
HAL Id: tel-04617881
https://theses.hal.science/tel-04617881v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Continuity in Type Theory
Martin Baillon

To cite this version:
Martin Baillon. Continuity in Type Theory. Logic in Computer Science [cs.LO]. Nantes Université,
2023. English. �NNT : �. �tel-04617881�

https://theses.hal.science/tel-04617881v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT

NANTES UNIVERSITE

ECOLE DOCTORALE N° 641
Mathématiques et Sciences et Technologies du numérique,
de l’Information et de la Communication
Spécialité : Informatique

Continuity in Type Theory

Continuité en théorie des types

Thèse présentée et soutenue à Nantes, le 21 décembre 2023
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Par

Martin BAILLON

Rapporteurs avant soutenance :

Thierry Coquand Full Professor, University of Gothenburg, Gothenburg.
Andrej Bauer Full Professor, University of Ljubljana, Ljubljana.

Composition du Jury :

Président : Benjamin Werner Directeur de recherche, INRIA, détaché à l’École polytechnique, Palaiseau.
Examinateurs : Thierry Coquand Full Professor, University of Gothenburg, Gothenburg.

Andrej Bauer Full Professor, University of Ljubljana, Ljubljana.
Théo Winterhalter Chargé de recherche, Inria Saclay.
Étienne Miquey Maître de Conférence des Universités, Institut de Mathématiques de Marseille.
Vincent Rahli Associate Professor, University of Birmingham, Birmingham.

Dir. de thèse : Assia Mahboubi Directrice de recherche, Inria Rennes-Bretagne-Atlantique.
Co-dir. de thèse : Pierre-Marie Pédrot Chargé de recherche, Inria Rennes-Bretagne-Atlantique.

Invité(s)

Ambrus Kaposi Associate Professor, Eötvös Loránd University, Budapest.

Doctoral thesis

Continuity in Type Theory
Pythias, trees and a lot of discussion

Martin Baillon

Acknowledgements

First and foremost, I should thank Assia and Pierre-Marie for these three years and three months of
supervision, providing both strong scientific and emotional support, as well as linguistic and political
enlightenment. As far as my thesis goes, I could not name a more iconic duo than you.

Regarding the manuscript, I am very grateful to the reviewers Andrej and Thierry for accepting to spend
some time reading this long document and for providing intuitions and remarks about this work. I would
also like to thank the whole jury: Ambrus, Vincent, Benjamin and Théo for their useful comments about
my PhD. I had very fruitful interactions with all of you, and my short stays in Birmingham with Vincent
and Ljubljana with Andrej helped me greatly in understanding continuity.

I would also like to thank Martín and Pierre-Évariste for being members of my Comité de Suivi Individuel,
you helped me take some steps back about my work and I am grateful for that. Moreover, a large part of
this thesis is based on some of Martín’s work, so I should thank you for this too.

Finally, I would like to thank all researchers I met during my thesis, be it in the Gallinette team, in a
conference somewhere or during a short stay in a lab. Type theorists are in my experience often sarcas-
tic, tongue-in-cheek, ready to discuss almost everything, possess a lot of good alcoholic beverages and
kindness in their heart. I am proud to be part of this great community.

Remerciements

Proximité géographique faisant foi, je tiens tout d’abord à remercier les différentes personnes à avoir
partagé mon bureau au cours de ces trois années de thèse. Au commencement était Meven, solide titu-
laire de la super-chaise-près-de-la-fenêtre, que je me suis empressé de récupérer à son départ. Il n’était
pas encore devenu le franc colocataire qu’il fut ensuite, mais il montrait déjà ses caractéristiques les plus
évidentes : un grand sourire, une maigreur aussi inquiétante que les slides de Mekaouche, un rire recon-
naissable entre tous, un amour incompréhensible pour le typage bidirectionnel et un certain manque de
suite dans les idées quand il s’agit de faire des reprises d’Iron Maiden. Merci à toi, senpai numéro 1.

Merci aussi à Pierre, cothésard éclectique, toujours prêt à proposer de nouveauxmodèles de calcul Turing-
complet, à improviser un jazz au Mélodica ou à venir assister à un cours de théâtre. J’espère que tu
trouveras un lieu où abriter l’incroyable énergie d’apprendre et d’enseigner dont tu resplendis. Merci
à Nils pour son apprentissage parcellaire du français, toi dont les “Bien ou bien ?” retentissent encore
dans les murs de ce bâtiment ; merci à Yann-le-mangeur-lent, à Josselin-le-catégoricien-shiny et à Sidney-
le-deuxième-mangeur-lent pour les discussions sur des vrais langages de programmation concrets de la
vraie vie véritable. La super-chaise-près-de-la-fenêtre sera bientôt libre, ne vous battez pas. Merci à Loïc
enfin, senpai numéro 2, prophète de l’égalité observationnelle, toi plus pâle que la neige et plus solide
que cette métaphore, acteur d’une journée héroïque passée à écrire sous forme de vagues et contempler
des canards. Clairement la meilleure Ascension possible. Hâte de venir te voir dans ton igloo nordique
un de ces jours.

Merci aussi à tous les stagiaires et doctorants en visite venus animer ce bureau, Arthur, Peio, Thomas,
Robin, Tomas, Tomas (le deuxième surtout). Merci à Théo de nous avoir laissé te pousser en haut de la
colline d’Édimbourg, le paysage était sublime et on s’est bien amusé.

Dans l’enfilade de bureaux adjacents du bâtiment 11, j’appelle Enzo à la barre. Merci à toi, chair de ma
chair, frère de thèse, indépendantiste breton diplômé avant moi à la photo finish. Ton apparition, café
à la main, dans l’encadrement de la porte pour parler de tes derniers algorithmes paramétriques était
toujours une éclaircie dans la journée la plus sombre, et notre périple écossais, en randonnée dans les
Highlands, debouts dans un train surchauffé ou à te nourrir à la becquée covidé dans ta chambre, reste
un des meilleurs souvenirs de 2022. Toi aussi tu pars t’enterrer dans le froid et la neige, drôle d’idée à
mon avis mais qui suis-je pour critiquer les choix d’un docteur ? Merci à toi, Hamza, grand connaisseur
demusique classique et détenteur d’un tapis du plus bel effet ; j’avoue que je n’ai jamais compris ton sujet
de thèse, merci d’avoir été moins nul et de t’être intéressé au mien. Merci à Nicolas, figure tutélaire, chef
d’équipe en marcel et tongs, d’une disponibilité à toute épreuve, merci à Kazuhiko pour m’avoir montré
comment faire du vrai café, à Kenji-le-brûleur-de-blattes pour les discussions autour d’extensions de
Kan dans une direction quelconque et de splits dans des théories “à poils bleus”, à Mathieu pour les
éclairages mathématico-mathématiques sur la continuité, merci à Yannick pour m’inculquer un peu de
rigueur dans ma rédaction de thèse et pour demander when is the party? à la fin du processus, merci à
Koen, Yee Jian et Nicolas. Merci à Xavier désormais sans bureau pour ton point de vue intéressant sur
les notations et les débats que tu suscites de temps en temps sur le canal doctorants.

Enfin, dernier cité du bâtiment 34mais pas lemoindre,merci Pierre-Marie pour avoir été Pierre-Marie du
début à la fin, avec tes imitations d’accents indiens aux subtilités inaudibles pour nos oreilles d’européens
sourdingues, ta théière à piston qui se décompose jour après jour et tes statégies politiques inaccessibles
au tout-venant.Merci d’avoir été unmauvais encadrant de thèse quim’a laissé écrire les pires jeux demots
dans mon manuscrit, pour ton amour du Sur Mesure et ta chartreuse toujours disponible en séminaire
au vert, pour tes histoires de voiture perdue en Espagne les répliques de la Classe Américaine que tu
cries dans les couloirs et les menaces de mort sur ma tête que tu échanges avec Andrej. Merci pour les
mouvements de doigts que tu fais lorsque tu parles des catégories ; rarement les mathématiques auront
été aussi proches de la pantomime.

4

Par la fenêtre, j’aperçois de l’autre côté de la passerelle le bureau d’Assia, Guilhem et Guillaume. Merci
Guillaume pour tes remarques caustiques, pour toutes les fois où tu m’as caché ma sacoche de vélo et
pour m’avoir montré que certaines personnes faisaient n’importe quoi avec OCaml, merci Guilhem pour
ta bonne humeur et ton courage lorsqu’il a fallu monter au front contre Mekaouche-le-terrible. Merci
à Assia pour m’avoir donné un sujet de stage de théorie des types alors que je t’avais envoyé un mail à
propos d’induction sur les réels, merci d’avoir permis qu’une thèse commencée en plein confinement
se passe aussi bien. Merci d’avoir répondu à mes questions, d’avoir posé à Pierre-Marie les questions
nécessaires pour débroussailler sa parole touffue, de m’avoir abrité des tempêtes administratives, de
m’avoir dit de rédiger quand il fallait rédiger et d’arrêter de rédiger quand il fallait arrêter de rédiger,
merci d’avoir réservé les salles sur GRR et de m’avoir proposé de rester comme ingénieur de recherche
après ma thèse. Merci de ne pas avoir compté tes heures lorsque tu devais gérer à la fois ta recherche,
des enfants qui s’ingénient à tomber malade au pire moment et deux thésards au bord du précipice.
Visiblement je ne suis pas le premier doctorant que tu encadres qui parte faire des bêtises artistiques
une fois diplômé ; crois bien que ce n’est pas parce que tu nous fait peur.

Toujours au sein du bâtiment 11, merci à Gaëtan pour tes éclairages sur le fonctionnement de Coq, merci
à Matthieu - le seul vrai rockeur de Gallinette - pour les parties de flipper endiablées, les cours de Forró,
pour avoir nommé ta fille Cléopâtre et pour ta gentillesse, tout simplement. Merci à Anne-Claire pour
les multiples remboursements de frais de mission qui m’ont rendu riche aux dépens du contribuable,
merci à Virginie pour ses éclairages administratifs sur le fonctionnement complexe de l’université.

Quittant le labo par le nord, on atteint rapidement le gymnase de la Barboire, qui abrite l’une des équipes
de volley les plus admirables que j’aie rencontrées. Merci à Alice et Alex les capicoachs, à Tom qui smashe
super bien, Dimitri le réparateur de grues, Arnaud le protecteur de biodiversité, Orama l’archéologue,
Corentin le sudiste, Monika et Bastien pour avoir formé une équipe de RAV4 d’exception. Et bien sûr,
merci à Audrey la boîte aux lettres, Enora la puncheuse, Ilaria vai vai vai, Simon le bourrin, Marine la
gagneuse, Paul le contreur fou, Laure l’entorse aux règles et Tom le footeux pour avoir repris le flambeau
et être devenus une si belle équipe de raviolis.

Merci aux participants de mes autres activités que je ne pourrai bientôt plus appeler “extra-scolaires”,
Nina, Mathieu, Lucie et les autres d’avoir joué Shakespeare avec moi, et merci à Marie, Claire, Carine,
Aurore, Cyrille, Tom et Jade pour ces soirées danse endiablées.

Ce tour rétrospectif de la ville de Nantes ne serait pas complet sans un immense merci aux colocataires
qui se sont succédés au sein de La Boulange. Merci à Meven, à nouveau, membre fondateur de cette
colocation, merci à Joanne pour ton intégrité, ta gentillesse, les footings-crêpes-nems du jeudi matin
et les longues discussions sur le monde merveilleux de la fantasy. Ce chapitre 1 est pour toi, bien sûr,
tu sauras l’apprécier. Merci à Léo pour avoir été le coloc le plus constant, mi-hobbit mi-gobelin, pour
m’avoir indiqué mille bons plans nantais et m’avoir permis de rencontrer moult personnes fascinantes.
J’espère que la vie en éco-lieu se passera bien. Merci à Léa, propriétaire mais toujours révolutionnaire, de
te battre pour rallumer les étoiles, merci à Élisa d’avoir monté Les couilles sur la table au fond de la grotte
du Fluffystan, merci à Emma d’avoir apporté sa bonne humeur depuis Marseille, à Natan d’avoir tenté
de me vendre le SNU et à Elsa de t’accrocher bon an mal an à ce service civique aux airs de torture. Merci
à Lara d’avoir peint le mur en bleu, de m’avoir initié à la course et aux gâteaux citron-basilic, d’avoir joué
au foot comme on conduit un TGV et d’avoir une petite soeur encore plus cool que toi ; merci, enfin, pour
ces quelques mois passés ensemble et hâte de venir te voir à Dresde.

Nantes n’étant, finalement, qu’une banlieue un peu éloignée de Paris, il est temps d’aborder une nouvelle
salve de remerciements à tous les parisiens que j’ai pu côtoyer durant cette thèse. En commençant par
les cinéastes, merci d’abord à Pierre, fidèle compagnon de route artistique, homme aux multiples talents,
auteur, réalisateur, acteur, chanteur, guitariste et même développeur web à ses heures perdues. Merci de
m’avoir attendu ces trois ans, ça y est c’est fini, promis, on va pouvoir faire des films. Merci à Claire le
koala philosophe pour ta production industrielle de mèmes qui m’a maintenu à flot lors de la rédaction,
pour avoir essayé de lire ma thèse et m’avoir fait bénéficier de ton vaste empire immobilier. Merci pour

5

avoir cité régulièrement Skoll, le Lillet Tonic et Paul Schräder, ta sainte trinité à toi. Merci surtout pour
avoir été et être toujours la personne la plus stylée de la vie en jaune. Merci à Clélia, enfin, pour apporter
un peu de vie dans ce groupe de penseurs dépressifs et pour ne pas m’avoir tué à de multiples reprises
lorsque tu en as eu l’occasion. Merci à Paco d’avoir filmé quand on lui demandait de filmer, à Roman
d’avoir été notre sherpa tout autant que notre script doctor, à Marie d’être la meilleure personne sur
terre et à toute l’équipe de L’entorse pour nous avoir permis de faire ce film qui nous ressemble.

Merci à Cécile et Guillaume pour tous les repas dans votre appartement, pour le confinement dans un
chalet montagnard et pour avoir prévu votre mariage après ma soutenance, c’est quand même plus sim-
ple pour s’organiser. Merci à Grégoire et Nico pour les randos-vélos, à Antoine et Guillaume pourm’avoir
donné une raison de revenir à Massy-Palaiseau, et plus généralement à toute la section bad de rester ce
groupe d’amis sur lesquels compter. Merci à FMF, Maverick et toute la lignée pour les Xiao Long Bao
et merci à Charles de filer du boulot à Persistance sous le SMIC horaire. Tu es le destinataire du plus
long poème que j’ai écrit, et tu en mérites chaque ligne. Merci à Lucas de rester la personne la plus mus-
clée que je connaisse, à Armand d’être un frère d’armes inamovible, à Louis de nous rappeler chaque
jour l’absence d’analyse modale chez les ingénieurs italiens, à Meryem d’être la meilleure respo archives
que le monde ait connu et à tous les membres du JTX d’avoir fait des vidéos de qualité discutable mais
toujours avec enthousiasme. Merci à Sylvestre pour ton amour inconditionnel du badminton, pour les
tournois partout en France et les conseils que tu m’as prodigués. Hâte de te voir à Berlin ! Merci aussi
à tout le reste de l’EBPS12, Florian, Théo, Thomas, Camille et tous les autres de partager votre passion
avec bonne humeur.

Merci à tous les participants des différents confinements, qu’ils soient dans les Alpes ou en Charentes-
Maritimes, pour avoir fait de cesmois de restrictions desmoments hors du temps, àmi-chemin du travail
et des vacances.

Merci à Antonin d’avoir fait ma thèse à ma place sans que personne ne s’en rende compte, et pour l’achat
prochain d’une Switch.

Merci à Sylvie, Violette et Maud pour votre enthousiasme à la vue de la moindre brocante et pour avoir
tenté de me donner du style.

Merci à mes parents de m’avoir toujours soutenu, à mon frère de m’encourager à attaquer en justice tout
ce qui bouge, et à mes grands-parents qui sont, ou seraient, j’espère, fiers de moi.

Merci aux Halogen Mushrooms, aux Brews Brothers et à tous les autres.

Merci à tous les professeurs qui m’ont transmis leur amour du savoir au cours de mes années d’études,
Mme Giboraud, M. Deseez, Mme Plassard, M. Combault, Mme Kolago, M. Real, M. Taïeb, M. Bournez et
tous les autres.

Enfin, je n’oublie pas qu’en tant qu’homme blanc de famille aisée, parisien, cisgenre et hétérosexeuel,
j’étais dans une position privilégiée pour faire cette thèse. Espérons qu’un jour il en soit autrement.

6

Ainsi, en Coq, une preuve de
l’existence d’un entier vérifiant
une certaine propriété donnera ac-
cès à la valeur concrète de cet en-
tier.

[115]: Pédrot (2020), “Russian Con-
structivism in a Prefascist Theory”
[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

Résumé en français

Des types et des hommes La théorie des types de Martin-Löf (MLTT)
est un système formel dont les objets peuvent être interprétés indif-
féremment comme des preuves de théorèmes ou des programmes in-
formatiques. Par exemple, étant donnés deux objets 𝐴 et 𝐵 (appelés
types), l’objet

𝐴 → 𝐵
peut être compris comme le type des fonctions de𝐴 dans 𝐵, ou comme
le type des preuves que 𝐴 implique 𝐵.
En ce sens, la théorie des types est à l’avant-garde d’un domaine de
recherche en logique informatique qui prend pour paradigme l’idée
fondatrice qu’un théorème est un type et une preuve est un programme.
Ce prisme de lecture a pour nom, la correspondance preuve-programme,
ou encore l’isomorphisme deCurry-Howard, du nomde ses découvreurs,
Haskell Curry et William Alvin Howard.

Cependant, si cette correspondance s’est révélée un outil conceptuel
fécond qui amené à de nombreuses découvertes et inventions, lamoin-
dre n’étant pas les assistants à la preuve (comme Coq ou Agda), elle
n’est à ce jour pas complète et se heurte à quelques principes logiques
dont le comportement calculatoire est difficile à définir. Ces principes
logiques sont appelés classiques et s’opposent aux principes construc-
tifs, dont le comportement calculatoire est bien connu.

Les plus célèbres des principes classiques sont sans doute l’axiome du
choix et le tiers-exclu, aussi appelé élimination de la double-négation, ou
encore preuve par l’absurde. C’est ce dernier qui permet, à partir d’une
preuve qu’il est impossible que les licornes n’existent pas, de déduire
que les licornes existent. Cependant, on ressent bien dans cet exem-
ple le caractère non constructif de cette preuve: les licornes existent,
quelque part, mais nous ne savons pas où : leur existence a quelque
chose de vaporeux, d’éthéré, qui convient mal à l’utilisation dans des
calculs sur machine.

Or, il y a aujourd’hui, du point de vue d’un mathématicien, deux in-
térêts principaux aux assistants à la preuve : premièrement, ils sont
capables de certifier qu’une preuve est correcte. Deuxièmement, par
le biais de la correspondance preuve-programme, cette preuve corre-
spondra à un calcul, et on peut l’utiliser pour obtenir des résultats con-
crets. Si l’on ne se soucie que de la première propriété, on peut certes
rajouter le tiers-exclu comme un axiome, au prix d’une utilisation un
peu plus fastidieuse du logiciel. Mais si l’on souhaite bénéficier des
deux avantages suscités, les principes classiques sont pour l’instant à
bannir.

Tout espoir n’est pas perdu, pour autant. Des travaux récents [115,
121] ontmis en lumière la relation qui existe entre les principes logiques
classiques d’une part, et les effets en programmation d’autre part. Les
effets sont des outils de programmation qui ne se contentent pas de
calculer une valeur et de la renvoyer, mais qui jouent sur l’état global
du logiciel : on peut citer la levée d’exceptions, l’écriture dans un jour-
nal (logbook), l’affichage à l’écran (print), l’interaction avec un utilisa-
teur ou un autre programme, la sauvegarde d’un état du système avec

7

possibilité de revenir à cet état plus tard (backtracking)... Pour la plu-
part de ces effets, un équivalent logique a pu être trouvé, souvent une
variante affaiblie du tiers-exclu ou de l’axiome du choix. Leur intégra-
tion au sein de Coq ou d’Agda n’est pas aisée, mais l’espoir d’obtenir
un jour un assistant à la preuve capable de calculer avec n’importe
quelle preuve, ou de vérifier n’importe quel programme, n’est pas
mort.

Bien sûr, intégrer des effets en théorie des types est également intéres-
sant en soi : du point de vue du développeur, Coq est un langage
qui permet de spécifier très finement le comportement désiré du pro-
gramme que l’on est en train d’écrire. Malheureusement, il ne permet
de vérifier que des programmes sans effets, qui sont pourtant utilisés
partout dans les logiciels de la vie de tous les jours. Intégrer les effets à
Coq permettrait de certifier sans bug de larges pans de l’informatique,
augmentant la confiance que l’on peut raisonnablement accorder à
des logiciels qui, pour certains, mettent en danger des vies humaines
lorsqu’ils fonctionnent mal.

Le chapitre 1 raconte la théorie des types, ses particularités et son his-
toire. On y propose notamment en section 1.4 des exemples concrets
d’effets auxquels un contenu logique a pu être associé.

L’hypothèse du continu C’est dans ce cadre que nous nous intéres-
sons dans cette thèse à la continuité, que nous prenons comme un ef-
fet potentiellement porteur d’un principe logique semi-classique, que
nous espérons intégrer à terme dans la théorie des types.

La continuité d’une fonction

𝑓 ∶ (ℕ → 𝔹) → ℕ

énonce que 𝑓 ne peut interroger qu’un nombre fini de fois son argument
avant de renvoyer une valeur. Prenons le temps de détailler cet exemple
: le type de 𝑓 est

(ℕ → 𝔹) → ℕ.
C’est donc un type fonctionnel de la forme 𝐴 → 𝐵 comme expliqué
plus haut. En l’occurence,

𝐴 ≔ ℕ → 𝔹 et 𝐵 ≔ ℕ.

Cela signifie que 𝑓 est une fonction qui, étant donné un argument

𝛼 ∶ ℕ → 𝔹,

produira un entier 𝑓 𝛼 ∶ ℕ. L’argument 𝛼 est lui-même une fonction,
qui étant donné un entier 𝑛 ∶ ℕ, renvoie un booléen, c’est à dire une
valeur de vérité true ou false. En termes mathématiques, on dira que
𝑓 est une fonction de l’espace de Cantor dans les entiers.

Un exemple concret d’une telle fonction serait

𝑓 ≔ 𝛼 ↦ if 𝛼 2 then O else 1.

On peut représenter graphiquement cette fonction sous cette forme
:

8

En théorie des types, on parle de
méta-théorie pour désigner le sys-
tème logique externe, celui qu’on
utilise pour raisonner sur Coq
depuis notre cerveau de logicien.

2

O 1

true false

Une telle représentation graphique s’appelle un arbre de dialogue. Ici,
l’étiquette 2 à la racine de l’arbre indique que 𝑓 interroge son argu-
ment 𝛼 sur 2. Puis, les deux réponses possibles de 𝛼 sont représentées
par les deux branches de l’arbre. Enfin, les valeurs de retour de 𝑓 sont
données par les feuilles de l’arbre, à savoir O et 1.

On dit qu’une fonction est continue si elle peut être représentée par
un tel arbre, tel que toutes les branches de l’arbre soient finies. Un cas
typique de fonction non continue serait :

𝑓 ≔ 𝛼 ↦ ℎ 𝛼 O
where

ℎ ≔ 𝛼, 𝑛 ↦ if 𝛼 𝑛 then 𝑛 else ℎ 𝛼 (𝑛 + 1).

Ici, 𝑓 renvoie la première valeur pour laquelle 𝛼 est vraie.Malheureuse-
ment, si 𝛼 est la fonction constante qui renvoie toujours false, le cal-
cul bouclera indéfiniment. Un embryon de représentation graphique
serait celui-ci:

O

O 1

1 2

2 ...

true false

true false

true false

La branche la plus à droite est infinie, 𝑓 n’est donc pas continue.

Une des particularités des assistants à la preuve comme Coq ou Agda
est que toutes les fonctions que l’on peut écrire dans ces logiciels ren-
voie une valeur en un tempsfini. Intuitivement, cela signifie que toutes
les fonctions définissables en Coq sont continues. On pourrait espérer
profiter de ce fait pour récupérer des principes logiques proches du
tiers exclu. Ainsi, un principe équivalent à ce dernier est l’élimination
de la double négation. Informellement, ce principe énonce que si une
affirmation n’est pas fausse, alors elle est vraie. En Coq, étant donné
un type 𝐴, cela s’écrit

((𝐴 → ⊥) → ⊥) → 𝐴.

Le type⊥ est le type vide, qui ne contient aucun élément, et la négation
d’une proposition 𝐻 s’écrit 𝐻 → ⊥. L’intuition est que nier 𝐻 revient
à dire “si 𝐻 est vrai alors je peux prouver n’importe quoi, même la
présence d’un élément dans le type vide”.

Or, en regardant attentivement le type de la double négation de 𝐴,

(𝐴 → ⊥) → ⊥,

9

[52]: Escardó et al. (2015), “The Incon-
sistency of a Brouwerian Continuity
Principle with the Curry-Howard In-
terpretation”

on peut voir qu’il est formé de la même manière que

(ℕ → 𝔹) → ℕ,

le type de notre fonction 𝑓 donnée en exemple précédemment. On
peut donc parler de continuité pour les fonctions qui prennent en en-
trée une preuve de 𝐴 → ⊥ et renvoient en sortie une preuve de ⊥. De
la même façon que pour 𝑓 , étant donné

𝐹 ∶ (𝐴 → ⊥) → ⊥,

on peut dessiner l’arbre de dialogue de 𝐹 et en déduire un habitant de
𝐴. Il y a essentiellement deux possibilités :

▶ Soit 𝐹 n’interroge pas son argument 𝛼 ∶ 𝐴 → ⊥ et produit di-
rectement une preuve 𝑒 ∶ ⊥, auquel cas son arbre ressemble à
ceci :

𝑒 ∶ ⊥
Or, ⊥ est le type vide ; si 𝐹 est capable de construire un élément
de ⊥ sans utiliser son argument c’est que notre théorie est inco-
hérente. On peut donc y prouver n’importe quoi, et en partic-
ulier le fait que 𝐴 est habité;

▶ Soit 𝐹 interroge son argument 𝛼 ∶ 𝐴 → ⊥ sur un certain 𝑎 ∶ 𝐴,
auquel cas son arbre de dialogue ressemble à cela :

𝑎

...
Or, nous cherchons à produire un habitant de 𝐴 et 𝐹 nous en
fournit un sur un plateau. Nous nous contentons donc d’utiliser
𝑎 ∶ 𝐴.

Ainsi, en utilisant la continuité de toutes les fonctions définissables en
Coq, on peut espérer dompter le tout-puissant tiers-exclu. Le chapitre
2 détaille les différentes définitions historiques de la continuité, leurs
différences et leur puissance logique respective. La définition de la
continuité par arbres de dialogues y est donnée plus formellement,
et une version plus précise de la preuve ci-dessus y est proposée en
section 2.4.

Ladite preuve présente cependant deux limites. Tout d’abord, nous
n’avons proposé ici qu’un raisonnement intuitif, et il manque encore
beaucoup de travail pour transformer cela en une preuve véritable.
D’autre part, la continuité de toutes les fonctions définissables en Coq
est une connaissance que nous avons d’un point de vue externe à Coq.
Or, depuis le théorème d’incomplétude deGödel, on sait que certaines
propriétés d’une théorie qui sont prouvables depuis l’extérieur (la co-
hérence, dans le cas de Gödel), ne sont pas forcément vraies vues de
l’intérieur (dans le cas du théorème d’incomplétude, on peut prouver
depuis l’extérieur qu’une théorie est cohérente, mais si une théorie
suppose sa propre cohérence, elle devient aussitôt incohérente).

En l’occurence, Escardó et al [52] ont prouvé que supposer en Coq que

10

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[116]: Pédrot et al. (2020), “The fire tri-
angle: how to mix substitution, depen-
dent elimination, and effects”
[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

toutes les fonctions
𝑓 ∶ (ℕ → ℕ) → ℕ

définissables enCoq étaient continuesmenait à une incohérence. Cette
preuve est reproduite dans le chapitre 2, en section 2.4.

Demanière intéressante, ce résultat négatif intervient alorsmême que
des preuves formelles existent d’un point de vue externe que toutes
les fonctions

𝑓 ∶ (ℕ → ℕ) → ℕ
définissables dans des systèmes plus petits que Coq sont continues
[51].Cela nous invite à pousser nos efforts dans deux directions :

▶ essayer d’élargir à Coq entier la preuve externe que toutes les
fonctions sont continues;

▶ essayer de comprendre quelles sont les conditions sur 𝐴, 𝐵 et 𝐶
pour qu’on puisse supposer en Coq que toutes les fonctions

𝑓 ∶ (𝐴 → 𝐵) → 𝐶

sont continues.

Dans cette thèse, nous nous sommes principalement attaqués au pre-
mier de ces deux points. Le chapitre 3 étend la preuve d’Escardó [51]
que toutes les fonctions définissables en System T sont continues à
un système logique plus complexe, appelé Baclofen Type Theory (BTT).
Nous utilisons pour ce faire un certain nombre d’outils développés
par Pédrot et Tabareau [116, 121] sur l’intégration d’effets en théorie
des types dépendants. Nous obtenons une preuve externe que toutes
les fonctions

𝑓 ∶ (ℕ → ℕ) → ℕ
définissables en BTT sont continues, mais BTT n’est pas le système
logique implémenté par Coq. Il en diffère sur un point crucial : la
preuve par récurrence, aussi appelé élimination dépendante. Le prob-
lème se pose pour une large classe d’effets, appelés observables, et est
assez clair dans le cas des booléens : une règle importante de théorie
des types est que, pour n’importe quel type𝐴, l’on doit pouvoir définir
des fonctions de type𝔹 → 𝐴 par le biais d’un if ... then ... else C’est
le cas de notre fonction

𝑓 ≔ 𝛼 ↦ if 𝛼 2 then O else 1

utilisée plus haut. Cependant, l’attente implicite de cette règle est que
les seuls booléens qui existent en théorie des types sont true et false.
Ainsi, le if ... then ... else ... couvre l’intégralité des cas possibles.
Malheureusement, rajouter des effets brise cette règle : si l’on rajoute
des levées d’exceptions, par exemple, le terme raise 𝑒 peut tout à fait
avoir le type 𝔹. Il faut alors fournir une règle de calcul pour le cas où
on se retrouve avec

if raise 𝑒 then ... else ...

et cela ne se fait pas sans heurt.

Dans notre cas, nous ne rajoutons pas des exceptions mais des struc-
tures d’arbres de dialogue dans tous les types. L’effet est le même, et

11

[3]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

[59]: Gilbert et al. (2019), “Definitional
Proof-Irrelevance without K”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”

[4]: Adjedj et al. (2023), “Martin-Löf à
la Coq”

l’interaction avec le if ... then ... else ... est délicate. BTT permet de ré-
soudre le problème, au prix d’un affaiblissement logique de la théorie.
Le fonctionnement de Baclofen Type Theory est expliqué plus en dé-
tail en section 1.4 du chapitre 1, la preuve de continuité des fonctions
définissables en BTT et ses limites sont détaillées dans le chapitre 3.

Tout est normal L’échec relatif de l’extension de cette preuve à la
totalité de la théorie des types de Martin-Löf nous fait changer notre
fusil d’épaule : ajouter superficiellement les arbres de dialogue en tant
qu’effets à l’aide demodèles syntaxiques est trop faible, une preuve de
continuité nécessite plus de contrôle sur le comportement calculatoire
des objets considérés.

La preuve externe que toutes les fonctions définissables en Coq re-
tournent une valeur en un temps fini repose sur une propriété de
la théorie des types appelée normalisation. Celle-ci énonce que tout
terme de théorie des types peut être transformé en un autre terme,
convertible au premier, qui se trouve en forme normale, c’est à dire
une version canonique du premier terme. Les preuves de normalisa-
tions sont connues pour être des exercices compliqués, qui réclament
des principes logiques puissants dans laméta-théorie et présentent de
forts degrés d’abstraction. La structure la plus commune utilise des re-
lations logiques, et interprète un type comme la donnée de trois prédi-
cats : un prédicats d’égalité à ce type, un prédicat d’appartenance à
ce type en tant que terme, et un prédicat d’égalité sur les termes à ce
type.

Cette structure de preuve a été implémentée en Agda parAbel et al [3],
puis étendue de différentes manières [59, 120]. Récemment, Adjedj et
al [4] ont porté en Coq ce développement, et l’ont utilisé pour prou-
ver la normalisation et la décidabilité du typage pour la théorie des
types de Martin-Löf (avec un seul univers cependant). Nous plaçant
dans leur roue, nous avons défini une extension de MLTT, nommée
ϝTT, présentant une fonction particulière

𝔣 ∶ ℕ → 𝔹,

appelée oracle, dont la liste d’appels est intégrée aux règles de typage
et de conversion de ϝTT. Ainsi, étant donnée une fonction

𝐹 ∶ (ℕ → 𝔹) → ℕ,

la preuve de normalisation de 𝐹 𝔣 ∶ ℕ nous permettra d’obtenir l’arbre
des questions que 𝐹 pose à 𝔣 avant de retourner une valeur. Cet arbre
est exactement l’arbre de dialogue dont nous avons besoin pour prou-
ver la continuité de 𝐹 , ce qui permet d’affirmer la continuité de toutes
les fonctions

𝐹 ∶ (ℕ → 𝔹) → ℕ
définissables en ϝTT. Comme cette théorie est une extension directe de
MLTT, l’on en déduit aisément la continuité de toutes les fonctions

𝐹 ∶ (ℕ → 𝔹) → ℕ

définissables en MLTT.

12

Le chapitre 4 détaille tout d’abord les différentes règles de ϝTT en sec-
tion 4.1, puis explique plus précisément en section 4.2 comment la
normalisation de cette théorie nous permettra de déduire la continuité
des fonctions définissables en MLTT. Un premier aperçu de la preuve
de normalisation est donné dans le cas simplifié de System T en section
4.4. Enfin, en section 4.5 nous présentons la preuve de normalisation
de ϝTT. Celle-ci n’est pas entièrement formalisée en Coq, il s’agit d’un
travail en cours que nous espérons voir aboutir bientôt.

Overview

In this thesis, we highlight a particular operator, the dialogue monad,
and provide two attempts at bringing together dependent type theory
and continuity encoded with dialogue trees.

Chapter 2 surveys the different notions of continuity, and assesses
their respective strength. In particular, we show that some logical
principles such as function extensionality or bar inductionmake some
definitions equivalent.

Chapter 3 shows how far we can go in the realm of program transla-
tions and provides a purely syntactic proof that functionals ofBaclofen
Type Theory are continuous (albeit from the target theory only, an in-
ternalization of continuity stays out of reach). Not only is the argu-
ment syntactic, but it is also expressed as a program translation into
another dependent type theory. Thus, everything computes by con-
struction and conversion in the source is interpreted as conversion in
the target. Despite being a generalization of a simpler proof by Es-
cardó, the dependently-typed presentation gives more insight about
the constraints one has to respect for it to work properly, and high-
lights a few hidden flaws of the original version. Finally, the model
gives empirical foothold to the claim that BTT is a natural setting for
dependently-typed effects.

Chapter 4 presents ϝTT, an extension of MLTT, together with a proof
of normalization. This proof is pen-and-paper, but also comes with a
partial formalization in Coq, up to validity predicate. We also provide
a full formalization of the normalization proof for a similar extension
of a smaller theory, System T, which gives us hope that formalization
for full MLTT is reachable.

Contents

Contents 14

I. PAST 16

1. Prolegomenon and technicalities 17
1.1. System T . 19
1.2. MLTT . 27
1.3. CIC . 34
1.4. BTT . 46
1.5. Syntactic models . 53

2. A world made of trees 63
2.1. Talking trees . 65

2.1.1. Dialogue is the key 66
2.1.2. Monadic labs . 66

2.2. Every tree will die a log 70
2.2.1. Standard definition 72
2.2.2. Sequential continuity 75
2.2.3. Interaction Trees 77
2.2.4. Monologuing Trees 80
2.2.5. Intensional dialogue continuity 83

2.3. The zoo of continuity and logical principles 85
2.3.1. Dialogue continuity is extensionally intensional

dialogue continuity 85
2.3.2. Dialogue trees are barred sequences 86
2.3.3. Reflecting on oneself before speaking 88

2.4. The Continuous Hypothesis 91
2.4.1. Continuity is a classic 91
2.4.2. Absurdly continuous 92
2.4.3. The Shift Project 94

2.5. Sheaves and ShTT . 96
2.5.1. Set setting . 96
2.5.2. Type setting . 98

II. PRESENT 103

3. Gardening with the Pythia 104
3.1. Escardó’s model . 106

3.1.1. A for Axiom . 107
3.1.2. Dialogue is maybe not the key 108
3.1.3. System Trees . 110
3.1.4. The logical song 112
3.1.5. For a handful of models 115
3.1.6. A generic proof 116

3.2. Our model gains weight 119
3.2.1. Overview . 119
3.2.2. Axiom Translation 120

Contents 15

3.2.3. Branching Translation 120
3.2.4. Algebraic Parametricity Translation 123

3.3. Continuity of functionals 126
3.4. Discussion and Related Work 128

3.4.1. Comparison with Similar Models 129
3.4.2. Internalization 130
3.4.3. Extension to MLTT 133

III. FUTURE 135

4. The cone of possibilities 136
4.1. Why you should buy ϝTT 137

4.1.1. A brief tour around ϝTT 137
4.1.2. Undressed code 140

4.2. Canonizing continuity 143
4.3. Normalizing normalization 146
4.4. Fascism in the system 147

4.4.1. Normalizing System T 149
4.4.2. Domain extension 156

4.5. Everything is normal 164
4.5.1. Back to one-step 165
4.5.2. Back to basics 168
4.5.3. Universes . 171
4.5.4. Split-reducibility 172
4.5.5. Functional types 173
4.5.6. Lemmas about reducibility 176

Part I.

PAST

[148]: Zermelo (1904), “Beweis, dass
jede Menge wohlgeordnet werden
kann: Aus einem an Herrn Hilbert
gerichteten Briefe”
[149]: Zermelo (1908), “Unter-
suchungen über die Grundlagen der
Mengenlehre. I”

[46]: Curry (1934), “Functionality in
combinatory logic”

[77]: Howard (1980), “The formulae-
as-types notion of construction”

[47]: de Bruijn (1994), “The Mathe-
matical Language Automath, its Usage,
and Some of its Extensions”

[104]: Martin-Löf (1971), “A Theory of
Types”

[11]: Appel et al. (1977), “Every planar
map is four colorable. Part I: Discharg-
ing”

[65]: Gonthier (2023), A computer-
checked proof of the Four Color Theorem
[66]: Gonthier (2007), “The Four
Colour Theorem: Engineering of a
Formal Proof”
[135]: (2023), “The Coq Proof Assis-
tant (8.17)”

[41]: Coquand et al. (1988), “The Cal-
culus of Constructions”
[79]: Huet (1989), “The Constructive
Engine”

[98]: Luo (1990), “An extended calcu-
lus of constructions”
[99]: Luo (1989), “ECC, an Extended
Calculus of Constructions”
[45]: Coquand et al. (1988), “Induc-
tively defined types”
[112]: Paulin-Mohring (1993), “Induc-
tive Definitions in the system Coq -
Rules and Properties”

1. Prolegomenon and
technicalities

1.1 System T 19

1.2 MLTT 27

1.3 CIC 34

1.4 BTT 46

1.5 Syntactic models 53

The notion of continuity is widely present in several area of mathe-
matics. It is well-known that different definitions of continuity can
be given, and are equivalent over foundational systems such as Zer-
melo Fraenkel (ZF) Set theory [148, 149]. This thesis tells a tale about
the status of continuity in type theory, an alternative foundation for
mathematics that takes a more computational view.

Every good story needs a good starting point. In our case, we choose to
pick 1934 when, while studying combinatory logic, Curry [46] noted
a close resemblance between types of combinators and axioms of in-
tuitionistic logic. Building on this seminal observation, Howard [77]
extended it in 1969 to a more complex theory. The Curry-Howard iso-
morphism, also known as the proposition as types, and proofs as programs
correspondence, was born. It claims that any logical statement can be
seen as specification for a computer program, and any program re-
specting this specification can be seen as proof of said statement.

The Curry-Howard tree is one amongst many in a forest of similar
observations done in history. The Brouwer–Heyting–Kolmogorov inter-
pretationmight be themost famous, but if wewere tomake a survey of
the history of logic and computation, many other names would surely
resurface. Yet we refrain from doing so, as we do not want to wander
too far from the focal point of this thesis. Back to our story, let us
simply say that the Curry-Howard isomorphism and its relatives bore
many fruits. In 1970, de Bruijn [47] described what is maybe the first
proof assistant, a system that is both a typed programming langugage
and a theorem prover, able to certify proofs written by mathemati-
cians. In 1971, Martin-Löf [104] presented the type theory that would
bear his name. In 1975,Appel andHaken [11] proved the four colour the-
orem, an endeavour only possible through the use of computers, later
refined and formalized in Coq by Gonthier [65, 66]. Coq itself, a proof
assistant based on a variant of Martin-Löf Type Theory named Calculus
of Inductive Constructions and still in place nowadays [135], was born
in the 1980s by the hands of Coquand and Huet [41, 79] and extended
by the work of Luo [98, 99] and Coquand and Paulin-Mohring [45, 112].
Most results of this thesis will be proved in Coq.

It seemed as if nothing could stop the wave of Curry-Howard con-
quests and yet, some logical principles and programming tools still
evade the grasp of the overarching isomorphism and fight back foot
by foot. On the logical front, the most prominent group of untamed
principles is the tribe of classical axioms, led by two figureheads, ex-
cluded middle and axiom of choice. On the programming side, rebels
are a plethora, many of them going by the nickname of effects: excep-
tions, global state, backtracking, non-termination, non-determinism... are
just some of the names that populate this impious swarm.

The war still rages on, though, and some progress has been made over
the years to bind together rebels of the two sides, be it in a simply-

1. Prolegomenon and technicalities 18

[68]: Griffin (1990), “A Formulae-as-
Types Notion of Control”

[115]: Pédrot (2020), “Russian Con-
structivism in a Prefascist Theory”

[15]: Barthe et al. (2002), “CPS translat-
ing inductive and coinductive types”
[73]: Herbelin (2005), “On the Degen-
eracy of Sigma-Types in Presence of
Computational Classical Logic”

[70]: Gödel (1958), “Über eine bisher
noch nicht benützte Erweiterung des
finiten Standpunktes”

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

[25]: Boulier (2018), “Extending type
theory with syntactic models. (Etendre
la théorie des types à l’aide de modèles
syntaxiques)”
[126]: Simon Boulier et al. (2017), “The
next 700 syntacticalmodels of type the-
ory”

typed [68] or dependently-typed setting [115]. Even though defeats
have been conceded [15, 73], one can still hope to live and see the day
when all of logic and computation is united under the same roof.

In this thesis, we resolutly walk in the footsteps of these great elders,
and place ourselves both as firm believers of the proofs as programs
correspondence and as advocates of formal verification. This effec-
tivelymeans that wewill try to give Coq formalizations of every result
we show, and that the goal of this manuscript is to study the inter-
action between dependent type theory and continuity, a mathemati-
cal concept that we believe can be considered a particular kind of ef-
fect. Hence, for every system we will present in this manuscript, two
paradigms will be available (and in our view they are but the same):

▶ either we are studying a programming language featuring types,
i.e. program specifications. Then the wording 𝑡 ∶ 𝐴 is spelled “𝑡
has type𝐴”, or else “the program 𝑡 validates the specification𝐴”.
We will call this paradigm the computational view;

▶ or we are looking at a proof system featuring propositions, i.e.
logical statements. Then the wording 𝑡 ∶ 𝐴 is spelled “𝑡 proves
𝐴”, or else “the proof 𝑡 indeed proves the logical statement 𝐴”.
We will call this paradigm the proof-theoretic view.

The aim of this Chapter is to detail the different systems, technical
notations and wordings we will encounter in this thesis.

▶ Section 1.1 presents System T, first introduced by Gödel [70]. It
is the simplest theory displayed in this thesis, and will be the
running example to detail proof techniques in later chapters.

▶ Section 1.2 adds a universe□ and dependent products to System
T, leading to Martin-Löf Type Theory (MLTT), our first dependent
type theory.Wewill prove normalization for an extension of this
theory in Chapter 4.

▶ Section 1.3 extends MLTT to general inductive types and an in-
finite hierarchy of universes to retrieve the Calculus of Inductive
Constructions (CIC). We will mainly use this system as a target
theory for models in Chapter 3, or more generally as a meta-
theory since most of our results will be formalized in Coq. How-
ever, as none of our formalizations rely on it, we do not present
the impredicative sort of propositions Prop which is often asso-
ciated to CIC. What we call Calculus of Inductive Constructions in
this manuscript is only predicative.

▶ Section 1.4 introduces a more exotic theory, Baclofen Type The-
ory (BTT) [121], a variant of CICwhere dependent elimination is
weakened. This allows us to build effectfulmodels of BTT, which
will come in handy in Chapter 3.

▶ Finally, Section 1.5 develops program translations [25, 126] as a
particular kind of syntactic models, a tool that will be the focal
point of Chapter 3. In particular, we give the example of the
times-bool model, a simple program translation negating funext.

We emphasize that every system will be explained through a Curry-
Howard interpretation, even simpler ones such as System T, a choice
which might seem unusual for the experienced reader. We nonethe-
less believe it is a principled and informative way to explain these
concepts to non-specialists of the proof-as-programs world.

1. Prolegomenon and technicalities 19

[70]: Gödel (1958), “Über eine bisher
noch nicht benützte Erweiterung des
finiten Standpunktes”

In Chapter 4 we will however add
booleans.

[32]: Church (1941), “The calculi of
lambda-conversion.”

We use addition + and 3 in this ex-
ample although they are not part
of the syntax. Theywill however be
defined later.

1.1. System T

𝐴, 𝐵 ≔ ℕ ∣ 𝐴 → 𝐵
𝑡, 𝑢 ≔ 𝑥 ∣ 𝑡 𝑢 ∣ 𝜆𝑥 ∶ 𝐴. 𝑡 ∣ O ∣ S 𝑡 ∣ ℕrec 𝑃 𝑡O 𝑡S 𝑛
Γ, Δ ≔ ⋅ ∣ Γ, 𝑥 ∶ 𝐴

⊢ ⋅
⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑥 ∶ 𝐴

⊢ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

⊢ Γ
Γ ⊢ ℕ

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ 𝐴 → 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝑡 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

⊢ Γ
Γ ⊢ O ∶ ℕ

⊢ Γ Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ S 𝑛 ∶ ℕ

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃

Figure 1.1.: Typing rules of System T

In the beginnning were the terms. Mindless crowd of stumbling fools,
melting, mingling, shape-shifting into one another in the ever-lasting
darkness of computation. Endless loops were everywhere; hunters ate
preys that hunted them the day before, rivers flowed in circles and
mothers gave birth to themselves, as if time itself was yet to be born. A
few were standing still; regrouping in communities, they tried to self-
discipline, urging each other to be normal. At night, they whispered
dreams of a better world. At some point, was it light? was it fire? Types
were born. Never working, never computing, going through time un-
changed and unfazed, they hovered above the fray, revered by terms
who followed their godly rules, establishing small islets of law in the
delictuous ocean of untyped reduction. From the worldly archipelago,
System T emerged.

System T is a simply-typed variant of 𝜆-calculus introduced by Gödel
[70], featuring a base type ℕ and a recursor ℕrec. Its typing rules are
presented in Figure 1.1. We believe it achieves a nice balance between
ease to read and expressivity, hence it will be our running example
in Chapter 3 and Chapter 4. As we view it as an example, we use no-
tations similar to more complex theories, such as MLTT or CIC, even
though some concepts are not needed to describe System T, due to its
sheer simplicity. We will for instance describe well-formation predi-
cates for types even though every type in System T is by construction
well-formed. That being said, let us wander through its landscape.

An eerie scenery The first headache for non-specialists often comes
from the syntax of terms, which will be the same for System T and
subsequent languages. The most uncommon notation is the use of 𝜆-
abstraction [32] to denote functions. It is similar to the 𝑥 ↦ 𝑡 maths
notation. For instance, the function

1. Prolegomenon and technicalities 20

The notation 𝑡 ≡ 𝑢 is called con-
version and will be defined later.
For now, the reader can take it as
equality in the usual, mathemati-
cal sense.

A famous slogan of programming
languages iswell-typed programs do
not go wrong.

Set theorists may think of terms as
elements and types as sets.

When there is no ambiguity, we
may skip such annotations in the
rest of the thesis.

𝜆𝑥. 3 + 𝑥

is the function
𝑥 ↦ 3 + 𝑥.

When we want to evaluate such a function 𝑓 , we can apply it to an
argument 𝑢 to get the term 𝑓 𝑢. If we applied the previous function to
4 we would get

(𝜆𝑥. 3 + 𝑥) 4 ≡ 3 + 4 ≡ 7.
To derive this result, we substituted the variable 𝑥 by 4 in the term 3+𝑥 .
Substitution is in fact not a trivial matter, but we will leave it at that
for the moment.

Some terms, like
2 𝑦

(read 2 applied to 𝑦) have no meaning; we call them ill-formed. Typing
is a discipline enforced tomake sure that we only considerwell-formed
terms. The type of

𝜆𝑥. 3 + 𝑥
is

ℕ → ℕ,
meaning that it takes as input a natural number and produces a natu-
ral number as output. When we apply it to the natural number 4, we
retrieve another natural number, which is 7 in this example.

We write
𝑡 ∶ 𝐴

to mean that 𝑡 is of type 𝐴. If we consider the function

𝜆𝑥. 3,

there is no clear way to deduce the type of 𝑥 from the structure of the
term. To disambiguate, we need to annotate the argument andwrite

𝜆𝑥 ∶ ℕ. 3.

Now that we know the type of its argument, and since we also know
that 3 is of type ℕ, we can infer the type of the function and write

𝜆𝑥 ∶ ℕ. 3 ∶ ℕ → ℕ.

At some point, we might encounter a term like

3 + 𝑥

with no 𝜆 in sight to coerce the variable 𝑥 . We call such terms open
terms and say that they contain free variables. On the other hand, a
variable is called bound when coerced by a 𝜆; subsequently, 𝜆 is called
a binder.

It is impossible to know at first sight whether the open term

3 + 𝑥

1. Prolegomenon and technicalities 21

is well-formed or ill-formed, as we do not know the type of 𝑥 . What
we need in such cases is a context Γ. Contexts are stacks of pairs of
variables and types. From a proof-theoretic point of view, they can be
seen as lists of hypotheses. For instance, having

𝑥 ∶ ℕ

appear in a context Γ means that we assume that the statement ℕ is
true. Of course, we would hope to write more complex statements
than simply ℕ, and we will get there when we look at more complex
theories.

In the case when 𝑥 ∶ ℕ is in the context, then

3 + 𝑥 ∶ ℕ,

meaning that 3 + 𝑥 is well-typed, of type ℕ. On the other hand, if

𝑥 ∶ ℕ → ℕ

appears in the context Γ then

3 + 𝑥

is ill-formed, thus non typable. To summarize, System T, as any type
theory, is built of the following bricks:

Definition 1.1.1: Type theory
A type theory is made of the following components:

1. Contexts Γ, Δ together with a unary predicate ⊢ Γ called the
well-formation predicate;

2. Types𝐴, 𝐵 togetherwith a binary relation binding contexts and
types. It is called the well-formation predicate for types (un-
der a specific context Γ) and is written Γ ⊢ 𝐴;

3. Terms 𝑡 , 𝑢, together with a ternary relation binding contexts,
terms and types. It is called the typing predicate for terms
(under a specific context Γ and with respect to a specific type
𝐴) and is written Γ ⊢ 𝑡 ∶ 𝐴;

4. Conversion, a quaternary relation binding together a context, a
type and two terms that will be called equal terms. It is written
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴.

Well-formation of contexts, of types, well-typedness and conversion
of terms are mutually defined in an inductive way, through a set of
rules. Rules in typing systems will all follow the same pattern:

Hyp1 Hyp2 ... Hyp𝑛
Conclusion

This idiomaticwriting reads “Assuming hypotheses Hyp1, Hyp2, ..., Hyp𝑛,
we can derive Conclusion”. All statements that are provable in Sys-
tem T can be broken down into a tree of atomic bits: System T rules.

Rules specific to contexts are displayed in Table 1.1. There are only
two of them:

1. Prolegomenon and technicalities 22

⊢ ⋅
⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑥 ∶ 𝐴

Table 1.1.:Well formed contexts of Sys-
tem T

⊢ Γ
Γ ⊢ ℕ

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

Table 1.2.: Well-formation for types in
System T

⊢ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴 VAR

Table 1.3.: Variable rule for System T

Γ ⊢ 𝐴 Γ ⊢ 𝑡 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Table 1.4.: Weakening rule for System
T

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ 𝐴 → 𝐵 𝜆-ABS

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵 APP

Table 1.5.: Rules for the function type
in System T

▶ The empty context ⋅ is well-formed ;
▶ If Γ is well-formed and 𝐴 is a well-formed type under Γ then

Γ, 𝑥 ∶ 𝐴

is well-formed. We implicitly assume here that a variable 𝑥 does
not appear twice in a context, with two different types. Tracking
variables can be troublesome, and we will get to that later.

Rules specific to types are displayed in Table 1.2. Once again, there are
two of them:

▶ If Γ is well-formed then Γ ⊢ ℕ;
▶ If 𝐴 and 𝐵 are well-formed under context Γ then Γ ⊢ 𝐴 → 𝐵.

An astute reader might notice that, despite the notation Γ ⊢ 𝐴, well-
formation of types does not really depend on contexts. In fact, in Sys-
tem T every type is well-formed: the syntax does not allow for ill-
formation. For the same reason, in System T every context is also well-
formed. However, as System T is essentially a stepping stone to reach
more intricate theories such as CIC or BTT, where types are terms and
can thus be ill-formed, we stick with the ⊢ Γ and Γ ⊢ 𝐴 predicates.

As the arrow suggests, from a proof-theoretic point of view

𝐴 → 𝐵

can be understood as implication. On the computational side, it can
be described as the type of functions from 𝐴 to 𝐵.
As for ℕ, it is the type of natural numbers. Its existence is axiomatic,
as it exists even under the empty context, i.e.with no hypothesis. Such
a type is called a base type. Natural numbers are the only base type in
System T but there will be others in subsequent theories.

We have seen well-formation of contexts and types; all that is left is
typing.
The first rule is called the variable rule and states that if 𝑥 ∶ 𝐴 is in the
context Γ then

Γ ⊢ 𝑥 ∶ 𝐴.
In a proof-theoretic view, this simply means that a hypothesis is sup-
posed true. It is displayed in Table 1.3.

Still in the proof-theoretic view, thinking of contexts as lists of hy-
potheses, one intuitive fact we would want to verify is that adding
hypotheses should not change the validity of a proof: one cannot sup-
pose so much hypotheses that a proof stops working. This is theweakening
rule, displayed in Table 1.4.

The arrow type is the subject of the next two rules, that are displayed
in Table 1.5. They allow us to construct or destruct a term of type
𝐴 → 𝐵, reflecting the way an implication is built or destructed in first-
order logic. In the computational view, this means:

▶ If, adding 𝑥 ∶ 𝐴 to Γ, one can build a term of type 𝐵 then one
can build a term of type 𝐴 → 𝐵 under context Γ. It is called the
𝜆-abstraction rule, in reference to the 𝜆 syntax used for functions;

1. Prolegomenon and technicalities 23

⊢ Γ
Γ ⊢ O ∶ ℕ ZERO

⊢ Γ Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ S 𝑛 ∶ ℕ SUCC

Table 1.6.: Constructors of type ℕ in T

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃

Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃

Table 1.7.: Recursor for System T

▶ With a term of type 𝐴 → 𝐵 and a term of type 𝐴, one can retrieve
a term of type 𝐵. This is the application rule.

The counterpart in the proof-theoretic view is without much surprise:
to prove 𝐴 → 𝐵 using a list of hypotheses Γ, one assumes 𝐴 and proves
𝐵 with the extended list Γ, 𝑥 ∶ 𝐴. Conversely, given a proof of 𝐴 → 𝐵
and a proof of 𝐴, one can derive a proof of 𝐵.

We are done with variables and function types. Next come the rules
to build terms of type ℕ. They are displayed in Table 1.6. Once again,
there are two of them:

▶ O is a term of type ℕ under any well-formed context Γ;
▶ Assuming a well-typed term 𝑛 ∶ ℕ under context Γ, then its suc-

cessor S 𝑛 is of type ℕ under the same context.

Using these two rules, we can recover any natural number. The num-
ber 3 we have been using as an example, for instance, is a notation for
the term S (S (S O)). This effectively means that natural numbers in
System T are written in unary form.

The only term left is the destructor of type ℕ. It is called the recursor,
denoted ℕrec.
Its proof-theoretic interpretation is close to mathematical induction.
Mainly: given a type 𝑃 (proof-theoretically a logical statement), a term

𝑡O ∶ 𝑃

(proof-theoretically a proof of the statement in the O case), a term

𝑡S ∶ ℕ → 𝑃 → 𝑃

(proof-theoretically a proof of the induction step), then we retrieve a
proof of

𝑃 for any natural number 𝑛 ∶ ℕ.

Of course, this is notmathematical induction per se.The obviousweak-
ness of our analogy is that 𝑃 does not depend on 𝑛, which means that
this induction scheme would not be able to prove complex sentences
such as for all 𝑛, there exists a number 𝑚 greater than 𝑛. All we can do for
now is prove statements 𝑃 for which we already have a proof 𝑡O ∶ 𝑃 ,
which is rather poor! This issue will however be solved in dependent
type theories such as MLTT or CIC.

Let us now tackle the computational behaviour of termswhich, among
other things, will help understand the meaning of ℕrec from a compu-
tational point of view.

Conversion is the fourth musketeer of the System T predicates. It is a
quaternary relation binding together a context, a type and two terms
that will be called equal terms. It is written

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴,

reading 𝑡 and 𝑢 are convertible at type 𝐴 under context Γ.
System T being simply-typed, conversion and typing work as separate

1. Prolegomenon and technicalities 24

Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴

Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑓 𝑢 ≡ 𝑔 𝑣 ∶ 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑔 ∶ 𝐴 → 𝐵 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵

Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵
Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑢 ≡ 𝑡{𝑥 ≔ 𝑢} ∶ 𝐵

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ≡ 𝜆𝑥 ∶ 𝐴. 𝑢 ∶ 𝐴 → 𝐵

Γ ⊢ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ S 𝑛 ≡ S 𝑚 ∶ ℕ

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ≡ 𝑡 ′O ∶ 𝑃
Γ ⊢ 𝑡S ≡ 𝑡 ′S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ 𝑛 ≡ 𝑛′ ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ≡ ℕrec 𝑃 𝑡 ′O 𝑡′S 𝑛′ ∶ 𝑃

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S (S 𝑛) ≡ 𝑡S 𝑛 (ℕrec 𝑃 𝑡O 𝑡S 𝑛) ∶ 𝑃

Figure 1.2.: Conversion rules of System T

[96]: Lennon-Bertrand (2022), “Bidi-
rectional Typing for the Calculus of In-
ductive Constructions”

fields of the theory, unlike dependent type theory where everything
mingles. This is why we presented typing in a first Figure, and only
now care about computation, which would not make sense in MLTT
or CIC.

Some systems choose to have an untyped definition of conversion, writ-
ten

𝑡 ≡ 𝑢.
The question of what properties can be derived for typed or untyped
conversion, and whether the two systems are equivalent, is a research
topic in itself, and we will not delve in it. The interested reader can
look at Lennon-Bertrand’s PhD [96] for a more in-depth study of this
question. In the remainder of this thesis we will assume both systems
to be equivalent, and stick to the typed version for the most part. The
only exception is when dealing with program translations in Section
1.5 and Chapter 3.

Greek letters everywhere A first rule of conversion is that it must
relate different writings of the same term. For instance, given two dif-
ferent spellings of the same function,

𝜆𝑥 ∶ 𝐴. 3 + 𝑥 and 𝜆𝑦 ∶ 𝐴. 3 + 𝑦,

we want conversion to equate them. This conversion up to renaming
is called 𝛼-conversion. Note however that the open terms

3 + 𝑥 and 3 + 𝑦

are not equal, as 𝑥 and 𝑦 could be substituted by different terms later
on.

This is already the second time we mention substitution, a feature cru-
cial in every theory based on 𝜆-calculus and its guiding light, the in-

1. Prolegomenon and technicalities 25

Γ ⊢ 𝐴
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑢 ≡ 𝑡{𝑥 ≔ 𝑢} ∶ 𝐵 𝛽-RED

Table 1.8.: Typed 𝛽-conversion in Sys-
tem T.

[47]: de Bruijn (1994), “The Mathe-
matical Language Automath, its Usage,
and Some of its Extensions”
[13]: Aydemir et al. (2005), “Mecha-
nized Metatheory for the Masses: The
PoplMark Challenge”

Γ ⊢ 𝐴 Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑔 ∶ 𝐴 → 𝐵

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵
Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵 𝜂-CONV

Table 1.9.: Typed 𝜂-conversion in Sys-
tem T

famous 𝛽-conversion, which is displayed in Table 1.8.

This conversion rule states that when a function

𝜆𝑥 ∶ 𝐴. 𝑡

is applied to an argument 𝑢, then it is convertible to the body 𝑡 of the
function, where every occurence of 𝑥 has been replaced by 𝑢.
Both substitution and 𝛼-conversion are easy to understand on an in-
tuitive level but more difficult to implement in a proof assistant. The
way Coq deals with them is through de Bruijn indices [47], but many
other choices are possible [13]. In this thesis, we will use de Bruijn
indices for formalization purposes, and keep named variables in the
manuscript, as they are more readable.

Having dealt with 𝛼 and 𝛽-conversion, the last subtlety regarding vari-
ables has to do with functions: given

𝑓 ∶ 𝐴 → 𝐵,

we would like to equate

𝑓 and 𝜆𝑥 ∶ 𝐴. 𝑓 𝑥,

as they compute the same function, even though they are syntactically
different. This is the whole point of 𝜂-conversion, displayed in Table
1.9: when comparing two functions

Γ ⊢ 𝑓 , 𝑔 ∶ 𝐴 → 𝐵

the algorithmic idea is to apply them to a fresh variable 𝑥 ∶ 𝐴 (where
fresh means a variable not already present in the terms) and recur-
sively compare the bodies of the two functions at type 𝐵. In our case,
this would mean comparing

𝑓 𝑥 and (𝜆𝑥 ∶ 𝐴. 𝑓 𝑥) 𝑥

at type 𝐵. Thanks to 𝛽-conversion,

Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑓 𝑥) 𝑥 ≡ 𝑓 𝑥 ∶ 𝐵

thus
𝑓 and 𝜆𝑥 ∶ 𝐴. 𝑓 𝑥

are convertible.

The notation
(𝜆𝑥 ∶ 𝐴. 𝑓 𝑥) 𝑥

may be confusing. Remember that the 𝑥 in

𝜆𝑥 ∶ 𝐴. 𝑓 𝑥

is bound by 𝜆, while the 𝑥 outside is free. Thus, they have nothing to
do with each other. Thanks to 𝛼-conversion, we can disambiguate and
write

(𝜆𝑦 ∶ 𝐴. 𝑓 𝑦) 𝑥.
Once again, de Bruijn indices lets us escape that kind of headache.

1. Prolegomenon and technicalities 26

Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴 REFL

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴 SYM

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴 TRANS

Table 1.10.: Equivalence rules of con-
version for System T

Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵
Γ ⊢ 𝑓 𝑢 ≡ 𝑔 𝑣 ∶ 𝐵 APP-CG

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ≡ 𝜆𝑥 ∶ 𝐴. 𝑢 ∶ 𝐴 → 𝐵 LAM-CG

Γ ⊢ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ S 𝑛 ≡ S 𝑚 ∶ ℕ SUCC-CG

Γ ⊢ 𝑃
Γ ⊢ 𝑡O ≡ 𝑡′O ∶ 𝑃
Γ ⊢ 𝑡S ≡ 𝑡′S ∶ ℕ → 𝑃 → 𝑃
Γ ⊢ 𝑛 ≡ 𝑛′ ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ≡ ℕrec 𝑃 𝑡′O 𝑡′S 𝑛′ ∶ 𝑃 REC-CG

Table 1.11.: Congruence rules of Sys-
tem T.

Γ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃

Γ ⊢ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃
Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S (S 𝑛) ≡
𝑡S 𝑛 (ℕrec 𝑃 𝑡O 𝑡S 𝑛) ∶ 𝑃

Table 1.12.:Recursor rules of System T

Conversion is often called judgmental equality or definitional equality, a
name befitting its proof-theoretic interpretation: proofs by definition,
where the only argument is pure computation. As the name equality
suggests, we want it to be an equivalence relation. Hence, it should be
reflexive, symmetric and transitive. Table 1.10 recalls these rules.

Congruence rules are displayed in Table 1.11. They make conversion
compatible with constructors of System T:

▶ Application congruence: if two functions

Γ ⊢ 𝑓 , 𝑔 ∶ 𝐴 → 𝐵

are convertible and if their arguments Γ ⊢ 𝑢, 𝑣 ∶ 𝐴 are convert-
ible then

𝑓 𝑢 and 𝑔 𝑣
are convertible under context Γ;

▶ 𝜆-congruence : if two terms

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡, 𝑢 ∶ 𝐵

are convertible under the extended context Γ, 𝑥 ∶ 𝐴 then their
𝜆-abstractions

Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡, 𝜆𝑥 ∶ 𝐴. 𝑢
are convertible at type 𝐴 → 𝐵 under context Γ;

▶ Successor congruence: if two natural numbers 𝑛, 𝑚 ∶ ℕ are con-
vertible then their successors are convertible;

▶ Recursor congruence: given a type 𝑃 , if

𝑡O, 𝑡′O ∶ 𝑃

are convertible, if
𝑡S, 𝑡′S ∶ ℕ → 𝑃 → 𝑃

are convertible and if 𝑛, 𝑛′ ∶ ℕ are convertible then

ℕrec 𝑃 𝑡O 𝑡S 𝑛 is convertible to ℕrec 𝑃 𝑡′O 𝑡′S 𝑛′.

Successor and recursor congruence can be seen as consequences of
application congruence through curryfication. Indeed,

𝜆𝑥 ∶ ℕ. S 𝑥 ≡ 𝜆𝑥 ∶ ℕ. S 𝑥 ∶ ℕ

by reflexivity and
𝑛 ≡ 𝑛′ ∶ ℕ

by hypothesis, thus
S 𝑛 ≡ S 𝑛′ ∶ ℕ

by congruence of application. The sameproof applies toℕrec. Nonethe-
less, we find that explicitly adding congruence rules for successor and
recursor emphasizes that they are constructors of the language and
not functions. This point of view alleviates some troubles when prov-
ing normalization of type theories, as we will do in Chapter 4, hence
we wanted to highlight this distinction here. The two definitions are
however equivalent.

1. Prolegomenon and technicalities 27

[60]: Giménez (1995), “Codifying
guarded definitions with recursive
schemes”
[61]: Giménez (1998), “Structural
recursive definitions in type theory”

[33]: Cockx (2017), “Dependent Pat-
ternMatching and Proof-Relevant Uni-
fication”

The last conversion rules are specific toℕrec and are displayed in Table
1.12. There are two of them:

▶ When applied to O, ℕrec 𝑃 𝑡O 𝑡S returns its base argument 𝑡O;
▶ When applied to S 𝑛, ℕrec 𝑃 𝑡O 𝑡S applies its step argument 𝑡S and

calls itself recursively on 𝑛.
Through Curry-Howard glasses, this looks exactly like the computa-
tional behaviourwewould expect frommathematical induction.More-
over, these rules also allow us to define functions such as addition:

𝑛 + 𝑚 ≔ ℕrec ℕ 𝑚 (𝜆(𝑖 ∶ ℕ) (𝐻𝑖 ∶ ℕ). S 𝐻𝑖) 𝑛

From an imperative programming language perspective, one might
be tempted to compare it to a for loop, iterating 𝑛 times the 𝑡S body of
the loop before returning 𝑡O. Another intuition would be to describe
ℕrec as a recursive function: a computer scientist accustomed to func-
tional programming may indeed notice that ℕrec behaves like struc-
tural pattern-matching on 𝑛, calling itself recursively in the successor
case. Pattern-matching in the style of functional programming will
indeed be our go-to dialect to define functions in this manuscript. In
this syntax, addition looks like this:

add ∶ ℕ → ℕ → ℕ
add O 𝑚 ≔ 𝑚
add (S 𝑘) 𝑚 ≔ S (add 𝑘 𝑚)

In Coq, pattern-matching comes first and recursors are derived from
it. However, it was noted that in some cases it was dubious whether
pattern-matching and recursorswere indeed equivalent [60, 61].More
recently, Cockx [33] provided an algorithm able to translate pattern-
matching programs to eliminators in a systematicway, for a significant
fragment of the type theory implemented by the Agda proof assistant.
In this thesis, we will make the assumption that every function we
define via pattern-matching could be defined with recursors.

1.2. MLTT

System T is a very stratified society: at the bottom live the terms, slaves
by divine right, forever working under the constant watch of higher
beings. They are the Men. At the top stand the types, unchallenged
tyrants reigning over terms, enforcing laws to make sure they behave
well; eternal rulers forever evading the grasp of mere mortals. They
are, of course, Gods.

Dependent type theory is the result of a spiritual revolution, overthrow-
ing types from their divine throne and plunging them into themass of
terms. Their golden wings stuck in the mire, they too start dissolving
in the blissful mud of computation. However, not all types are born
equal and one escapes that deadly fate, asMLTT turns out not to be an
atheist world, but chooses to indulge itself in monotheism. At the top,
□, the type of all types, stands strong and all shall worship its absolute
reign.

1. Prolegomenon and technicalities 28

𝐴, 𝐵, 𝑡, 𝑢 ≔ □ ∣ 𝑥 ∣ 𝑡 𝑢 ∣ 𝜆𝑥 ∶ 𝐴. 𝑡 ∣ Π𝑥 ∶ 𝐴. 𝑡 ∣ ℕ ∣ O ∣ S 𝑡 ∣ ℕind 𝑃 𝑡O 𝑡S 𝑛
Γ, Δ ≔ ⋅ ∣ Γ, 𝑥 ∶ 𝐴

⊢ ⋅ ⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑥 ∶ 𝐴

⊢ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

⊢ Γ
Γ ⊢ □

Γ ⊢ 𝐴 ∶ □
Γ ⊢ 𝐴

Γ ⊢ 𝐴 ∶ □ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵

⊢ Γ
Γ ⊢ ℕ ∶ □

Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝑡 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

⊢ Γ
Γ ⊢ O ∶ ℕ

⊢ Γ Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ S 𝑛 ∶ ℕ

Γ, 𝑥 ∶ ℕ ⊢ 𝑃 Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦} Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕind 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃{𝑥 ≔ 𝑛}

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ∶ 𝐵

Figure 1.3.: Syntax and typing rules for MLTT

[103]: Martin-Löf (1984), Intuitionistic
type theory
[104]: Martin-Löf (1971), “A Theory of
Types”

In Chapter 4, it will also feature
booleans, but for brevity we do not
present them here.

When the body 𝑡 of the function

𝜆𝑥 ∶ 𝐴. 𝑡
does not make use of 𝑥 , we write

𝜆_ ∶ 𝐴. 𝑡
to avoid giving names to unused
variables.

We have now left the paddling pool behind to bathe in dependent type
theory. Our first system of that kind will be Martin-Löf Type Theory
(MLTT) [103, 104]. Slight changes in definitions are numerous in type
theory, and almost every researcher in the field has a different idea of
what MLTT means, and how it differs from the Calculus of Inductive
Constructions (CIC), our next Section.

For impatient expert readers, let us say that our own version of MLTT
is quite minimal: Π-types, a base type ℕ and one universe; conversion
given as the reflexive, symmetric, transitive and congruent closure of
𝜂𝛽𝜄-typed-conversion. In particular we do not ask for an identity type.
Typing rules of MLTT are displayed in Figure 1.3.

On equal terms Most of the changes with respect to System T can
be explained by treating types as terms, leading to the birth of □. Let
us unfold its consequences through an example: adding □ as the type
of types to System T means that ℕ is now a term, typable as follows:

ℕ ∶ □.

Therefore, the following function now becomes definable:

1. Prolegomenon and technicalities 29

Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝐵 Γ ⊢ 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 ∶ 𝐵
Table 1.13.:Conversion rule for typing
in MLTT

Γ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃
Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ, 𝑦 ∶ ℕ ⊢ 𝑡S ∶ 𝑃{𝑥 ≔ 𝑦} →

𝑃{𝑥 ≔ S 𝑦}
Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ ℕind 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃{𝑥 ≔ 𝑛}

Table 1.14.: First version of the recur-
sor rule in MLTT

𝐹 ≔ 𝜆𝑛 ∶ ℕ. ℕrec □ ℕ (𝜆(_ ∶ ℕ) (_ ∶ □).ℕ → ℕ) 𝑛.

This function takes as input a term 𝑛 ∶ ℕ and returns a type: it out-
puts ℕ when applied to O, and ℕ → ℕ otherwise. This raises several
questions:

▶ when we apply 𝐹 to O, the result is

ℕrec □ ℕ (𝜆(_ ∶ ℕ) (_ ∶ □).ℕ → ℕ) O,

which is not strictly speaking ℕ, but is convertible to ℕ. Indeed,
now that types are terms, they also compute and we have to deal
with conversion at the level of types.Now, considering for instance
O ∶ ℕ, do we want to enforce that

O ∶ ℕrec □ ℕ (𝜆(_ ∶ ℕ) (_ ∶ □).ℕ → ℕ) O,
i.e. do we want typing to be stable by conversion on types? In
MLTT the answer is positive, which leads to the conversion rule
presented in Tab 1.13.

▶ For any given 𝑛 ∶ ℕ, it is possible to provide a term of type 𝐹 𝑛.
Indeed,

when 𝑛 = O we can return O and
when 𝑛 = S 𝑘 we can return 𝜆𝑥 ∶ ℕ. 𝑥.

Formally, this means that we would want to write the following:

𝑛 ∶ ℕ ⊢ ℕrec (𝐹 𝑛) O (𝜆(𝑥 ∶ ℕ) (𝑝𝑥 ∶ 𝐹 𝑥). 𝑥) 𝑛 ∶ 𝐹 𝑛.

However, even though this term is well-typed for any concrete
instance of 𝑛, in System T there is no way to prove that it is well-
typed in general. Indeed, were we to try and apply the rule for
ℕrec, we would end up having to prove

𝑛 ∶ ℕ ⊢ O ∶ 𝐹 𝑛

for the 𝑡O case, which is not true. The only thing we can prove is

⊢ O ∶ 𝐹 O,

which is not the same.We thus need to accomodate for computa-
tion in the types.We can solve this problemwith an updated rule
for ℕrec. To distinguish the old and the updated version, we call
the latter one ℕind, a name refering to induction. The updated
version is presented in Table 1.14; we also recall the former one
to highlight the difference.

▶ Unfortunately, our troubles withℕrec do not end there. Since we
changed the recursor rule, we can type

Γ ⊢ 𝑡O ∶ 𝐹 O ≔ O
Γ, 𝑦 ∶ ℕ ⊢ 𝑡S ∶ 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦} ≔

𝜆𝐻𝑦 ∶ 𝑃{𝑥 ≔ 𝑦}. 𝜆𝑛 ∶ ℕ. 𝑛

which means we are now able to type

𝑛 ∶ ℕ ⊢ ℕrec (𝐹 𝑛) 𝑡O 𝑡S 𝑛

1. Prolegomenon and technicalities 30

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵

Table 1.15.: 𝜆-abstraction rule inMLTT

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} →

𝑃{𝑥 ≔ S 𝑦}
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕind 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃{𝑥 ≔ 𝑛}

Table 1.16.: Recursor rule in MLTT

Incidentally, in the Agda proof as-
sistant, as in Coq, the ∀ symbol is
often used as notation for depen-
dent products.

but now the corresponding function

𝜆𝑛 ∶ ℕ. ℕrec (𝐹 𝑛) 𝑡O 𝑡S 𝑛

is not typable.
This is cumbersome: we canwrite complex terms by adding vari-
ables into the context, but we cannot turn those terms into func-
tions because our 𝜆-abstraction rule is too weak. Indeed, 𝐹 𝑛 is a
type that depends on the value of 𝑛 but in the functional types

𝐴 → 𝐵
of System T the return type 𝐵 is not allowed to depend on the
value of the argument. This problem is solved by relaxing the 𝜆-
abstraction rule, leading to the formation of dependent products,
displayed in Table 1.15. Using such dependent products, we can
rephrase the recursor rule for MLTT, as displayed in Table 1.16.
This latter version is the one we choose for the remainder of the
thesis.

Easy asΠ The name dependent product and the letterΠ are both quite
exotic, which may obfuscate the small miracle we just witnessed. It
should however become obvious when facing this alternative writing
for dependent product:

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ ∀𝑥 ∶ 𝐴. 𝐵

Indeed, when relaxing the functional type 𝐴 → 𝐵 by allowing the
codomain 𝐵 to depend on A, we just gave computational content to
the logical symbol ∀.
Another way to see this is the following: in usual pen-and-papermath-
ematics, when facing a logical sentence

∀(𝑛 ∈ ℕ), 𝑃 𝑛

with 𝑃 a logical expression, onewould typicallywrite something along
those lines: let us take an arbitrary natural number 𝑛. Then we have to
prove 𝑃 𝑛. This is what this rule describes: to inhabit

∀𝑛 ∶ ℕ. 𝑃 𝑛,

one adds a variable
𝑛 ∶ ℕ

into the context, then tries to inhabit 𝑃 𝑛. We can go further: our imagi-
narymathematician works exactly as a function, taking an input (here
a natural number 𝑛) and producing an output (here a proof of 𝑃 𝑛).
Such is the power of the Curry-Howard motto: propositions as types,
and proofs as programs.

1. Prolegomenon and technicalities 31

Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵{𝑥 ≔ 𝑢}

Table 1.17.: Application rule in MLTT

⊢ Γ
Γ ⊢ □

Table 1.18.: The universe in MLTT

[40]: Coquand (1986), “An Analysis of
Girard’s Paradox”
[2]: Abel et al. (2007), “Normalization
by Evaluation forMartin-Löf Type The-
ory with One Universe”

[103]: Martin-Löf (1984), Intuitionistic
type theory
[104]: Martin-Löf (1971), “A Theory of
Types”

[14]: Barendregt (1991), “Introduction
to Generalized Type Systems”

Γ ⊢ 𝐴 ∶ □
Γ ⊢ 𝐴

Table 1.19.: Elements of the universe
in MLTT

[100]: Luo (2012), “Notes on universes
in type theory”

[12]: Assaf (2014), “A Calculus of Con-
structions with Explicit Subtyping”

One might wonder whether ∀ is the only logical quantifier that can be
given computational interpretation. This is not the case, and an anal-
ogous work is possible for the existential quantifier ∃. This is however
not part of our version of MLTT, and we encourage the reader to wait
until we reach CIC to enjoy dependent sums. The impatient reader
who could not grin and bear it can jump forward to Section 1.3.

As we already saw in System T, substitution lies at the core of compu-
tation. Since types now compute, it is only natural that substitution
should play its part. This leads us to an updated application rule, dis-
played in Table 1.17.

We are almost done with typing rules. All that’s left is to clarify typing
for types. As we already explained, MLTT features a new type, called
the universe. It is sometimes written Type as in Coquand [40], some-
times 𝑈 or 𝒰 as in Abel et al [2]; Martin-Löf himself named it 𝑉 in
his seminal paper [103, 104]. In this thesis, we will follow the Pure
Type Systems tradition and take Barendregt’s notation [14], meaning
we write □ to denote the universe.

Formation rule for □ is given in Table 1.18. It boils down to saying
that the universe is well-formed when the ambiant context Γ is well-
formed.

The interesting rule regarding the universe affects its elements: any
well-typed term

Γ ⊢ 𝐴 ∶ □

can be turned into a well-formed type

Γ ⊢ 𝐴.

It is displayed in Table 1.19. Note that this way of phrasing things
is not the only one; it is called having universes à la Russel. Another
way, called à la Tarski, involves an explicit function El turning terms
of type □ into proper types. It looks like this:

Γ ⊢ 𝐴 ∶ □
Γ ⊢ El 𝐴

Luo [100] pointed out that some care should be taken when present-
ing the two versions as they were not always equivalent. Assaf [12]
provided a formulation where the two styles are equivalent. In Chap-
ter 3, when we interpret elements of □ as algebras of a monad and
types as the underlying set of said algebra, a function reminiscent of
El will make its appearance. We will mostly use universes à la Russel
in the rest of the thesis though, as they ease the reading.

1. Prolegomenon and technicalities 32

[103]: Martin-Löf (1984), Intuitionistic
type theory
[104]: Martin-Löf (1971), “A Theory of
Types”

[54]: Frege (1893), Grundgesetze der
Arithmetik: begriffsschriftlich abgeleitet

[62]: Girard (1972), “Interprétation
fonctionnelle et élimination des
coupures de l’arithmétique d’ordre
supérieur”

[29]: Burali-Forti (1897), “Una ques-
tione sui numeri transfiniti”
[40]: Coquand (1986), “An Analysis of
Girard’s Paradox”
[39]: Coquand (1995), “A new paradox
in type theory”

[81]: Hurkens (1995), “A Simplifica-
tion of Girard’s Paradox”

Γ ⊢ 𝐴 ∶ □
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵

Table 1.20.: Dependent products in
MLTT

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵

Table 1.21.: Conversion rule for con-
version in MLTT

Γ ⊢ 𝐴 ≡ 𝐴′ ∶ □
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ □

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′. 𝐵′ ∶ □

Γ ⊢ 𝐴 ≡ 𝐴′

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ≡ 𝐵′

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′. 𝐵′

Table 1.22.: Convertibility of Π-types
in MLTT

And God created a rock He could not lift In the first version of his
system, Martin-Löf [103, 104] stated that □ should have the type □.
This rule

□ ∶ □

is evocative of the set of all sets that led to Russel’s paradox [54].Martin-
Löf ’s rule, too, is inconsistent and led to a similar paradox found by
Girard [62], as a variant of the Burali-Forti paradox [29]. This paradox
was later analyzed by Coquand [40] who found another paradox in a
slightly weaker setting [39]. Finally, Hurkens [81] provided a simpler
version of the latter.

There are ways to circumvent this issue, and we will present one of
them later on. For now, let us simply say that □ stands alone, the only
type with no type.

The same fear of paradoxes leads us to having two rules for the well-
formation of dependent products, both of them displayed in Table
1.20. Indeed, a dependent product such as

Π(𝑥 ∶ □). □

cannot be allowed to be of type □, or we could once again build a
paradox. Thismeans thatwe effectively live in a two-levels type theory.
As long as we only mention “small types”, i.e. types of type □, our
dependent product will be of type □. But as soon as we get it on with
bigger types such as the big boss □ itself, we enter the big league and
there is no turning back: our dependent product will never be of type
□ again.

All the nitty-gritty details ofMLTT typing rules have now come under
scrutiny, and we can set our sight on conversion. Compared to Sys-
tem T, things do not change much: we still have 𝛽 and 𝜂-conversion,
conversion is still an equivalence relation and rules for ℕind are the
same as for ℕrec in System T. We mainly replace functional types by
dependent products, and duplicate some rules at the level of types.
All things considered, there are two salient additions:

▶ As conversion is typed, we need to add a rule to account for con-
vertibility of types: if 𝑡 and 𝑢 are convertible at type 𝐴 and if 𝐴
is convertible to 𝐵 then 𝑡 and 𝑢 are convertible at type 𝐵. This
particular rule is presented in Table 1.21.

▶ We add a rule describing convertibility of dependent products,
similar to 𝜆-congruence: if 𝐴 and 𝐴′ are convertible and if, given
𝑥 ∶ 𝐴, 𝐵 and 𝐵′ are convertible, then

Π𝑥 ∶ 𝐴. 𝐵 and Π𝑥 ∶ 𝐴′. 𝐵′ are convertible.

This rule is displayed in Table 1.22.

For the sake of completeness, we present every rule of conversion for
MLTT in Figure 1.4.

1. Prolegomenon and technicalities 33

Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑡 ∶ 𝐴

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ≡ 𝐴

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ 𝑢 ≡ 𝑡 ∶ 𝐴

Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝐵 ≡ 𝐴

Γ ⊢ 𝐴 ≡ 𝐵 ∶ □
Γ ⊢ 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵

Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑡 ≡ 𝑣 ∶ 𝐴

Γ ⊢ 𝐴 ≡ 𝐵 Γ ⊢ 𝐵 ≡ 𝐶
Γ ⊢ 𝐴 ≡ 𝐶

Γ ⊢ 𝐴 ≡ 𝐴′ ∶ □ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ≡ 𝐵′ ∶ □
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′. 𝐵′ ∶ □

Γ ⊢ 𝐴 ≡ 𝐴′ Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ≡ 𝐵′

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′. 𝐵′

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑢 ≡ 𝑡{𝑥 ≔ 𝑢} ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ 𝑓 𝑢 ≡ 𝑔 𝑣 ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ 𝐴 Γ ⊢ 𝑓 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵
Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵

Γ ⊢ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ S 𝑛 ≡ S 𝑚 ∶ ℕ

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ, ⊢ 𝑡S ≡ 𝑡′S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ 𝑡O ≡ 𝑡′O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑛 ≡ 𝑛′ ∶ ℕ

Γ ⊢ ℕind 𝑃 𝑡O 𝑡S 𝑛 ≡ ℕind 𝑃 𝑡′O 𝑡′S 𝑛′ ∶ 𝑃{𝑥 ≔ 𝑛}

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ ℕind 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃{𝑥 ≔ O}

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ ⊢ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕind 𝑃 𝑡O 𝑡S (S 𝑛) ≡ 𝑡S 𝑛 (ℕind 𝑃 𝑡O 𝑡S 𝑛) ∶ 𝑃{𝑥 ≔ S 𝑛}

Figure 1.4.: Conversion rules of MLTT

1. Prolegomenon and technicalities 34

1.3. CIC

𝐴, 𝐵, 𝑡, 𝑢 ∶∶= □𝑖 ∣ 𝑥 ∣ 𝑡 𝑢 ∣ 𝜆𝑥 ∶ 𝐴. 𝑡 ∣ Π𝑥 ∶ 𝐴. 𝑡
Γ, Δ ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝐴

⊢ ⋅
Γ ⊢ 𝐴 ∶ □𝑖
⊢ Γ, 𝑥 ∶ 𝐴

⊢ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ 𝑥 ∶ 𝐴

⊢ Γ
Γ ⊢ □𝑖 ∶ □𝑖+1

Γ ⊢ 𝐴 ∶ □𝑖 Γ ⊢ 𝑡 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝐴 ∶ □𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗
Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

Γ ⊢ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∶ 𝐵{𝑥 ≔ 𝑢}

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □𝑖
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 ∶ □𝑖 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝐴 ∶ □𝑖 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗
Γ ⊢ Σ𝑥 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

Γ ⊢ 𝑡 ∶ Σ𝑥 ∶ 𝐴. 𝐵
Γ ⊢ 𝑡.𝜋1 ∶ 𝐴

Γ ⊢ 𝑡 ∶ Σ𝑥 ∶ 𝐴. 𝐵
Γ ⊢ 𝑡.𝜋2 ∶ 𝐵{𝑥 ≔ 𝑡.𝜋1}

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵{𝑥 ≔ 𝑡} Γ ⊢ Σ𝑥 ∶ 𝐴. 𝐵 ∶ □𝑖
Γ ⊢ (𝑡, 𝑢) ∶ Σ𝑥 ∶ 𝐴. 𝐵 (conversion omitted)

Figure 1.5.: Syntax of CC𝜔 extended
with Σ-types

As we pointed out in the previous chapter, MLTT stems from a reli-
gious overhaul, turning a pagan System T into a monotheist society.
Our next system, the Calculus of Inductive Constructions (CIC), con-
cludes the spiritual revolution by stripping the last god □ of its di-
vine ornaments and building a complete impious world. Alas, a soci-
ety without an absolute ruler is by no means egalitarian, and a new
hierarchy soon surfaces, more stratified than ever, with countless lay-
ers of ambitious, relentless, smaller dictators, always bickering and
confronting their respective powers.

1. Prolegomenon and technicalities 35

⊢ Γ
Γ ⊢ □𝑖 ∶ □𝑖+1

Table 1.23.: Hierarchy of universes in
CC𝜔

[71]: Harper et al. (1991), “Type Check-
ing with Universes”

Γ ⊢ 𝐴 ∶ □𝑖 𝑖 < 𝑗
Γ ⊢ 𝐴 ∶ □𝑗

Table 1.24.: Cumulativity in CC𝜔

[136]: Timany et al. (2018), “Cumula-
tive Inductive Types In Coq”

We will however not use Prop, the
impredicative universe of proposi-
tions present in Coq and often as-
sociated with CIC.

Γ ⊢ 𝐴 ∶ □𝑖
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

Table 1.25.: Dependent products in
CC𝜔

The ever-growing Babel tower It is customary to separate CIC in
two parts: the Calculus of Constructions (CC𝜔) on the one hand, and
the Inductives on the other hand. The CC𝜔 part is displayed in Figure
1.5, and presents some changes with respect to MLTT. Let us wander
through them one by one.

The fact that □ is the only term in MLTT to not have a type feels a bit
ad-hoc and, even though the rule

□ ∶ □

is inconsistent, we have not lost hope to solve this problem. A first
observation is that if we take two versions of □, for instance

□0 and □1, such that □0 ∶ □1,

then the resulting system is consistent. Of course, if we try andwrite

□1 ∶ □1

then we face Girard’s paradox once again, so □1 cannot be typed. We
can try and add □2 to the family to solve this issue but of course the
problem now lies a few goalposts away. We soon end up with

□0 ∶ □1 ∶ ... ∶ □𝑛

but as soon as we stop, trouble resurfaces. Well, the answer is easy:
we simply never stop, and build an infinite, ever-growing tower of □𝑖,
relevantly named the universe hierarchy.Nowuniverses□𝑖 are indexed
by variables 𝑖, 𝑗 and for any 𝑖, we have:

□𝑖 ∶ □𝑖+1

This rule is displayed in Table 1.23. The natural idea is to take 𝑖, 𝑗 to
be natural numbers but this is not necessary, and other choices might
make our system more flexible. One was introduced by Harper et al
[71] under the name typical ambiguity. We will silently rely on it for
the rest of this thesis.

There are many tweaks one can make to this infinite tower of uni-
verses. One is called cumulativity, presented in Table 1.24. It says that
if 𝐴 is a term of type □𝑖 for some 𝑖 then it is also a term of type □𝑗
for any greater 𝑗. Cumulativity is an important feature of Coq [136], a
proof assistant base on CIC. Every formalized result of this thesis will
be written in Coq, which means that our meta-theory will effectively
be Coq’s version of CIC. Therefore, it will feature cumulativity.

In MLTT, we duplicated the well-formation rules for dependent prod-
ucts, to avoid Girard’s paradox.When facing an infinite hierarchy, this
technique scales to the rule displayed in Table 1.25. It formalizes the
intuition that a dependent product

Π𝑥 ∶ 𝐴. 𝐵

has to live at the same level or higher than both 𝐴 and 𝐵.

1. Prolegomenon and technicalities 36

Γ ⊢ 𝐴 ∶ □𝑖
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ □𝑗

Γ ⊢ Σ𝑥 ∶ 𝐴. 𝐵 ∶ □max(𝑖,𝑗)

Γ ⊢ 𝑡 ∶ Σ𝑥 ∶ 𝐴. 𝐵
Γ ⊢ 𝑡.𝜋1 ∶ 𝐴

Γ ⊢ 𝑡 ∶ Σ𝑥 ∶ 𝐴. 𝐵
Γ ⊢ 𝑡.𝜋2 ∶ 𝐵{𝑥 ≔ 𝑡.𝜋1}

Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑢 ∶ 𝐵{𝑥 ≔ 𝑡}
Γ ⊢ Σ𝑥 ∶ 𝐴. 𝐵 ∶ □𝑖

Γ ⊢ (𝑡, 𝑢) ∶ Σ𝑥 ∶ 𝐴. 𝐵
Table 1.26.: Dependent sums in CC𝜔

No existential crisis The last enhancement of CC𝜔 is the addition
of dependent sums (also called Σ-types), which are the computational
counterpart of the existential quantifier ∃, in the same way dependent
products are the computational counterpart of the universal quanti-
fier ∀. Rules for Σ-types are displayed in Table 1.26. To summarize:

▶ Σ𝑥 ∶ 𝐴. 𝐵 is well-formed when 𝐴 is well-formed and 𝐵 is a well-
formed type, dependent on 𝐴;

▶ To build an element of

Σ𝑥 ∶ 𝐴. 𝐵,

one has to provide an element

𝑡 ∶ 𝐴 and a proof of 𝐵{𝑥 ≔ 𝑡},

mimicking what a mathematician would do to prove the exis-
tence of some mathematical object validating some property.

▶ Given an element
𝑡 ∶ Σ𝑥 ∶ 𝐴𝐵,

one can recover an element of 𝐴 thanks to the first projection

𝑡 .𝜋1 ∶ 𝐴.

The second projection

𝑡 .𝜋2 ∶ 𝐵{𝑥 ≔ 𝑡.𝜋1}

is a proof of 𝐵 instantiated with 𝑡 .𝜋1.

This is it for CC𝜔 , the negative part of CIC. We can now turn to the last
letter of this grandiose acronym: I for inductive types.

All your base types are belong to us Until now, whether it was Sys-
tem T or MLTT, our theories only featured one base type, ℕ. This is
rather poor, as there is more to life than counting stuff. In CIC, this
limitation is removed by the addition of a general pattern to derive
inductive types. Let us present them through a series of portraits. The
syntax we will use in this thesis is the following:

Inductive ℕ ∶ □𝑖 ≔
∣ O ∶ ℕ
∣ S (𝑛 ∶ ℕ) ∶ ℕ

From this, Coq automatically derives ℕind, the induction principle we
already encountered in MLTT. With the same syntax, we could also
define booleans:

Inductive 𝔹 ∶ □𝑖 ≔
∣ true ∶ 𝔹
∣ false ∶ 𝔹

1. Prolegomenon and technicalities 37

[127]: Sozeau et al. (2022), “The Cu-
rious Case of Case: Correct & Effi-
cient Representation of Case Analysis
in Coq and MetaCoq”

[96]: Lennon-Bertrand (2022), “Bidi-
rectional Typing for the Calculus of In-
ductive Constructions”

We would then recover another induction principle, called 𝔹ind, with
the following rules:

Γ, 𝑥 ∶ 𝔹 ⊢ 𝑃 Γ ⊢ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ 𝑏 ∶ 𝔹 Γ ⊢ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝑃{𝑥 ≔ 𝑏}

Γ, 𝑥 ∶ 𝔹 ⊢ 𝑃 Γ ⊢ 𝑡true ≡ 𝑡′true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ 𝑏 ≡ 𝑏′ ∶ 𝔹 Γ ⊢ 𝑡false ≡ 𝑡′false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ≡ 𝔹ind 𝑃 𝑡′true 𝑡′false 𝑏′ ∶ 𝑃{𝑥 ≔ 𝑏}

Γ, 𝑥 ∶ 𝔹 ⊢ 𝑃
Γ ⊢ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false true ≡ 𝑡true ∶ 𝑃{𝑥 ≔ true}

Γ, 𝑥 ∶ 𝔹 ⊢ 𝑃
Γ ⊢ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false false ≡ 𝑡false ∶ 𝑃{𝑥 ≔ false}

The reader may have recognized in

𝔹ind 𝑃 𝑡true 𝑡false 𝑏

a dependent variant of

if 𝑏 then 𝑡true else 𝑡false,

widespread in programming languages.

Induction principles are often written using Π-types for the predicate,
as follows:

Γ ⊢ 𝑃 ∶ 𝔹 → □ Γ ⊢ 𝑡true ∶ 𝑃 true
Γ ⊢ 𝑏 ∶ 𝔹 Γ ⊢ 𝑡false ∶ 𝑃 false

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝑃 𝑏

However, due to bad interactions with cumulativity this wording led
to a bug in Coq, and Π-types were removed from pattern-matching
implementation, as explained by Sozeau et al [127] and in Lennon-
Bertrand [96].We follow their lead and display dependent elimination
without dependent products for the predicate. However, to ease the
reading we will make a slight abuse of notation when defining func-
tions using dependent eliminators in the rest of the thesis, andwewill
write

𝔹ind (𝜆𝑥 ∶ 𝔹. 𝑃) 𝑡true 𝑡false 𝑏 to mean 𝔹ind 𝑃 𝑡true 𝑡false 𝑏

when 𝑥 appears as a free variable in 𝑃 .
Another quite straightforward inductive construction is the type of
falsity, aptly dubbed the empty type:

Inductive ⊥ ∶ □𝑖 ≔ .

Its recursor is quite interesting:

Γ, 𝑥 ∶ ⊥ ⊢ 𝑃
Γ ⊢ 𝑒 ∶ ⊥

Γ ⊢ ⊥ind 𝑃 𝑒 ∶ 𝑃{𝑥 ≔ 𝑒}

Indeed, as ⊥ is empty there is no base case for its induction principle:
as soon as we have an inhabitant of ⊥, we can produce inhabitants

1. Prolegomenon and technicalities 38

In an extended context, however,
one can always suppose 𝑥 ∶ 𝐼 to in-
habit 𝐼 .

of any type 𝑃 . This is the logical rule for falsity, often called proof by
contradiction, sometimes quoted in latin: ex falso quodlibet, literally out
of false, what you want.

At that point, one should start to get an intuition of how inductive
types work: to build a term of a given inductive 𝐼 , one starts with the
base constructors (constructors that do not ask for an argument of
type 𝐼 , such as O for ℕ or true and false for 𝔹) then stacks any number
of recursive constructors one wants (constructors that ask for an argu-
ment of type 𝐼 , such as S for ℕ). The number of recursive constructors
must however be finite: the infinite string

S (S (...))

is not an element ofℕ. When there is no base constructor, as in ⊥, then
the type is empty in the empty context.

Conversely, this intuition applies to recursors: as a general pattern, if
one is able to provide a proof of

𝑃{𝑥 ∶= 𝑐}

for any base constructor 𝑐 of 𝐼 and if one is able to propagate these
proofs through the recursive constructors, then one is able to recover
a proof of

𝑃{𝑥 ≔ 𝑖}
for any term 𝑖 ∶ 𝐼 .

Parameters by the meter We can however go beyond simple types
such as 𝔹, ⊥ and ℕ. Indeed, dependent type theory would not be true
to its name if inductive types could not depend on other types. This
is the case of lists, inductively defined in Figure 1.6.

Inductive list (𝐴 ∶ □𝑖) ∶ □𝑖 ≔
∣ nil ∶ list 𝐴
∣ cons (𝑎 ∶ 𝐴) (𝑙 ∶ list 𝐴) ∶ list 𝐴.

Γ, 𝑥 ∶ list 𝐴 ⊢ 𝑃
Γ ⊢ 𝑡nil ∶ 𝑃{𝑥 ≔ nil}
Γ ⊢ 𝑡cons ∶ Π(𝑎 ∶ 𝐴) (𝑙 ∶ list 𝐴). 𝑃{𝑥 ≔ 𝑙} → 𝑃{𝑥 ≔ cons 𝑎 𝑙}
Γ ⊢ 𝑙 ∶ list 𝐴

Γ ⊢ listind 𝐴 𝑃 𝑡nil 𝑡cons 𝑙 ∶ 𝑃{𝑥 ≔ 𝑙}
Figure 1.6.: Lists in CIC

Listswill be used throughout this thesis, oftenwith the abbreviation

𝑎 ∷ 𝑙 to designate cons 𝑎 𝑙.

For the sake of conciseness, we skip computation rules for listind, as
they are rather close to those of ℕind, albeit with an additional param-
eter 𝐴.

Lists are rather intuitive and programmers should be familiar with
them. However, they do not make use of the full power of dependence.

1. Prolegomenon and technicalities 39

Indeed,𝐴 is fixed at the beginning of the inductive definition, and con-
structors have no say in it. In such cases, we say that𝐴 is a parameter of
the inductive list 𝐴. Could we imagine a type that changes depending
on the constructors we use ? A first example would be the one of vec-
tors, defined in Figure 1.7. Vectors are essentially lists whose length is
disclosed by the type.

Inductive vec (𝐴 ∶ □𝑖) ∶ ℕ → □𝑖 ≔
∣ vnil ∶ vec 𝐴 O
∣ vcons (𝑛 ∶ ℕ) (𝑎 ∶ 𝐴) (𝑙 ∶ vec 𝐴 𝑛) ∶ vec 𝐴 (S 𝑛).

Γ, 𝑥 ∶ ℕ, 𝑦 ∶ vec 𝐴 𝑥 ⊢ 𝑃
Γ ⊢ 𝑡vnil ∶ 𝑃{𝑥 ≔ O; 𝑦 ≔ vnil}
Γ ⊢ 𝑡vcons ∶ Π(𝑛 ∶ ℕ) (𝑎 ∶ 𝐴) (𝑣 ∶ vec 𝐴 𝑛).

𝑃{𝑥 ≔ 𝑛; 𝑦 ≔ 𝑣} →
𝑃{𝑥 ≔ S 𝑛; 𝑦 ≔ vcons 𝑛 𝑎 𝑣}

Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ 𝑣 ∶ vec 𝐴 𝑛

Γ ⊢ vecind 𝐴 𝑃 𝑡vnil 𝑡vcons 𝑛 𝑣 ∶ 𝑃{𝑥 ≔ 𝑛; 𝑦 ≔ 𝑣}
Figure 1.7.: Vectors in CIC

Here, constructors specify at which value of ℕ they inhabit vec, and
the natural number they harbour is called an index. The constructor
vnil, for instance, can only ever live in vec 𝐴 O.

When writing functions such as hd (which returns the head of a non-
empty list) or tl (which returns the tail of a non-empty list), this allows
the user to make sure that said function will never be applied to an
empty list, by mere virtue of typing.

Are youmy equal? However, vectors are not the end of our trip, and
we have yet to reach the pinnacle of dependency, the paramount equal-
ity type.

Inductive eq (𝐴 ∶ □𝑖) (𝑥 ∶ 𝐴) ∶ 𝐴 → □𝑖 ≔
∣ refl ∶ eq 𝐴 𝑥 𝑥

Γ, 𝑥 ∶ 𝐴, 𝑦 ∶ eq 𝐴 𝑎 𝑥 ⊢ 𝑃
Γ ⊢ 𝑡refl ∶ 𝑃{𝑥 ≔ 𝑎; 𝑦 ≔ refl 𝑎}
Γ ⊢ 𝑎′ ∶ 𝐴
Γ ⊢ 𝑒 ∶ eq 𝐴 𝑎 𝑎′

Γ ⊢ eqind 𝐴 𝑎 𝑃 𝑡refl 𝑎′ 𝑒 ∶ 𝑃{𝑥 ≔ 𝑎′; 𝑦 ≔ 𝑒}
Figure 1.8.: Equality type in CIC

In the remainder of this thesis, we will write

𝑥 = 𝑦 to mean eq 𝐴 𝑥 𝑦,

omitting 𝐴 because it can be retrieved from 𝑥 and 𝑦 .

1. Prolegomenon and technicalities 40

[95]: Leibniz (1686), “Discourse on
Metaphysics”

Equality is a tricky type that raises many questions, the first of which
being, why do we consider this particular inductive to be the type
of equality ? The first properties one might expect from equality are
those of an equivalence relation:

▶ equality should be reflexive: 𝑥 should be equal to itself;
▶ equality should be symmetric: if 𝑥 = 𝑦 then 𝑦 = 𝑥 ;
▶ equality should be transitive: if 𝑥 = 𝑦 and 𝑦 = 𝑧 then 𝑥 = 𝑧.

Reflexivity is exactly refl. Moreover, making good use of eqind, we can
show the last two properties. For instance, symmetry is proven by the
following term, while transitivity is very similar:

𝜆(𝐴 ∶ □𝑖) (𝑥 𝑦 ∶ 𝐴) (𝑒 ∶ 𝑥 = 𝑦).
eqind 𝐴 𝑥 (𝜆(𝑧 ∶ 𝐴) (_ ∶ 𝑥 = 𝑧). 𝑧 = 𝑥) (refl 𝑥) 𝑦 𝑒 ∶

Π(𝐴 ∶ □𝑖) (𝑥 𝑦 ∶ 𝐴). 𝑥 = 𝑦 → 𝑦 = 𝑥.

Moreover, eq should respect Leibniz’s definition of equality [95]: two
objects are equal iff they satisfy the same properties. Intuitively, it en-
tails that two objects 𝑥 and 𝑦 should be said equal when the system is
unable to distinguish them. This effectively means that given

𝑓 ∶ 𝐴 → 𝐵 and 𝑥, 𝑦 ∶ 𝐴 such that 𝑥 = 𝑦

then we can deduce
𝑓 𝑥 = 𝑓 𝑦.

This is easily derivable from eqind.

On the other hand, there are things that should not be equal: true and
false, O and S O, and so on. In CIC, negation of a property 𝑃 is inter-
preted as a function from 𝑃 to ⊥. Once more, eqind proves useful and
allows us to build a function

𝑓 ∶ true = false → ⊥,

as follows: first, we define

𝑃 ∶ Π(𝑏 ∶ 𝔹) (𝑒 ∶ true = 𝑏).□𝑖
𝑃 true _ ≔ ⊤
𝑃 false _ ≔ ⊥

where ⊤ is the always inhabited type with only one element ⋆ ∶ ⊤.
Thenwemake use of our proof that true = false in the followingway:

𝑓 ≔ 𝜆𝑒 ∶ true = false. eqind 𝔹 true 𝑃 ⋆ false 𝑒.

Unfolding the definition of eqind and 𝑃 , we can see that

𝑃 true (refl true) ≡ ⊤ ∶ □𝑖

hence ⋆ ∶ ⊤ is a proof of 𝑃 true (refl true). Moreover, we have a proof

𝑒 ∶ true = false,

thus we indeed retrieve a proof of

𝑃 false 𝑒 ≡ ⊥ ∶ □𝑖.

1. Prolegomenon and technicalities 41

All of this advocates for eq being a good candidate to interpret equal-
ity. Still, its formulation can be unsettling. We only have one construc-
tor,

refl ∶ eq 𝐴 𝑎 𝑎.
Does this mean that all we are ever going to prove are equalities be-
tween some term 𝑎 ∶ 𝐴 and itself? This would be rather poor. Fortu-
nately, this is not the case, thanks to two pillars of type theory: con-
version and contexts.

Firstly, conversion already equates some terms that are syntactically
different but computationally the same. Let us recall for instance our
definition of addition from Section 1.1:

add ∶ ℕ → ℕ → ℕ
add O 𝑚 ≔ 𝑚
add (S 𝑘) 𝑚 ≔ add 𝑘 (S 𝑚)

In CIC, it is still true that 4+3 ≡ 7. Now, already inMLTTwe explained
that computation exists at the level of types. This means that

eq ℕ (4 + 3) 7 ≡ eq ℕ 7 7.

Then, since
refl 7 is of type eq ℕ 7 7,

thanks to the conversion rule of CIC it is also an inhabitant of

eq ℕ (4 + 3) 7, which means that 4 + 3 = 7.

Thus, equality encompasses conversion.

Still, looking at our definition of addition, we notice that it computes
by recursion on its first argument. This means that given a variable
𝑛 ∶ ℕ in the context,

O + 𝑛 ≡ 𝑛 but 𝑛 + O ≢ 𝑛.

Indeed, when facing a variable, computation is blocked. This entails
that

refl 𝑛 ∶ 𝑛 = 𝑛 is not a proof of 𝑛 + O = 𝑛.
However, reflexivity is not the onlyway to inhabit equality. Usingℕind,
we can prove that 𝑛 + O = 𝑛. All we need is a proof

Γ ⊢ 𝑡O ∶ O +O = O

which follows from
refl O

and computation, and a proof

Γ, 𝑛 ∶ ℕ, 𝐻𝑛 ∶ 𝑛 + O = 𝑛 ⊢ (S 𝑛) + O = S 𝑛

which can be obtained through eqind applied to 𝐻𝑛. Thus, as soon as
we have assumptions in the context, refl stops being the only way to
derive equality.

1. Prolegomenon and technicalities 42

[72]: Hedberg (1998), “A coherence
theorem for Martin-Löf’s type theory”

Hedberg’s result is formalized in
the Standard Library of Coq, it can
be found here.

[92]: Kraus et al. (2013), “Generaliza-
tions of Hedberg’s Theorem”

[76]: Hofmann et al. (1994), “The
Groupoid Model Refutes Uniqueness
of Identity Proofs”
[131]: Streicher (1993), “Investigations
into intensional type theory”

Equating equalities How many proofs of equalities do we want? If
we find many ways to prove equality between two terms, should those
ways be equal? Convertible? For simple enough types, such as 𝔹 or ℕ,
it is possible to prove uniqueness of identity proofs (UIP). For ℕ, this
means:

Π(𝑛 𝑚 ∶ ℕ) (𝑒1 𝑒2 ∶ 𝑛 = 𝑚). 𝑒1 = 𝑒2.
More generally, as observed by Hedberg [72], UIP is derivable for any
type where we can build a decision procedure for equality. This result
was later extended by Kraus et al [92]. The idea is, given two booleans
𝑏1, 𝑏2 ∶ 𝔹, they are equal if and only if the two of them are true or the
two of them are false; no matter what fancy proof we find, it will at
the end reduce to this simple fact.

However, for functional types such as

ℕ → 𝔹

such a decision procedure is out of reach. Given two functions

𝑓1, 𝑓2 ∶ ℕ → 𝔹,

a mathematician’s intuition would be to check whether 𝑓1 and 𝑓2 are
equal on every input, but:

▶ This would mean applying 𝑓1 and 𝑓2 to every possible natural
number, which would take infinitely long, thus can hardly be
called a reasonable procedure;

▶ Even assuming we manage this impossible feat, at the end of
eternity we still only get

Π(𝑛 ∶ ℕ). 𝑓1 𝑛 = 𝑓2 𝑛,

and in CIC there is no way to retrieve 𝑓1 = 𝑓2 from this. The fact
that two functions are equal iff they are equal on every argument is
called function extensionality (funext) and is not provable in CIC.

Hoffman and Streicher [76, 131] proved that there is no hope to prove
uniqueness of identity proofs or its close relative, the K axiom, as a
general principle in CIC. Some would argue that this is a serious lim-
itation: two objects are either equal, thus perfectly identical, or not
equal, hence there is no way to prove their equality, but the fact that
different ways of being equal can cohabit is philosophically wrong.

This is part of a wider debate on the status of proofs: suppose we have
a predicate

𝑃 ∶ ℕ → □

such that 𝑃 𝑛 means that 𝑛 is a prime number. Then should there be
many different ways to prove 𝑃 5 or should all these proofs be con-
sidered equal? The latter option is called proof irrelevance. Coq, for
instance, features a universe of propositions

∗ ∶ □

where the user can add as an axiom that

if 𝐴 ∶ ∗ and 𝑥, 𝑦 ∶ 𝐴 then 𝑥 = 𝑦.

https://github.com/coq/coq/blob/1cbd585df442a8cc0a604511dfcad70a9d86b582/theories/Logic/Eqdep_dec.v#L183

1. Prolegomenon and technicalities 43

[59]: Gilbert et al. (2019), “Definitional
Proof-Irrelevance without K”

[8]: Altenkirch et al. (2007), “Observa-
tional equality, now!”

[119]: Pujet et al. (2023), “Impredica-
tive Observational Equality”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”

[75]: Hofmann (1997), Extensional con-
structs in intensional type theory

[6]: Allen et al. (2000), “The Nuprl
Open Logical Environment”

[19]: Bauer et al. (2018), “Design and
Implementation of the Andromeda
Proof Assistant”

Some, as Gilbert et al [59], go even further and ask that

if 𝐴 ∶ ∗ and 𝑥, 𝑦 ∶ 𝐴 then 𝑥 ≡ 𝑦;

a feature called definitional proof-irrelevance and implemented in the
Agda proof-assistant, and in Coq under the name SProp.

Given proof-irrelevance, one can basically ask for the equality type
to live in ∗ and get UIP. This line of thought led to Observational Type
Theory, advocated for by Altenkirch et al [8] and recently implemented
by Pujet et al [119, 120].

This is not the only path, though, and one can be even more brutal by
adding equality reflection:

Γ ⊢ 𝑒 ∶ 𝑥 = 𝑦 ∶ 𝐴
Γ ⊢ 𝑥 ≡ 𝑦 ∶ 𝐴

Now every proof of equality can be turned into a conversion rule, col-
lapsing all proofs of equality until refl is the only one left standing.
The resulting theory is called Extensional Type Theory (ETT). This is a
quite barbarianway of dealingwith the issue, and it cannot gowithout
some casualties. Indeed, assuming for instance we have a type 𝐴 such
that if some Turing machine 𝑀 terminates on some input 𝑡 then

𝐴 ≔ ℕ else 𝐴 = 𝔹

then with equality reflection we get 𝐴 such that if some Turing ma-
chine 𝑀 terminates on some input 𝑡 then

𝐴 ≡ ℕ else 𝐴 ≡ 𝔹

which means that

O ∶ 𝐴 iff some Turing-machine 𝑀 terminates on some input 𝑡 .

Now, to automatically check whether

O ∶ 𝐴

or not, Coq or any proof assistant based on type theory would have
to automatically prove or disprove termination of Turing-machines.
However, this problem is known to be undecidable and, using a vari-
ant of our informal argument, Hoffman [75] formally proved undecid-
ability of type-checking in ETT. Type-checking is the task of ascertaining
whether a given term 𝑡 is or is not of a given type 𝐴 and, in most proof
assistants, such as Coq, it is considered crucial to feature an automatic
type-checker, meaning decidability of type-checking is necessary.

Still, some adventurers have followed the tortuous path of undecid-
ability, building proof assistants without a type-checker verifying that
terms are well-typed, but rather a derivation-checker verifying whole
proof trees. Two salient examples of such endeavours are NuPRL [6], a
proof assistant based on realisabilitywhere equality reflection is deriv-
able, and Andromeda [19], a flexible tool where the user can add equal-
ity reflection and write their own algorithm to typecheck part of the
resulting theory.

1. Prolegomenon and technicalities 44

[144]:Winterhalter et al. (2019), “Elim-
inating reflection from type theory”

[74]: Hofmann (1995), “Conservativity
of Equality Reflection over Intensional
Type Theory”
[75]: Hofmann (1997), Extensional con-
structs in intensional type theory
[111]: Oury (2005), “Extensionality in
the Calculus of Constructions”
[34]: Cockx et al. (2021), “The Taming
of the Rew: A Type Theory with Com-
putational Assumptions”

[148]: Zermelo (1904), “Beweis, dass
jede Menge wohlgeordnet werden
kann: Aus einem an Herrn Hilbert
gerichteten Briefe”
[149]: Zermelo (1908), “Unter-
suchungen über die Grundlagen der
Mengenlehre. I”

[140]: Univalent Foundations Program
(2013), Homotopy Type Theory: Univa-
lent Foundations of Mathematics

On a less adventurous note, Winterhalter et al [144] provided a trans-
lation from ETT to Intensional Type Theory (ITT, understood here as
CC𝜔 with dependent sums and equality) extendedwith funext andUIP.
Their translation builds upon previous work by Hofmann [74, 75] and
Oury [111]. Finally, let us say that a restriction of the reflection rule
retaining decidability of type checking can be found, which led to the
inclusion of rewrite rules in the Agda proof assistant [34].

Paved with good intensions We just mentioned two concepts that
are often used but rarely defined in type theory: extensionality and
intensionality. As a general principle, the more a theory or its interpre-
tation describes its objects as black-boxes only caracterized by their
input/output interactions, the more we will call it extensional. Func-
tion extensionality, which states that two functions that return the
same output when fed the same input, is an obvious example of an ex-
tensional principle. Another one is proposition extensionality (propext),
which states that any two propositions that are equivalent are equal:

propext ≔ Π(𝐴 𝐵 ∶ ∗). (𝐴 → 𝐵) → (𝐵 → 𝐴) → 𝐴 = 𝐵.

Usual set theory such asZF set theory [148, 149] is very extensional, as
functions are defined as relations between inputs and outputs. In type
theory and in the proof-as-programsworld, things are not so clear and
different interpretations cohabit. The more a theory or its interpre-
tation attaches importance to the internal, computational entrails of
such objects, the more it will be worthy of the name intensional. As
we try to give computational content to classical principles, we are
naturally inclined to prefer the latter. We will consider intensional
interpretations of CIC later in this Chapter, and Chapter 2 will be de-
voted to studying different notions of continuity, some more inten-
sional than others.

A concurrent and complementary line of work turns the table and ex-
plains that terms can be seen as points in a space, where equality of
terms ismerely a path between two points. Depending on the space we
consider, there can then be many different paths between two points,
or even between a point and itself. A relaxed version of equality arises,
where equality between functions validates funext and proofs of equal-
ity between types are akin to isomorphisms of types, close to the math-
ematical intuition that different objects sharing the same structure
should be identified. More than a decade ago, univalent type theory
was born [140], a research field still prolific as of today.

1. Prolegomenon and technicalities 45

Higher, deeper, larger, stronger Going back to our zoo of induc-
tives, we should stress that higher-order types can live among the ar-
guments of constructors of inductive types. For instance, Coq accepts
definitions such as

Inductive 𝕂 ≔
∣ ⋆ ∶ 𝕂
∣ 𝛽𝕂 ∶ (ℕ → 𝕂) → 𝕂

where 𝛽𝕂 takes as argument a function from ℕ to 𝕂. Intuitively, this
means that elements of 𝕂 are infinitely wide trees: as an example,

⋆

is a element of 𝕂, as well as

⋅

⋆ ⋆ ⋆ ⋆ ...

⋆ ⋆ ... ⋆ ...

0 1 2 3 4 ...

0 1 ... 𝑘 ...

A variant of this tree-like structure will be all the rage in Chapter 2.

Stay positive Allowing such quantifications is quite powerful and
can quickly lead to inconsistencies if not done with care. For instance,
the similar following inductive burns our system down to ashes:

Inductive 𝕂′ ≔
∣ Λ𝕂′ ∶ (𝕂′ → 𝕂′) → 𝕂′

Should its recursor 𝕂′
ind exists, it would satisfy the following rule:

Γ, 𝑥 ∶ 𝕂′ ⊢ 𝑃 ∶ □𝑖
Γ, ⊢ 𝑝Λ ∶ Π(𝑓 ∶ 𝕂′ → 𝕂′) (𝑘 ∶ 𝕂′). 𝑃{𝑥 ≔ 𝑓 𝑘} → 𝑃{𝑥 ≔ Λ𝕂′ 𝑓 }
Γ ⊢ 𝑘 ∶ 𝕂′

Γ ⊢ 𝕂′
ind 𝑃 𝑝Λ 𝑘 ∶ 𝑃{𝑥 ≔ 𝑘}

From this, we can derive falsity in the empty context. Indeed, taking

𝑃 ≔ ⊥, we first have 𝑥 ∶ 𝕂′ ⊢ ⊥,

which is the first premise of 𝕂′
ind. The second premise is direct:

⋅ ⊢ 𝜆(_ ∶ 𝕂′ → 𝕂′) (_ ∶ 𝕂′) (𝐻 ∶ ⊥). 𝐻 ∶ (𝕂′ → 𝕂′) → 𝕂′ → ⊥ → ⊥.

Finally, we can inhabit 𝕂′ with the following:

⋅ ⊢ Λ𝕂′ (𝜆𝑥 ∶ 𝕂′. 𝑥) ∶ 𝕂′,

which concludes of proof of ⊥.

1. Prolegomenon and technicalities 46

[112]: Paulin-Mohring (1993), “Induc-
tive Definitions in the system Coq -
Rules and Properties”

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

[116]: Pédrot et al. (2020), “The fire tri-
angle: how to mix substitution, depen-
dent elimination, and effects”

All of this advocates for a touchstone, able to separate “harmless” in-
ductive types from inconsistent ones. Such a rule does exist, in the
shape of a positivity criterion. To summarize, it states that when defin-
ing an inductive 𝐼 , the type 𝐼 should never appear on the left side of an
arrow. This means that for any given type 𝐴,

𝑐𝑖 ∶ (𝐴 → 𝐼) → 𝐼

is a valid constructor of 𝐼 while

𝑐′𝑖 ∶ (𝐼 → 𝐴) → 𝐼

is not. The intuition is the following:

▶ in the former case, to build an element of 𝐼 using 𝑐𝑖 the user needs
to produce a function that produces elements of type 𝐼 . Quantify-
ing over functionals does not relieve the user from his need to
provide an element of 𝐼 ;

▶ in the latter case, to build an element of 𝐼 using 𝑐′𝑖 the user need
to produce a function that consumes elements of type 𝐼 . This is over-
stepping his prerogatives: instead of providing an element of 𝐼 ,
he can now simply ask for it. This dangerous behaviour is ex-
cluded from CIC.

A proper account of the positivity criterion can be found in Paulin-
Mohring [112].

1.4. BTT

We now leave CIC behind, godless hive of dictatorial, shape-shifting
bees, bossing and buzzing and swarming around to keep the nest run-
ning. In this curious maze, the many tunnels of typing cross the count-
less roads of computation, and cumulativity ladders give access to
an infinite stack of identical floors, where everyone despises those
who live below. A single stair taken downwards could make this gi-
gantic, well-founded skyscraper collapse, yet term workers still turn
into type queens, then into terms again,in a positive, well-crafted, per-
fectly timed choreography, with everyone fitting and everything click-
ing. Every term abides by the thirty-three Commandments of type the-
ory, law is enforced at every corner case of the hive, but in the shadows
of the over-disciplined, surgically clean world, some harbour a dif-
ferent kind of dream. Marginals, impures, non-standards: they bear
many names; they are the deviants, those who live outside the norm,
who failed to fit in the overarching mold of CIC and were pushed back
in the growing slums of untyped terms, away from the authoritarian
utopia, alone and longing for a place they could call home.

Baclofen Type Theory (BTT) was born from the desire of Pédrot and
Tabareau [121] to accomodate some of those bohemians in the cold
world of CIC. Said bohemians are called effects. Effects are an evading
notion, whose precise limits are hard to outline. We thus will not try
and give an overarching definition in this thesis, but will rather re-
strict ourselves to observable effects, a definition of which was given by
Pédrot and Tabareau [116].

1. Prolegomenon and technicalities 47

[97]: Lepigre (2016), “A Classical Real-
izability Model for a Semantical Value
Restriction”

[122]: Pédrot et al. (2018), “Failure is
Not an Option An Exceptional Type
Theory”

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

The name Baclofen Type Theory
is not very informative. It comes
from a play on words involving an
effectful way to restrict addiction to
dependence, the title of the paper
introducing this particular theory,
and Baclofen, a drug sometimes
used to treat opioid withdrawal
symptoms.

Definition 1.4.1: Observable effects
Given a type theory 𝒯 , 𝒯 features observable effects when it is pos-
sible to build a closed term

𝑏 ∶ 𝔹 and a function 𝐶 ∶ 𝔹 → □

such that
𝐶 true ≡ ⊤
𝐶 false ≡ ⊤
𝐶 𝑏 ≡ ⊥

Exceptions with handlers, backtracking, interaction with a user... Ob-
servable effects are everywhere in programming languages. Yet they
are very difficult to deal with in CIC as adding them breaks the consis-
tency of the system. Indeed, as Pédrot and Tabareau explain, assuming
an observable effect

𝑏 ∶ 𝔹 together with a discriminating function 𝐶 ∶ 𝔹 → □

then we can easily build a proof of ⊥ using 𝔹ind. All we need to do is
set

𝑃 ≔ 𝐶
𝑡true ≔ ⋆ ∶ 𝐶 true
𝑡false ≔ ⋆ ∶ 𝐶 false

then we can derive

𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝐶 𝑏 ≡ ⊥.

We need some leeway here. At this crossroads, three paths lie before
us:

▶ restrict substitution so that

𝔹ind 𝑃 𝑡true 𝑡false 𝑏

is of type 𝐶 𝑏 but we do not translate this into a proof of ⊥. This
can be done by introducing a value restriction, meaning that the
𝐶 𝑏 computation is blocked because 𝑏 is not a value. This is the
path followed by Lepigre in [97];

▶ accept inconsistency as a necessary evil for more expressiveness
and look at effectful CIC not as a logic theory but rather as an ef-
fectful, dependently-typed programming language, as in Pédrot
and Tabareau [122];

▶ restrict dependent elimination so that

𝐶 𝑏 ≡ ⊥

but
𝔹ind 𝑃 𝑡true 𝑡false 𝑏

is not of type 𝐶 𝑏. This is Baclofen Type Theory [121];
▶ a fourth path also lies behind us, the one we came from: aban-

doning effects and going back to our beloved, unsullied CIC.

1. Prolegomenon and technicalities 48

[94]: Krivine (1990), “Opérateurs de
mise en mémoire et traduction de
Gödel”

Drugstore operator As the name of the Section heavily hints at, we
will choose the Baclofen road.

Like its parent CIC, BTT is based on the predicative calculus of con-
structions CC𝜔 . It however stands out on the inductive side, for its
relaxed version of dependent elimination, another name for the induc-
tion principles we already encountered.

Indeed, contrarily to CIC which has a single dependent eliminator
ℐind for any given inductive type ℐ , BTT has two eliminators: a non-
dependent oneℐrec, identical to the onewe encounteredwhen dealing
with System T, and a strict dependent one ℐsind. These three elimina-
tors enjoy the same computational 𝜄-rules, i.e. they reduce on construc-
tors. The difference lies in their typing rules: the predicate ofℐrec does
not depend on its inductive argument, i.e. it is basically simply-typed,
while the predicate of ℐsind is wrapped in a storage operator ℐstr, simi-
lar to the ones used byKrivine [94], that locally evaluates its argument
in a by-value fashion.

To make things clear, let us get back to our usual example of natural
numbers. As already pointed out, the non-dependent one ℕrec is the
same as in System T:

Γ ⊢ 𝑃 ∶ □ Γ ⊢ 𝑡O ∶ 𝑃 Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ 𝑛 ∶ ℕ
Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S ∶ 𝑃

Using this non-dependent eliminator, we can define the storage oper-
ator ℕstr and the dependent eliminator ℕsind in a systematic way, as
done in Figure 1.9.

ℕstr (𝑛 ∶ ℕ) (𝑃 ∶ ℕ → □) ∶ □ ≔
ℕrec ((ℕ → □) → □) (𝜆𝑄 ∶ ℕ → □. 𝑄 O)

(𝜆(𝑚 ∶ ℕ) (_ ∶ (ℕ → □) → □) (𝑄 ∶ ℕ → □). 𝑄 (S 𝑚)) 𝑛 𝑃 .

Γ, 𝑥 ∶ ℕ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕsind 𝑃 𝑡O 𝑡S 𝑛 ∶ ℕstr 𝑛 𝑃 Figure 1.9.: Dependent eliminator for
ℕ in BTT

The syntax of ℕstr and ℕrec is quite a bit abstruse, so let us pause here,
to try and grasp the meaning of it all. Let us first notice that ℕrec is
equipped with the usual conversion rules:

Γ ⊢ 𝑃
Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃{𝑥 ≔ O}

Γ ⊢ 𝑃
Γ ⊢ 𝑡S ∶ ℕ → 𝑃 → 𝑃
Γ ⊢ 𝑡O ∶ 𝑃
Γ ⊢ 𝑛 ∶ ℕ

Γ ⊢ ℕrec 𝑃 𝑡O 𝑡S (S 𝑛) ≡ 𝑡S 𝑛 (ℕrec 𝑃 𝑡O 𝑡S 𝑛) ∶ 𝑃{𝑥 ≔ S 𝑛}

1. Prolegomenon and technicalities 49

This gives us some hints when unfolding the definition of ℕstr. We
have the following:

ℕstr O 𝑃 ≡ 𝑃{𝑥 ≔ O}
ℕstr (S 𝑛) 𝑃 ≡ ℕstr 𝑛 (𝜆𝑥 ∶ ℕ.𝑃 (S 𝑥))

From this, we can deduce that for any term of the form

S𝑛 O, we have that ℕstr (S𝑛 O) 𝑃 ≡ 𝑃 (S𝑛 O).

Yet this is not the case for all terms, as once again variables block com-
putation and

ℕstr 𝑥 𝑃 ≢ 𝑃 𝑥.
Moreover, going back to our observable effect

𝑏 ∶ 𝔹 and its discriminating function 𝐶 ∶ 𝔹 → □,

we can still set
𝑃 ≔ 𝐶
𝑡true ≔ ⋆ ∶ 𝐶 true
𝑡false ≔ ⋆ ∶ 𝐶 false

but this time we get

𝔹sind 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝔹str 𝑏 𝐶

where 𝔹str is similar to ℕstr. Its definition is the following:

𝔹str (𝑏 ∶ 𝔹) (𝑃 ∶ 𝔹 → □) ∶ □ ≔
𝔹rec ((𝔹 → □) → □) (𝜆𝑄 ∶ 𝔹 → □. 𝑄 true) (𝜆𝑄 ∶ 𝔹 → □. 𝑄 false) 𝑏 𝑃

This entails
𝔹str true 𝑃 ≡ 𝑃 true
𝔹str false 𝑃 ≡ 𝑃 false

but computation on 𝑏 is not specified by BTT. This means that when
dealingwith a specific effect, we can choose the computational content
of 𝔹str and make sure it is harmless. In Chapter 3, we will encounter a
model featuring effects where for every effectful 𝑏 ∶ 𝔹 we will have

𝔹str 𝑏 𝑃 ≡ ⊤.

Then of course, 𝔹sind will act accordingly and for the same effectful
𝑏 ∶ 𝔹 we will get:

𝔹sind 𝑃 𝑡true 𝑡false 𝑏 ≡ ⋆ ∶ ⊤.
From thiswewill retrieve consistency of this particularmodel ofBTT.

One might notice that, working from within CIC, using ℕind it is pos-
sible to prove

Π(𝑛 ∶ ℕ) (𝑃 ∶ ℕ → □).ℕstr 𝑛 𝑃 = 𝑃 𝑛.

In that sense, BTT can be said finer-grained than CIC, as it allows to
study objects that are collapsed together by CIC rules. It is similar to
the way intuitionistic logic is finer-grained than classical logic where
¬¬𝐴 ↔ 𝐴.

1. Prolegomenon and technicalities 50

Γ ⊢ 𝑡 ∶ ¬¬𝐴
Γ ⊢ DNE 𝑡 ∶ 𝐴

Table 1.27.: Double-negation elimina-
tion

[148]: Zermelo (1904), “Beweis, dass
jede Menge wohlgeordnet werden
kann: Aus einem an Herrn Hilbert
gerichteten Briefe”
[149]: Zermelo (1908), “Unter-
suchungen über die Grundlagen der
Mengenlehre. I”

A list of usual axioms one can
safely add toCoqwithout breaking
consistency is provided by the Coq
team here.

Classical logic does not not exist All the rage so far in this Section
has been around effects as a computational tool. Is it to say that the
proof as programs motto falls short of providing an interpretation for
effects? Not at all, and for many years now effects have been linked to
classical principles.

Classical logic is the system overwhelmingly used in mathematics,
and the fact that it is not the logic implemented by CIC is worth men-
tioning. The most salient feature missing here is the infamous double-
negation elimination (DNE), used by mathematicians when they derive
proofs “by contradiction”. It is displayed in Table 1.27. Roughly speak-
ing, logics featuring this principle (such as usual ZF set theory [148,
149]) are deemed classical, and logics that do not (likeCIC) are dubbed
constructive. However, this distinction is not set in stone and, as we al-
ready explained in the beginning of the chapter, the purpose of this
thesis is precisely to help bridge the gap between classical and con-
structive logic.

We should first explain what we mean when we say that DNE is not
part of CIC. Formally, this signifies that using the rules of CIC, it is not
possible to build a term 𝑡 such that

𝑡 ∶ Π𝐴 ∶ □𝑖. ¬¬𝐴 → 𝐴.

Crucially, it is also not possible to prove that DNE is false in 𝐶𝐼𝐶, that
is, build a term 𝑡 such that

𝑡 ∶ (Π𝐴 ∶ □𝑖. ¬¬𝐴 → 𝐴) → ⊥.

When such case arises with a type 𝐴 such that neither 𝐴 nor ¬𝐴 are
provable in a theory 𝒯 , we say that 𝐴 is independent from 𝒯 .

We cannot prove double-negation elimination in CIC. Nonetheless,
maybe we can add it as an axiom? As a matter of fact, yes. Since there
is no proof of ¬DNE in CIC, adding this principle leads to a consistent
system, which could be used to reason with.

However, if we do not provide computation rules for DNE we quickly
end up in troubles. Indeed, it is for instance very easy to build a proof
of

¬¬ℕ
using terms of type ℕ, like O. As an example, we can define:

𝑡 ∶ (ℕ → ⊥) → ⊥ ≔ 𝜆𝑃 ∶ ℕ → ⊥. 𝑃 O.

Then, appplying DNE we recover

DNE 𝑡 ∶ ℕ.

Sadly, even though there is no variable in sight, this term does not
compute and we cannot retrieve an actual number out of it. It is well-
typed, we can add it, substract it, recurse on it but nothing will ever
compute anymore: our system is effectively frozen.

https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms

1. Prolegomenon and technicalities 51

[68]: Griffin (1990), “A Formulae-as-
Types Notion of Control”

[73]: Herbelin (2005), “On the Degen-
eracy of Sigma-Types in Presence of
Computational Classical Logic”

[15]: Barthe et al. (2002), “CPS translat-
ing inductive and coinductive types”

Backtrack A This is an aporia. We built a system that is both a logic
and a programming language, where computation relieves us from
tedious work by giving us for free proofs of equality such as

0 + 7 ≡ 7,

yet if we want to reach classical logic’s expressiveness we have to add
an axiom that disrupts its computational endeavour. We need a way
out. Could we add computation rules to DNE? This is not trivial: even
if someone proves that it is impossible that a unicorn does not exist,
computing said unicorn is easier said than done! Still, looking at our
example

𝑡 ∶ (ℕ → ⊥) → ⊥ ≔ 𝜆𝑃 ∶ ℕ → ⊥. 𝑃 O,
an idea springs to mind: to build a proof of

⊥ out of 𝑃 ∶ ℕ → ⊥,

𝑡 applies 𝑃 to O. Could we then say that

DNE 𝑡 ≡ O,

and generalize this strategy to every type

𝐴 and every term 𝑡 ∶ ¬¬𝐴?

This would make sense: hopefully our system is consistent, meaning
that there is no inhabitant of ⊥. Thus, to build a term of type ⊥ out of
a function

𝑃 ∶ 𝐴 → ⊥
there seems to be only one way: first get a term

𝑎 ∶ 𝐴 then apply 𝑃 to get 𝑃 𝑎 ∶ ⊥.

Hence, by looking deep enough in the structure of the term, DNE
should be able to extract and return 𝑎 ∶ 𝐴, thereby unfreezing our
computational engine.

This intuition did in fact lead to computational interpretations ofDNE,
in the form of control operators. One of them, Felleisen’s 𝒞 operator,
precisely validates the following rules:

Γ, 𝐻 ∶ ¬¬𝐴 ⊢ 𝒞𝐴 𝐻 ∶ 𝐴
Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ 𝒞𝐴 (𝜆𝑘 ∶ ¬𝐴. 𝑘 𝑎) ≡ 𝑎 ∶ 𝐴

Using 𝒞 , Griffin [68] gave computational content to DNE in simply-
typed 𝜆-calculus. Unfortunately, Herbelin [73] proved that this oper-
ator breaks consistency of any dependent type theory featuring de-
pendent sums and equality. A few years earlier, a similar result was
proven forCPS-translations, another way of providing computational
content to DNE, by Barthe and Uustalu [15]. There are many hurdles
along this sinous path, and explorers have yet to see the end of the
road.

1. Prolegomenon and technicalities 52

[122]: Pédrot et al. (2018), “Failure is
Not an Option An Exceptional Type
Theory”

Knowing whether 𝑓 applies fail

or not is decidable.

Independence is an exception This is not to say we are still stuck at
bay, though, and some islands have already been reached by type the-
orists’ ships. Indeed, there are many principles, called semi-classical,
both weaker than DNE, yet not derivable in CIC, that have been given
computational content through an effectful interpretation. One is the
so-called independence of premise (IP). It states the following:

IP ∶ □ ≔ Π(𝐴 ∶ □) (𝐵 ∶ ℕ → □).
(¬𝐴 → Σ(𝑛 ∶ ℕ). 𝐵 𝑛) → Σ(𝑛 ∶ ℕ). ¬𝐴 → 𝐵 𝑛

Many semi-classical principles are of this form, mixing functions, de-
pendent sums and negation. Double-negation shift, a principle we will
encounter in Chapter 2, is of the same kind.

In plain CIC, IP is not provable. Yet, by adding exceptions to CIC, Pé-
drot and Tabareau [122] managed to build a theory where IP is inhab-
ited by a computing term. Delving into the nitty-gritty of their paper
would be out of our scope, but we can give an intuition of their result.
The main steps are the following:

▶ They add a type 𝔼 of exceptions to CIC, together with a function

raise ∶ Π(𝐴 ∶ □). 𝔼 → 𝐴.

This reflects the intended meaning of exceptions: whenever a
program fails, it can raise an exception and still be well-typed.

▶ They assume that 𝔼 features an inhabitant 𝑒 ∶ 𝔼;
▶ The former means that any type 𝐴 is now inhabited by raise 𝑒;

the resulting theory is thus inconsistent. To deal with this issue,
they restrict the use of exceptions through a layer of parametric-
ity, a proof technique we will not explain here. Let us simply
say that the resulting exceptionally parametric extension of CIC
is consistent;

▶ Given a function

𝑓 ∶ ¬𝐴 → Σ(𝑛 ∶ ℕ). 𝐵 𝑛,

they apply it to

fail ∶ ¬𝐴 ≔ 𝜆_.raise ⊥ 𝑒,

recovering
𝑓 fail ∶ Σ(𝑛 ∶ ℕ). 𝐵 𝑛.

There are then two options: either 𝑓 tries to apply fail to an
argument 𝑎 ∶ 𝐴, or it does not.
If it does, then fail raises an exception and there is work to be
done to justify why this exception is allowed to happen despite
parametricity. We will keep this part under the rug and refer the
interested reader to the original paper.
The other case is when 𝑓 does not use fail. This means that the
proof of ¬𝐴 was unnecessary to build a term of type

Σ(𝑛 ∶ ℕ). 𝐵 𝑛.

1. Prolegomenon and technicalities 53

An inconsistent theory could in
fact prove its own consistency,
since everything is true in an incon-
sistentworld. This is unfortunately
not very helpful to us.

[64]: Gödel (1931), “Über formal
unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme
I”

[3]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”
[7]: Altenkirch et al. (2016), “Type the-
ory in type theory using quotient in-
ductive types”
[31]: Chapman (2009), “Type Theory
Should Eat Itself”
[86]: Kaposi et al. (2019), “Shallow Em-
bedding of Type Theory is Morally Cor-
rect”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”
[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

Then it is fairly easy to transform this into a term of type

Σ(𝑛 ∶ ℕ). ¬𝐴 → 𝐵 𝑛

and conclude.

A broader intuition of what is happening there is the following. We
need to extract a global natural number from a function

𝑓 ∶ ¬𝐴 → Σ(𝑛 ∶ ℕ). 𝐵 𝑛.

Unfortunately, as long as 𝑓 stays a query-answer, black-box function,
giving us no access to its internal computation, there is no way for
us to achieve this feat. Exceptions plays the role of a dynamite stick,
blowing the black box open and letting us search its ruins for hints
of 𝑓 ’s internal functioning. This is rather primitive, though, and some
finer-tuned effects can give us more information without blowing ev-
erything up in smoke. Continuity is of that kind, as we will argue in
this thesis.

1.5. Syntactic models

Since Gödel’s incompleteness theorem [64], we know that an expres-
sive enough theory cannot prove its own consistency. Said consistency
thus has to be proven in another, stronger theory. Of course this other
theory cannot prove its own consistency either, so we need another
one to do so. We could forge ahead and build an infinite tower of
stronger and stronger theories

𝒯𝑛+1 ≔ 𝒯𝑛 + (𝒯𝑛 is consistent)

but this would be an idol with feet of clay: if 𝒯O is consistent then all
of them are, but if 𝒯O is inconsistent then all of them are, too!

Welcome to themetaverse At the end of the day, we have to choose a
theory whose consistency we do not challenge, and prove every other
theory consistent using this first one. In this thesis, we will call ob-
ject theory or source theory the theory we are studying, and trying to
justify; we will call target theory the glorified, unchallenged theory in
which the proof is written. Finally, we will call meta-theory the ambi-
ent, ethereal theory we use to think about the proof, and discuss its
validity. Formally, this means that from the meta-theory, we are able
to ascertain that our target theory justifies our source theory.

Historically, consistency of type theories have been proven using some
variant of set theory as a target, and classical logic in the meta. Recent
years, however, have seen a rise in endeavours to justify type theory
with another type theory, using another version of type theory (often
implemented in a proof assistant) as meta-theory [3, 7, 31, 86, 120,
121]. In this thesis, we will go with the flow and mostly use CIC as a
target and Coq’s version of CIC as our meta-theory.

Given a target type theory 𝒯 and an object type theory 𝒮 , the way to
go is then to build an interpretation of 𝒮 in 𝒯 .

1. Prolegomenon and technicalities 54

Definition 1.5.1: Interpretation
An interpretation of a type theory 𝒮 into another type theory 𝒯 con-
sists of:

▶ for any context Γ of 𝒮 , an object JΓK in 𝒯 called the interpre-
tation of Γ;

▶ for any type 𝐴 of 𝒮 , an object J𝐴K in 𝒯 called the interpreta-
tion of 𝐴 ;

▶ for any term 𝑡 of 𝒮 , an object [𝑡] called the interpretation of 𝑡;
▶ a predicate P𝐶 in 𝒯 interpreting well-formation of contexts;
▶ a predicate P𝑇 in 𝒯 interpreting well-formation of types;
▶ a relation R⊢ in 𝒯 interpreting typing;
▶ a relation R≡ in 𝒯 interpreting conversion.

Using these notations, we can now describe soundness of an interpre-
tation.

Definition 1.5.2: Soundness
An interpretation of 𝒮 in 𝒯 is sound when every rule of 𝒮 is cor-
rectly interpreted in 𝒯 . This means for instance that given a typing
judgment in the object theory

Γ ⊢𝒮 𝑡 ∶ 𝐴,

given

JΓK, [𝑡] and J𝐴K the interpretations of Γ, 𝑡 and 𝐴

and R⊢ the relation interpreting typing, we have

⊢𝒯 R⊢ JΓK [𝑡] J𝐴K
in the target theory.

A sound interpretation of 𝒮 in 𝒯 is also called a model of 𝒮 in 𝒯 .

The converse of soundness is called completeness, and is defined as
follows.

Definition 1.5.3: Completeness
An interpretation of𝒮 in𝒯 is completewhen every interpreted judg-
ment in 𝒯 corresponds to a correct judgment in 𝒮 . This means for
instance that given

Γ, 𝑡 and 𝐴 interpreted as JΓK, [𝑡] and J𝐴K,
given R⊢ the relation interpreting typing, if

⊢𝒯 R⊢ JΓK [𝑡] J𝐴K
in the target theory then

Γ ⊢𝒮 𝑡 ∶ 𝐴

in the source.

1. Prolegomenon and technicalities 55

Γ ⊢ 𝐴
Γ ⊢ 𝐴 ∨ ¬𝐴

Table 1.28.: Excluded middle

Never listen to the classics We emphasize that the model lives in 𝒯
but the proof that it is sound and complete lives in the meta-theory. This
means that the choice of themeta-theory has an impact on whether an
interpretation is indeed a model: there could be cases where the use of
double-negation elimination is necessary for an interpretation to be
proven sound, which would not be available in CIC. As an example, if
we take:

▶ as source theory 𝒮 , an extension of System T featuring an empty
type ⊥, non-dependent sum types and higher-order quantifica-
tion over types. The expert reader may recognize System F en-
hanced with sums, ℕ and ⊥ in this picture;

▶ as target theory 𝒯 , a very weak theory featuring only ⊤ and ⊥;
▶ as interpretation function for types, the function that takes a

type 𝐴 and sends it to ⊤ if 𝐴 is inhabited in the empty context,
and ⊥ if it is not. This is doable only by assuming that any type
is either inhabited or not, a reasoning called excluded middle, dis-
played in Table 1.28 and equivalent to DNE;

▶ as interpretation function for terms, the constant function that
sends a term 𝑡 of 𝒮 is to ⋆ ∶ ⊤ in 𝒯 ;

▶ as relation R⊢ interpreting typing of 𝒮 in 𝒯 , the typing relation
of 𝒯 , with only one rule: ⋆ ∶ ⊤;

▶ as relation R≡ interpreting relation of 𝒮 in 𝒯 , the conversion
relation of 𝒯 with only one rule: ⋆ ≡ ⋆ ∶ ⊤.

Finally, if
⋅ ⊢𝒮 𝑡 ∶ 𝐴

then 𝐴 is inhabited, hence

J𝐴K ≔ ⊤.

As [𝑡] ≔ ⋆, we indeed have

⊢𝒯 [𝑡] ∶ J𝐴K,
hence

R⊢ [𝑡] J𝐴K.
Our interpretation is thus sound for typing. In fact, as empty types are
sent to ⊥, our interpretation exactly captures typing in 𝒮 , hence it is
also complete for typing. It is also sound but not complete for conver-
sion, as all terms are convertible in the model.

Of course, this model is not very informative on 𝒮 . We basically asked
God if every type was or was not inhabited, and we know the answer
is somewhere but we do not have access to it. In this thesis, we try to
live in the weakest possible meta-theory, so that this scenario does not
happen.

1. Prolegomenon and technicalities 56

A more rigorous way of phrasing
it is to say that 𝒮 is consistent as-
suming both 𝒯 and the meta-theory
are consistent. Indeed, assuming ⊥
in 𝒯 or in the meta-theory we can
recover a proof of

R⊢ JΓK [𝑡] J⊥K
for any Γ, 𝑡 from the source.

What we call top model is mostly
known as terminal model in the lit-
erature.

[142]: Werner (1997), “Sets in Types,
Types in Sets”

[49]: Dybjer (1995), “Internal Type
Theory”

[83]: Jacobs (1993), “Comprehension
Categories and the Semantics of Type
Dependency”

[75]: Hofmann (1997), Extensional con-
structs in intensional type theory
[145]:Winterhalter (2020), “Formalisa-
tion and meta-theory of type theory”

[25]: Boulier (2018), “Extending type
theory with syntactic models. (Etendre
la théorie des types à l’aide de modèles
syntaxiques)”
[126]: Simon Boulier et al. (2017), “The
next 700 syntacticalmodels of type the-
ory”

TheTopModel In fact, a basic informationwewould like to get from
a model is consistency of the source theory. Indeed, if for any 𝑡,

R⊢ J⋅K [𝑡] J⊥K
is empty, then there is no proof

⋅ ⊢𝒮 𝑡 ∶ ⊥

and 𝒮 is consistent. This is typically what was lacking in our previous
example, as we used classical logic as an escape route to evade the
question of consistency of the source theory.

However, classical logic in themeta-theory is not the onlyway to build
models that do not provide information on consistency of the source.
An example of a sound interpretation where this is the case is the de-
generate topmodel, where every object is interpreted by⊤ and every re-
lation (typing and conversion) is interpreted by the full relation, i.e.

R⊢ JΓK [𝑡] J𝐴K for any Γ, 𝑡 and 𝐴.

The top model is trivially sound, but unless 𝒮 is also degenerate it
will not be complete. In particular, any term is bound to ⊥ by R⊢ so we
cannot hope to recover consistency of 𝒮 from the top model. In the
rest of the thesis we will only consider models where consistency of
the target theory entails consistency of the source theory.

Syntaxhaven Most of themodels in the literature are semanticsmod-
els. They are so called because they make sense of the syntax of the
source theory by interpreting it as objects of another, sometimes quite
different, theory. The target theory is often ZFC set theory as inWerner
[142], or category theory as it is the case in categories with families [49]
or comprehension categories [83].Hoffman [75] gives a general overview
of such historical models. More recently, Winterhalter and Bauer [145]
presented a semantic model of CIC with cardinals to derive indepen-
dence of some principles. Notably, their model validates

ℕ → ℕ = ℕ → 𝔹,

meaning that it is not possible in 𝐶𝐼𝐶 to prove that they are apart.
Building such a model can be a long and tedious task, as one has to
make sure that every rule of the source theory is correctly interpreted
in the target theory. Moreover, it often involves many proofs about
conversion, so much that in the end it can be hard to get a computa-
tional understanding of what is happening. This is problematic: if we
want to stay true to our proofs as programs slogan, we need to be able
to tell how our model computes, which is difficult in semantic mod-
els where proofs obfuscate computational content, evenmore so when
classical logic is at the wheel. To this end, in Chapter 3 we will make
use of a specific kind of model: program translations, as presented by
Boulier et al [25, 126]. Such translations form a subset of syntactic mod-
els (so-called because they revolve around syntax) and are defined as
follows.

1. Prolegomenon and technicalities 57

Definition 1.5.4: Program translations
A program translation of a type theory 𝒮 into another type theory 𝒯
is an interpretation of 𝒮 into 𝒯 defined by induction on the syntax.
In summary:

▶ a context Γ of 𝒮 is translated as a context JΓK of 𝒯 ;
▶ a type 𝐴 of 𝒮 is translated as a type J𝐴K of 𝒯 ;
▶ a term 𝑡 of 𝒮 is translated as a term [𝑡] of 𝒯 ;
▶ typing in 𝒮 is translated as typing in 𝒯 ;
▶ conversion in 𝒮 is translated as conversion in 𝒯 ;
▶ if the source and the target theory feature universes, an ex-

plicit function
El ∶ J□K → □

is provided to turn the translation [𝐴] of a term 𝐴 ∶ □ into the
translation J𝐴K ≔ El [𝐴]
of the corresponding type 𝐴.

It is easy to give computational content to program translations: we
are translating the syntax of a programming language into the syn-
tax of another, in such a way that computation in the latter simulates
computation in the former. This is compilation!

As program translations are defined on raw syntax, conversion is often
considered untyped, which allows for less intricate proofs. We will do
so inChapter 3.When conversion is untyped, the proof that a program
translation is sound will always follow the same steps. First comes
substitution soundness:

Definition 1.5.5: Substitution soundness
A program translation enjoys substitution soundness when for any
terms 𝑡 and 𝑢 of the source theory, the following holds in the target
theory:

[𝑡{𝑥 ≔ 𝑢}] ≡𝒯 [𝑡]{𝑥 ≔ [𝑢]}.

Once substitution is covered, general soundness follows, divided into
typing and conversion soundness. Since conversion is untyped, we can
prove first conversion soundness, then typing soundness.

Definition 1.5.6: Conversion soundness
A program translation enjoys conversion soundness when for any
terms 𝑡 and 𝑢 of the source theory, the following holds:

if 𝑡 ≡𝒮 𝑢 𝑡ℎ𝑒𝑛 [𝑡] ≡𝒯 [𝑢],

where ≡𝒮 denotes conversion in the source theory and ≡𝒯 conver-
sion in the target.

1. Prolegomenon and technicalities 58

[10]: Altenkirch et al. (2019), “Setoid
type theory - a syntactic translation”

[126]: Simon Boulier et al. (2017), “The
next 700 syntacticalmodels of type the-
ory”

Definition 1.5.7: Typing soundness
Aprogram translation enjoys typing soundnesswhen for any context
Γ, any term 𝑡 and any type 𝐴 of the source theory, the following
holds:

if Γ ⊢𝒮 𝑡 ∶ 𝐴 𝑡ℎ𝑒𝑛 JΓK ⊢𝒯 [𝑡] ∶ J𝐴K,
where ⊢𝒮 denotes typing in the source theory and ⊢𝒯 typing in the
target.

Finally, one last ingredient is needed to derive consistency of the source
theory from consistency of the target.

Definition 1.5.8: Consistency preservation
A program translation enjoys consistency preservation when there is
a map

⋅ ⊢𝒯 J⊥𝒮 K → ⊥𝒯

where ⊥𝒮 is the empty type in the source theory and ⊥𝒯 the empty
type in the target theory.

It is easy to see how consistency preservation indeed preserves con-
sistency (as its name suggests): the only way to build an inconsistent
model of 𝒮 is when 𝒯 is itself inconsistent.

Changing times All of this is well and good, but do program trans-
lations really exist? Their requirements are quite harsh, and this con-
ceptwould not be very useful if the only program translation available
was the identity. A sufficient criterion to turn a syntactic model into a
program translation is given by Altenkirch et al [10], but an existence
is best proven by providing an example, so let us introduce the times-
bool translation, introduced by Boulier et al [126].

[□𝑖] ∶= □𝑖
[Π𝑥 ∶ 𝐴. 𝐵] ∶= (Π𝑥 ∶ J𝐴K. J𝐵K) × 𝔹
[Σ𝑥 ∶ 𝐴. 𝐵] ∶= Σ𝑥 ∶ J𝐴K. J𝐵KJ𝐴K ∶= [𝐴]
[𝑥] ∶= 𝑥
[𝜆𝑥 ∶ 𝐴. 𝑡] ∶= (𝜆𝑥 ∶ J𝐴K. [𝑡], true)
[𝑡 𝑢] ∶= [𝑡].𝜋1 [𝑢]
[(𝑡, 𝑢)] ∶= ([𝑡], [𝑢])
[𝑡.𝜋1] ∶= [𝑡].𝜋1
[𝑡.𝜋2] ∶= [𝑡].𝜋2

J⋅K ∶= ⋅JΓ, 𝑥 ∶ 𝐴K ∶= JΓK, 𝑥 ∶ J𝐴K Figure 1.10.: Times-bool translation of
CC𝜔

As we already explained, models are a tool to study type theories and
their possible extensions. Here, the concept under the microscope is
function extensionality, a principle we briefly met in Section 1.3.

1. Prolegomenon and technicalities 59

Γ ⊢ 𝐴 Γ ⊢ 𝑓 ∶ Π𝑥 ∶ 𝐴. 𝐵
Γ ⊢ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵
Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵

Table 1.29.: 𝜂-conversion in CC𝜔

Its precise wording is the following:

funext ≔ Π(𝐴 ∶ □) (𝐵 ∶ 𝐴 → □) (𝑓 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵 𝑥).
(Π𝑥 ∶ 𝐴.𝑓 𝑥 = 𝑔 𝑥) → 𝑓 = 𝑔

The times-bool translation is a model negating funext in a concise and
elegant manner: we simply add a label (true or false) to every function;
then any function 𝑓 exists in two versions,

(𝑓 , true) and (𝑓 , false).

These two versions compute in the same way, yet they are different
because of the label we put on them: funext is negated.

The translation is formally displayed in Figure 1.10, with the syntax
for the source theory on the left and its translation on the right. We
implicitly extend this translation to any term 𝑡 by recursion on the
structure of 𝑡.
Recall that 𝐴 × 𝐵 is a notation for

Σ𝑥 ∶ 𝐴. 𝐵

when 𝐵 does not depend on 𝑥 ∶ 𝐴, the same way 𝐴 → 𝐵 is used to
denote

Π𝑥 ∶ 𝐴. 𝐵
when 𝐵 does not depend on 𝑥 ∶ 𝐴.

In this translation:

▶ The source theory𝒮 is aweak version ofCC𝜔 , where 𝜂-conversion
was stripped off. We recall this missing rule in Table 1.29;

▶ The target theory 𝒯 is the same version of CC𝜔 , extended with
booleans;

▶ AsBoulier et al formalized the translation inCoq, themeta-theory
is Coq’s CIC implementation.

Note that we can extend the interpretation to inductive types: most
of them are simply translated by themselves, giving us a translation
from CIC without 𝜂-conversion into itself. We give the translations of
ℕ and eq as examples and refer the interested reader to the original
paper for more information.

[ℕ] ∶= ℕ
[O] ∶= O
[S] ∶= S
[ℕind 𝑃 𝑡O 𝑡S 𝑛] ∶= ℕind [𝑃] [𝑡O] [𝑡S] [𝑛]

[eq 𝐴 𝑡 𝑢] ∶= eq J𝐴K [𝑡] [𝑢]
[refl 𝐴 𝑡] ∶= refl J𝐴K [𝑡]
[eqind 𝐴 𝑎 𝑃 𝑡refl 𝑎′ 𝑒] ∶= eqind J𝐴K [𝑎] [𝑃] [𝑡refl] [𝑎′] [𝑒] Figure 1.11.: Times-bool translation of

some inductive types

The times-bool translation is a model of CIC without 𝜂-conversion.

1. Prolegomenon and technicalities 60

Lemma 1.5.1:
The times-bool translation validates substitution soundness.

Proof. By induction on the term at hand. ■

Proposition 1.5.2: Soundness
The times-bool translation validates computational soundness as
well as typing soundness.

Proof. Computational soundness follows from induction on the con-
version derivation, typing soundness from induction on the typing
derivation. ■

Now comes the interesting part.

Theorem 1.5.3: Negation of functional extensionality
In the target theory, there is a term of type

Jfunext → ⊥K,
thereby negating functional extensionality.

Proof. Assuming JfunextK, we will in fact prove

true = false,

from which falsity is easily retrieved using eqind. To do so, we set

𝐴 ∶ □ ≔ ℕ
𝐵 ∶ 𝐴 → □ ≔ 𝜆_ ∶ ℕ. ℕ

in the source theory. The translated dependent product then becomes

JΠ𝑥 ∶ 𝐴. 𝐵 𝑥K ≔ (ℕ → ℕ) × 𝔹.

We then provide two functions:

𝑓 ∶ (ℕ → ℕ) × 𝔹 ≔ (𝜆𝑥 ∶ ℕ. 𝑥, true)
𝑔 ∶ (ℕ → ℕ) × 𝔹 ≔ (𝜆𝑥 ∶ ℕ. 𝑥, false)

Then, since application in themodel only considers the first projection
of functions, we can prove

Π(𝑥 ∶ ℕ). 𝑓 𝑥 = 𝑔 𝑥.

Finally, applying funext we get

(𝜆𝑥 ∶ ℕ. 𝑥, true) = (𝜆𝑥 ∶ ℕ. 𝑥, false),

from which we deduce
true = false

then the desired falsity. ■

1. Prolegomenon and technicalities 61

[25]: Boulier (2018), “Extending type
theory with syntactic models. (Etendre
la théorie des types à l’aide de modèles
syntaxiques)”

[122]: Pédrot et al. (2018), “Failure is
Not an Option An Exceptional Type
Theory”

For amore detailed version of the proof, we refer the interested reader
to Boulier’s PhD thesis [25] once again, where it is formalized in Coq.

Now that we have a term

𝐻𝒯 ∶ Jfunext → ⊥K
in the target theory, we can assume a term

𝐻𝒮 ∶ funext → ⊥

in the source theory, simply defining

[𝐻𝒮] ≔ 𝐻𝒯 .

This is the usual point of models: whenever we inhabit the interpreta-
tion of a type, we can assume that this type is inhabited in the source
theory, and the model guarantees that the resulting extended source
theory is consistent. However, consistency is no panacea: as we saw in
Section 1.4, double-negation elimination is consistent with CIC, yet
adding it as an inert axiom with no conversion rule destroys a lot of
good properties of our system.

Fortunately, a model built through a program translation not only
provides consistency, but also the computational content of this addi-
tional axiom: we simply have to look at the target theory to see what
is happening.

Note that 𝜂-conversion is also negated by the times-bool model. In-
deed, taking the function

(𝜆𝑥 ∶ ℕ. 𝑥, false),

we can reflect it as a special term

𝑔 ∶ ℕ → ℕ

in the source theory. Then we have

[𝑔] ≡ (𝜆𝑥 ∶ ℕ. 𝑥, false),

yet unfolding the definition of 𝜆-abstraction in the model we get

[𝜆𝑥 ∶ ℕ. 𝑔 𝑥] ≡ (𝜆𝑥 ∶ ℕ. 𝑥, true)

which is not convertible to the former.

It is nonetheless possible to build program translations of CIC negat-
ing funext while retaining 𝜂-conversion. This is the case of Pédrot and
Tabareau’s exceptional model [122], which we already presented in
Section 1.4.

1. Prolegomenon and technicalities 62

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[42]: Coquand et al. (2012), “A Com-
putational Interpretation of Forcing in
Type Theory”
[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

The logical history tour Here comes the end of our guided visit
in dependent type theory. As we explained in the beginnning of the
Chapter, this thesis is devoted to the study of a particular kind of ef-
fect, continuity, encoded by the dialogue monad, in the context of de-
pendent type theory.

Chapter 2 focuses on dialogue trees as an inductive representation
of continuous functionals. This way of envisioning continuity is one
among many others, hence we survey different definitions of continu-
ity that exist in the literature, and describe their interactions. In par-
ticular, we highlight the closeness between the dialogue monad and
sheafification.

Chapter 3 displays a first attempt at mingling continuity with depen-
dent type theory. In this Chapter, we extend a proof by Escardó [51]
that every functional definable in System T is continuous. As the proof
is fairly technical, we first go through Escardó’s proof in Section 3.1,
albeit rephrasing it as a program translation. We finally enhance the
proof to BTT in Section 3.2.

Unfortunately, this proof technique does not scale well toMLTT, so we
change tack to try and gain more control over computation by build-
ing a normalization model for an extension of MLTT. This extension,
dubbed ϝTT (read “DigammaTT” or “Split TT”) was already described
by Coquand and Jaber [42, 43] and features a specific function

𝔣 ∶ ℕ → 𝔹

whose calls are recorded in forcing conditions. The idea is to recover
a modified canonicity theorem for ϝTT, essentially stating that every
term 𝑡 ∶ ℕ potentially mentioning 𝔣 is continuous. This proof is how-
ever not fully formalized, though we hope to provide a certified proof
in the coming months. We discuss this endeavour in Chapter 4.

[27]: Brouwer (1981), Brouwer’s Cam-
bridge lectures on intuitionism
[28]: Brouwer (1925), “Zur Begrün-
dung der intuitionistischen Mathe-
matik. I.”
[78]: Howard et al. (1966), “Transfinite
Induction and Bar Induction of Types
Zero and One, and the Role of Conti-
nuity in Intuitionistic Analysis”

[133]: Tait (1968), “Constructive rea-
soning”

[48]: Dummett (2000), Elements of intu-
itionism
[20]: Berger (2012), “Aligning the
weak König lemma, the uniform
continuity theorem, and Brouwer’s fan
theorem”
[21]: Berger (2005), “The Fan Theorem
and Uniform Continuity”
[22]: Berger (2006), “The Logical
Strength of the Uniform Continuity
Theorem”
[55]: Fujiwara et al. (2021), “Charac-
terising Brouwer’s continuity by bar
recursion on moduli of continuity”
[138]: Troelstra (1988), “Construc-
tivism in mathematics”
[139]: Troelstra (1973), Metamathe-
matical investigation of intuitionistic
arithmetic and analysis

[89]: Kleene (1978), “Recursive Func-
tionals and Quantifiers of Finite Types
Revisited I”
[90]: Kleene (1959), “Recursive func-
tionals and quantifiers of finite types.
I”

2. A world made of trees

2.1 Talking trees 65

2.2 Every tree will die a log 70

2.3 The zoo of continuity
and logical principles . 85

2.4 The Continuous Hypoth-
esis 91

2.5 Sheaves and ShTT . . . 96

Children continuously ask questions It is a universal observation
that children are prone to ask their parentsmany questions, and scenes
are quite common where no matter what answer parents can come up
with, their child will ask another “Why” in what looks like an end-
less streams of queries. However, this is just an impression, and were
we to watch parents of extreme patience, we would see the questions’
flow dry up after a while, be it through tiredness, boredom or hunger.
Mathematically speaking, the property of a function (or, in our case,
a child) that only asks a finite number of queries before reaching the
end of its computation is called continuity.

Continuity is a concept that has been in the toolbox of mathemati-
cians for centuries, and the principle that every function is continuous
is present in the constructive realm since the days of Brouwer [27, 28],
as a principle close to bar induction, later studied in detail by Howard
and Kreisel [78] , Tait [133] or Dummett [48]. In this setting, it is com-
mon to consider continuity of functionals of the form

𝑓 ∶ (ℕ → 𝔹) → ℕ or 𝑓 ∶ (ℕ → ℕ) → ℕ,

where ℕ → 𝔹 is called the Cantor space and ℕ → ℕ is called the Baire
space, and continuity on such spaces has been largely studied [20–22,
55, 138, 139] from a mathematical point of view.

Aswe already hinted at, on a intuitive level continuity of a functional

𝑓 ∶ (ℕ → 𝔹) → ℕ

describes the fact that 𝑓 is a computation that returns a value in a
finite amount of time. As such, given an argument

𝛼 ∶ ℕ → 𝔹,

𝑓 can only ask 𝛼 a finite number of queries before returning a value.
In usual mathematics, this is expressed by saying that if another argu-
ment

𝛽 ∶ ℕ → 𝔹
give the same answers as 𝛼 to those queries, then 𝑓 cannot distinguish
them and 𝑓 𝛼 = 𝑓 𝛽. However, as we will see later on, more intensional
definitions of continuity require that we get access to the trace of calls
that 𝑓 does to its argument, an interpretation close to the notion of
computation advocated by Kleene [89, 90].

In this Chapter, we will suppose given two types

⊢𝒯 I ∶ □0 and ⊢𝒯 O ∶ I → □0,

2. A world made of trees 64

[69]: Gödel (1929), Über die Voll-
ständigkeit des Logikkalküls
[102]: Malcev (1936), “Unter-
suchungen aus dem Gebiete der
mathematischen Logik”

[137]: Troelstra (1977), “A note on non-
extensional operations in connection
with continuity and recursiveness”

[93]: Kreisel (1962), “On Weak Com-
pleteness of Intuitionistic Predicate
Logic”

and we will study continuity of functionals on the form

𝑓 ∶ (Π𝑖 ∶ I.O 𝑖) → 𝐴.

On the computational side, the type I is to be understood as a type of
input or questions to a black-box, called an oracle in reference to the
impenetrable nature of its answers. Dually, O is the type of output or
answers from the oracle. Since O depends on I, we can encode pretty
much arbitrary interactions. Finally, we define the type of oracles as

Q ∶= Π(𝑖 ∶ I).O 𝑖.

Carrying our metaphor further, the child in our example is the func-
tional

𝑓 ∶ Q → 𝐴
and oracles are his parents answering his questions. A reader more
inclined towards computer science could also consider that I and O
describe an interface for system calls, and Q is the type of operating
systems implementing these calls.

On the proof-theoretic side, an analog of continuity can be found in
the form of compactness theorems [69, 102], which state that even in a
theory with infinite axiom schemes, a concrete proof of a theoremwill
only use a finite amount of those.

Please continue We emphasize that in the rest of this thesis we will
study continuity both as a property of functions and as an axiom stat-
ing that all functions of a certain type are continuous. Since the general
purpose of this thesis is to help bring classical and constructive logic
closer, let us already mention that

(I → ⊥) → ⊥

is also of the form
Q → 𝐴,

hence we hope that studying continuity can help give computational
content to semi-classical principles, if not full-blown DNE. In partic-
ular, as we will see in Section 2.4, assuming that every function

𝑓 ∶ (I → ⊥) → ⊥

is continuous entails double-negation elimination.

This last argument could be surprising, as the axiom of continuity of
all functions is widely known to be an anti-classical principle. For in-
stance, Troelstra [137] showed that choice, continuity of all functions
of the form

𝑓 ∶ (ℕ → ℕ) → ℕ
and extensionality principles are incompatible in intuitionistic finite-
type arithmetic, improving a previous result by Kreisel [93]. However,
it may be possible to unite choice and continuity in amore intensional
setting, where extensionality principles are dismissed. Indeed, as we

2. A world made of trees 65

[24]: Bickford et al. (2018), “Com-
putability Beyond Church-Turing via
Choice Sequences”
[35]: Cohen et al. (2022), “Construct-
ing Unprejudiced Extensional Type
Theories with Choices via Modalities”
[36]: Cohen et al. (2023), “Realizing
Continuity Using Stateful Computa-
tions”
[37]: Cohen et al. (2023), “Inductive
Continuity via Brouwer Trees”
[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”
[124]: Rahli et al. (2019), “Bar Induc-
tion is Compatible with Constructive
Type Theory”

[113]: Pédrot (2021), “Debunking
Sheaves”
[114]: Pédrot (2023), “Pursuing
Shtuck”

have seen in the previous Chapter in Section 1.5, effectful computa-
tion often comes at the cost of extensionality principles such as funext
and in this thesis we will precisely consider an encoding of continuity
through some kind of effect. As such, this thesis is quite close to the
line of work ofCohen, Rahli, Bickford et al [24, 35–37, 123, 124] who re-
trieve continuity results in some variants of type theory using effects,
like stateful computations, references or named exceptions.

Overview In our case, the effect under scrutiny will be the dialogue
monad𝔇, an inductive operator taking a type𝐴 and returning the type
of inductive trees with leaves in 𝐴. We describe 𝔇 in detail in Section
2.1.

In Section 2.2,we present somedefinitions of continuity that, although
equated in classical logic, remain distinct in type theory. We present
them in increasing order of logical power, each new definition imply-
ing the former one.

In Section 2.3, we investigate which logical principles (such as func-
tion extensionality or bar induction) are needed for the implications
described in Section 2.2 to become equivalences.

In Section 2.4 we explain how, in a Curry-Howard perspective, conti-
nuity can be seen as the computational counterpart of semi-classical
principles such as the double-negation-shift.

Finally, in Section 2.5, we rephrase unpublished notes by Pédrot [113,
114] about sheaves, and highlight the strong similarity between sheafi-
fication and the dialogue monad.

Most definitions and results of this Chapter are formalized in Coq.
When it is the case, we will provide hyperlinks to the relevant part of
the code in the margins.

2.1. Talking trees

As we hinted at in the introduction, for the remaining of this Chapter
we will consider two types

⊢𝒯 I ∶ □0 and ⊢𝒯 O ∶ I → □0.

We set them in the lowest universe level for simplicity, but all of the
constructions to come can handle an arbitrary base level by bumping
them by an appropriate amount.

2. A world made of trees 66

true

false

𝑎0 𝑎1 ... 𝑎𝑘 ...

⋆

0 1 ... 𝑘 ...

Table 2.1.: Example of dialogue tree.

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

2.1.1. Dialogue is the key

We start by defining the Dialogue operatore𝔇, which will be the main
character of this Chapter.

Definition 2.1.1: Dialogue operator

The dialogue operator is formally
defined here.

We consider an operator 𝔇 ∶ □ → □, which given a type 𝐴 ∶ □,
associates the type of I-labelled, O-branching, well-founded trees,
with leaves labelled in 𝐴. Each inner node is labelled with a certain

𝑖 ∶ I and has O 𝑖

children. In 𝒯 , this amounts to the following inductive definition:

Inductive 𝔇 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ 𝜂 ∶ 𝐴 → 𝔇 𝐴
∣ 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔇 𝐴) → 𝔇 𝐴.

As an example, let us set

I ≔ 𝔹
O ≔ 𝜆𝑖 ∶ I. if 𝑖 then ⊤ else ℕ

where ⊤ is the always inhabited type with only one element ⋆ ∶ ⊤.
Table 2.1 displays a typical dialogue tree in that case.

2.1.2. Monadic labs

In an extensional enough setting, the 𝔇 type former turns out to be a
monad: the

𝜂 ∶ Π𝐴 ∶ □. 𝐴 → 𝔇 𝐴
natural transformation is already part of the definition, and we can
recursively define a bind function:

bind ∶ Π{𝐴 𝐵 ∶ □} (𝑓 ∶ 𝐴 → 𝔇 𝐵) (𝑑 ∶ 𝔇 𝐴).𝔇 𝐵
bind 𝑓 (𝜂 𝑥) ∶= 𝑓 𝑥
bind 𝑓 (𝛽 𝑖 𝑘) ∶= 𝛽 𝑖 (𝜆(𝑜 ∶ O 𝑖). bind 𝑓 (𝑘 𝑜))

Lemma 2.1.1:
Assuming function extensionality, (𝔇, 𝜂, bind) is a monad.

Function extensionality is needed to prove commutation laws between
𝜂 and bind. Without funext, we only end up with what Pédrot and
Tabareau call a proto-monad [121].

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L17

2. A world made of trees 67

[5]: Ahman (2018), “Handling fibred
algebraic effects”
[18]: Bauer et al. (2015), “Program-
ming with algebraic effects and han-
dlers”
[118]: Plotkin et al. (2013), “Handling
Algebraic Effects”

[17]: Bauer (2018), “What is algebraic
about algebraic effects and handlers?”

[9]: Altenkirch et al. (2018), “Quotient
Inductive-Inductive Types”

[140]: Univalent Foundations Program
(2013), Homotopy Type Theory: Univa-
lent Foundations of Mathematics

[17]: Bauer (2018), “What is algebraic
about algebraic effects and handlers?”

Freedom of speech However, even by categorical standards, 𝔇 is a
very particular monad.

Definition 2.1.2: Free monad
A free monad in CIC is a parameterized inductive type ℳ ∶ □ → □
with a dedicated constructor

𝜂 ∶ Π(𝐴 ∶ □). 𝐴 → ℳ 𝐴

and a finite set of constructors

c𝑖 ∶ Π(𝐴 ∶ □). Φ𝑖 (ℳ 𝐴) → ℳ 𝐴

where
Φ𝑖 ∶ □ → □

is a type former syntactically strictly positive in its argument.

Note that the formal definition of free monad from category theory
requires a forgetful functor to specify against what the monad would
be free. The closest thing to our definition would be a free monad rel-
atively to pointed functors, but even there our definition is stricter.
A free monad can be thought of as a way to extend a type with un-
specified, inert side-effects, a trivial form of algebraic effects [5, 18,
118]. In the field of algebraic effects, a free monad as defined here is
also known as a monad induced by a signature [17]; the 𝑐𝑖 constructors
are called operation symbols and the Φ𝑖 type formers are dubbed arities
(in our setting, however, arities are typed as operations may mention
other types than the carrier of the algebraic theory). Since we have nei-
ther QITs [9] nor HITs [140] in CIC, we cannot enforce equations on
these effects to get an algebraic theory but we can still go a long way.

Free monads in CIC enjoy a lot of interesting properties. As the name
implies, they are indeed monads, once again up to function extension-
ality. Again, the 𝜂 function is given by definition, and bind can be de-
fined functorially by induction similarly to the 𝔇 case. Furthermore,
algebras of a free monad can be described in an intensionally-friendly
way.

Definition 2.1.3: Intensional algebras of a free monad
Given ℳ as above, the type of intensional ℳ-algebras is the record
type

□□ℳ ∶= {𝐴 ∶ □; … ; p𝑖 ∶ Φ𝑖 𝐴 → 𝐴;…}

In the field of algebraic effects, intensional algebras of a free monad
are called models of an algebraic theory. The following result, stating
that models of a signature are algebra of the induced monad, is well-
known, and for instance presented in Bauer [17].

2. A world made of trees 68

[130]: Sterling (2021), “Higher order
functions and Brouwer’s thesis”

In ancient Greece, pythia was an-
other name for the Oracle of Delphi.

[1]: Abbott et al. (2005), “Containers:
Constructing strictly positive types”

Theorem 2.1.2: Free algebras are algebras
Assuming funext, □□ℳ is isomorphic to the usual definition of ℳ-
algebras.

Said otherwise, the p𝑖 functions are equivalent to the usualmorphism

ℎ𝐴 ∶ ℳ 𝐴 → 𝐴

preserving the monadic structure, except that this presentation does
not require any equation. This results in the main advantage of inten-
sional algebras, namely that they are closed under product type in a
purely intensional setting. That is, if

𝐴 ∶ □ and 𝐵 ∶ 𝐴 → □□ℳ ,

then
Π𝑥 ∶ 𝐴. 𝐵.𝜋1

can be equipped with an intensional algebra structure defined point-
wise. This solves a similar issue encountered in [130].

As 𝔇 is a free monad, we can define similarly intensional 𝔇-algebras.

Definition 2.1.4: Pythias
A pythia for 𝐴 ∶ □ is a term

𝑝𝐴 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝐴) → 𝐴.

We call such terms pythias as they are here to deal with oracles. Per
the above theorem, pythias for 𝐴 are extensionally in one-to-one cor-
respondence with 𝔇-algebra structures over 𝐴, but are much better
behaved intensionally. This will be the crux of the branching transla-
tion for BTT in Section 3.2.3 from Chapter 3.

Speechof freedom In fact,𝔇 is able to encode any freemonad.

Theorem 2.1.3:
Given 𝐴 a type and ℳ a free algebra as above, there are instances
of I and O such that 𝔇 𝐴 is extensionally isomorphic to ℳ 𝐴.

Proof. Wemake use of the containers’ encoding, as described byAbbott
et al [1]. We do not formally prove this theorem, but give an intuition
by considering the specific case where ℳ is the following:

Inductive ℳ (𝐴 ∶ □) ∶ □ ≔
∣ 𝜂 ∶ 𝐴 → ℳ 𝐴
∣ 𝑐1 ∶ Π Γ1. (Δ11 → ℳ 𝐴) → (Δ12 → ℳ 𝐴) → ℳ 𝐴
∣ 𝑐2 ∶ Π Γ2. (Δ21 → ℳ 𝐴) → (Δ22 → ℳ 𝐴) → ℳ 𝐴,

where
Γ𝑖, Δ𝑖𝑗

2. A world made of trees 69

[80]: Hugunin (2021), “Why Not W?”

are telescopes of types that do not mention ℳ 𝐴 (although they po-
tentially mention 𝐴).

Let us first notice that, assuming funext, for any types 𝐴, 𝐵, 𝐶, 𝑋 , we
have the following isomorphism:

(𝐴 → 𝑋) → (𝐵 → 𝑋) → 𝐶 ≃ ((𝐴 + 𝐵) → 𝑋) → 𝐶,

where 𝐴 + 𝐵 is the disjoint union of 𝐴 and 𝐵, defined in Coq as

Inductive sum (𝐴 𝐵 ∶ □) ∶ □ ≔
∣ inl ∶ 𝐴 → sum 𝐴 𝐵
∣ inr ∶ 𝐵 → sum 𝐴 𝐵.

Then ℳ is pointwise isomorphic to the following operator:

Inductive ℳ′ (𝐴 ∶ □) ∶ □ ≔
∣ 𝜂′ ∶ 𝐴 → ℳ′ 𝐴
∣ 𝑐′1 ∶ Π Γ1. (Δ11 + Δ12 → ℳ′ 𝐴) → ℳ′ 𝐴
∣ 𝑐′2 ∶ Π Γ2. (Δ21 + Δ22 → ℳ′ 𝐴) → ℳ′ 𝐴.

Using containers encoding, we can now factorize 𝑐′1 and 𝑐′2 as

𝑐 ∶ Π (𝑠 ∶ Γ1 + Γ2). (match 𝑠 with
∣ inl 𝛾1 ⟶ Δ11 + Δ12
∣ inr 𝛾2 ⟶ Δ21 + Δ22
end → ℳ′ 𝐴)
→ ℳ′ 𝐴,

leading to the following operator:

Inductive ℳ′′ (𝐴 ∶ □) ∶ □ ≔
∣ 𝜂′′ ∶ 𝐴 → ℳ′′ 𝐴
∣ 𝑐′′ ∶ Π (𝑠 ∶ Γ1 + Γ2). (match 𝑠 with

∣ inl 𝛾1 ⟶ Δ11 + Δ12
∣ inr 𝛾2 ⟶ Δ21 + Δ22
end → ℳ′′ 𝐴)
→ ℳ′′ 𝐴.

Finally, taking

I ≔ Γ1 + Γ2 and O ≔ 𝜆𝑖 ∶ I. match 𝑖 with
∣ inl 𝛾1 ⟶ Δ11 + Δ12
∣ inr 𝛾2 ⟶ Δ21 + Δ22
end,

we recover ℳ′′ as an instance of 𝔇. ■

This proof is quite straightforward to extend to an arbitrary number of
constructors 𝑐𝑖 featuring an arbitrary number of telescopes Δ𝑗

𝑖 . More-
over, making use of Hugunin’s more involved encoding of 𝑊 -types
[80], it should be possible to remove the need for funext.

All of this advocates for the study of the 𝔇 monad, as a quite power-
ful tool able to encode many side-effects. In this thesis we will focus
on continuity, a logical principle that happens to be deeply connected
with 𝔇.

2. A world made of trees 70

[88]: Kiselyov et al. (2015), “Freer
monads, more extensible effects”
[105]: McBride (2015), “Turing-
Completeness Totally Free”
[117]: Piróg et al. (2014), “The Coin-
ductive Resumption Monad”
[132]: Swierstra (2008), “Data types à
la carte”
[146]: Xia et al. (2020), “Interaction
trees: representing recursive and
impure programs in Coq”

The decode function is formally de-
fined here.

[58]: Ghani et al. (2009), “Represen-
tations of Stream Processors Using
Nested Fixed Points”
[82]: Hyland et al. (2000), “On Full Ab-
straction for PCF: I, II, and III”
[89]: Kleene (1978), “Recursive Func-
tionals and Quantifiers of Finite Types
Revisited I”

2.2. Every tree will die a log 2.2.1 Standard definition . . 72
2.2.2 Sequential continuity . 75
2.2.3 Interaction Trees 77
2.2.4 Monologuing Trees . . . 80
2.2.5 Intensional dialogue

continuity 83
For further questions please call the oracle The type of dialogue
trees is known under several other names and has a lot of close rela-
tives [88, 105, 117, 132, 146]. However, until we provide a way for it to
talk, this shrub will hardly be befitting of the dialogue name. The key
idea is, a dialogue tree can be seen as a delayed computation, waiting
for an oracle to answer its calls, so that it can collapse into a value. In
that way of thinking, dialogue trees are interpreted as functionals of
type

Q → 𝐴,
where every inner node is an inert call to an oracle 𝛼 ∶ Q, and the
answer is the label of the leaf. This interpretation is implemented by
a recursively defined decode function. In the field of algebraic effect,
this function would be called a handler.

𝜕 ∶ Π{𝐴 ∶ □} (𝑑 ∶ 𝔇 𝐴) (𝛼 ∶ Q). 𝐴
𝜕 (𝜂 𝑥) 𝛼 ∶= 𝑥
𝜕 (𝛽 𝑖 𝑘) 𝛼 ∶= 𝜕 (𝑘 (𝛼 𝑖)) 𝛼 .

Representing functions as trees is a well-known way to extract inten-
sional content from them [58, 82, 89]. Pictorially, looking back at our
previous example

true

false

𝑎0 𝑎1 ... 𝑎𝑘 ...

⋆

0 1 ... 𝑘 ...

where

I ≔ 𝔹 and O ≔ 𝜆𝑖 ∶ I. if 𝑖 then ⊤ else ℕ,

if we take as oracle

𝛼 ∶ Q ≔ 𝜆𝑖 ∶ I. if 𝑖 then ⋆ ∶ ⊤ else O ∶ ℕ,

then 𝛼 describes the following path in 𝑑:

true

false

𝑎0 𝑎1 ... 𝑎𝑘 ...

⋆

0 1 ... 𝑘 ...

At the end, we recover:
𝜕 𝑑 𝛼 = 𝑎0.

Functionals that can be encoded as dialogue trees are called dialogue
continuous.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L23

2. A world made of trees 71

Definition 2.2.1: Dialogue continuity

Dialogue continuity is formally de-
fined here.

A function 𝑓 ∶ Q → 𝐴 validates dialogue continuity if the following
holds:

𝒞𝔇 ≔ Σ𝑑 ∶ 𝔇 𝐴.Π𝛼 ∶ Q. 𝑓 𝛼 = 𝜕 𝑑 𝛼.

It might look surprising to a reader inclined towards mathematics to
find the name continuity here, with a definition that does not transpar-
ently recall the usual, by-the-book definition of continuity. We will
however see in Section 2.3 that dialogue continuity coincides with
standard continuity in a classical and extensional enough setting. In
fact, there are many different definitions of continuity in the litera-
ture, some stronger than others. The purpose of this Section is to pro-
vide a small survey of continuity definitions, and their relative impli-
cations.

Wewill encountermany inductive definitions in this Section, some for
predicates, some for data types. As we think it is useful to mentally
distinguish the two, we will write inductive data types in a Coq or
Agda-like syntax, and inductive predicates with inference rules. How-
ever, for readers who would want an uniform way of presenting both,
we will also provide in the margin Coq-like definitions of inductive
predicates.

At the end of this Section, we will end up with a map of continuity
principles presented in Figure 2.1. All implications displayed in this
Figure are internal to MLTT here, meaning for instance that when we
state as a theorem that intensional dialogue continuity implies dialogue
continuity, it effectively means that there is a term

⋅ ⊢MLTT _ ∶ Π(𝑓 ∶ Q → 𝐴). 𝒞ℑ 𝑓 → 𝒞𝔇 𝑓

in MLTT.

Finally, all results presented in this Section are proven in Coq.

Intensional continuity (2.2.13)

Dialogue continuity (2.2.1) ⟷ Brouwer continuity (2.2.12)

Sequential continuity (2.2.7) ⟷ Coinductive dialogue continuity (2.2.10)

Standard continuity (2.2.13) Figure 2.1.: Projected map of continu-
ity principles

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L30

2. A world made of trees 72

[52]: Escardó et al. (2015), “The Incon-
sistency of a Brouwerian Continuity
Principle with the Curry-Howard In-
terpretation”
[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”
[124]: Rahli et al. (2019), “Bar Induc-
tion is Compatible with Constructive
Type Theory”

2.2.1. Standard definition

Themost common definition of continuity is what we call the standard
definition. It is also called pointwise continuity in constructive mathe-
matics, where it is usually described in a setting where

I ≔ ℕ and O 𝑖 ≔ 𝔹 or O 𝑖 ≔ ℕ,

meaning that Q is the Cantor space or the Baire space. In that case, in
mathematical terms, the standard definition comes from taking the
product topology on Q. However, it is straightforward to extend this
definition to arbitrary I and O, as follows:

Definition 2.2.2: Finite equality

This definition is equivalent to the
following Coq-like syntax:

Inductive EqFin (𝛼1 𝛼2 ∶ Q) ∶
list I → □𝑖 ≔

∣ Eqnil ∶ EqFin 𝛼1 𝛼2 []
∣ Eqcons ∶ Π(𝑖 ∶ I) (𝑙 ∶ list I).

𝛼1 𝑖 = 𝛼2 𝑖 →
EqFin 𝛼1 𝛼2 𝑙 →
EqFin 𝛼1 𝛼2 (𝑖 ∷ 𝑙).

Given 𝛼1, 𝛼2 ∶ Q and 𝑙 ∶ list I, we say that 𝛼1 and 𝛼2 are finitely equal on
𝑙, written 𝛼1 ≈𝑙 𝛼2 when the following inductively defined predicate
holds:

𝛼1 ≈[] 𝛼2
𝛼1 𝑖 = 𝛼2 𝑖 𝛼1 ≈𝑙 𝛼2

𝛼1 ≈(𝑖∷𝑙) 𝛼2

Definition 2.2.3: Standard continuity

Standard continuity is formally de-
fined here.

A function validates standard continuity when it satisfies the follow-
ing predicate:

𝒞 ∶ Π{𝐴 ∶ □}. (Q → 𝐴) → □
𝒞 𝑓 ∶= Π(𝛼 ∶ Q). Σ(𝑙 ∶ list I). Π(𝛽 ∶ Q). 𝛼 ≈𝑙 𝛽 → 𝑓 𝛼 = 𝑓 𝛽.

Note that the equality 𝑓 𝛼 = 𝑓 𝛽 means that we implicitly take the dis-
crete topology on 𝐴 in this definition. The usual case will be 𝐴 ≔ ℕ.
This definition captures in a generic way the intuitive notion that
a computable functional only needs a finite amount of information
from its argument to produce an output. Depending on the expres-
sivity of the theory, one can also consider weaker variants where the
existential is squashed with various proof-irrelevant modalities [52,
123, 124]. We emphasize that the list of points 𝑙 where the function is
evaluated depends on the argument 𝛼 , so this notion of continuity is
weaker than uniform continuity, where the two quantifiers for 𝑙 and
𝛼 are swapped.

In fact, we have the following:

Definition 2.2.4: Uniform continuity

Uniform continuity is formally de-
fined here.

A function validates uniform continuity when it satisfies the follow-
ing predicate:

𝒞 ∶ Π{𝐴 ∶ □}. (Q → 𝐴) → □
𝒞 𝑓 ∶= Σ(𝑙 ∶ list I). Π(𝛼 𝛽 ∶ Q). 𝛼 ≈𝑙 𝛽 → 𝑓 𝛼 = 𝑓 𝛽.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L195
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L208

2. A world made of trees 73

[57]: Fujiwara et al. (2019), “Equiva-
lence of bar induction and bar recur-
sion for continuous functions with con-
tinuous moduli”

Lemma 2.2.1: Uniform is dialogue

Implication of dialogue continuity
by uniform continuity is formally
proved here in the specific case of
the Cantor space.

Given𝑓 ∶ Q → 𝐴, if 𝑓 is uniformly continuous, if I has decidable
equality and if Q is inhabited, then 𝑓 is dialogue continuous.

Proof. Let us assume 𝛼 ∶ Q and that I has decidable equality.

Given a uniformly continuous function 𝑓 together with its witness

𝑙 ∶ list I,

we have an easy way to build the structure of the tree: we can simply
build the complete dialogue tree of height len 𝑙 (where len 𝑙 is the
length of 𝑙), making sure that every node 𝛽 𝑖 𝑘 is such that 𝑖 is in 𝑙.
The difficulty is to provide a leaf 𝜂 𝑎. Our only hope is to provide 𝑓 𝛽
for some suitable 𝛽, which means we have to build it. The idea is then
to maintain a list of pairs to keep track of what answers 𝛼 had to give
to choose the path we are in. Formally, we first define:

evallist ∶ list (Σ𝑖 ∶ I. O 𝑖) → Q
evallist nil 𝑖 ∶= 𝛼 𝑖
evallist ((𝑖, 𝑜) ∷ 𝑙) 𝑖′ ∶= if (𝑖 == 𝑖′) then 𝑜 else evallist 𝑙 𝑖′

Here, 𝑖 == 𝑖′ is a notation for decidable equality on I. Intuitively,
evallist evaluates the partial function defined by a list

𝑞 ∶ list (Σ𝑖 ∶ I. O 𝑖).

When some argument is not in 𝑙, it uses 𝛼 to return a default value.

Now, assuming 𝑓 ∶ Q → 𝐴 uniformly continuous, the function used
to build a dialogue tree is the following:

LtoD ∶ list I → list (Σ𝑖 ∶ I. O 𝑖) → 𝔇 𝐴
LtoD nil 𝑞 ∶= 𝜂 (𝑓 (evallist 𝑞))
LtoD (𝑖 ∷ 𝑙) 𝑞 ∶= 𝛽 𝑖 (𝜆𝑜 ∶ O 𝑖. LtoD 𝑙 ((𝑖, 𝑜) ∷ 𝑞))

Given
𝑙 ∶ list I

the witness of uniform continuity for 𝑓 ,

LtoD 𝑙 nil

is the required dialogue tree. All that is left is to show that for any

𝛼 ∶ Q,

we indeed get
𝑓 𝛼 = 𝜕 (LtoD 𝑙 nil) 𝛼.

The proof is maybe a bit technical, but in summary continuity of 𝑓 is
what we need.We encourage the interested reader to take a look at the
formalization to get more details. ■

However, uniform continuity is too strict a requirement in most set-
tings. As pointed out by Fujiwara et al [57], uniform continuity mainly

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f5d71cf55df27654f76797ea69b9d6ef007271ee/Coq%20continuity/continuity_zoo.v#L754

2. A world made of trees 74

We do not define compactness here,
as it is fairly technical. Let us sim-
ply state that when O 𝑖 is finite for
all 𝑖, then Q is compact.

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[37]: Cohen et al. (2023), “Inductive
Continuity via Brouwer Trees”

[20]: Berger (2012), “Aligning the
weak König lemma, the uniform
continuity theorem, and Brouwer’s fan
theorem”
[21]: Berger (2005), “The Fan Theorem
and Uniform Continuity”
[22]: Berger (2006), “The Logical
Strength of the Uniform Continuity
Theorem”
[57]: Fujiwara et al. (2019), “Equiva-
lence of bar induction and bar recur-
sion for continuous functions with con-
tinuous moduli”

works when Q is the Cantor space, which has the specific property of
being compact, which is not the case of other spaces. For instance, tak-
ing

I ≔ ℕ, O 𝑖 ≔ ℕ and 𝐴 ≔ ℕ,
the function

𝑓 ≔ 𝜆𝛼 ∶ ℕ → ℕ. 𝛼 (𝛼 O)
fails to be uniformly continuous, even though it is fairly simple. More-
over, in the specific case of the Cantor space, we have the following
result:

Proposition 2.2.2: Cantor dialogue is uniform

Implication of uniform continuity
by dialogue continuity in the spe-
cific case of the Cantor space is for-
mally proved here.

In the case when Q is the Cantor space, then a function

𝑓 ∶ Q → 𝐴

is uniformly continuous if and only if it is dialogue continuous.

Proof. Thanks to Lemma 2.2.1, we only need to prove the converse im-
plication. Assuming a dialogue continuous function 𝑓 together with
its witness 𝑑 ∶ 𝔇 𝐴, we notice that since

O 𝑖 ≔ 𝔹

is finite for every 𝑖, then 𝑑 is also finite. By induction on 𝑑, we can thus
recover a list 𝑙 ∶ list I and derive uniform continuity. The same proof
applies for any Q such that O 𝑖 is finite for all 𝑖. ■

This result was already pointed out by Escardó [51] and more recently
by Cohen et al [37] but the links between uniform continuity and tree-
like structures have long been observed [20–22]. This has led Fujiwara
et Kawai [57] to consider inductively-defined notions of continuity
(such as dialogue continuity) as a generalization of uniform continuity
at all types.

Finally, let us emphasize that the above lemma only works because we
use the discrete topology on 𝐴, which entails that pointwise continu-
ous functions with 𝐴 as codomain are in fact locally constant. This is
not the case in general: for instance, taking

I ≔ ℕ
O ≔ 𝜆_. 𝔹
𝐴 ≔ ℕ → 𝔹

then the function
𝑓 ≔ 𝜆(𝛼 ∶ ℕ → 𝔹). 𝛼

is neither dialogue continuous nor locally constant, although it would
be pointwise continuous in constructive mathematics. In the remain-
der of this thesis, 𝐴 will always implicitly be considered equipped
with the discrete topology (in fact, we will only encounter examples
where 𝐴 is either ℕ, 𝔹 or ⊥).

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f5d71cf55df27654f76797ea69b9d6ef007271ee/Coq%20continuity/continuity_zoo.v#L786

2. A world made of trees 75

[109]: Oosten (2011), “Partial Combi-
natory Algebras of Functions”
[141]: Van Oosten (1999), “A combina-
tory algebra for sequential functionals
of finite type”

[53]: Forster et al. (2023), “Oracle Com-
putability and Turing Reducibility in
the Calculus of Inductive Construc-
tions”
[16]: Bauer (2005), “First Steps in Syn-
thetic Computability Theory”

[110]: Oosten (2008), “Realizability:
an introduction to its categorical side.
Studies in Logic and the Foundations
of Mathematics, vol. 152. Elsevier Sci-
ence, Amsterdam, 2008, 328 pp.”

2.2.2. Sequential continuity

An intermediate step between standard anddialogue continuity comes
from a more extensional way of defining trees, seeing them as pred-
icates over lists. We call them extensional trees and take their defini-
tion from van Oosten [109, 141], recently rephrased by Forster et al
[53] in the setting of synthetic computability theory [16]. We how-
ever slightly simplify the setting, as we only care about total func-
tions while van Oosten’s definition is geared towards partial functions.
Forster et al use the name sequential continuity; we stick with their no-
tation but warn the reader not to be confused, as sequential continuity
sometimes mean a different concept in constructive mathematics.

In this Section, let us assume that O does not depend on I. That is, we
simply have

I,O ∶ □0.

Definition 2.2.5: Extensional tree

Extensional trees are formally de-
fined here.

We consider the Result operator, defined by the following induc-
tive predicate:

Inductive Result (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ ret ∶ 𝐴 → Result 𝐴
∣ ask ∶ I → Result 𝐴.

Then the type of extensional trees is the following:

Extree (𝐴 ∶ □𝑖) ∶ □𝑖 ≔ list O → Result 𝐴.

Since we only deal with total functions, and not partial ones as Forster
et al, we skip the reject constructor used to implement partiality.
Like dialogue trees, extensional trees can be interpreted as function-
als, using another decode function.

Definition 2.2.6: Extensional decode

Evaluation of extensional trees is
formally defined here.

Extensional trees can be interpreted as functionals of type Q → 𝐴.
As for dialogue trees, every ask constructor is an inert call to an
oracle 𝛼 ∶ Q, and the answer is a result given by ret. This interpre-
tation is implemented by a recursively defined extensional decode
function:

𝜕Ext ∶ Extree → Q → list O → ℕ → Result 𝐴
𝜕Ext 𝜏 𝛼 𝑙 O ∶= 𝜏 𝑙
𝜕Ext 𝜏 𝛼 𝑙 (S 𝑘) ∶= match (𝜏 𝑙) with

∣ ret 𝑎 ⟶ ret 𝑎
∣ ask 𝑖 ⟶ 𝜕Ext 𝜏 𝛼 ((𝛼 𝑖) ∷ 𝑙) 𝑘
end

As we are not certain that 𝜏 will return a value after a finite number
of steps, we use a natural number 𝑛 as fuel to make the recursion well-
founded. A similar definition can be found in van Oosten’s book [110]
in the proof of Theorem 1.7.5 under the name 𝑓 -dialogue.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L89
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L94

2. A world made of trees 76

Definition 2.2.7: Sequential continuity

Sequential continuity is formally
defined here.

A function 𝑓 ∶ Q → 𝐴 is sequentially continuous if the following
holds:

𝒞Ext 𝑓 ≔ Σ(𝜏 ∶ Extree). Π(𝛼 ∶ Q). Σ(𝑛 ∶ ℕ). 𝜕Ext 𝜏 𝛼 [] 𝑛 = ret (𝑓 𝛼)

Lemma 2.2.3: Sequential implies standard continuity

Implication of standard continu-
ity by sequential continuity is for-
mally proved here.

Sequential continuity implies standard continuity.

Proof. Let us assume 𝑓 ∶ Q → 𝐴 and 𝜏 ∶ Extree its witness of sequen-
tial continuity. Given 𝛼 ∶ Q, we have

𝑛 ∶ ℕ such that 𝜕Ext 𝜏 𝛼 nil 𝑛 = ret (𝑓 𝛼).

Wewant to produce a list 𝑙 ∶ list I. Intuitively, this list is exactly the one
we reach at the end of the 𝜕Ext recursion. Hence, we define an auxiliary
function

aux ∶ Π(𝜏 ∶ Extree) (𝛼 ∶ Q) (𝑙 ∶ list O) (𝑛 ∶ ℕ). list I
aux 𝜏 𝛼 𝑙 O ∶= nil
aux 𝜏 𝛼 𝑙 (S 𝑘) ∶= match (𝜏 𝑙) with

∣ ret 𝑎 ⟶ nil
∣ ask 𝑖 ⟶ 𝑖 ∷ (aux 𝜏 𝛼 ((𝛼 𝑖) ∷ 𝑙) 𝑘)
end

We now need to prove the following:

Π(𝛽 ∶ Q). 𝛼 ≈aux 𝜏 𝛼 nil 𝑛 𝛽 → 𝑓 𝛼 = 𝑓 𝛽.

Given
𝛽 and 𝐻 ∶ 𝛼 ≈aux 𝜏 𝛼 nil 𝑛 𝛽,

by sequential continuity of 𝑓 we recover

𝑚 ∶ ℕ such that 𝜕Ext 𝜏 𝛽 nil 𝑚 = ret (𝑓 𝛽).

By injectivity of ret, it is sufficient to prove that

𝜕Ext 𝜏 𝛼 nil 𝑛 = 𝜕Ext 𝜏 𝛽 nil 𝑚.

In fact, we need to slightly generalize that goal and prove

Π(𝑙 ∶ list I). 𝛼 ≈aux 𝜏 𝛼 𝑙 𝑛 𝛽 → 𝜕Ext 𝜏 𝛼 𝑙 𝑛 = 𝜕Ext 𝜏 𝛽 𝑙 𝑚.

We first prove an auxiliary lemma stating that

Π(𝑛 𝑚 ∶ ℕ) (𝑎 ∶ 𝐴). 𝑛 ≤ 𝑚 → 𝜕Ext 𝜏 𝛼 𝑙 𝑛 = ret 𝑎 → 𝜕Ext 𝜏 𝛼 𝑙 𝑚 = ret 𝑎.

This follows from double induction on 𝑛 and 𝑚. The key point is that
once 𝜕Ext reaches a value, it stays constant. All that is left is to prove

𝜕Ext 𝜏 𝛼 𝑙 (max 𝑛 𝑚) = 𝜕Ext 𝜏 𝛽 𝑙 (max 𝑛 𝑚),

which is straightforward by induction on (max 𝑛 𝑚). ■

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L163
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L617

2. A world made of trees 77

[146]: Xia et al. (2020), “Interaction
trees: representing recursive and im-
pure programs in Coq”

[30]: Capretta (2005), “General Recur-
sion via Coinductive Types”

2.2.3. Interaction Trees

The key difference between dialogue trees and extensional trees is that
dialogue trees are inductive concepts while extensional trees are pos-
sibly infinite trees that we restrict a posteriori by asking a natural num-
ber in the continuity definition. However, functions are not the only
way to encode potentially infinite data structures in type theory, an-
other option is to use coinductive types. In this setting, Xia et al [146]
describe what they call interaction trees, a data structure behaving sim-
ilarly to extensional trees. We give a slightly different version of them,
fitting into our setting with I and O.

Definition 2.2.8: Interaction trees

Interaction trees are formally de-
fined here.

Interaction trees are inhabitants of the following coinductive type:

Coinductive ℑ (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ Ret ∶ 𝐴 → ℑ 𝐴
∣ Tau ∶ ℑ 𝐴 → ℑ 𝐴
∣ Vis ∶ Π(𝑖 ∶ I). (O 𝑖 → ℑ 𝐴) → ℑ 𝐴.

Here, Vis stands for visible event, where the computation explicitly
asks the oracle for an answer, contrarily to the silent transition Tau

where the program silently computes. In Xia’s setting, Tau transitions
are also used to model non-termination. This actually means that in-
teraction trees are the composition of two effects:

1. Potentially endless interaction with an external oracle 𝛼 ∶ Q,
encoded by a coinductive version of 𝔇;

2. Silent non-termination, encoded via Capretta’s delay monad [30].

See you later, operator Interestingly, if we remove the delay monad
from interaction trees we recover a definition of continuity equivalent
to the one with extensional trees.

Definition 2.2.9: Coinductive dialogue trees

Coinductive dialogue trees are for-
mally defined here.

Coinductive dialogue trees are inhabitants of the following coinduc-
tive type:

Coinductive 𝔈 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ Ret𝔈 ∶ 𝐴 → 𝔈 𝐴
∣ Vis𝔈 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔈 𝐴) → 𝔈 𝐴.

They come with their own decoding function, interpreting them as
functionals of type Q → 𝐴. As they are coinductives, the decoding
function is parametrized by a natural number 𝑛 that we use as fuel.

𝜕𝔈 ∶ Π{𝐴 ∶ □𝑖}. 𝔈 𝐴 → Q → ℕ → Result 𝐴
𝜕𝔈 (Ret𝔈 𝑎) 𝛼 𝑛 ≔ ret 𝑎
𝜕𝔈 (Vis𝔈 𝑖 𝑘) 𝛼 O ≔ ask 𝑖
𝜕𝔈 (Vis𝔈 𝑖 𝑘) 𝛼 (S 𝑛) ≔ 𝜕𝔈 (𝑘 (𝛼 𝑖)) 𝛼 𝑛

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L70
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L514

2. A world made of trees 78

Remember that the type of exten-
sional trees is

Extree ≔ list O → Result 𝐴

Definition 2.2.10: Coinductive dialogue continuity

Coinductive dialogue continuity is
formally defined here.

A function 𝑓 ∶ Q → 𝐴 is coinductive dialogue continuous if the fol-
lowing holds:

𝒞𝔈 𝑓 ≔ Σ(𝑐 ∶ 𝔈). Π(𝛼 ∶ Q). Σ(𝑛 ∶ ℕ). 𝜕𝔈 𝑐 𝛼 𝑛 = ret (𝑓 𝛼)

Proposition 2.2.4: Coinductive dialogue and sequential continu-
ity coincide

The first implication is formally
proved here, the converse is for-
mally proved here.

Sequential continuity and coinductive dialogue continuity are equiv-
alent.

Proof. This Proposition of course only makes sense in a setting where
O does not depend on I, hence we switch back to it.

To go from sequential continuity to coinductive dialogue continuity,
we make use of the following conversion function:

EtoC ∶ Π{𝐴 ∶ □𝑖}. Extree → list O → 𝔈 𝐴
EtoC 𝜏 𝑙 ≔ match 𝜏 𝑙 with

∣ ret 𝑎 ⟶ Ret𝔈 𝑎
∣ ask 𝑖 ⟶ Vis𝔈 𝑖 (𝜆𝑜 ∶ O. EtoC 𝜏 (𝑜 ∷ 𝑙))
end

Note that, since we are building an element of a coinductive type,
there is no question of termination here, only a question of produc-
tivity. We are effectively building a possibly infinite chain of queries
to the oracle.

Then, given a sequentially continuous functional

𝑓 ∶ Q → 𝐴

and its witness of continuity

𝜏 ∶ Extree,

we provide
EtoC 𝜏 nil

as a witness of coinductive dialogue continuity for 𝑓 . What we have
to prove then amounts to

Π(𝑙 ∶ list 𝐴) (𝑛 ∶ ℕ). 𝜕Ext 𝜏 𝛼 𝑙 𝑛 = 𝜕𝔈 (EtoC 𝜏 𝑙) 𝛼 𝑛.

The proof follows from a straightforward induction on 𝑛.

To go from coinductive dialogue continuity to sequential continuity,
we proceed the same way: first, we define the following conversion
function:

CtoE ∶ Π{𝐴 ∶ □𝑖}. 𝔈 𝐴 → Extree
CtoE (Ret𝔈 𝑎) _ ≔ ret 𝑎
CtoE (Vis𝔈 𝑖 𝑘) nil ≔ ask 𝑖
CtoE (Vis𝔈 𝑖 𝑘) (𝑙 ; ; 𝑜) ≔ CtoE (𝑘 𝑜) 𝑙

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L536
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L597
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L549

2. A world made of trees 79

Note that the function is defined by induction on the list 𝑙, but from
right to left and not from left to right. This is to avoid problems when
𝜕Ext adds elements to the list.

Then, given a coinductive dialogue continuous functional 𝑓 ∶ Q → 𝐴
and its witness of continuity

𝑐 ∶ 𝔈 𝐴,

we provide
CtoE 𝑐

as a witness of sequential continuity for 𝑓 . Once again, we end up hav-
ing to prove that our conversion procedure preserves the behaviour of
decoding functions:

Π(𝑙 ∶ list 𝐴) (𝑛 ∶ ℕ). 𝜕𝔈 𝑐 𝛼 𝑛 = 𝜕Ext (CtoE 𝑐) 𝛼 𝑙 𝑛.

The proof follows from a straightforward induction on 𝑛. ■

Talking is a good way to interact Looking at interaction trees, the
link with dialogue trees is quite obvious, as one is simply the coinduc-
tive counterpart of the other. It is pretty easy to turn an element of an
inductive type into an element of its coinductive dual, so the following
result is hardly surprising.

Proposition 2.2.5: Dialogue is interaction
Dialogue continuous functions are coinductive-dialogue continu-
ous.

Proof. We use the following conversion function from dialogue trees
to coinductive dialogue trees:

DtoC ∶ Π{𝐴 ∶ □𝑖}. 𝔇 𝐴 → 𝔈 𝐴
DtoC (𝜂 𝑎) ≔ Ret𝔈 𝑎
DtoC (𝛽 𝑖 𝑘) ≔ Vis𝔈 𝑖 (𝜆𝑜 ∶ O 𝑖. DtoC (𝑘 𝑜))

It is then sufficient to prove

Π(𝑑 ∶ 𝔇 𝐴) (𝛼 ∶ Q). Σ𝑛 ∶ ℕ.𝜕 𝑑 𝛼 = 𝜕𝔈 (DtoC 𝑑) 𝛼 𝑛.

Given 𝛼 ∶ Q, the natural number 𝑛 we return is intuitively the length
of the path taken by 𝛼 in 𝑑 before reaching a leaf. This intuition is
formalized in the following function:

aux ∶ Π{𝐴 ∶ □𝑖}. 𝔇 𝐴 → Q → ℕ
aux(𝜂 𝑎) 𝛼 ≔ O
aux (𝛽 𝑖 𝑘) 𝛼 ≔ S (aux (𝑘 (𝛼 𝑖)) 𝛼)

The proof that
𝜕 𝑑 𝛼 = 𝜕𝔈 (DtoC 𝑑) 𝛼 (aux 𝑑 𝛼)

is straightforward by induction on 𝑑. ■

2. A world made of trees 80

Escardó and Oliva’s specific work
on Brouwer trees did not lead to a
paper, but their Agda code can be
browsed online here.

[130]: Sterling (2021), “Higher order
functions and Brouwer’s thesis”
[28]: Brouwer (1925), “Zur Begrün-
dung der intuitionistischen Mathe-
matik. I.”

2.2.4. Monologuing Trees

One question at a time, please Dialogue trees can ask their queries
in whatever order they choose to, or even ask the same question an
arbitrary number of times. Building on previous work by Escardó and
Oliva, Sterling [130] decides to address this unproper behaviour and
defines the type ofBrouwer trees. Inspired by thework of Brouwer [28],
they are a specific kind of dialogue trees where queries must be made
in order. They are defined in a setting where

I ≔ ℕ

and O does not depend on I.

Definition 2.2.11: Brouwer Trees

Brouwer trees are formally defined
here.

Given 𝐴 a type, Brouwer trees on 𝐴 are inductively defined as fol-
lows:

Inductive 𝔅 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ spit ∶ 𝐴 → 𝔅 𝐴
∣ bite ∶ (O → 𝔅 𝐴) → 𝔅 𝐴.

The purpose of Brouwer trees in Sterling’s work is to study continu-
ity on streams of value. As such, the decoding function for dialogue
trees makes use of usual functions for streams, such as head (hd) or
tail (tl). In our case, we will simply consider that streams of type 𝐴
are functions of type ℕ → 𝐴. Hence, in the following, we have:

hd 𝛼 ≔ 𝛼 O

tl 𝛼 ≔ 𝜆(𝑥 ∶ ℕ). 𝛼 (S 𝑥)
Q ≔ ℕ → O

These notations being set, we get:

𝜕𝔅 ∶ Π{𝐴 ∶ □} (𝑑 ∶ 𝔅 𝐴) (𝛼 ∶ Q). 𝐴
𝜕𝔅 (spit 𝑥) 𝛼 ∶= 𝑥
𝜕𝔅 (bite 𝑘) 𝛼 ∶= 𝜕𝔅 (𝑘 (hd 𝛼)) (tl 𝛼).

Similarly to the dialogue case,we candefineBrouwer continuity.

Definition 2.2.12: Brouwer continuity

Brouwer continuity is formally de-
fined here.

A function 𝑓 ∶ Q → 𝐴 validates Brouwer continuity if there exists a
Brouwer tree 𝑏 ∶ 𝔅 𝐴 and a proof that

Π𝛼 ∶ Q. 𝑓 𝛼 = 𝜕𝔅 𝑑 𝛼

Brouwer trees can be seen as normal forms of dialogue trees. Actually,
Sterling exhibits a normalization procedure to turn a dialogue tree into
a Brouwer tree and proves the following:

Proposition 2.2.6: Dialogue can be done in order

Equivalence of Brouwer and
dialogue continuity is formally
proved here.

For 𝑓 ∶ (ℕ → O) → 𝐴, Brouwer and dialogue continuity are equiva-
lent.

https://www.cs.bham.ac.uk//~mhe/dialogue/dialogue-to-brouwer.agda
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L41
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L53
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L222

2. A world made of trees 81

In this picture, we set

O ≔ 𝔹,
but in the general case the tree
might be infinitely large.

Proof. It is enough to provide a procedure to turn a Brouwer tree into
a dialogue one (and the other way around) such that the decoding
functions compute the same way.

Going from a Brouwer tree to a dialogue tree is the easy part, we sim-
ply keep track of the number of queries we have already made:

BtoD ∶ Π{𝐴 ∶ □}. 𝔅 𝐴 → ℕ → 𝔇 𝐴
BtoD (spit 𝑎) _ ≔ 𝜂 𝑎
BtoD (bite 𝑘) 𝑛 ≔ 𝛽 𝑛 (𝜆𝑜 ∶ O. BtoD (𝑘 𝑜) (S 𝑛))

Then, given 𝑏 ∶ 𝔅 𝐴, it is straightforward to prove by induction on 𝑏
that

Π(𝑘 ∶ ℕ) (𝛼 ∶ Q). 𝜕𝔅 𝑏 (𝜆𝑛. 𝛼 (𝑘 + 𝑛)) = 𝜕 (BtoD 𝑏 𝑘) 𝛼.
Intanciating with 𝑘 ≔ O, we recover

Π𝛼 ∶ Q. 𝜕𝔅 𝑏 𝛼 = 𝜕 (BtoD 𝑏 O) 𝛼.

The other way around is a bit more tricky. Indeed, we need to know
how to deal with dialogue trees such as the following one:

1

O O

𝑎0 𝑎1 𝑎2 𝑎3

𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒

Given
𝛼 ∶ Q,

the only way for us to have access to the value of 𝛼 on 1 is by doing
two successive bite nodes, but if we are not cautious we might lose
access to the value of 𝛼 on O in the process. Sterling finds a way out
via an auxiliary list

𝑙 ∶ list I

keeping track of all queries already asked, and their corresponding
answer in the current branch. Morally, it means something like this:

DtoB ∶ Π{𝐴 ∶ □}. 𝔇 𝐴 → list O → 𝔅 𝐴
DtoB (𝜂 𝑎) _ ≔ spit 𝑎
DtoB (𝛽 𝑖 𝑘) 𝑙 ≔ if 𝑖 < len 𝑙

then DtoB (𝑘 (𝑙.nth 𝑖))
else bite (𝜆𝑜. DtoB (𝛽 𝑖 𝑘) (𝑜 ∷ 𝑙))

where
len 𝑙

is the length of the list 𝑙 and

𝑙 .nth

is the function returning the nth element of the list 𝑙 (if it exists).

2. A world made of trees 82

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

The Agda code of Escardó and
Oliva’s proof can be found here.

However, no proof assistant would accept this function as is, since its
termination is not obvious. To circumvent this issue, Sterling describes
the following procedure, making use of an auxiliary function:

DtoB ∶ Π{𝐴 ∶ □}. 𝔇 𝐴 → list O → 𝔅 𝐴
DtoB (𝜂 𝑎) _ ≔ spit 𝑎
DtoB (𝛽 𝑖 𝑘) 𝑙 ≔ aux 𝑙 𝑖 𝑘 𝑙

where

aux ∶ Π{𝐴 ∶ □}. list O → ℕ → (O → 𝔇 𝐴) →
list O → 𝔅 𝐴

aux 𝑙 𝑖 𝑘 nil ≔ bite (𝜆𝑜. aux (𝑜 ∷ 𝑙) 𝑖 𝑘 [𝑜])
aux 𝑙 O 𝑘 (𝑜 ∷ _) ≔ DtoB (𝑘 𝑜) 𝑙
aux 𝑙 (𝑆 𝑖) 𝑘 (_ ∷ 𝑞) ≔ aux 𝑙 𝑖 𝑘 𝑞

Applying DtoB to our pictorial example, we get:

bite

bite bite

spit 𝑎0 spit 𝑎2 spit 𝑎1 spit 𝑎3

𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒

To prove the correctness of this function, Sterling also provides two
mutually defined inductive predicates. Unfortunately, even though
this code type-checks in Agda, Coq does not accept this definition ei-
ther, as it is not immediate that the fixpoint is structurally decreasing.

However, as we already mentioned, another proof exists, provided by
Escardó and Oliva, expanding on Escardó’s previous work [51]. Rather
than keeping a list of all previous queries, they directly prune the tree
on the fly, by updating the branching function 𝑘 of bite 𝑘. Formally,
their function looks like this:

follow ∶ Π{𝐴 ∶ □}.O → 𝔅 𝐴 → 𝔅 𝐴
follow _ (spit 𝑎) ≔ spit 𝑎
follow 𝑜 (bite 𝑘) ≔ 𝑘 𝑜

𝛽′ ∶ Π{𝐴 ∶ □}. ℕ → (O → 𝔅 𝐴) → 𝔅 𝐴
𝛽′ O 𝑘 ≔ bite (𝜆𝑜 ∶ O. follow 𝑜 (𝑘 𝑜))
𝛽′ (S 𝑖) 𝑘 ≔ bite (𝜆𝑜 ∶ O. 𝛽′ 𝑖 (𝜆𝑜′ ∶ O. follow 𝑜 (𝑘 𝑜′)))

DtoB′ ∶ Π{𝐴 ∶ □}. 𝔇 𝐴 → 𝔅 𝐴
DtoB′ (𝜂 𝑎) ≔ spit 𝑎
DtoB′ (𝛽 𝑖 𝑘) ≔ 𝛽′ 𝑖 (𝜆𝑜 ∶ O. DtoB′ (𝑘 𝑜))

https://www.cs.bham.ac.uk//~mhe/dialogue/dialogue-to-brouwer.agda

2. A world made of trees 83

Its meaning might be a bit harder to grasp than Sterling’s version. The
intuition is, when facing

𝛽 𝑖 𝑘,
by calling DtoB′ recursively we can get a family of Brouwer trees

𝜆𝑜 ∶ O. DtoB′ (𝑘 𝑜).

What we need then is a clever way of mimicking 𝛽. Sterling’s way of
doing it is to store every answer from the oracle in a list. Here,

𝛽′ and follow

change the branching function itself, collapsing on the fly the queries
we already made. We encourage the reader to look at the formalized
proof of correctness for this version, which we find enlightening. ■

2.2.5. Intensional dialogue continuity

All the different definitions of continuity encountered so far are quite
extensional, as we only consider outputs of the function

𝐹 ∶ Q → 𝐴

under scrutiny. We could argue that dialogue and Brouwer continu-
ity are more intensional than standard and sequential continuity, as
they provide a concrete, inductive witness of continuity and not just
a function waiting for an oracle

𝛼 ∶ Q

to output a list (in the case of standard continuity) or a result (in the
case of sequential continuity). Still, even in dialogue continuity 𝐹 is
only pointwise equal to 𝜕 𝑑 and we know nothing of the internal com-
putation of 𝐹 .
In some sense, continuity itself enforces a bit of extensionality. Indeed,
the intuitive depiction of continuity is “a function is continuous if it
asks a finite number of queries before returning a value”,whichmeans
that the only way

𝐹 ∶ Q → 𝐴
can use its argument

𝛼 ∶ Q

is by providing input to 𝛼 and computing on its output.

On the other hand, continuity is not a purely extensional notion, as
two extensionally equal functions

𝐹 , 𝐺 ∶ Q → 𝐴

could have different witnesses of continuity. Still, we can go further
down the intentional path and define a more intensional version of
continuity.

2. A world made of trees 84

Definition 2.2.13: Intensional dialogue continuity

Intensional dialogue continuit is
formally defined here.
This definition is equivalent to the
following Coq-like syntax:

Inductive 𝒞ℑ (𝐴 ∶ □𝑖) ∶
(Q → 𝐴) → □𝑖 ∶=

∣ 𝜂ℑ ∶ Π (𝑎 ∶ 𝐴). 𝒞ℑ 𝐴 (𝜆𝑥. 𝑎)
∣ 𝛽ℑ ∶ Π (𝑖 ∶ I)

(𝑘 ∶ O 𝑖 → Q → 𝐴)
(𝑘𝜖 ∶ Π(𝑜 ∶ O 𝑖). 𝒞ℑ 𝐴 (𝑘 𝑜)).
𝒞ℑ 𝐴 (𝜆𝛼. 𝑘 (𝛼 𝑖) 𝛼).

A function 𝑓 validates intensional dialogue continuity when the fol-
lowing inductive predicate holds:

𝑎 ∶ 𝐴
𝜂ℑ 𝑎 ∶ 𝒞ℑ 𝐴 (𝜆𝛼 ∶ Q. 𝑎)

𝑖 ∶ I 𝑘 ∶ O 𝑖 → Q → 𝐴
𝑘𝜖 ∶ Π(𝑜 ∶ O 𝑖). 𝒞ℑ 𝐴 (𝑘 𝑜)

𝛽ℑ 𝑖 𝑘 𝑘𝜖 ∶ 𝒞ℑ 𝐴 (𝜆𝛼 ∶ Q. 𝑘 (𝛼 𝑖) 𝛼)

Perhaps unsurprinsingly, an intensional dialogue continuous function
is dialogue continuous.

Lemma 2.2.7: Intensional dialogue is dialogue

Implication of dialogue continuity
by intensional dialogue continuity
is formally proved here.

Intensional dialogue continuity implies dialogue continuity.

Proof. Direct by induction, using the fact that

𝔇 and 𝒞ℑ

have the same structure. ■

Conversely, the decoding of a dialogue tree is intensional dialogue con-
tinuous.

Lemma 2.2.8: Intensional continuity of dialogue trees

Intensional continuity of dialogue
trees is formaly proved here.

Let 𝑑 be a dialogue tree. Then

𝜕 𝑑

validates intensional dialogue continuity.

Proof. By induction on 𝑑.
▶ If

𝑑 = 𝜂 𝑥
then

𝜕 (𝜂 𝑥) = 𝜆_. 𝑥
and we conclude by 𝜂ℑ.

▶ If
𝑑 = 𝛽 𝑖 𝑘

then we instantiate 𝛽ℑ with 𝑖 and

𝜆(𝑜 ∶ O 𝑖). 𝜕 (𝑘 𝑜).

The induction hypothesis gives us 𝑘𝜖 .
■

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L34
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L449
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L441

2. A world made of trees 85

2.3. The zoo of continuity and logical
principles

At the end of our stroll in the continuity landscape, we indeed ended
up with the map of definitions and implications we hinted at at the
beginning of the previous Section. However, this picture depends on
the strength of the ambient theory. If we had the full power of classical
logic and lived in ZFC set theory, for instance, we would end up with
the following result:

Proposition 2.3.1: Continuities are classically equivalent
In classical logic, with the axiom of choice and function extension-
ality, all definitions of continuity from Section 2.2 are equivalent.

This is the point of view of a jackhammer, though, and we can be
more subtle. In this Section, we investigate what logical principles are
needed to turn the implications of Figure 2.2 into equivalences. At the
end, we recover three principles that are sufficient, although maybe
not necessary. They are displayed near curvy arrows in Figure 2.2.

Intensional continuity (2.2.13)

Dialogue continuity (2.2.1) ⟷ Brouwer continuity (2.2.12)

Sequential continuity (2.2.7) ⟷ Coinductive dialogue continuity (2.2.10)

Standard continuity (2.2.3)

Function extensionality (2.3.1)

Bar induction (2.3.2)

Self-modulating moduli (2.3.3)

Figure 2.2.: Map of continuity and log-
ical principles

2.3.1. Dialogue continuity is extensionally intensional
dialogue continuity

Let us start at the top of the picture, and look at the difference be-
tween intensional dialogue continuity and dialogue continuity. As we
already noticed, for any dialogue tree 𝑑, the function 𝜕 𝑑 is intension-
ally dialogue continuous. The difference between intensional and sim-
ple dialogue continuity lies in the fact that dialogue continuity only
requires pointwise equality between a function and its dialogue wit-
ness, while intensional dialogue continuity is a predicate on the func-
tion itself. The following result should then be no surprise.

Proposition 2.3.2: Dialogue is extensionally intensional

Implication of intensional di-
alogue continuity by dialogue
continuity and function exten-
sionality is formally proved
here.

If the ambient theory features funext for Q → 𝐴 then dialogue con-
tinuity implies intensional dialogue continuity.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L663

2. A world made of trees 86

[26]: Brede et al. (2021), “On the logical
structure of choice and bar induction
principles”

Proof. Let 𝑓 be a dialogue continuous function, and let 𝑑 be its dia-
logue tree witness. We have

Π𝛼 ∶ Q. 𝑓 𝛼 = 𝜕 𝑑 𝛼.

Using funext this is enough to derive

𝑓 = 𝜕 𝑑.

We conclude with Lemma 2.2.8. ■

2.3.2. Dialogue trees are barred sequences

In this section, we set
I ≔ ℕ

andO is taken as an arbitrary type that does not depend on I.We inves-
tigate in that setting what logical principles allow to prove dialogue
continuity and extensional dialogue continuity to be equivalent. As it
turns out, a variant of bar induction does the trick.

Following Brede and Herbelin [26], we first define barred predicates on
lists.

Definition 2.3.1: Barred predicate

Formal definition of barred pred-
icates, hereditary closure and bar
induction can be found here.

A predicate
𝑇 ∶ list O → □

is barred if the following holds:

Π(𝛼 ∶ Q). Σ(𝑙 ∶ list O).(𝑙 ⊑ 𝛼) × 𝑇 𝑙,

where 𝑙 ⊑ 𝛼 means that

𝑙 ≡ [𝛼 O; ...; 𝛼 ((len 𝑙) − 1)].

Otherwise said, every infinite branch has a finite prefix that is in 𝑇 .

A specific subset of barred predicates consists of inductively barred
predicates.

Definition 2.3.2: Hereditary closure

In Coq-like syntax, this inductive
predicates is written like this:

Inductive Her (𝑇 ∶ list O → □) ∶
list O → □ ≔

∣ 𝜂◁ ∶ Π(𝑙 ∶ list O). 𝑇 𝑙 → Her 𝑇 𝑙
∣ 𝛽◁ ∶ Π(𝑙 ∶ list O).

(Π(𝑎 ∶ O). Her 𝑇 (𝑎 ∷ 𝑙)) →
Her 𝑇 𝑙.

Given 𝐴 a type,
𝑇 ∶ list O → □

a predicate on lists and 𝑙 ∶ list O, 𝑇 is hereditary closed at 𝑙, written
𝑇 ◁ 𝑙, if the following inductive predicate holds:

𝑙 ∶ list O 𝑒 ∶ 𝑇 𝑙
𝜂◁ 𝑒 ∶ 𝑇 ◁ 𝑙

𝑙 ∶ list O
𝑙𝜀 ∶ Π(𝑜 ∶ O). 𝑇 ◁ (𝑜 ∷ 𝑙)

𝛽◁ 𝑙 𝑙𝜀 ∶ 𝑇 ◁ 𝑙

𝑇 is inductively barred if it is hereditary closed at the empty list nil.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/Coq%20continuity/extra_principles.v?ref_type=heads

2. A world made of trees 87

Going from 𝜏 to 𝜏 ′ is fairly tedious
and technical, and took many lines
of Coq code. Its formal proof can
be found here.

Lemma 2.3.3: Inductively barred is barred
If a predicate 𝑇 is inductively barred, then it is barred.

Proof. Direct by induction on the proof of hereditary closure. ■

The converse is exactly bar induction.

Definition 2.3.3: Bar induction
The axiom of bar induction states that any barred predicate 𝑇 is in-
ductively barred.

Otherwise said, bar induction states that any tree such that any of its
branches is finite can be inductively specified. As extensional trees are
potentially infinite trees, and since sequential continuity implies that
every branch is finite, we can precisely use bar induction to recover a
dialogue tree from it.

Proposition 2.3.4: Dialogue is barred extensional dialogue

Formal proof that Bar Induction
imply equivalence between dia-
logue and sequential continuity
can be found here.

If bar induction holds, then any function

𝐹 ∶ Q → 𝐴

that is sequentially continuous is dialogue continuous.

Proof. As it turns out, for our proof to work, we first need to define an
extensional analogue to Brouwer trees. That is, given

𝐹 ∶ Q → 𝐴 and 𝜏 ∶ Extree

its witness of sequential continuity, there is some 𝜏 ′ that asks its ques-
tions in order. Given such 𝜏 ′, we define the predicate

𝑇 ∶ list O → □ ≔ 𝜆𝑙 ∶ list O. Σ𝑎 ∶ 𝐴. 𝜏 ′ 𝑙 = ret 𝑎.

Unfolding the definition of sequential continuity, we get:

Π(𝛼 ∶ Q). Σ(𝑛 ∶ ℕ). 𝜕Ext 𝜏 ′ 𝛼 nil 𝑛 = ret (𝐹 𝛼)

As it turns out, it is essentially stating that 𝑇 is barred. Indeed, given

𝛼 ∶ Q,

if 𝑛 ∶ ℕ is the first projection of the above statement, it is possible to
prove that

𝑙 ≔ [𝛼 O; ...; 𝛼 (𝑛 − 1)]
is such that

𝜏 ′ 𝑙 = ret (𝐹 𝛼).
Hence 𝑇 is barredwithwitnesses 𝑙 and 𝐹 𝛼 . Applying bar induction, we
recover a proof 𝐻 that 𝑇 is inductively barred. We recover a Brouwer
tree by induction on 𝐻 . We conclude by equivalence between Brouwer
tree continuity and dialogue continuity. ■

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/Coq%20continuity/continuity_zoo.v#L852
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/Coq%20continuity/continuity_zoo.v#L1296

2. A world made of trees 88

[91]: Konecný et al. (2020), “Continu-
ous and monotone machines”
[129]: Steinberg et al. (2021), “Com-
putable analysis and notions of conti-
nuity in Coq”

2.3.3. Reflecting on oneself before speaking

In this Section, we set
I ≔ ℕ

and take O independent from I. Moreover, we assume an element

𝑜 ∶ I.

This particular setting allows us to talk about continuous ways of being
continuous.

Definition 2.3.4: Moduli of continuity

Moduli of continuity are formally
defined here.

Let us recall the definition of standard continuity fromSection 2.2.1,
adapted to the natural number setting:

𝒞 ∶ (Q → 𝐴) → □
𝒞 𝑓 ∶= Π(𝛼 ∶ Q). Σ𝑙 ∶ list O. Π(𝛽 ∶ Q). 𝛼 ≈𝑙 𝛽 → 𝑓 𝛼 = 𝑓 𝛽.

Given 𝑓 ∶ Q → 𝐴, from a proof 𝑃 ∶ 𝒞 𝑓 we can build a function

𝑀𝑓 ∶ Q → list I ≔ 𝜆𝛼 ∶ Q. (𝑃 𝛼).𝜋1

together with a proof

𝑀𝜀 ∶ Π(𝛼 𝛽 ∶ Q). 𝛼 ≈𝑀𝑓 𝛼 𝛽 → 𝑓 𝛼 = 𝑓 𝛽 ≔
𝜆𝛼 ∶ Q. (𝑃 𝛼).𝜋2

Such a function 𝑀𝑓 is called a modulus of continuity for 𝑓 .

Note that sometimes, for a given

𝛼 ∶ Q, the list 𝑀𝑓 𝛼

will also be called a modulus of continuity for 𝑓 on 𝛼 .

Definition 2.3.5: Self-modulating moduli

Self-modulating moduli are for-
mally defined here.

Given 𝑓 ∶ Q → 𝐴 a standard continuous function, given

𝑀𝑓 ∶ Q → list I

and 𝑀𝜀 a proof that 𝑀𝑓 is a modulus of continuity for 𝑓 , 𝑀𝑓 is a
self-modulating modulus if there is a proof

𝑀 ′𝜀 ∶ Π(𝛼 𝛽 ∶ Q). 𝛼 ≈𝑀𝑓 𝛼 𝛽 → 𝑀𝑓 𝛼 = 𝑀𝑓 𝛽.

The self-modulating modulus terminology is present in Konecný and
Steinberg and Steinberg et al [91, 129]. Interestingly, self modulating
moduli can be used to recover sequential continuity.

Proposition 2.3.5: Self-modulating standard implies sequential
continuity

Implication of sequential continu-
ity by self-modulating moduli is
formaly proved here.

Let 𝑓 ∶ Q → 𝐴 be standard continuous, with a modulus 𝑀𝑓 that is
self-modulating. Then 𝑓 is sequentially continuous.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L202
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/f65625fa57f3d7e6a832c5ca77e697d190c05d7a/Coq%20continuity/continuity_zoo.v#L205
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/6dec98fdc3e1560f0e46fc601c898ae06d0d2b09/Coq%20continuity/continuity_zoo.v#L350

2. A world made of trees 89

Proof. Given
𝑓 ∶ Q → 𝐴

a standard continuous function and 𝑀𝑓 a self-modulating modulus
of continuity for 𝑓 , we define an extensional tree 𝜏𝑀 as follows: first,
given a list

𝑙 ∶ list O,
we define the function

↑ 𝑙 ∶ ℕ → O ≔ 𝜆𝑛 ∶ ℕ. if 𝑛 < len 𝑙 then 𝑙 .nth 𝑛 else 𝑜

where 𝑜 is the inhabitant of O we assumed at the beginning of the
Section. Then we define:

𝜏𝑀 ∶ Extree ≔ 𝜆𝑙 ∶ list O. if max (𝑀𝑓 (↑ 𝑙)) ≤ (len 𝑙)
then ret (𝑓 (↑ 𝑙))
else ask (len 𝑙)

where max here denotes the function that returns the maximum ele-
ment of a list. To prove that 𝑓 is sequentially continuous with witness
𝜏𝑀 , we need to show that

Π(𝛼 ∶ Q). Σ(𝑛 ∶ ℕ). 𝜕Ext 𝜏𝑀 𝛼 nil 𝑛 = ret (𝑓 𝛼).

The way we defined 𝜏𝑀 , given how 𝜕Ext computes, if

𝜕Ext 𝜏𝑀 𝛼 nil 𝑛

ever outputs a value, it will be

(𝑓 (↑ 𝑙))

for some list 𝑙 such that

𝑙 ≔ [𝛼 O, ..., 𝛼(len 𝑙)].

Moreover, 𝑙 will be such that

max (𝑀𝑓 (↑ 𝑙)) ≤ (len 𝑙),

hence
↑ 𝑙 ≈𝑀𝑓 (↑ 𝑙) 𝛼

and
𝑓 (↑ 𝑙) = 𝑓 𝛼

since 𝑀𝑓 is a modulus of continuity for 𝑓 . All that is left is to find an
𝑛 such that

𝜕Ext 𝜏𝑀 𝛼 nil 𝑛
returns a value. We cannot prove this in general, and it could be so
that 𝑀𝑓 outputs different lists when called on

↑ [𝛼 O] compared to ↑ [𝛼 O, 𝛼 1],

then another one when called on

↑ [𝛼 O, 𝛼 1, 𝛼 2],

2. A world made of trees 90

[55]: Fujiwara et al. (2021), “Character-
ising Brouwer’s continuity by bar re-
cursion on moduli of continuity”
[56]: Fujiwara et al. (2021), “Decidable
fan theorem and uniform continuity
theorem with continuous moduli”
[57]: Fujiwara et al. (2019), “Equiva-
lence of bar induction and bar recur-
sion for continuous functions with con-
tinuous moduli”
[87]: Kawai (2019), “Principles of bar
induction and continuity on Baire
space”

[138]: Troelstra (1988), “Construc-
tivism in mathematics”
[57]: Fujiwara et al. (2019), “Equiva-
lence of bar induction and bar recur-
sion for continuous functions with con-
tinuous moduli”
[139]: Troelstra (1973), Metamathemat-
ical investigation of intuitionistic arith-
metic and analysis

and so on, so much that 𝜏𝑀 never returns a value.

What saves us from the pithole is the fact that 𝑀𝑓 itself is continuous.
Hence, it cannot keep outputing newvalues on functions that coincide
on bigger and bigger prefixes. Using this argument, and after a bit of
technical work, we finally find an 𝑙 such that

max (𝑀𝑓 (↑ 𝑙)) ≤ len 𝑙

and we conclude. ■

There are some similarities between the proof of this lemma and the
definition of a barred predicate from Section 2.3.2, and the fact that
𝑀 is self-modulating allows us to extract what looks like a proof that
it is barred. There are actually results about the links between self-
modulating moduli and bar induction, as studied for instance by Fu-
jiwara and Kawai [55–57, 87], following previous work by Troelstra
[138]. In particular, Fujiwara and Kawai [57] prove the following re-
sult:

Proposition 2.3.6: Continuous moduli are self-modulating
Given 𝑓 ∶ Q → 𝐴 a standard continuous function with a modulus
𝑀𝑓 . If 𝑀𝑓 is itself continuous, then it is self modulating.

Their result holds in
HA𝜔 +QF − AC1,0

as defined in Troelstra [139], meaning intuitionistic arithmetic at all fi-
nite types, together with the quantifier-free axiom of choice of degrees
1 and 0, i.e.

QF − AC1,0 ≔ ∀𝑥 ∶ 𝜎. ∃𝑦 ∶ 𝜏 . 𝐴(𝑥, 𝑦) → ∃𝑓 ∶ 𝜎 → 𝜏. 𝐴(𝑥, 𝑓 𝑥)

where 𝐴 is quantifier-free, 𝜎 is of degree at most 1 (meaning

𝜎 ≔ ℕ → ℕ

at most) and 𝜏 of degree 0.
This means that if we were to build a model where every function of
the form

𝑓 ∶ (I → O) → 𝐴
is standard continuous, wewould immediately get that everymodulus
𝑀𝑓 of continuity for 𝑓 would be itself continuous. Then this lemma
entails that 𝑀𝑓 would be self-modulating and, by Lemma 2.3.5, this
would mean that every function of the form

𝑓 ∶ (I → O) → 𝐴

is sequentially continuous. We leave the study of the translation of
Fujiwara and Kawai’s theorem to Coq for future work.

2. A world made of trees 91

2.4. The Continuous Hypothesis 2.4.1 Continuity is a classic . 91
2.4.2 Absurdly continuous . 92
2.4.3 The Shift Project 94We now have a clearer picture of the different continuity definitions

that can be found in the realm of type theory, and the technical sub-
tleties needed to compare them. We are however yet to answer two
basic questions:

1. What kind of functions dowe expect to be continuous? Forwhich
I, which O, which 𝐴 do we mean to build models where every
function is continuous?

2. How useful a principle continuity of all functions even is?

These two questions are of course linked: if we find out that some
functions are not continuous, then continuity of all functions will not
be relevant as a principle since it will entain inconsistency of our the-
ory. In this Section we will mainly tackle the latter question. We will
argue that continuity is an observable effect in the sense of Section
1.4, and that, when instantiated with well-chosen I and O, it can help
recover semi-classical principles. Chapter 3 and Chapter 4 will focus
on models of dependent type theory where every function is dialogue
continuous, once again for some specific I, O and 𝐴.

2.4.1. Continuity is a classic

Assuming we live in a perfect world where every function at every
type is dialogue continuous, what would we gain from this? In that
kind of setting, recovering the whole power of classical logic would
be no sweat.

Proposition 2.4.1: Continuity implies double-negation elimina-
tion

Implication of DNE by continuity
is formally proved here.

Let 𝑃 be a type, and 𝐹 a proof of ¬¬𝑃 . If 𝐹 is continuous in the dia-
logue sense, then there is a proof of 𝑃 .

Proof. Let us assume that 𝐹 is continuous in the dialogue sense. That
is, there is a dialogue tree

𝑑 ∶ 𝔇 ⊥, with I ≔ 𝑃, O ≔ 𝜆_. ⊥ and 𝐴 ≔ ⊥,

such that
Π(𝔣 ∶ 𝑃 → ⊥). 𝐹 𝔣 = 𝜕 𝑑 𝔣.

Let us extract a witness of 𝑃 from 𝑑. We proceed by induction on 𝑑:
▶ If 𝑑 ≔ 𝜂 𝑎 with 𝑎 ∶ ⊥, then we conclude by absurdity.
▶ If 𝑑 ≔ 𝛽 (𝑖 ∶ 𝑃) (𝑘 ∶ ⊥ → 𝔇 ⊥) then we simply return 𝑖 ∶ 𝑃 .

■

Note that the same proof would work with coinductive dialogue con-
tinuity. Indeed, we are not doing a proof by induction on 𝑑 here, but
simply a case analysis on the head constructor, hence the difference

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/1c1061b8184d2c8d311da6e7ed57e8faee2d663c/Coq%20continuity/continuity_logical_content.v#L118

2. A world made of trees 92

[52]: Escardó et al. (2015), “The Incon-
sistency of a Brouwerian Continuity
Principle with the Curry-Howard In-
terpretation”

between inductive and coinductive does not matter. It would however
not work with standard continuity, as we would have to provide

𝔣 ∶ 𝑃 → ⊥

before using the fact that 𝐹 is continuous.

We emphasize that this proof is internal to the theory here. Otherwise
said, if we were able to build a model validating the axiom

⊢𝒮 All𝒞 ∶ Π I O 𝐴 (𝐹 ∶ (Π𝑖 ∶ I.O 𝑖) → 𝐴). 𝒞𝔇 𝐹 ,

we would be able to internally inhabit

⊢𝒮 DNE ∶ Π𝐴. ¬¬𝐴 → 𝐴.

2.4.2. Absurdly continuous

If we could build amodel that computed a proof of continuity at every
type of the form

(Π𝑖 ∶ I. O 𝑖) → 𝐴,
our grand goal of giving computational content to DNE would hence
be within reach. This is too good to be true, though, and the world
always hits hard delusional daydreamers who mistake their hopes for
reality. In our case, reality strikes back through Escardó and Xu’s hand
[52], in the form of an inconsistency result.

Proposition 2.4.2: Continuity on the Baire space is inconsistent

Inconsistency of continuity of all
functions

𝑓 ∶ (ℕ → ℕ) → ℕ
is formally proved here.

Assuming that every function

𝑓 ∶ (ℕ → ℕ) → ℕ

is continuous in the standard sense is inconsistent in MLTT.

Proof. The proof of Escardó and Xu makes use of the standard version
of continuity, albeit with a natural number instead of a list. That is,
given

𝛼, 𝛽 ∶ ℕ → ℕ,
they write

𝛼 ≈𝑛 𝛽
to mean that 𝛼 and 𝛽 coincide on the first 𝑛 natural numbers. This defi-
nition is equivalent to Definition 2.2.3. To go from the natural number
definition to the list one, we simply by take

𝑙 ∶ list ℕ

to be made of the first 𝑛 natural numbers. Conversely, by taking as 𝑛
the maximum element of

𝑙 ∶ list ℕ,
we can go from the list definition to the natural number one.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/1c1061b8184d2c8d311da6e7ed57e8faee2d663c/Coq%20continuity/continuity_logical_content.v#L4

2. A world made of trees 93

Then, assuming

ℌ ∶ Π (𝑓 ∶ (ℕ → ℕ) → ℕ) (𝛼 ∶ ℕ → ℕ).
Σ(𝑛 ∶ ℕ). Π(𝛽 ∶ ℕ → ℕ). 𝛼 ≈𝑛 𝛽 → 𝑓 𝛽 = 𝑓 𝛼

they derive 0 = 1.
To do this, they first define

0𝜔 ∶= 𝜆(𝑛 ∶ ℕ). 0

the infinite sequence of 0 and

0𝑛𝑘𝜔 ∶= 𝜆(𝑚 ∶ ℕ).if 𝑚 < 𝑛 then 0 else 𝑘

the sequence of 𝑛 many zeros followed by infinitely many 𝑘.
By projection of ℌ they recover

𝑀 ∶ ((ℕ → ℕ) → ℕ) → ℕ and
𝑀𝜖 ∶ Π(𝑓 ∶ (ℕ → ℕ) → ℕ) (𝛽 ∶ ℕ → ℕ). 0𝜔 =𝑀 𝑓 𝛽 → 𝑓 𝛽 = 𝑓 0𝜔

The proof is a diagonalization argument, making use of 𝑀 to build a
function

𝑓 such that 𝑀 𝑓
cannot be a modulus of continuity for 𝑓 , which leads to absurdity.

They start by defining

𝑓 ≔ 𝜆𝛼.𝑀 (𝜆𝛽. 𝛼 (𝛽 𝑚)) where 𝑚 ≔ 𝑀 (𝜆𝛼. 0)

This definition leads to two important properties. First,

𝑓 0𝜔 = 𝑀 (𝜆𝛽. 0𝜔 (𝛽𝑚)) = 𝑀 (𝜆𝛽. 0) = 𝑚

Then, using this equality and 𝑀𝜖 , they prove:

Π(𝛽 ∶ ℕ → ℕ).0𝜔 =𝑀 𝑓 𝛽 → 𝑓 𝛽 = 𝑚.

Escardó and Xu then notice that, given any fixed 𝛼 ∶ ℕ → ℕ,

𝑓 𝛼 = 𝑀(𝜆𝛽. 𝛼 (𝛽 𝑚))

is itself a modulus of continuity for

𝜆𝛽. 𝛼 (𝛽 𝑚)

Using 𝑀𝜖 , this means that

Π(𝛽 ∶ ℕ → ℕ). 0𝜔 =𝑓 𝛼 𝛽 → 𝛼 (𝛽 𝑚) = 𝛼 0

The idea is then to pick suitable 𝛼 and 𝛽 and make use of that last
property to derive

0 = 1.
They choose

𝛼 ≔ 0𝑀 𝑓+11𝜔 and 𝛽 ≔ 0𝑚(𝑀 𝑓 + 1)𝜔 .

2. A world made of trees 94

[84]: Johnstone (1979), “On a topologi-
cal topos”

These two definitions validate the conditions of the moduli of conti-
nuity: first,

𝛼 =𝑀 𝑓 0𝜔

which means that
𝑓 𝛼 = 𝑓 0𝜔 = 𝑚.

Then,

𝛽 =𝑓 𝛼 0𝜔 which means that 𝛼 (𝛽 𝑚) = 𝛼 0.

Expanding the definitions, they conclude:

0 = 𝛼 0 = 𝛼 (𝛽 𝑚) = 0𝑀𝑓+11𝜔 (0𝑚(𝑀𝑓 + 1)𝜔 𝑚) = 0𝑀𝑓+11𝜔 (𝑀𝑓 + 1) = 1

hence continuity of all functionals from the Baire space to natural
numbers is inconsistent in MLTT. ■

However, as Escardó and Xu point out, this proof works because conti-
nuity is expressed as a proof-relevant statement, with the use of Σ-type.
Indeed, if we add propositional truncation to MLTT, then continuity
of all functions

𝑓 ∶ (ℕ → ℕ) → ℕ
expressed propositionally is consistent with the resulting system. It is
for instance validated by Johnstone’s topological topos model [84]. Some-
how we are walking a very thin line here and

(ℕ → ℕ) → ℕ

looks like a plausible border between consistent and inconsistent con-
tinuity axioms.

2.4.3. The Shift Project

Definition 2.4.1: Double-negation shift
The double-negation shift principle (DNS) states the following:

DNS ≔ Π(I ∶ □0) (O ∶ I → □0). (Π(𝑖 ∶ I). ¬ ¬(O 𝑖)) ⟶ ¬¬(Π(𝑖 ∶ I).O 𝑖)

Given I and O, the double-negation shift principle is intuitionnisti-
cally equivalent to the following:

¬(Π(𝑖 ∶ I).O 𝑖) ⟶ ¬(Π(𝑖 ∶ I). ¬ ¬(O 𝑖)).

Once again, the first type is of the form

(Π(𝑖 ∶ I).O 𝑖) → 𝐴

and we can consider continuity over proofs of this type.

2. A world made of trees 95

[106]: Miquel (2011), “A Survey of
Classical Realizability”
[107]: Miquel (2011), “Forcing as a Pro-
gram Transformation”

[108]: Miquey (2019), “A constructive
proof of dependent choice in classical
arithmetic via memoization”
[36]: Cohen et al. (2023), “Realizing
Continuity Using Stateful Computa-
tions”
[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”

Proposition 2.4.3: Continuity implies DNS

Implication ofDNS by continuity is
formally proved here.

Let us assume that we have a functional

𝐹 ∶ ¬(Π(𝑖 ∶ I).O 𝑖)

continuous in the dialogue sense. Then there is a proof of

¬(Π(𝑖 ∶ I). ¬ ¬(O 𝑖)).

Proof. Let us assume

𝐹 ∶ (Π(𝑖 ∶ I).O 𝑖) → ⊥

continuous in the dialogue sense. Then there exists a dialogue tree

𝑑 ∶ 𝔇 I O ⊥

such that
Π(𝔣 ∶ Π(𝑖 ∶ I).O 𝑖). 𝐹 𝔣 = 𝜕 𝑑 𝔣.

Let us now take a function

𝑓 ∶ Π(𝑖 ∶ I). ¬ ¬(O 𝑖)

and prove falsity. We proceed by induction on 𝑑:
1. If

𝑑 ≔ 𝜂 𝑎 with 𝑎 ∶ ⊥,
then we simply return 𝑎.

2. If
𝑑 = 𝛽 (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → 𝔇 I O ⊥)

with the induction hypothesis

𝐻 ∶ O 𝑖 → ⊥,

specializing 𝑓 to 𝑖 we get a term

𝑓 𝑖 ∶ ¬ ¬(O 𝑖).

By applying it to 𝐻 , we get the desired absurdity.

■

Interestingly, throughdouble-negation translation the axiomof choice
is precisely interpreted as DNS. This is why, in classical realizability
[106, 107], realisers of the axiom of choice are exactly realisers ofDNS,
as can be seen in Miquey [108]. Furthermore, the memoization tech-
nique used by Miquey in the latter is similar to the one used by Rahli
et al [36, 123] to enforce continuity principles.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/1c1061b8184d2c8d311da6e7ed57e8faee2d663c/Coq%20continuity/continuity_logical_content.v#L128

2. A world made of trees 96

[113]: Pédrot (2021), “Debunking
Sheaves”
[114]: Pédrot (2023), “Pursuing
Shtuck”

2.5. Sheaves and ShTT

One last facet of 𝔇 is its link to sheaves. Indeed, in a note later turned
into a draft, Pédrot [113, 114] gives a type theoretic account of the
internal model of sheaves in the presheaf topos. Unfolding the defini-
tions, it turns out that the sheafification operator is surprisingly close
to the dialogue monad. Moreover, we believe this type theoretic un-
ravelling may help dispel the fog around what can constitute, from
a computer scientist’s point of view, a rather misty concept. For both
reasons, we take the liberty of providing here a reformulated plagia-
rism of Pédrot’s note.

For the remainder of this Section, we fix a small category ℂ that we
call the base category.

2.5.1. Set setting

Werecall in this section the usual definitions of presheaves and sheaves
in a set-theoretic metatheory [101]. Let us first define presheaves.

Definition 2.5.1: Presheaves
A presheaf on ℂ is a functor of type

ℂop → Set,

where Set is the category of sets.

Theorem 2.5.1: Presheaf topos
The category of presheaves on ℂ, with natural transformations as
morphisms, forms a topos.

This essentially means that presheaves feature an internal language
able to interpret most constructions of type theory. We will write

Pshf(ℂ)

to denote the presheaf topos.

Definition 2.5.2: Sieves
Given 𝑝 an object of ℂ, a sieve on 𝑝 is a set of arrows with codomain
𝑝 closed under precomposition.

In the following, we will write 𝔰𝑝 for the set of sieves on 𝑝.
Let us now set our eyes on Grothendieck topologies.

2. A world made of trees 97

Definition 2.5.3: Grothendieck topology
A Grothendieck topology 𝔗 on ℂ is a ℂ-indexed family of collections
of sieves, meaning

Π𝑝 ∈ ℂ. 𝔗𝑃 ⊆ 𝔰𝑝 ,
which satisfy the following properties:

▶ the maximal sieve on 𝑝 is in 𝔗𝑝 ;
▶ if 𝑃 ∈ 𝔗𝑝 and 𝛼 ∈ Homℂ(𝑞, 𝑝) then the pullback of 𝑃 along 𝛼 ,

noted 𝛼∗𝑃 , is in 𝔗𝑝 ;
▶ if 𝑃 ∈ 𝔗𝑝, if 𝑄 ∈ 𝔰𝑝 and if

𝑃 ⊆ ⋃
𝑞∈ℂ

{(𝑞, 𝛼) ∣ 𝛼 ∈ Homℂ(𝑞, 𝑝) ∧ 𝛼∗𝑄 ∈ 𝔗𝑞},

then 𝑄 ∈ 𝔗𝑝.

For the remainder of this section, we fix a Grothendieck topology 𝔗.

Definition 2.5.4: Compatible families
Let 𝑝 ∈ ℂ, 𝑃 ∈ 𝔰𝑝 and 𝐴 a presheaf on ℂ. A compatible family of 𝐴 on
𝑃 is given by:

▶ for every (𝑞, 𝛼) ∈ 𝑃 , an element 𝑥𝑞,𝛼 ∈ 𝐴𝑞;
▶ for any (𝑞, 𝛼) ∈ 𝑃 , for any 𝛽 ∈ Homℂ(𝑟 , 𝑞), a proof that

𝐴[𝛽] 𝑥𝑞,𝛼 = 𝑥𝑟 ,𝛽∘𝛼 ,

where
𝐴[𝛽]

is the morphism in Set obtained by applying 𝐴 to 𝛽.

Definition 2.5.5: Sheaves
A presheaf 𝐴 on ℂ is a 𝔗-sheaf if for any 𝑝 ∈ ℂ, for any 𝑃 ∈ 𝔗𝑝 and
any compatible family 𝑥 of 𝐴 on 𝑃 , there exists a unique element

�̂� ∈ 𝐴𝑝 such that Π(𝑞, 𝛼) ∈ 𝑃. 𝐴[𝛼] �̂� = 𝑥𝑞,𝛼 .

Theorem 2.5.2: Sheaf topos
The full subcategory of 𝔗-sheaves on ℂ forms a topos.

We will write
Shf(ℂ, 𝔗)

to denote the sheaf topos.

Interestingly, the sheaf topos can be described in the internal language
of the presheaf topos, meaning the presheaf topos can be taken as a
target theory for an interpretation of the sheaf topos. As the presheaf
topos itself is interpreted in set theory, this means that the historical
sheaf model can be factorized in two:

Shf(ℂ, 𝔗) Pshf(ℂ) Setinternal sheaf model presheaf model

2. A world made of trees 98

[8]: Altenkirch et al. (2007), “Observa-
tional equality, now!”
[119]: Pujet et al. (2023), “Impredica-
tive Observational Equality”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”

Actually, the internal sheaf model can be described in the internal lan-
guage of any topos, and not only the presheaf one. In Section 2.5.2, we
will give a description of the internal sheaf model in an arbitrary type
theory.

Theorem 2.5.3: Free sheaves
The inclusion of the category of sheaves on ℂ into the category of
presheaves on ℂ has a left adjoint, called sheafification.

This adjonction gives rise to a monad, which we will see is very close
to the dialogue one.

2.5.2. Type setting

We describe once again from scratch the sheaf construction from Sec-
tion 2.5.1. However, this time we choose the internal sheaf model
route, and switch to type theory. This actually means that we will
work in a type theory named

PshTT

and recover concepts from Section 2.5.1 through a syntactic transla-
tion. The target type theory of this translation will be an extension of
CIC dubbed

SetTT.
It is basicallyCIC enhancedwith quotient types, andwhere equality is
interpreted as a proposition. All in all, SetTT can be interpreted inside
any presheaf topos. Observational Type Theory [8, 119, 120] would pro-
vide everything we need, and a bit more, since only a few lemmas will
require proof irrelevance or function extensionality.Wewill explicitly
say so when it is the case.

Tomake things clearer, let us consider the translation J_K of types from
PshTT to SetTT. A type

⊢PshTT 𝐴 ∶ □

is translated as a presheaf

[𝐴] ≔ (J𝐴K, 𝜃𝐴)
over ℂ in SetTT, where J𝐴K is the action on objects and 𝜃𝐴 the action on
morphisms. Their types are the following:

J𝐴K ∶ Π(𝑝 ∶ ℂ).□𝑖
𝜃𝐴 ∶ Π(𝑝 𝑞 ∶ ℂ). 𝑞 ≤ 𝑝 → J𝐴K 𝑝 → J𝐴K 𝑞

where 𝑞 ≤ 𝑝 is a shorthand for Homℂ(𝑞, 𝑝).
This comes with naturality conditions on 𝜃𝐴 but we do not delve in
it here. Note that we can replace □𝑖 with Prop in this definition to
recover what we call propositional presheaves, which will be the trans-
lation of propositions.

2. A world made of trees 99

We then have an El function defined as follows:

El (𝐴, 𝜃𝐴) ≔ { 𝑥 ∶ Π(𝑝 ∶ ℂ). 𝐴 𝑝 ;
_ ∶ Π(𝑝 𝑞 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝). 𝜃𝐴 𝛼 (𝑥 𝑝) = 𝑥 𝑞. }

where { ... ; ... } is a notation for records, which constitute a more
readable way of writing

Σ(𝑥 ∶ Π(𝑝 ∶ ℂ). 𝐴 𝑝). Π(𝑝 𝑞 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝). 𝜃𝐴 𝛼 (𝑥 𝑝) = 𝑥 𝑞.

The El function essentially maps a presheaf to the type of its global
elements. In the case of Prop, we have:

JPropK𝑝 ≔ {
typ ∶ Π(𝑞 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝). Prop ;
hom ∶ Π(𝑞 𝑟 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝) (𝛽 ∶ 𝑟 ≤ 𝑞).

typ 𝑞 𝛼 → typ 𝑟 (𝛽 ∘ 𝛼)
}

As for 𝜃Prop, it is defined as follows:

𝜃Prop 𝑝 𝑞 (𝛼 ∶ 𝑞 ≤ 𝑝) (𝐴, 𝜃𝐴) ≔ (𝜆(𝑟 ∶ ℂ) (𝛽 ∶ 𝑟 ≤ 𝑞). 𝐴 𝑟 (𝛽 ◦ 𝛼) ,
𝜆(𝑟 𝑠 ∶ ℂ) (𝛽 ∶ 𝑟 ≤ 𝑞) (𝛾 ∶ 𝑠 ≤ 𝑟) (𝑥 ∶ 𝐴 𝑟 (𝛽 ◦ 𝛼)). 𝜃𝐴 𝑟 𝑠 (𝛽 ◦ 𝛼) 𝛾 𝑥)

This definition of JPropK leads to the following result:

Lemma 2.5.4: Propositions as sieves
The type of global elements of JPropK is isomorphic to the type of
propositional presheaves, which means that a proposition

⊢PshTT 𝐴 ∶ Prop

is translated in SetTT to a propositional presheaf.

Moreover, given 𝑝 ∶ ℂ, a sieve on 𝑝 is simply an element of JPropK𝑝 .
Proof. The first isomorphism is straightforward. For the second part,
recall that a sieve on 𝑝 is a set of arrows with codomain 𝑝 that is closed
under precomposition. Then, looking at

JPropK𝑝 ,
we see that

typ ∶ Π(𝑞 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝). Prop
can be seen as a set of arrows with codomain 𝑝, while

hom ∶ Π(𝑞 𝑟 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝) (𝛽 ∶ 𝑟 ≤ 𝑞). typ 𝑞 𝛼 → typ 𝑟 (𝛽 ∘ 𝛼)

describes the closure under precomposition. ■

It is now time to describe another kind of topology.

2. A world made of trees 100

Definition 2.5.6: Lawvere-Tierney topology
A Lawvere-Tierney topology is a triple

▶ 𝔗 ∶ Prop → Prop;
▶ 𝜂𝔗 ∶ Π(𝑃 ∶ Prop). 𝑃 → 𝔗 𝑃 ;
▶ bind𝔗 ∶ Π(𝑃 𝑄 ∶ Prop). (𝑃 → 𝔗 𝑄) → 𝔗 𝑃 → 𝔗 𝑄.

Let us already state the obvious: Lawvere-Tierney topologies are ex-
actly monads on Prop. Interestingly, once translated into SetTT, they
coincide with Grothendieck topologies.

Lemma 2.5.5: Lawvere-Tierney is Grothendieck
Lawvere-Tierney topologies in PshTT are translated asGrothendieck
topologies in SetTT.

Moreover, assuming proposition extensionality in SetTT, Lawvere-
Tierney topologies exactly capture Grothendieck topologies in the
presheaf translation.

Proof. To prove this, we first need to describe the presheaf translation
of functions. Up to isomorphism, we have:

El [𝐴 → 𝐵] ≃ { 𝑓 ∶ Π(𝑝 ∶ ℂ). J𝐴K𝑝 → J𝐵K𝑝 ;
_ ∶ Π(𝑝 𝑞 ∶ ℂ) (𝛼 ∶ 𝑞 ≤ 𝑝) (𝑥 ∶ J𝐴K𝑝). 𝜃𝐵 𝛼 (𝑓 𝑝 𝑥) = 𝑓 𝑞 (𝜃𝐴 𝛼 𝑥) }

Then, given (𝔗, 𝜂𝔗, bind𝔗), given 𝑝 ∶ ℂ, we have

[𝔗].𝜋1 ∶ Π(𝑝 ∶ ℂ). JPropK𝑝 → JPropK𝑝 .
From this, we can extract a function

𝜆𝑝 (𝑃 ∶ JPropK𝑝).([𝔗].𝜋1 𝑝 𝑃).typ 𝑝 id𝑝 ∶ Π(𝑝 ∶ ℂ) (𝑃 ∶ JPropK𝑝). Prop
which is exactly a ℂ-indexed collection of sieves on 𝑝, as required by
the Grothendieck topology definition.

The return 𝜂𝔗 of the 𝔗 monad asserts that any inhabited proposition 𝑃
is sent to an inhabited proposition 𝔗 𝑃 . Assuming proposition exten-
sionality, which says that equivalent propositions are equal, we can
prove that any inhabited proposition is equal to ⊤. In that case, the
return of the monad can be reformulated by simply asking that 𝔗 ⊤ is
inhabited, leading to the maximal sieve condition. Without proposi-
tion exensionality, we can still prove that 𝜂𝔗 implies that the maximal
sieve is in 𝔗, but not the converse.

Finally, the pullback requirement is reflected by

[𝔗].𝜋2 ∶ Π𝑝 𝑞 (𝛼 ∶ 𝑞 ≤ 𝑝) (𝑥 ∶ JPropK𝑝). 𝜃Prop 𝛼 (𝑓 𝑝 𝑥) = 𝑓 𝑞 (𝜃Prop 𝛼 𝑥)

while bind𝔗 captures the ⋃ condition. ■

It turns out that compatible families also have a direct interpretation
in PshTT.

2. A world made of trees 101

Lemma 2.5.6: Compatible families are fun
Given

⊢PshTT 𝐴 ∶ □𝑖

translated as a presheaf (𝐴, 𝜃𝐴) in SetTT, given

𝑝 ∶ ℂ and 𝑃 ∶ JPropK𝑝
a sieve on 𝑝, a compatible family 𝑥 of 𝐴 on 𝑃 is simply an element
of the local functional type J𝑃 → 𝐴K𝑝 .

Proof. Once again, the first projection of

𝑥 ∶ J𝑃 → 𝐴K𝑝
gives the matching family itself, while the second projection is equiv-
alent to the naturality condition. ■

Note that we did a slight abuse of notations here: since

𝑃 ∶ JPropK𝑝
is only a local element of JPropK, it cannot be reflected in PshTT, thusJ𝑃 → 𝐴K does not really exist. It only makes sense because we consider
a local element of J𝑃 → 𝐴K𝑝 .
Definition 2.5.7: Is sheaf
Given 𝔗 a Lawvere-Tierney topology, the predicate isSh is defined
as the following record type:

isSh𝔗 (𝐴 ∶ □𝑖) ∶ □𝑖 ≔ { 𝛽 ∶ Π(𝑃 ∶ Prop). 𝔗 𝑃 → (𝑃 → 𝐴) → 𝐴
𝜀 ∶ Π𝑃 (𝑝 ∶ 𝔗 𝑃) (𝑥 ∶ 𝐴). 𝛽 𝑃 𝑝 (𝜆_. 𝑥) = 𝑥 }

When there is a proof of isSh𝔗 𝐴, we will say that 𝐴 is a 𝔗-sheaf. This
name is justified by the following results:

Lemma 2.5.7: One way to be a sheaf
Assuming function extensionality and proof irrelevance in PshTT,
there is a proof

⊢PshTT _ ∶ Π(𝐴 ∶ □𝑖) (𝑝 𝑞 ∶ isSh𝔗 𝐴). 𝑝 = 𝑞.

Otherwise said, isSh 𝐴 is a mere proposition.

Theorem 2.5.8: Is sheaf is sheaf
Let 𝐴 ∶ □𝑖 in PshTT. There is a proof

⊢PshTT _ ∶ isSh𝔗 𝐴

exactly when, once translated in SetTT, 𝐴 is a 𝔗-sheaf in the sense
of Definition 2.5.5.

2. A world made of trees 102

Proof. A sieve on 𝑝 is a local element

𝑃 ∶ J𝑃K𝑝 .
The fact that it is in 𝔗𝑝 is interpreted by the fact that J𝔗 𝑃K𝑝 is inhab-
ited. The compatible family is once again a local element

𝑥 ∶ J𝑃 → 𝐴K𝑝 ,
and unicity of �̂� makes sure that we have a function. All in all, this
is captured by the type of 𝛽 through the presheaf translation. As for
naturality conditions, they are equivalent to 𝜀. ■

Looking at isSh𝔗, let us notice that up to curryfication, the type of 𝛽 is
equivalent to

Π(𝐻 ∶ Σ𝑃 ∶ Prop. 𝔗 𝑃). (𝐻 .𝜋1 → 𝐴) → 𝐴.

Then, if we set

I ≔ Σ𝑃 ∶ Prop. 𝔗 𝑃 and O 𝑖 ≔ 𝑖.𝜋1,

we recover
𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝐴) → 𝐴,

which should ring a bell.

We can generalize isSh to arbitrary I and O and get:

isSh (𝐴 ∶ □𝑖) ∶ □𝑖 ≔ { 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝐴) → 𝐴
𝜀 ∶ Π(𝑖 ∶ I) (𝑥 ∶ 𝐴). 𝛽 𝑖 (𝜆_. 𝑥) = 𝑥 }

Recall that we assumed the existence of quotient types. This means
we can tweak our usual dialogue operator and recover another monad.

Definition 2.5.8: Efficient dialogues
The sheafification operator 𝔖 is inductively defined as follows:

Inductive 𝔖 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ 𝜂 ∶ 𝐴 → 𝔖 𝐴
∣ 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔖 𝐴) → 𝔖 𝐴
∣ 𝜀 ∶ Π(𝑖 ∶ I) (𝑥 ∶ 𝔖 𝐴).𝛽 𝑖 (𝜆_ ∶ O 𝑖. 𝑥) = 𝑥.

Intuitively, elements of 𝔖 𝐴 are dialogue trees where every pointless
questions have been expunged. Moreover, sheaves are easily captured
by this monad.

Proposition 2.5.9: Sheaves as algebras
Sheaves are isomorphic to algebras of the 𝔖 monad.

Actually, sheaves are the 𝔖 equivalent of intensional algebras as de-
scribed in Section 2.1.2.

Part II.

PRESENT

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[85]: Jong (2023), “Domain Theory in
Constructive and Predicative Univa-
lent Foundations”

[36]: Cohen et al. (2023), “Realizing
Continuity Using Stateful Computa-
tions”
[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

[116]: Pédrot et al. (2020), “The fire tri-
angle: how to mix substitution, depen-
dent elimination, and effects”

3. Gardening with the Pythia

3.1 Escardó’s model 106

3.2 Our model gains
weight 119

3.3 Continuity of function-
als 126

3.4 Discussion and Related
Work 128

Having studied the dialogue operator and glimpsed the different def-
initions of continuity in Chapter 2, it is now time to try and build a
continuous world, an ideal place where every function quietly relaxes
by the shadow of its own dialogue tree. However, when the time comes
to lay the first stone of our continuous utopia, a question arises: where
do we start?

Assuming we pick 𝜆-calculus as our favourite computational system,
a modern proof would boil down to building a semantic model, typi-
cally some flavour of complete partial orders (cpos). By construction,
cpos are a specific kind of topological spaces, and all functions are
interpreted as continuous functions in the model. For some simple
enough types, cpo-continuity implies continuity in the standard sense,
thus proving the claim.

Instead of going down the semantic route, Escardó made good use
of the dialogue operator and developed an alternative syntactic tech-
nique called effectful forcing [51] to prove the continuity of all func-
tionals

⊢T 𝑓 ∶ (ℕ → ℕ) → ℕ
definable in System T. While semantic models such as cpos are his-
torically defined inside a non-computational metatheory (although
recent work such as Tom de Jong’s PhD [85] try and provide construc-
tive foundations to cpos), Escardó’s technique amounts to building a
model of System T inside the dependent type theory MLTT, which is
intrinsically a programming language with a built-in notion of com-
putation. The effectful epithet is justified by the fact that the model
construction extends System Twith two different kinds of side-effects,
and constrains those two extensions by a logical relation.

A clear advantage of this approach is that there is a clear computa-
tional explanation for why continuity holds in terms of elementary
side-effects, which is not immediately apparent in cpos. This compu-
tational aspect is reminiscent of similar realizability models built by
Cohen et al [36, 123], internalizing continuity with various side-effects.
But contrarily to the latter, the purely syntactic nature of Escardó’s ar-
gument can actually be leveraged to interpret much richer languages
than System T while preserving desirable properties that would be
lost with a semantic realizability model, such as decidability of type-
checking.

Indeed, it happens that this technique can be formulated pretty much
straightforwardly as a program translation as presented in Section 1.5,
a point we discuss in Section 3.1. From this initial observation, we
show in this Chapter how Escardó’s argument can be generalized to
Baclofen Type Theory (BTT) [121], a rich dependent type we displayed
in Section 1.4. Unfortunately, as we pointed out in the same Section,
sinceEscardó’smodel introduces observable side-effects in the sense of
Pédrot and Tabareau [116], we cannot interpret large dependent elimi-
nation in our model, thus MLTT is out of reach.

3. Gardening with the Pythia 105

[52]: Escardó et al. (2015), “The Incon-
sistency of a Brouwerian Continuity
Principle with the Curry-Howard In-
terpretation”

The model is given by three program translations, each bringing its
own computational effect: the axiom translation, that adds an oracle
to the context; the branching translation, based on the dialogue monad,
turning every type into a tree; and finally, a layer of algebraic binary
parametricity, binding together the two translations. Since this con-
struction is a bit of a mouthful, we start in Section 3.1 by rephrasing
Escardó’s model as a program translation from System T toMLTT. This
helps us point out some quirks of themodel that will become problem-
atic when enhancing the interpretation to dependent types.

We then present our model of BTT in Section 3.2, replaying Escardó’s
construction in a pedestrian way, in the context of dependent types.

We prove continuity of BTT-definable functionals in Section 3.3. In the
end we recover the continuity result of Escardó applied to BTT rather
than System T. That is, from any

⊢BTT 𝑓 ∶ (ℕ → ℕ) → ℕ,

we get a proof that it is dialogue continuous. This proof however lives
in themeta-theory: we call it external continuity, as opposed to internal
continuity, where it would be reflected in BTT as a term

⊢BTT 𝐻 ∶ Π(𝑓 ∶ (ℕ → ℕ) → ℕ). 𝒞𝔇 𝑓 .

Even though it is not completely clear whether Escardó and Xu’s diag-
onalization argument [52], as presented in Section 2.4.2, is still valid
in the case of BTT, internal continuity is harder to retrieve than exter-
nal one, a fact we discuss in Section 3.4. In the same Section we also
describe related work and the different hurdles we need to overcome
to derive continuity of all MLTT-definable functionals.

Our model has been formalized in Coq using a presentation close
to category-with-families. The code can be found at https://gitlab.
inria.fr/mbaillon/gardening-with-the-pythia.

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia

3. Gardening with the Pythia 106

The dialogue monad was pre-
sented in Section 2.1.

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

Escardó uses the 𝐾 and 𝑆 combina-
tors, but we find this presentation
more readable, especially for a pro-
gram translation.

In Chapter 4, however, we will in-
ternalize type theory inside itself,
as we found no other way to en-
hance our proof from BTT to MLTT.

[7]: Altenkirch et al. (2016), “Type the-
ory in type theory using quotient in-
ductive types”

3.1. Escardó’s model 3.1.1 A for Axiom 107
3.1.2 Dialogue is maybe not

the key 108
3.1.3 System Trees 110
3.1.4 The logical song 112
3.1.5 For a handful of models115
3.1.6 A generic proof 116

Escardó proves continuity of all functionals

⊢T 𝑓 ∶ (ℕ → ℕ) → ℕ

that are definable in System T, a theory we presented in Section 1.1.
To do this, he builds two models of System T and binds the two in-
terpretations together with a binary logical relation. Since System T

is a simpler theory than BTT and as the crux of the argument is the
same, it is worth looking at his proof in details before chewing up our
(rather indigest) model.

The main objective of the proof is continuity of (ℕ → ℕ) → ℕ func-
tionals, but almost every construction used in the model can be gen-
eralized to arbitrary types

⊢𝒯 I ∶ □0 and ⊢𝒯 O ∶ I → □0,

as in Chapter 2. Using the same notation, we will thus write

Q ∶= Π(𝑖 ∶ I).O 𝑖

to denote the type of oracles. That being said, Escardó’s model stands
on three legs:

1. An axiom model, where System T is extended with a black-box
oracle 𝛼 ∶ Q;

2. A dialoguemodel, where types are interpreted as algebras of the
dialoguemonad𝔇, and every term consequently becomes a tree;

3. A logical relation binding the two previous models together. On
the base type, this relation ensures that for any System T defin-
able term

⊢T 𝑡 ∶ ℕ,
we get

[𝑡]𝑎 = 𝜕 [𝑡]𝑑 𝛼
where [𝑡]𝑎 is the axiom translation of 𝑡 and [𝑡]𝑑 its dialogue trans-
lation. This equation lets us derive dialogue continuity for every
term.

This Section differs from Escardó [51] on one key component. Indeed,
our approach is to build a syntactic model of System T through a pro-
gram translation as presented in Section 1.5, while Escardó’s model
does not really qualify as such. Rather, it is a model in a type-theoretic
metatheory. The difference is subtle, and lies in the fact that in Es-
cardó’s model the source language is deeply embedded as an AST in
the target theory, while there will be no such thing in sight in our vari-
ant. The reason is, to generalize Escardó’s approach to BTT, we would
need to internalize type theory inside itself, a notoriously difficult feat
which we try to avoid. Morally, the program translation paradigm is a
way to evade the kind of headache that ledAltenkirch and Kaposi to use
quotient inductive types to describe MLTT from within Agda [7].

3. Gardening with the Pythia 107

3.1.1. A for Axiom

Let us fix a reserved variable 𝛼 ∶ Q. The first translation from System
T to CIC simply consists in adding 𝛼 as the first variable of the context.
Everywhere else, this translation is the standard embedding of System
T into MLTT. Reserving a variable has no technical consequence, if we
were to use de Bruijn indices it would just amount to shifting them all
by one. We will also annotate both free and bound variables with an 𝑎
subscript for readability of the future parts of the Chapter, where we
mix together different translations. We call this translation the axiom
translation and formally describe it in Figure 3.1.

JℕK𝑎 ∶= ℕJ𝐴 → 𝐵K𝑎 ∶= J𝐴K𝑎 → J𝐵K𝑎
[𝑥]𝑎 ∶= 𝑥𝑎
[𝜆𝑥 ∶ 𝐴. 𝑡]𝑎 ∶= 𝜆𝑥𝑎 ∶ J𝐴K𝑎 . [𝑡]𝑎
[𝑡 𝑢]𝑎 ∶= [𝑡]𝑎 [𝑢]𝑎
[O]𝑎 ∶= O
[S]𝑎 ∶= S
[ℕrec]𝑎 𝑃 ∶= ℕind (𝜆_. 𝑃)

J⋅K𝑎 ∶= 𝛼 ∶ QJΓ, 𝑥 ∶ 𝐴K𝑎 ∶= JΓK𝑎 , 𝑥𝑎 ∶ J𝐴K𝑎 Figure 3.1.: Axiom translation of Sys-
tem T

Since our translation is mostly harmless, the following result should
be no surprise:

Lemma 3.1.1:
The axiom translation is a model of System T.

3. Gardening with the Pythia 108

As a reminder, the definition of 𝔇
is the following:

Inductive 𝔇 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ 𝜂 ∶ 𝐴 → 𝔇 𝐴
∣ 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔇 𝐴) → 𝔇 𝐴.

The bind operator is called Kleisli
extension in Escardó’s paper, but
both names refer to the same con-
cept.

[130]: Sterling (2021), “Higher order
functions and Brouwer’s thesis”

3.1.2. Dialogue is maybe not the key

JℕK𝑑 ∶= 𝔇 ℕJ𝐴 → 𝐵K𝑑 ∶= J𝐴K𝑑 → J𝐵K𝑑
[𝑥]𝑑 ∶= 𝑥𝑑
[𝜆𝑥 ∶ 𝐴. 𝑡]𝑑 ∶= 𝜆𝑥𝑑 ∶ J𝐴K𝑑 . [𝑡]𝑑
[𝑡 𝑢]𝑑 ∶= [𝑡]𝑑 [𝑢]𝑑
[O]𝑑 ∶= 𝜂 O
[S]𝑑 ∶= bind (𝜆(𝑥 ∶ ℕ). 𝜂 (S 𝑥))
[ℕrec]𝑑 𝑃 𝑝O 𝑝S 𝑛 ∶= gbind ℕ 𝑃 (ℕind (𝜆_. J𝑃K𝑑) 𝑝O 𝑝S) 𝑛

J⋅K𝑑 ∶= ⋅JΓ, 𝑥 ∶ 𝐴K𝑑 ∶= JΓK𝑑 , 𝑥𝑎 ∶ J𝐴K𝑑 Figure 3.2.: Dialogue translation of
System T

Taking advantage of the fact that 𝔇 is a monad, something we dis-
cussed in Section 2.1,Escardódefines the second translation, displayed
in Figure 3.2. Escardó calls it the dialogue interpretation, because of its
use of the 𝔇 operator. The idea is to interpret types of System T by
algebras of 𝔇. Escardó starts by picking the free algebra of 𝔇 for his
translation of ℕ. JℕK𝑑 ≔ 𝔇 ℕ
This non-standard interpretation forℕ is followed by pointwise trans-
lation for functional types:

J𝐴 → 𝐵K𝑑 ≔ J𝐴K𝑑 → J𝐵K𝑑
The functional type 𝐴 → 𝐵 is an algebra of 𝔇 as long as 𝐵 is one. This
property allows Escardó to define a generalized bind operator:

gbind ∶ Π𝐴𝐵 (𝑓 ∶ 𝐴 → J𝐵K𝑑) (𝑑 ∶ 𝔇 𝐴).𝔇 𝐵
gbind 𝐴 ℕ 𝑓 𝑑 ≔ bind 𝑓 𝑑
gbind 𝐴 (𝑋 → 𝑌) 𝑓 𝑑 ≔ 𝜆𝑥. gbind 𝐴 𝑌 (𝜆𝑎. 𝑓 𝑎 𝑥) 𝑑

Regarding terms, translations for zero and successor are quite straight-
forward:

[O]𝑑 ∶= 𝜂 O
[S]𝑑 ∶= bind (𝜆(𝑥 ∶ ℕ). 𝜂 (S 𝑥))

Finally, to define the interpretation of ℕrec, Escardó simply makes use
of the gbind operator defined above:

[ℕrec 𝑃 𝑝O 𝑝S 𝑛]𝑑 ≔ gbind ℕ 𝑃 (ℕind (𝜆_. J𝑃K𝑑) [𝑝O]𝑑 [𝑝S]𝑑) [𝑛]𝑑 .

At this point, we can already highlight a key problem that needs solv-
ing if we want to turn Escardó’s model into a model of dependent type
theory. The reason for that has been already briefly observed by Ster-
ling [130] but it is worth elaborating here. Said bluntly, we have the
following:

3. Gardening with the Pythia 109

Lemma 3.1.2:
The dialogue interpretation is not a model of System T

Proof. Indeed, while
[ℕrec]𝑑

has the right type, it does not enjoy the correct computational be-
haviour. Namely, in general

[ℕrec]𝑑 𝑃 𝑝O 𝑝S ([S]𝑑 𝑛) ≢ 𝑝S 𝑛 ([ℕrec]𝑑 𝑃 𝑝O 𝑝S 𝑛).

A simple counter-example is the following: given 𝑖 ∶ I, let us pick

𝑃 ∶= ℕ
𝑝O ∶= 𝜂 O
𝑝S ∶= 𝜆_ _. 𝜂 O
𝑛 ∶= 𝛽 𝑖 (𝜆_. 𝜂 O)

Then on the one hand we have

[S]𝑑 𝑛 ≡ bind (𝜆(𝑥 ∶ ℕ). 𝜂 (S 𝑥)) (𝛽 O (𝜆_. 𝜂 O) ≡ 𝛽 𝑖 (𝜆_. 𝜂 (S O))

which leads to

[ℕrec 𝑃]𝑑 𝑝O 𝑝S ([S]𝑑 𝑛) ≡ gbind ℕ ℕ (ℕind (𝜆_. 𝔇 ℕ) 𝑝O 𝑝S) (𝛽 𝑖 (𝜆_. 𝜂 (S O)))
≡ bind (ℕind (𝜆_. 𝔇 ℕ) 𝑝O 𝑝S) (𝛽 𝑖 (𝜆_. 𝜂 (S O)))
≡ 𝛽 𝑖 (𝜆_. 𝜂 (ℕind (𝜆_. 𝔇 ℕ) 𝑝O 𝑝S (S O)))
≡ 𝛽 𝑖 (𝜆_. 𝜂 (𝑝S O 𝑝O))
≡ 𝛽 𝑖 (𝜆_. 𝜂 O)

while on the other hand

𝑝S ([ℕrec]𝑑 𝑃 𝑝O 𝑝S 𝑛) ≡ O

by definition of 𝑝S. ■

Thewrong call. This can be explained by the fact that recursive con-
structors in effectful call-by-name need to thunk their arguments, i.e.,
pattern-matching on the head of an inductive term must not evalu-
ate the subterms of the constructor. This is not the case for Escardó’s
intepretation, which is closer to a call-by-value embedding of ℕ in
call-by-name.

This drawback does not prevent Escardó’s proof to go through for Sys-
tem T. Indeed, [ℕrec]𝑑 correctly computes on pure terms, which is
enough to derive that any System T definable functional is continu-
ous. However, in our case we are trying to extend this proof to depen-
dent type theory. Hence, if this equation does not hold, typing rules
themselves collapse. We thus need to pick the right interpretation of
ℕ.

3. Gardening with the Pythia 110

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

Since we want to build a model of dependent type theory, we need
to preserve a call-by-name equational theory, i.e., generated by the
unrestricted 𝛽-rule. Following Pédrot and Tabareau [121], this means
that we need to interpret types as some kind of 𝔇-algebras. Unfor-
tunately, for this interpretation to work we would need to preserve
naturality laws, which fundamentally rely on funext, a principle not
available in CIC. Thankfully, as we pointed out in Section 2.1.2, 𝔇 is
not only a monad, it is a free monad, allowing intensional algebras, i.e.
types with pythias. As we explained in the same Section, intensional
algebras are extensionnally equivalent to usual 𝔇-algebras, but allow
us to build dependent products intensionally. As we try and provide a
System Tmodel with all the necessary tools to scale to dependent type
theory, we should now be looking for an interpretation of ℕ featuring
pythias.

3.1.3. System Trees

JℕK𝑏 ∶= ℕ𝑏J𝐴 → 𝐵K𝑏 ∶= J𝐴K𝑏 → J𝐵K𝑏
[𝑥]𝑏 ∶= 𝑥𝑏
[𝜆𝑥 ∶ 𝐴. 𝑡]𝑏 ∶= 𝜆𝑥𝑏 ∶ J𝐴K𝑏 . [𝑡]𝑏
[𝑡 𝑢]𝑏 ∶= [𝑡]𝑏 [𝑢]𝑏
[O]𝑏 ∶= O𝑏
[S]𝑏 ∶= S𝑏
[ℕrec]𝑏 ∶= [ℕrec]𝑏 as defined below

J⋅K𝑏 ∶= ⋅JΓ, 𝑥 ∶ 𝐴K𝑏 ∶= JΓK𝑏 , 𝑥𝑏 ∶ J𝐴K𝑏
Figure 3.3.: Branching translation of
System T

As it turns out, the solution can already be found inPédrot andTabareau
[121]. Given an inductive type ℐ , we need to create an inductive type
ℐ𝑏 whose constructors are the pointwise translation of the construc-
tors of ℐ , together with an additional 𝛽ℐ pythia, turning ℐ𝑏 into an
intensional 𝔇-algebra as presented in Section 2.1.2. For ℕ, we get:

Inductive ℕ𝑏 ∶ □𝑖 ∶=
∣ O𝑏 ∶ ℕ𝑏
∣ S𝑏 ∶ ℕ𝑏 → ℕ𝑏
∣ 𝛽ℕ ∶ Π(𝑖 ∶ I). (O 𝑖 → ℕ𝑏) → ℕ𝑏

We can now define what we call the branching translation, displayed
in Figure 3.3. The translation of ℕ is

JℕK𝑏 ∶= ℕ𝑏

while O and S are immediately sent to their ℕ𝑏 counterpart. Transla-
tion for functional types is once again pointwise:

J𝐴 → 𝐵K𝑏 ≔ J𝐴K𝑏 → J𝐵K𝑏 .

3. Gardening with the Pythia 111

Ourmain concern regarding the translation ofℕrec is already addressed.
The following definition is enough to retrieve a model of System T:

[ℕrec]𝑏 ∶ Π 𝑃 (𝑝O ∶ J𝑃K𝑏) (𝑝S ∶ J𝑃K𝑏 → J𝑃K𝑏) (𝑛 ∶ ℕ𝑏). J𝑃K𝑏
[ℕrec]𝑏 𝑃 𝑝O 𝑝S O𝑏 ≔ 𝑝O
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (S𝑏 𝑘) ≔ 𝑝S ([ℕrec]𝑏 𝑃 𝑝O 𝑝S 𝑘)
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (𝛽ℕ 𝑖 𝑘) ≔ 𝑝O

This time we satisfy our computational needs:

[ℕrec]𝑏 𝑃 𝑝O 𝑝S O𝑏 ≡ 𝑝O
[ℕrec]𝑏 𝑃 𝑝O 𝑝S ([S]𝑏 𝑛) ≡ 𝑝S ([ℕrec]𝑏 𝑃 𝑝O 𝑝S 𝑛)

As there is no requirement regarding the computation on 𝛽ℕ, we can
simply return 𝑝O as a dummy value. However, this choice would pre-
vent our proof to go through later on, when we build a generic element
to derive continuity of all functionals. Instead of a dummy value, we
thus provide a branching function at any type:

branch ∶ Π𝐴 (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J𝐴K𝑏). J𝐴K𝑏
branch ℕ 𝑖 𝑘 ≔ 𝛽ℕ
branch (𝐴 → 𝐵) 𝑖 𝑘 ≔ 𝜆𝑥. branch 𝐵 𝑖 (𝜆𝑜. 𝑘 𝑜 𝑥)

We can then define:

[ℕrec]𝑏 ∶ Π 𝑃 (𝑝O ∶ J𝑃K𝑏) (𝑝S ∶ J𝑃K𝑏 → J𝑃K𝑏) (𝑛 ∶ ℕ𝑏). J𝑃K𝑏
[ℕrec]𝑏 𝑃 𝑝O 𝑝S O𝑏 ≔ 𝑝O
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (S𝑏 𝑘) ≔ 𝑝S ([ℕrec]𝑏 𝑃 𝑝O 𝑝S 𝑘)
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (𝛽ℕ 𝑖 𝑘) ≔ branch 𝑃 𝑖 (𝜆𝑜. [ℕrec]𝑏 𝑃 𝑝O 𝑝S (𝑘 𝑜))

In some sense, this definition is linked to our discussion on free mon-
ads in Section 2.1.2. Indeed, branch is actually a function providing
a pythia at every type, making sure that both

ℕ and 𝐴 → 𝐵

are actually intensional algebras for the 𝔇 free monad. Note that branch
recurses on types of System T, a feature available to us because System
T is simply-typed. In dependent type theory, having a recursor on □
is however non trivial; we will circumvent the issue by interpreting
□ as □□𝑏, the type of intensional algebras for the 𝔇 monad, defined as
follows:

□□𝑏 ∶= Σ(𝐴 ∶ □). Π(𝑖 ∶ I). (O 𝑖 → 𝐴) → 𝐴.
Hence every type 𝐴 ∶ □□𝑏 in the model will carry a proof that it is an
intensional algebra, and branchwill be replaced by the second projec-
tion 𝐴.𝜋2.

Going back to our System Tmodel,we still retain the following:

Lemma 3.1.3:
The branching translation is a model of System T.

3. Gardening with the Pythia 112

[23]: Bernardy et al. (2011), “Realiz-
ability and Parametricity in Pure Type
Systems”

3.1.4. The logical song

What is left is to bind together the axiom and branching translations.
To that effect, Escardó defines a binary logical relation by recursion on
the types of System T. Through the lenses of program translations this
comes down to interpreting a type 𝐴 as a binary relation

J𝐴Kℓ ∶ J𝐴K𝑎 → J𝐴K𝑏 → □.

This leads to a syntactic model akin to parametricity [23]. We call it
the logical translation. Notice that we stick with our branching transla-
tion J𝐴K𝑏 here. This means that what follows parts ways with Escardó’s
proof, which relies on the dialogue one. However, both translations
being quite similar, for System T the switch from one to the other is
relatively painless.

For instance, for ℕ𝑏 we can define a dialogue function 𝜕ℕ similar to 𝜕
defined in Section 2.1:

𝜕ℕ ∶ ℕ𝑏 → Q → ℕ
𝜕ℕ O𝑏 𝛼 ∶= O
𝜕ℕ (S𝑏 𝑛𝑏) 𝛼 ∶= S (𝜕ℕ 𝑛𝑏 𝛼)
𝜕ℕ (𝛽ℕ 𝑖 𝑘) 𝛼 ∶= 𝜕ℕ (𝑘 (𝛼 𝑖)) 𝛼.

The binary relation for natural numbers then becomes the following:

JℕKℓ ≔ Π(𝑛𝑎 ∶ JℕK𝑎) (𝑛𝑏 ∶ JℕK𝑏). 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼

where
𝛼 ∶ Q

is a parameter of the translation, as for the axiom translation.

As usualwith logical relation, functional types are interpreted as preser-
vation of the relation:

J𝐴 → 𝐵Kℓ 𝑓𝑎 𝑓𝑏 ≔ Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥𝑒 ∶ J𝐴Kℓ 𝑥𝑎 𝑥𝑏). J𝐵Kℓ (𝑓𝑎 𝑥𝑎) (𝑓𝑏 𝑥𝑏)
As for terms, the translation of zero is the constructor refl of equal-
ity.

Using transport, it is possible to derive a lemma

Sℓ ∶ Π(𝑛𝑎 ∶ JℕK𝑎) (𝑛𝑏 ∶ JℕK𝑏). 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼 → S 𝑛𝑎 = 𝜕ℕ (S𝑏 𝑛𝑏) 𝛼

translating S.

Finally, for ℕrec we first need an auxiliary function to take care of the
branching case:

branchℓ ∶ Π𝐴 (𝑎 ∶ J𝐴K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J𝐴K𝑏).J𝐴Kℓ 𝑎 (𝑘 (𝛼 𝑖)) → J𝐴Kℓ 𝑎 (𝛽 𝑖 𝑘)
branchℓ ℕ 𝑎 𝑖 𝑘 𝑘ℓ ≔ 𝑘ℓ
branchℓ (𝐴 → 𝐵) 𝑓𝑎 𝑖 𝑘 𝑘ℓ ≔ 𝜆𝑥𝑎 𝑥𝑏 𝑥ℓ. branchℓ 𝐵 (𝑓𝑎 𝑥𝑎)

𝑖 (𝜆𝑜. 𝑘 𝑜 𝑥)
(𝑘ℓ 𝑥𝑎 𝑥𝑏 𝑥ℓ)

3. Gardening with the Pythia 113

JℕKℓ 𝑛𝑎 𝑛𝑏 ∶= 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼J𝐴 → 𝐵Kℓ 𝑓𝑎 𝑓𝑏 ∶= Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥ℓ ∶ J𝐴Kℓ 𝑥𝑎 𝑥𝑏). J𝐵Kℓ (𝑓𝑎 𝑥𝑎) (𝑓𝑏 𝑥𝑏)
[𝑥]ℓ ∶= 𝑥ℓ
[𝜆𝑥 ∶ 𝐴. 𝑡]ℓ ∶= 𝜆(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥ℓ ∶ J𝐴Kℓ 𝑥𝑎 𝑥𝑏). [𝑡]ℓ
[𝑡 𝑢]ℓ ∶= [𝑡]ℓ [𝑢]𝑎 [𝑢]𝑏 [𝑢]ℓ
[O]ℓ ∶= refl

[S]ℓ ∶= Sℓ
[ℕrec]ℓ ∶= [ℕrec]ℓ as defined below

J⋅Kℓ ∶= 𝛼 ∶ QJΓ, 𝑥 ∶ 𝐴Kℓ ∶= JΓKℓ, 𝑥𝑎 ∶ J𝐴K𝑎 , 𝑥𝑏 ∶ J𝐴K𝑏 , 𝑥ℓ ∶ J𝐴Kℓ 𝑥𝑎 𝑥𝑏
Figure 3.4.: Logical translation for Sys-
tem T

The syntactic burden is at its heaviest at this point since we now have
everything repeated three times. To enhance readability, we will use
the following shorthand for binders:

⟨𝑥 ∶ 𝐴⟩ ∶= 𝑥𝑎 ∶ J𝐴K𝑎 , 𝑥𝑏 ∶ J𝐴K𝑏 , 𝑥ℓ ∶ J𝐴Kℓ 𝑥𝑎 𝑥𝑏
and similarly for application to variables.

We then have to define

[ℕrec]ℓ ∶ Π 𝑃 ⟨𝑝O ∶ 𝑃⟩ ⟨𝑝S ∶ ℕ → 𝑃 → 𝑃⟩ ⟨𝑛 ∶ ℕ⟩.J𝑃Kℓ ([ℕrec]𝑎 𝑝O𝑎 𝑝S𝑎 𝑛𝑎) ([ℕrec]𝑏 𝑝O𝑏 𝑝S𝑏 𝑛𝑏)

However, as
𝑛ℓ ∶ JℕKℓ 𝑛𝑎 𝑛𝑏

is in fact a proof of
𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼,

we can transport along this equality. The following auxiliary function
is then enough, and completes our translation:

[ℕrec]′ℓ ∶ Π 𝑃 ⟨𝑝O ∶ 𝑃⟩ ⟨𝑝S ∶ ℕ → 𝑃 → 𝑃⟩ (𝑛𝑏 ∶ JℕK𝑏).J𝑃Kℓ ([ℕrec]𝑎 𝑝O𝑎 𝑝S𝑎 (𝜕ℕ 𝑛𝑏 𝛼)) ([ℕrec]𝑏 𝑝O𝑏 𝑝S𝑏 𝑛𝑏)
[ℕrec]′ℓ 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ O𝑏 ∶= 𝑝Oℓ

[ℕrec]′ℓ 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ (S𝑏 𝑛𝑏) ∶= 𝑝Sℓ 𝑛ℓ ([ℕrec]′ℓ 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ 𝑛𝑏)
[ℕrec]′ℓ 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ (𝛽 𝑖 𝑘) ∶= branchℓ 𝑃 ([ℕrec]𝑎 𝑝O𝑎 𝑝S𝑎 (𝜕ℕ (𝑘 (𝛼 𝑖)) 𝛼))

𝑖 (𝜆𝑜. ([ℕrec]𝑏 𝑝O𝑏 𝑝S𝑏 (𝑘 𝑜))
([ℕrec]′ℓ 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ (𝑘 (𝛼 𝑖)))

3. Gardening with the Pythia 114

[144]:Winterhalter et al. (2019), “Elim-
inating reflection from type theory”

However, we now face a similar problem as with the dialogue transla-
tion:

Lemma 3.1.4:
The logical translation is not a model of System T.

Proof. Once again, trouble lies within computation rules for ℕrec. In-
deed, the way we defined it,

Sℓ ∶ Π(𝑛𝑎 ∶ JℕK𝑎) (𝑛𝑏 ∶ JℕK𝑏). 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼 → S 𝑛𝑎 = 𝜕ℕ (S𝑏 𝑛𝑏) 𝛼

is not a constructor: it is a function computing on the proof of equality

𝑛ℓ ∶ 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼.

Consequently, when
⟨𝑛 ∶ ℕ⟩

is a variable, computation is blocked,and we have:

[ℕrec]ℓ 𝑝O 𝑝S ([S]ℓ 𝑛) ≢ 𝑝S ([ℕrec]ℓ 𝑝O 𝑝S 𝑛).

■

There are at least two ways out of the pithole:

1. We can switch to a target theory validating equality reflection so
that any proof

𝑛ℓ ∶ 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼
becomes definitionally equal to refl, thereby unblocking com-
putation. This can be achieved for instance by composing our
model with Winterhalter et al’s translation of ETT to ITT [144].
As we pointed out in Section 1.3, by doing so we would lose de-
cidability of type-checking, which would seriously hinder our
formalization effort. Still, it is a price we might find acceptable
if this were our only option, since it would not completely block
our proof of continuity.

2. The samewaywedealtwith computation rules for the branching
translation, we can turn our translation of ℕ into an inductive
one, while ensuring that any proof of our new logical relation
still entails

𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼.
Aswith the branching translation, it is highly likely that our new
translation of ℕ will have to feature some kind of 𝛽 pythia con-
structor, turning it into an intensional algebra for the 𝔇 monad.

We choose the latter option and define our fifth and last translation of
System T.

3. Gardening with the Pythia 115

3.1.5. For a handful of models

Once again, in this last translation types will be interpreted as binary
predicates over the axiom and branching translation. This time, how-
ever, the translation sticks more closely to the branching one, in that
it makes sure that every type is algebraic with respect to 𝔇. We call
it the algebraic parametricity translation. Formally, this means that the
translation of ℕ is the following inductive:

Inductive ℕ𝜀 (𝛼 ∶ Q) ∶ ℕ → ℕ𝑏 → □ ∶=
∣ O𝜀 ∶ ℕ𝜀 𝛼 O O𝑏
∣ S𝜀 ∶ Π(𝑛𝑎 ∶ ℕ) (𝑛𝑏 ∶ ℕ𝑏) (𝑛𝜀 ∶ ℕ𝜀 𝛼 𝑛𝑎 𝑛𝑏).ℕ𝜀 𝛼 (S 𝑛𝑎) (S𝑏 𝑛𝑏)
∣ 𝛽 𝜀ℕ ∶ Π(𝑛𝑎 ∶ ℕ) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → ℕ𝑏).

ℕ𝜀 𝛼 𝑛𝑎 (𝑘 (𝛼 𝑖)) → ℕ𝜀 𝛼 𝑛𝑎 (𝛽ℕ 𝑖 𝑘)

Note that 𝛼 ∶ Q is implicitly part of the context as in the axiom model.
Similarly to previous translations, function types are translated point-
wise:

J𝐴 → 𝐵K𝜀 𝑓𝑎 𝑓𝑏 ≔ Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥𝑒 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏). J𝐵K𝜀 (𝑓𝑎 𝑥𝑎) (𝑓𝑏 𝑥𝑏)
and we need to provide a proof of algebraicity at every type:

branch𝜀 ∶ Π𝐴 (𝑎 ∶ J𝐴K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J𝐴K𝑏).J𝐴K𝜀 𝑎 (𝑘 (𝛼 𝑖)) → J𝐴K𝜀 𝑎 (𝛽 𝑖 𝑘)
branch𝜀 ℕ 𝑛𝑎 𝑖 𝑘 𝑛𝜀 ≔ 𝛽 𝜀ℕ 𝑛𝑎 𝑖 𝑘 𝑛𝜀
branch𝜀 (𝐴 → 𝐵) 𝑓𝑎 𝑖 𝑘 𝑘𝜀 ≔ 𝜆𝑥𝑎 𝑥𝑏 𝑥𝜀 . branch𝜀 𝐵 (𝑓𝑎 𝑥𝑎)

𝑖 (𝜆𝑜. 𝑘 𝑜 𝑥)
(𝑘𝜀 𝑥𝑎 𝑥𝑏 𝑥𝜀)

This time, zero and successor are translated as constructors of ℕ𝜀 .

[O]𝜀 ∶= O𝜀 𝛼 [S]𝜀 ∶= S𝜀 𝛼

Since the syntactic pain has not been alleviated when switching trans-
lations, we keep our shorthand but change its meaning to

⟨𝑥 ∶ 𝐴⟩ ∶= 𝑥𝑎 ∶ J𝐴K𝑎 , 𝑥𝑏 ∶ J𝐴K𝑏 , 𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏 .

Finally, the definition of [ℕrec]𝜀 is the following:

[ℕrec]𝜀 ∶ Π 𝑃 ⟨𝑝O ∶ 𝑃⟩ ⟨𝑝S ∶ ℕ → 𝑃 → 𝑃⟩ ⟨𝑛 ∶ ℕ⟩.J𝑃K𝜀 [ℕrec 𝑝O 𝑝S 𝑛]𝑎 [ℕrec 𝑝O 𝑝S 𝑛]𝑏
[ℕrec]𝜀 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ O𝜀 ∶= 𝑝O𝜀
[ℕrec]𝜀 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (S𝜀 ⟨𝑛⟩) ∶= 𝑝S𝜀 𝑛𝜀 ([ℕrec]𝜀 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ ⟨𝑛⟩)
[ℕrec]𝜀 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (𝛽 𝜀𝑛𝑎 𝑖 𝑘 𝑛𝜀) ∶= branch𝜀 𝑃 [ℕrec 𝑝O 𝑝S 𝑛]𝑎

𝑖 (𝜆𝑜. [ℕrec 𝑝O 𝑝S (𝑘 𝑜)]𝑏)
([ℕrec]𝜀 𝑃 ⟨𝑝O⟩ ⟨𝑝S⟩ 𝑛𝑎 (𝑘 (𝛼 𝑖)) 𝑛𝜀)

Lemma 3.1.5:
The algebraic parametricity translation is a model of System T.

3. Gardening with the Pythia 116

3.1.6. A generic proof

We are almost there. To prove the main theorem, what is left is to
define a generic element

𝛾 ∶ ℕ → ℕ,

a clever instance of the model described above. Before getting to the
nitty-gritty, we will fix henceforth the oracular type parameters for
the remainder of this Section as

I ∶= ℕ and O ∶= 𝜆(_ ∶ I).ℕ.

Some results exposed in this Section are still independent from this
precise choice of oracle. When this is the case, we will stick to the Q
notation to highlight this fact.

Let us state one last time themain resultwe are trying to prove:

Theorem 3.1.6:
Any System T-definable functional 𝑓 ∶ (ℕ → ℕ) → ℕ is dialogue
continuous.

The main argument is the following: let us assume we have a generic
element

𝛾 ∶ ℕ → ℕ
such that its axiom translation is the 𝛼 ∶ ℕ → ℕ oracle added in the
context. That is, we have 𝛾𝑏 , 𝛾𝜀 in the target theory such that:

𝛼 ∶ ℕ → ℕ ⊢𝒯 𝛼 ∶ Jℕ → ℕK𝑎
⊢𝒯 𝛾𝑏 ∶ Jℕ → ℕK𝑏

𝛼 ∶ ℕ → ℕ ⊢𝒯 𝛾𝜀 ∶ Jℕ → ℕK𝜀 𝛼 𝛾𝑏
Then given 𝑓 ∶ (ℕ → ℕ) → ℕ in the source theory, we can consider
the term

⊢T 𝑓 𝛾 ∶ ℕ.
By soundness, it results in the three terms below.

𝛼 ∶ ℕ → ℕ ⊢𝒯 [𝑓]𝑎 𝛼 ∶ ℕ
⊢𝒯 [𝑓]𝑏 𝛾𝑏 ∶ ℕ𝑏

𝛼 ∶ ℕ → ℕ ⊢𝒯 [𝑓]𝜀 𝛼 𝛾𝑏 𝛾𝜀 ∶ ℕ𝜀 𝛼 ([𝑓]𝑎 𝛼) ([𝑓]𝑏 𝛾𝑏)

Crucially, the term [𝑓]𝑏 𝛾𝑏 ∶ ℕ𝑏 does not depend on 𝛼 , meaning it can
be our witness of dialogue continuity. All that is left is notice the fol-
lowing:

Proposition 3.1.7: Unicity of specification
There is a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ Q) ⟨𝑛 ∶ ℕ⟩. 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼.

Proof. By induction on 𝑛𝜀 . ■

3. Gardening with the Pythia 117

𝑛

0 𝑆 ... 𝑆 ...

0

... 𝑆

0

0 1 ... 𝑘 ...

... ...

Table 3.1.: Generic Trees

Applying Proposition 3.1.7 to

[𝑓]𝑎 𝛼, [𝑓]𝑏 𝛾𝑏 and [𝑓]𝜀 𝛼 𝛾𝑏 𝛾𝜀 ,

we get
⊢𝒯 Π(𝛼 ∶ ℕ → ℕ). [𝑓]𝑎 𝛼 = 𝜕ℕ ([𝑓]𝑏 𝛾𝑏) 𝛼.

Since 𝑓 is a term in System T that does not use any impure extension
of the model, it is easy to check that

[𝑓]𝑎 ≡ 𝑓 .

We thus retain

⊢𝒯 Π(𝛼 ∶ ℕ → ℕ). 𝑓 𝛼 = 𝜕ℕ ([𝑓]𝑏 𝛾𝑏) 𝛼,

meaning that 𝑓 is dialogue continuous, from the target theory perspec-
tive, which concludes our proof.

Fixing a hole The argument we just presented critically relies on the
existence of 𝛾 , which we are yet to demonstrate. Let us now tackle this
last missing bit in our proof.

Proposition 3.1.8: Generic parametricity
There is a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ Q) (𝑛𝑏 ∶ ℕ𝑏).ℕ𝜀 𝛼 (𝜕ℕ 𝑛𝑏 𝛼) 𝑛𝑏 .

Proof. By induction on 𝑛𝑏. ■

Definition 3.1.1: Generic tree
We define in 𝒯 the generic tree 𝔱 as

𝔱 ∶ ℕ → ℕ𝑏
𝔱 ∶= 𝜆(𝑛 ∶ ℕ). 𝛽ℕ 𝑛 𝜂ℕ

where

𝜂ℕ ∶ ℕ → ℕ𝑏
𝜂ℕ O ∶= O𝑏
𝜂ℕ (S 𝑛) ∶= S𝑏 (𝜂ℕ 𝑛)

Graphically, 𝔱 looks like the tree represented at Tab 3.1. It has the fol-
lowing property:

Lemma 3.1.9: Fundamental property of the generic tree
We have a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ) (𝑛 ∶ ℕ). 𝜕ℕ (𝔱 𝑛) 𝛼 = 𝛼 𝑛.

Proof. Immediate by the definition of the 𝜕ℕ function. ■

3. Gardening with the Pythia 118

Definition 3.1.2: Generic element
We define the generic element 𝛾𝑏 ∶ ℕ𝑏 → ℕ𝑏 as follows.

𝛾𝑏 𝑛𝑏 ∶= 𝛾0 O 𝑛𝑏
where

𝛾0 ∶ ℕ → ℕ𝑏 → ℕ𝑏
𝛾0 𝑎 O𝑏 ∶= 𝔱 𝑎
𝛾0 𝑎 (S𝑏 𝑛𝑏) ∶= 𝛾0 (S 𝑎) 𝑛𝑏
𝛾0 𝑎 (𝛽ℕ 𝑖 𝑘) ∶= 𝛽ℕ 𝑖 (𝜆𝑜 ∶ ℕ. 𝛾0 𝑎 (𝑘 𝑜)).

Intuitively, 𝛾𝑏 adds a layer to its argument, replacing each leaf by a
𝔱 𝑛, where 𝑛 is the number of S𝑏 encountered in the branch. It has the
following property:

Lemma 3.1.10: Fundamental property of the generic element
We have a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ) (𝑛𝑏 ∶ ℕ𝑏). 𝜕ℕ (𝛾𝑏 𝑛𝑏) 𝛼 = 𝛼 (𝜕ℕ 𝑛𝑏 𝛼).

Proof. By induction on 𝑛𝑏, using Lemma 3.1.9 for the O𝑏 case. ■

Proposition 3.1.11:
The 𝛾𝑏 term can be lifted in the source theory to a function

⊢T 𝛾 ∶ ℕ → ℕ such that [𝛾]𝑎 ≔ 𝛼 ∶ Jℕ → ℕK𝑎 .
Proof. It is enough to derive the following sequents, the first two being
trivial.

𝛼 ∶ ℕ → ℕ ⊢𝒯 𝛼 ∶ Jℕ → ℕK𝑎
⊢𝒯 𝛾𝑏 ∶ Jℕ → ℕK𝑏

𝛼 ∶ ℕ → ℕ ⊢𝒯 𝛾𝜀 ∶ Jℕ → ℕK𝜀 𝛼 𝛾𝑏

For 𝛾𝜀 , assuming ⟨𝑛 ∶ ℕ⟩ we have to prove

JℕK𝜀 (𝛼 𝑛𝑎) (𝛾𝑏 𝑛𝑏).

By Proposition 3.1.7, this is the same as

JℕK𝜀 (𝛼 (𝜕ℕ 𝑛𝑏 𝛼)) (𝛾𝑏 𝑛𝑏).

By Proposition 3.1.10, this is the same as

JℕK𝜀 (𝜕ℕ (𝛾𝑏 𝑛𝑏) 𝛼) (𝛾𝑏 𝑛𝑏).

We conclude by Proposition 3.1.8. ■

This concludes our proof of continuity for all System T definable func-
tionals. We can now set our sight on dependent type theory, and build
a model of Baclofen Type Theory.

3. Gardening with the Pythia 119

[25]: Boulier (2018), “Extending type
theory with syntactic models. (Etendre
la théorie des types à l’aide de modèles
syntaxiques)”
[75]: Hofmann (1997), Extensional con-
structs in intensional type theory

[86]: Kaposi et al. (2019), “Shallow Em-
bedding of Type Theory is Morally Cor-
rect”

3.2. Our model gains weight

3.2.1 Overview 119
3.2.2 Axiom Translation . . . 120
3.2.3 Branching Translation . 120
3.2.4 Algebraic Parametricity

Translation 123

3.2.1. Overview

We prove that all BTT functions are continuous using a generalization
of Escardó’s model.While the latter only provides amodel of System T,
a simply-typed language, our model accomodates not only dependent
types, but also universes and inductive types equipped with a strict
form of dependent elimination. It is given as a program translation,
and thus belongs to the class of syntactic models [25, 75]. The final
model is built in three stages, namely

1. An axiom model (Section 3.2.2),
2. A branching model (Section3.2.3),
3. An algebraic parametricity model (Section3.2.4).

The first two models are standalone, and the third one glues them
together. Each model can be explained computationally. The axiom
model adds a blackbox oracle as a global variable. Asking the oracle
is just function application, so there is no internal way to observe calls
to the oracle. The branching model does the exact converse, as it pro-
vides an oracle in a purely inert way. Every single call to the branching
oracle is tracked as a node of a dialogue tree, a representation that is
reminiscent of game semantics. Finally, the algebraic parametricity
model internalizes the fact that these two interpretations are comput-
ing essentially the same thing, behaving like a proof-relevant logical
relation.

The results from this Section have been formalized in Coq using a pre-
sentation similar to category with families. It is a shallow embedding
in the style of Kaposi et al [86], hence in particular all conversions are
interpreted as definitional equalities. The development relies on uni-
verse polymorphism to implement universes in themodel, but it could
have been avoided at the cost of duplicating the code for every level
existing in the hierarchy. As usual, we use negative pairs to handle
context extensions in a definitional way. Apart from this, the develop-
ment does not make use of any fancier feature from the Coq kernel.
Throughout the Section, we provide hyperlinks in margins to the rele-
vant parts of the development. The code as a whole can be found at

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia.

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia

3. Gardening with the Pythia 120

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

For readability, we give the trans-
lation of types as these two compo-
nents through a slight abuse of no-
tation.

3.2.2. Axiom Translation

[𝑥]𝑎 ∶= 𝑥𝑎
[𝜆𝑥 ∶ 𝐴. 𝑡]𝑎 ∶= 𝜆𝑥𝑎 ∶ J𝐴K𝑎 . [𝑡]𝑎
[𝑡 𝑢]𝑎 ∶= [𝑡]𝑎 [𝑢]𝑎
[Π𝑥 ∶ 𝐴. 𝐵]𝑎 ∶= Π𝑥𝑎 ∶ J𝐴K𝑎 . J𝐵K𝑎
[□𝑖]𝑎 ∶= □𝑖J𝐴K𝑎 ∶= [𝐴]𝑎

J⋅K𝑎 ∶= 𝛼 ∶ QJΓ, 𝑥 ∶ 𝐴K𝑎 ∶= JΓK𝑎 , 𝑥𝑎 ∶ J𝐴K𝑎 Figure 3.5.: Axiom translation (nega-
tive fragment)

There is not much to say, as it is exactly the same translation as in
Section 3.1.1: we simply add 𝛼 ∶ Q as the first variable of the con-
text, nothing more. We formally give the translation of the negative
fragment in Figure 3.5. Inductive types pose no difficulty.

Theorem 3.2.1: Formalization of the axiom transla-
tion can be found here.The axiom translation is a syntactic model of CIC and hence of BTT.

3.2.3. Branching Translation

[𝑥]𝑏 ∶= 𝑥𝑏
[𝜆𝑥 ∶ 𝐴. 𝑡]𝑏 ∶= 𝜆𝑥𝑏 ∶ J𝐴K𝑏 . [𝑡]𝑏
[𝑡 𝑢]𝑏 ∶= [𝑡]𝑏 [𝑢]𝑏J𝐴K𝑏 ∶= [𝐴]𝑏 .𝜋1J□K𝑏 ∶= □□𝑏

𝛽□ ∶= 𝜆(𝑖 ∶ I) (𝑘 ∶ O 𝑖 → □□𝑏). ℧𝑏JΠ𝑥 ∶ 𝐴. 𝐵K𝑏 ∶= Π𝑥𝑏 ∶ J𝐴K𝑏 . J𝐵K𝑏
𝛽Π𝑥∶𝐴. 𝐵 ∶= 𝜆(𝑖 ∶ I) (𝑘 ∶ O 𝑖 → Π𝑥 ∶ J𝐴K𝑏 . J𝐵K𝑏) (𝑥 ∶ J𝐴K𝑏). 𝛽𝐵 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑘 𝑜 𝑥)

J⋅K𝑏 ∶= ⋅JΓ, 𝑥 ∶ 𝐴K𝑏 ∶= JΓK𝑏 , 𝑥𝑏 ∶ J𝐴K𝑏 Figure 3.6.: Branching translation
(negative fragment)

Using results from Section 2.1.2, we can use a simplified form ofwean-
ing construction [121] to define the branching translation. It all boils
down to interpreting types as intensional 𝔇-algebras, whose type is

⊢𝒯 □□𝑏 ∶= Σ(𝐴 ∶ □). Π(𝑖 ∶ I). (O 𝑖 → 𝐴) → 𝐴.

Figure 3.6 defines the negative branching translation, translating

⊢𝒮 𝐴 ∶ □ as ⊢𝒯 [𝐴]𝑏 ∶ □□𝑏 ,

i.e. a pair
(J𝐴K𝑏 , 𝛽𝐴) where J𝐴K𝑏 ∶ □

and 𝛽𝐴 is a pythia for J𝐴K𝑏.

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L6

3. Gardening with the Pythia 121

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

The main difficulty is to endow □□𝑏 with a 𝔇-algebra structure. How-
ever, to get a model of BTT the only constraint a pythia on □ must
satisfy is its own existence, and nothing more. This means that any
function

𝛽□ ∶ Π(𝑖 ∶ I). (O 𝑖 → □□𝑏) → □□𝑏

will do. Hence, we simply assume as a parameter of the translation a
dummy 𝔇-algebra

℧𝑏 ∶ □□𝑏 together with 𝜔𝑏 ∶ ℧𝑏 .𝜋1,

used to define dependent elimination. There aremanypossible choices
for ℧𝑏, the simplest one being the unit type which is trivially inhab-
ited and algebraic. As an instance of weaning, we get the following:

Proposition 3.2.2: CC𝜔 Soundness
We have the following:

▶ If 𝑡 ≡CC𝜔 𝑢 then [𝑡]𝑏 ≡𝒯 [𝑢]𝑏.
Formalization of the branching
translation can be found here.

▶ If Γ ⊢CC𝜔 𝑡 ∶ 𝐴 then JΓK𝑏 ⊢𝒯 [𝑡]𝑏 ∶ J𝐴K𝑏.
The interpretation of inductive types is fairly straightforward. Given
an inductive type ℐ , we create an inductive type ℐ𝑏 whose construc-
tors are the pointwise translation of the constructors of ℐ , together
with an additional 𝛽ℐ constructor turning it into a free 𝔇-algebra.
We give as an example below the translation of ℕ, which will be the
running example for the remainder of this Chapter. Parameters and
indices present no additional difficulty and we refer to Pédrot and
Tabareau [121] for more details.

Inductive ℕ𝑏 ∶ □𝑖 ∶=
∣ O𝑏 ∶ ℕ𝑏
∣ S𝑏 ∶ ℕ𝑏 → ℕ𝑏
∣ 𝛽ℕ ∶ Π(𝑖 ∶ I). (O 𝑖 → ℕ𝑏) → ℕ𝑏

Theorem 3.2.3:

Formalization of the branching
translation for some inductive
types can be found here.

For any inductive typeℐ , its branching translationℐ𝑏 is well-typed
and satisfies the strict positivity criterion.

Corollary 3.2.4: Typing soundness
Typing soundness holds for the translation of inductive types and
their constructors.

We must now implement eliminators. In the same way as for their
System T counterpart, we first define the non-dependent ones.

[ℕrec]𝑏 ∶ Π𝑃 ∶ □□𝑏 . J𝑃K𝑏 → (ℕ𝑏 → J𝑃K𝑏 → J𝑃K𝑏) →
ℕ𝑏 → J𝑃K𝑏

[ℕrec]𝑏 𝑃 𝑝O 𝑝S O𝑏 ∶= 𝑝O
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (S𝑏 𝑛) ∶= 𝑝S 𝑛 ([ℕrec]𝑏 𝑃 𝑝O 𝑝S 𝑛)
[ℕrec]𝑏 𝑃 𝑝O 𝑝S (𝛽ℕ 𝑖 𝑘) ∶= 𝛽𝑃 𝑖 (𝜆(𝑜 ∶ O 𝑖). [ℕrec]𝑏 𝑃 𝑝O 𝑝S (𝑘 𝑜))

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L463
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L598

3. Gardening with the Pythia 122

As 𝑃 ∶ J□K𝑏, it has a pythia

𝛽𝑃 ∶ Π(𝑖 ∶ I). (O 𝑖 → J𝑃K𝑏) → J𝑃K𝑏 .
Every time we encounter a branching occurence of 𝛽ℕ, we can thus
use 𝛽𝑃 and propagate the call recursively in the branches. This is the
usual by-name semantics of recursors.

However, as pythias are a typical example of observable effects as we
described in Section 1.4, problems arise with dependent elimination:
assuming 𝒯 is consistent, given

𝑃 ∶ ℕ𝑏 → □□𝑏

and subproofs for O𝑏 and S𝑏, there is no clear way to produce a term
of type

(𝑃 (𝛽ℕ 𝑖 𝑘)).𝜋1.
We therefore restrict ourselves to a strict dependent elimination, re-
lying on the storage operator ℕstr from Section 1.4. We recall its defi-
nition below. Since it is given in direct style, its translation is system-
atic.

ℕstr (𝑛 ∶ ℕ) (𝑃 ∶ ℕ → □) ∶ □ ∶=
ℕrec ((ℕ → □) → □) (𝜆(𝑄 ∶ ℕ → □). 𝑄 O)

(𝜆(𝑚 ∶ ℕ) (_ ∶ (ℕ → □) → □) (𝑄 ∶ ℕ → □). 𝑄 (S 𝑚)) 𝑛 𝑃 .

Lemma 3.2.5:
We have the following conversions.

1. [ℕstr]𝑏 O𝑏 𝑃 ≡ 𝑃 O𝑏
2. [ℕstr]𝑏 (S𝑏 𝑛) 𝑃 ≡ 𝑃 (S𝑏 𝑛)
3. [ℕstr]𝑏 (𝛽ℕ 𝑖 𝑘) 𝑃 ≡ ℧𝑏

Note that the two first equations above are a consequence of the con-
version rules of ℕrec and thus hold in any model of BTT. Only the last
one is specific to the current model at hand. Using this, we define the
dependent eliminator below. Thanks to the fact that the predicate is
wrapped in a storage operator, it is able to return a dummy termwhen
applied to an effectful argument.

[ℕsind]𝑏 ∶ Π𝑃 ∶ ℕ → □. 𝑃 O →
(Π𝑛 ∶ ℕ.ℕstr 𝑛 𝑃 → ℕstr (S 𝑛) 𝑃) →
Π𝑛 ∶ ℕ.ℕstr 𝑛 𝑃

[ℕsind]𝑏 𝑃 𝑝O 𝑝S O𝑏 ∶= 𝑝O
[ℕsind]𝑏 𝑃 𝑝O 𝑝S (S𝑏 𝑛) ∶= 𝑝S 𝑛 ([ℕsind]𝑏 𝑃 𝑝O 𝑝S 𝑛)
[ℕsind]𝑏 𝑃 𝑝O 𝑝S (𝛽ℕ 𝑖 𝑘) ∶= 𝜔𝑏

Theorem 3.2.6:
The branching translation provides a syntactic model of BTT.

3. Gardening with the Pythia 123

Formalization of the algebraic
parametricity translation can be
found here.

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

3.2.4. Algebraic Parametricity Translation

Following Escardó, we now have to relate the two translations. We
achieve this through a third layer of algebraic parametricity. Intuitively,
every type 𝐴 ∶ □ is translated as a predicate

J𝐴K𝜀 ∶ J𝐴K𝑎 → J𝐴K𝑏 → □.

As it was the case for parametricity in Section 3.1, 𝛼 ∶ Q is implicitly
part of the context, like in the axiom model. As explained above, we
also ask for the predicate to be 𝔇-algebraic in the sense that it must
be equipped with a proof

𝛽 𝜀𝐴 ∶ Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J𝐴K𝑏).J𝐴K𝜀 𝑥𝑎 (𝑘 (𝛼 𝑖)) → J𝐴K𝜀 𝑥𝑎 (𝛽𝐴 𝑖 𝑘).

We will write the type of such algebraic parametricity predicates as

□□𝜀 (𝐴𝑎 ∶ J□K𝑎) (𝐴𝑏 ∶ J□K𝑏) ∶= Σ(𝐴𝜀 ∶ J𝐴K𝑎 → J𝐴K𝑏 → □).
Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J𝐴K𝑏).
𝐴𝜀 𝑥𝑎 (𝑘 (𝛼 𝑖)) → 𝐴𝜀 𝑥𝑎 (𝛽𝐴 𝑖 𝑘)

Just as we did for the branching translation, given 𝐴 ∶ □𝑖 we define
separately the predicate J𝐴K𝜀 and the proof of parametric algebraicity
𝛽 𝜀𝐴. We define the translation in Figure 3.7. As before we also ask for a
dummy algebraic predicate

℧𝜀 ∶ Π(𝐴 ∶ □).□□𝜀 𝐴 ℧𝑏

which can be taken to be always a trivially inhabited predicate, to-
gether with an arbitrary proof

𝜔𝜀 ∶ Π(𝐴 ∶ □) (𝑥 ∶ 𝐴). (℧𝜀 𝐴).𝜋1 𝑥 𝜔𝑏 .

Theorem 3.2.7: CC𝜔 Soundness
We have the following.

1. If 𝑡 ≡CC𝜔 𝑢 then [𝑡]𝜀 ≡𝒯 [𝑢]𝜀 .
2. If Γ ⊢CC𝜔 𝑡 ∶ 𝐴 then JΓK𝜀 ⊢𝒯 [𝑡]𝜀 ∶ J𝐴K𝜀 [𝑡]𝑎 [𝑡]𝑏.

The algebraic parametricity translation of inductive types sticks closely
to the branching one. Given an inductive type ℐ , we create an induc-
tive type ℐ𝜀 whose constructors are the pointwise J⋅K𝜀 translation of
those of ℐ . An additional constructor 𝛽 𝜀

ℐ freely implements the alge-
braicity requirement. Since 𝛼 ∶ Q is implicitly part of the translated
context, we have to take it as a parameter of the translated inductive
type and explicitly pass it as an argument when interpreting those
types and their proof of algebraicity. We give the translation on our
running example in Figure 3.8. Once again, parameters and indices
present no particular problem and are handled similarly to Pédrot and
Tabareau [121].

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L878

3. Gardening with the Pythia 124

J□K𝜀 ∶= 𝜆(𝐴𝑎 ∶ J□K𝑎) (𝐴𝑏 ∶ J□K𝑏).□□𝜀 𝐴𝑎 𝐴𝑏

𝛽 𝜀
□ ∶= 𝜆(𝐴𝑎 ∶ J□K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → J□K𝑏) (𝐴𝜀 ∶ J□K𝜀 𝐴𝑎 (𝑘 (𝛼 𝑖))). ℧𝜀 𝐴𝑎

[𝑥]𝜀 ∶= 𝑥𝜀
[𝜆𝑥 ∶ 𝐴. 𝑡]𝜀 ∶= 𝜆(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏). [𝑡]𝜀
[𝑡 𝑢]𝜀 ∶= [𝑡]𝜀 [𝑢]𝑎 [𝑢]𝑏 [𝑢]𝜀JΠ𝑥 ∶ 𝐴. 𝐵K𝜀 ∶= 𝜆(𝑓𝑎 ∶ JΠ𝑥 ∶ 𝐴. 𝐵K𝑎) (𝑓𝑏 ∶ JΠ𝑥 ∶ 𝐴. 𝐵K𝑏).

Π(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏). J𝐵K𝜀 (𝑓𝑎 𝑥𝑎) (𝑓𝑏 𝑥𝑏)
𝛽 𝜀Π𝑥∶𝐴. 𝐵 ∶= 𝜆(𝑓𝑎 ∶ JΠ𝑥 ∶ 𝐴. 𝐵K𝑎) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → JΠ𝑥 ∶ 𝐴. 𝐵K𝑏).

𝜆(𝑓𝜀 ∶ JΠ𝑥 ∶ 𝐴. 𝐵K𝜀 𝑓𝑎 (𝑘 (𝛼 𝑖))).
𝜆(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏) (𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏).

𝛽 𝜀𝐵 (𝑓𝑎 𝑥𝑎) 𝑖 (𝜆(𝑜 ∶ O 𝑖). 𝑘 𝑜 𝑥𝑏) (𝑓𝜀 𝑥𝑎 𝑥𝑏 𝑥𝜀)J𝐴K𝜀 ∶= [𝐴]𝜀 .𝜋1

J⋅K𝜀 ∶= 𝛼 ∶ QJΓ, 𝑥 ∶ 𝐴K𝜀 ∶= JΓK𝜀 , 𝑥𝑎 ∶ J𝐴K𝑎 , 𝑥𝑏 ∶ J𝐴K𝑏 , 𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏
Figure 3.7.: Algebraic parametricity
translation (negative fragment)

Inductive ℕ𝜀 (𝛼 ∶ Q) ∶ ℕ → ℕ𝑏 → □ ∶=
∣ O𝜀 ∶ ℕ𝜀 𝛼 O O𝑏
∣ S𝜀 ∶ Π(𝑛𝑎 ∶ ℕ) (𝑛𝑏 ∶ ℕ𝑏) (𝑛𝜀 ∶ ℕ𝜀 𝛼 𝑛𝑎 𝑛𝑏).ℕ𝜀 𝛼 (S 𝑛𝑎) (S𝑏 𝑛𝑏)
∣ 𝛽 𝜀ℕ ∶ Π(𝑛𝑎 ∶ ℕ) (𝑖 ∶ I) (𝑘 ∶ O 𝑖 → ℕ𝑏).

ℕ𝜀 𝛼 𝑛𝑎 (𝑘 (𝛼 𝑖)) → ℕ𝜀 𝛼 𝑛𝑎 (𝛽ℕ 𝑖 𝑘) Figure 3.8.: Algebraic parametricity
translation for ℕ

Theorem 3.2.8:

Formalization of the algebraic
parametricity translation for some
inductive types can be found here.

For any inductive type ℐ , its algebraic parametricity translation ℐ𝜀
is well typed and satisfies the positivity criterion.

Corollary 3.2.9: Typing soundness
Typing soundness holds for the translation of inductive types and
their constructors.

As for the branching translation, we retrieve a restricted form of de-
pendent elimination based on storage operators. The argument is vir-
tually the same, but now at the level of parametricity, which makes
the syntactic burden even heavier since we now have everything re-
peated three times. Once again, we rely on the following shorthand
for binders:

⟨𝑥 ∶ 𝐴⟩ ∶= 𝑥𝑎 ∶ J𝐴K𝑎 , 𝑥𝑏 ∶ J𝐴K𝑏 , 𝑥𝜀 ∶ J𝐴K𝜀 𝑥𝑎 𝑥𝑏
and similarly for application to variables.

We give the eliminators for our running example in this lighter syntax,

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1126

3. Gardening with the Pythia 125

[121]: Pédrot et al. (2017), “An effect-
ful way to eliminate addiction to de-
pendence”

which is already the limit of what can be done on paper.

[ℕrec]𝜀 ∶ Π⟨𝑃 ∶ □⟩ ⟨𝑝O ∶ 𝑃⟩ ⟨𝑝S ∶ ℕ → 𝑃 → 𝑃⟩ ⟨𝑛 ∶ ℕ⟩.J𝑃K𝜀 [ℕrec 𝑃 𝑝O 𝑝S 𝑛]𝑎 [ℕrec 𝑃 𝑝O 𝑝S 𝑛]𝑏
[ℕrec]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ O𝜀 ∶= 𝑝O𝜀
[ℕrec]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (S𝜀 ⟨𝑛⟩) ∶= 𝑝S𝜀 𝑛𝜀 ([ℕrec]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ ⟨𝑛⟩)
[ℕrec]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (𝛽 𝜀𝑛𝑎 𝑖 𝑘 𝑛𝜀) ∶= 𝛽 𝜀𝑃 [ℕrec 𝑝O 𝑝S 𝑛]𝑎

𝑖 (𝜆𝑜. [ℕrec 𝑝O 𝑝S (𝑘 𝑜)]𝑏)
([ℕrec]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ 𝑛𝑎 (𝑘 (𝛼 𝑖)) 𝑛𝜀)

Note that the 𝛽 𝜀ℕ case explicitly calls the global axiom 𝛼 to relate the
oracular termwith the branching one. This is one of the fewplaces that
introduce an actual use of the oracle in the translation, by opposition
to merely passing it around.

We define [ℕstr]𝜀 as before, using the fact it is given directly in the
source in terms of ℕrec. In particular we do not have to write its trans-
lation explicitly. Finally, we can define the dependent eliminators, fol-
lowing the same structure as before.

[ℕsind]𝜀 ∶ Π⟨𝑃 ∶ ℕ → □⟩ ⟨𝑝O ∶ 𝑃 O⟩ ⟨𝑝S ∶ Π(𝑛 ∶ ℕ).ℕstr 𝑛 𝑃 → ℕstr (S 𝑛) 𝑃⟩.
Π⟨𝑛 ∶ ℕ⟩. Jℕstr 𝑛 𝑃K𝜀 [ℕsind 𝑃 𝑝O 𝑝S 𝑛]𝑎 [ℕsind 𝑃 𝑝O 𝑝S 𝑛]𝑏

[ℕsind]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ O𝜀 ∶= 𝑝O𝜀
[ℕsind]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (S𝜀 ⟨𝑛⟩) ∶= 𝑝S𝜀 ⟨𝑛⟩ ([ℕsind]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ ⟨𝑛⟩)
[ℕsind]𝜀 ⟨𝑃⟩ ⟨𝑝O⟩ ⟨𝑝S⟩ _ _ (𝛽 𝜀ℕ 𝑛𝑎 𝑖 𝑘 𝑛𝜀) ∶= 𝜔𝜀 (𝑃𝑎 𝑛𝑎) [ℕsind 𝑃 𝑝O 𝑝S 𝑛]𝑎

Following the results from Pédrot and Tabareau [121], this translation
can be generalized to any inductive type, potentially with parameters
and indices. Indeed, it is very similar to the composition of weaning
with binary parametricity (the difference coming from the fact that
we do not encode the same effect in the axiom translation and the
branching translation).

Theorem 3.2.10:
The algebraic parametricity translation is a syntactic model of BTT.

3. Gardening with the Pythia 126

3.3. Continuity of functionals

This Section is dedicated to the proof of the main theorem which we
formally state below.

Theorem 3.3.1:

Continuity of functionals is for-
mally proven here.

If
⊢𝒮 𝑓 ∶ (ℕ → ℕ) → ℕ

in the source theory 𝒮 ≔ BTT then

⊢𝒯 _ ∶ 𝒞𝔇 𝑓

in the target theory 𝒯 ≔ CIC.

Proof. The proof follows the same structure as Escardó’s proof for Sys-
tem T, as presented in Section 3.1.6. Once again, wewill fix henceforth
the oracular type parameters for the remainder of this Section as

I ∶= ℕ and O ∶= 𝜆(_ ∶ I).ℕ.

As our parametricity translation is essentially the same as in Section
3.1.6, we can derive the same lemmas:

Proposition 3.3.2: Unicity of specification
There is a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ Q) ⟨𝑛 ∶ ℕ⟩. 𝑛𝑎 = 𝜕ℕ 𝑛𝑏 𝛼.

Unicity of specification is formally
proven here.Proof. By induction on 𝑛𝜀 . ■

Proposition 3.3.3: Generic parametricity
There is a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ Q) (𝑛𝑏 ∶ ℕ𝑏).ℕ𝜀 𝛼 (𝜕ℕ 𝑛𝑏 𝛼) 𝑛𝑏 .

Generic parametricity is formally
proven here.Proof. By induction on 𝑛𝑏. ■

We now define the generic element. Once again, it is the same defini-
tion as in Section 3.1.6.

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1566
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1303
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1312

3. Gardening with the Pythia 127

Definition 3.3.1: Generic tree
We define in 𝒯 the generic tree 𝔱 as

𝔱 ∶ ℕ → ℕ𝑏
𝔱 ∶= 𝜆(𝑛 ∶ ℕ). 𝛽ℕ 𝑛 𝜂ℕ

where

𝜂ℕ ∶ ℕ → ℕ𝑏
𝜂ℕ O ∶= O𝑏
𝜂ℕ (S 𝑛) ∶= S𝑏 (𝜂ℕ 𝑛)

Generic trees still retain the following property:

Lemma 3.3.4: Fundamental property of the generic tree
We have a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ) (𝑛 ∶ ℕ). 𝜕ℕ (𝔱 𝑛) 𝛼 = 𝛼 𝑛,

where 𝜕ℕ was defined in Section 3.1.4.

Proof. Immediate by the definition of the 𝜕ℕ function. ■

Definition 3.3.2: Generic element

The generic element 𝛾𝑏 is formally
defined here,making use of an aux-
iliary function 𝛾0 formally defined
here.

We define the generic element 𝛾𝑏 ∶ ℕ𝑏 → ℕ𝑏 as follows.

𝛾𝑏 𝑛𝑏 ∶= 𝛾0 O 𝑛𝑏
where

𝛾0 ∶ ℕ → ℕ𝑏 → ℕ𝑏
𝛾0 𝑎 O𝑏 ∶= 𝔱 𝑎
𝛾0 𝑎 (S𝑏 𝑛𝑏) ∶= 𝛾0 (S 𝑎) 𝑛𝑏
𝛾0 𝑎 (𝛽ℕ 𝑖 𝑘) ∶= 𝛽ℕ 𝑖 (𝜆𝑜 ∶ ℕ. 𝛾0 𝑎 (𝑘 𝑜)).

The generic element still retains its crucial property:

Lemma 3.3.5: Fundamental property of the generic element

A slight generalization of the fun-
damental property of the generic
element (proving it for 𝛾0) is for-
malized here.

We have a proof

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ) (𝑛𝑏 ∶ ℕ𝑏). 𝜕ℕ (𝛾𝑏 𝑛𝑏) 𝛼 = 𝛼 (𝜕ℕ 𝑛𝑏 𝛼).

Proof. Straightforward by induction on 𝑛𝑏, using Lemma 3.3.4 for the
O𝑏 case. ■

Proposition 3.3.6:

Parametricity for the generic ele-
ment is formalized here.

The 𝛾𝑏 term can be lifted to a function 𝛾 ∶ ℕ → ℕ in the source
theory.

Proof. The proof is the same as in Section 3.1.6. ■

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1601
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Base.v#L36
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Base.v#L44
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1608

3. Gardening with the Pythia 128

This last bit of proof is formalized
here.

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

We can now get to the proof of the main result.

Let
⊢BTT 𝑓 ∶ (ℕ → ℕ) → ℕ.

Since 𝛾 ∶ ℕ → ℕ can be reflected from the model into BTT, we can
consider the term

⊢BTT 𝑓 𝛾 ∶ ℕ.
By soundness, it results in the three terms below.

𝛼 ∶ ℕ → ℕ ⊢𝒯 [𝑓]𝑎 𝛼 ∶ ℕ
⊢𝒯 [𝑓]𝑏 𝛾𝑏 ∶ ℕ𝑏

𝛼 ∶ ℕ → ℕ ⊢𝒯 [𝑓]𝜀 𝛼 𝛾𝑏 𝛾𝜀 ∶ ℕ𝜀 𝛼 ([𝑓]𝑎 𝛼) ([𝑓]𝑏 𝛾𝑏)

Applying Proposition 3.3.2 to [𝑓]𝑎, [𝑓]𝑏 and [𝑓]𝜀 , we get:

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ). [𝑓]𝑎 𝛼 = 𝜕ℕ ([𝑓]𝑏 𝛾𝑏) 𝛼
Since 𝑓 is a term in BTT that does not use any impure extension of
the model, it is easy to check that [𝑓]𝑎 ≡ 𝑓 . Therefore, 𝑓 is dialogue
continuous, which concludes our proof. ■

3.4. Discussion and Related Work

3.4.1 Comparison with
Similar Models 129

3.4.2 Internalization 130
3.4.3 Extension to MLTT . . . 133

Before discussing other models that can be found in the literature, let
us already stress the fact that our model can be generalized to prove
continuity of many functionals, not only of the form

⊢BTT 𝑓 ∶ (ℕ → ℕ) → ℕ.

For instance, dialogue continuity for functionals

⊢BTT 𝑓 ∶ (ℕ → 𝔹) → ℕ

can be easily derived by instantiating our model with

I ≔ ℕ and O ≔ 𝜆_ ∶ ℕ.𝔹.

This was already pointed out by Escardó [51] who makes use of his
model to retain uniform continuity of System T definable function-
als

⊢T 𝑓 ∶ (ℕ → 𝔹) → ℕ.
Indeed, as we showed in Section 2.2.1, uniform continuity and dia-
logue continuity are equivalent on the Cantor space.

https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia/-/blob/master/Translation.v#L1649

3. Gardening with the Pythia 129

[51]: Escardó (2013), “Continuity of
Gödel’s System T Definable Function-
als via Effectful Forcing”

[130]: Sterling (2021), “Higher order
functions and Brouwer’s thesis”

[50]: Escardó et al. (2016), “A con-
structive manifestation of the Kleene-
Kreisel continuous functionals”
[147]: Xu et al. (2013), “A Constructive
Model of Uniform Continuity”

[42]: Coquand et al. (2012), “A Com-
putational Interpretation of Forcing in
Type Theory”
[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

[67]: Gratzer et al. (2022), “Strict uni-
verses for Grothendieck topoi”

[125]: Rijke et al. (2020), “Modalities in
homotopy type theory”

3.4.1. Comparison with Similar Models

As already stated, our proof follows the argument given by Escardó
[51] for System T, which can also be found as a close variant by Sterling
that uses streams instead of trees [130]. Yet, in order to scale to BTT
there are a few non-trivial technical differences in our version. We
already discussed themalong theway but they ought to be highlighted
and summarized here.

The first obvious one is that our model is a program translation of
BTT into CIC, while Escardó’s is a model in a type-theoretic metathe-
ory. Using our definitions from Chapter 1, this means that in our case
the source theory is BTT, the target theory is CIC and the meta-theory
can be very weak, as proving the soundness of the translation does
not require powerful logical principles. In Escardó’s case, however, the
source language is embedded as an AST in the meta-theory, meaning
there is not clear distinction between the target theory and the meta-
theory. If we wanted to use this technique for BTT, we would need
strong principles to internalize type theory inside itself.

Another major divergence is that parametricity predicates must be
compatible with the 𝔇-algebra structure of the underlying types. This
is needed to interpret large elimination, which is absent from System
T. This requirement did appear in Escardó’s proof, but only as a tool
to prove existence of the generic element, and not as a requirement
of the model. Algebraicity of predicates was a surprising part of the
model design, but in hindsight it is obvious that it would pop up even-
tually. Furthermore, both to preserve conversion and to scale to richer
inductive types, the parametricity predicates need to be given in an in-
ductive way following the underlying source type, rather than as an
ad-hoc equality between two terms.

Escardó and Xu [50, 147] also gave related models to internalize uni-
form continuity. Contrarily to the above one, they build these models
out of sheaves, which have also been used similarly by Coquand and
Jaber [42, 43]. Escardó and Xu emphasize that since the universe of
sheaves is not a sheaf in general, they only implement a small frag-
ment of MLTT. In more recent work, Gratzer et al [67] proved the exis-
tence of universes in every sheaf category, albeit using classical logic
in the meta-theory. We have several remarks to make. First, Rijke et al
[125] showed that, assuming univalence and HITs in the target theory,
one can build a syntactic sheaf model ofMLTT. Univalence is typically
needed to relax the strict uniqueness requirement of sheaves.

Moreover, as we showed in Section 2.5, the sheafification operator

Inductive 𝔖 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ 𝜂 ∶ 𝐴 → 𝔖 𝐴
∣ 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔖 𝐴) → 𝔖 𝐴
∣ 𝜀 ∶ Π(𝑖 ∶ I) (𝑥 ∶ 𝔖 𝐴).𝛽 𝑖 (𝜆_ ∶ O 𝑖. 𝑥) = 𝑥.

is very close to 𝔇, which leads us to challenge Escardó’s claim that
the dialogue model is not a sheaf model. Otherwise said, the dialogue
monad is an impure variant of the sheafification monad, giving a curi-
ous and unexpected double entendre to the phrase effectful forcing.

3. Gardening with the Pythia 130

[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”

[124]: Rahli et al. (2019), “Bar Induc-
tion is Compatible with Constructive
Type Theory”

[22]: Berger (2006), “The Logical
Strength of the Uniform Continuity
Theorem”
[24]: Bickford et al. (2018), “Com-
putability Beyond Church-Turing via
Choice Sequences”

Rahli et al [123] give another proof of uniform continuity for NuPRL
using a form of delimited exceptions. Computationally, their model
tracks accesses to arguments of functions by passing them exception-
raising placeholders. The control flow is inverted w.r.t. our model, as
it requires non-terminating realizers, but we believe that the funda-
mental mechanism is similar. In the same context Rahli et al [124] de-
fine a sheaf model with bar induction in mind, but this principle is
inextricably tied to uniform continuity [22, 24].

3.4.2. Internalization

In this Chapter we have constructed a model of BTT that associates to
every closed term

⊢BTT 𝑓 ∶ (ℕ → ℕ) → ℕ
a proof in CIC that it is continuous. Can we do better? First, we know
that there is a major limitation. Indeed, as explained in Section 2.4.2,
MLTT extended with the internal statement

Π𝑓 ∶ (ℕ → ℕ) → ℕ.𝒞 𝑓 ,

stating that all functionals on the Baire type are standard continu-
ous, results in an inconsistent theory. We will call this property in-
ternal continuity below. The proof crucially relies on two ingredients,
namely congruence of conversion and large dependent elimination.
Thus, there might be hope for BTT where the latter is restricted. How-
ever, we have the following:

Theorem 3.4.1:
Through our program translation, internal continuity in the source
theory 𝒮 implies internal continuity in the target theory 𝒯 .

Proof. Let us assume a term

⊢𝒮 𝑀 ∶ Π𝑓 ∶ (ℕ → ℕ) → ℕ.𝒞 𝑓

in the source theory. Then its axiom translation [𝑀]𝑎 is a proof of

𝛼 ∶ ℕ → ℕ ⊢𝒯 [𝑀]𝑎 ∶ JΠ𝑓 ∶ (ℕ → ℕ) → ℕ.𝒞 𝑓 K𝑎 .
However, the type of 𝑀 does not mention 𝛼 . Hence, if we substitute 𝛼
by a concrete function, as for instance 𝜆𝑛 ∶ ℕ. 𝑛, we get

⊢𝒯 [𝑀]𝑎{𝛼 ≔ 𝜆𝑛 ∶ ℕ. 𝑛} ∶ Π𝑓 ∶ (ℕ → ℕ) → ℕ.𝒞 𝑓 ,

which is exactly internal continuity in the target theory. ■

3. Gardening with the Pythia 131

This is obviously disappointing, since it implies that 𝒯 is inconsis-
tent. One can then wonder if it is possible to aim for a middle ground,
where we keep the computation of the modulus in the target, but re-
flect in the source theory a proof of continuity for every concrete func-
tional. That is, construct in the target theory a term

⊢𝒯 𝑀 ∶ Π(𝛼 ∶ ℕ → ℕ) ⟨𝑓 ∶ (ℕ → ℕ) → ℕ⟩. J𝒞 𝑓 K,
where J𝐴K stands for the triple

Σ(𝑥𝑎 ∶ J𝐴K𝑎) (𝑥𝑏 ∶ J𝐴K𝑏). J𝐴K𝜀 𝑥𝑎 𝑥𝑏 .

Then, given a term
⊢𝒮 𝑓 ∶ (ℕ → ℕ) → ℕ,

from the source, we would recover

⊢𝒯 𝑀 𝑓 ∶ J𝒞 𝑓 K
in the target, which would be reflected as a symbol

⊢𝒮 𝑀𝑓 ∶ 𝒞 𝑓

in the source, resulting in a theorywhere every function 𝑓 can be given
a proof of continuity 𝑀𝑓 , without building a term

⊢𝒮 Π𝑓 ∶ (ℕ → ℕ) → ℕ.𝒞 𝑓 .

The implication regarding the target theory is a bitmore subtle.

Proposition 3.4.2:
If we have a term

𝑀 ∶ Π(𝛼 ∶ ℕ → ℕ) ⟨𝑓 ∶ (ℕ → ℕ) → ℕ⟩. J𝒞 𝑓 K
in the target theory, then the target theory negates funext.

This perhaps surprising result comes from the following lemma:

Lemma 3.4.3:
If we have

⊢𝒯 _ ∶ Π(𝛼 ∶ ℕ → ℕ) ⟨𝑓 ∶ (ℕ → ℕ) → ℕ⟩. J𝒞 𝑓 K
then we can also get a proof that

⊢𝒯 _ ∶ Π𝑓 ∶ (ℕ → ℕ) → ℕ. 𝑓 ∼(ℕ→ℕ)→ℕ 𝑓 → 𝒞 𝑓 ,

where

𝑓 ∼(ℕ→ℕ)→ℕ 𝑔 ∶= Π(𝑢 𝑣 ∶ ℕ → ℕ).
(Π𝑛 ∶ ℕ. 𝑢 𝑛 = 𝑣 𝑛) → 𝑓 𝑢 = 𝑓 𝑣

is the canonical setoid equality on the functional type.

3. Gardening with the Pythia 132

[122]: Pédrot et al. (2018), “Failure is
Not an Option An Exceptional Type
Theory”

[115]: Pédrot (2020), “Russian Con-
structivism in a Prefascist Theory”

[123]: Rahli et al. (2018), “Validat-
ing Brouwer’s continuity principle for
numbers using named exceptions”

Proof. Let 𝛼 ∶ ℕ → ℕ in 𝒯 and let

⊢𝒯 𝑓 ∶ (ℕ → ℕ) → ℕ such that 𝑓 ∼(ℕ→ℕ)→ℕ 𝑓 .

We define the following:

̃𝑓 ∶ J(ℕ → ℕ) → ℕK such that
[̃𝑓]𝑎 ∶= 𝑓
[̃𝑓]𝑏 ∶= 𝜆(𝑢𝑏 ∶ JℕK𝑏 → JℕK𝑏).

𝜂ℕ (𝑓 (𝜆𝑛 ∶ ℕ. 𝜕ℕ (𝑢𝑏 (𝜂ℕ 𝑛)) 𝛼))

To implement parametricity [̃𝑓]𝜀 , we need to prove that

Π⟨𝑢 ∶ ℕ → ℕ⟩. 𝑓 𝑢𝑎 = 𝑓 (𝜆𝑛 ∶ ℕ. 𝜕ℕ (𝑢𝑏 (𝜂ℕ 𝑛)) 𝛼).

Since 𝑓 ∼(ℕ→ℕ)→ℕ 𝑓 , it is sufficient to prove that

Π𝑛 ∶ ℕ. 𝑢𝑎 𝑛 = 𝜕ℕ (𝑢𝑏 (𝜂ℕ 𝑛)) 𝛼,

which is done by induction on 𝑢𝜀 (𝑛, 𝜂ℕ 𝑛, _).
Finally, if we have a term of type

Π(𝛼 ∶ ℕ → ℕ) ⟨𝑓 ∶ (ℕ → ℕ) → ℕ⟩. J𝒞 𝑓 K,
then we have J𝒞 ̃𝑓 K and thus 𝒞 𝑓 by projection. ■

Hence, if our target theory features funext, such a way to reflect the
modulus of continuity in the source implies continuity of all

𝑓 ∶ (ℕ → ℕ) → ℕ

in the target. Thus, by the above theorem, we get a proof of false.

Otherwise said, if we were able to build such a model, we would be
able to negate funext in our target theory. As funext is independent
from CIC, it is in particular impossible to negate funext in CIC. There-
fore, such a model is out of reach with CIC as target theory.

Hence, Escardó et al’s diagonalization argument in CIC prevents us
from extending this model to an internal modulus of continuity. How-
ever, it is still unclear whether it is possible to construct a similar
paradox for BTT, or if there exists another model of it with internal
modulus of continuity. This is still an open question. Still, we conjec-
ture that adding an additional layer of presheaves to allow a varying
number of oracles in the context could be key to build such a model.

Indeed, adding a modal type of exceptions to MLTT is precisely what
permits to go from the external Markov’s rule [122] to the internal
Markov’s principle [115]. Ifwewere able to locally create a fresh generic
element independent from all the previously allocated ones, it seems
that we could turn the external continuity rule into an internal one,
mimicking what happens when

Fresh exceptions are precisely used by Rahli et al [123] to get what
amounts to an independent generic element at every call, so this argu-
ment does not seem far-fetched. We leave this to future work.

3. Gardening with the Pythia 133

3.4.3. Extension to MLTT

Our model provides some insights about what kind of properties we
would need to build a model of MLTT proving continuity. Indeed, in
the process of proving continuity for full-blown MLTT, the same arch-
enemy always stands in our way: how do we derive the following se-
quent ?

Γ, 𝑥 ∶ 𝔹 ⊢ 𝑃 Γ ⊢ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ 𝑡false ∶ 𝑃{𝑥 ≔ false} Γ ⊢ 𝑖 ∶ I Γ ⊢ 𝑘 ∶ O 𝑖 → 𝔹

Γ ⊢ 𝔹ind 𝑃 𝑡true 𝑡false (𝛽𝔹 𝑖 𝑘) ∶ 𝑃{𝑥 ≔ 𝛽𝔹 𝑖 𝑘}

What makes our world go wrong and led us to building a model of
BTT is unjustified discrimination of 𝛽𝔹 by predicates. To circumvent
this issue, we could try and ask that 𝑃 simply propagates the effect in
the following way:

𝑃{𝑥 ≔ 𝛽𝔹 𝑖 𝑘} ≡ 𝛽□ 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑃 (𝑘 𝑜))

We would call such a predicate strict.

Now, if we had at our disposal a model where every predicate were
strict, then 𝛽□ would no more need to return a dummy value

℧ ∶ □,

but something more meaningful. For instance, we could take

𝛽□ 𝑖 𝑘 ≔ Π𝑜 ∶ O 𝑖. 𝑘 𝑜.

Then again, given such a strict predicate 𝑃 and such a definition for 𝛽□,
a simple way to inhabit

𝑃{𝑥 ≔ 𝛽𝔹 𝑖 𝑘}
would be the following:

𝔹ind 𝑃 𝑡true 𝑡false (𝛽𝔹 𝑖 𝑘) ≔ 𝜆𝑜 ∶ O 𝑖. 𝔹ind 𝑃 𝑡true 𝑡false (𝑘 𝑜) ∶ Π𝑜 ∶ O 𝑖. 𝑃 (𝑘 𝑜).

All of this makes sense:
𝛽𝔹 𝑖 𝑘 ∶ 𝔹

is a stored computation waiting for an oracle to collapse to a boolean
value. Therefore, 𝑃 should not be able to distinguish between 𝛽𝔹 𝑖 𝑘
and either of its branches. Consequently, if we were able to inhabit
any branch the oracle may choose, we should be able to inhabit the
node. Hence our definition of 𝛽□ 𝑖 𝑘 as a Π-type.

3. Gardening with the Pythia 134

[59]: Gilbert et al. (2019), “Definitional
Proof-Irrelevance without K”

In fact, this is essentially what allows sheaf models to feature depen-
dent elimination. Indeed, let us look once again at the sheafification
operator

Inductive 𝔖 (𝐴 ∶ □𝑖) ∶ □𝑖 ∶=
∣ 𝜂 ∶ 𝐴 → 𝔖 𝐴
∣ 𝛽 ∶ Π(𝑖 ∶ I). (O 𝑖 → 𝔖 𝐴) → 𝔖 𝐴
∣ 𝜀 ∶ Π(𝑖 ∶ I) (𝑥 ∶ 𝔖 𝐴).𝛽 𝑖 (𝜆_ ∶ O 𝑖. 𝑥) = 𝑥.

Note that the 𝜀 constructor enables us to prove that

𝑃 (𝛽𝔹 𝑖 𝑘) = 𝛽□ 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑃 (𝑘 𝑜)).

Indeed, we are in a setting where O 𝑖 is proof-irrelevant. Hence, we
have:

𝑃 (𝛽𝔹 𝑖 𝑘) = 𝛽□ 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑃 (𝛽𝔹 𝑖 𝑘))
= 𝛽□ 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑃 (𝛽𝔹 𝑖 (𝜆_ ∶ O 𝑖. 𝑘 𝑜))
= 𝛽□ 𝑖 (𝜆𝑜 ∶ O 𝑖. 𝑃 (𝑘 𝑜)).

However, even delving as deep as we could in the arcane of strict para-
metricity and making use of the various capabilities of 𝑆𝑃𝑟𝑜𝑝 [59], we
were not able to build a program translation of MLTT into CIC satis-
fying these rules. The best asset of program translations, the fact that
conversion in the source theory is interpreted as conversion in the target
theory, shows its inner weakness: when we need more control over com-
putation, we cannot achieve it by that means.

Part III.

FUTURE

[42]: Coquand et al. (2012), “A Com-
putational Interpretation of Forcing in
Type Theory”
[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

[44]: Coquand et al. (2017), “The In-
dependence of Markov’s Principle in
Type Theory”

[115]: Pédrot (2020), “Russian Con-
structivism in a Prefascist Theory”

[38]: Cohen (1963), “The indepen-
dence of the continuum hypothesis”

[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

[42]: Coquand et al. (2012), “A Com-
putational Interpretation of Forcing in
Type Theory”

[44]: Coquand et al. (2017), “The In-
dependence of Markov’s Principle in
Type Theory”

4. The cone of possibilities
4.1 Why you should buy

ϝTT 137

4.2 Canonizing continuity 143

4.3 Normalizing normaliza-
tion 146

4.4 Fascism in the system . 147

4.5 Everything is normal . 164
In this chapter, we face our desire for control and take a whack at
bridging the authoritarian gap. Building upon Coquand and Jaber’s
work on continuity [42, 43], later followed by Coquand and Mannaa
[44], we define a theory where typing and conversion judgments are
definitionally sheaves over the Cantor space.

However, as we are doing a type-theoretical variant of sheaves that
is more intensional than what can be found in the categorical world,
we believe there is need for another name than sheaves to describe
our theory. A similar endeavour was done by Pédrot [115] to give a
type-theoretic version of presheaves. In this work, Prédrot notices that
sheaves were first introduced in French as “faisceaux”, itself derived
from the latin word fascis. Sticking closely to the absolute laws of et-
ymology, Pédrot names prefascist theory his type-theoretical account
of presheaves. Walking in his footsteps and acknowledging that the
political overtone is in tune with our need for control on terms, we
devise the following battle plan:

Theoretical fascism We describe in Section 4.1 a theory dubbed ϝTT
(read “split TT” or “digamma TT”). This theory displays a formal
oracle

𝔣 ∶ ℕ → 𝔹,
as in the axiom translation of the previous chapter. In ϝTT however, typ-
ing and conversion rules are moreover indexed with forcing conditions
[38]

ℓ, ℓ′ ∶ list (ℕ × 𝔹),
so as to make them sheaves over the Cantor space. ϝTT was already
described in a note by Coquand and Jaber [43], later developed by the
same authors on the particular case of System T [42], then by Coquand
and Mannaa [44] to show independence of Markov’s principle in type
theory.

Continuous fascism In Section 4.2, we explain how, assuming nor-
malization of ϝTT, we recover continuity of all MLTT-definable func-
tionals

⊢MLTT 𝑓 ∶ (ℕ → 𝔹) → ℕ.
Mainly, the normalization resultwe hope for entails that for any term

⊢ϝTT 𝑡 ∶ ℕ,

potentially making use of 𝔣, the list ℓ of all the queries that 𝑡 asks 𝔣 is
finite. This is exactly uniform continuity as described in Section 2.2.1,
which is equivalent to dialogue continuity in the case of the Cantor
space, as shown in Proposition 2.2.2.

4. The cone of possibilities 137

[4]: Adjedj et al. (2023), “Martin-Löf à
la Coq”

[3]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

Normal fascism In Section 4.4, we prove normalization for System
ϝT, an extension of System T with the same oracle

𝔣 ∶ ℕ → 𝔹

and the same forcing conditions

ℓ, ℓ′ ∶ list (ℕ × 𝔹)

as ϝTT. System ϝT serves as a simple example of the normalization tech-
nique we are going to use for ϝTT, and results of Section 4.4 are formal-
ized in Coq.

Finally, in Section 4.5 we describe an unfinished proof of normaliza-
tion for ϝTT. We make use of a Coq development of Adjedj et al [4],
itself inspired by Abel et al [3]. At the time of writing, the formaliza-
tion is still an ongoing work.

4.1. Why you should buy ϝTT 4.1.1 A brief tour around ϝTT 137
4.1.2 Undressed code 140

The aim of this Section is to explain and justify ϝTT as a type theory
worthy of our attention.

Section 4.1.1 provides a birdeye’s view of the theory, as well as the
intuition behind its definition.

To make things more formal, a complete list of rules for ϝTT is dis-
played in Section 4.1.2.

4.1.1. A brief tour around ϝTT
We define ϝTT, a variant of MLTT extended with a formal oracle

𝔣 ∶ ℕ → 𝔹.

As in the axiom translation, 𝔣 is a black-box, akin to a variable, and
when applied to some term 𝑡 ∶ ℕ it usually blocks computation. How-
ever, in ϝTT, we are able to gradually unblock computation, and store
the resulting values in forcing conditions ℓ, ℓ′.
Forcing conditions are lists of pairs of natural numbers and booleans:

ℓ ∶ list (ℕ × 𝔹).

They represent calls to the 𝔣 oracle, and the answers it already pro-
duced. We use lists in the formalization as they are available in Coq
and easy to work with, but the order of pairs will not matter. Our
reader may thus think of forcing conditions as finite sets. Backing this
perception, we write

(n, b) ∈ ℓ
to mean that a pair (n, b) is present in ℓ.

4. The cone of possibilities 138

WF ℓ ⊢ℓ Γ
Γ ⊢ℓ 𝔣 n ≡ b ∶ 𝔹

(n, b) ∈ ℓ

Table 4.1.: 𝔣-conversion rule

As lists ℓ, ℓ′ can be seen as partial
maps, in the rest of the Section, we
write n ∉ dom(ℓ) to mean

(n, true) ∉ dom(ℓ)∧(n, false) ∉ dom(ℓ).

Γ ⊢(n,true)∷ℓ 𝐴 Γ ⊢(n,false)∷ℓ 𝐴
Γ ⊢ℓ 𝐴

n ∉ dom(ℓ)

Γ ⊢(n,true)∷ℓ 𝑡 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ∶ 𝐴
Γ ⊢ℓ 𝑡 ∶ 𝐴 n ∉ dom(ℓ)

Γ ⊢(n,true)∷ℓ 𝐴 ≡ 𝐵 Γ ⊢(n,false)∷ℓ 𝐴 ≡ 𝐵
Γ ⊢ℓ 𝐴 ≡ 𝐵 n ∉ dom(ℓ)

Γ ⊢(n,true)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 n ∉ dom(ℓ)

Table 4.2.: Splitting rules of ϝTT

This is reminiscent of 𝜂-rule for
booleans. However, our setting is
much weaker, as the splitting rules
are restricted to the particular case
of 𝔣 applied to numerals.

Forcing conditions, as their elements, live in themeta-theory.Wewrite
n and b in the meta-theory and add an overline bar n and b when we
inject them into the object theory.

As lists represent finite sets, any sequent derivable with a list ℓ can
also be derived with any other list ℓ′ containing the same elements
at different positions. Hence, our order ℓ′ ⪯ ℓ will be defined as the
inclusion of ℓ in ℓ′:

ℓ′ ⪯ ℓ ≔ Πn b. (n, b) ∈ ℓ ⟶ (n, b) ∈ ℓ′.

The fact that our order is the converse of inclusion comes from the
fact that the smaller a list ℓ is, the coarser a forcing condition it is. For
instance, the empty list nil defines the bigger world of all, one that
encompasses every other. Hence, for any ℓ, we get ℓ ⪯ nil .

If we have a pair
(n, b) ∈ ℓ,

that means that 𝔣 has already been called on n, and we live in a world
where it answered b.

Hence, any future call to n will entail

Γ ⊢ℓ 𝔣 n ≡ b ∶ 𝔹.

This conversion rule for 𝔣 is presented in Tab 4.1. To give a simple
example,

if (O, true) ∈ ℓ then Γ ⊢ℓ 𝔣 O ≡ true ∶ 𝔹.

When this is the first time the n query is asked, computation is tem-
porarily blocked. The way out of the cul-de-sac is through the splitting
rules of ϝTT. As their name hints at, they allow us to split computation
in two parallel worlds, extending ℓ with (n, true) on the one hand, and
(n, false) on the other hand. These rules are presented in Tab 4.2.

Afirst intuition of the logical power of these rules can be given through
a quick example: in ϝTT the sequent

Γ ⊢nil (if 𝔣 3 then true else true) ≡ true

is derivable, which is of course not the case for a simple variable

⊢MLTT 𝑓 ∶ ℕ → 𝔹

in plain MLTT.

Proof. We can split on 3, making use of the splitting rule for conver-
sion of terms. Then we have to prove

if true then true else true ≡ true

and
if false then true else true ≡ true.

Both cases are direct using the conversion rules of 𝔹ind. ■

4. The cone of possibilities 139

WF nil

WF ℓ n ∉ dom(ℓ)
WF (n, b) ∷ ℓ

Table 4.3.: Well-formation of ℓ

Thankfully, checking whether a
term 𝑡 ∶ ℕ is a numeral is an eas-
ily decidable property.

Splitting heirs However, we do not accept any list as forcing con-
dition; they need to be well-mannered and validate some properties.
First, let us notice that if we allowed the user to split several times on
the same natural number n, wewould end upwith a tree of derivations
where every branch but two proved

Γ ⊢ℓ true ≡ 𝔣 n ≡ false ∶ 𝔹,

and are thus inconsistent. The system as a whole would stay consis-
tent, though, as the extreme-left (resp. extreme-right) branch would
only contain copies of (n, true) (resp. copies of (n, false)), escaping the
fateful conversion. Still, for peace ofmindwe discard that kind of bois-
terous behaviour, with a well-formation WF judgment, presented in
Tab 4.3.

In the rest of the chapter, we will implicitly only consider forcing con-
ditions validating that predicate, meaning that our forcing conditions
actually implement partial functional relations on natural numbers and
booleans.

Verymeta Moreover, we ask that forcing conditions only contain nu-
merals and canonical booleans (i.e. true or false). To enforce this prop-
erty, we do not give them access to terms of ϝTT but to meta-natural
numbers and meta-booleans. This is the reason we make a distinction
between

n and b

in the meta-theory and

n and b

when we inject them into the object theory. This saves us from both-
ering with computation inside ℓ. Indeed, had we allowed every term
of the object theory to creep into ℓ, we would have had to deal with
terms such as

(S 𝑥, true) or (S O, 𝑦)
in ℓ. This would put us at the mercy of a treacherous substitution 𝜎 ,
suddenly turning 𝑥 intoO and 𝑦 into false and making us inconsistent
all over again.

As a consequence, this means that in our proof of normalization in
Section 4.3, the term

𝔣 (S 𝑥)
will for instance be considered neutral, although this is not obvious
when looking at its head constructor. This is a slight drift away from
the usual weak-head reduction paradigm.

4. The cone of possibilities 140

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ 𝔣 𝑛 ≡ 𝔣 𝑚 ∶ 𝔹

Table 4.4.: Congruence rule for 𝔣

4.1.2. Undressed code

We now strip ϝTT of its its mysterious gauze and stare directly at its
naked set of rules. Formally, our theory features the following judg-
ments:

1. WF ℓ, meaning that ℓ is a well-formed forcing condition;
2. ⊢ℓ Γ, meaning that Γ is a well-typed context;
3. Γ ⊢ℓ 𝐴, meaning that 𝐴 is a type under context Γ;
4. Γ ⊢ℓ 𝑡 ∶ 𝐴, meaning that 𝑡 is of type 𝐴 under context Γ;
5. Γ ⊢ℓ 𝐴 ≡ 𝐵, meaning that 𝐴 and 𝐵 are convertible types under

context Γ;
6. Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴, meaning that 𝑡 and 𝑢 are convertible terms at type

𝐴 under context Γ.
The most unusual judgment is the first one, WF ℓ, which we already
mentioned. Its definition is given in Tab 4.3. Other judgments are
rather standard.

Extension is our intention We make sure that every rule of MLTT
gets a corresponding one in ϝTT. Every typing judgement

Γ ⊢MLTT 𝑡 ∶ 𝐴

can thus be translated into a judgment

Γ ⊢ϝTT
nil 𝑡 ∶ 𝐴.

The same is true for

▶ ⊢MLTT Γ
▶ Γ ⊢MLTT 𝐴
▶ Γ ⊢MLTT 𝐴 ≡ 𝐵
▶ Γ ⊢MLTT 𝑡 ≡ 𝑢 ∶ 𝐴

We will call ϝTT an extension of MLTT.

Fifty shades of rules The typing rules of our theory are displayed
in Figure 4.1, its conversion rules in Figure 4.2.

In the previous Section, we presented almost every rule regarding 𝔣.
The only remaining one is a congruence rule over natural numbers.
For the sake of exhaustiveness, we present it in Tab .4.4 All these un-
usual rules are written in blue in Figure 4.1 and 4.2.

4. The cone of possibilities 141

𝐴, 𝐵, 𝑡, 𝑢 ≔ □ ∣ 𝑥 ∣ 𝑡 𝑢 ∣ 𝜆𝑥 ∶ 𝐴. 𝑡 ∣ Π𝑥 ∶ 𝐴. 𝑡 ∣ ℕ ∣ O ∣ S 𝑡 ∣ ℕind 𝑃 𝑝O 𝑝S 𝑛 ∣ 𝔹 ∣ true ∣ false ∣ 𝔣 𝑡 ∣ 𝔹ind 𝑃 𝑝true 𝑝false 𝑏
Γ, Δ ≔ ⋅ ∣ Γ, 𝑥 ∶ 𝐴

WF nil

WF ℓ n ∈ ℕ b ∈ 𝔹
WF (n, b) ∷ ℓ n ∉ dom(ℓ)

WF ℓ
⊢ℓ ⋅

⊢ℓ Γ Γ ⊢ℓ 𝐴
⊢ℓ Γ, 𝑥 ∶ 𝐴

⊢ℓ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ℓ 𝑥 ∶ 𝐴

Γ ⊢ℓ 𝐴 Γ ⊢ℓ 𝑡 ∶ 𝐵
Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑡 ∶ 𝐵

⊢ℓ Γ
Γ ⊢ℓ □

Γ ⊢ℓ 𝐴 ∶ □
Γ ⊢ℓ 𝐴

Γ ⊢ℓ 𝐴 ∶ □ Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝐵 ∶ □
Γ ⊢ℓ Π𝑥 ∶ 𝐴. 𝐵 ∶ □

Γ ⊢ℓ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝐵
Γ ⊢ℓ Π𝑥 ∶ 𝐴. 𝐵

Γ ⊢ℓ 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ℓ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑡 𝑢 ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ℓ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑡 ∶ 𝐵
Γ ⊢ℓ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ Π𝑥 ∶ 𝐴. 𝐵

⊢ℓ Γ
Γ ⊢ℓ ℕ ∶ □

⊢ℓ Γ
Γ ⊢ℓ ℕ

⊢ℓ Γ
Γ ⊢ℓ 𝔹 ∶ □

⊢ℓ Γ
Γ ⊢ℓ 𝔹

⊢ℓ Γ
Γ ⊢ℓ O ∶ ℕ

⊢ℓ Γ Γ ⊢ℓ 𝑛 ∶ ℕ
Γ ⊢ℓ S 𝑛 ∶ ℕ

⊢ℓ Γ
Γ ⊢ℓ true ∶ 𝔹

⊢ℓ Γ
Γ ⊢ℓ false ∶ 𝔹

Γ, 𝑥 ∶ 𝔹 ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ℓ 𝑡false ∶ 𝑃{𝑥 ≔ false} Γ ⊢ℓ 𝑏 ∶ 𝔹

Γ ⊢ℓ 𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝑃{𝑥 ≔ 𝑏}

Γ, 𝑥 ∶ ℕ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ℓ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦} Γ ⊢ℓ 𝑛 ∶ ℕ

Γ ⊢ℓ ℕind 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃{𝑥 ≔ 𝑛}

Γ ⊢ℓ 𝑡 ∶ 𝐴 Γ ⊢ℓ 𝐵 Γ ⊢ℓ 𝐴 ≡ 𝐵
Γ ⊢ℓ 𝑡 ∶ 𝐵

⊢ℓ Γ Γ ⊢ℓ 𝑛 ∶ ℕ
Γ ⊢ℓ 𝔣 𝑛 ∶ 𝔹

ϝWFT
Γ ⊢(n,true)∷ℓ 𝐴 Γ ⊢(n,false)∷ℓ 𝐴

Γ ⊢ℓ 𝐴
n ∉ dom(ℓ) ϝTY

Γ ⊢(n,true)∷ℓ 𝑡 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ∶ 𝐴
Γ ⊢ℓ 𝑡 ∶ 𝐴 n ∉ dom(ℓ)

Figure 4.1.: Syntax and typing rules of ϝTT

4. The cone of possibilities 142

Γ ⊢ℓ 𝑡 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑡 ∶ 𝐴

Γ ⊢ℓ 𝐴
Γ ⊢ℓ 𝐴 ≡ 𝐴

Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑢 ≡ 𝑡 ∶ 𝐴

Γ ⊢ℓ 𝐴 ≡ 𝐵
Γ ⊢ℓ 𝐵 ≡ 𝐴

Γ ⊢ℓ 𝐴 ≡ 𝐵 ∶ □
Γ ⊢ℓ 𝐴 ≡ 𝐵

Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ℓ 𝐴 ≡ 𝐵
Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐵

Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢ℓ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑣 ∶ 𝐴

Γ ⊢ℓ 𝐴 ≡ 𝐵 Γ ⊢ℓ 𝐵 ≡ 𝐶
Γ ⊢ℓ 𝐴 ≡ 𝐶

Γ ⊢ℓ 𝐴 ≡ 𝐵 ∶ □ Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝐶 ≡ 𝐷 ∶ □
Γ ⊢ℓ Π𝑥 ∶ 𝐴. 𝐶 ≡ Π𝑥 ∶ 𝐵. 𝐷 ∶ □

Γ ⊢ℓ 𝐴 ≡ 𝐵 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝐶 ≡ 𝐷
Γ ⊢ℓ Π𝑥 ∶ 𝐴. 𝐶 ≡ Π𝑥 ∶ 𝐵. 𝐷

Γ ⊢ℓ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑡 ∶ 𝐵 Γ ⊢ℓ 𝑢 ∶ 𝐴
Γ ⊢ℓ (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑢 ≡ 𝑡{𝑥 ≔ 𝑢} ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ℓ 𝑓 ≡ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ℓ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ℓ 𝑓 𝑢 ≡ 𝑔 𝑣 ∶ 𝐵{𝑥 ≔ 𝑢}

Γ ⊢ℓ 𝐴 Γ ⊢ℓ 𝑓 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ ⊢ℓ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵
Γ ⊢ℓ 𝑓 ≡ 𝑔 ∶ Π𝑥 ∶ 𝐴. 𝐵

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ S 𝑛 ≡ S 𝑚 ∶ ℕ

Γ, 𝑥 ∶ ℕ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ℓ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ℓ ℕind 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃{𝑥 ≔ O}

Γ, 𝑥 ∶ ℕ ⊢ℓ 𝑃
Γ ⊢ℓ 𝑡S ≡ 𝑡′S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ℓ 𝑡O ≡ 𝑡′O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ℓ 𝑛 ≡ 𝑛′ ∶ ℕ

Γ ⊢ℓ ℕind 𝑃 𝑡O 𝑡S 𝑛 ≡ ℕind 𝑃 𝑡′O 𝑡′S 𝑛′ ∶ 𝑃{𝑥 ≔ 𝑛}

Γ, 𝑥 ∶ ℕ ⊢ℓ 𝑃
Γ ⊢ℓ 𝑡S ∶ Π𝑦 ∶ ℕ. 𝑃{𝑥 ≔ 𝑦} → 𝑃{𝑥 ≔ S 𝑦}

Γ ⊢ℓ 𝑡O ∶ 𝑃{𝑥 ≔ O}
Γ ⊢ℓ 𝑛 ∶ ℕ

Γ ⊢ℓ ℕind 𝑃 𝑡O 𝑡S (S 𝑛) ≡ 𝑡S{𝑦 ≔ 𝑛; 𝑝𝑦 ≔ ℕind 𝑃 𝑡O 𝑡S 𝑛} ∶ 𝑃{𝑥 ≔ S 𝑛}

Γ, 𝑥 ∶ 𝔹 ⊢ℓ 𝑃
Γ ⊢ℓ 𝑏 ≡ 𝑏′ ∶ 𝔹

Γ ⊢ℓ 𝑡true ≡ 𝑡′true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ℓ 𝑡false ≡ 𝑡′false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ℓ 𝔹ind 𝑃 𝑡true 𝑡false 𝑏 ≡ 𝔹ind 𝑃 𝑡′true 𝑡′false 𝑏′ ∶ 𝑃{𝑥 ≔ 𝑏}

Γ, 𝑥 ∶ 𝔹 ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ℓ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ℓ 𝔹ind 𝑃 𝑡true 𝑡false true ≡ 𝑡true ∶ 𝑃{𝑥 ≔ true}

Γ, 𝑥 ∶ 𝔹 ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃{𝑥 ≔ true}
Γ ⊢ℓ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ℓ 𝔹ind 𝑃 𝑡true 𝑡false false ≡ 𝑡false ∶ 𝑃{𝑥 ≔ false}

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ 𝔣 𝑛 ≡ 𝔣 𝑚 ∶ 𝔹

WF ℓ ⊢ℓ Γ
Γ ⊢ℓ 𝔣 n ≡ b ∶ 𝔹

(n, b) ∈ ℓ

Γ ⊢(n,true)∷ℓ 𝐴 ≡ 𝐵 Γ ⊢(n,false)∷ℓ 𝐴 ≡ 𝐵
Γ ⊢ℓ 𝐴 ≡ 𝐵 n ∉ dom(ℓ)

Γ ⊢(n,true)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 n ∉ dom(ℓ)

Figure 4.2.: Conversion rules of ϝTT

4. The cone of possibilities 143

In this Section, we implicitly as-
sume that our proof of normaliza-
tion for ϝTT goes through. As such,
every result presented here should
rather be understood as a strongly
claimed conjecture.

4.2. Canonizing continuity

Let us now explain how we plan to prove continuity of all

⊢ϝTT 𝑓 ∶ (ℕ → 𝔹) → ℕ

functionals. As continuitywill be essentially deduced fromnormaliza-
tion of the theory, we need to introduce a few concepts usually linked
to the latter. We will however refrain from exposing every technical
detail in this Section, and we will deliberately keep some definitions
informal. Everything will be made precise in Section 4.3. Moreover,
as it is our main goal, in this Section we only consider normalization
at the ℕ type, under the empty context.

Shrunkenheads To prove normalization, we first define a reduction
strategy for ϝTT. In our case, it is the usual weak-head reduction, ex-
tended with the rule

𝔣 n ⟶ℓ b if (n, b) ∈ ℓ.

We will write 𝑡 ⟶ℓ 𝑢 for one-step reduction and 𝑡 ⟶∗ℓ 𝑢 for its reflex-
ive, transitive closure.

In most normalization proofs, we end up with a canonicity theorem for
ℕ. This means that any term

⋅ ⊢ 𝑡 ∶ ℕ

can be turned into a numeral

S𝑛 O

by recursively applying weak-head reduction. In our setting, this is
not true anymore: even in the empty context, if 3 ∉ dom(ℓ), the term

𝑖𝑓 𝔣 3 𝑡ℎ𝑒𝑛 O 𝑒𝑙𝑠𝑒 O

cannot be reduced anymore.

Numerous numerals This leads us to make a distinction between
what we call reducible and split-reducible terms:

A term 𝑡 ∶ ℕ is reducible in the empty context under ℓ when it can be
recursively reduced to a numeral S𝑛 O. We write

⋅ ⊩sℓ 𝑡 ∈ ℕ.

A term 𝑡 ∶ ℕ is split-reducible in the empty context under ℓ, written

⋅ ⊩wℓ 𝑡 ∶ ℕ,

if:

▶ It is reducible in the empty context under ℓ, or

4. The cone of possibilities 144

The true numeral S𝑛O can of
course be different at every leaf, as
different values for 𝔣 n lead to dif-
ferent computations.

▶ There exists a split on some natural number 𝑛 such that 𝑡 is split-
reducible in the empty context under both

(n, true) ∷ ℓ and (n, false) ∷ ℓ.

Intuitively, this means that a term 𝑡 is split-reducible if there is a well-
founded tree of splits such that 𝑡 is reducible at every leaf. Visually, a
split-reducibility proof looks like this:

𝑛

𝑚 ⋅ ⊩s[(𝑛,false)] 𝑡 ∶ ℕ

⋅ ⊩s[(n,true);(m,true)] 𝑡 ∶ ℕ 𝑘

⋅ ⊩s[(n,true);(m,false);(k,true)] 𝑡 ∶ ℕ ⋅ ⊩s[(n,true);(m,false);(k,false)] 𝑡 ∶ ℕ

true false

true false

true false

The above definition is equivalent to the following one:

⋅ ⊩wℓ 𝑡 ∶ ℕ ≔ Σ n ∶ ℕ. Π ℓ′. (ℓ′ ⪯ ℓ) ⟶
(Πm ∶ ℕ. m ≤ n → m ∈ ℓ′) ⟶
⋅ ⊩sℓ 𝑡 ∶ ℕ

This wording is coarser than the previous definition, in the sense that
it builds a complete tree of height n, giving it the shape of a cone.
Visually, it looks like this:

O

⋅ ⊩s[(O,true);(1,true);...;(n,true)] 𝑡 ∶ ℕ ⋅ ⊩s[(O,false),(1,false),...,(n,false)] 𝑡 ∶ ℕ

Every question from O to n

For practical reasons, we will use the latter in Section 4.3, as it allows
us to reuse as much code as possible. However, with the former defi-
nition the link with dialogue continuity is more blatant. Providing we
prove that every term

⋅ ⊢ϝTT
nil 𝑡 ∶ ℕ

is split-reducible, we can deduce a theorem of split-canonicity: for ev-
ery term 𝑡 ∶ ℕ, there is a finite tree of splits such that 𝑡 can be recur-
sively reduced to a true numeral S𝑛 O at every leaf.

4. The cone of possibilities 145

[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

Fruitful trees Finally, taking a function

⋅ ⊢nil ℎ ∶ (ℕ → 𝔹) → ℕ,

we can apply it to
𝜆𝑥. 𝔣 𝑥

and get a closed term of type ℕ. Split-canonicity applies, from which
we retrieve a tree of splits. Then, still in the meta-theory we can con-
vert this tree of splits into a dialogue tree

𝑑 ∶ 𝔇 (𝐼 ≔ ℕ) (𝑂 ≔ 𝜆_. 𝔹) ℕ

and retrieve dialogue continuity:

𝚷(𝛼 ∶ ℕ → 𝔹). ℎ 𝛼 = 𝜕 𝑑 𝛼.

Notice that as in Chapter 3, this proof is external to the theory, and
we do not retrieve a ϝTT term of type

Π(ℎ ∶ (ℕ → 𝔹) → ℕ). Σ(𝑑 ∶ 𝔇 ℕ (𝜆_. 𝔹) ℕ). Π(𝛼 ∶ ℕ → 𝔹). ℎ 𝛼 = 𝜕 𝑑 𝛼.

Still, as ϝTT is an extension of MLTT, we have our theorem: every

⋅ ⊢MLTT ℎ ∶ (ℕ → 𝔹) → ℕ

functional is dialogue continuous.

As our goal is to prove that every closed term of type

(ℕ → 𝔹) → ℕ

is continuous, we could restrict the scope of our proof and only care
about normalization in the empty context. This is in fact the path fol-
lowed by Coquand and Jaber in their paper: they define their logical
relation in the empty context and take care of arbitrary context by
closing under substitution of reducible terms. This way they for in-
stance never have to worry about neutrals.

We however believe that normalization under any context is a neces-
sary first step if we want to internalize the continuity theorem. Indeed,
there might be hope in iterating the forcing extension, in a way al-
luded to by Coquand and Jaber at the end of their paper [43], but we
would need to specify the computational content of the resulting ax-
iom under any context, not only the empty one.

Let us leave this for future work, and for now let us focus on proving
normalization for ϝTT.

4. The cone of possibilities 146

[3]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

[134]: Tait (1967), “Intensional Inter-
pretations of Functionals of Finite
Type I”

[59]: Gilbert et al. (2019), “Definitional
Proof-Irrelevance without K”
[119]: Pujet et al. (2023), “Impredica-
tive Observational Equality”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”

[4]: Adjedj et al. (2023), “Martin-Löf à
la Coq”

To make things even blurrier, in
the same paper Girard calls 𝑡 ⟶ 𝑢
reduction and 𝑡 ⟶∗ 𝑢 conversion.

ne 𝑥
ne 𝑓 nf 𝑢

ne (𝑓 𝑢)

nf 𝑡
nf (𝜆𝑥. 𝑡)

ne 𝑡
nf 𝑡

Table 4.7.: (Deep) normal forms for 𝜆-
calculus

[63]: Girard et al. (1989), “Proofs and
Types, volume 7 of”

In that setting, it is sometimes
called a reduction strategy.

Let us also mention Normalization
by Evaluation (NbE) models, as in
Wieczorek et al [143]

[143]: Wieczorek et al. (2018), “A
Coq Formalization of Normalization
by Evaluation forMartin-Löf Type The-
ory”

, that directly
prove existence of deep normal
forms.

4.3. Normalizing normalization

Our emphasis on syntactic models in the previous chapters owed a lot
to the fact that it saved us from normalization proofs. Indeed, proving
in dependent type theory that every well-typed term is normalizing
is a notoriously difficult feat. Thankfully, now that we can no longer
escape it, there are some giants’ shoulders to stand on. Abel and al [3]
present a model of normalization for MLTT with dependent products,
natural numbers and one predicative universe. Their proof is a variant
of the historical Tait’s argument [134], and is formalized in Agda,mak-
ing use of induction recursion. This model has since been extended by
various authors, such asGilbert et al [59] with a universe of strict propo-
sitions or Pujet et al [119, 120] with observational equality. Recently,
the development was ported to Coq by Adjedj et al [4].

Normalization has historically often been linked to reduction, since an
easy way to define normal forms is simply to say that they are terms
that cannot be further reduced. However, the paradigm over reduc-
tion has shifted a bit over time. In historic work, as in the proof of
strong reduction for System T presented by Girard [63], reduction is
a non-deterministic relation, close to our notion of conversion. For in-
stance, 𝛽-reduction can be triggered on any subterm (𝜆𝑥. 𝑡) 𝑢 of a term
𝑣 . Consequently, normal forms of the 𝜆-calculus, presented in Tab 4.7,
are normal from head to tail: we shall call them deep normal forms.

In more recent work such asAbel et al’s formalization, however, reduc-
tion is deterministic. The usual case is weak-head reduction, which is in-
teresting since it is the algorithm used by real-life proof assistants to
normalize and compare terms. Moreover, a deterministic relation al-
lows for a more intensional meta-theory, compared to models provid-
ing propositional existence and unicity of a normal form, where the
axiom of unique choice is often needed to extract the normal form.

In a proof based on weak-head reduction,normal forms are terms that
do not further weak-head reduce: the weak-head normal forms. Abel
et al’s normalization theorem is thus weaker than Girard’s, as it only
entails that any well-typed term reduces to a weak-head normal form.
As any subterm 𝑣 of a well-typed term 𝑡 ∶ 𝐴 is also well-typed, we
could iterate weak-head reduction to reach iterated weak-head normal
forms. Most models show that it is possible for base types like natural
numbers, where it is called canonicity.

The fact that iterated normal forms exist at all types, and that they
coincide with deep normal forms, is not that trivial. It can however be
recovered from Abel’s and Adjedj et al’s endeavours, as in both cases
they prove equivalence of declarative and algorithmic conversion, the
latter being a procedure that recursively weak-head normalizes the
two terms it compares. Using the fact that a term is convertible to itself,
one can recover existence of iterated weak-head normal forms.

Still, as we care about deep normal forms only for terms of typeℕ and
𝔹, and can accomodate weak-head normal forms for the rest, we will
not need to prove equivalence of declarative and algorithmic conver-
sion; normalization will fit our needs.

4. The cone of possibilities 147

System ϝT is exactly the system de-
scribed by Coquand and Jaber in
their 2012 paper [42]

[42]: Coquand et al. (2012), “A Com-
putational Interpretation of Forcing in
Type Theory”

. It is an exten-
sion of System T in the sameway as
ϝTT is an extension of MLTT.

4.4. Fascism in the system 4.4.1 Normalizing System T . 149
4.4.2 Domain extension . . . 156

Before presenting a normalization model for the whole of ϝTT, we de-
scribe a simpler version, adapted to the case of our ever-running ex-
ample, System T, and its extension dubbed System ϝT. We divide this
Section in two parts. First, we will prove normalization for System T

using Abel’s model. Then, we will adapt it to prove normalization for
our extension, System ϝT. Typing rules of ϝT are presented in Figure
4.3, conversion rules in Figure 4.4. Once again, rules relevant to our
extension are displayed in blue. Removing them, together with 𝔣 and
ℓ subscripts for judgments, one recovers usual System T as presented
in Section 1.1, only this time with natural numbers and booleans.

The reader might notice that forcing conditions ℓ, ℓ′ only have an im-
pact on conversion rules for 𝔣. In the absence of computation in types,
they play no role whatsoever in judgments Γ ⊢ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐴, hence
we could remove ℓ subscripts there. They will however become impor-
tant in our definition of reducibility, and crucial when we deal with
MLTT, thus we choose to keep them in this example.

𝐴, 𝐵 ≔ ℕ ∣ 𝔹 ∣ 𝐴 → 𝐵
𝑡, 𝑢 ≔ 𝑥 ∣ 𝑡 𝑢 ∣ 𝜆𝑥 ∶ 𝐴. 𝑡 ∣ O ∣ S 𝑡 ∣ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ∣ true ∣ false ∣ 𝔹rec 𝑃 𝑡true 𝑡false 𝑏 ∣ 𝔣 𝑡
Γ, Δ ≔ ⋅ ∣ Γ, 𝑥 ∶ 𝐴

WF ℓ
⊢ℓ ⋅

⊢ℓ Γ Γ ⊢ℓ 𝐴
⊢ℓ Γ, 𝑥 ∶ 𝐴 WF nil

WF ℓ n ∉ dom(ℓ)
WF (n, b) ∷ ℓ

⊢ℓ Γ (𝑥 ∶ 𝐴) ∈ Γ
Γ ⊢ℓ 𝑥 ∶ 𝐴

Γ ⊢ℓ 𝐴 Γ ⊢ℓ 𝐵
Γ ⊢ℓ 𝐴 → 𝐵

Γ ⊢ℓ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ℓ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑡 𝑢 ∶ 𝐵

Γ ⊢ℓ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑡 ∶ 𝐵
Γ ⊢ℓ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ 𝐴 → 𝐵

⊢ℓ Γ
Γ ⊢ℓ ℕ

⊢ℓ Γ
Γ ⊢ℓ O ∶ ℕ

⊢ℓ Γ Γ ⊢ℓ 𝑛 ∶ ℕ
Γ ⊢ℓ S 𝑛 ∶ ℕ

⊢ℓ Γ
Γ ⊢ℓ 𝔹

⊢ℓ Γ
Γ ⊢ℓ true ∶ 𝔹

⊢ℓ Γ
Γ ⊢ℓ false ∶ 𝔹

⊢ℓ Γ Γ ⊢ℓ 𝑛 ∶ ℕ
Γ ⊢ℓ 𝔣 𝑛 ∶ 𝔹

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃
Γ ⊢ℓ 𝑡false ∶ 𝑃 Γ ⊢ℓ 𝑏 ∶ 𝔹
Γ ⊢ℓ 𝔹rec 𝑃 𝑡true 𝑡false 𝑏 ∶ 𝑃

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ∶ 𝑃
Γ ⊢ℓ 𝑡S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ℓ 𝑛 ∶ ℕ

Γ ⊢ℓ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ∶ 𝑃

ϝTY Γ ⊢(n,true)∷ℓ 𝑡 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ∶ 𝐴
Γ ⊢ℓ 𝑡 ∶ 𝐴 n ∉ dom(ℓ)

Figure 4.3.: Typing rules of System ϝT

4. The cone of possibilities 148

Γ ⊢ℓ 𝑡 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑡 ∶ 𝐴

Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑢 ≡ 𝑡 ∶ 𝐴

Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑢 ≡ 𝑣 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑣 ∶ 𝐴

Γ ⊢ℓ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵
Γ ⊢ℓ 𝑢 ≡ 𝑣 ∶ 𝐴

Γ ⊢ℓ 𝑓 𝑢 ≡ 𝑔 𝑣 ∶ 𝐵

Γ ⊢ℓ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑡 ∶ 𝐵 Γ ⊢ℓ 𝑢 ∶ 𝐴
Γ ⊢ℓ (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑢 ≡ 𝑡{𝑥 ≔ 𝑢} ∶ 𝐵

Γ ⊢ℓ 𝐴 Γ ⊢ℓ 𝑓 ∶ 𝐴 → 𝐵
Γ ⊢ℓ 𝑔 ∶ 𝐴 → 𝐵 Γ, 𝑥 ∶ 𝐴 ⊢ℓ 𝑓 𝑥 ≡ 𝑔 𝑥 ∶ 𝐵

Γ ⊢ℓ 𝑓 ≡ 𝑔 ∶ 𝐴 → 𝐵

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ S 𝑛 ≡ S 𝑚 ∶ ℕ

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ≡ 𝑡 ′O ∶ 𝑃
Γ ⊢ℓ 𝑡S ≡ 𝑡 ′S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ℓ 𝑛 ≡ 𝑛′ ∶ ℕ

Γ ⊢ℓ ℕrec 𝑃 𝑡O 𝑡S 𝑛 ≡ ℕrec 𝑃 𝑡′O 𝑡′S 𝑛′ ∶ 𝑃

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ∶ 𝑃
Γ ⊢ℓ 𝑡S ∶ ℕ → 𝑃 → 𝑃

Γ ⊢ℓ ℕrec 𝑃 𝑡O 𝑡S O ≡ 𝑡O ∶ 𝑃

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡O ∶ 𝑃
Γ ⊢ℓ 𝑡S ∶ ℕ → 𝑃 → 𝑃 Γ ⊢ℓ 𝑛 ∶ ℕ

Γ ⊢ℓ ℕrec 𝑃 𝑡O 𝑡S (S 𝑛) ≡ 𝑡S 𝑛 (ℕrec 𝑃 𝑡O 𝑡S 𝑛) ∶ 𝑃

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ 𝔣 𝑛 ≡ 𝔣 𝑚 ∶ 𝔹

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ≡ 𝑡 ′true ∶ 𝑃
Γ ⊢ℓ 𝑡false ≡ 𝑡 ′false ∶ 𝑃 Γ ⊢ℓ 𝑏 ≡ 𝑏 ∶ 𝔹

Γ ⊢ℓ 𝔹rec 𝑃 𝑡true 𝑡false ≡ 𝔹rec 𝑃 𝑡 ′true 𝑡′false ∶ 𝑃

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃
Γ ⊢ℓ 𝑡false ∶ 𝑃

Γ ⊢ℓ 𝔹rec 𝑃 𝑡true 𝑡false true ≡ 𝑡true ∶ 𝑃

Γ ⊢ℓ 𝑃 Γ ⊢ℓ 𝑡true ∶ 𝑃
Γ ⊢ℓ 𝑡false ∶ 𝑃

Γ ⊢ℓ 𝔹rec 𝑃 𝑡true 𝑡false false ≡ 𝑡false ∶ 𝑃

WF ℓ ⊢ℓ Γ
Γ ⊢ℓ 𝔣 n ≡ b ∶ 𝔹

(n, b) ∈ ℓ Γ ⊢(n,true)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 Γ ⊢(n,false)∷ℓ 𝑡 ≡ 𝑢 ∶ 𝐴
Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 n ∉ dom(ℓ)

Figure 4.4.: Conversion rules of Sys-
tem ϝT

4. The cone of possibilities 149

4.4.1. Normalizing System T

Before entering the proof, let us quickly mention two technicalities:
weakenings and substitutions. They will become important later on, as
some predicates will quantify over them.

Definition 4.4.1: Weakenings and substitutions

Formalization of weakenings (un-
der the name “lifts”) and substitu-
tions is available here.

Weakenings are inductively defined as follows:

id𝑤 ∶ Γ ⊆ Γ
𝜌 ∶ Δ ⊆ Γ

↑𝑤 𝜌 ∶ (Δ, 𝑥 ∶ 𝐴) ⊆ Γ
𝜌 ∶ Δ ⊆ Γ

⇑𝑤 𝜌 ∶ (Δ, 𝑥 ∶ 𝐴) ⊆ (Γ, 𝑥 ∶ 𝐴)

Substitutions are then defined as follows:

id𝑠 ∶ Γ ⟶ Γ
𝜎 ∶ Γ ⟶ Δ Γ ⊢ 𝑡 ∶ 𝐴
(𝜎, 𝑡) ∶ Γ ⟶ (Δ, 𝑥 ∶ 𝐴)

𝜎 ∶ Γ ⟶ Δ
↑𝑠 𝜎 ∶ (Γ, 𝑥 ∶ 𝐴) ⟶ Δ

𝜎 ∶ Γ ⟶ Δ
⇑𝑠 𝜎 ∶ (Γ, 𝑥 ∶ 𝐴) ⟶ (Δ, 𝑥 ∶ 𝐴)

We will write 𝑡[𝜌] or 𝑡[𝜎] to denote the action of some weakening 𝜌
or some substitution 𝜎 on some term 𝑡. When we consider the action
of

(id𝑠 , 𝑢) ∶ Γ ⟶ (Γ, 𝑥 ∶ 𝐴)
on 𝑡, we will simply write 𝑡{𝑥 ≔ 𝑢}.

Let us notice that, contrarily to many pen-and-paper presentations,
this definition of substitutions does not depend on weakenings.

We will refrain from explaining in detail here how theses actions are
defined. The interested reader may refer to the formalization to get
their precise behaviour. Let us juste assume thatwe havewell-behaved
notions of weakenings and substitution that validate the following
lemma:

Lemma 4.4.1: Well formedness of weakenings and substitutions
If

Proof thatwell formedweakenings
preserve typing can be found here.
Regarding substitutions, proof can
be found here.

Γ ⊢ 𝑡 ∶ 𝐴

and
𝜌 ∶ Δ ⊆ Γ or 𝜎 ∶ Δ ⟶ Γ

then
Δ ⊢ 𝑡[𝜌] ∶ 𝐴 or Δ ⊢ 𝑡[𝜎] ∶ 𝐴

To prove normalization for System T, we first need to specifiy our re-
duction strategy. As discussed, it is the usual weak-head reduction.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Term.v#L18
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Typing.v#L98
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Typing.v#L194

4. The cone of possibilities 150

(𝜆𝑥. 𝑡) 𝑢 ⟶ 𝑡{𝑥 ≔ 𝑢}

𝔹rec 𝑃 𝑡true 𝑡false true ⟶ 𝑡true

𝔹rec 𝑃 𝑡true 𝑡false false ⟶ 𝑡false

ℕrec 𝑃 𝑡S 𝑡O O ⟶ 𝑡O

ℕrec 𝑃 𝑡S 𝑡O (S 𝑛) ⟶ 𝑡S 𝑛 (ℕrec 𝑃 𝑡S 𝑡O 𝑛)

Table 4.8.: One-step reduction

Substituting a variable simply by
a normal form, like a 𝜆-term, how-
ever, might trigger a 𝛽-reduction.

Definition 4.4.2: Reduction
Iterated reduction for System T

𝑡 ⟶∗ 𝑢

is the reflexive, transitive closure of one-step reduction

𝑡 ⟶ 𝑢,

presented in Tab 4.8. Then

Γ ⊢ 𝑡 ∶⟶∗∶ 𝑢 ∶ 𝐴

is the conjonction of the following four conditions:

1. Γ ⊢ 𝑡 ∶ 𝐴
2. Γ ⊢ 𝑢 ∶ 𝐴
3. 𝑡 ⟶∗ 𝑢
4. Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

Let us now define neutral terms. As explained, their definition is dif-
ferent from the one given in Tab 4.7. In particular, they are no more
mutually defined with normal forms.

Definition 4.4.3: Neutral term
A term 𝑛 is neutral when the following holds:

ne 𝑥
ne 𝑓

ne (𝑓 𝑢)
ne 𝑛

ne (ℕrec 𝑃 𝑡O 𝑡S 𝑛)
ne 𝑏

ne (𝔹rec 𝑃 𝑡true 𝑡false 𝑏)

Neutral terms are so called because they do not fire any reduction
rule, when substituted with a variable in a term. They are moreover a
particular case of normal form.

Definition 4.4.4: Weak-head normal forms
Weak-head normal form are defined as the following:

whnf O whnf S 𝑡
ne 𝑡

whnf 𝑡

whnf true whnf false whnf (𝜆 𝑥. 𝑡)

As explained, our goal is to prove that every well-typed term

Γ ⊢T 𝑡 ∶ 𝐴

reduces to some whnf 𝑡′. We will say that every such term is normaliz-
ing.

To that end, we define the reducibility predicates, starting with base
types.

4. The cone of possibilities 151

Definition 4.4.5: Reducibility predicates for ℕ and 𝔹
The reducibility predicates _ ⊩ _ ∈ ℕ and _ ⊩ _ ∈ 𝔹 for base types ℕ
and 𝔹 are defined as follows:

Γ ⊢ 𝑡 ∶⟶∗∶ O ∶ ℕ
Γ ⊩ 𝑡 ∈ ℕ

Γ ⊢ 𝑡 ∶⟶∗∶ 𝑢 ∶ ℕ ne 𝑢
Γ ⊩ 𝑡 ∈ ℕ

Γ ⊢ 𝑡 ∶⟶∗∶ S 𝑢 ∶ ℕ Γ ⊩ 𝑢 ∈ ℕ
Γ ⊩ 𝑡 ∈ ℕ

Γ ⊢ 𝑡 ∶⟶∗∶ true ∶ 𝔹
Γ ⊩ 𝑡 ∈ 𝔹

Γ ⊢ 𝑡 ∶⟶∗∶ false ∶ 𝔹
Γ ⊩ 𝑡 ∈ 𝔹

Γ ⊢ 𝑡 ⟶∗ 𝑢 ∶ 𝔹 ne 𝑢
Γ ⊩ 𝑡 ∈ 𝔹

We can already state the following lemma:

Lemma 4.4.2: Reducibility implies canonicity
If

⋅ ⊩ 𝑡 ∈ ℕ
then t can be recursively reduced to a true numeral

S𝑛 O.

Similarly, for 𝔹, either

𝑡 ⟶∗ true or 𝑡 ⟶∗ false.

Proof. Direct as there is no neutral term in the empty context. ■

We then define reducibility at the function type, which ismainly point-
wise preservation of reducibility, up to weakening.

Definition 4.4.6: Reducibility predicate for the function type
A term 𝑡 is reducible at a function type 𝐴 → 𝐵, if the following two
conditions hold:

1. That 𝑡 ⟶∗ 𝑡′ where 𝑡′ is either a neutral or a 𝜆-abstraction
2. That 𝑡 preserves reducibility under any weakening 𝜌 ∶ Δ ⊆ Γ:

𝚷(𝜌 ∶ Δ ⊆ Γ) (𝑎 ∶ 𝐴) ([𝑎] ∶ Δ ⊩ 𝑎 ∈ 𝐴). Δ ⊩ (𝑡[𝜌] 𝑎) ∈ 𝐵

The first condition simply ensures that 𝑡 is weakly normalizing; the
universal quantification over all weakenings is needed later to prove
that reducibility is stable under weakening, a property we will use to
deal with variables in the fundamental lemma.

4. The cone of possibilities 152

Definition 4.4.7: Reducible type
A type equipped with a reducible predicate is called a reducible type.
Formally, the Γ ⊩ _ judgment is inductively defined as follows:

⊢ Γ
Γ ⊩ ℕ

⊢ Γ
Γ ⊩ 𝔹

Γ ⊩ 𝐴 Γ ⊩ 𝐵
Γ ⊩ 𝐴 → 𝐵

InMLTT, with computation in types, we will have to take reduction at
type level into account. For instance, if

Γ ∶ 𝐴 ⟶∗ ℕ

then 𝐴 will be a reducible type. For now, in System T it is easy to show
the following:

Lemma 4.4.3: Fundamental lemma for types
Γ ⊢ 𝐴 entails Γ ⊩ 𝐴.

We can also already prove that reducibility effectively entails normal-
ization.

Lemma 4.4.4: Reducibility implies normalization
Reducible terms are normalizing.

Proof. Direct by induction on the type and definition of reducibility.
■

We then have a few useful lemmas.

Lemma 4.4.5: Weakening of reduction
If

Γ ⊢ 𝑡 ∶⟶∗∶ 𝑢 and 𝜌 ∶ Δ ⊆ Γ
then

Δ ⊢ 𝑡[𝜌] ⟶∗ 𝑢[𝜌].

Proof. By induction on the reduction path. ■

Lemma 4.4.6: Weakening of neutrals and whnfs
If

ne 𝑛
then

ne 𝑛[𝜌].
The same goes for whnf 𝑡.

4. The cone of possibilities 153

Note that weakenings form a pre-
order. Moreoever, we have that

𝑡[𝜌][𝜌′] = 𝑡[𝜌′ ∘ 𝜌].

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡 𝑢 ∈ 𝐵

Table 4.9.: Application rule

Proof. By induction on the proof of neutrality of 𝑛. For whnf, we make
use of the following facts:

O[𝜌] = O (S 𝑡)[𝜌] = S (𝑡[𝜌])
true[𝜌] = true (𝜆𝑥. 𝑡)[𝜌] = 𝜆𝑥. (𝑡[⇑𝑤 𝜌])
false[𝜌] = false

■

Lemma 4.4.7: Monotonicity under weakenings
If

Γ ⊩ 𝑡 ∈ 𝐴 and 𝜌 ∶ Δ ⊆ Γ
then

Δ ⊩ 𝑡[𝜌] ∈ 𝐴.

Proof. By induction on the type 𝐴:

1. If 𝑡 ∶ ℕ or 𝑡 ∶ 𝔹 thenwe go by induction on the reducibility proof
of 𝑡. We then apply weakening of reduction and weakening of
whnfs and conclude.

2. If
𝑡 ∶ 𝐴 → 𝐵

, then weakening of reduction and weakening of whnf get us
through the first condition. For the second condition, getting a
weakening

𝜌′ ∶ Ξ ⊆ Δ
we specialize the reducibility condition with 𝜌′ ∘ 𝜌 and conclude.

■

Lemma 4.4.8: Reducibility of neutrals
Neutral terms are reducible.

Proof. Let 𝑛 ∶ 𝐴 be a neutral term. By induction on the type 𝐴:

1. If 𝑛 ∶ ℕ or 𝑛 ∶ 𝔹, we apply the neutral rule of the corresponding
reducibility predicate, with the trivial reduction 𝑛 ⟶∗ 𝑛;

2. If 𝑛 ∶ 𝐴 → 𝐵 then for any term 𝑎 ∶ 𝐴, 𝑛 𝑎 is neutral. We conclude
by applying the induction hypothesis.

■

Lemma 4.4.9: Weak-head expansion
If

𝑡 ⟶∗ 𝑢 and Γ ⊩ 𝑢 ∈ 𝐴
then

Γ ⊩ 𝑡 ∈ 𝐴.

Proof. Direct by induction on the type 𝐴. ■

4. The cone of possibilities 154

Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥 ∶ 𝐴. 𝑡 ∶ 𝐴 → 𝐵

Table 4.10.: 𝜆-abstraction rule

Are reducible terms amodel of System T? To prove it, we need to check
that they satisfy every rule of the theory. For instance, regarding the
application rule (reminded in Tab 4.9), knowing that

Γ ⊩ 𝑡 ∈ 𝐴 → 𝐵 and Γ ⊩ 𝑢 ∈ 𝐴,

we have to prove that
Γ ⊩ 𝑡 𝑢 ∈ 𝐵.

It is indeed the case, as reducibility at the function type was specifi-
cally taylored to manage this rule.

However, reducible terms fail at validating another rule of System T:
𝜆-abstraction (reminded in Tab 4.10).

Indeed, to prove that
𝜆𝑥 ∶ 𝐴. 𝑡 ∶ 𝐴 → 𝐵

is reducible, we need to assume a term

𝑎 ∶ 𝐴 such that Γ ⊩ 𝑎 ∈ 𝐴

and prove that
𝑡{𝑥 ≔ 𝑎} ∶ 𝐵

is reducible at type 𝐵. This is not true a priori, as reducible terms are
not closed under substitution. The way out of the conundrum is by
two-steps bruteforcing. First, we define valid substitutions as substitu-
tions that only substitute reducible terms.

Definition 4.4.8: Valid substitutions
A substitution 𝜎 ∶ Γ → Δ is valid, written

⊩𝑣 𝜎 ∶ Γ → Δ,

if the following holds:

⊩𝑣 id𝑠 ∶ Γ ⟶ Γ
⊩𝑣 𝜎 ∶ Γ ⟶ Δ

⊩𝑣 (⇑𝑠 𝜎) ∶ (Γ, 𝑥 ∶ 𝐴) ⟶ (Δ, 𝑥 ∶ 𝐴)

⊩𝑣 𝜎 ∶ Γ → Δ
⊩𝑣 (↑𝑠 𝜎) ∶ (Γ, 𝐴) → Δ

Γ ⊩ 𝑡 ∶ 𝐴 ⊩𝑣 𝜎 ∶ Γ → Δ
⊩𝑣 (𝜎 , 𝑡) ∶ Γ → (Δ, 𝐴)

We then define valid terms as the closure of reducible terms under
valid substitutions. Composing the two definitions, this effectively
means that valid terms are the closure of reducible terms under sub-
stitution by reducible terms, exactly what we needed.

Definition 4.4.9: Valid terms
A term 𝑡 ∶ 𝐴 is valid at type 𝐴, written Γ ⊩𝑣 𝑡 ∈ 𝐴, if the following
holds:

Γ ⊩𝑣 𝑡 ∈ 𝐴 ≔ 𝚷(𝜎 ∶ Γ → Δ). ⊩𝑣 𝜎 ∶ Γ → Δ ⟶ Δ ⊩ 𝑡[𝜎] ∈ 𝐴

This time, we get our desired result:

4. The cone of possibilities 155

Theorem 4.4.10: Fundamental lemma
If Γ ⊢ 𝑡 ∶ 𝐴 , then Γ ⊩𝑣 𝑡 ∈ 𝐴.

Proof. We do it by induction on the typing judgment:

▶ The base cases of true, false ∶ 𝔹 and O ∶ ℕ are trivial by defini-
tion of the reducibility predicates. The case of S 𝑡 follows from
definition of _ ⊩ _ ∈ ℕ and the induction hypothesis;

▶ The variable rule Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴 is proven by induction on the
substitution 𝜎 , using some computation rules and monotonicity
of reducibility under weakening;

▶ Application is direct by definition of the reducibility predicate
for functions, along with the induction hypothesis;

▶ 𝜆-abstraction follows from the definition of validity, taylored for
this case;

▶ ℕrec and𝔹rec are a bit more involved, the trickiest beingℕrec. Let
us assume

Δ and 𝜎 ∶ Γ → Δ.
By induction hypothesis, we have a type 𝑃 , three terms 𝑡, 𝑝O and
𝑝S and their validity proofs

Ht ∶ Γ ⊩𝑣 𝑡 ∈ ℕ, HO ∶ Γ ⊩𝑣 𝑝O ∈ 𝑃 and HS ∶ Γ ⊩𝑣 𝑝S ∈ 𝑃 → 𝑃.

By applying Ht to 𝜎 , we get a reducibility proof Rt for 𝑡. We then
go by induction on Rt. We have three cases:

1. If
𝑡 ⟶∗ O

then
ℕrec 𝑡 𝑝O 𝑝S ⟶∗ 𝑝O

and we conclude with HO.
2. If

𝑡 ⟶∗ 𝑢 with ne 𝑢
then

ℕrec 𝑡 𝑝O 𝑝S ⟶∗ ℕrec 𝑢 𝑝O 𝑝S
which is neutral. We conclude by reducibility of neutrals.

3. Finally, if
𝑡 ⟶∗ S 𝑢

where 𝑢 is reducible, we can apply HS and conclude.

■

Corollary 4.4.11: Normalization
System T is normalizing.

Proof. Let 𝑡 ∶ 𝐴 a term of System T. By the previous theorem, 𝑡 is valid.
By applying the identity substitution,we get that 𝑡 is reducible. Finally,
as every reducible term is normalizing, 𝑡 is normalizing. ■

4. The cone of possibilities 156

4.4.2. Domain extension

It is now time to prove normalization for System ϝT. The interested
reader can find a formalization of all the results of this Section here:
https://gitlab.inria.fr/mbaillon/Manuscript/-/tree/main/reducibility
For every definition and lemma, we will provide hyperlinks to the rel-
evant line in the development.

Let us already highlight a difference between the pen-and-paper proof
and the formalization: as we already explained, typing rules of System
ϝT do not depend on the forcing conditions ℓ, ℓ′; hence, in the formal-
ization we do not mention them for typing judgments. To keep con-
sistent notations with the following Section, we choose nonetheless to
keep them on paper.

That being said, let us start our proof. We follow the same steps as pre-
viously, first defining a one-step reduction strategy 𝑡 ⟶ℓ 𝑢.

Definition 4.4.10: Reduction for System ϝT

One-step ϝ-reduction can be found
here.

For a given ℓ, one-step ϝ-reduction

𝑡 ⟶ℓ 𝑢

is the previous one-step reduction extendedwith the following rules:

𝔣 n ⟶ℓ b
(n, b) ∈ ℓ

𝑛 ⟶ℓ 𝑚
𝔣 𝑛 ⟶ℓ 𝔣 𝑚

𝔣 𝑛 ⟶ℓ 𝔣 𝑚
𝔣 (S 𝑛) ⟶ℓ 𝔣 (S 𝑚)

Iterated reduction for System ϝT

𝑡 ⟶∗ℓ 𝑢

is then the reflexive, transitive closure of 𝑡 ⟶ℓ 𝑢. Finally,

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑢 ∶ 𝐴

is the conjonction of the following four conditions:

1. Γ ⊢ℓ 𝑡 ∶ 𝐴
2. Γ ⊢ℓ 𝑢 ∶ 𝐴
3. 𝑡 ⟶∗ℓ 𝑢
4. Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴

The first rule we add is the core of our approach: when 𝔣 is applied to
a true numeral

n such that (n, b) ∈ ℓ, then 𝔣 n ⟶ℓ b.

However, to know when to apply this rule, we need to part from the
weak-head approach: when facing

𝔣 𝑡 ,

we recursively reduce 𝑡 to check whether it is a true numeral, leading
to something reminiscent of an iterated weak-head normal form for 𝑡.

https://gitlab.inria.fr/mbaillon/Manuscript/-/tree/main/reducibility
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Convertibility.v#L4

4. The cone of possibilities 157

At this point, we do not now that
these three cases are the only rea-
sons why computation would stop.
Alternatively, it could be blocked
on

𝔣 true
or some other wrongly typed term.
Ruling out these cases when

𝔣 𝑡
is well-typed is the job of the logi-
cal relation.

It is not iterated weak-head normal form per se, though: we do not re-
duce subterms of neutrals, we simply reduce until we reach a neutral
of a true numeral. This is what the last two rules are all about.

Despite this act of insubordination towards the grandweak-head strat-
egy, we still retain the following:

Lemma 4.4.12:

Determinism of reduction can be
found here.

One-step reduction for System ϝT is deterministic.

Proof. It is sufficient to prove that given a reduction 𝑡 ⟶ℓ 𝑢, only
one rule applies. To prove this, we go by induction on the reduction
structure. The only potential critical pair is when facing

𝔣 (S 𝑛).

Indeed, two rules could potentially trigger a reduction there: either

𝔣 𝑛 ⟶ 𝔣 𝑚 hence 𝔣 (S 𝑛) ⟶ 𝔣 (S 𝑚),

or
S 𝑛 ⟶ 𝑘 hence 𝔣 (S 𝑛) ⟶ 𝔣 𝑘.

Thankfully, there is no rule to reduce S 𝑛 so the second case is impos-
sible. ■

Changing our notion of reduction immediately gives birth to a new
notion of neutrals.

Definition 4.4.11: Neutral terms of System ϝT

Neutral terms and weak-head nor-
mal forms are part of the same in-
ductive, presented here.

Neutral terms are defined together with natural numbers containing
a neutral as follows:

ne 𝑥
ne 𝑓

ne (𝑓 𝑢)
ne 𝑛

ne (ℕrec 𝑃 𝑡O 𝑡S 𝑛)

ne 𝑏
ne (𝔹rec 𝑃 𝑡true 𝑡false 𝑏)

contne 𝑢
ne (𝔣 𝑢)

with

ne 𝑛
contne 𝑛

contne 𝑛
contne (S 𝑛)

The fact that we deeply reduce arguments of ϝ has consequences at
the level of neutrals. Indeed, once we have reduced an argument 𝑡 into
its simili-iterated weak-head normal form 𝑢, there are three possible
cases:

▶ it 𝑢 is of the form

S𝑚 𝑣 with 𝑣 neutral

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Convertibility.v#L290
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/Convertibility.v#L433

4. The cone of possibilities 158

ϝ-neutrals will not appear in the
rest of the proof. We define them
nonetheless, for the sake of com-
pleteness.

then 𝔣 𝑢 is neutral. This is the reason behind our contne predi-
cate;

▶ if 𝑢 is a numeral

n with (n, b) ∈ ℓ

then 𝔣 𝑢 will reduce to b;
▶ if 𝑢 is a numeral

n with n ∉ dom(ℓ)

then computation is blocked.

In the formalization, we did not use the contne predicate. Rather, we
defined ne in one swoop like this:

ne 𝑢
ne (𝔣 (Sn 𝑢))

where Sn is a way from the meta-theory to add n successors to a term
(with n a meta-natural number). This phrasing is more compact, but
we find the former one more telling. Both versions are equivalent.

When 𝑢 is a numeral

n with n ∉ dom(ℓ),

𝔣 n behaves like a neutral, in the sense that it does not trigger any
reduction when substituted in place of a variable. We call such terms
ϝ-neutrals.

Definition 4.4.12: ϝ-neutral
A term 𝑛 is ϝ-neutral when the following holds:

𝟋−ne (𝔣 n) n ∉ dom(ℓ)
neϝ 𝑓

neϝ (𝑓 𝑢)

neϝ 𝑛
neϝ (ℕrec 𝑃 𝑡O 𝑡S 𝑛)

neϝ 𝑏
neϝ (𝔹rec 𝑃 𝑡true 𝑡false 𝑏)

The question of whether ϝ-neutrals should be part of normal forms is
an important choice of the formalization. We choose to not consider
ϝ-neutrals as normal. Thus, apart from neutrals, our definition of nor-
mal forms does not change.

Definition 4.4.13: Normal forms of System ϝT
Normal forms are defined as follows:

nf O nf S 𝑡
ne 𝑡
nf 𝑡

nf true nf false nf (𝜆 𝑥. 𝑡)

4. The cone of possibilities 159

Let us already prove the following lemma:

Lemma 4.4.13: Monotonicity of judgments

In the formalization, typing judg-
ments do not depend on ℓ so mono-
tonicity is immediate.

Any judgment

Γ ⊢ℓ 𝑡 ∶ 𝐴, Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 or 𝑡 ⟶∗ℓ 𝑢

is still valid under any extension ℓ′ of ℓ.

Proof. Direct by induction on the derivation tree. ■

Let us also notice that this lemma is trivially true for ne 𝑡, contne 𝑡
and nf 𝑡, as they don’t mention ℓ at all.
Having updated our definitions to System ϝT, we can start our proof.
As discussed, we now make a distinction between reducible and split-
reducible terms. Reducibility at base types is usual reducibility.

Definition 4.4.14: Reducibility predicates for ℕ and 𝔹

Reducibility predicates for base
types can be found here.

The reducibility predicates

_ ⊩sℓ _ ∈ ℕ and _ ⊩sℓ _ ∈ 𝔹

for ℕ and 𝔹 are defined as follows:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ O ∶ ℕ
Γ ⊩sℓ 𝑡 ∈ ℕ

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑢 ∶ ℕ ne 𝑢
Γ ⊩sℓ 𝑡 ∈ ℕ

Γ ⊢ℓ 𝑡 ∶⟶∗∶ S 𝑢 ∶ ℕ Γ ⊩sℓ 𝑢 ∈ ℕ
Γ ⊩sℓ 𝑡 ∈ ℕ

Γ ⊢ℓ 𝑡 ∶⟶∗∶ true ∶ 𝔹
Γ ⊩sℓ 𝑡 ∈ 𝔹

Γ ⊢ℓ 𝑡 ∶⟶∗∶ false ∶ 𝔹
Γ ⊩sℓ 𝑡 ∈ 𝔹

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑢 ∶ 𝔹 ne 𝑢
Γ ⊩sℓ 𝑡 ∈ 𝔹

We still have the same lemma regarding canonicity:

Lemma 4.4.14: Reducibility implies canonicity
If

⋅ ⊩sℓ 𝑡 ∈ ℕ,
then t can be recursively reduced to a true numeral n. Similarly, for
𝔹, either

𝑡 ⟶∗ℓ true or 𝑡 ⟶∗ℓ false.

Things however becomemore involved on the functional side of things,
as reducibility for the function type makes use of split-reducibility. We
thus start by defining the latter.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L10

4. The cone of possibilities 160

Definition 4.4.15: Split-reducibility
Split-reducibility under ℓ, written

_ ⊩wℓ _ ∈ _

is defined as follows:

Γ ⊩sℓ 𝑡 ∈ 𝐴
Γ ⊩wℓ 𝑡 ∈ 𝐴

Γ ⊩w(n,true)∷ℓ 𝑡 ∈ 𝐴 Γ ⊩w(n,false)∷ℓ 𝑡 ∈ 𝐴
Γ ⊩wℓ 𝑡 ∈ 𝐴 n ∉ dom(ℓ)

This definition is a generalized, formal version of the one we briefly
discussed in Section 4.2. Intuitively, a term 𝑡 is split-reducible if there is
a finite tree of splits such that 𝑡 is reducible at every leaf. This inductive
definition is structurally very close the the𝔇 operator we encountered
in Chapter 3, which will be key to retrieve dialogue continuity at the
end of the normalization proof.

As already hinted at, we however do not make use of this version
of split-reducibility in the development, but of another equivalent
one, which allows to reuse as many code from Adjedj et al as possi-
ble.

Lemma 4.4.15: Alternative definition for split-reducibility

This version of split-reducibility
can be found here.

A term 𝑡 ∶ 𝐴 is split-reducible under ℓ iff the following holds:

𝚺 n ∶ ℕ. 𝚷 ℓ′. (ℓ′ ⪯ ℓ) ⟶ [n] ⊑ ℓ′ ⟶ Γ ⊩sℓ′ 𝑡 ∈ 𝐴

where we write
[n] ⊑ ℓ

to mean
𝚷m ∶ ℕ. m ≤ n → m ∈ ℓ.

Proof. Both directions of the equivalence are quite direct.

▶ First direction is proven by induction on the split-reducibility
proof.
For the base case, we return O and make use of Lemma 4.4.16.
For the splitting case, with 𝑘 the number on which we split, we
return

max(𝑘, 𝑙, 𝑚)
where 𝑙 and 𝑚 are the two numbers recovered by the induction
hypotheses.

▶ For the second direction, let 𝑛 be the witness of alternative split-
reducibility. We simply split as many times as necessary to en-
sure that any

𝑚 ≤ 𝑛
ends up in ℓ.

■

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L105

4. The cone of possibilities 161

We can now define reducibility for the function type:

Definition 4.4.16: Reducibility for the function type
For a function 𝑡 to be reducible under ℓ at 𝐴 → 𝐵, we require the
following:

Reducibility for the function type
can be found here.

▶ That
Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑡′

where 𝑡′ is either a neutral or a 𝜆-abstraction;
▶ That 𝑡′ preserves reducibility under any weakening and any

extension of ℓ. Formally:

𝚷(𝜌 ∶ Δ ⊆ Γ) ℓ′ (𝑎 ∶ 𝐴).
(ℓ′ ⪯ ℓ) ⟶ (Δ ⊩sℓ′ 𝑎 ∈ 𝐴) ⟶ Γ ⊩wℓ′ (𝑡′[𝜌] 𝑎) ∈ 𝐵

As for weakenings, universal quantification over extensions of ℓ is nec-
essary to ensure that reducible types form a presheaf family over forc-
ing conditions.

Lemma 4.4.16: Monotonicity of reducibility
Monotonicity of reducibility and
split-reducibility under ℓ can be
found here.

If 𝑡 is reducible (resp. split-reducible) at type 𝐴 under ℓ, then it is
also reducible (resp. split-reducible) at type 𝐴 under any extension
ℓ′ of ℓ.

Proof. We prove monotonicity for reducibility and split-reducibility
at the same time, by induction on the type 𝐴.

▶ For ℕ and 𝔹, let us assume

ℓ′ such that ℓ′ ⪯ ℓ.

Monotonicity of reducibility follows immediately from Lemma
4.4.13, while split-reducibility is direct by induction on the split-
reducibility proof.

▶ For𝐴 → 𝐵, the first condition of reducibility follows fromLemma
4.4.13. Second condition follows from transitivity of ℓ′ ⪯ ℓ and
the induction hypothesis. As before, split-reducibility is direct
by induction on the split-reducibility proof.

■

We then have the same list of lemmas as for System T; proofs do not
vary much.

Lemma 4.4.17: Reducibility implies normalization

Both lemmas are proven at the
same time in the formalization.
They can be found here.

Reducible terms are normalizing.

Lemma 4.4.18: Reducibility of neutrals
Neutral terms are reducible.

Lemma 4.4.19: Weak-head expansion Weak-head expansion can be
found here.If 𝑡 ⟶∗ℓ 𝑢 and Γ ⊩sℓ 𝑢 ∈ 𝐴 then Γ ⊩sℓ 𝑡 ∈ 𝐴.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L77
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L108
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L469
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L242

4. The cone of possibilities 162

Note that reducible terms validate fewer rules than split-reducible
ones. The obvious case is that of application: given a reducible func-
tion

𝑓 ∶ 𝐴 → 𝐵
and a reducible argument

𝑎 ∶ 𝐴,
we only recover a split-reducible output

𝑓 𝑎 ∶ 𝐵.

However, even split-reducible terms fail to validate 𝜆-abstraction, like
reducible terms previously. We thus still need to define valid substi-
tutions and valid terms:

Definition 4.4.17: Valid substitutions

Validity of substitutions can be
found here.

A substitution 𝜎 ∶ Γ → Δ is valid under ℓ, written

⊩𝑣ℓ 𝜎 ∶ Γ → Δ

if the following holds:

⊩𝑣ℓ id𝑠 ∶ Γ ⟶ Γ
⊩𝑣ℓ 𝜎 ∶ Γ ⟶ Δ

⊩𝑣ℓ (⇑𝑠 𝜎) ∶ (Γ, 𝑥 ∶ 𝐴) ⟶ (Δ, 𝑥 ∶ 𝐴)

⊩𝑣ℓ 𝜎 ∶ Γ → Δ
⊩𝑣ℓ (↑𝑠 𝜎) ∶ (Γ, 𝐴) → Δ

Γ ⊩sℓ 𝑡 ∶ 𝐴 ⊩𝑣ℓ 𝜎 ∶ Γ → Δ
⊩𝑣ℓ (𝜎 , 𝑡) ∶ Γ → (Δ, 𝐴)

Definition 4.4.18: Valid terms
A term 𝑡 ∶ 𝐴 is valid at type A under ℓ , written

Γ ⊩𝑣ℓ 𝑡 ∈ 𝐴

if the following holds:

Γ ⊩𝑣ℓ 𝑡 ∈ 𝐴 ≔ 𝚷(𝜎 ∶ Γ → Δ). (⊩𝑣ℓ 𝜎 ∶ Γ → Δ) ⟶ Δ ⊩wℓ 𝑡[𝜎] ∈ 𝐴

We can then prove an updated version of the fundamental lemma:

Theorem 4.4.20: Fundamental lemma

The fundamental lemma is also
called soundness. Its proof can be
found here.

If
Γ ⊢ 𝑡 ∶ 𝐴

then
Γ ⊩𝑣 𝑡 ∈ 𝐴.

Proof. We do it by induction on the typing judgment, with the same
reasoning as before. The only new term is 𝔣; we need to prove that it
is split-reducible at type ℕ → 𝔹.

https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L420
https://gitlab.inria.fr/mbaillon/Manuscript/-/blob/main/reducibility/NbE_cones.v#L919

4. The cone of possibilities 163

Let us thus assume a split-reducible term

Γ ⊩wℓ 𝑡 ∈ ℕ.

Wego by induction on the split-reducibility proof of 𝑡 (using definition
4.4.15):

▶ If 𝑡 is reducible then it can be recursively reduced either to a true
numeral

n or to S𝑘 𝑢 with 𝑢 neutral.
In the latter case,

𝔣 (S𝑘 𝑢)
is also neutral, thus split-reducible. In the former case, we split
on n and

Γ ⊢(n,true)∷ℓ 𝔣 n ⟶∗ true or Γ ⊢(n,,false)∷ℓ 𝔣 n ⟶∗ false

in both extensions of ℓ. Thus 𝔣 is split-reducible.
▶ If 𝑡 is split-reducible in both branches of a split on some numeral
n, then we simply split on n and use the induction hypothesis to
conclude.

All other cases of System ϝT are the same as for System T. ■

Corollary 4.4.21: Normalization
Any term

Γ ⊢ℓ 𝑡 ∶ 𝐴
of system ϝT is split-reducible.

Proof. We instantiate the fundamental lemma with the identity sub-
stitution. ■

Corollary 4.4.22: Continuity
Any closed term

⋅ ⊢nil 𝑡 ∶ (ℕ → 𝔹) → ℕ
of system ϝT is uniformly continuous.

Proof. Given
⋅ ⊢nil 𝑡 ∶ (ℕ → 𝔹) → ℕ,

we apply
𝑡 to 𝔣

to get a term of type ℕ. This term is split-reducible. The definition of
split-reducibility then gives us the desired result. ■

4. The cone of possibilities 164

4.5. Everything is normal 4.5.1 Back to one-step 165
4.5.2 Back to basics 168
4.5.3 Universes 171
4.5.4 Split-reducibility 172
4.5.5 Functional types 173
4.5.6 Lemmas about re-

ducibility 176

It is now time to apply the same strategy to MLTT and its extension,
ϝTT. In MLTT, as explained in Section 1.2, judgments are more inter-
twined than in System T. Especially:

Rules for ϝTTwere displayed in the
previous Section, in Figure 4.1.

▶ We add another judgment Γ ⊢ 𝐴 ≡ 𝐵, meaning that computation
exists at the level of types;

▶ If
Γ ⊢ 𝑡 ∶ 𝐴 or Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐴

and
Γ ⊢ 𝐴 ≡ 𝐵

then
Γ ⊢ 𝑡 ∶ 𝐵 or Γ ⊢ 𝑡 ≡ 𝑢 ∶ 𝐵.

We say that judgments on terms depend on computation in types;
▶ We add another type □ such that if

Γ ⊢ 𝐴 ∶ □ or Γ ⊢ 𝐴 ≡ 𝐵 ∶ □

then
Γ ⊢ 𝐴 or Γ ⊢ 𝐴 ≡ 𝐵.

We say that judgments on types depend on judgments on terms.

This means that we cannot hope to prove normalization with a single
reducibility predicate

_ ⊩ _ ∶ 𝐴.
We need to ensure for instance that if

Γ ⊢ 𝐴 ≡ 𝐵

then𝐴 and 𝐵 have compatible reducibility predicates.Abel et al solved
the problem by defining four predicates at the same time, through
induction-recursion:

▶ An inductive predicate Γ ⊩ 𝐴 meaning that 𝐴 is a reducible type;
▶ Three predicates

Γ ⊩ 𝐴 ≡ 𝐵, Γ ⊩ 𝑡 ∈ 𝐴 and Γ ⊩ 𝑡 ≡ 𝑢 ∶ 𝐴

mutually defined by recursion on Γ ⊩ 𝐴. They respectively mean
that 𝐵 is reducibly equal to 𝐴, that 𝑡 is a reducible term at type 𝐴
and that 𝑡 and 𝑢 are reducibly equal at type 𝐴.

To avoid induction-recursion, these four predicates are defined as part
of an inductive relation in Adjedj et al’s development. In short, they
define an inductive relation LR such that

LR 𝐴 𝐴≡ 𝐴𝑡 𝐴𝑡≡

means A is a reducible type with associated predicates 𝐴≡, 𝐴𝑡 , and 𝐴𝑡≡.
The reasoning is however the same, and the predicates have same
meaning.

4. The cone of possibilities 165

The syntax of ϝTT and lemmas gen-
erated by Autosubst can be found
here.

[128]: Stark et al. (2019), “Autosubst 2:
reasoning with multi-sorted de Bruijn
terms and vector substitutions”

One-step reduction is exactly the
same in System ϝT and in ϝTT.

(𝜆𝑥. 𝑡) 𝑢 ⟶ 𝑡{𝑥 ≔ 𝑢}

𝔹ind 𝑃 𝑡true 𝑡false true ⟶ 𝑡true

𝔹ind 𝑃 𝑡true 𝑡false false ⟶ 𝑡false

ℕind 𝑃 𝑡S 𝑡O O ⟶ 𝑡O

ℕind 𝑃 𝑡S 𝑡O (S 𝑛) ⟶ 𝑡S (ℕind 𝑃 𝑡S 𝑡O 𝑛)

𝑛 ⟶ℓ 𝑚
𝔣 𝑛 ⟶ℓ 𝔣 𝑚

𝔣 𝑛 ⟶ℓ 𝔣 𝑚
𝔣 (S 𝑛) ⟶ℓ 𝔣 (S 𝑚)

𝔣 n ⟶ℓ b
(n, b) ∈ ℓ

Table 4.11.:One-step reduction for ϝTT

4.5.1. Back to one-step

Before diving head first into the proof, let us talk about substitutions
once again. In Section 4.3, as System T is rather small, we could deal
with weakenings and subtitutions manually. Unfortunately, the bur-
den grows heavier when facing MLTT. To alleviate the syntactic mill-
stone, Adjedj et al make use of Autosubst [128] which automatically
derives boilerplate lemmas on untyped weakenings and substitutions.
This is an interesting aspect of mechanized proofs, that makes full use
of the automation features that come with proof assistants.

Technicalities aside,we can start unrolling our nowwell-polished strat-
egy. We begin by devising a notion of reduction.

Definition 4.5.1: Reduction for ϝTT
Given ℓ, one-step reduction 𝑡 ⟶ℓ 𝑢 for ϝTT is defined in Tab 4.11.

Iterated reduction for ϝTT 𝑡 ⟶∗ℓ 𝑢 is then the reflexive, transitive
closure of 𝑡 ⟶ℓ 𝑢. Finally,

Γ ⊢ℓ 𝐴 ∶⟶∗∶ 𝐵 (resp. Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑢 ∶ 𝐴)

is the conjonction of the following four conditions:

1. Γ ⊢ℓ 𝐴 (resp. Γ ⊢ℓ 𝑡 ∶ 𝐴)
2. Γ ⊢ℓ 𝐵 (resp. Γ ⊢ℓ 𝑡 ∶ 𝐵)
3. 𝐴 ⟶∗ℓ 𝐵 (resp. 𝑡 ⟶∗ℓ 𝑢);
4. Γ ⊢ℓ 𝐴 ≡ 𝐵 (resp Γ ⊢ℓ 𝑡 ≡ 𝑢 ∈ 𝐴).

Even though our judgments are now more complex, they still validate
monotonicity under weakenings and forcing conditions.

Lemma 4.5.1: Monotonicity of judgments
If

𝜌 ∶ Δ ⊆ Γ and ℓ′ ⪯ ℓ
then

If 𝑡 ⟶∗ℓ 𝑢 then 𝑡[𝜌] ⟶∗ℓ′ 𝑢[𝜌]

If Γ ⊢ℓ 𝐴 then Δ ⊢ℓ′ 𝐴[𝜌]

If Γ ⊢ℓ 𝑡 ∶ 𝐴 then Δ ⊢ℓ′ 𝑡[𝜌] ∶ 𝐴[𝜌]

If Γ ⊢ℓ 𝐴 ≡ 𝐵 then Δ ⊢ℓ′ 𝐴[𝜌] ≡ 𝐵[𝜌]

If Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴 then Δ ⊢ℓ′ 𝑡[𝜌] ≡ 𝑢[𝜌] ∶ 𝐴[𝜌]

Proof. Reduction is done by simple induction. The other four judg-
ments are proven simultaneously, through mutual induction. ■

https://github.com/CoqHott/logrel-coq/blob/d8b2a34b0c42d0a7cdf8b1a6cf54bee0adb050ef/theories/AutoSubst/Ast.v#L8

4. The cone of possibilities 166

Formal definition of the LR induc-
tive can be found here.

Definition 4.5.2: Neutral terms of ϝTT

Neutral terms are exactly the same
in System ϝT and in ϝTT

Neutral terms are defined together with natural numbers containing
a neutral as follows:

ne 𝑥
ne 𝑓

ne (𝑓 𝑢)
ne 𝑛

ne (ℕind 𝑃 𝑡O 𝑡S 𝑛)
ne 𝑏

ne (𝔹ind 𝑃 𝑡true 𝑡false 𝑏)

contne 𝑢
ne (𝔣 𝑢)

with

ne 𝑛
contne 𝑛

contne 𝑛
contne (S 𝑛)

As types and terms are now mingled, we need to add ℕ and the rest
to our definition of normal forms.

Definition 4.5.3: Normal forms for ϝTT
Normal forms are defined as follows:

nf □ nf ℕ nf 𝔹 nf (Π 𝐴. 𝐵) nf O

nf S 𝑡
ne 𝑡
nf 𝑡 nf true nf false nf (𝜆 𝑥. 𝑡)

Everything is in place;we can start building our normalizationmodel.

One inductive to bind them As explained, Adjedj et al’s reducibility
model (and thus ours) is based on an inductive relation LR, which is
displayed in Figure 4.5.

We start by defining the type of reducibility relations ℜ. Under ℓ and
Γ, a reducibility relation binds together a term 𝐴 and three predicates
on terms. LR will be of that type.

However, to deal with universes we need to define our reducibility
relation in a stratified way. In their development,Abel et al introduced
to that effect a type Lvl of universe levels, to parametrize the relation.
Adjedj et al followed their lead, and so do we.

As a consequence, LR will take as argument a universe level 𝑖 and a
proof 𝑟𝑒𝑐 that a reducibility relation is available at every universe level
𝑗 < 𝑖. As the name hints at, 𝑟𝑒𝑐 effectively implements an induction on
universe levels.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L969

4. The cone of possibilities 167

Definition ℜ ≔ 𝚷 ℓ Γ 𝐴. (term → □) → (term → □) → (term → term → □).

Inductive LR {𝑖 ∶ Typelvl} {𝑟𝑒𝑐 ∶ Π 𝑗. 𝑗 < 𝑖 → ℜ} ∶ ℜ ≔
∣ LR□ ∶ 𝚷 ℓ Γ 𝐴 (𝐻 ∶ Γ ⊩□ℓ,𝑖 𝐴).

LR 𝑟𝑒𝑐 ℓ Γ 𝐴 H
(𝜆𝐵. Γ ⊩□ℓ,𝑖 𝐴 ≡ 𝐵/H)
(𝜆𝑡. Γ ⊩□ℓ,𝑖 𝑡 ∈ 𝐴/H)
(𝜆𝑡 𝑢. Γ ⊩□ℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴/H)

∣ LRℕ ∶ 𝚷 ℓ Γ 𝐴 (H ∶ Γ ⊩ℕℓ 𝐴).
LR 𝑟𝑒𝑐 ℓ Γ 𝐴 H

(𝜆𝐵. Γ ⊩ℕℓ 𝐴 ≡ 𝐵/H)
(𝜆𝑡. Γ ⊩ℕℓ 𝑡 ∈ 𝐴/H)
(𝜆𝑡 𝑢. Γ ⊩ℕℓ 𝑡 ≡ 𝑢 ∈ 𝐴/H)

∣ LR𝔹 ∶ 𝚷 ℓ Γ 𝐴 (H ∶ Γ ⊩𝔹ℓ 𝐴).
LR 𝑟𝑒𝑐 ℓ Γ 𝐴 H

(𝜆𝐵. Γ ⊩𝔹ℓ 𝐴 ≡ 𝐵/H)
(𝜆𝑡. Γ ⊩𝔹ℓ 𝑡 ∈ 𝐴/H)
(𝜆𝑡 𝑢. Γ ⊩𝔹ℓ 𝑡 ≡ 𝑢 ∈ 𝐴/H)

∣ LRne ∶ 𝚷 ℓ Γ 𝐴 (H ∶ Γ ⊩neℓ 𝐴).
LR 𝑟𝑒𝑐 ℓ Γ 𝐴 H

(𝜆𝐵. Γ ⊩neℓ 𝐴 ≡ 𝐵/H)
(𝜆𝑡. Γ ⊩neℓ 𝑡 ∈ 𝐴/H)
(𝜆𝑡 𝑢. Γ ⊩neℓ 𝑡 ≡ 𝑢 ∈ 𝐴/H)

∣ LRΠ ∶ 𝚷 ℓ Γ 𝐴 (H ∶ Γ ⊩Πℓ 𝐴).
LR 𝑟𝑒𝑐 ℓ Γ 𝐴 H

(𝜆𝐵. Γ ⊩Πℓ 𝐴 ≡ 𝐵/H)
(𝜆𝑡. Γ ⊩Πℓ 𝑡 ∈ 𝐴/H)
(𝜆𝑡 𝑢. Γ ⊩Πℓ 𝑡 ≡ 𝑢 ∈ 𝐴/H) Figure 4.5.: Inductive presentation of

reducibility

In our case, we only have two distinct levels, 0 and 1, thus our universe
type □ is in fact □0. The Coq development is however written in such
a way that it should be relatively straightforward to go to an arbitrary
(albeit finite) hierarchy of universes. Getting an infinite hierarchy will
probably still take time and hard work, though.

Pujet et al did add an infinite hi-
erarchy of universes to their pen-
and-paper proof, but their Agda
development, which is built on top
of Abel’s, only features 3 levels: 0, 1
and ∞.

We will write
Γ ⊩sℓ,𝑖 𝐴

to denote that there exist predicates 𝐴≡, 𝐴𝑡 , and 𝐴𝑡≡ such that

LR {𝑖} 𝑟𝑒𝑐 ℓ Γ 𝐴 𝐴≡ 𝐴𝑡 𝐴𝑡≡.

Given a proof
𝐻 ∶ Γ ⊩sℓ,𝑖 𝐴,

we will write:

Γ ⊩sℓ,𝑖 𝐴 ≡ _ to mean 𝐴≡;
Γ ⊩sℓ,𝑖 _ ∶ 𝐴 to mean 𝐴𝑡 ;
Γ ⊩sℓ,𝑖 _ ≡ _ ∶ 𝐴 to mean 𝐴𝑡≡.

We now turn to defining the reducibility predicates that compose LR.

4. The cone of possibilities 168

4.5.2. Back to basics

We start with the base types of ϝTT, 𝔹 and ℕ.

Booleans

Definition 4.5.4: Reducibility for 𝔹

Reducibility for booleans can be
found here.

The
_ ⊩𝔹ℓ _

predicate is defined as follows:

Γ ⊢ℓ 𝐴 ∶⟶∗∶ 𝔹
Γ ⊩𝔹ℓ 𝐴

Then, given
Γ ⊩𝔹ℓ 𝐴,

the following predicates are defined:

▶▶ Γ ⊩𝔹ℓ 𝐴 ≡ _ simply as Γ ⊢ℓ 𝐵 ∶⟶∶ 𝔹;
▶ Γ ⊩𝔹ℓ _ ∈ 𝐴 as follows:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ true ∶ 𝐴
Γ ⊩𝔹ℓ 𝑡 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ false ∶ 𝐴
Γ ⊩𝔹ℓ 𝑡 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ 𝔹 ne 𝑛
Γ ⊩𝔹ℓ 𝑡 ∈ 𝐴

▶ Γ ⊩𝔹ℓ _ ≡ _ ∈ 𝐴 as follows:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ true ∶ 𝔹
Γ ⊢ℓ 𝑢 ∶⟶∗∶ true ∶ 𝔹

Γ ⊩𝔹ℓ 𝑡 ≡ 𝑢 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ false ∶ 𝔹
Γ ⊢ℓ 𝑢 ∶⟶∗∶ false ∶ 𝔹

Γ ⊩𝔹ℓ 𝑡 ≡ 𝑢 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ 𝐴
Γ ⊢ℓ 𝑢 ∶⟶∗∶ 𝑚 ∶ 𝐴
Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ 𝐴

ne 𝑛
ne 𝑚

Γ ⊩𝔹ℓ 𝑡 ≡ 𝑢 ∈ 𝐴

For a type𝐴 to be reducible as type𝔹, it needs to reduce to𝔹. Similarly,
when

Γ ⊩𝔹ℓ 𝐴,
for a type 𝐵 to be reducibly equal to 𝐴, 𝐵 itself needs to reduce to 𝔹.

When
Γ ⊩𝔹ℓ 𝐴,

𝑡 is reducible at type 𝐴 when it reduces to true, false or a neutral 𝑛 ∶
𝔹.

Finally, two terms 𝑡 and 𝑢 are reducibly equal at type𝐴when they both
reduce to true or false, or when they reduce to convertible neutrals of
type 𝔹.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L683

4. The cone of possibilities 169

Natural numbers

Definition 4.5.5: Reducibility for ℕ

Reducibility for natural numbers
can be found here.

The
_ ⊩ℕℓ _

predicate is defined as follows:

Γ ⊢ℓ 𝐴 ∶⟶∗∶ ℕ
Γ ⊩ℕℓ 𝐴

Then, given
Γ ⊩ℕℓ 𝐴,

the following predicates are defined:

▶▶ Γ ⊩ℕℓ 𝐴 ≡ _ simply as Γ ⊢ℓ 𝐵 ∶⟶∶ ℕ;
▶ Γ ⊩ℕℓ _ ∈ 𝐴 as follows:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ O ∶ ℕ
Γ ⊩ℕℓ 𝑡 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ ℕ ne 𝑛
Γ ⊩ℕℓ 𝑡 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ S 𝑘 ∶ ℕ Γ ⊩ℕℓ 𝑡 ∈ 𝐴
Γ ⊩ℕℓ 𝑡 ∈ 𝐴

▶ Γ ⊩ℕℓ _ ≡ _ ∶ 𝐴 as follows:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ O ∶ ℕ
Γ ⊢ℓ 𝑢 ∶⟶∗∶ O ∶ ℕ

Γ ⊩ℕℓ 𝑡 ≡ 𝑢 ∈ 𝐴

Γ ⊢ℓ 𝑡 ∶⟶∗∶ S 𝑘 ∶ ℕ
Γ ⊢ℓ 𝑢 ∶⟶∗∶ S 𝑘′ ∶ ℕ
Γ ⊩ℕℓ 𝑘 ≡ 𝑘′ ∶ 𝐴

Γ ⊩ℕℓ 𝑡 ≡ 𝑢 ∈ 𝐴

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ ℕ
Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ ℕ
Γ ⊢ℓ 𝑢 ∶⟶∗∶ 𝑚 ∶ ℕ

ne 𝑛
ne 𝑚

Γ ⊩ℕℓ 𝑡 ≡ 𝑢 ∈ 𝐴

It is pretty similar to 𝔹: for a type 𝐴 to be reducible as type ℕ, it needs
to reduce to ℕ. Similarly, when

Γ ⊩ℕℓ 𝐴,

for a type 𝐵 to be reducibly equal to 𝐴, 𝐵 itself needs to reduce to ℕ.

When
Γ ⊩ℕℓ 𝐴,

a term 𝑡 is reducible at type 𝐴 when it reduces to O, a neutral 𝑛 ∶ ℕ or
S 𝑘 with k reducible at type 𝐴.

Finally, two terms 𝑡 and 𝑢 are reducibly equal at type 𝐴 when they
both reduce to O, when they reduce to convertible neutrals of type ℕ
or when they reduce to S 𝑘 and S 𝑘′ with k and k’ reducibly equal at
type 𝐴.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L522C10-L522C10

4. The cone of possibilities 170

Neutral types Contrarily to System T, we need to accomodate for
neutral terms of type□, which quickly become neutral types.

Definition 4.5.6: Reducibility for neutral types

Reducibility for neutral types can
be found here.

The
_ ⊩neℓ _

predicate is defined as follows:

Γ ⊢ℓ 𝐴 ∶⟶∗∶ 𝑁 ne 𝑁
Γ ⊩neℓ 𝐴

Then, given
Γ ⊩neℓ 𝐴,

the following predicates are defined:

▶▶ Γ ⊩neℓ 𝐴 ≡ _ as the following:

Γ ⊢ℓ 𝐵 ∶⟶∗∶ 𝑀 ne 𝑀 Γ ⊢ℓ 𝑁 ≡ 𝑀
Γ ⊩neℓ 𝐴 ≡ 𝐵

▶ Γ ⊩neℓ _ ∈ 𝐴 as the following:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ 𝑁 ne 𝑛
Γ ⊩neℓ 𝑡 ∈ 𝐴

▶ Γ ⊩neℓ _ ≡ _ ∈ 𝐴 as the following:

Γ ⊢ℓ 𝑛 ≡ 𝑚 ∶ 𝑁
Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑛 ∶ 𝑁
Γ ⊢ℓ 𝑢 ∶⟶∗∶ 𝑚 ∶ 𝑁

ne 𝑛
ne 𝑚

Γ ⊩neℓ 𝑡 ≡ 𝑢 ∈ 𝐴

A type 𝐴 is reducible as neutral when it reduces to a neutral type 𝑁 .
Similarly, when

Γ ⊩neℓ 𝐴,
for a type 𝐵 to be reducibly equal to 𝐴, 𝐵 itself needs to reduce to a
neutral 𝑀 that is convertible to 𝑁 .

When
Γ ⊩neℓ 𝐴,

𝑡 is reducible at type 𝐴 when it reduces to a neutral 𝑛 ∶ 𝑁 .

Finally, two terms 𝑡 and 𝑢 are reducibly equal at type 𝐴 when they
reduce to convertible neutrals of type 𝑁 .

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L116

4. The cone of possibilities 171

Abel et al use typed reduction,
which enables them to prove that
nothing reduces to □.
They can then define

_ ⊩□ℓ,𝑖 _
simply as being equal to □, rather
than reducing to it.
As we use untyped reduction, this
is not the case in our setting.

4.5.3. Universes

Definition 4.5.7: Reducibility for the universe

Reducibility for the universe type
can be found here.

The
_ ⊩□ℓ,𝑖 _

predicate is defined as the following:

Γ ⊢ℓ 𝐴 ∶⟶∗∶ □𝑗 𝑗 < 𝑖
Γ ⊩□ℓ,𝑖 𝐴

Then, given
Γ ⊩□ℓ,𝑖 𝐴,

the following predicates are defined:
The requirement that 𝑗 < 𝑖 in the
rule for

_ ⊩□ℓ,𝑖 _
could be replaced in our setting by
𝑗 ≔ O and 𝑖 ≔ 1. It is phrased that
way to ease scalability to a system
with more universes.

▶ Γ ⊩□ℓ,𝑖 𝐴 ≡ 𝐵 simply as Γ ⊢ℓ 𝐵 ∶⟶∗ □𝑗 ;
▶ Γ ⊩□ℓ,𝑖 _ ∈ 𝐴 as the following:

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑎 ∶ □𝑗 nf 𝑛 Γ ⊩sℓ,𝑗 𝑎 𝑗 < 𝑖
Γ ⊩□ℓ,𝑖 𝑡 ∈ 𝐴

▶ Γ ⊩□ℓ,𝑖 _ ≡ _ ∈ 𝐴 as the following:

Γ ⊢ℓ 𝑎 ≡ 𝑏 ∶ □𝑗
Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑎 ∶ □𝑗
Γ ⊢ℓ 𝑢 ∶⟶∗∶ 𝑏 ∶ □𝑗
nf 𝑎
nf 𝑏

𝑖 < 𝑗
𝐻𝑎: Γ ⊩sℓ,𝑗 𝑎
𝐻𝑏: Γ ⊩sℓ,𝑗 𝑏

Γ ⊩sℓ,𝑗 𝑎 ≡ 𝑏 / 𝐻𝑎

Γ ⊩□ℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴

For a type 𝐴 to be reducible as universe, it needs to reduce to □. Simi-
larly, when

Γ ⊩□ℓ 𝐴,
for a type 𝐵 to be reducibly equal to 𝐴, 𝐵 itself needs to reduce to □.

As one would expect, reducibility as a term of type □ is essentially
reducibility as a type, at a lower universe level.

The same is true for reducible equality between terms of type□, which
is basically reducible equality as types at a lower level. Note that this
definition only makes sense because 𝑟𝑒𝑐 ensures that reducibility is
defined at lower levels.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L198

4. The cone of possibilities 172

4.5.4. Split-reducibility

A function
𝑓 ∶ Π𝑥 ∶ 𝐴. 𝐵

will be reducible if it sends reducible inputs to split-reducible outputs.
Thus, before defining reducibility for Π-types, we need to describe
split-reducibility. As explained, we pick the definition from Lemma
4.4.15 because it allows us to reuse code from Adjedj et al more freely.

Definition 4.5.8: Split-reducibility
A type 𝐴 is split-reducible under ℓ in context Γ when the following
holds:

Formal definition of split-
reducibility can be found here.Γ ⊩wℓ,𝑖 𝐴 ≔ 𝚺 n ∶ ℕ. 𝚷 ℓ′. (ℓ′ ⪯ ℓ) ⟶ [n] ⊑ ℓ′ ⟶ Γ ⊩sℓ′ 𝐴

Given 𝐻𝐴 ∶ Γ ⊩wℓ,𝑖 𝐴 , the following predicates are defined:
Wewrite𝐴.𝜋1 and𝐴.𝜋2 to designate
the first and second projection of a
𝚺-type.

Γ ⊩wℓ,𝑖 𝐴 ≡ 𝐵 / 𝐻𝐴 ≔ 𝚺 m ∶ ℕ. 𝚷 ℓ′ (𝛼 ∶ ℓ′ ⪯ ℓ) (n∈ ∶ [𝐻𝐴.𝜋1] ⊑ ℓ′).
[m] ⊑ ℓ′ → Γ ⊩sℓ,𝑖 𝐴 ≡ 𝐵 / (𝐻𝐴.𝜋2 𝛼 n∈)

Γ ⊩wℓ,𝑖 𝑡 ∈ 𝐴 / 𝐻𝐴 ≔ 𝚺 m ∶ ℕ. 𝚷 ℓ′ (𝛼 ∶ ℓ′ ⪯ ℓ) (n∈ ∶ [𝐻𝐴.𝜋1] ⊑ ℓ′).
[m] ⊑ ℓ′ → Γ ⊩sℓ,𝑖 𝑡 ∈ 𝐴 / (𝐻𝐴.𝜋2 𝛼 n∈)

Γ ⊩wℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴 ≔ 𝚺 m ∶ ℕ. 𝚷 ℓ′ (𝛼 ∶ ℓ′ ⪯ ℓ) (n∈ ∶ [𝐻𝐴.𝜋1] ⊑ ℓ′).
[m] ⊑ ℓ′ → Γ ⊩sℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴 / (𝐻𝐴.𝜋2 𝛼 n∈)

In this alternative version, a type𝐴 is split-reducible at ℓ if there exists
a uniform bound

n ∶ ℕ
such that, for any ℓ′ extending ℓ, if every query between O and n has
an answer in ℓ′, then 𝐴 is reducible at ℓ′.
A visual intuition is that we build the complete tree of splits of height
𝑛 at ℓ (which we call the cone of height 𝑛 at ℓ). We then ask 𝐴 to be
reducible at the leaves of that tree, and for any ℓ′ beyond.
Reducible equality as types, reducibility as terms and reducible equal-
ity for terms all bring their own bound m ∶ ℕ with them. We then
simply consider the cone of height

max(n,m)

before applying the corresponding definition of the predicate.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L1049

4. The cone of possibilities 173

4.5.5. Functional types

Definition 4.5.9: Reducibility for functional types

Reducibility for functional types
can be found here.

Given ℓ and 𝑖, the
_ ⊩Πℓ,𝑖 _

predicate is defined through the following rules:

Γ ⊢ℓ 𝐴 ∶⟶∗∶ Π𝑥 ∶ 𝐹 . 𝐺
Γ ⊢ℓ 𝐹
Γ, 𝑥 ∶ 𝐹 ⊢ℓ 𝐺
𝑁𝐹 ∶ ℕ
𝐻𝐹 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ). (ℓ′ ⪯ ℓ) → ([𝑁𝐹] ⊑ ℓ′) → Δ ⊩sℓ,𝑖 𝐹[𝜌]
𝐻𝐺 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈) → Δ ⊩wℓ,𝑖 𝐺[𝑎, 𝜌]
𝐻𝐺≡ ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

𝚷(𝐻𝑎 ∶ Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)).
Δ ⊩sℓ,𝑖 𝑏 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈) →
Δ ⊩sℓ,𝑖 𝑎 ≡ 𝑏 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈) →
Δ ⊩wℓ,𝑖 𝐺[𝑎, 𝜌] ≡ 𝐺[𝑏, 𝜌] / (𝐻𝐺 𝜌 𝛼 𝑛∈ 𝐻𝑎)

Γ ⊩Πℓ,𝑖 𝐴

Let us go over the premises one by one:

▶ We first ask 𝐴 to reduce to a well-formed Π-type

Π𝑥 ∶ 𝐹 . 𝐵.

▶ We make sure that any weakening

𝐹[𝜌]

of 𝐹 is split-reducible. For readability,we divide this split-reducibility
proof into a natural number 𝑁𝐹 and a proof 𝐻𝐹 .

▶ Given
𝜌 ∶ Δ ⊆ Γ and ℓ′ ⪯ ℓ

such that 𝐹[𝜌] is reducible under ℓ′, given any reducible term

Δ ⊩𝑠ℓ,𝑖 𝑎 ∈ 𝐹[𝜌],

we ask
𝐺[𝑎, 𝜌]

to be split-reducible under ℓ′.
▶ Finally, we also require that given two reducibly equal terms

𝑎, 𝑏 ∶ 𝐹[𝜌],

applying 𝐺 to both leads to split-reducibly equal types

𝐺[𝑎, 𝜌] and 𝐺[𝑏, 𝜌].

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L274

4. The cone of possibilities 174

Definition 4.5.10: Derived predicates for functional types
Given

𝐻𝐴 ∶ Γ ⊩Πℓ,𝑖 𝐴,
the following predicates are defined:

▶ Γ ⊩Πℓ,𝑖 𝐴 ≡ _ / 𝐻𝐴 as the following:

Reducible equality for functional
types can be found here.

Γ ⊢ℓ 𝐵 ∶⟶∗∶ Π𝑥 ∶ 𝐹 ′. 𝐺′

Γ ⊢ℓ Π𝑥 ∶ 𝐹 . 𝐺 ≡ Π𝑥 ∶ 𝐹 ′. 𝐺′

𝑁 ′𝐹 ∶ ℕ
𝐻 ′𝐹 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

[𝑁 ′𝐹] ⊑ ℓ′ → Δ ⊩sℓ,𝑖 𝐹[𝜌] ≡ 𝐹 ′[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)
𝐻 ′𝐺 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

𝚷(𝑛′∈ ∶ [𝑁 ′𝐹] ⊑ ℓ′) (𝐻𝑎 ∶ Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)).
Δ ⊩wℓ,𝑖 𝐺[𝑎, 𝜌] ≡ 𝐺′[𝑎, 𝜌] / (𝐻𝐺 𝜌 𝛼 𝑛∈ 𝐻𝑎)

Γ ⊩Πℓ,𝑖 𝐴 ≡ 𝐵 / 𝐻𝐴

▶ Γ ⊩Πℓ,𝑖 _ ∈ 𝐴 / 𝐻𝐴 as the following:

Reducibility for terms of func-
tional types can be found here.

Γ ⊢ℓ 𝑡 ∶⟶∗∶ 𝑓 ∶ Π𝑥 ∶ 𝐹 . 𝐺
nf 𝑓
𝑁𝑡 ∶ ℕ
𝐻𝑡 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

𝚷(𝑛′∈ ∶ [𝑁𝑡] ⊑ ℓ′) (𝐻𝑎 ∶ Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)).
Δ ⊩wℓ,𝑖 𝑓 [𝜌] 𝑎 ∈ 𝐺[𝑎, 𝜌] / (𝐻𝐺 𝜌 𝛼 𝑛∈ 𝐻𝑎)

𝐻𝑡≡ ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).
𝚷(𝑛′∈ ∶ [𝑁𝑡] ⊑ ℓ′) (𝐻𝑎 ∶ Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)).
Δ ⊩sℓ,𝑖 𝑏 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈) →
Δ ⊩sℓ,𝑖 𝑎 ≡ 𝑏 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈) →
Δ ⊩wℓ,𝑖 𝑓 [𝜌] 𝑎 ≡ 𝑓 [𝜌] 𝑏 ∈ 𝐺[𝑎, 𝜌] / (𝐻𝐺 𝜌 𝛼 𝑛∈ 𝐻𝑎)

Γ ⊩Πℓ,𝑖 𝑡 ∈ 𝐴 / 𝐻𝐴

▶ Γ ⊩Πℓ,𝑖 _ ≡ _ ∈ 𝐴 / 𝐻𝐴 as the following:

Reducible equality for terms of
functional types can be found here.

Γ ⊩Πℓ,𝑖 𝑡 ∈ 𝐴/𝐻𝐴
Γ ⊩Πℓ,𝑖 𝑢 ∈ 𝐴/𝐻𝐴
𝑁≡ ∶ ℕ
𝐻≡ ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ) (𝛼 ∶ ℓ′ ⪯ ℓ) (𝑛∈ ∶ [𝑁𝐹] ⊑ ℓ′).

𝚷(𝑛′∈ ∶ [𝑁≡] ⊑ ℓ′) (𝐻𝑎 ∶ Δ ⊩sℓ,𝑖 𝑎 ∈ 𝐹[𝜌] / (𝐻𝐹 𝜌 𝛼 𝑛∈)).
Δ ⊩wℓ,𝑖 𝑓𝑡[𝜌] 𝑎 ≡ 𝑓𝑢[𝜌] 𝑎 ∈ 𝐺[𝑎, 𝜌] / (𝐻𝐺 𝜌 𝛼 𝑛∈ 𝐻𝑎)

Γ ⊩Πℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴

where 𝑓𝑡 and 𝑓𝑢 designate the normal forms 𝑡 and 𝑢 reduce to,
as described in their respective proof of

Γ ⊩Πℓ,𝑖 _ ∈ 𝐴 / 𝐻𝐴.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L348
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L396
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation.v#L450

4. The cone of possibilities 175

Here,
Γ ⊩sℓ,𝑖 𝐴 ≡ 𝐵

states that 𝐵 reduces to
Π𝑥 ∶ 𝐹 ′. 𝐺′

which should be convertible to

Π𝑥 ∶ 𝐹 . 𝐺.

Moreoever, for any weakening

𝜌 ∶ Δ ⊆ Γ, 𝐹 ′[𝜌]

should be split-reducibly equal to 𝐹[𝜌] (once again, we separate this
split-reducibility proof into a natural number 𝑁 ′𝐹 and a proof 𝐻 ′𝐹).

Similarly, for any
ℓ′ ⪯ ℓ

such that 𝐹[𝜌] is reducible under ℓ′, given any reducible term

Δ ⊩𝑠ℓ,𝑖 𝑎 ∈ 𝐹[𝜌],

we ask
𝐺′[𝑎, 𝜌]

to be split-reducibly equal to 𝐺[𝑎, 𝜌] under ℓ′.
The predicate Γ ⊩sℓ,𝑖 𝑡 ∈ 𝐴 states that 𝑡 reduces to a normal form 𝑓 . Then,
similarly to 𝐺, given any

𝜌 ∶ Δ ⊆ Γ and any ℓ′ ⪯ ℓ

such that 𝐹[𝜌] is reducible under ℓ′, given any reducible term

Δ ⊩𝑠ℓ,𝑖 𝑎 ∈ 𝐹[𝜌],

𝑓 [𝜌] 𝑎 should be split-reducible at 𝐺[𝑎, 𝜌]. Moreover, it should send
reducibly equal inputs

𝑎 ≡ 𝑏 ∶ 𝐹[𝜌]
to split-reducibly equal outputs

𝑓 [𝜌] 𝑎 and 𝑓 [𝜌] 𝑏.

Finally, Γ ⊩sℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴 first states that 𝑡 and 𝑢 are split-reducible at
type 𝐴. Then, given any

𝜌 ∶ Δ ⊆ Γ and any ℓ′ ⪯ ℓ

such that 𝐹[𝜌] is reducible under ℓ′, given any reducible term

Δ ⊩𝑠ℓ,𝑖 𝑎 ∈ 𝐹[𝜌],

we require a split-reducible equality between the normal forms of 𝑡
and 𝑢, once applied to 𝑎.

4. The cone of possibilities 176

4.5.6. Lemmas about reducibility

All the following lemmas go by mutual induction on the reducibility
judgments.

Lemma 4.5.2: Escape

Escape is what we called complete-
ness in Section 1.5. Its formal proof
can be found here.

We have:

If Γ ⊩wℓ,𝑖 𝐴 then Γ ⊢ℓ 𝐴
If Γ ⊩wℓ,𝑖 𝑡 ∈ 𝐴 then Γ ⊢ℓ 𝑡 ∈ 𝐴
If Γ ⊩wℓ,𝑖 𝐴 ≡ 𝐵 then Γ ⊢ℓ 𝐴 ≡ 𝐵
If Γ ⊩wℓ,𝑖 𝑡 ≡ 𝑢 ∈ 𝐴 then Γ ⊢ℓ 𝑡 ≡ 𝑢 ∶ 𝐴

As reducibility immediately entails split-reducibility, we also have es-
cape for reducible terms.

Lemma 4.5.3: Monotonicity of reducibility

Formal proof of monotonicity can
be found here.

If 𝑡 is reducible (resp. split-reducible) at type 𝐴 under ℓ, then it is
also reducible (resp. split-reducible) at type 𝐴 under any extension
ℓ′ of ℓ.

Lemma 4.5.4: Weak-head expansion

Formal proof of weak-head expan-
sion for types can be found here.

1. If
𝐴 ⟶∗ℓ 𝐵 and Γ ⊩sℓ 𝐵

then there exists
𝐻𝐴 ∶ Γ ⊩sℓ 𝐴

such that
Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻𝐴

Formal proof of weak-head expan-
sion for terms can be found here.

2. Given
𝐻𝐴 ∶ Γ ⊩sℓ 𝐴,

if
𝑡 ⟶∗ℓ 𝑢 and Γ ⊩sℓ 𝑢 ∈ 𝐴 / 𝐻𝐴

then

Γ ⊩sℓ 𝑡 ∈ 𝐴 / 𝐻𝐴 and Γ ⊩sℓ 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴.

Lemma 4.5.5: Reflexivity

Formal proof of reflexivity for
types can be found here.

1. If 𝐻𝐴 ∶ Γ ⊩sℓ 𝐴 then Γ ⊩sℓ 𝐴 ≡ 𝐴 / 𝐻𝐴;

Formal proof of reflexivity for
terms can be found here.

2. If
𝐻𝐴 ∶ Γ ⊩sℓ 𝐴 and Γ ⊩sℓ 𝑡 ∈ 𝐴 / 𝐻𝐴

then
Γ ⊩sℓ 𝑡 ≡ 𝑡 ∈ 𝐴 / 𝐻𝐴.

The same two properties are also true for split-reducibility.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Escape.v#L13
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Monotonicity.v#L13
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Reduction.v#L13
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Reduction.v#L74
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Reflexivity.v#L25
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Reflexivity.v#L109

4. The cone of possibilities 177

Definition of ShapeView by Abel et
al can be found here.

This definition is directly taken
from the Coq development here.

Toprove some of the next properties of reducibility, we need to recurse
on two or more reducibility proofs. However, many cases will simply
be discarded by inversion. For instance, if we have

𝐻𝐴 ∶ Γ ⊩ℕℓ 𝐴 and Γ ⊩sℓ 𝐴 ≡ 𝐵 / (LRℕ 𝐻𝐴)

then any proof
Γ ⊩sℓ 𝐵

will be of the form

LRℕ 𝐻𝐵 with 𝐻𝐵 ∶ Γ ⊩ℕℓ 𝐵

and any other case would be absurd.

To enforce this in a systematic way, Abel et al define an inductive pred-
icate

ShapeView ∶ 𝚷{𝐴 𝐵} (𝐻𝐴 ∶ Γ ⊩sℓ 𝐴) (𝐻𝐵 ∶ Γ ⊩sℓ 𝐵). □
binding together reducibility proofs when they are of the same kind.
For instance, there is a constructor

Shpℕ ∶ 𝚷(𝐻𝐴 ∶ Γ ⊩ℕℓ 𝐴) (𝐻𝐵 ∶ Γ ⊩ℕℓ 𝐵). ShapeView (LRℕ 𝐻𝐴) (LRℕ 𝐻𝐵)

for reducibility proof for ℕ. It goes similarly for 𝔹, Π-types, etc.In
the Coq development from Adjedj et al, however, this work is done by
pattern-matching. Following their lead, we define a ShapeView func-
tion as follows:

Definition ShapeView ∶ 𝚷{𝐴 𝐵} (𝐻𝐴 ∶ Γ ⊩sℓ 𝐴) (𝐻𝐵 ∶ Γ ⊩sℓ 𝐵). □ ≔
match 𝐻𝐴, 𝐻𝐵 with
∣ LR□ _ , LR□ _ ⇒ ⊤
∣ LRℕ _ , LRℕ _, ⇒ ⊤
∣ LR𝔹 _ , LR𝔹 _, ⇒ ⊤
∣ LRne _ , LRne _, ⇒ ⊤
∣ LRΠ _ , LRΠ _, ⇒ ⊤
∣ _ , _ ⇒ ⊥

end.

Lemma 4.5.6: Reducible equality implies ShapeView

Proof that reducible equality im-
plies ShapeView can be found
here.

If
𝐻𝐴 ∶ Γ ⊩sℓ 𝐴, 𝐻𝐵 ∶ Γ ⊩sℓ 𝐵 and Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻𝐴

then
ShapeView 𝐻𝐴 𝐻𝐵 .

In the following proofs, ShapeView allows us to focus on the diagonal
cases and not bother with absurd ones. In Agda, Abel et al and Pujet
et al had to write an elimination of ⊥ for every non-diagonal case; in
Coq however every one of those is taken care of by the solve tactic,
which makes the proofs more readable and scalable.

https://github.com/mr-ohman/logrel-mltt/blob/2f1bae017f74c2d8486ae980994a96191ea4b821/Definition/LogicalRelation/ShapeView.agda#L206
https://github.com/CoqHott/logrel-coq/blob/d8b2a34b0c42d0a7cdf8b1a6cf54bee0adb050ef/theories/LogicalRelation/ShapeView.v#L16
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/ShapeView.v#L61

4. The cone of possibilities 178

Lemma 4.5.7: Irrelevance

The main irrelevance theorem can
be found here.

Given two proofs
𝐻𝐴, 𝐻 ′𝐴 ∶ Γ ⊩sℓ 𝐴,

the following holds:

If Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻𝐴 then Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻 ′𝐴

If Γ ⊩sℓ 𝑡 ∈ 𝐴 / 𝐻𝐴 then Γ ⊩sℓ 𝑡 ∈ 𝐴 / 𝐻 ′𝐴

If Γ ⊩sℓ 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴 then Γ ⊩sℓ 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻 ′𝐴

Proof. Wego by induction on𝐻𝐴, then do each case by induction on𝐻 ′𝐴,
using ShapeView to take care of the non-diagonal cases. The diagonal
cases are pretty straightforward. ■

Irrelevance is necessary to prove Monotonicity under weakenings and
Transitivity of the reducibility relation.

Lemma 4.5.8: Weakening

Weakening of the logical relation
for types can be found here.

If
Γ ⊩sℓ 𝐴 and 𝜌 ∶ Δ ⊆ Γ

then
Δ ⊩sℓ 𝐴[𝜌].

Then, given

𝐻𝐴 ∶ Γ ⊩sℓ 𝐴 and 𝐻 𝜌
𝐴 ∶ Δ ⊩sℓ 𝐴[𝜌],

the following holds:
Proof of monotonicity under weak-
enings for reducible equality on
types can be found here. Regard-
ing terms, it can be found here.

If Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻𝐴 then Γ ⊩sℓ 𝐴[𝜌] ≡ 𝐵[𝜌] / 𝐻 𝜌
𝐴

If Γ ⊩sℓ 𝑡 ∈ 𝐴 / 𝐻𝐴 then Γ ⊩sℓ 𝑡[𝜌] ∈ 𝐴[𝜌] / 𝐻 𝜌
𝐴

If Γ ⊩sℓ 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴 then Γ ⊩sℓ 𝑡[𝜌] ≡ 𝑢[𝜌] ∈ 𝐴[𝜌] / 𝐻 𝜌
𝐴

Let us give an example where irrelevance comes in handy when prov-
ing monotonicity of the logical relation under weakening. Given a
proof

Γ ⊩Πℓ,𝑖 𝐴
we need to build a proof of

Γ ⊩Πℓ,𝑖 𝐴[𝜌].

In particular, knowing

𝐻𝐹 ∶ 𝚷(𝜌 ∶ Δ ⊆ Γ). (ℓ′ ⪯ ℓ) → ([𝑁𝐹] ⊑ ℓ′) → Δ ⊩sℓ,𝑖 𝐹[𝜌]

we need to prove

𝐻 𝜌
𝐹 ∶ 𝚷(𝜌′ ∶ Δ ⊆ Γ). (ℓ′ ⪯ ℓ) → ([𝑁𝐹] ⊑ ℓ′) → Δ ⊩sℓ,𝑖 𝐹[𝜌][𝜌′].

https://github.com/CoqHott/logrel-coq/blob/d8b2a34b0c42d0a7cdf8b1a6cf54bee0adb050ef/theories/LogicalRelation/Irrelevance.v#L597
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Weakening.v#L91
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Weakening.v#L129
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Weakening.v#L220

4. The cone of possibilities 179

[4]: Adjedj et al. (2023), “Martin-Löf à
la Coq”

[44]: Coquand et al. (2017), “The In-
dependence of Markov’s Principle in
Type Theory”

Of course, we know that

𝐴[𝜌][𝜌′] = 𝐴[𝜌′ ∘ 𝜌]

and we could rewrite along this equality, then conclude instantiat-
ing

𝐻𝐹 with 𝜌′ ∘ 𝜌.
However, we would then need to take care of this rewriting in every
subsequent proof making use of 𝐻 𝜌

𝐹 . Moreover, proofs regarding 𝐺
would need their own rewriting aswell, and everythingwould become
quite painful. Here, we can simply evade these bothersome thoughts
and call the (judiciously named) irrelevance tactic.

Lemma 4.5.9: Transitivity

Transitivity for reducible equality
on types can be found here.

Given

𝐻𝐴 ∶ Γ ⊩sℓ 𝐴, 𝐻𝐵 ∶ Γ ⊩sℓ 𝐵 and 𝐻𝐶 ∶ Γ ⊩sℓ 𝐶

such that

Γ ⊩sℓ 𝐴 ≡ 𝐵 / 𝐻𝐴, and Γ ⊩sℓ 𝐵 ≡ 𝐶 / 𝐻𝐵 ,

then
Γ ⊩sℓ 𝐴 ≡ 𝐶 / 𝐻𝐴.

Similarly, if we have
Transitivity for reducible equality
on terms can be found here.

𝐻𝐴 ∶ Γ ⊩sℓ 𝐴
such that

Γ ⊩sℓ 𝑡 ≡ 𝑢 ∈ 𝐴 / 𝐻𝐴 and Γ ⊩sℓ 𝑢 ≡ 𝑣 ∈ 𝐴 / 𝐻𝐴,

then
Γ ⊩sℓ 𝑡 ≡ 𝑣 ∈ 𝐴 / 𝐻𝐴.

The same is true for split-reducibility.

At the time of writing, this is where the formalization stops. Following
the proof structure from Adjedj et al [4] as presented in Section 4.4,
what is left is to define validity and show that it is indeed a model of
ϝTT. The fact that the Coq development ofAdjedj et al offers a complete
proof of normalization for MLTT, together with the fact that Coquand
and Mannaa [44] derived a pen-and-paper proof of normalization for
ϝTT and that we successfully formalized a proof for System ϝT, provide
hints that our endeavour should succeed. We thus hope to be able to
complete this formalization in the coming months. For the time being,
this is left as future work.

https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Transitivity.v#L15
https://github.com/CoqHott/logrel-coq/blob/95a405c4057756151e7040b61e1eadc79999cba6/theories/LogicalRelation/Transitivity.v#L369

[43]: Coquand et al. (2010), “ANote on
Forcing and Type Theory”

[44]: Coquand et al. (2017), “The In-
dependence of Markov’s Principle in
Type Theory”

[3]: Abel et al. (2017), “Decidability of
Conversion for Type Theory in Type
Theory”

[4]: Adjedj et al. (2023), “Martin-Löf à
la Coq”

[59]: Gilbert et al. (2019), “Definitional
Proof-Irrelevance without K”
[119]: Pujet et al. (2023), “Impredica-
tive Observational Equality”
[120]: Pujet et al. (2022), “Observa-
tional Equality: Now for Good”

Conclusion

In this thesis, we highlighted a particular operator, the dialoguemonad,
and provided two attempts at bringing together dependent type the-
ory and continuity encoded with dialogue trees.

Chapter 2 surveys the different notions of continuity, and assesses
their respective strength. In particular, we show that some logical
principles such as function extensionality or bar inductionmake some
definitions equivalent, but our analysis is incomplete as we have not
studied in detail the return direction, i.e., what logical principle can
be derived by postulating that two definitions are equivalent. There
is thus room for further investigation there.

Chapter 3 shows how far we can go in the realm of program trans-
lations and provides a purely syntactic proof that functionals of Ba-
clofen Type Theory are continuous (albeit from the target theory only,
internalization stays out of reach). Not only is the argument syntactic,
it is also expressed as a program translation into another dependent
type theory. Thus, everything computes by construction and conver-
sion in the source is interpreted as conversion in the target. Despite
being a generalization of a simpler proof by Escardó, the dependently-
typed presentation gives more insight about the constraints one has
to respect for it to work properly, and highlights a few hidden flaws
of the original version. Finally, the model gives empirical foothold to
the claim that BTT is a natural setting for dependently-typed effects.
We believe it is not merely an ad-hoc set of rules, but a system that
keeps appearing in various contexts, and thus a generic effectful type
theory. It would hence be meaningful to make an in-depth study of
BTT. For instance, the problem of building a model of CIC in BTT is, to
our knowledge, still open. It is also unclear whether we can provide
models ofBTT for any effect, as some prove challenging, like the global
state effect. We might need more restrictions on dependent elimina-
tion for it to work. Finally, that we did not manage to build a program
translation for CIC ought to be highlighted, too, as it provides insight
on what can, and cannot be done, through program translations.

Chapter 4 presents ϝTT, an extension ofMLTT, together with an incom-
plete proof of normalization. From this proof, we should be able to re-
cover the fact that any MLTT-definable functional is continuous. That
this proof is not fully formalized yet offers immediate future workma-
terials. In the longer run, we hope to modify ϝTT in order to internal-
ize the proof of continuity, as was already suggested by Coquand and
Jaber [43]. Since Coquand and Mannaa’s [44] proof of independence of
Markov’s principle makes use of the same theory, we should be able
to provide a formalization of this result too. More globally, we think
that the existence of modular, formalized normalization proofs such
as Abel et al’s [3] and Adjedj et al’s [4] paves the way for many type the-
ory experiments in the coming years. Some fruits have already been
plucked [59, 119, 120], but we believe there are many to come, such
as 𝜂-rule for booleans (which is quite close to our ϝTT setting), explicit
subtyping, or even internal Church thesis in MLTT.

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. “Con-
tainers: Constructing strictly positive types”. In: Theoretical
Computer Science 342.1 (2005). Applied Semantics: Selected
Topics, pp. 3–27. DOI: https://doi.org/10.1016/j.
tcs.2005.06.002 (cit. on p. 68).

[2] Andreas Abel, Klaus Aehlig, and Peter Dybjer. “Normalization
by Evaluation forMartin-Löf Type TheorywithOneUniverse”.
In: Proceedings of the 23rd Conference on the Mathematical Foun-
dations of Programming Semantics, MFPS 2007, New Orleans,
LA, USA, April 11-14, 2007. Ed. by Marcelo Fiore. Vol. 173.
Electronic Notes in Theoretical Computer Science. Elsevier,
2007, pp. 17–39. DOI: 10.1016/j.entcs.2007.02.025
(cit. on p. 31).

[3] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decid-
ability of Conversion for TypeTheory in TypeTheory”. In:Proc.
ACM Program. Lang. 2.POPL (2017). DOI: 10.1145/3158111
(cit. on pp. 11, 53, 137, 146, 180).

[4] Arthur Adjedj et al. “Martin-Löf à la Coq”. working paper or
preprint. Sept. 2023 (cit. on pp. 11, 137, 146, 179, 180).

[5] Danel Ahman. “Handling fibred algebraic effects”. In: Proc.
ACM Program. Lang. 2.POPL (2018), 7:1–7:29. DOI: 10.1145/
3158095 (cit. on p. 67).

[6] Stuart F. Allen et al. “The Nuprl Open Logical Environment”.
In: Automated Deduction - CADE-17, 17th International Confer-
ence on Automated Deduction, Pittsburgh, PA, USA, June 17-20,
2000, Proceedings. Ed. by David A. McAllester. Vol. 1831. Lec-
ture Notes in Computer Science. Springer, 2000, pp. 170–176.
DOI: 10.1007/10721959_12 (cit. on p. 43).

[7] ThorstenAltenkirch andAmbrus Kaposi. “Type theory in type
theory using quotient inductive types”. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. Ed. by Rastislav Bodík and Rupak Ma-
jumdar. ACM, 2016, pp. 18–29. DOI: 10 . 1145 / 2837614 .
2837638 (cit. on pp. 53, 106).

[8] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra.
“Observational equality, now!” In:Proceedings of the ACMWork-
shop Programming Languages meets Program Verification, PLPV
2007, Freiburg, Germany, October 5, 2007. Ed. by Aaron Stump
andHongwei Xi. ACM, 2007, pp. 57–68. DOI:10.1145/1292597.
1292608 (cit. on pp. 43, 98).

[9] ThorstenAltenkirch et al. “Quotient Inductive-Inductive Types”.
In: Foundations of Software Science and Computation Structures
- 21st International Conference, FOSSACS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings. Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803.

https://doi.org/https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.entcs.2007.02.025
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.1007/10721959_12
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608

Bibliography 182

Lecture Notes in Computer Science. Springer, 2018, pp. 293–
310. DOI: 10.1007/978-3-319-89366-2_16 (cit. on
p. 67).

[10] Thorsten Altenkirch et al. “Setoid type theory - a syntactic
translation”. In: MPC 2019 - 13th International Conference on
Mathematics of Program Construction. Vol. 11825. LNCS. Porto,
Portugal: Springer, Oct. 2019, pp. 155–196. DOI: 10.1007/
978-3-030-33636-3_7 (cit. on p. 58).

[11] K. Appel and W. Haken. “Every planar map is four colorable.
Part I: Discharging”. In: Illinois Journal of Mathematics 21.3
(1977), pp. 429 –490. DOI: 10.1215/ijm/1256049011 (cit.
on p. 17).

[12] Ali Assaf. “A Calculus of Constructions with Explicit Subtyp-
ing”. In: 20th International Conference on Types for Proofs and
Programs, TYPES 2014, May 12-15, 2014, Paris, France. Ed. by
Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau. Vol. 39.
LIPIcs. SchlossDagstuhl - Leibniz-Zentrum für Informatik, 2014,
pp. 27–46. DOI: 10.4230/LIPICS.TYPES.2014.27 (cit. on
p. 31).

[13] Brian E.Aydemir et al. “MechanizedMetatheory for theMasses:
The PoplMark Challenge”. In: Theorem Proving in Higher Or-
der Logics, 18th International Conference, TPHOLs 2005, Oxford,
UK,August 22-25, 2005, Proceedings. Ed. by JoeHurd andThomas
F.Melham.Vol. 3603. LectureNotes inComputer Science. Springer,
2005, pp. 50–65. DOI: 10.1007/11541868_4 (cit. on p. 25).

[14] HenkBarendregt. “Introduction toGeneralizedType Systems”.
In: J. Funct. Program. 1.2 (1991), pp. 125–154. DOI: 10.1017/
s0956796800020025 (cit. on p. 31).

[15] Gilles Barthe and Tarmo Uustalu. “CPS translating inductive
and coinductive types”. In: Proceedings of the 2002 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Pro-
gramManipulation (PEPM ’02), Portland, Oregon, USA, January
14-15, 2002. Ed. by Peter Thiemann. ACM, 2002, pp. 131–142.
DOI: 10.1145/503032.503043 (cit. on pp. 18, 51).

[16] Andrej Bauer. “First Steps in Synthetic Computability Theory”.
In: Proceedings of the 21st Annual Conference on Mathematical
Foundations of Programming Semantics, MFPS 2005, Birming-
ham,UK,May 18-21, 2005. Ed. byMartínHötzel Escardó, Achim
Jung, and Michael W. Mislove. Vol. 155. Electronic Notes in
Theoretical Computer Science. Elsevier, 2005, pp. 5–31. DOI:
10.1016/J.ENTCS.2005.11.049 (cit. on p. 75).

[17] Andrej Bauer. “What is algebraic about algebraic effects and
handlers?” In: CoRR abs/1807.05923 (2018) (cit. on p. 67).

[18] Andrej Bauer and Matija Pretnar. “Programming with alge-
braic effects and handlers”. In: J. Log. Algebraic Methods Pro-
gram. 84.1 (2015), pp. 108–123. DOI: 10.1016/J.JLAMP.
2014.02.001 (cit. on p. 67).

[19] Andrej Bauer et al. “Design and Implementation of the An-
dromeda Proof Assistant”. In: CoRR abs/1802.06217 (2018)
(cit. on p. 43).

https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.1215/ijm/1256049011
https://doi.org/10.4230/LIPICS.TYPES.2014.27
https://doi.org/10.1007/11541868_4
https://doi.org/10.1017/s0956796800020025
https://doi.org/10.1017/s0956796800020025
https://doi.org/10.1145/503032.503043
https://doi.org/10.1016/J.ENTCS.2005.11.049
https://doi.org/10.1016/J.JLAMP.2014.02.001
https://doi.org/10.1016/J.JLAMP.2014.02.001

Bibliography 183

[20] Josef Berger. “Aligning the weak König lemma, the uniform
continuity theorem, andBrouwer’s fan theorem”. In:Ann. Pure
Appl. Log. 163.8 (2012), pp. 981–985. DOI: 10.1016/J.APAL.
2011.12.021 (cit. on pp. 63, 74).

[21] Josef Berger. “The Fan Theorem and Uniform Continuity”. In:
New Computational Paradigms, First Conference on Computabil-
ity in Europe, CiE 2005, Amsterdam, The Netherlands, June 8-12,
2005, Proceedings. Ed. by S. Barry Cooper, Benedikt Löwe, and
LeenTorenvliet. Vol. 3526. LectureNotes inComputer Science.
Springer, 2005, pp. 18–22. DOI: 10.1007/11494645_3 (cit.
on pp. 63, 74).

[22] Josef Berger. “The Logical Strength of the Uniform Continu-
ity Theorem”. In: Logical Approaches to Computational Barri-
ers, Second Conference on Computability in Europe, CiE 2006,
Swansea, UK, June 30-July 5, 2006, Proceedings. Ed. by Arnold
Beckmann et al. Vol. 3988. Lecture Notes in Computer Science.
Springer, 2006, pp. 35–39. DOI: 10.1007/11780342_4 (cit.
on pp. 63, 74, 130).

[23] Jean-Philippe Bernardy and Marc Lasson. “Realizability and
Parametricity in Pure Type Systems”. In: Foundations of Soft-
ware Science and Computational Structures - 14th International
Conference, FOSSACS 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. Ed.
by Martin Hofmann. Vol. 6604. Lecture Notes in Computer
Science. Springer, 2011, pp. 108–122. DOI: 10.1007/978-3-
642-19805-2_8 (cit. on p. 112).

[24] Mark Bickford et al. “Computability Beyond Church-Turing
viaChoice Sequences”. In:Proceedings of the 33rdAnnual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich Grädel.
ACM, 2018, pp. 245–254. DOI: 10.1145/3209108.3209200
(cit. on pp. 65, 130).

[25] Simon Pierre Boulier. “Extending type theory with syntactic
models. (Etendre la théorie des types à l’aide de modèles syn-
taxiques)”. PhD thesis. Ecole nationale supérieureMines-Télécom
Atlantique Bretagne Pays de la Loire, France, 2018 (cit. on pp. 18,
56, 61, 119).

[26] Nuria Brede and Hugo Herbelin. “On the logical structure of
choice and bar induction principles”. In: 36thAnnual ACM/IEEE
Symposium on Logic inComputer Science, LICS 2021, Rome, Italy,
June 29 - July 2, 2021. IEEE, 2021, pp. 1–13. DOI: 10.1109/
LICS52264.2021.9470523 (cit. on p. 86).

[27] Luitzen Egbertus Jan Brouwer. Brouwer’s Cambridge lectures on
intuitionism. Cambridge University Press, 1981 (cit. on p. 63).

[28] Luitzen Egbertus Jan Brouwer. “Zur Begründung der intuition-
istischenMathematik. I.” In:MathematischeAnnalen 93.1 (1925),
pp. 244–257 (cit. on pp. 63, 80).

[29] Cesare Burali-Forti. “Una questione sui numeri transfiniti”. In:
Rendiconti del Circolo Matematico di Palermo (1884-1940) 11.1
(1897), pp. 154–164 (cit. on p. 32).

https://doi.org/10.1016/J.APAL.2011.12.021
https://doi.org/10.1016/J.APAL.2011.12.021
https://doi.org/10.1007/11494645_3
https://doi.org/10.1007/11780342_4
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.1109/LICS52264.2021.9470523

Bibliography 184

[30] VenanzioCapretta. “General Recursion viaCoinductive Types”.
In: LogicalMethods inComputer ScienceVolume1, Issue 2 (2005).
DOI: 10.2168/lmcs-1(2:1)2005 (cit. on p. 77).

[31] JamesChapman. “TypeTheory Should Eat Itself”. In:Electronic
Notes in Theoretical Computer Science 228 (2009). Proceedings
of the InternationalWorkshop onLogical Frameworks andMet-
alanguages: Theory andPractice (LFMTP2008), pp. 21–36. DOI:
https://doi.org/10.1016/j.entcs.2008.12.114
(cit. on p. 53).

[32] Alonzo Church. “The calculi of lambda-conversion.” In: The
Journal of Symbolic Logic (1941) (cit. on p. 19).

[33] JesperCockx. “Dependent PatternMatching andProof-Relevant
Unification”. PhD thesis. Katholieke Universiteit Leuven, Bel-
gium, 2017 (cit. on p. 27).

[34] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. “The
Taming of the Rew: A Type Theory with Computational As-
sumptions”. In: Proceedings of the ACM on Programming Lan-
guages. POPL 2021 (2021). DOI: 10.1145/3434341 (cit. on
p. 44).

[35] Liron Cohen and Vincent Rahli. “Constructing Unprejudiced
Extensional Type Theories with Choices via Modalities”. In:
7th International Conference on Formal Structures for Computa-
tion and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Is-
rael. Ed. by Amy P. Felty. Vol. 228. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022, 10:1–10:23. DOI: 10.
4230/LIPICS.FSCD.2022.10 (cit. on p. 65).

[36] Liron Cohen and Vincent Rahli. “Realizing Continuity Using
Stateful Computations”. In: 31st EACSL Annual Conference on
Computer Science Logic, CSL 2023, February 13-16, 2023, War-
saw, Poland. Ed. by Bartek Klin and Elaine Pimentel. Vol. 252.
LIPIcs. SchlossDagstuhl - Leibniz-Zentrum für Informatik, 2023,
15:1–15:18. DOI: 10.4230/LIPICS.CSL.2023.15 (cit. on
pp. 65, 95, 104).

[37] Liron Cohen et al. “Inductive Continuity via Brouwer Trees”.
In: 48th International Symposium on Mathematical Foundations
of Computer Science,MFCS2023, August 28 to September 1, 2023,
Bordeaux, France. Ed. by Jérôme Leroux, Sylvain Lombardy,
and David Peleg. Vol. 272. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, 37:1–37:16. DOI: 10.4230/
LIPICS.MFCS.2023.37 (cit. on pp. 65, 74).

[38] Paul J Cohen. “The independence of the continuum hypoth-
esis”. In: Proceedings of the National Academy of Sciences 50.6
(1963), pp. 1143–1148 (cit. on p. 136).

[39] Thierry Coquand. “A new paradox in type theory”. In: Logic,
Methodology and Philosophy of Science IX. Ed. by Dag Prawitz,
Brian Skyrms, and Dag Westerståhl. Vol. 134. Studies in Logic
and the Foundations of Mathematics. Elsevier, 1995, pp. 555–
570. DOI: https://doi.org/10.1016/S0049-237X(06)
80062-5 (cit. on p. 32).

https://doi.org/10.2168/lmcs-1(2:1)2005
https://doi.org/https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1145/3434341
https://doi.org/10.4230/LIPICS.FSCD.2022.10
https://doi.org/10.4230/LIPICS.FSCD.2022.10
https://doi.org/10.4230/LIPICS.CSL.2023.15
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80062-5
https://doi.org/https://doi.org/10.1016/S0049-237X(06)80062-5

Bibliography 185

[40] Thierry Coquand. “An Analysis of Girard’s Paradox”. In: Pro-
ceedings of the Symposium on Logic in Computer Science (LICS
’86), Cambridge, Massachusetts, USA, June 16-18, 1986. IEEE
Computer Society, 1986, pp. 227–236 (cit. on pp. 31, 32).

[41] Thierry Coquand and Gérard P. Huet. “The Calculus of Con-
structions”. In: Inf. Comput. 76.2/3 (1988), pp. 95–120. DOI:
10.1016/0890-5401(88)90005-3 (cit. on p. 17).

[42] Thierry Coquand and Guilhem Jaber. “A Computational Inter-
pretation of Forcing in Type Theory”. In: Epistemology versus
Ontology - Essays on the Philosophy and Foundations of Math-
ematics in Honour of Per Martin-Löf. Ed. by Peter Dybjer et al.
Vol. 27. Logic, Epistemology, and theUnity of Science. Springer,
2012, pp. 203–213. DOI: 10.1007/978- 94- 007- 4435-
6_10 (cit. on pp. 62, 129, 136, 147).

[43] Thierry Coquand and Guilhem Jaber. “A Note on Forcing and
Type Theory”. In: Fundam. Informaticae 100.1-4 (2010), pp. 43–
52. DOI: 10.3233/FI-2010-262 (cit. on pp. 62, 129, 136,
145, 180).

[44] Thierry Coquand and Bassel Mannaa. “The Independence of
Markov’s Principle in Type Theory”. In: Log. Methods Comput.
Sci. 13.3 (2017). DOI: 10.23638/LMCS-13(3:10)2017 (cit.
on pp. 136, 179, 180).

[45] Thierry Coquand and Christine Paulin. “Inductively defined
types”. In: International Conference onComputer Logic. Springer.
1988, pp. 50–66 (cit. on p. 17).

[46] Haskell B Curry. “Functionality in combinatory logic”. In: Pro-
ceedings of theNational Academy of Sciences 20.11 (1934), pp. 584–
590. DOI: 10.1073/pnas.20.11.584 (cit. on p. 17).

[47] N.G. de Bruijn. “The Mathematical Language Automath, its
Usage, and Some of its Extensions”. In: Selected Papers on Au-
tomath. Ed. by R.P. Nederpelt, J.H. Geuvers, and R.C. de Vrijer.
Vol. 133. Studies in Logic and the Foundations of Mathemat-
ics. Elsevier, 1994, pp. 73–100. DOI: https://doi.org/10.
1016/S0049-237X(08)70200-3 (cit. on pp. 17, 25).

[48] Michael Dummett. Elements of intuitionism. Vol. 39. Oxford
University Press, 2000 (cit. on p. 63).

[49] Peter Dybjer. “Internal Type Theory”. In: Types for Proofs and
Programs, International Workshop TYPES’95, Torino, Italy, June
5-8, 1995, Selected Papers. Ed. by Stefano Berardi and Mario
Coppo.Vol. 1158. LectureNotes inComputer Science. Springer,
1995, pp. 120–134. DOI: 10.1007/3-540-61780-9_66
(cit. on p. 56).

[50] Martín Escardó and Chuangjie Xu. “A constructive manifes-
tation of the Kleene-Kreisel continuous functionals”. In: Ann.
Pure Appl. Log. 167.9 (2016), pp. 770–793. DOI: 10.1016/j.
apal.2016.04.011 (cit. on p. 129).

https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.23638/LMCS-13(3:10)2017
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70200-3
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70200-3
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1016/j.apal.2016.04.011
https://doi.org/10.1016/j.apal.2016.04.011

Bibliography 186

[51] Martin Hötzel Escardó. “Continuity of Gödel’s System T De-
finable Functionals via Effectful Forcing”. In: Proceedings of
the Twenty-ninth Conference on the Mathematical Foundations
of Programming Semantics, MFPS 2013, New Orleans, LA, USA,
June 23-25, 2013 (2013). DOI: 10.1016/j.entcs.2013.09.
010 (cit. on pp. 10, 62, 74, 82, 104, 106, 128, 129).

[52] Martin Hötzel Escardó and Chuangjie Xu. “The Inconsistency
of a Brouwerian Continuity Principle with the Curry-Howard
Interpretation”. In: 13th International Conference onTyped Lambda
Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw,
Poland (2015). DOI: 10.4230/LIPIcs.TLCA.2015.153 (cit.
on pp. 9, 72, 92, 105).

[53] Yannick Forster, DominikKirst, andNiklasMück. “OracleCom-
putability and Turing Reducibility in the Calculus of Induc-
tive Constructions”. In: CoRR abs/2307.15543 (2023). DOI: 10.
48550/arXiv.2307.15543 (cit. on p. 75).

[54] Gottlob Frege. Grundgesetze der Arithmetik: begriffsschriftlich
abgeleitet. Vol. 1. H. Pohle, 1893 (cit. on p. 32).

[55] Makoto Fujiwara andTatsuji Kawai. “Characterising Brouwer’s
continuity by bar recursion on moduli of continuity”. In: Arch.
Math. Log. 60.1-2 (2021), pp. 241–263. DOI:10.1007/S00153-
020-00740-9 (cit. on pp. 63, 90).

[56] Makoto Fujiwara and Tatsuji Kawai. “Decidable fan theorem
and uniform continuity theorem with continuous moduli”. In:
Math. Log. Q. 67.1 (2021), pp. 116–130. DOI: 10.1002/MALQ.
202000028 (cit. on p. 90).

[57] Makoto Fujiwara and Tatsuji Kawai. “Equivalence of bar in-
duction and bar recursion for continuous functions with con-
tinuousmoduli”. In:Ann. PureAppl. Log. 170.8 (2019), pp. 867–
890. DOI: 10.1016/J.APAL.2019.04.001 (cit. on pp. 73,
74, 90).

[58] Neil Ghani, Peter G. Hancock, and Dirk Pattinson. “Represen-
tations of Stream Processors Using Nested Fixed Points”. In:
Log. Methods Comput. Sci. 5.3 (2009) (cit. on p. 70).

[59] Gaëtan Gilbert et al. “Definitional Proof-Irrelevance without
K”. In:Proc. ACMProgram. Lang. 3.POPL (2019). DOI:10.1145/
3290316 (cit. on pp. 11, 43, 134, 146, 180).

[60] Eduarde Giménez. “Codifying guarded definitions with recur-
sive schemes”. In: Types for Proofs and Programs. Ed. by Peter
Dybjer, Bengt Nordström, and Jan Smith. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 39–59 (cit. on p. 27).

[61] Eduardo Giménez. “Structural recursive definitions in type
theory”. In:Automata, Languages and Programming. Ed. byKim
G. Larsen, Sven Skyum, and Glynn Winskel. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1998, pp. 397–408 (cit. on
p. 27).

[62] Jean-Yves Girard. “Interprétation fonctionnelle et élimination
des coupures de l’arithmétique d’ordre supérieur”. Theses. Uni-
versité Paris VII, 1972 (cit. on p. 32).

https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.48550/arXiv.2307.15543
https://doi.org/10.48550/arXiv.2307.15543
https://doi.org/10.1007/S00153-020-00740-9
https://doi.org/10.1007/S00153-020-00740-9
https://doi.org/10.1002/MALQ.202000028
https://doi.org/10.1002/MALQ.202000028
https://doi.org/10.1016/J.APAL.2019.04.001
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316

Bibliography 187

[63] Jean-Yves Girard, Yves Lafont, and Paul Taylor. “Proofs and
Types, volume 7 of”. In:Cambridge tracts in theoretical computer
science 7 (1989) (cit. on p. 146).

[64] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I”. In: Monatshefte für
mathematik und physik 38 (1931), pp. 173–198 (cit. on p. 53).

[65] Georges Gonthier. A computer-checked proof of the Four Color
Theorem. Tech. rep. Inria, Mar. 2023 (cit. on p. 17).

[66] Georges Gonthier. “The Four Colour Theorem: Engineering of
a Formal Proof”. In: Computer Mathematics, 8th Asian Sympo-
sium, ASCM 2007, Singapore, December 15-17, 2007. Revised
and Invited Papers. Ed. by Deepak Kapur. Vol. 5081. Lecture
Notes in Computer Science. Springer, 2007, p. 333. DOI: 10.
1007/978-3-540-87827-8_28 (cit. on p. 17).

[67] DanielGratzer,Michael Shulman, and Jonathan Sterling. “Strict
universes for Grothendieck topoi”. In: CoRR abs/2202.12012
(2022) (cit. on p. 129).

[68] Timothy Griffin. “A Formulae-as-Types Notion of Control”. In:
Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, Califor-
nia, USA, January 1990. Ed. by Frances E. Allen. ACM Press,
1990, pp. 47–58. DOI: 10.1145/96709.96714 (cit. on pp. 18,
51).

[69] Kurt Gödel. Über die Vollständigkeit des Logikkalküls. ger. 1929
(cit. on p. 64).

[70] Von Kurt Gödel. “Über eine bisher noch nicht benützte Er-
weiterungdes finiten Standpunktes”. In:Dialectica 12.3-4 (1958),
pp. 280–287. DOI: https://doi.org/10.1111/j.1746-
8361.1958.tb01464.x (cit. on pp. 18, 19).

[71] Robert Harper and Robert Pollack. “Type Checking with Uni-
verses”. In: Theor. Comput. Sci. 89.1 (1991), pp. 107–136. DOI:
10.1016/0304-3975(90)90108-T (cit. on p. 35).

[72] Michael Hedberg. “A coherence theorem forMartin-Löf’s type
theory”. In: Journal of Functional Programming 8.4 (July 1998),
pp. 413–436. DOI: 10.1017/S0956796898003153 (cit. on
p. 42).

[73] Hugo Herbelin. “On the Degeneracy of Sigma-Types in Pres-
ence of Computational Classical Logic”. In: Typed Lambda Cal-
culi and Applications, 7th International Conference, TLCA 2005,
Nara, Japan, April 21-23, 2005, Proceedings. Ed. by Pawel Urzy-
czyn. Vol. 3461. Lecture Notes in Computer Science. Springer,
2005, pp. 209–220. DOI: 10.1007/11417170_16 (cit. on
pp. 18, 51).

[74] Martin Hofmann. “Conservativity of Equality Reflection over
Intensional Type Theory”. In: Types for Proofs and Programs, In-
ternational Workshop TYPES’95, Torino, Italy, June 5-8, 1995,
Selected Papers. Ed. by StefanoBerardi andMarioCoppo. Vol. 1158.
Lecture Notes in Computer Science. Springer, 1995, pp. 153–
164. DOI: 10.1007/3-540-61780-9_68 (cit. on p. 44).

https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1145/96709.96714
https://doi.org/https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1016/0304-3975(90)90108-T
https://doi.org/10.1017/S0956796898003153
https://doi.org/10.1007/11417170_16
https://doi.org/10.1007/3-540-61780-9_68

Bibliography 188

[75] Martin Hofmann. Extensional constructs in intensional type the-
ory. CPHC/BCSdistinguisheddissertations. Springer, 1997 (cit.
on pp. 43, 44, 56, 119).

[76] MartinHofmann andThomas Streicher. “TheGroupoidModel
Refutes Uniqueness of Identity Proofs”. In: Proceedings of the
Ninth Annual Symposium on Logic in Computer Science (LICS
’94), Paris, France, July 4-7, 1994. IEEEComputer Society, 1994,
pp. 208–212. DOI: 10.1109/LICS.1994.316071 (cit. on
p. 42).

[77] WilliamAHoward. “The formulae-as-types notion of construc-
tion”. In: To HB Curry: essays on combinatory logic, lambda cal-
culus and formalism 44 (1980), pp. 479–490 (cit. on p. 17).

[78] William A. Howard and Georg Kreisel. “Transfinite Induction
and Bar Induction of Types Zero andOne, and the Role of Con-
tinuity in Intuitionistic Analysis”. In: J. Symb. Log. 31.3 (1966),
pp. 325–358. DOI: 10.2307/2270450 (cit. on p. 63).

[79] Gérard P. Huet. “The Constructive Engine”. In:APerspective in
Theoretical Computer Science - Commemorative Volume for Gift
Siromoney. Ed. by R. Narasimhan. Vol. 16. World Scientific Se-
ries in Computer Science. World Scientific, 1989, pp. 38–69.
DOI: 10.1142/9789814368452_0004 (cit. on p. 17).

[80] Jasper Hugunin. “Why Not W?” In: 26th International Confer-
ence on Types for Proofs and Programs (TYPES 2020). Ed. by Ugo
de’Liguoro, StefanoBerardi, andThorstenAltenkirch. Vol. 188.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: SchlossDagstuhl – Leibniz-Zentrum für Informatik,
2021, 8:1–8:9. DOI: 10.4230/LIPIcs.TYPES.2020.8 (cit.
on p. 69).

[81] Antonius J. C. Hurkens. “A Simplification of Girard’s Para-
dox”. In: Typed Lambda Calculi and Applications, Second Inter-
national Conference on Typed Lambda Calculi and Applications,
TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings. Ed.
byMariangiolaDezani-Ciancaglini andGordonD. Plotkin. Vol. 902.
Lecture Notes in Computer Science. Springer, 1995, pp. 266–
278. DOI: 10.1007/BFb0014058 (cit. on p. 32).

[82] J. M. E. Hyland and C.-H. Luke Ong. “On Full Abstraction for
PCF: I, II, and III”. In: Inf. Comput. 163.2 (2000), pp. 285–408.
DOI: 10.1006/inco.2000.2917 (cit. on p. 70).

[83] Bart Jacobs. “Comprehension Categories and the Semantics of
TypeDependency”. In:Theor. Comput. Sci. 107.2 (1993), pp. 169–
207. DOI: 10.1016/0304-3975(93)90169-T (cit. on p. 56).

[84] Peter T Johnstone. “On a topological topos”. In: Proceedings of
the Londonmathematical society 3.2 (1979), pp. 237–271 (cit. on
p. 94).

[85] Tomde Jong. “Domain Theory in Constructive and Predicative
Univalent Foundations”. In:CoRR abs/2301.12405 (2023). DOI:
10.48550/ARXIV.2301.12405 (cit. on p. 104).

https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.2307/2270450
https://doi.org/10.1142/9789814368452_0004
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.48550/ARXIV.2301.12405

Bibliography 189

[86] Ambrus Kaposi, András Kovács, and Nicolai Kraus. “Shallow
Embedding of Type Theory is Morally Correct”. In: Mathemat-
ics of ProgramConstruction - 13th International Conference,MPC
2019, Porto, Portugal, October 7-9, 2019, Proceedings. Ed. by
Graham Hutton. Vol. 11825. Lecture Notes in Computer Sci-
ence. Springer, 2019, pp. 329–365. DOI: 10.1007/978-3-
030-33636-3_12 (cit. on pp. 53, 119).

[87] Tatsuji Kawai. “Principles of bar induction and continuity on
Baire space”. In: J. Log. Anal. 11 (2019) (cit. on p. 90).

[88] Oleg Kiselyov and Hiromi Ishii. “Freer monads, more exten-
sible effects”. In: Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, Septem-
ber 3-4, 2015. Ed. by Ben Lippmeier. ACM, 2015, pp. 94–105.
DOI: 10.1145/2804302.2804319 (cit. on p. 70).

[89] S.C. Kleene. “Recursive Functionals and Quantifiers of Finite
Types Revisited I”. In: Generalized Recursion Theory II. Ed. by
J.E. Fenstad, R.O. Gandy, and G.E. Sacks. Vol. 94. Studies in
Logic and the Foundations ofMathematics. Elsevier, 1978, pp. 185–
222. DOI: https://doi.org/10.1016/S0049-237X(08)
70933-9 (cit. on pp. 63, 70).

[90] Stephen Cole Kleene. “Recursive functionals and quantifiers
of finite types. I”. In: Transactions of the AmericanMathematical
Society 91.1 (1959), pp. 1–52 (cit. on p. 63).

[91] Michal Konecný, Florian Steinberg, and Holger Thies. “Con-
tinuous and monotone machines”. In: CoRR abs/2005.01624
(2020) (cit. on p. 88).

[92] Nicolai Kraus et al. “Generalizations of Hedberg’s Theorem”.
In: Typed Lambda Calculi and Applications, 11th International
Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-
28, 2013. Proceedings. Ed. by Masahito Hasegawa. Vol. 7941.
Lecture Notes in Computer Science. Springer, 2013, pp. 173–
188. DOI: 10.1007/978-3-642-38946-7_14 (cit. on
p. 42).

[93] Georg Kreisel. “On Weak Completeness of Intuitionistic Pred-
icate Logic”. In: J. Symb. Log. 27.2 (1962), pp. 139–158. DOI:
10.2307/2964110 (cit. on p. 64).

[94] Jean-Louis Krivine. “Opérateurs demise enmémoire et traduc-
tion de Gödel”. In: Arch. Math. Log. 30.4 (1990), pp. 241–267.
DOI: 10.1007/BF01792986 (cit. on p. 48).

[95] Gottfried Wilhelm Leibniz. “Discourse on Metaphysics”. In:
(1686) (cit. on p. 40).

[96] Meven Lennon-Bertrand. “Bidirectional Typing for the Calcu-
lus of InductiveConstructions”. Theses. NantesUniversité, June
2022 (cit. on pp. 24, 37).

[97] Rodolphe Lepigre. “A Classical Realizability Model for a Se-
mantical Value Restriction”. In: Programming Languages and
Systems - 25th European Symposium onProgramming, ESOP2016,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2016, Eindhoven, The Netherlands, April

https://doi.org/10.1007/978-3-030-33636-3_12
https://doi.org/10.1007/978-3-030-33636-3_12
https://doi.org/10.1145/2804302.2804319
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70933-9
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70933-9
https://doi.org/10.1007/978-3-642-38946-7_14
https://doi.org/10.2307/2964110
https://doi.org/10.1007/BF01792986

Bibliography 190

2-8, 2016, Proceedings. Ed. by Peter Thiemann. Vol. 9632. Lec-
ture Notes in Computer Science. Springer, 2016, pp. 476–502.
DOI: 10.1007/978-3-662-49498-1_19 (cit. on p. 47).

[98] Zhaohui Luo. “An extended calculus of constructions”. PhD
thesis. University of Edinburgh, UK, 1990 (cit. on p. 17).

[99] Zhaohui Luo. “ECC, an Extended Calculus of Constructions”.
In: Proceedings of the Fourth Annual Symposium on Logic in Com-
puter Science (LICS ’89), Pacific Grove, California, USA, June 5-
8, 1989. IEEE Computer Society, 1989, pp. 386–395. DOI: 10.
1109/LICS.1989.39193 (cit. on p. 17).

[100] Zhaohui Luo. “Notes on universes in type theory”. In: Lecture
notes for a talk at Institute for Advanced Study, Princeton (2012),
p. 16 (cit. on p. 31).

[101] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and
logic: A first introduction to topos theory. Springer Science &
Business Media, 2012 (cit. on p. 96).

[102] Anatolii Malcev. “Untersuchungen aus dem Gebiete der math-
ematischenLogik”. In:Matematicheskiĭ Sbornik 1.3 (1936), pp. 323–
336 (cit. on p. 64).

[103] PerMartin-Löf. Intuitionistic type theory. Vol. 1. Studies in proof
theory. Bibliopolis, 1984 (cit. on pp. 28, 31, 32).

[104] Per Martin-Löf. “A Theory of Types”. In: Technical report 71-3,
University of Stockholm (1971) (cit. on pp. 17, 28, 31, 32).

[105] ConorMcBride. “Turing-Completeness Totally Free”. In:Math-
ematics of Program Construction - 12th International Conference,
MPC 2015, Königswinter, Germany, June 29 - July 1, 2015. Pro-
ceedings. Ed. by Ralf Hinze and Janis Voigtländer. Vol. 9129.
Lecture Notes in Computer Science. Springer, 2015, pp. 257–
275. DOI: 10.1007/978-3-319-19797-5_13 (cit. on
p. 70).

[106] Alexandre Miquel. “A Survey of Classical Realizability”. In:
Typed Lambda Calculi and Applications - 10th International Con-
ference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceed-
ings. Ed. by C.-H. Luke Ong. Vol. 6690. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 1–2. DOI: 10.1007/978-
3-642-21691-6_1 (cit. on p. 95).

[107] AlexandreMiquel. “Forcing as a ProgramTransformation”. In:
Proceedings of the 26thAnnual IEEE Symposium on Logic in Com-
puter Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada. IEEE Computer Society, 2011, pp. 197–206. DOI: 10.
1109/LICS.2011.47 (cit. on p. 95).

[108] Étienne Miquey. “A constructive proof of dependent choice in
classical arithmetic viamemoization”. In:CoRR abs/1903.07616
(2019) (cit. on p. 95).

[109] Jaap vanOosten. “Partial CombinatoryAlgebras of Functions”.
In: Notre Dame Journal of Formal Logic 52.4 (2011), pp. 431 –
448. DOI: 10.1215/00294527-1499381 (cit. on p. 75).

https://doi.org/10.1007/978-3-662-49498-1_19
https://doi.org/10.1109/LICS.1989.39193
https://doi.org/10.1109/LICS.1989.39193
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-642-21691-6_1
https://doi.org/10.1007/978-3-642-21691-6_1
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1215/00294527-1499381

Bibliography 191

[110] Jaap van Oosten. “Realizability: an introduction to its categori-
cal side. Studies in Logic and the Foundations of Mathematics,
vol. 152. Elsevier Science, Amsterdam, 2008, 328 pp.” In: The
Bulletin of Symbolic Logic 16.3 (2008). DOI:10.1017/S1079898600000858
(cit. on p. 75).

[111] NicolasOury. “Extensionality in theCalculus ofConstructions”.
In: Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005,Oxford, UK,August 22-25, 2005, Pro-
ceedings. Ed. by Joe Hurd and Thomas F. Melham. Vol. 3603.
Lecture Notes in Computer Science. Springer, 2005, pp. 278–
293. DOI: 10.1007/11541868_18 (cit. on p. 44).

[112] Christine Paulin-Mohring. “Inductive Definitions in the sys-
tem Coq - Rules and Properties”. In: Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi
and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-
18, 1993, Proceedings. Ed. by Marc Bezem and Jan Friso Groote.
Vol. 664. Lecture Notes in Computer Science. Springer, 1993,
pp. 328–345. DOI: 10.1007/BFb0037116 (cit. on pp. 17, 46).

[113] Pierre-Marie Pédrot. “Debunking Sheaves”. note. 2021 (cit. on
pp. 65, 96).

[114] Pierre-Marie Pédrot. “Pursuing Shtuck”.working paper or preprint.
Oct. 2023 (cit. on pp. 65, 96).

[115] Pierre-Marie Pédrot. “Russian Constructivism in a Prefascist
Theory”. In: LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic inComputer Science, Saarbrücken, Germany, July 8-11, 2020.
Ed. by Holger Hermanns et al. ACM, 2020, pp. 782–794. DOI:
10.1145/3373718.3394740 (cit. on pp. 6, 18, 132, 136).

[116] Pierre-Marie Pédrot and Nicolas Tabareau. “The fire triangle:
how to mix substitution, dependent elimination, and effects”.
In: Proc. ACM Program. Lang. 4.POPL (2020), 58:1–58:28. DOI:
10.1145/3371126 (cit. on pp. 10, 46, 104).

[117] Maciej Piróg and Jeremy Gibbons. “The Coinductive Resump-
tionMonad”. In: Proceedings of the 30th Conference on theMath-
ematical Foundations of Programming Semantics, MFPS 2014,
Ithaca, NY, USA, June 12-15, 2014. Ed. by Bart Jacobs, Alexan-
dra Silva, and Sam Staton. Vol. 308. Electronic Notes in The-
oretical Computer Science. Elsevier, 2014, pp. 273–288. DOI:
10.1016/j.entcs.2014.10.015 (cit. on p. 70).

[118] Gordon D. Plotkin and Matija Pretnar. “Handling Algebraic
Effects”. In: Log.Methods Comput. Sci. 9.4 (2013). DOI:10.2168/
LMCS-9(4:23)2013 (cit. on p. 67).

[119] Loïc Pujet andNicolas Tabareau. “ImpredicativeObservational
Equality”. In: POPL 2023 - 50th ACM SIGPLAN Symposium on
Principles of Programming Languages. Vol. 7. Proceedings of the
ACM on programming languages. Boston, United States, Jan.
2023, p. 74. DOI: 10.1145/3571739 (cit. on pp. 43, 98, 146,
180).

[120] Loïc Pujet andNicolas Tabareau. “Observational Equality:Now
for Good”. In: Proc. ACM Program. Lang. 6.POPL (2022). DOI:
10.1145/3498693 (cit. on pp. 11, 43, 53, 98, 146, 180).

https://doi.org/10.1017/S1079898600000858
https://doi.org/10.1007/11541868_18
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1145/3371126
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/3571739
https://doi.org/10.1145/3498693

Bibliography 192

[121] Pierre-Marie Pédrot and Nicolas Tabareau. “An effectful way
to eliminate addiction to dependence”. In: 32ndAnnual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017 (2017). DOI: 10.1109/LICS.2017.
8005113 (cit. on pp. 6, 10, 18, 46, 47, 53, 66, 104, 110, 120,
121, 123, 125).

[122] Pierre-Marie Pédrot and Nicolas Tabareau. “Failure is Not an
Option An Exceptional Type Theory”. In: ESOP 2018 - 27th
European Symposium on Programming (2018). DOI: https://
doi.org/10.1007/978- 3- 319- 89884-1_9 (cit. on
pp. 47, 52, 61, 132).

[123] Vincent Rahli andMark Bickford. “Validating Brouwer’s conti-
nuity principle for numbers using named exceptions”. In:Math.
Struct. Comput. Sci. 28.6 (2018), pp. 942–990. DOI: 10.1017/
S0960129517000172 (cit. on pp. 65, 72, 95, 104, 130, 132).

[124] Vincent Rahli et al. “Bar Induction is Compatible with Con-
structive Type Theory”. In: J. ACM 66.2 (2019), 13:1–13:35.
DOI: 10.1145/3305261 (cit. on pp. 65, 72, 130).

[125] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities
in homotopy type theory”. In: Logical Methods in Computer Sci-
ence Volume 16, Issue 1 (Jan. 2020). DOI: 10.23638/LMCS-
16(1:2)2020 (cit. on p. 129).

[126] Pierre-Marie Pédrot SimonBoulier andNicolas Tabareau. “The
next 700 syntactical models of type theory”. In: Certified Pro-
grams and Proofs (CPP 2017), Jan 2017, Paris, France. pp.182 -
194 (2017). DOI: 10.1145/3018610.3018620 (cit. on pp. 18,
56, 58).

[127] Matthieu Sozeau,MevenLennon-Bertrand, andYannick Forster.
“The Curious Case of Case: Correct & Efficient Representation
of Case Analysis in Coq and MetaCoq”. In: Talk. 1st Workshop
on the Implementation of Type Systems. 2022 (cit. on p. 37).

[128] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. “Autosubst 2:
reasoning with multi-sorted de Bruijn terms and vector sub-
stitutions”. In: Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2019,
Cascais, Portugal, January 14-15, 2019. 2019, pp. 166–180. DOI:
10.1145/3293880.3294101 (cit. on p. 165).

[129] Florian Steinberg, Laurent Théry, andHolger Thies. “Computable
analysis and notions of continuity in Coq”. In: Log. Methods
Comput. Sci. 17.2 (2021) (cit. on p. 88).

[130] Jonathan Sterling. “Higher order functions and Brouwer’s the-
sis”. In: Journal of Functional Programming 31 (2021).BobHarper
Festschrift Collection, e11. DOI:10.1017/S0956796821000095
(cit. on pp. 68, 80, 108, 129).

[131] Thomas Streicher. “Investigations into intensional type the-
ory”. PhD thesis. Habilitationsschrift, Ludwig-Maximilians-Universität
München, 1993 (cit. on p. 42).

[132] Wouter Swierstra. “Data types à la carte”. In: J. Funct. Program.
18.4 (2008), pp. 423–436. DOI:10.1017/S0956796808006758
(cit. on p. 70).

https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1145/3305261
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1017/S0956796808006758

Bibliography 193

[133] William W Tait. “Constructive reasoning”. In: Studies in Logic
and the Foundations ofMathematics. Vol. 52. Elsevier, 1968, pp. 185–
199 (cit. on p. 63).

[134] WilliamW. Tait. “Intensional Interpretations of Functionals of
Finite Type I”. In: J. Symb. Log. 32.2 (1967), pp. 198–212. DOI:
10.2307/2271658 (cit. on p. 146).

[135] “The Coq Proof Assistant (8.17)”. In: (2023). DOI: 10.5281/
zenodo.1003420 (cit. on p. 17).

[136] Amin Timany and Matthieu Sozeau. “Cumulative Inductive
Types In Coq”. In: 3rd International Conference on Formal Struc-
tures for Computation andDeduction, FSCD2018, July 9-12, 2018,
Oxford, UK. Ed. by Hélène Kirchner. Vol. 108. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 29:1–29:16.
DOI: 10.4230/LIPIcs.FSCD.2018.29 (cit. on p. 35).

[137] Anne S Troelstra. “A note on non-extensional operations in
connectionwith continuity and recursiveness”. In: Indagationes
Mathematicae (Proceedings). Vol. 80. 5. Elsevier. 1977, pp. 455–
462 (cit. on p. 64).

[138] Anne Sjerp Troelstra. “Constructivism inmathematics”. In:An
Introduction 2 (1988) (cit. on pp. 63, 90).

[139] Anne Sjerp Troelstra. Metamathematical investigation of intu-
itionistic arithmetic and analysis. Springer, 1973 (cit. on pp. 63,
90).

[140] The Univalent Foundations Program. Homotopy Type Theory:
Univalent Foundations of Mathematics. Institute for Advanced
Study: https://homotopytypetheory.org/book, 2013
(cit. on pp. 44, 67).

[141] Jaap Van Oosten. “A combinatory algebra for sequential func-
tionals of finite type”. In: LONDON MATHEMATICAL SOCI-
ETYLECTURENOTESERIES (1999), pp. 389–406 (cit. on p. 75).

[142] BenjaminWerner. “Sets in Types, Types in Sets”. In:Theoretical
Aspects of Computer Software, Third International Symposium,
TACS ’97, Sendai, Japan, September 23-26, 1997, Proceedings. Ed.
by Martín Abadi and Takayasu Ito. Vol. 1281. Lecture Notes
in Computer Science. Springer, 1997, pp. 530–346. DOI: 10.
1007/BFB0014566 (cit. on p. 56).

[143] Paweł Wieczorek and Dariusz Biernacki. “A Coq Formaliza-
tion of Normalization by Evaluation for Martin-Löf Type The-
ory”. In: Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. CPP 2018. Los An-
geles, CA, USA: Association for Computing Machinery, 2018,
pp. 266–279. DOI: 10.1145/3167091 (cit. on p. 146).

[144] Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau.
“Eliminating reflection from type theory”. In: Proceedings of
the 8th ACMSIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM,
2019, pp. 91–103. DOI: 10.1145/3293880.3294095 (cit. on
pp. 44, 114).

https://doi.org/10.2307/2271658
https://doi.org/10.5281/zenodo.1003420
https://doi.org/10.5281/zenodo.1003420
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://homotopytypetheory.org/book
https://doi.org/10.1007/BFB0014566
https://doi.org/10.1007/BFB0014566
https://doi.org/10.1145/3167091
https://doi.org/10.1145/3293880.3294095

Bibliography 194

[145] Théo Winterhalter. “Formalisation and meta-theory of type
theory”. PhD thesis. Université de Nantes, 2020 (cit. on p. 56).

[146] Li-yao Xia et al. “Interaction trees: representing recursive and
impure programs inCoq”. In:Proc. ACMProgram. Lang. 4.POPL
(2020), 51:1–51:32. DOI: 10.1145/3371119 (cit. on pp. 70,
77).

[147] Chuangjie Xu andMartínHötzel Escardó. “AConstructiveModel
of Uniform Continuity”. In: Typed Lambda Calculi and Applica-
tions, 11th International Conference, TLCA2013, Eindhoven, The
Netherlands, June 26-28, 2013. Proceedings. Ed. by Masahito
Hasegawa.Vol. 7941. LectureNotes inComputer Science. Springer,
2013, pp. 236–249. DOI: 10.1007/978- 3- 642- 38946-
7_18 (cit. on p. 129).

[148] Ernst Zermelo. “Beweis, dass jede Menge wohlgeordnet wer-
den kann: Aus einem an Herrn Hilbert gerichteten Briefe”. In:
MathematischeAnnalen 59.4 (1904), pp. 514–516 (cit. on pp. 17,
44, 50).

[149] Ernst Zermelo. “Untersuchungenüber dieGrundlagenderMen-
genlehre. I”. In: Mathematische Annalen 65.2 (1908), pp. 261–
281 (cit. on pp. 17, 44, 50).

https://doi.org/10.1145/3371119
https://doi.org/10.1007/978-3-642-38946-7_18
https://doi.org/10.1007/978-3-642-38946-7_18

Titre : Continuité en théorie des types

Mots clés : Continuité, Théorie des types, Assistants à la preuve, Preuve de normalisation,
modèles syntaxiques.

Résumé : Dans cette thèse, j'étudie l’interaction
entre la théorie des types et la continuité, un
concept mathématique formalisant l’intuition
qu’une fonction ne peut interroger qu’une partie
finie de son argument avant de renvoyer une
valeur
Dans le premier chapitre, je décris la théorie des
types et mon prisme de lecture : la
correspondance preuve-programme, ou
isomorphisme de Curry-Howard, qui affirme que
calcul et preuve sont deux faces d’une même
pièce. J’y explique comment la théorie des types
bute encore sur l’intégration de principes dits
classiques, comme l’axiome du choix ou le tiers-
exclu.

Dans le deuxième chapitre, j’analyse les
différentes définition de la continuité, et
comment celles-ci diffèrent les unes des autres
d’un point de vue logique.
Dans le troisième chapitre, je présente une
première tentative d’intégration de la continuité
en théorie des types, à travers un modèle
syntaxique d’une théorie des types
particulières, appelée Baclofen Type Theory.
Enfin, dans le dernier chapitre, je détaille une
théorie des types où toutes les fonctions sont
continues, et présente des résultats
préliminaires de normalisation de cette théorie.

Title : Continuity in Type Theory

Keywords : Continuity, Type Theory, Proof Assistants, Normalisation Procedure, Syntactic Models

Abstract : In this thesis, I study the interaction
between type theory and continuity, a
mathematical concept describing the intuition
that a function can only query a finite part of its
argument before returning a value.
In the first Chapter, I describe type theory and
my working paradigm: the proof-program
correspondence, or Curry-Howard isomorphism,
which asserts that computation and proof are
two sides of the same coin. I explain how type
theory is still struggling with the integration of
so-called classical principles, such as the axiom
of choice or the excluded-middle.

In a second part I survey the different
definitions of continuity, and how they differ
from each other from a logical point of view.
In the third Chapter I present a first attempt to
mingle continuity and type theory, through a
syntactic model of a particular type theory,
dubbed Baclofen Type Theory.
Finally, in the last Chapter I define a type
theory where all functions are continuous, and
present preliminar results on the proof of its
normalisation.

	Continuity in Type Theory
	Contents
	Past
	Prolegomenon and technicalities
	System T

	System T
	MLTT

	MLTT
	CIC

	CIC
	BTT

	BTT
	Syntactic models

	Syntactic models
	A world made of trees
	Talking trees

	Talking trees
	Dialogue is the key
	Monadic labs
	Every tree will die a log

	Every tree will die a log
	Standard definition
	Sequential continuity
	Interaction Trees
	Monologuing Trees
	Intensional dialogue continuity
	The zoo of continuity and logical principles

	The zoo of continuity and logical principles
	Dialogue continuity is extensionally intensional dialogue continuity
	Dialogue trees are barred sequences
	Reflecting on oneself before speaking
	The Continuous Hypothesis

	The Continuous Hypothesis
	Continuity is a classic
	Absurdly continuous
	The Shift Project
	Sheaves and ShTT

	Sheaves and ShTT
	Set setting
	Type setting

	Present
	Gardening with the Pythia
	Escardó's model

	Escardó's model
	A for Axiom
	Dialogue is maybe not the key
	System Trees
	The logical song
	For a handful of models
	A generic proof
	Our model gains weight

	Our model gains weight
	Overview
	Axiom Translation
	Branching Translation
	Algebraic Parametricity Translation
	Continuity of functionals

	Continuity of functionals
	Discussion and Related Work

	Discussion and Related Work
	Comparison with Similar Models
	Internalization
	Extension to MLTT

	Future
	The cone of possibilities
	Why you should buy TT

	Why you should buy TT
	A brief tour around TT
	Undressed code
	Canonizing continuity

	Canonizing continuity
	Normalizing normalization

	Normalizing normalization
	Fascism in the system

	Fascism in the system
	Normalizing System T
	Domain extension
	Everything is normal

	Everything is normal
	Back to one-step
	Back to basics
	Universes
	Split-reducibility
	Functional types
	Lemmas about reducibility

