
HAL Id: tel-04618657
https://theses.hal.science/tel-04618657

Submitted on 20 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Facilitating human inclusion in the data science process :
from capturing business requirements to designing an

operational machine learning workflow
Yassine El Amraoui

To cite this version:
Yassine El Amraoui. Facilitating human inclusion in the data science process : from capturing business
requirements to designing an operational machine learning workflow. Artificial Intelligence [cs.AI].
Université Côte d’Azur, 2024. English. �NNT : 2024COAZ4017�. �tel-04618657�

https://theses.hal.science/tel-04618657
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Faciliter l’inclusion humaine dans le
processus de science des données :

de la capture des exigences métier à la
conception d’un workflow

d’apprentissage automatique
opérationnel

Yassine EL AMRAOUI

Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)
UMR7271 UCA CNRS

Présentée en vue de l’obtention
du grade de docteur en Informaatique
d’Université Côte d’Azur

Dirigée par : Mireille BLAY-FORNARINO,
Professeur des Universités, Université Côte
d’Azure
Co-dirigée par : Frédéric PRÉCIOSO, Pro-
fesseur des Universités, Université Côte
d’Azure
Soutenue le : 14/05/2024

Devant le jury, composé de :
Jean-Michel BRUEL, Professeur des Uni-
versités, Université de Toulouse
Anne ETIEN, Professeur des Universités,
Université de Lille
Romain ROUVOY, Professeur des Univer-
sités, Université de Lille
Fabrice HUET, Professeur des Universités,
Université Côte d’Azure
Julien MULLER, CTO, EZAKO

FACILITER L’INCLUSION HUMAINE DANS LE PROCESSUS DE

SCIENCE DES DONNÉES : DE LA CAPTURE DES EXIGENCES MÉTIER

À LA CONCEPTION D’UN WORKFLOW D’APPRENTISSAGE

AUTOMATIQUE OPÉRATIONNEL

Facilitating Human Inclusion in the Data Science Process:From

capturing business requirements to designing an operational machine

learning workflow

Yassine EL AMRAOUI

▷◁

Jury :

Rapporteurs
Jean-Michel BRUEL, Professeur des Universités, Université de Toulouse
Anne ETIEN, Professeur des Universités, Université de Lille

Examinateurs
Romain ROUVOY, Professeur des Universités, Université de Lille
Fabrice HUET, Professeur des Universités, Université Côte d’Azure

Directeur de thèse
Mireille BLAY-FORNARINO, Professeur des Universités, Université Côte d’Azure

Co-directeur de thèse
Frédéric PRÉCIOSO, Professeur des Universités, Université Côte d’Azure

Membres invités
Julien MULLER, CTO, EZAKO

Université Côte d’Azur

Yassine EL AMRAOUI
Faciliter l’inclusion humaine dans le processus de science des données : de

la capture des exigences métier à la conception d’un workflow d’apprentissage

automatique opérationnel

last@page@front
xiii+

LastPage
130 p.

Ce document a été préparé avec LATEX2e et la classe these-ISSS version v. 2.10.

Impression : output.tex – 3/6/2024 – 14:45

Révision pour la classe : these-ISSS.cls,v 2.10 2020/06/24 14:16:37 mpelleau

Faciliter l’inclusion humaine dans le processus de science des données
: de la capture des exigences métier à la conception d’un workflow

d’apprentissage automatique opérationnel

Résumé

Le processus de création de workflows d’apprentissage automatique par les data scientists im-
plique de comprendre les besoins métier, d’analyser les données et d’expérimenter pour trouver
des solutions. Cependant, cette approche par essais et erreurs manque de structure pour prendre
en compte toutes ces dimensions, et conduit souvent à des essais inadaptés et à des interpréta-
tions limitées des résultats par les praticiens. Pour remédier à ce problème dans le cadre de la
conception de workflows destinés à la détection d’anomalies dans les séries temporelles, notre
travail propose trois contributions principales :
- Prise en compte des données, des exigences métiers et des composants de la solution dans la
conception des workflows de machine learning
- Personnalisation des workflows pour des solutions sur mesure en s’appuyant sur des descrip-
tions partielles et modulaires du problème sous forme de configurations.
- Enrichissement de la connaissance portée par les lignes de produits logiciels par l’exploitation
des produits. Ces contributions visent à rationaliser la création de workflows d’apprentissage
automatique, en promouvant une approche plus structurée, le partage des connaissances et un
meilleur alignement sur l’analyse du problème avant de rechercher des applications similaires.

Mots-clés : Ligne de produit logiciel, Science des données,Inclure l’humain dans la boucle

Facilitating Human Inclusion in the Data Science Process:From
capturing business requirements to designing an operational machine

learning workflow

Abstract

The process of creating machine learning workflows by data scientists involves understanding
business needs, analyzing data and experimenting to find solutions. However, this trial-and-
error approach lacks the structure to take all these dimensions into account, and often leads
to inadequate testing and limited interpretations of results by practitioners. To address this
problem in the context of designing workflows for anomaly detection in time series, our work
proposes three main contributions:
- Consideration of data, business requirements and solution components in the design of ma-
chine learning workflows.
- Customization of workflows for tailor-made solutions, based on partial and modular descrip-
tions of the problem in the form of configurations.
- Enriching the knowledge carried by software product lines through product exploitation.
These contributions aim to streamline the creation of machine learning workflows, promoting
a more structured approach, knowledge sharing and better alignment with problem analysis
before searching for similar applications.

Keywords: Software product line, Data science , Data science,Human in the loop

Acknowledgment

I would like to express my deepest gratitude to my esteemed mentors, Mireille Blay-Fornarino
and Frederic Precioso, whose unwavering dedication, insightful guidance, and continuous support
have been instrumental throughout my PhD journey. Their expertise, encouragement, and patience
have not only shaped my research but have also inspired me to strive for excellence. I am truly
fortunate to have had the opportunity to work under their supervision.

I extend my heartfelt appreciation to Anne Etien and Jean-Michel Bruel for their generosity in
accepting the responsibility of examining my work and providing invaluable feedback as rappor-
teurs. Their constructive criticism and valuable insights have significantly enriched the quality of
my research.

Special thanks are also due to Romain Rouvoy and Fabrice Huet for their willingness to lead
my individual follow-up committee and serve as reviewers during my PhD defense. Their thor-
ough evaluation and insightful comments have contributed immensely to the refinement of my
work, and I am grateful for their invaluable contribution.

I am deeply indebted to Julien Muller for his unwavering support and encouragement at Ezako
throughout the duration of my PhD. His mentorship and friendship have been invaluable, and I am
grateful for the opportunity to have collaborated with him.

I extend my sincere gratitude to Philippe Collet for his collaboration and assistance in the
development of the two publications associated with my research. His expertise and guidance
have been invaluable assets to my academic endeavors.

I would like to express my appreciation to Anne Marie Dery-Pinna for her steadfast support
and encouragement throughout my PhD journey. Her mentorship and belief in my abilities have
been a source of motivation during challenging times.

I am also grateful to Thomas Jalabert, Jonathan Behagel, Edoardo Savini, and Cyrus Boume-
dine for their camaraderie and support at Ezako. Their friendship and encouragement have made
my PhD experience more enriching and enjoyable.

Additionally, I extend my thanks to Nicolas Lacroix and Yann Brault for their dedication
and contribution to the sub-parts of my research during their internships. Their hard work and
commitment have significantly contributed to the advancement of my research objectives.

Finally, I would like to express my deepest gratitude to my family, especially my parents
and my brother, for their unwavering love, encouragement, and support throughout my academic
journey. Their sacrifices and belief in my abilities have been a constant source of strength and
motivation. I am profoundly grateful for their unconditional support and guidance, which have
been instrumental in shaping my academic and personal growth.

Table of contents

1 Introduction 1
1.1 Ezako . 1
1.2 General context . 1
1.3 Diving into Data science ecosystem . 2
1.4 Example: Anomaly detection on time series of bearing motor currents in a wash-

ing machine . 3
1.4.1 First iteration: Initial enquiry . 3
1.4.2 Second iteration: Refining data understanding 4
1.4.3 Third iteration: Refining understanding of business requirements 5
1.4.4 Synthesis . 5

1.5 Manuscript overview . 6

Vocabulary 7

State of the art

2 Sharing data science experience 11
2.1 Characterizing an ML problem . 13
2.2 Data scientists practices . 13
2.3 Characterizing Diversity in Machine Learning Solutions 14
2.4 Domain Experts are inherent drivers of data science projects 14
2.5 Requirements in ML . 15
2.6 Methodological approaches to machine learning 16

2.6.1 CRISP-DM . 16
2.6.2 AutoML . 17
2.6.3 Synthesis . 19

3 Sharing data science solutions 21
3.1 Sharing machine learning implementations . 23

3.1.1 R . 23
3.1.2 Weka (Waikato Environment for Knowledge Analysis) 23
3.1.3 Knime (Konstanz Information Miner) 28

3.2 Sharing data science experiments . 30
3.2.1 Reuse of notebooks by clone-and-ow 30
3.2.2 OpenML . 31
3.2.3 KNIME Hub . 32

3.3 Synthesis . 33

xi

xii CONTENTS

4 Software product lines 35
4.1 Introduction . 37
4.2 Feature models . 37
4.3

lopez2001standard
Lopez-Herrejon and Batory standard example 38

4.4 SPL’s for composing scientific workflows . 39
4.5 Feature models edition . 40
4.6 Evolution-aware evaluation . 41
4.7 Synthesis . 44

Contributions

5 Capturing Knowledge from trial and error 47
5.1 Introduction . 49
5.2 Experiments design . 52

5.2.1 Scenarios description . 52
5.2.2 Summary table . 54
5.2.3 Results description . 56
5.2.4 Discussion . 58
5.2.5 Explicited knowledge . 59

5.3 Conclusion . 60

6 Contextualizing ML variability modeling 61
6.1 Introduction . 63
6.2 Approach overview . 64

6.2.1 Contextualized Solutions within the Overall Solution Space 64
6.2.2 Process overvie . 66
6.2.3 Tooling overvie . 67

6.3 Contextualized ML Solution Variability Modeling 68
6.3.1 Multi-Domain Variability Modeling: Supporting Contextualized Solution

Space Reduction . 68
6.3.2 Modeling Applications and Code Interactions for Efficient Solution Retrieval 70
6.3.3 Formal definition of the interaction . 71

6.4 Applications . 72
6.4.1 Scenario 1: Retrieve and clone notebook 72
6.4.2 Scenario 2: Generate a new notebook 73
6.4.3 Industrial case stud . 73

6.5 Conclusion . 78

7 Accommodating the incremental acquisition of knowledg 79
7.1 Introduction . 81
7.2 Identifying evolution smells to uncover implicit knowledge 82

7.2.1 Formalization . 83
7.2.2 Pattern detections . 85
7.2.3 Limitations and Future Directions . 85

7.3 Knowledge assessment metrics . 86

xii

TABLE OF CONTENTS xiii

7.3.1 Domain-Level Feature Model Metrics 86
7.3.2 Evaluating Feature Model through the Lens of Produced Products 86
7.3.3 Limitations and Future Directions . 88

7.4 Evolving Configurations to Align with Feature Model Evolution 88
7.4.1 Application-preserving refactoring against practice evolutio 88
7.4.2 Enhancing Knowledge Through the Integration of New Application . . . 89
7.4.3 Limits and Future Directions . 89

7.5 Applications . 90
7.5.1 First three steps of the SPL construction process 90
7.5.2 Knowledge extraction driven by SPL assessment 91
7.5.3 Knowledge extraction driven by SPL evolution assessment 92
7.5.4 Exploiting the metrics . 93

7.6 Conclusion . 94

Conclusion & perspectives

8 Conclusion and Perspectives 97
8.1 Conclusion . 97
8.2 Perspectives . 98

8.2.1 FATE . 98
8.2.2 Using LLMs to conduct the domain expert interview 101

References 107

List of figures 119

List of definitions 121

List of examples 123

Appendices

xiii

CHAPTER 1
Introduction

chap_intro

1.1 Ezako

Ezako stands as a specialized company dedicated to crafting machine learning (ML) solutions
tailored for detecting anomalies in time series data, addressing the unique needs of its clients.
Within an ML project, the role of a data scientist is pivotal, involving tasks such as understanding
data intricacies, grasping business requirements deeply, and formulating solutions aligned with
chosen Key Performance Indicators (KPIs). This necessitates collaborative engagements with
domain experts, project managers, as well as fellow data scientists and ML engineers.

Each ML project at Ezako follows a structured approach with multiple iterations, starting
each iteration by conducting an interview with the domain expert. This interview aims to glean
insights into specific business requirements, serving to validate the modeling phase and identify
undesirable behaviors in the solution. Currently, it falls upon the data scientist to actively seek
actionable information from the domain expert, conduct comprehensive data analysis, and make
informed decisions on the modeling approach for every new project.

Consequently, the choice of modeling techniques and engineering decisions becomes highly
reliant on the individual addressing the problem, introducing potential variations and increasing
diversity among generated solutions. Additionally, analyzing business requirements poses a non-
trivial challenge, demanding the mapping of business needs from diverse domains of expertise to
actionable ML requirements. This complexity adds to the variability, making each new problem
often necessitate starting from scratch. This underscores the substantial effort and adaptability
required to address these challenges effectively.

1.2 General context

My research is conducted within the CIFRE framework, entailing a collaborative endeavor involv-
ing myself as the Ph.D. candidate, a research laboratory, and a corporate partner. The labora-
tory provides expertise in software engineering and artificial intelligence (AI), while the company
grants access to real projects, offering insights into the workings of a machine learning initiative.
My role in this collaboration was bridging the gap between the company’s requirements and the
expertise required for implementation.

After an extensive period devoted to addressing the challenge of guiding data scientists in de-
signing machine learning workflows, with a specific constraint to deviate from automated machine
learning (autoML) I came up with the following questions:

1. How do data scientists proceed to reduce the solution space?

2. How do data scientists share machine learning case studies?

1

2 CHAPTER 1 — Introduction

3. How to share acquired knowledge about the current state of machine learning practices?

Since the company’s focus is on time series anomaly detection, this work focus on application in
that context. We identify the following functional requirements.

R1- Identifying similarities between partially described problems. Data scientists naturally ini-
tiate their exploration by seeking resemblances and distinctions among past problems. However,
this project is laden with intricacies. The intrinsic nature of source data frequently imparts a com-
plex characterization, particularly in the context of precisely delineating anomalies within tempo-
ral data sequences. This intricacy extends to data providers, whose efforts to pinpoint anomalies
can also be challenging. Efficient processing of partially characterized source data plays a key
role. This encompasses the formulation of algorithms with the capability to navigate the diverse
inherent in datasets. A pertinent instance arises when the precise archetype of anomaly remains
elusive (such as isolated instances, pervasive anomalies, or distinct patterns (Chandola, Banerjee,
& Kumar, 2009)).

R2-Consolidating knowledge according to the evolution of practices. When we consider new
solutions, like different ways of using machine learning, we need to understand the specific prob-
lems they are meant to solve. It is not just about picking new algorithms; we also have to think
about things like how to measure success and what the business needs. For example,finding un-
usual patterns in data collected from IoT systems affects how we apprehend the whole machine
learning process.

To build a strong understanding, it is important to compare different ways of solving problems.
By "ways of solving problems," we mean not only the solutions and how well they work, but also
the actual problems themselves, including the data and what the business wants to achieve. What
is particularly interesting is finding similar problems that end up with different solutions. This can
help us discover new insight we should consider, or realize that some old ways of thinking may
not be relevant anymore. For instance, if two different sets of tools work well on the same data, we
want to figure out why, maybe it is because of some specific things the data hold or the business
requires.

1.3 Diving into Data science ecosystem

The data scientist ecosystem operates as a collaborative network, comprising domain experts, data
scientists, and ML engineers collaborating to address intricate challenges within the domain of
data science and machine learning.

Central to this ecosystem are domain experts, individuals with knowledge in specific fields like
finance, healthcare, or marketing and so on. These experts offer crucial insights into the intricacies
of their domains, providing contextual understanding and domain-specific requirements crucial for
effective ML solutions.

In this collaborative setting, data scientists play a pivotal role, tasked with understanding data
intricacies, extracting meaningful patterns, and formulating models aligning with identified busi-
ness requirements. Leveraging their statistical and analytical proficiencies, data scientists bridge
the gap between domain knowledge and technical implementation, ensuring accuracy and rele-
vance in the developed solutions.

Collaboration extends to ML engineers, possessing specialized knowledge in implementing
ML models and systems. ML engineers work closely with data scientists to translate algorithms

6 CHAPTER 1 — Introduction

On a side note, this process was driven by a specific data scientist, meaning that if another
data scientist were in charge, the number of iterations could vary. More iterations might be needed
if the scientist had to look up the problem in the literature, or fewer iterations could occur if the
drift nature of the anomalies was clarified from the beginning. The process is quite random and
depends on individual data scientists. Therefore, additional questions arise:

1. How can we standardize the process of analyzing ML problems?

2. How can we standardize ML solutions?

Even if we manage to standardize problem analysis and solution design, we cannot hope to
capture all existing knowledge about time series anomaly detection, let alone generalize it to all
machine learning. Therefore, this shared knowledge that drives problem analysis and solution
design will need to evolve. The questions that arise are:

1. How can we ensure that knowledge about the composition of a scientific workflow evolves?

2. How can we evaluate this evolution?

We will address all these questions in the state-of-the-art section of this manuscript.

1.5 Manuscript overview

This manuscript is divided into two main parts: the state of the art and the contributions with their
validation. The state of the art consists of three chapters, covering topics such as the sharing of
data science experience, data solution sharing, and modeling scientific workflows using software
product lines. The contributions part also comprises three chapters: the first addresses the effective
capture of knowledge from the trial and error process undergone by data scientists, the second
demonstrates how to model the variability of the data science domain according to its context, and
the third showcases methods for accommodating knowledge evolution in the model, built in the
previous chapter and extracting new knowledge from these evolutions.

Vocabulary

Définition 1.5.1 (Software product lines). "Software product-lines are a paradigm for managing
the complexity of tracking and creating reusable software artifacts, as well as describing their
points of variability, and ensuring they are reused appropriately. A key part of an SPL is scope,
commonality, and variability (SCV) analysis. The scope defines the collection of software artifacts
that constitute the SPL." (Rosenmüller & Siegmund, 2010)

Définition 1.5.2 (Commonality). "The commonality defines the attributes that are common across
different sets of artifacts." (Rosenmüller & Siegmund, 2010)

Définition 1.5.3 (Variability). "The variability describes the differences that exist across the arti-
facts, such as various implementations and algorithms for different environments and/or require-
ments" (Rosenmüller & Siegmund, 2010)

def_configSPL1 Définition 1.5.4 (Configuration). "A configuration of a product line is a set of selected features."
(Nieke et al., 2022)

Définition 1.5.5 (SPL and Feature Model). A software product line SP Li is a set of products (e.g.,
software services) described by a feature model F Mi. Each product of SP Li is a combination of
features and corresponds to a valid configuration of F Mi. A configuration c of F Mi is defined as
a set of features selected, i.e., c = f1, f2, . . . , fm with f1, f2, . . . , fm features of F Mi. JF MiK
denotes the set of valid configurations of the feature model F Mi (Acher et al., 2012)

def_configSPL Définition 1.5.6 (configuration). In this chapter when we refer to configurations it is a software
product line configuration as mentioned in definition 1.5.4. However those configurations contain
a description of the ML problem and data as long as the solution or workflow used to solve the
machine learning application or use case

def_subspace Définition 1.5.7 (sub-space). The term "sub-space" refers to a restricted or specific subset of prob-
lems, solutions, criteria, or artifacts within a broader domain, particularly in the realm of machine
learning (ML) experiments and applications .

def_partialConf Définition 1.5.8 (partial configuration). Partial configuration refers to a specific configuration of
a software product that includes only a subset of the available features and options defined by the
product line.

def_domainSPL Définition 1.5.9 (a domain). The domain in feature models defines the specific field of application
or context for which the feature model is being developed, helping to organize and structure the
configurable elements of the software system within that context.

def_solspace Définition 1.5.10 (solution space). The solution space in the context of data science refers to the
entire range of possible solutions that a data scientist explores and evaluates when working on
a problem. It encompasses all the potential approaches, methods, algorithms, parameters, and
techniques that could be employed to address a specific challenge or task.

7

8 Introduction

rk_partialConf Remark 1.5.1 – Our grasp of knowledge remains constrained within a certain temporal frame.
This inherent limitation restrains our ability to encompass all potential aspects essential for prob-
lem characterization or to account for the entirety of existing machine learning solutions. Conse-
quently, our configuration depiction resembles a canvas of restricted dimensions, open to expan-
sion upon the unearthing of novel criteria or integration of additional machine learning approaches.
Thus, any configuration, while seemingly comprehensive within the present scope of feature at-
tributes, persists as an incomplete representation, failing to encompass the entirety of potential
criteria.

i.e., At any given time, our understanding is limited. This means we can’t describe a problem
using all the possible details or consider every existing machine learning solution. So, when we
represent a setup or arrangement, it’s like drawing a picture on a small piece of paper. We can add
more to it later when we learn new things or find new solutions. So, no matter how complete a
setup seems based on what we know now, it’s still not complete because we haven’t thought about
all the possible details yet.

voc_application Remark 1.5.2 – we use the term "application" as an additional designation for "ML use case."

def_productSPL Définition 1.5.11 (product). "product" refers to a specific instance or variant of a software system
that is derived from the common assets, features, and configurations defined within the product
line. These common assets serve as a foundation, and various products can be generated by se-
lecting specific features and configurations from the available options.

def_applicationprod Définition 1.5.12 (Application products). An Application product is a combination of
features, business requirements, data, and machine learning elements that define a successfully
addressed machine learning scenario. In simpler terms, it comprises the characteristics outlining
both the ML problem and its solution.

def_MLWFproduct Définition 1.5.13 (ML workflow product). When we mention an ML workflow product,
we’re talking about a solution to a specific problem. it is the dedicated process that uses ma-
chine learning techniques to solve the problem. This process includes not only the machine learn-
ing algorithms but also the steps to evaluate, monitor and maintain the solution’s effectiveness in
real-world use over time.

State of the art

CHAPTER 2
Sharing data science

experience

2.1 Characterizing an ML problem 13

2.2 Data scientists practices . 13

2.3 Characterizing Diversity in Machine Learning Solutions 14

2.4 Domain Experts are inherent drivers of data science projects . . 14

2.5 Requirements in ML . 15

2.6 Methodological approaches to machine learning 16

2.6.1 CRISP-DM . 16

2.6.2 AutoML . 17

2.6.3 Synthesis . 19

11

2.3 – Characterizing an ML problem 13

2.1 Characterizing an ML problem

The perspectives presented in (Horkoff, 2019; Vogelsang & Borg, 2019) collectively emphasize
the multifaceted criteria for characterizing Machine Learning (ML) problems. Functionally, these
problems necessitate precise task delineation, spanning classification, regression, clustering, or
recommendation in conjunction with precise specifications of input data sources and expected
outcomes. Both texts stress the critical need for a nuanced understanding of performance met-
rics, tailoring them to the problem domain to ensure the solution considers business requirement
functional and non functional.

In harmony with functional criteria,
horkoff2019non
Horkoff underscores the significance of non-functional

considerations, extending beyond data-centric elements(Horkoff, 2019) to satisfy stakeholder-
specific requirements (i.e., business requirements or non-functional requirements). These encom-
pass dimensions such as fairness, transparency, security, privacy, and testability. Fairness is elu-
cidated as ensuring equitable treatment by ML models, transparency as facilitating interpretable
decision-making processes, security as fortifying systems against unauthorized access, privacy as
safeguarding sensitive data, and testability as ensuring robust evaluation methodologies.

TAW2dimensions Takeaway 1. An ML problem is characterized by two dimensions, the data-centric dimension and

the stakeholder’s business requirements; each dimension can be decomposed into many criteria.

2.2 Data scientists practices

To enhance the robustness and performance of their machine learning solutions, data scientists
employ iterative testing and experimentation strategies (Kim, Zimmermann, DeLine, & Begel,
2017). These strategies involve a cyclical process of hypothesis formulation, testing, analysis of
results, and subsequent refinement.

In addition to this iterative process, data scientists continuously adapt and refine their solution
development practices based on feedback from previous projects (Kross & Guo, 2019). Each
project is a learning opportunity, enabling data scientists to fine-tune their methodologies and
strategies. This adaptive nature ensures that data science remains responsive to evolving chal-
lenges and changing data landscapes.

Within the field of data science, solutions-sharing practices play a crucial role. Data sci-
entists often collaborate and share their solutions within their teams and across the organization
(Epperson, Wang, DeLine, & Drucker, 2022). Sharing encompasses both code and insights gained
from previous analyses. The practice of sharing code ranges from personal analysis reuse to the
development of team-wide shared repositories.

Moreover, data scientists share template notebooks and shared libraries to facilitate the sharing
of their machine learning models and data processing pipelines (Kim et al., 2017). Template
notebooks are pre-configured and documented analysis environments that enable data scientists
to create reusable, customizable solutions. Shared libraries contain commonly used functions and
methods that enhance the efficiency and consistency of data science projects.

TAW-DSPractices Takeaway 2. Data scientists use iterative testing and experimentation strategies to continually

adapt their practices based on feedback; they resort to sharing solutions by employing tools such

as template notebooks and shared libraries as facilitators for data science practice sharing.

14 CHAPTER 2 — Sharing data science experience

2.3 Characterizing Diversity in Machine Learning Solutions

Diversity plays a pivotal role in enhancing the performance and reliability of machine learning
(ML) solutions. Understanding how to characterize diversity within ML solutions is a critical as-
pect of improving model generalization and robustness. This diversity is decomposed into various
dimensions, including the diversity originating from different models, preprocessing techniques,
and workflows (Gong, Zhong, & Hu, 2019)

One fundamental source of diversity in ML solutions arises from employing different models
(Fernández-Delgado, Cernadas, Barro, & Amorim, 2014). Researchers and practitioners often
experiment with various algorithms, architectures, and hyperparameters to tackle specific tasks
for instance the scikit learn library presents the implementations of 61 supervised classifier, 9
clustering models.

Beyond model diversity, preprocessing techniques are another key contributor to diversity
within ML solutions. These techniques encompass data transformations, feature engineering, and
data augmentation for instance sckit-learn papooses 16 preporocessings implementations. By ap-
plying diverse preprocessing methods, ML practitioners can extract varied representations from
the same data, enabling models to capture different facets of the information.

Diversity in ML solutions is not limited to models and preprocessing; it also extends to the
workflows themselves. ML workflows can also differ significantly in terms of data collection,
labeling, and model deployment strategies. This diversity in workflows is essential, as it ensures
that ML solutions are adaptable to different application domains and constraints (Xin, Ma, Song,
& Parameswaran, 2018).

TAW-LargeDomain Takeaway 3. The diversity in machine learning solutions arises due to inherent variability across

the entire process, encompassing algorithm selection, data preparation, and workflow design. This

diversity is amplified by the individual modeling decisions of data scientists, leading to distinct

outcomes.

2.4 Domain Experts are inherent drivers of data science projectssec_DomainExperts

Data science projects involve collaboration both within the data science team and with domain
experts (Piorkowski et al., 2021; A. X. Zhang, Muller, & Wang, 2020). Because even though data
does not lie, it does not tell the whole truth.

Throughout various stages of the modeling process, including data access, feature extraction,
evaluation, and result communication, domain experts play a pivotal role (Piorkowski et al., 2021).
However, these collaborative activities currently face challenges, as there is insufficient support,
resulting in data scientists having to rely predominantly on their intuitive understanding of their
data (Muller et al., 2019; Passi & Jackson, 2018; Mao et al., 2019).

While emerging tools aim to address technology gaps in supporting collaborative data science
practices, they often prioritize data science teams, potentially leaving domain experts with limited
involvement (A. Y. Wang, Mittal, Brooks, & Oney, 2019).

TAW-CollabDSExpertNeeded Takeaway 4. In data science projects, collaboration between data scientists and domain experts

is standard but often time constrained, limiting domain experts’ participation. To maximize experts

contribution, improved methodological support and tools are needed at each project stage.

2.5 – Requirements in ML 15

2.5 Requirements in ML

In the realm of Software Engineering (SE) and precisely systems and requirements engineering,
a non-functional requirement (NFR) refers to a stipulation that outlines criteria for evaluating the
performance of a system, rather than dictating precise behaviors. These differ from functional
requirements (FRs), which define specific functions or actions. While the blueprint for realiz-
ing functional requirements is articulated in the system design, the blueprint for fulfilling non-
functional requirements is typically elaborated upon in the system architecture, as they tend to
have a significant impact on the system’s architectural aspects (Wada, Suzuki, & Oba, 2006).

In SE, Requirements (NFRs+FRs) are essential for providing a strong foundation for quality
assessment (Chung, Nixon, Yu, & Mylopoulos, 2012). Attributes like speed, usability, and se-
curity are systematically documented, offering a roadmap for developers to follow (Glinz, 2007;
Chung & do Prado Leite, 2009). Similarly, collecting and documenting of requirements within
Machine Learning (ML) is essential but introduces a contrasting scenario characterized by empir-
ical gathering of context-dependent requirements (Smola, 2008; Kamishima, Akaho, & Sakuma,
2011).

For instance, consider the functional requirement of fairness. In SE, fairness can be method-
ically addressed based on established guidelines, resulting in a relatively clear understanding. In
contrast, within the ML domain, fairness takes on various interpretations depending on the appli-
cation context. Defining fairness for healthcare differs significantly from fairness considerations
in autonomous driving. This contextual adaptability is a central contrast between SE and ML,
where the fluidity of requirements definitions becomes apparent (Kamishima et al., 2011; Ntoutsi
et al., 2020).

In SE, requirements are subject to a rigorous understanding of how various components, in-
cluding algorithms and optimizations, affect relevant qualities (Chung et al., 2012; Pereira et
al., 2021). This understanding is obtained through accurately framing the requirements bound-
aries to allow for its systematic integration into the development process. However, the landscape
shifts when we delve into the ML domain. Here, incomplete knowledge regarding the interac-
tions between ML algorithms, optimizations, and assumptions introduces ambiguities regarding
the translation of business requirements into actionable requirements ml wise (Mohassel & Zhang,
2017).

Unforeseen conflicts between fundamental attributes in machine learning systems, such as the
trade-offs between accuracy and processing speed, add further complexity to the situation. These
unexplored areas underscore the distinction between software engineering (SE) and machine learn-
ing (ML) when it comes to defining requirements, as highlighted by (Mohassel & Zhang, 2017).
Software engineers generally have the advantage of being thought that these requirements must
be formalized and documented for mutual exploitation. In contrast, ML practitioners often grap-
ple with nuanced uncertainties on an individual basis, stemming from the many different existing
intricacies of ml workflows and real-world applications (Kamishima et al., 2011; Ntoutsi et al.,
2020).

SE primarily involves selecting requirements for implementation, resulting in a well-
established process (Chung et al., 2012). Similarly, ML introduces its specific challenges: it
necessitates decisions concerning algorithm types, characteristics, assumptions, training data, and
optimizations, based on ML technical understanding but also the understanding of the domain
of application making requirements specification complex (Horkoff, 2019). Unlike SE, where
the primary question is "which requirements do I implement?" ML prompts a different query:

16 CHAPTER 2 — Sharing data science experience

"How do business requirements constrict the algorithm type, the assumptions on data distribution,
training data, optimizations and so on?" (Horkoff, 2019).

This shift in focus highlights the contrast between SE and ML in requirements specification.
SE thrives on structured requirements, whereas ML should requires a more adaptive and context-
aware approach hardly generalized, reflecting the diversity and dynamism of machine learning
applications (Kamishima et al., 2011; Ntoutsi et al., 2020). Moreover, ML systems operate in
a constant state of evolution, adapting to new data and changing quality requirements (Chung
et al., 2012). Therefore, requirement engineering in ML necessitates documenting and adapting
requirements as systems evolves (Kamishima et al., 2011; Ntoutsi et al., 2020).

TAW-PartialKnowledge Takeaway 5. Managing business requirements in machine learning (ML) involves addressing the

challenges of incomplete knowledge regarding how ML workflow selection is affected by busi-

ness requirements, especially when working with fragmented and context-dependent definitions of

these requirements, and accommodating the continuous evolution of ML systems driven by chang-

ing data and business requirements themselves. These complexities underline the need for a nu-

anced and adaptive approach to capturing business requirements in the dynamic field of machine

learning.

2.6 Methodological approaches to machine learning

2.6.1 CRISP-DM
sota_crispDM

CRISP-DM (Cross Industry Standard Process for Data Mining) helps drive the data science pro-
cess, beyond just using algorithms (Wirth & Hipp, 2000). It identifies and organizes essential
aspects that factor into the success of a data science project, from analyzing data, gathering the
functional and non functional business requirements, and uncovering new knowledge (Brachman,
1996) in the case of classical data mining projects, or develop a machine learning workflow that
satisfies the stakeholders business requirements given the exploited data.

CRISP-DM is widely used in many industries, like manufacturing, translating complex prob-
lems into doable data tasks (Schröer, Kruse, & Gómez, 2021). It adapts to different fields, con-
necting with the broader Knowledge Discovery process. CRISP-DM has six phases that work
together to guide data mining, starting from understanding the problem throughout the process
i.e., Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, De-
ployment (Wirth & Hipp, 2000).

In practice, data scientists have to carry on additional phases that are not formalized in the
CRISP-DM methodology nor any KDD popular variants such as SEMMA. For instance,

huber2019dmme
Huber,

Wiemer, Schneider, and Ihlenfeldt proposed formalizing the phase of technical understanding for
instance. Technical understanding as presented in (Huber et al., 2019) is the conversion of the
business goals into actionable technical goals as well as gathering domain expertise related to
developing an effective strategy for conducting experiments. However technical understanding
on a methodological level can be assimilated to a sub-pahse of business understanding, therefore
the methodology does not lack the technical understanding phase but can not support the data
scientists in implementing some of it’s phases such as business understanding.

18 CHAPTER 2 — Sharing data science experience

requires the data scientist both to understand the problem and the data, and to be included in the
process alongside AutoML.

Furthermore, an AutoML tool resolves a subset of machine-learning tasks, ”The fully-

automated setting that current AutoML systems operate on, may not be a one-size-fits-all solution

for many users and problem domains” (D. J.-L. Lee & Macke, 2020). Choosing a tool compatible
with the use-case requires the user to understand the ML application this tool automates, i.e., the
data, the domain expert’s requirements, and the appropriate machine-learning techniques to tackle
it. We recognize two types of incompatibilities. The first is when available tools handle the ML
problem part but not the data, while the second is when available tools do not handle the use-case
(both problem and data).

Because AutoML can benefit from human intervention, recent AutoML human-guided ap-
proaches aim at capitalizing on human knowledge. They use domain expert knowledge to steer
the data engineering part (Brownlee, 2020), data scientists’ insight to restrict the workflow selec-
tion (Xin, Wu, Lee, Salehi, & Parameswaran, 2021) and the models’ hyperparameter optimization
processes. However, once the data scientists have understood the ML problems’ use-case well
enough to guide the workflow selection, they do not need full automation of the process. They
need a suggestion system in order to support them during the model selection stage while main-
taining control over the reason each ML component is used (D. Wang et al., 2021), and possibly
automation of the hyperparameter optimization (HPO) phase.

Furthermore, even though we observe a growing trend in automating the ML workflow se-
lection for some ML tasks, AutoML will not replace the data scientists in solving use-cases that
deviate from the well-trod paths since they adapt and develop their own machine learning prac-
tices 1 or implicit knowledge to accommodate the specific requirements and constraints of these
use-cases when AutoML can not.

As part of the human-centered AI research efforts, initial efforts have been made to formal-
ize, through explicit modeling, the data scientists’ implicit knowledge or practices, data scien-
tists heavily rely on; similarly to software engineers, "software development relies heavily on

implicit knowledge" (LaToza, Venolia, & DeLine, 2006). Through software product line mod-
eling (Clements & Northrop, 2002), we believe that encouraging tools (Camillieri et al., 2016)
and Frameworks (Amraoui, Blay-Fornarino, Collet, Precioso, & Muller, 2022) have emerged.
For a given machine learning task, they aim to continuously support the data scientist in reduc-
ing the number of iterations necessary to solve a machine learning use-case accordingly to their
prior knowledge. Furthermore, it aims at alleviating the workflow selection effort by systemati-
cally suggesting reductions of the search space on demand. Moreover, they attempt to explicit the
criteria allowing to retrieve domain experts’ definitions of their use-cases.

TAW-AutoML Takeaway 7. While AutoML is proficient in model selection, human intervention remains cru-

cial, particularly in domains with specialized knowledge, complex problem-solving, and informed

decision-making needs. Therefore, AutoML’s success hinges on cooperation with human experts

for effective machine-learning results. Similarly, as in traditional machine learning workflows,

data scientists may need guidance in tool selection based on functional and non-functional re-

quirements.

1by ML practices we mean untold rules and data analysis the data scientist relies on to design a machine learning
workflow for a given application

2.6 – 2.6.3 Synthesis 19

2.6.3 Synthesis

An ML problem is characterized by two dimensions: the data-centric dimension and the business
requirements-centric dimension. Therefore, co-constructing a solution is challenging due to the
different vocabularies used by the expert and the data scientist, as well as the data scientist’s
limited understanding of the business problem. Additionally, iterative testing and experimentation
strategies rely on expert feedback, while access to the expert is limited in both time and availability.
Therefore there is a need to capture the context of the problem in terms of business requirements

and data properties as early as possible.

CHAPTER 3
Sharing data science

solutions

3.1 Sharing machine learning implementations 23

3.1.1 R . 23

3.1.2 Weka (Waikato Environment for Knowledge Analysis) . . . 23

3.1.3 Knime (Konstanz Information Miner) 28

3.2 Sharing data science experiments 30

3.2.1 Reuse of notebooks by clone-and-ow 30

3.2.2 OpenML . 31

3.2.3 KNIME Hub . 32

3.3 Synthesis . 33

21

3.1 – Sharing machine learning implementations 23

3.1 Sharing machine learning implementations

3.1.1 R

R (Team, 2000) is both a programming language and an environment that is widely used for statis-
tical computing and data analysis. It is known for its flexibility, extensibility, and rich ecosystem
of packages, making it a popular choice among data analysts, statisticians, and data scientists.

R offers efficient implementations of numerous machine learning algorithms, making it a
formidable choice for data mining tasks (Ihaka & Gentleman, 1996). Notably, it includes popular
algorithms such as decision trees, k-means clustering, and support vector machines, enhancing its
versatility. It also includes visualization packages such as ggplot2 package that facilitates intricate
and customized data visualizations. It introduces specific data types like data frames for handling
large datasets and supports parallelization, enabling efficient data processing.

Despite its capabilities, R poses challenges. Its syntax and functional approach can be daunting
for citizen data scientists (Merkelbach, Von Enzberg, Kühn, & Dumitrescu, 2022; Boehmke &
Greenwell, 2019), with a steep learning curve. While basic tasks like creating plots and conducting
descriptive statistics are manageable, harnessing R’s full potential demands extensive practice even
for confirmed developers (Shrestha, Botta, Barik, & Parnin, 2020).

Addressing the challenge of R’s steep learning curve, the Rattle package emerges as a valu-
able solution. Developed since 2006, it offers a more user-friendly graphical user interface (GUI)
(Williams et al., 2009) (see fig. 3.1. Rattle simplifies the workflow by selectively loading pack-
ages from R as needed for specific analyses. This approach streamlines tasks, such as building
predictive models, enabling data scientists to focus on analysis rather than struggling with R’s in-
tricacies. Rattle see fig. 3.1leverages some of R’s standard data mining algorithms. In the realm of
data transformations it provides rescalings, imputing (which is filling in the gaps in data) , recod-
ing (which refers to operations such as binning and data type transformation) and clean up (which
refers to deleting columns with missing values to create a "clean" dataset) (Williams, 2011g).
In the realm of model building it provides kmeans , clara, hiearchical as models for clustering
tasks (unsupervised learning) (Williams, 2011b) (see fig. 3.2). It supports data discovery tasks
such as associations analysis, and Supervised analysis with decision trees/Forests (see fig. 3.1)
and SVM’s (Williams, 2011c, 2011e, 2011f), and boosting (Williams, 2011a). And as for the
evaluation methods, it supports supervised models evaluations such as precision, confusion matrix
or error matrix, ROC curve and so on (Williams, 2011d), it also supports association rules evalua-
tion metrics such as the lift (McNicholas, Murphy, & O’Regan, 2008) (see fig. 3.4. However, it’s
important to note that Rattle does not support all of R’s algorithms nor evaluations such as neural
networks for instance (Bergmeir, Benítez Sánchez, et al., 2012).

TW_8 Takeaway 8. Developing machine learning workflows using R code can be complex for certain

users. It was necessary to have support for guiding workflow selection and visualization provided

through tools like Rattle.

3.1.2 Weka (Waikato Environment for Knowledge Analysis)

Weka (Hall et al., 2009), a Java-based open-source data mining (DM) platform, originates from
the University of Waikato in New Zealand. Released under the GNU GPL 3 for non-commercial
use, Weka has maintained a stable popularity over the years. Its appeal primarily lies in its user-
friendly interface and a wide array of implemented DM algorithms (Arora, 2012).

26 CHAPTER 3 — Sharing data science solutions

Figure 3.5: The weka decision tree model tabfig_weka
In this tab, users can choose a classifier, define data splits for training, and visualize the results.

The history of previous results is stored in the results list located at the bottom left of the
interface.

Figure 3.6: Weka Knowledge flow layout examplefig_wekaKF

In this tab, users can view and interact with the workflow layout.

28 CHAPTER 3 — Sharing data science solutions

Weka offers users four distinct options for conducting DM tasks: a command-line interface
(CLI) , the Explorer, the Experimenter, and Knowledge flow . The Explorer, being the preferred
choice, facilitates tasks such as defining data sources, data preparation, machine learning algo-
rithms, and data visualization (see fig. 3.8. The Experimenter, on the other hand, is primarily
used for comparing the performance of different algorithms on the same dataset (see fig. 3.7.
Meanwhile, Knowledge flow follows a paradigm similar to RapidMiner’s operator concept, al-
lowing users to specify data flows using interconnected visual components (see fig. 3.6).

Weka also offers support for various supervised models evaluation procedures and metrics
(Gnanambal, Thangaraj, Meenatchi, & Gayathri, 2018). However, it does have limitations in terms
of data survey and visualization methods. It is more inclined toward addressing classification and
regression problems than descriptive statistics and clustering.It’s important to note that Weka’s
support for big data, text mining, and semi-supervised learning is somewhat limited (Kotak &
Modi, 2020), and it is currently introducing neural networks methods such as Auto Encoders for
anomaly detection (Macías-García et al., 2017) ,Recurrent neural networks to deal with time
series data prediction (HaddadPajouh, Dehghantanha, Khayami, & Choo, 2018), Convolution
neural networks for image classification (Zainudin, Shamsuddin, & Hasan, 2019) to address a key
limitation for the tools adoption.

TW_9 Takeaway 9. Weka incorporates essential safety features to assist users in selecting their work-

flows. For example, it restricts the evaluation of a supervised algorithm with association rules

evaluation metrics, preventing scenarios that could occur outside of Weka, such as in R.

3.1.3 Knime (Konstanz Information Miner)

KNIME (Konstanz Information Miner), a general-purpose data mining (DM) tool, is based on the
Eclipse platform and developed and maintained by the Swiss company KNIME AG (Berthold et
al., 2009).KNIME is utilized by over 1920 organizations in more than 60 countries, demonstrating
substantial community support.

KNIME adopts the visual programming paradigm enabling users to construct workflows by
placing and connecting visual building blocks known as nodes (Fillbrunn et al., 2017) (see work-
flow editor in fig. 3.9 and fig. 3.10). And similarly to weka it provides an Explorer (see knime
explorer in fig. 3.9). KNIME offers more than 1000 nodes through its core installation and exten-
sions, facilitating diverse data processing tasks. These nodes are organized hierarchically, search-
able by name through an intuitive interface, and come with detailed documentation, automatically
displayed upon selection (see "Node repository in the botom left and node description in the right
part of fig. 3.9.

One of KNIME’s most significant strengths lies in its seamless integration with Weka and R
(Dwivedi, Kasliwal, & Soni, 2016). This integration, while requiring extension installation, brings
forth an abundance of functionalities from Weka and allows the incorporation of R code within
workflows.

TW_10 Takeaway 10. There is a need for a comprehensive framework to facilitate the complex process

of composing machine learning (ML) workflows, particularly for beginners faced with numerous

choices.It has led to the development of frameworks and user interfaces on top of classical li-

braries to provide a structured approach that supports streamlining the decision-making process

and making it more accessible for practitioners looking to build ML solutions.

30 CHAPTER 3 — Sharing data science solutions

3.2 Sharing data science experiments

3.2.1 Reuse of notebooks by clone-and-owss_reuse

In a data science case study, small changes in how data is collected, annotated, cleaned, or pro-
cessed may lead to different results. For this reason, data scientists must document their data
analysis and processing stages. This documentation step is even more crucial if someone else has
to understand, maintain or trust the initial work (Rule, Tabard, & Hollan, 2018). Notebooks have
clear benefits, in such a context, by providing storytelling through cells of code intertwined with in-
line documentation. The data scientists have thus widely adopted computational notebooks, even
at the heart of the internal data analysis infrastructures of companies such as Netflix (Matthew,
Kyle, & Michelle, 2018) or IBM (A. X. Zhang et al., 2020).

The recipe for this success is a clever combination of code, visualization, and textual docu-
mentation, all in a single document. The fact that these notebooks and the associated tools and
technologies can also be open source, with Jupyter Notebook as the most famous one, makes them
the number one choice for anyone who wants to explore data and share their findings (Perkel,
2018). However, the freedom offered by notebooks and the iterative and exploratory nature of
building ML workflows affect their reusability. Among the reasons, one can find a need for more
documentation on the workflow (Kery, Radensky, Arya, John, & Myers, 2018; A. Y. Wang et al.,
2021), the difficulty of replicating the experiment (J. Wang, Kuo, Li, & Zeller, 2020) and the di-
versity of problems. To tackle this, data scientists only clone the relevant parts and use them in
their own workflows (Koenzen, Ernst, & Storey, 2020), naturally following the so-called clone-

and-own practice (Dubinsky et al., 2013; Rubin, Czarnecki, & Chechik, 2013; Kehrer, Thüm,
Schultheiß, & Bittner, 2021; Krüger & Berger, 2020). Data scientists find the same advantages
to using the clone-and-own approach as in previous empirical studies (Dubinsky et al., 2013).
Cloning is simple and directly available for developers that are then independent. The experimen-
tal nature of producing solutions in machine learning makes the approach even more compelling.
Cloning saves time, especially by helping to prepare data and fix parameters. Therefore, the abil-
ity to clone a notebook is crucial, as the variability of problems means that it is rare to be able to
reuse a notebook without modification for a new data set or when the requirements of the problem
change. The autonomy provided by cloning becomes essential in ensuring adaptability to new
problem domains.

Despite the advantages of the autonomy offered by cloning, managing the integration of cloned
artifacts, such as cells or code segments, can be challenging, as it can result in an inappropriate
combination of algorithms and impede the reuse process.

It remains challenging to construct appropriate workflows (Amershi et al., 2019) because the
interactions between the current data, the composition of algorithms, and the business require-
ments are substantial and not always well understood.

Sculley2014
Sculley et al. summarise these interactions

as follows: "changing anything, changes everything" (Sculley et al., 2015).
Data scientists adapt cloned sources, by preparing the data to match the expectations of the so-

lution captured by the initial notebook, or by eliminating unnecessary processing. These notebook
adaptations are common, but can impact the entire model-building process. Data scientists also
choose which notebooks to clone based on criteria such as origin, readability, and quality of results
conforming to "Reuse occurs through personal knowledge, memory, and networking" (Dubinsky
et al., 2013). In a non-classical case, determining which notebook to use as a source for cloning
is probably the most important issue. To establish a match between the solution proposed by

3.3 – Synthesis 33

about its functionality, owner, and related workflows or nodes. Users can easily incorporate these
resources into their workflows through a convenient drag-and-drop feature. Furthermore, users
can save valuable items by liking them, and engage in discussions related to specific workflows.
Additionally, short links can be generated for sharing specific items with others. KNIME Hub
serves as a collaborative platform for sharing and accessing data science resources within the
KNIME Community.

TW_13 Takeaway 13. Users can access machine learning workflows, nodes, and extensions by searching

for keywords on the KNIME Hub. Each artifact is accompanied by comprehensive documentation,

including information about the owner and its functionalities. This feature allows users to select

their preferred artifacts, reflecting the importance of familiarity in the choice of artifacts for data

scientists.

Furthermore, the platform supports discussions on workflows, emphasizing the need for post-

mortem analysis of workflows and encouraging interactions and discussions among data scien-

tists.

3.3 Synthesis

The diversity of solutions arises from the variability throughout the entire process, including algo-
rithm selection, data preparation, and workflow design. This diversity is further amplified by the
individual modeling decisions made by data scientists, leading to distinct results.

Therefore there is a need to quickly eliminate inadequate solutions and mutualize solutions

based on varying problem contexts.

CHAPTER 4
Software product lines

""

4.1 Introduction . 37

4.2 Feature models . 37

4.3
lopez2001standard
Lopez-Herrejon and Batory standard example 38

4.4 SPL’s for composing scientific workflows 39

4.5 Feature models edition . 40

4.6 Evolution-aware evaluation . 41

4.7 Synthesis . 44

35

4.2 – Introduction 37

4.1 Introduction

Software Product Line Engineering is concerned with the identification and representation of
shared characteristics, common attributes, and universal features among a group of software-
intensive applications within a specific problem domain (Pohl, Böckle, & van Der Linden, 2005).
This approach enables the swift development of variations of domain-specific applications by
configuring a set of reusable assets, known as core assets. These core assets help manage both
common elements and variations. Commonality is addressed by allowing domain analysts to cap-
ture shared conceptual information across applications within the same domain, while variability
is handled by enabling domain analysts to incorporate application-specific attributes and features
into a unified model.

In the context of software product lines, one of the significant techniques for domain modeling
is feature modeling (Czarnecki, Helsen, & Eisenecker, 2005) because it it can capture and model
variability within software product lines (Babar, Chen, & Shull, 2010).

4.2 Feature models

Features represent distinguishing aspects, qualities, or characteristics of a group of systems
(K. Lee, Kang, & Lee, 2002). They help depict the shared structure and behavior among simi-
lar systems. To create a product line, these features from similar or related systems are organized
into a feature model. A feature model represents the potential configuration space of all products
within a system product line based on their features. Therefore, it is crucial for feature models
to capture both variability and commonality among features across different applications within
a given domain. In essence, feature modeling is an approach for domain modeling that captures
both the variability and commonality present in the features of applications within a specific target
domain (Bagheri, Ensan, & Gasevic, 2012).

Feature models provide a practical way to model commonality by allowing domain modelers to
create a shared feature model representation for multiple applications. Additionally, they capture
variability by providing the means to model competing features from different applications under
a unified umbrella. For example, commonality is represented when a similar feature, existing
in multiple applications, is portrayed as a unique feature in the overall domain representation.
Conversely, variability is exemplified when separate applications view a concept differently and
are therefore modeled using competing features.

In its graphical representation a feature model typically consists of a tree structure with the root
node representing a domain concept (e.g., a domain application), while other nodes and leaves rep-
resent various features. Therefore, a feature serves the function of either pointing out similarities
or setting apart variations in a product line by addressing user-visible functional or non-functional
needs (Tessier, Gérard, Terrier, & Geib, 2005).

parent childfig_mandatory

Figure 4.1: Mandatory feature group

Within feature models, features are hierarchically organized and can be classified into several
categories:

38 CHAPTER 4 — Software product lines

parent childfig_optional

Figure 4.2: Optional feature group

parent

childA

childBfig:fig_alternative

Figure 4.3: Alternative feature group

Mandatory features, which must be included in the description of their parent feature, used
to represent commonality (see fig. 4.1).

Optional features, which may or may not be included in their parent description, depending
on the situation (see fig. 4.2).

Alternative feature groups, where only one feature from the group can be included in the
parent description (see fig. 4.3).

Or feature groups, where one or more features from the group can be included in the de-
scription of the parent feature (see figure 4.4).

Additional constraints, referred to as Integrity Constraints (IC), are often added to feature mod-
els to capture mutual interdependencies among features. These constraints come in two types:
"Includes" constraints (equivalent to a logical "A =⇒ B"), indicating that the presence of a
given feature (or set of features) requires the existence of another feature (or set of features), and
"Excludes" constraints (equivalent to a logical "A =⇒ ¬B") , signifying that the presence of a
given feature (or set of features) necessitates the elimination of another feature (or set of features).

4.3
lopez2001standard

Lopez-Herrejon and Batory standard example
sota_FMsexample

To further illustrate feature modeling concepts, let’s explore the Graph Product Line (GPL)
(Lopez-Herrejon and Batory, 2001), which is designed to serve as a benchmark for evaluating
feature modeling techniques (see fig. 4.5). GPL is intended to enable the creation of configu-
rations that address various problems in the domain of graph manipulation. For example, GPL
can be configured to execute different graph search algorithms on directed or undirected graph
structures.

parent

childA

childBfig_or

Figure 4.4: Or feature group

4.4 – SPL’s for composing scientific workflows 39

As shown, GPL consists of three primary features:

GPL

GraphType
Directed

Undirected

HasCycle

SearchType
BFS

DFS

Algorithms

ShortestPath

CycleDetection

StronglyConnected

Cross-tree constraints
HasCycle =⇒ ¬CycleDetection

CycleDetection =⇒ ¬BFS

CycleDetection =⇒ DFS

Figure 4.5: GPL feature modelfig_GPL

Graph Type: Features that define the structural representation of a graph.

HasCycle : Feature that defines the presence of cycles in the graph

Search: Traversal algorithms represented as features that facilitate graph navigation.

Algorithms: Additional useful algorithms for manipulating or analyzing a given graph.

It’s important to note that not all possible feature configurations within GPL result in valid graph
programs. For instance, a configuration of GPL designed to check if a graph is strongly connected
cannot be implemented on an undirected graph structure. These restriction rules are Integrity
constraints. Here are some examples :

4.4 SPL’s for composing scientific workflows

Scientific workflows, characterized by structured sequences of tasks, often automated, are pivotal
in processing data, conducting analyses, and producing results (Georgakopoulos, Hornick, &
Sheth, 1995).

Consider a medical researcher investigating Alzheimer’s disease as presented in
lorenzi20104d
Lorenzi, Ay-

ache, Frisoni, Pennec, et al.. The task involves tracking brain atrophy over time by analyzing MRI
images at various stages in a patient’s life. The complexity lies not in comprehending scientific

40 CHAPTER 4 — Software product lines

concepts but in the arduous manual process of selecting and configuring tools. Without assistance,
designing these workflows becomes a labor-intensive and error-prone effort, hampering scientific
progress (McPhillips, Bowers, Zinn, & Ludäscher, 2009; Gil et al., 2007).

Practitioners therefore need assistance in designing scientific workflows, which SPLs provide
by mutualizing the strengths of individual software components into a unified suite of products,
and streamlining workflow creation (Camillieri et al., 2016; Svahnberg & Bosch, 1999).

Expanding upon the example presented in (Lorenzi et al., 2010),
acher2012composing
Acher et al. introduce

distinct brain image analysis workflows formalized as separate Software Product Lines (SPLs),
referred to as "services." These services are subsequently amalgamated into a higher-level SPL,
termed a family of services. These families of services are then further integrated into a catalog
of services, where all scientific workflows can be comprehensively represented. To make this in-
tegration possible, they proposed a tool-supported approach that supports the merging of features,
checks consistency in feature model constraints, and checks the validity of product configurations.
Importantly, the approach maintains records of all the merged SPLs because of the loss of infor-
mation, such as the removal of conflicting constraints from distinct SPLs during the composition
process.

TW_14 Takeaway 14. Integrating various components, each with its unique constraints, into a cohesive

suite of software product lines for scientific workflow development simplifies the overall process.

However, it necessitates a stable and structured organization of individual components, each ad-

dressing their specific concerns, before the composition phase. Additionally, as composition may

result in the loss of unspecified constraints, maintaining a record of the products is essential for

post-mortem analysis and reasoning about the inferences made by the software product lines.

4.5 Feature models edition

Modifying a feature model results in the creation of a new model, and the primary objective
is to understand how these modifications impact the product line of the original model. These
modifications can be categorized into distinct types: refactoring, which involves making changes
without introducing or removing products; specialization, where existing products are removed
without the introduction of new ones; generalization, which entails adding new products without
removing existing ones; and arbitrary edits, representing changes that do not neatly fit into these
predefined categories.

In addition to these fundamental operations,
acher2009composing
Acher, Collet, Lahire, and France. introduced

two composite operations. The insert operation is intended for the insertion of a feature model
or a feature beneath a specified feature within the target feature model, taking into account an
FM operator such as XOR or groups. Conversely, the merge operation aims to consolidate shared
aspects from multiple feature models. The merge operation is presented in two formats: the union
merge, where the resulting feature model includes all configurations valid in either of the input
feature models, and the intersection merge, where the output feature model includes configurations
valid in both input models.

TW_15 Takeaway 15. Systematic feature model editing relies on identifying and utilizing relevant pat-

terns, such as merge and insert patterns. It’s crucial to design systematic editing patterns that

align with potential evolutions within the product line.

4.6 – Evolution-aware evaluation 41

4.6 Evolution-aware evaluation

In this section, we delve into the quantitative assessment of software product lines using a key
set of metrics from the existing literature. Subsequently, we will explore the existing correla-
tions between some of these quantitative metrics and the qualitative assessment related to SPLs’
maintainability (Bagheri & Gasevic, 2011).

With these aspects in mind, we will present a subset of variability model metrics, directing
interested readers to the literature review by

el2019metrics
El-Sharkawy, Yamagishi-Eichler, and Schmid for a

more comprehensive overview. These variability model metrics fall into four categories: modi-
fiers, size metrics, ratio and complexity metrics, and element metrics (El-Sharkawy et al., 2019a).

Modifiers : These modifiers provide alternative perspectives on the variability model, opening
new avenues for observation and analysis.

Typed features and attributes introduce the possibility of associating non-Boolean at-
tributes with features, such as strings or numbers. Additionally, they categorize features
as either configurable or constant, based on their configurability and their relation to other
features in the hierarchy (KANG, COHEN, HESS, NOVAK, & PETERSON, 1990; Berger
& Guo, 2014).

Atomic sets simplify the model by consolidating connected mandatory features into atomic
sets. This reduction in complexity is particularly beneficial for automated verification and
preserves the original model’s variability. Moreover, different types of influence, including
positive (A =⇒ B), negative (A =⇒ ¬B), preconditional influence (A requires B),
and positive or negative influence (none of the above categories apply), can be employed to
describe dependencies between atomic sets (W. Zhang, Zhao, & Mei, 2004).

Variability points complement atomic sets by defining the number of decisions necessary
to configure a feature diagram. This encompasses optional features, feature alternatives, and
OR-groups (Mann & Rock, 2011; Berger & Guo, 2014).

Type of constraints can be categorized based on their complexity and purpose (Passos et
al., 2011). Constraints fall into three primary categories: pure Boolean, pure non-Boolean,
or mixed constraints. This classification enhances our understanding of the model’s com-
plexity and the role of constraints, whether they function as "existence" conditions, "val-
ue/range" restrictions, or "default" values (El-Sharkawy et al., 2019a).

Size Metrics: Several size metrics are employed to assess variability models. The most promi-
nent among these is the "Number of Features" metric, which comes with various derivations
(C. I. Bezerra, Andrade, & Monteiro, 2014; Berger, She, Lotufo, Wasowski, & Czarnecki, 2013;
Berger & Guo, 2014; Passos et al., 2011; Vyas & Sharma, 2016). Additional size metrics evaluate
the number of constraints, the maximum depth of the tree structure (C. I. Bezerra et al., 2014;
Berger et al., 2013; Mefteh, Bouassida, & Ben-Abdallah, 2015; Vyas & Sharma, 2016) and the
configuration space’s size, representing the total count of valid configurations.

The following metrics are derived from "Number of features":

Number of Features (NoF): This measures the total count of features in the feature model.

42 CHAPTER 4 — Software product lines

Number of Leafs: It quantifies the number of features with no children or specializations
(Maâzoun, Bouassida, & Ben-Abdallah, 2016; Vyas & Sharma, 2016).

Number of Constraints Features: This metric calculates the number of features involved
in cross-tree constraints (C. I. M. Bezerra, Monteiro, Andrade, & Rocha, 2016; Sánchez,
Segura, & Ruiz-Cortés, 2014).

Number of Atomic Sets: It counts the total number of atomic sets (Mann & Rock, 2011).

Number of Variability Points: This metric quantifies the number of variability points (Mann
& Rock, 2011).

Number of Dead Features: It represents the number of features that cannot be selected
without violating constraints. For instance, if feature A is mandatory and a constraint (C)
enforces A =⇒ ¬B, then B is never selectable without violating constraint (C) (Mann &
Rock, 2011).

The following metrics are derived from constraints measurement:

Number of Constraints (NoC): This metric encompasses the total number of cross-tree
constraints (excluding non-propositional constraints enforced by the feature model struc-
ture, such as alternative/OR-group relationships) (Passos et al., 2011).

Number of OR Feature Groups: It assesses the total number of OR feature groups (Berger
& Guo, 2014; C. I. M. Bezerra et al., 2016; Leitner, Weiß, & Kreiner, 2012).

Number of XOR Feature Groups: This metric evaluates the number of alternative feature
groups (XOR feature groups) (Berger & Guo, 2014; C. I. M. Bezerra et al., 2016).

Interface Complexity: This metric considers OR/XOR feature groups as cross-tree con-
straints and is therefore the sum of the previous three metrics (Leitner et al., 2012).

Additionally, tree depth (DT) measures the longest path from the root feature to leaf features,
and there are derivations that calculate the mean or median tree depth (C. I. Bezerra et al., 2014;
Mefteh et al., 2015). Finally, the "Number of Valid Configurations" refers to the count of valid
products, complying with cross-tree constraints, that can be generated with a given feature model.

Ratio and complexity metrics: aim to convey the intricacy of the examined variability model.
They often result from a combination of multiple size metrics.

The The following metrics are examples of such ratios:

Cross tree-constraints ratio (CTCR) is a ratio calculated by dividing the number of dis-
tinct features involved in the cross-tree constraints by the total number of features in the FM
(Sánchez et al., 2014; Vyas & Sharma, 2016)

Cyclomatic complexity of feature models (CC) counts the number of distinct cycles in a
feature model. And because a cycle in feature models can only be generated by the cross-
tree constraints. This metric could be simplified to the number of cross-tree constraints
(Bagheri & Gasevic, 2011; Mefteh et al., 2015; Vyas & Sharma, 2016).

4.6 – Evolution-aware evaluation 43

Ratio of variability (RoV)/ Branching factor this metric calculates ratio between the av-
erage number of child features divided by the average number of parents features (Bagheri
& Gasevic, 2011; Berger et al., 2013; C. I. M. Bezerra et al., 2016).

Flexibility of Configuration (FoC) metric is calculated as the ratio of the number of op-
tional features to the total number of available features in the feature model (C. I. Bezerra
et al., 2014; Vyas & Sharma, 2016; C. I. M. Bezerra et al., 2016). The underlying idea is
that when there are more optional features in the feature model, it provides designers with
a greater range of choices during the configuration process. In other words, FoC quantifies
the level of flexibility in configuring the feature model.

Elements metrics are measures designed for individual elements within a variability model.
In the following we present prevalent element wise assessment metrics:

Commonality of feature (Comm) assesses the reuse ratio of a feature, labeled as "f," within
a Software Product Line (SPL). It is calculated by dividing the count of products where
feature "f" is included by the total number of products in the SPL (Sánchez et al., 2014).

Theoretical selection ratio of feature (feature coverage) calculates the percentage of
configurations in which each feature is selected (Mann & Rock, 2011).

Theoretical deselection ratio: calculates the percentage of configurations in which each
feature is deselected (Mann & Rock, 2011)

Metrics for maintainability: In their study (Bagheri & Gasevic, 2011), the authors investigated
the correlations between size metrics and qualitative aspects related to:

Analyzability: The extent to which the conceptual model of a software system can be eval-
uated for shortcomings.

Changeability: Involves the potential and ease of making modifications to the model as
needed.

Understandability: Refers to the likelihood that the software system’s model can be under-
stood by its users and other model designers.

Their findings revealed several correlations. For example, the number of leaf features is nega-
tively correlated with analyzability, changeability, and understandability. In other words, the more
leaf features the feature model contains the more challenging it is to maintain it.

Similarly, the number of Cross-Tree Constraints (CTCR) and the Flexibility of Configuration
(FoC) are negatively correlated with understandability and do not correlate with analyzability and
changeability.

This analysis underscores the importance of controlling the growth and complexity of the
feature model to maintain its manageability.

TW_16 Takeaway 16. Metrics play an essential role in monitoring Software Product Lines (SPLs). Var-

ious studies have defined metrics tailored to specific needs, enabling practitioners to observe and

assess SPLs effectively. However, redundancy exists in the state of the art. For example, metrics

44 CHAPTER 4 — Software product lines

like Cyclomatic Complexity (CC) and the number of constraints could be seen as closely related,

but authors often formulate them differently to address their specific needs.

In retrospect, analyzing these metrics alongside qualitative input from practitioners has re-

vealed correlations that link quantitative metrics to their roles in diagnosing SPLs for consistent

evolution. These correlations help bridge the gap between quantitative assessments and qualita-

tive perceptions, enhancing the understanding of an SPL’s behavior and its potential for improve-

ment.

4.7 Synthesis

The complexity and diversity of ML problems make it impossible to establish an absolute and
definitive framework. The iterative interactions between data scientists and experts to refine solu-
tions result in the emergence of new knowledge. Therefore there is a need to adapt to progressive

knowledge acquisition.

Contributions

CHAPTER 5
Capturing Knowledge

from trial and error
""

5.1 Introduction . 49

5.2 Experiments design . 52

5.2.1 Scenarios description . 52

5.2.1.1 Scenario 1 . 52

5.2.1.2 Scenario 2 . 53

5.2.1.3 Scenario 3 . 53

5.2.1.4 Scenario 4 . 53

5.2.2 Summary table . 54

5.2.3 Results description . 56

5.2.4 Discussion . 58

5.2.5 Explicited knowledge . 59

5.3 Conclusion . 60

47

50 CHAPTER 5 — Capturing Knowledge from trial and error

anomaly frequency patterns. In this particular scenario, the model trained to detect anomalies will
not be considered inaccurate until it encounters such variations in production. However, since the
model failure involves not triggering an alarm when an anomaly occurs, the issue may remain
undetected for an extended period until the machines break down, a scenario we want to avoid!

In this chapter, we design scenarios to refine our comprehension of the limitations of a specific
implementation of the AutoML tool Tpot and automatic hyper-parameter optimization of sklearn
models which are standard implementations of models systematically tested by data scientists .
The main contribution of this chapter is to illustrate the learning process of the data scientists it-
self: isolating a component of a machine learning workflow and subjecting it to controlled testing
to extract precise insights . These insights can then be shared between data scientists, which will
be the subject of the following chapters, i.e., how to represent this information (chapter

chap_genWF
6) and how

to extend our knowledge (chapter
chap_splevol
7).

To illustrate this process, we show how we identified a situation in which Tpot, an AutoML tool,
and hyper-parameter optimization of sklearn models (two approaches that require minimal in-
tervention from the data scientist and the ’domain expert) should not be used, for the detection
of anomalies in washing machine engines time series . This discovery came from the design of
various scenarios to test the approaches, described as a set of criteria detailed in section 5.2.

As a matter of fact, different levels of automation can be applied to machine learning
workflows, including fully automated (AutoML) systems that we will call “no-data-scientist-no-
domain-expert” or automation level 2 (He, Zhao, & Chu, 2021), systems with automatic hyper-
parameter optimization of a set of models selected by a data scientist, that we call “data-scientist-
no-domain-expert” or automation level 1 (Luo, 2016), and an approach incorporating domain
knowledge and data science expertise that we call “data-scientist-and-domain-expert” or automa-
tion level 0 (Brunton, Noack, & Koumoutsakos, 2020).

We study the effectiveness of the three levels of automation for machine learning workflow
generation, on standard, modified1, and generated 2 time series datasets in a binary classification
context to understand their limits.

In section 5.2.1.4, we will exhibit through a non-standard use case of the example presented
above how the expert insight can steer the solution in the correct direction while considering data
alone produces catastrophic results.

Standard time series datasets for binary classification target well-defined problems and are
associated with established evaluation protocols, providing a useful starting point for examining
the performance of different approaches. We adapt these standard datasets to align with the reality
of industrial applications and discuss how effectiveness evolves with automation levels.
Our results show that automation level 1 and level 2 perform well on standard time series datasets,
but their effectiveness decreases as the datasets deviate from the established benchmarks. We also
confront these two automation approaches to a workflow resulting from the collaboration of a data
scientist and a domain expert (automation level 0) on the example described above of the use-case
of time series anomaly detection (Passi & Sengers, 2020; Hoang & Kang, 2019), which involves
detecting unusual patterns in time series data. This complex and nuanced task requires a high level
of expertise and customization to be effectively solved. Our results show that automation level 0
can effectively solve this task, while automation levels 1 and automation level 2 cannot.

1We applied modifications to the standard datasets.
2We generated them in accordance with a the real industrial use case Ezako shared with us of the washing machine

engine anomaly detection

5.1 – Introduction 51

These findings exhibit essential implications for the practical use of machine learning in real-
world settings, where the data for building a machine learning solution is often complex and may
not convey the exhaustive criteria that define the problem for instance (i.e., in our example the
data at design phase has been collected from one type of washing machines while the solution
workflow was expected to work on several types of washing machines therefore the data at design
phase didn’t convey all properties of the data that is to be met in production.) Additionally,
High-performance scores on a given test set can be misleading (Liao, Taori, Raji, & Schmidt,
2021) if the test set does not comprehensively represent the real-world requirements of the use-
case (i.e., the test set in our example was from the same type of washing machines as the training
set, therefore having excellent performance scores on it can be non representative of the true
performances once the solution workflow is confronted to various types of washing machines see
results in table 5.2). as a matter of fact when we dealt with this use case in EZAKO the first batch
of results was on the training and test set that was first collected from one washing machine and
they were stellar using strait forward supervised classification models, however when the model
ran on production it raised anomalies only for washing machines of the same type as the training,
a domain expert noticed that and conveyed that remark. From that point we re-designed a new
semi-supervised machine learning workflow that trains on the same labeled training data but is
generalizable to all types of washing machines. It was crucial to design a model that trains on
the same training data and not ask for additional labeled data in this context because the domain
experts could only afford to spend a small amount of time to label a small additional subset of
data that we would use as a hidden test. Particular, complex and nuanced tasks that fall outside
’the beaten paths’ require a hands on approach incorporating domain knowledge (Wirth & Hipp,
2000) to solve them effectively . When using such an approach, data scientists can reuse a machine
learning workflow that solves a similar task (usually based on their intrinsic perception of the use-
case and past use-cases they worked on) or can tailor a machine learning workflow adequately
to the needs of the task i.e., In our case since the anomalies showed on the rotation frequency
of the engine, we thought it was similar to a previous use case of detecting anomalies on sound
frequencies and reused the same workflow, luckily3 this rapprochement saved us trials and errors
and pointed us to the right workflow to reuse .

⇒ In accordance with Takeaway
TAW-AutoML
7 the selected AutoML tool tpot does not handle the problem

presented in our example and showcased in scenario 4 cf. section 5.2.1.4 as we observe its poor

results in cf. section 5.2.3

Therefore, it is crucial for practitioners to carefully consider the specific requirements of the
task when deciding which approach to use i.e., in our example, as data scientists we should have
inquired about the nature of the collected data with regards to the one in production which falls
under business requirements and not assume that the provided data was representative of the one
in production without asking the domain expert. Therefore, automation may be a more suitable
option for well-defined tasks with established benchmarks. On the other hand, an automation level
0 approach incorporating domain knowledge may be the most appropriate choice otherwise.

This chapter examines time series classification task since it has been identified as a valu-
able and challenging machine-learning problem (Ismail Fawaz, Forestier, Weber, Idoumghar, &
Muller, 2019). We study the effectiveness of the 3 levels of automation aforementioned. Then
we extract from the experiments the criteria or deduce the knowledge that could have steered the
automation level 0 to the right solution from the first try.

3luckily we noticed the similarity with the sound use case

52 CHAPTER 5 — Capturing Knowledge from trial and error

⇒ In this chapter we present our approach to refine our understanding of algorithm failure

point as we want to avoid wasting time on machine learning workflows bound to fail. We create

scenarios in which we move alongside given criteria options and observe the behaviour of the

targeted algorithms. in the trial error phase as per Takeaway
TAW-DSPractices
2 (cf. section 5.2).

5.2 Experiments design
XPdesign

Since time series have not been the first modality of data targeted in this revolution of deep learn-
ing, a lot has still to be done and settled to consider that "golden standard models" have been
produced as it could be considered with Convolutional Neural Networks (CNNs) for image clas-
sification. Time series classification is thus an exciting task to study the three levels of human
involvement/automation.

In this section, we will detail scenarios, starting with the context common to the four, then
describe the specificities related to each. For our experiment, we showcase the relevance of ma-
chine learning the tools on variations of tasks corresponding to use-case scenarios that the user is
likely to encounter when dealing with time series classification and when the labels are heavily
unbalanced, anomaly detection.

5.2.1 Scenarios description

For all the scenarios, we evaluate automation level 2 by running an AutoML instance based
Tpot implementation, with the following hyper-parameters: (i) the training maximum time in
minutes max_time_mins which we set at 20 minutes for small datasets (with fewer than 300
time series), 40 minutes for medium datasets (with less than 1000 training observations), and
60 minutes for larger datasets (with more than 1000 time series training observations), and 20
minutes for the datasets in scenario 4; (ii) the seed of the random generator random_state to
42; and (iii) the score to evaluate the quality of a given workflow generated by Tpot scoring to
F1_macro which is the average F1-score.

For the three first scenarios, we evaluate automation level 1 by running hyper-parameter op-
timization on the pre-selected models. In these first three scenarios, we have allocated a maximum
training time of 5 minutes for small datasets (with fewer than 300 time series training observa-
tions), 15 minutes for medium datasets (with less than 1000 training observations), and 30 min-
utes for larger datasets (with more than 1000 time series training observations). We evaluate all
the approaches with the average F1-score on the test set as the performance metric and tracked the
confusion matrix for additional information during the experiment.

5.2.1.1 Scenario 1

In the first scenario, we evaluate automation level 1 and automation level 2, in a supervised

paradigm, i.e., the models are trained on a labeled dataset, and in the context of balanced anomaly

detection, i.e., we detect anomalies on a time series data set where the normal and abnormal classes
are almost equally represented.
Dataset description We have compiled a dataset consisting of 42 two-class time series datasets
from the UCR archive (Dau et al., 2019) at the URL https://www.cs.ucr.edu/

~eamonn/time_series_data/. The training datasets are balanced and have been prepro-
cessed, with the notable absence of missing values and all data being z-normalized, following the

5.2 – 5.2.1 Scenarios description 53

preprocessing described in (Dau et al., 2019).
Model description For the automation level 1, we have chosen to investigate the performance of
four supervised classifiers: Random Forests, Naive Bayes, AdaBoost, and MLP, since they are
also considered by the AutoML tool (of automation level 2). We have employed the scikit-learn
implementations of these models (Pedregosa et al., 2011).

5.2.1.2 Scenario 2

In the second scenario, we evaluate automation level 1 and automation level 2 in a supervised

paradigm and in the context of unbalanced anomaly detection, i.e., we detect anomalies on a
time series dataset where the normal data proportion is higher than the anomalous data.
Dataset description We have compiled 20 time series datasets selected from the 42 datasets from
UCR repository (Dau et al., 2019), used in scenario 1. These datasets have been selected to have a
training set with more than 100 observations. We then created an imbalanced version for all these
datasets by decimating the anomaly class, the majority class is set to be 90% of the training set
and the minority class set to be 10% in each training set. We have also added a dataset originally
unbalanced in the UCR repository, with 90% majority class and 10% minority class, resulting in a
total of 21 datasets.
Model description For the automation level 1, we have chosen to investigate the performance of
the classifiers previously selected in scenario 1. We have also added a One Class SVM, trained
on the majority class, and an outlier detection algorithm, Isolation Forests, trained on the entire
training set. We have used the scikit-learn implementations for both One Class SVM and Isolation
Forest.

5.2.1.3 Scenario 3

In the third scenario we evaluate automation level 1 and automation level 2 in a semi-supervised
paradigm (i.e., the models are trained on a dataset that contains both labeled and unlabeled data)
and in the context of unbalanced anomaly detection.
Dataset description For this scenario, we have modified the 20 time series datasets from scenario
2 by preserving 30% of the labels in the training set and treating the remaining data as unlabelled.
Model description For the automation level 1 anomaly detection task, we have chosen to inves-
tigate the performance of the classifiers previously explored in Scenario 1 - automation level 1,
but this time on the labeled data only. Furthermore, we have also trained the semi-supervised and
outlier detection workflows from scenario 2 on the entire training set, including the unlabelled
data.

5.2.1.4 Scenario 4
XPtoKN

In the fourth scenario, we evaluate also automation level 0 where the data scientists designs a
machine learning workflow based on his/her understanding of the business requirements and of the
data, automation level 1 and automation level 2 in the context of detecting and localizing anomalies
(i.e., in the precedent scenarios the goal was to detect if a time series as whole contained anomalies,
but in this scenario the goal is to localize precisely the anomalous pattern inside the time series.)
The training paradigm we evaluate is supervised in the context of unbalanced anomaly detection.
Dataset description In this scenario, we aim at recreating an actual use-case presented by a partner
company Ezako in which they want to detect damage in bearings based on motor current signature

54 CHAPTER 5 — Capturing Knowledge from trial and error

Time Series
Data

Short Fourier
Transform

CNN AE
Threshold on

Reconstruction Error
Anomalous

Data

Figure 5.2: Scenario 4 automation level 1 workflow stepsfig_scenario4_WF

data. As we can not disclose the datasets from Ezako, we have generated datasets to simulate
similar situations with similar constraints. The domain expert explains that a current time series
from a healthy bearing is cyclical with a fixed period. In contrast, a damaged bearing will lead
to data portions with different frequencies depending on the type of damage. The training and
test set available to build the workflow comes from two devices that have anomalies with similar
distortions in the current frequency. However, the domain expert explanation implied that the
anomalies could appear with different frequency distortions. Therefore we added a second test
that will not be available at the workflow building time to emulate how our selected workflow
would deal with new data at deployment.

We generated three datasets of sinusoidal time series with a constant frequency of 1 Hz and
added anomalous patterns of varying lengths. The three datasets consist of 90-10%, 93-7%, and
97-3% ratios normal vs anomalous patterns (or contaminations). These anomalous patterns are
made up of changes in sinusoidal frequencies. We have built one training set and two test sets
for each dataset. Test 1 contains anomalies similar to the anomalous patterns in the training set,
with a sinusoidal frequency of 0.1 Hz, while test 2 contains anomalies with a different sinusoidal
frequency of 4 Hz.
Model description For automation level 1, we apply our model selection via hyper-parameter op-
timization to the following algorithms: MLP Classifier, Random Forests, Naive Bayes, AdaBoost,
One class SVM and Isolation Forest models.
For automation level 0, where the task is detection and localization of the anomalies within time
series, the data scientist suggested reusing one of the previously developed workflows to solve an
anomaly detection and localization task in submarine acoustic data. The workflow was promising
since the anomalies’ nature of frequency distortion in this scenario is similar to use case detecting
and localizing acoustic data anomalies. The workflow highlights the frequency differences be-
tween the expected signal and the anomalous patterns by computing short-time Fourier transforms
over fixed-length windows of the signals. The transformed data are then fed into a CNN-based
Autoencoder (Kieu, Yang, & Jensen, 2018) see figure

fig_scenario4_WF
5.2. The model is trained on the spectro-

grams of the healthy windows from the training time series. Furthermore, we use the available
training labels to fine-tune the reconstruction error threshold 4.
Training and evaluation details For this scenario the training time for all 3 levels of automation
was under 20 minutes, and since we are looking for anomalous patterns in a time series (detection
and localization), we monitored the minority class F1-score.

5.2.2 Summary table

4The CNN-Autoencoder specializes in reconstructing normal data. Consequently, when it attempts to reconstruct
abnormal data, the dissimilarity between the original abnormal data and the reconstructed version is more pronounced
compared to the reconstruction of normal data. A threshold is set to differentiate the normal from the abnormal data

5.2 – 5.2.2 Summary table 55

C
on

ta
m

in
at

io
n

au
to

m
at

io
n

le
ve

l
T

as
k

D
at

as
et

m
od

el
s

T
ra

in
in

g
pa

ra
di

gm
s

S
ce

na
ri

o
1

L
ev

el
1

A
no

m
al

y
de

te
ct

io
n

42
ti

m
e

se
ri

es
fr

om
U

C
R

be
nc

hm
ar

k

R
an

do
m

Fo
re

st
s,

N
ai

ve
B

ay
es

,
A

d-
aB

oo
st

,a
nd

M
L

P.

S
up

er
vi

se
d

L
ev

el
2

A
ut

oM
L

to
ol

T
P

O
T

S
up

er
vi

se
d

S
ce

na
ri

o
2

L
ev

el
1

A
no

m
al

y
de

te
ct

io
n

21
ti

m
e

se
ri

es
tw

o-
ca

ls
se

s
un

ba
la

nc
ed

R
an

do
m

Fo
re

st
s,

N
ai

ve
B

ay
es

,
A

d-
aB

oo
st

,
M

L
P,

O
ne

C
la

ss
S

V
M

,I
so

la
ti

on
Fo

re
st

S
up

er
vi

se
d,

se
m

i-
su

pe
rv

is
ed

an
d

un
su

pe
rv

is
ed

L
ev

el
2

A
ut

oM
L

to
ol

T
P

O
T

S
up

er
vi

se
d

sc
en

ar
io

3
L

ev
el

1
A

no
m

al
y

de
te

ct
io

n
21

ti
m

e
se

ri
es

tw
o-

ca
ls

se
s

un
ba

la
nc

ed
w

it
h

30
%

of
la

be
le

d
da

ta

R
an

do
m

Fo
re

st
s,

N
ai

ve
B

ay
es

,
A

da
B

oo
st

,
an

d
M

L
P,

O
ne

cl
as

s
S

V
M

,
Is

ol
at

io
n

fo
re

st
s

se
m

i-
su

pe
rv

is
ed

,

L
ev

el
2

A
ut

oM
L

to
oL

T
P

O
T

S
up

er
vi

se
d,

se
m

i-
su

pe
rv

is
ed

,
un

su
pe

r-
vi

se
d

sc
en

ar
io

4
L

ev
el

0
C

N
N

-A
ut

oe
nc

od
er

w
or

kfl
ow

S
em

i-
su

pe
rv

is
ed

L
ev

el
1

A
no

m
al

y
de

te
ct

io
n

an
d

lo
ca

li
za

ti
on

3
la

be
ll

ed
B

ea
ri

ng
m

o-
to

r
cu

rr
en

t
si

gn
at

ur
e

ti
m

e
se

ri
es

da
ta

se
ts

M
L

P
C

la
ss

ifi
er

,R
an

-
do

m
Fo

re
st

s,
N

ai
ve

B
ay

es
,

A
da

B
oo

st
,

an
d

Is
ol

at
io

n
Fo

re
st

m
od

el
s

S
up

er
vi

se
d,

se
m

i-
su

pe
rv

is
ed

an
d

U
ns

up
er

vi
se

d

L
ev

el
2

A
ut

om
lt

oo
lT

P
O

T
S

up
er

vi
se

d

Ta
bl

e
5.

1:
S

ce
na

ri
os

su
m

m
ar

y

56 CHAPTER 5 — Capturing Knowledge from trial and error

5.2.3 Results description
resultsXP

Scenario 1 The results of the experiments indicate that the performances of the automation level
1 and automation level 2 approaches are comparable on standard time series datasets (Scenario
1), with the median F1-score around 0.83 and the third quartile F1-score slightly over 0.9 for both
automation levels. However, automation level 1 had slightly higher scores in the first quartile
F1-score, 5 points higher than automation level 2, and the minimum, which was also higher than
automation level 2 see Figure

fig_res_S1
5.3.

0.4 0.6 0.8 1

level 2

level 1

random detector

F1-score

Figure 5.3: Scenario 1 resultsfig_res_S1

The models pre-selected for automation level 1 were not chosen randomly; they were specifically
chosen based on their suitability for the task. Additionally, the introduction of a time limit for both
approaches meant that automation level 1 focused solely on optimizing well-suited models, while
automation level 2 had to go through a much larger number of models, not all necessarily suited
for the task, within the same time frame. As a result, automation level 1, with its narrower focus,
yielded more consistent results, leading to a more compact box plot.

This support the idea that a focused subset of suitable models leads to higher overall perfor-
mances.

Scenario 2 Here, the automation level 1 performed better than automation level 2 on several
metrics. Automation level 1 scores were higher than automation level 2 on four metrics see figure
fig_res_S2
5.4, minimum (0.35, 0.47), first quartile (0.47, 0.57), median(0.70, 0.57), third quartile (0.88,
0.71), automation level 2 has a higher maximum score of 1 against 0.98. Both approaches perform
better than their baseline, but there is a significant drop in performance compared to the first
scenario on the same test sets.

0.2 0.4 0.6 0.8 1

level 2

level 1

random detector

F1-score

Figure 5.4: Scenario 2 resultsfig_res_S2

5.2 – 5.2.3 Results description 57

The introduction of new semi-supervised and unsupervised models to the pool of models to go
through in automation level 1 that are not available to the automation level 2 made the difference.
The One Class SVM trained on normal data in automation level 1 outperformed supervised mod-
els from automation level 1 and the best results from automation level 2 under the time constraint
we imposed.

Scenario 3 The automation level 1 scores better than automation level 2 in minimum (0.37, 0.43),
median (0.68, 0.63), and first quartile (0.54, 0.5), while automation level 2 scores better than
automation level 1 in the third quartile (0.83, 0.72) and maximum (1, 0.95) see figure

fig_res_S3
5.5. The

performance of the automation level 1 approach deteriorates from Scenarios 1 to 2 and from 2 to
3, as expected. However, on the other hand, the automation level 2 approach surprisingly performs
slightly better in the Scenario 3 compared to the Scenario 2.

0.4 0.6 0.8 1

level 2

level 1

random detector

F1-score

Figure 5.5: Scenario 3 resultsfig_res_S3

The pool of supervised algorithms used in automation level 1 are benefiting only of the labeled
data which represents a little part of all data available and a significantly lower amount of labeled
data compared to Scenario 1. This explains why the supervised models perform poorly compared
to the models generated by automation level 2. Additionally the training of One Class SVM model
is conducted on whole dataset and proved to also produce poor results as it learns from highly
unbalanced data.

Scenario 4 In the industrial use-case of anomaly detection in scenario 4, the automation level 0
approach incorporating domain knowledge performed much better than automation level 1 and
automation level 2 on the test set with different anomaly frequencies. On test set 2, the automation
level 1 and automation level 2 methods score 0 on the minority class for the three contamination
levels, while level 0 retains high performances (0.93,0.92,0.9) see table

tab_results_S4
5.2.

In the three datasets, both automation level 1 and automation level 2 achieved high scores on the
initial test set because they overly focused on the training data, causing overfitting. However,
their performance declined on the second test set. This drop occurred because the anomalies
maintained the same nature (such as changes in current frequency), but the specific values of the
frequency distortion changed. This change couldn’t be captured by simply analyzing the time
series data.

Conversely, automation level 0 performed well across both test sets in all three datasets. This
success was due to its ability to recognize spectrograms that highlighted the frequency patterns

58 CHAPTER 5 — Capturing Knowledge from trial and error

of normal data behavior. Unlike automation levels 1 and 2, which learned the specific values of
normal and abnormal sequences, automation level 0 focused on understanding the overall behavior
represented in the spectrograms, leading to consistent performance across different datasets and
test sets.

Contamination Approach Test 1 Test 2

97-3%
Level 0 0.89 0.9
Level 1 0.96 0
Level 2 0.97 0

93-7%
Level 0 0.93 0.92
Level 1 0.97 0
Level 2 0.97 0

90-10%
Level 0 0.98 0.93
Level 1 0.96 0
Level 2 0.95 0

Table 5.2: Scenario 4 results by approach and test settab_results_S4

Table 5.2 illustrates the importance of comprehending the limitations of utilizing an AutoML ap-
proach. It is crucial to acknowledge that the data may lack comprehensive information about
itself. In the provided example, in test case 2 (the hidden test case during solution development),
anomalies manifested in a distribution that the automatically generated model couldn’t differ-
entiate from normal behavior. This emphasizes the limitations of relying solely on automatic
approaches guided by data.

5.2.4 Discussion
ss_DiscussionAML

Overall, our results indicate that automation at levels 1 and 2 performed acceptably on standard
time series datasets. In Scenarios 2 and 3, where the datasets were imbalanced, the difference in
performance compared to the test random prediction baseline was relatively modest.

Furthermore, results from scenario 4 demonstrate that high performance on a test set can align
differently from the specific requirements of domain experts. Therefore, only relying on automatic
evaluations without a comprehensive understanding of the nuances of the use-case can result in
the dangerous misconception that the workflow is functional when it is not.

Yet, automation came to solve some problems automation level 0 (“data-scientist-and-domain-
expert”) approach presents; the first one is to reduce the time that the "come and go" between the
domain expert and the data scientist takes to understand the requirements and evaluate the results,
and the second one is the unpredictability of the process: For instance, if the data scientist did not
capture the whole nature of the anomalies, or if the data scientist did not stumble upon a similar
use-case in previous experiences?

On the other hand, by leaving these tasks to automation when the use-case requirements are
not "standard", the solutions we get may not be adequate, and worse, we do not even realize if and
why such a use-case deviates from "standard".

Many of these issues on AI automation have been of interest to the software engineering com-
munity for years, encountered from the perspective of software product lines (SPLs) (Niehaus,

5.3 – 5.2.5 Explicited knowledge 59

Pohl, & Böckle, 2005). SPLs introduce a set of notions to solve similar problems as in AI au-
tomation while retaining control over the solution generation process, facilitating the inclusion
of domain experts in the loop, and helping manage the requirements and solutions which evolve
through time. Even though the vocabulary might change, here are some notable correspondences
between AI automation and SPLs:

Creating a machine learning workflow is similar to crafting a scientific workflow using SPL.
Similarly, the process of composing and optimizing machine learning workflows is akin to
the generation of products, as we will explore further in the following chapter.

In automated machine learning identifying the properties data wise that the meta learning
model will use to reduce the space of possible machine learning artefacts to compose a
workflow is assimilated in an SPL approach, to a domain engineering step that captures the
variabilities and commonalities of the use case business requirements and data properties
wise (Siegmund et al., 2012). In this aspect SPL’s can consider the business requirements
while meta learning can only consider the properties of the data.

Meta-learning extracts the rules data wise that guide workflow composition and optimiza-
tion.In SPLs the equivalent of these rules are captured by an application engineering step
and are explicitly formulated in the form of a constraint system that orchestrates the com-
position of a scientific workflow as shown in the example form section 4.3.

When using a clasical machine learning process such as the ones presented in section 2.6.1
identifying similarities with past use-cases especially business requirements wise is done
empirically by the data scientist, while SPL allows to match them with a configuration step
accordingly to the identified criteria in the domain engineering phase (Niehaus et al., 2005;
Amraoui et al., 2022; Nieke, Seidl, & Schuster, 2016).

5.2.5 Explicited knowledge

What we capture from this experiment underscores the importance of preemptively understanding
the potential variance in data distribution before embarking on the design of an ML workflow, par-
ticularly when deciding between supervised and semi-supervised methods. Furthermore, in this
specific context, the transformation of data into spectrograms using fast Fourier transform proved
pivotal in distinguishing anomalies from regular observations, given their temporal occurrence
within specific windows as opposed to isolated outlier points.

However, this experimentation incurred significant human time costs, as it entailed numerous
trials and errors in the automation level 0 approach. To mitigate such time-consuming endeavors
in future instances of similar use-cases, it is imperative to inquire about criteria that were pre-
viously overlooked before consulting domain experts. This proactive approach can facilitate the
direct reuse of solutions, thereby minimizing human time loss.

The knowledge extracted from this experience is twofold: firstly, it underscores the necessity
of determining whether the data distribution is expected to remain consistent in production before
initiating the trial-and-error phase. Secondly, it highlights the efficacy of semi-supervised ap-
proaches in addressing issues arising from shifts in data distribution, as supervised methods often
overfit on the accessible dataset during the design phase while semi-supervised methods do not.

60 CHAPTER 5 — Capturing Knowledge from trial and error

5.3 Conclusion

In the process of generating machine learning workflows to solve a given problem, data scientists
enquire about business requirements analyze the data and then come up with a solution through
trial and error. To decide if a trial is a success or a failure, they assess it with ML related metrics
such as accuracy, recall, f-score, ROC curve and so on. If these metrics render what they deem a
good score on the available test set at design, it is a success, otherwise it is a failure or an error.
However they do not necessarily formulate why a given workflow failed before testing a new one.
And the number of trials can be high because the search is not guided and only influenced by the
preferences of the data scientist conducting the search and his/her given knowledge. The approach
is intuitive and therefore its entropy is high i.e., for data scientist A it takes 3 trials to find an
adequate solution while for data scientist B it takes up to 15 trials. Moreover they evaluate their
solutions on a known test set and cannot know from the data alone if the actual data in production
is similar in properties to the test set with regards to the deployed solution as seen in Scenario
4, which creates an additional monitoring phase when the model is deployed, and in the case
where the workflow performs poorly, the whole process has to be restarted taking into account
the new data where it failed. Additionally, each data scientist learns from their own experiences
only, i.e., data scientist A produces a wrong workflow, understands why it failed and takes this
into account the next time they deal with similar use cases, and data scientist B does the same
thing, each in his/her own bubble, without sharing the knowledge acquired. Data scientist B could
go through the same mistakes data scientist A went through and vice-versa. Moreover even the
notion of similarity of use-cases we use, is subjective to a given data scientist because they might
make conciliation that others might oversee even when inquiring about the problem itself from the
domain expert since they are the ones translating business problem into business requirements.
The global process is not structured enough and remains heavily reliant on who/what steers it (
i.e., the data scientists intrinsic knowledge).

In chapter 6, we propose our approach to diminish the entropy of the process by mutualizing
the acquired knowledge into a common knowledge base that is built from the trial and errors
of each data scientist to help them steer the process of machine learning workflow generation
more efficiently and utilize each others knowledge. In Chapter 7, we look at how to exploit
the information contained in the knowledge base, which adds to existing knowledge and has an
impact on the generation of workflows for new problems, as well as on the correction of previous
workflows.

Contribution 1. Contrary to current ML practice, we have shown experimentally that automation

is not the answer in all contexts. Not all information is in the data.

CHAPTER 6
Contextualizing ML
variability modeling

chap_genWF

6.1 Introduction . 63

6.2 Approach overview . 64

6.2.1 Contextualized Solutions within the Overall Solution Space 64

6.2.2 Process overvie . 66

6.2.3 Tooling overvie . 67

6.3 Contextualized ML Solution Variability Modeling 68

6.3.1 Multi-Domain Variability Modeling: Supporting Contextu-
alized Solution Space Reduction 68

6.3.2 Modeling Applications and Code Interactions for Efficient
Solution Retrieval . 70

6.3.3 Formal definition of the interaction 71

6.4 Applications . 72

6.4.1 Scenario 1: Retrieve and clone notebook 72

6.4.2 Scenario 2: Generate a new notebook 73

6.4.3 Industrial case stud . 73

6.4.3.1 Domain variability model 76

6.4.3.2 Variability model of realized products and assets . 76

6.4.3.3 First results on the usefulness of configurations in
determining workflow suitability 77

6.5 Conclusion . 78

61

6.1 – Introduction 63

6.1 Introduction

Building effective data science systems is a challenging sociotechnical endeavor involving techni-
cal and human work (Passi & Sengers, 2020). Designing a universal solution that can work for any
Machine Learning (ML) problem specification is not possible due to the high combinatorial diver-
sity of both data (Bilalli, Abelló, & Aluja-Banet, 2017) and business requirements (Habibullah,
Gay, & Horkoff, 2023). Additionally, the pool of available ML solutions is continuously grow-
ing, making it increasingly difficult for data scientists to navigate this "wilderness" of possibili-
ties (Fernández-Delgado, Cernadas, Barro, & Amorim, 2014; Zaharia et al., 2018). Consequently,
a data scientist may, for the same problem, try several preprocessing libraries, several types of
models (e.g., decision trees and neural networks), and even multiple frameworks for the same type
of model (e.g., TensorFlow and PyTorch) (Zaharia et al., 2018).

⇒ This chapter explores assisting data scientists in characterizing their requirements and al-

gorithmic preferences (Takeaway
TAW2dimensions
1,Takeaway

TAW-CollabDSExpertNeeded
4,Takeaway

TW_13
13) (cf. section 6.2). Our approach in-

volves guiding them through a step-by-step reduction of the solution space (Takeaway
TAW-Methodo
6,Takeaway

TW_8
8, Takeaway

TW_9
9, Takeaway

TW_10
10) (cf. section 6.3.1).

A recent study (Koenzen et al., 2020) highlights the importance of code reuse in ML solutions
production, with 18% of participants’ time spent searching for code samples online in plateforms
. Duplication and reuse of code rely on tutorials or APIs and various sources such as GitHub
or GitLab, because solutions are problem-sensitive (i.e., sensitive to initial data properties and
domain expert business requirements) , and the field is evolving rapidly. Thus, widely used plat-
forms such as OpenML (Vanschoren, van Rijn, Bischl, & Torgo, 2013) or ModelDB (McDougal
et al., 2017) allow the specific sharing and discovery of ML workflows by scientists. Notebook
sharing, for instance, is widely supported by popular platforms such as Kaggle1 (over 400K note-
books today), Google Colab2, Jupyter Notebook, JupyterLab3, or Baidu AI Studio4. To the best
of our knowledge, search options to retrieve ML workflow code are mostly based on a textual
search (on domain keywords, benchmarks/competitions, machine learning artifacts, language, au-
thor, or dataset), possibly using ontologies as in the case of ModelDB (McDougal et al., 2017).
Such search options could lead to various types of errors. For example, in the case of searching
notebooks by keywords, this can result in an overwhelming number of notebooks, some of which
are not even related to the field, without the problem (i.e., initial data properties and business
requirements) being addressed.

⇒ In this chapter, we address the issue of searching for past solutions (limited to notebooks),

incorporating not only considerations of properties related to data and algorithms but also the

context relative to Takeaway
TW_11
11 and Takeaway

TW_12
12 (cf. section 6.3.3 and section 6.3.2).

Additionally when framing an ML problem data and business requirements wise in most cases
the framing is only partial as some insight remain unknown to the data scientist.

⇒ In this chapter we delve into handling partial knowledge of the problem through an ex-

tension of configurations management and incremental understanding of the ML problem through

iterative trial and errors and continous feedback relatively to Takeaway
TAW-PartialKnowledge
5 (cf. section 6.3.3). The

data scientists also require assistance in retreiving code artefacts to speed up their trial and error

1https://kaggle.com/
2https://colab.research.google.com/
3https://jupyter.org/
4https://aistudio.baidu.com/aistudio/index

6.2 – 6.2.1 Contextualized Solutions within the Overall Solution Space 65

Figure 6.1 provides a visual representation of our approach to tackling the challenge of navi-
gating a solution space within the context of an experiment. An experiment in this context encom-
passes a machine learning problem business requirements-wise, its associated data, and potential
solutions. Here are some definitions pertaining to the understanding of the figures.

Our solution space represents the entirety of machine learning workflow components,
encompassing both the previous ML workflows stored in our knowledge base and new possibili-
ties. Initially unconstrained, it constitutes the starting point for solution exploration.

Previous ML workflow solutions refers to the previous machine learning work-
flows that have been produced and retained within our knowledge base that we call ML workflows
product) (see section 6.3.2 for reference to ML workflows products).

ML artifacts code corresponds to the tangible implementations of ML artefacts com-
ponents (see section 6.3.2 for reference to ML artefacts).

Application description relates to the detailed representation of a specific problem
and its corresponding solution within a given application. This depiction encompasses criteria
including business requirements, data attributes, and the constituent machine learning artifacts of
the solution machine learning workflow we refer to it as Applications products in section 6.3.2.

AutoML depicted in the figure denotes the automated machine learning solutions contained in
our knowledge base.

The patterned cuboid within the diagram signifies a more constrained solution region, termed
the "contextualized solution space for experiments." This cuboid encapsu-
lates the set of feasible solutions that align with the specific requirements of the experiment.

Additionally,it’s worth noting that we’ve chosen to portray the solution space across three
fundamental dimensions: variations in machine learning models, methods for evaluating success,
and strategies for data preparation. Nevertheless, it’s worth considering that further dimensions
exist that could significantly enhance the precision of this visual depiction.

A notable aspect pertains to our use of the term "AutoML." As we want to clarify, our refer-
ence to "AutoML" is confined to specific AutoML tools that we’ve meticulously evaluated within
the bounds of our solution space. This demarcation is crucial to avoid any misconceptions, as the
broader notion of the general AutoML landscape extends beyond the scope of our focused con-
siderations. Therefore, we’ve positioned our interpretation of AutoML within the contours of our
solution space.

Our Solution Space evolves over time by adding new knowledge, such as new algorithms
or new composition rules and evaluation methods and other dimensions not depicted in the figure
that might be of importance, such as MLOPS considerations that we did not include in the versions
presented in this work.

The hatched boxes then represent solution spaces that are tailored for specific applications and
are encompassed within our overall solution space. We refer to these as contextualized solutions
because they also consider the business requirements. As discussed in section 2.6.2 of the state of
the art, AutoML tools serve as effective means to reduce the solution space based on problem data.
Hence, AutoML solutions for a given problem can be encompassed within our proposed solution
space. Conversely, there might be situations where no AutoML solution is well-suited for specific
applications.

Our contributions to this vision, focus on: 1) providing support to the data scientist in analyz-
ing their problem and generating an adapted ML workflow, 2) modeling the interactions between
the solution space and the addressed problems, considering business requirements, and 3) identi-
fying similarities with previous solutions and applications when encountering new problems.

70 CHAPTER 6 — Contextualizing ML variability modeling

istics of each space and elucidate the rules that regulate their interactions, both within and across
spaces.

Initial Data Feature Model This Feature Model (FM) represents the space of initial datasets,
specifically for time series data in our industrial partner’s domain. Certain properties, such as sam-
pling frequency, dimensionality, and stationarity, can be automatically extracted from the dataset.
However, other properties, such as handling missing values, require interacting with the business
expert.

Consequently, the data scientist configures this sub-model by combining automatic data anal-
ysis and manually selecting relevant properties.

Business Requirement Feature Model This FM captures various requirements related to mem-
ory usage, model embedding, and providing explanations. The data scientist manually configures
this sub-model by selecting the relevant requirements.

While the initial data space does not restrict other feature models, specificities regarding the
initial data, such as sampling rates, can be included in the business requirements. This dependency
is illustrated by arrow 1 in fig. 6.5.

ML Feature Model This FM captures the ML artifacts comprising an ML workflow, such as
algorithms, preprocessing techniques, evaluation methods, and workflow types. It is configured
by the data scientist based on their specific problem and preferences.

States Feature Model This FM represents the different stages through which data progresses,
with constraints reflecting the preconditions and impact of ML artifacts on each state. For example,
an algorithm may require the data to be in a scaled state without necessarily requiring that state
to be the initial one. The configurations of Initial Data FM and ML FM drive the configuration
of this FM. Introducing the intermediate States FM allows us to handle knowledge evolution and
to incorporate new algorithms without disrupting the constraints between states and ML artifacts.
This separation is crucial as new data preparation algorithms are discovered and as the strengths
and weaknesses of existing ones are revealed.

ML artifacts must satisfy preconditions and postconditions relevant to business requirements
and data characteristics. The goal is to narrow the solution space to ML artifacts that fulfill these
requirements, enabling the evolution of business requirements and solutions. The separation of
concerns in the ML FM and Business Requirements FM (shown in arrow 4 in fig. 6.5) facilitates
this management of evolution. Additionally, the state of the data depends not only on its initial
state (arrow 2) but also on its transformations and processing throughout the ML pipeline (arrow

3). The intermediate States FM plays a critical role in managing this variability and ensuring
the overall effectiveness of the ML solution.

6.3.2 Modeling Applications and Code Interactions for Efficient Solution Retrieval
ss_realizedProductVariabilityModel

We leverage the terminology introduced by Idowu et al. (Idowu, Struber, & Berger, 2021) to
present the assets that enable the retrieval of past applications and their associated ML workflow
code or generate new code for a new application. We conceptualize past applications and their as-
sociated ML workflow code as products within the Software Product Line framework, specifically

6.3 – 6.3.3 Formal definition of the interaction 71

the Applications products and ML Workflows products (see fig. 6.5). This structuring divides
the application space into two variability subspaces, facilitating the identification of past applica-
tions and the potential cloning of their associated code. Other variability characteristics, such as
datasets, application’s authors, and source scientific articles, are not depicted in fig. 6.5, although
they help select past applications. However, they are not decisive in establishing a correspondence
between the specifications of an expected solution and previous applications, which is the focus
of this chapter.

Source code and job assets are used to generate code corresponding to mappings between the
features of the ML Feature Model and these artifacts.

The constraints depicted by arrows 5, 6, 7, 8 support identifying applications and ML work-

flows based on Domain variability model configuration. Our objective is to simplify the identi-
fication and selection of past solutions that conform to the current configuration. However, the
absence of past applications should not restrict the exploration of alternative solutions. Hence,
the interactions between workflows and ML artifacts should only narrow the search space for ap-
plications based on the current specifications. The non-use of an algorithm in a workflow should
not eliminate it, as it can still serve as a valuable reference. Thus, we chose to represent only the
relationships with the ML artifacts used by workflows, excluding their non-use and eliminating
workflows that employ unsuitable algorithms (arrow 5).

An ML Workflow is associated with an application. One challenge is to accurately identify
the context of a workflow, not only based on keywords but through a combination of factors,
including data, business requirements, and the solution. It is important to identify situations where
a workflow still belongs to the space of possible solutions, even if the application was not tackled
in the same context. Therefore, we consider the workflow as an integral part of the application
(arrow 6), while arrows 7 and 8 depict the interactions with the initial data space and business
requirements, respectively.

All constraints that drive this interplay between the four FMs capturing domain variability are
provided by data scientists (indicated by white arrows in fig. 6.5). All other constraints from the
two FMs capturing previous applications’ variability are automatically generated (indicated by red
arrows in fig. 6.5).

In the next section, we exhibit our approach for modeling the interactions between applications
and code, intending to improve the efficiency of solution finding. Using the software product line
framework, we treated past applications and their associated ML workflow code as products within
the SPL. This structuring, combined with the representation of ML artifacts and workflow rela-
tionships, allows for the identification of relevant past applications and the exclusion of workflows
that use unsuitable algorithms.

6.3.3 Formal definition of the interactionss_formel

We provide here a formal explanation of how interactions with the realized product variability
model are defined.

Domain variability model Configurations are our primary tool for determining product appli-

cation context. Let JFMDK be the set of valid configurations of the domain variability model
FMD.
In line with the domain modeling, a configuration c is composed of four subsets:
∀c ∈ JFMK, c = initData(c) ∪ busReq(c) ∪ mlArt(c) ∪ states(c).

72 CHAPTER 6 — Contextualizing ML variability modeling

Partial configurations to specify ML problems As we work on product applications whose
context is partially known and the SPL evolves, some features about the initial data or business
requirements can be neither selected nor deselected, they are simply "unknown."
A set of features s in a configuration can then be defined as three subsets s = selected(s) ∪
deselected(s) ∪ undefined(s). The intersection is empty between these three subsets.

formalization

Experiments An Product application a is defined by a name na, the reference to a notebook
nba and a valid configuration ca, we note a = (na, nba, ca) where ca ∈ JFMDK
The subsets initData(ca) and busReq(ca) may contain undefined features. In contrast,
mlArt(c) ∪ states(c) is complete; all the features are selected or deselected.

Variability model of realized products The domain of realized products is defined by a set
of product applications, A. The constraint system uses the product application’s name and the
notebook’s name to select or deselect them, depending on the other features that characterize the
problem to be solved. The defined interactions are as follows.

∀ai ∈ A, ai = (nai
, nbai

, cai
),

(arrow 6) nai
⇒ nbai

,
(arrow 5) nbai

⇒ Λ selected(mlArt(cai
)),

(arrow 7) nai
⇒ Λ selected(initData(cai

)) ∪ deselected(initData(cai
)),

(arrow 8) nai
⇒ Λ selected(busReq(cai

)) ∪ deselected(busReq(cai
)).

The constraint corresponding to arrow 5 deselects a notebook when an artifact used by the
notebook can no longer be selected and, therefore, the product application associated with it (arrow
6). By restricting this constraint to the selected elements, it is possible to keep a notebook as an
aid to clone even though it lacks components. The constraint (arrow 6) separates the deselection of
the product application relative to the notebook from the deselection of the notebook. The two last
constraints establish the correspondence between the experiment, the specification of the business
requirements, and the initial data. Adding product applications builds all the above constraints
automatically.

6.4 Applications
sec_evaluation

6.4.1 Scenario 1: Retrieve and clone notebook
ss_scenario1

Objectives With this scenario, we want to illustrate how our approach differentiates itself from
current practices. To determine whether a solution to a similar problem already exists, the user
relies on her expert’s insight. Once the constraints are applied, suitable solutions are proposed,
enabling the user to choose an experiment or ML components.

Unfolding the scenario: Lea, a data scientist, is tasked with solving an anomaly detection prob-
lem on a dataset of motor vibrations. She must produce a solution that raises alarms when abnor-
mal patterns indicate a defect in the motor bearing:

Lea first configures the InitialData FM (cf. Figure 6.7a), specifying the data type is
TimeSeries, PartiallyLabelled, and not NormalizedData. The given specification

is sufficient to exclude Experiment XP1, which dealt with motor vibration but was performed on

6.4 – 6.4.2 Scenario 2: Generate a new notebook 73

unlabeled data. However, this finding does not contradict the associated notebook, which em-

ploys an algorithm capable of handling partially labeled data. The constraints represented by

arrow 8 in Figure 6.5 were applied. Lea selects in the BusinessRequirements FM (cf.
Figure 6.7b) NovelAnomaliesEmergeInProd and identifies the anomalies to be detected
as patternAnomaly. Based on the current state of the configuration, CNN and Resnet al-

gorithms cannot be selected anymore, as they are not suitable for handling new anomalies in

production (according to arrow 4 in Figure 6.5, i.e., constraints 6 and 7 in Figure 6.7e). At
this stage, several experiments are compatible with the current configuration. Lea then clones the
experiment XP2 to work with it. As a result, she has been able to retrieve several past experiments

and notebooks by giving the system her configuration. Thanks to the constraints model she has

been able to clone one that matches her problem.

6.4.2 Scenario 2: Generate a new notebook
ss_scenario3

Objectives With this scenario, we want to illustrate the correctness of the generative process,
from the proposed code artifacts to the generated notebook. In the case where none of the ex-
periments nor notebooks are reusable, we want to validate that our approach leverages constraint
system propagation to reduce the number of unsuitable component compositions.

Unfolding the scenario Lea is tasked with solving another anomaly detection problem. This
time she has to use a collection of inline process control measurements from various sensors
during the processing of silicon wafers for semiconductor fabrication. She must build a solution
that raises the alarm for faulty wafers.

Lea informs the data properties as being TimeSeries and
FullyLabelled. She also deselects NormalizedData as the data are not normalized. No

experiments are compatible with her data configuration. As Lea knows that no new anomalies
will arise during the production use, she then deselects NovelAnomaliesEmergeInProd in
the business requirements. Following a discussion with the expert, she is able to determine that the
series is irregular. Thus she checks globalAnomaly. The two still available notebooks do not

fully meet the new requirements. The tool suggests available algorithms that Lea can select. To
compare the two models, Lea generates two notebooks that share a MinMax scaling preprocessing,
one notebook featuring a CNN classifier and the other featuring a Resnet classifier. She chose

to conduct a generative process by picking machine learning components. Only configuration-

suitable features were provided to her. In order to test several classifiers, Lea had to generate as

many notebooks.

6.4.3 Industrial case studss_industrialUC

Our collaborative partner is a well-established data science SME with extensive experience iden-
tifying anomalies within clients’ time series. They rely on computational notebooks to perform
exploratory tasks such as data visualization, processing, and workflow building/testing. Using
their anomaly detection software, they build machine learning workflows for deployment in pro-
duction, which they refer to as Legacy Workflow Representations Products (LWRP). In this
section, we report on the application of our approach to switch the internal process of the com-
pany, from a keyword-based search inside the set of past experiments (LWRP) to a configuration
process.

76 CHAPTER 6 — Contextualizing ML variability modeling

of data properties that may change over time. For instance, converting data from time series to
a collection of spectrograms alters the data type to images, thereby enabling the utilization of
solution components that may have been restricted before.

We then limit the space of realized products to two experiments with their associated note-
books. XP1 is an experiment conducted on non-labeled and non-normalized time series data of
motor vibrations to detect acquisition errors in the data, specifically the occurrence of single-point
anomalies. The associated notebook includes a normalization algorithm (e.g.,MinMaxScaler)
and an LSTMAE-type neural network. However, due to the non-quantizable nature of LSTMAE,
this experiment cannot be embedded.

XP2, which refers to NB2, pertains to an experiment conducted on partially labeled and non-
normalized time series data of sounds to detect identifiable malfunction anomalies in motor sounds
with abnormal patterns (e.g.,patternAnomaly). The notebook associated with this experi-
ment employs a spectrogram calculation to transform data into the time-frequency domain, en-
abling better detection of anomalies via (e.g.,SFFT_createSpectrograms), normalization
via MinMaxScaler, and a CNNAE-type neural network. This model was not embedded in a
microcontroller.

6.4.3.1 Domain variability model

Through collaboration with our industrial partners, we have conducted the domain engineering
phase to gain a comprehensive understanding of the company’s knowledge. This phase involved
identifying the relevant criteria that data scientists consider in use case analysis, such as business
requirements and data properties, to ensure thorough tracing in the feature model.

We used 22 features on InitialData to characterize the experiments conducted within the
company. Of these, 16 are computed by the metadata computer, one is computed on-demand
(stationarity), and five are expert-generated questions. This clearly highlights the necessity of
working with partial configurations within this space.

We have also identified and characterized approximately 30 features associated with business
requirements. At the time of writing 61% of these features have been used, leaving several features
yet to be exploited. Notably, limitations in resources have not yet been factored into our analysis,
despite being a key goal of the company.

We also referenced in MLArtifacts submodel both algorithms from the literature and algo-
rithms proprietary to the enterprise.

Finally, we managed to define more than 20 states that reflect the state of the data at a particular
time.

The metrics in table 6.1 show the number of features for subdomains and the leafs coverage
rate (Theoretic selection rate) of the feature model This rate is the number of selected feature
leaves divided by the total number of feature leaves multiplied by 100. It represents the percentage
of features really used in configurations, showing here that our experiment actually acts upon a
relevant number of features.

6.4.3.2 Variability model of realized products and assets

We entirely followed the approach described in section 6.4 to define Experiment, Workflow
Products, and Legacy Workflow Representations Products (LWRP).

6.4 – 6.4.3 Industrial case stud 77

NF eatures Nleaf Coverage

InitialData 33 22 54%
BusinessRequirements 41 31 61%
ML artifacts 109 67 34%
States 35 21 -
Global∗ 249 160 37.04%

Table 6.1: Metrics on the industrial knowledge basetab_INDUSMETRICS

The implementation of the prototype was finalized enough so that LWRP can be created, saved,
modified, cloned, and deployed using the company software.

In our experimental work, we successfully extracted a range of products comprising 20 distinct
elements, including 7 intended for industrial use and 13 benchmark use cases. To enable practical
reusability, we developed 16 different workflows and accounted for 67 artifacts. In the context of
industrial application, we were able to retrieve solution products (equivalent to notebook products)
through the MLArtifacts within the LWRPs.

We also characterized and built solutions using the company anomaly detection software with
a pool of available ML artifacts to compose a workflow.

6.4.3.3 First results on the usefulness of configurations in determining workflow suitability

We aimed to validate the usefulness of configurations in determining the suitability of notebooks
and thus reduce the analysis space of workflows to be reused. To achieve this, we systematically
replayed configurations on the 20 available experiments, firstly by configuring the properties of the
initial data, secondly by configuring the business requirements, and finally, by configuring both.

XP #id Initial Data Business Requirements Both
1 20 19 4
2 19 20 3
3 20 20 3
4 20 20 2
5 20 20 2
6 20 20 5
7 20 20 2
8 20 20 3
9 19 19 2
10 19 20 5
11 20 20 3
12 20 20 5
13 20 20 4
14 20 20 2
15 20 19 2
16 20 20 5
17 20 20 3
18 16 20 2
19 16 20 5
20 20 20 2

Table 6.2: Number of notebooks after configurationtab_indus_val

78 CHAPTER 6 — Contextualizing ML variability modeling

The results presented in table 6.2 7 show that configuring the subspaces separately only leads
to a minor reduction in the size of the resulting product space, with the maximum reduction being
4 products in the case of the configuration of data properties of experiment number 18. In contrast,
configuring both subspaces together significantly reduces the product space by ignoring up to 18
products in 8 experiments and a minimum of 15 products in 4 experiments. These initial results are
encouraging and confirm that solely considering the data is insufficient to determine the optimal
solution for a machine learning problem. It is also necessary to consider the business requirements
and their interactions with the data. Still, further investigation is required to demonstrate that the
generative process can effectively assist users in addressing new problems.

6.5 Conclusion

In this chapter, we proposed a first tooled approach to tackle the problem of diversity machine
learning workflows. To help data scientists tailor a workflow to their own problem, our approach
uses several variability models coupled with a constraint system. This allows the user to get
feedback according to the data and business requirements of the new problem. The presented
scenarios in the Application section demonstrated that the user can retrieve past experiments based
on problem configuration, or can totally tailor a new one. These scenarios illustrate the potential of
the proposed solution. Furthermore, we believe that our findings will be soon applicable to various
machine learning subdomains within the constricted application of the company, considering a
broader evolving domain modeling through incremental acquisition of knowledge.

Contribution 2. Developing the model of separation of concerns between the steps to develop a

contextualized machine learning workflow by highlighting the importance of the characterization

of the related ml problems with the data and the business requirements and guiding the data

scientist through formalized human insights/knowledge/practices.

7The table shows the count of remaining notebooks or LWR instances after configuration with respect to initial data,
business requirements, or both. The initial number of notebooks and LWR instances is 20.

CHAPTER 7
Accommodating the

incremental acquisition
of knowledg

chap_splevol

7.1 Introduction . 81

7.2 Identifying evolution smells to uncover implicit knowledge . . . 82

7.2.1 Formalization . 83

7.2.2 Pattern detections . 85

7.2.3 Limitations and Future Directions 85

7.3 Knowledge assessment metrics 86

7.3.1 Domain-Level Feature Model Metrics 86

7.3.2 Evaluating Feature Model through the Lens of Produced
Products . 86

7.3.2.1 Feature-level metrics 86

7.3.2.2 Feature Model Level Metrics 87

7.3.3 Limitations and Future Directions 88

7.4 Evolving Configurations to Align with Feature Model Evolution 88

7.4.1 Application-preserving refactoring against practice evolutio 88

7.4.2 Enhancing Knowledge Through the Integration of New Ap-
plication . 89

7.4.3 Limits and Future Directions 89

7.5 Applications . 90

7.5.1 First three steps of the SPL construction process 90

7.5.2 Knowledge extraction driven by SPL assessment 91

7.5.3 Knowledge extraction driven by SPL evolution assessment . 92

7.5.3.1 Pattern evolution and knowledge consolidation . . 92

7.5.3.2 Pattern evolution and knowledge extraction 93

7.5.4 Exploiting the metrics . 93

7.6 Conclusion . 94

79

7.1 – Introduction 81

7.1 Introduction

As presented in the previous chapter, the SPL we designed establishes a set of well-defined ML
practices with both shared aspects and varying elements modeling variability. Each product is
identified through a combination of features, possibly not valued (i.e., a configuration), resulting
in an Application product, encompassing an ML workflow along with its performance,
evaluation strategy, authors, initial data properties, and business requirements. The format of
the ML workflows products associated with the Applications products contains ranges of
products, from notebooks to references of runs in OpenML or references to solutions developed
by our partner company, EZAKO. The principle is simple: Each product’s configuration is valid if
it adheres to the SPL’s rules, and invalid if not.

As we have already seen, this product base is used to help identify ready-made solutions.
In this chapter, we confront these solutions with the evolution of knowledge in ML and use it
to extract new knowledge. Indeed, as stated in Takeaway

TW_14
14, the design of machine learning

workflows is prone to evolution as our understanding of the relationships among artifacts evolves
to design more sound workflows. Moreover, we cannot accurately forecast how features and
rules will transform in the steps ahead due to the unpredictable nature of identifying anomalies
in time-based data and the necessity to stay current in a swiftly evolving domain. We must
remain adaptable to incorporate new insights derived from real-world experience. Hence, we have
designed an approach to streamline configuration adjustments and evaluate the ongoing validity of
available configurations from past scenarios. These evolutions translate into adapting the feature
model or including fresh features to enable configurations that were not initially feasible or valid.
In our field of study, these enrichments are frequent and can even introduce contradictions relative
to past configurations.

To address these evolutions while preserving, or even taking advantage of, the richness
provided by past products, we have deliberately adopted a series of strategies described in this
chapter. Given their particularity, we have chosen to deepen the perspectives of each of these
strategies in this chapter, choosing not to summarize them in the conclusion.

In line with detecting patterns of evolution of Feature models stated by Takeaway
TW_15
15, we are

interested in identifying configuration patterns dedicated to the ML domain using the modularity
brought by our separation into subdomains and their evolutions, such as similar problems with
different solutions or the same solutions for different problems (cf.

s_patterns
7.2).

As highlighted in Takeaway
TW_16
16, the ability to analyze and measure the knowledge state within

the product line is essential. In this chapter, we introduce metrics that enable us to monitor the
evolution of our product line and extract new insights from it (cf.

s_Metrics
7.3). We particularly leverage

the set of product configurations for this purpose.
To maintain the richness of our products, we have devised a process to align product configu-

rations (cf.
s_alignment
7.4), specifically tailored for ML applications and leveraging the modularity discussed

in Chapter 6. These configuration updates also serve as a source of information regarding the
knowledge encapsulated within the product line.

We built the line itself following these different principles. We thus explain their applica-
tions (cf.

s_Enrichment
7.5) before concluding. We’ve devised tools to validate the complete process, en-

compassing (i) configuration and retrieval of previous Applications products and ML

workflows products (configurator), (ii) ML workflow generation (generator), (iii) incor-

82 CHAPTER 7 — Accommodating the incremental acquisition of knowledg

poration of Applications products and ML workflow products into the SPL (inte-
grator), (iv) reconfiguration of past setups (re-configurator), and (v) assessment of the knowledge
within the SPL regarding recorded Applications products (analyzer).

Consequently, this chapter is structured as follows: firstly, we explain how we formalize equiv-
alence classes of configurations to detect three bad smells (cf.

s_patterns
7.2); secondly, we introduce metrics

for assessing the evolution of knowledge (cf.
s_Metrics
7.3); thirdly, we outline our approach for aligning

previous configurations with updated knowledge (cf.
s_alignment
7.4); and finally, we demonstrate our sys-

tem’s functionality by showcasing three major stages of the line’s evolution, each contributing to
the enrichment of knowledge (cf..

s_Enrichment
7.5). Through this application, we provide insights into the

operation of our system.

7.2 Identifying evolution smells to uncover implicit knowledges_patterns

Similar to Tornhill (Tornhill, 2015), we seek to identify "hot spots" to narrow our study of
Applications products to a few critical cues most likely to guide us in extracting new
knowledge. To achieve this objective, we seek to establish a link between the problem de-
scription based on data and the business requirements relating to the solution. We assume a
direct relationship exists between problem characteristics (Initial data and Business

requirements) and corresponding solutions (ML artefacts) in the context of generating
ML workflow products for a given machine learning use case or application. This assumption
allows us to detect different situations. (i) One of the solutions is not adapted to the problem, and
in this case, in retrospect, the data scientist should not have used it. We must enrich the feature
model to prohibit it. (ii) The two problems are different, but we had not yet identified these dis-
criminative criteria in the feature model; we must enrich the feature model with these new criteria.
To identify these different situations more precisely, we look for different patterns.

P1: Two problems evaluated as equivalent have a different solution. Characterizing this pat-
tern allows us to detect different situations. (i) One of the solutions is not adapted to the problem,
and in this case, in retrospect, the data scientist should not have used it. We must enrich the fea-
ture model to prohibit it. (ii) The two problems are different, but we still need to identify these
discriminative criteria in the feature model; thus, we must enrich it with these new criteria. Be-
cause configurations only partially characterize the problems and involve undetermined criteria,
we expand our identification process from equivalent problems to unifiable problems.

P2: Two unifiable problems have different solutions. In other words, given the partial infor-
mation available on the problem, if compatible criteria characterize two problems, it may be the
same situation as in the previous case. However, the absence of information may have led the data
scientist to design a solution that adapts to the missing information, for example, the absence of
information on the types of anomalies, which is also information.

P3: Two solutions evaluated as equivalent solve two non-equivalent problems. This scenario,
where several problems have the same solution, can lead to identifying the insensitivity of the
solution to specific characteristics. In such cases, certain criteria may be identified as unnecessary
or too detailed to discriminate. When problems are unifiable, this issue is considered a weaker
warning than when two non-equivalent problems yield the same solution.

To further clarify these patterns, we specify the notions of equivalence classes and their unifi-

ability.

7.2 – 7.2.1 Formalization 83

7.2.1 Formalization

To illustrate the following definitions, we use the feature model presented in Figure
fig_FMMetrics
7.1 and the

configurations described in Table
tab_config4metrics
7.1.

Let a feature model FM and A a set of valid partial configurations of FM , A ⊆ JFMK.

In order to detect the patterns introduced previously, we now define the notion of equivalence
classes on a subset of features. We will then apply it to subdomains.

Equivalence class of configurations on a subset of features An equivalence class [c] of config-
urations defined on a subset of features F corresponds to the set of valid configurations (ci ∈ A)
which share the same selection states for the features of the subset F , i.e., each feature fi ∈ F

must be selected, deselected, or left undefined in all configurations c1, ..., ck in the equivalence
class [c].

Définition 7.2.1 (Equivalence Class on A according to a subset of features of FM). An equiva-
lence class [c] on a subset of features F of FM is defined as a set of valid configurations in A,
such as [c] = {c1, ...ck}, ci ∈ A,
∀fi ∈ F, fi ∈ ∩k

1
selected(cj)

⎷
∩k

1
deselected(cj)

⎷
∩k

1
undefined(cj).

Table
tab_classesOnExample
7.2 shows the identified equivalence classes on different subtrees. Two equivalence

classes are identified on the InitialData subtree.
[CDS1]={app1, app2, app4}. CDS1 can also be noted: {(d1, s), (d2, u), (d3, u)}.
[CDS2]={app3}, CDS1: {(d1, s), (d2, s), (d3, u)}

To identify patterns P1, P2, and P3, we now characterize the equivalence classes on the reduced
space of problems (initial data and Business Requirements) and solutions.

Définition 7.2.2 (Problem equivalence classes). Problem equivalence classes are defined on the
sub-features of InitialData and BusinessRequirements.

For example, in table
tab_classesOnExample
7.2, [CP1]={app1, app2, app4} corresponds to the following feature

configurations CP1{(d1, s), (d2, u), (d3, u), (p1, d), (p2, s), (p3, u), (p4, s)}

Définition 7.2.3 (Solution equivalence classes). Solution equivalence classes are defined on the
sub-features of ML artefacts.

Configuration equivalence Two different configurations are equivalent in FM if they are mem-
bers of the same Problem and Solution equivalence classes. In our example, app1 and app2 are
equivalent.

Unifiable classes Two different equivalence classes [c1] and [c2], defined on the same set of
features F , are considered unifiable if the differences in feature assignment only involve non-
selected features.

7.3 – 7.2.2 Pattern detections 85

Table 7.3: Pattern detection.
tab_patternsOnExample

App Name P1 P2 P3weak

app1 {app4} {app3} {app3}
app2 {app4} [] {app3}
app4 {app1,app2} {app3} {}
app3 {} {app4} {app1, app2}

While app4 handles the same equivalence class of problem as app1, it proposes another solution, P1 is
detected.

CP1 and CP2 are unifiable. app3 and app4 do not belong to the same equivalence class of solution, P2 is
detected.

app3, app1, and app2 define the same equivalent solution but address different unifiable problems; P3 is
weakly detected.

7.2.2 Pattern detections

P1 detection For any ci and cj in the equivalence class of problems [cp], if they do not belong
to the same equivalence class of solutions, we have detected the P1 pattern.

In the example presented in table
tab_patternsOnExample
7.3, we observe the detection of pattern P1 between app4

and the applications app1 and app2; they all belong to the same problem equivalence class, CP1
but app4 does not belong to the CS1 equivalence class of solutions.

P2 detection For any ci and cj in two different equivalence classes of problems [cpi] and [cpj],
but [cpi] and [cpj] are unifiable, if ci and cj do not belong to the same equivalence class of solu-
tions, we have detected the P2 pattern.

In the example presented in table
tab_patternsOnExample
7.3, we observe the detection of pattern P2 between app3

and the application app4; they belong to two unifiable problem equivalence class, CP1 and CP2
but app4 and app3 belong to two different equivalence classes of solutions.

P3 detection For any ci and cj in the equivalence class of solution [cs], if they do not belong to
the same equivalence class of problems, we have detected the P3 pattern. However, if the classes
of problems are unifiable, P3 is weakly detected.

In the example presented in table
tab_patternsOnExample
7.3, we observe the detection of pattern P3 between app3

and the applications app1 and app2; they belong to the same solution equivalence class, CS1,
but they belong to different but unifiable problem equivalence classes.

7.2.3 Limitations and Future Directions

In this section, we focused on identifying equivalence classes based on features. Moving forward,
we aim to refine this approach to a higher level of abstraction to uncover workflow patterns. For
example, we seek to investigate whether all solutions within a problem family belong to the same
workflow family, as tools driven by business domains such as the one Azure and IBM propose.
The number of applications in an industrial context is low, with each development corresponding
to at least six months of work. Consequently, we were able to handle the identified patterns. As
we will see in the application section, they have indeed facilitated the detection of new insights,
particularly by tracing the evolution in detecting the patterns themselves.

86 CHAPTER 7 — Accommodating the incremental acquisition of knowledg

Table 7.4: Metrics related to the FM in fig.
fig_FMMetrics
7.1 and its configurations (tab.

tab_config4metrics
7.1)

tab_classesMetrics
NoF 20 NoAP 4
Nleaf 12 Cov 66%
NoC 2 NoEC 3
CTCR 20% Com 37,5%

NoF : number of features / NoAP : number of applications products/ Nleaf : number of
leafs / Cov : feature model coverage rate / NoC : number of cross constraints / NoEC :
number of equivalence classes / CTCR : cross tree constraints rate / Com : commonalities
rate

7.3 Knowledge assessment metrics
s_Metrics

We selected some standard metrics (El-Sharkawy, Yamagishi-Eichler, & Schmid, 2019b) to assess
the state of the feature model and, by comparison, its evolution.

7.3.1 Domain-Level Feature Model Metrics

The number of features (NoF) and the number of features without children (Nleaf) are classic
metrics for assessing the scale of an SPL. Our objective is to analyze the state of the line and its
evolution in the different subdomains identified in the previous chapter. We, therefore, analyze
these metrics in the different spaces. In our example in Figure

fig_FMMetrics
7.1, the number of leaves is twelve,

which is four in the ML artefact subtree (Solution Space).
The evolution of the number of cross-constraints (NoC), together with the tree-cross-

constraint ratio (CTCR)1, gives a numerical indication of the identified interactions. In our exam-
ple, four features are involved in constraints, so the CTCR is 20%. Given the partial knowledge
of the domain, the theoretical number of possible configurations is not computable and does not
offer meaningful insights in our context. Some valid configurations may not correspond to suitable
solutions.

Furthermore, this partial knowledge of the domain combined with the very high cost of ML
workflow evaluations does not make it possible to test the SPL by generating examples unless
it consumes many resources without any assurance of a real gain.

On the other hand, we now propose to evaluate the feature model FM according to the set
of valid configurations A ⊆ JFMK which correspond to the Applications products inte-
grated into the SPL.

7.3.2 Evaluating Feature Model through the Lens of Produced Products

7.3.2.1 Feature-level metrics

To understand the usage of the feature model, we now introduce various metrics on features.

1Number of distinct features involved in cross-tree constraints and divides them through the total number of features
in the feature model

7.3 – 7.3.2 Evaluating Feature Model through the Lens of Produced Products 87

The commonality (Com(f)) indicates the selection ratio (manual or automatic) of a fea-
ture f in A. This ratio identifies the "unused variability" smell (i.e., feature always selected,
e.g.,Com(b1) = 1)(Apel, Batory, Kästner, & Saake, 2016).

The rate of deselection (Des(f) identifies the "unused feature" smell (i.e., feature always des-
elected, e.g.,Com(b2) = 0, Des(b2) = 1)(Apel et al., 2016).

The rate of undefined occurrences (Und(f)) identifies an obscure feature that is not well re-
lated to the scope of the SPL (e.g.,Und(d3) = 1, Des(d3) = 0, Com(d3) = 0).

We globalize these metrics to all feature model leaves, which, in our case study, characterize
practices.

7.3.2.2 Feature Model Level Metrics

Feature Model Coverage (Cov) measures (in percentage) the degree of leaf selections in a set
of configurations A. Feature model coverage rate = number of feature leaves selected in A/number

of feature leaves * 100.
In our example, eight leaves are selected at least once, Cov = 66%. For the Solution subtree,

as three leaves were chosen at least one time, CovSolution = 75%
Feature Model Coverage does not correspond to t-wise coverage (Henard et al., 2014). Unlike

the latter, it only provides a measure of the feature selection rate in a given set of configurations; it
does not allow for assessing the coverage of feature interactions. Nevertheless, it has the advantage
of not requiring to compute the number of possible configurations.

The Feature Model Commonality Rate (Com) measures (in percentage) the selection ratio of
leaf selections in A.
Feature model Commonality Rate = number of selection of feature leaves in A / number of feature

leaves * #A * 100, where #A denotes the cardinality of the set A. Intuitively, the confidence in
the feature model suggestions is proportional to its commonality rate.

In our example, 18 selections of leaves for 4 configurations and 12 leaves, Com = 37, 5%.
ComSolution = 50%

The number of equivalence classes (NoEC) complements the analysis of the use of the feature
model. Indeed, the fewer equivalence classes there are, the lower the variability used in the feature
model. By performing this analysis by subdomain, we characterize the coverage of subdomains
by applications.

Feature Model Automation Rate The automatic feature selection rate (AutR) is used to eval-
uate the help provided by the line. In our example, 6 leaves were automatically selected/deselected
(2 in Initial Data space), AutR = 50%, AutRInitialData = 66, 7%
Feature model automation rate = number of feature leaves automatically selected/deselected in

configurations/number of feature leaves * 100.

88 CHAPTER 7 — Accommodating the incremental acquisition of knowledg

In the solution space, the higher the leaf selection/deselection rate, the more the line helps in
solution construction.

7.3.3 Limitations and Future Directions

These various metrics assess the state of the product line at a given time and its evolution by
comparing the changes in these metrics. To more accurately evaluate the validity of these metrics,
it is necessary to assess their evolution over time, which we will do in the application section
within the context of our product line. Applying these metrics to other product lines remains an
interesting subject for further study.

7.4 Evolving Configurations to Align with Feature Model Evolutions_alignment

The product line evolves through various means, including modifications to the Feature Model
and constraints among features, particularly following the analysis of detected patterns (cf.

ss_preserving
7.4.1).

The construction of new applications classically also contributes to the evolution of the product
line, for example, by adding algorithms.

However, in our specific context, it is essential to verify and align the configurations of past
applications with the new version of the feature model. Indeed, these configurations are used, on
the one hand, for detecting patterns, analyzing the line by the metrics, and, of course, as we saw
in Chapter 6, to help data scientists find past applications.

In this section, we present the mechanism for aligning the configurations according to the evo-
lutions of the feature model(cf.

ss_preserving
7.4.1); then, we show how the aligned configurations are imported

into the product line to be accessible through the configurator (cf.
ss_exposingApplications
7.4.2).

7.4.1 Application-preserving refactoring against practice evolutioss_preserving

Evolutions of the feature model may lead to past Applications products (i.e., their related
configurations) being detected as conflicting with the current feature model (Apel et al., 2016). To
promote a safe evolution, a reconfiguration step is performed on all past configurations. For now,
reconfiguring a cs configuration into a ct configuration with respect to a new feature model FM

consists in
(i) renaming in ct some of the features of cs,
(ii) omitting the features that disappeared in FM with a warning if they were selected or deselected
in cs,
(iii) adding in ct the new features of FM whose value is known,
(iv) copying in ct the other features, then
(v) replaying ct in FM to obtain a new valid configuration or to raise an error in the contrary
situation.

Replaying a configuration entails re-evaluating all manually selected or deselected features,
starting with the features related to the initial data2 then the business requirements, and finally, the

2The automated data analysis process prepares configurations for the initial data part, pre-selects or deselects fea-
tures, and marks them as manually selected. We deliberately avoid replaying this resource-intensive step unless the data
analysis component evolves and the extracted information is necessary for the evolution of the product line. This also
raises concerns about data access, which could potentially be problematic.

7.4 – 7.4.2 Enhancing Knowledge Through the Integration of New Application 89

solution. We consider a conflict to arise in this step only if features can no longer be selected or
deselected according to the original configuration due to the imposition of new constraints in the
feature model. However, we do not raise a warning if features were automatically selected/des-
elected. Then, in the same order (initial data set), if features that were previously automatically
selected or deselected are not so anymore, we select them manually and note this as a "man-
ual" selection/deselection. At the end of this process, if no conflicts are detected, we analyze the
configuration to identify previously unvalued features (either because they were non-existent or
unknown) to indicate those that have been automatically valued.

If past configurations cannot be rendered valid in FM , we exclude them with a warning. The
new valid configurations related to Applications products can then be integrated into the
FM .

For example, if we add the constraint ¬b1 ∨ ¬d2 in FM of Figure
fig_FMMetrics
7.1, the configuration corre-

sponding to app3 is not valid anymore, while all the other configurations are automatically updated
with (d2, ad).

7.4.2 Enhancing Knowledge Through the Integration of New Applicationss_exposingApplications

Integrating in the feature model an Application product named app on a dataset named
d and defined by a valid configuration c consists in adding, in the Applications product

branch of the feature model, the features d and app if they are not already there. Then, the mini-
mal constraints3 linking d to the selected and deselected features of the initialData space are
added starting from the manually selected and unselected leaves. The constraint app ⇒ d is then
added. We then proceed in the same way to link app to the rest of the feature model, starting with
the problem space. When the dataset d is already present in the feature model, there should be no
contradiction with its constraints. However, they can be completed when the same dataset is used
in other applications. for example, the data scientist John enters a new application on dataset 2
defined on app3, whereas when he entered the data set description he was able to manually inform
the criteria d3 previously unknown by manually selecting it, this operation updates dataset 2 and
therefore updates the ds2 equivalence class at the same time as the dataset is shared by both ap-
plications. He kept informing the rest of the problem and the solution he used resulting in app5
being defined by the following configuration
{(d1, ms), (d2, as), (d3, ms), (p1, ms), (p2, ad), (a1, ms), (b1, md), (b2, ms), ...} then he adds
the feature app5 in the branch Applications and the following constraints: ds2 ⇒
d3, app5 ⇒ ds2, app5 ⇒ p1, app5 ⇒ b2 ∧ ¬b1 ∧ a1, app5 ⇒ John This application addi-
tion also introduced a new class of problem and solution, enriching our knowledge while raising
the identification of a P2-type problem.

7.4.3 Limits and Future Directions

The alignment processes have been implemented and utilized in the construction of the SPL. These
different steps are described in the following section. While conflict detection during alignment is
operational, it remains challenging to interpret when the number of features is large, and the FM
modifications are numerous. Dedicated visualizations should be explored to facilitate this crucial
and time-consuming analysis. Nevertheless, it is worth noting that if we consider this alignment
step for all past configurations as regression tests, we have never detected any regressions at this

3features automatically selected or deselected during the configuration are not involved in new constraints

7.5 – 7.5.2 Knowledge extraction driven by SPL assessment 91

(FMT 0 → FMT 1) by including company-specific solution components, new initial dataset prop-
erties relevant to analyzing customer datasets, and new features necessary to describe the cus-
tomer business requirements. Then we collect Applications products conducted by the
company’s data scientists, keeping only the solutions from deployed workflows and solving cus-
tomers’ anomaly detection problems. We have thus selected six workflows whose resulting prod-
uct models are in production. The construction of these workflows can take several months for the
data scientists. We have generated partial configurations containing information about the dataset
and solution based on automatic solution extraction and data analysis tools. We used these par-
tial configurations to initialize the configurator. We then completed the source data and business
requirements parts via a discussion with the Application product authors.

Consolidation by extraction of OpenML workflow At T 2, we extract some practices from thess_OpenML

OpenML platform. OpenML is an automated machine learning environment (Vanschoren et al.,
2013), from which ML practices can be downloaded and uploaded i.e., solutions (runs and flows in
OpenML) to a given problem (task and dataset in OpenML). The interest in exploiting OpenML’s
practices is to analyze the impact of upgrading the SPL with external sources. In OpenML, we
selected time-series datasets and associated tasks of type Supervised Learning and Unsupervised

learning since anomaly detection is supervised or unsupervised learning with unbalanced classes.
We only had four datasets that matched these criteria. We kept 4 tasks of Supervised learning

that had runs associated with them. Among these runs, we selected only the best runs on F1-score
evaluation criterion as evaluations on other measures such as user CPU-time were not available for
these runs. We preferred the runs using the scikitlearn library when we had the choice. We then
extracted the associated flows and generated the associated partial configurations for each run. We
had already studied in T 0 the meta-features proposed by OpenML to characterize datasets, so we
only updated the feature model(FMT 1 → FMT 2) by adding new solution components.

7.5.2 Knowledge extraction driven by SPL assessmentkextraction

We explain in the following subsections how we exploit pattern and metric analysis in our use
case.

Two different solutions for the same problem: Algorithms side effects At T 0, we encoun-
tered the following scenario. For two equivalent problems, the solutions used two different scaling
techniques in each workflow, min-max scaler and robust scaler (Patro & Sahu, 2015). This equiv-
alence of problems and not solutions raised a P1 warning. We analyzed workflows for both exper-
iments and observed that the robust scaler results were equivalent to the min-max scaler results for
the second workflow due to the data properties. In this scenario, we could confirm that the robust
scaler’s main particularity was not required5. Therefore, only the first application with min-max
scaler was kept. We added a constraint to the selection of this algorithm to prevent the error from
being repeated. i.e., data without outliers will no anymore be scaled with a robust scaler.

Two different solutions for the same problem: Data Scientist preferences impact The data
scientist’s preferences bias her choice of the solution components. At T 1, we identified two appli-
cations that presented different solutions to equivalent problems (P1). The two authors could not

5Usage of the robust scaler is interesting only if outliers are within the values of the time series

92 CHAPTER 7 — Accommodating the incremental acquisition of knowledg

justify the difference in the choice of Solution components other than by their expertise in selected
algorithms. Therefore, we have kept these two applications distinguishable by their author, with a
warning for possible future treatment.

Two problems same solution: Factorizing unnecessary variability At T 0, two problems dif-
fer only in acquisition sampling; data acquisition sampling is in seconds for one and in microsec-
onds for the second. Otherwise, the data are similar, and the anomaly detection requirements are
equivalent. After detecting this pattern (P3), we checked the impact of acquisition sampling on
the algorithms and factorized all four regular sampling features into regularSampling for the
SPL at T 1.

As indicated in this section, the analyses carried out at this stage provide valuable informa-
tion but do not remove all bad smells. We propose conducting additional analyses that consider
temporal developments and changes over time to improve this analysis.

Table 7.5: Metrics Evolution in times and spaces
tab_SPL3StepsMETRICS

Time steps sub spaces NoF Nleaf Cov Com NoEC NoAP NoC CTCR

T 0

InitialData 23 16 37% 19% 5 - - -
BusinessRequirements 33 24 41% 21,25 % 7 - - -
ML artifacts 51 25 52% 16.8 % 7 - - -
Global∗ 156 96 35,04 % 14,68 % 10 10 25 21,19%

T 1

InitialData 28 19 42,10 % 18,94 % 9 - - -
BusinessRequirements 43 33 54,55 % 17 % 13 - - -
ML artifacts 67 37 48,64 % 8,64 % 11 - - -
Global∗ 194 124 40,32 % 10,86 % 14 15 31 21,76%

T 2

InitialData 28 19 57,9 % 18,00 % 14 - - -
BusinessRequirements 43 33 57,6 % 17,24 % 17 - - -
ML artifacts 74 42 57,14 % 7,89 % 15 - - -
Global∗ 203 131 47,32 % 10,41 % 18 19 32 21,78%

∗The difference between the global figures and the figures of the 3 spaces corresponds to the branches
Sources and states.
The feature model hierarchy is six levels deep for the Solution branch, and four for the InitialData
and BusinessRequirements branches.

7.5.3 Knowledge extraction driven by SPL evolution assessment
evolution

We also exploited the analysis of the evolution of patterns and metrics as another source of infor-
mation.

7.5.3.1 Pattern evolution and knowledge consolidation

At T0, we detected P1 pattern on two applications. While they belong to the same class of problem,
they are solved by two different clustering models6, kmeans (Huang et al., 2016) on the one hand
and Dbscan (Schubert, Sander, Ester, Kriegel, & Xu, 2017) on the other. At T0, we did not know
which to delete; we kept both configurations.

6Solution workflows vary according to machine learning algorithms

7.5 – 7.5.4 Exploiting the metrics 93

At T1, we reconfigured the configurations to align with the new feature model, which now in-
corporates features detailing business expert insights into possible outliers in the data7. The feature
model also includes associated constraints expressing compatibility between solution components
and these new features.

The configuration alignment made it possible to distinguish the two problems and the adequacy
of the two different solutions.

7.5.3.2 Pattern evolution and knowledge extraction

At T0, we detected P1 pattern on two applications. While they belong to the same class of problem,
one α includes a dimension reduction process through PCA (Abdi & Williams, 2010) while the
other β skips this step. Like in the previous example, we kept both configurations.

At T1, we extended the InitialData space with features to explicit time series dimension-
alities and automated their evaluation by dataset analysis. The reconfiguration step indicated that
the time series were multivariate in α. In contrast, β’s time series were uni-variate (Aboagye-Sarfo
et al., 2015). This unique change in configuration highlighted the link between PCA and time

series dimensionalities; we added this constraint in the feature model.

7.5.4 Exploiting the metrics

The metrics defined in section
s_Metrics
7.3 help us assess the evolution of the practices in each space.

InitialData The coverage rate (Cov) increased from T 0 to T 1, while the number of features
(NoF) also increased. This increase indicates that the industrial Applications products

cover different data set properties from the first Applications products on benchmark
datasets. Between T 1 and T 2 the coverage increased while the number of features did not change.
New Applications products did involve new features of the InitialData.

We rely on commonality analysis to better understand the variations between industrial and
benchmark datasets. This rate made it possible to identify at T 0 that the features relating to
Missingvalues were always deselected; All datasets had no missing values of any type. We
knew we had to cover this situation. At T 1 MCARMV8, and StructuralMV9 features had a
com(f) > 1, which means that the new datasets were exhibiting these two types of missing
values. Similarly, we identify irregular sampling time series emergence at T 1.

BusinessRequirements Within this feature space, we sought to identify the questions ex-
perts answered the least. These questions may need rephrasing. The principle is then to identify
the most undefined features of the penultimate level. We have not yet met such a case, which the
data scientists confirmed.

The coverage and commonality analysis highlights the requirements of industrial
Applications products for memory, CPU, or energy consumption optimization. The
features representing these hardware constraints are either undefined or deselected at T 0 and T 2.
They are selected at T 1 only.

7The data scientists can decide whether outliers are anomalies in the context of the experiment
8Missing value completely at random
9Missing values of structural nature

94 CHAPTER 7 — Accommodating the incremental acquisition of knowledg

ML artifacts The coverage rate decreases at step T 1 and increases at T 2, while the num-
ber of features increases strictly. The evolution of these two metrics indicates: (i) on the one
hand, that industrial Applications products use new solution components; (ii) and on the
other hand, that the Applications products we integrated at T 2 consolidate our SPL by
reusing existing solution components. The commonality rate decreases to reach 7.89%. However,
a detailed analysis of the number of selections by feature indicates that some algorithms are used
in several solutions while others are never used. For instance, we observe that each of LSTMAE
(LSTM Auto-encoder) and MAE (mean absolute error) have been used 5 times out
of 19, while padding, FrontFill and others have not been used. Therefore, correlated with
broader coverage of problem space, this metric should help identify some of the preferences of
data scientists and maybe some bias. Indeed, it is natural to think that data scientists generally rely
on the algorithms they are comfortable with, sometimes maybe at the expense of the solution.

7.6 Conclusion

In this chapter, we have proposed a practice-driven approach to building an SPL as a first step
toward allowing the design of generic solutions to detect anomalies in time series while capturing
new knowledge and capitalizing on the existing one.

The incrementality in the acquisition of knowledge and the instability of the domain (Niehaus
et al., 2005) everything changes ... in an unpredictable way are supported by the SPL through its
structuring and the exploitation of partial configurations associated with past Applications
products. As far as we know, this is the first case of application of the SPL paradigm in such
a context and with a knowledge acquisition objective. By capturing practices in partial configu-
rations, we obtain the abstractions to reason about datasets, solutions, and business requirements.
The SPL is then used to produce new solutions, compare them to past solutions, and identify
knowledge that was not explicit. The growing abstraction supported by the SPL also brings other
benefits. In knowledge sharing, we have observed a shift in the approach to creating ML work-
flows, focusing on analyzing problems before looking for similar applications, especially in choos-
ing evaluation metrics. It is rather difficult for data scientists to explain the precise reasons for their
choice. Focusing only on particular cases identified as patterns makes the relevant criteria explicit.

Contribution 3. Accommodating the evolution of machine learning effective knowledge and as-

sessing it through SPL’s mechanisms and metrics. Plus, the detection of incoherence between

experiments in order to further analyze it and pinpoint where actions should be taken.

Conclusion & perspectives

CHAPTER 8
Conclusion and

Perspectives
8.1 Conclusion

When data scientists need to create machine learning workflows to solve a problem, they first un-
derstand the business needs, analyze the data, and then experiment to find a solution. They judge
the success of each attempt using metrics like accuracy, recall, and F-score. If these metrics meet
expectations on the test data, it’s a success; otherwise, it’s considered a failure. However, they
often don’t pinpoint why a workflow fails before trying a new one. This trial-and-error process
can involve many attempts because it’s not guided and relies on the preferences and knowledge
of the data scientist. This intuitive method leads to varying trial counts among data scientists.
Also, evaluating solutions on a test set doesn’t guarantee performance on real-world data. So,
when models are deployed, additional monitoring is needed. If a workflow performs poorly, the
whole process might need restarting with adjustments based on new data. Furthermore, each data
scientist learns from their own experiences without sharing knowledge. This lack of collaboration
can lead to repeated mistakes and oversights. Additionally, the interpretation of similarity between
use cases can vary among practitioners, making the process even more subjective. Overall, the
process lacks structure and heavily depends on the individual knowledge and decisions of the data
scientists involved.

In this work, we present how to mutualize/standardize data science knowledge to help data
scientists generate machine learning workflows by guiding them along the phases of the process
i.e., inquiring about business requirements, analyzing the data, and reducing the solution space of
possible ML artefacts or establishing similarities with past workflows to reuse them. To this aim,
we have proposed three main contributions to this problem:

Contribution 1: Integrating Data, Business Requirements, and Solution Components in ML

Workflow design.
While automatic approaches focus on data, our approach considers the dependencies between

the data, the business requirements, and the solution components. This holistic approach ensures
a more comprehensive understanding of the problem and guides the development of appropriate
solutions.

Contribution 2: Customizing Workflows for Tailored Solutions by Leveraging Partial and

Modular Configurations. Our approach aims to assist data scientists in customizing workflows
for their specific problems. We achieve this by employing various variability models and a con-

97

98 CHAPTER 8 — Conclusion and Perspectives

straint system. This setup enables users to receive feedback based on their data and business
requirements, possibly only partially identified.

Additionally, we showed that users can access previous experiments based on problem settings
or create entirely new ones.

Contribution 3: Enhancing Software Product Lines Knowledge through New Product Ex-

ploitation. We have proposed a practice-driven approach to building an SPL as a first step toward
designing generic solutions to detect anomalies in time series, capturing new knowledge and lever-
aging existing knowledge when dealing with new experiments or use cases. The incremental ac-
quisition of knowledge and the instability of the domain (Niehaus et al., 2005) everything changes

... in an unpredictable way are supported by the SPL through its structuring and the exploitation
of partial configurations associated with past use cases.

As far as we know, this is the first application of the SPL paradigm in such a context with a
knowledge acquisition objective. By capturing practices in partial descriptions of the problems
and solutions implemented, we obtain the abstractions to reason about datasets, solutions, and
business requirements. The SPL is then used to produce new solutions, compare them to past
solutions, and identify previously implicit knowledge.

The growing abstraction supported by the SPL also brings other benefits. In knowledge shar-
ing, we have observed a shift in the approach to creating ML workflows, focusing on analyzing
problems before looking for similar applications.

In this work, We guide the process of understanding the machine learning problem by consid-
ering the business requirements from the outset, thereby reducing the solution space accordingly.
However, we focus on the feature level (features from the feature model). Can we systematically
translate these features into natural language questions to facilitate the interview with the expert
by prompting a large language model (LLM) to do the translation?

Additionnaly, we focus only on time series anomaly detection. However, our approach could
potentially be extended to other machine learning subtasks, such as tabular data classification,
image classification, text summarization, and more, provided that the separation of machine learn-
ing concerns related to each subtask is appropriately addressed, But can we extend it to other
non-functional properties such as FATE (Fairness, Accountability, Transparency, and Ethics)?

8.2 Perspectives

8.2.1 FATE
sec_fate

In this perspective, we aim to examine the complexities that data scientists face in making deci-
sions that achieve high model performance and align with Fairness, Accountability, Transparency,
and Ethics (FATE) criteria. These criteria are becoming increasingly crucial as Artificial Intel-
ligence (AI) and machine learning models are integrated into various aspects of society, from
healthcare to finance to criminal justice. Ensuring that these models are fair, accountable, trans-
parent, and ethical is crucial for protecting the rights and interests of individuals and society. On
an industrial level, it is crucial to account for the empirical parameters that played a role in the
design of the solution and justify that it answers the business requirements. As data scientists,
relying solely on high model performance to justify decisions is insufficient. Understanding and
complying with norms and practices when implementing AI solutions is essential.

8.2 – 8.2.1 FATE 99

For example, ensuring Fairness in a model means that it should not be biased either by the
collected data, the annotations, or the model itself. However, identifying a bias in a study target
remains difficult. The bias seems evident to us only when we know it and therefore can actively
look for it. It is, therefore, essential to be fair in checking that known types of biases are not
present and to avoid reproducing past biases.

Accountability is another essential aspect that means the data scientists should be able to ex-
plain and justify their decisions, and mechanisms should be in place to assess their accountability
and hold them to it if something goes wrong.

Transparency is also crucial, as it enables stakeholders to understand how a model works
and what factors it considers when making decisions. This helps build trust and confidence in the
machine-learning model or workflow.

Ethics is another key aspect to consider. As AI models are increasingly integrated into various
aspects of society, it is vital to consider the ethical implications of their use. For example, suppose
a model is used to make healthcare decisions. In that case, it is vital to ensure that it does not
perpetuate existing disparities or cause harm to specific groups of individuals. Additionally, data
scientists should consider the broader ethical implications of the data they use and how it is
collected, stored, and used. Furthermore, it is essential to track the steps of the process and under-
stand who collected the data, prepared it, analyzed the problem, and so on. Therefore, tracking
these steps helps to justify the use of algorithms and understand all the steps of the process and
how they contribute to the final decision.

These challenges require capitalization of knowledge, systematization of code productions,
and guidance of verifications similar to what we presented in the main body of this work. We
propose using software product lines (SPL) to meet these challenges. From the requirements
relating to the case studies, the objective is (i) to systematically produce suitable ML systems
and accurate verifications to be carried out (fairness), (ii) to report the SPL and human choices in
line with the state of knowledge (accountability), (iii) to register the final solution, including the
justification for the parts that involve the human (transparency).

A feature model can capitalize on knowledge about ML application requirements such as
FATE, business, and data-related criteria. By modeling FATE properties (see fig. 8.2 in fea-
ture models, we can help data scientists ensure that their models bring value to the stakeholders
while being fair, accountable, transparent, and ethical concerning a set baseline and help push that
baseline forward when they can by making the FATE branch evolve accordingly to the principles
introduced in chapter 7 of the main body of this work.

In summary, we aim to explore the challenges faced by data scientists in ensuring that their
decisions align with multiple criteria and understanding the problem they are trying to solve. Here
after in [UNDEFINED] is an example of a set of guidelines to evaluate FATE properties when
faced with an ML use case according to the modeled features in fig. 8.2

References

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4), 433–459.

Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F. M., Preen, D. B., Stewart, L. M., & Fatovich, D. M.
(2015). A comparison of multivariate and univariate time series approaches to modelling and
forecasting emergency department demand in western australia. Journal of biomedical informat-

ics, 57, 62–73.

Acher, M., Collet, P., Gaignard, A., Lahire, P., Montagnat, J., & France, R. B. (2012). Composing
multiple variability artifacts to assemble coherent workflows. Software Quality Journal, 20, 689–
734.

Acher, M., Collet, P., Lahire, P., & France, R. (2009). Composing feature models. In Interna-

tional conference on software language engineering (pp. 62–81).

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., . . . Zimmermann, T. (2019).
Software Engineering for Machine Learning: A Case Study. In Proceedings - 2019 ieee/acm 41st

international conference on software engineering: Software engineering in practice, icse-seip

2019 (pp. 291–300). Montreal Quebec Canada: IEEE. doi: 10.1109/ICSE-SEIP.2019.00042

Amraoui, Y. E., Blay-Fornarino, M., Collet, P., Precioso, F., & Muller, J. (2022). Evolvable
spl management with partial knowledge: an application to anomaly detection in time series. In
Proceedings of the 26th acm international systems and software product line conference-volume

a (pp. 222–233).

Apel, S., Batory, D., Kästner, C., & Saake, G. (2016). Feature-oriented software product lines.
Springer. Retrieved from https://link.springer.com/content/pdf/10.1007/

978-3-642-37521-7.pdf

Arora, R. (2012). Comparative analysis of classification algorithms on different datasets using
weka. International Journal of Computer Applications, 54(13).

Babar, M. A., Chen, L., & Shull, F. (2010). Managing variability in software product lines. IEEE

software, 27(3), 89–91.

Bagheri, E., Ensan, F., & Gasevic, D. (2012). Decision support for the software product line
domain engineering lifecycle. Automated Software Engineering, 19, 335–377.

Bagheri, E., & Gasevic, D. (2011). Assessing the maintainability of software product line feature
models using structural metrics. Software Quality Journal, 19, 579–612.

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20
years later: A literature review. Information systems, 35(6), 615–636.

107

108 REFERENCES

Berger, T., & Guo, J. (2014). Towards system analysis with variability model metrics. In
Proceedings of the 8th international workshop on variability modelling of software-intensive

systems (pp. 1–8).

Berger, T., She, S., Lotufo, R., Wasowski, A., & Czarnecki, K. (2013). A study of variability
models and languages in the systems software domain. IEEE Transactions on Software Engi-

neering, 39(12), 1611–1640.

Bergmeir, C. N., Benítez Sánchez, J. M., et al. (2012). Neural networks in r using the stuttgart
neural network simulator: Rsnns..

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., . . . Wiswedel, B.
(2009). Knime-the konstanz information miner: version 2.0 and beyond. AcM SIGKDD explo-

rations Newsletter, 11(1), 26–31.

Bezerra, C. I., Andrade, R. M., & Monteiro, J. M. S. (2014). Measures for quality evaluation of
feature models. In Software reuse for dynamic systems in the cloud and beyond: 14th interna-

tional conference on software reuse, icsr 2015, miami, fl, usa, january 4-6, 2015. proceedings 14

(pp. 282–297).

Bezerra, C. I. M., Monteiro, J. M., Andrade, R. M. C., & Rocha, L. S. (2016). Analyzing
the feature models maintainability over their evolution process: An exploratory study. In Pro-

ceedings of the 10th international workshop on variability modelling of software-intensive sys-

tems (p. 17–24). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/2866614.2866617 doi: 10.1145/2866614.2866617

Bilalli, B., Abelló, A., & Aluja-Banet, T. (2017). On the predictive power of meta-features in
OpenML. International Journal of Applied Mathematics and Computer Science, 27(4), 697—-
712.

Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with r. CRC press.

Brachman, R. J. (1996). The process of knowledge discovery in databases. Advances in knowl-

edge discovery and data mining, 37–57.

Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection,

and data transforms in python. Machine Learning Mastery.

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics.
Annual review of fluid mechanics, 52, 477–508.

Camillieri, C., Parisi, L., Blay-Fornarino, M., Precioso, F., Riveill, M., & Cancela-Vaz, J. (2016).
Towards a software product line for machine learning workflows: Focus on supporting evolution.
In 10th workshop on models and evolution co-located with acm/ieee 19th international confer-

ence on model driven engineering languages and systems (models 2016).

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing

surveys (CSUR), 41(3), 1–58.

REFERENCES 109

Chung, L., & do Prado Leite, J. C. S. (2009). On non-functional requirements in software
engineering. Conceptual modeling: Foundations and applications: Essays in honor of john

mylopoulos, 363–379.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-functional requirements in

software engineering (Vol. 5). Springer Science & Business Media.

Clements, P., & Northrop, L. (2002). Software product lines. Addison-Wesley Boston.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality-based feature mod-
els and their specialization. Software process: Improvement and practice, 10(1), 7–29.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., . . . Keogh, E.
(2019). The ucr time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6), 1293–1305.

Dau, H. A., Bagnall, A. J., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., . . . Keogh,
E. J. (2018). The UCR Time Series Archive. CoRR, abs/1810.07758, 1–12. Retrieved from
http://arxiv.org/abs/1810.07758

Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grunbacher, P., Benavides, D., &
Galindo, J. A. (2011). Configuration of multi product lines by bridging heterogeneous vari-
ability modeling approaches. In 2011 15th international software product line conference (pp.
120–129).

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., & Czarnecki, K. (2013). An
exploratory study of cloning in industrial software product lines. In Proceedings of the european

conference on software maintenance and reengineering, csmr (pp. 25–34). Genova, Italy: IEEE.
doi: 10.1109/CSMR.2013.13

Dwivedi, S., Kasliwal, P., & Soni, S. (2016). Comprehensive study of data analytics tools
(rapidminer, weka, r tool, knime). In 2016 symposium on colossal data analysis and networking

(cdan) (pp. 1–8).

El-Sharkawy, S., Yamagishi-Eichler, N., & Schmid, K. (2019a). Metrics for analyzing variability
and its implementation in software product lines: A systematic literature review. Information and

Software Technology, 106, 1–30.

El-Sharkawy, S., Yamagishi-Eichler, N., & Schmid, K. (2019b, feb). Metrics for analyzing
variability and its implementation in software product lines: A systematic literature review. In-

formation and Software Technology, 106, 1–30. doi: 10.1016/j.infsof.2018.08.015

Epperson, W., Wang, A. Y., DeLine, R., & Drucker, S. M. (2022). Strategies for reuse and sharing
among data scientists in software teams. In Proceedings of the 44th international conference on

software engineering: Software engineering in practice (pp. 243–252).

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of
classifiers to solve real world classification problems? The journal of machine learning research,
15(1), 3133–3181.

110 REFERENCES

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014, January). Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine

Learning Research, 15(1), 3133–3181. Retrieved from https://jmlr.org/papers/

v15/delgado14a.html

Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G. A., & Berthold, M. R. (2017).
Knime for reproducible cross-domain analysis of life science data. Journal of biotechnology,
261, 149–156.

Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed and parallel

Databases, 3, 119–153.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., . . . Myers, J. (2007).
Examining the challenges of scientific workflows. Computer, 40(12), 24–32.

Glinz, M. (2007). On non-functional requirements. In 15th ieee international requirements

engineering conference (re 2007) (pp. 21–26).

Gnanambal, S., Thangaraj, M., Meenatchi, V., & Gayathri, V. (2018). Classification algorithms
with attribute selection: an evaluation study using weka. International Journal of Advanced

Networking and Applications, 9(6), 3640–3644.

Gong, Z., Zhong, P., & Hu, W. (2019). Diversity in machine learning. Ieee Access, 7, 64323–
64350.

Habibullah, K. M., Gay, G., & Horkoff, J. (2023). Non-functional requirements for machine
learning: Understanding current use and challenges among practitioners. Requirements Engi-

neering, 28(2), 283–316.

HaddadPajouh, H., Dehghantanha, A., Khayami, R., & Choo, K.-K. R. (2018). A deep recurrent
neural network based approach for internet of things malware threat hunting. Future Generation

Computer Systems, 85, 88–96.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The
weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10–18.

He, X., Zhao, K., & Chu, X. (2021). Automl: A survey of the state-of-the-art. Knowledge-Based

Systems, 212, 106622.

Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., & Traon, Y. L. (2014).
Bypassing the combinatorial explosion: Using similarity to generate and prioritize t-wise
test configurations for software product lines. IEEE Transactions on Software Engineer-

ing, 40(7), 650—-670. Retrieved from https://ieeexplore.ieee.org/abstract/

document/6823132/

Hoang, D.-T., & Kang, H.-J. (2019). A survey on deep learning based bearing fault diagnosis.
Neurocomputing, 335, 327–335.

REFERENCES 111

Horkoff, J. (2019). Non-functional requirements for machine learning: Challenges and new
directions. In 2019 ieee 27th international requirements engineering conference (re) (pp. 386–
391).

Huang, X., Ye, Y., Xiong, L., Lau, R. Y., Jiang, N., & Wang, S. (2016). Time series k-means: A
new k-means type smooth subspace clustering for time series data. Information Sciences, 367,
1–13.

Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). Dmme: Data mining methodology
for engineering applications–a holistic extension to the crisp-dm model. Procedia Cirp, 79, 403–
408.

Idowu, S., Struber, D., & Berger, T. (2021). Asset Management in Machine Learning: A Survey.
In Proceedings - international conference on software engineering (pp. 51–60). Virtual Event
Spain: IEEE. doi: 10.1109/ICSE-SEIP52600.2021.00014

Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of

computational and graphical statistics, 5(3), 299–314.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning
for time series classification: a review. Data mining and knowledge discovery, 33(4), 917–963.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255–260.

Kamishima, T., Akaho, S., & Sakuma, J. (2011). Fairness-aware learning through regularization
approach. In 2011 ieee 11th international conference on data mining workshops (pp. 643–650).

KANG, K., COHEN, S., HESS, J., NOVAK, W., & PETERSON, A. (1990). Feature-oriented
domain analysis(foda) feasibility study(final report).

Kehrer, T., Thüm, T., Schultheiß, A., & Bittner, P. M. (2021). Bridging the gap between clone-
and-own and software product lines. In 2021 ieee/acm 43rd international conference on software

engineering: New ideas and emerging results (icse-nier) (pp. 21–25). IEEE.

Kery, M. B., Radensky, M., Arya, M., John, B. E., & Myers, B. A. (2018, April). The Story in the
Notebook: Exploratory Data Science using a Literate Programming Tool. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems (pp. 1–11). New York, NY, USA:
Association for Computing Machinery. Retrieved 2023-02-01, from https://doi.org/

10.1145/3173574.3173748 doi: 10.1145/3173574.3173748

Kieu, T., Yang, B., & Jensen, C. S. (2018). Outlier detection for multidimensional time series
using deep neural networks. In 2018 19th ieee international conference on mobile data manage-

ment (mdm) (pp. 125–134).

Kim, M., Zimmermann, T., DeLine, R., & Begel, A. (2017). Data scientists in software teams:
State of the art and challenges. IEEE Transactions on Software Engineering, 44(11), 1024–1038.

Koenzen, A. P., Ernst, N. A., & Storey, M.-A. D. (2020, August). Code Duplication and
Reuse in Jupyter Notebooks. In 2020 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 1–9). Dunedin, New Zealand: IEEE. Retrieved from

112 REFERENCES

https://doi.org/10.1109/VL/HCC50065.2020.9127202 (ISSN: 1943-6106)
doi: 10.1109/VL/HCC50065.2020.9127202

Kotak, P., & Modi, H. (2020). Enhancing the data mining tool weka. In 2020 5th international

conference on computing, communication and security (icccs) (pp. 1–6).

Kross, S., & Guo, P. J. (2019). Practitioners teaching data science in industry and academia:
Expectations, workflows, and challenges. In Proceedings of the 2019 chi conference on human

factors in computing systems (pp. 1–14).

Krüger, J., & Berger, T. (2020). An empirical analysis of the costs of clone-and platform-oriented
software reuse. In Proceedings of the 28th acm joint meeting on european software engineering

conference and symposium on the foundations of software engineering (pp. 432–444). ACM.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining mental models: a study of devel-
oper work habits. In Proceedings of the 28th international conference on software engineering

(pp. 492–501).

Lee, D. J.-L., & Macke, S. (2020). A human-in-the-loop perspective on automl: Milestones and
the road ahead. IEEE Data Engineering Bulletin.

Lee, K., Kang, K. C., & Lee, J. (2002). Concepts and guidelines of feature modeling for product
line software engineering. In International conference on software reuse (pp. 62–77).

Leitner, A., Weiß, R., & Kreiner, C. (2012). Analyzing the complexity of domain model represen-
tations. In 2012 ieee 19th international conference and workshops on engineering of computer-

based systems (p. 242-248). doi: 10.1109/ECBS.2012.15

Liao, T., Taori, R., Raji, I. D., & Schmidt, L. (2021). Are we learning yet? a meta review
of evaluation failures across machine learning. In Thirty-fifth conference on neural information

processing systems datasets and benchmarks track (round 2).

Lopez-Herrejon, R. E., & Batory, D. (2001). A standard problem for evaluating product-line
methodologies. In International symposium on generative and component-based software engi-

neering (pp. 10–24).

Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X., et al. (2010). 4d registration of serial brain’s mr
images: a robust measure of changes applied to alzheimer’s disease. In Spatio temporal image

analysis workshop (stia), miccai (Vol. 1).

Luo, G. (2016). A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics,
5(1), 1–16.

Macías-García, L., Luna-Romera, J. M., García-Gutiérrez, J., Martínez-Ballesteros, M.,
Riquelme-Santos, J. C., & González-Cámpora, R. (2017). A study of the suitability of au-
toencoders for preprocessing data in breast cancer experimentation. Journal of biomedical infor-

matics, 72, 33–44.

REFERENCES 113

Mann, S., & Rock, G. (2011). Control variant-rich models by variability measures. In Pro-

ceedings of the 5th international workshop on variability modeling of software-intensive sys-

tems (p. 29–38). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/1944892.1944896 doi: 10.1145/1944892.1944896

Mao, Y., Wang, D., Muller, M., Varshney, K. R., Baldini, I., Dugan, C., & Mojsilović, A. (2019).
How data scientistswork together with domain experts in scientific collaborations: To find the
right answer or to ask the right question? Proceedings of the ACM on Human-Computer Inter-

action, 3(GROUP), 1–23.

Matthew, S., Kyle, K., & Michelle, U. (2018). Part 2: Scheduling Notebooks at Net-

flix. Retrieved from https://netflixtechblog.com/scheduling-notebooks

-348e6c14cfd6

Maâzoun, J., Bouassida, N., & Ben-Abdallah, H. (2016). Change impact analysis for software
product lines. Journal of King Saud University - Computer and Information Sciences, 28(4), 364-
380. Retrieved from https://www.sciencedirect.com/science/article/pii/

S1319157816300167 doi: https://doi.org/10.1016/j.jksuci.2016.01.005

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore, M., . . . Hines,
M. L. (2017, feb). Twenty years of ModelDB and beyond: building essential modeling tools for
the future of neuroscience. Journal of Computational Neuroscience, 42(1), 1–10. doi: 10.1007/
S10827-016-0623-7

McNicholas, P. D., Murphy, T. B., & O’Regan, M. (2008). Standardising the lift of an association
rule. Computational Statistics & Data Analysis, 52(10), 4712–4721.

McPhillips, T., Bowers, S., Zinn, D., & Ludäscher, B. (2009). Scientific workflow design for
mere mortals. Future Generation Computer Systems, 25(5), 541–551.

Mefteh, M., Bouassida, N., & Ben-Abdallah, H. (2015). Implementation and evaluation of
an approach for extracting feature models from documented uml use case diagrams. In Pro-

ceedings of the 30th annual acm symposium on applied computing (p. 1602–1609). New
York, NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/2695664.2695907 doi: 10.1145/2695664.2695907

Merkelbach, S., Von Enzberg, S., Kühn, A., & Dumitrescu, R. (2022). Towards a process model
to enable domain experts to become citizen data scientists for industrial applications. In 2022

ieee 5th international conference on industrial cyber-physical systems (icps) (pp. 1–6).

Mohassel, P., & Zhang, Y. (2017). Secureml: A system for scalable privacy-preserving machine
learning. In 2017 ieee symposium on security and privacy (sp) (pp. 19–38).

Muller, M., Lange, I., Wang, D., Piorkowski, D., Tsay, J., Liao, Q. V., . . . Erickson, T. (2019).
How data science workers work with data: Discovery, capture, curation, design, creation. In
Proceedings of the 2019 chi conference on human factors in computing systems (pp. 1–15).

Niehaus, E., Pohl, K., & Böckle, G. (2005). Software product line engineering: Foundations,

principles and techniques, kapitel product management. Springer, Berlin.

114 REFERENCES

Nieke, M., Sampaio, G., Thüm, T., Seidl, C., Teixeira, L., & Schaefer, I. (2022). Guiding the
evolution of product-line configurations. Software and Systems Modeling, 1–23.

Nieke, M., Seidl, C., & Schuster, S. (2016). Guaranteeing configuration validity in evolving soft-
ware product lines. In Proceedings of the tenth international workshop on variability modelling

of software-intensive systems (pp. 73–80).

Ntoutsi, E., Fafalios, P., Gadiraju, U., Iosifidis, V., Nejdl, W., Vidal, M.-E., . . . others (2020). Bias
in data-driven artificial intelligence systems—an introductory survey. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 10(3), e1356.

Ordenes, F. V., & Silipo, R. (2021). Machine learning for marketing on the knime hub: The
development of a live repository for marketing applications. Journal of Business Research, 137,
393–410.

Passi, S., & Jackson, S. J. (2018). Trust in data science: Collaboration, translation, and ac-
countability in corporate data science projects. Proceedings of the ACM on Human-Computer

Interaction, 2(CSCW), 1–28.

Passi, S., & Sengers, P. (2020). Making data science systems work. Big Data & Society, 7(2),
2053951720939605.

Passos, L., Novakovic, M., Xiong, Y., Berger, T., Czarnecki, K., & Wąsowski, A. (2011). A
study of non-boolean constraints in variability models of an embedded operating system. In
Proceedings of the 15th international software product line conference, volume 2 (pp. 1–8).

Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A preprocessing stage. CoRR,
abs/1503.06462, 1–3. Retrieved from http://arxiv.org/abs/1503.06462

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . others (2011).
Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12, 2825–
2830.

Pereira, J. A., Acher, M., Martin, H., Jézéquel, J.-M., Botterweck, G., & Ventresque, A. (2021).
Learning software configuration spaces: A systematic literature review. Journal of Systems and

Software, 182, 111044.

Perkel, J. M. (2018, October). Why Jupyter is data scientists’ computational notebook of choice.
Nature, 563(7729), 145–146. Retrieved 2023-01-26, from https://doi.org/10.1038/

d41586-018-07196-1 doi: 10.1038/d41586-018-07196-1

Piorkowski, D., Park, S., Wang, A. Y., Wang, D., Muller, M., & Portnoy, F. (2021). How
ai developers overcome communication challenges in a multidisciplinary team: A case study.
Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–25.

Pohl, K., Böckle, G., & van Der Linden, F. J. (2005). Software product line engineering:

Foundations, principles and techniques. Springer Science & Business Media.

Powers, D. M. (2020). Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint arXiv:2010.16061.

REFERENCES 115

Rosenmüller, M., & Siegmund, N. (2010). Automating the configuration of multi software
product lines. VaMoS, 10, 123–130.

Rubin, J., Czarnecki, K., & Chechik, M. (2013). Managing cloned variants: a framework and
experience. In Proceedings of the 17th international software product line conference (pp. 101–
110).

Rule, A., Tabard, A., & Hollan, J. D. (2018). Exploration and explanation in computational
notebooks. In Proceedings of the 2018 chi conference on human factors in computing sys-

tems (p. 1–12). New York, NY, USA: Association for Computing Machinery. Retrieved from
https://doi.org/10.1145/3173574.3173606 doi: 10.1145/3173574.3173606

Sánchez, A. B., Segura, S., & Ruiz-Cortés, A. (2014). A comparison of test case prioritization
criteria for software product lines. In 2014 ieee seventh international conference on software

testing, verification and validation (pp. 41–50).

Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. Computer,
39(02), 25–31.

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A systematic literature review on applying
crisp-dm process model. Procedia Computer Science, 181, 526–534.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). Dbscan revisited, revisited:
why and how you should (still) use dbscan. ACM Transactions on Database Systems (TODS),
42(3), 1–21.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., . . . Young, M.
(2015). Machine Learning: The High Interest Credit Card of Technical Debt. In G. Zoubin,
M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Proceedings of the 28th

international conference on neural information processing systems - volume 2 (pp. 2503–2511).
Montreal, Canada: MIT Press. Retrieved from https://ai.google/research/pubs/

pub43146

Shrestha, N., Botta, C., Barik, T., & Parnin, C. (2020). Here we go again: Why is it difficult
for developers to learn another programming language? In Proceedings of the acm/ieee 42nd

international conference on software engineering (pp. 691–701).

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., & Saake, G. (2012). Spl
conqueror: Toward optimization of non-functional properties in software product lines. Software

Quality Journal, 20(3), 487–517.

Smola, A. (2008). Introduction to machine learning.

Svahnberg, M., & Bosch, J. (1999). Evolution in software product lines: Two cases. Journal of

Software Maintenance: Research and Practice, 11(6), 391–422.

Team, R. C. (2000). R language definition. Vienna, Austria: R foundation for statistical comput-

ing, 3(1).

116 REFERENCES

Tessier, P., Gérard, S., Terrier, F., & Geib, J.-M. (2005). Using variation propagation for model-
driven management of a system family. In International conference on software product lines

(pp. 222–233).

Thomas, L. S., & Gehrig, J. (2020). Multi-template matching: a versatile tool for object-
localization in microscopy images. BMC bioinformatics, 21(1), 1–8.

Tornhill, A. (2015). Your Code as a Crime Scene. Pragmatic Bookshelf. Retrieved from
https://books.google.fr/books?id=l7dDnQAACAAJ

Van Rijn, J. N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., . . . Vanschoren,
J. (2013). Openml: A collaborative science platform. In Machine learning and knowledge dis-

covery in databases: European conference, ecml pkdd 2013, prague, czech republic, september

23-27, 2013, proceedings, part iii 13 (pp. 645–649).

Van Rijn, J. N., & Vanschoren, J. (2015). Sharing rapidminer workflows and experiments with
openml. In Metasel@ pkdd/ecml (pp. 93–103).

Vanschoren, J., Rijn, J. N., & Bischl, B. (2015). Taking machine learning research online
with openml. In Workshop on big data, streams and heterogeneous source mining: Algorithms,

systems, programming models and applications (pp. 1–4).

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). OpenML: Networked Science in
Machine Learning. SIGKDD Explorations, 15(2), 49–60. Retrieved from http://doi.acm

.org/10.1145/2641190.2641198 doi: 10.1145/2641190.2641198

Vanschoren, J., Van Rijn, J. N., Bischl, B., & Torgo, L. (2014). Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2), 49–60.

Vogelsang, A., & Borg, M. (2019). Requirements engineering for machine learning: Perspec-
tives from data scientists. In 2019 ieee 27th international requirements engineering conference

workshops (rew) (pp. 245–251).

Vyas, G., & Sharma, A. (2016). Empirical evaluation of metrics to assess software product line
feature model usability. International Journal of Science, Engineering and Computer Technol-

ogy, 6(2), 82.

Wada, H., Suzuki, J., & Oba, K. (2006). Modeling non-functional aspects in service oriented
architecture. In 2006 ieee international conference on services computing (scc’06) (pp. 222–
229).

Wang, A. Y., Mittal, A., Brooks, C., & Oney, S. (2019). How data scientists use computational
notebooks for real-time collaboration. Proceedings of the ACM on Human-Computer Interaction,
3(CSCW), 1–30.

Wang, A. Y., Wang, D., Drozdal, J., Liu, X., Park, S., Oney, S., & Brooks, C. (2021, May).
What Makes a Well-Documented Notebook? A Case Study of Data Scientists’ Documentation
Practices in Kaggle. In Extended Abstracts of the 2021 CHI Conference on Human Factors in

Computing Systems (pp. 1–7). New York, NY, USA: Association for Computing Machinery.
Retrieved 2023-01-31, from https://doi.org/10.1145/3411763.3451617 doi: 10
.1145/3411763.3451617

REFERENCES 117

Wang, D., Liao, Q. V., Zhang, Y., Khurana, U., Samulowitz, H., Park, S., . . . Amini, L. (2021).
How much automation does a data scientist want? arXiv preprint arXiv:2101.03970.

Wang, J., Kuo, T.-y., Li, L., & Zeller, A. (2020). Restoring reproducibility of jupyter note-
books. In Proceedings of the acm/ieee 42nd international conference on software engineer-

ing: Companion proceedings (p. 288–289). New York, NY, USA: Association for Comput-
ing Machinery. Retrieved from https://doi.org/10.1145/3377812.3390803 doi:
10.1145/3377812.3390803

Williams, G. (2011a). Boosting. New York, NY: Springer New York. Retrieved from https://

doi.org/10.1007/978-1-4419-9890-3_13 doi: 10.1007/978-1-4419-9890-3_13

Williams, G. (2011b). Cluster analysis. In Data mining with rattle and r: The art of excavating

data for knowledge discovery (pp. 179–192). New York, NY: Springer New York. Retrieved
from https://doi.org/10.1007/978-1-4419-9890-3_9 doi: 10.1007/978-1-4419
-9890-3_9

Williams, G. (2011c). Decision trees. New York, NY: Springer New York. Retrieved from
https://doi.org/10.1007/978-1-4419-9890-3_11 doi: 10.1007/978-1-4419
-9890-3_11

Williams, G. (2011d). Model performance evaluation. In Data mining with rattle and r: The

art of excavating data for knowledge discovery (pp. 307–321). New York, NY: Springer New
York. Retrieved from https://doi.org/10.1007/978-1-4419-9890-3_15 doi:
10.1007/978-1-4419-9890-3_15

Williams, G. (2011e). Random forests. New York, NY: Springer New York. Retrieved from
https://doi.org/10.1007/978-1-4419-9890-3_12 doi: 10.1007/978-1-4419
-9890-3_12

Williams, G. (2011f). Support vector machines. New York, NY: Springer New York. Re-
trieved from https://doi.org/10.1007/978-1-4419-9890-3_14 doi: 10.1007/
978-1-4419-9890-3_14

Williams, G. (2011g). Transforming data. In Data mining with rattle and r: The art of excavating

data for knowledge discovery (pp. 149–168). New York, NY: Springer New York. Retrieved
from https://doi.org/10.1007/978-1-4419-9890-3_7 doi: 10.1007/978-1-4419
-9890-3_7

Williams, G., et al. (2009). Rattle: a data mining gui for r.

Wirth, R., & Hipp, J. (2000). Crisp-dm: Towards a standard process model for data mining.
In Proceedings of the 4th international conference on the practical applications of knowledge

discovery and data mining (Vol. 1, pp. 29–39).

Xin, D., Ma, L., Song, S., & Parameswaran, A. (2018). How developers iterate on ma-
chine learning workflows–a survey of the applied machine learning literature. arXiv preprint

arXiv:1803.10311.

118 CHAPTER 8 — REFERENCES

Xin, D., Wu, E. Y., Lee, D. J.-L., Salehi, N., & Parameswaran, A. (2021). Whither automl?
understanding the role of automation in machine learning workflows. In Proceedings of the 2021

chi conference on human factors in computing systems (pp. 1–16).

Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.-F., Tu, W.-W., . . . Yu, Y. (2018). Taking hu-
man out of learning applications: A survey on automated machine learning. arXiv preprint

arXiv:1810.13306.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., . . . Zumar, C.
(2018). Accelerating the machine learning lifecycle with MLflow. IEEE Data Engineering Bul-

letin, 41(4), 39–45. Retrieved from http://sites.computer.org/debull/A18dec/

p39.pdf

Zainudin, Z., Shamsuddin, S. M., & Hasan, S. (2019). Deep learning for image processing in
weka environment. Int. J. Advance Soft Compu. Appl, 11(1).

Zhang, A. X., Muller, M., & Wang, D. (2020). How do data science workers collaborate? roles,
workflows, and tools. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1),
1–23.

Zhang, W., Zhao, H., & Mei, H. (2004). A propositional logic-based method for verification of
feature models. In Formal methods and software engineering: 6th international conference on

formal engineering methods, icfem 2004, seattle, wa, usa, november 8-12, 2004. proceedings 6

(pp. 115–130).

Zöller, M.-A., & Huber, M. F. (2021). Benchmark and survey of automated machine learning
frameworks. Journal of artificial intelligence research, 70, 409–472.

Pages web

List of figures

1.1 The relations between multiple ML problems 3
1.2 Acquisition errors . 4
1.3 Expert annotations . 4
1.4 Drifts in the data . 5

2.1 Process diagram showing the relationship between the different phases of CRISP-
DM . 17

3.1 The rattle classification tab . 24
3.2 Rattle clustering tab . 24
3.3 Rattle association rules tab . 25
3.4 Rattle evaluation tab . 25
3.5 The weka decision tree model tab . 26
3.6 Weka Knowledge flow layout example . 26
3.7 Weka Experimenter tab . 27
3.8 Weka explorer tab . 27
3.9 Knime workbench tab . 29
3.10 Knime Node ports and node status . 29
3.11 OpenML home page . 31
3.12 Knime hub workflows repository . 32

4.1 Mandatory feature group . 37
4.2 Optional feature group . 38
4.3 Alternative feature group . 38
4.4 Or feature group . 38
4.5 GPL feature model . 39

5.1 washing machine motor engine time series . 49
5.2 Scenario 4 automation level 1 workflow steps 54
5.3 Scenario 1 results . 56
5.4 Scenario 2 results . 56
5.5 Scenario 3 results . 57

6.1 Contextualized Solutions within the Overall Solution Space 64
6.2 Process overview . 66
6.3 Functional overview of our approach . 67
6.4 Tool UI for Business Requirements configuration 68
6.5 Knowledge partitioning into feature model spaces 69
6.6 Company tool overview . 74
6.7 Features and constraints . 75

119

120 LIST OF DEFINITIONS

7.1 Feature model to illustrate definitions and metrics 84
7.2 Three main steps of our SPL construction . 90

8.1 Fate properties form . 100
8.2 Fate properties branch . 101
8.3 Prompting GPT3 to read configurations and ask questions 101
8.4 Answering the chat questions . 102
8.5 Asking the chat further explanations of the options on anomaly types 104
8.6 Summary of provided answers . 105

List of definitions

1.5.1 Software product lines . 7
1.5.2 Commonality . 7
1.5.3 Variability . 7
1.5.4 Configuration . 7
1.5.5 SPL and Feature Model . 7
1.5.6 configuration . 7
1.5.7 sub-space . 7
1.5.8 partial configuration . 7
1.5.9 a domain . 7
1.5.10solution space . 7
1.5.11product . 8
1.5.12Application products . 8
1.5.13ML workflow product . 8

6.2.1 . 67

7.2.1 Equivalence Class on A according to a subset of features of FM 83
7.2.2 Problem equivalence classes . 83
7.2.3 Solution equivalence classes . 83
7.2.4 Unifiable classes . 84

121

List of examples

123

Listes des algorithmes

125

Appendices

Faciliter l’inclusion humaine dans le processus de science des
données : de la capture des exigences métier à la conception
d’un workflow d’apprentissage automatique opérationnel

Yassine EL AMRAOUI

Résumé

Le processus de création de workflows d’apprentissage automatique par les data scientists im-
plique de comprendre les besoins métier, d’analyser les données et d’expérimenter pour trouver
des solutions. Cependant, cette approche par essais et erreurs manque de structure pour prendre
en compte toutes ces dimensions, et conduit souvent à des essais inadaptés et à des interpréta-
tions limitées des résultats par les praticiens. Pour remédier à ce problème dans le cadre de la
conception de workflows destinés à la détection d’anomalies dans les séries temporelles, notre
travail propose trois contributions principales :
- Prise en compte des données, des exigences métiers et des composants de la solution dans la
conception des workflows de machine learning
- Personnalisation des workflows pour des solutions sur mesure en s’appuyant sur des descrip-
tions partielles et modulaires du problème sous forme de configurations.
- Enrichissement de la connaissance portée par les lignes de produits logiciels par l’exploitation
des produits. Ces contributions visent à rationaliser la création de workflows d’apprentissage
automatique, en promouvant une approche plus structurée, le partage des connaissances et un
meilleur alignement sur l’analyse du problème avant de rechercher des applications similaires.

Mots-clés : Ligne de produit logiciel, Science des données,Inclure l’humain dans la boucle

Abstract

The process of creating machine learning workflows by data scientists involves understanding
business needs, analyzing data and experimenting to find solutions. However, this trial-and-
error approach lacks the structure to take all these dimensions into account, and often leads
to inadequate testing and limited interpretations of results by practitioners. To address this
problem in the context of designing workflows for anomaly detection in time series, our work
proposes three main contributions:
- Consideration of data, business requirements and solution components in the design of ma-
chine learning workflows.
- Customization of workflows for tailor-made solutions, based on partial and modular descrip-
tions of the problem in the form of configurations.
- Enriching the knowledge carried by software product lines through product exploitation.
These contributions aim to streamline the creation of machine learning workflows, promoting
a more structured approach, knowledge sharing and better alignment with problem analysis
before searching for similar applications.

Keywords: Software product line, Data science , Data science,Human in the loop

