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Titre : Biomarqueurs corps entier en imagerie par Tomographie d’Emission de Positons (TEP) 

Mots clés : Radiomique, Imagerie moléculaire, Intelligence artificielle, Oncologie, Imagerie médicale, Apprentissage automatique 

Résumé : Cette thèse, réalisée en partenariat avec l'Institut Curie 

et Siemens Healthineers, explore l'utilisation de l'imagerie par 

tomographie par émission de positrons (TEP) pour le pronostic du 

cancer, en se concentrant sur les lymphomes non hodgkiniens, en 

particulier le lymphome folliculaire (FL) et le lymphome diffus à 

grandes cellules B (DLBCL). Partant de l'hypothèse que les 

biomarqueurs actuels calculés dans les images TEP sous-utilisent 

leur richesse en informations, ce travail se concentre sur la 

recherche de nouveaux biomarqueurs en imagerie TEP corps 

entier. Une première approche manuelle a permis de valider une 

caractéristique précédemment identifiée (fragmentation de la 

tumeur) et d'explorer l'importance pronostique de l'atteinte 

splénique dans les DLBCL, en constatant que le volume de 

l'atteinte splénique ne permet pas de stratifier davantage les 

patients présentant une telle atteinte. Pour dépasser les limites 

empiriques de la recherche manuelle, une méthode 

d'identification semi-automatique des caractéristiques a été mise 

au point. Elle consiste à extraire automatiquement des milliers de 

biomarqueurs candidats et à les tester à l'aide d'un pipeline de 

sélection conçu pour trouver des caractéristiques quantifiant de 

nouvelles informations pronostiques.  

Les biomarqueurs sélectionnés ont ensuite été analysés et 

recodés de manière plus simple et plus intuitive. Cette approche 

a permis d'identifier 22 nouveaux biomarqueurs basés sur 

l'image, qui reflètent des informations biologiques sur les 

tumeurs, mais aussi l'état de santé général du patient. Parmi eux, 

10 caractéristiques se sont avérées pronostiques à la fois pour 

les patients atteints de FL que pour ceux souffrant de DLBCL. La 

thèse aborde également le défi que représente l'utilisation de 

ces caractéristiques dans la pratique clinique, en proposant le 

modèle ICARE (Individual Coefficient Approximation for Risk 

Estimation). Ce modèle d'apprentissage automatique, conçu 

pour réduire le surapprentissage et améliorer la généralisation, 

a démontré son efficacité dans le cadre du challenge HECKTOR 

2022 visant à prédire le risque de rechute de patients atteints de 

cancer des voies aérodigestives supérieures à partir de leurs 

images TEP. Ce modèle s’est également avéré plus résistant au 

surapprentissage que d’autres méthodes d’apprentissage 

automatique lors d’une comparaison exhaustive sur un 

benchmark de 71 jeux de données médicales. Ces 

développements ont été implémentés dans une extension 

logicielle d’un prototype développé par Siemens Healthineers. 

 

 

Title : Whole-body / total-body biomarkers in PET imaging  

Keywords : Radiomics, Molecular Imaging, Artificial Intelligence, Oncology, Medical imaging, Machine Learning 

Abstract : This thesis in partnership with Institut Curie and Sie-

mens Healthineers explores the use of Positron Emission Tomog-

raphy (PET) for cancer prognosis, focusing on non-Hodgkin lym-

phomas, especially follicular lymphoma (FL) and diffuse large B cell 

lymphoma (DLBCL). Assuming that current biomarkers computed 

in PET images overlook significant information, this work focuses 

on the search for new biomarkers in whole-body PET imaging. An 

initial manual approach validated a previously identified feature 

(tumor fragmentation) and explored the prognostic significance of 

splenic involvement in DLBCL, finding that the volume of splenic 

involvement does not further stratify patients with such an involve-

ment. To overcome the empirical limitations of the manual search, 

a semi-automatic feature identification method was developed. 

It consisted in the automatic extraction of thousands of candidate 

biomarkers and there subsequent testing by a selection pipeline 

design to identify features quantifying new prognostic infor-

mation.  

The selected biomarkers were then analysed and re-encoded in 

simpler and more intuitive ways. Using this approach, 22 new 

image-based biomarkers were identified, reflecting biological 

information about the tumours, but also the overall health 

status of the patient. Among them, 10 features were found 

prognostic of both FL and DLBCL patient outcome. The thesis 

also addresses the challenge of using these features in clinical 

practice, proposing the Individual Coefficient Approximation for 

Risk Estimation (ICARE) model. This machine learning model, 

designed to reduce overfitting and improve generalizability, 

demonstrated effectiveness in the HECKTOR 2022 challenge for 

predicting outcomes from head and neck cancer patients [18F]-

PET/CT scans. This model was also found to overfit less than 

other machine learning methods on an exhaustive comparison 

using a benchmark of 71 medical datasets. All these 

developments were implemented in a software extension of a 

prototype developed by Siemens Healthineers. 
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Synthèse en français 

Le cancer est une des principales causes de mortalité dans le monde, étant la première 

cause de décès prématuré dans 57 pays en 2019. Cette maladie complexe, caractérisée 

par une croissance cellulaire anormale et incontrôlée, comprend aujourd'hui plus de 

200 types de cancer. En 2018, il a été estimé que 18 millions nouveaux cas de cancer 

ont été détectés, entraînant 9 millions de décès. L'augmentation prévue du nombre de 

cas de cancer est notamment liée au vieillissement de la population mondiale. 

 

Heureusement, la médecine a réalisé des progrès considérables au cours du dernier 

siècle. Par exemple, le taux de survie à cinq ans pour les patients atteints de cancer du 

sein est passé de 40% il y a cent ans à plus de 90% aujourd'hui, grâce aux traitements 

modernes. Des résultats encore plus impressionnants ont été obtenus dans le domaine 

des cancers pédiatriques, avec un taux de survie passant de 10% à près de 80%. 

 

Ces progrès sont dus à une meilleure compréhension de la maladie et au développe-

ment d'une large gamme de stratégies thérapeutiques, comme la chirurgie, la chimio-

thérapie, la radiothérapie, l'immunothérapie, la thérapie ciblée et la thérapie hormo-

nale. Le traitement efficace du cancer ne réside pas seulement dans la disponibilité de 

ces options, mais dans leur application personnalisée à chaque patient, nécessitant une 

compréhension fine de la maladie pour optimiser les résultats. 

 

L'imagerie médicale, et notamment la combinaison de la Tomographie par Émission 

de Positons (TEP) avec la Tomodensitométrie (TDM) ou l'Imagerie par Résonance Ma-

gnétique (IRM), jouent un rôle central dans le diagnostic et le traitement du cancer. 

Cependant, le potentiel de l'imagerie TEP est probablement sous-exploité. En effet, les 

approches traditionnelles d'interprétation des images TEP ont tendance à simplifier 

l’information présente dans l’image, se concentrant sur les tumeurs primaires ou un 

sous-ensemble limité de lésions, et négligeant souvent les autres informations reflétées 

par l’image, y compris dans les tissus apparemment sains. Cette lacune dans l'utilisation 

des données d'imagerie TEP que cette thèse vise à combler en identifiant de nouvelles 

informations pronostiques, est une nouvelle opportunité pour améliorer la gestion des 

cancers. 

 

La première approche que j'ai explorée était l'identification et la construction de carac-

téristiques construites à la main, basées sur l'analyse visuelle des images et l'aide de la 

littérature scientifique. Bien que cette approche ait été insuffisante pour la découverte 

de nouvelles caractéristiques, elle a aidé à valider une caractéristique déjà identifiée (la 

fragmentation tumorale estimée par le rapport volume/surface) par Decazes et al. 

(2018) et nous a donné l’occasion de mieux comprendre l’impact de l’envahissement 

splénique pour les patients atteints de lymphomes diffus à grandes cellules B (DLBCL). 
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Les chapitres 2 à 4 de ce manuscrit introduisent les concepts nécessaires en imagerie 

médicale, en apprentissage automatique, et sur les lymphomes. La suite de cette syn-

thèse résume chaque chapitre présentant les travaux originaux réalisés pendant cette 

thèse. 

 

Chapitre 5 Étude du rôle de l’envahissement splénique dans le pronostic du DLBCL  

 

Dans ce chapitre, nous avons exploré le rôle de l’envahissement splénique dans le pro-

nostic des patients atteints de lymphome diffus à grandes cellules B (DLBCL). L’étude 

se concentre sur une analyse détaillée de plusieurs marqueurs, notamment le Volume 

Tumoral Métabolique Total (TMTV), l’envahissement splénique (SI), la taille de la rate, 

le Volume Tumoral Métabolique à l’Intérieur de la Rate (MTVIS), et le Volume Tumoral 

Métabolique à l’Extérieur de la Rate (MTVOS), sur une cohorte de 377 patients atteints 

de DLBCL. Les indicateurs évalués pour mesurer le devenir des patients étaient la survie 

sans progression (PFS) et la survie globale (OS). 

 

Les résultats obtenus dans cette étude nous éclairent sur l’impact de l’envahissement 

splénique sur le pronostic des patients. Il a été constaté que les patients avec SI pré-

sentent une PFS et une OS significativement plus faibles (p < 0.03 pour la PFS et p < 

0.04 pour l’OS) par rapport à ceux sans envahissement. De plus, ces patients avaient un 

TMTV nettement plus élevé (p < 0.001), ce qui souligne le lien entre l’envahissement 

splénique et la charge tumorale globale. La capacité de prédire l’envahissement splé-

nique à partir du TMTV avec une précision moyenne de 0.62 (p < 0.001) indique une 

corrélation forte entre ces deux paramètres, et l’envahissement splénique n’offre pas 

d’informations pronostiques supplémentaires au-delà de celles fournies par le TMTV. 

 

L’analyse du Volume Tumoral Métabolique à l’Intérieur de la Rate (MTVIS) a révélé que 

ce marqueur n’était pas prédictif du devenir du patient. Les patients avec un volume 

élevé de tumeur à l’intérieur de la rate ne présentaient pas un risque plus élevé com-

paré à ceux avec un volume faible, suggérant que le volume tumoral à l’intérieur de la 

rate n’influence pas le pronostic de manière significative. 

 

Par ailleurs, le Volume Tumoral Métabolique à l’Extérieur de la Rate (MTVOS) s’est avéré 

aussi prédictif que le TMTV. Cette découverte suggère que l’essentiel de l’information 

pronostique liée au TMTV se situe en dehors de la rate. 

 

La présence de splénomégalie, bien qu’associée à l’envahissement splénique, n’a pas 

fourni d’informations pronostiques additionnelles. Les patients avec une rate hypertro-

phiée en raison de l’envahissement splénique n’ont pas montré de différence signifi-

cative en termes de risque par rapport à ceux avec un envahissement splénique sans 

augmentation du volume de la rate, ce qui souligne que la taille de la rate seule n'est 

pas un indicateur pronostique dans le DLBCL. 
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Ces résultats, bien qu’intéressants, nécessitent une validation dans d’autres cohortes 

de patients atteints de DLBCL pour être confirmés. De plus, l’exploration du rôle de 

l’envahissement splénique dans d’autres sous-types de lymphomes pourrait fournir des 

éclairages supplémentaires sur son impact sur le pronostic, étant donné que la patho-

physiologie et la réponse au traitement peuvent varier considérablement entre les dif-

férents types de lymphomes. 

 

En conclusion, cette étude met en lumière le fait que, bien que l’envahissement splé-

nique soit un facteur pronostique significatif dans le DLBCL, sa valeur est fortement liée 

au TMTV et n’offre pas d’avantages supplémentaires pour la stratification des risques 

des patients au-delà de ce que le TMTV fournit déjà. 

 

Chapitre 6 Développement d’un outil de sélection de biomarqueurs (ROBI) 

 

Bien que des résultats intéressants aient été obtenus au moyen de cette recherche 

manuelle, je n’ai pas découvert de nouvelles informations prognostiques avec cette 

approche. Pour surmonter les limitations de l’approche, j’ai développé une méthode 

semi-automatique pour identifier de nouveaux biomarqueurs prognostiques. Les prin-

cipaux avantages de la méthode proposée sont une exploration étendue de l’espace 

de recherche et un contrôle précis des fausses découvertes possiblement causées par 

des tests multiples. Cette recherche semi-automatique consiste en la construction 

automatisée d’un grand nombre de biomarqueurs candidats basés sur l’image, calculés 

dans les lésions, leur environnement immédiat et les organes segmentés. Les milliers 

de biomarqueurs candidats résultants sont ensuite analysés par un pipeline de sélec-

tion automatisé pour identifier les biomarqueurs codant de nouvelles informations 

pronostiques non déjà mesurées par les biomarqueurs actuels utilisés par les médecins 

en clinique. En raison du nombre important de candidats testés, ce pipeline doit être 

robuste aux faux positifs (FP, caractéristiques non pronostiques sélectionnés par ha-

sard) et optimisé pour maximiser les découvertes. 

 

Ce chapitre détaille le développement d'un outil de sélection de biomarqueurs, ROBI 

(Robust Biomarker Identifier), conçu pour identifier les biomarqueurs radiomiques ba-

sés sur l’image les plus susceptibles de refléter de nouvelles informations pronostiques 

tout en minimisant et contrôlant le nombre de faux positifs. L’outil combine plusieurs 

techniques de sélection de caractéristiques pour choisir des biomarqueurs qui codent 

des informations pertinentes non déjà quantifiées par des biomarqueurs établis et qui 

sont les plus susceptibles de prédire le devenir des patients dans l’ensemble de don-

nées utilisé pour la sélection. Le pipeline minimise la sélection de FP et estime leur 

nombre, avec une rigueur de sélection ajustable. 

 

Pour valider cet outil, 500 ensembles de données synthétiques et des données rétros-

pectives issues de d’images TEP/TDM au 18F-FDG de 378 patients DLBCL ont été ana-
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lysés. Sur ces données DLBCL, deux biomarqueurs radiomiques établis, le volume tu-

moral total (TMTV) et la plus grande distance entre deux lésions (Dmax), ont été me-

surés à partir de la segmentation des images TEP/TDM au 18F-FDG, et 10 000 biomar-

queurs aléatoires ont été générés. La sélection a été effectuée et vérifiée sur chaque 

ensemble de données, avec une signification statistique évaluée par des tests de Wil-

coxon. L’efficacité de ROBI a été comparée à des méthodes contrôlant les tests mul-

tiples et un modèle de Cox avec pénalité Elasticnet. 

 

Dans les ensembles de données synthétiques, le pipeline a sélectionné significative-

ment plus de vrais positifs (TP) que de FP (p < 0,001). Pour 99,3 % des ensembles de 

données synthétiques, le nombre de FP était dans l’intervalle de confiance à 95 % es-

timé par le pipeline. Ce pipeline a significativement augmenté le nombre de TP par 

rapport aux méthodes habituelles de sélection de caractéristiques (p < 0,001). Dans 

l’ensemble de données réel, ROBI a sélectionné les deux biomarqueurs établis et un 

biomarqueur aléatoire, estimant à 95 % le risque de sélectionner 0 ou 1 FP et une pro-

babilité de 0,0014 de sélectionner uniquement des FP. La correction de Bonferroni n’a 

sélectionné aucune caractéristique, tandis que l’Elasticnet a sélectionné 73 caractéris-

tiques aléatoires et manqué l’un des deux biomarqueurs établis. 

 

ROBI contrôle donc efficacement le nombre de faux positifs tout en augmentant le 

nombre de biomarqueurs sélectionnés par rapport à la méthode standard pour con-

trôler le taux de fausses découvertes. L’outil trouve des biomarqueurs pertinents parmi 

des milliers de candidats, tandis que d’autres méthodes standard échouent avec un si 

grand nombre de candidats potentiels. Il n’est pas un substitut à une validation externe 

mais identifie les candidats les plus prometteurs parmi un grand nombre. Le pipeline 

est agnostique au domaine d’application, ce qui le rend utile pour une large gamme 

de disciplines traitant des grands nombres de paramètres, telles que la génomique. 

 

Une implémentation Python est disponible sur https ://github.com/Lrebaud/robi 

 

Chapitre 7 Découverte de nouveaux biomarqueurs pronostiques pour les lymphomes 

non hodgkiniens 

 

Dans ce chapitre, nous présentons l’identification de nouveaux biomarqueurs pronos-

tiques pour les lymphomes non hodgkiniens (NHL) en exploitant les capacités de ROBI 

pour analyser de vastes ensembles de biomarqueurs candidats issus d’images 

TEP/TDM au 18F-FDG. Deux cohortes de patients atteints de NHL, l’une composée de 

patients avec un Lymphome Diffus à Grandes Cellules B (DLBCL) et l’autre de patients 

présentant un Lymphome Folliculaire (FL), ont servi à cette exploration. Ces cohortes, 

issues de trois essais cliniques et comptant environ 350 patients chacune, ont fourni la 

puissance statistique nécessaire pour tester des milliers de biomarqueurs candidats au 

moyen de notre pipeline ROBI. 

 

https://github.com/Lrebaud/robi
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En analysant ces images TEP/TDM réalisées avant le traitement, nous avons automati-

quement construit et testé un grand nombre de caractéristiques issues des images. 

ROBI a ainsi sélectionné 28 nouveaux biomarqueurs pronostiques extraits des images 

TEP/TDM pour les patients FL et 28 autres pour les patients DLBCL. En analysant ces 

biomarqueurs, nous avons manuellement identifié 22 informations biologiques intui-

tives et pronostiques que nous avons ré-encodées en 22 biomarqueurs toujours calcu-

lés dans l’image, mais plus simples. Parmi ces derniers, 10 se sont révélés pronostiques 

à la fois pour les patients atteints de DLBCL et de FL, suggérant une applicabilité cli-

nique étendue et de meilleures chances de reproduction des résultats. Parmi ceux-ci, 

on trouve des biomarqueurs qui se concentrent sur les lésions, tel que le nombre de 

lésions, l’envahissement de la trachée ou la présence de lésions occultes (petites lésions 

avec une faible activité métabolique). D’autres en revanche concernent plutôt l’état de 

santé global du patient. Ainsi, un faible volume de graisse sous-cutanée ou une plus 

forte densité des tissus bronchiques étaient associés à un risque plus élevé. Les infor-

mations d’activité métabolique mesurée par la TEP, de densité de tissu par la TDM et 

de forme définie par la segmentation sont toutes représentées par au moins un de ces 

nouveaux biomarqueurs. 

 

Ces découvertes, prometteuses pour l’amélioration de l’évaluation pronostique des pa-

tients atteints de DLBCL et de FL, nécessitent une validation externe pour confirmer 

leur utilité et applicabilité en pratique clinique. Le code pour le calcul et le test de ces 

biomarqueurs a été rendu disponible ici : 

https ://github.com/Lrebaud/exhaustive_radiomics 

 

Chapitre 8 Développement d’un nouveau modèle d’apprentissage automatique 

(ICARE) lors d’une compétition (HECKTOR) 

 

Dans le chapitre précédent, nous avons identifié des dizaines de nouveaux biomar-

queurs radiomiques présentant une valeur pronostique. Si la valeur pronostique de 

certains d’entre eux est confirmé par d’autres équipes, se posera alors la question de 

la meilleure façon de les utiliser en clinique. Dans ce chapitre, nous avons abordé le 

défi rencontré par les oncologues face à l’abondance de biomarqueurs pronostiques 

issus de diverses modalités (examens cliniques, biopsies, analyses sanguines, géné-

tiques, etc.). Pour simplifier cette complexité, les modèles agrègent souvent de mul-

tiples caractéristiques en un seul score de risque, comme l’IPI et AnnArbor chez les 

patients atteints de lymphomes, élaborés à travers des concertations de spécialistes et 

de nombreuses analyses. Une approche alternative utilise des modèles d’apprentissage 

automatique pour apprendre à partir des données un score (signature) basé sur les 

valeurs des caractéristiques et les résultats observés chez de nombreux patients. Typi-

quement, un modèle de Cox est entraîné pour prédire le risque des patients à partir 

d’un ensemble de caractéristiques, et ce modèle peut être transformé en un nomo-

gramme pour une utilisation et un déploiement facile. 

 

https://github.com/Lrebaud/exhaustive_radiomics


 

12 

Cependant, définir quelle caractéristique est plus pronostique qu’une autre s’avère ex-

trêmement difficile en raison du bruit affectant les valeurs des caractéristiques et la 

valeur à prédire. Par exemple, la survie globale, fréquemment utilisée est très bruitée 

par nature, et souvent censurée. Nous avons alors développé l’idée qu’il pourrait être 

préférable de ne pas apprendre de poids spécifique pour chaque caractéristique, mais 

simplement un signe, permettant ainsi à chaque caractéristique de contribuer équita-

blement à la prédiction. Cette intuition a conduit au développement du modèle ICARE, 

détaillé dans ce chapitre. 

 

Nous avons testé cette idée lors du challenge HECKTOR présenté durant la conférence 

MICCAI 2022, où différentes équipes du monde entier devaient concevoir un modèle 

pour segmenter automatiquement les tumeurs et les ganglions lymphatiques envahis 

sur les images TEP/TDM au 18F–FDG de patients atteints de cancer de la tête et du cou 

provenant de plusieurs hôpitaux. Pour cette tâche, nous avons utilisé un nnUNet simple 

et nous nous sommes classés 4e parmi les 36 équipes participantes. La deuxième tâche 

de ce challenge consistait à entrainer un modèle à prédire le risque de rechute des 

patients. Pour cette tâche, nous avons utilisé le modèle ICARE et nous avons été classés 

1er parmi les 18 équipes qui ont participé. 

 

Notre classement pour la tâche de prédiction de survie renforce l’idée qu’une stratégie 

d’apprentissage minimaliste est adaptée au contexte de la prédiction de survie, confir-

mant notre hypothèse : dans certaines situations, il est préférable de ne pas apprendre 

de poids. Une propriété intéressante de ICARE découverte pendant le défi est sa capa-

cité à gérer un grand nombre de caractéristiques, semblant échapper au fléau de la 

dimension. Nous suggérons qu’une analogie avec la sagesse des foules pourrait expli-

quer ce phénomène, où l’erreur de chaque caractéristique est annulée par l’erreur des 

autres, menant à une bonne estimation du risque. 

 

Cependant, ne pas apprendre de poids pourrait être sous-optimal dans des scénarios 

disposant de données suffisantes ou avec un bruit limité, où un modèle attribuant un 

poids plus important aux caractéristiques les plus prédictives serait plus efficace que 

ICARE. Nous avons donc cherché à déterminer dans quelles situations il est préférable 

d’utiliser le modèle ICARE. 

 

Chapitre 9 Comparaison d’ICARE à d’autres modèles d’apprentissage automatique 

 

Dans ce chapitre, nous avons comparé le modèle ICARE à d’autres modèles d’appren-

tissage automatique pour comprendre dans quelles conditions il est préférable d’utili-

ser le modèle ICARE, qui n’attribue pas de poids aux caractéristiques, plutôt qu’un mo-

dèle d’apprentissage automatique traditionnel. Pour cela, 71 ensembles de données 

médicales réelles issus de deux collections, SurvSet et TCGA, ont été collectés. Ces 

grands ensembles de données diversifiés permettent une comparaison exhaustive 
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d’ICARE avec d’autres modèles d’apprentissage automatique. Les données compre-

naient plusieurs caractéristiques et une cible censurée à prédire (par exemple, la pré-

diction de survie). Neuf modèles ont été évalués sur ces ensembles de données, et les 

hyperparamètres de chacun des modèles ont été optimisés, afin de rendre la compa-

raison plus équitable et plus proche de leur utilisation réelle. 

 

L’évaluation a révélé une performance relativement uniforme des modèles à travers la 

majorité des ensembles de données. En particulier, dans la moitié des ensembles de 

données analysés, la différence de score entre les modèles les plus et les moins perfor-

mants était faible, à l’exception du modèle d’arbre de décision qui avait des perfor-

mances systématiquement inférieures. De la même façon, l’optimisation des hyperpa-

ramètres et de la sélection et le prétraitement des caractéristiques n’ont pas apporté 

d’améliorations significatives, mettant en lumière un impact limité du choix du modèle 

et de son optimisation sur la performance prédictive globale. 

 

ICARE, en apprenant de manière univariée seulement le signe de chaque caractéris-

tique au lieu d’un poids, a démontré des performances similaires aux autres modèles 

dans la plupart des ensembles de données tout en présentant moins de surapprentis-

sage, en particulier dans les ensembles de données de haute dimension. Ces résultats 

suggèrent que l’utilisation du modèle ICARE, réduisant le surapprentissage, pourrait 

améliorer la généralisation des modèles entre centres.  

 

Les résultats de l’étude invitent également à reconsidérer l’accent communément mis 

sur les tests et l’optimisation extensifs des modèles. Ils suggèrent qu’il pourrait être 

avantageux d’utiliser des modèles plus simples comme ICARE et de se focaliser en pa-

rallèle sur la recherche de nouvelles informations biologiques plutôt que de passer 

beaucoup de temps à optimiser la combinaison d’informations préalablement identi-

fiées comme pronostiques. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

Cancer is a leading cause of mortality worldwide and was the first cause of premature 

death in 57 countries in 2019 [1]. This multifaceted disease, characterized by abnormal 

and uncontrolled cell growth, stands out by its diversity and complexity, as we know 

today more than 200 types of cancer. It was estimated that 18 million new cancer cases 

were identified, and 9 million fatalities were due to cancer in 2018 [2]. As global 

population is aging, it is expected that the overall number of cancer cases will rise in 

the future [3]. 

Fortunately, medicine made tremendous progress over the last century. While breast 

cancer patients had a five-year survival rate of 40% one hundred year ago, this rate is 

now over 90% thanks to modern treatments and understanding of the disease [4], [5]. 

Even more impressive results were achieved in pediatric cancers as the survival rate 

went from 10% to almost 80% today [6]. 

These remarkable progresses are partly due to our better understanding of the disease, 

but also to the wide range of therapeutic strategies that have been developed in the 

last decades. Combinations of surgery, chemotherapy, radiotherapy, immunotherapy, 

targeted therapy, and hormone therapy are commonly used to treat cancer patients. 

However, effective cancer treatment lies not just in the availability of these options, but 

in their tailored application to individual patients. This requires a nuanced 

understanding of how to predict the severity of the disease and its evolution, and 

monitor the efficacy of selected treatments, a process crucial for optimizing patient 

outcomes while minimizing unnecessary toxicity. 

At the heart of patient management in cancer care is medical imaging, a key tool that 

provides a wealth of anatomical, functional, and molecular insights. The integration of 

Positron Emission Tomography (PET) with Computed Tomography (CT) or Magnetic 

Resonance Imaging (MRI) has become a cornerstone in cancer diagnosis and 

treatment. These modalities offer comprehensive overviews of a patient’s condition, 

from disease profiling at diagnosis to monitoring during and after treatment. As most 

tumors can be easily spotted on whole-body PET scans, as well as their metabolic 

activity, this imaging modality has become pivotal in characterizing disease stage, 
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metabolic heterogeneity, and systemic responses to therapy, thereby informing 

treatment decisions. 

Despite the critical role of PET imaging, its full potential is likely underexploited. 

Traditional approaches to PET image interpretation tend to oversimplify, focusing on 

primary tumors or a limited subset of lesions, and often overlooking the rich 

information present in the entire scan, including in apparently healthy tissues. This gap 

in the utilization of PET imaging data presents a significant opportunity for enhancing 

cancer management. 

1.2 Contribution of the PhD 

Given that context, the focus of this thesis was to find new prognostic information 

present in whole-body PET images. We hypothesis that more information prognostic 

of the outcome of cancer patients is present in PET images. We also hypothesize that 

this information can be identified through data mining approaches and encoded in 

meaningful and practical biomarkers. 

A strong focus was put on the interpretability and reproducibility of the identified 

features, as well as their potential use for patient management. While the 

methodological developments were not bound to a specific disease, the actual 

biomarker search was conducted on two diseases: follicular lymphoma (FL) and diffuse 

large B cell lymphoma (DLBCL). 

A semi-automated method was designed to identify new prognostic image-based 

features and several tools were developed to make this approach feasible. With this 

method, I identified dozens of new features prognostic of the outcome of FL and DLBCL 

patients. We were able to provide an intuitive explanation and definition to many of 

them, and several of the identified features appeared to be prognostic in two cohorts 

of patients, suggesting some commonalities between these two subtypes of non-

Hodgkin lymphoma. 

A new machine learning model (ICARE) designed for outcome prediction was also 

developed to better aggregate the identified biomarkers in a single prognostic 

signature. With this model, we won an international challenge. I demonstrated its utility 

for signature design. 

1.3 Summary of Chapters 

The manuscript is organized as follows: 

Section I Introduction of the concepts 

 

Chapter 2 covers the basics of medical imaging and focuses specifically on the two 

modalities used during the thesis: PET and CT imaging. This chapter also 
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presents the principles of image segmentation and introduces the concept 

of radiomics. 

Chapter 3 is focused on machine learning and covers all the statistical concepts used 

extensively in our work. 

Chapter 4 presents general information about cancers with a focus on lymphomas. It 

specifically dives into Follicular Lymphoma (FL) and Diffuse Large B Cell 

Lymphoma (DLBCL), the two diseases studied during this research. 

 

Section II Original developments 

 

All original developments are presented as articles (submitted, in preparation, or 

already accepted). 

Chapter 5 reports the analysis of the impact of spleen tumor involvement for the 

prognosis of DLBCL patients. 

Chapter 6 presents the biomarker selection tool (ROBI) developed for the semi-auto-

mated search of biomarkers. 

Chapter 7 illustrates the use of the ROBI tool to identify new biomarkers prognostic 

of the outcome of FL and DLBCL patients and includes a tentative interpre-

tation of those biomarkers. 

Chapter 8 presents the ICARE model developed in the context of the HECKTOR chal-

lenge held during the MICCAI 2022 conference. It introduces the model 

and explains how it was used for the challenge. 

Chapter 9 extensively compares the ICARE model to other traditional machine learn-

ing models on a large collection of medical datasets, to clarify its asset. 

Chapter 10 summarizes the achievements and lessons learned from the work and draw 

some perspectives. 
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Chapter 2 

 

Medical Imaging and Radiomics 

Medical imaging is a key technology in modern healthcare, enabling the visualization 

of the internal structure of the body for diagnostic, monitoring, and treatment 

management. Being extensively used across various medical fields, it provides clinicians 

with critical insights that aid in the accurate diagnosis and effective treatment selection 

for numerous conditions. Billions of medical imaging studies are performed each year 

[7]. Computed Tomography (CT) and Positron Emission Tomography (PET) are two 

examples of imaging modalities. CT imaging uses X-rays to produce detailed cross-

sectional images, or slices, of the body, offering valuable information about the body’s 

anatomical structures with precise measurement of tissue density. PET, on the other 

hand, employs a radioactive tracer to visualize metabolic or biochemical activity within 

the body, thus providing functional insights, for instance, how much glucose is 

metabolized in each region of the body. 

The quantitative interpretation of medical images sometimes requires a segmentation 

step. This consists in partitioning an image into one or multiple segments to simplify 

or change the representation of an image into something more meaningful and easier 

to analyze. Segmentation is particularly useful in medical imaging for the delineation 

of anatomical structures and areas of interest, supporting accurate diagnoses and 

treatment planning. For instance, in oncology, delineating the tumors allows to 

estimate the total metabolic tumor volume, a powerful prognostic factor in multiple 

cancers. 

Finally, radiomics involves the extraction of many quantitative features from medical 

images, transforming the unstructured information of images into a structured table, 

allowing for detailed data analysis. 

In this chapter, we will cover the basics concepts of PET and CT imaging, the two 

modalities used during the PhD, as well as image segmentation and radiomics.  

2.1 Computed Tomography 

Computed Tomography (CT) is a medical imaging modality offering precise mapping 

of tissue density in three dimensions [8]. This technique differentiates tissue types by 

measuring their variation in density, which can then be coded with colors, typically 

using grey scales with white representing denser tissues such as bones and black for 

less dense materials like air.  Figure 1 displays various examples of CT images.
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CT images of head, chest, abdomen, 

and thighs (left to right and top to 

bottom).  Taken from [9]. 

 

Coronal reconstruction (left) and 

Sagittal reconstruction (right) of CT 

scan. Taken from [9].

Figure 1: Examples of Computed Tomography (CT) images illustrating how organs can 

be identified. The skeleton (white) stands out clearly and air (black) in the lung can also 

be easily detected. 

The origin of CT can be traced back to Wilhelm Conrad Roentgen’s discovery of X-rays 

in 1895 [10]. Initially met with skepticism, this discovery quickly became pivotal in 

medical diagnosis. X-rays, a form of high-energy electromagnetic radiation, penetrate 

diverse materials, including human tissues. The first X-ray image, which depicted 

Roentgen’s wife’s hand, not only proved the potential of this technology but also 

revolutionized the concept of non-invasive internal examinations. Figure 2 shows 

where X-rays are located on the electromagnetic spectrum and the first X-ray image. 

 

The electromagnetic spectrum with X-rays marked. 

Taken from [11]. 

 

The first X-ray image. Taken 

from [12].

Figure 2: The electromagnetic spectrum with X-rays marked and the first X-ray image 

taken in 1895 depicting Roentgen’s wife’s hand. The ring and skeleton are clearly visible. 
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Early adoption of X-ray technology in medical diagnosis encountered significant 

challenges, including concerns about radiation exposure and the rudimentary nature 

of the initial equipment. Despite these hurdles, the intrinsic diagnostic value of X-rays 

gradually gained recognition, catalyzing enhancements in imaging technologies. This 

evolution culminated in the early 1970s with the development of Computed 

Tomography (CT) by Godfrey Hounsfield and Allan Cormack [13]. CT scans, offering 

three-dimensional imaging, yielded a substantial improvement over traditional X-rays, 

facilitating more comprehensive analysis of internal structures and pathologies. The 

transition from single-slice to multi-slice CT scanners, incorporating sophisticated 

techniques like helical scanning, marked a pivotal progression in medical imaging, 

significantly improving both the speed and resolution of scans [14], [15]. Figure 3 

illustrates the difference between standard X-ray scans and CT images. 

 

Figure 3: Difference between CT scan and X-ray scan. While X-ray only offers a unique 

2D shadow projection of X-rays passing through the whole body, CT scan gives multiple 

2D cross sections (slices) of the whole scanned region. Taken from [16]. 

CT scanners operate by rotating an X-ray source around the patient, capturing images 

from multiple angles, as shown in Figure 4.  

 

Figure 4: Basic principle of the CT scan: multiple images of the patients are taken at 

different angles. These images are then combined to estimate the signal in slices. Taken 

from [17]. 
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These images are then reconstructed into cross-sectional slices using algorithms such 

as filtered back projection and iterative reconstruction. The refinement of these 

algorithms, propelled by advances in computational power, has profoundly impacted 

image quality and diagnostic accuracy [18]. 

A critical aspect of CT scan interpretation is the use of Hounsfield units (HU), which 

provide a standardized scale for measuring tissue density, ranging from -1000 HU for 

air to +2000 HU for dense bone [19]. This scale enables differentiating different tissue 

types, as it quantifies variations in tissue density. The Hounsfield unit is defined by the 

equation:  

𝐻𝑈 = 1000 ×
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟
 

where 𝜇, 𝜇𝑤𝑎𝑡𝑒𝑟, and 𝜇𝑎𝑖𝑟 represent the attenuation coefficients in cm−1 of the voxel, 

water, and air, respectively. The attenuation coefficient represents the degree to which 

different tissues in the body reduce the intensity of X-ray beams. 

The resolution of CT images, referring to the minimum discernible detail, is a key 

feature characterizing the image quality. Modern CT scanners have remarkably high 

resolutions, often to fractions of a millimeter, enabling the detection of small lesions, 

offering more precise diagnosis and treatment planning. 

Contrast agents, typically iodine or barium-based, are employed to enhance the 

visibility of internal structures in CT imaging, such as vascular structures [20]. Figure 5 

presents an example of the benefit of contrast agent. While these agents are widely 

used, they are some risks associated with their injection, such as allergic reaction, 

leading to the development of safer alternatives and protocols[21]. 

 

Figure 5: CT scan before (left) and after (right) injection of contrast agent. The kidneys 

stand out more clearly with the contrast agent. Taken from [22]. 
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While CT is known for its rapid, high-resolution imaging capabilities, alternative 

modalities like MRI and ultrasound offer benefits such as the absence of radiation 

exposure. Ensuring patient and personnel safety in CT imaging involves minimizing 

radiation doses through specific technologies and protocols. Current research 

endeavors are directed towards mitigating CT’s inherent limitations, such as radiation 

risks and challenges in imaging certain soft tissues, by developing lower-dose 

techniques and enhancing image quality [23]. 

2.2 Positron Emission Tomography 

Positron Emission Tomography (PET) stands as a pivotal imaging modality in medical 

diagnosis and research, owing to its unique capability to visualize physiological 

processes within the human body. This technique finds extensive application in various 

fields such as oncology, neurology, and cardiology, and plays an important role in 

disease detection and treatment monitoring [24]. 

 

Figure 6: Maximum intensity projection of PET scans of different patients with two 

radiotracers: 18F-FDG (top row), which reflects glucose consumption, and 68Ga-FAPI 

(bottom row), which maps fibroblast activation protein (FAP) that is often over expressed 

in cancerous tissues. The darker the image, the higher the concentration of radiotracer. 

Each column corresponds to one patient. While brain and liver are clearly visible with 
18F-FDG, they are not with 68Ga-FAPI, while cancerous lesions can still be observed, 

showing that 68Ga-FAPI might be more specific to cancerous areas in certain anatomical 

regions. Taken from [25].  
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The process of PET imaging requires the administration of a radioactive tracer, such as 

fluorodeoxyglucose (FDG), which makes it possible to map glucose metabolism. A large 

variety of tracers can target many different specific physiological processes such as 

oxygen consumption, blood flow, or receptor binding. This diversity of radiotracers 

underscores PET’s adaptability across different medical and research applications. 

Figure 6 illustrates this by showing the PET images of the same patients scanned with 

two different radiotracers. 

 

Figure 7: Overview of the whole process of PET imaging, from the production of the 

radiotracer to the reconstruction of the image. Taken from [26]. 

Upon administration, the tracer, containing a positron-emitting radionuclide like 

fluorine-18 for FDG, engages in the body’s biochemical pathways. In cancer detection, 

for example, the elevated glucose consumption of cancer cells results in higher FDG 

accumulation, leading to an increased emission of positrons in tumor regions [27]. The 

annihilation of these positrons with electrons generates two gamma photons traveling 

in opposite directions. The concurrent detection of these photons allows the three-

dimensional reconstruction of the image, accurately locating the tracer within the body 

[28]. Algorithms such as Ordered Subset Expectation Maximization are employed to 

transform these signals into a three-dimensional image, delineating the tracer 

distribution and providing insights into the metabolic activity of tissues. Figure 7 

summarizes the whole process. 

The radioactive nature of the radiotracer implies that its activity diminishes over time. 

For instance, 18F-FDG has a half-life of 110 minutes. The positron emission rate is 

affected by this decay and other factors as well such as patient weight and machine 

parameters. To address this variability, the Standardized Uptake Value (SUV) has been 

introduced. The SUV, a dimensionless ratio, reflects the tracer concentration in a 



 

39 

specific region, normalized against the administered dose and the patient’s body 

weight. It offers a standardized quantitative measure of radiotracer concentration, 

enabling comparisons across different patients. SUV is usually defined as: 

𝑆𝑈𝑉 =  
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑠𝑒
× 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 

with the 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑠𝑒 in megabecquerel (MBq), 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 in gram, and 

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 in MBq/milliliter. PET excels in detecting metabolic alterations 

before structural changes become evident. This is particularly valuable in early cancer 

detection and in identifying initial signs of neurodegenerative diseases, such as the 

early detection of amyloid plaques in Alzheimer’s disease [29].

  

PET/CT scan of lungs taken from [30]. 

 

PET/MRI of the brain taken from [31]. 

Figure 8: Examples of PET combined with CT and MRI. The PET image is shown in color 

while the information of CT and MRI are shown in grey scale. 

In clinical settings, PET is often combined with computed tomography (CT) or magnetic 

resonance imaging (MRI) to create hybrid modalities like PET/CT or PET/MRI. Examples 

are provided in Figure 8. This fusion enhances diagnostic precision by integrating PET’s 

functional insights with the anatomical details provided by CT or MRI. However, it is 

noteworthy that PET’s spatial resolution is generally inferior to that of CT and MRI, with 

modern PET systems achieving resolutions around 4 mm, compared to the 

submillimeter resolution of CT or MRI. 

Despite these technological advances, PET imaging faces certain limitations. 

Radiotracers, for example, do not exclusively accumulate in target regions. While 18F-

FDG concentrates in tumors, it also accumulates in areas naturally exhibiting high 

glucose metabolism, such as the brain, and in inflammatory sites [32]. This can 

complicate image interpretation, driving ongoing research towards more condition-

specific tracers. Moreover, the short lifespan of radiotracers introduces logistical 

challenges. Some must be produced in a cyclotron and promptly transported to the 

imaging site, limiting PET’s availability in areas remote from production facilities. This 
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also complicates scheduling, as delays in tracer production or transportation can result 

in tracer wastage and require rescheduling patient appointments. 

PET imaging also involves radiation exposure from the radioactive tracers. Although 

the radiation levels are low and within accepted safety margins, there remains an 

inherent risk, particularly for repeated scans or sensitive groups such as children or 

pregnant women. Nonetheless, the significant diagnostic and therapeutic benefits of 

PET imaging justify this exposure but require a balance of risks and benefits [33]. The 

decision to employ PET imaging takes into account the patient’s overall radiation 

exposure history, especially in scenarios involving multiple imaging procedures or 

longitudinal studies with repeated scans. 

2.3 Image segmentation 

Medical image segmentation is a useful tool for the quantitative analysis and 

interpretation of diverse imaging modalities [34], [35], [36]. This involves dividing a 

digital image into segments or sets of voxels, thereby streamlining the image’s 

structure and augmenting its suitability for analytical purposes. In clinical practice, 

segmentation can help differentiating between various anatomical or functional 

structures or regions of clinical interest, such as organs, tumors, or tissue types. 

Figure 9 shows several examples of segmentation of PET and CT images. 

 
Organ segmentation in CT 

images. Taken from [37]. 
 

Tumor segmentation 

example. Taken from [38]. 

 
 

 
Example of stroke lesions 

segmentation on CT 

images. Taken from [39].

Figure 9: Examples of segmentation on CT and PET images of organs, tumors, and stroke 

lesion. 

In specialties like radiology, oncology, and neurology, segmentation can play a key role 

[40], [41], [42]. Radiologists use segmentation to accurately delineate organ boundaries 

in CT or MRI scans, to guide treatment in radiotherapy for instance, or extract 

prognostic parameters from the segmented areas. In the field of oncology, 

segmentation help characterize tumors, thus informing cancer treatment strategies. For 

neurologists, segmentation is essential for identifying cerebral abnormalities, including 

lesions or areas impacted by stroke, significantly influencing patient management 

strategies [43]. 
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Segmentation techniques vary, ranging from manual delineation by experts to semi-

automatic and fully automatic methods. A prevalent semi-automatic approach involves 

initially running an automatic threshold-based segmentation (e.g., using a 2.5 SUV 

threshold for segmenting tumors in PET images of lymphoma patients [44]), followed 

by manual adjustment and classification of the segmented regions by a physician (e.g., 

metabolic or tumoral in oncologic PET imaging). Although straightforward, this method 

has several drawbacks. Determining appropriate cut-off values is challenging, and this 

approach requires time and effort by the physician. Consequently, there has been a 

growing interest in fully automatic segmentation, propelled by advances in deep 

learning models like U-Net and V-Net. The architecture of U-Net, characterized by its 

contracting and expansive pathways, enables precise localization, rendering it 

exceptionally suitable for medical image segmentation. These Convolutional Neural 

Networks (CNNs) are trained on extensive datasets, allowing them to distinguish 

between various tissues and structures effectively. An advanced iteration, nnU-Net, has 

further enhanced this approach, extending its applicability to a wider range of scenarios 

[45]. 

 

Figure 10: List of organs automatically segmented by TotalSegmentator. Taken from [46]. 

Although fully automated tumor segmentation remains challenging, organ 

segmentation using deep learning models has become remarkably precise and robust. 

User-friendly implementations, such as TotalSegmentator [46] and MOOSE [47], are 

now available through open-source software. These models, trained on numerous 

examples, achieve high levels of segmentation accuracy. This automated approach 

paves the way for comprehensive analyses of whole-body information in large patient 

cohorts, a task that would have been prohibitively resource intensive in the past. Figure 

10 lists all the organs segmented by TotalSegmentator. 
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However, these technological advances also introduce ethical and regulatory 

considerations [48]. For instance, algorithmic bias in segmentation can have clinical 

consequences, emphasizing the need for diverse training datasets to ensure equitable 

and accurate diagnoses across various patient demographics. Moreover, addressing 

privacy concerns related to the use of patient data for training these algorithms is a 

critical ethical issue. The integration of deep learning models into clinical settings 

brings unique challenges, primarily due to the complexity and unfamiliarity of AI-based 

systems. Physicians, traditionally relying on established diagnostic methods, may 

struggle with interpreting and trusting AI-generated results, particularly when the AI’s 

decision-making process is opaque or inexplicable. This “black box” nature of AI can 

impede effective collaboration between human clinicians and AI systems, potentially 

leading to resistance against adopting such technologies. 

Another challenge is the efficient use of these models. It is unrealistic to expect to 

remove human expertise from medical image analysis. The next natural question is 

therefore how to get the best synergy from human-AI collaboration. For instance, 

numerous works are being conducted on how to point to the physician the 

automatically segmented regions that need the most attention and review [49]. 

Additionally, establishing clear legal responsibilities, especially in cases of misdiagnosis 

or treatment errors, remains a contentious issue [50]. The determination of liability, 

whether it rests with the physician or the AI model (and, by extension, its developers), 

is a complex legal and ethical matter. This ambiguity may cause reluctance among 

physicians in relying on AI tools, despite their evident potential benefits. 

2.4 Radiomics 

Radiomics represents an innovative intersection of medical imaging, computer vision, 

and data science, transforming imaging data into a high-dimensional space well suited 

for advanced statistical analysis [51], [52]. Leveraging common imaging modalities like 

PET, CT, and MRI, radiomics aims to transform unstructured image data into structured 

data amenable to advanced statistical examination and automated image analysis. 

The radiomic workflow starts with image acquisition, followed by segmentation to 

identify areas of interest, such as tumors or specific organs. This segmentation stage 

varies in approach, manual, semi-automatic, or fully automatic. Preprocessing then 

normalizes variances due to different imaging equipment, patient positioning, 

population characteristics, and inherent noise. This step, which is key for maintaining 

consistency and reproducibility across datasets [53], [54], includes processes like 

interpolation for uniform voxel spacing, outlier elimination, and value discretization via 

binning, thereby mitigating noise-related feature distortion (binning is also required 

for some radiomic features) [55]. Subsequent stages involve automatic extraction of 

diverse features (shape, intensity, texture), employing tools like the open-source 

PyRadiomics package [56], which we used throughout this thesis. These features 
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effectively convert qualitative visual data into quantifiable metrics [57]. Figure 11 

summarizes the whole process. 

 

Figure 11: Overview of the full radiomic analysis pipeline. Taken from [58]. 

Radiomics’ potential is extensive, offering pathways to new hypotheses, image-based 

biomarker discovery, and partial automation of image analysis – prospects that could 

revolutionize diagnosis, prognosis, and treatment strategies. Studies have repeatedly 

established significant correlations between radiomic features and relevant clinical 

endpoints, such as disease phenotypes and treatment responses [59], [60], [61], [62], 

[63]. 

However, the translation of radiomics into clinical practice remains limited. Despite 

extensive literature referencing radiomics, few results have reached clinical application 

[64], [65]. Challenges impeding broader adoption include small cohort sizes, issues with 

reproducibility and standardization, complex model interpretation, and 

methodological concerns. Initiatives like the Imaging Biomarker Standardization 

Initiative (IBSI) [66], [67] are pivotal in promoting standardization, thereby enhancing 

study reproducibility and clinical applicability. Tools like PyRadiomics [56] and LIFEx 

[68] provide consistent analysis platforms, while techniques like ComBat [69] address 

cohort variability, increasing radiomics’ applicability. The radiomics community’s 

commitment to developing best practice guidelines is also instrumental in improving 

study quality [70], [71], [72], [73]. 

A critical hurdle remains in the interpretability of radiomic data, essential for both 

scientific credibility and clinical application. The challenge lies in deciphering the 

intricate mathematical definitions of the radiomic features and ensuring that these 

features correlate meaningfully with biological or pathological processes. Without 
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clarity, there is a risk of radiomic models becoming opaque “black boxes”, technically 

accurate but clinically elusive. This opacity can impede clinical integration and increase 

the likelihood of false discoveries. The challenge intensifies when integrating radiomic 

features with machine learning models. Efforts to explain radiomics findings remain 

rare [74], [75], [76]. An appealing scenario could be to find new relevant biological 

information through radiomic data mining, and then reencode this information in 

simpler and more interpretable ways. Enhancing interpretability not only improves 

confidence in radiomic findings but also bridges the communication gap between 

researchers and clinicians. Moreover, it is a necessary step to use radiomics for 

knowledge discovery. Understanding the biological mechanisms encoded by a feature 

is a promising way to improve our understanding of the disease. 

An alternative approach to radiomic is deep radiomic. Instead of manually defining the 

features with mathematical formula, we let a model learn them directly from the 

images. More specifically, a neural network, often a Convolutional Neural Network 

(CNN), is trained on the images, in supervised or unsupervised manner, and creates 

abstractions (e.g., features) in its inner representation. Then, interpretation techniques 

are used to isolate and understand specific features learned by the model that could 

be useful. This is a promising but challenging approach. Its greater flexibility and 

abstraction capabilities make it more powerful than manual definition, potentially 

discovering more meaningful features, but it also makes the approach more prone to 

overfitting. Higher volume of training data is often needed to train neural networks and 

the datasets available for radiomic analysis rarely include more than a thousand 

patients. A second challenge is the identification and interpretation of the features 

learned by the model. While many interpretation techniques exist to decipher CNNs 

(e.g., GradCam, SHAP, …), it remains a difficult task. I explored this methodology during 

the PhD. While I was able to identify known biomarkers for DLBCL patients (TMTV and 

Dmax), I did not find new ones. Despite many efforts, I found this approach less suited 

than manual definition of the features for the task and data at hand. 
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Chapter 3 

 

Machine learning 

Machine learning sits at the intersection of statistics and computer science. Despite 

being an old discipline, it has gained unprecedented momentum in recent times, 

propelled by advancements in computational power, the availability of large datasets, 

and continuous innovations in algorithmic techniques. Unlike traditional programming 

methods, which rely on explicit instructions for specific tasks, machine learning enables 

computers to learn and make decisions from data, offering a more flexible and dynamic 

approach to problem-solving. This adaptability makes it particularly valuable in 

complex scenarios where predefined rules fall short [77]. 

Today’s medicine produces a phenomenal quantity of data. Tools that can effectively 

explore, understand, and retrieve useful information from these large and complex 

pools of data have the potential to greatly improve our knowledge and the toolbox of 

the physicians [78]. For instance, successful applications of the method in radiology, 

dermatology and oncology have been reported, such as automated disease 

classification, organ segmentation and tumor segmentation [46], [79], [80], [81]. 

In this chapter, we will cover the basics of the discipline, present some algorithms that 

can learn from data, how they can be used for medical applications, and finally 

concepts and tools that are extensively used in this thesis to find new image-based 

biomarkers. 

3.1 Basic principles 

Data science is an interdisciplinary domain that uses scientific methods, statistics, and 

algorithms to extract knowledge and insights from data. Machine learning is one of the 

tools used by data scientists [82]. 

Traditional programming involves the explicit definition of a precise set of instructions 

defined by a human, that are then executed by a machine to achieve the desired goal. 

For instance, let’s say we want to write a program that return tomorrow’s temperature 

based on today’s weather data. With the traditional approach, a programmer could 

produce this type of equation: 

𝑇𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 = 0.85 × 𝑇𝑡𝑜𝑑𝑎𝑦 +  0.03 × 𝐻𝑡𝑜𝑑𝑎𝑦 

with 𝑇 the temperature and 𝐻 the humidity. But then, the programmer compares the 

output of its program to real weather reports and find discrepancies. He reads in 



 

46 

meteorology literature that atmospheric pressure can influence the temperature of the 

next day. Thus, he updates his previous program to account for this and update some 

coefficients based on the discrepancies he saw in the data: 

𝑇𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 = 0.85 × 𝑇𝑡𝑜𝑑𝑎𝑦 +  0.03 × 𝐻𝑡𝑜𝑑𝑎𝑦 +  0.03 × 𝑃𝑡𝑜𝑑𝑎𝑦 

with 𝑃 the atmospheric pressure. With additional trials and errors, intuition and expert 

knowledge, the programmer can keep updating his program to have the results closest 

to the weather reports. 

Machine learning takes the opposite direction: learning the program directly from the 

data. For instance, a linear regression, a type of machine learning model, would define 

the temperature as: 

𝑇𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 = 𝛽0 + 𝛽1 × 𝑇𝑡𝑜𝑑𝑎𝑦 + 𝛽2 × 𝐻𝑡𝑜𝑑𝑎𝑦 +  𝛽3 × 𝑃𝑡𝑜𝑑𝑎𝑦 

The 𝛽 values are called parameters and are unknown by default. Only the available 

features (𝑇, 𝐻 and 𝑃) are specified to the model. Then based on the actual values in the 

weather report, the linear regression algorithm will define the best 𝛽 values to produce 

a predicted temperature as realistic as possible. 

Another intuitive machine learning algorithm is the K-nearest neighbor. The idea is 

straightforward: in the data, find the K examples that are the most similar to the sample 

for which we want to make a prediction. In our example, we will find the K days with 

𝑇, 𝐻 and 𝑃 closest to the 𝑇, 𝐻 and 𝑃 of the day for which we want to make a prediction. 

We will then take the average temperature of the days following our K neighbors to 

get the final prediction. This approach is sometimes referred to as digital twins in 

medicine applications. 

The machine learning approach described above is called “supervised” because we 

provide examples of the desired output to the algorithm. Another approach is called 

“unsupervised”. In this scenario, we do not explicitly tell the algorithm what the desired 

output is. We rather let it find relevant patterns in the data. If we give the weather 

reports to an unsupervised machine learning, it could group the days by seasons or 

create cluster of days with and without storm for instance. 

One important concept in modelling was captured by the statistician George Box: “All 

models are wrong, but some are useful”. No model will ever predict the temperature 

of the next day to a thousandth of a degree, but this precision is not required for the 

model to be useful. For this reason, model evaluation plays a central role in machine 

learning. It consists in estimating the performance (e.g., accuracy) of the model on new 

unseen data. In other words, once the model is deployed and used in real world 

applications, how precise will its prediction be (the underlying question being, is the 

model precise enough to be useful)? This is called the testing phase. It is important to 

use different datasets for training and testing. Most of the time, a model will perform 
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better on the data used to train it than on new data the model never learned from. For 

this reason, we often used a “training set” and a “testing set”. 

 

Figure 12: Overall diagram of the machine learning development and deployment 

process. 

Samples of the real world are necessary to build (e.g., train) the model and evaluate it. 

It is necessary to have enough data for efficient training and testing. It is intuitive that 

the model will not be realistic if we only have three weather reports. A good rule of 

thumb is the more data the better. More specifically, it is important that the data 

available are representative of the data on which the model will be used. Having a 

million weather reports of London will probably not produce an accurate model for 

weather prediction in Rio de Janeiro. Figure 12 shows a diagram of the notions 

introduced above. 

One common challenge in this learning process is overfitting and underfitting. 

Overfitting is like a student memorizing answers without understanding the underlying 

concepts, leading to poor performance in unfamiliar situations. This happens when a 

model learns too much from the training data, including the noise and inaccuracies, 

and fails to generalize to new data. Underfitting, on the other hand, is when the model 

has not learned enough from the training data, akin to a student who has not studied 

enough and thus cannot make accurate predictions or decisions. 

Regularization addresses overfitting by adding a penalty to the learning algorithm. This 

penalty discourages the model from learning a more complex or flexible model, thus 

forcing it to learn only the most important patterns in the training data. Common forms 

of regularization include techniques like L1 and L2 regularization, which add different 

types of penalties to the cost function used by the learning algorithm. 
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Another key component of the machine learning process is feature preprocessing. It 

involves the techniques applied to raw data before feeding it into a machine learning 

algorithm. The purpose of this step is to convert or encode the data in a manner that 

enhances the algorithm’s performance, making it easier for the model to learn and 

make predictions. This process can include scaling or normalizing features so that they 

are on a similar scale, handling missing values, encoding categorical variables into 

numerical values, and creating new features from the existing ones (feature 

engineering). Effective feature preprocessing can significantly improve the 

performance of a machine learning model, as it helps in reducing the complexity of the 

data and highlights the most important attributes for making predictions [83]. 

Classification and regression are two fundamental types of tasks in the field of machine 

learning and statistics, each serving different purposes. Classification involves 

categorizing data into predefined classes or groups. For instance, a classification model 

might be used to determine whether an email is “spam” or “not spam”, or to identify 

the species of a plant based on its features. The key characteristic of classification is 

that the output is categorical, not numerical. On the other hand, regression deals with 

predicting a continuous, numerical output. The goal is to understand the relationship 

between variables and to predict a quantity. In our weather forecast example above, 

the task of predicting the temperature of the next day was a regression task.  

3.2 Models 

This section will briefly describe common machine learning models. The goal is not to 

give a complete understanding of each model, but rather an intuitive and simple 

explanation to grasp the core idea, the strengths, and weaknesses of each model. 

3.2.1 Linear regression 

Linear regression is a method used for modelling the relationship between a 

dependent variable and one or more independent variables [84]. The aim is to fit a 

linear equation to observed data. In simple linear regression, this equation takes the 

form: 

𝑦 = 𝛽0 + 𝛽1 × 𝑥1 + 𝛽2 × 𝑥2 + ⋯ 

where 𝑦 is the dependent variable, 𝑥𝑖 are the independent variables, 𝛽0 is the 𝑦-

intercept, and 𝛽𝑖 are the slope of the line. This equation allows us to predict the value 

of 𝑦 based on the values of 𝑥𝑖 . Linear regression is widely used because of its simplicity 

and interpretability, and it finds applications in numerous fields, such as economics, 

biology, engineering, and social sciences. The key assumption in linear regression is 

that there is a linear relationship between the variables, and it requires careful 

examination of data for accuracy and validity of the model. While it might seem 

simplistic, in practice, this assumption often allows for good performance and robust 

generalization on to new data. 
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3.2.2 Logistic regression 

Logistic regression is a model used for binary classification tasks, where the goal is to 

predict a binary outcome (e.g., yes/no, success/failure). Unlike linear regression, which 

predicts a continuous output, logistic regression predicts the probability of an event 

occurring [85]. It models this probability in relation to one or more variables using a 

logistic function. The logistic function ensures that the output probability is always 

between 0 and 1. The basic form of the logistic regression equation is: 

𝑃(𝑌 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1×𝑥1+𝛽2×𝑥2+⋯ )
 

where 𝑃(𝑌 = 1) is the probability of the event occurring, 𝛽0 the intercept, and 𝛽𝑖 are 

the coefficients of the features 𝑥𝑖 . It is particularly useful because it not only provides a 

classification but also quantifies the odds of the event occurring as a function of the 

independent variables. 

3.2.3 Decision tree 

A decision tree is a machine learning algorithm used for both classification and 

regression tasks. It models decisions and their possible consequences as a tree-like 

structure, where each internal node represents a test on a feature (e.g., is the 

temperature above 20°C), each branch represents the outcome of the test, and each 

leaf node represents a class label (decision taken after computing all attributes). 

 

Figure 13: Example of a decision tree to classify patients as low or high risk of heart attack, 

based on their age, weight and tobacco consumption. Taken from [86]. 
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When constructing a decision tree, the algorithm selects the attribute that best splits 

the data into groups with the most homogeneous (or similar) outcomes. This selection 

is often based on criteria like Gini impurity or information gain for classification tasks, 

and variance reduction for regression. The process is recursive, splitting each subset 

further until the algorithm reaches a predetermined stopping condition (like a 

maximum depth or minimum number of samples required to split a node). Figure 13 

shows an example of a decision tree that classifies patients as low or high risk of heart 

attack. 

Decision trees are popular due to their simplicity, ease of interpretation, and ability to 

handle both numerical and categorical data. They also do not require feature 

normalization. They visually represent the decision-making process, which can be easily 

understood by non-experts. However, they can be prone to overfitting, especially if 

they grow too deep or complex, thus failing to generalize well from the training data 

to unseen data. Techniques like pruning (removing parts of the tree that provide little 

power to classify instances) and limiting the depth are used to prevent this overfitting 

[87]. 

3.2.4 Ensemble models 

Ensemble models in machine learning are advanced methods that combine multiple 

individual models to improve overall predictive performance, compared to using a 

single model. The underlying principle is that a group of “weak learners” can, when 

combined, form a “strong learner”. There are various types of ensemble methods, with 

Bagging, Boosting, and Stacking being the most prominent [88]. Figure 14 illustrates 

these three methods. 

In Bagging, multiple models are trained in parallel on different subsets of the data 

(sampling with replacement also known as bootstrapping), and their predictions are 

averaged (for regression) or voted (for classification) to produce the final output. 

Random Forest is a well-known example of bagging, where multiple decision trees are 

combined.  

 

Figure 14: The three types of models ensembling methods. Taken from [89]. 
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Boosting, on the other hand, trains models sequentially, each new model focusing on 

the mistakes of the previous ones. The idea is to gradually improve the model’s 

performance. 

Stacking involves training multiple models and then using another model to combine 

their predictions. The first-layer models are trained on the full dataset, and their 

predictions are used as inputs for the second-layer model to make the final prediction. 

Ensemble methods are widely used because they often lead to more robust and 

accurate models, reducing the likelihood of overfitting and improving performance on 

diverse datasets. However, they can be computationally intensive and less interpretable 

than individual models. 

3.2.5 Support Vector Machines 

Support Vector Machines (SVMs) are a set of supervised learning methods used for 

classification and regression. The core idea behind SVM is to find the best hyperplane 

(e.g., a line in two dimensions, a plane in three dimensions) that separates different 

classes in the feature space. For binary classification, this hyperplane is chosen to 

maximize the margin between the two classes, where the margin is defined as the 

distance between the hyperplane and the nearest data points from each class, known 

as the support vectors [90]. Figure 15 illustrates this type of model in action. 

 

Figure 15: Visualization of SVMs separating the green and red points in a two- and three-

dimensions spaces. Taken from [91]. 

SVMs are effective in high-dimensional spaces and are versatile, as different kernel 

functions can be specified for the decision function. Common kernels include linear, 

polynomial, and radial basis function (RBF). The choice of kernel and its 

hyperparameters can have a significant impact on the performance of the SVM. Figure 

16 shows the impact of the choice of kernel on the model. SVMs are known for their 

accuracy and robustness, particularly in cases where the number of dimensions exceeds 

the number of samples. However, they can be computationally intensive, especially for 

large datasets, and may require careful tuning of hyperparameters and choice of kernel 

to achieve optimal performance. 
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Figure 16: Visualization of the impact of the choice of kernel on the SVM decision 

boundaries. Accuracy is given in each plot. Taken from [92]. 

3.2.6 Neural Networks 

Neural networks (NN) are machine learning algorithms inspired from an old 

understanding of the human brain. The key element of the NN are the artificial neurons. 

Each neuron performs a weighted sum of its inputs, add a bias, and pass it to an 

activation function. Common activation functions are the sigmoid and ReLU (0 if x < 0 ; 

x otherwise). The free parameters learned by the model are the weights and biases of 

the neurons [77]. 

 

Diagram of a single neuron. Taken from 

[93]. 

 

A basic neural network. Taken from [94]. 

Figure 17: Diagrams of a node (e.g., neuron) of a neural network and a simple neural 

network with one hidden layer. 

Stacked in layers of interconnected neurons, they transform input data through various 

stages, from the initial input layer, through one or more hidden layers, to the final 

output layer. Figure 17 shows diagrams that summarize this. A simple NN with only 

one hidden layer can theoretically code any function with enough neurons. In practice, 

it is often better to have multiple hidden layers (hence the term deep learning) to 
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improve performance. Each layer will use the output of the previous layer. This allows 

the model to create and handle more and more abstract and complex concepts as we 

go deeper in the model. 

One of the key strengths of NN is their versatility in architecture, allowing them to be 

tailored for a wide range of applications. For instance, Convolutional Neural Networks 

(CNNs) are highly effective for image processing, while Transformers excel in handling 

sequential data like natural language. NN architectures are numerous, and it is a vast 

domain. 

However, NN generally require large datasets to perform well; they are not ideally 

suited for small datasets as they can easily overfit, learning the noise in the training 

data rather than the intended patterns. Overfitting is a significant challenge with NN 

and regularization techniques, such as dropout, L1/L2 regularization, or early stopping, 

are employed to prevent this by penalizing overly complex models and promoting 

simpler, more generalizable models. 

Despite their power and flexibility, NN have limitations. They demand substantial 

computational resources, especially deep networks with many layers. Also, their ‘black 

box’ nature can make it difficult to understand the exact reasoning behind their 

decisions. This complexity, combined with the need for large datasets and careful 

regularization to avoid overfitting, are important considerations in their application.  

3.3 Survival analysis 

Survival analysis is fundamentally designed to analyze and interpret data where the 

outcome of interest is the time until an event occurs. This event could be anything from 

the failure of a machine to the death of patients, or the time until a cancer under control 

starts developing again. 

One unique aspect of survival data is the presence of censored data, particularly right-

censored data. Right-censoring occurs when the event of interest has not happened 

for some subjects during the study period. For instance, if a study ends after five years, 

but some patients are still alive, their survival time is unknown beyond those five years. 

This incomplete data cannot be discarded, as it still provides valuable information 

about survival times. Figure 18 shows examples of censored data. Traditional machine 

learning models, which expect complete information for all cases, are inadequate for 

handling censored data. If classic machine learning algorithms were used as is on this 

type of data, they will be effectively trained to predict the date of censoring rather than 

the date to the timepoint of interest. This limitation requires the adaptation of models 

to accommodate the uncertainty introduced by censoring. The models must estimate 

survival functions while considering that some data points do not represent actual 

event occurrences but rather the minimum time until the event could occur [95]. Many 

machine learning models such as tree-based models, SVMs and boosted models have 

been adapted to this type of data. 
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Figure 18: Diagram showing examples of censored data. Points in red represent patients 

who died during the study, and for which the death was observed. Patients in green are 

censored: we know they were alive until the time point, but we do not know if nor when 

they died. Taken from [96]. 

The Cox proportional hazards model, often referred to as Cox model, is a statistical 

technique used predominantly in medical research to investigate the relationship 

between the survival time of patients and one or more predictor variables. It models 

how each factor influences the outcome of the patients. A key feature of the Cox model 

is that it can handle multiple biomarkers (e.g., variables) at the same time, combining 

them into a unique score, easier to use in clinical practice, as well as insights into which 

factors are more significant. This model assumes that the hazard ratios (coefficients) of 

the features are constant over time, an assumption known as the proportional hazard 

assumption. The model is defined as: 

𝑝 =  exp (𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚) 

ℎ(𝑡) =  ℎ0(𝑡) × 𝑝 

with 𝑝 the partial hazard, 𝑡 the timepoint for which the prediction is done, ℎ(𝑡) the 

hazard of the patient at the time 𝑡 estimated by the model from the 𝑚 features 

(𝑥1, 𝑥2, … , 𝑥𝑚), ℎ0(𝑡) the baseline hazard and 𝛽𝑖 the coefficients of each covariate. 

Exp (𝛽𝑖) is called the hazard ratio (HR) of feature 𝑥𝑖 . HR equals to 1 mean no effect, 

higher than 1 means a positive correlation with the risk and vice versa for a HR below 

1. Partial hazard 𝑝 can be used as prediction if we are only interested in ranking the 

patients by hazard (e.g., risk). 

Other models for survival analysis include parametric models like the exponential, 

Weibull, and log-normal models, which assume a specific form for the hazard function. 
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These models can provide more detailed estimates under certain conditions but 

require more assumptions about the data, which may not always be appropriate [97]. 

 

Figure 19: Diagram showing how comparable pairs are defined to compute a 

concordance index. Taken from [98]. 

Harrell’s concordance index (e.g., concordance index or C-index) is an important 

measure in survival analysis. It gauges the model’s predictive accuracy by quantifying 

how well the model predicts the ordering of subjects’ event times. It compares the 

predicted and observed outcomes to see how often the model correctly predicts the 

order of events. For example, if a model predicts that one patient will experience an 

event (like a disease recurrence) before another, and this prediction is true in the actual 

data, it contributes positively to the C-index. A C-index of 0.5 suggests no predictive 

discrimination, akin to random guessing, while a C-index of 1 indicates perfect 

predictive accuracy. Generally, a C-index higher than 0.7 is considered acceptable in 

many clinical models. C-index used pairs of samples that are comparable (e.g., the 

sample with the lowest value should not be censored). Figure 19 illustrates this 

comparability of samples. 

However, Harrell’s C-index can become optimistically biased in scenarios with high 

censoring (overestimate the model’s predictive ability). To address this limitation, Uno’s 

C-index was developed and is less biased when censoring is high [99]. 
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Figure 20: Estimation of the optimistic bias of Harrell and Uno C-index on synthetic data. 

The y axis is the C-index without any censoring minus the C-index with the censoring. 

The x axis is the proportion of censored samples. The higher the censoring, the higher the 

bias. Even if Uno handles it better, it is still biased when censoring increases. 

Yet, it does not completely remove the optimistic bias. Figure 20 shows a measure of 

this bias on synthetic data. A better approach is to use the Receiver Operating 

Characteristic curve (ROC) and its associated Area Under the Curve (AUC) metric. They 

are used to evaluate the performance of a binary classification model, indicating its 

ability to distinguish between two classes by plotting the true positive rate against the 

false positive rate at various threshold settings. The cumulative/dynamic receiver 

operating characteristic curve (AUC) (e.g., time-dependent AUC, tAUC) extends the 

concept of AUC to time-to-event data by considering the probability of an event 

occurring at or before various time points [100].  

 

Figure 21: Time-dependent AUC (tAUC) of multiple clinical features to predict time to 

death. tAUC is given on the y axis, and time on the x axis. The average tAUC are given 

with the dashed lines. Taken from [101]. 
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tAUC assesses the model’s discriminatory power at different times, acknowledging that 

the ability to predict an event may change over time. For each time point, it calculates 

an AUC reflecting how well the model distinguishes between individuals who will 

experience the event before that time and those who will not. This approach allows for 

a more nuanced and temporally detailed assessment of model performance, 

particularly important in clinical settings where risk predictions are needed at different 

follow-up times. The measure can be averaged over time to have a unique value as a 

score. Figure 21 shows an example on real data. 

Kaplan-Meier curves are another fundamental tool in survival analysis [102]. They 

provide a non-parametric way to estimate and visualize the survival function from the 

lifetime data. By plotting the proportion of subjects surviving against time, these curves 

offer an intuitive understanding of the survival experience of a group. It is often used 

in clinical trials to compare the survival of different groups of patients and assess if one 

group survives better than another. Figure 22 illustrates this. 

 

Figure 22: Example of Kaplan-Meier curves used to assess the efficacy of two treatments 

A and B. It is clearly visible that patients who received treatment B survived better than 

those who received treatment A. Taken from [103]. 

The logrank test is commonly used to compare the survival distributions of two or more 

groups. It is a non-parametric test that assesses whether there is a statistically 

significant difference in survival between groups, making it invaluable in analyzing 

clinical trial data where comparing different treatment groups is essential [104]. 

3.4 Feature selection  

Feature selection is a critical process in the development of machine learning models 

[105]. It involves identifying and selecting those input variables that are most relevant 
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to the task at hand. This process is crucial because the quality and quantity of features 

directly influence the performance of machine learning models. By selecting the most 

pertinent features, the model can focus on the most relevant data, reducing the risk of 

overfitting and improving its ability to generalize to new, unseen data. Overfitting 

occurs when a model learns not only the underlying patterns in the training data but 

also its noise. This makes the model less effective at predicting outcomes for new data. 

Therefore, by reducing the number of irrelevant, noisy or redundant features, feature 

selection helps in building more robust models. 

The concept of the "curse of dimensionality" is closely tied to feature selection. This 

term describes the phenomenon where the feature space increases exponentially with 

the addition of each new feature, which leads to a significant increase in the amount 

of data needed to ensure that the model can learn effectively. In high-dimensional 

spaces, data becomes sparse, and the model struggles to learn from it, necessitating 

an even larger dataset for training. This sparsity makes it difficult for the model to find 

and learn patterns in the data, which, in turn, can lead to poor performance. Numerous 

features in a model imply a higher requirement for training samples. As the number of 

features grows, the complexity of the model increases, requiring more data to capture 

the relationships between these features and the output variable. Without sufficient 

data, the model might fail to learn these relationships accurately, leading to poor 

predictions. This requirement of more data for more features can become a significant 

challenge, especially in scenarios where data collection is expensive or time-

consuming. A common rule of thumb is that a model needs at least 10 examples for 

each feature to train effectively [106]. 

Several common techniques are used for feature selection. These include methods like 

filter, wrapper and embedded methods. Each of these methods has its strengths and is 

chosen based on the specific requirements and constraints of the problem at hand. 

Filter methods, such as mutual information, chi-squared tests, and correlation 

coefficient rankings, prioritize features based on their statistical properties, 

independent of any machine learning model. These methods are computationally 

efficient and provide a straightforward means to eliminate irrelevant or redundant 

features based on statistical measures. 

Wrapper methods, like recursive feature elimination (RFE), genetic algorithms, and 

sequential feature selection algorithms, assess subsets of features based on the 

performance of a specific machine learning model. They iteratively add or remove 

features and evaluate model performance, effectively ‘wrapping’ the model evaluation 

in the feature selection process. This approach is more computationally intensive but 

tends to yield features more tailored to the model’s performance. 

Embedded methods, exemplified by LASSO (Least Absolute Shrinkage and Selection 

Operator), Elastic Net, and Decision Trees, incorporate feature selection as part of the 

model training process. These methods optimize the feature selection and model 
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training simultaneously, which can lead to more efficient and potentially more effective 

models, especially when dealing with high-dimensional data like medical images. 

Feature engineering, another crucial aspect of preparing data for machine learning, 

involves creating new features from the existing ones. This process is driven by domain 

knowledge and is aimed at enhancing the model’s performance by introducing new 

features that capture additional information, which might not be present explicitly in 

the raw data. Feature engineering can be as important as feature selection because it 

adds valuable information that can improve the model’s ability to learn and make 

predictions. 

Lastly, it is essential to discuss confounders. These are variables that can influence both 

the features and the target variable, leading to spurious associations [107]. In the 

context of feature selection, it is crucial to identify and appropriately handle 

confounders to ensure that the model captures true relationships and not those 

influenced by these confounding variables. The failure to account for confounders can 

lead to models that are biased or incorrect in their predictions. For instance, a feature 

confounded by the clinical center from which the patient is originating will not bring 

valuable information to a model that will be deployed in a unique center. One common 

method to identify confounders is through statistical techniques such as stratification 

or multivariable regression analysis, where variables are examined for their impact on 

both the outcome and the primary variables of interest, helping to isolate those that 

exert an undue influence on the relationship being studied. 

3.5 Hyperparameter tuning 

Hyperparameter tuning is a fundamental aspect of building and refining machine 

learning models. Hyperparameters are not actually part of the machine learning model. 

They are the parameters of the machine learning algorithm that will build the machine 

learning model from the data. Based on the values of the hyperparameter, the model 

will learn its parameters from the data. For instance, in a neural network, the weights 

are parameters learned during training. In contrast, the number of hidden layers in the 

network are hyperparameters set before training begins. Hyperparameters play a 

crucial role in controlling the behavior of the learning algorithm and can significantly 

impact the performance of the model. 

The process of hyperparameter tuning involves finding the right combination of 

hyperparameters that results in the best performance of a model on a given task. This 

is not a trivial task as the space of possible hyperparameter values is often large and 

complex. Additionally, the optimal hyperparameters can vary significantly between 

different datasets and different types of models. 

There are several techniques for hyperparameter tuning. The simplest one is manual 

tuning, where a practitioner uses their experience and intuition to choose 

hyperparameters. This method can be effective but is often time-consuming and relies 
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heavily on the practitioner’s expertise. 

A more systematic approach is grid search, where a predefined set of hyperparameter 

values is exhaustively tried. This method guarantees that the best combination in the 

predefined set will be found, but it can be computationally expensive, especially if the 

number of hyperparameters and their potential values are large. 

Random search is another technique where hyperparameter values are randomly 

selected from a defined range. This method is often more efficient than grid search 

[108]. Figure 23 illustrates how this method can be more effective than the grid search. 

 

Figure 23: Comparison of grid search (a) and random search (b). With the same number 

of trials, random search explores the search space more effectively. Taken from [109]. 

An advanced technique is Bayesian optimization, which uses a probabilistic model to 

guide the search for the best hyperparameters. This method can be more efficient than 

random search as it learns from the results of previous iterations to improve the search 

[110]. 

Each of these methods has its strengths and weaknesses, and the choice of method 

depends on the specific problem, the computational resources available, and the 

experience of the practitioner. However, random search was found to be a safe go to 

method, that quickly finds good configurations. Since extensive hyperparameter 

testing can lead to overfitting (over adapting the hyperparameters to a specific set of 

data), random search is a good approach since it often finds decent combinations with 

a minimal number of trials. 

3.6 Evaluation 

The evaluation of models is a critical step to assess their performance and applicability 

in real-world scenarios. The necessity of evaluation stems from the fundamental goal 

of machine learning: to create models that not only learn from data but also generalize 

well to new, unseen data. This generalization capability is what makes a model truly 

useful, as it indicates the model’s ability to make accurate predictions or decisions 
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beyond the specific examples it was trained on. 

In classification tasks, where the goal is to assign each input to one of several 

categorical classes, metrics like accuracy, precision, recall, and the F1 score are 

commonly used. Accuracy measures the proportion of correctly predicted instances 

among the total instances, while precision and recall focus on the model’s performance 

in predicting a specific class. The F1 score provides a balance between precision and 

recall, offering a single metric that considers both false positives and false negatives. 

In regression tasks, which involve predicting continuous values, different metrics are 

used, like Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. MSE 

measures the average squared difference between the predicted and actual values, 

emphasizing larger errors. MAE offers a more straightforward interpretation by 

calculating the average absolute difference, and R-squared provides a measure of how 

well the observed outcomes are replicated by the model. 

To effectively evaluate these metrics, data is typically split into three sets: training, 

validation, and testing. The training set is used to train the model. Its performance is 

then assessed on the validation set. It is used to test different models, preprocessing 

and hyperparameters. The testing set, on the other hand, is used to assess the final 

model’s performance, offering an unbiased evaluation of its generalization capability. 

The distinction between the validation and test sets is crucial. Repeated use of the 

validation set can inadvertently lead to overfitting, where the model becomes overly 

tailored to the validation data. To counteract this, the test set is used only once, 

providing a final, unbiased assessment of the model’s performance on new data. 

Data leakage is a critical issue in model evaluation, occurring when information from 

outside the training dataset is inadvertently used to create the model. This can lead to 

overly optimistic results during training and validation but poor performance in real-

world application. Preventing data leakage involves careful data handling and bug 

control, ensuring that the model is never exposed to test data during training [111]. 

However, dividing the data available in three sets is sometimes not a good solution 

[112]. If the data available is limited, the train, validation and test sets will be too small 

to effectively train and test the model. In such cases, it is better to use cross-validation. 

It is a robust method for assessing a model’s performance when dealing with limited 

data. It involves dividing the dataset in a train and a validation sets. These sets are used 

to train and test the model and its score is saved. Then, the whole dataset is split again 

in new train and validation sets, the model is retrained from scratch on the new train 

set, and its score on the new validation set is saved. This is repeated multiple times, 

and the average score on all the validation set is used as a final score. 

There are several ways data can be split during cross-validation, each with its unique 

advantages. One of the most common methods is k-fold cross-validation, where the 

dataset is divided into ‘k’ equal parts, or folds. In each iteration, one fold is used for 
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validation while the others are used for training, ensuring that every data point gets to 

be in the validation set exactly once. This method is particularly effective in providing 

a robust estimate of the model's performance, especially when data is limited. 

Another method is the Monte Carlo cross-validation, which randomly splits the dataset 

into training and validation sets multiple times. This approach differs from k-fold cross-

validation in its randomness and the fact that data points may appear in the validation 

set multiple times or not at all across different iterations. This method provides a more 

optimistically biased estimate of the performance than K folds, but is more reliable 

when comparing models on the same task, since more folds can be created, reducing 

the variability of the final score. 

Stratification is an approach often used in conjunction with these methods, especially 

in classification tasks where class imbalance might be an issue (one class of samples is 

more present than another). Stratified sampling ensures that each fold or split 

maintains the same proportion of classes as the original dataset. This is crucial for 

preventing biased estimates of the model’s performance, especially in scenarios where 

one class significantly outnumbers the others. 

Additionally, techniques like leave-one-out cross-validation, where each data point is 

used once as a single validation set while the rest of the dataset serves as the training 

set, can be beneficial for small datasets. However, this method can be computationally 

expensive for larger datasets. 

 

Figure 24: Diagram showing how nested cross validation works. Taken from [113]. 
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Nested cross-validation takes this concept further to include hyperparameters tuning. 

In this approach, an inner cross-validation loop selects the best hyperparameters 

and/or model, while an outer cross-validation loop provides an unbiased evaluation of 

the model’s performance. This nested structure ensures that the evaluation of the 

model’s performance is not influenced by the specific selection of hyperparameters, 

leading to a more reliable assessment. While it is computationally intensive, this 

method is considered the gold standard approach when dealing with a limited amount 

of data. Figure 24 shows how nested cross validation can be implemented. 

One important aspect of model score is the significance of the score. It is possible on 

some tasks and some datasets to achieve high score only by chance, without any real 

predictive power. For instance, on small survival datasets, it is common to have random 

variables with decent C-index [114]. To compensate for this, scores need to be tested. 

A common way to do this is to use a permutation test [115].  

 

Figure 25: Example of a permutation test to assess the significance of a Pearson 

correlation. The distribution of the permuted features correlation is given in blue, and the 

correlation of the non-permuted one in red. This correlation is statistically significant as 

it is extremely unlikely to have a correlation this high only by chance. Taken from [116]. 

The goal of this test is to assess the likelihood of having a given score just by chance. 

In other word, we assess how exceptionally predictive a model, or a feature is compared 

to random predictions. If it is very unlikely to reach a given score with just chance, then 

it is reasonable to assume that the model or feature has actual predictive value. 

Permutation is a robust and reliable way to evaluate this probability. By randomly 

shuffling the target value, it breaks the relationship between the covariates and the 

outcome. These permuted values are evaluated, and the corresponding score is saved. 

Repeating this process hundreds of times effectively emulates the absence of 

predictive value. A distribution of scores of random predictions is thus created. 
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Comparing the score of the non-permuted model to this distribution allows for the 

estimation of the likelihood of not being predictive. This probability is defined has the 

proportion of permuted scores greater than or equal to the non-permuted score. 

Figure 25 shows an example of permutation test. 

3.7 Multiple testing  

In the realm of scientific research, particularly in statistical analysis, understanding the 

concept of false positives is crucial. A false positive occurs when a test incorrectly 

indicates the presence of a condition, such as a disease in medical testing, when it is 

actually not present. This can be especially problematic in studies where numerous 

hypotheses are tested simultaneously. For instance, a test saying that a feature is 

prognostic of a condition while it is not. 

This leads us to the multiple testing problem, a challenge that arises when multiple 

statistical tests are made simultaneously. In such cases, the likelihood of encountering 

at least one false positive increases with the number of tests conducted. Imagine 

testing a hundred independent hypotheses, each at a 5% significance level. The chance 

of observing at least one false positive is no longer just 5% but substantially higher. 

This inflation of false positive rates can lead to misleading conclusions if not properly 

addressed. 

To mitigate the risks associated with the multiple testing problem, correction methods 

are employed. One of the simplest and most widely used methods is the Bonferroni 

correction. This technique adjusts the significance threshold based on the number of 

tests performed. For instance, if ten hypotheses are tested, the Bonferroni correction 

would divide the standard significance level (usually 0.05) by ten. This stricter criterion 

helps control the rate of false positives but can be overly conservative, potentially 

leading to false negatives or missed discoveries. 

In statistical terms, we often focus on controlling the Family-Wise Error Rate (FWER) 

and the False Discovery Rate (FDR) [117]. FWER is the probability of making one or 

more false discoveries among the rejected hypotheses, while FDR is the expected 

proportion of false discoveries among the rejected hypotheses. Controlling FWER, as 

in the Bonferroni correction, ensures a low probability of any false discovery, but can 

be too stringent in cases where many hypotheses are tested. FDR control, on the other 

hand, offers a balance, allowing for a controlled proportion of false discoveries, which 

can be more suitable for exploratory research where some false leads are acceptable 

[118]. Examples of techniques to control the FDR are q-values, the Benjamini-Hochberg 

procedure and its improved version called the two-stage linear step-up [119]. 
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Chapter 4 

 

Lymphoma 

Cancer, a disease characterized by abnormal and uncontrolled cell growth, is a leading 

cause of mortality worldwide, affecting millions annually. Among its various forms, 

lymphoma, a cancer form originating in the lymphatic system, presents a significant 

public health challenge. Epidemiologically, lymphomas represent a large portion of 

hematologic cancers, with Non-Hodgkin Lymphoma (NHL) being more prevalent than 

Hodgkin Lymphoma. NHL represents nearly 3% of all cancer diagnoses and deaths 

worldwide [120]. This chapter focuses on two specific types of NHL: Follicular 

Lymphoma (FL) and Diffuse Large B-Cell Lymphoma (DLBCL), each exhibiting unique 

clinical and biological characteristics. Accurate staging of these cancers is crucial, as it 

determines the disease’s extent and guides therapeutic decisions, impacting patient 

survival and quality of life. This introductory chapter will establish the basic concepts 

necessary to understand the work presented in this thesis. It will cover the broader 

context of cancer and delve into the specifics of lymphomas, particularly focusing on 

FL and DLBCL. Additionally, this chapter will detail various patient staging methods, 

highlighting their critical role in the diagnosis and management of these cancers. 

4.1 Cancer general principles 

Cancer, a complex and multifaceted disease, is marked by the uncontrolled 

proliferation of aberrant cells, driven by multiple cellular mechanisms [121]. The human 

body, comprising trillions of cells, maintains a meticulous equilibrium of cellular 

growth, division, and apoptosis (programmed cell death). Cancer disrupts this balance, 

primarily due to mutations in cellular DNA [122]. These mutations, frequently occurring 

in proto-oncogenes and tumor suppressor genes, are pivotal in the malignant 

transformation of normal cells [123]. These mutations can occur due to various factors, 

including genetic predisposition, environmental exposures (e.g., radiation, chemicals, 

viral infections, pollution, …), and lifestyle [124]. As these mutated cells continue to 

divide uncontrollably, they can form a mass called a tumor. Tumors can be benign 

(non-cancerous) or malignant (cancerous). Malignant tumors can invade surrounding 

tissues and spread to other parts of the body through a process known as metastasis, 

whereas benign tumors stay localized and do not spread [125]. 

It was estimated that in 2018, there were 18.1 million new cancer cases and 9.6 million 

deaths from cancer worldwide [2]. In 2019, cancer was the first cause of premature 

death in 57 countries, and the second after cardiovascular disease in 70 [1]. Figure 26 

is a map showing the rank of cancer in each country. 
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Figure 26: Global distribution of cardiovascular diseases and cancer as leading causes of 

death, with color-coded rankings by country, according to World Health Organization 

data from 2020. Taken from [1]. 

Cancer, commonly perceived as a contemporary ailment, has historical roots in both 

humans and other species [126]. Figure 27 shows several pieces of evidence of this. 

However, cancer incidence increased in the recent years [127]. This escalation is 

multifactorial, primarily caused by factors such as demographic shifts towards an aging 

population, advances in diagnostic techniques, changes in lifestyle patterns 

characteristic of modern society, and increased exposure to environmental pollutants 

[124].

 

Radiograph showing 

metastatic cancer traces 

in dinosaur fossil from 

the Jurassic era. Taken 

from [128]. 

 

micro-CT image of an 

osteosarcoma in a foot 

bone of a human 

relative who lived 1.7 

million years ago. Taken 

from [129]. 

 

CT scan of vertebra of a 

human mummy dating 

around 2000 B.C 

showing bone lesions 

caused by prostate 

cancer metastasis. 

Taken from [130].

Figure 27: Examples of cancer traces found on fossil of dinosaur, human relative and a 

human mummy, testifying that cancer is an old disease not specific to humans. 
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The evolution of cancer research spans from ancient Egyptian and Greek texts to 

modern discoveries. Notably, the term ‘cancer’ itself has historical roots, with the first 

description likening tumors to a crab, an analogy drawn by the ancient Greek physician 

Hippocrates due to the crab-like spread of the disease [131]. Hippocrates’ contributions 

remain significantly relevant in contemporary times. He reported two key insights: 

firstly, that cancer is a systemic ailment, impacting the entire body rather than just a 

single organ; and secondly, that effective cancer treatment requires restoring balance 

to the entire organism with a comprehensive, multidisciplinary strategy, beyond merely 

removing the tumor [132]. The identification of oncogenes and tumor suppressor 

genes stands as a cornerstone in the history of cancer research [133]. Groundbreaking 

experiments, like the identification of the Philadelphia chromosome in chronic 

myelogenous leukemia, have significantly shaped contemporary understanding of 

cancer biology [134]. 

 

Figure 28: Latest version of the hallmark of cancer. Taken from [135]. 

The concept of “hallmarks of cancer,” introduced by Hanahan and Weinberg [136], 

offers a superior understanding of cancer pathophysiology. It defines a set of 

characteristics that collectively define the transformative process that normal cells 

undergo to become cancerous. These hallmarks encompass key processes such as 

sustained proliferative signaling, evasion of growth suppressors, resistance to 

apoptosis, replicative immortality, angiogenesis, metastasis, metabolic 

reprogramming, and immune evasion. For example, sustained proliferative signaling 

enables incessant cellular division, while evasion of immune destruction allows cancer 

cells to circumvent immunological defense mechanisms. Figure 28 presents the latest 

version of the list of identified hallmarks of cancer. A cell does not necessarily have to 

exhibit all the hallmarks of cancer to become cancerous and different types of cancers 

may display different combinations of these hallmarks. Some of these characteristics 

are considered fundamental for the transformation of a normal cell into a cancerous 

one, like sustained proliferative signaling and evading growth suppressors, but the 

specific combination can vary. 
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Cancer’s lethality predominantly arises from its capacity to compromise vital organ 

function, either through direct invasion or distant metastasis. For instance, lung cancer 

can obstruct airways or disrupt pulmonary structure impairing breathing and can result 

in post-obstructive pneumonia, while brain cancer can directly impair neurological 

functions [137], [138], [139]. Beyond physical symptoms, the psychological and social 

impact of a cancer diagnosis is profound, often entailing considerable mental distress 

and uncertainty for the patient and its relatives [140], [141], [142]. 

Cancer diagnosis typically involves imaging modalities (e.g., PET, CT, MRIs) [143] and 

biopsies, where a small sample of tumor tissue is extracted and examined [144]. Recent 

strides in molecular diagnostics, such as genomic and proteomic analyses, have 

enabled more nuanced cancer characterizations, fostering personalized treatment 

strategies [145]. 

The treatment options for cancer are diverse, tailored to cancer type, stage, location, 

and the patient’s health status [146], [147]. Key modalities include surgery [148], 

radiation therapy [149], chemotherapy [150], immunotherapy [151], and targeted 

therapy [152], each undergoing significant advances. For example, surgical procedures 

have evolved towards minimally invasive approaches, and targeted therapies now more 

precisely attack cancer cells based on genetic mutations. While surgery aims to 

eliminate tumors, radiation and chemotherapy focus on eradicating or stopping the 

proliferation of cancer cells, and immunotherapy strengthens the body’s innate 

immune response against cancer. 

4.2 Lymphomas 

Lymphomas, a heterogeneous group of hematological malignancies, originate within 

the lymphatic system, an integral part of the body’s immune defense mechanism [153].  

 

Schematic of the lymphatic system. 

Taken from [154]. 

 

Image of a human lymphocyte. Taken 

from [155]. 

Figure 29: Diagram of the human lymphatic system and the image of a human 

lymphocyte taken via electron microscopy. 
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This system encompasses a vast network of lymphatic vessels, similar to blood vessels, 

responsible for circulating lymph, a clear fluid, throughout the body. Components of 

this system include lymph nodes, spleen, thymus, and bone marrow, all playing an 

essential role in mediating immune responses [156]. Figure 29 shows a diagram of the 

lymphatic system and the image of a lymphocyte. 

Lymphocytes are a type of white blood cell. They are primarily involved in the body’s 

adaptive immune response, responsible for recognizing and reacting to specific 

pathogens, such as bacteria, viruses, cancerous cells, and foreign substances. 

Lymphocytes are mainly divided into two subtypes: B cells and T cells. B cells are 

responsible for antibody production. They recognize pathogens and produce specific 

antibodies that bind to antigens, helping to neutralize and eliminate them. T cells, on 

the other hand, are crucial for cell-mediated immunity. They are further subdivided into 

helper T cells (which assist other immune cells), cytotoxic T cells (which kill infected or 

cancerous cells), and regulatory T cells (which help modulate the immune response and 

maintain tolerance) [157].   

Dysregulation of these lymphocytes, particularly under the influence of genetic 

mutations and environmental factors, precipitates the development of various 

lymphomas. For instance, in follicular lymphoma, a transformation in B cells is 

frequently observed, stemming from aberrations in normal apoptotic pathways, 

resulting in their uncontrolled growth and proliferation [158]. 

 

Figure 30: Repartition of non-Hodgkin lymphoma by subtypes. Adjusted from [159]. 

Lymphomas are primarily categorized into Hodgkin lymphoma (HL) and non-Hodgkin 

lymphoma (NHL), with the latter encompassing different subtypes [160]. This includes 

the aggressive diffuse large B-cell lymphoma (DLBCL) and the comparatively indolent 

follicular lymphoma (FL). The next section of this chapter describes these specific NHL 
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subtypes. Figure 30 presents the subtype repartition of NHL. 

The exact cause of lymphoma is not completely understood, but factors such as genetic 

predisposition, exposure to certain chemicals or radiation, and some infections (such 

as the Epstein-Barr virus) are believed to increase the risk of developing lymphoma 

[161], [162], [163], [164]. 

The symptoms of lymphomas vary with the disease type and stage. Common 

manifestations include swelling of lymph nodes and night sweats, whereas advanced 

lymphomas might present with organ-specific symptoms due to compression. Notably, 

systemic ‘B symptoms’ (fever, weight loss, night sweats) are more pronounced in later 

stages [165]. 

Diagnostic approaches for lymphomas go beyond simple biopsy and include imaging 

modalities, blood analyses, and advanced techniques like immunophenotyping and 

genetic profiling [166], [167]. Positron emission tomography (PET) scans play an 

important role for staging, and the advent of liquid biopsies offers a minimally invasive 

alternative for monitoring treatment efficacy [168]. Figure 31 shows how response to 

treatment can be assessed with PET imaging. 

 

Figure 31: Maximum intensity projection of 18F-FDG PET scans of DLBCL patients at 

different timepoint, showing complete metabolic response on the final image. Taken from 

[169]. 

Therapeutic strategies for lymphomas have evolved substantially. Traditional methods 

like chemotherapy and radiation therapy are now augmented by targeted and 

immunotherapies [170], [171]. Chimeric antigen receptor (CAR) T-cell therapy has 

notably transformed treatment paradigms, particularly for refractory lymphomas [172]. 

Recent clinical trials have brought to the forefront novel therapeutic agents, such as 

bispecific antibodies and immune checkpoint inhibitors, expanding patient-specific 

treatment options and heralding a new era of personalized oncology [173], [174]. 
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4.3 Follicular & Diffuse Large B cell lymphomas 

Follicular and Diffuse Large B Cell Lymphomas (FL and DLBCL) originate from B cells 

but display divergent pathophysiological and clinical characteristics. DLBCL is an 

aggressive subtype while FL is a slow-growing form and untreated FL patients or patients 

who have refractory or relapsed disease have a much longer overall survival than DLBCL 

patients [175]. Figure 32 displays histopathological slices of the two types of NHL. 

      

Figure 32: Histopathological slices of biopsies of Follicular Lymphoma (FL) (left) and 

Diffuse Large B Cell Lymphoma (DLBCL) (right). Taken from [176].  

FL, an indolent subtype, emerges from the B cells of the follicular center in the lymph 

nodes [158]. Its growth pattern mimics that of normal lymph node follicles, which is 

reflected in its name. The hallmark genetic abnormality in FL is the chromosomal 

translocation t(14;18), which leads to the overexpression of the BCL2 gene, integral to 

the inhibition of apoptosis [177]. Dysregulation of this gene facilitates prolonged 

survival of B cells, thereby creating an environment conducive to further oncogenic 

transformations. A noteworthy trait of FL is its potential evolution into a more 

aggressive form, commonly into DLBCL [178]. 

DLBCL, in contrast, is characterized by the rapid proliferation of atypical large B cells 

across lymph nodes. Its genetic landscape is heterogeneous, marked by various genetic 

alterations that drive its aggressive nature. In particular, mutations in genes like MYC, 

BCL6, and EZH2 have been implicated, each playing a unique role in the growth and 

development of lymphoma [179]. 

Therapeutic strategies for these lymphomas, while overlapping in some aspects such 

as the employment of the monoclonal antibody Rituximab targeting the CD20 antigen 

on B cells, differ significantly. In DLBCL, Rituximab combined with the CHOP 

chemotherapy regimen (Cyclophosphamide, Hydroxydaunorubicin, Oncovin, and 

Prednisone) has significantly improved patient outcomes [180], [181]. Moreover, novel 

treatments like CAR T-cell therapy are gaining traction, especially in refractory DLBCL 

cases [172]. 
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4.4 Patient prognosis assessment 

In oncology, particularly for Follicular Lymphoma (FL) and Diffuse Large B Cell 

Lymphoma (DLBCL), patient staging is crucial for selecting effective treatment 

strategies and prognostic outcomes. Staging meticulously evaluates the cancer’s 

spread within the body and is pivotal for guiding therapeutic decisions, prognosing, 

and comparing outcomes across treatment modalities [182]. The 18F-FDG PET/CT scan 

is considered the gold standard for DLBCL staging and is recommended for FL [180], 

[181]. This technique enables tumor volumes to be measured, offering valuable insights 

into disease progression. 

The concept of extranodal sites, namely locations outside the lymph nodes invaded by 

tumoral lymphoma cells, is critical. Their presence often indicates an advanced disease 

stage, directly influencing treatment decisions. Thorough identification and evaluation 

of their volume are useful for a comprehensive characterization of the disease’s extent. 

The Eastern Cooperative Oncology Group (ECOG) performance status is a scale used 

to assess how a patient’s disease affects their ability to function on a daily basis. It 

ranges from 0, indicating fully active, to 5, denoting death [183]. Figure 33 lists the 

criteria of the different stages. This status is instrumental in understanding how well a 

patient can endure various treatments and is often used alongside other staging 

methods to personalize treatment plans. 

 

Figure 33: Eastern Cooperative Oncology 

Group (ECOG) performance status. 

Taken from [184]. 

 

Figure 34: Ann Arbor staging. Taken 

from [185]. 

The Ann Arbor staging system, the standard method used in lymphoma staging, 

categorizes the disease into four stages. It considers factors such as the number of 

lymph nodes involved, whether the lymphoma has spread to both sides of the 

diaphragm and if organs are invaded [180], [181]. Figure 34 shows the staging rules 

based on the location of the tumor sites. 

The Lugano classification, which is an evolution of the Ann Arbor system, incorporates 

the use of modern imaging techniques like CT and PET scans. This classification 

provides a more detailed assessment of the disease, particularly regarding the 

identification of extranodal involvement [186].  



 

73 

The Deauville score grades the response to treatment in lymphoma patients [187]. It 

ranges from 1 to 5, with lower scores indicating a better response. This score has 

become a key tool in evaluating how well a patient responds to therapy and in making 

decisions about continuing, changing, or stopping treatment. 

For prognosis, the International Prognostic Index (IPI) and its variations – age-adjusted 

IPI (aaIPI), National Comprehensive Cancer Network (NCCN) IPI, and FLIPI (Follicular 

Lymphoma International Prognostic Index) – are essential tools. The IPI accounts for 

factors like age, stage, ECOG status, extranodal involvement, and serum lactate 

dehydrogenase (LDH) levels to predict outcomes. The aaIPI is tailored for younger 

patients, while the NCCN IPI offers a more nuanced approach for Diffuse Large B Cell 

Lymphoma [188], [189], [190]. FLIPI, specifically designed for Follicular Lymphoma, 

incorporates different parameters relevant to this subtype [191]. 

Total Metabolic Tumor Volume (TMTV) is an emerging metric in lymphoma staging. It 

quantifies the total volume of metabolically active tumor using PET scans, providing a 

more comprehensive view of the tumor burden in the body. It was found prognostic 

of the outcome of DLBCL patients in multiple studies [192], [193], [194]. In FL, its 

prognostic value was also recently highlighted [195], [196], [197].  

More recently, another measure, Dmax, or the maximum distance between two lesions 

was introduced [198]. It helps in assessing the spread of lymphoma. It is particularly 

useful in understanding the anatomical extent of the disease. Multiple studies have 

found that it was a prognostic factor in DLBCL, but its prognostic capabilities remain to 

be confirmed in FL [199]. Figure 35 shows two DLBCL patients with similar TMTV but 

different Dmax. 

 

Figure 35: Maximum intensity projection of 18F-FDG PET scans of DLBCL patients with 

similar TMTV but different Dmax [198]. 



 

74 

PET/CT scans play a pivotal role in staging FL and DLBCL patients, predominantly by 

delineating the location and volume of lesions. However, this approach might overlook 

additional prognostic information embedded within the scans. Beyond the lesions and 

their immediate surrounding, PET/CT images could contain valuable information about 

the disease’s characteristics and the patient’s overall health status, including signs of 

comorbidities. In particular, metabolic activity measured by the 18F-FDG scans all over 

the body and tissue density obtained from the CT systematically associated with the 

PET scan are only used to detect lesions and might be underutilized in clinical practice. 

A critical challenge in this context is the effective integration of this detailed 

information from the lesion level to a holistic patient-level perspective. Moreover, 

patients with similar Total Metabolic Tumor Volume (TMTV) and maximum tumor 

diameter (Dmax) still demonstrate visual differences in tumor burden and varying 

clinical outcomes, as shown in Figure 36. These observations suggest that factors 

beyond the quantifiable volumes and location of tumors, potentially captured in the 

imaging data, might significantly impact patient prognosis. Developing methodologies 

to detect and interpret this complex information is essential for advancing staging and 

prognostic accuracy in FL and DLBCL. 

 

Figure 36: Maximum intensity projection of 18F-FDG PET scans of DLBCL patients with 

similar TMTV (left: 761 cm³, right: 819 cm³) and Dmax (left: 0.30 m, right: 0.28 m). The 

lesions are represented in orange. Taken from [200]. 

Different studies have thus been conducted to find and quantify new prognostic 

information in the PET images of lymphoma patients. Zanoni et. al. [201] published a 

review on how PET/CT is used in NHL. They showed that the search for new image 

biomarkers and radiomic signatures is an active field. For instance, they reported 

multiple studies that found radiomic features to be correlated with patient outcome 

and response to treatment. However, they concluded that more data, standardization, 

and external validation are needed before these findings could be used in the clinic. It 

is recognized that small dataset size is frequent in radiomic and that studies with less 
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than 100 patients are common and subject to a significant risk of bias [202], [203]. 

Moreover, most of these findings remains unexplained and the prognostic biological 

information encoded by somehow cryptic features is not understood, as mentioned in 

chapter 2 [74]. Furthermore, despite numerous published studies, few radiomic models 

have been translated into the clinic and no radiomic features other than TMTV are 

being used to stage DLBCL or FL patients [64], [65]. 

For these reasons, a strong emphasis was put on evaluating the robustness and 

interpretability of the results in this thesis. Two cohorts of NHL patients, one of DLBCL 

and one of FL patients, with almost 400 patients each were used for analysis and 

validation of the findings. A significant part of the time was spent developing and 

validating a reliable biomarker selection pipeline, and substantial efforts were made to 

simplify and understand the image biomarkers found to be of prognostic value. 

 

  



 

76 

  



 

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section II 

 

Original developments  



 

78 

  



 

79 

Chapter 5 

 

Investigating the role of spleen 

involvement in DLBCL prognosis 

5.1 Introduction 

A first straightforward way to find new relevant image-based biomarkers in PET/CT 

images is to identify new features visually and/or based on some intuition and define 

them empirically. This is actually the way Dmax, which characterizes the dissemination 

of the disease, has been discovered. By looking at multiple examples of patients that 

are similar according to currently used biomarkers, but with different outcomes, we 

hoped to capture some differences visually, the human visual system being excellent 

at finding patterns. This is the first methodology I adopted during the PhD, which also 

allowed me to get familiar with the PET/CT images of lymphoma patients. 

One of the many handcrafted features I tested is the tumor burden fragmentation. As 

shown at the very end of chapter 4, DLBCL patients with almost identical TMTV and 

Dmax can still have significant differences in their tumor burden spatial distribution. 

Part of this difference can be captured by the surface to volume ratio of the total tumor 

burden. This feature was found prognostic in a cohort of 215 DLBCL patients by 

Decazes et al. [204]. I found that for PFS prediction on another cohort of DLBCL 

patients, this feature had a univariate C-index of 0.58 (p < 0.034) and was significantly 

improving a multivariate model with TMTV and Dmax (p < 0.04). But it was not 

prognostic of the OS. I found that the 6 mm cutoff identified by Decazes et al. was not 

significantly separating DLBCL patients as a function of their survival (p < 0.076 for PFS 

and p < 0.116 for OS). Therefore, the feature had moderate predictive power but was 

complementary of TMTV and Dmax. This result was presented as a poster during 

SNMMI 2022 conference [200]. 

Apart from visual differences, another strategy would be to use the scientific 

knowledge of the disease studied to build new biomarkers. For instance, we know that 

the spleen plays a critical role in the lymphatic system. It functions as a site for 

lymphocyte proliferation and immune surveillance. The spleen filters blood, removing 

old or damaged red blood cells and platelets. It supports the immune system by 

producing lymphocytes, particularly B and T cells. Additionally, the spleen’s 

macrophages destroy pathogens and cellular debris, contributing to the body’s 

defense mechanism against infections. Lymphoma originating from the lymphatic 

system, it is not rare to see patients with splenic tumor involvement. This can lead to 
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splenomegaly (enlargement of the spleen), which may cause discomfort or pain and 

increase the risk of spleen rupture. Moreover, tumor infiltration of the spleen can impair 

its functions, vital to the immune system, which can make the body more susceptible 

to infections. 

Based on these observations, we investigated the impact of splenic tumor involvement 

in lymphoma. In particular, we studied the survival of DLBCL patients with various 

degrees of splenic involvement. 
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Abstract 

This study investigates the prognostic information of splenic tumor involvement (SI) in 

patients with Diffuse Large B-Cell Lymphoma (DLBCL). 

Methods: Prognostic value of Total Metabolic Tumor Volume (TMTV), SI, the size of the 

spleen, Metabolic Tumor Volume Inside the Spleen (MTVIS) and Metabolic Tumor 

Volume Inside the Spleen (MTVOS) was assessed on a cohort of 377 DLBCL patients. 

Progression-free survival (PFS) and overall survival (OS) were used as endpoints. 

Results: SI patients showed poorer PFS (p < 0.03) and OS (p < 0.04) than non-SI patients 

and had higher TMTV (p < 0.001). SI was predictable from TMTV with an average 

precision of 0.62 (p < 0.001). SI did not provide additional prognostic information 

beyond TMTV. MTVIS was not prognostic of the outcome. Patients with SI and elevated 

MTVIS were not at higher risk than patients with SI and low MTVIS. The same 

observation was made with splenomegaly. MTVOS was as predictive as TMTV. 

Conclusion: The prognostic value of TMTV in DLBCL predominantly resides outside the 

spleen. Splenic involvement does not give additional prognostic information. Further 

validation in different patient cohorts is needed. 

Introduction 

Non-Hodgkin lymphomas (NHL) are the most common hematological malignancy 

worldwide, accounting for 3% of all cancer diagnoses and deaths [120]. Diffuse Large 

B-Cell Lymphoma (DLBCL) is the most common subtype of NHL cancers (33% of NHL) 

with an aggressive behavior, and only 65% of patients alive 5 years after diagnosis 

[205]. 

18F-FDG PET/CT scans are routinely used to stage DLBCL patients and assess response 

to treatment, based on international criteria (Lugano 2014), with response adapted 

strategies that are now standard of care. By segmenting the lesions on the PET scan, 

the Total Metabolic Tumor Volume (TMTV) can be calculated. This biomarker has been 

found to be prognostic in multiple studies and is increasingly being used to stage 

DLBCL patients [206], [207]. The images are also used to assess tumor location, organ 

involvement and response to treatment. 

Splenic Involvement (SI) is also routinely evaluated in the International Prognostic Index 

(IPI) through the quantification of the number of extra-nodal sites, and in the Ann Arbor 

staging. SI is recognized as a poor prognostic factor for the outcome of DLBCL patients. 

Multiple studies found that patients with SI were at significantly higher risk than 

patients without SI [208], [209]. Yet, the prognostic value of the volume of tumor in the 

spleen is unknown.  

In this study, we investigated a cohort of 377 DLBCL patients to evaluate the prognostic 

value of SI and its volume. 
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Materials and Methods 

A total of 377 DLBCL patients from the REMARC (NCT01122472) and LNH073B 

(NCT00498043) cohorts were analyzed. The detailed compositions of the cohorts have 

been described elsewhere [210], [211]. Baseline 18F-FDG PET/CT scans in the form of 

anonymized DICOM files, Progression Free Survival (PFS) and Overall Survival (OS) were 

available for all patients. The treatment received was available for all patients. 

All lesions were segmented by expert medicine nuclear physicians (ASC, LV, MM) in the 

PET images, as already described [198], [207], [212]. 

For each patient, the spleen was automatically segmented on the CT image of the 

PET/CT scans using a deep-learning model called TotalSegmentator [46]. With this 

model, a Dice score of 0.983 was reported for spleen segmentation when using the 

segmentation by expert radiologists as the ground truth [46]. 

All automatic spleen segmentations were visually checked and automatically adjusted 

whenever needed. Adjustments consisted in the automated removal of small Region 

of Interest (ROI) splenic segments located outside the spleen and spatially 

disconnected from the main spleen region. These small ROIs produced by the 

segmentation algorithm being orders of magnitude smaller than the actual spleen 

region, their removal was performed automatically by keeping only the largest ROI 

produced by TotalSegmentator. 

Because the PET images and the CT images had different voxel size, all CT-based 

segmentation masks and PET images were resampled to 1x1x1mm voxel size using 

nearest neighbor interpolation so that they could be further subtracted, intersected, 

and aligned using SimpleITK [213], [214], [215].  

For each patient, Total Metabolic Tumor Volume (TMTV) was calculated by adding the 

volumes of all segmented lesions. Metabolic Tumor Volume Outside the Spleen 

(MTVOS) was calculated by measuring the total volume of lesion voxels not intersecting 

with the spleen mask. The volume defined as the intersection of the spleen mask and 

the lesion masks was measured and referred to as the Metabolic Tumor Volume Inside 

the Spleen (MTVIS). The spleen volume (SV) was also calculated from the CT-derived 

spleen mask (regardless of the metabolic activity of the spleen). For a more precise 

estimation of the volumes, the shapes of the masks were refined as triangle meshes as 

recommended by the image biomarker standardization initiative [66]. These meshes 

were calculated from the resampled segmentation masks using a marching cube 

algorithm implemented in the PyRadiomics package [56]. Spleen involvement (SI) was 

defined as a binary variable equal to 1 in the presence of segmented lesions in the 

spleen and 0 otherwise. 

The group of patients with SI was divided into two groups: patients with less than half 

of the volume of their spleen segmented as lesion by physicians (so called “focal” SI 
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group), and patients with more than half of their splenic volume segmented as lesion 

(called “extensive” SI hereafter). 

The prognostic values of SI, MTVIS, SV and MTVOS for PFS and OS were characterized 

based on their hazard ratio (HR) values computed using a Cox proportional hazard 

model. HR were controlled for treatment and TMTV. Kaplan-Meier (KM) curves were 

computed for each patient group and logrank tests were used to assess the significance 

of the difference for both PFS and OS. The cutoff of 220 mL was used when binarizing 

TMTV, as reported and validated in multiple studies [216], [217], [218]. Difference of 

distribution of TMTV and SV between patient groups was assessed with Mann-Whitney 

U rank test. Accuracy of the prediction of SI from TMTV, MTVOS or SV was assessed 

using the average precision defined as the area under the precision-recall curve and its 

significance was estimated with a permutation test of 10,000 permutations. 

Results 

The cohort was composed of 377 DLBCL patients, with 107 PFS event and 63 deaths. 

Median age was 65 years. The majority of patients had an Ann Arbor status of 4 

(n=284), and other either 3 (n=64) or 2 (n=28). One patient had a status of 1. Most 

patients had an age-adjusted IPI of 2 (n=201) or 1 (n=117), and other either 3 (n=52) 

or not provided (n=7). Concerning treatment, 331 patients received R-CHOP, some of 

them also receiving lenalidomide (n=143) or a placebo (n=136). The 46 remaining 

patients received R-ACVBP. 

A total of 130 patients (34%) had SI, among which 79 were focal SI (less than half of 

the volume of spleen segmented as lesion) and 51 were extensive SI (more than half of 

the splenic volume was tumoral).  

0. Splenic Involvement (SI) prognostic power 

Figure 37 shows the KM curves for PFS and OS of patients with and without SI.  

 
Figure 37: Kaplan-Meier curves of patients with and without splenic involvement, for 

Progression Free Survival and Overall Survival. 
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When controlling for treatment, hazard ratios (HR) of SI were 1.24 (p < 0.02) and 1.29 

(p < 0.03), for PFS and OS respectively. When HR was controlled for both treatment 

and TMTV, HRs were 1.16 (p < 0.13) and 1.17 (p < 0.22), for PFS and OS respectively, 

suggesting that SI was confounded by TMTV. 

 
Figure 38: Distribution of Total Metabolic Tumor Volume (TMTV) for patients with and 

without splenic involvement. 

Figure 38 shows the distribution of TMTV for patients with and without SI. Patients with 

SI had significantly higher TMTV (p < 0.001) than patients without SI. TMTV could 

predict SI with an average precision of 0.62 (p < 0.001). 

 
Figure 39: Kaplan-Meiers curves of three groups of patients: patients without splenic 

involvement and low TMTV (blue), patients with splenic involvement or high TMTV 

(orange), and patients with splenic involvement and high TMTV (green). 

Figure 39 shows KM curves for the combination of SI and TMTV. Patients were grouped 

as a function of their number of risks factor. SI did not further stratified patients with 

elevated TMTV. 
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2. Metabolic Tumor Volume Inside the Spleen (MTVIS) prognostic value 

Table 1 shows the HR for PFS and OS of MTVIS controlled for treatment and controlled 

for treatment and TMTV in different patient groups, suggesting an absence of 

prognostic value. 

 Number of 

patients 

Hazard Ratio controlled 

for treatment 

Hazard Ratio controlled 

for treatment and TMTV 

PFS OS PFS OS 

All 377 1.10 (p < 0.28) 1.21 (p < 0.06) 0.97 (p < 0.73) 1.04 (p < 0.72) 

SI 130 1.02 (p < 0.91) 1.23 (p < 0.29) 0.82 (p < 0.31) 1.06 (p < 0.79) 

SI – Focal 79 1.12 (p < 0.53) 0.96 (p < 0.88) 1.06 (p < 0.73) 0.92 (p < 0.73) 

SI – Extensive 51 1.07 (p < 0.83) 1.59 (p < 0.16) 1.03 (p < 0.94) 1.57 (p < 0.32) 

Table 1: Hazard Ratio of the Metabolic Tumor Volume Inside the Spleen (MTVIS) 

controlled for treatment and controlled for treatment and TMTV, for Progression Free 

Survival (PFS) and Overall Survival (OS), computed in different patients groups: entire 

cohort (All), patients with splenic involvement (SI), patients with less than half of the 

spleen involved (SI – Focal) and patients with more than half of the spleen involved (SI – 

Extensive). 

Figure 40 displays the KM curves for the combination of SI and MTVIS. Patients with SI 

were not further stratified by having a MTVIS below or above the median (102 mL). 

 
Figure 40: Kaplan-Meiers curves of three groups of patients: patients without splenic 

involvement (blue), patients with splenic involvement and Metabolic Tumor Volume 

Inside the Spleen (MTVIS) below the median (orange), and patients with splenic 

involvement and MTVIS above the median (green). 

Various cut-offs values were tested to define low and high MTVIS groups. Figure 41 

shows the results of a logrank test for both PFS and OS for these values. Patients were 

never significantly separated in low and high-risk groups based on the MTVIS values 

(Figure 41A). The same analysis was conducted for the cut-off used to separate the 

patients into “focal” or “extensive” SI. None of the cut-off values significantly yielded 

two SI groups with significantly different outcomes (Figure 41B). 
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Figure 41: P-values of logrank tests testing for significance of difference in Progression 

Free Survival (PFS) and Overall Survival (OS) for patients with splenic involvement 

grouped as a function of their Metabolic Tumor Volume Inside the Spleen (MTVIS) (A) or 

as a function of the proportion of splenic volume involved to assign them in “focal” or 

“extensive” group (B). For each criterion, multiple cut-off values were tested (x-axes). 

 

3. Spleen Volume (SV) prognostic value 

Table 2 shows the HR for PFS and OS of SV controlled for treatment and controlled for 

treatment and TMTV in different patient groups. SV was significantly associated with a 

shorter OS on the entire cohort, but when controlled for TMTV the significance was 

lost. 

 
Number 

of 

patients 

Hazard Ratio controlled 

for treatment 

Hazard Ratio controlled 

for treatment and TMTV 

PFS OS PFS OS 

All 377 1.15 (p < 0.11) 1.28 (p < 0.02) 1.04 (p < 0.72) 1.13 (p < 0.27) 

SI 130 0.99 (p < 0.96) 1.14 (p < 0.51) 0.87 (p < 0.43) 1.03 (p < 0.90) 

SI – Focal 79 1.08 (p < 0.67) 0.93 (p < 0.76) 1.06 (p < 0.74) 0.92 (p < 0.71) 

SI – Extensive 51 0.90 (p < 0.75) 1.44 (p < 0.29) 0.83 (p < 0.63) 1.31 (p < 0.49) 

Table 2: Hazard Ratio of Spleen Volume (SV) controlled for treatment and controlled for 

treatment and TMTV, for Progression Free Survival (PFS) and Overall Survival (OS), 

calculated in different patients groups: entire cohort (All), patients with splenic 

involvement (SI), patients with less than half of the spleen involved (SI – Focal) and 

patients with more than half of the spleen involved (SI – Extensive). 

 

Figure 42 shows the distribution of SV for patients without SI, with focal SI and with 

extensive SI. Patients with focal SI had a significantly higher SV than patients without 

SI (p < 0.001) but significantly lower than patients with extensive SI (p < 0.001). SV 

could predict SI with an average precision of 0.72 (p < 0.001). 
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Figure 42: Distribution of Spleen Volume (SV) for patients without splenic involvement, 

patients with focal splenic involvement (less than half of the spleen involved) and with 

extensive splenic involvement (more than half of the spleen involved). 

 

4. Metabolic Tumor Volume Outside the Spleen (MTVOS) prognostic value 

Table 3 shows the HR of TMTV and MTVOS controlled for treatment. When TMTV was 

prognostic, MTVOS was also prognostic with almost identical HR. The table also 

features MTVOS HR controlled for treatment and TMTV. In this case, MTVOS was never 

prognostic. The table also shows that TMTV and MTVOS were highly correlated, even 

in groups composed of patients with SI. MTVOS could predict SI with an average 

precision of 0.51 (p < 0.001). 

 

TMTV Hazard Ratio controlled for 

treatment 

MTVOS Hazard Ratio controlled 

for treatment 

MTVOS Hazard Ratio controlled 

for  treatment and TMTV 

TMTV and 

MTVOS 

Spearman’s 

correlation 
PFS OS PFS OS PFS OS 

All 1.26 (p < 0.01) 
1.35 (p < 

0.01) 

1.24 (p < 

0.01) 

1.30 (p < 

0.01) 
1.09 (p < 0.73) 

0.90 (p < 

0.72) 
0.94 

SI 1.30 (p < 0.05) 1.33 (p < 0.10) 
1.34 (p < 

0.02) 
1.27 (p < 0.16) 1.45 (p < 0.31) 

0.89 (p < 

0.79) 
0.87 

SI – Focal 1.63 (p < 0.01) 1.41 (p < 0.10) 
1.62 (p < 

0.01) 
1.43 (p < 0.09) 0.64 (p < 0.73) 

1.79 (p < 

0.73) 
0.96 

SI – Extensive 1.08 (p < 0.79) 1.35 (p < 0.36) 1.06 (p < 0.84) 1.11 (p < 0.75) 0.96 (p < 0.94) 
0.50 (p < 

0.32) 
0.85 

Table 3: Hazard Ratios of Total Metabolic Tumor Volume (TMTV) and Metabolic Tumor 

Volume Outside the Spleen (MTVOS) controlled for treatment and TMTV, and Spearman’s 

correlation between TMTV and MTVOS for different groups of patients: entire cohort (All), 

patients with splenic involvement (SI), patients with less than half of the spleen involved 

(SI – Focal) and patients with more than half of the spleen involved (SI – Extensive). 
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Discussion 

In this study, we characterized the different features of splenic involvement and 

analyzed their impact on the outcome of a cohort of DLBCL patients. 

Patients with splenic involvement were found to have shorter PFS and OS. Yet, splenic 

involvement was strongly associated with TMTV: patients with splenic involvement had 

a significantly higher TMTV, to the extent that it was possible to predict splenic 

involvement from TMTV alone with high accuracy. Therefore, splenic involvement did 

not improve the stratification based on TMTV only. 

When we evaluated the Metabolic Tumor Volume Inside the Spleen (MTVIS), we did 

not find any additional prognostic information compared to splenic involvement or 

TMTV only. Patients with a large volume of tumor inside their spleen were not at higher 

risk than patients with a small splenic tumor volume. The Metabolic Tumor Volume 

Outside the Spleen (MTVOS) was highly correlated with and as predictive as TMTV, 

meaning that most of the prognostic information of TMTV is located outside the 

splenic region. This finding is similar with previous results from Guerra et al. as they 

found MTVOS to be as predictive as TMTV for PFS prediction of follicular lymphoma 

patients [219]. 

To the best of our knowledge, no study reported that patients with large splenic tumor 

volume were at higher risk than patients with a low volume of tumor in the spleen. 

Yamanaka et al. [220] found no statistical differences between these two groups, but 

they concluded that it might be due to a too small population of 108 patients. 

Splenomegaly was associated with splenic involvement but was not adding additional 

prognostic information. Patients with splenic involvement and a hypertrophic spleen 

were not at higher risk than patients with splenic involvement and a normal spleen 

volume. 

While these observations are statistically sound, these findings need to be confirmed 

in other cohorts of DLBCL patients. The role of splenic involvement in other lymphoma 

subtypes also warrants further investigation. 

Conclusion 

While splenic involvement was significantly prognostic of the outcome in a cohort of 

377 DLBCL patients, it was confounded by TMTV and did not improve patient 

stratification. Furthermore, accounting for the volume of splenic involvement did not 

improve patient stratification. Therefore, DLBCL patients with high splenic tumor 

volume were not at higher risk than those with lower splenic tumor volume. 
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5.3 Discussion 

In this study, the impact of splenic tumor involvement on the prognosis of DLBCL 

patients was assessed. While patients with splenic involvement had significantly lower 

PFS and OS, they also had higher TMTV. It is therefore unknown if their higher risk was 

due to the splenic involvement or their high TMTV. We demonstrated that the 

metabolic tumor volume inside the spleen did not offer additional prognostic value 

beyond splenic involvement or TMTV. It was also found that splenomegaly was 

correlated with splenic involvement but did not further impact prognosis.  

While this study’s findings are relevant and help us understand better how to diagnose 

DLBCL patients, it illustrates an issue I encountered for many image-based features I 

tested: many of them were confounded by TMTV. This is a common issue in radiomics 

when promising findings were later found to be surrogate of TMTV’s prognostic 

information [221]. This was an important problem since the main goal of the project 

was to find new information in the images.  

Another problem with the empirical search is the multiple testing issue. By testing one 

by one new radiomic features, the high number of tests is not controlled. This can result 

in many false positives as the number of tested features increases. 

Lastly, the intuition-based definition of new features leads to a narrow exploration of 

the image information. By looking at whole body images, only differences visible on 

the displayed images (e.g., MIPs) will be explored. It is easy to miss small differences in 

lesion shape or PET or CT values. While it is unlikely that radiomic features can capture 

information invisible to our eyes if we know where to look at, they can be a formidable 

tool to mine image data. By measuring numerous radiomic features in all the images, 

in multiples regions such as lesions, lesion surroundings and organs, a large fraction of 

the image information can be automatically tested for its prognostic value and the 

novelty of the information it provides. All these candidate biomarkers would be tested 

one by one on a cohort of patients and the selected ones would then be analyzed to 

understand the encoded biological information, allowing for a data-driven approach 

to the task of biomarker discovery. Once the biological information is understood, we 

would ideally try to reencode it in simpler and more direct ways. This would allow for 

a more efficient, reliable, and interpretable feature definition. These new features would 

then be tested on new cohorts of patients to ensure the validity of the discovery and 

their interest for clinical applications. 

This automated approach is not without limitations. First, the biomarkers found 

prognostic might not always be easy to interpret and linking them to biological 

interpretation can be challenging. Secondly, being a univariate approach, biomarkers 

prognostic only when associated with other biomarkers will not be identified. While we 

could miss some interesting information by not exploring this search space, it is 

preferable to not try to find such combination as the number of possibilities will be too 
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high for the number of samples available, and the risk of overfitting would have been 

too great. Lastly, testing thousands of features at once requires a powerful selection 

process. Without it, the risk of false positives (selecting features that are good 

prognostic only by chance) and false negatives (missing relevant features) becomes 

high. For this reason, a significant amount of work was dedicated to the construction 

of robust selection tool that ensures that the selected biomarkers bring new prognostic 

information, not already quantified by known features. 
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Chapter 6 

 

Development of a biomarker selection 

tool (ROBI) 

6.1 Introduction 

The selection tool used to screen the candidate image-based radiomic biomarkers had 

several objectives. First it should test the candidates for the novelty of the information 

they provided compared to already known prognostic information. A feature 

reencoding the TMTV or Dmax will not help improve our understanding of the disease 

and the diagnosis of DLBCL patients. We could try to find new features re-encoding 

TMTV and Dmax information, but with a higher prognostic value. However, even if we 

find such features, it would be impossible to prove that they are better than TMTV and 

Dmax with the limited number of patients available, especially since TMTV and Dmax 

were validated on multiple cohorts and numerous patients. 

The pipeline must also control for confounders such as the clinical center from which 

the patient was enrolled. A radiomic feature able to differentiate the machine used to 

scan the patient will not be useful in clinic. 

The second goal of the pipeline is to test the prognostic value of the candidates. We 

found that trying to have a precise estimate of the prognostic value of a feature is 

extremely challenging because the data and the outcome are noisy. We conjectured 

that for survival analysis tasks, we often do not have enough data to estimate the 

predictive power of a feature reliably and accurately. Yet, this is actually not our goal 

when looking for new biomarkers. We do not want to know how much a candidate is 

prognostic, we just want to know if it is prognostic. Therefore, in the pipeline, we 

estimate the likelihood of the feature of not having any prognostic value with a 

permutation test. If it is unlikely that a feature does not have any prognostic value, we 

select it.  

However, if this test is performed on thousands of features, multiple testing should be 

accounted for. We used false discovery rate (FDR) estimation techniques for their 

flexibility. Since this is an exploratory phase, it is not too much of a problem to select 

some false positives (FP) if it allows for the discovery of many new relevant biomarkers. 

Given the selected candidates will ultimately be tested on other cohorts, FP will be 

discarded in these external validations. Yet, these techniques to control FDR have a 

limited statistical power, and if too many candidates are tested at once, they will not 
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be able to reliably identify features related to the target from those that are not. If too 

many candidates are tested, none or all candidates will be selected. Therefore, we 

designed a pipeline to minimize the number of tested candidates in the FDR estimation 

to maximize the number of discoveries. This led us to the biomarker selection pipeline 

described in this chapter. 

 

6.2 Article in review 

 

ROBI: a Robust and Optimized Biomarker Identifier 

to increase the likelihood of discovering relevant 

radiomic features. 
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Abstract: 

Purpose:  To design and validate a feature selection tool that selects biomarkers most 

likely to reflect new prognostic information while minimizing and controlling the 

number of false positives (FP). 

Materials and Methods: The ROBI feature selection pipeline is a software combining 

several feature selection techniques to select biomarkers that encode relevant 

information not already quantified by established biomarkers and that are most likely 

to predict patient outcome in the dataset used for selection. The pipeline minimizes 

the selection of FP and estimates their number. Selection stringency can be adjusted. 
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A total of 500 synthetic datasets and retrospective data from 18F-FDG PET/CT scans of 

378 Diffuse Large B Cell Lymphoma (DLBCL) patients were analyzed to validate the tool. 

On the DLBCL data, two established radiomic biomarkers, TMTV and Dmax, were 

measured from the segmentation of the 18F-FDG PET/CT scans, and 10,000 random 

ones were generated. Selection was performed and verified on each dataset. Statistical 

significance was evaluated with Wilcoxon signed-rank tests. The efficacy of ROBI has 

been compared to methods controlling for multiple testing and a Cox model with 

Elasticnet penalty. 

Results: In the synthetic datasets, the pipeline selected significantly more true positives 

(TP) than FP (p < 0.001). For 99.3% of the synthetic datasets, the number of FP was 

within the 95% confidence interval estimated by the pipeline. The proposed pipeline 

significantly increased the number of TP compared to usual feature selection methods 

(p < 0.001). In the real dataset, ROBI selected the two established biomarkers and one 

random biomarker and estimated 95% chance of selecting 0 or 1 FP and a probability 

of 0.0014 of selecting only FP. The Bonferroni correction selected no feature, and the 

Elasticnet selected 73 spurious features and missed one of the two established 

biomarkers. 

Conclusion: The ROBI pipeline effectively selected relevant biomarkers while 

controlling FP, demonstrating robust performance on both synthetic and real datasets.  

Keywords: Biomarker, biomarker discovery, feature selection, multiple testing, false 

positive 

Abbreviations: 

ROBI: Robust and Optimized Biomarker Identifier 

FP: False Positive 

TP: True Positive 

CB: Candidate biomarker 

TST: two-stage linear step-up procedure 

FDR: False discovery rate 

CCO: Correlation Clustering Optimization 

DLBCL: Diffuse Large B Cell Lymphoma 

TMTV: Total Metabolic Tumor Volume  

Dmax: maximum distance between two lesions 
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Introduction 

Radiomics involves the extraction and analysis of quantitative medical image features 

[51], [52]. By converting images into mineable data, radiomics may reveal disease 

characteristics that are currently overlooked, improving diagnosis, prognosis, and 

treatment planning. A great number of scientific publications have mentioned 

radiomics since its introduction, but reproducibility, standardization, interpretability, 

and methodological issues limit its potential, and few radiomics results have been 

translated into the clinic [64], [65].  

Standards for radiomic feature definition and calculation, and guidelines for best 

practices are being developed to accelerate clinical translation [66], [70], [71], [72]. Lack 

of external validation and methodological flaws in assessing biomarker novelty and 

prognostic power partly explain why radiomics has not been adopted in the clinics yet. 

Statistical methods, such as robust feature selection algorithms, cross-validation 

techniques for model evaluation, and statistical tests for assessing the significance of 

prognostic biomarkers, can address some of these challenges by ensuring the reliability 

and generalizability of radiomics studies. On the other hand, improper use of these 

techniques—including overfitting models to specific datasets, not controlling for C-

index inflation, ignoring multiple testing corrections, data leakage in the machine 

learning pipeline and failing to validate findings externally—can lead to misleading 

results, characterized by either overly optimistic or pessimistic evaluations of radiomic 

features and models. 

In this context, we introduce the Robust and Optimized Biomarker Identifier (ROBI), not 

as a novel feature selection method, but as a software solution designed to combine a 

range of established techniques in a simple yet efficient manner. ROBI is a streamlined 

Python package designed to facilitate the selection of radiomic features, thereby 

mitigating the risk of selecting features that either mirror existing biomarkers (Orlhac 

et al., 2014 [221]) or lack prognostic relevance. By implementing current best practices 

within an optimized framework, ROBI aims to minimize false positives—erroneously 

selected non-relevant features—while enhancing the detection of true positives—

genuinely relevant features. It employs time-efficient permutation tests to precisely 

estimate the number of false positives, offering users the flexibility to tailor selection 

stringency according to their research objectives. 

ROBI's efficacy is demonstrated through validation on synthetic datasets with 

established truths, and on a cohort of Diffuse Large B Cell Lymphoma (DLBCL) patients, 

where it successfully identified two known biomarkers out of many random ones. This 

underscores ROBI's utility as a practical tool that leverages existing methodologies to 

overcome some of the current barriers in radiomics, paving the way for more reliable 

and clinically applicable radiomic research outcomes. 
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Material and methods 

1. Pipeline 

Candidate biomarkers (CB) are assessed for their predictive potential by ROBI, based 

on their values in a patient cohort and their association with the outcome (e.g., time 

before relapse, response to treatment). To avoid selecting candidates that replicate 

known predictive information, previously known predictive biomarkers must be 

identified. Figure 43 presents the overall pipeline. More details on the choice of the 

parameter values are provided in the supplemental data. 

 

Figure 43: Diagram of the ROBI selection pipeline. Each free tuning parameter is denoted 

by a capital letter (S, M, W, P, C, Q and T). Intuitive explanation and range of values of 

these parameters are provided in supplemental materials. “VIF” is the Variance Inflation 

Factor. “weight change” is the relative change in weight when confounders are 

introduced. “FDR” is the False Discovery Rate and “TST” stands for two-stage linear step-

up procedure, the technique used to control for FDR. Filtering candidates reproducing 

known information and CCO are optional. 

a. Discarding missing values 

A low number of samples and high numbers of censored samples artificially increase 

biomarker prognostic value [99], [114]. Any CB with missing values is thus discarded to 

avoid favoring CBs unavailable to all patients. 
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b. Discarding already known information 

CBs with an absolute Spearman correlation coefficient greater than a tunable cut-off S 

(0.5 by default) with a known imaging or clinical biomarker are discarded to ensure that 

the selected CB capture new information. In case of multiple established biomarkers, 

multicollinearity is assessed using the Variance Inflation Factor (VIF). CBs exceeding a 

certain tunable multicollinearity threshold M (5 by default) are discarded. A linear 

model (Cox for survival and logistic regression for classification) controls for 

confounders (e.g., age, treatment) [222]. A univariate model with only the evaluated CB 

is trained first and assigns a weight 𝑊𝑢𝑛𝑖 to the CB. Then, a multivariate model with the 

evaluated CB and known covariates is trained and the new weight 𝑊𝑚𝑢𝑙𝑡𝑖 is assigned 

to the CB. The relative change in weight is defined as: 

𝑊𝑠ℎ𝑖𝑓𝑡 =
|𝑊𝑢𝑛𝑖 − 𝑊𝑚𝑢𝑙𝑡𝑖|

𝑊𝑚𝑢𝑙𝑡𝑖
× 100 

Any CB with 𝑊𝑠ℎ𝑖𝑓𝑡 above a threshold W (10% by default) is discarded. 

c. Assessment of CBs performance 

Each CB's prognostic ability is assessed using Harrell's Concordance Index (C-index) 

against patient outcome data such as time of death or relapse, accommodating 

censored outcomes, or balanced accuracy for classification task, accommodating 

imbalanced datasets. These scores are tested for significance using a two-sided 

permutation test of P permutations (1,000 by default). A two-stage linear step-up 

procedure (TST) is used to control the false discovery rate (FDR, the proportion of false 

positive in selected biomarkers) and address multiple testing [119]. This statistical 

method uses a conservative threshold to identify potential selection and adjusts this 

threshold in a second stage based on the initial results to increase power while 

controlling the overall FDR. Adjusting TST’s Q parameter allows flexibility in balancing 

numbers of FPs and selected CBs. To increase the yield, ROBI performs the TST last in 

the selection process when the number of tested CBs has already been substantially 

reduced through the previous selection steps. 

d. Optimization of the number of selected biomarkers 

To optimize the selection of biomarkers, we employ a correlation clustering 

optimization (CCO) strategy, where CBs conveying similar information are grouped 

based on their absolute Spearman’s correlation. Within each cluster, only the biomarker 

demonstrating the highest predictive accuracy is retained. This approach is informed 

by methods previously utilized in genomics, notably the weighted gene correlation 

network analysis (WGCNA) technique, which clusters genes based on similarity in 

expression patterns to identify modules of highly correlated genes, thereby facilitating 

the interpretation of complex biological phenomena [223]. By adopting a similar 

methodology, we adjust the maximum allowable correlation between two clusters, C 

(0.5 by default), to fine-tune the granularity of the clustering and thus the number of 
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biomarkers selected. This method not only enhances the specificity of our biomarker 

selection process but also ensures that the biomarkers retained offer of more unique 

predictive value, thereby avoiding redundancy. 

e. False positive estimation 

Because it is selecting the CBs with the best p-values, CCO may optimistically bias TST’s 

FDR. To correct and improve the number of FP estimation, ROBI randomly permutes 

outcome data during selection. This preserves the relationships among CBs but breaks 

their association with patient outcomes. The features selected using the permuted 

outcome are thus FP. After repeating this process T times (by default 1,000 times), ROBI 

calculates the average number of FPs and its 95% confidence interval. The probability 

of only selecting FPs is assessed by the proportion of permutated datasets with as many 

as or more selected CBs than the non-permuted selection. 

2. Synthetic data evaluation 

A total of 500 synthetic datasets were generated with scikit-learn [224] and scikit-

survival [225] Python packages to evaluate ROBI. These datasets varied in the number 

of samples, number of genuine (associated with the outcome) and spurious (not 

associated with the outcome) biomarkers, censoring, correlation between biomarkers, 

and target noise. Table 4 shows the parameter distributions and ranges. Details about 

the generation of the datasets are provided in the documentation of scikit-learn [224]. 

Table 4: Average, standard deviations, and range of the synthetic dataset features. 

A linear regression with random weights on genuine biomarkers defined the target 

using Scikit-learn’s “make_regression” function. The target was not built using spurious 

biomarkers. ROBI processed each dataset with CCO with P = 106, and T = 103. Genuine 

biomarkers selected by ROBI were defined as TPs and selected spurious biomarker as 

FPs. The “effective_rank” parameter within “make_regression” allowed for the 

simulation of correlations among features (biomarkers) by controlling the rank of the 

covariance matrix used to generate the features. A lower “effective_rank” implies a 

higher correlation among a subset of features, thereby simulating real-world scenarios 

where biomarkers might exhibit interdependencies. The same datasets were also 

processed with the two-stage linear step-up procedure (TST) alone to compare its 

results to ROBI’s selections and verify that ROBI’s optimization improves the number 

of  biomarkers rightly selected. 

 Average (and std) Min Max 

Number of samples 423 (±260) 10 1000 

Proportion of censored samples 0.57 (±0.27) 0.1 0.9 

Noise 4.92 (±3.04) 0 10 

Number of predictive biomarkers 515 (±280) 1 1000 

Number of non-predictive biomarkers 3164 (±2268) 10 50000 

Proportion of predictive biomarkers 0.196 (±0.153) 0.004 0.812 

Average correlation between candidates 0.13 (±0.08) 0 0.6 



 

98 

The average, standard deviation and 95% confidence interval of the number of selected 

CBs, TPs and FPs were calculated as well as the percentage of datasets with more TPs 

than FPs, for different values of Q. Wilcoxon signed-rank tests were used to determine 

whether ROBI selected more TPs than FPs and if using ROBI increased the number of 

rightly selected biomarkers compared to TST alone. The distribution of the difference 

of TPs for the ROBI and TST selection for the same number of FPs was plotted. 

3. Real data evaluation 

DLBCL patients from REMARC (NCT01122472) and LNH073B (NCT00498043) cohorts 

were analyzed. Detailed cohort compositions have been described elsewhere [210], 

[211]. All patients had baseline anonymized 18F-FDG PET/CT scans, with 5 years 

Progression Free Survival (PFS) and 5 years Overall Survival (OS) available. Lesions were 

segmented by expert nuclear medicine physicians (ASC, LV, MM) in the PET images 

[198], [212]. 

In DLBCL, Total Metabolic Tumor Volume (TMTV) and maximum distance between two 

lesions (Dmax) are known to be prognostic of PFS and OS [198], [226]. These two 

biomarkers were calculated on the segmented PET images using PyRadiomics [56]. 

10,000 spurious biomarkers were randomly generated for all patients and input to ROBI 

in addition to TMTV and Dmax. ROBI parameter settings were S = 0.5, M = 5, W = 10%, 

P = 107 and T = 104. Q was set to have at least one selected CB. No CCO was used 

because spurious biomarkers are random and have low correlation. Biomarkers were 

tested to not replicate the information of ECOG, age adjusted International Prognostic 

Index [189], treatment, and sex. We then checked whether TMTV and Dmax were 

selected by ROBI and whether the number of selected spurious biomarkers was within 

the 95% confidence interval of ROBI’s estimated number of FPs. Selection was 

performed for progression (PFS) or death from any cause (OS) prediction. 

Selection was also performed with other feature selection techniques: TST with a Q 

value chosen to have less than one false positive, the Bonferroni procedure with a 

probability of 0.05 of having 1 or more false positive, and a Cox model with Elasticnet 

penalty. 

Results 

1. Synthetic data evaluation 

A total of 99.3% of datasets had the number of FPs within ROBI’s 95% confidence 

interval. Table 5 shows ROBI’s selection results on synthetic datasets, and Figure 44 

shows the average number of selected features and FPs, with their 95% confidence 

intervals, as a function of Q, for both ROBI’s and TST’s selection. More CBs were 

selected with higher Q. ROBI selected significantly more TPs than FPs (p < 0.001). For 

the same Q, ROBI significantly increased numbers of TPs, FPs, and the difference 

between them compared to TST (p < 0.001). 
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Q Method 
Number of 

selected CB 

Number 

of TP 

Number 

of FP 

Percentage of datasets 

with more TP than FP 

0.01 
TST 4 (±20) 4 (±20) 0 (±0) 100.0 % 

ROBI 6 (±28) 6 (±27) 0 (±0) 99.8 % 

0.10 
TST 9 (±33) 9 (±32) 0 (±0) 99.8 % 

ROBI 15 (±47) 14 (±44) 1 (±12) 99.2 % 

0.25 
TST 13 (±43) 13 (±42) 0 (±2) 99.4 % 

ROBI 28 (±81) 21 (±56) 6 (±48) 97.1 % 

0.50 
TST 19 (±57) 17 (±52) 1 (±10) 99.2 % 

ROBI 52 (±141) 32 (±71) 20 (±99) 94.6 % 

Table 5: Average values and standard deviation of the number of selected candidate 

biomarkers (CB), number of true positives (TP), false positives (FP), and percentage of 

datasets with more FP than TP, for different levels of Q, for the ROBI pipeline and the TST 

procedure alone. 

 

 

Figure 44: Average number of selected candidate biomarkers (CB) and average number 

of false positives (FP) among the selected CB, with the associated 95% confidence interval, 

for the ROBI pipeline and the TST procedure alone, at various levels of Q. 

 

Figure 45 plots the difference between numbers of TPs of ROBI and the number of TPs 

of TST for samples in which the same numbers of FPs were selected. For the same 

number of FPs, ROBI selected significantly more TPs than TST alone (p < 0.001). 

The probability of having only FPs in the selection estimated by ROBI was strongly 

correlated with the number of TPs (ρ = -0.96, p < 0.001). For 60% of cases with at least 

one TP, this probability was below 0.05. For the cases with only FPs selected (3.3% of 

all cases), 0.6% of them had a probability below 0.05. 
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Figure 45: Difference between the number of True Positives (TP) selected by ROBI and the 

number of TPs selected by TST alone when the two methods had the same number of 

False Positives (FP). The difference is positive most of the time, meaning that ROBI 

effectively improved the rate of TP selection. 

2. Real data evaluation 

The DLBCL cohort included 378 patients, among whom 96 had progressive disease and 

55 died. 

For PFS prediction, TMTV and Dmax both yielded a C-index of 0.63, while 105 spurious 

features had a C-index > 0.58 and 16 had a C-index > 0.60. The significance of the 

spurious features was p < 0.01 for 103 of them, and p < 0.001 for 13 of them. The 

Bonferroni selection did not select any feature. TST selected both TMTV and Dmax and 

one spurious feature. An Elasticnet selected Dmax and ranked it first, but it did not 

select TMTV and selected 101 spurious features. ROBI selected TMTV and Dmax, and 

one spurious feature. ROBI predicted a 95% chance of having 0 or 1 FP with an average 

of 0.1 FP. ROBI estimated the probability of having only FP to be 0.0014. 

For OS prediction, TMTV and Dmax had respectively a C-index of 0.63 and 0.60, and 

137 spurious features had a C-index > 0.60. The significance of the spurious features 

was p < 0.01 for 110 features, and p < 0.001 for 8 of them. The Bonferroni selection 

did not select any feature. TST did not select any spurious features, nor TMTV nor Dmax. 

An Elasticnet selected TMTV and ranked it 47. It did not select Dmax and selected 73 

spurious features.  ROBI did not select any feature. 
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Discussion and Conclusion 

This study introduced ROBI, the Robust and Optimized Biomarker Identifier. We called 

it “Robust” because false discoveries are controlled and “Optimized” because multiple 

strategies increase the number of rightly selected biomarkers. We showed that this 

selection tool efficiently controls the false positive numbers while increasing the 

number of selected biomarkers compared to the standard two-stage linear step-up 

procedure (TST) alone. ROBI’s 95% confidence interval estimating the number of false 

positives was correct for 99.3% of the synthetic datasets, small difference between 

these two numbers being probably explained by statistical fluxes. It can find relevant 

biomarkers among thousands of candidates with enough data (96 events for PFS 

prediction in our real dataset), while other standard methods fail with such a high 

number of potential candidates. For instance, in the test performed on the DLBCL, 

enough patients had PFS observed to select TMTV and Dmax, but not enough events 

were observed in OS to selected them. 

As shown by the evaluation on the synthetic datasets, ROBI’s utility transcends the 

radiomic domains, making it a versatile tool for biomarker selection across various 

fields (e.g., genomics). 

ROBI has limitations. Only biomarker screening is addressed. Validating a new 

biomarker requires definition, measurement, standardization, modeling, and 

interpretation. More importantly, ROBI does not replace external validations. It only 

increases the chance of replicating the findings by controlling the risk of false positive 

selection. 

Limitations include dropping candidate biomarkers with missing data. This step may 

eliminate promising biomarkers by reducing the number of candidates. Removing a 

few patients (preferably those with a censored target value) to avoid discarding too 

many candidate biomarkers can mitigate this limitation. 

ROBI is more time consuming than other selection methods. However, thousands of 

biomarkers can be accurately evaluated in a reasonable time. On a PC an Intel Core i7-

11800H (2.30 GHz), NVIDIA GeForce RTX 3070 (8 GB), and 16 GB RAM, 5,000 candidates 

could be evaluated in less than 9 min, with T = 103 et P = 107. 

ROBI may not identify all relevant biomarkers among candidates, and the number of 

false negatives (predictive biomarkers that are not selected) remains unknown. In 

addition, because it uses univariate tests, ROBI may not always choose biomarkers that 

improve multivariate models. Furthermore, while the pipeline can estimate the number 

of false positives and the probability of selecting only false positives, it cannot tell which 

feature is more likely to be a true positive, and external validation remains required to 

validate the selected features. 

Because ROBI uses a multivariate model to address confounders, only a finite number 
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of them can be handled. For survival prediction, the general guideline is 10 non-

censored samples per confounder [106]. 

An important future work needed is a more thorough comparison to other feature 

selection techniques on non-synthetic datasets. 

In conclusion, ROBI selects biomarkers that best predict patient outcomes in a cohort, 

by discarding candidates that do not measure any new predictive information. ROBI 

identifies the most promising candidates, which will then have to be tested on external 

cohorts to confirm their predictive value. ROBI might facilitate feature selection in 

radiomics and beyond, and to support this effort, we provide a user-friendly Python 

implementation at https://github.com/Lrebaud/robi.  

 

6.3 Discussion 

In this article, we introduced the ROBI pipeline. This tool can select relevant biomarkers 

from large pools of candidate biomarkers by testing them on a cohort of patients. The 

candidates are selected for the novelty of their information with respect to existing 

prognostic factors and their prognostic value. While ROBI does not guarantee that the 

selected biomarkers are true ones for the corresponding disease, it minimizes the 

chances of selecting non relevant candidates for the training cohort. It does not replace 

an external validation but identify the most promising candidates among a large 

number. ROBI is optimized for screening of large ensembles of candidates. We showed 

in the paper that it can find relevant candidates among thousands of spurious ones. It 

is domain agnostic, making it useful for a wide range of domains dealing with abundant 

features, such as genomic. We released this tool as a Python package for an easy and 

reliable use of the pipeline. 

With this tool, we can explore numerous image-based features in whole-body PET/CT 

scans, to extensively screen the content of these images. 

  

https://github.com/Lrebaud/robi
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Chapter 7 

 

Discovery of new prognostic 

biomarkers for Non-Hodgkin 

Lymphomas 

7.1 Introduction 

Once I was able to deal with large numbers of candidates thanks to the ROBI tool, I 

could start extensively exploring the whole PET/CT scans of cancer patients. I had two 

cohorts of Non-Hodgkin Lymphoma patients available: one composed of DLBCL 

patients, and another of FL patients. These two groups of patients came from three 

clinical trials. Both had approximately 350 patients, providing enough statistical power 

to test thousands of candidate biomarkers. 

In this chapter, we detailed how a large pool of candidate image-based features was 

automatically constructed and tested, covering a significant amount of the information 

present in the PET/CT scans performed before treatment. We present the result of their 

selection with the ROBI tool and the following analysis to understand and reencode 

the information conveyed by the selected features. 

7.2 Article in preparation for submission 

Discovery of new prognostic biomarkers in Diffuse 

Large B Cell Lymphoma and Follicular Lymphoma 

using comprehensive 18F-FDG PET/CT mining 
 

IN PREPARATION FOR SUBMISSION 

Louis Rebaud1,2, Nicolò Capobianco3, Clémentine Sarkozy2,4, Anne-Ségolène 

Cottereau2,5, Laetitia Vercellino6,7, Olivier Casasnovas8, Franck Morschhauser9, 

Catherine Thieblemont10-12, Bruce Spottiswoode13, Irène Buvat2 

1Siemens Healthcare SAS, Saint Denis, France; 2LITO laboratory, UMR 1288 Inserm, 

Institut Curie, University Paris-Saclay, Orsay, France; 3Siemens Healthcare GmbH, 

Germany; 4Institut Curie, Saint Cloud, Paris, France; 5Department of Nuclear Medicine, 

Cochin Hospital, AP-HP, Université Paris Cité, Paris, France; 6Department of Nuclear 
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Medicine, Saint-Louis Hospital, AP-HP, Paris, France; 7Inserm, UMR_S942 MASCOT, 

Université Paris Cité, F-75006, Paris, France; 8Department of Hematology, University 

Hospital of Dijon, INSERM 1231, Dijon, France; 9Department of Hematology, University 

of Lille, CHU Lille, ULR 7365; 10Université Paris Cité, 85 boulevard St Germain, F-75006 

Paris, France; 11Assistance Publique – Hôpitaux de Paris, Saint Louis Hospital, Hemato-

oncology, Paris, France; 12Inserm U1153, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 

F-75010 Paris, France; 13Siemens Medical Solutions USA, Inc., Knoxville, Tennessee, 

United States;  

Abstract 

In this study, we explored new prognostic biomarkers in Diffuse Large B-Cell 

Lymphoma (DLBCL) and Follicular Lymphoma (FL) through an extensive analysis of 18F-

FDG PET/CT scans, focusing on Progression Free Survival as a primary endpoint. 

Utilizing the open-source Robust and Optimized Biomarker Identifier (ROBI) pipeline, 

we assessed thousands of radiomic features for their prognostic values and the novelty 

of their information, leading to the identification of 28 new prognostic image-based 

biomarkers for FL patients, and 28 others for DLBCL patients. Through careful analysis 

of the relationship between feature values and visual appearance of the image signal , 

we manually identified 22 biological information prognostic of the outcome that we 

re-encoded into 22 more interpretable image-based biomarkers. Among these 22 

features, 10 demonstrated prognostic significance across both DLBCL and FL, 

suggesting a higher likelihood of replication, as well as clinical applicability to a larger 

number of patients. While several surrogate biomarkers were calculated inside or close 

to the lesions, others reflected the patient's general state of health and comorbidities, 

calling for a novel approach to image-based patient stratification. Using these newly-

identified prognostic biomarkers enabled a more accurate prediction of patient 

outcomes, highlighting the potential of these biomarkers to refine therapeutic 

strategies. Our findings show promise for enhancing the prognostic assessment of 

DLBCL and FL patients, warranting further validation in external cohorts to confirm their 

clinical utility. The code for computation and test of these biomarkers is freely available. 

Introduction 

Non-Hodgkin lymphomas (NHL) rank as the fifth most prevalent cancer with 72,035 

new cases in Western Europe in 2020, and is the most common hematological 

malignancy worldwide, accounting for 3% of all cancer diagnoses and deaths [120], 

[175]. Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL) are the 

two most common subtypes of NHL, as DLBCL represents 30%-58% of NHL cases, and 

FL 20%-25% of them [158], [180]. DLBCL is an aggressive but curable disease, with 70% 

of the patients considered as cured after the standard of care RCHOP; FL is 

characterized by an important heterogeneity in disease presentation and outcome: 

some patients remaining asymptomatic without treatment for decades and other 

presenting a refractory disease with a particularly poor outcome [227]. Importantly, FL 



 

105 

can transform into DLBCL forms, with an annual incidence of 2-3% and a poor outcome. 

The standard practice in managing DLBCL and FL involves 18F-FDG PET/CT scanning, at 

baseline for staging and end of treatment for response assessment. These scans assist 

doctors in determining cancer's stage and monitoring its progression and response to 

treatments. Specifically, by locating tumors in the images and detecting organ 

involvement, medical experts can evaluate prognostic scoring system, relying on 

staging and other biological parameters, such as the Ann Arbor staging and the 

International Prognostic Index (IPI) and its variants like the age-adjusted IPI (aaIPI) and 

Follicular Lymphoma International Prognostic Index (FLIPI) specifically designed for FL. 

Furthermore, delineating lesions on the PET scan allows for the calculation of the Total 

Metabolic Tumor Volume (TMTV), a prognostic factor validated in various series in 

DLBCL, and more recent in FL. Multiple studies found that TMTV was prognostic of 

DLBCL patient outcomes [206], [207], and could be used to guide treatment strategies, 

as in the CAR-T cell setting. While it is not a standard of care, it is used more and more 

to stage those patients. Recent work also suggests that TMTV has potential prognostic 

value in FL [197]. Other PET derived metrics, such as the maximum distance between 

two lesions (Dmax) was found prognostic on several cohorts of DLBCL patients [198], 

[199], and promising results were found on a cohort of 126 FL patients [228].  

Beyond these features, an obvious follow-up question would be: is there additional 

useful information still overlooked in these 18F-FDG PET/CT images? Non-medical 

experts can easily spot evident imaging disparities in PET scans of patients with similar 

stage, TMTV and Dmax but whether these differences impact the outcome is an open 

question. We can also wonder whether there is prognostic information outside the 

tumor regions reflecting patient’s specific conditions and state, and possibly in the CT 

images that are always associated with the PET scan. 

The goal of this study was therefore to search for potential prognostic biomarkers 

present in baseline 18F-FDG PET/CT scans of FL and DLBCL patients, using Progression 

Free Survival (PFS) as an endpoint, PFS also being a surrogate of the Overall Survival 

(OS) [229]. We aimed to identify biomarkers that do not merely reiterate information 

already conveyed by TMTV, Dmax or the existing clinical staging features. 

Our strategy consisted in generating plethora of potential biomarkers, aiming to 

capture a wide range of information within and outside tumor lesions, in both PET and 

CT images. Then, the Robust and Optimized Biomarker Identifier (ROBI) selection 

pipeline was used to select biomarkers identified as prognostic of PFS without 

replicating known information [230]. This pipeline was designed to maximize the 

probability of identifying true prognostic biomarkers by controlling the false discovery 

rate and optimizing the order of the selection steps. We then tried to understand the 

biological meaning of the selected biomarkers and re-encoded these hypotheses into 

simpler features. To try to identify new prognostic biomarkers that would be robust 

and not specific to one subtype of NHL, these features were searched for on one cohort 
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of DLBCL patients and another of FL patients independently. Features found prognostic 

on the two cohorts would be more valuable as they will be applicable to more patients 

but would also have higher chances to be confirmed in external validation studies. 

Material and methods 

1. Data description 

Two cohorts of patients were analyzed in this study. The first one is composed of 347 

DLBCL patients from the REMARC (NCT01122472) and LNH073B (NCT00498043) trials. 

The second cohort consists of 350 FL patients from the multicentric RELEVANCE clinical 

trial (NCT01476787). The detailed compositions of these cohorts have been described 

elsewhere [210], [211]. 

Baseline 18F-FDG PET/CT scans were available for all patients as pseudonymized DICOM 

files. In addition, clinical and biological data at baseline (ECOG score, IPI index with 

FLIPI for FL and age-adjusted IPI (aaIPI) for DLBCL, treatment received and sex), 

treatment, outcome (PFS and OS) and recruitment center were available. For the FL 

cohort, comorbidities were also available.  

2. Data preparation 

All lesions were segmented by expert medicine nuclear physicians (ASC, LV, MM) in the 

PET images, applying the approach detailed by Cottereau et al. [212]. 

For every patient, 24 organs or group of organs were segmented from the CT images 

of the PET/CT scans using the TotalSegmentator deep-learning model [46]. Another 

deep-learning model, MOOSE, was employed to segment muscle and fat, which were 

not segmented by version 1.5.2 of TotalSegmentator [46]. The segmented organs were 

left and right adrenal glands, brain, blood vessels (aorta, pulmonary, iliac, portal, 

splenic, inferior vena cava), colon, duodenum, esophagus, gallbladder, heart, a merge 

of gluteus, autochthon, and iliopsoas, left and right kidneys, liver, left and right lungs, 

pancreas, skeleton, small bowel, spleen, stomach, trachea, urinary bladder, all skeletal 

muscles and fat (subcutaneous and visceral). 

Because the PET and the CT images did not always share the same voxel spacing, all 

images and regions of interest were resampled to 1x1x1mm voxel size using SimpleITK 

[213], [214], [215]. Nearest neighbor interpolation was used for resampling 

segmentation masks (to keep the binary values of the segmentation masks) and spline 

interpolation was used for resampling images. 

3. Calculation of candidate biomarkers 

Numerous features were created from the regions of interest (ROI) corresponding to 

the tumor and organ segmentation masks. In the PET and CT images, all features of the 

PyRadiomics package were computed for each specific organ [56]. The metabolic 
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tumor volume within the organ was calculated by intersecting the tumor and organ 

segmentation masks. This volume was also normalized by the volume of the organ and 

the TMTV. A binary biomarker that indicated whether an organ contained tumor was 

created. Finally, the shortest and largest distances between the organ and the tumor 

were determined using all voxels of the regions (and not only their respective center 

of mass). The number of involved organs was measured, as well as total muscle volume, 

total fat volumes, and the TMTV divided by these volumes.  

In addition, in the PET and CT images, all features of the PyRadiomics package were 

computed for each spatially disconnected segmented tumor lesion. The same features 

were also computed in the 8 millimeter thick shell that surrounded each lesion. At the 

patient level, each feature was aggregated using 6 approaches:  minimum, mean, 

median, maximum, standard-deviation, and range. Last, the PyRadiomics features were 

computed considering all the lesions as a single unconnected ROI, and  also in the 8 

millimeter thick shells of tissues surrounding each unconnected ROI. 

4. Selection of candidate biomarkers 

The Robust and Optimized Biomarker Identifier (ROBI) selection pipeline [230] was 

used to select candidates that were the most likely to be predictive of the outcome 

(e.g. risk) of patients. PFS was used as endpoint as it was less censored than OS. 

Candidates that re-encoded already known prognostic information (like TMTV or Ann 

Arbor stage) were automatically discarded by the ROBI pipeline. For the selection using 

the DLBCL cohort, candidates were controlled for confounding effect with TMTV, Dmax, 

ECOG, aaIPI, treatment, sex, age, and Ann Arbor status. For the FL cohort, confounders 

were TMTV, ECOG, FLIPI, treatment, sex, age, and Ann Arbor status. A Kruskal-Wallis 

test was also used to discard candidates confounded by the recruitment center of the 

patients. ROBI’s parameters were set to S = 0.5, W = 10% and M = 5 to avoid selecting 

biomarkers reproducing known information [230]. The C = 0.5 value was used to reduce 

the number of candidate biomarkers and force the selected ones to reflect a wide 

diversity of information. In the pipeline, candidates were grouped into cluster of similar 

information based on their correlation, and only the most prognostic candidate in each 

cluster was used in the rest of analysis. Values of P = 107, T = 104 were used to ensure 

a precise estimate of the significance of the prognostic value of the candidates and a 

reliable estimate of the number of false positives (FP). The Q parameter, which controls 

the selectivity of the ROBI pipeline, was chosen to ensure that fewer than one FP could 

be expected, thereby reducing the chance of selecting non-reproducible biomarkers. 

We reported the total number of selected biomarkers, averaged estimated number of 

FPs, the 95% confidence interval (CI) of the estimated number of FPs, and the 

probability of selecting only FPs. 

The selection was performed on each cohort independently. 
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5. Interpretation of selected biomarkers 

Our goal was to obtain new explainable biomarkers related to patient prognosis. To 

understand the key information reflected by the selected candidate biomarkers, we first 

determined if the selected candidates were positively or negatively correlated with the 

PFS. Then, using visual samples and correlations with more intuitive features and with 

other selected biomarkers, we formulated hypotheses that might explain the biological 

information reflected by each candidate biomarker and how this might relate to the 

patient's outcome. When possible, we re-formulated the hypothesis in simpler terms 

using a surrogate biomarker supposed to capture the same information as the selected 

candidate biomarker. This step allowed us to test our interpretation assumption and to 

make the biomarker easier to understand. This analysis was performed for the 

biomarkers selected on the FL cohort and on the DLBCL cohort independently. Each 

surrogate biomarker identified in one cohort was systematically tested for its 

prognostic power in the other cohort. 

For each selected biomarker, we reported the C-index, its significance, and the sign of 

the correlation with the risk of PFS event. We also reported the prognostic performance 

of the surrogate biomarker, visual examples of high and low risk patients according to 

the surrogate biomarker, as well as Kaplan-Meier curves of the cohort as split based 

on the surrogate biomarker and TMTV values. Prognostic performances of the 

surrogate biomarkers were controlled for multiple testing with a two-stage linear step-

up procedure [119]. All surrogate biomarkers were evaluated on both FL and DLBCL 

cohorts. 

6. Response to treatment 

Response to treatment at 120 weeks defined by Cheson et al 1999 [231] and assessed 

by the independent review committee of the RELEVANCE trial was available for all FL 

patients. FL patients were assigned to either the “responding” group encompassing all 

FL patients with complete, unconfirmed complete or partial response to treatment, or 

to the “progressive” group when progressive disease was identified at the 120 weekds 

timepoint. Only one FL patient was identified as presenting a stable disease and was 

discarded from the analysis.  

Selected biomarkers and surrogate biomarkers identified based on the PFS outcome 

were tested for their ability to distinguish between patients responding to treatment 

vs patients with progressive disease in the FL cohort. They were evaluated through a 

univariate logistic regression model using the balanced accuracy calculated from a 10-

fold stratified cross-validation. Significance of the balanced accuracies was assessed 

with a permutation test of 10,000 permutations. 

This analysis was not performed on the DLBCL patients as the response to treatment 

was not available. 
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7. Multivariate model 

On each cohort independently, a multivariate ICARE model [232] was trained to predict 

the PFS of patients from different groups of features: the baseline feature group (TMTV 

for FL; TMTV and Dmax for DLBCL), one group composed of the baseline features and 

the surrogate biomarkers identified as prognostic factors in both FL and DLBCL, and 

one group with all the surrogate biomarkers identified as prognostic factors in the 

tested cohort. Models were evaluated with a C-index calculated from a 10,000-folds 

Leave-Pair-Out cross validation. Average C-index were reported. The significance of the 

change of C-index when new features were added was assessed with Nadeau and 

Bengio correction to the paired Student-t test [233]. The same analysis was done with 

the selected biomarkers. The building of a multivariate model served as a sanity check 

and was not an attempt to estimate the actual performance of a model that would use 

the selected biomarkers. The model training and evaluation being performed on the 

same datasets used for the feature selection, data leakage was present, and the 

performance was likely over-optimistic. The goal of this multivariate model building 

was to verify that performance of a multivariate model was increasing when new 

selected biomarkers were added, as if the performance was decreasing, it would reveal 

a problem in the biomarker selection. 

Results 

FL patient data came from 39 centers and were acquired using 28 different machines. 

Median follow-up duration for the RELEVANCE, REMARC and LNH073B trials were 

respectively 72, 52 and 45 months. Out of the 350 included patients, 130 patients (37%) 

had disease progression and 36 patients (10%) died during the trial. For DLBCL patients, 

data came from 40 centers and images were acquired with 25 different machines. Of 

the 347 DLBCL patients, 96 patients (28%) had disease progression and 55 patients 

(16%) died during the trial.  

A total of 6834 candidate biomarkers were computed in each cohort. 4231 were 

computed inside organ regions, 1116 inside distinct lesions, 1116 inside the shell of 

tissues around these lesions, 185 inside all lesions grouped as one unconnected ROI 

and 186 in the shell of tissues around this unique ROI. 3096 biomarkers were computed 

from the PET scans, 3096 from the CT and 503 from the shape of the organ or lesion 

ROIs. 

Figure 46 shows the number of candidate biomarkers remaining after each step of the 

ROBI selection pipeline for each cohort. Most of the discarded candidates were 

dropped because they could not be computed on all patients (missing values) or 

because they were correlated with confounders (see Methods). 
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Figure 46: Number of candidate biomarkers selected at each step of the ROBI selection 

pipeline, for selection on the DLBCL cohort (orange) and on the FL cohort (green). Details 

about each step are provided in [230]. 

Figure 47 shows, for every value of Q, the number of candidates being selected, and 

the number of FPs estimated by ROBI (average value and 95% CI), for both cohorts. 

The number of selected candidates was always outside the 95% CI of the estimated 

number of FPs. Q = 0.07 was chosen for FL and Q = 0.08 for DLBCL, ensuring less than 

one FP can be expected. ROBI selected 28 features for the FL cohort, and 28 for the 

DLBCL cohort. Among the selected features, none were common to both diseases. 

ROBI estimated the probability of having only FPs in the selected biomarkers to be 

0.001 for FL and 0.002 for DLBCL. ROBI estimated that 0.9 FP could be expected for FL 

and 0.9 FP for DLBCL, and the 95% confidence interval for the number of FPs was [0, 

10] for both diseases. 

 

Figure 47: Number of selected candidates (orange) and average number of false positives 

and its 95% confidence interval (green) for all tested values of Q, for both selections. Q 

values chosen for the selection are depicted in red. 
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The complete lists of selected candidates are provided as supplemental data (Table S14 

and Table S15), as well as their C-index and their significance, the sign of their 

correlations with the risk and their correlogram. In FL, most selected candidates were 

computed inside or near the tumoral ROIs (n=19) and 9 inside organ ROIs. In DLBCL, 

14 features were related to organs, and 14 were related to lesions or their close 

surroundings. For FL, 12 selected candidate biomarkers were calculated from the PET, 

9 from the CT, and 7 from the shape of the ROI only (regardless of the signal inside). 

For DLBCL 7 selected candidate biomarkers were calculated from the PET, 14 from the 

CT, and 7 were shape-related. Of the 28 candidate biomarkers selected on the DLBCL 

cohort, 9 were also prognostic for the PFS in the FL patients, although they were not 

selected by ROBI on the FL cohort. Of the 28 candidates selected on the FL cohort, 14 

were prognostic for the PFS of the DLBCL patients but were not selected by ROBI on 

the DLBCL cohort. A correlogram showing the correlation between the 28 features 

selected on the FL cohort and the 28 features selected on the DLBCL cohort is provided 

as supplemental data (Figure S70). 

 

Figure 48: Absolute Spearman’s correlations between the 22 surrogate biomarkers and 

the 2x28 biomarkers selected by the ROBI pipeline. The correlations were calculated by 

merging the two cohorts into one. 

Table 6 list the 22 surrogate biomarkers manually created to interpret the information 

reflected by the biomarkers selected by ROBI and provides their C-index and 

significance for each cohort. Among these 22 biomarkers, 10 were prognostic in both 

FL and DLBCL cohorts, 5 were only prognostic in FL, and 7 were only prognostic in 

DLBCL. Correlograms of these biomarkers are provided as supplemental data (Figure 

S71 and Figure S72). 
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What increases 

the risk 

ROI type 
Compute

d from 
Biomarker definition 

C-index 

(p-value) 

DLBCL 

C-index 

(p-value) 

FL 

Low ratio of volume 

of subcutaneous fat 

/ volume of muscle 

Organ Shape 
Volume of subcutaneous fat / volume of 

muscle 

0.57 

(p < 0.03) 

0.58 

(p < 0.01) 

High number of 

lesions 
Lesion Shape 

Number of spatially disconnected 

segmented lesions 

0.63 

(p < 0.01) 

0.57 

(p < 0.01) 

High Tumor Energy 

from the PET image 
Lesion PET 

Sum of the squared SUV values of all the 

voxels segmented as lesion 

0.57 

(p < 0.03) 

0.60 

(p < 0.01) 

Large liver Organ Shape 
MajorAxisLength PyRadiomics feature of the 

segmented liver 

0.58 

(p < 0.01) 

0.60 

(p < 0.01) 

Presence of small 

lesions 
Lesion Shape Volume of the smallest lesion 

0.57 

(p < 0.03) 

0.56 

(p < 0.03) 

Presence of 

homogeneous 

density lesion 

Lesion CT 

The kurtosis of CT values in each lesion is 

computed. The highest kurtosis across all 

lesions is used. 

0.56 

(p < 0.04) 

0.57 

(p < 0.01) 

Presence of lesion 

in a region of 

homogeneous 

density 

Lesion CT 

The GLDM DependenceEntropy of the CT 

values in the shell of tissue around each 

lesion is computed. The lowest value across 

all lesions is used. 

0.60 

(p < 0.01) 

0.60 

(p < 0.01) 

Trachea 

involvement 

Lesion 

and organ 
Shape 

Whether or not the segmented trachea has 

at least one voxel segmented as lesion 

0.58 

(p < 0.01) 

0.55 

(p < 0.01) 

High bronchus 

density 

Lesion 

and organ 
CT 

The GLCM ClusterProminence of the CT 

values in the right lung 

0.59 

(p < 0.01) 

0.56 

(p < 0.01) 

Presence of occult 

lesion 
Lesion 

PET and 

shape 

Whether or not at least one lesion is smaller 

than 20 mL and with a SUVmax < 5 

0.57 

(p < 0.01) 

0.54 

(p < 0.04) 

Large lungs Organ Shape Volume of the lungs 
0.57 

(p < 0.03) 

0.54 

(p < 0.09) 

High number of 

invaded organs 

Lesion 

and organ 
Shape 

Number of segmented organs with at least 

one voxel segmented as lesion 

0.63 

(p < 0.01) 

0.55 

(p < 0.06) 

No air in stomach Organ CT 
RobustMeanAbsoluteDeviation of the CT 

values of the voxels in the stomach 

0.62 

(p < 0.01) 

0.50 

(p < 0.86) 

Right kidney 

involvement 

Lesion 

and organ 
Shape 

Whether or not the segmented right kidney 

has at least one voxel segmented as lesion 

0.57 

(p < 0.01) 

0.51 

(p < 0.37) 

Esophagus 

involvement 

Lesion 

and organ 
Shape 

Whether or not the segmented esophagus 

has at least one voxel segmented as lesion 

0.57 

(p < 0.03) 

0.52 

(p < 0.37) 

Colon involvement 
Lesion 

and organ 
Shape 

Whether or not the segmented colon has at 

least one voxel segmented as lesion 

0.58 

(p < 0.01) 

0.51 

(p < 0.25) 

Lesions near the 

bladder 

Lesion 

and organ 
Shape 

Whether or not the segmented bladder has 

at least one voxel segmented as lesion 

0.58 

(p < 0.01) 

0.51 

(p < 0.70) 

High tumoral 

activity in the 

pancreas 

Lesion 

and organ 
PET 

Sum of the squared SUV values of all voxels 

segmented as pancreas if pancreas is 

invaded. 

0.55 

(p < 0.13) 

0.57 

(p < 0.01) 

Low elongation of 

the pancreas 
Organ Shape 

Inverse of the Elongation PyRadiomics 

feature of the segmented pancreas 

0.51 

(p < 0.76) 

0.58 

(p < 0.01) 

High roundness of 

tumor burden 
Lesion Shape 

Inverse of the Flatness PyRadiomics feature 

of all voxels segmented as lesion 

0.51 

(p < 0.72) 

0.58 

(p < 0.01) 

Lung involvement 
Lesion 

and organ 
Shape 

Whether or not the segmented lungs have at 

least one voxel segmented as lesion 

0.55 

(p < 0.25) 

0.54 

(p < 0.03) 

Activity of liver 

involvement 

Lesion 

and organ 

PET and 

shape 

Maximum SUV value of all voxels segmented 

as both liver and lesion 

0.55 

(p < 0.15) 

0.58 

(p < 0.01) 

Table 6: All manually created surrogate biomarkers with their respective C-index and p-

values for each cohort. If the feature was binary, the significance was assessed with a 

long-rank test, otherwise with a permutation test. The significant C-index are highlighted 

in bold. The 10 surrogate biomarkers prognostic on the two cohorts are listed first, then 

the 7 surrogate biomarkers prognostic on the DLBCL cohort only, and then the 5 

surrogate biomarkers only prognostic on the FL cohort. 



 

113 

Figure 48 shows the correlation between these 22 surrogate biomarkers and the 2×28 

biomarkers selected by the ROBI pipeline. In this figure, it is observable that several 

selected biomarkers are correlated with several surrogate biomarkers, while some 

surrogate biomarkers encode very well a selected feature, while being much easier to 

interpret. Most but not all selected biomarkers were correlated with at least one 

surrogate biomarker: 79% had a correlation above 0.50 with at least one surrogate 

biomarker, and 40 % had a correlation greater than 0.70 with at least one surrogate 

biomarker. We were not able to understand the information reflected by three selected 

biomarkers as they were not linked to any surrogate biomarker 

(duodenum_shape_Sphericity, urinary_bladder_PT_glszm_GrayLevelNonUniformity, 

small_bowel_shape_SurfaceVolumeRatio). 

A model predicting PFS with baseline features alone (TMTV for FL; TMTV & Dmax for 

DLBCL) had a C-index of 0.59 in FL, and 0.65 in DLBCL. When the 10 surrogate 

biomarkers found to be prognostic in the two diseases were added to the models, the 

C-index increased up to 0.64 in FL (p < 0.19) and 0.68 (p < 0.42) in DLBCL. When further 

introducing in the model the surrogate biomarkers that were prognostic only in the 

disease of interest (7 extra biomarkers for DLBCL and 5 for FL), the C-index went up at 

0.65 in FL (p < 0.13 compared to TMTV only) and up to 0.69 in DLBCL (p < 0.22 

compared to a model involving TMTV and Dmax only). A multivariate model with the 

baseline features along the selected biomarkers (and without any surrogate 

biomarkers) achieved similar performance of 0.66 (p < 0.07) in FL and 0.68 (p < 0.39) 

in DLBCL.  

 

Figure 49: For each cohort, Kaplan-Meier curves showing the PFS of patients stratified by 

number of risk factors among TMTV, IPI (aaIPI for DLBCL, FLIPI for FL) and the surrogate 

biomarkers prognostic in each disease. All features were dichotomized. A IPI score > 2 

was considered high risk. A TMTV above the median (328 cm3 in FL, 292 cm3 in DLBCL) 

was considered high risk. For other features, a value higher than the median was 

considered high risk for features positively correlated with the risk, and a value below the 

median was considered high risk for features negatively correlated with the risk. All risk 

groups had significantly different outcomes according to logrank tests (p < 0.05). 
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Figure 49 shows the Kaplan-Meier curves for each cohort separated by the number of 

risk factors among TMTV, IPI (aaIPI for DLBCL, FLIPI for FL) and the surrogate 

biomarkers that are prognostic in each disease. It shows that the surrogate biomarkers 

improved on TMTV and IPI and further stratify patients into more precise risk groups. 

The categories depicted in Figure 49 were able to predict PFS with a C-index of 0.64 in 

FL, and 0.66 in DLBCL. 

In FL, 77% of patients responded to treatment (either complete, unconfirmed complete 

or partial response) and 23% had progressive disease at 120 weeks. When tested for 

their ability to predict the response to treatment (with a cross-validated univariate 

logistic regression), 13 of the 28 biomarkers selected in FL significantly discriminated 

patients with response to treament vs patients with progressive diseases. The list of 

these 13 biomarkers and the corresponding balanced accuracy are given as 

supplemental data (Table S16). When testing the 16 surrogate biomarkers that were 

prognostic in FL, 7 of them discriminated responding FL patients from non-responding 

patients. The corresponding balanced accuracy and associated p-values are given in 

Table 7. 

Biomarker ROI type 
Computed 

from 

Balanced 

accuracy 

(p-value) 

High Tumor Energy from the PET image Lesion PET 0.60 (p < 0.01) 

High tumoral activity in the pancreas Lesion and organ PET 0.60 (p < 0.01) 

Presence of homogeneous density lesion Lesion CT 0.58 (p < 0.03) 

Presence of lesion in a region of 

homogeneous density 
Lesion CT 0.64 (p < 0.01) 

Trachea involvement Lesion and organ Shape 0.57 (p < 0.04) 

Large liver Organ Shape 0.59 (p < 0.01) 

Low elongation of the pancreas Organ Shape 0.60 (p < 0.01) 

Table 7: Surrogate biomarkers that significantly discriminated FL patients responding to 

treatment from FL patients with progressive diseases. 

The following section presents some of the surrogate biomarkers with examples. Only 

the 10 surrogate biomarkers that were predictive for the two diseases are presented.  
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Figure 50: Maximum Intensity Projections (MIPs) of the PET images of low and high risks 

examples of the “High number of lesions” surrogate biomarker. Tumor segmentation is 

depicted in orange. The FL patient on the left had a TMTV of 355 cm3 and the FL patient 

on the right had a TMTV of 371 cm3. Kaplan-Meier curves of the PFS of the FL and DLBCL 

cohorts stratified with the biomarker and TMTV are displayed. Patient groups had 

significantly different outcomes. TMTV cutoff was 299 cm3  for FL and 237 cm3 for DLBCL, 

and biomarker cutoff was 23. 

Some of the surrogate biomarkers identified describe the activity and the invasiveness 

of the tumor burden. Involvement of the trachea was found to be prognostic of the 

outcome. In addition, the tumor energy calculated from the PET image, which is defined 

as the sum of the squared SUV values inside all tumor regions, was found positively 

correlated with the risk. It was also positively correlated with TMTV (ρ = 0.69) and 

SUVmean inside all the tumor ROIs (ρ = 0.62). It had a C-index similar to TMTV on FL 

(0.59 and 0.60 for TMTV and Energy respectively), but lower than TMTV on DLBCL (0.63 

and 0.57 for TMTV and Energy respectively). SUVmean was never significantly 

prognostic. The number of lesions was also a prognostic factor, as a higher number of 

lesions was correlated with higher risk and lower PFS. This feature is computed by 

counting the number of spatially disconnected regions of interest. This feature was 

highly correlated with Dmax (ρ = 0.80). Figure 50 shows examples of patients with low 

and high risks according to the number of lesions as well as Kaplan-Meier curves of the 

cohorts stratified based on this feature and TMTV. 
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Figure 51: CT slices of low and high risks examples of the “Presence of lesion in a region 

of homogeneous density” surrogate biomarker. Density is given by a grey scale with the 

highest density being represented by white pixels. Tumor and shell surrounding lesion 

segmentations are depicted in orange. Kaplan-Meier curves of the PFS of the FL and 

DLBCL cohorts stratified with the biomarker and TMTV are displayed. Patient groups had 

significantly different outcomes (p < 0.01). TMTV cutoff was 849 cm3  for FL and 364 cm3 

for DLBCL, and biomarker cutoff was 7.3 for FL and 6.9 for DLBCL. 

Other surrogate biomarkers were focusing on a specific lesion. For instance, patients 

with at least one occult lesion, defined as being smaller than 20 mL and with a SUVmax 

< 5 were at higher risk than other patients. Similarly, it was found that the smaller the 

smallest lesion, the higher the risk. Other surrogate biomarkers were quantifying the 

homogeneity in density of lesions. Inside the lesions, the kurtosis of the CT values was 

calculated in each spatially disconnected lesion. The highest value among the patient 

lesions was used to stratify the patient. A higher maximum kurtosis (e.g., higher 

homogeneity) of the tumor density was associated with higher risk. Similarly, in the 

shell surrounding the lesions, the Dependence Entropy of the GLDM matrix was 

calculated in the 8 mm thick shell of tissues surrounding each lesion. The lowest value 

among all lesions was used to stratify the patient. A lower value (e.g., higher 

homogenity) was associated with an increased risk. Figure 51 shows examples of 

lesions of patients with low and high risks according to this feature, as well as Kaplan-

Meier curves of the cohorts stratified using this feature and TMTV. While this last 

feature is related to the volume of the smallest lesion (ρ = 0.44), it is not entirely 

explained by it and carries additional prognostic information. We found no strong 

correlation between these last two features and the tumor location or host organ. 
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Figure 52: Maximum Intensity Projections (MIPs) of the CT images of low and high risks 

examples of the “High bronchus density” surrogate biomarker. Density is given by a grey 

scale with the highest density being represented by white pixels. Kaplan-Meier curves of 

the PFS of the FL and DLBCL cohorts stratified with the biomarker and TMTV are 

displayed. Patient groups had significantly different outcomes. TMTV cutoff was 437 cm3 

for FL and 326 cm3 for DLBCL, and biomarker cutoff was 5132139 in FL and 8441570 in 

DLBCL. 

Several surrogate biomarkers were not directly related to the tumor burden, nor to the 

features of a specific lesion, but potentially to the overall health state of the patient. In 

particular, the volume of subcutaneous fat divided by the volume of muscle, both 

segmented by MOOSE on the CT images, had a significant prognostic value (first row 

of Table 6). A low ratio (e.g., low volume of subcutaneous fat) was associated with 

shorter PFS. Such association was not observed for visceral fat. Likewise, patients with 

larger liver were at higher risk than other patients. This did not reflect fatty liver since 

only one FL patient was reported to have such condition. Another surrogate biomarker 

in this category reflected the density of the bronchus. Higher density was associated 

with higher risk. While we did not find any strong link to a specific commorbidity, 

patients with higher ECOG had a significantly higher density of the bronchus (p < 0.05). 

It was not correlated with lung involvement (ρ = 0.15). This feature was not correlated 

with the injection of contrast agent (ρ = 0.07 in FL, ρ = 0.06 in DLBCL). There were 24 

FL patients and 13 DLBCL patients who received contrast agent, and no significant 

difference in the density of the bronchus was observed between patients with and 

without contrast agent (p < 0.59 in FL and p < 0.58 in DLBCL). Figure 52 shows examples 

of patients with low and high risks according to this feature, as well as Kaplan-Meier 

curves of the cohorts stratified using this feature and TMTV. 
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Figure 53: Low and high risks FL patients, univariate and multivariate PFS Kaplan-Meier 

curves of the FL cohort stratified using the “Low elongation of the pancreas” surrogate 

biomarker. Pancreas segmentation is depicted in orange. Patient groups had significantly 

different outcomes (p < 0.02). TMTV cutoff was 263 cm3 and biomarker cutoff was -0.35 

in univariable and -0.40 in multivariable analyses. 

A last feature worth mentioning was computed from the pancreas ROI. In FL, the shape 

of the pancreas was found to be correlated with the PFS, with FL patients with more 

elongated pancreas having longer PFS. This feature was not prognostic in DLBCL. 

Elongation measures how stretched out a ROI is. We found that this feature could 

identify diabetic FL patients with a balanced accuracy of 0.69 (p < 0.001), with diabetic 

FL patients having a lower elongation. Diabetic FL patients had a lower PFS but this 

difference was not significant (p = 0.71). 27 FL patients were reported to have diabetes. 

Figure 53 shows examples of patients with low and high risks according to this features, 

as well as Kaplan-Meier curves of the cohort stratified using this feature alone or 

associated with TMTV. 

Discussion and Conclusion 

In this work, we extensively tested thousands of candidate biomarkers to discover new 

prognostic ones. This comprehensive approach yielded 28 new radiomic features 

prognostic of the PFS in FL patients, and 28 other radiomic features prognostic of the 

PFS in DLBCL patients. Through manual examination of these features, we identified 22 

new prognostic biomarkers, most of them being easy to understand and compute. 

Among them, 10 features were more likely to be true prognostic biomarkers, as they 

were found prognostic of both DLBCL and FL patients. These 10 features were also 

moderately correlated with one another, offering a diverse set of biological 

information. 

The candidate biomarkers were identified using the open-source ROBI pipeline [230]. 

This tool allowed us to select biomarkers that add new information with respect to 

TMTV and clinical features. It also reduced the risk of selecting biomarkers that would 

be prognostic of the PFS only by chance. By controlling the probability of false 

prognostic biomarker discovery, ROBI focuses on the most promising ones. This makes 

the selection process non exhaustive, with real prognostic biomarkers that may not be 

identified (false negatives). Yet, the goal was not to discover all biomarkers that might 
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be prognostic for patients but identify some strong ones and try to understand what 

they reflect. 

Because of the low number of patients who died during the clinical trials, evaluating 

the candidate biomarkers on the prediction of OS was not an option since the statistical 

power was too low. We thus rather focused on the progression free survival endpoint, 

which is a proxy of the OS. 

The selection process for biomarkers was carried out with rigorous and comprehensive 

testing. However, the interpretation of the selected biomarkers was more qualitative, 

subjective, and based on hypotheses. While certain biomarkers are straightforward and 

self-explanatory, such as the volume of subcutaneous fat and trachea involvement, 

many were far less obvious and were broken down into simpler features. This 

breakdown was achieved through visual examination and comparison with more 

straightforward candidate biomarkers. Despite the effort to simplify these features, it 

is important to note that this manual process may not fully capture all information 

contained within the biomarkers, potentially overlooking key details that are crucial for 

patient classification. Moreover, the simplified biomarkers are likely individually less 

powerful than the selected ones since they do not encompass multiple prognostic 

information such as many selected biomarkers. It is worth noting that in both FL and 

DLBLC, a multivariate model with all surrogate features was as predictive than one with 

all selected biomarkers, meaning that it is likely that a great fraction of the prognostic 

information coded in the selected biomarkers was successfully re-encoded in the 

surrogate biomarkers. 

Interestingly, while multiple lesion-based biomarkers were selected, a significant 

number of the selected features do not seem to be directly linked to the tumors but 

rather the patient overall health status and comorbidities. If these findings are 

confirmed, this would demonstrate the interest of image-based radiomics to discover 

non image-specific information that could be measured without imaging equipment. 

As we observed, diabetes is a good example of this, as the shape of the pancreas on 

the CT image is a good predictor of both the diabetic status and the PFS of the FL 

patients. 

If some of the multiple biomarkers presented in this study are validated through 

external cohorts, the challenge then becomes how to utilize them effectively. We 

demonstrated that these features enable a more accurate stratification of patients 

compared to using only TMTV and the IPI. They have the potential to identify patients 

with either extremely good or poor prognoses in both DLBCL and FL. Their greatest 

value, however, may lie in stratifying patients who appear similar when assessed using 

currently used features. For example, a group of FL patients with comparable TMTV 

and identical FLIPI scores may still not all have close outcome. Introducing a new 

biomarker for this homogeneous group could enable the identification of high and 

low-risk patients, thereby refining therapeutic strategies. As an illustration, we analyzed 
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18 FL patients from the RELEVANCE trial who had similar TMTV values (ranging from 

291 cm³ to 393 cm³, corresponding to ± 5 percentiles around the median) and identical 

FLIPI scores of 3. FLIPI being constant, it cannot differentiate patients, and TMTV being 

similar, the C-index for PFS prediction in that group was 0.54 (p < 0.73) . However, 

some surrogate biomarkers were different between these 18 patients.  For instance, the 

“number of lesions” biomarker achieved a C-index of 0.71 (p < 0.04) in predicting PFS 

for this population. Additionally, this specific group could be subdivided based on the 

size of the smallest lesion in each patient, resulting in significantly different PFS 

outcomes (p < 0.02). Another approach to effectively implement these biomarkers in 

clinical practice involves constructing predictive models or signatures, similar to the 

FLIPI, which integrates multiple features to provide a risk score. More precise signatures 

could be developed by incorporating several of the identified biomarkers. This research 

represents an initial step in that direction. If the biomarkers that we have discovered 

here are further validated in other DLBCL and FL patient cohorts, then we believe they 

can be integrated into a single model to enhance NHL patient stratification. 

One limitation of this study is the definition of organ involvement. We used an 

automated tool to segment organs, producing approximate segmentations. We also 

used a simple rule to define organ involvement (at least one voxel shared between the 

segmentation of the organ and the segmentation of the lesions). This makes the 

definition of involvement prone to error, and in some cases, it might reflect the 

involvement of neighboring tissues rather than the organ itself. 

While we minimized the risk of selecting false positive biomarkers from the DLBCL and 

FL cohorts through the ROBI settings and also by re-engineering the discovered 

prognostic features into simpler biomarkers whose prognostic value was confirmed in 

both DLBCL and FL cohorts, whether the biomarkers presented in this study will be 

prognostic in other cohorts of DLBCL or FL patients warrants further investigation. Since 

some biomarkers identified in this study were prognostic in the two diseases, we can 

also wonder if they may have prognostic value in other lymphoma subtypes or even 

other cancers, similar to TMTV which appears to be a good prognosticator for a variety 

of cancer types [234], [235], [236], [237]. We can also wonder if some of the identified 

biomarkers could help predict if a FL will transform in DLBCL. Thus, external validation 

on multiple external cohorts is of utmost importance to confirm our discoveries. To 

help in this endeavor, we made the code to compute and test the biomarkers freely 

available on GitHub at https://github.com/Lrebaud/exhaustive_radiomics.  

 

 

 

https://github.com/Lrebaud/exhaustive_radiomics
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7.3 Discussion 

In this study, we used the previously developed ROBI pipeline to find new relevant 

biomarkers for prognosis of non-Hodgkin lymphoma patients. Through the extensive 

screening of thousands of candidate biomarkers measured in the images, we were able 

to identify 28 new radiomic features predictive of the PFS in the FL patients and 28 

other features prognostic of the PFS in patients with DLBCL. The analysis of these 

radiomic features led us to develop several intuitive hypotheses to explain the 

biological information reflected by the selected features. Reencoding these hypotheses 

into simpler features allowed us to test our interpretation assumptions on the cohorts. 

Doing so, we could identify 22 simple features bearing distinct prognostic information, 

and 10 of them appeared to have a significant prognostic value on the two cohorts. 

While some of these features are related to lymphoma itself, such as trachea 

involvement or the presence of lesions with homogeneous density, some rather 

reflected the overall state of health of the patients, like the size of the liver or the 

amount of subcutaneous fat. We even found links between some of the selected 

features and diabetes or ECOG status. 

The fact that some of these features were significantly prognostic in two cohorts, that 

is in two diseases, increases the likelihood of them being truly prognostic biomarkers. 

Of course, external validation is still required to rule out false positive findings. 

One important aspect of this work is the interpretation of the features. Being able to 

identify key biological information encoded in the selected biomarkers and re-encode 

them in simpler terms increased both the interpretability but also the robustness. 

Despite our efforts, we were not able to provide an intuitive explanation for every 

feature. The prognostic power of the homogeneity in density of the surrounding of the 

lesions for instance, is still unexplained despite extensive research and numerous 

hypotheses tested. Furthermore, convoluted feature definitions do not inspire trust nor 

give physicians intuitive insights. It is worth noting that this specific feature, despite its 

cryptic nature, was one of the features with the lowest p-values on both DLBCL and FL 

cohort. 

Beyond the identification of novel prognostic biomarkers, they will be of no use if we 

do not know how to use them for patient management. 
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Chapter 8 

 

Development of a new machine 

learning model (ICARE) during a 

competition (HECKTOR) 

8.1 Introduction 

In the previous chapter, we identified multiple new prognostic biomarkers in both FL 

and DLBCL. These image-based features bring additional knowledge about the 

diseases and have the potential to improve patient prognosis. However, it is extremely 

challenging for oncologists to deal with too many biomarkers of prognostic values. 

They must already consider many parameters coming from numerous modalities (e.g., 

images, clinical exam, biopsy, blood tests, genetic). If the number of features in each 

modality is too high, it can become impossible to efficiently combine all the 

information coming from patient data. For this reason, models are often used to 

aggregate multiple features in one risk score that is easier to handle. IPI and AnnArbor 

are examples of such scores. They are created based on concertation between experts 

and numerous analyses and publications. 

An alternative approach consists in the use of machine learning models to learn from 

the data a score (e.g., signature) based on feature values and outcome observed in 

many patients. Often, a Cox model is trained to predict outcomes of patients based on 

a set of features. It can be converted into a nomogram for easy use and deployment. 

This model works by assigning a signed weight (e.g., hazard ratio) to each feature. 

However, during the search for new biomarkers, we found that defining which feature 

is more prognostic than another is extremely challenging, given the noise affecting the 

feature values and the outcome to be predicted. The weights in a model being a way 

to rank features as a function of their impact on the outcome, we emit the hypothesis 

that in certain situations, it might be preferable to not learn any weight, but simply a 

sign for each feature. This way, each feature contributes equally to the prediction. By 

not weighting the features, a model would minimize the risk to learn non generalizable 

information. This intuition led to the development of the ICARE model detailed in this 

chapter. 

We tested this idea during the HECKTOR challenge held during the MICCAI 2022 

conference. In this competition, different teams worldwide could design a model to 
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automatically segment head and neck tumor and invaded lymph nodes on 18F-FDG 

PET/CT image of head and neck cancer patients coming from many hospitals. A second 

task was to build a model that could predict the risk of relapse for each patient based 

on the PET/CT images and associated clinical data. For the segmentation, we used a 

simple nnUNet and ranked 4th among the 36 participating teams. For the outcome 

prediction, we ranked 1st among the 18 participating teams with the ICARE model. In 

this article, we present the details of our solutions to the challenge. 

 

8.2 Article published 

Simplicity Is All You Need: Out-of-the-Box nnUNet  

Followed by Binary-Weighted Radiomic Model for 

Segmentation and Outcome Prediction in Head and 

Neck PET/CT 

 

PUBLISHED IN LECTURE NOTES IN COMPUTER SCIENCE 

*Louis Rebaud1,2, *Thibault Escobar1,3, Fahad Khalid1, Kibrom Girum1, and Irène  Buvat1 

1Siemens Healthcare SAS, Saint Denis, France; 2LITO laboratory, UMR 1288 Inserm, 

Institut Curie, University Paris-Saclay, Orsay, France; 3DOSIsoft SA, Cachan, France. 

*co-first authors 

 

Abstract 

Automated lesion detection and segmentation might assist radiation therapy planning 

and contribute to the identification of prognostic image-based biomarkers towards 

personalized medicine. In this paper, we propose a pipeline to segment the primary 

and metastatic lymph nodes from fluorodeoxyglucose (FDG) positron emission 

tomography and computed tomography (PET/CT) head and neck (H &N) images and 

then predict recurrence free survival (RFS) based on the segmentation results. For 

segmentation, an out-of-the-box nnUNet-based deep learning method was trained 

and labelled the two lesion types as primary gross tumor volume (GTVp) and metastatic 

nodes (GTVn). For RFS prediction, 2421 radiomic features were extracted from the 

merged GTVp and GTVn using the pyradiomics package. The ability of each feature to 

predict RFS was measured using the C-index. Only the features with a C-index greater 

than Cmin, hyperparameter of the model, were selected and assigned a +1 or –1 weight 

as a function of how they varied with the recurrence time. The final RFS probability was 

calculated as the mean across all selected feature z-scores weighted by their +/–1 

weight. The fully automated pipeline was applied to the data provided through the 
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HECKTOR 2022 MICCAI challenge. On the test data, the fully automated segmentation 

model achieved 0.777 and 0.763 Dice scores on the primary tumor and lymph nodes 

respectively (0.770 on average). The binary-weighted radiomic model yielded a 0.682 

C-index. These results allowed us to rank first for outcome prediction and fourth for 

segmentation in the challenge. We conclude that the proposed fully-automated 

pipeline from segmentation to outcome prediction using a binary-weighted radiomic 

model competes well with more complicated models. Team: LITO. 

Keywords 

Medical imaging, Survival prediction, Segmentation, FDG PET/CT, Head and neck, 

Machine learning 

 

1. Introduction 

Quantitative medical image analysis assists in patient staging, treatment planning and 

monitoring, and overall patient management. In head and neck (H &N) cancer, 

fluorodeoxyglucose (FDG) positron emission tomography combined with computed 

tomography (PET/CT) is a modality of choice for initial staging and patient follow-up 

and contributes to radiation therapy planning. Indeed, H &N cancer primary treatment 

mostly relies on radiotherapy and requires target volume delineation of the gross 

primary tumor volume (GTVp) and cancer node volumes (GTVn) on PET/CT images, 

which is time-consuming and prone to intra/inter-observer variabilities. Automated 

segmentation might allow radiation oncologists to optimize the treatment plan in a 

shorter time while improving reproducibility. In addition, the prediction of the risk of 

relapse based on medical images could help identify patients for whom treatment 

intensification and close monitoring might be needed. 

In the recent years, machine learning (ML) and radiomics have been instrumental in 

advancing automated image segmentation and building predictive models. Yet, the 

diversity of datasets on which methods are designed and tested makes it difficult to 

compare their performance and determine which one is best suited in a particular 

context. Given the possible sensitivity of automated segmentation and predictive 

models to image quality, multi-center evaluation of these methods is absolutely 

needed before considering clinical deployment. 

Challenges offer unique opportunities for testing and comparing the performance of 

different methods on a common database using large multi-center datasets. The HEad 

and neCK TumOR (HECKTOR) challenges organized as part of MICCAI aims at 

establishing best-performing methods for segmentation and prediction tasks [238], 

[239]. In 2022, the HECKTOR challenge first task was to automatically segment the H 

&N GTVp and GTVn from FDG PET/CT images. The second task consisted in 

automatically predicting patient outcomes from a PET/CT image, with or without 

clinical information, with PET/CT images and clinical information collected from nine 
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different centers. 

Several contributions to the automated segmentation in the context of H &N cancer 

have already been published. Guo et al. proposed a modified U-net approach using 

dense blocks and reached 0.71 average Dice score on a public multi-center dataset of 

250 PET/CT H &N patients [240]. Their study also showed that combining PET and CT 

in two channels substantially increased the segmentation performance compared to 

using PET (0.64 average Dice score) or CT (0.31 average Dice score) alone. Ren et al. 

compared several modality combinations including PET, CT, and magnetic resonance 

imaging (MRI) on a multi-center dataset of 153 patients for deep learning tumor 

segmentation using a U-net approach [241]. All combinations including PET provided 

similar results (0.72 to 0.74 Dice score), while the anatomic-only combination (CT and 

MRI) led to a lower score (0.58). More generally, automated medical image 

segmentation is currently dominated by deep convolutional neural networks (CNN) 

[242], [243], [244]. Most methods rely on U-net based approaches with several context-

specific changes in model architecture, training scheme, and data pre- or post-

processing. In HECKTOR 2021 challenge, the best-performing segmentation method 

used a tuned nnUNet with squeeze and excitation (SE) layers on fused PET and CT 

images, yielding a 0.779 Dice score on primary tumor [244], [245]. 

Similarly, models have been proposed to predict patient outcome from PET/CT images 

in H &N cancer (e.g., [246], [247]). In HECKTOR 2021, two different methods performed 

best at predicting the progression free survival [248], [249]. Both were based on a CNN 

trained on unsegmented images using large bounding boxes, and achieved 0.720 and 

0.694 C-index on the test data respectively. A logistic model based on radiomic features 

calculated from the segmented tumor region also performed well with a 0.683 C-index 

[250]. 

This paper presents our simple and efficient pipeline for fully automatic segmentation 

and outcome prediction method and its performance on the HECKTOR 2022 challenge 

data. For the segmentation task, we adapted the publicly available nnUNet deep 

learning framework to detect and segment the H &N primary tumor (GTVp) and nodal 

gross tumor volumes (GTVn) [244]. For the prediction task, we introduce a novel binary-

weighted model operating on radiomic features calculated from the tumor regions 

automatically segmented in the previous step. The evaluation was conducted on the 

HECKTOR 2022 challenge data and the models are publicly available. 

2. Materials and methods 

Here, we describe our proposed fully-automatic end-to-end framework to segment 

lesions and predict outcome from 18F-FDG PET/CT images (Figure 54). First, a well 

established out-of-the-box nnUNet deep learning method was trained to segment and 

label the GTVp and GTVn [244]. From the segmented GTVp and GTVn regions, we 

extracted radiomic features. We then applied the binary-weighted model to rank the 

patients as a function of their recurrence free survival. 
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Figure 54: Proposed framework: schematic representation of the fully-automatic pipeline 

from segmentation to outcome prediction. 

 

2.1. Data 

To develop and evaluate the proposed method, we used the HECKTOR 2022 data that 

included FDG PET/CT images, clinical and survival data of 524 patients from 7 centers 

for training and PET/CT and clinical data only of 359 patients from 3 centers for blind 

testing of the models [238], [239]. In the training data, reference segmentations of the 

primary tumor (GTVp) and metastatic nodes (GTVn) were provided. Train and test 

PET/CT scans were provided with 9 clinical features with some missing values: gender, 

age, weight (1.23% missing values), tobacco (0 = no, 1 = yes) (61.1% missing), alcohol 

(0 = no, 1 = yes) (68.5% missing), performance status (56.0% missing), human 

papillomavirus (HPV) status (0 = no, 1 = yes) (35.2% missing), surgery (0 = no, 1 = yes) 

(38.7% missing), and chemotherapy (0 = no, 1 = yes). RFS was provided for 488 patients 

in the train set, and 339 patients of the test set for whom the outcome was known were 

concerned by the outcome prediction (task 2). 

Data Pre-processing: The training CT images had an original median voxel-size of 

0.976×0.976×2.798 mm3 and the PET images had median voxel-size of 

4.000×4.000×3.270 mm3. All PET/CT images and corresponding segmentations were 

resampled to 2.0×2.0×2.0 mm3. CT and PET images were resampled using a third-order 

spline. The segmentation mask was resampled using nearest neighbor interpolation. 
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2.2. Tumor and lymph node segmentation 

Deep Learning Model: All CT images were clipped between 0.5th and 99.5th percentile 

of the Hounsfield Units (HU) intensity values and normalized using z-score based on 

all training images. To favor contrast-based features in PET, PET standardized uptake 

values (SUV) were normalized using z-score patient-wise on the whole image. We used 

a nnUNet in “3D full resolution” mode to detect and segment the tumor and lymph 

nodes [244]. The pre-processed PET/CT images were given to the model as two-

channel input images (PET and CT). Each PET/CT image was decomposed in random 

patches of 160×160×96×2 voxels before input into model training. The architecture of 

the 3D model was not modified except for the output channel. The output was a 1×1×1 

convolution of size 160×160×96×2, where 2 corresponds to the tumor and lymph 

nodes channels. A softmax non-linear activation was used at the output layer of the 3D 

nnUNet model. 

Training Scheme: The train set consisting of 524 patients was randomly divided into 

training and validation subsets using a five-fold cross-validation technique. Each fold 

contained data from 104 or 105 validation patients and 420 or 419 training patients. 

The nnUNet model was trained using the sum of Dice and cross-entropy losses. The 

initial number of feature maps in the architecture was 32. Performance assessment and 

post-processing strategy were determined based on the five-fold cross-validation with 

1000 epochs training, with an initial learning rate of 0.01 and a scheduler weight decay 

of 3e-5. We selected a batch size of two. Other hyper-parameter settings, including data 

augmentation techniques, were the default settings of nnUNet. Implementation was 

done in Pytorch and training was performed using four GPUs: three NVIDIA Quadro 

RTX 5000 with 16 GB and one NVIDIA RTX A6000 with 49 GB GPU memory. On average, 

the training time was 141 s per epoch on NVIDIA Quadro RTX 5000 and 82 s on NVIDIA 

RTX A6000. 

Post-processing: The segmentation output of the deep learning model had a 2×2×2 

mm voxel spacing. It was then resampled into the corresponding original CT spacing. 

Then, a median filter with a 3×3×3 voxel kernel size was applied to smooth out the 

staircase effect. 

Prediction on the Test Set: For predictions on the test set, three strategies were used. 

First we ensembled the five models trained during cross-validation. Second, a bagging 

strategy was adopted to increase the number of ensembled models to nine. Nine 

models were trained on random samples of size equal to the whole dataset drawn with 

replacement (i.e. bootstrap samples). The predictions from the models were then 

aggregated using majority voting. Nine was the maximum number of models we could 

train on our GPUs for this strategy within the allotted time of the challenge. Finally, we 

increased the number of epochs to 1500 and trained only one model on the whole 

dataset. 
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2.3 Outcome Prediction 

Our prediction model was based on engineered radiomic features extracted from the 

tumor regions segmented using the automated approach described in Sect. 2.2. These 

features were then analyzed using an original approach yielding what we call a binary-

weighted model. 

Radiomic Features Extraction: We used the segmentation mask produced by the deep 

learning model described in Sect. 2.2. Primary tumor and lymph node regions were 

merged as a single “lesion” mask. To make the model less sensitive to potential 

segmentation errors, multiple masks were created from this binary lesion mask: 

• Original lesion mask 

• Smallest bounding box enclosing all the lesions 

• Lesion mask refined by removing all voxels in which SUV was less than 2.5 

• Lesion mask refined by removing all voxels in which SUV was less than 4 

• Lesion mask re-segmented with a threshold of 40% of global SUVmax 

• Lesion mask dilated by 1mm (resp 2, 4, 8 and 16 mm) 

• A 2mm (resp 4, 8 mm) thick shell surrounding each connected component of 

the lesion mask 

For each of these 13 masks, 93 radiomic features were computed on the PET image 

and 93 on the CT image with pyradiomics [56]. These features were the default features 

from pyradiomics, composed of features reflecting the ROI shape, and the signal 

intensity and texture. A fixed-bin size of 0.3 SUV units was used for PET images and 10 

HU for the CT. Three handcrafted features were added: the number of tumor masses, 

the number of lymph nodes, and a binary variable indicating whether the scan was a 

whole-body scan or included only the H &N region. This was determined by calculating 

the length of the scan in the axial direction from the image volume. Used together with 

the provided nine clinical features, this pipeline produced 2430 features. 

Binary-weighted Model: From the literature and our experience, we hypothesize that it 

is difficult to accurately estimate biomarker importance in outcome prediction. For 

instance, Adams et al. found the national comprehensive cancer network international 

prognostic index to be more predictive of progression free survival than whole-body 

total metabolic tumor volume in diffuse large B-cell lymphoma, while Cottereau et al. 

observed the opposite [212], [251]. Indeed, noise in the data, censoring of the target, 

e.g. progression free survival, and relatively low number of training samples might 

increase the risk of biased estimation of the feature weights. To mitigate this effect, we 

propose to reduce the learned information to the bare minimum and only estimate a 

sign to be assigned to each feature for estimating the target. This is the core 

mechanism of the introduced binary-weighted model. 
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Definition: Our training dataset includes N samples and M features. Many radiomic 

features are highly correlated. To comply with the basic assumption of our binary-

weighted model, only one among a set of correlated features should be kept because 

if they are all input to the model, this will artificially give a large weight to the 

information reflected by the feature. We thus perform feature selection by calculating 

the absolute value of the Pearson correlation coefficient for all pairs of features. A 

threshold ρ is used to set the value above which two features are deemed too 

correlated. In such case, one of the two features is randomly selected and dropped. 

Let’s 𝐶𝑖𝑛𝑑𝑒𝑥 be the Harrell’s concordance index [252]. Each feature 𝑥𝑖 is evaluated on its 

ability to correctly predict the target value y with: 

        𝑐𝑖 = 𝐶𝑖𝑛𝑑𝑒𝑥(𝑥𝑖, 𝑦)          (1) 

To reduce the risk of wrong estimation of the sign, the features with |𝑐𝑖| < 𝐶𝑚𝑖𝑛 are 

dropped, where |𝑐𝑖| = 𝑚𝑎𝑥{1 − 𝑐𝑖, 𝑐𝑖} and 𝐶𝑚𝑖𝑛 is a hyperparameter in [0.5, 1]. The 

remaining features are assigned a sign as follows: 

          𝑠𝑖 = {
+1, 𝑖𝑓 𝑐𝑖 ≥ 0.5
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (2) 

A normalization step is necessary to scale the feature values to the same range. 

Otherwise, features with large absolute values would have a higher weight in the final 

prediction. To do so, the model computes the z-score of each feature: 

         𝑧𝑖 =
𝑥𝑖−𝜇𝑖

𝜎𝑖
                        (3) 

Where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of 𝑥𝑖  in the train set. The estimate 

𝑦̂ of the target 𝑦 is computed with: 

     𝑦̂ =
1

𝑀
∑ 𝑠𝑖 × 𝑧𝑖

𝑀
𝑖               (4) 

The computation of 𝑦̂, 𝜇𝑖 and 𝜎𝑖 are done by ignoring the missing values of the dataset. 

This allows the model to use features with missing values. 

Here, 𝐶𝑚𝑖𝑛 and ρ and are the only two hyperparameters of the model. 

Curse of Dimensionality: The curse of dimensionality is a phenomenon where we 

observe a loss in performance of ML models when too many features are given as an 

input. This especially occurs in medical datasets when the data are high-dimensional 

and the number of samples is low [253]. We hypothesize that the binary-weighted 

model is resilient to this phenomenon. We tested this hypothesis on the train set of the 

HECKTOR dataset by gradually increasing the number of features input to the model. 
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Ensembling: To produce a more precise and stable estimate 𝑦̂, a bagging strategy was 

adopted as described in Sect. 2.2. An ensemble of 𝐸 binary-weighted models were 

trained, each model being trained on a random sample of size 𝑁 of the training data 

drawn with replacement. Each model also randomly selected 𝐹 features to work with. 

The models were trained on their bootstrap sample from the train set and predicted 

𝑦̂ on the test set. The 𝐸 predictions from the 𝐸 models were then aggregated with the 

median. 𝐹 is a hyperparameter of the ensemble model. Our experiments on the train 

set suggested that the higher 𝐸, the better the performance. We used 𝐸 = 105 on the 

test set, a number large enough to ensure good results while keeping computational 

cost reasonable. 

Cross-validation: To evaluate a model from the train set, we used a two-hundred-fold 

Monte Carlo cross-validation with a validation set of size 0.5 × 𝑁 (CV). This large 

number of folds was used to ensure precise comparison of the numerous tested 

algorithms, with reproducible results. The model prediction on the validation set was 

evaluated with Harrell’s C-index. The average score and its confidence interval were 

reported. 

Hyperparameters Optimization: The ensemble model has 3 hyperparameters: 𝐹, 𝐶𝑚𝑖𝑛 

and ρ. To determine the best hyperparameter set, random search was used. 1000 

hyperparameter sets were randomly drawn and evaluated using CV. The 

hyperparameter sets were then ranked by their CV scores. To reduce the risk of 

overfitting the hyperparameter choice on the train set, the 𝐵 best hyperparameter sets 

were selected, and for the prediction on the test set, an ensemble model was trained 

with each binary-weighted model randomly selecting a hyperparameter set from the 

selected 𝐵. The 𝐵 value was optimized with an additional CV. Three bagged models 

were evaluated in the train and test sets of the HECKTOR challenge. While similar, each 

model used more and more hyperparameter sets in its random search, each time 

increasing the probability of overfitting on the train set. The number of hyperparameter 

sets tested was increased gradually through the 3 attempts given to the participating 

teams. 

Feature Importance: While the binary-weighted model only gives weights of –1 or +1, 

after bagging, an approximation of feature importance can be computed by taking the 

average sign of each feature across all models. Feature importance was determined on 

the train set of HECKTOR. 
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3. Results 

 

3.1 Segmentation Evaluation 

 

In this section, except for the visual evaluation where it was assessed patient-wise, the 

Dice score was always computed on pseudo-volumes of the validation sets during 

cross-validation (aggregated Dice score). 

 

Cross-validation: The Dice score across all images through the cross-validation was 

0.850 for GTVp and 0.789 for GTVn (0.821 on average). For thorough comparison, Table 

8 reports the Dice score across the different centers of acquisition. 

 

Center Patient # GTVp Dice GTVn Dice average Dice 

CHUP 72 0.868 0.687 0.778 

CHUV 53 0.823 0.781 0.803 

MDA 198 0.821 0.813 0.817 

HMR 18 0.846 0.811 0.829 

CHUS 72 0.865 0.805 0.835 

CHUM 56 0.849 0.831 0.840 

HGJ 55 0.883 0.829 0.856 

All 524 0.850 0.789 0.821 

Table 8: Dice scores for primary tumor and lymph node segmentation across the different 

centers evaluated on a five-fold cross-validation on the train set. 

Test: Table 9 displays the class-specific Dice scores for our three submitted models for 

evaluation on the test set. The model trained on all training data for 1500 epochs 

achieved the highest scores (highlighted in bold). 

 

Method GTVp Dice GTVn Dice average Dice 

Ensembled 5 folds 0.778 0.761 0.769 

Bagging 9 samples 0.779 0.759 0.769 

Whole train set 0.777 0.763 0.770 

Table 9: Dice scores from our 3 methods on the test set of HECKTOR. 

 

3.2 Qualitative Assessment 

 

PET/CT images, ground truth and predicted segmentations are shown in Figure 55 for 

5 patients. The examples were selected based on the Dice scores. The top two rows 

display high Dice scoring patients (average Dice 0.922 and 0.910 respectively), the third 

row a patient with an average score (0.761), while the fourth (0.303) and fifth (0.000) 

rows display patients with the lowest scores. 

 

 

 



 

133 

 

 
Figure 55: Examples of PET/CT images, ground truth and predicted segmentation for five 

patients from the validation sets of the five-fold cross-validation. Green and blue ground 

truth contours correspond to tumor and lymph node respectively. Red and pink contours 

correspond to the predicted segmentation for tumor and lymph node. (Color figure 

online) 

Results for patients (1) and (2) were very satisfactory. In patient (3), the model accu-

rately identified the two nodes and the tumor but missed some voxels, especially at 

the sharp edges. In patient (4), false positive node voxels were labeled by the model 

(not shown in the figure because not in the slice). Last, patient (5) shows an example of 

accurate detection and segmentation but with complete class mismatch. The green 

contour representing the tumor is precisely delineated by the model but labelled as a 

node, as shown by the pink predicted contour, yielding a Dice equal to zero. 
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3.3 Performance of the Outcome Prediction Model 

 

Table 10 shows the results of the different models tested during the challenge. A 

binary-weighted model without bagging was evaluated only on the train set and not 

submitted because its performances were below the bagged models on the train set. 

The performance of the three submitted bagged models is correlated with the number 

of hyperparameter sets evaluated on the train set. The best model was the one which 

had the most extensive search of hyperparameters. 

Model 
CV C-index train set 

(CI) 

C-index 

test set 

Nb tested sets of 

hyperparameters 

Binary-weighted 0.645 (0.585 - 0.707)  10 

Binary-weighted bagged 0.668 (0.605 - 0.730) 0.670 10 

Binary-weighted bagged 0.675 (0.613 - 0.731) 0.673 100 

Binary-weighted bagged 0.688 (0.642 - 0.732) 0.682 1000 

Table 10: C-index and number of hyperparameters searched for the prediction models 

evaluated on the train and test set of the HECKTOR challenge. On the train set, the mean 

C-index over the CV is reported as well as the confidence interval (CI). 

3.4 Resilience to the Curse of Dimensionality 

Figure 56 shows the result of the experiment using the train set to test our hypothesis 

stating that binary-weighted models do not suffer from the curse of dimensionality. 

The performance plateaued when increasing the number of features used by the model 

up to the maximum number of available features. 

 

 
Figure 56: Cross-validated C-index of a binary-weighted model (not bagged) when 

increasing the number of features. The features and hyperparameters were selected 

randomly. 
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3.5 Feature Importance 

The importance of the clinical and some representative radiomic features evaluated on 

the train set is presented in Figure 57. The error bars are not shown because by 

construction of the model, they are unnecessary (the higher the absolute value, the 

lower the standard deviation). 

 
Figure 57: Importance of the clinical and representative radiomic features. A positive 

value (red) shows a positive correlation with the risk and a negative value (blue) is a 

negative correlation. The higher the absolute value of the average sign, the more 

important the feature. “Whole-body scan” is 1 if the scan is whole-body or 0 if only H 

&N. (Color figure online). 

 

4 Discussion 

4.1 Segmentation 

Our segmentation method was inspired by Xie and Peng [245] using Isensee et al. [244] 

framework. Our choice of not using the SE layers and keep PET and CT separated as 

two channels was based on the intuition that approaching the problem in a 

straightforward way would increase its robustness. Overall, our segmentation results 

were satisfactory, ranking fourth in the challenge with 0.770 average Dice, compared 

to the 0.788 Dice achieved by the winner. 

Although the centers had different numbers of patients, Dice scores were consistently 

lower for lymph nodes than for primary tumor in all centers, demonstrating they are 

more difficult to segment. Mislabelling of node regions as seen in Figure 55 decreased 
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Dice value although contours were accurately delineated. One way to address this 

mislabelling could be to set higher weight to the lymph node class in the loss function. 

According to our test results, the deployment strategy did not have a big impact on 

performance. Indeed, ensembling the cross-validation models, using a bagging 

strategy while increasing the number of models, or training only one model on the 

whole dataset, led to very similar performance. 

Based on the qualitative visual assessment, our model tends to perform better on 

smooth connected components. Complex structures and sharp contours are more 

prone to errors. Processing and training methods adapted to higher resolution input 

images might have reduced these errors. 

4.2 Binary-weighted Model 

Our results suggest that the binary-weighted model is a competitive and robust 

method. This implies that it might indeed be challenging to accurately estimate feature 

weights. The more degrees of freedom in a model, the higher the risk of overfitting. In 

problems with weak and noisy targets and low number of training samples, reducing 

the training to the bare minimum could be of utmost interest. For the HECKTOR 

challenge, it probably helped mitigate the overfitting. 

Figure 56 shows that the binary-weighted model does not suffer from the curse of 

dimensionality. The vast majority of ML algorithms need some feature selection to 

avoid a drop in performance due to too many features. We hypothesized that in our 

binary-weighted model, the features would work together to cancel their noise and 

biases, analogous to the wisdom of the crowd phenomenon where errors of individuals 

cancel each other out. Adding more features does not result in loss in performance as 

in other traditional ML methods. 

Features importance shed light on the model interpretation (Figure 57). For instance, a 

high performance status is associated with worse prognosis. Tobacco is also associated 

with a higher risk in our model. Large tumor diameter and high SUV values in the 

lesions are associated with increased risk. Other features, such as chemotherapy, can 

be interpreted as indirect measure of the patient condition. Interestingly, the number 

of affected lymph nodes appears to be a strong prognostic factor. In future work, the 

respective contribution of the different segmentation masks will be investigated. More 

importantly, separating GTVp and GTVn would make it possible to assess the individual 

role of these two lesion types. 

5 Conclusions 

We proposed a new, fully automated framework to predict outcomes in H &N patients 

from a given PET/CT image and clinical information. It involves deep learning-based 

GTVp and GTVn segmentation, radiomic feature extraction, and outcome prediction. 
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Our pipeline including the novel binary-weighted radiomic model outperformed other 

methods for outcome prediction while providing accurate segmentation, ranking first 

for prediction and fourth for segmentation in the HECKTOR 2022 challenge. The 

number of lymph nodes was one of the prognostic features, highlighting the 

importance of lymph node segmentation for predicting the outcome in H &N cancer. 

We created an easy-to-use package for the binary-weighted model, called Individual 

Coefficient Approximation for Risk Estimation (ICARE). The code is publicly available at: 

github.com/Lrebaud/ICARE. 

 

8.3 Discussion 

In this chapter, we detailed the methodology we used for our participation to the 

HECKTOR 2022 challenge. A nnUNet with default parameters allowed us to rank 4th for 

the tumor segmentation task, and the new ICARE model that we developed during the 

challenge ranked 1st for the outcome prediction task. 

Our ranking for the prediction task supports the fact that our intuition to aim for a 

minimal learning strategy was adapted to the context of outcome prediction given the 

data that we had available, and confirm our hypothesis: in certain situations, it is better 

not to learn any weight. 

An interesting property of ICARE discovered during the challenge is its ability to handle 

a large number of features. While many machine learning models, such as a Cox 

proportional hazard model, might suffer from the curse of dimensionality, ICARE seems 

to not underperform when the number of features is greater than the number of 

training samples. We hypothesize that an analogy with the wisdom of the crowd could 

partly explain this. During his famous demonstration of the wisdom of the crowd effect 

in 1906, Galton asked a crowd of person to estimate the weight of an ox. While 

individuals were always wrong, the median of their answers was very close from the 

truth. One intuitive explanation is that people errors are equally distributed around the 

true value. If the crowd is large enough, the error will cancel out once the responses 

are aggregated. A similar phenomenon might happen with ICARE, where the error of 

each feature is cancelled out by the error of other features, leading to a good estimate 

of the outcome. This hypothesis requires perfect independence of the features, which 

is rare in practice. For this reason, a preselection removing correlation between features 

is often beneficial with the ICARE model.  

During the challenge, this property allowed us to develop a new strategy. By 

constructing different variants of the segmentation masks of the tumors, and 

measuring the same features in each mask, many versions of each radiomic features 

were constructed. Because the biases and errors of each segmentation were different, 

some of their errors probably cancelled out via the large number of features, leading 

to better predictions. 

https://github.com/Lrebaud/ICARE
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However, not learning any weight might be too strong of a limitation on the model. In 

scenarii in which enough data are present or with limited amount of noise, a model 

assigning a higher weight to the most predictive features would be better than ICARE. 

We therefore tried to determine in which situations it is preferable to use the ICARE 

model. 
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Chapter 9 

 

Comparison of the ICARE model to 

other machine learning models 

 

9.1 Introduction 

To understand under which conditions, it is better to use the weightless ICARE model 

than a traditional machine learning model, I collected 71 real medical datasets coming 

from two collections: SurvSet and TCGA. These large, diverse, and realistic datasets 

allow for a proper comparison of ICARE to other machine learning models. The datasets 

were composed of multiple features and one censored target to predict (e.g., survival 

prediction). Nine models were evaluated on these datasets. For a fair comparison 

between models and to make the comparison closer to real life applications, models 

and feature preprocessing were optimized on each dataset. 

 

9.2 Article in review 

 

Similar performance of 8 machine learning models 

on 71 censored medical datasets: a case for simplicity 
 

IN REVIEW 

Louis Rebaud1,2, Nicolò Capobianco3, 2Nicolas Captier, 2Thibault Escobar, Bruce 

Spottiswoode4, Irène Buvat2 

 

1Siemens Healthcare SAS, Saint Denis, France; 2LITO laboratory, UMR 1288 Inserm, 

Institut Curie, University Paris-Saclay, Orsay, France; 3Siemens Healthcare GmbH, 

Germany; 4Siemens Medical Solutions USA, Inc., Knoxville, Tennessee, United States. 
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Abstract 

In the analysis of medical data with censored outcomes, identifying the optimal 

machine learning pipeline is a challenging task, often requiring extensive 

preprocessing, feature selection, model testing, and tuning. To investigate the impact 

of the choice of pipeline on prediction performance, we evaluated 9 machine learning 

models on 71 medical datasets with censored targets. Only the decision tree model 

was consistently underperforming, while the other 8 models performed similarly across 

datasets, with little to no improvement from preprocessing optimization and 

hyperparameter tuning. Interestingly, more complex models did not outperform 

simpler ones, and reciprocally. ICARE, a straightforward model univariately learning 

only the sign of each feature instead of a weight, demonstrated similar performance to 

other models across most datasets while exhibiting lower overfitting, particularly in 

high-dimensional datasets. These findings suggest that using the ICARE model to build 

signatures between centers could improve reproducibility. Our findings also challenge 

the traditional approach of extensive model testing and tuning to improve 

performance. 

 

Introduction 

When new biomarkers are identified as related to a time-dependent outcome (e.g., 

response to treatment, progression-free survival, overall survival), it is crucial to 

determine how to use them for widespread acceptance and application. A common 

strategy consists in identifying cut-off values that can categorize patients in different 

risk categories. Yet, this method faces multiple issues. First, since it assumes a 

monotonic relationship between the biomarker and the outcome, it might be 

inappropriate for non-monotonic associations. For instance, total cholesterol level 

typically rise until middle age, after which it tends to decrease in older individuals [254]. 

Additionally, using a cut-off creates abrupt changes in risk categories for patients with 

a biomarker value close to the cut-off value. Agreement on cut-off values between 

centers is often challenging, requiring corrections for center effects using approaches 

such as ComBat [255], [256]. Furthermore, categorization might reduce the prognostic 

power by deleting valuable continuous information [257], [258], [259]. Last, since the 

human brain can effectively handle only up to four features simultaneously, this 

method becomes even less effective when many biomarkers are available [260].  

For these reasons, machine learning models are a more effective way to leverage and 

combine biomarkers information into a so-called score or signature [261]. These 

models offer the possibility to aggregate multiple features and learn the best way to 

combine them to predict the target (e.g., survival, risk of relapse, response to 

treatment). However, not any model can be used since the target value is often 

censored (e.g., we know that the patient was alive until a certain date, but then we do 

not know if he died, and when). Machine learning models specifically designed or 
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adapted for censored data must thus be used. The Cox proportional hazard model is 

frequently used since it effectively handles censored outcome, controls for 

confounders, and is interpretable. The weights of the model (hazard ratios) can easily 

be shared (e.g., as a nomogram), which makes the Cox model an easy-to-use and 

versatile tool to build and share signatures. Yet, Cox models have their own limitations, 

as they assume a linear relationship between the log-hazard and the continuous 

explanatory variables, and they are sensitive to collinearity [262]. Many traditional 

machine learning models have also been adapted to handle censored data (e.g., tree-

based models, SVMs) [263]. 

A major challenge of machine learning based signatures is to make them robust 

enough with respect to slight technical changes in the data: a model trained on data 

from one center might not work well on data from another center, even if the patient 

population is similar. This is a well-known problem in machine learning, referred to as 

overfitting. Training models on medical datasets is prone to overfitting [264], because 

of the often-limited number of training examples [114], of the many features and 

feature combinations that are tested and of the inherent complexity and noise in the 

target to predict, such as overall survival, which is frequently censored.  

To mitigate this effect, the Individual Coefficient Approximation for Risk Estimation 

(ICARE) model was developed [232]. This model reduces the risk of overfitting by 

reducing the amount of information learned from the training set to a strict minimum, 

based on the following reasoning: the less is learned from the training set, the less 

likely it is to learn something that will not generalize to other cohorts. ICARE does this 

by univariately learning only a sign (-1 or +1) for each feature instead of a positive or 

negative weight, the assumption being that we often do not have enough training data 

to reliably determine if a feature is more predictive than another. During the training 

step, it also computes two normalization factors (mean and standard-deviation) from 

the training data to normalize each feature with a z-score, so features with larger values 

will not have an arbitrary stronger weight in the prediction. This model won the 

HECKTOR 2022 challenge for predicting the recurrence free survival of head and neck 

cancer patients based on 18F-FDG PET/CT images [239]. 

This diversity of machine learning method raises the question of which model should 

be used when building a new signature based on censored data. In this study, we 

investigated the impact of the choice of model on the quality of the signature by 

conducting an extensive benchmark of methods for predicting time-dependent clinical 

outcome and developing associated signatures. We trained and tested 9 machine 

learning models on 71 medical datasets retrieved from the SurvSet and TCGA 

collections. Each dataset was composed of multiple features and a censored target. The 

data types varied in nature (e.g., radiology, transcriptomic). We thus covered a large 

number of realistic scenarios using publicly available data presenting a wide variety in 

terms of nature, number of samples and features, and extent of censoring. 
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Results 

A comprehensive benchmark composed of a large variety of medical datasets 

We collected 71 different datasets, 51 originated from the SurvSet collection [265] and 

20 were extracted from the TCGA database (https://www.cancer.gov/tcga). Table 11 

shows some statistics of the different characteristics of each group of datasets, 

including the number of features, the number of samples, the proportion of censored 

samples, and the maximum time-dependent area under the receiver operating 

characteristics curve (tAUC) obtained by any of the 9 tested models. 

Statistic 
Dataset 

group 

Number 

of 

samples 

Number 

of 

features 

Number of 

features / 

Number of 

samples 

Proportion 

of missing 

values 

Proportion 

of censored 

samples 

Best tAUC by 

any model 

minimum 
SurvSet 92 4 0.0006 0.00 0.00 0.58 

TCGA 86 19324 17.8609 0.00 0.15 0.55 

median 
SurvSet 461.0 23.0 0.0391 0.00 0.57 0.73 

TCGA 405.5 19497.0 48.1430 0.00 0.62 0.67 

mean 
SurvSet 1664.75 645.47 3.4351 0.01 0.54 0.74 

TCGA 392.65 19480.3 69.6843 0.00 0.60 0.69 

std 
SurvSet 2773.82 1935.58 11.5695 0.04 0.25 0.09 

TCGA 221.65 55.45 49.3687 0.00 0.20 0.09 

maximum 
SurvSet 14294 8664 54.8354 0.26 0.94 0.97 

TCGA 1093 19547 224.6977 0.00 0.86 0.88 

Table 11: Statistics of the distribution of the characteristics in the two datasets groups. 

The performance of the 9 models was estimated in a nested cross-validation with time-

dependent area under the receiver operating characteristics curve (tAUC). 

 
Figure 58: Histograms of the characteristics of the datasets in the SurvSet and TCGA 

groups. 

 

https://www.cancer.gov/tcga
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The histograms of the different characteristics are displayed in Figure 58. For all 

characteristics, the SurvSet collections had the largest range of values, while the TCGA 

datasets focused on scenarios with a high number of features compared to the number 

of samples (Figure 58c). Both groups of datasets included a wide variety of censoring 

values and of maximum tAUC achieved by any of the 9 models tested, the latter 

reflecting how easy it is to predict the target. Almost no missing values were present 

in the datasets (Figure 58f). TCGA datasets had no missing values, and only 15 SurvSet 

datasets had missing values. For 9 of these datasets, less than 1% of the values were 

missing, and for 11 of them, less than 5% of values were missing. The largest proportion 

of missing data was 26% in one SurvSet dataset. 

Most machine learning models exhibit comparable performance for a given 

dataset 

On these 71 datasets, we trained, optimized, and evaluated 9 different models to 

predict the censored target. The machine learning methods included Cox models, 

decision trees, tree bagging, boosting of linear models, linear and non-linear support 

vector machines (SVM) and the ICARE model. All models were evaluated with a 10×10 

nested cross-validation (see Methods). 

 
Figure 59: a) Average time-dependent AUC (tAUC) for each model and for each dataset. 

The datasets are sorted by average tAUC across all models. TCGA datasets are indicated 

with a star at the top of the heatmap. b) Histograms of the difference between the 

maximum tAUC achieved by any model minus the minimum tAUC achieved by any 

model, for both TCGA and SurvSet datasets, for all models. c) is the same as b) but the 

decision tree model was removed. 
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Figure 59a shows all the tAUC achieved by each model on each dataset on a heatmap. 

Datasets are ordered from the lowest (left) to the highest (right) average tAUC across 

models. The heatmap shows little difference in performance between models for a 

given dataset (i.e. along a same column), except for the Decision Tree (last row) that 

was consistently underperforming. If we exclude the DecisionTree model, the 

difference between the maximum and minimum tAUC achieved by any model on each 

dataset was less than 0.04 on SurvSet and less than 0.07 on TCGA for half of the 

datasets. The maximum difference observed were 0.10 on SurvSet et 0.14 on TCGA. 

Figure 59b and Figure 59c shows the distribution of this difference, with and without 

DecisionTree included. This difference tended to be smaller in SurvSet datasets than in 

TCGA datasets. 

 
Figure 60: a) Number of datasets for which the model indicated on the x-axis had the 

highest average time-dependent AUC (tAUC), for the nine models, for each group of 

datasets. b) Boxplots of the average time-dependent AUC (tAUC) achieved by the models 

shown on the x-axis on the test sets of the nested cross-validation for all datasets, for the 

nine models and for each dataset group. 

 

No model was systematically better than any other model. Figure 60a shows the 

number of datasets for which each model was the one with the highest time-

dependent AUC (tAUC). For neither SurvSet nor TCGA did a single model clearly stand 

out as the best performer. For SurvSet, the most consistent models (i.e. GradBoost, 

CompGradBoost, LinearSVM) performed only the best on 9 out of 51 datasets while for 

TCGA, ICARE was the most frequently best performing model, but this occurred only in 

7 out of 20 datasets. Decision Tree was never the best performer. 
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Figure 60b shows the distribution of the average tAUC achieved by all models on all 

datasets. TCGA datasets tended to have lower tAUC whatever the model compared to 

SurvSet datasets. This is also observed in Figure 59a where TCGA datasets are more 

concentrated on the left part of the heatmap. Apart from the decision tree model that 

had overall lower performance, all models had similar distribution of tAUC across all 

dataset groups. 

The ICARE model compares favorably with more complex methods 

Small differences can also be observed if we measure the difference in tAUC between 

the best performing model on each dataset and  the tAUC of all other models on the 

same dataset. Figure 61a shows the distribution of these differences for all models. For 

half of the datasets, all models except the decision tree were less than 0.02 points of 

tAUC below the best model on SurvSet, and less than 0.05 points on TCGA. For 95% of 

datasets, most models were less than 0.10 points of tAUC below the best score on both 

SurvSet and TCGA. Tree-based models had larger differences with the best model. 

 
Figure 61: a) Boxplots of the differences between the best time-dependent AUC (tAUC) 

achieved by any model and the tAUC of the model shown on the x-axis on all datasets. 

b) Differences between the average time-dependent AUC (tAUC) of the ICARE model and 

the tAUC of other models for each model and for each dataset. The datasets are sorted 

by average difference of tAUC across all models. TCGA datasets are indicated with a star 

at the top of the heatmap. 

When focusing on the difference in tAUC between ICARE and the tAUC of all other 

models on all datasets, we found that the difference was higher than -0.03 of tAUC for 

95% of combinations of model and datasets. The difference was positive for 50% of 
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combinations and above -0.01 for 76% of combinations. The lowest value was -0.09 

and the highest was 0.15. Figure 61b shows all these differences on a heatmap. A higher 

concentration of TCGA datasets can be seen on the right part of the heatmap, where 

ICARE tended to outperform other models more frequently. 

Preprocessing and hyperparameter tuning have no clear impact on the 

performance 

The same models were evaluated on the same datasets but without any feature 

preprocessing nor hyperparameter tuning. When measuring the difference between 

the model with default settings and its tuned counterpart, no strong trend suggested 

a clear benefit of feature preprocessing and hyperparameter tuning. Figure 62a 

displays the distribution of the differences between a model trained with feature 

preprocessing and hyperparameter tuning and the same model without any selection 

nor preprocessing of features and with default hyperparameters. Positive values mean 

that the preprocessing and tuning improved the performance. 

The details can be seen in Figure 62b, which contains a heatmap of all differences in 

tAUC between a model with and without feature preprocessing and hyperparameter 

tuning, for all models and all datasets. While some models had substantial gains in 

tAUC on some datasets, for most combinations of models and datasets, the tAUC was 

not substantially increased with tuning and feature selection. No dataset had tAUC 

substantially and systematically increased by preprocessing and tuning. 

Only 14% of all combinations of models and datasets benefited from feature 

preprocessing and hyperparameter tuning by more than 0.05 of tAUC. The full 

histogram of the gain in tAUC through feature preprocessing and hyperparameter 

tuning for all combinations of models and datasets is provided in Figure 62c. The 

median was 0.004, meaning that only half of the combinations of models and datasets 

benefited from feature preprocessing and hyperparameter tuning, and the other half 

underwent almost no change or a reduction in tAUC in the process. 
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Figure 62: a) Boxplots of the differences between the tAUC achieved by the model with 

feature selection and hyperparameters tuning and the model without it, on all datasets, 

for each model and for the SurvSet and TCGA dataset groups. b) Differences between the 

tAUC achieved by the model with feature selection and hyperparameters tuning and the 

model without it, for all models on each dataset. Datasets are sorted by averaged increase 

in tAUC when using feature selection and hyperparameters tuning across all models. 

TCGA datasets are indicated with a star at the top of the heatmap. c) Histogram of gain 

in time-dependent AUC (tAUC) through feature selection and hyperparameter tuning for 

all model and dataset combinations. The gain is defined as the difference between the 

tAUC of the model trained and evaluated with feature selection and hyperparameter 

tuning and the tAUC of the same model on the same dataset with default settings. 

 

 



 

148 

CompGradBoost, ICARE, ExtraTrees and DecisionTree are more robust to 

overfitting than other models 

More substantial variations between models were observed when comparing 

differences between the average tAUC achieved on the train set and the average tAUC 

achieved on the test set. Figure 63a displays the distributions of these differences for 

all models. The higher the difference, the higher the overfitting. On TCGA datasets, 

overfitting was greater than on SurvSet datasets. On SurvSet, Cox, ICARE and 

CompGradBoost overfitted the least, while on TCGA, it was ICARE, CompGradBoost and 

DecisionTree who overfitted the least. The biggest differences were observed for the 

Cox, GradBoost and SVMs models on the TCGA datasets, with tAUC on the train set 

often superior by 0.20 to the tAUC on the test set. 

 
Figure 63: a) Boxplots of the differences between the tAUC achieved by the model shown 

on the x-axis on the train set and on the test set, for the nine models (x-axis) and the 

SurvSet (blue) and TCGA (pink) dataset groups. b) p-values of a Wilcoxon signed-rank 

test assessing if the model of the corresponding row had a significantly smaller difference 

in performance between its test and train tAUC than the model of the corresponding 

column. Significant p-values are shown in pink cells. The significance was assessed while 

controlling for multiple testing with two-stage linear step-up procedure (TST) to have less 

than one false positive. 
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Some models overfitted significantly more than others. Figure 63b presents the result 

of a Wilcoxon test to assess if a model overfitted significantly less than another. Based 

on these tests, CompGradBoost overfitted significantly less than almost any other 

model on both SurvSet and TCGA. ICARE overfitted significantly less than SVMs, 

RandomForest and GradBoost on all datasets. On TCGA, Cox overfitted significantly 

more than ICARE, DecisionTree, ExtraTrees and CompGradBoost, while on SurvSet, only 

CompGradBoost was significantly better than Cox. Overall, the models that were the 

most robust to overfitting in all scenarios were CompGradBoost, ICARE, ExtraTrees and 

DecisionTree. 

Discussion 

In this study, we evaluated 9 machine learning models on 71 datasets from the SurvSet 

and TCGA databases, representing a wide variety of scenarios of prediction tasks 

involving censored targets. Preprocessing was optimized and models were tuned to 

maximize model performance in each dataset, allowing for a fair comparison of the 

models. 

An important observation is that the choice of model, of the preprocessing and of 

model tuning does not have a major impact on the performance most of the time. 

Extensive testing and tuning of models appear to bring little improvement in the 

results, as only 14% of combinations of model and datasets had their tAUC increased 

by more than 0.05 following feature preprocessing and hyperparameter tuning. In 

addition, almost all models had similar performance and were often close to the best 

score achieved by any model except the decision tree model, which was consistently 

underperforming. If we exclude this model, on 50% of datasets, the best model was 

less than 0.05 of tAUC higher than the lowest tAUC achieved by any model. We also 

observed major differences between models in terms of overfitting, with some models 

generalizing significantly better to new unseen data than other models. 

Models with non-linearity or features weighting did not substantially outperform the 

ICARE model. In most cases, ICARE had a score close to the optimum achieved by any 

model. It was the best performing model in 11 out of the 71 datasets and was less than 

0.02 point of tAUC below the best model in half of datasets. This confirms that the 

strategy behind the model is valid and that reducing the amount of information learned 

from the training set does not substantially impair the performance of the model. This 

suggests that in most situations, weighting the features is not necessary and only the 

sign of the correlation needs to be estimated (as well as their normalization factors, 

used in ICARE). Based on our results, this does not reduce performance compared to a 

Cox model and might even increase the chances of replicating the findings in other 

centers, as the ICARE model overfitted less than a Cox model. 

Another implication of this work is that preprocessing, building, testing, and tuning 

many models might not be an effective time and energy investment. These 

computationally intensive steps frequently used in machine learning do not appear to 
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substantially improve the performance. This suggests that the most effective way to 

improve model performance for outcome prediction tasks involving censored data 

might not be to look for the best combination of the available features, but rather to 

search for new biological information that could bring additional knowledge about the 

patient. 

Based on our results, it appears that the ICARE model has the potential to be a solid 

choice for signature building. Not only its performances were often the best or close 

to the best performance achieved by any model, but it was also one of the models with 

the least overfitting on both SurvSet and TCGA datasets, meaning that it would provide 

realistic estimation of its performance on new cohorts of patients, in other centers. Of 

all tested models, it is also one of the simplest, as only the sign of the correlation 

between the target value to predict and the features, as well as the normalization 

factors of the features (mean and standard deviation) are needed to fully describe the 

model. Another benefit of the ICARE model not leveraged in this study is its ability to 

handle missing data, contrary to all the other tested models who requires feature 

removal or imputation. In this study, the number of missing data was too low to 

influence the results. 

CompGradBoost was also a strong choice for signature building as it was the model 

with the least overfitting of all evaluated models. However, it is an ensemble of multiple 

models via boosting and is therefore more complex to interpret and share than a Cox 

or ICARE model. It was also further away from the maximum score than ICARE and Cox 

on many high dimensionality (TCGA) datasets.  

This study has some limitations. First, the automated preprocessing and model 

optimization used in this study cannot replicate human ingenuity and experience and 

our conclusions might not always apply. An expert manually tuning each model on 

each dataset could achieve better performance than our automated approach, and 

substantial gains in tAUC might be observed compared to default models. Secondly, 

our conclusions depend heavily on the 71 selected datasets, that cannot reflect all real-

world datasets. Some specific scenarios missing from our collection might have yielded 

different conclusions. Moreover, models specifically designed for a precise task will 

probably perform better than the general models evaluated in this study on this specific 

task. 

For these reasons, our experiments should be repeated on other large collections of 

datasets with more models and other model tuning. To support this effort, we made 

all our code publicly available on GitHub at: 

https://github.com/Lrebaud/survival_benchmark. 

 

 

https://github.com/Lrebaud/survival_benchmark
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Methods 

Datasets 

A total of 51 datasets of the SurvSet collection (https://github.com/ErikinBC/SurvSet) 

and 20 datasets of the TCGA database (https://portal.gdc.cancer.gov) were used. In 

SurvSet, only the datasets composed of medical or biological data were selected. Those 

with time-dependent features were removed since they were a minority and would 

have introduced extra complexity to the study, while not being representative of many 

datasets. On both collections, only the datasets with more than 40 non censored 

samples were kept. This value was chosen to have enough samples in each dataset for 

a robust evaluation of model performance, while retaining as many datasets as 

possible. The complete list of the datasets used in our study is given in Table 12. 

SurvSet TCGA 

diabetes, dataDIVAT1, gse3143, GBSG2, LeukSurv, smarto, 

vlbw, d.oropha.rec, DBCD, prostate, whas500, uis, Dialysis, 

retinopathy, veteran, DLBCL, dataDIVAT2, nwtco, AML_Bull, 

dataDIVAT3, burn, MCLcleaned, phpl04K8a, stagec, Pbc3, 

nki70, cancer, hepatoCellular, mgus, TRACE, colon, support2, 

acath, cgd, wpbc, prostateSurvival, Aids2, rott2, ova, cost, 

e1684, chop, Melanoma, FRTCS, Z243, pbc, dataOvarian1, 

follic, actg, flchain, rdata 

UCEC, BLCA, GBM, 

OV, LIHC, COAD, 

CESC, LAML, ESCA, 

LGG, KIRC, MESO, 

PAAD, LUSC, STAD, 

LUAD, SARC, HNSC, 

BRCA, KIRP 

Table 12: List of datasets used in each collection. 

On TCGA datasets, the features were the RNAseq data and the outcome to predict was 

the overall survival (OS), cleaned and prepared by Liu and colleagues [266]. 

Models 

Most models implemented in the scikit-survival Python package [225] were included in 

the study. We used the 0.21.0 version. This collection adapts a wide variety of traditional 

machine learning models to handle censored targets. Table 13 shows the 

correspondence between the name of the models in our study with the corresponding 

model in scikit-survival. 

Elastic net penalty was used in the baseline Cox model of this study since a Cox model 

without any regularization would not have produced satisfactory results in most 

datasets due to collinearity in the features. In addition, through hyperparameter tuning, 

both L1 and L2 penalties could be explored at the same time. 

An implementation of the ICARE model is provided with the code used to process the 

data and evaluate the models, publicly available on GitHub at 

https://github.com/Lrebaud/survival_benchmark. In the original ICARE paper, multiple 

feature selection steps were present inside the model, such as correlation removal and 

dropping of features with a low C-index. Here, we removed all these steps from ICARE 

https://github.com/ErikinBC/SurvSet
https://portal.gdc.cancer.gov/
https://github.com/Lrebaud/survival_benchmark
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to have the same feature selection steps for all models as described below. 

Name in the study Name in scikit-survival scikit-survival’s description 

Coxnet CoxnetSurvivalAnalysis 
Cox's proportional hazard's model with 

elastic net penalty. 

CompGradBoost 
ComponentwiseGradientBoosting 

SurvivalAnalysis 

Gradient boosting with component-wise 

least squares as base learner. 

GradBoost GradientBoostingSurvivalAnalysis 

Gradient-boosted Cox proportional 

hazard loss with regression trees as base 

learner. 

RandomForest RandomSurvivalForest A random survival forest. 

ExtraTrees ExtraSurvivalTrees An extremely random survival forest. 

DecisionTree SurvivalTree A survival tree. 

LinearSVM FastSurvivalSVM 
Efficient Training of linear Survival 

Support Vector Machine 

KernelSVM FastKernelSurvivalSVM 
Efficient Training of kernel Survival 

Support Vector Machine 

Table 13: List of models from scikit-survival used in this study. 

Feature selection and preprocessing 

For a fair and realistic evaluation of the models, all models had the same preprocessing 

steps, and all parameters of these steps and model hyperparameters were tuned with 

a random search in a nested cross-validation. The preprocessing steps were the 

following: 

- Dropping the features for which the proportion of missing values was above an 

adjustable cut-off. 

- Dropping the features for which the C-index with the target was below an ad-

justable cut-off. 

- Dropping features for which the Spearman’s correlation with other features was 

above an adjustable cut-off. 

- Imputation of the missing values with one of the following techniques: mean, 

median, mode, constant, KNN (5 neighbors), using the implementation of the 

scikit-learn library [224]. No imputation was performed for ICARE since it can 

handle missing values. 

- All features were normalized with a z-score calculated on the train set. 

The normalization of the features being an integral part of the preprocessing, it was 

present for all models. When models were evaluated without preprocessing, only ICARE 

normalized the features as this step is an integral part of this model. 

Evaluation 

All models were evaluated with a 10×10 nested cross-validation with consistent 

splitting of the data. Model hyperparameters and feature preprocessing parameters 
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were optimized in the inner loop with a random search of 100 iterations. The model 

with optimized hyperparameters was then retrained on all the data of the inner loop. 

Performance of the model was assessed on samples from the inner loop (train set) and 

outer loop (test data) with time dependent AUC (tAUC). This metric was chosen 

because it is not sensitive to the proportion of censored samples, contrary to the 

concordance index [100]. The average value across the 10 outer folds was used to 

assess the model performance on the train and test sets. 

Statistical information 

To test if one model was overfitting significantly more than another model, the 

difference between the average tAUC obtained on the test set and the average tAUC 

obtained on the train set was computed for all models on all datasets. For each pair of 

models, a Wilcoxon signed-rank test was used to assess if one model had significantly 

greater differences than the other, across all datasets. 

 

9.3 Discussion 

In this chapter, the evaluation of 9 machine learning models for censored target 

prediction tasks on 71 real medical datasets revealed several key insights with 

implications for signature building. A nested-cross validation with extensive 

hyperparameters tuning allowed for a thorough and realistic estimation of 

performance for each model. A key finding was the relatively uniform performance of 

models across most datasets. Specifically, in half of the datasets analyzed, the 

difference in tAUC between the best and worst-performing models was less than 0.05, 

excluding the consistently underperforming decision tree model. Similarly, extensive 

hyperparameter tuning and feature selection and preprocessing did not bring 

significant improvements, as only 14% of combinations of model and datasets 

increased in tAUC by more than 0.05, and half of them did not benefit from it. This 

highlights a limited impact of model choice and extensive tuning on overall predictive 

performance. 

Among the models that we evaluated, the ICARE model proved remarkably effective. It 

was the top-performing model in 11 out of the 71 datasets, and in 50% of the cases, it 

was within 0.02 tAUC points of the highest-scoring model. It was also one the models 

with the least overfitting and the simplest one. These results underscore the ICARE’s 

potential to create signatures more generalizable to other centers, and aligns well with 

the ranking of ICARE in the HECKTOR 2022 challenge. 

The results of the study prompt a reconsideration of the emphasis generally placed on 

extensive model testing, suggesting a potential shift towards simpler models such as 

ICARE and the search for new biological insights. However, the automated nature of 

the study processes and the specific limitations of the datasets that were used highlight 

the need for broader exploration in future research. 
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Chapter 10 

 

General discussion, conclusion, and 

perspectives 

 

The goal of my PhD was to look for new image-based prognostic features in the PET/CT 

scans and determine how to use them for enhanced patient stratification. After a 

manual search with limited results, I developed a semi-automated approach to 

comprehensively search the images for new information. By automatically building 

thousands of candidate biomarkers from the image data and testing them on two 

cohorts of FL and DLBCL patients, I was able to identify dozens of new radiomic features 

significantly associated with the outcome. However, these features, while handcrafted, 

well defined mathematically and prognostic of the outcome, were not all easy to 

interpret and the biological information that they encoded was not clear for most of 

them. Deciphering them through visual examples and comparison with simpler 

features allowed us to build tens of new surrogate biomarkers much easier to interpret 

and that were still prognostic of the outcome. Among them, 10 were prognostic on the 

two cohorts of DLBCL and FL patients, increasing their likelihood to be truly prognostic, 

and their usefulness as they could be used to stage more patients. These results have 

thus contributed to the core question of the PhD by developing tools to effectively 

search for new prognostic information and identifying new potential prognostic 

biomarkers for lymphoma patients. 

While discovering new biological information relevant in the image is a first step, their 

efficient use in clinic is as important. I made two contributions addressing this point. 

The first one is the development of the ICARE model. This is a new machine learning 

model that favors simplicity. The core idea is that in survival prediction, we often do 

not have enough data to give accurate weights to each feature. The ICARE model tries 

to reduce the risk of overfitting by learning only a sign for each feature in a univariate 

way. This minimalistic approach was validated during the HECKTOR 2022 challenge 

where we ranked 1st for the outcome prediction task. I evaluated ICARE in a 

comprehensive comparison with 8 other machine learning models on 71 medical 

datasets. I demonstrated that ICARE was overfitting significantly less than many other 

machine learning models, and thanks to its simplicity and robustness, it appears to be 

a good model to build new clinical signatures encompassing multiple biomarkers. 

The second contribution to efficiently use the new biomarkers in clinic is the 
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implementation of my results in a software. I developed an extension for the PARS 

software offered by Siemens Healthineers which allows for the automated 

segmentation of organs and lesions on PET/CT images. My extension builds upon these 

segmentations to automatically calculate feature values from the image. Then the 

features are fed into prediction models and visualization tools. The results are shown 

to the user. A screenshot of the extension showing results is displayed in Figure 64. 

 
Figure 64: Screenshot of the extension of the PARS software I developed. The A, B, C, D 

and E letters are not present in the software and are only used in this chapter to reference 

a specific plot.  

On this screen, many features can be displayed at once and used for risk prediction. 

The various plots show how the patient compares in terms of risk to a reference cohort 

according to the selected features. This reference cohort, which can be from the center 

where the tool is used or from outside to leverage more patient data, gives intuition 

about new biomarkers and new model. For instance, in Figure 64A, we can see that the 

patient studied (in red) is at lower risk than the rest of the cohort (in blue), according 

to the volume of subcutaneous fat. More globally, Figure 64B is a radar plot showing 

the percentile of the patient values for different biomarkers, relative to the reference 

cohort, and oriented by risk. Hence, the closer to the center, the lower the risk 

according to the corresponding biomarker, and vice-versa. Therefore, the higher the 

total surface of the radar plot, the higher the risk. Discrepancies among the biomarker 

can easily be observed that way. Similarly to Figure 64A, Figure 64C shows how the 
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patient relates to the rest of the cohort in terms of risk according to a model 

encapsulating multiple biomarkers. In this example, an ICARE model trained on the 

reference cohort predicted a favorable outcome for the patient studied (in red) 

compared to the rest of the cohort (in blue). Various prediction models can also be 

tested. Figure 64D shows Kaplan-Meier curves of the PFS of patients from the reference 

cohort split in two groups: those who are similar to the patient studied according to 

the selected biomarkers (in red), and the rest of the cohort (in blue). Here we can see 

that patients similar to the selected patients tended to have longer PFS than other 

patients. Figure 64E shows the MIPs of the PET images and the lesion segmentation of 

the selected patient and of the 3 patients the most similar according to the selected 

biomarkers. The reference cohort can also be refined to select reference patients for 

whom several features have similar values compared to the analyzed patient. For 

instance, the user can pick only the patients in the reference cohort with similar TMTV 

and FLIPI score. This is a useful feature in the extension as I believe that the new 

biomarker interest lies in the stratification of population of patients that seem 

homogeneous in risk according to currently used biomarkers. 

In parallel of this handcrafted biomarker search, I also explored deep learning methods 

to find new image-based biomarkers. Deep features are a new paradigm in the field of 

radiomics and hold the promise to discover new and more subtle biomarkers, by 

leveraging deep learning models to analyze the images. The first project I conducted 

on this topic is the use of a variational autoencoder to encode the PET images in an 

expressive latent representation. I specifically focused on β-VAE for their ability to 

create an intuitive latent space. With this approach, I was able to rediscover two already 

identified biomarkers: TMTV and Dmax, but I did not find any new prognostic 

information. We tried to take this idea further with the help of a master student during 

his internship. Even though we were able to successfully encode the PET images and 

reconstruct them with minimal loss, the latent space was not found prognostic of the 

outcome nor linked to any existing clinical features.  

To force the model to encode prognostic information, I also tested a supervised 

approach. Here the model had to predict the outcome of the patient from the MIP of 

the PET image. I adapted the concordance index, our metric of interest for outcome 

prediction, into a loss function that could be used to train a deep learning model. I 

validated this approach during the HECKTOR 2021 challenge where I ranked 5th among 

30 teams for outcome prediction from PET images, and I presented the approach 

during the SNMMI 2022 conference. While this deep learning model did not improve 

on more traditional models (e.g., Cox model) using radiomic features, it reached similar 

performance for outcome prediction, while being a deep learning model, meaning that 

it was creating its own features rather than using hand-crafted ones, like a Cox model 

would. This was the main interest of this approach: the model learning prognostic 

information from the images and encoding it into its deep features. Hence, I then tried 

to understand the learned prognostic information. I tried many techniques to do that, 

but the most promising one was to use SHAP values. 
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This technique comes from game theory and quantifies the impact of each pixel on the 

target. This allows to understand how each region of the PET image impacts the 

outcome of the patient, according to the model. However, I found that the results were 

extremely noisy and hard to interpret. These poor results probably come from the fact 

that the prediction of the model is far from being perfect. To mitigate this problem, I 

tried an ensemble of SHAP values. By merging the prediction and the interpretation of 

multiple models, I reduced the variability and the overfitting and noise of each model. 

I found that this ensembling of SHAP values produced much better interpretation 

maps, as shown in Figure 65. 

 
Figure 65: SHAP values of a model predicting the PFS of DLBLC patients superimposed 

on the MIPs of their PET images. Pixels that increased the risk are displayed in blue, while 

pixel reducing it are displayed in red. The SUV are displayed with a grey scale, with darker 

pixels representing higher activity. The two images on the left display individual SHAP 

map of the same patient, but with a different model, trained with different resampling of 

the training data. The image on the right is a mean aggregation of 100 SHAP maps of 

the same patient from 100 different models trained with a 100 different resampling. 

However, despite this progress in interpretation, I could still not understand and find 

any biological information meaningful for prognostic outcome. The inconclusive results 

of the deep learning approach might be due to the lack of data. These techniques are 

developed to use thousands of samples, while in medical imaging, we are often 

working with hundreds of samples. This limited amount of training examples is even 

more exacerbated by the complexity of the task and the high dimensionality of the 

medical imaging data. However, I have not explored the pre-training and fine-tuning 

of models and these techniques could significantly improve results. Moreover, I am 

extremely curious to see how the current multimodal large language models will 

contribute to the search of new radiomic features. By being pre-trained on many data, 

these models could develop intuition useful for the search for new image-based 

prognostic features. They could give intuitive textual information to explain the content 

of an image, and what is relevant for prognosis. 

The limited amount of data and the noisy nature of the targets seem to also be the 

reasons why the simplistic approach of the ICARE model works well. By reducing the 

complexity of the model and therefore the number of degrees of freedom, we 
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constrained the search space to make it less likely to overfit. An even more interesting 

property of ICARE is its ability to handle a high number of features. While most models 

drop in performance when more and more features are added to them, ICARE does 

not seem to suffer from the curse of dimensionality. We observed this phenomenon 

during the HECKTOR challenge where we were able to feed thousands of radiomic 

features to the model and observed either a plateau or an improvement in 

performance, as illustrated in Figure 66. 

 
Figure 66: Concordance index of the ICARE model to predict to risk of relapse of the 

HECKTOR 2022 challenge as a function of the number of image-based features input 

into the model. 

While I could not prove it, I made a hypothesis that could explain this phenomenon. In 

ICARE, the features signs are evaluated in univariate, independently from the other 

features. This creates a situation similar to the wisdom of the crowd effect. In his famous 

experiment in 1906, Galton showed that a crowd of people can accurately guess the 

weight of an ox. Individual answers were almost all wrong but the median of all the 

answers was close from the truth. This phenomenon was observed countless times in 

many situations and is now well documented and understood. One key component to 

make this effect operate is that each individual should answer independently, without 

the influence of others. The exact same phenomenon could happen in ICARE, where 

each feature contributes equally to the final answer without being influenced by other 

features. It is the opposite of a Cox model for instance, where the weight of each feature 

is determined not only by the target but also by the other features during training. One 

reason to explain the effectiveness of the wisdom of the crowd effect is that the answer 

of each individual is equally distributed around the truth, and by aggregating all the 

answers, all the individual errors cancel out. The same might happen in ICARE, where 

the errors in prediction of each feature is cancelled out by the errors of all other 

features. When more and more features are added, errors do better cancel out. This is 

what we observed during the HECKTOR challenge. Unfortunately, I could not prove 

that this is what happens in ICARE, and I hope that future works will answer this 

question. 
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If we take a step back from ICARE, simplicity was overall a key ally during my PhD. I 

noticed in multiple aspects of my work that the simpler the approach, the more 

effective it was to answer the questions. Simpler features were more effective at 

predicting the outcome and were more interpretable than sophisticated ones, simpler 

models were more effective at predicting a target than complicated models, simpler 

methods were more effective at searching the image space and simpler and more 

intuitive interpretation techniques were more effective than advanced ones. This is not 

a call for simplistic approaches, but rather for parsimonious ones in the complex and 

noisy domain of medical imaging. 

This idea also applies to the interpretability of the features. The deep feature approach 

explored was promising but extremely hard to interpret. I tried advanced technique like 

GradCam and SHAP values, but despite my efforts, I was not able to find any convincing 

biological intuition from these features. Handcrafted radiomic features were much 

easier to interpret. By being defined by simpler rules on specifically defined portion of 

the image, their core information was easier to understand by their definition only. But 

an even greater ally was visual examples of the features. By plotting examples of lesions 

at high or low risk according to the studied feature, strong intuition about the 

quantified information could be developed. For instance, the shell CT GLDM 

Dependence Entropy that was identified as being prognostic in both the DLBCL and FL 

cohorts was difficult to interpret until visual examples were produced. Figure 67 shows 

an example of the images used to understand this feature. With these examples, it 

becomes obvious that this feature is quantifying the homogeneity in density around 

the lesions.  

 
Figure 67: CT slices of lesions of FL patients with low and high values of GLDM 

Dependence Entropy computed in the 8mm thick shell of tissues surrounding the lesions. 

Lower values were associated with more homogeneous density and higher risk. Lesion 

and shell segmentation are depicted in orange. 
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These contributions open new perspectives. First, the identified biomarkers need to be 

thoroughly tested on new cohorts of DLBCL and FL patients. If confirmed, these 

findings could help better understand the diseases but also better predict the outcome 

of patients and stratify them by risk. It would also be interesting to see if some of them 

are prognostic in other types of cancer. 

Second, the semi-automated methodology developed to search for new biomarkers 

can easily be applied to other cohorts with different diseases. By making the radiomic 

feature search easier, faster, and more exhaustive, these tools have the potential to 

help increase the number of discoveries in the field. As we see, they cannot fully replace 

the human search. Careful interpretation and manual re-encoding of the features are 

needed. Yet, they could be a great help to understand where to look for new 

information. 

I believe that my PhD contributions show that there is still more information to leverage 

from PET and CT images, and we are currently only considering the tip of the iceberg, 

as there is probably so much more we can learn and measure from these images. I am 

convinced that in the future, PET/CT scans will play an increasingly crucial role in 

diagnosing and staging diseases in patients. I hope my contributions prove valuable 

and I extend my best wishes for success to those who will continue this research. 
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Supplemental 

Supplemental of Chapter 6: 

 

To facilitate the use of ROBI, we provide here some intuition and range of values for 

the parameters of the pipeline. The parameters can be grouped in three sets: 

• Parameters to control for biomarker candidates reproducing known infor-

mation: (S, M, W) 

These three parameters can help to adjust how we want the selected candidates 

to be different from already known biomarkers. The lower the values of these 

parameters, the lower the chance of having a selected candidate reproducing 

already quantified information. It is thus important to identify these known bi-

omarkers and measure them in the cohort that is studied. On the other hand, 

this selection step can be completely ignored if we want to try to discover fea-

tures that could replace known ones or if no biomarker relevant to the task of 

interest have already been identified. 

 

o S: This is the maximum absolute Spearman correlation, within [0,1], a can-

didate can have with a known feature. Default value is 0.5. 

o M: This is the maximum VIF score within [0, +∞] a candidate can have 

with known features. It helps to prevent candidates to encode multiple 

known biomarkers at the same time. Default value is 5. Is it commonly 

accepted that M ≤ 1 indicates no collinearity, M ≥ 2.5 shows high collin-

earity and M = +∞ means that the feature can be perfectly defined by 

the other covariates. Existing multicollinearity between known features 

must be taken into account. 

o W: it encodes how sensitive to other covariates the weight of the candi-

date in a multivariate model can be. If this weight changes a lot when 

other covariates are introduced, it means that the candidate is con-

founded by some of these covariates. A common value is 10%, so this 

weight should not change by more than 10% when known features are 

introduced in the model. Lower values can be used to be more restrictive, 

but values should not be higher than 10%. The range of W is therefore 

[0, 10]. 
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• Parameters to increase the number of selected biomarkers: (C, Q) 

These two parameters can help to increase the number of selected biomarkers. 

o C: this parameter controls the CCO optimization. Candidates sharing sim-

ilar information will be grouped in clusters based on their absolute Spear-

man correlation. C defines the maximum correlation between two candi-

dates of different clusters. The higher the value, the lower the number of 

clusters. This parameter is helpful when many candidates reflect the same 

information. Instead of evaluating the same information 10 times 

through 10 different candidates, thus losing statistical power, only the 

candidate of the cluster with the highest prognostic value is used. There-

fore, less candidates are evaluated in the subsequent TST step, making 

the TST less demanding on the p-values, thus increasing the number of 

selected candidates. It also helps capturing a higher number of distinct 

biological information: instead of selecting 10 candidates that all reflect 

the same feature, 10 candidates encoding 10 different features could be 

selected. Default values is 0.5 and C should be within [0, 1], 1 meaning 

that all candidates will be in a single cluster, and 0 that each cluster will 

only include one candidate (so no clustering is performed).  

o Q: Possible values of this parameter are within [0, 1]. The parameter con-

trols how permissive selection is. Lower values will be more restrictive, 

lowering the number of false positives at the cost of less selected bi-

omarkers, while higher values will accept more candidates, increasing the 

number of selected biomarkers and the number of false positives. This 

can be adjusted to different needs. By default, ROBI will perform the se-

lection with 50 values between 0.01 and 0.5 and will report the number 

of selected candidates and estimated number of false positives for each 

value. We recommend choosing a Q value for which the number of false 

positives is acceptable for the study and using the corresponding se-

lected candidates. 

 

• Parameters to improve the quality of the evaluation: (P, T) 

These parameters are the easiest to set: the higher the better. The higher the 

values of P and T, the more precise the evaluation of the candidates, at the cost 

of increased computing time. 

 

o P: It defines the number of permutations performed to determine the 

significance of the prognostic values of the candidates. The p-value of a 



 

185 

candidate is calculated by measuring the proportion of permuted fea-

tures with a C-index higher than the C-index of the candidate.  To have a 

precise estimate, it is good to have at least one hundred permuted fea-

tures with a C-index higher than the C-index of the best candidates. De-

fault value if 103 but it can be greatly increased without increasing the 

computation time too much, especially with a GPU. As mentioned in the 

discussion, P=107 can be handled by a PC. ROBI package automatically 

recommends a value depending on the number of candidates. 

o T: It defines how many permutations of the dataset will be performed to 

estimate the number of false positives. This parameter is the one with the 

highest impact on the computational cost. Default value is 103. A value 

of 104 can still be calculated in a few hours. It is not necessary to go be-

yond this value as the gain in precision will not be worth the longer com-

putation time. 
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Supplemental of Chapter 7: 

 

Selected biomarker C-index 

Sign of the 

correlation 

with the risk 

duodenum_shape_Sphericity 0.58 (p < 0.01) + 

lesion_CT_firstorder_Kurtosis_range 0.57 (p < 0.01) + 

lesion_CT_glcm_Idn_range 0.59 (p < 0.01) + 

lesion_CT_glcm_Imc1_range 0.59 (p < 0.01) + 

lesion_CT_glrlm_ShortRunHighGrayLevelEmphasis_maxi 0.59 (p < 0.01) + 

lesion_PT_firstorder_10Percentile_mini 0.56 (p < 0.02) - 

lesion_PT_firstorder_Skewness_mini 0.56 (p < 0.01) - 

lesion_PT_glcm_InverseVariance_range 0.57 (p < 0.01) + 

lesion_PT_glrlm_RunEntropy_range 0.57 (p < 0.01) + 

liver_PT_firstorder_Skewness 0.58 (p < 0.01) + 

liver_shape_Maximum3DDiameter 0.57 (p < 0.01) + 

oneroi_shape_Flatness 0.58 (p < 0.01) + 

pancreas_PT_firstorder_Energy 0.57 (p < 0.01) + 

pancreas_PT_glcm_SumSquares 0.57 (p < 0.01) + 

pancreas_shape_Elongation 0.58 (p < 0.01) + 

shell_CT_firstorder_Mean_range 0.57 (p < 0.01) + 

shell_CT_firstorder_Median_mini 0.59 (p < 0.01) - 

shell_CT_firstorder_Minimum_range 0.56 (p < 0.01) + 

shell_CT_firstorder_Minimum_std 0.58 (p < 0.01) + 

shell_CT_gldm_DependenceEntropy_mini 0.60 (p < 0.01) - 

shell_PT_firstorder_10Percentile_mini 0.59 (p < 0.01) - 

shell_PT_firstorder_Energy_mini 0.58 (p < 0.01) - 

shell_PT_glcm_Correlation_mini 0.59 (p < 0.01) - 

shell_PT_gldm_DependenceNonUniformityNormalized_range 0.57 (p < 0.01) + 

shell_shape_Elongation_maxi 0.59 (p < 0.01) + 

small_bowel_shape_SurfaceVolumeRatio 0.58 (p < 0.01) - 

urinary_bladder_PT_glszm_GrayLevelNonUniformity 0.57 (p < 0.01) + 

volume_fat 0.58 (p < 0.01) - 

Table S14: The 28 candidates selected on the FL cohort. In the name of the biomarker, 

multiple terms are separated by an underscore. The first term describes in which region 

the biomarker was computed (lesion, organ, shell, …). The second describes the modality 

(PET, CT values or shape). The third one is the PyRadiomics name of the feature. The 

fourth if any, explains the aggregation method used to aggregate the lesion level 

biomarker to the patient level (e.g., minimum value across all lesions, maximum, 

standard-deviation of the values). The C-index for PFS prediction is reported with its p-

value, as well as the sign of the correlation with the risk (PFS). 
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Selected biomarker C-index 

Sign of the 

correlation 

with the risk 

colon_PT_glrlm_GrayLevelVariance 0.58 (p < 0.01) + 

colon_shortestDistanceToTumor 0.59 (p < 0.01) - 

esophagus_CT_gldm_SmallDependenceLowGrayLevelEmphasis 0.59 (p < 0.01) - 

esophagus_CT_glrlm_RunEntropy 0.58 (p < 0.01) - 

esophagus_PT_glcm_Imc2 0.60 (p < 0.01) + 

insidemuscle_PT_glrlm_GrayLevelVariance 0.58 (p < 0.01) + 

kidney_left_CT_glcm_ClusterShade 0.59 (p < 0.01) + 

lesion_CT_gldm_SmallDependenceHighGrayLevelEmphasis_maxi 0.59 (p < 0.01) + 

lesion_CT_glszm_SizeZoneNonUniformity_range 0.63 (p < 0.01) + 

lesion_CT_glszm_SmallAreaHighGrayLevelEmphasis_range 0.58 (p < 0.01) + 

lesion_PT_firstorder_RobustMeanAbsoluteDeviation_mini 0.60 (p < 0.01) - 

lesion_shape_Sphericity_maxi 0.58 (p < 0.01) + 

liver_shape_MajorAxisLength 0.58 (p < 0.01) + 

lung_left_shape_MinorAxisLength 0.57 (p < 0.02) + 

lung_right_CT_glcm_ClusterProminence 0.59 (p < 0.01) + 

lung_right_volTumorInside/vol_organ 0.58 (p < 0.02) + 

shell_CT_firstorder_10Percentile_maxi 0.58 (p < 0.01) + 

shell_CT_firstorder_Kurtosis_maxi 0.60 (p < 0.01) + 

shell_CT_firstorder_MeanAbsoluteDeviation_mini 0.60 (p < 0.01) - 

shell_CT_glcm_ClusterProminence_maxi 0.61 (p < 0.01) + 

shell_CT_glcm_ClusterShade_maxi 0.58 (p < 0.01) + 

shell_CT_gldm_LowGrayLevelEmphasis_mini 0.60 (p < 0.01) - 

shell_PT_firstorder_10Percentile_range 0.58 (p < 0.01) + 

shell_oneroi_PT_firstorder_Energy 0.58 (p < 0.01) + 

shell_oneroi_PT_glcm_Idmn 0.58 (p < 0.01) + 

stomach_CT_firstorder_RobustMeanAbsoluteDeviation 0.62 (p < 0.01) - 

trachea_volTumorInside 0.60 (p < 0.01) + 

urinary_bladder_gotTumor 0.58 (p < 0.01) + 

Table S15: The 28 candidates selected on the DLBCL cohort. In the name of the biomarker, 

multiple terms are separated by an underscore. The first term describes in which region 

the biomarker was computed (lesion, organ, shell, …). The second describes the modality 

(PET, CT values or shape). The third one is the PyRadiomics name of the feature. The 

fourth, if any, explains the aggregation method used to aggregate the lesion level 

biomarker to the patient level (e.g., minimum value across all lesions, maximum, 

standard-deviation of the values). The C-index for PFS prediction is reported with its p-

value, as well as the sign of the correlation with the risk (PFS). 
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Biomarker Balanced accuracy (p-value) 

lesion_CT_glcm_Idn_range 0.61 (p < 0.01) 

lesion_CT_glcm_Imc1_range 0.59 (p < 0.01) 

lesion_CT_glrlm_ShortRunHighGrayLevelEmphasis_maxi 0.58 (p < 0.03) 

lesion_PT_glcm_InverseVariance_range 0.59 (p < 0.02) 

pancreas_PT_firstorder_Energy 0.58 (p < 0.02) 

pancreas_shape_Elongation 0.60 (p < 0.01) 

shell_CT_firstorder_Median_mini 0.58 (p < 0.02) 

shell_CT_gldm_DependenceEntropy_mini 0.62 (p < 0.01) 

shell_PT_glcm_Correlation_mini 0.60 (p < 0.01) 

shell_PT_gldm_DependenceNonUniformityNormalized_range 0.59 (p < 0.01) 

shell_shape_Elongation_maxi 0.62 (p < 0.01) 

small_bowel_shape_SurfaceVolumeRatio 0.58 (p < 0.02) 

volume_fat 0.60 (p < 0.01) 

Table S16: Biomarkers that significantly discriminated FL patients responding to 

treatment vs FL patients with progressive disease. 
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Figure S68: Correlogram of biomarkers selected on the FL cohort, based on their 

Spearman correlation on the FL cohort. 
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Figure S69: Correlogram of biomarkers selected on the DLBCL cohort, based on their 

Spearman correlation on the DLBCL cohort. 
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Figure S70: Correlogram of biomarkers selected on the DLBCL and FL cohorts, with their 

absolute Spearman correlation calculated with the two cohorts merged into one. A large 

fraction of the prognostic information identified is shared between the two cohorts. 
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Figure S71: Correlogram of the surrogate biomarkers, based on their Spearman 

correlation on both the FL and DLBCL cohorts. 

 

 

 

 

 

Figure S72: Correlogram of the 10 surrogate biomarkers prognostic on both FL and DLBCL 

cohorts, based on their Spearman correlation on both the FL and DLBCL cohorts. 

 


