𝔖𝔪

and ¯̂
𝑓
A
𝔖𝑚

simply as ¯̂𝑌 and ¯̂
𝑓𝑚.

DEFINITION 8.3.1. Given a positive number 𝑚 > 0 representing the training set

size, sample size bias is the difference in discrimination due to the training set
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size:

𝑆𝑆𝐵•(A, 𝑚) = 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚) − 𝐷𝑖𝑠𝑐•( ¯̂𝑌∞) (8.3)

where 𝐷𝑖𝑠𝑐•( ¯̂𝑌∞) = lim
𝑚→∞

𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚) and • is a placeholder for the accuracy/cost

metric (𝐹𝑃𝑅, 𝐹𝑁𝑅, 𝐸𝑂, 𝑍𝑂𝐿, or 𝑀𝑆𝐸 for regression problems). As a metric that

combines both specificity (𝐹𝑃𝑅) and sensitivity (𝑇𝑃𝑅), we use also 𝐴𝑈𝐶 (area

under the curve)3. For reference, we consider also statistical disparity that we

denote as 𝐷𝑖𝑠𝑐𝑆𝐷 (See Supplementary Material).

As 𝑆𝑆𝐵 is defined in terms of an infinite size training set (¯̂𝑌∞), we consider an alternative

definition in terms of 𝑀, the size of the largest training set available:

𝑆𝑆𝐵•𝑀 (A, 𝑚) = 𝐷𝑖𝑠𝑐•(
¯̂𝑌𝑚) − 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑀 ) (8.4)

Another variant of 𝑆𝑆𝐵 can be defined based on a specific training set S𝑚 of size 𝑚 as follows:

𝑆𝑆𝐵𝑀
•(A,S𝑚) = 𝐷𝑖𝑠𝑐•(𝑌S𝑚) − 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑀 ) (8.5)

When sampling a training set from a population, it is generally assumed that the generated

sample is balanced. Data are balanced if all classes are proportionally represented and are

imbalanced if they suffer from severe class distribution skews [164]. For instance, if a class label

is overrepresented at the expense of another underrepresented class label. If data is imbalanced

in the sensitive groups (e.g. male vs female, blacks vs whites, etc.), it can have significant impact

on the disparity of accuracies and consequently on discrimination between sensitive groups. We

define underrepresentation bias (URB) as the bias resulting from a disparity in representation

between the sensitive groups.

Let 𝔖
𝑚1
𝑚0
𝑚 be the set of samples of size 𝑚 with 𝑚0 and 𝑚1 items from 𝐺0 and 𝐺1 respectively.

That is, for S ∈ 𝔖
𝑚1
𝑚0
𝑚 , |{x ∈ S|𝐴 = 𝑎0}| = 𝑚0, |{x ∈ S|𝐴 = 𝑎1}| = 𝑚1, and 𝑚0 + 𝑚1 = 𝑚 = |S|. We

use the simpler notation ¯̂𝑌 𝑚1
𝑚0

to refer to ¯̂𝑌
A

𝔖

𝑚1
𝑚0
𝑚

.

DEFINITION 8.3.2. Given, 𝑚, 𝑚0, 𝑚1 > 0 such that 𝑚0 + 𝑚1 = 𝑚, underrepresenta-

tion bias is the difference in discrimination due to the disparity in sample sizes

compared to the population ratio:

𝑈𝑅𝐵•(A, 𝑚0, 𝑚1) = 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚1
𝑚0
) − 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚

𝑝

1
𝑚

𝑝

0

) (8.6)

where 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚
𝑝

1 /𝑚
𝑝

0
) is the discrimination of the prediction based on a model

trained using only samples from 𝔖
𝑚

𝑝

1 /𝑚
𝑝

0
𝑚 , and the ratio

𝑚
𝑝

1
𝑚

𝑝

0
is the same as the ratio

in the population (
𝑚

𝑝

1
𝑚

𝑝

0
≈ |𝐺1 |
|𝐺0 | ).

Similar to 𝑆𝑆𝐵•
𝑀
(A,S𝑚) (Equation 8.5), a variant of 𝑈𝑅𝐵 can be defined based on a specific

3Other metrics combining specificity and sensitivity include 𝐹1 score and balanced accuracy (𝐵𝐴)
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training set S𝑚1
𝑚0
∈ 𝔖

𝑚1
𝑚0
𝑚 as follows:

𝑈𝑅𝐵•(A,S𝑚1
𝑚0
) = 𝐷𝑖𝑠𝑐•(𝑌S𝑚1

𝑚0

) − 𝐷𝑖𝑠𝑐•( ¯̂𝑌𝑚
𝑝

1
𝑚

𝑝

0

) (8.7)

8.4 Loss and Discrimination Decomposition

Domingos [154] showed that if a learning algorithm A learns a function A(S) = 𝑓S based on a

training set S ∈ 𝔖, then the expected loss between the prediction 𝑓S (x) and the true value 𝑓 (x)
can be decomposed into noise, bias, and variance. In particular, for squared loss,

𝐿𝑆𝐿 ( 𝑓S (x), 𝑓 (x)) = 𝑁𝑆𝐿 (x) + 𝐵𝑆𝐿 (x) +𝑉𝑆𝐿 (x) (8.8)

where

◦ 𝑁𝑆𝐿 (x) = 𝐿𝑆𝐿 ( 𝑓 ∗(x), 𝑓 (x))

◦ 𝐵𝑆𝐿 (x) = 𝐿𝑆𝐿 ( ¯̂
𝑓 (x), 𝑓 ∗(x))

◦ 𝑉𝑆𝐿 (x) = ES∈𝔖 [𝐿𝑆𝐿 ( 𝑓S (x), ¯̂
𝑓 (x))]

The loss decomposition can be illustrated as follows:

𝑓 (x) 𝑓 ∗(x) ¯̂
𝑓 (x) 𝑓S (x)

𝑁𝑜𝑖𝑠𝑒 𝐵𝑖𝑎𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

For Zero-One loss (𝐿𝑍𝑂), Equation 8.8 holds also but with coefficients different than 1 for the

noise and variance terms. However, it does not hold for the absolute loss (𝐿𝐴𝐿)4 [154].

8.4.1 Decomposing Discrimination

Chen et al. [153] showed that the accuracy/cost metric 𝐶•𝑎 (𝑌S) as well as the discrimination

𝐷𝑖𝑠𝑐•(𝑌S) can be decomposed into noise, bias, and variance components. In particular, for MSE,

𝐶MSE
𝑎 (𝑌S) = 𝑁

SL

𝑎 (𝑌S) + 𝐵
SL

𝑎 (𝑌S) +𝑉
SL

𝑎 (𝑌S) (8.9)

where:

◦ 𝑁SL

𝑎 (𝑌S) = Ex∈X [𝑁𝑆𝐿 (x) |𝐴 = 𝑎]

◦ 𝐵SL

𝑎 (𝑌S) = Ex∈X [𝐵𝑆𝐿 (x) |𝐴 = 𝑎]

◦ 𝑉 SL

𝑎 (𝑌S) = Ex∈X [(1 − 2 × 𝐵𝑆𝐿 (x)) ×𝑉𝑆𝐿 (x) |𝐴 = 𝑎]

The last term (𝑉𝑎 (𝑌S)) is called net variance [154]. Consequently,

𝐷𝑖𝑠𝑐MSE (𝑌S) = (𝑁
SL

𝑎1
(𝑌S) − 𝑁

SL

𝑎0
(𝑌S)) + (𝐵

SL

𝑎1
(𝑌S) − 𝐵

SL

𝑎0
(𝑌S)) + (𝑉

SL

𝑎1
(𝑌S) −𝑉

SL

𝑎0
(𝑌S)) (8.10)

4Alternatively, upper and lower bounds are possible.
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Figure 8.1: Magnitude of sample size bias (SSB) for increasing size of the training data.

The decomposition of Equation 8.10 will also hold for 𝐷𝑖𝑠𝑐FPR(𝑌S), 𝐷𝑖𝑠𝑐EO(𝑌S), and 𝐷𝑖𝑠𝑐ZOL(𝑌S)
but with coefficients different than 1 for the noise and variance terms [153].

8.4.2 Decomposing 𝑆𝑆𝐵 and 𝑈𝑅𝐵

The variant 𝑆𝑆𝐵•
𝑀
(A,S𝑚) (Eq. 8.5) of sample size bias has the advantage that it can be decom-

posed into bias and variance. The decomposition for the 𝑀𝑆𝐸 metric is as follows.

THEOREM 8.2. 𝑆𝑆𝐵MSE
𝑀
(A,S𝑚) can be decomposed into bias and variance compo-

nents as follows:

𝑆𝑆𝐵𝑀
MSE (A,S𝑚) = 𝐵

𝑆𝐿

𝑎1
(𝑌S𝑚) − 𝐵

𝑆𝐿

𝑎1
( ¯̂𝑌𝑀 ) − (𝐵

𝑆𝐿

𝑎0
(𝑌S𝑚) − 𝐵

𝑆𝐿

𝑎0
( ¯̂𝑌𝑀 ))

+𝑉𝑆𝐿

𝑎1
(𝑌S𝑚) −𝑉

𝑆𝐿

𝑎1
( ¯̂𝑌𝑀 ) − (𝑉

𝑆𝐿

𝑎0
(𝑌S𝑚) −𝑉

𝑆𝐿

𝑎0
( ¯̂𝑌𝑀 )) (8.11)

Proof. The proof follows from Equation 8.9 and from assuming that the optimal predictor 𝑌 ∗

coincides with the true value 𝑌 and hence noise is 0 5. □

𝑈𝑅𝐵•(A,S𝑚1
𝑚0
) (Equation 8.7) can also be decomposed into bias and variance components.

The decomposition for the 𝑀𝑆𝐸 metric is as follows.

THEOREM 8.3.

𝑈𝑅𝐵MSE (A,S𝑚1
𝑚0
) = 𝐵𝑆𝐿

𝑎1
(𝑌S𝑚1

𝑚0

) − 𝐵𝑆𝐿

𝑎1
( ¯̂𝑌𝑚

𝑝

1
𝑚

𝑝

0

) − (𝐵𝑆𝐿

𝑎0
(𝑌S𝑚1

𝑚0

) − 𝐵𝑆𝐿

𝑎0
( ¯̂𝑌𝑚

𝑝

1
𝑚

𝑝

0

))

+𝑉𝑆𝐿

𝑎1
(𝑌S𝑚1

𝑚0

) −𝑉𝑆𝐿

𝑎1
( ¯̂𝑌𝑚

𝑝

1
𝑚

𝑝

0

) − (𝑉𝑆𝐿

𝑎0
(𝑌S𝑚1

𝑚0

) −𝑉𝑆𝐿

𝑎0
( ¯̂𝑌𝑚

𝑝

1
𝑚

𝑝

0

))

Proof. The same as Theorem 8.2. □

8.5 Experimental Analysis

The objective of the experimental analysis is to observe the magnitude of both types of bias,

namely sample size bias 𝑆𝑆𝐵 and underrepresentation bias 𝑈𝑅𝐵 as we change the parameters

5We follow previous work (Domingos [154] and Kohavi and Wolpert [165]) in assuming a zero noise.
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Figure 8.2: Underrepresentation Bias (URB) for different ratios of sensitive groups. The size of
the training set is fixed (1000). The horizontal bar represents the same ratio as the population.
The shaded sections indicate a focus on the extreme proportions (less than 2% and more than
98%)

of data sampling. For 𝑆𝑆𝐵, we train the predictor model using training sets of increasing size.

For 𝑈𝑅𝐵, we play rather on the proportions of sensitive groups in the training set. In this case,

we have set the sample size to a minimum number of instances shown to be stable in terms of

sampling bias in the previous experiments. In this way, we decouple the underrepresentation

bias from the sampling bias. Three benchmark datasets are used, Adult [166], Compas [167],

and Dutch Census [168]6.

8.5.1 Magnitude of sample size bias (𝑆𝑆𝐵)

To observe how sample size bias behaves as the training set size changes, we use the following

process. We use a sequence of sample sizes ranging from 10 until a given portion of the full

size of the data set. For example, for COMPAS, we consider sample sizes ranging from 10 to

2000. For each sample size value 𝑚, we repeat the sampling several times (30 by default) so

that we obtain 30 samples of each size 𝑚. Then, we train a different model using each one of

the samples so that we obtain 30 models for each size 𝑚. We finally compute the discrimination

using each model, and the returned value is the average discrimination across all models. This

procedure gives a sequence of discrimination values indexed by the size. We consider five cost

/ accuracy metrics, namely 𝐹𝑃𝑅 (false positive rate), 𝐹𝑁𝑅 (false negative rate), 𝐸𝑂 (equal

opportunity), 𝑍𝑂𝐿 (zero one loss), and 𝑆𝐷 (statistical disparity). We use five classifiers, namely

logistic regression, decision tree, random forest, nearest neighbor, and support vector machine

(SVM).

Figure 8.1 shows the magnitude of SSB according to each metric and for each benchmark

data set and using logistic regression. Notice that 𝑆𝑆𝐵𝐸𝑂 and 𝑆𝑆𝐵𝐹𝑁𝑅 are symmetric because, as

mentioned above, 𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 and hence 𝑆𝑆𝐵𝐸𝑂 = −𝑆𝑆𝐵𝐹𝑁𝑅. Most of the plots exhibit an

expected behavior of SSB. That is, the bias is significant when the models are trained using a

limited-size training set. The bias disappears gradually as the size of the training set increases.

𝑆𝑆𝐵 behaves the same way for the other classifiers (Figure 8 in Supplementary Material). More

importantly, the results of 𝑆𝑆𝐵 show that the cost / accuracy metrics that combine specificity and

sensitivity (𝐴𝑈𝐶 and 𝑍𝑂𝐿) are less sensitive to the size of the training set than the remaining

6We use the same dataset versions and learning algorithms parameters as IBM AIF360 [169]
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metrics (𝐹𝑃𝑅 and 𝐸𝑂). A possible explanation is that for small training sets, it is more likely

that a majority of the samples have the same outcome (positive or negative), which can boost

precision on the expense of recall or the opposite. 𝐴𝑈𝐶 and 𝑍𝑂𝐿 are not subject to this skewness,

since they consider the trade-off between precision and recall.

8.5.2 Magnitude of underrepresentation bias (𝑈𝑅𝐵)

The aim of the underrepresentation bias experiment is to observe the magnitude of 𝑈𝑅𝐵 while

the ratio of the sensitive groups in the training set is changing. We consider different values of

the splitting 𝑚1
𝑚0

(see Definition 8.3.2) (e.g. 0.1 vs 0.9, 0.2 vs 0.8, etc.). However, as 𝑈𝑅𝐵 is more

significant for extreme disparities, we focus more on extreme splitting values (e.g. 0.001 vs 0.99,

0.002 vs 0.98, etc.). A similar behavior has previously been observed by Farrand et al. [170].

Assuming a fixed sample size (e.g. 1000), for each splitting value, we sample the data so that

the proportions of sensitive groups (e.g., male vs. female) match the splitting value. Similarly to

the 𝑆𝑆𝐵 experiment, we repeat the sampling several times (30 by default) for the same splitting

value. Next, we train a different model using each of the samples so that we obtain 30 models

for each splitting value 𝑚1
𝑚0

. The discriminations obtained using the different models are then

averaged across all models. We finally obtain a sequence of discrimination values indexed by the

splitting value. Figure 8.2 shows how the URB changes as the proportion of the sensitive group

increases for the same three data sets and for the use of logistic regression as learning algorithm.

The purple vertical bar indicates the percentage of the sensitive group in the entire data set

(population). For example, for the adult data set, the percentage of females is 31%. The shaded

parts in the background of Figure 8.2’s plots indicate that we are “zooming” on the extreme values

(the plots are using different steps for the shaded and unshaded parts7). Almost all plots exhibit

the same pattern for 𝑈𝑅𝐵, that is, the further the proportions of sensitive groups are from the

population proportion reference (vertical bar), the higher the bias. The same expected behavior

for 𝑈𝑅𝐵 is obtained when using the other classifiers (Figure 9 in Supplementary Material).

The resilience of 𝐴𝑈𝐶 and 𝑍𝑂𝐿 metrics to extreme training set sizes holds also for imbalanced

training sets. Notice that 𝑈𝑅𝐵𝐴𝑈𝐶 and 𝑈𝑅𝐵𝑍𝑂𝐿 remain stable even for extremely imbalanced

training sets.

8.5.3 Bias Decomposition

Section 8.4 shows that loss and discrimination can be decomposed into variance, bias, and noise.

In particular, assuming that the optimal prediction (𝑌 ∗) coincides with the correct outcome (𝑌),

Theorems 8.2 and 8.3 illustrate how 𝑆𝑆𝐵MSE
𝑀
(A,S𝑚) and 𝑈𝑅𝐵𝑀𝑆𝐸 (A,S𝑚1

𝑚0
) can be decomposed

into variance and bias components. To illustrate the decomposition empirically, we use the Law

School benchmark dataset [3] which tracked some 27 thousand law students through law school

and graduation and where the sensitive attribute is gender and the outcome is the first year

GPA. We use the scikit-learn linear regression algorithm to train different models using different

size training sets. For 𝑆𝑆𝐵, the training size 𝑚 ranges from 10 to 10, 000. For 𝑈𝑅𝐵, the size

7The step is very small below 2% and above 98%.
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using linear regression. The benchmark dataset is Law School [3].
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Figure 8.4: Discrimination while augmenting the training set with female group samples randomly.
The male group size is fixed at 100. Data set is Dutch Census and training algorithm is logistic
regression.

of the training set (𝑚) is fixed at 1000, but the proportion of the protected group (female) is

ranging from 0.1% to 99.9%. For each size of training set, the training and testing is repeated

30 times. Figure 8.3 shows how 𝑆𝑆𝐵 and 𝑈𝑅𝐵 are decomposed into variance and bias. For 𝑆𝑆𝐵,

the variance component is so significant when the training set is extremely small (less than 20)

that it reverses the direction of bias (in favor of females instead of against female). For 𝑈𝑅𝐵, the

variance is also significant when one of the groups is extremely underrepresented, but not to the

point of reversing the direction of the bias. The main conclusion from this empirical result is that

for very small or very imbalanced training sets, 𝑆𝑆𝐵 and 𝑈𝑅𝐵 variance can be so important that

it can lead to unreliable conclusions about discrimination.

8.5.4 Effect of collecting more samples on discrimination

The natural approach to address sampling bias is to use more data for training, in particular for

the under-represented groups. Obtaining more data is possible either through data augmentation

or data collection. Data augmentation is the process of using the available data to generate

more samples. In turn, this can be done in two ways: oversampling or creating fake samples.

Oversampling consists in duplicating existing samples to balance the data. A simple variant is

to randomly duplicate samples from the under-represented group. On the other hand, creating
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Figure 8.5: Discrimination while augmenting the training set with male group samples randomly.
The female group size is fixed at 100. Dataset is Dutch Census and training algorithm is logistic
regression.
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Figure 8.6: Discrimination while augmenting the training set with only positive outcome female
group samples. The male group size is fixed at 100. Dataset is Dutch Census and training
algorithm is logistic regression.

fake samples is typically done using SMOTE [99]. SMOTE creates synthetic samples based on the

k-nearest neighbors of every sample in the under-represented group. Both data-augmentation

techniques try to balance data by adding artificially generated samples. Although this artificial

manipulation may reduce discrimination between sensitive groups, it can lead to models which

are not faithful to reality. When possible, collecting more data is more natural and reflects a

better reality. The approach is simple: if a sensitive group is under-represented, collect more

samples of that group.

In the following, we devise simple experiments to observe the effect of populating the

data with more samples collected from the same population as the existing data. Using the

same benchmark datasets, the aim is to train models based on an increasing number of under-

represented group samples while keeping the privileged group portion unchanged. For the

particular case of Dutch Census dataset, we train models using a set composed of a fixed 100

privileged group (male) samples and an increasing number of protected group (female) samples

starting from 2 until 100 (perfect balance between groups). Similarly to the SSB and URB

experiments, it turns out that the magnitude of discrimination manifests itself more with extreme

values of protected group sizes (typically less than 100) which explains the specific sample

sizes considered. Figure 8.4 shows how the cost/accuracy metric values for each group, as

well as the corresponding difference (discrimination) change as more protected group samples

are considered for model training. We use three-fold cross-validation and since we randomly
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generate 50 different samples for every size value, the plots are shown with error bars. As

expected, the cost/accuracy metric value for the male group maintains the same mean, while

for the female group it is changing. Interestingly, according to all cost/accuracy metrics (except

AUC), discrimination is increasing as data is more balanced. Figure 8.4 shows the results with

logistic regression, but the pattern is similar for other classification algorithms (Figure 10 in

Supplementary Material) and for other benchmark datasets (Appendix B). This counterintuitive

behavior is also observed for the reverse experiment where the protected group (female) sample

size is fixed (100 samples) while the privileged group (male) is under-represented and more

samples are collected and considered in the training (Figure 8.5). It is important to mention

that in all previous experiments, selecting samples to balance the training set is performed

randomly to simulate, as accurately as possible, data collection in real scenarios. The fairness

enhancing potential of adding more samples for the sensitive group depends on the initial

fairness characteristics of the data and the goal of the classifier. Wang et al. [161] point out that

adding more samples of the minority group to the data increases predictive accuracy and fairness

specifically in the classification tasks, where a sensitive attribute is part of the classification

output, for example, face recognition [6].

However, if the training set is balanced by selecting a specific type of sample, in particular,

samples from the protected group with positive outcome, discrimination will decrease as the

data are balanced (Figure 8.6). In all three experiments (collecting more protected group

samples randomly, collecting more unprotected group samples randomly, and collecting only

protected group samples with positive results), the importance of the sensitive feature (Sex) in

the prediction (shap explanation [171]) behaves the same way (Figure B.5 in the Appendix B)

that is, it contributes more to the learned model as the data is more balanced.
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9
Causal Discovery under Local Privacy

9.1 Introduction

A recent advance in causal discovery is the design of algorithms that estimate the causal structure

from observational data [172]. These algorithms are mostly based on correlations between the

various components (variables) of the data. These correlations can be affected by the application

of data-privatization mechanisms aimed at protecting the privacy of data providers. However,

protecting data privacy is a legal obligation in Europe and many other countries around the

world. In response to this necessity, numerous privatization methods have been developed to

maximize the trade-off between a good level of data privacy and utility.

In general, the addition of noise tends to reduce the utility of the information that can be

extracted from the data. Many privatization approaches and denoising techniques have been

optimized for the summary statistics of the individual variables in the data, such as average values.

However, notions of utility also depend on the correlation between the various components of

the data, especially in the case of causal discovery. Some approaches to cope with this problem

have been proposed in the global DP setting when the full unobfuscated data set is available. For

example, the collected data may be synthesized using generative algorithms such as GAN [173]

or Bayesian Networks [174]. However, little or no instances of relation-preserving local DP

mechanisms are known for causal discovery. In the local setting, the data are already obfuscated

before they get to the central server, and therefore the methods used in global DP are not

applicable.

In this chapter, we experimentally assess the impact of state-of-the-art LDP and 𝑑-privacy mech-

anisms on the structural accuracy of causal discovery from the data. More precisely, as the LDP

representative, we consider the 𝑘-Ary Randomized Response (𝑘-RR, Section 9.2.1) [175]. As
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the local 𝑑-privacy representative, we considered the Geometric mechanism (Section 9.2.1). We

conduct extensive experiments on both real and synthetic data sets and evaluate their impact on 9

causal discovery algorithms, including constraint-based, score-based, and causal asymmetry-based

methods.

9.2 Related work

Causal discovery with DP is an emerging research area that aims to combine the benefits of

both identification of causal relationships among variables and privacy-preserving data analysis.

The goal is to discover causal relationships between variables while preserving the privacy of

sensitive data. An approach explored in the literature for differentially private causal discovery

was to incorporate DP mechanisms directly into existing causal discovery algorithms [176–179].

These algorithms introduce controlled noise during the causal learning process to ensure privacy

protection.

However, these existing differentially private causal discovery algorithms assume the cen-

tralized DP model, which requires collecting users’ original data. The approach adopted in

this thesis is to leverage the concept of local DP [36, 37] for causal discovery (respectively

local d-privacy [41]). In recent years, several works have been done in the local DP setting

(e.g., see [37–40, 175, 180–184] and references within), and applying them to causal discovery

involves sanitizing the data at the individual level. Parallel to our work, [185] studies a class of

corruptions, such as measurement error, missing values, discretization, and differential privacy

in the US Census. However, their goal is to learn a causal parameter (average treatment effect)

from corrupted data, and they conduct experiments only in an aggregated setting. Similarly,

[186] offers causal inferential methodologies for analyzing locally differentially private data.

[67] experiment with causal discovery with a small amount of noise added to the data. However,

the noise is not produced by the privatization mechanism. These goals differ from our work;

they investigate the effect of noise in causal effect estimation of a treatment (or intervention)

when randomized experiments are impossible to conduct, thus statistical theory is needed. Our

work solely focuses on causal discovery, that is, the inference of causal relations, causal directions

among a set of variables (i.e., "how the change in X influences Y?" versus "is X the cause of Y?").

To the author’s knowledge, this is the first work that thoroughly explores and analyzes the impact

of locally differentially private mechanisms on causal discovery.

9.2.1 Privacy Mechanisms

In this section, we describe the various discrete multidimensional mechanisms used in this chapter.

Visually, Figure C.1 in Appendix C.1 shows the four mechanisms applied to a single point in a 4D

space with shape (2, 5, 5, 5), denoting the number of categories or bins per dimension.
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𝑘-ary Randomized Response (𝑘-RR)

Randomized response (RR) was proposed in [187] with the aim of providing “plausible deniability”

to individuals responding to embarrassing (binary) questions in a survey. [175] generalized RR

to domains of arbitrary size 𝑘 (with 𝑘 ≥ 2), and proposed the so-called 𝑘-RR mechanism, which

is one classical technique for achieving LDP in categorical / discrete data. Given a data domain 𝑉 ,

and the privacy parameter 𝜖 , let 𝑘 = |𝑉 | and 𝑝 B 𝑒𝜖

𝑘−1+𝑒𝜖 ∈ (0, 1). For each 𝑣 ∈ 𝑉 , let 𝜂≠𝑣 ∈ 𝑉 be a

uniform random variable (i.e., exogenous noise with uniform distribution) over 𝑉 \ {𝑣}. We let

𝑘-RR : 𝑉 → 𝑉 be the random variable given by:

𝑘-RR(𝑣; 𝜖) B

𝑣, with probability 𝑝

𝜂≠𝑣 , with probability 1 − 𝑝 .

This mechanism satisfies 𝜖-LDP [175], because 𝑝

𝑞
= 𝑒𝜖 , where 𝑞 B (1−𝑝)

(𝑘−1) . When collecting

data in practice, one is often interested in multiple attributes of a population, i.e., multidimen-

sional data. We assume that there are 𝑑 attributes with domains 𝐴1, 𝐴2, . . . , 𝐴𝑑, where each 𝐴𝑖 is

a discrete set of finite size 𝑘𝑖 = |𝐴𝑖 |. Each data provider 𝑢 𝑗 for 𝑗 ∈ {1, 2, ..., 𝑛} contributes to the

data set with a tuple (record) v( 𝑗 ) = (𝑣 ( 𝑗 )1 , 𝑣
( 𝑗 )
2 , ..., 𝑣

( 𝑗 )
𝑑
), where 𝑣 ( 𝑗 )

𝑖
represents the value of the

attribute 𝐴𝑖. We now describe the two main known methods for applying 𝑘-RR on multidimen-

sional data [182, 183, 188].

𝑘-RR component-wise (𝑘-RR C-wise). This is a naive approach that applies 𝑘-RR independently

on each attribute. More precisely, 𝑘-RR C-wise splits the privacy budget 𝜖 among the 𝑑

attributes uniformly or proportionally to their size, and reports each attribute in 𝐴𝑖 using

𝑘𝑖-RR parameterized with 𝜖𝑖-LDP, where 𝜖𝑖 = 𝜖 · 𝑘𝑖
𝑘1+𝑘2+...+𝑘𝑑 .

𝑘-RR Combined (𝑘-RR Comb). This mechanism considers the Cartesian product 𝐴1×𝐴2×. . .×𝐴𝑑

as a single attribute and sanitizes it using 𝑘-RR parameterized with 𝜖-LDP, where 𝑘 =

𝑘1 · 𝑘2 · . . . · 𝑘𝑑.

Bounded geometric mechanism

The geometric mechanism is the discrete analogue of the Laplace mechanism. The output 𝑌 is

related to the input 𝑋 by the formula:

P[𝑌 = 𝑦 |𝑋 = 𝑥] = 𝑝max exp(−𝜖 |𝑦 − 𝑥 |) (9.1)

for some parameters 𝜖 that represents the level of privacy. 𝑝max is a normalization factor, that

is, it is chosen so that
∑

𝑦 P[𝑌 = 𝑦 |𝑋 = 𝑥] = 1. This formula is valid in 1D, in which | · | denotes

the absolute value, as well as in multidimensional Euclidean space, in which 𝑥 and 𝑦 are discrete

vectors and | · | denotes the Euclidean norm, or any other 𝑝-norm chosen in advance (see
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Figure C.2 for a comparison). From the definition of the geometric mechanism, it is immediate

that it satisfies local 𝑑-privacy with privacy parameter 𝜖 , where the metric 𝑑 is the chosen 𝑝-norm

based distance.

In this chapter, we are interested in bounding the geometric mechanism so that the output

domain equals the input domain, as in 𝑘-RR. There are three natural ways to do it, namely (1)

clipping, (2) replacing samples that are out of the box with uniform noise, and (3) resampling

whenever a sample is out of the box. Let us review them in more detail.

Method (1), clipping, consists of replacing all output values that lie outside the box with

the closest values that lie inside the box, that is, with the maximum or minimum values of the

domain in the 1D case. In this case, the two extremes of the box may increase their probabilities

excessively, and the property that the output 𝑦 with maximum probability is always 𝑦 = 𝑥 can be

lost, especially when the input 𝑥 is close to the border. In Method (2), whenever the output 𝑦 is

outside the box, it is replaced with a uniform sample from the box. In terms of the probability

distribution of the mechanism, this method crops it from the background (two tails in the 1D

case), and rescales the cropped distribution by adding a constant. This addition results in

combinations of exponential terms with additive constants, which unnecessarily adds complexity

to the formulas and distorts the exponential shape and its decay properties. Instead, in Method

(3), which corresponds to sampling as many times as necessary until the output is inside the box,

the cropped distribution is simply multiplied by a constant. This preserves the main shape of the

distribution, while also keeping the formulas relatively simple. For this reason, we prefer method

(3) over the other two.

Notice that the bounding is not symmetric, except for the input in the center of the box. This

means, that we should have different values of 𝑝max or 𝜖 for different values of 𝑥 so that the

bounded summation is 1 on all 𝑥. As it will be justified in Section 9.3, we opt for fixing 𝑝max, so

the formula that characterizes the bounded geometric mechanism becomes:

P[𝑌 = 𝑦 |𝑋 = 𝑥] = 𝑝max exp(−𝜖𝑥 |𝑦 − 𝑥 |)

where both 𝑥 and 𝑦 are constrained to a fixed bounded discrete set, and 𝜖𝑥 are chosen so that∑
𝑦 P[𝑌 = 𝑦 |𝑋 = 𝑥] = 1. These values always exist (assuming 𝑝max ≥ 1/𝑘), and we provide an

algorithm to find them.

The computation of 𝜖𝑥 for every 𝑥 is not possible symbolically through a formula. It is required

that
∑

𝑦 P[𝑌 = 𝑦 |𝑋 = 𝑥] = 1, or equivalently,
∑

𝑦 exp(−𝜖𝑥 |𝑦 − 𝑥 |) = 1
𝑝max

, where both 𝑥 and 𝑦 are

constrained to a fixed bounded discrete set. In the 1D case, the domain is a set of 𝑘 contiguous

integers and for the smallest value of 𝑥, only one tail of the geometric distribution intersects

the domain, which allows us to write 1
𝑝max

=
∑

𝑦 exp(−𝜖𝑥 |𝑦 − 𝑥 |) =
∑𝑘−1

𝛿=0 exp(−𝜖𝑥𝑘) = 1−exp(−𝑘𝜖𝑥 )
1−exp(𝜖𝑥 ) .

However, there is no analytical solution for 𝜖𝑥 from this formula. Moreover, for the remaining

values of 𝑥, the expression becomes more complex, as an additional term is added for the second

tail, and even more so for the multidimensional case.

However, the computation of each 𝜖𝑥 can be carried out numerically exploiting the fact that∑
𝑦 exp(−𝜖𝑥 |𝑦 − 𝑥 |) is decreasing on 𝜖𝑥. At one extreme, if 𝜖𝑥 → 0, the sum approaches 𝑘, and at
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the other, if 𝜖𝑥 →∞, the sum approaches 1. This implies, first, that there is a unique point 𝜖𝑥 for

which this function crosses the threshold 1
𝑝max

, and more importantly, that we can use a binary

search to compute 𝜖𝑥. In the multivariate domain, the summations still satisfy the monotonicity

property. Therefore, this method can be used to implement the multidimensional geometric

distribution. Similar to 𝑘-RR, we compare two versions of the geometric mechanisms, namely,

Geo Comb and Geo C-Wise.

9.3 Tuning the Level of Privacy

The parameter 𝜖 in LDP does not have the same meaning as the 𝜖 in 𝑑-privacy, i.e., they represent

different levels of privacy. In order to compare the mechanisms of these two families, we need to

tune the respective 𝜖 ’s so as to represent the same level of privacy. To avoid confusion for the

readers that know the standard notion of DP, and are not so familiar with LDP, it is important to

remind the reader that the standard notion for privacy in the local framework is not the same

as in the central one: In central DP, the challenge for an attacker is to distinguish between two

adjacent data sets, i.e., data sets that differ for presence or absence of one record. In other words,

the attacker wants to infer whether or not a certain record is in the data set. In LDP, in contrast,

the aim of the attacker is to infer the true value of the individual data provider.

To measure the level of privacy, therefore, we consider the probability that an attacker has to

infer the true value from the reported value. Naturally, the attacker will bet on the value that

has the maximum posterior probability, given the obfuscated value [189, 190]. We note that this

measure of privacy is directly related to the notion of advantage of an attacker in security, and to

the notion used to assess the vulnerability of the training set in ML.

In both 𝑘-RR and 𝑑-privacy, the value that has the highest probability to be reported is the

true value itself, hence the level of privacy provided by these mechanisms (assuming a uniform

prior) is the probability to report the true value. Specifically, the level of privacy provided by

𝑘-RR with parameter 𝜖 is:

Priv𝑘-RR(𝜖) B
𝑒𝜖

𝑘 − 1 + 𝑒𝜖 .

whereas, for a Geometric with parameter 𝜖 ′, the level of privacy is:

Priv𝐺𝑒𝑜 (𝜖 ′) B Pmax · 𝑒𝜖
′ ·0 = Pmax .

where 𝑝max is the normalization factor used in the definition of the geometric mechanism

(Equation (9.1)). Tuning the parameters of 𝑘-RR and 𝐿 to provide the same level of privacy

means adjusting the above 𝜖 and 𝜖 ′ so that Priv𝑘-RR(𝜖) and Priv𝐺𝑒𝑜 (𝜖 ′) give the same result.

9.4 Experimental Results

In this section, we empirically assess how locally private mechanisms impact causal discovery. We

evaluate the performance of 9 causal discovery algorithms in multidimensional, two-dimensional,

real and synthetic data sets obfuscated using the various mechanisms described in Section 9.2.1.
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We start by applying the algorithms to discretized non-obfuscated data. Then we select the

algorithms that performed best at a particular data set and apply them to the obfuscated versions

of this data set. We measure the effect of each privatization method on the algorithms by

comparing the Structural Hamming Distance (SHD) score and the F1 score or Accuracy on the

non-obfuscated and obfuscated data. We use the Benchpress causal discovery benchmarking

framework [191] to generate synthetic data and run causal discovery algorithms for multidimen-

sional experiments. As (L)DP mechanisms are randomized, we report average results over 5 runs.

Due to space constraints, we have included all of our additional experiments in Appendix C.2.

9.4.1 Data Sets

We use real benchmark and synthetic data sets for the experiments. The details can be found in

Table 9.1.

Name Type Nodes Bins Size Origin
Sachs real 11 10 902 [192]
Human Stature real 3 10 898 [193]
Synth10 synthetic 10 10 5000 random DAG, IID, Linear, Gaussian
Synth5 synthetic 5 5 50000 random DAG, IID, Linear Gaussian
CEP real 2 2-100 94-16382 [67]

Table 9.1: Data sets used for causal discovery. For CEP the number of bins was determined by
𝑚𝑖𝑛(𝑢, 100, 𝑢 ∗ 0.1), where 𝑢 denotes the number of distinct values.

The Sachs data set measures the expression levels of various proteins and phospholipids

within human cells. It was originally generated by [192]. The data set consists of 11 variables

and 902 samples. Sachs is a popular benchmarking data set in causal discovery because of

availability of the ground-truth causal structure.

Human Stature data set id a classic historical data set collected by the statistician Francis

Galton and first used for regression analysis [194]. Later it has been re-used as one of the

benchmark data sets for causal discovery. The data set consists of four variables: father height,

mother height, gender, and child height, and has 898 samples. We remove the binary gender

variable for our experiments. We do it because when applied to binary data, geometric noise

becomes equivalent to 𝑘-RR method.

Synth10 and Synth5 are synthetic data sets with 10 and 5 nodes, respectively. The background

structure DAG is generated randomly using the benchpress framework [191]. We specify the

number of nodes and the maximum number of parents for each node. The data are generated

using a generation process compatible with the underlying structure of the DAG.

CEP data set [67] is a collection of data sets of causal pairs in the real world, such as, for

example, altitude and temperature. The collection consists of 99 data sets of varying sizes,

however, it is often referred to as a single data set for causal discovery benchmarking.
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9.4.2 Causal Discovery Algorithms

We apply constraint-based and score-based causal discovery algorithms for multidimensional data.

We select several well-known algorithms that can run on discretized data. For pairwise data sets,

we apply algorithms that are capable of identifying the causal direction for two variables. We test

the performance of the discrete and continuous data-specific versions of the algorithms, as well

as various parameter values. The details can be found in Table 9.2 and in the Preliminaries 5.5.1.

We have used two libraries for implementation: we used the Benchpress [191] package for

the PC, FCI, FGES, Iterative MCMC and MMHC causal discovery algorithms and metrics, for the

RECI, IGCI, CDS and ANM methods we used the Causal Discovery Toolbox [195].

Algorithm CI Test/Score Parameter
PC ([114]) Gaussian, Chi-square Alpha (0.001,0.05, 0.1 )
FCI ([115]) Fisher-Z, Chi-square Alpha (0.01,0.05,0.1)
FGES ([116]) BIC Penalty discount (0.75,0.8,1,1.5)
Iterative MCMC ([119]) BGe Alpha (0.001,0.01,0.1)
MMHC ([120]) BDe Alpha (0.01,0.05, 0.1)
RECI ([121]) MSE
IGCI ([122]) sp1
CDS ([196]) std. dev. Forced Decision
ANM ([123]) HSIC

Table 9.2: The structure learning algorithms.

9.4.3 Discretization

In order to apply the discrete mechanisms of interest to our dataset, it was necessary to discretize

the original continuous data. Discretization is a critical step in the process, as it plays a pivotal

role in the subsequent data analysis. There are several approaches to discretizing data, each with

varying effects on the quality of the results. Some of these methods yield higher average precision,

up to the highest possible [197], but rely on knowledge of properties about the underlying data

distribution, such as quantiles or an estimation of the density function. However, in situations

where the underlying data is sensitive and private, revealing such properties can risk privacy

breaches, so it is safer to assume that they are unknown. To address this challenge, we opted for

the simplest method of discretization, namely uniform bins within a fixed range. In practice, this

fixed range corresponds to estimations of the minimum and maximum values of the population.

The only parameter we can freely choose in this process is, therefore, the number of bins and

it should be chosen taking into consideration that more bins imply more accurate information

being revealed. Moreover, the number of dimensions of the data, which corresponds to the

number of columns in the data set, also plays a role in the choice of the number of bins, as it

increases exponentially the total number of bins. We chose between 5 and 10 bins for datasets

with 3 or more dimensions, and for the CEP data set, which has two dimensions but contains

several different data sets, we applied a dynamic number of bins (see in 9.1). Some of these

datasets were already discretized (e.g. had only 2 distinct values), and some had continuous
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data. We determined the number of bins by 𝑚𝑖𝑛(𝑢, 100, 𝑢 ∗ 0.1), where 𝑢 denotes the number of

distinct values in a given data set.

9.4.4 Evaluation metrics

For the data sets with more than two-dimensions we used structural hamming distance (SHD) to

measure the difference between the ground truth adjacency matrix and the output of the causal

discovery algorithm. It assigns a distance of 1 for every missing, redundant or reversed edge in

the graph. Intuitively, SHD provides a number of edges that are need to be added, removed and

re-directed to make the two graphs identical. We have also calculated the F1 score, that combines

the precision and recall of a model, and is used to evaluate the recovery of the skeleton of the DAG.

In case of the CEP data set we have applied the same method as in [67]. Forced-decision:

given a sample of a pair (𝑋,𝑌 ) the methods must decide on a causal direction. Then, we evaluate

the weighted 1 accuracy of the decisions. We also calculate the confidence intervals assuming a

binomial distribution using the method by [198].

9.4.5 Results on Multidimensional Data

We report the results for the algorithms that performed the best on the discretized, but not

obfuscated data. PC algorithm performed the best on most of the data sets. Iterative MCMC

algorithm was performing better on the data sets with 10 or more nodes. Both data sets

with 10 or more nodes show that causal discovery algorithms in general perform better under

geometric privatization methods rather than 𝑘-RR. For Sachs data set (Figure 9.1) PC and

GES algorithms perform almost the same on Geo C-wise and Geo Comb. The performance on

geometric mechanism is very close to the performance on the original data without the noise.

For Synth10 data (Figure 9.3) the performance on data obfuscated with geometric mechanisms

with 𝑝max = 0.5 outperform the results on the original data. However, this result can as well be

accidental. For Synth10 data we also observe a slightly better performance when Geo Comb is

applied as compared to Geo C-wise. Performance is better with 𝑘-RR C-wise privatization than

with 𝑘-RR Comb privatization on the Sachs and Synth10 data sets. For smaller multidimensional

data sets (Figures 9.2 and 9.4) the variation of the performance is too large to draw reliable

conclusions. This is probably due to the high influence of chance on recovering the data structure

when the true graph is small. However, we still observe a slight advantage in applying geometric

mechanisms to Synth5 and Human Stature data sets. We can also observe slightly better SHD

results with 𝐾-RR C-wise privatization than with 𝐾-RR Comb privatization on Synth5 and Human

Stature data sets.

In our additional experiments in Appendix C.2.1, we observe similar results when measuring

the F1 score for the causal discovery of an undirected graphs (Figures C.3, C.10, C.17, C.24).

1Not all pairs can be considered as independent. Weights’ list was acquired from the authors’ website.
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Figure 9.1: Sachs data, SHD. The results for PC algorithm with Gaussian CI test and alpha value
0.001; GES algorithm with BIC score and penalty discount values 0.8 and 1.5; FCI algorithm with
Fisher-z CI test and alpha values 0.001; Iterative MCMC algorithm with BGe score and alpha
values 0.01 and 0.1. The width of each bar varies for different values on the y-axis proportionally
to the number of samples attaining that value.
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Figure 9.2: Human Stature data, SHD. Results for PC algorithm with Gaussian CI test and
alpha values 0.001, 0.05 and 0.1.The width of each bar varies for different values on the y-axis
proportionally to the number of samples attaining that value.

9.4.6 Results on Two-dimensional Data

We report the results of all causal discovery algorithms applied for the CEP data set. In Figure

9.5, we show the results before (“No Noise") and after privatization. It is evident that, similar to

previous experiments, the geometric mechanism consistently outperforms 𝑘-RR, with notable

improvements, especially in the case of RECI, where the accuracy surpasses the baseline. We

hypothesize that this phenomenon could be attributed to the potential data augmentation

properties of noise addition, although further research is required to confirm this. The CDS

algorithm performs similarly after privatization, except when applying the 𝑘-RR Comb mechanism.

But 𝑘-RR Comb generally has the poorest performance (also with Sachs and HS datasets), we

think this is due to the available small sample size, and the mechanism is affected by the curse of

dimensionality. IGCI’s accuracy drops by approximately 15-20%, however, this is not surprising.

The IGCI model’s practical applicability is limited to causal relations with sufficiently small noise

and its drop in performance has already been shown by [67], where the added noise was very

little (much smaller than in our experiments). ANM exhibited unsatisfactory performance even

before noise introduction, and its performance deteriorated further (sometimes falling below
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Figure 9.3: Synthetic data, 10 nodes, SHD. The results for Iterative MCMC algorithm with BGe
score and alpha values 0.01 and 0.1. The width of each bar varies for different values on the
y-axis proportionally to the number of samples attaining that value.
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Figure 9.4: Synthetic data, 5 nodes, SHD. The results for FCI algorithm with Fisher-z CI test,
alpha values 0.01 and 0.05; PC algorithm with Gaussian CI test, alpha values 0.1 and 0.05. The
width of each bar varies for different values on the y-axis proportionally to the number of samples
attaining that value.

chance levels) after privatization.

9.5 Discussion

Our results consistently demonstrate that geometric privatization methods (both component-

wise and combined) exhibit higher accuracy in terms of SHD compared to 𝑘-RR methods

(both component-wise and combined). In case of geometric noise, the algorithms do not appear

to perform much worse as the noise increases. This can be expected because this privatization

method is not disruptive of the correlations in the data. It would be an interesting extension

to also evaluate its effect on the model parameters. On the other hand 𝑘-RR noise interrupts

with the data structure, and more noise results in worse performance of the causal discovery

algorithms. We observe similar results when measuring the performance of causal discovery

algorithms with the F1 score.

We observe some dependence between the higher parameter alpha (PC) or penalty discount

(GES) parameters and better F1 scores on the noisy data in the experiments on multidimensional

data. Higher parameter values result in sparser graphs and help avoid spurious edges in the



9.5 Discussion 87

Figure 9.5: CEP data set with 2 nodes, weighted accuracy. Box whiskers are at 95%, body is at
80% confidence.

graphs. We observe that algorithms that are less accurate on the original data are also less sensitive

to data privatization. More precisely, when applied to obfuscated data, their performance drops

less compared to the baseline on the original data (the detailed results can be found in an

Appendix C.2). However, the algorithms which are best on the original data still provide the best

overall results under geometric noise (despite being more sensitive to 𝑘-RR noise).
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Causality
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On the Need and Applicability of Causality for Fair

Machine Learning

10.1 Introduction

Accurate measurement of discrimination is important for evaluating the data or algorithm and for

advising methods for achieving fairness. Recently, the domain of AI fairness has seen an increase

in the use of statistical causality methods to evaluate and mitigate discrimination in data and

algorithmic decisions.

This article consolidates the statistical and legal arguments for using causality in fair AI as

well as practical challenges. We argue that causality is needed to appropriately address the

problem of fairness in ML based automated decision systems. We summarize the benefits of

using causality in three arguments, namely, (1) reliably measuring discrimination, (2) mediation

analysis, and (3) establishing causal evidence in legal practice. Compared to existing work, the

latter argument can be seen as the first attempt to connect causality in fair AI with the European

AI legislation.

Tackling the problem of fairness from a causal perspective is plagued by practical obstacles that

hinder its use in real scenarios. This includes the existence of several constraining assumptions

that need to be satisfied and the availability of the causal graph. The last part of the chapter

describes the different assumptions and discusses their implications in the specific context of ML

fairness.

Measurement of discrimination without taking into consideration the causal structure under-

lying the relationships between variables may lead to misleading conclusions. That is, a biased

estimation of discrimination. In extreme cases, such as Simpson’s paradox, the bias may lead to
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reversing the conclusions (e.g. the biased estimation indicates a positive discrimination, while

the unbiased estimation is actually a negative discrimination). Figures 10.1(a)-10.1(c) show

the three basic causal structures that can lead to statistical anomalies, and consequently make

common statistical metrics of fairness unreliable.

10.1.1 Related Work

Despite the increase in specific applications of the causal approach, the general discussion of

the benefits and challenges of adaptation of causal frameworks to fair machine learning is

very limited. Most articles provide specific solutions to causal fairness problems, give general

arguments for avoiding spurious correlations, and make strong assumptions, for example about

the availability of causal structure, without further consideration [108, 111, 199–201]. Loftus

et al. [202] summarize the advantages of using causality in Fair machine learning. Several

more recent studies warn about the dangers of using counterfactual models either due to their

sensitivity to unmeasured confounding or incompatibility with social reality [203, 204]. [205]

discusses the assumption of ignorability in the context of fairness in ML. [18, 206] lay out the

arguments for causality in a legal context and do not clearly link the judicial process with causal

mediation analysis. Researchers in [207] discuss the compatibility of the notions of fairness of ML

with the legal applications. However, they do not focus on causal fairness notions or European

law.

10.2 Reliably measuring discrimination

In this section, we revisit basic causal structures such as confounder, collider, and mediator

by placing the fairness context. We discuss the importance of collider or confounder bias in

measuring fairness. In addition, we consider mediation analysis as a tool for better understanding

the mechanism behind disparity.

SES
(Socio-Economic

Status)

Political Belief
Selection for
Job Hiring

((a)) Confounder structure.

Department

Gender
Admission in

College

((b)) Mediator structure.

Political
Belief

Selection for
Job Hiring

Labor
Union

Activism

((c)) Collider structure.

Figure 10.1: Basic causal structures in fairness context.

10.2.1 Confounder structure

The first situation where ignoring the causal structure of the data may lead to an unreliable

estimation of discrimination is due to a failure to consider a confounder variable. Consider the

hypothetical example in Figure 10.1(a) of an automated system for selecting candidates for job

positions. Assume that the system takes as input two characteristics, namely, the socioeconomic

status (SES) denoted as 𝑍 and the political belief of the candidate 𝐴. The outcome 𝑌 is whether
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the candidate is selected for the next stage of hiring (or the probability that the candidate is

selected). The outcome 𝑌 is influenced by the SES (a better SES makes it possible for candidates

to attend more reputable academic institutions and enroll in costly trainings). Both variables can

be either binary (𝑍 could be rich or poor, while 𝐴 could be liberal or conservative) or continuous

(how rich/poor a candidate is for 𝑍 and the degree of conservativeness of the candidate for 𝐴).

The political belief 𝐴 of a candidate can be influenced by several variables, but in this example,

assume that it is only influenced by the SES of the candidate. Finally, assume that the automated

decision system is suspected to be biased by the political belief of candidates. That is, it is claimed

that the system will more likely select candidates with a particular political belief.

A simple approach to check the fairness of automated selection 𝑌 with respect to the sensitive

attribute 𝐴 is to contrast the conditional probabilities: P(𝑌 = 1 | 𝐴 = 0) and P(𝑌 = 1 | 𝐴 =

1), corresponding to statistical disparity, which quantifies the disparity in the selection rates

between both types of candidates (conservatives and liberals). However, such an estimation of

discrimination is biased due to the confounding path through 𝑍. As the variable 𝑍 causes both

the sensitive variable 𝐴 and the outcome 𝑌 , it creates a correlation between 𝐴 and 𝑌 which is not

causal. In other words, high SES (rich) candidates tend to have a more conservative political

belief and at the same time more chances to be selected for the job (better academic institutions

and training), which creates the following correlation in the data: employers will have more

candidates with conservative political beliefs, and hence less candidates with liberal political

beliefs. This correlation is due to the confounder 𝑍 and should not count as discrimination.

Most statistical notions of fairness (equal opportunity, predictive parity, etc.) are not suitable to

measure discrimination in the presence of such statistical anomaly.

10.2.2 Mediator structure

The second situation where not accounting for the causal structure behind the data may lead to

unreliable estimation of discrimination involves the presence of one or several mediator variables.

The problem emerges from whether to consider discrimination through a mediator variable as

justifiable/acceptable or not. Similarly to confounding structure, a mediator variable may lead

to Simpson’s paradox. A famous example of Simpson’s paradox caused by a mediator structure

is the gender bias in 1973 Berkley admission [20, 208]. Figure 10.1(b) shows the causal graph

underlying the data, where the sensitive variable (𝐴) is gender, the outcome (𝑌) is admission

for Berkley graduate studies, and a single mediator variable (𝑀) representing the department

for which a candidate applied. In 1973, 44% of male applicants were admitted against only

34% of female applicants. Although this seems like a bias against female candidates, when the

same data were analyzed by department, acceptance rates were approximately the same. In

a simple mediator structure, there are two possible paths from 𝐴 to 𝑌 : a direct path 𝐴 → 𝑌

and an indirect path 𝐴 → 𝑀 → 𝑌 . Comparing the global admission rates of male and female

candidates corresponds to considering both paths when measuring discrimination. Whereas,

comparing the admission rates per department corresponds to considering only the direct path

𝐴→ 𝑌 . Hence, whether or not to consider mediator paths when measuring discrimination may

lead to contradictory conclusions, such as in Simpson’s paradox.
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10.2.3 Collider structure

A biased estimation of discrimination may be due to the presence of common effect (collider)

variable and a data generation process implicitly conditioning on that variable. Using the same

hypothetical example of job selection, consider the causal graph in Figure 10.1(c). 𝐴 and 𝑌 are

the same as in the previous example. Assume that data for training the automated decision

system is collected from different sources, but mainly from labor union records. Assume also that

the variable 𝑊 representing the labor union activism of the candidate is caused by both 𝐴 and 𝑌 .

On the one hand, political belief 𝐴 influences whether a candidate is an active member of labor

union (individuals with liberal political beliefs are more likely to enroll in labor unions). On the

other hand, if a candidate is selected/hired, then there are higher chances that she becomes a

member of labor union and consequently that her case is recorded in the labor union records.

Consistent with previous work, a box around a variable (𝑊) indicates that the data is generated

by implicitly conditioning on that variable.

Again, the simple approach of contrasting the selection rates between both types of candidates

(conservatives and liberals) leads to a biased estimation of discrimination due to the colliding

path through 𝑊 . Intuitively, an individual has a record in the collected data either because she

has liberal political beliefs or because she is selected for the job. Individuals who happen to have

liberal political beliefs and at the same time selected for the job are still present in the data;

however, conditioning on labor union activism creates a correlation between 𝐴 and 𝑌 which is

not causal: data coming from labor union records includes fewer liberal candidates which are

selected for the job than conservative candidates. Again, this is discrimination against candidates

with liberal political beliefs. Such correlation is due to the collider structure and should not count

as discrimination.

10.3 Mediation Analysis

SES
(Socio-Economic

Status)

Political
Belief

Selection for
Job Hiring

Community
Service

Address

Figure 10.2: Causal graph with two mediated paths.

In presence of one or several mediator variables, it is useful to know how much discrimination is

direct and how much is mediated. More precisely, how much discrimination is conveyed through

each mediator variable. Mediation analysis is about distinguishing the different paths through
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which discrimination is going through and the portion of discrimination conveyed through each

path. Consider another variant of the job-hiring example in Figure 10.2 with two mediator

variables, address (𝑇) and community service (𝑊). There are in total four different paths from

the sensitive variable 𝐴 (political belief) to the outcome variable 𝑌 (job hiring):

• 𝐴← 𝑍 → 𝑌 : confounding path

• 𝐴→ 𝑌 : direct path

• 𝐴→ 𝑇 → 𝑌 : indirect path through 𝑇

• 𝐴→ 𝑊 → 𝑌 : indirect path through 𝑊 .

The first confounding path is non-causal, and hence any effect slipping away through it should

not be considered when estimating discrimination. As described in Section 10.2.1, this spurious

effect is due to how the data is generated / collected and consequently should not count as actual

discrimination. The direct path is present whenever there is an edge between 𝐴 and 𝑌 . The

effect through 𝐴→ 𝑌 is always discriminatory, that is, it can never be justified and considered

acceptable discrimination. The two remaining paths are indirect paths going through mediator

variables. Discrimination through an indirect path can or cannot be justified depending on the

nature of the mediator variable. For example, in the example of hiring a job in Figure 10.2, 𝑇

(home address) is a mediator variable because, on one hand, having a certain political inclination

may indicate where a candidate is living and, on the other hand, the job hiring decision may

depend on the home address of a candidate. 𝑊 (community service) is another mediator variable

because, on the one hand, the political views of a candidate can influence how much involved

she can be in community service, and on the other hand, the community service record is a

good indicator on how suitable she will be for a given position. Discrimination on the path

𝐴→ 𝑊 → 𝑌 can be acceptable as an employer can justify a disparity between candidates with

different political beliefs by their community service records. However, discrimination through

the path 𝐴→ 𝑇 → 𝑌 is typically not acceptable because an employer cannot justify discrimination

on the basis of the addresses of candidates. 𝑇 is called a proxy variable, whereas 𝑊 is called an

explanation variable1.

Causality, through the concepts of intervention and counterfactual, provides the tools required

to distinguish between discrimination conveyed through different paths. Intervening on 𝐴, blocks

all paths from an incoming edge to 𝐴 which include all confounding paths between 𝐴 and 𝑌 .

Discrimination through all causal paths is captured by the average causal effect (𝐴𝐶𝐸):

𝐴𝐶𝐸 (𝑌, 𝐴) = P(𝑌 = 𝑦+ |𝑑𝑜(𝐴 = 1)) − P(𝑌 = 𝑦+ |𝑑𝑜(𝐴 = 0)) (10.1)

where 𝑌 = 𝑦+ is a positive decision and 𝐴 = 1, 𝐴 = 0 are the values of the sensitive attribute. In

Figure 10.2, 𝐴𝐶𝐸 expression captures discrimination through all paths, except 𝐴← 𝑍 → 𝑌 . For

simplicity of notation, we represent 𝑌 = 𝑦+ simply as 𝑦+, 𝐴 = 1 (resp. 𝐴 = 0) as 𝑎1 (resp. 𝑎0) and

1In presence of a single path with a sequence of two or more mediators, the existence of at least one explaining
variable among the mediators makes discrimination through that path justifiable and hence acceptable.
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the 𝑑𝑜() operator with subscription. Therefore, the right-hand size of Equation 10.1 becomes

simply P(𝑦+𝑎1
) − P(𝑦+𝑎0

).
To distinguish the direct discrimination from indirect discrimination, two expressions can be

used, namely natural direct effect (𝑁𝐷𝐸) and natural indirect effect (𝑁𝐼𝐸) [107]:

𝑁𝐷𝐸 (𝑌, 𝐴) = P(𝑦+𝑎1,Z𝑎0
) − P(𝑦+𝑎0

) (10.2)

where Z is the set of all mediator variables and P(𝑦+𝑎1,Z𝑎0
) is the probability of a counterfactual

situation where 𝑌 = 𝑦+ had 𝐴 been 1 and had Z been the value it would naturally take if 𝐴 = 0.

Intuitively, P(𝑦+𝑎1,Z𝑎0
) is considered counterfactual because it corresponds to a candidate who is

conservative (𝐴 = 1) on the direct path 𝐴→ 𝑌 but liberal 𝐴 = 0 on all indirect paths. 𝑁𝐼𝐸 has a

similar form but 𝐴 values are reversed in the counterfactual expression:

𝑁𝐼𝐸 (𝑌, 𝐴) = P(𝑦+𝑎0,Z𝑎1
) − P(𝑦+𝑎0

) (10.3)

Finally, distinguishing the discrimination conveyed through specific indirect paths is possible

through path-specific effect (𝑃𝑆𝐸) [107, 108]:

𝑃𝑆𝐸 (𝑌, 𝐴, 𝜋) = P(𝑦+
𝑎1 | 𝜋,𝑎0 | 𝜋) − P(𝑦

+
𝑎0
) (10.4)

where 𝜋 is set of the variables on the path of interest, 𝜋 is the set of variables not in 𝜋 and

P(𝑦+
𝑎1 | 𝜋,𝑎0 | 𝜋) is the counterfactual probability of 𝑌 = 𝑦+ had 𝐴 been 1 on the paths 𝜋 and 0 on the

remaining paths 𝜋.

10.4 Uncovering causality through legal evidence: the regulatory

approach in the European Union

The method of mediator structure in uncovering causation, as discussed in the previous section,

is certainly a useful model for the proof of causality in judicial instances dealing with algorithmic

discrimination. However, the question is whether procedural law, namely in the European

Union (EU), is designed to support such an analysis. As a preliminary observation, we should

stress that in law, the expression ‘causal fairness’ generally refers to the procedural conditions

under which instances of fairness (or unfairness, for that matter) are causally represented. With

this in mind, in this section, we will focus on two important and interrelated issues: evidence

and procedural fairness 2. In the eye of the law, causality is a question of fact, calling for

legally established discovery procedures - and corresponding reasoning models - meant to yield

accurate causal representations, i.e., allow for causality proper to be singled out from a myriad

of correlations (positive associations between candidate-causes and a harm suffered) [209].

However, in adjudicatory contexts, causality is proven for the purpose of fairness, typically

2In the EU, the Independent High Level Expert Group on AI, set up by the European Commission, defined
procedural fairness as “entails the ability to contest and seek effective redress against decisions made by AI systems
and by the humans operating them.” See HLEG, Ethics Guidelines for trustworthy AI, available at https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai, at 13.
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compensation as a "fair" outcome to the suffering of harm. In fact, legal systems committed to

the rule of law 3 share a commitment to procedural fairness, the normative creed being that

only fairly designed procedures can be conducive to fair outcomes. In contemporary systems

of evidence and judicial remedies, including those in EU law, the fair procedures/outcomes

parallelism is epitomized in the fair trial safeguards - procedural entitlements meant to uphold

a level of basic equality (or procedural parity) and effectiveness in the ways in which litigants

participate in a dispute resolution [210]. This equality not only applies to the litigants ability

to access judicial remedies, but also to their ability to access and give evidence, the idea being

that one party should in no way be advantaged or disadvantaged over the other, in terms of their

access to the facts needed to make their views known (usually, before a court). In short, "casual

fairness" in law calls for accurate - or at least, plausible [211] - evidence of causality, presented

in conditions of procedural fairness.

Proof of causality in connection to algorithmic discrimination has profoundly upset these

longstanding legal postulates. From a procedural fairness perspective, a major thorny issue

has been that AI’s relative or total opacity makes AI systems’ decisional processes inscrutable,

obstructing the victims’ ability to properly establish and argue causation. One of the topical

examples in this regard is Cook vs. HSBC North America 4, a credit scoring case where the system

used as a relevant variable the applicants places of residence, ultimately favoring "white" areas

and discriminating against members of ethnic minorities. Those "subtly discriminatory" variable

associations (such as zip code/ethnic background) combined with the practical difficulties of

accessing relevant information on how an AI system associated different variables, meant that

the right to access evidence and courts (as a fair trial safeguard) were under serious threat. To

remedy this, regulators across the world and in the EU sought to answer two main questions: 1.

which evidence do litigants need to have access to in order to effectively prove causation?; 2.

once that evidence has been identified, how should legal procedures be (re)designed to open the

victims’ access to it?

10.4.1 Using causal tools to establish causal evidence

Regarding the first question, the emerging, but not yet consolidated, global AI liability case law

reveals an interesting trend. Although many judicial instances can be cited as examples, for the

purpose of this article, we shall highlight three cases that we view as illustrative of the ‘new

approach’ to proving causation in AI-related disputes. These cases are Pickett 5 (dealing with

a DNA matching system - TrueAllele - used by police authorities to track down harm-doers),

3In the EU, the concept of rule of law is understood to include the following principles: legality, legal certainty,
prohibition of arbitrariness of the executive powers, independent and impartial courts, effective judicial review,
including respect for fundamental rights and equality before the law. See Communication from the Commission to the
European Parliament and the Council "A new EU Framework to strengthen the Rule of Law," COM(2014) 158 final, at
4.

4US District Court for the Northern District of Illinois, 21 March 2014, County of Cook v. HSBC North America
Holdings Inc et al., 1:2014cv02031.

5Superior Court of New Jersey (Appellate Division), 2 February 2021, State of New Jersey v. Corey Pickett, Docket
N° A-4207-19T4.
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Loomis 6 (dealing with COMPAS, a recidivism-predicting system used by courts) and Ewert 7

(also dealing with the use of recidivism-predicting systems by Canadian correctional services). In

all three cases, the plaintiffs argued that the automated decisions were inaccurate because they

were unfair that is, contained unfair biases: gender in Pickett and Loomis, ethnic background

in Ewert. To uncover the bias-conducive variable association (i.e the causal link), the plaintiffs

requested that the systems be reverse engineered. This was hardly possible. For example, in

Pickett, independent experts confirmed that reverse engineering would take up to 8,5 years to be

completed 8. In the face of the practical unfeasibility of reverse-engineering, the court in Pickett

(and in Loomis) turned to general expertise, as a faute de mieux solution: the lack of direct

evidence (reverse-engineering) able to reveal the presence of an unfair bias, was "compensated"

by the recourse to already existing expertise assessing a system’s functionalities in general. If

the majority of experts agreed that a system, like TrueAllele in Pickett or COMPAS in Loomis,

was generally well-performing (i.e. was unbiased and therefore accurate), the courts would be

inclined to accept that, in the disputes they were called to resolve, it could be presumed that the

systems concerned had made unbiased decisions.

Hence, the role of experts is to assess the strength of the causal link between sensitive

variables and the decision (A zero causal effect indicates absence of discrimination) in presence

of different causal structures (Section 10.2) which can lead to different types of bias. A possible

approach would be to identify the causal graph to reveal the causal relations between variables

and then use causal notions of fairness (Section 10.3) to assess discrimination. A suggested

procedure to identify the causal graph is to first use a causal discovery algorithm (e.g. PC [212]).

Then, seek the input of experts in the domain of application to adjust the discovered graph (e.g.

adding/removing causal links, enforcing assumptions, etc.). The input of experts can be useful

also to clarify the role of each variable, in particular, classifying mediator variables into explaining

(leading to justifiable discrimination) and proxy (leading to unjustifiable discrimination) variables.

This is essential to select the suitable causal fairness metric (Section 10.3) to use.

10.4.2 But-for test using counterfactuals

From the perspective of procedural fairness and the mediator structure model, this trend is, of

course, open to criticism. First, the general opinions of experts on the accuracy of a system are not

as probative as direct evidence (reverse engineering) able to provide highly reliable information

on the mediator association having led to a discriminatory outcome. Second, the inability to

prove causation through reliable evidence seems to have given way to a peculiar application of

the so-called but-for test. In principle, this test translates to the deployment of counterfactual

reasoning seeking to determine if a harm would have been suffered, had an alleged cause not

occurred. In the Cook vs HSBC case (credit scoring) e.g., a standard application of said test

would translate to determining if the same loan applicants would have been approved, if the

6Supreme Court of Wisconsin, 13 July 2016 (decided), State of Wisconsin v. Eric L. Loomis, 881 N.W. 2d 749
(2016) 2016 WI 68.

7Ewert vs. Canada, 2018 SCC 30, File n° 37233, 13 June 2018.
8See Superior Court of New Jersey (Appellate Division), 2 February 2021, State of New Jersey v. Corey Pickett,

Docket N° A-4207-19T4, at 17.
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system had not taken their places of residence as a relevant variable. However, the cases cited

in this section (in particular Pickett and Loomis), reveal a slight shift in the application of the

but-for test. In "ordinary" disputes (non-AI related) cases, this test seeks to answer a question of

factive causal association: would an outcome be the same (or different) without certain facts

(address, gender, age, etc) in the causal structure? In AI-related disputes, the but/for test answers

a question of (human) reliance on AI output, the relevant (causal) issue being if a human decision

based on AI would have been the same or different, had the AI not been used at all. In this

case, statistical causality tools can be applied to detect discrimination in data reflecting previous

hiring or loan-granting practices in the company concerned. If the association between the

sensitive attribute and the outcome is detected, then one can conclude that the decision would

be the same without algorithmic assistance. This brings the focus of attention from the AI system

(and its architects) to the general practice in the company. Here, again, causality can help to

distinguish between spurious association, explainable disparity, or discrimination. On the other

hand, if the data with ingrained discrimination is the same as that used to train the algorithm,

compliance with AI designing guidelines can be further scrutinized. Finally causality tools provide

mathematical expressions to capture the intangible concept of counterfactual [213, 214] very

useful to directly check the but-for test.

This allows us to raise the second issue mentioned above: should systems of evidence include

a right to access/to request disclosure of evidence?

10.4.3 Disclosing causal evidence to victims of discrimination

From a procedural fairness perspective, this right seems paramount for a victim of algorithmic

discrimination to at least have a shot at requesting the ‘lifting of the opacity veil’ that might

cover a causal chain [215]. In the EU, recent regulatory developments seemed - on the surface

at least - to move toward the recognition of such a right. First came the AI Act 9 - a horizontal,

across-the-board legislation which makes two important contributions. On the one hand, it

includes a four-level taxonomy of risks-of-harm related to AI systems: non-high, limited, high

and unacceptable. On the other hand, and against the backdrop of said risk-taxonomy, the AI

Act includes a set of technical standards (transparency, data governance, risk-mitigation strategy

etc) targeting high-risk AI systems, used in mainly eight market sectors 10. To complement the AI

Act and to afford procedures designed for the compensation of harm associated with high-risk

systems, the AI Liability Directive (AILD) 11 came next. This instrument establishes a system of

evidence which grants victims the right to request disclosure of evidence. By virtue of the AILD, if

the defendant (a programmer or user) refused to disclose the evidence requested by the victim or

if, upon disclosure, a national or EU court found that the evidence was probative and plausible,

the defendant would be presumed responsible for the harm (e.g. discrimination) suffered by the

9Proposal for a Regulation of the European Parliament and of the Council laying down harmonized rules on
Artificial Intelligence (AI Act) and amending certain Union legislative acts, COM(2021) 206 final.

10The ‘high-risk’ sectors are listed in Annex III of the AI act and include Employment, education, healthcare,
transport, energy, public sector (including asylum, migration, border controls, judiciary and social security services),
defence and security, finance, banking, and insurance.

11Proposal for a Directive of the European Parliament and of the Council on adapting non-contractual civil liability
rules to Artificial Intelligence (AI Liability Directive) COM(2022)496 final.
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claimant. It should however be stressed that the evidence a victim can ask disclosure of under the

AILD does not include the evidence flagged as ‘necessary’ (i.e. expertise) in the cases cited earlier.

The AILD allows the disclosure of evidence so long as that evidence pertains to the defendant’s

compliance with the technical standards listed in the AI Act. In other words, the defendant would

not be asked to provide information (e.g. access to the code, reverse-engineering, when feasible)

able to support a proper causal analysis. They would be asked to - merely - provide information

confirming that they complied with, say, their duty for human control and oversight. The reason

for this is, no doubt, that the AILD relies on the assumption that if harm (like discrimination)

does occur, it is because the AI Act had not been fully observed. In doing so, the AILD narrows

down the scope of the evidentiary debate in the sense that the parties in future AI discrimination

cases, will not seek to be called to uncover the actual casual structure underlying discriminatory

AI output, but to identify the human agent who had failed to meet a legally prescribed duty of

care.

10.5 Practical Considerations for Using Causality for Fairness

In the previous sections, we illustrated the situations where the causality approach is relevant for

evaluating fairness and how it can be attained using causal fairness notions and approximation

techniques. Despite the apparent advantages, the applicability of the causal framework is

limited because of its reliance on prior knowledge and often untestable assumptions. Many

causal requirements can be achieved by applying a specific experiment design (ideally, random

assignment). However, in fairness scenarios, it is often not a plausible option. Therefore,

discrimination is usually evaluated from observational data. Here, we will list some requirements

for applying causal inference that are most relevant for fairness applications.

10.5.1 Possibility for Intervention

In fairness estimation, the sensitive attribute is considered to be the exposure or treatment

attribute. The goal is to measure its impact on the outcome. Most definitions of causal effect are

based on a notion of intervention or manipulation of a cause variable (exposure) [216, 217].

This makes it hard to justify causal claims related to non-manipulable quantities, such as sensitive

attributes, for example, race or gender. Some approaches in the literature suggest shifting

attention from an actual manipulation to changes in perception [95]. For example, instead of

changing the gender of candidates to estimate the effect on a hiring decision, the researcher

could manipulate the perception of gender by the employer. It could be easily done by submitting

two analogous resumes but varying the name or title of the candidate. This approach corresponds

to the methodology applied in social experiments on the impact of race or gender of an applicant

on hiring decisions [218]. [216] further differentiate immutable sensitive attributes into those

that are randomized at birth (biological sex) and those that are not (race, social gender). This

distinction is important when estimating the causal effect of the sensitive attribute. If the sensitive

attribute is randomized, then its causal effect on an outcome can be estimated just by comparing

exposure levels. For example, it is possible to estimate the total causal effect of biological sex
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by taking the observed differences in the outcome between men and women [216]. In contrast,

race is not random, but depends on many ancestral factors. For this reason, even at the biological

level, estimating the effect of race is more complicated and requires information about the

causal structure of the covariates. However, these types of estimation are relevant in medical

scenarios, where the independence between the sensitive attribute and the outcome (for example,

the probability of a disease) cannot be reasonably assumed. In the possible discrimination

scenarios [216], similarly, to [95] shift attention to the direct effect of the perceived gender or

race on the decision.

10.5.2 Causal assumptions

The SUTVA [112] (Stable Unit Treatment Value Assumption) entails the requirements of no

interference and consistency. No interference assumption requires that the interaction between

individuals does not influence the effect of the sensitive attribute on the outcome. The likelihood

of interaction and feedback loops is high in social sciences research in general and calls for a clear

discussion and restricted interpretations of causal estimation [50]. Fairness is usually measured

in a social context. Therefore, the possibility of interaction should be carefully evaluated. Using

the hiring example, the violation of the SUTVA requirement would occur in a situation where

hiring more participants of one political spectrum increases the likelihood of privileging the

same political spectrum in future hiring decisions. Such a scenario is plausible because current

employees may favor those who have political beliefs similar to their own. The assumption

of consistency requires that each treatment level leads to the same potential outcomes [219].

In fairness evaluation, treatment is replaced by the sensitive attribute, which is often a social

construct such as race or gender. Identifying the causal effect of gender on hiring can be

problematic if gender itself does not have a consistent effect on hiring. For example, only women

with a certain level of "femininity" are discriminated against. This scenario cannot be excluded

and should be considered if a fine-grained causal analysis is a goal of a study. In summary, SUTVA

assumptions are likely to be violated in fairness scenarios, however, causal approaches can still

be applied if the results are interpreted with caution. Some methods to identify the causal effect

under the violations of SUTVA are discussed here [220].

Ignorability [112] assumption requires that the sensitive attribute and the outcome are

independent given the observable variables. In other words, no unobserved variables create

a significant link between the sensitive attribute and the outcome. In fairness evaluation, the

presence of such a link could mean that the portion of discrimination is, in fact, a spurious

effect induced by the confounder. For example, if the education confounder is not present in the

data, the confounding effect cannot be controlled. As a result, it is not possible to estimate the

causal effect of political belief on the hiring decision that is separate from the effect of education.

Unobserved confounders are not likely for immutable sensitive attributes such as sex or race.

These sensitive attributes are unlikely to have a temporally prior cause. However, the noise

terms can still be not independent between the sensitive attribute and the outcome. [205] point

out, the implications of assuming ignorability, when using causal counterfactuals. Following the

reasoning by [205], in the case of college admission (Figure ??), an average male who applied
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to the technical profession could be counterfactually exchanged with an average woman who

applied to the same profession. However, given the social expectations tied to gender roles, a

woman applying to a technical profession is likely to be more motivated and hard-working than

an average male with the same professional goals.

Positivity [112] is violated if some of the combinations of a sensitive attribute and a covariate

have zero probability. Violations of positivity can be deterministic or random [221]. For example,

positivity would be violated if a certain level of education always corresponds to liberal political

beliefs. In this scenario, the positivity violation would most likely be random. It is unlikely that

certain education would have a deterministic relationship on political beliefs. In the random

case, statistical methods are available for analysis under violation of positivity [221]. However,

consider a case where having a Harvard degree is considered an explanatory mediator between

ethnicity and hiring. Certain ethnicities may have zero probability of having obtained a Harvard

degree due to long-term discrimination and poverty. In this case, it should be reconsidered if a

specific Harvard degree is essential for the job considered despite the potential exclusion and

disparate impact.

The identifiability of path-specific effects in the presence of multiple mediators requires

the absence of causal links between the mediators [222]. Evaluating path-specific effects is

particularly important to understand the mechanism of the effect of the sensitive attribute on the

outcome. As outlined earlier (Section 10.3), the effect can be deemed justifiable or discriminatory

depending on the mediating variables on the path. However, the link between two or more

mediators is likely in fairness scenarios. For example, consider the case where race and hiring

decisions are mediated by social status (redlining) and education (explaining variable). It is very

likely that the level of education is influenced by social status. In this case, the indirect effect

through social status and education separately is not identifiable. Work by [222] proposed a

method based on the treatment of multiple mediators together. In some cases, this method can

help identify individual indirect effects in the presence of causal links between mediators.

10.5.3 Availability of Causal Graph

One of the most significant restrictions for using causality is knowledge of the relationship

between variables in the form of a directed acyclic graph (DAG) 12 [46]. The research by [223]

shows a significant disagreement between estimations of causal fairness notions due to slight

differences in the causal structure. The availability of DAG is particularly important in the

presence of collider structures, because including a collider in a conditioning set induces bias in

measuring causal effect [56]. DAG is also important for the evaluation of path-specific effects,

important for distinguishing redlining and explaining variables in fairness scenarios.

The causal structure (or causal graph) can be obtained by consulting domain experts or

learning from observational data. Both approaches have their own limitations. Domain experts

can disagree or have biased assumptions. Learning from the data often requires additional

12The DAG is subject to further assumptions of causal Markov condition, causal faithfulness, and causal sufficiency.
Causal Markov condition, causal faithfulness, and Causal sufficiency together encode the same requirements as SUTVA
and Ignorability in the potential outcome framework, therefore, will not be discussed separately.
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assumptions on the distribution of the data, functional relationships, the relations of exogenous

unobserved variables, and the informed choice of the learning algorithm. The research by [223]

shows how different algorithms to recover the causal structure yield different results when

applied to the same data set. Learning causal relationships from observational data alone may

not be realistic [224]. However, the combination of causal discovery and expert knowledge could

give more reliable results.



11
Dissecting Causal Biases

11.1 Introduction

In this chapter, we focus on a class of biases, which we call causal biases, that arise from the way

data is generated and/or collected. We make a distinction between discrimination and bias. We

use the term discrimination to refer to the unjust or prejudicial treatment of different categories of

people, on the basis of race, age, gender, disability, religion, political belief, etc.. Whereas the term

bias is used to refer to the deviation of the expected value from the quantity it estimates. We use

tools from the field of causality [46, 225] to characterize causal biases and disentangle them

from discrimination.

11.1.1 Types of bias

Measurement of discrimination without taking into consideration the causal structure underlying

the relationships between variables may lead to misleading conclusions. That is, a biased

estimation of discrimination. In extreme cases, such as Simpson’s paradox, the bias may lead

to reversing the conclusions (e.g. the biased estimation indicates a positive discrimination,

while the unbiased estimation is actually a negative discrimination). We will be considering

the types of bias based on Collider and Confounder causal structures described in section 10.2.

We also add a measurement bias structure (Paragraph 11.1.2, Figure 11.2(a)) and interaction

structure(Paragraph 11.1.3,Figure 11.2(b)).
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Figure 11.1: Confounding and colliding bias.
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Figure 11.2: Measurement and interaction bias.

11.1.2 Measurement Bias

The third type of bias, measurement bias, is due to the use of a proxy variable to estimate

discrimination instead of an ideal but unmeasurable variable. Consider a third variant of the

same job selection example having the causal graph of Figure 11.2(a). Unlike in the causal graph

of confounding bias (Figure 11.1(a)), the confounder variable 𝑍 is unmeasurable (empty bullet

instead of a filled one). In practice, it is difficult to find a variable that represents accurately

the socio-economic status (salary, possessions, etc.). Being unmeasurable, 𝑍 cannot be used to

estimate discrimination while blocking the confounding path through 𝑍. For practical reasons,

the (measurable) variable 𝑇 representing the postal/zip code of the candidate’s address can be

used instead. 𝑇 is considered a proxy of 𝑍 as it is highly correlated with (but not identical to) 𝑍1.

Using variable 𝑇 as a proxy to measure 𝑍 may lead to an additional bias, we call measurement

bias.

11.1.3 Interaction Bias

Interaction bias is observed when two causes of the outcome interact with each other, making

the joint effect smaller or greater than the sum of individual effects. Consider the same job hiring

example but where two sensitive attributes, political belief (liberals vs. conservatives), and gender

have an effect on the hiring decision. In the presence of interaction between political belief and

gender, statistical disparity will not accurately measure the individual effects of Political Belief

and Gender even if no confounding condition is satisfied. For example, it is possible to observe a

situation where statistical parity is almost satisfied for both individual sensitive variables, but

the intersectional sensitive group is discriminated [6]. Following our previous example, we

1The candidate’s address gives a strong indicator of the socio-economic status.
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would define liberal females as an unprivileged intersectional group and conservative males as a

privileged intersectional group. In the presence of interaction, the discrimination against liberal

females is not equal to the sum of discrimination against conservative and females individually.

Additionally, the average discrimination value for liberals or females, as measured by statistical

disparity, will also be biased, as it does not take into account the interaction between the two

sensitive variables.

11.1.4 Notation and preliminaries

Variables are denoted by capital letters. In particular, 𝐴 is used for the sensitive variable (e.g.,

gender, race, age) and 𝑌 is used for the outcome of the automated decision system (e.g., hiring,

admission, releasing on parole). Small letters denote specific values of variables (e.g., 𝐴 = 𝑎′,

𝑊 = 𝑤). Bold capital and small letters denote sets of variables and sets of values, respectively.

The Back door formula and Average Causal Effect (ACE)

Assuming 𝑍 is the only confounder of 𝐴 and 𝑌 , the back door formula can be used to control for

the confounding effect the Back door formula is expressed as:

DEFINITION 11.1.1.

P(𝑌 |𝑑𝑜(𝐴 = 𝑎)) =
∑︁
𝑧∈𝑍
P(𝑌 |𝐴 = 𝑎, 𝑍 = 𝑧)P(𝑍 = 𝑧) (11.1)

Average causal affect (ACE) is defined as:

DEFINITION 11.1.2.

𝐴𝐶𝐸 (𝑌, 𝐴) = P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)). (11.2)

Statistical Disparity

Statistical disparity (Equation 3.1) is a biased estimation of the discrimination in the presence of

a confounder variable, 𝑍 , between 𝐴 and 𝑌 as it does not filter out the spurious effect due to the

confounding. For the sake of the proofs, we define the following variant of statistical disparity:

DEFINITION 11.1.3.

StatDisp(𝑌, 𝐴)𝑍 =
∑︁
𝑧∈𝑍

(
P(𝑦1 |𝑎1, 𝑧) − P(𝑦1 |𝑎0, 𝑧)

)
.P(𝑧). (11.3)

Notice that if 𝑍 d-separates2 𝐴 and 𝑌 , StatDisp(𝑌, 𝐴)𝑍 coincides with the average causal effect

𝐴𝐶𝐸 (Equation 11.2).

2For the definition of d-separation, we refer the reader to Definition 1.2.3 in [46].
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11.1.5 Previous results used in the proofs

Consider a pair of variables 𝑋 and 𝑌 . The variance of a variable 𝑋, 𝜎𝑥
2, is a measure of

dispersion which quantifies how far a set of values deviate from their mean and is defined as:

𝜎𝑥
2 = E[𝑋 − E[𝑋]]2. Covariance of 𝑋 and 𝑌 , 𝜎𝑥𝑦, is a measure of the joint variability of two

random variables and is defined as: 𝜎𝑥𝑦 = E[[𝑋 −E[𝑋] [𝑌 −E[𝑌 ]]]. Assuming a linear relationship

between 𝑋 and 𝑌 (𝑋 is the predictor variable, while 𝑌 is the response variable), the regression

coefficient of 𝑌 given 𝑋, 𝛽𝑦𝑥, represents the slope of the regression line in the prediction of

𝑌 given 𝑋 ( 𝜕
𝜕𝑥
E[𝑌 |𝑋 = 𝑥]) and is equal to 𝛽𝑦𝑥 =

𝜎𝑥𝑦

𝜎𝑥
2 . Correlation coefficient 𝜌𝑦𝑥, however,

represents the slope of the least square error line in the prediction of 𝑌 given 𝑋. The relationships

between 𝜎𝑦𝑥, 𝛽𝑦𝑥, and 𝜌𝑦𝑥 are as follows:

𝛽𝑦𝑥 =
𝜎𝑦𝑥

𝜎2
𝑥

= 𝜌𝑦𝑥
𝜎𝑦

𝜎𝑥

𝜌𝑦𝑥 = 𝜌𝑥𝑦 =
𝜎𝑦𝑥

𝜎𝑥𝜎𝑦

= 𝛽𝑦𝑥
𝜎𝑥

𝜎𝑦

= 𝛽𝑥𝑦
𝜎𝑦

𝜎𝑥

Partial regression coefficient, 𝛽𝑦𝑥.𝑧, represents the slope of the regression line of 𝑌 on 𝑋 when

we hold variable 𝑍 constant ( 𝜕
𝜕𝑥
E[𝑌 |𝑋 = 𝑥, 𝑍 = 𝑧]). A well known result by Cramer [226] allows

to express 𝛽𝑦𝑥.𝑧 in terms of covariance between pairs of variables [227]:

𝛽𝑦𝑥.𝑧 =
𝜎𝑧

2𝜎𝑥𝑦 − 𝜎𝑦𝑧𝜎𝑧𝑥

𝜎𝑥
2𝜎𝑧

2 − 𝜎𝑥𝑧
2

(11.4)

For standardized variables (all variables are normalized to have a zero mean and a unit

variance), the partial regression coefficient has a simpler expression since 𝛽𝑦𝑥 = 𝜎𝑦𝑥:

𝛽𝑦𝑥.𝑧 =
𝜎𝑥𝑦 − 𝜎𝑦𝑧𝜎𝑧𝑥

1 − 𝜎𝑥𝑧
2

(11.5)

Figure 11.3: Causal graph with linearly related variables. Arrow labels represent linear regression
coefficients.

Another known result by Wright and Pearl [60, 227] allows to represent the covariance of

two variables in terms of the regression coefficients of the different paths (causal and non-causal,

but not passing through any collider variable) between those two variables. More precisely, 𝜎𝑦𝑥

is equal to the sum of the regression coefficients of every path between 𝑥 and 𝑦, weighted by the

variance of the root variable of each path. For instance, in Figure 11.3, 𝜎𝑦𝑎 = 𝜎𝑎
2𝛼+𝜎𝑧

2𝛽𝛾+𝜎𝑎
2𝛿𝜆.
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Notice that the coefficients 𝜂 and 𝜖 are not included as the path 𝐴→ 𝑊 ← 𝑌 is not 𝑑−connected

(𝑊 is a collider variable). For standardized variables, the expression is simpler as all variables are

normalized to have a unit variance. For the same example (Figure 11.3), 𝜎𝑦𝑎 = 𝛼 + 𝛽𝛾 + 𝛿𝜆. For

linear models, regression coefficients can be interpreted causally. For instance, using the same

example of Figure 11.3, 𝛼 represents the direct causal effect of 𝐴 on 𝑌 .

11.2 Confounding bias

Confounding bias occurs when both the sensitive variable and the outcome have a common cause,

the counfounder variable (Figure 11.4). Consequently, the mechanism of selecting samples from

the two groups (protected and privileged) is not independent of the outcome. This creates a bias

when measuring the causal effect of the sensitive attribute on the outcome.

Figure 11.4: Simple confounding structure

11.2.1 Binary Model Case

For a concise notation, let 𝑦1 and 𝑦0 denote the propositions 𝑌 = 1 and 𝑌 = 0, respectively, and

the same for the variables 𝐴 and 𝑍. For instance, P(𝑌 = 1|𝐴 = 0) is written simply as P(𝑦1 |𝑎0).
Statistical disparity [228] between groups 𝐴 = 0 and 𝐴 = 1, denoted as StatDisp(𝑌, 𝐴), is the

difference between the conditional probabilities: P(𝑦1 |𝑎1) −P(𝑦1 |𝑎0). In presence of a confounder

variable, 𝑍, between 𝐴 and 𝑌 , statistical disparity is a biased estimation of the discrimination as

it does not filter out the spurious effect due to the confounding.

DEFINITION 11.2.1. Confounding bias is defined as3:

ConfBias(𝑌, 𝐴) = StatDisp(𝑌, 𝐴) − 𝐴𝐶𝐸 (𝑌, 𝐴) (11.6)

where 𝐴𝐶𝐸 (𝑌, 𝐴) is the causal effect of 𝐴 on𝑌 (Definition 11.2) and StatDisp(𝑌, 𝐴)
is a statistical relationship between 𝐴 and 𝑌 (Definition 3.1). For the simple

confounding structure of Figure 11.4, 𝐴𝐶𝐸 coincides with StatDisp𝑍 (𝑌, 𝐴) (Defi-

nition 11.1.3).

THEOREM 11.1. The difference in discrimination due to confounding bias is equal

3In this chapter, bias is defined by substracting the correct value of discrimination from the biased estimation.
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to:

ConfBias(𝑌, 𝐴) = (1 − P(𝑧0 |𝑎0) − P(𝑧1))

× (𝛼 − 𝛽 − 𝛾 + 𝛿 + 𝛾

P(𝑎1)
− 𝛿

P(𝑎1)
) (11.7)

where 𝛼, 𝛽, 𝛾, and 𝛿 denote, respectively, P(𝑦1 |𝑎0, 𝑧0), P(𝑦1 |𝑎0, 𝑧1), P(𝑦1 |𝑎1, 𝑧0),
and P(𝑦1 |𝑎1, 𝑧1).

Proof. Let P(𝑧1) = 𝜖 (𝜖 ∈]0, 1[) and hence P(𝑧0) = 1 − 𝜖 . Similarly, let P(𝑎1) = 𝜆 and hence

P(𝑎0) = 1 − 𝜆. Let P(𝑦1 |𝑎0, 𝑧0) = 𝛼, P(𝑦1 |𝑎0, 𝑧1) = 𝛽, P(𝑦1 |𝑎1, 𝑧0) = 𝛾, and P(𝑦1 |𝑎1, 𝑧1) = 𝛿.

Finally, let P(𝑧0 |𝑎0) = 𝜏. The remaining conditional probabilities of 𝑍 given 𝐴 are equal to the

following:

P(𝑧1 |𝑎0) = 1 − P(𝑧0 |𝑎0) = 1 − 𝜏 (11.8)

P(𝑧1 |𝑎1) =
P(𝑧1) − P(𝑧1 |𝑎0)P(𝑎0)

P(𝑎1)
(11.9)

=
𝜖 − (1 − 𝜏) (1 − 𝜆)

𝜆

=
𝜖 − 1 + 𝜏 + 𝜆 − 𝜏𝜆)

𝜆

P(𝑧0 |𝑎1) =
P(𝑧0) − P(𝑧0 |𝑎0)P(𝑎0)

P(𝑎1)
(11.10)

=
(1 − 𝜖) − 𝜏(1 − 𝜆)

𝜆

=
1 − 𝜖 − 𝜏 + 𝜏𝜆

𝜆

Equation (11.8) follows from the fact that, given 𝑢𝑖 events are exhaustive and mutually

exclusive,
∑

𝑖 P(𝑎𝑖 |𝑋) = 1. Equations (11.9) and (11.10) follow from the fact that, given 𝑢𝑖

events are exhaustive and mutually exclusive,
∑

𝑖 P(𝑋 |𝑢𝑖)P(𝑢𝑖) = P(𝑋). StatDisp(𝑌, 𝐴) can then

be expressed in terms of the above parameters:

P(𝑦1 |𝑎1) − P(𝑦1 |𝑎0) =
∑︁
𝑧∈𝑍
(P(𝑦1 |𝑎1, 𝑧)P(𝑧 |𝑎1) − P(𝑦1 |𝑎0, 𝑧)P(𝑧 |𝑎0)

= P(𝑦1 |𝑎1, 𝑧0)P(𝑧0 |𝑎1) − P(𝑦1 |𝑎0, 𝑧0)P(𝑧0 |𝑎0)

+ P(𝑦1 |𝑎1, 𝑧1)P(𝑧1 |𝑎1) − P(𝑦1 |𝑎0, 𝑧1)P(𝑧1 |𝑎0)

= 𝛾
(1 − 𝜖 − 𝜏𝜆

1 − 𝜆
)
− 𝛼𝜏 + 𝛿

( 𝜖 − 𝜆 + 𝜏𝜆
1 − 𝜆

)
− 𝛽(1 − 𝜏)
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𝐴𝐶𝐸 (𝑌, 𝐴), on the other hand can be expressed as follows:

P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)) =
∑︁
𝑧∈𝑍
(P(𝑦1 |𝑎1, 𝑧) − P(𝑦1 |𝑎0, 𝑧))P(𝑧)

= P(𝑦1 |𝑎1, 𝑧0) − P(𝑦1 |𝑎0, 𝑧0))P(𝑧0)

+ P(𝑦1 |𝑎1, 𝑧1) − P(𝑦1 |𝑎0, 𝑧1))P(𝑧1)

= (𝛾 − 𝛼) (1 − 𝜖) + (𝛿 − 𝛽)𝜖

Confounding bias is then equal to:

StatDisp(𝑌, 𝐴) − 𝐴𝐶𝐸 (𝑌, 𝐴) = P(𝑦1 |𝑎1) − P(𝑦1 |𝑎0) − (P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)))

= 𝛾
(1 − 𝜖 − 𝜏𝜆

1 − 𝜆
)
− 𝛼𝜏 + 𝛿

( 𝜖 − 𝜆 + 𝜏𝜆
1 − 𝜆

)
− 𝛽(1 − 𝜏)

−
(
(𝛾 − 𝛼) (1 − 𝜖) + (𝛿 − 𝛽)𝜖

)
=
𝛾

𝜆
− 𝛾𝜖
𝜆
− 𝛾𝜏
𝜆
+ 𝛾𝜏 − 𝛼𝜏 + 𝛿𝜖

𝜆
− 𝛿
𝜆
+ 𝛿𝜏
𝜆

+ 𝛿 − 𝛿𝜏 − 𝛽 + 𝛽𝜏 − 𝛾 + 𝛼 + 𝜖𝛾 − 𝛼𝜖 − 𝛿𝜖 + 𝛽𝜖

=
(
𝛼 + 𝛿 − 𝛽 − 𝛾 + 𝛾

𝜆
− 𝛿
𝜆

)
− 𝜏

(
𝛼 + 𝛿 − 𝛽 − 𝛾 + 𝛾

𝜆
− 𝛿
𝜆

)
− 𝜖

(
𝛼 + 𝛿 − 𝛽 − 𝛾 + 𝛾

𝜆
− 𝛿
𝜆

)
=

(
1 − 𝜏 − 𝜖

) (
𝛼 + 𝛿 − 𝛽 − 𝛾 + 𝛾

𝜆
− 𝛿
𝜆

)
□

For the specific case of equal proportions between sensitive groups (e.g. no under or over

representation of a certain sensitive group), confounding bias can be characterized by a simpler

closed-form expression.

THEOREM 11.2. Assuming that P(𝑎0) = P(𝑎1) = 1
2 , the difference in discrimination

due to confounding bias is equal to:

ConfBias(𝑌, 𝐴) = (1 − P(𝑧0 |𝑎0) − P(𝑧1)) (𝛼 − 𝛽 + 𝛾 − 𝛿) (11.11)

where 𝛼, 𝛽, 𝛾, and 𝛿 are defined similarly to Theorem 11.1.

Proof. Let P(𝑧1) = 𝜖 (𝜖 ∈]0, 1[) and hence P(𝑧0) = 1 − 𝜖 . And let P(𝑦1 |𝑎0, 𝑧0) = 𝛼, P(𝑦1 |𝑎0, 𝑧1) =
𝛽, P(𝑦1 |𝑎1, 𝑧0) = 𝛾, and P(𝑦1 |𝑎1, 𝑧1) = 𝛿. Finally, let P(𝑧0 |𝑎0) = 𝜏. The remaining conditional
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probabilities of 𝑍 given 𝐴 are equal to the following:

P(𝑧1 |𝑎0) = 1 − P(𝑧0 |𝑎0) = 1 − 𝜏 (11.12)

P(𝑧1 |𝑎1) =
P(𝑧1) − P(𝑧1 |𝑎0)P(𝑎0)

P(𝑎1)
= 2𝜖 + 𝜏 − 1 (11.13)

P(𝑧0 |𝑎1) = 1 − P(𝑧1 |𝑎1) (11.14)

= 2 − 2𝜖 − 𝜏

Equations (11.12) and (11.14) follow from the fact that, given 𝑢𝑖 events are exhaustive

and mutually exclusive,
∑

𝑖 P(𝑎𝑖 |𝑋) = 1. Equation (11.13) follows from the fact that, given 𝑢𝑖
events are exhaustive and mutually exclusive,

∑
𝑖 P(𝑋 |𝑢𝑖)P(𝑢𝑖) = P(𝑋). StatDisp(𝑌, 𝐴) can then

be expressed in terms of the above parameters:

P(𝑦1 |𝑎1) − P(𝑦1 |𝑎0) =
∑︁
𝑧∈𝑍
(P(𝑦1 |𝑎1, 𝑧)P(𝑧 |𝑎1) − P(𝑦1 |𝑎0, 𝑧)P(𝑧 |𝑎0)

= P(𝑦1 |𝑎1, 𝑧0)P(𝑧0 |𝑎1) − P(𝑦1 |𝑎0, 𝑧0)P(𝑧0 |𝑎0)

+ P(𝑦1 |𝑎1, 𝑧1)P(𝑧1 |𝑎1) − P(𝑦1 |𝑎0, 𝑧1)P(𝑧1 |𝑎0)

= 𝛾(2 − 2𝜖 − 𝜏) − 𝛼𝜏 + 𝛿(2𝜖 + 𝜏 − 1) − 𝛽(1 − 𝜏)

= 𝜏(−𝛼 + 𝛽 − 𝛾 + 𝛿) + 2𝜖 (𝛿 − 𝛾) + 2𝛾 − 𝛿 − 𝛽

𝐴𝐶𝐸 (𝑌, 𝐴), on the other hand can be expressed as follows:

P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)) =
∑︁
𝑧∈𝑍
(P(𝑦1 |𝑎1, 𝑧) − P(𝑦1 |𝑎0, 𝑧))P(𝑧)

= P(𝑦1 |𝑎1, 𝑧0) − P(𝑦1 |𝑎0, 𝑧0))P(𝑧0)

+ P(𝑦1 |𝑎1, 𝑧1) − P(𝑦1 |𝑎0, 𝑧1))P(𝑧1)

= (𝛾 − 𝛼) (1 − 𝜖) + (𝛿 − 𝛽)𝜖

Confounding bias is then equal to:

StatDisp(𝑌, 𝐴) − 𝐴𝐶𝐸 (𝑌, 𝐴) = P(𝑦1 |𝑎1) − P(𝑦1 |𝑎0) − (P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)))

= 𝜏(−𝛼 + 𝛽 − 𝛾 + 𝛿) + 2𝜖 (𝛿 − 𝛾) + 2𝛾 − 𝛿 − 𝛽

− ((𝛾 − 𝛼) (1 − 𝜖) + (𝛿 − 𝛽)𝜖)

= 𝜏(−𝛼 + 𝛽 − 𝛾 + 𝛿) + 2𝜖𝛿 − 2𝜖𝛾 + 2𝛾 − 𝛿 − 𝛽

− 𝛾 + 𝛾𝜖 + 𝛼 − 𝛼𝜖 − 𝛿𝜖 + 𝛽𝜖

= 𝜏(−𝛼 + 𝛽 − 𝛾 + 𝛿) + 𝜖 (2𝛿 − 2𝛾 + 𝛾 − 𝛼 − 𝛿 + 𝛽)

+ 2𝛾 − 𝛿 − 𝛽 − 𝛾 + 𝛼

= 𝜏(−𝛼 + 𝛽 − 𝛾 + 𝛿) + 𝜖 (−𝛼 + 𝛽 − 𝛾 + 𝛿) + 𝛼 − 𝛽 + 𝛾 − 𝛿

= (1 − 𝜏 − 𝜖) (𝛼 − 𝛽 + 𝛾 − 𝛿)
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□

11.2.2 Linear Model Case

Figure 11.5: Confounding structure in linear model

THEOREM 11.3. Let 𝐴, 𝑌 , and 𝑍 variables with linear regressions coefficients as

in Figure 11.5 which represents the basic confounding structure. The confounding

bias can be expressed in terms of covariances of pairs of variables as follows:

ConfBias(𝑌, 𝐴) =
𝜎𝑧𝑎𝜎𝑦𝑧 −

𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

(11.15)

Confounding bias can also be expressed in terms of the linear regression coeffi-

cients as follows:

ConfBias(𝑌, 𝐴) = 𝜎𝑧
2

𝜎𝑎
2
𝛽𝛾 (11.16)

Proof. For Equation (11.15),

ConfBias(𝑌, 𝐴) = 𝛽𝑦𝑎 − 𝛽𝑦𝑎.𝑧

=
𝜎𝑦𝑎

𝜎2
𝑎

−
𝜎2
𝑧 𝜎𝑦𝑎 − 𝜎𝑦𝑧𝜎𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

=

𝜎𝑦𝑎

𝜎2
𝑎

(𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎) − (𝜎2
𝑧 𝜎𝑦𝑎 − 𝜎𝑦𝑧𝜎𝑧𝑎)

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

= ��
���𝜎𝑦𝑎

��𝜎
2
𝑎
��𝜎

2
𝑎𝜎

2
𝑧 −

𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑧𝑎 −����

𝜎2
𝑧 𝜎𝑦𝑎 + 𝜎𝑦𝑧𝜎𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

=
𝜎𝑧𝑎𝜎𝑦𝑧 −

𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎
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For Equation (11.16),

ConfBias(𝑌, 𝐴) = 𝛽𝑦𝑎 − 𝛽𝑦𝑎.𝑧

=
𝜎𝑦𝑎

𝜎2
𝑎

−
𝜎2
𝑧 𝜎𝑦𝑎 − 𝜎𝑦𝑧𝜎𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

=
𝜎2
𝑎𝛼 + 𝜎2

𝑧 𝛽𝛾

𝜎2
𝑎

−
𝜎2
𝑧 (𝜎2

𝑎𝛼 + 𝜎2
𝑧 𝛽𝛾) − (𝜎2

𝑧 𝛾 + 𝜎2
𝑧 𝛽𝛼) (𝜎2

𝑧 𝛽)
𝜎2
𝑎𝜎

2
𝑧 − (𝜎2

𝑧 𝛽)2

= ��𝜎
2
𝑎𝛼

��𝜎
2
𝑎

+
𝜎2
𝑧 𝛽𝛾

𝜎2
𝑎

−
𝜎2
𝑧 𝜎

2
𝑎𝛼 +���

𝜎4
𝑧 𝛽𝛾 −���

𝜎4
𝑧 𝛽𝛾 − 𝜎4

𝑧 𝛽
2𝛼

𝜎2
𝑎𝜎

2
𝑧 − 𝜎4

𝑧 𝛽
2

=�𝛼 +
𝜎2
𝑧 𝛽𝛾

𝜎2
𝑎

−�
𝛼(((((((((𝜎2

𝑧 𝜎
2
𝑎 − 𝜎4

𝑧 𝛽
2)

�������
𝜎2
𝑎𝜎

2
𝑧 − 𝜎4

𝑧 𝛽
2

=
𝜎2
𝑧

𝜎2
𝑎

𝛽𝛾

□

COROLLARY 11.4. For standardized variables 𝐴, 𝑌 , and 𝑍, confounding bias can

be expressed in terms of covariances as:

ConfBias(𝑌, 𝐴) =
𝜎𝑧𝑎𝜎𝑦𝑧 − 𝜎𝑦𝑎𝜎

2
𝑧𝑎

1 − 𝜎2
𝑧𝑎

(11.17)

And in terms of regression coefficient, simply as ( [227]):

ConfBias(𝑌, 𝐴) = 𝛽𝛾 (11.18)

Equations (11.17) and (11.18) can be obtained from Equations (11.15) and (11.16) as

𝜎𝑧 = 𝜎𝑎 = 1.

Figure 11.6: Confounding structure with two confounders

THEOREM 11.5. Let 𝐴, 𝑌 , 𝑍, 𝑊 variables as in Figure 11.6. Assuming that all

variables are standardized and that 𝑊 and 𝑍 are independent, the regression

coefficent of 𝑌 on 𝐴 conditioning on 𝑍 and 𝑊 , the confounding bias is equal:

ConfBias(𝑌, 𝐴) =
𝜎𝑧𝑎𝜎𝑦𝑧 + 𝜎𝑤𝑎𝜎𝑦𝑤 − 𝜎𝑦𝑎 (𝜎2

𝑧𝑎 + 𝜎2
𝑤𝑎)

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

(11.19)
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And in terms of the regression coefficients:

ConfBias(𝑌, 𝐴) = 𝛽𝛾 + 𝛿𝜆 (11.20)

Proof. The proof is based on proving that:

𝛽𝑦𝑎.𝑧𝑤 =
𝜎𝑦𝑎 − 𝜎𝑧𝑎𝜎𝑦𝑧 − 𝜎𝑤𝑦𝜎𝑤𝑎

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

(11.21)

From Cramér [226] (Page 307), we know that the partial regression coefficient can be expressed

as:

𝛽𝑦𝑎.𝑧𝑤 = 𝜌𝑦𝑎.𝑧𝑤
𝜎𝑦.𝑧𝑤

𝜎𝑎.𝑧𝑤

(11.22)

Where 𝜌𝑦𝑎.𝑧𝑤 denotes the partial correlation and 𝜎𝑎.𝑧𝑤 , 𝜎𝑦.𝑧𝑤 denote the residual variances.

Based on the correlation matrix:


1 𝜌𝑦𝑎 𝜌𝑦𝑧 𝜌𝑦𝑤

𝜌𝑎𝑦 1 𝜌𝑎𝑧 𝜌𝑎𝑤

𝜌𝑧𝑦 𝜌𝑧𝑎 1 𝜌𝑧𝑤

𝜌𝑤𝑦 𝜌𝑤𝑎 𝜌𝑤𝑧 1


the partial correlation 𝜌𝑦𝑎.𝑧𝑤 can be expressed in terms of cofactors as follows4:

𝜌𝑦𝑎.𝑧𝑤 = −
𝐶𝑦𝑎√︁
𝐶𝑦𝑦𝐶𝑎𝑎

(11.23)

where 𝐶𝑖 𝑗 denotes the cofactor of the element 𝜌𝑖 𝑗 in the determinant of the correlation matrix

and are equal to the following:

𝐶𝑦𝑎 = −(𝜌𝑦𝑎 − 𝜌𝑦𝑎𝜌2
𝑧𝑤 − 𝜌𝑧𝑎𝜌𝑦𝑧 − 𝜌𝑤𝑎𝜌𝑦𝑤

+ 𝜌𝑧𝑎𝜌𝑦𝑤𝜌𝑤𝑧 + 𝜌𝑤𝑎𝜌𝑦𝑧𝜌𝑧𝑤) (11.24)

𝐶𝑦𝑦 = 1 − 𝜌2
𝑧𝑤 − 𝜌2

𝑧𝑎 − 𝜌2
𝑤𝑎 + 2𝜌𝑧𝑎𝜌𝑎𝑤𝜌𝑤𝑧 (11.25)

𝐶𝑎𝑎 = 1 − 𝜌2
𝑧𝑤 − 𝜌2

𝑧𝑦 − 𝜌2
𝑤𝑦 + 2𝜌𝑦𝑧𝜌𝑦𝑤𝜌𝑤𝑧 (11.26)

Residual variances in Equation 11.22 can be expressed in terms of total and partial correlation

coefficients as follows [226](Equation 23.4.5 in page 307):

𝜎2
𝑦.𝑧𝑤 = 𝜎2

𝑦 (1 − 𝜌2
𝑦𝑧) (1 − 𝜌2

𝑦𝑤.𝑧) (1 − 𝜌2
𝑦𝑎.𝑧𝑤) (11.27)

𝜎2
𝑎.𝑧𝑤 = 𝜎2

𝑎 (1 − 𝜌2
𝑎𝑧) (1 − 𝜌2

𝑎𝑤.𝑧) (1 − 𝜌2
𝑎𝑦.𝑧𝑤) (11.28)

4The proof is sketched in https://en.wikipedia.org/wiki/Partial_correlation.



11.2 Confounding bias 113

As the last term is the same, we have:

𝜎𝑦.𝑧𝑤

𝜎𝑎.𝑧𝑤

=
𝜎𝑦

√︃
(1 − 𝜌2

𝑦𝑧) (1 − 𝜌2
𝑦𝑤.𝑧)

𝜎𝑎

√︃
(1 − 𝜌2

𝑎𝑧) (1 − 𝜌2
𝑎𝑤.𝑧)

(11.29)

The partial correlation coefficients in Equation 11.29 can be expressed in terms of total

correlation coefficients as follows [226] (Equation 23.4.3 in page 306):

𝜌𝑦𝑤.𝑧 =
𝜌𝑦𝑤 − 𝜌𝑦𝑧𝜌𝑤𝑧√︃
(1 − 𝜌2

𝑦𝑧) (1 − 𝜌2
𝑤𝑧)

(11.30)

After simple algebraic steps, we obtain:

𝜎𝑦.𝑧𝑤

𝜎𝑎.𝑧𝑤

=
𝜎𝑦

𝜎𝑎

√︃
1 − 𝜌2

𝑧𝑤 − 𝜌2
𝑦𝑧 − 𝜌2

𝑦𝑤 + 2𝜌𝑧𝑦𝜌𝑦𝑤𝜌𝑤𝑧√︃
1 − 𝜌2

𝑧𝑤 − 𝜌2
𝑎𝑧 − 𝜌2

𝑎𝑤 + 2𝜌𝑧𝑎𝜌𝑎𝑤𝜌𝑤𝑧

(11.31)

Finally, 𝛽𝑦𝑎.𝑧𝑤 in Equation 11.22 can be expressed in terms of total correlation coefficients as

follows:

𝛽𝑦𝑎.𝑧𝑤 =
𝜎𝑦

𝜎𝑎

𝑄

1 − 𝜌2
𝑧𝑤 − 𝜌2

𝑧𝑎 − 𝜌2
𝑤𝑎 + 2𝜌𝑧𝑎𝜌𝑎𝑤𝜌𝑤𝑧

(11.32)

where

𝑄 = 𝜌𝑦𝑎 − 𝜌𝑦𝑎𝜌2
𝑧𝑤 − 𝜌𝑧𝑎𝜌𝑦𝑧 − 𝜌𝑤𝑦𝜌𝑤𝑎

+ 𝜌𝑧𝑎𝜌𝑦𝑤𝜌𝑧𝑤 + 𝜌𝑤𝑎𝜌𝑦𝑧𝜌𝑧𝑤

Recall that 𝜌𝑦𝑎 =
𝜎𝑦𝑎

𝜎𝑦𝜎𝑎
. The formula becomes:

𝛽𝑦𝑎.𝑧𝑤 =
𝑄

𝑅
(11.33)

Where

𝑄 = 𝜎𝑦𝑎 (𝜎2
𝑧 𝜎

2
𝑤 − 𝜎2

𝑧𝑤) + 𝜎𝑦𝑧 (𝜎𝑤𝑎𝜎𝑧𝑤 − 𝜎𝑧𝑎𝜎
2
𝑤)

+ 𝜎𝑤𝑦 (𝜎𝑧𝑎𝜎𝑧𝑤 − 𝜎𝑤𝑎𝜎
2
𝑧 )

And

𝑅 = 𝜎2
𝑎𝜎

2
𝑧 𝜎

2
𝑤 − 𝜎2

𝑎𝜎
2
𝑧𝑤 − 𝜎𝑎𝜎𝑧𝜎

2
𝑤𝜎

2
𝑧𝑎

− 𝜎2
𝑧 𝜎

2
𝑎𝑤 + 2𝜎𝑎𝜎𝑧𝜎𝑎𝑧𝜎𝑎𝑤𝜎𝑧𝑤

For standardized variables, ∀𝑣, 𝜎𝑣 = 1, and hence ∀𝑢, 𝑣𝜎𝑢𝑣 = 𝜌𝑢𝑣. Equation 11.32 becomes:

𝛽𝑦𝑎.𝑧𝑤 =
𝑄

1 − 𝜎2
𝑧𝑤 − 𝜎2

𝑧𝑎 − 𝜎2
𝑤𝑎 + 2𝜎𝑧𝑎𝜎𝑎𝑤𝜎𝑤𝑧

(11.34)
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Where

𝑄 = 𝜎𝑦𝑎 (1 − 𝜎2
𝑧𝑤) + 𝜎𝑦𝑧 (𝜎𝑤𝑎𝜎𝑧𝑤 − 𝜎𝑧𝑎)

+ 𝜎𝑦𝑤 (𝜎𝑧𝑎𝜎𝑧𝑤 − 𝜎𝑤𝑎)

If we further assume that confounders are uncorrelated, that is, 𝜎𝑧𝑤 = 0, then we have the

simpler expression:

𝛽𝑦𝑎.𝑧𝑤 =
𝜎𝑦𝑎 − 𝜎𝑧𝑎𝜎𝑦𝑧 − 𝜎𝑤𝑦𝜎𝑤𝑎

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

(11.35)

For Equation (11.19):

ConfBias(𝑌, 𝐴) = 𝛽𝑦𝑎 − 𝛽𝑦𝑎.𝑧𝑤

= 𝜎𝑦𝑎 −
𝜎𝑦𝑎 − 𝜎𝑧𝑎𝜎𝑦𝑧 − 𝜎𝑤𝑎𝜎𝑦𝑤

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

=
𝜎𝑦𝑎 (1 − 𝜎2

𝑧𝑎 − 𝜎2
𝑤𝑎) − 𝜎𝑦𝑎 + 𝜎𝑧𝑎𝜎𝑦𝑧 + 𝜎𝑤𝑎𝜎𝑦𝑤

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

= ��𝜎𝑦𝑎 − 𝜎𝑦𝑎𝜎
2
𝑧𝑎 − 𝜎𝑦𝑎𝜎

2
𝑤𝑎 −��𝜎𝑦𝑎 + 𝜎𝑧𝑎𝜎𝑦𝑧 + 𝜎𝑤𝑎𝜎𝑦𝑤

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

=
𝜎𝑧𝑎𝜎𝑦𝑧 + 𝜎𝑤𝑎𝜎𝑦𝑤 − 𝜎𝑦𝑎 (𝜎2

𝑧𝑎 + 𝜎2
𝑤𝑎)

1 − 𝜎2
𝑧𝑎 − 𝜎2

𝑤𝑎

(11.36)

For Equation (11.20):

ConfBias(𝑌, 𝐴) = 𝛽𝑦𝑎 − 𝛽𝑦𝑎.𝑧𝑤

= 𝛼 + 𝛽𝛾 + 𝜆𝛿 − 𝛼 + 𝛽𝛾 + 𝜆𝛿 − 𝛽(𝛾 + 𝛽𝛼) − 𝛿(𝜆 + 𝛿𝛼)
1 − 𝛽2 − 𝛿2

= 𝛼 + 𝛽𝛾 + 𝜆𝛿 − 𝛼 +�
�𝛽𝛾 +��𝜆𝛿 −��𝛽𝛾 − 𝛽2𝛼 −��𝛿𝜆 − 𝛿2𝛼

1 − 𝛽2 − 𝛿2

=�𝛼 + 𝛽𝛾 + 𝜆𝛿 −�
𝛼((((((((1 − 𝛽2 − 𝛿2)

������
1 − 𝛽2 − 𝛿2

= 𝛽𝛾 + 𝜆𝛿

(11.37)

□

It is important to mention that although Theorem 11.5 assumes that the variables are

standardized, the equations can be easily generalized to the non-standardized variables case.

Moreover, the proof is general and can be extended to the case where the two confounders are

not independent.
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11.3 Selection bias

Selection bias occurs when there is a collider variable caused by both the sensitive attribute 𝐴

and the outcome variable 𝑌 and the data generation process implicitly conditions on that collider

variable. The simplest case is illustrated in Figure 11.7. Consistent with previous work, a box

around a variable indicates that data is generated by conditioning on that variable.

Figure 11.7: Simple collider structure

11.3.1 Binary Model

DEFINITION 11.3.1. Given the basic collider structure (Figure 11.7), selection

bias is defined as:

SelBias(𝑌, 𝐴,𝑊) = 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝑌, 𝐴)𝑊 − 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝑌, 𝐴) (11.38)

THEOREM 11.6. Assuming that P(𝑎0) = P(𝑎1) = 1
2 , the difference in discrimination

due to selection bias is equal to:

SelBias(𝑌, 𝐴) = (1 − P(𝑤0 |𝑎0) − P(𝑤1)) (−𝛼 + 𝛽 − 𝛾 + 𝛿) (11.39)

where 𝛼, 𝛽, 𝛾, and 𝛿 denote, respectively, P(𝑦1 |𝑎0, 𝑧0), P(𝑦1 |𝑎0, 𝑧1), P(𝑦1 |𝑎1, 𝑧0),
and P(𝑦1 |𝑎1, 𝑧1).

Proof. The proof is based on the proof of Theorem 11.2. Notice that, conditioning on variable 𝑍 in

𝐴𝐶𝐸 (𝑌, 𝐴) has the same formulation as conditioning on 𝑊 in 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝑌, 𝐴)𝑊 . The difference is

that the conditioning is on𝑊 instead of 𝑍 . The other important difference is that in Theorem 11.2,

the unconditional expression 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝐴,𝑌 ) is the biased estimation of the discrimination and

the conditional expression 𝐴𝐶𝐸 (𝑌, 𝐴) is the unbiased estimation. Whereas in Theorem 11.6,

it is the opposite: the unconditional expression 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝐴,𝑌 ) is the unbiased estimation of

discrimination and the conditional expression 𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝑌, 𝐴)𝑊 is the biased estimation. Hence,

selection bias is just the opposite of Equation (11.11) while replacing the variable 𝑍 by the

variable 𝑊 . □
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Figure 11.8: Simple collider structure with linear coefficients.

11.3.2 Linear Model Case

THEOREM 11.7. Let 𝐴, 𝑌 , and 𝑍 variables with linear regressions coefficients as

in Figure 11.8. Bias due to selection is equal to:

SelBias(𝑌, 𝐴) =
𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑤𝑎 − 𝜎𝑤𝑎𝜎𝑦𝑤

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

(11.40)

Selection bias can also be expressed in terms of the linear regression coefficients

as follows:

SelBias(𝑌, 𝐴) = 𝜖
𝜎4
𝑎𝛼

2𝜂 + 𝜎4
𝑎𝛼

3𝜖 − 𝜎2
𝑦𝜎

2
𝑎𝜂 − 𝜎2

𝑦𝜎
2
𝑎𝛼𝜖

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

(11.41)

COROLLARY 11.8. For standardized variables 𝐴, 𝑌 , and 𝑊 , selection bias can be

expressed in terms of convariances as:

SelBias(𝑌, 𝐴) =
𝜎𝑦𝑎𝜎

2
𝑤𝑎 − 𝜎𝑤𝑎𝜎𝑦𝑤

1 − 𝜎2
𝑤𝑎

(11.42)

And in terms of regression coefficient:

SelBias(𝑌, 𝐴) = 𝜖 𝛼2𝜂 + 𝛼3𝜖 − 𝜂 − 𝛼𝜖
1 − (𝜂 + 𝛼𝜖)2

(11.43)

Equations (11.42) and (11.43) can be obtained from Equations (11.40) and (11.41) as

𝜎𝑎 = 𝜎𝑤 = 𝜎𝑦 = 1.
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Proof. For Equation (11.40),

SelBias(𝑌, 𝐴) = 𝛽𝑦𝑎.𝑤 − 𝛽𝑦𝑎

=
𝜎2
𝑤𝜎𝑦𝑎 − 𝜎𝑦𝑤𝜎𝑤𝑎

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

−
𝜎𝑦𝑎

𝜎2
𝑎

=
(𝜎2

𝑤𝜎𝑦𝑎 − 𝜎𝑦𝑤𝜎𝑤𝑎) −
𝜎𝑦𝑎

𝜎2
𝑎

(𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎)

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

=
��

��𝜎2
𝑤𝜎𝑦𝑎 − 𝜎𝑦𝑤𝜎𝑤𝑎 −

�
����𝜎𝑦𝑎

��𝜎
2
𝑎
��𝜎

2
𝑎𝜎

2
𝑤 +

𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑤𝑎

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

=

𝜎𝑦𝑎

𝜎2
𝑎

𝜎2
𝑤𝑎 − 𝜎𝑤𝑎𝜎𝑦𝑤

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

For Equation (11.41),

SelBias(𝑌, 𝐴) = 𝛽𝑦𝑎.𝑤 − 𝛽𝑦𝑎

=
𝜎2
𝑤𝜎𝑦𝑎 − 𝜎𝑦𝑤𝜎𝑤𝑎

𝜎2
𝑎𝜎

2
𝑤 − 𝜎2

𝑤𝑎

−
𝜎𝑦𝑎

𝜎2
𝑎

=
𝜎2
𝑤𝜎

2
𝑎𝛼 − (𝜎2

𝑦 𝜖 + 𝜎2
𝑎𝛼𝜂) (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

−��𝜎
2
𝑎𝛼

��𝜎
2
𝑎

=
𝜎2
𝑤𝜎

2
𝑎𝛼 − 𝜎2

𝑦𝜎
2
𝑎𝜖𝜂 − 𝜎2

𝑦𝜎
2
𝑎𝛼𝜖

2 − 𝜎4
𝑎𝛼𝜂

2 − 𝜎4
𝑎𝛼

2𝜂𝜖

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

−
𝛼(𝜎2

𝑎𝜎
2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2)

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

=
����𝜎2

𝑤𝜎
2
𝑎𝛼 − 𝜎2

𝑦𝜎
2
𝑎𝜖𝜂 − 𝜎2

𝑦𝜎
2
𝑎𝛼𝜖

2 −����
𝜎4
𝑎𝛼𝜂

2 −����
𝜎4
𝑎𝛼

2𝜂𝜖

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

+�
����−𝜎2
𝑎𝜎

2
𝑤𝛼 +����

𝜎4
𝑎𝛼𝜂

2 +�2𝜎4
𝑎𝛼

2𝜂𝜖 + 𝜎4
𝑎𝛼

3𝜖2

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

= 𝜖
𝜎4
𝑎𝛼

2𝜂 + 𝜎4
𝑎𝛼

3𝜖 − 𝜎2
𝑦𝜎

2
𝑎𝜂 − 𝜎2

𝑦𝜎
2
𝑎𝛼𝜖

𝜎2
𝑎𝜎

2
𝑤 − (𝜎2

𝑎𝜂 + 𝜎2
𝑎𝛼𝜖)2

□

11.4 Measurement bias

Figure 11.9: Simple measurement bias structure
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Measurement bias arises from the way that particular variable(s) are measured. A common

example is when the ideal variable for a model is not measurable/observable and instead we rely

on a proxy variable which behaves differently in different groups. Figure 11.9 shows a simple

scenario when measuring accurately discrimination based on 𝐴 requires adjusting on variable 𝑍 .

However, if 𝑍 is not measurable but a proxy variable 𝑇 is measurable, measurement bias occurs

when we adjust on 𝑇 instead of 𝑍.

Binary model

DEFINITION 11.4.1. Given variables 𝐴, 𝑌 , 𝑍, and 𝑇 with causal relations as in

Figure 11.9, measurement bias can be defined as:

MeasBias(𝑌, 𝐴) = StatDisp(𝑌, 𝐴)𝑇 − StatDisp𝑍 (𝑌, 𝐴) (11.44)

THEOREM 11.9. Assuming that 𝑍 is not measurable, but only the error mechanism

(P(𝑇 |𝑍)) is available, and that P(𝑎0) = P(𝑎1) = 1
2 , the difference in discrimination

due to measurement bias, MeasBias(𝑌, 𝐴) can be expressed in terms of P(𝑇 |𝑍) as

follows:

𝜖 (𝛿 − 𝛽) + (1 − 𝜖) (𝛾 − 𝛼)

− 𝜖
(
𝛿 − 𝛽 + 4P(𝑡1 |𝑧0) (𝛽 − 𝛿 + 𝛾Θ + 𝛾Ψ)

)
𝑄

− (1 − 𝜖)
(
𝛾 − 𝛼 + 4P(𝑡0 |𝑧1) (𝛼 − 𝛾 + 𝛿 + 𝛿Ψ−1 + 𝛽Θ−1)

)
𝑅 (11.45)

where:

𝛼 = P(𝑦1 |𝑎0, 𝑡0) 𝛾 = P(𝑦1 |𝑎1, 𝑡0) 𝑄 =
1 − P(𝑡0 |𝑧1 )

𝜖

1 − P(𝑡0 |𝑧1 )
2𝜖

Φ =
𝜖 + 𝜏

2 − 1

𝜖 + 𝜏
2 −

1
2

𝜖 = P(𝑡1)

𝛽 = P(𝑦1 |𝑎0, 𝑡1) 𝛿 = P(𝑦1 |𝑎1, 𝑡1) 𝑅 =
1 − P(𝑡1 |𝑧0 )

1−𝜖

1 − P(𝑡1 |𝑧0 )
2−2𝜖

Ψ =
1 − 𝜏
𝜏

𝜏 = P(𝑡0 |𝑎0)

Proof. Let P(𝑡1) = 𝜖 (𝜖 ∈]0, 1[) and hence P(𝑡0) = 1 − 𝜖 . And let P(𝑦1 |𝑎0, 𝑡0) = 𝛼, P(𝑦1 |𝑎0, 𝑡1) =
𝛽, P(𝑦1 |𝑎1, 𝑡0) = 𝛾, and P(𝑦1 |𝑎1, 𝑡1) = 𝛿. Finally, let P(𝑡0 |𝑎0) = 𝜏. The remaining conditional

probabilities of 𝑇 given 𝐴 are equal to the following:

P(𝑡1 |𝑎0) = 1 − P(𝑡0 |𝑎0) = 1 − 𝜏

P(𝑡1 |𝑎1) =
P(𝑡1) − P(𝑡1 |𝑎0)P(𝑎0)

P(𝑎1)
= 2𝜖 + 𝜏 − 1 (11.46)

P(𝑧0 |𝑎1) = 1 − P(𝑧1 |𝑎1) (11.47)

= 2 − 2𝜖 − 𝜏

According to Definition 11.4.1:

MeasBias(𝑌, 𝐴) = StatDisp𝑇 (𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴)
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By the proof of Theorem 11.2, the first term:

StatDisp𝑇 (𝑌, 𝐴) = 𝜖 (𝛿 − 𝛽) + (1 − 𝜖) (𝛾 − 𝛼)

The rest of the proof consists in expressing StatDisp𝑍 (𝑌, 𝐴) in terms of the error term P(𝑇 |𝑍).

StatDisp𝑍 (𝑌, 𝐴) = P(𝑦1 |𝑑𝑜(𝑎1)) − P(𝑦1 |𝑑𝑜(𝑎0)) (11.48)

where:

P(𝑦1 |𝑑𝑜(𝑎)) =

P(𝑦1, 𝑎, 𝑡1)
P(𝑎 |𝑡1)

(
1 − P(𝑡1 |𝑧0 )

P(𝑡1 |𝑎,𝑦1 )

) (
1 − P(𝑡1 |𝑧0 )

P(𝑡1 )

)
1 − P(𝑡1 |𝑧0) P(𝑎)P(𝑡1 )

+ P(𝑦1, 𝑎, 𝑡0)
P(𝑎 |𝑡0)

(
1 − P(𝑡0 |𝑧1 )

P(𝑡0 |𝑎,𝑦1 )

) (
1 − P(𝑡0 |𝑧1 )

P(𝑡0 )

)
1 − P(𝑡0 |𝑧1) P(𝑎)P(𝑡0 )

(11.49)

The proof can be found in [229] (Section 3). Using Bayes rule, we can easily show that

P(𝑦1, 𝑎1, 𝑡1) = 𝜖𝛿 +
𝛿𝜏

2
− 𝛿

2

P(𝑦1, 𝑎1, 𝑡0) = 𝛾 − 𝜖𝛾 +
𝛿𝜏

2
− 𝜏𝛾

2

P(𝑦1, 𝑎0, 𝑡1) =
𝛽

2
− 𝛽𝜏

2
P(𝑦1, 𝑎0, 𝑡0) =

𝛾𝜏

2

Using Bayes rule and the marginal conditional probability rule: P(𝐴|𝐵) = ∑
𝑧∈𝑍 P(𝐴|𝐵, 𝑧)P(𝑧 |𝐵),

we can easily show that:

P(𝑡1 |𝑎0, 𝑦1) =
1
4

𝛽 − 𝛽𝜏
𝛼𝜏 + 𝛽 − 𝛽𝜏

P(𝑡0 |𝑎0, 𝑦1) =
1
4

𝛾𝜏

𝛾𝜏 + 𝛽 − 𝛽𝜏

P(𝑡1 |𝑎1, 𝑦1) =
𝜖𝛿 + 𝛿𝜏

2 −
𝛿
2

4𝛾 − 4𝜖𝛾 − 2𝜏𝛾 + 4𝜖𝛿 + 2𝛿𝜏 − 2𝛿

P(𝑡0 |𝑎1, 𝑦1) =
𝛾 − 𝜖𝛾 − 𝜏𝛾

2

4𝛾 − 4𝜖𝛾 − 2𝜏𝛾 + 4𝜖𝛿 + 2𝛿𝜏 − 2𝛿
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Finally, using Bayes rule, we can show that:

P(𝑎0 |𝑡1) =
P(𝑡1 |𝑎0)P(𝑎0)
P(𝑡1)

=
(1 − 𝜏)

2𝜖

P(𝑎0 |𝑡0) =
P(𝑡0 |𝑎0)P(𝑎0)
P(𝑡0)

=
𝜏

2 − 2𝜖

P(𝑎1 |𝑡1) =
P(𝑡1 |𝑎1)P(𝑎1)
P(𝑡1)

=
𝜖 + 𝜏

2 −
1
2

𝜖

P(𝑎1 |𝑡0) =
P(𝑡0 |𝑎1)P(𝑎1)
P(𝑡0)

=
(2 − 2𝜖 − 𝜏

2 − 2𝜖

After some algebra, we have:

𝐴𝐶𝐸 (𝑌, 𝐴) = 𝜖
(
𝛿 − 𝛽 + 4P(𝑡1 |𝑧0) (𝛽 − 𝛿 + 𝛾Φ + 𝛾Ψ)

)
𝑄

+ (1 − 𝜖)
(
𝛾 − 𝛼 + 4P(𝑡0 |𝑧1) (𝛼 − 𝛾 + 𝛿 + 𝛿Ψ−1 + 𝛽Φ−1)

)
𝑅 (11.50)

□

Linear Model Case

Figure 11.10: Simple measurement bias structure with linear coefficients.

THEOREM 11.10. Let 𝐴, 𝑌 , 𝑍 , and 𝑇 variables with linear regressions coefficients

as in Figure 11.10 which represents the basic measurement bias structure. Bias

due to measurement error is equal to:

MeasBias(𝑌, 𝐴) = 𝜎𝑧
2𝛽𝛾(𝜎𝑡2 − 𝜎𝑧

2𝜆2)
𝜎𝑎

2𝜎𝑡
2 − 𝜎𝑧

4𝜆2𝛽2
(11.51)

COROLLARY 11.11. For standardized variables 𝐴, 𝑌 , 𝑍 , and 𝑇 , measurement bias

is equal to:

MeasBias(𝑌, 𝐴) = 𝛽𝛾(1 − 𝜆2)
1 − 𝜆2𝛽2

(11.52)
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Proof.

MeasBias(𝑌, 𝐴) = 𝛽𝑦𝑎.𝑡 − 𝛽𝑦𝑎.𝑧

=
𝜎2
𝑡 𝜎𝑦𝑎 − 𝜎𝑦𝑡𝜎𝑡𝑎

𝜎2
𝑎𝜎

2
𝑡 − 𝜎2

𝑡𝑎

−
𝜎2
𝑧 𝜎𝑦𝑎 − 𝜎𝑦𝑧𝜎𝑧𝑎

𝜎2
𝑎𝜎

2
𝑧 − 𝜎2

𝑧𝑎

=
𝜎2
𝑡 (𝜎2

𝑎𝛼 + 𝜎2
𝑧 𝛽𝛾) − (𝜎2

𝑧 𝛾𝜆 + 𝜎2
𝑧 𝛼𝛽𝜆) (𝜎2

𝑧 𝜆𝛽)
𝜎2
𝑎𝜎

2
𝑡 − 𝜎4

𝑧 𝜆
2𝛽2

− 𝛼 (11.53)

=
𝜎2
𝑡 𝜎

2
𝑎𝛼 + 𝜎2

𝑡 𝜎
2
𝑧 𝛽𝛾 − 𝜎4

𝑧 𝛾𝜆
2𝛽 − 𝜎4

𝑧 𝜆
2𝛽2𝛼

𝜎2
𝑎𝜎

2
𝑡 − 𝜎4

𝑧 𝜆
2𝛽2

=
�𝛼 (((((((((

𝜎2
𝑡 𝜎

2
𝑎 − 𝜎2

𝑧 𝜆
2𝛽2)

((((((((
𝜎2
𝑎𝜎

2
𝑡 − 𝜎4

𝑧 𝜆
2𝛽2 +

𝜎2
𝑡 𝜎

2
𝑧 𝛽𝛾 − 𝜎4

𝑧 𝛾𝜆
2𝛽

𝜎2
𝑎𝜎

2
𝑡 − 𝜎4

𝑧 𝜆
2𝛽2

−�𝛼

=
𝜎𝑧

2𝛽𝛾(𝜎𝑡2 − 𝜎𝑧
2𝜆2)

𝜎𝑎
2𝜎𝑡

2 − 𝜎𝑧
4𝜆2𝛽2

In step (11.53), 𝛽𝑦𝑎.𝑧 is replaced by 𝛼 (see proof of Theorem 11.3). □

11.5 Interaction bias

Figure 11.11: Interaction Bias, where 𝐴 and 𝐵 are sensitive variables and 𝑌 is an outcome.

Interaction bias takes place in the presence of two sensitive attributes when the value of one

sensitive attribute influences the effect of the other sensitive attribute on the outcome. Inter-

action bias is graphically illustrated in Figure 11.11. Note that regular DAGs are not able to

express interaction. For this reason, we are employing the graphical representation proposed

by [230]. The arrows pointing to arrows, instead of nodes account for the interaction term. In

a binary model, interaction bias coincides with interaction term (𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) in the case of an

intersectional sensitive attribute. Interaction bias also affects the individual measurement of the

effect of sensitive attribute 𝐴 or 𝐵.

11.5.1 Binary model, Intersectional Sensitive Variable

Given binary sensitive variables 𝐴, 𝐵 and a binary outcome 𝑌 , the joint discrimination of 𝐴 = 0

and 𝐵 = 0 with respect to 𝑌 can be defined as follows:

DEFINITION 11.5.1.

StatDisp(𝑌, 𝐴, 𝐵) = 𝑃(𝑌1 |𝑎1, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0) (11.54)



11.5 Interaction bias 122

Here 𝑌 = 1 is a positive outcome, 𝐴 = 1 and 𝐵 = 1 (𝑎1, 𝑏1) represent the disadvantaged group.

THEOREM 11.12. Under the assumption of no common parent for 𝐴 and 𝑌 and 𝐵

and 𝑌 5 we can express StatDisp(𝑌, 𝐴, 𝐵) in terms of causal effects of 𝐴 and 𝐵 and

interaction between 𝐴 and 𝐵 on the additive scale:

StatDisp(𝑌, 𝐴, 𝐵) =
[
𝑃(𝑌1 |𝑎1, 𝑏0) − 𝑃(𝑌1 |𝑎0, 𝑏0)

]
+

[
𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0)

]
+ Interaction(𝐴, 𝐵)

where Interaction(𝐴, 𝐵) = 𝑃(𝑌1 |𝑎1, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎1, 𝑏0) + 𝑃(𝑌1 |𝑎0, 𝑏0)

Proof. By Definition 11.5.1:

StatDisp(𝑌, 𝐴, 𝐵) = 𝑃(𝑌1 |𝑎1, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0)

= 𝑃(𝑌1 |𝑎1, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0) + 𝑃(𝑌1 |𝑎0, 𝑏0) − 𝑃(𝑌1 |𝑎0, 𝑏0)

+ 𝑃(𝑌1 |𝑎1, 𝑏0) − 𝑃(𝑌1 |𝑎1, 𝑏0) + 𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏1)

= 𝑃(𝑌1 |𝑎1, 𝑏0) − 𝑃(𝑌1 |𝑎0, 𝑏0) + 𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0)

+ 𝑃(𝑌1 |𝑎1, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎1, 𝑏0) + 𝑃(𝑌1 |𝑎0, 𝑏0)

=
[
𝑃(𝑌1 |𝑎1, 𝑏0) − 𝑃(𝑌1 |𝑎0, 𝑏0)

]
+

[
𝑃(𝑌1 |𝑎0, 𝑏1) − 𝑃(𝑌1 |𝑎0, 𝑏0)

]
+ Interaction(𝐴, 𝐵)

□

Notice that: 𝑃(𝑌1 |𝑎1, 𝑏0) − 𝑃(𝑌1 |𝑎0, 𝑏0) is the effect of 𝐴 on 𝑌 in case there is no interaction,

and similarly for 𝐵: 𝑃(𝑌1 |𝑎0, 𝑏1)−𝑃(𝑌1 |𝑎0, 𝑏0) is the effect of 𝐵 on 𝑌 in case there is no interaction.

To avoid confusion, we denote such expressions as 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) and 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐵) respectively.

DEFINITION 11.5.2. Under the assumption of no confounders between 𝐴 and 𝑌

on one hand, and between 𝐵 and 𝑌 on the other hand, adding up the single effects

of 𝐴 and 𝐵 on 𝑌 to estimate the discrimination due to both sensitive variables

StatDisp(𝑌, 𝐴, 𝐵) leads to a biased estimation. The amount of the bias (StatDisp)

coincides with the interaction term as follows:

IntBias(𝑌, 𝐴, 𝐵) = StatDisp(𝑌, 𝐴, 𝐵)

−
[
𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) + 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐵)

]
= Interaction(𝐴, 𝐵)

The presence of the Interaction(𝐴, 𝐵) in the case of two sensitive variables is very common.

5This assumption is relatively easy to satisfy in case of immutable sensitive attributes such as gender or race because
they are unlikely to have external causes. It is important to control for possible confounders when sensitive attributes
can have external causes, for example, political beliefs can be influenced by education.
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[231] distinguish 16 combinations of the effects of binary 𝐴 and 𝐵 on the binary outcome 𝑌 . Only

six of those cases correspond to Interaction(𝐴, 𝐵) = 0, which means that there is no interaction.

Indeed, the interaction is absent only when at least one of the terms 𝐴 and 𝐵 has no effect on

𝑌 [231]. Unfortunately, most of the time the numeric value of interaction does not indicate

which particular case (out of 16 combinations of the effects of 𝐴 and 𝐵) is dominant in the data.

However, VanderWeele and Robins show that under sufficient-component-cause framework and

assumption of monotonic effect of 𝐴 and 𝐵 6 if 𝑃(𝑌1 |𝑎1, 𝑏1) −𝑃(𝑌1 |𝑎0, 𝑏1) −𝑃(𝑌1 |𝑎1, 𝑏0) > 0, then

the synergism between 𝐴 = 1 and 𝐵 = 1 must be present [231, 232]. In the fairness scenario, this

means that two privileged groups have a synergetic effect on the positive outcome. In terms of

the previous example, it is a situation where only conservative men are hired.

11.5.2 Binary model, Individual Sensitive Variable

Given binary sensitive variables 𝐴, 𝐵 and a binary outcome 𝑌 , the discrimination with respect to

only 𝐴 (and similarly for 𝐵) can be expressed as follows:

DEFINITION 11.5.3.

StatDisp(𝑌, 𝐴) = 𝑃(𝑌1 |𝑎1) − 𝑃(𝑌1 |𝑎0) (11.55)

THEOREM 11.13. Under the previously introduced assumption of no confounding,

discrimination with respect to 𝐴 can be decomposed into an interaction-free

discrimination and the interaction between 𝐴 and 𝐵:

StatDisp(𝑌, 𝐴) = 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) + 𝑃(𝑏1)Interaction(𝐴, 𝐵)

Proof.

StatDisp(𝑌, 𝐴) = P(𝑌1 |𝑎1) − P(𝑌1 |𝑎0)

=
∑︁
𝑏

P(𝑌1 |𝑎1, 𝑏)P(𝑏 |𝑎1) −
∑︁
𝑏

P(𝑌1 |𝑎0, 𝑏)P(𝑏 |𝑎0)

= P(𝑌1 |𝑎1, 𝑏1)P(𝑏1 |𝑎1) + P(𝑌1 |𝑎1, 𝑏0)P(𝑏0 |𝑎1)

− P(𝑌1 |𝑎0, 𝑏1)P(𝑏1 |𝑎0) − P(𝑌1 |𝑎0, 𝑏0)P(𝑏0 |𝑎0)

= P(𝑌1 |𝑎1, 𝑏1)P(𝑏1 |𝑎1) + P(𝑌1 |𝑎1, 𝑏0)P(1 − P(𝑏1 |𝑎1)

− P(𝑌1 |𝑎0, 𝑏1)P(𝑏1 |𝑎0) − P(𝑌1 |𝑎0, 𝑏0)P(1 − P(𝑏1 |𝑎0)

= P(𝑏1 |𝑎1)
(
P(𝑌1 |𝑎1, 𝑏1) − P(𝑌1 |𝑎1, 𝑏0)

)
+ P(𝑌1 |𝑎1, 𝑏0)

+ P(𝑏1 |𝑎0)
(
P(𝑌1 |𝑎0, 𝑏0) − P(𝑌1 |𝑎0, 𝑏1)

)
− P(𝑌1 |𝑎0, 𝑏0)

6monotonic effect means, that an intervention either increases or decreases outcome 𝑌 for every individual.
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Since 𝐴 and 𝐵 are independent P(𝑏1 |𝑎1) = P(𝑏1 |𝑎0) = P(𝑏1). It follows that:

StatDisp(𝑌, 𝐴) = P(𝑏1)𝐼𝑛𝑡 (𝐴, 𝐵) + P(𝑌1 |𝑎1, 𝑏0) − P(𝑌1 |𝑎0, 𝑏0)

= P(𝑏1)𝐼𝑛𝑡 (𝐴, 𝐵) + 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴)

□

StatDisp(𝑌, 𝐵) can be decomposed in a similar way. Interaction bias IntBias(𝑌, 𝐴) can then be

defined as:

DEFINITION 11.5.4.

IntBias(𝑌, 𝐴) = StatDisp(𝑌, 𝐴) − 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴)

= 𝑃(𝑏1)Interaction(𝐴, 𝐵)

IntBias(𝑌, 𝐵) can be defined similarly:

IntBias(𝑌, 𝐵) = StatDisp(𝑌, 𝐵) − 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐵)

= 𝑃(𝑎1)Interaction(𝐴, 𝐵)

11.5.3 Linear Model Case

Given the true model:

𝑌 = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐵 + 𝛽3𝐴𝐵 + 𝛽4𝐶 (11.56)

And biased model, that does not include interaction term 𝛽3:

𝑌 = 𝛽
′

0 + 𝛽
′

1𝐴 + 𝛽
′

2𝐵 + 𝛽
′
4𝐶 (11.57)

Where 𝐴 and 𝐵 are binary sensitive attributes, 𝐶 is a set of covariates and 𝑌 is a continuous

outcome (for example a credit score).

The change in Y due to 𝐴 is 𝛽1 + 𝛽3𝐵 and, similarly the change in Y due to 𝐵 is 𝛽2 + 𝛽3𝐴 [233].

In this case, a measure of effect of 𝐴 (𝛽
′

1) or 𝐵 (𝛽
′

2) without an interaction term would be

inaccurate. Next we define the bias introduced by not accounting for the interaction between

two sensitive attributes.

Linear model, Intersectional Sensitive Variable

THEOREM 11.14. Let 𝐴,𝐵 and 𝑌 be variables with linear regression coefficients

as in Equation 11.57. In a linear model with binary 𝐴 and 𝐵 the bias due to

interaction, when measuring the effect of intersectional sensitive variable 𝐴 and 𝐵
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on 𝑌 (StatDisp(𝑌, 𝐴, 𝐵)) is equal to:

IntBias(𝑌, 𝐴, 𝐵) = (𝛽′1 + 𝛽
′

2) − (𝛽1 + 𝛽2)

= 𝛽3

Proof. 𝛽
′

1 + 𝛽
′

2 represents the causal effect of 𝐴 and 𝐵 on 𝑌 including interaction, whereas 𝛽1 + 𝛽2

represents the same causal effect but without interaction. The difference coincides with the

interaction coefficient 𝛽3. □

Intuitively, 𝛽3 is part of an effect of the intersectional sensitive variable 𝐴 = 1, 𝐵 = 1 on 𝑌 that

is left out of the estimation when fitting linear regression without the interaction term.

Linear model, Individual Sensitive Variable

The difference of measurement of effect of 𝐴 on 𝑌 with interaction term (𝛽
′

1) and without

interaction term (𝛽1 ) depends on the value of 𝐵.

THEOREM 11.15. Let 𝐴,𝐵 and 𝑌 be variables with linear regression coefficients

as in Equation 11.57. In a linear model with binary 𝐴 and 𝐵 the bias due to

interaction, when measuring the effect of 𝐴 on 𝑌 (StatDisp(𝑌, 𝐴)) is equal to:

IntBias(𝑌, 𝐴) = 𝛽′1 − 𝛽1

= 𝛽3P(𝐵1)

Proof. StatDisp(𝑌, 𝐴) measures how wrong is the evaluation of effect of 𝐴 = 1 on average, for

cases where 𝐵 = 1 or 𝐵 = 0, which are as follows:

𝛽
′

1 =


𝛽1 + 𝛽3 when 𝐵 = 1

𝛽1 when 𝐵 = 0
(11.58)

Note that the StatDisp(𝑌, 𝐴) is dependent on 𝛽3 and the probability of 𝐵 = 1 (and, similarly,

StatDisp(𝐵, 𝐴) is dependent on 𝛽3 and the probability of 𝐴 = 1). □

11.6 Bias analysis

Expressing different types of bias in terms of the model parameters (conditional probabilities

and regression coefficients) allows to study the behavior of bias and how it is impacted by the

different parameters. In particular, at which parameters value it is peaked and at which other

values it is absent. The aim is to identify the cases where a given estimation of discrimination is

biased and at which extent.
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11.6.1 Binary Case

Confounder Bias is absent when at least one of the two terms of Equation 11.11 is equal to 0. For

the first term (1 − P(𝑧0 |𝑎0) − P(𝑧1) = 0), it is easy to show that it is equivalent to P(𝑧0 |𝑎1) = P(𝑧0)
which in turn means that 𝑍 and 𝐴 are independent (𝐴 ⊥⊥ 𝑍).

The second term is equal to 0 when :

P(𝑦1 |𝑎0, 𝑧0) − P(𝑦1 |𝑎0, 𝑧1) = −(P(𝑦1 |𝑎1, 𝑧0) − P(𝑦1 |𝑎1, 𝑧1)) (11.59)

Thre right-hand side can be interpreted as the Contolled Direct Effect (CDE) [234] of 𝑍 on 𝑌

when 𝐴 = 0 whereas the left-hand side is the opposite of P(𝑦1 |𝑎1, 𝑧0) − P(𝑦1 |𝑎1, 𝑧1) which is the

CDE of 𝑍 on 𝑌 when 𝐴 = 1. Confounding bias is equal zero, when the CDE of 𝑍 on 𝑌 when 𝐴 = 1

is the exact opposite of to that when 𝐴 = 0. In the job hiring example of Figure 11.1(a), it means

that we privilege poor liberals as much as we privilege rich conservatives, therefore the effect

𝑍− > 𝑌 is canceled out. Equation 11.59 can also hold when both sides are equal to 0. This means

that 𝑍 has no direct effect on 𝑌 (no edge between 𝑍 and 𝑌). 𝑍 can still have effect on 𝑌 which is

mediated through 𝐴, but it does not have a role as a confounder. To summarize, confounding

bias is absent in three cases: either 𝐴 ⊥⊥ 𝑍 (𝐴 and 𝑍 are independent) or the edge 𝑍 → 𝑌 is

absent, or the CDE of 𝑍 on 𝑌 when 𝐴 = 0 and 𝐴 = 1 are opposite and hence cancel each others.

Confounding bias is peaked when the first term (1 − P(𝑧0 |𝑎0) − P(𝑧1)) is equal to 1 or −1 and

the second term (−𝛼 + 𝛽 − 𝛾 + 𝛿) is equal to 2 or −2. The first term is equal to 1 when P(𝑧1) = 0

and P(𝑧0 |𝑎0) = 0. This is an extreme situation when all data instances have the same values of 𝐴

and 𝑍 variables, that is, 𝑎1 and 𝑧0. The same term is equal to −1 when P(𝑧1) = 1 and P(𝑧0 |𝑎0) = 1

which corresponds to the other extreme situation of all data instances have 𝑎0 and 𝑧0. In the job

hiring example, both cases correspond to a situation when all candidates are of the same type:

poor liberals or rich liberals. The second term reaches a peak value (2.0 or −2.0) when the CDE

of 𝑍 on 𝑌 is maximum (1 or −1) for both 𝑎0 and 𝑎1. To summarize, confounding bias is optimal

when the effect through the edge 𝑍 → 𝐴 is very strong (first term) and the effect through the

edge 𝑍 → 𝑌 is very strong (second term). This optimal situation can be seen as an extreme case

of Simpson’s paradox [235].

Collider Bias Collider bias can be viewed as an inverse case of a confounder bias. While

confounder bias compromises internal validity, selection bias is a threat to external validity [236].

Similarly, as confounder bias, collider bias does not manifest if the direct link between 𝐴 and

𝑊 or 𝑌 and 𝑊 is absent, or the link between 𝑊 and 𝑌 is the opposite for the values 𝐴 = 1 and

𝐴 = 0. The bias is maximized when the group corresponding to 𝐴 = 1 and 𝑊 = 0 is very large

(the negative bias case would occur if the group 𝐴 = 1 and 𝑊 = 1 is dominant). Maximization of

bias also requires that the link from 𝑌 to 𝑊 is deterministic and has the same direction for both

values of 𝐴.

Measurement Bias depends heavily on P(𝑇 |𝑍). For instance, from Theorem 11.9, it is easy

to show that if P(𝑡0 |𝑧1) = P(𝑡1 |𝑧0) = 0 (𝑇 and 𝑍 are fully dependent), then 𝑄 = 𝑅 = 1, and

consequently the measurement bias disappears. Conversely, if P(𝑡0 |𝑧1) = P(𝑡1) = 𝜖 and P(𝑡1 |𝑧0) =
P(𝑡0) = 1 − 𝜖 (𝑇 and 𝑍 are independent), then 𝑄 = 𝑅 = 0, and consequently, measurement bias
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is maximized as the two negative terms of Equation (11.45) disappear. The maximum value of

measurement bias in that case is 𝜖 (𝛿 − 𝛽) + (1 − 𝜖) (𝛾 − 𝛼).
Interaction Bias Interaction bias for the intersectional case coincides with the interaction

term. More precisely, it is maximized when the interaction is maximized and diminishes when the

interaction is small. Note that the interaction is equal 0 when one of the sensitive attributes does

not have an effect on 𝑌 [231]. The interaction bias when measuring the effect of one sensitive

attribute 𝐴 or 𝐵 on 𝑌 depends on the interaction term and the probability of 𝐵 = 1 and 𝐴 = 1,

respectively. The bias increases with the probability of 𝐴 = 1 or 𝐵 = 1 and the interaction term.

Interaction bias is equal to zero when either interaction, to the probability of 𝐵 = 1 or 𝐴 = 1,

respectively, is equal to 0.

11.6.2 Linear Case

To analyze the different types of bias in the linear case, we generate synthetic data according to

the following models. Without loss of generality, the range of possible values of all coefficients

(𝛼, 𝛽, 𝛾, 𝜂, 𝜖, and 𝛿) is [−1.0, 1.0]:

Confounding Structure:

𝑍 = U𝑧 ,

𝐴 = 𝛽𝑍 + U𝑎,

𝑌 = 𝛼𝐴 + 𝛾𝑍 + U𝑦

Colliding Structure:

𝐴 = U𝑎,

𝑌 = 𝛼𝐴 + U𝑦 ,

𝑊 = 𝜂𝐴 + 𝜖𝑌 + U𝑤

Measurement Structure:

𝑍 = U𝑧 ,

𝐴 = 𝛽𝑍 + U𝑎,

𝑌 = 𝛼𝐴 + 𝛾𝑍 + U𝑦 ,

𝑇 = 𝛿𝑍 + U𝑡

U𝑧 ∼ N(0, 1),

U𝑎 ∼ N(0, 1),

U𝑦 ∼ N(0, 1),

U𝑤 ∼ N(0, 1),

U𝑡 ∼ N(0, 1).
Figure 11.14 shows the magnitude of each type of bias based on the expressions obtained

in Sections 11.2, 11.3, and 11.4. In particular, Equations 11.16 for confounding bias, 11.41 for

selection bias, and 11.51 for measurement bias. Three dimensions plot is used for confounding

bias (Figure 11.14(a)) as bias is expressed in terms of two variables (𝛽 and 𝛾) whereas four

dimensions plots are used for selection and measurement biases (three variables). Confounding

bias is maximized when both 𝛽 and 𝛾 have extreme values (+1.0 or −1.0): positive bias when

𝛽 and 𝛾 are of the same sign, and negative otherwise. Bias is absent when at least one of the

coefficients is zero. In between these extreme cases, confounding bias has strictly linear relation

with 𝛽 whereas a non-linear relation with 𝛾. More importantly, confounding bias is more sensitive

to 𝛽 than to 𝛾 particularly for extreme values (when coefficients are close to +1.0 or −1.0). That is,

modifying the effect of the confounder (e.g. 𝑍) on the sensitive variable (e.g. 𝐴) has more impact

on the confounding bias than modifying the effect of the confounder on the outcome variable

(e.g. 𝑌) with the same amount. In the job hiring example (Section 10.2.1) this means that the

effect of Socio-Economic status on politicial belief has more impact on the counfounding bias

than the effect of socio-economic status on job hiring. However, if the variables are standardized,

both effects contribute equally to confounding bias (Corollary 11.4).

Unlike confounding bias, the magnitude of selection bias (Figure 11.14(b)) depends also

on the regression coefficient of 𝑌 on 𝐴 (𝛼). Selection bias is peaked in two cases depending on

the value of 𝛼. First, when 𝜂 and 𝜖 have the same extreme values (1 or −1) and 𝛼 = 1. This
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Figure 11.12: Bias Magnitude while changing one variable and holding the other variables at 0.5.
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Figure 11.13: Bias Magnitude while changing one variable and holding the other variables at
−1.0.

leads to maximal negative bias. Second, when 𝜂 and 𝜖 have extreme but different sign values (1

or −1) and 𝛼 = −1. This corresponds to maximal positive bias. Intuitively, conditioning on the

collider variable 𝑊 introduces a spurious effect between the two causes 𝐴 on 𝑌 : any information

“explaining away” one cause will make the other cause more plausible. Using the job hiring

example (Figure 11.1(b)), if there is maximum negative discrimination based on the political

beliefs of the candidates (𝛼 = −1) and we measure discrimination using only labor union records,

while political belief and job hiring have strong but opposite effects on labor union membership,

the selection bias will be maximum to the point it cancels out all positive discrimination and leads

to a conclusion of no discrimination. Figure 11.14(b) shows also that selection bias disappears

when 𝜖 is zero, but not when 𝜂 is zero. When 𝜖 ≠ 0, selection bias can be zero depending on the

value of 𝜖 as follows: 𝜖 = 1 and 𝛼 = −𝜂 or 𝜖 = −1 and 𝛼 = 𝜂. In general, selection bias has a linear

relationship with both 𝛼 and 𝜂, while a non-linear relationship with 𝜖7.

Similarly to confounding and selection, the measurement bias (Figure 11.14(c)) is peaked

when 𝛽 and 𝛾 have extreme values (1.0 or −1.0) but when 𝛿 = 0. This is expected as, by definition,

the more 𝑍 and 𝑇 are independent, the higher measurement bias is. Conversely, the plot shows

that the measurement bias disappears as 𝛿 departs from 08.

7Such relations can be observed more clearly using 2D plots (Figures 11.12 and Figure 11.13).
8The 2D plots in the appendix show clearly these observations.
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Figure 11.14: Bias magnitude in the linear case

11.7 Bias analysis in benchmark datasets

We use well-known fairness benchmark data sets [237] for the experiments on real data: Adult 9,

Boston housing 10, Compas [238], Communities and crimes 11 and Dutch census 12 data. The

causal experiments on the real data are limited by the availability of true causal graphs for the

benchmark fairness datasets. Furthemore, [223] shows, that obtaining reliable causal graphs

with causal discovery algorithms is a complicated task. However, we assume that the graphs in

the literature are true for a given real dataset. We use the graphs by [239, 240] for Adult and

Dutch data sets to measure the interaction bias. For measuring confounder and collider biases we

rely on graphs obtained by [223] for Communities and Crimes (11.15), Boston Housing (11.16),

Compas (11.18), and Dutch datasets (11.17).

race vio.

age poverty

unemployment divorce

Figure 11.15: The graph for the communities and crime dataset. ’divorce’, ’age’, ’poverty’ and
’unemployement’ are the colliders between ’race’ and ’violence’ (vio.). The graph is produced
using LiNGAM algorithm.

race value

crime industry

rooms
distance

teachers

Figure 11.16: The graph for the Boston housing data set. ’Crime’ is a possible confounder between
’race’ and ’value’.The graph is produced using GES algorithm.

9https://archive.ics.uci.edu/dataset/2/adult
10http://lib.stat.cmu.edu/datasets/boston
11https://archive.ics.uci.edu/dataset/183/communities+and+crime
12https://microdata.worldbank.org/index.php/catalog/2102/data-dictionary

https://archive.ics.uci.edu/dataset/2/adult
http://lib.stat.cmu.edu/datasets/boston
https://archive.ics.uci.edu/dataset/183/communities+and+crime
https://microdata.worldbank.org/index.php/catalog/2102/data-dictionary
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sex occ.

age emp.

education marital

Figure 11.17: The graph for the Dutch data set. ’Marital Status’ is a collider between ’sex’ and
’occupation’ (occ.). The graph is produced using GES algorithm.

race recidivism

age sex

priors

Figure 11.18: The graph for the Compas dataset. ’Age’ and ’sex’ are possible confounders between
’race’ and ’recidivism’. The graph is produced using PC algorithm.

For measurement bias, we use synthetic data because the required structure is not present in

the available graphs for the benchmark data sets. Synthetic data is generated according to the

following models:

The variables 𝑍, 𝐴, 𝑇 , and 𝑌 are binary Bernoulli variables controlled by the parameter

𝑝1. Conditional dependencies of the measurement bias structure define how the parameter 𝑝1

depends on the value of the parent variables.

𝑍 ∼ (𝑝) =

𝑝1,

𝑝0 = 1 − 𝑝1

𝑌 ∼ (𝑝; 𝑍, 𝐴) =

𝑝1 = 0.5 ∗ 𝑧 + 0.5 ∗ 𝑎,

𝑝0 = 1 − 𝑝1

𝑇 ∼ (𝑍; 𝑝) =



𝑝1, if Z = 1,

𝑝0 = 1 − 𝑝1

𝑝
′

1, if Z = 0.

𝑝
′

0 = 1 − 𝑝′1

𝐴 ∼ (𝑍; 𝑝) =



𝑝1, if Z = 1,

𝑝0 = 1 − 𝑝1

𝑝
′

1, if Z = 0.

𝑝
′

0 = 1 − 𝑝′1

The parameters 𝑝1, 𝑝0, 𝑝
′

1 and 𝑝
′

0 are generated randomly and take values between 0 and 1.

Although we cannot claim that the causal structure that we use for the experiments is the

ground truth, it is useful for experimentally demonstrating the behavior of causal biases. In

addition, the considered causal structures most often show the presence of multiple causal biases

at once. However, for the purposes of illustration, we control for a single type of bias separately.

More precisely, we consider the difference in measured discrimination with the presence of the

absence of a certain type of bias.

The experimental results for confounder bias show that the biases for each individual con-

founding variable are not significant (Figure 11.19(a)). However, its magnitude increases and
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can cancel out the value for statistical disparity (Dutch data set), when multiple confounders

are considered simultaneously (Figure 11.19(b)). Measurement bias takes the highest value

for Synthetic2 dataset (Figure 11.20(b)). The effect of 𝐴 on 𝑌 when controlling for 𝑇 appears

smaller than when controlling for 𝑍. Here, the value of 𝑇 is highly dependent on 𝑍 if 𝑍 = 0,

but only loosely dependent on 𝑍 if 𝑍 = 1. The prior probability of 𝑍 conditions it to take value

𝑍 = 1 with probability 0.95. Therefore, the link between 𝑍 and 𝑇 is weak. The weak link

between the variables makes 𝑇 a bad predictor for 𝑍 and introduces a high measurement bias.

Collider bias (Figure 11.20(a)) is significant if it was introduced by conditioning on income

(adult data), age (Compas data), economic status (Dutch data), poverty, unemployment, or

divorce (Communities and crime data). Collider bias would reverse the value of statistical

disparity, showing discrimination against the privileged group instead of discrimination against

the disadvantaged group. We observe a portion of the interaction in all cases of the intersectional

sensitive attribute (Figure 11.21(a)). However, the value of synergism is negative, which means

that it is not present in the data. Measurement of interaction bias for 𝐴 and 𝐵 individually can

yield different values of interaction bias (Figure 11.21(b)). Although the interaction term is

symmetric for 𝐴 and 𝐵, the interaction bias value is also dependent on the probability 𝐵 = 1

(when measuring IntBias(Y, A)) or 𝐴 = 1 (when measuring IntBias(Y, B)). Therefore, for example,

the interaction bias for sex is higher than for age in the Adult data set, because the probability of

value 1 for age is higher than the probability of the sex variable taking value 1. Furthermore, we

observe that the statistical disparity does not always correspond to the sum of interaction bias and

statistical disparity without interaction (𝑆𝑡𝑎𝑡𝐷𝑖𝑠𝑝(𝑌, 𝐴) ≠ 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) + 𝑃(𝑏1)𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐴, 𝐵)),

as required in Theorem 11.13. This observation suggests that the two sensitive variables 𝐴 and

𝐵 are not independent as suggested by the graphs provided by [239, 240]. Indeed, the graphs

discovered by [223] show the dependency between age and sex variables in the Dutch data set

(Figure 11.17).

((a)) Confounder bias, when treating each con-
founder separately.

((b)) Confounder bias when treating all confounders
together.

Figure 11.19: Confounder bias.
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((a)) Collider bias, when treating each confounder
separately.

((b)) Measurement bias. Experiments on synthetic
data sets.

Figure 11.20: Collider and measurement bias

((a)) Interaction bias, intersectional sensitive vari-
able.

((b)) Interaction bias for individual sensitive at-
tributes.

Figure 11.21: Interaction bias.

11.8 Concurrent biases

Confounding and selection biases. In presence of one or several confounder and collider

variables, the estimation of discrimination can suffer from both confounding and selection bi-

ases simultaneously. Figure 11.22(a) shows the simplest case. According to Definitions 11.2.1

and 11.3.1, confounding bias can be isolated by adjusting on the confounder variable ConfBias(𝑌, 𝐴) =
StatDisp(𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴)13 (𝛽𝑦𝑎 − 𝛽𝑦𝑎.𝑧 in the linear case), whereas selection bias can be

isolated by cancelling the adjustment on the collider variable SelBias(𝑌, 𝐴) = StatDisp𝑊 (𝑌, 𝐴) −
StatDisp(𝑌, 𝐴) (𝛽𝑦𝑎.𝑤 − 𝛽𝑦𝑎 in the linear case). The total bias in presence of both types of bias

can then be estimated as StatDisp𝑊 (𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴) in the binary case and 𝛽𝑦𝑎.𝑤 − 𝛽𝑦𝑎.𝑧
in the linear case.

Confounding and measurement biases. Measurement bias (Figure 11.9) is defined as

the difference in estimating StatDisp when adjusting on the proxy variable (𝑇) instead of the

unobservable/unmeasurable confounder variable (𝑍). For the binary case, it corresponds to

the difference StatDisp𝑇 (𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴). For the linear case, it corresponds to the

difference between the partial regression coefficients 𝛽𝑦𝑎.𝑡 − 𝛽𝑦𝑎.𝑧. The difference between the

adjustment free estimation of StatDisp(𝑌, 𝐴) (the regression coefficient 𝛽𝑦𝑎 in the linear case)

and StatDisp𝑇 (𝑌, 𝐴) (𝛽𝑦𝑎.𝑡) corresponds to the total of both confounder and measurement biases.

13Notice that, by the backdoor formula, StatDisp𝑍 (𝑌, 𝐴) coincides with 𝐴𝐶𝐸 (𝑌, 𝐴).
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((a)) Confounding and colliding bias. ((b)) Confounding, colliding, and measurement bias

Figure 11.22: Confounding, colliding and measurement bias.

Selection and measurement biases. Figure 11.22(b) shows the simplest case where mea-

surement and selection biases occur simultaneously. Adjusting on both the proxy (𝑇) and the

collider (𝑊) variables (StatDisp𝑇𝑊 (𝑌, 𝐴) and 𝛽𝑦𝑎.𝑡𝑤) leads to both types of biases occurring simul-

taneously. Substracting StatDisp𝑍 (𝑌, 𝐴) (respectively 𝛽𝑦𝑎) from StatDisp𝑇𝑊 (𝑌, 𝐴) (respectively

𝛽𝑦𝑎.𝑡𝑤) coincides with the sum of selection and measurement biases in the binary and linear

cases respectively.

Confounding, selection, and measurement biases. In the same simple case of Fig-

ure 11.22(b), the difference between adjusting on variables 𝑇 and 𝑊 on one hand and adjusting

on 𝑍 on the other hand (StatDisp𝑇𝑊 (𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴) in the binary case and 𝛽𝑦𝑎.𝑡𝑤 − 𝛽𝑦𝑎.𝑧
in the linear case) encompasses the three types of bias.

Confounding and interaction biases. In presence of interaction between two sensitive

variables, confounding bias can be decomposed into interaction free portion and an interaction

term. Figure 11.23(a) shows a simple confounding structure between 𝐴 and 𝑌 and a second

sensitive variable 𝐵 which is interacting with the effect of 𝐴 on 𝑌 . In the binary case, the

confounding bias ConfBias(𝑌, 𝐴) (Definition 11.2.1) can be decomposed as follows:

PROPOSITION 11.16.

ConfBias(𝑌, 𝐴) = StatDisp(𝑌, 𝐴) − StatDisp𝑍 (𝑌, 𝐴)

= 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) − 𝑆𝐷��𝐼𝑛𝑡𝑍 (𝑌, 𝐴)

+ 𝑃(𝑏1) (𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐴, 𝐵) − 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 (𝐴, 𝐵)) (11.60)

(11.61)

where

𝑆𝐷��𝐼𝑛𝑡𝑍 (𝑌, 𝐴) =
∑︁
𝑍

(𝑃(𝑦1 |𝑎1, 𝑏0, 𝑧) − 𝑃(𝑦1 |𝑎0, 𝑏0, 𝑧))𝑃(𝑧)

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 (𝐴, 𝐵) =
∑︁
𝑍

(
𝑃(𝑦1 |𝑎1, 𝑏1, 𝑧) − 𝑃(𝑦1 |𝑎0, 𝑏1, 𝑧)

− 𝑃(𝑦1 |𝑎1, 𝑏0, 𝑧) + 𝑃(𝑦1 |𝑎0, 𝑏0, 𝑧)
)
𝑃(𝑧)



11.8 Concurrent biases 134

((a)) Interaction and confounding bias ((b)) Interaction and confounding bias

Figure 11.23: Interaction and Confounding bias.

In the same example of Figure 11.23(a), the confounding bias in case of intersectionality

(two interacting sensitive variables) can be decomposed as follows:

PROPOSITION 11.17.

ConfBias(𝑌, 𝐴, 𝐵) = StatDisp(𝑌, 𝐴, 𝐵) − StatDisp𝑍 (𝑌, 𝐴, 𝐵)

= 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐴) − 𝑆𝐷��𝐼𝑛𝑡𝑍 (𝑌, 𝐴)

+ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐴, 𝐵) − 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑍 (𝐴, 𝐵) (11.62)

(11.63)

In the slightly different structure where 𝑍 is also a confounder between 𝐵 and 𝑌 (Fig-

ure 11.23(b)), the term 𝑆𝐷��𝐼𝑛𝑡 (𝑌, 𝐵) − 𝑆𝐷��𝐼𝑛𝑡𝑍 (𝑌, 𝐵) needs to be added to the ConfBias(𝑌, 𝐴, 𝐵)
expression above.



12
Gender and Sex Bias in COVID-19 Data

12.1 Introduction

Sex and gender disparity was noticed in many cases of Coronavirus disease 2019 (COVID-19).

In this article we follow the definition proposed by [241] distinguishing between sex as a set of

biological attributes, and gender as a social-psychological category. As it is later demonstrated,

both might have an impact on COVID-19 mortality rates. We also note that in this study we

consider binary values for gender, although an in depth analysis of gender roles would potentially

yield a more complex picture. The disease is reported to be deadlier for infected men than women

with a 2.8% fatality rate in Chinese men versus 1.7% in women [242], while sex-disaggregated

data for COVID-19 in several European countries shows a similar number of cases between sexes,

but more severe outcomes in aged men [242].

Biological differences in the immune system in men and women may affect the person’s ability

to fight COVID-19. It may be argued that men are more vulnerable to COVID-19 in relation

to women because of a distinctive lifestyle, smoking, drinking, working hours, sex hormones,

hypertension, and other circumstances [243]. Research suggests sex-based differences in ACE2

and TMPRSS2 enzymes and the link between circulating ACE2 and COVID-19 [242] is not clear.

Additionally, sex and gender may intersect with age and race, to further increase the risk of severe

COVID-19 outcomes in men. In PLoS pathogens and CMAJ journals it is also discussed how other

socio-economic factors also increase the risk of COVID-19 [244, 245]. Systemic health and social

inequities have disproportionately exposed low-income communities, racial and ethnic minorities

to higher risk of COVID-19 infection and death. Additionally, uneven testing strategies across the

world, and the quality of epidemiological big data, limit the accuracy of estimated distribution of

COVID-19 patients according to [246].
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The contributing factors can broadly be categorized into physical, sex-related attributes,

lifestyle gender related attributes, and cultural, gender role related variables. The contribution,

consistency of the effect and causal role of each of those groups of variables is very different

and must be taken into consideration when building machine learning models, performing data

analysis or making data-informed decisions. While physical, sex-based factors can be viewed as

relatively constant predictors, the gender lifestyle attributes are fluid and vary from individual to

individual. Furthermore, the cultural, gender roles based variables are intrinsically contextual and

culture specific. Failing to account for those individual and cultural differences hinges both the

accuracy of the predictions and put the group of individuals under a threat of disparate impact of

such predictions. However, the complex structure of the various factors that influence the disease

may not be evident from the accessible health databases. Observational datasets coming from

public information access systems can be fragmented, coming from diverse sources and may not

necessarily include all the attributes relevant for the analysis. This chapter showcases potential

risks of biased or incomplete data and how causality can be put into practice as part of a risk

management strategy to avoid discriminating systems. In this chapter we focus on analyzing the

difference in causal and fairness impacts of different categories of variables linking sex or gender

and COVID-19 vulnerability. We demonstrate how omitting causal, research-based knowledge

from the model of sex and COVID-19 relationships can further propagate more intricate forms

of bias in computational models and lead to discriminatory and harmful pandemic policies and

decision making.

As a result, we bring light into: 1) a potential set of hypotheses within our COVID-19 case

study to further verify its causal link, and 2) the unintended consequences that can derive from a

lack of an adequate toolbox to support fair and accurate decisions.

12.2 Related Work: Identifying causal explaining factors on sex/-

gender and COVID-19 relationship from epidemiological and

clinical studies

We review findings based on big data on gender and COVID-19 from two angles. First, we

analyze a body of papers placing gender and sex as a risk factor towards COVID-19, focusing

on explaining the reasons behind disparity. Second, we categorize the explaining variables into

mediators and confounders and discuss possible fairness implications of the former results that

could lead to discrimination decisions, with the aim of guiding the causal design of the underlying

model.

The amount of literature providing evidence on links between sex/gender and COVID-19

vulnerability is significant [247]. Table 12.1 shows articles finding men to be more vulnerable to

COVID-19 in comparison to women. The explanations for this association are as well diverse.

One of the possible factors is sex impact on vaccine acceptance, responses, and outcomes [242].

Women are often less likely to accept vaccines but once vaccinated, develop higher antibody

responses [248]. For example, after vaccination against influenza, yellow fever, rubella, mumps,
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measles, small pox, hepatitis A and B and dengue viruses, protective antibody responses are twice

as high in adult females compared with males. However they report more adverse reactions

to vaccines than males [242]. Moreover, biological differences in the immune systems of men

and women exist, and they may affect the capacity to fight COVID-19 infection. Men appear to

be at a greater risk with COVID-19 compared to women, whose higher immunologic response

is probably associated with decreased mortality [249]. Furthermore, certain differences in

cardiac manifestations in COVID-19 must be considered as a core component [250]. From the

observational studies perspective, men appear to be at a greater risk. Sex is surely not the only risk

factor in a disease that, according to [243], is challenging to diagnose and theorize, and whose

effects also depend on vulnerabilities related to diabetes, obesity, hypertension, heart disease,

chronic kidney disease, and chronic pulmonary disease according to [244]. Many authors suggest

that women naturally produce more types of interferon, which limits the abnormal immune

response in the form of serious cases of COVID-19. Moreover, women also produce more T

lymphocytes which kill infected cells; and the "female" hormone estradiol would also offer greater

protection against infection. On the contrary, studies indicate testosterone would limit the

immune response in men, which may explain the observed sex-bias [251, 252].

Immunitary response duration was studied at the Pasteur Institut1 and CHU of Strasbourg

on 308 healthcare personnel that developed a light form of COVID-19 [253]. They show

significantly steeper, i.e., faster decline in antibodies (anti-S and NAbs) in males than in females

independently of age and BMI, hinting to a lower duration of protection after SARS-CoV-2

infection or vaccination. As more protective antibodies are formed in women, they last longer

and so, women are better protected.

The relevance of gender norms, roles, and relations that influence women and men differential

vulnerability to infection, exposure to pathogens, treatment received, as well as how these may

differ among different groups of women and men is outlined in [254].

When comparing the COVID-19 case fatality rate (CFR) between China and Italy, the authors

in [255] infer how methods from causal inference –in particular, mediation analysis–, can be

used to resolve apparent statistical paradoxes and other various causal questions from data

regarding the current pandemic. Many research studies [256] revealed that systemic health and

social inequities have disproportionately increased the risk of COVID-19 infection and death

among low-income communities and racial and ethnic minorities. The outcomes in [257] provide

insights on the clinical aspects of the disease, on patients’ infection and mortality risks, on the

dynamics of the pandemic, and on the levels that policymakers and healthcare providers can

use to alleviate its toll. In the gender and social norms side, a recent study conducted in Spain

(one of the hardest hit countries in Europe) reported that women had more responsible attitude

towards the COVID-19 pandemic than men [258], and another in the US showed that women

take more precautions, wear more masks and cover more coughs than men2. Gender roles

are considered as those influencing women’s and men’s different vulnerability to infection and

exposure to pathogens, as reported in [254]. The impact of gender-specific lifestyle, health

1https://www.pasteur.fr/fr/espace-presse/documents-presse/COVID-19-duree-reponse-immunitaire-
neutralisante-plus-longue-femmes-que-hommes

2https://hbswk.hbs.edu/item/the-covid-gender-gap-why-fewer-women-are-dying

https://www.pasteur.fr/fr/espace-presse/documents-presse/COVID-19-duree-reponse-immunitaire-neutralisante-plus-longue-femmes-que-hommes
https://www.pasteur.fr/fr/espace-presse/documents-presse/COVID-19-duree-reponse-immunitaire-neutralisante-plus-longue-femmes-que-hommes
https://hbswk.hbs.edu/item/the-covid-gender-gap-why-fewer-women-are-dying
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behavior, psychological stress, and socioeconomic conditions on COVID-19 is further studied in

[242].

Study Tested Hypothesis

Men are

more vul-

nerable

Health Condi-

tions

Age

Corre-

lation

Drinking

/ Smoking

Impact of sex and gender

on COVID-19 outcomes in

Europe [242]

COVID-19 is deadlier for

infected men than women

(NSD:

M)

C, H, DM, CD,

CRD, CLD
(D, S)

Coronavirus: why men are

more vulnerable to COVID-

19 than women? [259]

There are higher morbid-

ity and mortality rates in

males than females

(NSD:

M)
O, DM, H

Biological sex impacts

COVID-19 outcomes [244]

Mechanistic differences

including the expression

and activity of ACE2 en-

zyme result in antiviral

immunity, cases, hospital-

izations and deaths differ-

ences.

(NSD:

M)

CPD, CKD, II,

HD, O

COVID-19: the gendered

impacts of the outbreaks

[254]

Men are more likely to re-

main hospitalized an die

and less likely to be dis-

charged from the hostpi-

tal than women.

(NSD:

M)
H (S)

Racial and gender based

differences in COVID-19

[246]

Ethnic differences influ-

ence susceptibility and

mortality

(NSD:

M)

HD, O, CLD, C,

H, DM, CD
(D, S)

Sex Differences in Mortal-

ity From COVID-19 Pan-

demic: Are Men Vulnera-

ble and Women Protected?

[250]

Male sex plays a role in

increased mortality rates

(NSD:

M)

H, DM, CD,

CRD, CLD

The influence of sex and

gender domains on COVID-

19 cases and mortality

[245]

Gender Inequality Index

is positively associated

with male:female cases ra-

tio

(SSD:

M)

19

Male sex identified by

global COVID-19 meta-

analysis as a risk factor for

death and ITU admission

[251]

Male sex is a risk factor

for death and ITU admis-

sion but not for infections.

(SSD:

M)
H, II, C (S)

Table 12.1: Summary of claims involving statements regarding men being more affected by the
COVID-19 compared to women. X indicates correlation of that variable with the COVID-19. M:
men are more affected, F: women are more affected by COVID-19, SSD: Statistically Significant
Difference, NSD: Non Statistically-significant difference. Factors: S: Smoking, D: Drinking, C:
Cancer, H: Hypertension, DM: Diabetes mellitus, CD: Cardiovascular diseases, CRD: Chronic
respiratory disease, CLD-chronic lung disease, HD: Heart disease, O: Obesity, II: Inflammatory
immune responses, CHK: Chronic kidney disease, CPD: Chronic pulmonary disease. Even though
most articles claim men are more affected by COVID-19 than women and die more, none of them
shows statistical significance nor has enough data to provide causal links beyond correlational
studies.
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According to most of the literature observed, the sex bias observed in COVID-19 as stated by

[251], is a worldwide phenomenon suggested by observational and clinical research. However, the

explaining factors listed in the discussed studies are diverse and non-uniform in their sensitivity

to individual or cultural contexts.

12.3 Gender-related lifestyle habits and COVID-19 vulnerability

To help understand the association between gender and COVID-19, we conducted a more focused

data analysis based on publicly available data to investigate the possible impact of sex and

gender on the COVID-19 epidemic3. Even if ecological analysis4 is considered the lowest form of

epidemiological evidence, and potentially involves confounding variables, we are aware that it

may not be a more accurate assessment than the individual level studies being surveyed in this

article. Nonetheless, in this section we use this kind of analysis in order to elucidate plausible

risk factors and unaccounted variables potentially explaining the disproportionate results.

We constructed a database that aggregates confirmed cases statistics, COVID-19 deaths, ICU

admissions and smoking data per gender for 61 countries spanning 5 continents. The data

sources are briefly described below.

• The Global Health 50/505 project housed at University College of London, which is created

by a live tracker that aggregates data on COVID-19 cases and mortality from published

government reports. At the time of our analysis on April 05, 2021, sex-disaggregated data

for 183 countries including confirmed cases, confirmed deaths, etc. was represented in the

live tracker.

• We also used a public dataset maintained by Our World in Data6, which also contains

additional information such as smoking, population, and daily COVID-19 cases.

By aggregating data from these two sources, and including only countries for which confirmed

cases, deaths and smoking information is available. It is worth noting that, in this analysis, due

to missing data for some countries, and taking into account the low granularity of the data, our

choice was to focus only on the countries where all data columns were complete. We were able

to analyze complete data from 89 countries. 7

We then looked at the male-to-female (male/female) ratio of confirmed cases, 𝜌𝑐𝑎𝑠𝑒𝑠, and

compared it to the male-to-female ratio of deaths, 𝜌𝑑𝑒𝑎𝑡ℎ𝑠, for each country. We particularly

3Data analysis notebook in R available for reproducibility online: https://rpubs.com/wafaeB/684506
4Studies where individual features and outcomes are aggregated at a group level and then analyzed.
5Global Health 50/50 project website https://globalhealth5050.org/
6Our World in Data portal ourworldindata.org
7The total aggregated multi-source data contained the following countries: Albania, Tunisia, Mozambique, Montene-

gro, Cyprus, Bosnia and Herzegovina, Spain, Turkey, Romania, Netherlands, Argentina, France, Portugal, Switzerland,
Iceland, Kyrgyzstan, Sweden, Poland, Latvia, Eswatini, Jamaica, New Zealand, Croatia, Cambodia, Armenia, Ukraine,
Slovakia, Belgium, South Africa, South Korea, Canada, Hungary, Vietnam, Slovenia, Mongolia, Lithuania, Estonia,
Bahamas, Qatar, Thailand, Malawi, Burkina Faso, Bangladesh, India, Pakistan, Nepal, Nigeria, Yemen, Congo, Oman,
Kenya, Panama, Costa Rica, Singapore, Dominican Republic, Liberia, Myanmar, Morocco, Bahrain, Haiti, Mexico,
China, Greece, Philippines, Maldives, Paraguay, Zimbabwe, Colombia, Denmark, Italy, Barbados, Sri Lanka, Ecuador,
Malta, Iran, Rwanda, Finland, Brazil, Indonesia, Israel, Austria, Chile, Norway, Luxembourg, Germany, Australia,
Lebabnon, Uganda.

https://rpubs.com/wafaeB/684506
https://globalhealth5050.org/
ourworldindata.org
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classified countries on 4 groups based on these two parameters as follows (Table 12.2):

• Group 1 includes the countries in which 𝜌𝑐𝑎𝑠𝑒𝑠 > 1 and 𝜌𝑑𝑒𝑎𝑡ℎ𝑠 < 1. In our analysis, only

two countries belong to Group 1.

• Group 2, which contains 32 countries, represents countries in which 𝜌𝑐𝑎𝑠𝑒𝑠 < 1 and

𝜌𝑑𝑒𝑎𝑡ℎ𝑠 > 1.

• Group 3 contains 7 countries in which 𝜌𝑐𝑎𝑠𝑒𝑠 < 1 and 𝜌𝑑𝑒𝑎𝑡ℎ𝑠 < 1.

• Group 4 includes 49 countries in which 𝜌𝑐𝑎𝑠𝑒𝑠 > 1 and 𝜌𝑑𝑒𝑎𝑡ℎ𝑠 > 1.

More Deaths: Females Males
More Cases:
Females Group 3 Group 2
Males Group 1 Group 4

Table 12.2: Summary of analyzed male-to-female cases ratio and male-to-female deaths ratio.

Among the analyzed countries in our study, only Lebanon and Uganda belong to Group 1. Our

analysis revealed that while there are more confirmed cases among men compared to women, i.e.

𝜌𝑐𝑎𝑠𝑒𝑠 = 1.45 in Lebanon and 𝜌𝑐𝑎𝑠𝑒𝑠 = 2.18 in Uganda, the male-to-female ratio of deaths is still

smaller, i.e. 𝜌𝑑𝑒𝑎𝑡ℎ𝑠 = 0.44 and 𝜌𝑑𝑒𝑎𝑡ℎ𝑠 = 0.86 in Lebanon and Uganda, respectively. Therefore,

more deaths were reported among women. Thus, this case seems to be contradictory to global

data which indicates that men are more likely to get severely affected by COVID-19, and die

more from the disease than women. One of the possible reasons is women’s representation in

certain sectors strongly hit by the pandemic, such as the garment and textile sector, in some

Asian and African countries. This can translate into two potential explanations motivating more

deaths in women: 1) they become unemployed and without access to healthcare to deal with

the disease, or 2) they become more vulnerable and most affected by cotton industry-related

respiratory diseases related with the lack of safety equipment in unhygienic, unsafe environments

with hazardous work conditions, as reported in [260, 261]. However, more research needs to be

done in order to provide more insights on the vulnerability of women to COVID-19 in Vietnam.

In Group 2, which contains 32 countries, women were more contaminated by COVID-19 than

men. However, the number of deaths among male was higher. Data for this group also shows

that this might be related to the much higher smoking rate in these countries. As shown for

example in Fig. 12.1, a very high male-to-female smoking ratios are observed in most of the

countries in this Group. Particularly, the highest smoking rates are observed in Tunisia, Albania

and Mozambique, which also have the highest smoking ratios. Note that, in Figures 12.1, 12.2,

12.3 we applied log scaling to the calculated ratios in order to plot them on a comparable scale.

That is, a positive male-to-female smoking or death log-scaled ratio indicates a higher number of

smoking or death among men, while a negative male-to-female smoking or death log-scaled ratio

indicates a higher number of smoking or death among women. While smoking might be one of

the reasons that increases the risk of hospitalisation and death by COVID-19, as it is the case for

most respiratory diseases, more data is needed in order to provide evidence on this hypothesis,

such as age, number of tests by gender, etc.
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Figure 12.1: Log-scaled Male-to-Female Deaths ratio (Left) vs Log-scaled Male-to-Female smoking
-female-to-male- ratio smoking (Right) for Group 2 (more cases in women but more deaths for
men). This group is composed by 32 countries and shows that one possible explanatory variable
is the factor smoking, since men are shown to smoke more in these countries.

Driven by the observations we made in the previous group of countries, we were also

interested in investigating the association between deaths ratios and smoking ratios for Group

3 and 4. Fig. 12.2 and Fig. 12.3 report the male-to-female deaths ratio vs the male-to-female

smoking ratio for Group 3 and Group 4, respectively. Group 3 represents 7 countries in which both

confirmed and fatality rates are higher for women compared to men, while Group 4 represents

49 countries in which both confirmed cases and deaths are higher for men. Figures 12.2 and 12.3

also show a possible association between smoking and deaths. While the average male-to-female

log-scaled smoking ratios is 1.5 across countries in Group 3, its value is higher and is up to 1.9

in Group 4, in which the male-to-female deaths ratios are also higher. It is also possible that

countries in Group 3 are more likely to apply fairer testing strategies compared to the countries

in Group 4, that have the highest male-to-female death ratios.
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Figure 12.2: Log-scaled Male-to-Female Deaths ratio (Left) vs Log-scaled Male-to-Female Smoking
ratio (Right) for Group 3 (7 countries, in which both cases and death ratios are higher for women,
i.e., the opposite of most articles claims). In these countries, women smoke almost equally as
men, and thus, smoking does not seem to clearly be an explanatory variable: women die as much
or more than men.

Figure 12.3: Log-scaled Male-to-Female Deaths ratio (Left) vs Log-scaled Male-to-Female Smoking
ratio (Right) for Group 4 (49 countries where both cases and deaths are higher for men). This
plot may reveal different testing strategies, as men are always more impacted.

While our analysis suggests a possible association between smoking and a higher number

of COVID-19 deaths, as most countries having a high male-to-female deaths ratios, have a high

male-to-female smoking ratios as well, there is no firm conclusion that can be drawn regarding
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the relationship between smoking, sex and COVID-19. In addition, countries considered different

criteria during the pandemic for reporting COVID-19 deaths and this could make understanding

the impact of sex on COVID-19 ambiguous.

The differential findings and disparities observed across the four groups of countries in our

analysis emphasize the need to understand why COVID-19 impacts some groups more than

others. This might reflect other related factors and issues that need to be addressed, such as

incomplete data and decision making biases. In the next sections we attempt to summarize

the potential explaining variables found in the literature review and our analysis to structure it

according to the ascribed role in the causal sex-COVID-19 relation framework.

12.4 Confounders and mediators between sex and COVID-19 vulner-

ability

In this section we summarize the variables linking sex or gender and COVID-19 vulnerability, and

categorize them in mediators and confounders (Table 12.3). The mediators are further divided

into constant (sex-related) and varying (gender-related) from individual to individual. It has

to be noted, that this classification is dependent on the goal of the predictor, or a question that

we are trying to answer. Which of the variables are considered confounders, as well as which

mediators can be viewed as explaining variables (fair) or redlining (unfair) is context specific. For

example, when predicting the probability of mortality from COVID-19 and allocating resources in

the ICU (intensive care unit), the variable responsible for gender-related health-consciousness

is a confounder. Namely, it does not directly influence the development of a disease in the

hospital, but creates a spurious correlation in the epidemiological data. On the contrary, if the

predictor was trying to answer the question which group should be more targeted by health-

related social advertising (urge to wash hands or wear masks), the same variable could be used

as an explaining mediator. Thus the men could be targeted more, proportional to a measured

effect of the health-consciousness gender-related bias.

In Table 12.3, we consider COVID-19 severity and mortality risk as a prediction question,

and healthcare resources allocation in the hospital as a decision based on the perceived level of

severity.
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Variable and Source Class Group Comments

Hormones [244, 249,

251, 252, 262]
Mediator sex-related Bio Var

Male hormone testosterone is associated

with increased vulnerability, whereas female

hormones are believed to play a protecting

role.

Immune response [249,

253, 262]
Mediator Sex-related Bio Var

More protective antibodies are formed in

women and they last longer.

Smoking and drink-

ing [242, 259]
Mediator

Gender-related Lifestyle

Var

Higher smoking and drinking rates among

men induce lung injuries that affect COVID-

19 vulnerability.

Stress [242] Mediator
Gender-related Lifestyle

Var

Men often are more exposed to stress at

work.

Hazardous industry [260,

261]
Mediator

Gender-related Lifestyle

Var

It is worth noting that in some Asian coun-

tries women constitute a majority of garment

and textile sector workers that are exposed

to unsafe work conditions and are reported

to be hit by the pandemics more than men.

Health behavior [242,

245, 258]
Confounder Gender roles related Var

Women are more health-conscious and com-

pliant with health recommendations

Exposure to

pathogens [254]
Confounder Gender roles related Var

In traditional societies women stay at home,

and therefore are less exposed to the virus.

Table 12.3: Causal explaining variables between gender/sex and COVID-19 severity, classified
into mediators and confounders. Mediators are the intermediate variables on the causal path
from sensitive attribute to the outcome. A confounder is a variable with incoming arrows in the
graph to both sensitive attribute and an outcome (a cause for both) and creates spurious non
causal relationship between the two.

From observational analyses and tables in previous section we can observe a set of factors

repeating as conditioning factors to explain the differences of sex and gender’s impact on COVID-

19 vulnerability. In this section we synthesize these factors to provide an overall aggregation of

COVID-19-related claims most stated by the literature on the impact of different variables on

COVID-19.

We are aware that other studies have considered other factors as important ones in the way

COVID-19 infection translates into a severe case, for instance, the blood group type [263–265],

vitamin D deficit [266, 267], or other genetic factors [268]. However, here we address only

gender or sex related factors and their roles in predicting COVID-19 vulnerability.

Next sections will elaborate on the causal tools available to further study and corroborate

such causal hypotheses and explanatory factors drawing on the body of analyzed literature.

12.5 Avoiding potential discriminating policies through a causal

approach

In general, fair decision should not be based on any knowledge of the sensitive attribute such

as gender, race, sexual orientation, etc. The case of medical diagnosis and treatment is an
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exception, because certain diseases and conditions are specific to a particular sex, for example

breast cancer which is almost exclusively characteristic for females. However, it is important to

evaluate the exact extent of how much a physical component of being a female reduces the risk

of mortality rather than gender related mediators or confounders. Current COVID-19 research

shows that the underlying causes of vulnerability are diverse and unequal in the causal quality.

As a consequence, this opens many pathways for the results to be distorted. Specifically, an

already widely accepted discovery of women being more resilient to the disease can be affected

by a spurious confounder or mediator which is not necessarily present in all women, and must

be considered individually. Next, we illustrate unintended negative consequences for women if

clinicians or governments base decisions on assumptions of greater resilience to the virus for

females without adjusting for individual and cultural differences. We demonstrate the urge for

more fine-grained causal analysis by performing mediation analysis on synthetic data generated

following the epidemiological research informed causal model.

12.5.1 Data Generation and Model

To illustrate different causal paths between gender and COVID-19 severity we construct a causal

model based on the discussed literature. We note that causal models can also be learned from

data directly with causal discovery methods such as [64, 114, 269]. However, expert knowledge

and previous research in the domain is important in informing what variables have to be included

in the data. Furthermore, a recent study [223] shows that different causal discovery algorithms

may not always agree on the resulting causal structure, therefore a combination of prior causal

knowledge (for example, from experimental research) and statistical methods can help to achieve

more robust results.

In Figure 12.4 we provide a Directed Acyclic Graph (DAG) to represent the causal structure

of the data generating process. A DAG is a graphical representation of independence properties

of joint probability distributions. It is constructed from the nodes that represent the variables and

the edges that denote conditional probability relationships. In our case the joint probability of

the variables in the DAG can be factorized as follows:

𝑃(𝐺, 𝑆, 𝐿, 𝐵, 𝐶) = 𝑃(𝐺)𝑃(𝑆 |𝐺)𝑃(𝐿 |𝑆)𝑃(𝐵|𝑆)𝑃(𝐶 |𝐿, 𝐵, 𝐺) (12.1)

Where 𝑃(𝐺) is the probability of observing (different) Gender Roles (Equal or Traditional),

𝑃(𝑆 |𝐺) is the probability of entering the set of samples where 𝑆𝑒𝑥 = 𝐹𝑒𝑚𝑎𝑙𝑒 or 𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒 is

observed within the infected patients given the value of Gender Roles, 𝑃(𝐿 |𝑆) is the probability

of unhealthy lifestyle given Sex, 𝑃(𝐵|𝑆) is the probability of biological factors (BioVar) serving

as a protection against COVID-19 complications given Sex, and 𝑃(𝐶 |𝐵, 𝐿, 𝐺) is the probability

of observing severe COVID-19 disease given BioVar, Lifestyle and Gender Roles. An important

difference between a Causal Graph in Figure 12.4, and a Bayesian Network or Markov Chain is

that parents of an edge are indicated based on assumed causal relationships [270] For example,

despite the symmetric conditional independence relationship between symptoms and a disease (it

is possible to predict symptoms given the disease or disease given the symptoms) the symptoms
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cannot be denoted as a cause for a disease (in nature the disease, for example the infection,

happens before the symptoms). As defined by [21], one of the most important properties of a

causal DAG is that all nodes are independent of their non-descendants given their (immediate

cause) parents. For example, given the model in Figure 12.4, COVID-19 Severity (S) becomes

independent of Sex conditioned on all the intermediate parents such as BioVar (B), Lifestyle (L)

and Gender (G) Roles. Formally:

𝑃(𝐶) ⊥⊥ 𝑃(𝑆) |𝑃(𝐵, 𝐿, 𝐺) (12.2)

The model indicates Sex as a "treatment variable" and COVID-19 as an "outcome" variable.

That means we will estimate the effect of Sex on COVID-19 severity through various mediating

and confounding paths. We must note that we include Sex, not Gender as a "treatment" variable,

because Sex is usually included in the healthcare records. We distinguish aspects of cultural

gender that are important for COVID-19 outcome as mediators and confounders and suggest that

they should be explicitly taken into account when performing the analysis.

The model includes three groups of variables that serve as mediators or confounders between

a sensitive attribute (sex) and the prediction (COVID-19 vulnerability) (Table 12.3). We consider

BioVar as biological, sex-related attribute or a set of attributes such as differences in hormones,

immune reactions and others, as one type of mediator variables that are constant (or almost

constant) for biological Sex. The next group of mediators, Lifestyle, are related to sensitive

attributes only through correlations between Sex and certain lifestyle choices such as smoking or

drinking habits. Those attributes are gender-related. They can vary from individual to individual

and cannot be automatically inferred from a Sex variable in the data.

Finally, the variable Gender Roles, account for spurious correlations between gender and

COVID-19 severity and are considered confounders. This group is less intuitive to understand,

because it is expressed with an incoming arrow from Gender Roles to the Sex variable, but Sex, as

any sensitive variable, is considered to have temporal priority so it cannot be caused by other

variables. However here we follow the Fairness Model by [199] and conceptualize Gender Roles

variables not as causing Sex in the real world, but as causing the proportion of certain Sex values

in the sample or a sampling bias. For example, traditionally, women are viewed as more careful

and compliant with healthcare recommendations. This reduces the risk of getting the disease

and the development of the disease under domestic treatment conditions. This results in less

female cases among hospitalized individuals. However, it being more cautious has no effect

on the further development of the disease when the patient is already in the hospital and is

taken care of by medical staff. We also include a variable 𝑌 in our model to express a policy or

treatment decision based on the predicted severity of the disease. We discuss the implications of

the different combinations of paths causing the outcome and particular decision in Section 12.5.3.

Note that we build our model only to illustrate different paths between Sex and the Severity of the

disease, but not to predict the actual severity in the individual. Therefore we do not include other

variables important for the COVID-19 outcome not related to Sex, such as non-gender-related

health conditions. Some of the variables could be related to race or social status, and a more

complex model is required to account for them. However, it goes beyond the scope of this article
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and could be foreseen for future work.

𝑆𝑒𝑥

P(S|G)
Gender Roles

P(G)

BioVar

P(B|S)

Lifestyle

P(L|S)

COVID Severity

P(C|B,L,G)

Figure 12.4: The model for the variables explaining the link between sex/gender and COVID-19
severity informed by the gender/sex related COVID-19 research.
P(G) - prior probability of observing a given Gender Role (Traditional or Equal). We make
no assumptions and consider the probability to be equal for both values. However the prior
probability is culture/country specific and can be informed from local sociological research. The
prior and conditional probabilities for Bernoulli variables are explained in equations 12.3-12.7.
The Lifestyle and BioVar variables are considered mediators (on the causal path from Sex to
COVID-19 Severity). The Gender Roles variable is considered a confounder (spurious effect
between Sex and COVID-19 Severity) and reads as “the probability of observing each value of
sex among hospitalized individuals and the probability of severe development of the disease
for each value of sex depending on the gender roles". The graph accounts for the fact that
culture-based gender roles may be causing a particular sex to behave in a certain way that affects
the way he/she gets exposed to COVID-19, and exaggerates the effect of sex on developing severe
COVID-19 disease. We thus set as confounder the variable Gender Roles (it is a back-door path
because it points both at the cause -Sex and the effect -COVID-Severity). Thanks to mediation
analysis, which is a known method in causality, we can find the extent to which variable Sex has
a direct and/or indirect effect on COVID-19-Severity only if we have real data. However, if the
synthetic data was true, we could assert that the largest effect is through the mediator biological
variables (Biovar: 0.521). However, a part of the effect is through the confounder variable
GenderRoles (0.0541) and through the Lifestyle mediator (0.148) variables 8 . In this case the
effect is not direct (because of the additional paths from Sex to Biovar and from Sex to Lifestyle)
and part of it is not-causal (because of the confounding path through gender roles), opening the
possibility for negative fairness implications, namely underestimating the COVID-19-Severity for
women.

The relationship between variables encoded in a DAG provides the means of recognizing

conditional independence and identifying the set of parameters needed for any given computa-

tion [271]. The model allows to identify the set of covariates for performing mediation analysis

to evaluate the effect of Sex on COVID-19 Severity in the synthetic dataset (faithful to the model).

The reason behind using synthetic data is twofold. First, the scenarios we are seeking to illustrate
8The path specific effects and the confounder effect add up to the total variation between severity for men and

women, which is between -1 and 1 (See Section 12.5.3, where we illustrate with examples how, under this scenario,
resource allocation without performing causal analysis would have negative fairness implications).
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are related to the impact on individuals and require individual level data which is not freely

available. Second, the purpose of this analysis is purely illustrative. Therefore the use of synthetic

data and metrics derived from it help to convey the message without the danger of implying

the usage of the results directly for clinical applications. The derivation of the real metrics for a

particular use case has to come from quality individual level data that is representative of the

local population and gender related cultural factors.

We generate binary data respecting the relations described in the model we built based on

our review of gender/sex related COVID-19 literature and the groups of mediating/confounding

variables we distinguish in Table 12.3. Figure 12.4 illustrates the dependencies between the

variables expressed as prior and conditional probabilities. Note that for the sake of simplicity of

illustration the possible variables from each group are expressed as one combined group variable.

The prior and conditional probabilities (𝑃(𝐺), 𝑃(𝑆 |𝐺), 𝑃(𝐿 |𝑆), 𝑃(𝐵|𝑆) and 𝑃(𝐶 |𝐵, 𝐿, 𝐺)) we

assign to the variables are not based on estimations from the data, but we respect the causal

directions described in the literature. For example, we set the probability of the protective

value of biological variables (BioVar) to be almost coinciding with the female sex (0.99%) and

non-protective value with male sex.

Similarly, the probability of healthy Lifestyle is higher for females, but it is less deterministic

than the biological factors [242, 259], Gender Roles give rise to lower probability to observe

females in the data (women get hospitalized less, perhaps because they take better precautions in

daily life), as well as increased probability of mild rather than severe COVID-19 disease (Severity

variable). Here we assume biological variables to have the largest overall effect on COVID-19

severity, lifestyle choices being the second, and gender role confounders as having the most

moderate effect. The real proportions in the effect on COVID-19 severity can only be derived

from a dataset including the relevant explaining variables for association between sex/gender

and COVID-19 severity. We hope this article will encourage a causal analysis by proposing the

model based on relevant research drawing attention to the relevance of causal knowledge for fair

and explainable predictions.

The data is generated as follows. For simplicity all variables are set to be binary Bernoulli

variables B with domain 𝑘 ∈ {0, 1} and parameters 0 ≤ 𝑝 ≤ 1 and 𝑞 = 1−𝑝. The initial probability

of the Gender Role variables being Traditional or Equal is set to be the same, namely 0.5 percent

for each value. It can be adjusted based on our belief about a particular society where the data is

collected.

𝐺𝑒𝑛𝑑𝑒𝑟𝑅𝑜𝑙𝑒𝑠 ∼ B(0.5) (12.3)

The Sex variable is set to be dependent on the Gender Roles variable. Namely, in the

Traditional setting, women commute and are believed to be more health-conscious [242, 245,

254, 258], therefore, we observe overall smaller number of infected or severely ill female

individuals. The conditional probabilities of Sex given Gender Roles reflect that hypothesis, but

in absence of research on exact proportions, the numbers used are fictional. Under equal Gender

Roles this effect is not observed, therefore the proportion of both sexes is equal.
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𝑆𝑒𝑥 ∼ (𝐺𝑒𝑛𝑑𝑒𝑟𝑅𝑜𝑙𝑒𝑠; 𝑝) =



𝑀𝑎𝑙𝑒 : 𝑝1 = 0.7, if Gender Roles = Traditional,

𝐹𝑒𝑚𝑎𝑙𝑒 : 𝑝2 = 1 − 𝑝1

𝑀𝑎𝑙𝑒 : 𝑝1 = 0.5, if Gender Roles = Equal.

𝐹𝑒𝑚𝑎𝑙𝑒 : 𝑝2 = 1 − 𝑝1

(12.4)

This means, that in case of Traditional Gender Roles the probability of getting infected (entering

the sample) is much higher for men, whereas in the equal society the probability of getting sick is

the same for both sexes.

The biological variables BioVar such as sex hormones or immune system specifics [244,

249, 249, 251–253, 262, 262] are treated as almost deterministically dependent on Sex. We

acknowledge, that more research on the individual fluctuations of those paramaters would benefit

the model.

𝐵𝑖𝑜𝑉𝑎𝑟 ∼ (𝑆𝑒𝑥; 𝑝) =

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 : 𝑝 = 0.01 if Sex = Male,

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 : 1 − 𝑝 if Sex = Female.
(12.5)

Unhealthy lifestyle 𝑣𝑎𝑙𝑢𝑒 = 1 (such as unhealthy lifestyle due to smoking, drinking, stress, etc.)

are set to be more likely for men than for women [242, 259]. The exact proportion is not

grounded in the literature and is for illustration purposes only.

𝐿𝑖 𝑓 𝑒𝑠𝑡𝑦𝑙𝑒 ∼ (𝑆𝑒𝑥; 𝑝) =

𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 : 𝑝 = 0.7 if Sex = Male,

𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 : 1 − 𝑝 if Sex = Female.
(12.6)

This would mean that probability to observe a male leading unhealthy lifestyle is 70% compared

to only 30% probability of encountering a female with the same unhealthy habits.

Finally, we define probability of COVID-19 Severity as a linear combination of the previously

discussed variables. The proportions of the impact of each group of variables in the equation is

motivated by the corresponding volume of the research supporting the hypothesis in the reviewed

literature at the time when this study is performed.Note that linearity of the effect is only an

assumption made for simplicity and does not imply the real interaction between different factors.

𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∼ (𝐺𝑒𝑛𝑑𝑒𝑟𝑅𝑜𝑙𝑒𝑠, 𝐵𝑖𝑜𝑉𝑎𝑟, 𝐿𝑖 𝑓 𝑒𝑠𝑡𝑦𝑙𝑒; 𝑝) =


𝑆𝑒𝑣𝑒𝑟𝑒𝐶𝑂𝑉𝐼𝐷 − 19 : 𝑝 = 0.2 × 𝐺𝑒𝑛𝑑𝑒𝑟𝑅𝑜𝑙𝑒𝑠 + 0.5 × 𝐵𝑖𝑜𝑉𝑎𝑟 + 0.3 × 𝐿𝑖 𝑓 𝑒𝑠𝑡𝑦𝑙𝑒

𝑀𝑖𝑙𝑑𝐶𝑂𝑉𝐼𝐷 − 19 : 1 − 𝑝.
(12.7)

This means that the probability of severe COVID-19 disease is defined by the linear combination

of the previously discussed variables.

However, the true functional form and exact proportions of the impact of each variable can be

learned from the complete epidemiological data and is subject to future epidemiological research.
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12.5.2 Mediation Analysis to analyse causal effects of sex on the severity of

COVID-19

To determine the proportion of the effect each of the variables has on the severity of the disease

we perform causal mediation analysis (Figure 12.6)9. Similarly to [255], where the proposed

confounder is the age, we analyze the total effect and the effect of the mediating variables under

the confounding variables of Gender Roles. We apply causal fairness notions such as Total Effect

(TE 10.1), Natural Direct Effect (NDE 10.2) and Path Specific Effects (PSEs 10.4) through each

mediator to determine the sex/gender bias in COVID-19 severity; namely, how much more likely

is to observe a severe COVID-19 case for a man than for a woman.

To compute path-specific causal effects (PSEs) we use the imputation-based estimation of

counterfactual outcomes implemented in R in the open-source Paths Library10 [273] designed

to trace causal paths from experimental and observational data. We use mediation analysis to

estimate the proportion of the causal effect from Sex to COVID-19 Severity that is explained by

one of the mediating variables. The imputation approach provides 𝐾 + 1 models that describe

the expectations E[𝑌 |X, 𝐴],E[𝑌 |X, 𝐴, 𝑀1], ...,E[𝑌 |X, 𝐴, 𝑀𝑘], where 𝐴 is a sensitive attribute, X is

a set of covariates, and 𝑀1, ..., 𝑀𝑘 are mediators [19]. For more extensive explanations of the

Causal Fairness Notions we refer the reader to the survey of Makhlouf et al. [19].

We also compute the Total Variation (another name is Statistical Disparity (SPD), Eq. 3.1). TV

is a non causal fairness metric, and thus, it does not distinguish mediators from confounders. Note

that in absence of confounders, TV and TE are equivalent. Hence, intuitively, the Confounding

Effect 11 (CE) can be estimated by subtracting the Total Effect from the Total Variation: 𝐶𝐸 =

𝑇𝑉 − 𝑇𝐸12. It is important to consider TV in our study as it corresponds to simple correlation

between the Sex/Gender and the COVID-19 severity. In contrast, the remaining metrics are more

fine-grained in considering a specific path between Sex/Gender and COVID-19 vulnerability.

All causal effects are obtained by subtracting the probability of severe COVID-19 being a man

from the same probability while being a woman. Hence, a positive value indicates men are more

likely to develop severe COVID-19 case, while a negative value indicates a COVID-19 severity

bias for women. A value of zero means that the probability of the outcome is equal for men and

women. A value equal to one or minus one would indicate extreme cases, where the probability

of severe COVID-19 disease is equal to one hundred percent for one group and zero for the other.

The Confidence Intervals (CI) for each value are calculated via bootstrapping methods included

in paths library and indicate the significance of the effect [274].All effects except Natural Direct

Effect indicate a severity bias for men (Table 12.4). The Natural Direct Effect is negative, close to

zero, and the corresponding CI includes zero 13 indicating that the detected effect between Sex

and COVID-19 severity is not significant.

9The code to generate the data and the analysis can be found in the reposi-
tory https://github.com/RuSaBin/Covid_Gender

10https://github.com/cran/paths We direct the interested reader to the comprehensive survey on the libraries to
perform mediation analysis in [272]

11Also known as Spurious Effect.
12This is not a formal definition, as the formula does not necessarily apply in non linear settings; however it is

sufficient for illustrating the confounding effect in our data.
13which means that it is either small negative, small positive, or zero.

https://github.com/cran/paths
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There is no Natural Direct Effect of Sex on COVID-19 because we assume that all the influence

of sex/gender on COVID-19 severity is explained by the mediating variables (Table 12.3), even

if some of them, such as BioVar (for example, female hormones) almost exactly correspond to

sex. We make the decision to separate sex in general from specific sex related bio variables,

to make it possible to account if needed, for individual fluctuations in those attributes and

emphasize the more detailed explainability of the effect of sex on the disease severity. Following

the interpretation of mediation analysis by [275] we discover that being a male increases the

overall risk (Total Effect Equation 10.1) of severe case of COVID-19 by 65.4%. Note that this is

different from the 70% estimated by the Total Variation (TV) before adjusting for confounding

variables. Since the Direct Effect of Sex on COVID-19 severity is negligible (0.015, Equation 10.2)

the causal effect that links Sex and COVID-19 severity is composed entirely of an indirect effect

through BioVar of 52.1% and an indirect effect unhealthy through lifestyle of 14.8%.

We illustrate the contrast between estimating Total Variation or performing Mediation Analysis

in Figure 12.5.

Let us say that we set a 10 hours minimum amount of hours of medical attention for

hospitalized COVID-19 patients as a baseline. We want to allocate additional hours proportional

to the risk of developing a severe COVID-19 outcome. In the case of computing Total Variation

of effect of Sex on COVID-19 severity Figure 12.5(b)) we would allocate male patients 70%

(𝑇𝑉 = 0.7081 in Table 12.4) more of time, namely 17 hours. However, in the second case

(Figure 12.5(c)), assuming that sex is almost a perfect proxy for biological variables (BioVar),

we allocate male patients only 50.2% more of resources, namely 15.2 hours (given that women

get 10 hours). Additional attention hours are allocated to smoking patients, regardless of sex,

proportionally to the effect of smoking on severe COVID-19 disease: 11.48 hours for female

smokers and 16.68 hours for male smokers (we add additional hours to the minimum based

on path specific effect through lifestyle 0.148 in Table 12.4 ). Note that the synthetic data is

generated assuming a conservative scenario, where the most significant part of the effect is due to

biological variables which are closely correlated with sex (Table 12.3). If a larger part of the total

effect was due to confounders such as gender roles relataed behaviour, the disparity between the

Total Variation and Total Effect would further increase.

The amount of the effect caused by lifestyle or BioVar mediating variables, or the Gender

Role confounding variable are not causally equivalent. In the following section we elaborate on

the differences between BioVar or Lifestyle mediating variables, such as smoking or drinking

habits and confounders responsible for spurious non causal effects, such as compliance with

the healthcare recommendations (the variables and their belonging to the groups are listed in

Table 12.3). We discuss the danger of failing to account for them in COVID-19 related policy

making .
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((a)) The decomposition of the To-
tal Variation of severe COVID-19
risk for males and females.

((b)) The allocation of hours
of medical care proportional to
the estimate of Total Variation,
namely if the minimum is 10h for
women, men are allocated 70 per-
cent more - 17 hours.

((c)) The allocation of hours of
medical care proportional to the
estimated path specific effects of
Sex on COVID-19 Severity esti-
mated by mediation analysis.

Figure 12.5: The Illustration of resource allocation according to different estimations of effect of
Sex on COVID-19 severity via mediation analysis.

Variable
Estimated

Effect

Standard

Error

CI Lower

95%

CI Upper

95%
Natural Direct Effect: 𝑆𝑒𝑥 → 𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 −0.015 0.035 −0.061 0.048
Path-Specific (Indirect) Effect : 𝑆𝑒𝑥 → 𝐵𝑖𝑜𝑉𝑎𝑟 →
𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦

0.521 0.039 0.498 0.609

Path-Specific (Indirect) Effect: 𝑆𝑒𝑥 → 𝐿𝑖 𝑓 𝑒𝑠𝑡𝑦𝑙𝑒 →
𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦

0.148 0.031 0.084 0.168

Total Effect: 𝑆𝑒𝑥 → 𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 0.654 0.008 0.644 0.668
Total Variation: 𝑆𝑒𝑥 → 𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 0.7081 - - -
Confounding Effect: 𝑆𝑒𝑥 ← 𝐺𝑒𝑛𝑑𝑒𝑟𝑅𝑜𝑙𝑒𝑠 →
𝐶𝑂𝑉𝐼𝐷𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦

0.0541 - - -

Table 12.4: Mediation Analysis of Causal Effects that illustrate the different paths of the influence
of sex on COVID-19 severity. All effects except Direct Effect indicate a severity bias for men
(positive values indicate severity bias for men, and negative values indicate severity bias for
women). The Direct Effect is close to zero, because we assume through the causal graph used as
prior model of the world that all the influence of sex/gender on COVID-19 severity is explained
by the mediating variables (either BioVar or Lifestyle variables). The effect caused by BioVar
mediating variable is higher than the effect caused by the Lifestyle mediating variable. The
last two columns of the table indicate lower and upper bounds for confidence intervals for the
estimated effect values.

12.5.3 Disparate impact of sex on COVID-19 treatment decisions

Decisions in real life based on biased data can create disparities in treatment or disparate impact

resulting in disadvantage for protected groups.

Disparate treatment is a variation in decisions for individuals that depends on the values of a

sensitive attribute. Disparate impact occurs when decision outcomes disproportionately benefit or

hurt members of certain sensitive attribute value groups [276].

The adequate evaluation on fairness of decisions depends on the situation where the data

analysis results will be applied. Here we would like to illustrate the evaluation of fairness in the
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Figure 12.6: The graphical summary of fairness notions, Total Effect (TE), Natural Direct Effect
(NDE), and Indirect Effects (NIE) on COVID-19 severity through biological (BioVar) and Lifestyle
variables along with their confidence intervals. These metrics indicate the difference in the
probability of a severe form of COVID-19 disease for men and women. Positive values indicate
that Sex = Male is associated with higher probability of severe COVID-19 disease than Sex
= Female. A negative value for NDE would mean the opposite, higher probability of severe
COVID-19 disease for Sex = Female, however the small value is interpreted as not significant. A
score of 0 means probabilities are equal. Confidence Intervals are calculated for regression based
estimates of mediation analysis metrics (NDE, TE, NIE).

COVID-19 pandemic context, by modeling a situation where inference about women being less

vulnerable to the virus is used for assigning a priority treatment to an individual (for example, a

longer hospitalization, closer monitoring or priority access to vaccines).

We assume that higher vulnerability or risk of severe symptoms for men is inferred from

observing more cases of hospitalized individuals in the electronic health records data. We

will illustrate different implications on fairness when classifying individuals based on Sex in

combination with three groups of variables: lifestyle mediators (Lifestyle), biological mediators

(BioVar) and gender-roles (Gender Roles) confounders In reality other variables not related to

sex, as well as other health condition indicating features, can influence individual vulnerability

to the virus. Thus, a thorough causal analysis becomes even more relevant: decisions should be

based on known causes of vulnerability rather than on a sensitive attribute.

Scenario 1: Disparate impact due to Gender Roles confounding variables

In this case the confounding variable Gender Roles indicates whether the member of a sensitive

group follows traditional or equal gender behaviour models. Under the traditional setting we

assume that women are more careful and compliant than men, which makes them less likely to

get COVID-19, as well as more likely to improve their condition when sick at home However,

once in a hospital, where the patient is taken care of by the medical professionals, the impact

of being more careful diminishes. Furthermore, individuals that do not follow the traditional
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gender-related behaviour might not fall into the same pattern. Failing to adjust the predictive

model to this confounder bias, would predict women to be more protected from the severe

COVID-19 disease forms than they really are. The Mediation Analysis on our synthetic data

shows that men are expected to be more vulnerable than women 0.05 points more than they

really are. Note that in reality the confounding bias can be much higher If the prediction is used

to, for example, allocate limited resources in the ICU, women would be discriminated by being

systematically denied priority treatment proportionate to the confounding effect.

Scenario 2: Negative impact due to not accounting for Lifestyle mediator variables

In this case the association between Sex and COVID-19 cases is created by the mediating

variable Lifestyle if it is not included in the data. Lifestyle choices such as smoking or drinking

have a valid causal effect on severeness of the disease and thus, assigning a priority treatment

to smoking individuals is adequate. However, if the prediction is based on Sex only, without

observing individual patients’ lifestyle habits, the women that are smokers would be wrongly

classified as more resilient than they really are. As a consequence, they would be denied a part of

necessary medical attention proportionate to the lifestyle Path-Specific Effect, i.e., 0.148 points

higher estimated probability of severe outcome for men than for women (Table 12.1).

Scenario 3: Using Biological mediators for sex-related COVID-19 severity prediction

Considering the biological sex-specific variables such as hormones, adaptive immune systems

and other variables, it is relatively safe to assume that their effect on the outcome of the disease

can be predicted from the Sex variable. This allows for a unique situation, where using sensitive

attributes is both allowed and necessary to ensure fair and accurate predictions. For example,

insisting on identical treatment for men and women could result in disparate impact on health and

mortality outcomes for men, proportionate to the BioVar Path-Specific Effect: it results in 0.521

percentage points higher probability of severe outcome for men (Table 12.4). Nevertheless, a

careful causal path analysis is required to distinguish biological sex-related attributes from gender-

related mediators or confounders that can bias the result and create unwanted discrimination at

the individual or population level. In addition, individual fluctuations in biological markers can

also supposedly affect constant sex-severity relationships through biological variables.

12.6 Discussion

The observed larger amount of hospitalized males in comparison with women, can be explained

with several mediating and confounding variables. For instance, men lifestyle is different from

women’s, which can be a reason that men are more affected by COVID-19 infection. Men are

more inclined towards drinking and smoking, which can evolve into lung infection which in turn,

can formulate a larger chance of COVID-19 infection.

Social and cultural differences are additionally affecting the COVID-19 pandemic. In this line,

another potential factor is the tendency of females to comply more with regulation, protecting

themselves more and wearing masks more. Women are typically in charge of ensuring health for

the whole family as part of their traditional reproductive work. Their greater compliance with

COVID-19 recommendations is a reflection of long-established gender social roles, which has
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also involved an increased burden for them during the pandemic [277]. However this behaviour

does not impact the further outcome of the disease once in the hospital. Furthermore, this

gender-related feature is not constant across individuals and populations.

Since the latest ML models such as deep networks do not correct against, but rather replicate

existing biases of the researchers who train them, the data they are fed with, the circumstances

of their testing, etc., we hope more effort is initially put into both performing representative data

collection and causal data analyses. Likewise these checks need to be present when developing

methods able to programmatically verify, flag, and reduce data and model biases. Stating the

verified tests and/or including our recommended potential mediators and confounders will

minimally set the state of affairs on the table, and therefore, highlight and make legal processes

stand up for process automation. As a positive side effect, AI-based accountability will be

more easily gained and traced. Fair data analysis is only the first step towards human-centric

societies endowed with responsible AI systems that serve citizens and governments make use of

data-informed policies more efficiently.



Part VI

Conclusions and Future Work
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In conclusion, our work encompasses various dimensions of fairness, causality, and privacy in

the context of machine learning and AI systems. Next, we provide our main findings and future

directions corresponding to different aspects of ethical AI:

Bias correction

We have introduced the BaBE framework, which leverages domain-specific knowledge to perform

data pre-processing, with the aim of achieving conditional statistical parity (CSP) and equal

opportunity (EO), even when the explaining variable is latent. An essential feature of our

approach is that it does not rely on the assumption of independence between the explaining

variable and the sensitive attribute, which is particularly important in healthcare applications.

One promising avenue for future research involves delving into the precision and accuracy of

estimation, examining how these factors depend on the probability distribution matrices P̂[𝐸 |𝑍, 𝑆]
and their relationship to the matrices representing external knowledge, P̂[𝑍 |𝐸, 𝑆]. Another task

is considering the multidimensional 𝐸 variable. Collaborations with domain experts to formalize

accurate measurements of these matrices will also be essential. We believe that our approach

can serve as a bridge for interdisciplinary collaboration between domain experts and ML fairness

practitioners, facilitating more equitable decision making in AI systems.

Understanding sources of algoritmic discrimination

We have attempted to distinguish sample size and underrepresentation biases and character-

ize how each of them influences algorithmic discrimination. In light of empirical analysis of

benchmark datasets and using off-the-shelf classification algorithms, we made three important

observations. First, discrimination metrics defined using 𝐴𝑈𝐶 and 𝑍𝑂𝐿 (which consider the

trade-off between precision and recall) are more resilient to sampling biases than discrimination

defined using 𝐹𝑃𝑅 and 𝑇𝑃𝑅 (equal opportunity). Consequently, in the presence of limited size

or imbalanced training data, it is recommended to use fairness metrics based on the trade-off

between precision and recall (e.g. equalized odds [14]) to reliably estimate discrimination.

Second, for regression problems, discrimination defined in terms of 𝑀𝑆𝐸 is significantly affected

by variance for extremely small or imbalanced training sets. Therefore, it is recommended to

treat discrimination values with caution in such cases. Third, in case of tabular benchmark

fairness datasets, contrary to the results in computer vision, collecting more samples of the

extremely underrepresented group according to the population distribution will typically amplify

discrimination rather than reducing it. This result suggests that for tabular data pre-processing

methods which equalize the sensitive distributions are preferable to collecting more data for

a minority group. We see a more in-depth comparison between underrepresentation bias in

computer vision, natural language processing, and tabular data as an interesting direction.

Causality and privacy

We draw attention to the effect of data privatization on the learnability of causal graph from data.

To allow the comparison between two distinct privacy notions, namely LDP and local 𝑑-privacy,
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we introduced a unified privacy measure based on an attacking perspective. Our exploration has

shed light on the advantages of local 𝑑-privacy for causal discovery. Future research directions

include extending the analysis to continuous data and understanding the impact of sample size on

output metrics. Finally, we aim to design a locally private mechanism tailored to causal discovery

tasks. We see the adoption of the 𝑑-privacy framework as a promising direction for this task.

Causality and legal practice

In the context of employing statistical causality tools for AI fairness, we consolidate three main

arguments: accurately measuring discrimination free from causal biases, obtaining deeper insights

through mediation analysis, and aligning fairness analysis with court practices. In addition, we

discuss the challenges of applying causality in practice and distinguish the availability of a causal

graph as an important step of causal analysis. We see a broader analysis of statistical causality in

relation to European AI legislation as an important direction for future research. A particularly

important direction is to propose and test practical approaches to apply causal analysis of the

decisions of ML algorithms, when the explainability of the decisions is limited.

Causal biases and accurately measuring fairness

We provide closed-form expressions of a specific class of biases, namely causal biases. By

analyzing the magnitude of bias in terms of the model parameters, we could establish an intuitive

interpretation of bias based on the causal graph structure underlying each type of bias. We aim

to further explore cases where multiple types of bias coexist. Another extension is exploring the

interaction bias in the context of mediation analysis.

Causality for explainability

We discussed several hypotheses for the higher male than female vulnerability to the COVID-19

virus. We proposed a framework for including mediator and confounder variables corresponding

to the hypotheses identified in the literature in fair and explainable prediction models. We

used a toy model to illustrate both conceptually and numerically the impact of failing to do so

on the fairness of the disease severity predictions. We acknowledge that conclusive research

explaining male vulnerability to COVID-19 virus is not yet available. Incorporating future research

on hormonal, inflammatory, immunological and phenotypical dimensions in severe COVID-19

disease is necessary for building fair, explainable and accurate models. Another interesting

avenue for future research is further exploring mediation analysis to separate gender and sex

variables in healthcare-related ML models. We believe that distinguishing biological and cultural

aspects of gender in a healthcare care context can help to achieve more precise predictions and

better generalizability of a model.

In summary, our work contributes to ongoing efforts to improve fairness, explainability, and

protect privacy in machine learning and AI systems. We propose insights and novel interdis-

ciplinary approaches for treating fairness and privacy, while being aware of the big picture of

ethical AI. We believe that a holistic approach to ethical AI represents an important direction of AI
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development, and our findings can guide future research and practices toward better data-driven

decision making.
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A
Appendix to Chapter 7

A.0.1 Additional plots for the experiments on synthetic data described in the body

of the paper

We recall that the sequence of values 𝑠𝑖 for the binary sensitive variable (group) 𝑆 are generated

by sampling from the Bernoulli distribution B(0.5). The domain of 𝐸 is set to be equal to [0, 99],
and to each of the elements 𝑠𝑖 in the data set we associate a value 𝑒𝑖 for the variable 𝐸 , sampled

from the normal distribution N(mean1, 𝑠𝑑) if 𝑠𝑖 = 1 and from N(mean0, 𝑠𝑑) if 𝑠𝑖 = 0. The mean

mean1 is set to be 60, while the value of mean0 varies through the experiments from 40 to 80.

The standard deviation 𝑠𝑑 is set to be 30. We keep the samples in the range of 𝐸 by re-sampling

the values that are lower than 0 or higher than 99. We also discretize them by rounding to the

nearest integer. Finally, to each pair (𝑠𝑖 , 𝑒𝑖) we associate a value 𝑧𝑖 for 𝑍 by applying a bias to

𝑒𝑖 with a certain probability. More precisely, 𝑧𝑖 = 𝑒𝑖 + (bias × 𝑒𝑖), where bias is sampled from

N(−0.2, 0.05) (negative bias) if 𝑠𝑖 = 0 and from N(0.2, 0.05) (positive bias) if 𝑠𝑖 = 1.

The boxplots for the various metrics are obtained by repeating the experiments 10 times, with

different sampling from the same original distributions.

The difference between the original and the estimated distributions is measured using the

Wasserstein distance. The results, for each group separately, and the two groups combined, are

shown in Figures A.1, A.2, and A.3 respectively.

We now compute by BaBE the empirical distributions 𝑃[𝐸 |𝑍, 𝑆]. We verify that these satisfy

the conditions for Method 1, and we apply this method to set the values of 𝐸 and 𝑌𝐸 for each

sample. Based on this, we compute various metrics for precision and fairness, and compare them

with the results obtained with the methods DI and NB. We also compare them with the prediction

based on 𝑍 , namely 𝑌𝑍 . We recall that the threshold for the decision is 𝐸 = 60. Namely, 𝑌𝐸 = 1 if

𝐸 > 60 and 𝑌𝐸 = 0 otherwise. The threshold is the same for 𝑍, i.e., 𝑌𝑍 = 1 if 𝑍 > 60 and 𝑌𝑍 = 0
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Figure A.1: The Wasserstein distance between 𝑃[𝑍 |𝑆 = 1] and 𝑃[𝐸 |𝑆 = 1] and between 𝑃[𝐸 |𝑆 =

1] and 𝑃[𝐸 |𝑆 = 1]
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Figure A.2: The Wasserstein distance between 𝑃[𝑍 |𝑆 = 0] and 𝑃[𝐸 |𝑆 = 0] and between 𝑃[𝐸 |𝑆 =

0] and 𝑃[𝐸 |𝑆 = 0]

otherwise.

Figures A.4, A.4 and A.6 show the accuracy of a prediction based on 𝑍 (with respect to the

true decision based on 𝐸), and the accuracy of the predictions obtained with the BaBE, DI, and

NB methods. We show the accuracy obtained separately for each group, and then for the two

groups combined.

Next, we show in Figures A.7 and A.8 the probabilities of positive prediction on admission

for each group, conditioned on 𝐸 = 55. Note that, because of the positive bias that we have for

group 1 in the data, the prediction based on 𝑍 is positive with a high probability for group 0,

whereas the true decision (one based on 𝐸) should be negative because the threshold is 𝐸 = 60.

The prediction based on the 𝐸 estimated by BaBE, on the other hand, is correct, in the sense that

the probability of a positive prediction is very small. For group 0 the bias is negative, hence the

prediction is negative also when is based on 𝑍 . Figure A.9 shows the Conditional Statistical Parity

Difference based obtained from these probabilities.

Finally, Figures A.10, A.11, and A.12 show the probabilities of positive prediction when the

true decision is positive, and the corresponding Equal Opportunity Difference. Note that the

prediction based on 𝑍 has high probability to be positive for group 1, but not for group 0. This is

due to the fact that the 𝑍 for group 1 has a positive bias w.r.t. 𝐸, while for group 0 the bias is

negative. Hence, for group 1, whenever 𝐸 is greater than the threshold (𝐸 ≥ 60), also 𝑍 is very

likely to be greater, while this is not the case for group 0. On the other hand, BaBE’s prediction is

based on the estimation of 𝐸 , and hence tends to be equal to the true decision.
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Figure A.3: The Wasserstein distance between 𝑃[𝑍] and 𝑃[𝐸] and between 𝑃[𝐸] and 𝑃[𝐸]
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Figure A.4: The accuracy of 𝑌𝑍 |𝑆 = 1 and 𝑌𝐸 |𝑆 = 1 w.r.t. 𝑌𝐸 |𝑆 = 1 (for 𝑍).
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Figure A.5: The accuracy between of 𝑌𝑍 |𝑆 = 0 and 𝑌𝐸 |𝑆 = 0 w.r.t. 𝑌𝐸 |𝑆 = 0.
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Figure A.6: The accuracy of 𝑌𝑍 and 𝑌𝐸 and 𝑌𝐸 w.r.t. 𝑌𝐸 (for 𝑍).
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Figure A.7: 𝑃[𝑌𝑍 = 1|𝐸 = 55, 𝑆 = 1] and 𝑃[𝑌𝐸 = 1|𝐸 = 55, 𝑆 = 1].
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Figure A.8: 𝑃[𝑌𝑍 = 1|𝐸 = 55, 𝑆 = 0] and 𝑃[𝑌𝐸 = 1|𝐸 = 55, 𝑆 = 0].
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Figure A.9: Conditional Statistical Parity Difference (CSPD55). We recall that for BaBE, DI and
NB, CSPD55 is defined as 𝑃[𝑌𝐸 = 1|𝐸 = 55, 𝑆 = 1] − 𝑃[𝑌𝐸 = 1|𝐸 = 55, 𝑆 = 0]. For 𝑍 , the definition
is similar, with 𝑌𝐸 replaced by 𝑌𝑍 .
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Figure A.10: 𝑃[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 1] and 𝑃[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 1].
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Figure A.11: 𝑃[𝑌𝑍 = 1|𝑌𝐸 = 1, 𝑆 = 0] and 𝑃[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 0].
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Figure A.12: Equal Opportunity Difference (EOD). We recall that for BaBE, DI and NB, EOD is
defined as 𝑃[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 1] − 𝑃[𝑌𝐸 = 1|𝑌𝐸 = 1, 𝑆 = 0]. For 𝑍 , the definition is similar, with
𝑌𝐸 replaced by 𝑌𝑍 .
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Appendix to Chapter 8

B.0.1 Additional plots for the magnitude of SSB and URB (Sections 8.5.1 and 8.5.2)
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Figure B.1: Additional plots for the magnitude of SSB and URB . Magnitude of sample size bias
(SSB) for increasing size of the training data.
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Figure B.2: Additional plots for the magnitude of SSB and URB. Underrepresentation Bias (URB)
for different ratios of sensitive groups. The training set size is fixed (1000). The horizontal bar
represents the same ratio as the population. The shaded sections indicate a focus on the extreme
proportions (less than 2% and more than 98%).
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B.0.2 Additional plots for the effect of collecting more samples on discrimination

(Section 8.5.4)
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Figure B.3: Additional plots for the effect of collecting more samples on discrimination. Discrimi-
nation values for the Dutch Census dataset while increasing the size of the protected group.
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Figure B.4: Additional plots for the effect of collecting more samples on discrimination. Discrimi-
nation value for the Adult dataset while increasing the size of the protected group.
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Figure B.5: Additional plots for the effect of collecting more samples on discrimination. Sensitive
feature (Sex) importance observed in the experiments of Section 8.5.4.
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Appendix to Chapter 9

C.1 Privacy Mechanisms

Figure C.1: Illustration of 4 multidimensional mechanisms discussed in this paper: 4D bounded
Geometric, 4x1D bounded Geometric, 4D 𝑘-RR and 4x1D 𝑘-RR.
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Figure C.2: Comparison between Manhattan (𝑝 = 1) and Chebyshev (𝑝 = ∞) distances for
bounded geometric mechanisms. Refer to Figure C.1 for euclidean (𝑝 = 2).

C.2 Additional Experiments

We perform experiments using real and synthetic data. Data sets are distinguished into two main

groups. The first category is pairwise data, which have two variables 𝐴 and 𝐵 where 𝐴 causes

𝐵 or 𝐵 causes 𝐴. The task is to determine the causal direction between the two variables. The

second category is the data that has more than two variables. The task here is to determine the

causal structure (the skeleton) and the causal direction between the pairs within this structure.

C.2.1 F1 Score results Sachs data set
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Figure C.3: Sachs data, all privacy methods, F1.
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((a)) F1 Scores on the Sachs data
set. Discretized, no noise.

((b)) Sachs data, Geo C-wise
mechanism, max probability
0.05.

((c)) Sachs data, Geo Comb
mechanism, max probability
0.05.

((d)) Sachs data, 𝑘-RR C-wise
mechanism, max probability
0.05.

((e)) Sachs data, 𝑘-RR Comb
mechanism, max probability
0.05.

Figure C.4: Sachs data, F1, 𝑝-max 0.05.
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((a)) Sachs data, Geo C-wise
mechanism, max probability 0.1.

((b)) Sachs data, Geo Comb
mechanism, max probability 0.1.

((c)) Sachs data, 𝑘-RR C-wise
mechanism, max probability 0.1.

((d)) Sachs data, 𝑘-RR Comb
mechanism, max probability 0.1.

Figure C.5: Sachs data, F1, 𝑝-max 0.1
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((a)) Sachs data, Geo C-wise
mechanism, max probability 0.5.

((b)) Sachs data, Geo Comb
mechanism, max probability 0.5.

((c)) Sachs data, 𝑘-RR C-wise
mechanism, max probability 0.5.

((d)) Sachs data, 𝑘-RR Comb
mechanism, max probability 0.5.

Figure C.6: Sachs data, F1, 𝑝-max 0.5
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C.2.2 SHD Score results Sachs data set

((a)) SHD Scores on the Sachs
data set. Discretized, no noise.

((b)) Sachs data, Geo C-wise
mechanism, max probability
0.05.

((c)) Sachs data, Geo Comb
mechanism, max probability
0.05.

((d)) Sachs data, 𝑘-RR C-wise
mechanism, max probability
0.05.

((e)) Sachs data, 𝑘-RR Comb
mechanism, max probability
0.05.

Figure C.7: Sachs data, SHD, 𝑝-max 0.05
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((a)) Sachs data, Geo C-wise
mechanism, max probability 0.1.

((b)) Sachs data, Geo Comb
mechanism, max probability 0.1.

((c)) Sachs data, 𝑘-RR C-wise
mechanism, max probability 0.1.

((d)) Sachs data, 𝑘-RR Comb
mechanism, max probability 0.1.

Figure C.8: Sachs data, SHD, 𝑝-max 0.1
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((a)) Sachs data, Geo C-wise
mechanism, max probability 0.5.

((b)) Sachs data, Geo Comb
mechanism, max probability 0.5.

((c)) Sachs data, 𝑘-RR C-wise
mechanism, max probability 0.5.

((d)) Sachs data, 𝑘-RR Comb
mechanism, max probability 0.5.

Figure C.9: Sachs data, SHD, 𝑝-max 0.5

C.2.3 F1 Score results Human Stature data set
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Figure C.10: Human Stature data, all privacy methods, F1.
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((a)) F1 Scores on the Human
Stature data set. Discretized,
no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.05.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.05.

((d)) Human Stature data, 𝑘-
RR C-wise mechanism, max
probability 0.05.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.05.

Figure C.11: Human Stature data, F1, 𝑝-max 0.05
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((a)) F1 Scores on the Human
Stature data set. Discretized,
no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.1.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.1.

((d)) Human Stature data, 𝑘-
RR C-wise mechanism, max
probability 0.1.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.1.

Figure C.12: Human Stature data, F1, 𝑝-max 0.1
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((a)) F1 Scores on the Human
Stature data set. Discretized,
no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.5.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.5.

((d)) Human Stature data, 𝑘-
RR C-wise mechanism, max
probability 0.5.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.5.

Figure C.13: Human Stature data, F1, 𝑝-max 0.5
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C.2.4 SHD Score results Human Stature data set

((a)) SHD Scores on the Hu-
man Stature data set. Dis-
cretized, no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.05.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.05.

((d)) Human Stature data, 𝑘-RR
C-wise mechanism, max proba-
bility 0.05.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.05.

Figure C.14: Human Stature data, SHD, 𝑝-max 0.05
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((a)) F1 Scores on the Human
Stature data set. Discretized,
no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.1.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.1.

((d)) Human Stature data, 𝑘-
RR C-wise mechanism, max
probability 0.1.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.1.

Figure C.15: Human Stature data, SHD, 𝑝-max 0.1
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((a)) SHD Scores on the Hu-
man Stature data set. Dis-
cretized, no noise.

((b)) Human Stature data, Geo
C-wise mechanism, max proba-
bility 0.5.

((c)) Human Stature data, Geo
Comb mechanism, max proba-
bility 0.5.

((d)) Human Stature data, 𝑘-
RR C-wise mechanism, max
probability 0.5.

((e)) Human Stature data, 𝑘-
RR Comb mechanism, max
probability 0.5.

Figure C.16: Human Stature data, SHD, 𝑝-max 0.5

C.2.5 F1 Score results Synthetic 5 nodes data set
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Figure C.17: Synthetic data, 5 nodes, all privacy methods, F1.
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((a)) F1 Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.05.

((c)) Synthetic 5 nodes data,
Geo Comb mechanism, max
probability 0.05.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.05.

((e)) Synthetic 5 nodes data,
𝑘-RR Comb mechanism, max
probability 0.05.

Figure C.18: Synth5 data, F1, 𝑝-max 0.05
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((a)) F1 Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.1.

((c)) Synthetic 5 nodes data,
Geo Comb mechanism, max
probability 0.1.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.1.

((e)) Synthetic 5 nodes data,
𝑘-RR Comb mechanism, max
probability 0.1.

Figure C.19: Synth5 data, F1, 𝑝-max 0.1
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((a)) F1 Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.5.

((c)) Synthetic 5 nodes data,
Geo Comb mechanism, max
probability 0.5.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.5.

((e)) Synthetic 5 nodes data,
𝑘-RR Comb mechanism, max
probability 0.5.

Figure C.20: Synth5 data, F1, 𝑝-max 0.5
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C.2.6 SHD Score results Synthetic 5 nodes data set

((a)) SHD Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.05.

((c)) Synthetic 5 nodes data,
Geo Comb mechanism, max
probability 0.05.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.05.

((e)) Synthetic 5 nodes data,
𝑘-RR Comb mechanism, max
probability 0.05.

Figure C.21: Synth5 data, SHD, 𝑝-max 0.05
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((a)) SHD Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.1.

((c)) Synthetic 5 nodes data, Geo
Comb mechanism, max probabil-
ity 0.1.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.1.

((e)) Synthetic 5 nodes data,
𝑘-RR Comb mechanism, max
probability 0.1.

Figure C.22: Synth5 data, SHD, 𝑝-max 0.1
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((a)) SHD Scores on the Syn-
thetic 5 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 5 nodes data,
Geo C-wise mechanism, max
probability 0.5.

((c)) Synthetic 5 nodes data,
Geo Comb mechanism, max
probability 0.5.

((d)) Synthetic 5 nodes data,
𝑘-RR C-wise mechanism, max
probability 0.5.

((e)) Synthetic 5 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.5.

Figure C.23: Synth5 data, SHD, 𝑝-max 0.5

C.2.7 F1 Score results Synthetic 10 nodes data set
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Figure C.24: Synthetic data, 10 nodes, all privacy methods, F1.
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((a)) F1 Scores on the Synthetic
10 nodes data set. Discretized,
no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.05.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.05.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.05.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.05.

Figure C.25: Synth10 data, F1, 𝑝-max 0.05
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((a)) F1 Scores on the Synthetic
10 nodes data set. Discretized,
no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.1.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.1.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.1.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.1.

Figure C.26: Synth10 data, F1, 𝑝-max 0.1
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((a)) F1 Scores on the Synthetic
10 nodes data set. Discretized,
no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.5.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.5.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.5.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.5.

Figure C.27: Synth10 data, F1, 𝑝-max 0.5
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C.2.8 SHD Score results Synthetic 10 nodes data set

((a)) SHD Scores on the Syn-
thetic 10 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.05.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.05.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.05.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.05.

Figure C.28: Synth10 data, SHD, 𝑝-max 0.05
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((a)) SHD Scores on the Syn-
thetic 10 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.1.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.1.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.1.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.1.

Figure C.29: Synth10 data, SHD, 𝑝-max 0.1
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((a)) SHD Scores on the Syn-
thetic 10 nodes data set. Dis-
cretized, no noise.

((b)) Synthetic 10 nodes data,
Geo C-wise mechanism, max
probability 0.5.

((c)) Synthetic 10 nodes data,
Geo Comb mechanism, max prob-
ability 0.5.

((d)) Synthetic 10 nodes data, 𝑘-
RR C-wise mechanism, max prob-
ability 0.5.

((e)) Synthetic 10 nodes data, 𝑘-
RR Comb mechanism, max prob-
ability 0.5.

Figure C.30: Synth10 data, SHD, 𝑝-max 0.5
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